1 /*
2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <ctype.h>
13 #include <openssl/objects.h>
14 #include <openssl/evp.h>
15 #include <openssl/hmac.h>
16 #include <openssl/core_names.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/conf.h>
19 #include <openssl/x509v3.h>
20 #include <openssl/dh.h>
21 #include <openssl/bn.h>
22 #include <openssl/provider.h>
23 #include <openssl/param_build.h>
24 #include "internal/nelem.h"
25 #include "internal/sizes.h"
26 #include "internal/tlsgroups.h"
27 #include "internal/ssl_unwrap.h"
28 #include "ssl_local.h"
29 #include "quic/quic_local.h"
30 #include <openssl/ct.h>
31
32 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35 SSL3_ENC_METHOD const TLSv1_enc_data = {
36 tls1_setup_key_block,
37 tls1_generate_master_secret,
38 tls1_change_cipher_state,
39 tls1_final_finish_mac,
40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42 tls1_alert_code,
43 tls1_export_keying_material,
44 0,
45 ssl3_set_handshake_header,
46 tls_close_construct_packet,
47 ssl3_handshake_write
48 };
49
50 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 0,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_setup_key_block,
67 tls1_generate_master_secret,
68 tls1_change_cipher_state,
69 tls1_final_finish_mac,
70 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72 tls1_alert_code,
73 tls1_export_keying_material,
74 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76 ssl3_set_handshake_header,
77 tls_close_construct_packet,
78 ssl3_handshake_write
79 };
80
81 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82 tls13_setup_key_block,
83 tls13_generate_master_secret,
84 tls13_change_cipher_state,
85 tls13_final_finish_mac,
86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88 tls13_alert_code,
89 tls13_export_keying_material,
90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91 ssl3_set_handshake_header,
92 tls_close_construct_packet,
93 ssl3_handshake_write
94 };
95
tls1_default_timeout(void)96 OSSL_TIME tls1_default_timeout(void)
97 {
98 /*
99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100 * http, the cache would over fill
101 */
102 return ossl_seconds2time(60 * 60 * 2);
103 }
104
tls1_new(SSL * s)105 int tls1_new(SSL *s)
106 {
107 if (!ssl3_new(s))
108 return 0;
109 if (!s->method->ssl_clear(s))
110 return 0;
111
112 return 1;
113 }
114
tls1_free(SSL * s)115 void tls1_free(SSL *s)
116 {
117 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119 if (sc == NULL)
120 return;
121
122 OPENSSL_free(sc->ext.session_ticket);
123 ssl3_free(s);
124 }
125
tls1_clear(SSL * s)126 int tls1_clear(SSL *s)
127 {
128 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130 if (sc == NULL)
131 return 0;
132
133 if (!ssl3_clear(s))
134 return 0;
135
136 if (s->method->version == TLS_ANY_VERSION)
137 sc->version = TLS_MAX_VERSION_INTERNAL;
138 else
139 sc->version = s->method->version;
140
141 return 1;
142 }
143
144 /* Legacy NID to group_id mapping. Only works for groups we know about */
145 static const struct {
146 int nid;
147 uint16_t group_id;
148 } nid_to_group[] = {
149 { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
150 { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
151 { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
152 { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
153 { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
154 { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
155 { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
156 { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
157 { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
158 { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
159 { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
160 { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
161 { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
162 { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
163 { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
164 { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
165 { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
166 { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
167 { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
168 { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
169 { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
170 { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
171 { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
172 { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
173 { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
174 { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
175 { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
176 { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
177 { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
178 { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
179 { NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
180 { NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
181 { NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
182 { NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
183 { NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
184 { NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
185 { NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
186 { NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
187 { NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
188 { NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
189 { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
190 { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
191 { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
192 { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
193 { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
194 };
195
196 static const unsigned char ecformats_default[] = {
197 TLSEXT_ECPOINTFORMAT_uncompressed,
198 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200 };
201
202 /* Group list string of the built-in pseudo group DEFAULT */
203 #define DEFAULT_GROUP_NAME "DEFAULT"
204 #define TLS_DEFAULT_GROUP_LIST \
205 "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207 static const uint16_t suiteb_curves[] = {
208 OSSL_TLS_GROUP_ID_secp256r1,
209 OSSL_TLS_GROUP_ID_secp384r1,
210 };
211
212 /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213 #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214 #define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216 struct provider_ctx_data_st {
217 SSL_CTX *ctx;
218 OSSL_PROVIDER *provider;
219 };
220
221 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
222 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)223 static int add_provider_groups(const OSSL_PARAM params[], void *data)
224 {
225 struct provider_ctx_data_st *pgd = data;
226 SSL_CTX *ctx = pgd->ctx;
227 const OSSL_PARAM *p;
228 TLS_GROUP_INFO *ginf = NULL;
229 EVP_KEYMGMT *keymgmt;
230 unsigned int gid;
231 unsigned int is_kem = 0;
232 int ret = 0;
233
234 if (ctx->group_list_max_len == ctx->group_list_len) {
235 TLS_GROUP_INFO *tmp = NULL;
236
237 if (ctx->group_list_max_len == 0)
238 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240 else
241 tmp = OPENSSL_realloc(ctx->group_list,
242 (ctx->group_list_max_len
243 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244 * sizeof(TLS_GROUP_INFO));
245 if (tmp == NULL)
246 return 0;
247 ctx->group_list = tmp;
248 memset(tmp + ctx->group_list_max_len,
249 0,
250 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252 }
253
254 ginf = &ctx->group_list[ctx->group_list_len];
255
256 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259 goto err;
260 }
261 ginf->tlsname = OPENSSL_strdup(p->data);
262 if (ginf->tlsname == NULL)
263 goto err;
264
265 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268 goto err;
269 }
270 ginf->realname = OPENSSL_strdup(p->data);
271 if (ginf->realname == NULL)
272 goto err;
273
274 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277 goto err;
278 }
279 ginf->group_id = (uint16_t)gid;
280
281 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284 goto err;
285 }
286 ginf->algorithm = OPENSSL_strdup(p->data);
287 if (ginf->algorithm == NULL)
288 goto err;
289
290 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293 goto err;
294 }
295
296 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299 goto err;
300 }
301 ginf->is_kem = 1 & is_kem;
302
303 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306 goto err;
307 }
308
309 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312 goto err;
313 }
314
315 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318 goto err;
319 }
320
321 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324 goto err;
325 }
326 /*
327 * Now check that the algorithm is actually usable for our property query
328 * string. Regardless of the result we still return success because we have
329 * successfully processed this group, even though we may decide not to use
330 * it.
331 */
332 ret = 1;
333 ERR_set_mark();
334 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335 if (keymgmt != NULL) {
336 /* We have successfully fetched the algorithm, we can use the group. */
337 ctx->group_list_len++;
338 ginf = NULL;
339 EVP_KEYMGMT_free(keymgmt);
340 }
341 ERR_pop_to_mark();
342 err:
343 if (ginf != NULL) {
344 OPENSSL_free(ginf->tlsname);
345 OPENSSL_free(ginf->realname);
346 OPENSSL_free(ginf->algorithm);
347 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348 }
349 return ret;
350 }
351
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)352 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353 {
354 struct provider_ctx_data_st pgd;
355
356 pgd.ctx = vctx;
357 pgd.provider = provider;
358 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359 add_provider_groups, &pgd);
360 }
361
ssl_load_groups(SSL_CTX * ctx)362 int ssl_load_groups(SSL_CTX *ctx)
363 {
364 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365 return 0;
366
367 return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368 }
369
inferred_keytype(const TLS_SIGALG_INFO * sinf)370 static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
371 {
372 return (sinf->keytype != NULL
373 ? sinf->keytype
374 : (sinf->sig_name != NULL
375 ? sinf->sig_name
376 : sinf->sigalg_name));
377 }
378
379 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
380 static OSSL_CALLBACK add_provider_sigalgs;
add_provider_sigalgs(const OSSL_PARAM params[],void * data)381 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
382 {
383 struct provider_ctx_data_st *pgd = data;
384 SSL_CTX *ctx = pgd->ctx;
385 OSSL_PROVIDER *provider = pgd->provider;
386 const OSSL_PARAM *p;
387 TLS_SIGALG_INFO *sinf = NULL;
388 EVP_KEYMGMT *keymgmt;
389 const char *keytype;
390 unsigned int code_point = 0;
391 int ret = 0;
392
393 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
394 TLS_SIGALG_INFO *tmp = NULL;
395
396 if (ctx->sigalg_list_max_len == 0)
397 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
398 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
399 else
400 tmp = OPENSSL_realloc(ctx->sigalg_list,
401 (ctx->sigalg_list_max_len
402 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
403 * sizeof(TLS_SIGALG_INFO));
404 if (tmp == NULL)
405 return 0;
406 ctx->sigalg_list = tmp;
407 memset(tmp + ctx->sigalg_list_max_len, 0,
408 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
409 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
410 }
411
412 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
413
414 /* First, mandatory parameters */
415 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
416 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
417 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
418 goto err;
419 }
420 OPENSSL_free(sinf->sigalg_name);
421 sinf->sigalg_name = OPENSSL_strdup(p->data);
422 if (sinf->sigalg_name == NULL)
423 goto err;
424
425 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
426 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
427 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
428 goto err;
429 }
430 OPENSSL_free(sinf->name);
431 sinf->name = OPENSSL_strdup(p->data);
432 if (sinf->name == NULL)
433 goto err;
434
435 p = OSSL_PARAM_locate_const(params,
436 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
437 if (p == NULL
438 || !OSSL_PARAM_get_uint(p, &code_point)
439 || code_point > UINT16_MAX) {
440 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
441 goto err;
442 }
443 sinf->code_point = (uint16_t)code_point;
444
445 p = OSSL_PARAM_locate_const(params,
446 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
447 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
448 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
449 goto err;
450 }
451
452 /* Now, optional parameters */
453 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
454 if (p == NULL) {
455 sinf->sigalg_oid = NULL;
456 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
457 goto err;
458 } else {
459 OPENSSL_free(sinf->sigalg_oid);
460 sinf->sigalg_oid = OPENSSL_strdup(p->data);
461 if (sinf->sigalg_oid == NULL)
462 goto err;
463 }
464
465 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
466 if (p == NULL) {
467 sinf->sig_name = NULL;
468 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
469 goto err;
470 } else {
471 OPENSSL_free(sinf->sig_name);
472 sinf->sig_name = OPENSSL_strdup(p->data);
473 if (sinf->sig_name == NULL)
474 goto err;
475 }
476
477 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
478 if (p == NULL) {
479 sinf->sig_oid = NULL;
480 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
481 goto err;
482 } else {
483 OPENSSL_free(sinf->sig_oid);
484 sinf->sig_oid = OPENSSL_strdup(p->data);
485 if (sinf->sig_oid == NULL)
486 goto err;
487 }
488
489 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
490 if (p == NULL) {
491 sinf->hash_name = NULL;
492 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
493 goto err;
494 } else {
495 OPENSSL_free(sinf->hash_name);
496 sinf->hash_name = OPENSSL_strdup(p->data);
497 if (sinf->hash_name == NULL)
498 goto err;
499 }
500
501 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
502 if (p == NULL) {
503 sinf->hash_oid = NULL;
504 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
505 goto err;
506 } else {
507 OPENSSL_free(sinf->hash_oid);
508 sinf->hash_oid = OPENSSL_strdup(p->data);
509 if (sinf->hash_oid == NULL)
510 goto err;
511 }
512
513 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
514 if (p == NULL) {
515 sinf->keytype = NULL;
516 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
517 goto err;
518 } else {
519 OPENSSL_free(sinf->keytype);
520 sinf->keytype = OPENSSL_strdup(p->data);
521 if (sinf->keytype == NULL)
522 goto err;
523 }
524
525 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
526 if (p == NULL) {
527 sinf->keytype_oid = NULL;
528 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
529 goto err;
530 } else {
531 OPENSSL_free(sinf->keytype_oid);
532 sinf->keytype_oid = OPENSSL_strdup(p->data);
533 if (sinf->keytype_oid == NULL)
534 goto err;
535 }
536
537 /* Optional, not documented prior to 3.5 */
538 sinf->mindtls = sinf->maxdtls = -1;
539 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
540 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
541 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542 goto err;
543 }
544 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
545 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
546 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
547 goto err;
548 }
549 /* DTLS version numbers grow downward */
550 if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && ((sinf->maxdtls > sinf->mindtls))) {
551 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
552 goto err;
553 }
554 /* No provider sigalgs are supported in DTLS, reset after checking. */
555 sinf->mindtls = sinf->maxdtls = -1;
556
557 /* The remaining parameters below are mandatory again */
558 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
559 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
560 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
561 goto err;
562 }
563 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
564 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
565 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
566 goto err;
567 }
568 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
569 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
570 goto err;
571 }
572 if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls > TLS1_3_VERSION)))
573 sinf->mintls = sinf->maxtls = -1;
574 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION)))
575 sinf->mintls = sinf->maxtls = -1;
576
577 /* Ignore unusable sigalgs */
578 if (sinf->mintls == -1 && sinf->mindtls == -1) {
579 ret = 1;
580 goto err;
581 }
582
583 /*
584 * Now check that the algorithm is actually usable for our property query
585 * string. Regardless of the result we still return success because we have
586 * successfully processed this signature, even though we may decide not to
587 * use it.
588 */
589 ret = 1;
590 ERR_set_mark();
591 keytype = inferred_keytype(sinf);
592 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
593 if (keymgmt != NULL) {
594 /*
595 * We have successfully fetched the algorithm - however if the provider
596 * doesn't match this one then we ignore it.
597 *
598 * Note: We're cheating a little here. Technically if the same algorithm
599 * is available from more than one provider then it is undefined which
600 * implementation you will get back. Theoretically this could be
601 * different every time...we assume here that you'll always get the
602 * same one back if you repeat the exact same fetch. Is this a reasonable
603 * assumption to make (in which case perhaps we should document this
604 * behaviour)?
605 */
606 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
607 /*
608 * We have a match - so we could use this signature;
609 * Check proper object registration first, though.
610 * Don't care about return value as this may have been
611 * done within providers or previous calls to
612 * add_provider_sigalgs.
613 */
614 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
615 /* sanity check: Without successful registration don't use alg */
616 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618 goto err;
619 }
620 if (sinf->sig_name != NULL)
621 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622 if (sinf->keytype != NULL)
623 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624 if (sinf->hash_name != NULL)
625 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627 (sinf->hash_name != NULL
628 ? OBJ_txt2nid(sinf->hash_name)
629 : NID_undef),
630 OBJ_txt2nid(keytype));
631 ctx->sigalg_list_len++;
632 sinf = NULL;
633 }
634 EVP_KEYMGMT_free(keymgmt);
635 }
636 ERR_pop_to_mark();
637 err:
638 if (sinf != NULL) {
639 OPENSSL_free(sinf->name);
640 sinf->name = NULL;
641 OPENSSL_free(sinf->sigalg_name);
642 sinf->sigalg_name = NULL;
643 OPENSSL_free(sinf->sigalg_oid);
644 sinf->sigalg_oid = NULL;
645 OPENSSL_free(sinf->sig_name);
646 sinf->sig_name = NULL;
647 OPENSSL_free(sinf->sig_oid);
648 sinf->sig_oid = NULL;
649 OPENSSL_free(sinf->hash_name);
650 sinf->hash_name = NULL;
651 OPENSSL_free(sinf->hash_oid);
652 sinf->hash_oid = NULL;
653 OPENSSL_free(sinf->keytype);
654 sinf->keytype = NULL;
655 OPENSSL_free(sinf->keytype_oid);
656 sinf->keytype_oid = NULL;
657 }
658 return ret;
659 }
660
discover_provider_sigalgs(OSSL_PROVIDER * provider,void * vctx)661 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662 {
663 struct provider_ctx_data_st pgd;
664
665 pgd.ctx = vctx;
666 pgd.provider = provider;
667 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668 add_provider_sigalgs, &pgd);
669 /*
670 * Always OK, even if provider doesn't support the capability:
671 * Reconsider testing retval when legacy sigalgs are also loaded this way.
