xref: /freebsd/sys/netinet/udp_usrreq.c (revision bcb298fa9e23c1192c5707086a67d3b396186abc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_inet6.h"
42 #include "opt_ipsec.h"
43 #include "opt_route.h"
44 #include "opt_rss.h"
45 
46 #include <sys/param.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/protosw.h>
57 #include <sys/sdt.h>
58 #include <sys/signalvar.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 #include <sys/systm.h>
65 
66 #include <vm/uma.h>
67 
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/route.h>
71 #include <net/route/nhop.h>
72 #include <net/rss_config.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip.h>
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #endif
84 #include <netinet/ip_icmp.h>
85 #include <netinet/icmp_var.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_options.h>
88 #ifdef INET6
89 #include <netinet6/ip6_var.h>
90 #endif
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/udplite.h>
94 #include <netinet/in_rss.h>
95 
96 #include <netipsec/ipsec_support.h>
97 
98 #include <machine/in_cksum.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 /*
103  * UDP and UDP-Lite protocols implementation.
104  * Per RFC 768, August, 1980.
105  * Per RFC 3828, July, 2004.
106  */
107 
108 VNET_DEFINE(int, udp_bind_all_fibs) = 1;
109 SYSCTL_INT(_net_inet_udp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN,
110     &VNET_NAME(udp_bind_all_fibs), 0,
111     "Bound sockets receive traffic from all FIBs");
112 
113 /*
114  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
115  * removes the only data integrity mechanism for packets and malformed
116  * packets that would otherwise be discarded due to bad checksums, and may
117  * cause problems (especially for NFS data blocks).
118  */
119 VNET_DEFINE(int, udp_cksum) = 1;
120 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
121     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
122 
123 VNET_DEFINE(int, udp_log_in_vain) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
126 
127 VNET_DEFINE(int, udp_blackhole) = 0;
128 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
129     &VNET_NAME(udp_blackhole), 0,
130     "Do not send port unreachables for refused connects");
131 VNET_DEFINE(bool, udp_blackhole_local) = false;
132 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
133     CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false,
134     "Enforce net.inet.udp.blackhole for locally originated packets");
135 
136 u_long	udp_sendspace = 9216;		/* really max datagram size */
137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
138     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
139 
140 u_long	udp_recvspace = 40 * (1024 +
141 #ifdef INET6
142 				      sizeof(struct sockaddr_in6)
143 #else
144 				      sizeof(struct sockaddr_in)
145 #endif
146 				      );	/* 40 1K datagrams */
147 
148 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
149     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
150 
151 VNET_DEFINE(struct inpcbinfo, udbinfo);
152 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
153 
154 #ifndef UDBHASHSIZE
155 #define	UDBHASHSIZE	128
156 #endif
157 
158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
159 VNET_PCPUSTAT_SYSINIT(udpstat);
160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
161     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
162 
163 #ifdef VIMAGE
164 VNET_PCPUSTAT_SYSUNINIT(udpstat);
165 #endif /* VIMAGE */
166 #ifdef INET
167 static void	udp_detach(struct socket *so);
168 #endif
169 
170 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash");
171 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb",
172     "udplite", "udplitehash");
173 
174 static void
udp_vnet_init(void * arg __unused)175 udp_vnet_init(void *arg __unused)
176 {
177 
178 	/*
179 	 * For now default to 2-tuple UDP hashing - until the fragment
180 	 * reassembly code can also update the flowid.
181 	 *
182 	 * Once we can calculate the flowid that way and re-establish
183 	 * a 4-tuple, flip this to 4-tuple.
184 	 */
185 	in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE);
186 	/* Additional pcbinfo for UDP-Lite */
187 	in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE,
188 	    UDBHASHSIZE);
189 }
190 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
191     udp_vnet_init, NULL);
192 
193 /*
194  * Kernel module interface for updating udpstat.  The argument is an index
195  * into udpstat treated as an array of u_long.  While this encodes the
196  * general layout of udpstat into the caller, it doesn't encode its location,
197  * so that future changes to add, for example, per-CPU stats support won't
198  * cause binary compatibility problems for kernel modules.
199  */
200 void
kmod_udpstat_inc(int statnum)201 kmod_udpstat_inc(int statnum)
202 {
203 
204 	counter_u64_add(VNET(udpstat)[statnum], 1);
205 }
206 
207 #ifdef VIMAGE
208 static void
udp_destroy(void * unused __unused)209 udp_destroy(void *unused __unused)
210 {
211 
212 	in_pcbinfo_destroy(&V_udbinfo);
213 	in_pcbinfo_destroy(&V_ulitecbinfo);
214 }
215 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
216 #endif
217 
218 #ifdef INET
219 /*
220  * Subroutine of udp_input(), which appends the provided mbuf chain to the
221  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
222  * contains the source address.  If the socket ends up being an IPv6 socket,
223  * udp_append() will convert to a sockaddr_in6 before passing the address
224  * into the socket code.
225  *
226  * In the normal case udp_append() will return 0, indicating that you
227  * must unlock the inp. However if a tunneling protocol is in place we increment
228  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
229  * then decrement the reference count. If the inp_rele returns 1, indicating the
230  * inp is gone, we return that to the caller to tell them *not* to unlock
231  * the inp. In the case of multi-cast this will cause the distribution
232  * to stop (though most tunneling protocols known currently do *not* use
233  * multicast).
234  */
235 static int
udp_append(struct inpcb * inp,struct ip * ip,struct mbuf * n,int off,struct sockaddr_in * udp_in)236 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
237     struct sockaddr_in *udp_in)
238 {
239 	struct sockaddr *append_sa;
240 	struct socket *so;
241 	struct mbuf *tmpopts, *opts = NULL;
242 #ifdef INET6
243 	struct sockaddr_in6 udp_in6;
244 #endif
245 	struct udpcb *up;
246 
247 	INP_LOCK_ASSERT(inp);
248 
249 	/*
250 	 * Engage the tunneling protocol.
251 	 */
252 	up = intoudpcb(inp);
253 	if (up->u_tun_func != NULL) {
254 		bool filtered;
255 
256 		in_pcbref(inp);
257 		INP_RUNLOCK(inp);
258 		filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
259 		    up->u_tun_ctx);
260 		INP_RLOCK(inp);
261 		if (in_pcbrele_rlocked(inp))
262 			return (1);
263 		if (filtered) {
264 			INP_RUNLOCK(inp);
265 			return (1);
266 		}
267 	}
268 
269 	off += sizeof(struct udphdr);
270 
271 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
272 	/* Check AH/ESP integrity. */
273 	if (IPSEC_ENABLED(ipv4) &&
274 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
275 		m_freem(n);
276 		return (0);
277 	}
278 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
279 		if (IPSEC_ENABLED(ipv4) &&
280 		    UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0)
281 			return (0);	/* Consumed. */
282 	}
283 #endif /* IPSEC */
284 #ifdef MAC
285 	if (mac_inpcb_check_deliver(inp, n) != 0) {
286 		m_freem(n);
287 		return (0);
288 	}
289 #endif /* MAC */
290 	if (inp->inp_flags & INP_CONTROLOPTS ||
291 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
292 #ifdef INET6
293 		if (inp->inp_vflag & INP_IPV6)
294 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
295 		else
296 #endif /* INET6 */
297 			ip_savecontrol(inp, &opts, ip, n);
298 	}
299 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
300 		tmpopts = sbcreatecontrol(&udp_in[1],
301 		    sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP,
302 		    M_NOWAIT);
303 		if (tmpopts) {
304 			if (opts) {
305 				tmpopts->m_next = opts;
306 				opts = tmpopts;
307 			} else
308 				opts = tmpopts;
309 		}
310 	}
311 #ifdef INET6
312 	if (inp->inp_vflag & INP_IPV6) {
313 		bzero(&udp_in6, sizeof(udp_in6));
314 		udp_in6.sin6_len = sizeof(udp_in6);
315 		udp_in6.sin6_family = AF_INET6;
316 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
317 		append_sa = (struct sockaddr *)&udp_in6;
318 	} else
319 #endif /* INET6 */
320 		append_sa = (struct sockaddr *)&udp_in[0];
321 	m_adj(n, off);
322 
323 	so = inp->inp_socket;
324 	SOCKBUF_LOCK(&so->so_rcv);
325 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
326 		soroverflow_locked(so);
327 		m_freem(n);
328 		if (opts)
329 			m_freem(opts);
330 		UDPSTAT_INC(udps_fullsock);
331 	} else
332 		sorwakeup_locked(so);
333 	return (0);
334 }
335 
336 static bool
udp_multi_match(const struct inpcb * inp,void * v)337 udp_multi_match(const struct inpcb *inp, void *v)
338 {
339 	struct ip *ip = v;
340 	struct udphdr *uh = (struct udphdr *)(ip + 1);
341 
342 	if (inp->inp_lport != uh->uh_dport)
343 		return (false);
344 #ifdef INET6
345 	if ((inp->inp_vflag & INP_IPV4) == 0)
346 		return (false);
347 #endif
348 	if (inp->inp_laddr.s_addr != INADDR_ANY &&
349 	    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
350 		return (false);
351 	if (inp->inp_faddr.s_addr != INADDR_ANY &&
352 	    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
353 		return (false);
354 	if (inp->inp_fport != 0 &&
355 	    inp->inp_fport != uh->uh_sport)
356 		return (false);
357 
358 	return (true);
359 }
360 
361 static int
udp_multi_input(struct mbuf * m,int proto,struct sockaddr_in * udp_in)362 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in)
363 {
364 	struct ip *ip = mtod(m, struct ip *);
365 	struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto),
366 	    INPLOOKUP_RLOCKPCB, udp_multi_match, ip);
367 #ifdef KDTRACE_HOOKS
368 	struct udphdr *uh = (struct udphdr *)(ip + 1);
369 #endif
370 	struct inpcb *inp;
371 	struct mbuf *n;
372 	int appends = 0, fib;
373 
374 	MPASS(ip->ip_hl == sizeof(struct ip) >> 2);
375 
376 	fib = M_GETFIB(m);
377 
378 	while ((inp = inp_next(&inpi)) != NULL) {
379 		/*
380 		 * XXXRW: Because we weren't holding either the inpcb
381 		 * or the hash lock when we checked for a match
382 		 * before, we should probably recheck now that the
383 		 * inpcb lock is held.
384 		 */
385 
386 		if (V_udp_bind_all_fibs == 0 && fib != inp->inp_inc.inc_fibnum)
387 			/*
388 			 * Sockets bound to a specific FIB can only receive
389 			 * packets from that FIB.
390 			 */
391 			continue;
392 
393 		/*
394 		 * Handle socket delivery policy for any-source
395 		 * and source-specific multicast. [RFC3678]
396 		 */
397 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
398 			struct ip_moptions	*imo;
399 			struct sockaddr_in	 group;
400 			int			 blocked;
401 
402 			imo = inp->inp_moptions;
403 			if (imo == NULL)
404 				continue;
405 			bzero(&group, sizeof(struct sockaddr_in));
406 			group.sin_len = sizeof(struct sockaddr_in);
407 			group.sin_family = AF_INET;
408 			group.sin_addr = ip->ip_dst;
409 
410 			blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif,
411 				(struct sockaddr *)&group,
412 				(struct sockaddr *)&udp_in[0]);
413 			if (blocked != MCAST_PASS) {
414 				if (blocked == MCAST_NOTGMEMBER)
415 					IPSTAT_INC(ips_notmember);
416 				if (blocked == MCAST_NOTSMEMBER ||
417 				    blocked == MCAST_MUTED)
418 					UDPSTAT_INC(udps_filtermcast);
419 				continue;
420 			}
421 		}
422 		if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) {
423 			if (proto == IPPROTO_UDPLITE)
424 				UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
425 			else
426 				UDP_PROBE(receive, NULL, inp, ip, inp, uh);
427 			if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) {
428 				break;
429 			} else
430 				appends++;
431 		}
432 		/*
433 		 * Don't look for additional matches if this one does
434 		 * not have either the SO_REUSEPORT or SO_REUSEADDR
435 		 * socket options set.  This heuristic avoids
436 		 * searching through all pcbs in the common case of a
437 		 * non-shared port.  It assumes that an application
438 		 * will never clear these options after setting them.
439 		 */
440 		if ((inp->inp_socket->so_options &
441 		    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) {
442 			INP_RUNLOCK(inp);
443 			break;
444 		}
445 	}
446 
447 	if (appends == 0) {
448 		/*
449 		 * No matching pcb found; discard datagram.  (No need
450 		 * to send an ICMP Port Unreachable for a broadcast
451 		 * or multicast datgram.)
452 		 */
453 		UDPSTAT_INC(udps_noport);
454 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
455 			UDPSTAT_INC(udps_noportmcast);
456 		else
457 			UDPSTAT_INC(udps_noportbcast);
458 	}
459 	m_freem(m);
460 
461 	return (IPPROTO_DONE);
462 }
463 
464 static int
udp_input(struct mbuf ** mp,int * offp,int proto)465 udp_input(struct mbuf **mp, int *offp, int proto)
466 {
467 	struct ip *ip;
468 	struct udphdr *uh;
469 	struct ifnet *ifp;
470 	struct inpcb *inp;
471 	uint16_t len, ip_len;
472 	struct inpcbinfo *pcbinfo;
473 	struct sockaddr_in udp_in[2];
474 	struct mbuf *m;
475 	struct m_tag *fwd_tag;
476 	int cscov_partial, iphlen, lookupflags;
477 
478 	m = *mp;
479 	iphlen = *offp;
480 	ifp = m->m_pkthdr.rcvif;
481 	*mp = NULL;
482 	UDPSTAT_INC(udps_ipackets);
483 
484 	/*
485 	 * Strip IP options, if any; should skip this, make available to
486 	 * user, and use on returned packets, but we don't yet have a way to
487 	 * check the checksum with options still present.
488 	 */
489 	if (iphlen > sizeof (struct ip)) {
490 		ip_stripoptions(m);
491 		iphlen = sizeof(struct ip);
492 	}
493 
494 	/*
495 	 * Get IP and UDP header together in first mbuf.
496 	 */
497 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
498 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
499 			UDPSTAT_INC(udps_hdrops);
500 			return (IPPROTO_DONE);
501 		}
502 	}
503 	ip = mtod(m, struct ip *);
504 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
505 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
506 
507 	/*
508 	 * Destination port of 0 is illegal, based on RFC768.