672 */
673 return 1;
674 }
675
ssl_load_sigalgs(SSL_CTX * ctx)676 int ssl_load_sigalgs(SSL_CTX *ctx)
677 {
678 size_t i;
679 SSL_CERT_LOOKUP lu;
680
681 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682 return 0;
683
684 /* now populate ctx->ssl_cert_info */
685 if (ctx->sigalg_list_len > 0) {
686 OPENSSL_free(ctx->ssl_cert_info);
687 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688 if (ctx->ssl_cert_info == NULL)
689 return 0;
690 for (i = 0; i < ctx->sigalg_list_len; i++) {
691 const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
692 ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
693 ctx->ssl_cert_info[i].amask = SSL_aANY;
694 }
695 }
696
697 /*
698 * For now, leave it at this: legacy sigalgs stay in their own
699 * data structures until "legacy cleanup" occurs.
700 */
701
702 return 1;
703 }
704
tls1_group_name2id(SSL_CTX * ctx,const char * name)705 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
706 {
707 size_t i;
708
709 for (i = 0; i < ctx->group_list_len; i++) {
710 if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
711 || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
712 return ctx->group_list[i].group_id;
713 }
714
715 return 0;
716 }
717
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)718 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
719 {
720 size_t i;
721
722 for (i = 0; i < ctx->group_list_len; i++) {
723 if (ctx->group_list[i].group_id == group_id)
724 return &ctx->group_list[i];
725 }
726
727 return NULL;
728 }
729
tls1_group_id2name(SSL_CTX * ctx,uint16_t group_id)730 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
731 {
732 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
733
734 if (tls_group_info == NULL)
735 return NULL;
736
737 return tls_group_info->tlsname;
738 }
739
tls1_group_id2nid(uint16_t group_id,int include_unknown)740 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
741 {
742 size_t i;
743
744 if (group_id == 0)
745 return NID_undef;
746
747 /*
748 * Return well known Group NIDs - for backwards compatibility. This won't
749 * work for groups we don't know about.
750 */
751 for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
752 if (nid_to_group[i].group_id == group_id)
753 return nid_to_group[i].nid;
754 }
755 if (!include_unknown)
756 return NID_undef;
757 return TLSEXT_nid_unknown | (int)group_id;
758 }
759
tls1_nid2group_id(int nid)760 uint16_t tls1_nid2group_id(int nid)
761 {
762 size_t i;
763
764 /*
765 * Return well known Group ids - for backwards compatibility. This won't
766 * work for groups we don't know about.
767 */
768 for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
769 if (nid_to_group[i].nid == nid)
770 return nid_to_group[i].group_id;
771 }
772
773 return 0;
774 }
775
776 /*
777 * Set *pgroups to the supported groups list and *pgroupslen to
778 * the number of groups supported.
779 */
tls1_get_supported_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)780 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
781 size_t *pgroupslen)
782 {
783 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
784
785 /* For Suite B mode only include P-256, P-384 */
786 switch (tls1_suiteb(s)) {
787 case SSL_CERT_FLAG_SUITEB_128_LOS:
788 *pgroups = suiteb_curves;
789 *pgroupslen = OSSL_NELEM(suiteb_curves);
790 break;
791
792 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
793 *pgroups = suiteb_curves;
794 *pgroupslen = 1;
795 break;
796
797 case SSL_CERT_FLAG_SUITEB_192_LOS:
798 *pgroups = suiteb_curves + 1;
799 *pgroupslen = 1;
800 break;
801
802 default:
803 if (s->ext.supportedgroups == NULL) {
804 *pgroups = sctx->ext.supportedgroups;
805 *pgroupslen = sctx->ext.supportedgroups_len;
806 } else {
807 *pgroups = s->ext.supportedgroups;
808 *pgroupslen = s->ext.supportedgroups_len;
809 }
810 break;
811 }
812 }
813
814 /*
815 * Some comments for the function below:
816 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
817 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
818 * eligible group from the legacy list. Therefore, we provide the entire list of supported
819 * groups in this case.
820 *
821 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
822 * but the groupID to 0.
823 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
824 * the "list of requested key share groups" is used, or the "list of supported groups" in
825 * combination with setting add_only_one = 1 is applied.
826 */
tls1_get_requested_keyshare_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)827 void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
828 size_t *pgroupslen)
829 {
830 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
831
832 if (s->ext.supportedgroups == NULL) {
833 *pgroups = sctx->ext.supportedgroups;
834 *pgroupslen = sctx->ext.supportedgroups_len;
835 } else {
836 *pgroups = s->ext.keyshares;
837 *pgroupslen = s->ext.keyshares_len;
838 }
839 }
840
tls1_get_group_tuples(SSL_CONNECTION * s,const size_t ** ptuples,size_t * ptupleslen)841 void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
842 size_t *ptupleslen)
843 {
844 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
845
846 if (s->ext.supportedgroups == NULL) {
847 *ptuples = sctx->ext.tuples;
848 *ptupleslen = sctx->ext.tuples_len;
849 } else {
850 *ptuples = s->ext.tuples;
851 *ptupleslen = s->ext.tuples_len;
852 }
853 }
854
tls_valid_group(SSL_CONNECTION * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)855 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
856 int minversion, int maxversion,
857 int isec, int *okfortls13)
858 {
859 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
860 group_id);
861 int ret;
862 int group_minversion, group_maxversion;
863
864 if (okfortls13 != NULL)
865 *okfortls13 = 0;
866
867 if (ginfo == NULL)
868 return 0;
869
870 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
871 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
872
873 if (group_minversion < 0 || group_maxversion < 0)
874 return 0;
875 if (group_maxversion == 0)
876 ret = 1;
877 else
878 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
879 if (group_minversion > 0)
880 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
881
882 if (!SSL_CONNECTION_IS_DTLS(s)) {
883 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
884 *okfortls13 = (group_maxversion == 0)
885 || (group_maxversion >= TLS1_3_VERSION);
886 }
887 ret &= !isec
888 || strcmp(ginfo->algorithm, "EC") == 0
889 || strcmp(ginfo->algorithm, "X25519") == 0
890 || strcmp(ginfo->algorithm, "X448") == 0;
891
892 return ret;
893 }
894
895 /* See if group is allowed by security callback */
tls_group_allowed(SSL_CONNECTION * s,uint16_t group,int op)896 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
897 {
898 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
899 group);
900 unsigned char gtmp[2];
901
902 if (ginfo == NULL)
903 return 0;
904
905 gtmp[0] = group >> 8;
906 gtmp[1] = group & 0xff;
907 return ssl_security(s, op, ginfo->secbits,
908 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
909 }
910
911 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)912 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
913 {
914 size_t i;
915 for (i = 0; i < listlen; i++)
916 if (list[i] == id)
917 return 1;
918 return 0;
919 }
920
921 typedef struct {
922 TLS_GROUP_INFO *grp;
923 size_t ix;
924 } TLS_GROUP_IX;
925
DEFINE_STACK_OF(TLS_GROUP_IX)926 DEFINE_STACK_OF(TLS_GROUP_IX)
927
928 static void free_wrapper(TLS_GROUP_IX *a)
929 {
930 OPENSSL_free(a);
931 }
932
tls_group_ix_cmp(const TLS_GROUP_IX * const * a,const TLS_GROUP_IX * const * b)933 static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
934 const TLS_GROUP_IX *const *b)
935 {
936 int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
937 int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
938 int ixcmpab = (*a)->ix < (*b)->ix;
939 int ixcmpba = (*b)->ix < (*a)->ix;
940
941 /* Ascending by group id */
942 if (idcmpab != idcmpba)
943 return (idcmpba - idcmpab);
944 /* Ascending by original appearance index */
945 return ixcmpba - ixcmpab;
946 }
947
tls1_get0_implemented_groups(int min_proto_version,int max_proto_version,TLS_GROUP_INFO * grps,size_t num,long all,STACK_OF (OPENSSL_CSTRING)* out)948 int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
949 TLS_GROUP_INFO *grps, size_t num, long all,
950 STACK_OF(OPENSSL_CSTRING) *out)
951 {
952 STACK_OF(TLS_GROUP_IX) *collect = NULL;
953 TLS_GROUP_IX *gix;
954 uint16_t id = 0;
955 int ret = 0;
956 size_t ix;
957
958 if (grps == NULL || out == NULL)
959 return 0;
960 if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
961 return 0;
962 for (ix = 0; ix < num; ++ix, ++grps) {
963 if (grps->mintls > 0 && max_proto_version > 0
964 && grps->mintls > max_proto_version)
965 continue;
966 if (grps->maxtls > 0 && min_proto_version > 0
967 && grps->maxtls < min_proto_version)
968 continue;
969
970 if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
971 goto end;
972 gix->grp = grps;
973 gix->ix = ix;
974 if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
975 OPENSSL_free(gix);
976 goto end;
977 }
978 }
979
980 sk_TLS_GROUP_IX_sort(collect);
981 num = sk_TLS_GROUP_IX_num(collect);
982 for (ix = 0; ix < num; ++ix) {
983 gix = sk_TLS_GROUP_IX_value(collect, ix);
984 if (!all && gix->grp->group_id == id)
985 continue;
986 id = gix->grp->group_id;
987 if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
988 goto end;
989 }
990 ret = 1;
991
992 end:
993 sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
994 return ret;
995 }
996
997 /*-
998 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
999 * if there is no match.
1000 * For nmatch == -1, return number of matches
1001 * For nmatch == -2, return the id of the group to use for
1002 * a tmp key, or 0 if there is no match.
1003 */
tls1_shared_group(SSL_CONNECTION * s,int nmatch)1004 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1005 {
1006 const uint16_t *pref, *supp;
1007 size_t num_pref, num_supp, i;
1008 int k;
1009 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1010
1011 /* Can't do anything on client side */
1012 if (s->server == 0)
1013 return 0;
1014 if (nmatch == -2) {
1015 if (tls1_suiteb(s)) {
1016 /*
1017 * For Suite B ciphersuite determines curve: we already know
1018 * these are acceptable due to previous checks.
1019 */
1020 unsigned long cid = s->s3.tmp.new_cipher->id;
1021
1022 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1023 return OSSL_TLS_GROUP_ID_secp256r1;
1024 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1025 return OSSL_TLS_GROUP_ID_secp384r1;
1026 /* Should never happen */
1027 return 0;
1028 }
1029 /* If not Suite B just return first preference shared curve */
1030 nmatch = 0;
1031 }
1032 /*
1033 * If server preference set, our groups are the preference order
1034 * otherwise peer decides.
1035 */
1036 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1037 tls1_get_supported_groups(s, &pref, &num_pref);
1038 tls1_get_peer_groups(s, &supp, &num_supp);
1039 } else {
1040 tls1_get_peer_groups(s, &pref, &num_pref);
1041 tls1_get_supported_groups(s, &supp, &num_supp);
1042 }
1043
1044 for (k = 0, i = 0; i < num_pref; i++) {
1045 uint16_t id = pref[i];
1046 const TLS_GROUP_INFO *inf;
1047 int minversion, maxversion;
1048
1049 if (!tls1_in_list(id, supp, num_supp)
1050 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1051 continue;
1052 inf = tls1_group_id_lookup(ctx, id);
1053 if (!ossl_assert(inf != NULL))
1054 return 0;
1055
1056 minversion = SSL_CONNECTION_IS_DTLS(s)
1057 ? inf->mindtls
1058 : inf->mintls;
1059 maxversion = SSL_CONNECTION_IS_DTLS(s)
1060 ? inf->maxdtls
1061 : inf->maxtls;
1062 if (maxversion == -1)
1063 continue;
1064 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1065 || (maxversion != 0
1066 && ssl_version_cmp(s, s->version, maxversion) > 0))
1067 continue;
1068
1069 if (nmatch == k)
1070 return id;
1071 k++;
1072 }
1073 if (nmatch == -1)
1074 return k;
1075 /* Out of range (nmatch > k). */
1076 return 0;
1077 }
1078
tls1_set_groups(uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,int * groups,size_t ngroups)1079 int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1080 uint16_t **ksext, size_t *ksextlen,
1081 size_t **tplext, size_t *tplextlen,
1082 int *groups, size_t ngroups)
1083 {
1084 uint16_t *glist = NULL, *kslist = NULL;
1085 size_t *tpllist = NULL;
1086 size_t i;
1087 /*
1088 * Bitmap of groups included to detect duplicates: two variables are added
1089 * to detect duplicates as some values are more than 32.
1090 */
1091 unsigned long *dup_list = NULL;
1092 unsigned long dup_list_egrp = 0;
1093 unsigned long dup_list_dhgrp = 0;
1094
1095 if (ngroups == 0) {
1096 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1097 return 0;
1098 }
1099 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1100 goto err;
1101 if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1102 goto err;
1103 if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1104 goto err;
1105 for (i = 0; i < ngroups; i++) {
1106 unsigned long idmask;
1107 uint16_t id;
1108 id = tls1_nid2group_id(groups[i]);
1109 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1110 goto err;
1111 idmask = 1L << (id & 0x00FF);
1112 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1113 if (!id || ((*dup_list) & idmask))
1114 goto err;
1115 *dup_list |= idmask;
1116 glist[i] = id;
1117 }
1118 OPENSSL_free(*grpext);
1119 OPENSSL_free(*ksext);
1120 OPENSSL_free(*tplext);
1121 *grpext = glist;
1122 *grpextlen = ngroups;
1123 /*
1124 * No * prefix was used, let tls_construct_ctos_key_share choose a key
1125 * share. This has the advantage that it will filter unsupported groups
1126 * before choosing one, which this function does not do. See also the
1127 * comment for tls1_get_requested_keyshare_groups.
1128 */
1129 kslist[0] = 0;
1130 *ksext = kslist;
1131 *ksextlen = 1;
1132 tpllist[0] = ngroups;
1133 *tplext = tpllist;
1134 *tplextlen = 1;
1135 return 1;
1136 err:
1137 OPENSSL_free(glist);
1138 OPENSSL_free(kslist);
1139 OPENSSL_free(tpllist);
1140 return 0;
1141 }
1142
1143 /*
1144 * Definition of DEFAULT[_XYZ] pseudo group names.