509 	 */
510 	if (uh->uh_dport == 0)
511 		goto badunlocked;
512 
513 	/*
514 	 * Construct sockaddr format source address.  Stuff source address
515 	 * and datagram in user buffer.
516 	 */
517 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
518 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
519 	udp_in[0].sin_family = AF_INET;
520 	udp_in[0].sin_port = uh->uh_sport;
521 	udp_in[0].sin_addr = ip->ip_src;
522 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
523 	udp_in[1].sin_family = AF_INET;
524 	udp_in[1].sin_port = uh->uh_dport;
525 	udp_in[1].sin_addr = ip->ip_dst;
526 
527 	/*
528 	 * Make mbuf data length reflect UDP length.  If not enough data to
529 	 * reflect UDP length, drop.
530 	 */
531 	len = ntohs((u_short)uh->uh_ulen);
532 	ip_len = ntohs(ip->ip_len) - iphlen;
533 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
534 		/* Zero means checksum over the complete packet. */
535 		if (len == 0)
536 			len = ip_len;
537 		cscov_partial = 0;
538 	}
539 	if (ip_len != len) {
540 		if (len > ip_len || len < sizeof(struct udphdr)) {
541 			UDPSTAT_INC(udps_badlen);
542 			goto badunlocked;
543 		}
544 		if (proto == IPPROTO_UDP)
545 			m_adj(m, len - ip_len);
546 	}
547 
548 	/*
549 	 * Checksum extended UDP header and data.
550 	 */
551 	if (uh->uh_sum) {
552 		u_short uh_sum;
553 
554 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
555 		    !cscov_partial) {
556 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
557 				uh_sum = m->m_pkthdr.csum_data;
558 			else
559 				uh_sum = in_pseudo(ip->ip_src.s_addr,
560 				    ip->ip_dst.s_addr, htonl((u_short)len +
561 				    m->m_pkthdr.csum_data + proto));
562 			uh_sum ^= 0xffff;
563 		} else if (m->m_pkthdr.csum_flags & CSUM_IP_UDP) {
564 			/*
565 			 * Packet from local host (maybe from a VM).
566 			 * Checksum not required.
567 			 */
568 			uh_sum = 0;
569 		} else {
570 			char b[offsetof(struct ipovly, ih_src)];
571 			struct ipovly *ipov = (struct ipovly *)ip;
572 
573 			memcpy(b, ipov, sizeof(b));
574 			bzero(ipov, sizeof(ipov->ih_x1));
575 			ipov->ih_len = (proto == IPPROTO_UDP) ?
576 			    uh->uh_ulen : htons(ip_len);
577 			uh_sum = in_cksum(m, len + sizeof (struct ip));
578 			memcpy(ipov, b, sizeof(b));
579 		}
580 		if (uh_sum) {
581 			UDPSTAT_INC(udps_badsum);
582 			m_freem(m);
583 			return (IPPROTO_DONE);
584 		}
585 	} else {
586 		if (proto == IPPROTO_UDP) {
587 			UDPSTAT_INC(udps_nosum);
588 		} else {
589 			/* UDPLite requires a checksum */
590 			/* XXX: What is the right UDPLite MIB counter here? */
591 			m_freem(m);
592 			return (IPPROTO_DONE);
593 		}
594 	}
595 
596 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
597 	    in_ifnet_broadcast(ip->ip_dst, ifp))
598 		return (udp_multi_input(m, proto, udp_in));
599 
600 	pcbinfo = udp_get_inpcbinfo(proto);
601 
602 	/*
603 	 * Locate pcb for datagram.
604 	 */
605 	lookupflags = INPLOOKUP_RLOCKPCB |
606 	    (V_udp_bind_all_fibs ? 0 : INPLOOKUP_FIB);
607 
608 	/*
609 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
610 	 */
611 	if ((m->m_flags & M_IP_NEXTHOP) &&
612 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
613 		struct sockaddr_in *next_hop;
614 
615 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
616 
617 		/*
618 		 * Transparently forwarded. Pretend to be the destination.
619 		 * Already got one like this?
620 		 */
621 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
622 		    ip->ip_dst, uh->uh_dport, lookupflags, ifp, m);
623 		if (!inp) {
624 			/*
625 			 * It's new.  Try to find the ambushing socket.
626 			 * Because we've rewritten the destination address,
627 			 * any hardware-generated hash is ignored.
628 			 */
629 			inp = in_pcblookup(pcbinfo, ip->ip_src,
630 			    uh->uh_sport, next_hop->sin_addr,
631 			    next_hop->sin_port ? htons(next_hop->sin_port) :
632 			    uh->uh_dport, INPLOOKUP_WILDCARD | lookupflags,
633 			    ifp);
634 		}
635 		/* Remove the tag from the packet. We don't need it anymore. */
636 		m_tag_delete(m, fwd_tag);
637 		m->m_flags &= ~M_IP_NEXTHOP;
638 	} else
639 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
640 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
641 		    lookupflags, ifp, m);
642 	if (inp == NULL) {
643 		if (V_udp_log_in_vain) {
644 			char src[INET_ADDRSTRLEN];
645 			char dst[INET_ADDRSTRLEN];
646 
647 			log(LOG_INFO,
648 			    "Connection attempt to UDP %s:%d from %s:%d\n",
649 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
650 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
651 		}
652 		if (proto == IPPROTO_UDPLITE)
653 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
654 		else
655 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
656 		UDPSTAT_INC(udps_noport);
657 		if (m->m_flags & (M_BCAST | M_MCAST)) {
658 			UDPSTAT_INC(udps_noportbcast);
659 			goto badunlocked;
660 		}
661 		if (V_udp_blackhole && (V_udp_blackhole_local ||
662 		    !in_localip(ip->ip_src)))
663 			goto badunlocked;
664 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
665 			goto badunlocked;
666 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
667 		return (IPPROTO_DONE);
668 	}
669 
670 	/*
671 	 * Check the minimum TTL for socket.
672 	 */
673 	INP_RLOCK_ASSERT(inp);
674 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
675 		if (proto == IPPROTO_UDPLITE)
676 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
677 		else
678 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
679 		INP_RUNLOCK(inp);
680 		m_freem(m);
681 		return (IPPROTO_DONE);
682 	}
683 	if (cscov_partial) {
684 		struct udpcb *up;
685 
686 		up = intoudpcb(inp);
687 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
688 			INP_RUNLOCK(inp);
689 			m_freem(m);
690 			return (IPPROTO_DONE);
691 		}
692 	}
693 
694 	if (proto == IPPROTO_UDPLITE)
695 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
696 	else
697 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
698 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
699 		INP_RUNLOCK(inp);
700 	return (IPPROTO_DONE);
701 
702 badunlocked:
703 	m_freem(m);
704 	return (IPPROTO_DONE);
705 }
706 #endif /* INET */
707 
708 /*
709  * Notify a udp user of an asynchronous error; just wake up so that they can
710  * collect error status.