1145 * A pseudo group name is actually a full list of groups, including prefixes
1146 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1147 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1148 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1149 */
1150 typedef struct {
1151 const char *list_name; /* The name of this pseudo group */
1152 const char *group_string; /* The group string of this pseudo group */
1153 } default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1154
1155 /* Built-in pseudo group-names must start with a (D or d) */
1156 static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1157
1158 /* The list of all built-in pseudo-group-name structures */
1159 static const default_group_string_st default_group_strings[] = {
1160 { DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST },
1161 { SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST }
1162 };
1163
1164 /*
1165 * Some GOST names are not resolved by tls1_group_name2id,
1166 * hence we'll check for those manually
1167 */
1168 typedef struct {
1169 const char *group_name;
1170 uint16_t groupID;
1171 } name2id_st;
1172 static const name2id_st name2id_arr[] = {
1173 { "GC256A", OSSL_TLS_GROUP_ID_gc256A },
1174 { "GC256B", OSSL_TLS_GROUP_ID_gc256B },
1175 { "GC256C", OSSL_TLS_GROUP_ID_gc256C },
1176 { "GC256D", OSSL_TLS_GROUP_ID_gc256D },
1177 { "GC512A", OSSL_TLS_GROUP_ID_gc512A },
1178 { "GC512B", OSSL_TLS_GROUP_ID_gc512B },
1179 { "GC512C", OSSL_TLS_GROUP_ID_gc512C },
1180 };
1181
1182 /*
1183 * Group list management:
1184 * We establish three lists along with their related size counters:
1185 * 1) List of (unique) groups
1186 * 2) List of number of groups per group-priority-tuple
1187 * 3) List of (unique) key share groups
1188 */
1189 #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1190 #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1191
1192 /*
1193 * Preparation of the prefix used to indicate the desire to send a key share,
1194 * the characters used as separators between groups or tuples of groups, the
1195 * character to indicate that an unknown group should be ignored, and the
1196 * character to indicate that a group should be deleted from a list
1197 */
1198 #ifndef TUPLE_DELIMITER_CHARACTER
1199 /* The prefix characters to indicate group tuple boundaries */
1200 #define TUPLE_DELIMITER_CHARACTER '/'
1201 #endif
1202 #ifndef GROUP_DELIMITER_CHARACTER
1203 /* The prefix characters to indicate group tuple boundaries */
1204 #define GROUP_DELIMITER_CHARACTER ':'
1205 #endif
1206 #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1207 /* The prefix character to ignore unknown groups */
1208 #define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1209 #endif
1210 #ifndef KEY_SHARE_INDICATOR_CHARACTER
1211 /* The prefix character to trigger a key share addition */
1212 #define KEY_SHARE_INDICATOR_CHARACTER '*'
1213 #endif
1214 #ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1215 /* The prefix character to trigger a key share removal */
1216 #define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1217 #endif
1218 static const char prefixes[] = { TUPLE_DELIMITER_CHARACTER,
1219 GROUP_DELIMITER_CHARACTER,
1220 IGNORE_UNKNOWN_GROUP_CHARACTER,
1221 KEY_SHARE_INDICATOR_CHARACTER,
1222 REMOVE_GROUP_INDICATOR_CHARACTER,
1223 '\0' };
1224
1225 /*
1226 * High-level description of how group strings are analyzed:
1227 * A first call back function (tuple_cb) is used to process group tuples, and a
1228 * second callback function (gid_cb) is used to process the groups inside a tuple.
1229 * Those callback functions are (indirectly) called by CONF_parse_list with
1230 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1231 * is used to keep track of the parsing results between the various calls
1232 */
1233
1234 typedef struct {
1235 SSL_CTX *ctx;
1236 /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1237 size_t gidmax; /* The memory allocation chunk size for the group IDs */
1238 size_t gidcnt; /* Number of groups */
1239 uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1240 size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1241 size_t tplcnt; /* Number of tuples */
1242 size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1243 size_t ksidmax; /* The memory allocation chunk size */
1244 size_t ksidcnt; /* Number of key shares */
1245 uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1246 /* Variable to keep state between execution of callback or helper functions */
1247 size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1248 int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1249 } gid_cb_st;
1250
1251 /* Forward declaration of tuple callback function */
1252 static int tuple_cb(const char *tuple, int len, void *arg);
1253
1254 /*
1255 * Extract and process the individual groups (and their prefixes if present)
1256 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1257 * and must be appended by a \0 if used as \0-terminated string
1258 */
gid_cb(const char * elem,int len,void * arg)1259 static int gid_cb(const char *elem, int len, void *arg)
1260 {
1261 gid_cb_st *garg = arg;
1262 size_t i, j, k;
1263 uint16_t gid = 0;
1264 int found_group = 0;
1265 char etmp[GROUP_NAME_BUFFER_LENGTH];
1266 int retval = 1; /* We assume success */
1267 char *current_prefix;
1268 int ignore_unknown = 0;
1269 int add_keyshare = 0;
1270 int remove_group = 0;
1271 size_t restored_prefix_index = 0;
1272 char *restored_default_group_string;
1273 int continue_while_loop = 1;
1274
1275 /* Sanity checks */
1276 if (garg == NULL || elem == NULL || len <= 0) {
1277 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1278 return 0;
1279 }
1280
1281 /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1282 while (continue_while_loop && len > 0
1283 && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1284 || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1285
1286 switch (*current_prefix) {
1287 case TUPLE_DELIMITER_CHARACTER:
1288 /* tuple delimiter not allowed here -> syntax error */
1289 return -1;
1290 break;
1291 case GROUP_DELIMITER_CHARACTER:
1292 return -1; /* Not a valid prefix for a single group name-> syntax error */
1293 break;
1294 case KEY_SHARE_INDICATOR_CHARACTER:
1295 if (add_keyshare)
1296 return -1; /* Only single key share prefix allowed -> syntax error */
1297 add_keyshare = 1;
1298 ++elem;
1299 --len;
1300 break;
1301 case REMOVE_GROUP_INDICATOR_CHARACTER:
1302 if (remove_group)
1303 return -1; /* Only single remove group prefix allowed -> syntax error */
1304 remove_group = 1;
1305 ++elem;
1306 --len;
1307 break;
1308 case IGNORE_UNKNOWN_GROUP_CHARACTER:
1309 if (ignore_unknown)
1310 return -1; /* Only single ? allowed -> syntax error */
1311 ignore_unknown = 1;
1312 ++elem;
1313 --len;
1314 break;
1315 default:
1316 /*
1317 * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1318 * list of groups) should be added
1319 */
1320 for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1321 if ((size_t)len == (strlen(default_group_strings[i].list_name))
1322 && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1323 /*
1324 * We're asked to insert an entire list of groups from a
1325 * DEFAULT[_XYZ] 'pseudo group' which we do by
1326 * recursively calling this function (indirectly via
1327 * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1328 * group string like a tuple which is appended to the current tuple
1329 * rather then starting a new tuple. Variable tuple_mode is the flag which
1330 * controls append tuple vs start new tuple.
1331 */
1332
1333 if (ignore_unknown || remove_group)
1334 return -1; /* removal or ignore not allowed here -> syntax error */
1335
1336 /*
1337 * First, we restore any keyshare prefix in a new zero-terminated string
1338 * (if not already present)
1339 */
1340 restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + strlen(default_group_strings[i].group_string) + 1 /* \0 */) * sizeof(char));
1341 if (restored_default_group_string == NULL)
1342 return 0;
1343 if (add_keyshare
1344 /* Remark: we tolerate a duplicated keyshare indicator here */
1345 && default_group_strings[i].group_string[0]
1346 != KEY_SHARE_INDICATOR_CHARACTER)
1347 restored_default_group_string[restored_prefix_index++] = KEY_SHARE_INDICATOR_CHARACTER;
1348
1349 memcpy(restored_default_group_string + restored_prefix_index,
1350 default_group_strings[i].group_string,
1351 strlen(default_group_strings[i].group_string));
1352 restored_default_group_string[strlen(default_group_strings[i].group_string) + restored_prefix_index] = '\0';
1353 /* We execute the recursive call */
1354 garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1355 /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1356 garg->tuple_mode = 0;
1357 /* We use the tuple_cb callback to process the pseudo group tuple */
1358 retval = CONF_parse_list(restored_default_group_string,
1359 TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1360 garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1361 garg->ignore_unknown_default = 0; /* reset to original value */
1362 /* We don't need the \0-terminated string anymore */
1363 OPENSSL_free(restored_default_group_string);
1364
1365 return retval;
1366 }
1367 }
1368 /*
1369 * If we reached this point, a group name started with a 'd' or 'D', but no request
1370 * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1371 * name can continue as usual (= the while loop checking prefixes can end)
1372 */
1373 continue_while_loop = 0;
1374 break;
1375 }
1376 }
1377
1378 if (len == 0)
1379 return -1; /* Seems we have prefxes without a group name -> syntax error */
1380
1381 if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1382 ignore_unknown = 1;
1383
1384 /* Memory management in case more groups are present compared to initial allocation */
1385 if (garg->gidcnt == garg->gidmax) {
1386 uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
1387 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1388
1389 if (tmp == NULL)
1390 return 0;
1391
1392 garg->gidmax += GROUPLIST_INCREMENT;
1393 garg->gid_arr = tmp;
1394 }
1395 /* Memory management for key share groups */
1396 if (garg->ksidcnt == garg->ksidmax) {
1397 uint16_t *tmp = OPENSSL_realloc(garg->ksid_arr,
1398 (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1399
1400 if (tmp == NULL)
1401 return 0;
1402 garg->ksidmax += GROUPLIST_INCREMENT;
1403 garg->ksid_arr = tmp;
1404 }
1405
1406 if (len > (int)(sizeof(etmp) - 1))
1407 return -1; /* group name to long -> syntax error */
1408
1409 /*
1410 * Prepare addition or removal of a single group by converting
1411 * a group name into its groupID equivalent
1412 */
1413
1414 /* Create a \0-terminated string and get the gid for this group if possible */
1415 memcpy(etmp, elem, len);
1416 etmp[len] = 0;
1417
1418 /* Get the groupID */
1419 gid = tls1_group_name2id(garg->ctx, etmp);
1420 /*
1421 * Handle the case where no valid groupID was returned
1422 * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1423 */
1424 if (gid == 0) {
1425 /* Is it one of the GOST groups ? */
1426 for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1427 if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1428 gid = name2id_arr[i].groupID;
1429 break;
1430 }
1431 }
1432 if (gid == 0) { /* still not found */
1433 /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1434 retval = ignore_unknown;
1435 goto done;
1436 }
1437 }
1438
1439 /* Make sure that at least one provider is supporting this groupID */
1440 found_group = 0;
1441 for (j = 0; j < garg->ctx->group_list_len; j++)
1442 if (garg->ctx->group_list[j].group_id == gid) {
1443 found_group = 1;
1444 break;
1445 }
1446
1447 /*
1448 * No provider supports this group - ignore if
1449 * ignore_unknown; trigger error otherwise
1450 */
1451 if (found_group == 0) {
1452 retval = ignore_unknown;
1453 goto done;
1454 }
1455 /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1456 if (remove_group) {
1457 /* Is the current group specified anywhere in the entire list so far? */
1458 found_group = 0;
1459 for (i = 0; i < garg->gidcnt; i++)
1460 if (garg->gid_arr[i] == gid) {
1461 found_group = 1;
1462 break;
1463 }
1464 /* The group to remove is at position i in the list of (zero indexed) groups */
1465 if (found_group) {
1466 /* We remove that group from its position (which is at i)... */
1467 for (j = i; j < (garg->gidcnt - 1); j++)
1468 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1469 garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1470
1471 /*
1472 * We also must update the number of groups either in a previous tuple (which we
1473 * must identify and check whether it becomes empty due to the deletion) or in
1474 * the current tuple, pending where the deleted group resides
1475 */
1476 k = 0;
1477 for (j = 0; j < garg->tplcnt; j++) {
1478 k += garg->tuplcnt_arr[j];
1479 /* Remark: i is zero-indexed, k is one-indexed */
1480 if (k > i) { /* remove from one of the previous tuples */
1481 garg->tuplcnt_arr[j]--;
1482 break; /* We took care not to have group duplicates, hence we can stop here */
1483 }
1484 }
1485 if (k <= i) /* remove from current tuple */
1486 garg->tuplcnt_arr[j]--;
1487
1488 /* We also remove the group from the list of keyshares (if present) */
1489 found_group = 0;
1490 for (i = 0; i < garg->ksidcnt; i++)
1491 if (garg->ksid_arr[i] == gid) {
1492 found_group = 1;
1493 break;
1494 }
1495 if (found_group) {
1496 /* Found, hence we remove that keyshare from its position (which is at i)... */
1497 for (j = i; j < (garg->ksidcnt - 1); j++)
1498 garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1499 /* ... and update the book keeping */
1500 garg->ksidcnt--;
1501 }
1502 }
1503 } else { /* Processing addition of a single new group */
1504
1505 /* Check for duplicates */
1506 for (i = 0; i < garg->gidcnt; i++)
1507 if (garg->gid_arr[i] == gid) {
1508 /* Duplicate group anywhere in the list of groups - ignore */
1509 goto done;
1510 }
1511
1512 /* Add the current group to the 'flat' list of groups */
1513 garg->gid_arr[garg->gidcnt++] = gid;
1514 /* and update the book keeping for the number of groups in current tuple */
1515 garg->tuplcnt_arr[garg->tplcnt]++;
1516
1517 /* We memorize if needed that we want to add a key share for the current group */
1518 if (add_keyshare)
1519 garg->ksid_arr[garg->ksidcnt++] = gid;
1520 }
1521
1522 done:
1523 return retval;
1524 }
1525
1526 /* Extract and process a tuple of groups */
tuple_cb(const char * tuple,int len,void * arg)1527 static int tuple_cb(const char *tuple, int len, void *arg)
1528 {
1529 gid_cb_st *garg = arg;
1530 int retval = 1; /* We assume success */
1531 char *restored_tuple_string;
1532
1533 /* Sanity checks */
1534 if (garg == NULL || tuple == NULL || len <= 0) {
1535 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1536 return 0;
1537 }
1538
1539 /* Memory management for tuples */
1540 if (garg->tplcnt == garg->tplmax) {
1541 size_t *tmp = OPENSSL_realloc(garg->tuplcnt_arr,
1542 (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543
1544 if (tmp == NULL)
1545 return 0;
1546 garg->tplmax += GROUPLIST_INCREMENT;
1547 garg->tuplcnt_arr = tmp;
1548 }
1549
1550 /* Convert to \0-terminated string */
1551 restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552 if (restored_tuple_string == NULL)
1553 return 0;
1554 memcpy(restored_tuple_string, tuple, len);
1555 restored_tuple_string[len] = '\0';
1556
1557 /* Analyze group list of this tuple */
1558 retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559
1560 /* We don't need the \o-terminated string anymore */
1561 OPENSSL_free(restored_tuple_string);
1562
1563 if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564 if (garg->tuple_mode) {
1565 /* We 'close' the tuple */
1566 garg->tplcnt++;
1567 garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568 garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569 }
1570 }
1571
1572 return retval;
1573 }
1574
1575 /*
1576 * Set groups and prepare generation of keyshares based on a string of groupnames,
1577 * names separated by the group or the tuple delimiter, with per-group prefixes to
1578 * (1) add a key share for this group, (2) ignore the group if unknown to the current
1579 * context, (3) delete a previous occurrence of the group in the current tuple.