711  */
712 struct inpcb *
udp_notify(struct inpcb * inp,int errno)713 udp_notify(struct inpcb *inp, int errno)
714 {
715 
716 	INP_WLOCK_ASSERT(inp);
717 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
718 	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
719 		NH_FREE(inp->inp_route.ro_nh);
720 		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
721 	}
722 
723 	inp->inp_socket->so_error = errno;
724 	sorwakeup(inp->inp_socket);
725 	sowwakeup(inp->inp_socket);
726 	return (inp);
727 }
728 
729 #ifdef INET
730 static void
udp_common_ctlinput(struct icmp * icmp,struct inpcbinfo * pcbinfo)731 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo)
732 {
733 	struct ip *ip = &icmp->icmp_ip;
734 	struct udphdr *uh;
735 	struct inpcb *inp;
736 
737 	if (icmp_errmap(icmp) == 0)
738 		return;
739 
740 	uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
741 	inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src,
742 	    uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
743 	if (inp != NULL) {
744 		INP_WLOCK_ASSERT(inp);
745 		if (inp->inp_socket != NULL)
746 			udp_notify(inp, icmp_errmap(icmp));
747 		INP_WUNLOCK(inp);
748 	} else {
749 		inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport,
750 		    ip->ip_src, uh->uh_sport,
751 		    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
752 		if (inp != NULL) {
753 			struct udpcb *up;
754 			udp_tun_icmp_t *func;
755 
756 			up = intoudpcb(inp);
757 			func = up->u_icmp_func;
758 			INP_RUNLOCK(inp);
759 			if (func != NULL)
760 				func(icmp);
761 		}
762 	}
763 }
764 
765 static void
udp_ctlinput(struct icmp * icmp)766 udp_ctlinput(struct icmp *icmp)
767 {
768 
769 	return (udp_common_ctlinput(icmp, &V_udbinfo));
770 }
771 
772 static void
udplite_ctlinput(struct icmp * icmp)773 udplite_ctlinput(struct icmp *icmp)
774 {
775 
776 	return (udp_common_ctlinput(icmp, &V_ulitecbinfo));
777 }
778 #endif /* INET */
779 
780 static int
udp_pcblist(SYSCTL_HANDLER_ARGS)781 udp_pcblist(SYSCTL_HANDLER_ARGS)
782 {
783 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo,
784 	    INPLOOKUP_RLOCKPCB);
785 	struct xinpgen xig;
786 	struct inpcb *inp;
787 	int error;
788 
789 	if (req->newptr != 0)
790 		return (EPERM);
791 
792 	if (req->oldptr == 0) {
793 		int n;
794 
795 		n = V_udbinfo.ipi_count;
796 		n += imax(n / 8, 10);
797 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
798 		return (0);
799 	}
800 
801 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
802 		return (error);
803 
804 	bzero(&xig, sizeof(xig));
805 	xig.xig_len = sizeof xig;
806 	xig.xig_count = V_udbinfo.ipi_count;
807 	xig.xig_gen = V_udbinfo.ipi_gencnt;
808 	xig.xig_sogen = so_gencnt;
809 	error = SYSCTL_OUT(req, &xig, sizeof xig);
810 	if (error)
811 		return (error);
812 
813 	while ((inp = inp_next(&inpi)) != NULL) {
814 		if (inp->inp_gencnt <= xig.xig_gen &&
815 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
816 			struct xinpcb xi;
817 
818 			in_pcbtoxinpcb(inp, &xi);
819 			error = SYSCTL_OUT(req, &xi, sizeof xi);
820 			if (error) {
821 				INP_RUNLOCK(inp);
822 				break;
823 			}
824 		}
825 	}
826 
827 	if (!error) {
828 		/*
829 		 * Give the user an updated idea of our state.  If the
830 		 * generation differs from what we told her before, she knows
831 		 * that something happened while we were processing this
832 		 * request, and it might be necessary to retry.
833 		 */
834 		xig.xig_gen = V_udbinfo.ipi_gencnt;
835 		xig.xig_sogen = so_gencnt;
836 		xig.xig_count = V_udbinfo.ipi_count;
837 		error = SYSCTL_OUT(req, &xig, sizeof xig);
838 	}
839 
840 	return (error);
841 }
842 
843 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
844     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
845     udp_pcblist, "S,xinpcb",
846     "List of active UDP sockets");
847 
848 #ifdef INET
849 static int
udp_getcred(SYSCTL_HANDLER_ARGS)850 udp_getcred(SYSCTL_HANDLER_ARGS)
851 {
852 	struct xucred xuc;
853 	struct sockaddr_in addrs[2];
854 	struct epoch_tracker et;
855 	struct inpcb *inp;
856 	int error;
857 
858 	if (req->newptr == NULL)
859 		return (EINVAL);
860 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
861 	if (error)
862 		return (error);
863 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
864 	if (error)
865 		return (error);
866 	NET_EPOCH_ENTER(et);
867 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
868 	    addrs[0].sin_addr, addrs[0].sin_port,
869 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
870 	NET_EPOCH_EXIT(et);
871 	if (inp != NULL) {
872 		INP_RLOCK_ASSERT(inp);
873 		if (inp->inp_socket == NULL)
874 			error = ENOENT;
875 		if (error == 0)
876 			error = cr_canseeinpcb(req->td->td_ucred, inp);
877 		if (error == 0)
878 			cru2x(inp->inp_cred, &xuc);
879 		INP_RUNLOCK(inp);
880 	} else
881 		error = ENOENT;
882 	if (error == 0)
883 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
884 	return (error);
885 }
886 
887 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
888     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
889     0, 0, udp_getcred, "S,xucred",
890     "Get the xucred of a UDP connection");
891 #endif /* INET */
892 
893 int
udp_ctloutput(struct socket * so,struct sockopt * sopt)894 udp_ctloutput(struct socket *so, struct sockopt *sopt)
895 {
896 	struct inpcb *inp;
897 	struct udpcb *up;
898 	int isudplite, error, optval;
899 
900 	error = 0;
901 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
902 	inp = sotoinpcb(so);
903 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
904 	INP_WLOCK(inp);
905 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
906 #ifdef INET6
907 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
908 			INP_WUNLOCK(inp);
909 			error = ip6_ctloutput(so, sopt);
910 		}
911 #endif
912 #if defined(INET) && defined(INET6)
913 		else
914 #endif
915 #ifdef INET
916 		{
917 			INP_WUNLOCK(inp);
918 			error = ip_ctloutput(so, sopt);
919 		}
920 #endif
921 		return (error);
922 	}
923 
924 	switch (sopt->sopt_dir) {
925 	case SOPT_SET:
926 		switch (sopt->sopt_name) {
927 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
928 #if defined(INET) || defined(INET6)
929 		case UDP_ENCAP:
930 #ifdef INET
931 			if (INP_SOCKAF(so) == AF_INET) {
932 				if (!IPSEC_ENABLED(ipv4)) {
933 					INP_WUNLOCK(inp);
934 					return (ENOPROTOOPT);
935 				}
936 				error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
937 				break;
938 			}
939 #endif /* INET */
940 #ifdef INET6
941 			if (INP_SOCKAF(so) == AF_INET6) {
942 				if (!IPSEC_ENABLED(ipv6)) {