1580 *
1581 * The list parsing is done in two hierarchical steps: The top-level step extracts the
1582 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583 * parse and process the groups inside a tuple
1584 */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,const char * str)1585 int tls1_set_groups_list(SSL_CTX *ctx,
1586 uint16_t **grpext, size_t *grpextlen,
1587 uint16_t **ksext, size_t *ksextlen,
1588 size_t **tplext, size_t *tplextlen,
1589 const char *str)
1590 {
1591 size_t i = 0, j;
1592 int ret = 0, parse_ret = 0;
1593 gid_cb_st gcb;
1594
1595 /* Sanity check */
1596 if (ctx == NULL) {
1597 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598 return 0;
1599 }
1600
1601 memset(&gcb, 0, sizeof(gcb));
1602 gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603 gcb.ignore_unknown_default = 0;
1604 gcb.gidmax = GROUPLIST_INCREMENT;
1605 gcb.tplmax = GROUPLIST_INCREMENT;
1606 gcb.ksidmax = GROUPLIST_INCREMENT;
1607 gcb.ctx = ctx;
1608
1609 /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611 if (gcb.gid_arr == NULL)
1612 goto end;
1613 gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614 if (gcb.tuplcnt_arr == NULL)
1615 goto end;
1616 gcb.tuplcnt_arr[0] = 0;
1617 gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618 if (gcb.ksid_arr == NULL)
1619 goto end;
1620
1621 while (str[0] != '\0' && isspace((unsigned char)*str))
1622 str++;
1623 if (str[0] == '\0')
1624 goto empty_list;
1625
1626 /*
1627 * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628 * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629 */
1630 parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631
1632 if (parse_ret == 0)
1633 goto end;
1634 if (parse_ret == -1) {
1635 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636 "Syntax error in '%s'", str);
1637 goto end;
1638 }
1639
1640 /*
1641 * We check whether a tuple was completely emptied by using "-" prefix
1642 * excessively, in which case we remove the tuple
1643 */
1644 for (i = j = 0; j < gcb.tplcnt; j++) {
1645 if (gcb.tuplcnt_arr[j] == 0)
1646 continue;
1647 /* If there's a gap, move to first unfilled slot */
1648 if (j == i)
1649 ++i;
1650 else
1651 gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652 }
1653 gcb.tplcnt = i;
1654
1655 if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657 "To many keyshares requested in '%s' (max = %d)",
1658 str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659 goto end;
1660 }
1661
1662 /*
1663 * For backward compatibility we let the rest of the code know that a key share
1664 * for the first valid group should be added if no "*" prefix was used anywhere
1665 */
1666 if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667 /*
1668 * No key share group prefix character was used, hence we indicate that a single
1669 * key share should be sent and flag that it should come from the supported_groups list
1670 */
1671 gcb.ksidcnt = 1;
1672 gcb.ksid_arr[0] = 0;
1673 }
1674
1675 empty_list:
1676 /*
1677 * A call to tls1_set_groups_list with any of the args (other than ctx) set
1678 * to NULL only does a syntax check, hence we're done here and report success
1679 */
1680 if (grpext == NULL || ksext == NULL || tplext == NULL || grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1681 ret = 1;
1682 goto end;
1683 }
1684
1685 /*
1686 * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1687 * can just go ahead and set the results (after disposing the existing)
1688 */
1689 OPENSSL_free(*grpext);
1690 *grpext = gcb.gid_arr;
1691 *grpextlen = gcb.gidcnt;
1692 OPENSSL_free(*ksext);
1693 *ksext = gcb.ksid_arr;
1694 *ksextlen = gcb.ksidcnt;
1695 OPENSSL_free(*tplext);
1696 *tplext = gcb.tuplcnt_arr;
1697 *tplextlen = gcb.tplcnt;
1698
1699 return 1;
1700
1701 end:
1702 OPENSSL_free(gcb.gid_arr);
1703 OPENSSL_free(gcb.tuplcnt_arr);
1704 OPENSSL_free(gcb.ksid_arr);
1705 return ret;
1706 }
1707
1708 /* Check a group id matches preferences */
tls1_check_group_id(SSL_CONNECTION * s,uint16_t group_id,int check_own_groups)1709 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1710 int check_own_groups)
1711 {
1712 const uint16_t *groups;
1713 size_t groups_len;
1714
1715 if (group_id == 0)
1716 return 0;
1717
1718 /* Check for Suite B compliance */
1719 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1720 unsigned long cid = s->s3.tmp.new_cipher->id;
1721
1722 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1723 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1724 return 0;
1725 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1726 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1727 return 0;
1728 } else {
1729 /* Should never happen */
1730 return 0;
1731 }
1732 }
1733
1734 if (check_own_groups) {
1735 /* Check group is one of our preferences */
1736 tls1_get_supported_groups(s, &groups, &groups_len);
1737 if (!tls1_in_list(group_id, groups, groups_len))
1738 return 0;
1739 }
1740
1741 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1742 return 0;
1743
1744 /* For clients, nothing more to check */
1745 if (!s->server)
1746 return 1;
1747
1748 /* Check group is one of peers preferences */
1749 tls1_get_peer_groups(s, &groups, &groups_len);
1750
1751 /*
1752 * RFC 4492 does not require the supported elliptic curves extension
1753 * so if it is not sent we can just choose any curve.
1754 * It is invalid to send an empty list in the supported groups
1755 * extension, so groups_len == 0 always means no extension.
1756 */
1757 if (groups_len == 0)
1758 return 1;
1759 return tls1_in_list(group_id, groups, groups_len);
1760 }
1761
tls1_get_formatlist(SSL_CONNECTION * s,const unsigned char ** pformats,size_t * num_formats)1762 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1763 size_t *num_formats)
1764 {
1765 /*
1766 * If we have a custom point format list use it otherwise use default
1767 */
1768 if (s->ext.ecpointformats) {
1769 *pformats = s->ext.ecpointformats;
1770 *num_formats = s->ext.ecpointformats_len;
1771 } else {
1772 *pformats = ecformats_default;
1773 /* For Suite B we don't support char2 fields */
1774 if (tls1_suiteb(s))
1775 *num_formats = sizeof(ecformats_default) - 1;
1776 else
1777 *num_formats = sizeof(ecformats_default);
1778 }
1779 }
1780
1781 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL_CONNECTION * s,EVP_PKEY * pkey)1782 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1783 {
1784 unsigned char comp_id;
1785 size_t i;
1786 int point_conv;
1787
1788 /* If not an EC key nothing to check */
1789 if (!EVP_PKEY_is_a(pkey, "EC"))
1790 return 1;
1791
1792 /* Get required compression id */
1793 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1794 if (point_conv == 0)
1795 return 0;
1796 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1797 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1798 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1799 /*
1800 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1801 * this check.
1802 */
1803 return 1;
1804 } else {
1805 int field_type = EVP_PKEY_get_field_type(pkey);
1806
1807 if (field_type == NID_X9_62_prime_field)
1808 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1809 else if (field_type == NID_X9_62_characteristic_two_field)
1810 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1811 else
1812 return 0;
1813 }
1814 /*
1815 * If point formats extension present check it, otherwise everything is
1816 * supported (see RFC4492).
1817 */
1818 if (s->ext.peer_ecpointformats == NULL)
1819 return 1;
1820
1821 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1822 if (s->ext.peer_ecpointformats[i] == comp_id)
1823 return 1;
1824 }
1825 return 0;
1826 }
1827
1828 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)1829 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1830 {
1831 int curve_nid = ssl_get_EC_curve_nid(pkey);
1832
1833 if (curve_nid == NID_undef)
1834 return 0;
1835 return tls1_nid2group_id(curve_nid);
1836 }
1837
1838 /*
1839 * Check cert parameters compatible with extensions: currently just checks EC
1840 * certificates have compatible curves and compression.
1841 */
tls1_check_cert_param(SSL_CONNECTION * s,X509 * x,int check_ee_md)1842 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1843 {
1844 uint16_t group_id;
1845 EVP_PKEY *pkey;
1846 pkey = X509_get0_pubkey(x);
1847 if (pkey == NULL)
1848 return 0;
1849 /* If not EC nothing to do */
1850 if (!EVP_PKEY_is_a(pkey, "EC"))
1851 return 1;
1852 /* Check compression */
1853 if (!tls1_check_pkey_comp(s, pkey))
1854 return 0;
1855 group_id = tls1_get_group_id(pkey);
1856 /*
1857 * For a server we allow the certificate to not be in our list of supported
1858 * groups.
1859 */
1860 if (!tls1_check_group_id(s, group_id, !s->server))
1861 return 0;
1862 /*
1863 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1864 * SHA384+P-384.
1865 */
1866 if (check_ee_md && tls1_suiteb(s)) {
1867 int check_md;
1868 size_t i;
1869
1870 /* Check to see we have necessary signing algorithm */
1871 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1872 check_md = NID_ecdsa_with_SHA256;
1873 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1874 check_md = NID_ecdsa_with_SHA384;
1875 else
1876 return 0; /* Should never happen */
1877 for (i = 0; i < s->shared_sigalgslen; i++) {
1878 if (check_md == s->shared_sigalgs[i]->sigandhash)
1879 return 1;
1880 }
1881 return 0;
1882 }
1883 return 1;
1884 }
1885
1886 /*
1887 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1888 * @s: SSL connection
1889 * @cid: Cipher ID we're considering using
1890 *
1891 * Checks that the kECDHE cipher suite we're considering using
1892 * is compatible with the client extensions.
1893 *
1894 * Returns 0 when the cipher can't be used or 1 when it can.
1895 */
tls1_check_ec_tmp_key(SSL_CONNECTION * s,unsigned long cid)1896 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1897 {
1898 /* If not Suite B just need a shared group */
1899 if (!tls1_suiteb(s))
1900 return tls1_shared_group(s, 0) != 0;
1901 /*
1902 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1903 * curves permitted.
1904 */
1905 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1906 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1907 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1908 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1909
1910 return 0;
1911 }
1912
1913 /* Default sigalg schemes */
1914 static const uint16_t tls12_sigalgs[] = {
1915 TLSEXT_SIGALG_mldsa65,
1916 TLSEXT_SIGALG_mldsa87,
1917 TLSEXT_SIGALG_mldsa44,
1918 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1919 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1920 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1921 TLSEXT_SIGALG_ed25519,
1922 TLSEXT_SIGALG_ed448,
1923 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1924 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1925 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1926
1927 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1928 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1929 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1930 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1931 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1932 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1933
1934 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1935 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1936 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1937
1938 TLSEXT_SIGALG_ecdsa_sha224,
1939 TLSEXT_SIGALG_ecdsa_sha1,
1940
1941 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1942 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1943
1944 TLSEXT_SIGALG_dsa_sha224,
1945 TLSEXT_SIGALG_dsa_sha1,
1946
1947 TLSEXT_SIGALG_dsa_sha256,
1948 TLSEXT_SIGALG_dsa_sha384,
1949 TLSEXT_SIGALG_dsa_sha512,
1950
1951 #ifndef OPENSSL_NO_GOST
1952 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1953 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1954 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1955 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1956 TLSEXT_SIGALG_gostr34102001_gostr3411,
1957 #endif
1958 };
1959
1960 static const uint16_t suiteb_sigalgs[] = {
1961 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1962 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1963 };
1964
1965 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1966 { TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1967 "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1968 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1969 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1970 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1971 { TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1972 "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1973 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1974 NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1975 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1976 { TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1977 "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1978 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979 NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1980 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1981
1982 { TLSEXT_SIGALG_ed25519_name,
1983 NULL, TLSEXT_SIGALG_ed25519,
1984 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1985 NID_undef, NID_undef, 1, 0,
1986 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1987 { TLSEXT_SIGALG_ed448_name,
1988 NULL, TLSEXT_SIGALG_ed448,
1989 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1990 NID_undef, NID_undef, 1, 0,
1991 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1992
1993 { TLSEXT_SIGALG_ecdsa_sha224_name,
1994 "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1995 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1996 NID_ecdsa_with_SHA224, NID_undef, 1, 0,
1997 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
1998 { TLSEXT_SIGALG_ecdsa_sha1_name,
1999 "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2000 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2001 NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2002 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2003
2004 { TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2005 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2006 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2007 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2008 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2009 TLS1_3_VERSION, 0, -1, -1 },
2010 { TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2011 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2012 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2013 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2014 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2015 TLS1_3_VERSION, 0, -1, -1 },
2016 { TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2017 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2018 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2019 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2020 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2021 TLS1_3_VERSION, 0, -1, -1 },
2022
2023 { TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2024 "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2025 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2026 NID_undef, NID_undef, 1, 0,
2027 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2028 { TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2029 "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2030 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2031 NID_undef, NID_undef, 1, 0,
2032 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2033 { TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2034 "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2035 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036 NID_undef, NID_undef, 1, 0,
2037 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2038
2039 { TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2040 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2041 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2042 NID_undef, NID_undef, 1, 0,
2043 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2044 { TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2045 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2046 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2047 NID_undef, NID_undef, 1, 0,
2048 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2049 { TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2050 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2051 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052 NID_undef, NID_undef, 1, 0,
2053 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2054
2055 { TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2056 "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2057 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2058 NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2059 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2060 { TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2061 "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2062 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2063 NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2064 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2065 { TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2066 "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2067 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068 NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2069 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2070
2071 { TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2072 "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2073 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2074 NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2075 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2076 { TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2077 "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2078 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2079 NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2080 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2081
2082 { TLSEXT_SIGALG_dsa_sha256_name,
2083 "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2084 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2085 NID_dsa_with_SHA256, NID_undef, 1, 0,
2086 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2087 { TLSEXT_SIGALG_dsa_sha384_name,
2088 "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2089 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2090 NID_undef, NID_undef, 1, 0,
2091 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2092 { TLSEXT_SIGALG_dsa_sha512_name,
2093 "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2094 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095 NID_undef, NID_undef, 1, 0,
2096 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2097 { TLSEXT_SIGALG_dsa_sha224_name,
2098 "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2099 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100 NID_undef, NID_undef, 1, 0,
2101 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2102 { TLSEXT_SIGALG_dsa_sha1_name,
2103 "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2104 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105 NID_dsaWithSHA1, NID_undef, 1, 0,
2106 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2107
2108 #ifndef OPENSSL_NO_GOST
2109 { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2110 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2111 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2112 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2113 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2114 NID_undef, NID_undef, 1, 0,
2115 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2116 { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2117 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2118 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2119 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2120 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2121 NID_undef, NID_undef, 1, 0,
2122 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2123
2124 { TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2125 NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2126 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2127 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2128 NID_undef, NID_undef, 1, 0,
2129 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2130 { TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2131 NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2132 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2133 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2134 NID_undef, NID_undef, 1, 0,
2135 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2136 { TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2137 NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2138 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2139 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2140 NID_undef, NID_undef, 1, 0,
2141 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2142 #endif
2143 };
2144 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2145 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2146 "rsa_pkcs1_md5_sha1", NULL, 0,
2147 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2148 EVP_PKEY_RSA, SSL_PKEY_RSA,
2149 NID_undef, NID_undef, 1, 0,
2150 TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2151 };
2152
2153 /*
2154 * Default signature algorithm values used if signature algorithms not present.