943 					INP_WUNLOCK(inp);
944 					return (ENOPROTOOPT);
945 				}
946 				error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
947 				break;
948 			}
949 #endif /* INET6 */
950 			INP_WUNLOCK(inp);
951 			return (EINVAL);
952 #endif /* INET || INET6 */
953 
954 #endif /* IPSEC */
955 		case UDPLITE_SEND_CSCOV:
956 		case UDPLITE_RECV_CSCOV:
957 			if (!isudplite) {
958 				INP_WUNLOCK(inp);
959 				error = ENOPROTOOPT;
960 				break;
961 			}
962 			INP_WUNLOCK(inp);
963 			error = sooptcopyin(sopt, &optval, sizeof(optval),
964 			    sizeof(optval));
965 			if (error != 0)
966 				break;
967 			inp = sotoinpcb(so);
968 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
969 			INP_WLOCK(inp);
970 			up = intoudpcb(inp);
971 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
972 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
973 				INP_WUNLOCK(inp);
974 				error = EINVAL;
975 				break;
976 			}
977 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
978 				up->u_txcslen = optval;
979 			else
980 				up->u_rxcslen = optval;
981 			INP_WUNLOCK(inp);
982 			break;
983 		default:
984 			INP_WUNLOCK(inp);
985 			error = ENOPROTOOPT;
986 			break;
987 		}
988 		break;
989 	case SOPT_GET:
990 		switch (sopt->sopt_name) {
991 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
992 #if defined(INET) || defined(INET6)
993 		case UDP_ENCAP:
994 #ifdef INET
995 			if (INP_SOCKAF(so) == AF_INET) {
996 				if (!IPSEC_ENABLED(ipv4)) {
997 					INP_WUNLOCK(inp);
998 					return (ENOPROTOOPT);
999 				}
1000 				error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
1001 				break;
1002 			}
1003 #endif /* INET */
1004 #ifdef INET6
1005 			if (INP_SOCKAF(so) == AF_INET6) {
1006 				if (!IPSEC_ENABLED(ipv6)) {
1007 					INP_WUNLOCK(inp);
1008 					return (ENOPROTOOPT);
1009 				}
1010 				error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
1011 				break;
1012 			}
1013 #endif /* INET6 */
1014 			INP_WUNLOCK(inp);
1015 			return (EINVAL);
1016 #endif /* INET || INET6 */
1017 
1018 #endif /* IPSEC */
1019 		case UDPLITE_SEND_CSCOV:
1020 		case UDPLITE_RECV_CSCOV:
1021 			if (!isudplite) {
1022 				INP_WUNLOCK(inp);
1023 				error = ENOPROTOOPT;
1024 				break;
1025 			}
1026 			up = intoudpcb(inp);
1027 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1028 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1029 				optval = up->u_txcslen;
1030 			else
1031 				optval = up->u_rxcslen;
1032 			INP_WUNLOCK(inp);
1033 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1034 			break;
1035 		default:
1036 			INP_WUNLOCK(inp);
1037 			error = ENOPROTOOPT;
1038 			break;
1039 		}
1040 		break;
1041 	}
1042 	return (error);
1043 }
1044 
1045 #ifdef INET
1046 #ifdef INET6
1047 /* The logic here is derived from ip6_setpktopt(). See comments there. */
1048 static int
udp_v4mapped_pktinfo(struct cmsghdr * cm,struct sockaddr_in * src,struct inpcb * inp,int flags)1049 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1050     struct inpcb *inp, int flags)
1051 {
1052 	struct ifnet *ifp;
1053 	struct in6_pktinfo *pktinfo;
1054 	struct in_addr ia;
1055 
1056 	NET_EPOCH_ASSERT();
1057 
1058 	if ((flags & PRUS_IPV6) == 0)
1059 		return (0);
1060 
1061 	if (cm->cmsg_level != IPPROTO_IPV6)
1062 		return (0);
1063 
1064 	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1065 	    cm->cmsg_type != IPV6_PKTINFO)
1066 		return (0);
1067 
1068 	if (cm->cmsg_len !=
1069 	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1070 		return (EINVAL);
1071 
1072 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1073 	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1074 	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1075 		return (EINVAL);
1076 
1077 	/* Validate the interface index if specified. */
1078 	if (pktinfo->ipi6_ifindex) {
1079 		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1080 		if (ifp == NULL)
1081 			return (ENXIO);
1082 	} else
1083 		ifp = NULL;
1084 	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1085 		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1086 		if (!in_ifhasaddr(ifp, ia))
1087 			return (EADDRNOTAVAIL);
1088 	}
1089 
1090 	bzero(src, sizeof(*src));
1091 	src->sin_family = AF_INET;
1092 	src->sin_len = sizeof(*src);
1093 	src->sin_port = inp->inp_lport;
1094 	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1095 
1096 	return (0);
1097 }
1098 #endif	/* INET6 */
1099 
1100 int
udp_send(struct socket * so,int flags,struct mbuf * m,struct sockaddr * addr,struct mbuf * control,struct thread * td)1101 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1102     struct mbuf *control, struct thread *td)
1103 {
1104 	struct inpcb *inp;
1105 	struct udpiphdr *ui;
1106 	int len, error = 0;
1107 	struct in_addr faddr, laddr;
1108 	struct cmsghdr *cm;
1109 	struct inpcbinfo *pcbinfo;
1110 	struct sockaddr_in *sin, src;
1111 	struct epoch_tracker et;
1112 	int cscov_partial = 0;
1113 	int ipflags = 0;
1114 	u_short fport, lport;
1115 	u_char tos, vflagsav;
1116 	uint8_t pr;
1117 	uint16_t cscov = 0;
1118 	uint32_t flowid = 0;
1119 	uint8_t flowtype = M_HASHTYPE_NONE;
1120 	bool use_cached_route;
1121 
1122 	inp = sotoinpcb(so);
1123 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1124 
1125 	if (addr != NULL) {
1126 		if (addr->sa_family != AF_INET)
1127 			error = EAFNOSUPPORT;
1128 		else if (addr->sa_len != sizeof(struct sockaddr_in))
1129 			error = EINVAL;
1130 		if (__predict_false(error != 0)) {
1131 			m_freem(control);
1132 			m_freem(m);
1133 			return (error);
1134 		}
1135 	}
1136 
1137 	len = m->m_pkthdr.len;
1138 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1139 		if (control)
1140 			m_freem(control);
1141 		m_freem(m);
1142 		return (EMSGSIZE);
1143 	}
1144 
1145 	src.sin_family = 0;
1146 	sin = (struct sockaddr_in *)addr;
1147 
1148 	/*
1149 	 * udp_send() may need to bind the current inpcb.  As such, we don't
1150 	 * know up front whether we will need the pcbinfo lock or not.  Do any
1151 	 * work to decide what is needed up front before acquiring any locks.
1152 	 *
1153 	 * We will need network epoch in either case, to safely lookup into
1154 	 * pcb hash.
1155 	 */
1156 	use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0);
1157 	if (use_cached_route || (flags & PRUS_IPV6) != 0)
1158 		INP_WLOCK(inp);
1159 	else
1160 		INP_RLOCK(inp);
1161 	NET_EPOCH_ENTER(et);
1162 	tos = inp->inp_ip_tos;
1163 	if (control != NULL) {
1164 		/*
1165 		 * XXX: Currently, we assume all the optional information is
1166 		 * stored in a single mbuf.