2155 * From RFC5246. Note: order must match certificate index order.
2156 */
2157 static const uint16_t tls_default_sigalg[] = {
2158 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2159 0, /* SSL_PKEY_RSA_PSS_SIGN */
2160 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2161 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2162 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2163 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2164 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2165 0, /* SSL_PKEY_ED25519 */
2166 0, /* SSL_PKEY_ED448 */
2167 };
2168
ssl_setup_sigalgs(SSL_CTX * ctx)2169 int ssl_setup_sigalgs(SSL_CTX *ctx)
2170 {
2171 size_t i, cache_idx, sigalgs_len, enabled;
2172 const SIGALG_LOOKUP *lu;
2173 SIGALG_LOOKUP *cache = NULL;
2174 uint16_t *tls12_sigalgs_list = NULL;
2175 EVP_PKEY *tmpkey = EVP_PKEY_new();
2176 int istls;
2177 int ret = 0;
2178
2179 if (ctx == NULL)
2180 goto err;
2181
2182 istls = !SSL_CTX_IS_DTLS(ctx);
2183
2184 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2185
2186 cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2187 if (cache == NULL || tmpkey == NULL)
2188 goto err;
2189
2190 tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2191 if (tls12_sigalgs_list == NULL)
2192 goto err;
2193
2194 ERR_set_mark();
2195 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2196 for (i = 0, lu = sigalg_lookup_tbl;
2197 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2198 EVP_PKEY_CTX *pctx;
2199
2200 cache[i] = *lu;
2201
2202 /*
2203 * Check hash is available.
2204 * This test is not perfect. A provider could have support
2205 * for a signature scheme, but not a particular hash. However the hash
2206 * could be available from some other loaded provider. In that case it
2207 * could be that the signature is available, and the hash is available
2208 * independently - but not as a combination. We ignore this for now.
2209 */
2210 if (lu->hash != NID_undef
2211 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2212 cache[i].available = 0;
2213 continue;
2214 }
2215
2216 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2217 cache[i].available = 0;
2218 continue;
2219 }
2220 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2221 /* If unable to create pctx we assume the sig algorithm is unavailable */
2222 if (pctx == NULL)
2223 cache[i].available = 0;
2224 EVP_PKEY_CTX_free(pctx);
2225 }
2226
2227 /* Now complete cache and tls12_sigalgs list with provider sig information */
2228 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2229 for (i = 0; i < ctx->sigalg_list_len; i++) {
2230 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2231 cache[cache_idx].name = si.name;
2232 cache[cache_idx].name12 = si.sigalg_name;
2233 cache[cache_idx].sigalg = si.code_point;
2234 tls12_sigalgs_list[cache_idx] = si.code_point;
2235 cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
2236 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2237 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2238 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2239 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2240 cache[cache_idx].curve = NID_undef;
2241 cache[cache_idx].mintls = TLS1_3_VERSION;
2242 cache[cache_idx].maxtls = TLS1_3_VERSION;
2243 cache[cache_idx].mindtls = -1;
2244 cache[cache_idx].maxdtls = -1;
2245 /* Compatibility with TLS 1.3 is checked on load */
2246 cache[cache_idx].available = istls;
2247 cache[cache_idx].advertise = 0;
2248 cache_idx++;
2249 }
2250 ERR_pop_to_mark();
2251
2252 enabled = 0;
2253 for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2254 SIGALG_LOOKUP *ent = cache;
2255 size_t j;
2256
2257 for (j = 0; j < sigalgs_len; ent++, j++) {
2258 if (ent->sigalg != tls12_sigalgs[i])
2259 continue;
2260 /* Dedup by marking cache entry as default enabled. */
2261 if (ent->available && !ent->advertise) {
2262 ent->advertise = 1;
2263 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2264 }
2265 break;
2266 }
2267 }
2268
2269 /* Append any provider sigalgs not yet handled */
2270 for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2271 SIGALG_LOOKUP *ent = &cache[i];
2272
2273 if (ent->available && !ent->advertise)
2274 tls12_sigalgs_list[enabled++] = ent->sigalg;
2275 }
2276
2277 ctx->sigalg_lookup_cache = cache;
2278 ctx->sigalg_lookup_cache_len = sigalgs_len;
2279 ctx->tls12_sigalgs = tls12_sigalgs_list;
2280 ctx->tls12_sigalgs_len = enabled;
2281 cache = NULL;
2282 tls12_sigalgs_list = NULL;
2283
2284 ret = 1;
2285 err:
2286 OPENSSL_free(cache);
2287 OPENSSL_free(tls12_sigalgs_list);
2288 EVP_PKEY_free(tmpkey);
2289 return ret;
2290 }
2291
2292 #define SIGLEN_BUF_INCREMENT 100
2293
SSL_get1_builtin_sigalgs(OSSL_LIB_CTX * libctx)2294 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2295 {
2296 size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2297 const SIGALG_LOOKUP *lu;
2298 EVP_PKEY *tmpkey = EVP_PKEY_new();
2299 char *retval = OPENSSL_malloc(maxretlen);
2300
2301 if (retval == NULL)
2302 return NULL;
2303
2304 /* ensure retval string is NUL terminated */
2305 retval[0] = (char)0;
2306
2307 for (i = 0, lu = sigalg_lookup_tbl;
2308 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2309 EVP_PKEY_CTX *pctx;
2310 int enabled = 1;
2311
2312 ERR_set_mark();
2313 /* Check hash is available in some provider. */
2314 if (lu->hash != NID_undef) {
2315 EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2316
2317 /* If unable to create we assume the hash algorithm is unavailable */
2318 if (hash == NULL) {
2319 enabled = 0;
2320 ERR_pop_to_mark();
2321 continue;
2322 }
2323 EVP_MD_free(hash);
2324 }
2325
2326 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2327 enabled = 0;
2328 ERR_pop_to_mark();
2329 continue;
2330 }
2331 pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2332 /* If unable to create pctx we assume the sig algorithm is unavailable */
2333 if (pctx == NULL)
2334 enabled = 0;
2335 ERR_pop_to_mark();
2336 EVP_PKEY_CTX_free(pctx);
2337
2338 if (enabled) {
2339 const char *sa = lu->name;
2340
2341 if (sa != NULL) {
2342 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2343 char *tmp;
2344
2345 maxretlen += SIGLEN_BUF_INCREMENT;
2346 tmp = OPENSSL_realloc(retval, maxretlen);
2347 if (tmp == NULL) {
2348 OPENSSL_free(retval);
2349 return NULL;
2350 }
2351 retval = tmp;
2352 }
2353 if (strlen(retval) > 0)
2354 OPENSSL_strlcat(retval, ":", maxretlen);
2355 OPENSSL_strlcat(retval, sa, maxretlen);
2356 } else {
2357 /* lu->name must not be NULL */
2358 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2359 }
2360 }
2361 }
2362
2363 EVP_PKEY_free(tmpkey);
2364 return retval;
2365 }
2366
2367 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL_CTX * ctx,uint16_t sigalg)2368 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2369 uint16_t sigalg)
2370 {
2371 size_t i;
2372 const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2373
2374 for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2375 if (lu->sigalg == sigalg) {
2376 if (!lu->available)
2377 return NULL;
2378 return lu;
2379 }
2380 }
2381 return NULL;
2382 }
2383
2384 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)2385 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2386 {
2387 const EVP_MD *md;
2388
2389 if (lu == NULL)
2390 return 0;
2391 /* lu->hash == NID_undef means no associated digest */
2392 if (lu->hash == NID_undef) {
2393 md = NULL;
2394 } else {
2395 md = ssl_md(ctx, lu->hash_idx);
2396 if (md == NULL)
2397 return 0;
2398 }
2399 if (pmd)
2400 *pmd = md;
2401 return 1;
2402 }
2403
2404 /*
2405 * Check if key is large enough to generate RSA-PSS signature.
2406 *
2407 * The key must greater than or equal to 2 * hash length + 2.
2408 * SHA512 has a hash length of 64 bytes, which is incompatible
2409 * with a 128 byte (1024 bit) key.
2410 */
2411 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)2412 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2413 const SIGALG_LOOKUP *lu)
2414 {
2415 const EVP_MD *md;
2416
2417 if (pkey == NULL)
2418 return 0;
2419 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2420 return 0;
2421 if (EVP_MD_get_size(md) <= 0)
2422 return 0;
2423 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2424 return 0;
2425 return 1;
2426 }
2427
2428 /*
2429 * Returns a signature algorithm when the peer did not send a list of supported
2430 * signature algorithms. The signature algorithm is fixed for the certificate
2431 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2432 * certificate type from |s| will be used.
2433 * Returns the signature algorithm to use, or NULL on error.
2434 */
tls1_get_legacy_sigalg(const SSL_CONNECTION * s,int idx)2435 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2436 int idx)
2437 {
2438 if (idx == -1) {
2439 if (s->server) {
2440 size_t i;
2441
2442 /* Work out index corresponding to ciphersuite */
2443 for (i = 0; i < s->ssl_pkey_num; i++) {
2444 const SSL_CERT_LOOKUP *clu
2445 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2446
2447 if (clu == NULL)
2448 continue;
2449 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2450 idx = i;
2451 break;
2452 }
2453 }
2454
2455 /*
2456 * Some GOST ciphersuites allow more than one signature algorithms
2457 * */
2458 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2459 int real_idx;
2460
2461 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2462 real_idx--) {
2463 if (s->cert->pkeys[real_idx].privatekey != NULL) {
2464 idx = real_idx;
2465 break;
2466 }
2467 }
2468 }
2469 /*
2470 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2471 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2472 */
2473 else if (idx == SSL_PKEY_GOST12_256) {
2474 int real_idx;
2475
2476 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2477 real_idx--) {
2478 if (s->cert->pkeys[real_idx].privatekey != NULL) {
2479 idx = real_idx;
2480 break;
2481 }
2482 }
2483 }
2484 } else {
2485 idx = s->cert->key - s->cert->pkeys;
2486 }
2487 }
2488 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2489 return NULL;
2490
2491 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2492 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2493 tls_default_sigalg[idx]);
2494
2495 if (lu == NULL)
2496 return NULL;
2497 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2498 return NULL;
2499 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2500 return NULL;
2501 return lu;
2502 }
2503 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2504 return NULL;
2505 return &legacy_rsa_sigalg;
2506 }
2507 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL_CONNECTION * s,const EVP_PKEY * pkey)2508 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2509 {
2510 size_t idx;
2511 const SIGALG_LOOKUP *lu;
2512
2513 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2514 return 0;
2515 lu = tls1_get_legacy_sigalg(s, idx);
2516 if (lu == NULL)
2517 return 0;
2518 s->s3.tmp.peer_sigalg = lu;
2519 return 1;
2520 }
2521
tls12_get_psigalgs(SSL_CONNECTION * s,int sent,const uint16_t ** psigs)2522 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2523 {
2524 /*
2525 * If Suite B mode use Suite B sigalgs only, ignore any other
2526 * preferences.
2527 */
2528 switch (tls1_suiteb(s)) {
2529 case SSL_CERT_FLAG_SUITEB_128_LOS:
2530 *psigs = suiteb_sigalgs;
2531 return OSSL_NELEM(suiteb_sigalgs);
2532
2533 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2534 *psigs = suiteb_sigalgs;
2535 return 1;
2536
2537 case SSL_CERT_FLAG_SUITEB_192_LOS:
2538 *psigs = suiteb_sigalgs + 1;
2539 return 1;
2540 }
2541 /*
2542 * We use client_sigalgs (if not NULL) if we're a server
2543 * and sending a certificate request or if we're a client and
2544 * determining which shared algorithm to use.
2545 */
2546 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2547 *psigs = s->cert->client_sigalgs;
2548 return s->cert->client_sigalgslen;
2549 } else if (s->cert->conf_sigalgs) {
2550 *psigs = s->cert->conf_sigalgs;
2551 return s->cert->conf_sigalgslen;
2552 } else {
2553 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2554 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2555 }
2556 }
2557
2558 /*
2559 * Called by servers only. Checks that we have a sig alg that supports the
2560 * specified EC curve.
2561 */
tls_check_sigalg_curve(const SSL_CONNECTION * s,int curve)2562 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2563 {
2564 const uint16_t *sigs;
2565 size_t siglen, i;
2566
2567 if (s->cert->conf_sigalgs) {
2568 sigs = s->cert->conf_sigalgs;
2569 siglen = s->cert->conf_sigalgslen;
2570 } else {
2571 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2572 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2573 }
2574
2575 for (i = 0; i < siglen; i++) {
2576 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2577
2578 if (lu == NULL)
2579 continue;
2580 if (lu->sig == EVP_PKEY_EC
2581 && lu->curve != NID_undef
2582 && curve == lu->curve)
2583 return 1;
2584 }
2585
2586 return 0;
2587 }
2588
2589 /*
2590 * Return the number of security bits for the signature algorithm, or 0 on
2591 * error.
2592 */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)2593 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2594 {
2595 const EVP_MD *md = NULL;
2596 int secbits = 0;
2597
2598 if (!tls1_lookup_md(ctx, lu, &md))
2599 return 0;
2600 if (md != NULL) {
2601 int md_type = EVP_MD_get_type(md);
2602
2603 /* Security bits: half digest bits */
2604 secbits = EVP_MD_get_size(md) * 4;
2605 if (secbits <= 0)
2606 return 0;
2607 /*
2608 * SHA1 and MD5 are known to be broken. Reduce security bits so that
2609 * they're no longer accepted at security level 1. The real values don't
2610 * really matter as long as they're lower than 80, which is our
2611 * security level 1.
2612 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2613 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2614 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2615 * puts a chosen-prefix attack for MD5 at 2^39.
2616 */
2617 if (md_type == NID_sha1)
2618 secbits = 64;
2619 else if (md_type == NID_md5_sha1)
2620 secbits = 67;
2621 else if (md_type == NID_md5)
2622 secbits = 39;
2623 } else {
2624 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2625 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2626 secbits = 128;
2627 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2628 secbits = 224;
2629 }
2630 /*
2631 * For provider-based sigalgs we have secbits information available
2632 * in the (provider-loaded) sigalg_list structure
2633 */
2634 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2635 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2636 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2637 }
2638 return secbits;
2639 }
2640
tls_sigalg_compat(SSL_CONNECTION * sc,const SIGALG_LOOKUP * lu)2641 static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2642 {
2643 int minversion, maxversion;
2644 int minproto, maxproto;
2645
2646 if (!lu->available)
2647 return 0;
2648
2649 if (SSL_CONNECTION_IS_DTLS(sc)) {
2650 if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2651 minproto = sc->min_proto_version;
2652 maxproto = sc->max_proto_version;
2653 } else {
2654 maxproto = minproto = sc->version;
2655 }
2656 minversion = lu->mindtls;
2657 maxversion = lu->maxdtls;
2658 } else {
2659 if (sc->ssl.method->version == TLS_ANY_VERSION) {
2660 minproto = sc->min_proto_version;
2661 maxproto = sc->max_proto_version;
2662 } else {
2663 maxproto = minproto = sc->version;
2664 }
2665 minversion = lu->mintls;
2666 maxversion = lu->maxtls;
2667 }
2668 if (minversion == -1 || maxversion == -1
2669 || (minversion != 0 && maxproto != 0
2670 && ssl_version_cmp(sc, minversion, maxproto) > 0)
2671 || (maxversion != 0 && minproto != 0
2672 && ssl_version_cmp(sc, maxversion, minproto) < 0)
2673 || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2674 return 0;
2675 return 1;
2676 }
2677
2678 /*
2679 * Check signature algorithm is consistent with sent supported signature
2680 * algorithms and if so set relevant digest and signature scheme in
2681 * s.
2682 */
tls12_check_peer_sigalg(SSL_CONNECTION * s,uint16_t sig,EVP_PKEY * pkey)2683 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2684 {
2685 const uint16_t *sent_sigs;
2686 const EVP_MD *md = NULL;
2687 char sigalgstr[2];
2688 size_t sent_sigslen, i, cidx;
2689 int pkeyid = -1;
2690 const SIGALG_LOOKUP *lu;
2691 int secbits = 0;
2692
2693 pkeyid = EVP_PKEY_get_id(pkey);
2694
2695 if (SSL_CONNECTION_IS_TLS13(s)) {
2696 /* Disallow DSA for TLS 1.3 */
2697 if (pkeyid == EVP_PKEY_DSA) {
2698 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2699 return 0;
2700 }
2701 /* Only allow PSS for TLS 1.3 */
2702 if (pkeyid == EVP_PKEY_RSA)
2703 pkeyid = EVP_PKEY_RSA_PSS;
2704 }
2705
2706 /* Is this code point available and compatible with the protocol */
2707 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2708 if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2709 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2710 return 0;
2711 }
2712
2713 /* If we don't know the pkey nid yet go and find it */
2714 if (pkeyid == EVP_PKEY_KEYMGMT) {
2715 const SSL_CERT_LOOKUP *scl = ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2716
2717 if (scl == NULL) {
2718 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2719 return 0;
2720 }
2721 pkeyid = scl->pkey_nid;
2722 }
2723
2724 /* Should never happen */
2725 if (pkeyid == -1) {
2726 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2727 return -1;
2728 }
2729
2730 /*
2731 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2732 * is consistent with signature: RSA keys can be used for RSA-PSS
2733 */
2734 if ((SSL_CONNECTION_IS_TLS13(s)
2735 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2736 || (pkeyid != lu->sig
2737 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2738 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2739 return 0;
2740 }
2741 /* Check the sigalg is consistent with the key OID */
2742 if (!ssl_cert_lookup_by_nid(
2743 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2744 &cidx, SSL_CONNECTION_GET_CTX(s))
2745 || lu->sig_idx != (int)cidx) {
2746 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2747 return 0;
2748 }
2749
2750 if (pkeyid == EVP_PKEY_EC) {
2751
2752 /* Check point compression is permitted */
2753 if (!tls1_check_pkey_comp(s, pkey)) {
2754 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2755 SSL_R_ILLEGAL_POINT_COMPRESSION);
2756 return 0;
2757 }
2758
2759 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2760 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2761 int curve = ssl_get_EC_curve_nid(pkey);
2762
2763 if (lu->curve != NID_undef && curve != lu->curve) {
2764 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2765 return 0;
2766 }
2767 }
2768 if (!SSL_CONNECTION_IS_TLS13(s)) {
2769 /* Check curve matches extensions */
2770 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2771 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2772 return 0;
2773 }
2774 if (tls1_suiteb(s)) {
2775 /* Check sigalg matches a permissible Suite B value */
2776 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2777 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2778 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2779 SSL_R_WRONG_SIGNATURE_TYPE);
2780 return 0;
2781 }
2782 }
2783 }
2784 } else if (tls1_suiteb(s)) {
2785 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2786 return 0;
2787 }
2788
2789 /* Check signature matches a type we sent */
2790 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2791 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2792 if (sig == *sent_sigs)
2793 break;
2794 }
2795 /* Allow fallback to SHA1 if not strict mode */
2796 if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798 return 0;
2799 }
2800 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802 return 0;
2803 }
2804 /*
2805 * Make sure security callback allows algorithm. For historical
2806 * reasons we have to pass the sigalg as a two byte char array.
2807 */
2808 sigalgstr[0] = (sig >> 8) & 0xff;
2809 sigalgstr[1] = sig & 0xff;
2810 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811 if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
2812 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2813 return 0;
2814 }
2815 /* Store the sigalg the peer uses */
2816 s->s3.tmp.peer_sigalg = lu;
2817 return 1;
2818 }
2819
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)2820 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2821 {
2822 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2823
2824 if (sc == NULL)
2825 return 0;
2826
2827 if (sc->s3.tmp.peer_sigalg == NULL)
2828 return 0;
2829 *pnid = sc->s3.tmp.peer_sigalg->sig;
2830 return 1;
2831 }
2832
SSL_get_signature_type_nid(const SSL * s,int * pnid)2833 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2834 {
2835 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2836
2837 if (sc == NULL)
2838 return 0;
2839
2840 if (sc->s3.tmp.sigalg == NULL)
2841 return 0;
2842 *pnid = sc->s3.tmp.sigalg->sig;
2843 return 1;
2844 }
2845
2846 /*
2847 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2848 * supported, doesn't appear in supported signature algorithms, isn't supported
2849 * by the enabled protocol versions or by the security level.
2850 *
2851 * This function should only be used for checking which ciphers are supported
2852 * by the client.
2853 *
2854 * Call ssl_cipher_disabled() to check that it's enabled or not.
2855 */
ssl_set_client_disabled(SSL_CONNECTION * s)2856 int ssl_set_client_disabled(SSL_CONNECTION *s)
2857 {
2858 s->s3.tmp.mask_a = 0;
2859 s->s3.tmp.mask_k = 0;
2860 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2861 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2862 &s->s3.tmp.max_ver, NULL)
2863 != 0)
2864 return 0;
2865 #ifndef OPENSSL_NO_PSK
2866 /* with PSK there must be client callback set */
2867 if (!s->psk_client_callback) {
2868 s->s3.tmp.mask_a |= SSL_aPSK;
2869 s->s3.tmp.mask_k |= SSL_PSK;
2870 }
2871 #endif /* OPENSSL_NO_PSK */
2872 #ifndef OPENSSL_NO_SRP
2873 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2874 s->s3.tmp.mask_a |= SSL_aSRP;
2875 s->s3.tmp.mask_k |= SSL_kSRP;
2876 }
2877 #endif
2878 return 1;
2879 }
2880
2881 /*
2882 * ssl_cipher_disabled - check that a cipher is disabled or not
2883 * @s: SSL connection that you want to use the cipher on
2884 * @c: cipher to check
2885 * @op: Security check that you want to do
2886 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2887 *
2888 * Returns 1 when it's disabled, 0 when enabled.
2889 */
ssl_cipher_disabled(const SSL_CONNECTION * s,const SSL_CIPHER * c,int op,int ecdhe)2890 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2891 int op, int ecdhe)
2892 {
2893 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2894 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2895
2896 if (c->algorithm_mkey & s->s3.tmp.mask_k
2897 || c->algorithm_auth & s->s3.tmp.mask_a)
2898 return 1;
2899 if (s->s3.tmp.max_ver == 0)
2900 return 1;
2901
2902 if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2903 /* For QUIC, only allow these ciphersuites. */
2904 switch (SSL_CIPHER_get_id(c)) {
2905 case TLS1_3_CK_AES_128_GCM_SHA256:
2906 case TLS1_3_CK_AES_256_GCM_SHA384:
2907 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2908 break;
2909 default:
2910 return 1;
2911 }
2912
2913 /*
2914 * For historical reasons we will allow ECHDE to be selected by a server
2915 * in SSLv3 if we are a client
2916 */
2917 if (minversion == TLS1_VERSION
2918 && ecdhe
2919 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2920 minversion = SSL3_VERSION;
2921
2922 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2923 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2924 return 1;
2925
2926 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2927 }
2928
tls_use_ticket(SSL_CONNECTION * s)2929 int tls_use_ticket(SSL_CONNECTION *s)
2930 {
2931 if ((s->options & SSL_OP_NO_TICKET))
2932 return 0;
2933 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2934 }
2935
tls1_set_server_sigalgs(SSL_CONNECTION * s)2936 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2937 {
2938 size_t i;
2939
2940 /* Clear any shared signature algorithms */
2941 OPENSSL_free(s->shared_sigalgs);
2942 s->shared_sigalgs = NULL;
2943 s->shared_sigalgslen = 0;
2944
2945 /* Clear certificate validity flags */
2946 if (s->s3.tmp.valid_flags)
2947 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2948 else
2949 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2950 if (s->s3.tmp.valid_flags == NULL)
2951 return 0;
2952 /*
2953 * If peer sent no signature algorithms check to see if we support
2954 * the default algorithm for each certificate type
2955 */
2956 if (s->s3.tmp.peer_cert_sigalgs == NULL
2957 && s->s3.tmp.peer_sigalgs == NULL) {
2958 const uint16_t *sent_sigs;
2959 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2960
2961 for (i = 0; i < s->ssl_pkey_num; i++) {
2962 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2963 size_t j;
2964
2965 if (lu == NULL)
2966 continue;
2967 /* Check default matches a type we sent */
2968 for (j = 0; j < sent_sigslen; j++) {
2969 if (lu->sigalg == sent_sigs[j]) {
2970 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2971 break;
2972 }
2973 }
2974 }
2975 return 1;
2976 }
2977
2978 if (!tls1_process_sigalgs(s)) {
2979 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2980 return 0;
2981 }
2982 if (s->shared_sigalgs != NULL)
2983 return 1;
2984
2985 /* Fatal error if no shared signature algorithms */
2986 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2987 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2988 return 0;
2989 }
2990
2991 /*-
2992 * Gets the ticket information supplied by the client if any.
2993 *
2994 * hello: The parsed ClientHello data
2995 * ret: (output) on return, if a ticket was decrypted, then this is set to
2996 * point to the resulting session.
2997 */
tls_get_ticket_from_client(SSL_CONNECTION * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)2998 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2999 CLIENTHELLO_MSG *hello,
3000 SSL_SESSION **ret)
3001 {
3002 size_t size;
3003 RAW_EXTENSION *ticketext;
3004
3005 *ret = NULL;
3006 s->ext.ticket_expected = 0;
3007
3008 /*
3009 * If tickets disabled or not supported by the protocol version
3010 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3011 * resumption.
3012 */
3013 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3014 return SSL_TICKET_NONE;
3015
3016 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3017 if (!ticketext->present)
3018 return SSL_TICKET_NONE;
3019
3020 size = PACKET_remaining(&ticketext->data);
3021
3022 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3023 hello->session_id, hello->session_id_len, ret);
3024 }
3025
3026 /*-
3027 * tls_decrypt_ticket attempts to decrypt a session ticket.
3028 *
3029 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3030 * expecting a pre-shared key ciphersuite, in which case we have no use for
3031 * session tickets and one will never be decrypted, nor will
3032 * s->ext.ticket_expected be set to 1.
3033 *
3034 * Side effects:
3035 * Sets s->ext.ticket_expected to 1 if the server will have to issue
3036 * a new session ticket to the client because the client indicated support
3037 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3038 * a session ticket or we couldn't use the one it gave us, or if
3039 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3040 * Otherwise, s->ext.ticket_expected is set to 0.
3041 *
3042 * etick: points to the body of the session ticket extension.
3043 * eticklen: the length of the session tickets extension.
3044 * sess_id: points at the session ID.
3045 * sesslen: the length of the session ID.
3046 * psess: (output) on return, if a ticket was decrypted, then this is set to
3047 * point to the resulting session.
3048 */
tls_decrypt_ticket(SSL_CONNECTION * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)3049 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3050 const unsigned char *etick,
3051 size_t eticklen,
3052 const unsigned char *sess_id,
3053 size_t sesslen, SSL_SESSION **psess)
3054 {
3055 SSL_SESSION *sess = NULL;
3056 unsigned char *sdec;
3057 const unsigned char *p;
3058 int slen, ivlen, renew_ticket = 0, declen;
3059 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3060 size_t mlen;
3061 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3062 SSL_HMAC *hctx = NULL;
3063 EVP_CIPHER_CTX *ctx = NULL;
3064 SSL_CTX *tctx = s->session_ctx;
3065 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3066
3067 if (eticklen == 0) {
3068 /*
3069 * The client will accept a ticket but doesn't currently have
3070 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3071 */
3072 ret = SSL_TICKET_EMPTY;
3073 goto end;
3074 }
3075 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3076 /*
3077 * Indicate that the ticket couldn't be decrypted rather than
3078 * generating the session from ticket now, trigger
3079 * abbreviated handshake based on external mechanism to
3080 * calculate the master secret later.
3081 */
3082 ret = SSL_TICKET_NO_DECRYPT;
3083 goto end;
3084 }
3085
3086 /* Need at least keyname + iv */
3087 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3088 ret = SSL_TICKET_NO_DECRYPT;
3089 goto end;
3090 }
3091
3092 /* Initialize session ticket encryption and HMAC contexts */
3093 hctx = ssl_hmac_new(tctx);
3094 if (hctx == NULL) {
3095 ret = SSL_TICKET_FATAL_ERR_MALLOC;
3096 goto end;
3097 }
3098 ctx = EVP_CIPHER_CTX_new();
3099 if (ctx == NULL) {
3100 ret = SSL_TICKET_FATAL_ERR_MALLOC;
3101 goto end;
3102 }
3103 #ifndef OPENSSL_NO_DEPRECATED_3_0
3104 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3105 #else
3106 if (tctx->ext.ticket_key_evp_cb != NULL)
3107 #endif
3108 {
3109 unsigned char *nctick = (unsigned char *)etick;
3110 int rv = 0;
3111
3112 if (tctx->ext.ticket_key_evp_cb != NULL)
3113 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3114 nctick,
3115 nctick + TLSEXT_KEYNAME_LENGTH,
3116 ctx,
3117 ssl_hmac_get0_EVP_MAC_CTX(hctx),
3118 0);
3119 #ifndef OPENSSL_NO_DEPRECATED_3_0
3120 else if (tctx->ext.ticket_key_cb != NULL)
3121 /* if 0 is returned, write an empty ticket */
3122 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3123 nctick + TLSEXT_KEYNAME_LENGTH,
3124 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3125 #endif
3126 if (rv < 0) {
3127 ret = SSL_TICKET_FATAL_ERR_OTHER;
3128 goto end;
3129 }
3130 if (rv == 0) {
3131 ret = SSL_TICKET_NO_DECRYPT;
3132 goto end;
3133 }
3134 if (rv == 2)
3135 renew_ticket = 1;
3136 } else {
3137 EVP_CIPHER *aes256cbc = NULL;
3138
3139 /* Check key name matches */
3140 if (memcmp(etick, tctx->ext.tick_key_name,
3141 TLSEXT_KEYNAME_LENGTH)
3142 != 0) {
3143 ret = SSL_TICKET_NO_DECRYPT;
3144 goto end;
3145 }
3146
3147 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3148 sctx->propq);
3149 if (aes256cbc == NULL
3150 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3151 sizeof(tctx->ext.secure->tick_hmac_key),
3152 "SHA256")
3153 <= 0
3154 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155 tctx->ext.secure->tick_aes_key,
3156 etick + TLSEXT_KEYNAME_LENGTH)
3157 <= 0) {
3158 EVP_CIPHER_free(aes256cbc);
3159 ret = SSL_TICKET_FATAL_ERR_OTHER;
3160 goto end;
3161 }
3162 EVP_CIPHER_free(aes256cbc);
3163 if (SSL_CONNECTION_IS_TLS13(s))
3164 renew_ticket = 1;
3165 }
3166 /*
3167 * Attempt to process session ticket, first conduct sanity and integrity
3168 * checks on ticket.