1167 		 */
1168 		if (control->m_next) {
1169 			m_freem(control);
1170 			error = EINVAL;
1171 			goto release;
1172 		}
1173 		for (; control->m_len > 0;
1174 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1175 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1176 			cm = mtod(control, struct cmsghdr *);
1177 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1178 			    || cm->cmsg_len > control->m_len) {
1179 				error = EINVAL;
1180 				break;
1181 			}
1182 #ifdef INET6
1183 			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1184 			if (error != 0)
1185 				break;
1186 #endif
1187 			if (cm->cmsg_level != IPPROTO_IP)
1188 				continue;
1189 
1190 			switch (cm->cmsg_type) {
1191 			case IP_SENDSRCADDR:
1192 				if (cm->cmsg_len !=
1193 				    CMSG_LEN(sizeof(struct in_addr))) {
1194 					error = EINVAL;
1195 					break;
1196 				}
1197 				bzero(&src, sizeof(src));
1198 				src.sin_family = AF_INET;
1199 				src.sin_len = sizeof(src);
1200 				src.sin_port = inp->inp_lport;
1201 				src.sin_addr =
1202 				    *(struct in_addr *)CMSG_DATA(cm);
1203 				break;
1204 
1205 			case IP_TOS:
1206 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1207 					error = EINVAL;
1208 					break;
1209 				}
1210 				tos = *(u_char *)CMSG_DATA(cm);
1211 				break;
1212 
1213 			case IP_FLOWID:
1214 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1215 					error = EINVAL;
1216 					break;
1217 				}
1218 				flowid = *(uint32_t *) CMSG_DATA(cm);
1219 				break;
1220 
1221 			case IP_FLOWTYPE:
1222 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1223 					error = EINVAL;
1224 					break;
1225 				}
1226 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1227 				break;
1228 
1229 #ifdef	RSS
1230 			case IP_RSSBUCKETID:
1231 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1232 					error = EINVAL;
1233 					break;
1234 				}
1235 				/* This is just a placeholder for now */
1236 				break;
1237 #endif	/* RSS */
1238 			default:
1239 				error = ENOPROTOOPT;
1240 				break;
1241 			}
1242 			if (error)
1243 				break;
1244 		}
1245 		m_freem(control);
1246 		control = NULL;
1247 	}
1248 	if (error)
1249 		goto release;
1250 
1251 	pr = inp->inp_socket->so_proto->pr_protocol;
1252 	pcbinfo = udp_get_inpcbinfo(pr);
1253 
1254 	/*
1255 	 * If the IP_SENDSRCADDR control message was specified, override the
1256 	 * source address for this datagram.  Its use is invalidated if the
1257 	 * address thus specified is incomplete or clobbers other inpcbs.
1258 	 */
1259 	laddr = inp->inp_laddr;
1260 	lport = inp->inp_lport;
1261 	if (src.sin_family == AF_INET) {
1262 		if ((lport == 0) ||
1263 		    (laddr.s_addr == INADDR_ANY &&
1264 		     src.sin_addr.s_addr == INADDR_ANY)) {
1265 			error = EINVAL;
1266 			goto release;
1267 		}
1268 		if ((flags & PRUS_IPV6) != 0) {
1269 			vflagsav = inp->inp_vflag;
1270 			inp->inp_vflag |= INP_IPV4;
1271 			inp->inp_vflag &= ~INP_IPV6;
1272 		}
1273 		INP_HASH_WLOCK(pcbinfo);
1274 		error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport,
1275 		    V_udp_bind_all_fibs ? 0 : INPBIND_FIB, td->td_ucred);
1276 		INP_HASH_WUNLOCK(pcbinfo);
1277 		if ((flags & PRUS_IPV6) != 0)
1278 			inp->inp_vflag = vflagsav;
1279 		if (error)
1280 			goto release;
1281 	}
1282 
1283 	/*
1284 	 * If a UDP socket has been connected, then a local address/port will
1285 	 * have been selected and bound.
1286 	 *
1287 	 * If a UDP socket has not been connected to, then an explicit
1288 	 * destination address must be used, in which case a local
1289 	 * address/port may not have been selected and bound.
1290 	 */
1291 	if (sin != NULL) {
1292 		INP_LOCK_ASSERT(inp);
1293 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1294 			error = EISCONN;
1295 			goto release;
1296 		}
1297 
1298 		/*
1299 		 * Jail may rewrite the destination address, so let it do
1300 		 * that before we use it.
1301 		 */
1302 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1303 		if (error)
1304 			goto release;
1305 		/*
1306 		 * sendto(2) on unconnected UDP socket results in implicit
1307 		 * binding to INADDR_ANY and anonymous port.  This has two
1308 		 * side effects:
1309 		 * 1) after first sendto(2) the socket will receive datagrams
1310 		 *    destined to the selected port.
1311 		 * 2) subsequent sendto(2) calls will use the same source port.
1312 		 */
1313 		if (inp->inp_lport == 0) {
1314 			struct sockaddr_in wild = {
1315 				.sin_family = AF_INET,
1316 				.sin_len = sizeof(struct sockaddr_in),
1317 			};
1318 
1319 			INP_HASH_WLOCK(pcbinfo);
1320 			error = in_pcbbind(inp, &wild, V_udp_bind_all_fibs ?
1321 			    0 : INPBIND_FIB, td->td_ucred);
1322 			INP_HASH_WUNLOCK(pcbinfo);
1323 			if (error)
1324 				goto release;
1325 			lport = inp->inp_lport;
1326 			laddr = inp->inp_laddr;
1327 		}
1328 		if (laddr.s_addr == INADDR_ANY) {
1329 			error = in_pcbladdr(inp, &sin->sin_addr, &laddr,
1330 			    td->td_ucred);
1331 			if (error)
1332 				goto release;
1333 		}
1334 		faddr = sin->sin_addr;
1335 		fport = sin->sin_port;
1336 	} else {
1337 		INP_LOCK_ASSERT(inp);
1338 		faddr = inp->inp_faddr;
1339 		fport = inp->inp_fport;
1340 		if (faddr.s_addr == INADDR_ANY) {
1341 			error = ENOTCONN;
1342 			goto release;
1343 		}
1344 	}
1345 
1346 	/*
1347 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1348 	 * link-layer headers.  Immediate slide the data pointer back forward
1349 	 * since we won't use that space at this layer.
1350 	 */
1351 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1352 	if (m == NULL) {
1353 		error = ENOBUFS;
1354 		goto release;
1355 	}
1356 	m->m_data += max_linkhdr;
1357 	m->m_len -= max_linkhdr;
1358 	m->m_pkthdr.len -= max_linkhdr;
1359 
1360 	/*
1361 	 * Fill in mbuf with extended UDP header and addresses and length put
1362 	 * into network format.
1363 	 */
1364 	ui = mtod(m, struct udpiphdr *);
1365 	/*
1366 	 * Filling only those fields of udpiphdr that participate in the
1367 	 * checksum calculation. The rest must be zeroed and will be filled
1368 	 * later.