3169 */
3170 mlen = ssl_hmac_size(hctx);
3171 if (mlen == 0) {
3172 ret = SSL_TICKET_FATAL_ERR_OTHER;
3173 goto end;
3174 }
3175
3176 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3177 if (ivlen < 0) {
3178 ret = SSL_TICKET_FATAL_ERR_OTHER;
3179 goto end;
3180 }
3181
3182 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3183 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3184 ret = SSL_TICKET_NO_DECRYPT;
3185 goto end;
3186 }
3187 eticklen -= mlen;
3188 /* Check HMAC of encrypted ticket */
3189 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3190 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3191 ret = SSL_TICKET_FATAL_ERR_OTHER;
3192 goto end;
3193 }
3194
3195 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3196 ret = SSL_TICKET_NO_DECRYPT;
3197 goto end;
3198 }
3199 /* Attempt to decrypt session data */
3200 /* Move p after IV to start of encrypted ticket, update length */
3201 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3202 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3203 sdec = OPENSSL_malloc(eticklen);
3204 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
3205 OPENSSL_free(sdec);
3206 ret = SSL_TICKET_FATAL_ERR_OTHER;
3207 goto end;
3208 }
3209 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210 OPENSSL_free(sdec);
3211 ret = SSL_TICKET_NO_DECRYPT;
3212 goto end;
3213 }
3214 slen += declen;
3215 p = sdec;
3216
3217 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218 slen -= p - sdec;
3219 OPENSSL_free(sdec);
3220 if (sess) {
3221 /* Some additional consistency checks */
3222 if (slen != 0) {
3223 SSL_SESSION_free(sess);
3224 sess = NULL;
3225 ret = SSL_TICKET_NO_DECRYPT;
3226 goto end;
3227 }
3228 /*
3229 * The session ID, if non-empty, is used by some clients to detect
3230 * that the ticket has been accepted. So we copy it to the session
3231 * structure. If it is empty set length to zero as required by
3232 * standard.
3233 */
3234 if (sesslen) {
3235 memcpy(sess->session_id, sess_id, sesslen);
3236 sess->session_id_length = sesslen;
3237 }
3238 if (renew_ticket)
3239 ret = SSL_TICKET_SUCCESS_RENEW;
3240 else
3241 ret = SSL_TICKET_SUCCESS;
3242 goto end;
3243 }
3244 ERR_clear_error();
3245 /*
3246 * For session parse failure, indicate that we need to send a new ticket.
3247 */
3248 ret = SSL_TICKET_NO_DECRYPT;
3249
3250 end:
3251 EVP_CIPHER_CTX_free(ctx);
3252 ssl_hmac_free(hctx);
3253
3254 /*
3255 * If set, the decrypt_ticket_cb() is called unless a fatal error was
3256 * detected above. The callback is responsible for checking |ret| before it
3257 * performs any action
3258 */
3259 if (s->session_ctx->decrypt_ticket_cb != NULL
3260 && (ret == SSL_TICKET_EMPTY
3261 || ret == SSL_TICKET_NO_DECRYPT
3262 || ret == SSL_TICKET_SUCCESS
3263 || ret == SSL_TICKET_SUCCESS_RENEW)) {
3264 size_t keyname_len = eticklen;
3265 int retcb;
3266
3267 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268 keyname_len = TLSEXT_KEYNAME_LENGTH;
3269 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270 sess, etick, keyname_len,
3271 ret,
3272 s->session_ctx->ticket_cb_data);
3273 switch (retcb) {
3274 case SSL_TICKET_RETURN_ABORT:
3275 ret = SSL_TICKET_FATAL_ERR_OTHER;
3276 break;
3277
3278 case SSL_TICKET_RETURN_IGNORE:
3279 ret = SSL_TICKET_NONE;
3280 SSL_SESSION_free(sess);
3281 sess = NULL;
3282 break;
3283
3284 case SSL_TICKET_RETURN_IGNORE_RENEW:
3285 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286 ret = SSL_TICKET_NO_DECRYPT;
3287 /* else the value of |ret| will already do the right thing */
3288 SSL_SESSION_free(sess);
3289 sess = NULL;
3290 break;
3291
3292 case SSL_TICKET_RETURN_USE:
3293 case SSL_TICKET_RETURN_USE_RENEW:
3294 if (ret != SSL_TICKET_SUCCESS
3295 && ret != SSL_TICKET_SUCCESS_RENEW)
3296 ret = SSL_TICKET_FATAL_ERR_OTHER;
3297 else if (retcb == SSL_TICKET_RETURN_USE)
3298 ret = SSL_TICKET_SUCCESS;
3299 else
3300 ret = SSL_TICKET_SUCCESS_RENEW;
3301 break;
3302
3303 default:
3304 ret = SSL_TICKET_FATAL_ERR_OTHER;
3305 }
3306 }
3307
3308 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309 switch (ret) {
3310 case SSL_TICKET_NO_DECRYPT:
3311 case SSL_TICKET_SUCCESS_RENEW:
3312 case SSL_TICKET_EMPTY:
3313 s->ext.ticket_expected = 1;
3314 }
3315 }
3316
3317 *psess = sess;
3318
3319 return ret;
3320 }
3321
3322 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL_CONNECTION * s,int op,const SIGALG_LOOKUP * lu)3323 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324 const SIGALG_LOOKUP *lu)
3325 {
3326 unsigned char sigalgstr[2];
3327 int secbits;
3328
3329 if (lu == NULL || !lu->available)
3330 return 0;
3331 /* DSA is not allowed in TLS 1.3 */
3332 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333 return 0;
3334 /*
3335 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336 * spec
3337 */
3338 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339 && s->s3.tmp.min_ver >= TLS1_3_VERSION
3340 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341 || lu->hash_idx == SSL_MD_MD5_IDX
3342 || lu->hash_idx == SSL_MD_SHA224_IDX))
3343 return 0;
3344
3345 /* See if public key algorithm allowed */
3346 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347 return 0;
3348
3349 if (lu->sig == NID_id_GostR3410_2012_256
3350 || lu->sig == NID_id_GostR3410_2012_512
3351 || lu->sig == NID_id_GostR3410_2001) {
3352 /* We never allow GOST sig algs on the server with TLSv1.3 */
3353 if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354 return 0;
3355 if (!s->server
3356 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358 int i, num;
3359 STACK_OF(SSL_CIPHER) *sk;
3360
3361 /*
3362 * We're a client that could negotiate TLSv1.3. We only allow GOST
3363 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364 * ciphersuites enabled.
3365 */
3366
3367 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368 return 0;
3369
3370 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372 for (i = 0; i < num; i++) {
3373 const SSL_CIPHER *c;
3374
3375 c = sk_SSL_CIPHER_value(sk, i);
3376 /* Skip disabled ciphers */
3377 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378 continue;
3379
3380 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381 break;
3382 }
3383 if (i == num)
3384 return 0;
3385 }
3386 }
3387
3388 /* Finally see if security callback allows it */
3389 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391 sigalgstr[1] = lu->sigalg & 0xff;
3392 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393 }
3394
3395 /*
3396 * Get a mask of disabled public key algorithms based on supported signature
3397 * algorithms. For example if no signature algorithm supports RSA then RSA is
3398 * disabled.
3399 */
3400
ssl_set_sig_mask(uint32_t * pmask_a,SSL_CONNECTION * s,int op)3401 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402 {
3403 const uint16_t *sigalgs;
3404 size_t i, sigalgslen;
3405 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406 /*
3407 * Go through all signature algorithms seeing if we support any
3408 * in disabled_mask.
3409 */
3410 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411 for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3413 const SSL_CERT_LOOKUP *clu;
3414
3415 if (lu == NULL)
3416 continue;
3417
3418 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3419 SSL_CONNECTION_GET_CTX(s));
3420 if (clu == NULL)
3421 continue;
3422
3423 /* If algorithm is disabled see if we can enable it */
3424 if ((clu->amask & disabled_mask) != 0
3425 && tls12_sigalg_allowed(s, op, lu))
3426 disabled_mask &= ~clu->amask;
3427 }
3428 *pmask_a |= disabled_mask;
3429 }
3430
tls12_copy_sigalgs(SSL_CONNECTION * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)3431 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3432 const uint16_t *psig, size_t psiglen)
3433 {
3434 size_t i;
3435 int rv = 0;
3436
3437 for (i = 0; i < psiglen; i++, psig++) {
3438 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3439
3440 if (lu == NULL || !tls_sigalg_compat(s, lu))
3441 continue;
3442 if (!WPACKET_put_bytes_u16(pkt, *psig))
3443 return 0;
3444 /*
3445 * If TLS 1.3 must have at least one valid TLS 1.3 message
3446 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3447 */
3448 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
3449 rv = 1;
3450 }
3451 if (rv == 0)
3452 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3453 return rv;
3454 }
3455
3456 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL_CONNECTION * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)3457 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3458 const SIGALG_LOOKUP **shsig,
3459 const uint16_t *pref, size_t preflen,
3460 const uint16_t *allow, size_t allowlen)
3461 {
3462 const uint16_t *ptmp, *atmp;
3463 size_t i, j, nmatch = 0;
3464 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3465 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3466
3467 /* Skip disabled hashes or signature algorithms */
3468 if (lu == NULL
3469 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3470 continue;
3471 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3472 if (*ptmp == *atmp) {
3473 nmatch++;
3474 if (shsig)
3475 *shsig++ = lu;
3476 break;
3477 }
3478 }
3479 }
3480 return nmatch;
3481 }
3482
3483 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL_CONNECTION * s)3484 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3485 {
3486 const uint16_t *pref, *allow, *conf;
3487 size_t preflen, allowlen, conflen;
3488 size_t nmatch;
3489 const SIGALG_LOOKUP **salgs = NULL;
3490 CERT *c = s->cert;
3491 unsigned int is_suiteb = tls1_suiteb(s);
3492
3493 OPENSSL_free(s->shared_sigalgs);
3494 s->shared_sigalgs = NULL;
3495 s->shared_sigalgslen = 0;
3496 /* If client use client signature algorithms if not NULL */
3497 if (!s->server && c->client_sigalgs && !is_suiteb) {
3498 conf = c->client_sigalgs;
3499 conflen = c->client_sigalgslen;
3500 } else if (c->conf_sigalgs && !is_suiteb) {
3501 conf = c->conf_sigalgs;
3502 conflen = c->conf_sigalgslen;
3503 } else
3504 conflen = tls12_get_psigalgs(s, 0, &conf);
3505 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3506 pref = conf;
3507 preflen = conflen;
3508 allow = s->s3.tmp.peer_sigalgs;
3509 allowlen = s->s3.tmp.peer_sigalgslen;
3510 } else {
3511 allow = conf;
3512 allowlen = conflen;
3513 pref = s->s3.tmp.peer_sigalgs;
3514 preflen = s->s3.tmp.peer_sigalgslen;
3515 }
3516 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3517 if (nmatch) {
3518 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3519 return 0;
3520 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3521 } else {
3522 salgs = NULL;
3523 }
3524 s->shared_sigalgs = salgs;
3525 s->shared_sigalgslen = nmatch;
3526 return 1;
3527 }
3528
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)3529 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3530 {
3531 unsigned int stmp;
3532 size_t size, i;
3533 uint16_t *buf;
3534
3535 size = PACKET_remaining(pkt);
3536
3537 /* Invalid data length */
3538 if (size == 0 || (size & 1) != 0)
3539 return 0;
3540
3541 size >>= 1;
3542
3543 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3544 return 0;
3545 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3546 buf[i] = stmp;
3547
3548 if (i != size) {
3549 OPENSSL_free(buf);
3550 return 0;
3551 }
3552
3553 OPENSSL_free(*pdest);
3554 *pdest = buf;
3555 *pdestlen = size;
3556
3557 return 1;
3558 }
3559
tls1_save_sigalgs(SSL_CONNECTION * s,PACKET * pkt,int cert)3560 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3561 {
3562 /* Extension ignored for inappropriate versions */
3563 if (!SSL_USE_SIGALGS(s))
3564 return 1;
3565 /* Should never happen */
3566 if (s->cert == NULL)
3567 return 0;
3568
3569 if (cert)
3570 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3571 &s->s3.tmp.peer_cert_sigalgslen);
3572 else
3573 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3574 &s->s3.tmp.peer_sigalgslen);
3575 }
3576
3577 /* Set preferred digest for each key type */
3578
tls1_process_sigalgs(SSL_CONNECTION * s)3579 int tls1_process_sigalgs(SSL_CONNECTION *s)
3580 {
3581 size_t i;
3582 uint32_t *pvalid = s->s3.tmp.valid_flags;
3583
3584 if (!tls1_set_shared_sigalgs(s))
3585 return 0;
3586
3587 for (i = 0; i < s->ssl_pkey_num; i++)
3588 pvalid[i] = 0;
3589
3590 for (i = 0; i < s->shared_sigalgslen; i++) {
3591 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3592 int idx = sigptr->sig_idx;
3593
3594 /* Ignore PKCS1 based sig algs in TLSv1.3 */
3595 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3596 continue;
3597 /* If not disabled indicate we can explicitly sign */
3598 if (pvalid[idx] == 0
3599 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3600 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3601 }
3602 return 1;
3603 }
3604
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3605 int SSL_get_sigalgs(SSL *s, int idx,
3606 int *psign, int *phash, int *psignhash,
3607 unsigned char *rsig, unsigned char *rhash)
3608 {
3609 uint16_t *psig;
3610 size_t numsigalgs;
3611 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3612
3613 if (sc == NULL)
3614 return 0;
3615
3616 psig = sc->s3.tmp.peer_sigalgs;
3617 numsigalgs = sc->s3.tmp.peer_sigalgslen;
3618
3619 if (psig == NULL || numsigalgs > INT_MAX)
3620 return 0;
3621 if (idx >= 0) {
3622 const SIGALG_LOOKUP *lu;
3623
3624 if (idx >= (int)numsigalgs)
3625 return 0;
3626 psig += idx;
3627 if (rhash != NULL)
3628 *rhash = (unsigned char)((*psig >> 8) & 0xff);
3629 if (rsig != NULL)
3630 *rsig = (unsigned char)(*psig & 0xff);
3631 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3632 if (psign != NULL)
3633 *psign = lu != NULL ? lu->sig : NID_undef;
3634 if (phash != NULL)
3635 *phash = lu != NULL ? lu->hash : NID_undef;
3636 if (psignhash != NULL)
3637 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3638 }
3639 return (int)numsigalgs;
3640 }
3641
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3642 int SSL_get_shared_sigalgs(SSL *s, int idx,
3643 int *psign, int *phash, int *psignhash,
3644 unsigned char *rsig, unsigned char *rhash)
3645 {
3646 const SIGALG_LOOKUP *shsigalgs;
3647 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3648
3649 if (sc == NULL)
3650 return 0;
3651
3652 if (sc->shared_sigalgs == NULL
3653 || idx < 0
3654 || idx >= (int)sc->shared_sigalgslen
3655 || sc->shared_sigalgslen > INT_MAX)
3656 return 0;
3657 shsigalgs = sc->shared_sigalgs[idx];
3658 if (phash != NULL)
3659 *phash = shsigalgs->hash;
3660 if (psign != NULL)
3661 *psign = shsigalgs->sig;
3662 if (psignhash != NULL)
3663 *psignhash = shsigalgs->sigandhash;
3664 if (rsig != NULL)
3665 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3666 if (rhash != NULL)
3667 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3668 return (int)sc->shared_sigalgslen;
3669 }
3670
3671 /* Maximum possible number of unique entries in sigalgs array */
3672 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3673
3674 typedef struct {
3675 size_t sigalgcnt;
3676 /* TLSEXT_SIGALG_XXX values */
3677 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3678 SSL_CTX *ctx;
3679 } sig_cb_st;
3680
get_sigorhash(int * psig,int * phash,const char * str)3681 static void get_sigorhash(int *psig, int *phash, const char *str)
3682 {
3683 if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3684 *psig = EVP_PKEY_RSA;
3685 } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3686 || OPENSSL_strcasecmp(str, "PSS") == 0) {
3687 *psig = EVP_PKEY_RSA_PSS;
3688 } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3689 *psig = EVP_PKEY_DSA;
3690 } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3691 *psig = EVP_PKEY_EC;
3692 } else {
3693 *phash = OBJ_sn2nid(str);
3694 if (*phash == NID_undef)
3695 *phash = OBJ_ln2nid(str);
3696 }
3697 }
3698 /* Maximum length of a signature algorithm string component */
3699 #define TLS_MAX_SIGSTRING_LEN 40
3700
sig_cb(const char * elem,int len,void * arg)3701 static int sig_cb(const char *elem, int len, void *arg)
3702 {
3703 sig_cb_st *sarg = arg;
3704 size_t i = 0;
3705 const SIGALG_LOOKUP *s;
3706 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3707 const char *iana, *alias;
3708 int sig_alg = NID_undef, hash_alg = NID_undef;
3709 int ignore_unknown = 0;
3710
3711 if (elem == NULL)
3712 return 0;
3713 if (elem[0] == '?') {
3714 ignore_unknown = 1;
3715 ++elem;
3716 --len;
3717 }
3718 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3719 return 0;
3720 if (len > (int)(sizeof(etmp) - 1))
3721 return 0;
3722 memcpy(etmp, elem, len);
3723 etmp[len] = 0;
3724 p = strchr(etmp, '+');
3725 /*
3726 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3727 * if there's no '+' in the provided name, look for the new-style combined
3728 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3729 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3730 * rsa_pss_rsae_* that differ only by public key OID; in such cases
3731 * we will pick the _rsae_ variant, by virtue of them appearing earlier
3732 * in the table.