1369 	 */
1370 	bzero(ui->ui_x1, sizeof(ui->ui_x1));
1371 	ui->ui_pr = pr;
1372 	ui->ui_src = laddr;
1373 	ui->ui_dst = faddr;
1374 	ui->ui_sport = lport;
1375 	ui->ui_dport = fport;
1376 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1377 	if (pr == IPPROTO_UDPLITE) {
1378 		struct udpcb *up;
1379 		uint16_t plen;
1380 
1381 		up = intoudpcb(inp);
1382 		cscov = up->u_txcslen;
1383 		plen = (u_short)len + sizeof(struct udphdr);
1384 		if (cscov >= plen)
1385 			cscov = 0;
1386 		ui->ui_len = htons(plen);
1387 		ui->ui_ulen = htons(cscov);
1388 		/*
1389 		 * For UDP-Lite, checksum coverage length of zero means
1390 		 * the entire UDPLite packet is covered by the checksum.
1391 		 */
1392 		cscov_partial = (cscov == 0) ? 0 : 1;
1393 	}
1394 
1395 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1396 		ipflags |= IP_ROUTETOIF;
1397 	if (inp->inp_socket->so_options & SO_BROADCAST)
1398 		ipflags |= IP_ALLOWBROADCAST;
1399 	if (inp->inp_flags & INP_ONESBCAST)
1400 		ipflags |= IP_SENDONES;
1401 
1402 #ifdef MAC
1403 	mac_inpcb_create_mbuf(inp, m);
1404 #endif
1405 
1406 	/*
1407 	 * Set up checksum and output datagram.
1408 	 */
1409 	ui->ui_sum = 0;
1410 	if (pr == IPPROTO_UDPLITE) {
1411 		if (inp->inp_flags & INP_ONESBCAST)
1412 			faddr.s_addr = INADDR_BROADCAST;
1413 		if (cscov_partial) {
1414 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1415 				ui->ui_sum = 0xffff;
1416 		} else {
1417 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1418 				ui->ui_sum = 0xffff;
1419 		}
1420 	} else if (V_udp_cksum) {
1421 		if (inp->inp_flags & INP_ONESBCAST)
1422 			faddr.s_addr = INADDR_BROADCAST;
1423 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1424 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1425 		m->m_pkthdr.csum_flags = CSUM_UDP;
1426 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1427 	}
1428 	/*
1429 	 * After finishing the checksum computation, fill the remaining fields
1430 	 * of udpiphdr.
1431 	 */
1432 	((struct ip *)ui)->ip_v = IPVERSION;
1433 	((struct ip *)ui)->ip_tos = tos;
1434 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1435 	if (inp->inp_flags & INP_DONTFRAG)
1436 		((struct ip *)ui)->ip_off |= htons(IP_DF);
1437 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;
1438 	UDPSTAT_INC(udps_opackets);
1439 
1440 	/*
1441 	 * Setup flowid / RSS information for outbound socket.
1442 	 *
1443 	 * Once the UDP code decides to set a flowid some other way,
1444 	 * this allows the flowid to be overridden by userland.
1445 	 */
1446 	if (flowtype != M_HASHTYPE_NONE) {
1447 		m->m_pkthdr.flowid = flowid;
1448 		M_HASHTYPE_SET(m, flowtype);
1449 	}
1450 #if defined(ROUTE_MPATH) || defined(RSS)
1451 	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1452 		uint32_t hash_val, hash_type;
1453 
1454 		hash_val = fib4_calc_packet_hash(laddr, faddr,
1455 		    lport, fport, pr, &hash_type);
1456 		m->m_pkthdr.flowid = hash_val;
1457 		M_HASHTYPE_SET(m, hash_type);
1458 	}
1459 
1460 	/*
1461 	 * Don't override with the inp cached flowid value.
1462 	 *
1463 	 * Depending upon the kind of send being done, the inp
1464 	 * flowid/flowtype values may actually not be appropriate
1465 	 * for this particular socket send.
1466 	 *
1467 	 * We should either leave the flowid at zero (which is what is
1468 	 * currently done) or set it to some software generated
1469 	 * hash value based on the packet contents.
1470 	 */
1471 	ipflags |= IP_NODEFAULTFLOWID;
1472 #endif	/* RSS */
1473 
1474 	if (pr == IPPROTO_UDPLITE)
1475 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1476 	else
1477 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1478 	error = ip_output(m, inp->inp_options,
1479 	    use_cached_route ? &inp->inp_route : NULL, ipflags,
1480 	    inp->inp_moptions, inp);
1481 	INP_UNLOCK(inp);
1482 	NET_EPOCH_EXIT(et);
1483 	return (error);
1484 
1485 release:
1486 	INP_UNLOCK(inp);
1487 	NET_EPOCH_EXIT(et);
1488 	m_freem(m);
1489 	return (error);
1490 }
1491 
1492 void
udp_abort(struct socket * so)1493 udp_abort(struct socket *so)
1494 {
1495 	struct inpcb *inp;
1496 	struct inpcbinfo *pcbinfo;
1497 
1498 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1499 	inp = sotoinpcb(so);
1500 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1501 	INP_WLOCK(inp);
1502 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1503 		INP_HASH_WLOCK(pcbinfo);
1504 		in_pcbdisconnect(inp);
1505 		INP_HASH_WUNLOCK(pcbinfo);
1506 		soisdisconnected(so);
1507 	}
1508 	INP_WUNLOCK(inp);
1509 }
1510 
1511 static int
udp_attach(struct socket * so,int proto,struct thread * td)1512 udp_attach(struct socket *so, int proto, struct thread *td)
1513 {
1514 	static uint32_t udp_flowid;
1515 	struct inpcbinfo *pcbinfo;
1516 	struct inpcb *inp;
1517 	struct udpcb *up;
1518 	int error;
1519 
1520 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1521 	inp = sotoinpcb(so);
1522 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1523 	error = soreserve(so, udp_sendspace, udp_recvspace);
1524 	if (error)
1525 		return (error);
1526 	error = in_pcballoc(so, pcbinfo);
1527 	if (error)
1528 		return (error);
1529 
1530 	inp = sotoinpcb(so);
1531 	inp->inp_ip_ttl = V_ip_defttl;
1532 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1533 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1534 	up = intoudpcb(inp);
1535 	bzero(&up->u_start_zero, u_zero_size);
1536 	INP_WUNLOCK(inp);
1537 
1538 	return (0);
1539 }
1540 #endif /* INET */
1541 
1542 int
udp_set_kernel_tunneling(struct socket * so,udp_tun_func_t f,udp_tun_icmp_t i,void * ctx)1543 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1544 {
1545 	struct inpcb *inp;
1546 	struct udpcb *up;
1547 
1548 	KASSERT(so->so_type == SOCK_DGRAM,
1549 	    ("udp_set_kernel_tunneling: !dgram"));
1550 	inp = sotoinpcb(so);
1551 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1552 	INP_WLOCK(inp);
1553 	up = intoudpcb(inp);
1554 	if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) ||
1555 	    (up->u_icmp_func != NULL))) {
1556 		INP_WUNLOCK(inp);
1557 		return (EBUSY);
1558 	}
1559 	up->u_tun_func = f;
1560 	up->u_icmp_func = i;
1561 	up->u_tun_ctx = ctx;
1562 	INP_WUNLOCK(inp);
1563 	return (0);
1564 }
1565 
1566 #ifdef INET
1567 static int
udp_bind(struct socket * so,struct sockaddr * nam,struct thread * td)1568 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1569 {
1570 	struct inpcb *inp;
1571 	struct inpcbinfo *pcbinfo;
1572 	struct sockaddr_in *sinp;
1573 	int error;
1574 
1575 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1576 	inp = sotoinpcb(so);
1577 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1578 
1579 	sinp = (struct sockaddr_in *)nam;
1580 	if (nam->sa_family != AF_INET) {
1581 		/*
1582 		 * Preserve compatibility with old programs.
1583 		 */
1584 		if (nam->sa_family != AF_UNSPEC ||
1585 		    nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
1586 		    sinp->sin_addr.s_addr != INADDR_ANY)
1587 			return (EAFNOSUPPORT);
1588 		nam->sa_family = AF_INET;
1589 	}
1590 	if (nam->sa_len != sizeof(struct sockaddr_in))
1591 		return (EINVAL);
1592 
1593 	INP_WLOCK(inp);
1594 	INP_HASH_WLOCK(pcbinfo);
1595 	error = in_pcbbind(inp, sinp, V_udp_bind_all_fibs ? 0 : INPBIND_FIB,
1596 	    td->td_ucred);
1597 	INP_HASH_WUNLOCK(pcbinfo);
1598 	INP_WUNLOCK(inp);
1599 	return (error);
1600 }
1601 
1602 static void
udp_close(struct socket * so)1603 udp_close(struct socket *so)
1604 {
1605 	struct inpcb *inp;
1606 	struct inpcbinfo *pcbinfo;
1607 
1608 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1609 	inp = sotoinpcb(so);
1610 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1611 	INP_WLOCK(inp);
1612 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1613 		INP_HASH_WLOCK(pcbinfo);
1614 		in_pcbdisconnect(inp);
1615 		INP_HASH_WUNLOCK(pcbinfo);
1616 		soisdisconnected(so);
1617 	}
1618 	INP_WUNLOCK(inp);
1619 }
1620 
1621 static int
udp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)1622 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1623 {
1624 	struct epoch_tracker et;
1625 	struct inpcb *inp;
1626 	struct inpcbinfo *pcbinfo;
1627 	struct sockaddr_in *sin;
1628 	int error;
1629 
1630 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1631 	inp = sotoinpcb(so);
1632 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1633 
1634 	sin = (struct sockaddr_in *)nam;
1635 	if (sin->sin_family != AF_INET)
1636 		return (EAFNOSUPPORT);
1637 	if (sin->sin_len != sizeof(*sin))
1638 		return (EINVAL);
1639 
1640 	INP_WLOCK(inp);
1641 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1642 		INP_WUNLOCK(inp);
1643 		return (EISCONN);
1644 	}
1645 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1646 	if (error != 0) {
1647 		INP_WUNLOCK(inp);
1648 		return (error);
1649 	}
1650 	NET_EPOCH_ENTER(et);
1651 	INP_HASH_WLOCK(pcbinfo);
1652 	error = in_pcbconnect(inp, sin, td->td_ucred);
1653 	INP_HASH_WUNLOCK(pcbinfo);
1654 	NET_EPOCH_EXIT(et);
1655 	if (error == 0)
1656 		soisconnected(so);
1657 	INP_WUNLOCK(inp);
1658 	return (error);
1659 }
1660 
1661 static void
udp_detach(struct socket * so)1662 udp_detach(struct socket *so)
1663 {
1664 	struct inpcb *inp;
1665 
1666 	inp = sotoinpcb(so);
1667 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1668 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1669 	    ("udp_detach: not disconnected"));
1670 	INP_WLOCK(inp);
1671 	in_pcbfree(inp);
1672 }
1673 
1674 int
udp_disconnect(struct socket * so)1675 udp_disconnect(struct socket *so)
1676 {
1677 	struct inpcb *inp;
1678 	struct inpcbinfo *pcbinfo;
1679 
1680 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1681 	inp = sotoinpcb(so);
1682 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1683 	INP_WLOCK(inp);
1684 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1685 		INP_WUNLOCK(inp);
1686 		return (ENOTCONN);
1687 	}
1688 	INP_HASH_WLOCK(pcbinfo);
1689 	in_pcbdisconnect(inp);
1690 	INP_HASH_WUNLOCK(pcbinfo);
1691 	SOCK_LOCK(so);
1692 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1693 	SOCK_UNLOCK(so);
1694 	INP_WUNLOCK(inp);
1695 	return (0);
1696 }
1697 #endif /* INET */
1698 
1699 int
udp_shutdown(struct socket * so,enum shutdown_how how)1700 udp_shutdown(struct socket *so, enum shutdown_how how)
1701 {
1702 	int error;
1703 
1704 	SOCK_LOCK(so);
1705 	if (!(so->so_state & SS_ISCONNECTED))
1706 		/*
1707 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
1708 		 * invoked on a datagram sockets, however historically we would
1709 		 * actually tear socket down.  This is known to be leveraged by
1710 		 * some applications to unblock process waiting in recv(2) by
1711 		 * other process that it shares that socket with.  Try to meet
1712 		 * both backward-compatibility and POSIX requirements by forcing
1713 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
1714 		 *
1715 		 * XXXGL: it remains unknown what applications expect this
1716 		 * behavior and is this isolated to unix/dgram or inet/dgram or
1717 		 * both.  See: D10351, D3039.
1718 		 */
1719 		error = ENOTCONN;
1720 	else
1721 		error = 0;
1722 	SOCK_UNLOCK(so);
1723 
1724 	switch (how) {
1725 	case SHUT_RD:
1726 		sorflush(so);
1727 		break;
1728 	case SHUT_RDWR:
1729 		sorflush(so);
1730 		/* FALLTHROUGH */
1731 	case SHUT_WR:
1732 		socantsendmore(so);
1733 	}
1734 
1735 	return (error);
1736 }
1737 
1738 #ifdef INET
1739 #define	UDP_PROTOSW							\
1740 	.pr_type =		SOCK_DGRAM,				\
1741 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH,	\
1742 	.pr_ctloutput =		udp_ctloutput,				\
1743 	.pr_abort =		udp_abort,				\
1744 	.pr_attach =		udp_attach,				\
1745 	.pr_bind =		udp_bind,				\
1746 	.pr_connect =		udp_connect,				\
1747 	.pr_control =		in_control,				\
1748 	.pr_detach =		udp_detach,				\
1749 	.pr_disconnect =	udp_disconnect,				\
1750 	.pr_peeraddr =		in_getpeeraddr,				\
1751 	.pr_send =		udp_send,				\
1752 	.pr_soreceive =		soreceive_dgram,			\
1753 	.pr_sosend =		sosend_dgram,				\
1754 	.pr_shutdown =		udp_shutdown,				\
1755 	.pr_sockaddr =		in_getsockaddr,				\
1756 	.pr_sosetlabel =	in_pcbsosetlabel,			\
1757 	.pr_close =		udp_close
1758 
1759 struct protosw udp_protosw = {
1760 	.pr_protocol =		IPPROTO_UDP,
1761 	UDP_PROTOSW
1762 };
1763 
1764 struct protosw udplite_protosw = {
1765 	.pr_protocol =		IPPROTO_UDPLITE,
1766 	UDP_PROTOSW
1767 };
1768 
1769 static void
udp_init(void * arg __unused)1770 udp_init(void *arg __unused)
1771 {
1772 
1773 	IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput);
1774 	IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput);
1775 }
1776 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL);
1777 #endif /* INET */
1778