3733 */
3734 if (p == NULL) {
3735 if (sarg->ctx != NULL) {
3736 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3737 iana = sarg->ctx->sigalg_lookup_cache[i].name;
3738 alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3739 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3740 || OPENSSL_strcasecmp(etmp, iana) == 0) {
3741 /* Ignore known, but unavailable sigalgs. */
3742 if (!sarg->ctx->sigalg_lookup_cache[i].available)
3743 return 1;
3744 sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_lookup_cache[i].sigalg;
3745 goto found;
3746 }
3747 }
3748 } else {
3749 /* Syntax checks use the built-in sigalgs */
3750 for (i = 0, s = sigalg_lookup_tbl;
3751 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3752 iana = s->name;
3753 alias = s->name12;
3754 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3755 || OPENSSL_strcasecmp(etmp, iana) == 0) {
3756 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3757 goto found;
3758 }
3759 }
3760 }
3761 } else {
3762 *p = 0;
3763 p++;
3764 if (*p == 0)
3765 return 0;
3766 get_sigorhash(&sig_alg, &hash_alg, etmp);
3767 get_sigorhash(&sig_alg, &hash_alg, p);
3768 if (sig_alg != NID_undef && hash_alg != NID_undef) {
3769 if (sarg->ctx != NULL) {
3770 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3771 s = &sarg->ctx->sigalg_lookup_cache[i];
3772 if (s->hash == hash_alg && s->sig == sig_alg) {
3773 /* Ignore known, but unavailable sigalgs. */
3774 if (!sarg->ctx->sigalg_lookup_cache[i].available)
3775 return 1;
3776 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3777 goto found;
3778 }
3779 }
3780 } else {
3781 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3782 s = &sigalg_lookup_tbl[i];
3783 if (s->hash == hash_alg && s->sig == sig_alg) {
3784 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785 goto found;
3786 }
3787 }
3788 }
3789 }
3790 }
3791 /* Ignore unknown algorithms if ignore_unknown */
3792 return ignore_unknown;
3793
3794 found:
3795 /* Ignore duplicates */
3796 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3797 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3798 sarg->sigalgcnt--;
3799 return 1;
3800 }
3801 }
3802 return 1;
3803 }
3804
3805 /*
3806 * Set supported signature algorithms based on a colon separated list of the
3807 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3808 */
tls1_set_sigalgs_list(SSL_CTX * ctx,CERT * c,const char * str,int client)3809 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3810 {
3811 sig_cb_st sig;
3812 sig.sigalgcnt = 0;
3813
3814 if (ctx != NULL)
3815 sig.ctx = ctx;
3816 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3817 return 0;
3818 if (sig.sigalgcnt == 0) {
3819 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3820 "No valid signature algorithms in '%s'", str);
3821 return 0;
3822 }
3823 if (c == NULL)
3824 return 1;
3825 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3826 }
3827
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)3828 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3829 int client)
3830 {
3831 uint16_t *sigalgs;
3832
3833 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3834 return 0;
3835 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3836
3837 if (client) {
3838 OPENSSL_free(c->client_sigalgs);
3839 c->client_sigalgs = sigalgs;
3840 c->client_sigalgslen = salglen;
3841 } else {
3842 OPENSSL_free(c->conf_sigalgs);
3843 c->conf_sigalgs = sigalgs;
3844 c->conf_sigalgslen = salglen;
3845 }
3846
3847 return 1;
3848 }
3849
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)3850 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3851 {
3852 uint16_t *sigalgs, *sptr;
3853 size_t i;
3854
3855 if (salglen & 1)
3856 return 0;
3857 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3858 return 0;
3859 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3860 size_t j;
3861 const SIGALG_LOOKUP *curr;
3862 int md_id = *psig_nids++;
3863 int sig_id = *psig_nids++;
3864
3865 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3866 j++, curr++) {
3867 if (curr->hash == md_id && curr->sig == sig_id) {
3868 *sptr++ = curr->sigalg;
3869 break;
3870 }
3871 }
3872
3873 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3874 goto err;
3875 }
3876
3877 if (client) {
3878 OPENSSL_free(c->client_sigalgs);
3879 c->client_sigalgs = sigalgs;
3880 c->client_sigalgslen = salglen / 2;
3881 } else {
3882 OPENSSL_free(c->conf_sigalgs);
3883 c->conf_sigalgs = sigalgs;
3884 c->conf_sigalgslen = salglen / 2;
3885 }
3886
3887 return 1;
3888
3889 err:
3890 OPENSSL_free(sigalgs);
3891 return 0;
3892 }
3893
tls1_check_sig_alg(SSL_CONNECTION * s,X509 * x,int default_nid)3894 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3895 {
3896 int sig_nid, use_pc_sigalgs = 0;
3897 size_t i;
3898 const SIGALG_LOOKUP *sigalg;
3899 size_t sigalgslen;
3900
3901 /*-
3902 * RFC 8446, section 4.2.3:
3903 *
3904 * The signatures on certificates that are self-signed or certificates
3905 * that are trust anchors are not validated, since they begin a
3906 * certification path (see [RFC5280], Section 3.2). A certificate that
3907 * begins a certification path MAY use a signature algorithm that is not
3908 * advertised as being supported in the "signature_algorithms"
3909 * extension.
3910 */
3911 if (default_nid == -1 || X509_self_signed(x, 0))
3912 return 1;
3913 sig_nid = X509_get_signature_nid(x);
3914 if (default_nid)
3915 return sig_nid == default_nid ? 1 : 0;
3916
3917 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3918 /*
3919 * If we're in TLSv1.3 then we only get here if we're checking the
3920 * chain. If the peer has specified peer_cert_sigalgs then we use them
3921 * otherwise we default to normal sigalgs.
3922 */
3923 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3924 use_pc_sigalgs = 1;
3925 } else {
3926 sigalgslen = s->shared_sigalgslen;
3927 }
3928 for (i = 0; i < sigalgslen; i++) {
3929 int mdnid, pknid;
3930
3931 sigalg = use_pc_sigalgs
3932 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3933 s->s3.tmp.peer_cert_sigalgs[i])
3934 : s->shared_sigalgs[i];
3935 if (sigalg == NULL)
3936 continue;
3937 if (sig_nid == sigalg->sigandhash)
3938 return 1;
3939 if (sigalg->sig != EVP_PKEY_RSA_PSS)
3940 continue;
3941 /*
3942 * Accept RSA PKCS#1 signatures in certificates when the signature
3943 * algorithms include RSA-PSS with a matching digest algorithm.
3944 *
3945 * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3946 * points, and we're doing strict checking of the certificate chain (in
3947 * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3948 * certificates in the chain, but the TLS requirement on PSS should not
3949 * extend to certificates. Though the peer can in fact list the legacy
3950 * sigalgs for just this purpose, it is not likely that a better chain
3951 * signed with RSA-PSS is available.
3952 */
3953 if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3954 continue;
3955 if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3956 return 1;
3957 }
3958 return 0;
3959 }
3960
3961 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)3962 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3963 {
3964 const X509_NAME *nm;
3965 int i;
3966 nm = X509_get_issuer_name(x);
3967 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3968 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3969 return 1;
3970 }
3971 return 0;
3972 }
3973
3974 /*
3975 * Check certificate chain is consistent with TLS extensions and is usable by
3976 * server. This servers two purposes: it allows users to check chains before
3977 * passing them to the server and it allows the server to check chains before
3978 * attempting to use them.
3979 */
3980
3981 /* Flags which need to be set for a certificate when strict mode not set */
3982
3983 #define CERT_PKEY_VALID_FLAGS \
3984 (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3985 /* Strict mode flags */
3986 #define CERT_PKEY_STRICT_FLAGS \
3987 (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
3988 | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
3989
tls1_check_chain(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)3990 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3991 STACK_OF(X509) *chain, int idx)
3992 {
3993 int i;
3994 int rv = 0;
3995 int check_flags = 0, strict_mode;
3996 CERT_PKEY *cpk = NULL;
3997 CERT *c = s->cert;
3998 uint32_t *pvalid;
3999 unsigned int suiteb_flags = tls1_suiteb(s);
4000
4001 /*
4002 * Meaning of idx:
4003 * idx == -1 means SSL_check_chain() invocation
4004 * idx == -2 means checking client certificate chains
4005 * idx >= 0 means checking SSL_PKEY index
4006 *
4007 * For RPK, where there may be no cert, we ignore -1
4008 */
4009 if (idx != -1) {
4010 if (idx == -2) {
4011 cpk = c->key;
4012 idx = (int)(cpk - c->pkeys);
4013 } else
4014 cpk = c->pkeys + idx;
4015 pvalid = s->s3.tmp.valid_flags + idx;
4016 x = cpk->x509;
4017 pk = cpk->privatekey;
4018 chain = cpk->chain;
4019 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4020 if (tls12_rpk_and_privkey(s, idx)) {
4021 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4022 return 0;
4023 *pvalid = rv = CERT_PKEY_RPK;
4024 return rv;
4025 }
4026 /* If no cert or key, forget it */
4027 if (x == NULL || pk == NULL)
4028 goto end;
4029 } else {
4030 size_t certidx;
4031
4032 if (x == NULL || pk == NULL)
4033 return 0;
4034
4035 if (ssl_cert_lookup_by_pkey(pk, &certidx,
4036 SSL_CONNECTION_GET_CTX(s))
4037 == NULL)
4038 return 0;
4039 idx = certidx;
4040 pvalid = s->s3.tmp.valid_flags + idx;
4041
4042 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4043 check_flags = CERT_PKEY_STRICT_FLAGS;
4044 else
4045 check_flags = CERT_PKEY_VALID_FLAGS;
4046 strict_mode = 1;
4047 }
4048
4049 if (suiteb_flags) {
4050 int ok;
4051 if (check_flags)
4052 check_flags |= CERT_PKEY_SUITEB;
4053 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4054 if (ok == X509_V_OK)
4055 rv |= CERT_PKEY_SUITEB;
4056 else if (!check_flags)
4057 goto end;
4058 }
4059
4060 /*
4061 * Check all signature algorithms are consistent with signature
4062 * algorithms extension if TLS 1.2 or later and strict mode.
4063 */
4064 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4065 && strict_mode) {
4066 int default_nid;
4067 int rsign = 0;
4068
4069 if (s->s3.tmp.peer_cert_sigalgs != NULL
4070 || s->s3.tmp.peer_sigalgs != NULL) {
4071 default_nid = 0;
4072 /* If no sigalgs extension use defaults from RFC5246 */
4073 } else {
4074 switch (idx) {
4075 case SSL_PKEY_RSA:
4076 rsign = EVP_PKEY_RSA;
4077 default_nid = NID_sha1WithRSAEncryption;
4078 break;
4079
4080 case SSL_PKEY_DSA_SIGN:
4081 rsign = EVP_PKEY_DSA;
4082 default_nid = NID_dsaWithSHA1;
4083 break;
4084
4085 case SSL_PKEY_ECC:
4086 rsign = EVP_PKEY_EC;
4087 default_nid = NID_ecdsa_with_SHA1;
4088 break;
4089
4090 case SSL_PKEY_GOST01:
4091 rsign = NID_id_GostR3410_2001;
4092 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4093 break;
4094
4095 case SSL_PKEY_GOST12_256:
4096 rsign = NID_id_GostR3410_2012_256;
4097 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4098 break;
4099
4100 case SSL_PKEY_GOST12_512:
4101 rsign = NID_id_GostR3410_2012_512;
4102 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4103 break;
4104
4105 default:
4106 default_nid = -1;
4107 break;
4108 }
4109 }
4110 /*
4111 * If peer sent no signature algorithms extension and we have set
4112 * preferred signature algorithms check we support sha1.
4113 */
4114 if (default_nid > 0 && c->conf_sigalgs) {
4115 size_t j;
4116 const uint16_t *p = c->conf_sigalgs;
4117 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4118 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4119
4120 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4121 break;
4122 }
4123 if (j == c->conf_sigalgslen) {
4124 if (check_flags)
4125 goto skip_sigs;
4126 else
4127 goto end;
4128 }
4129 }
4130 /* Check signature algorithm of each cert in chain */
4131 if (SSL_CONNECTION_IS_TLS13(s)) {
4132 /*
4133 * We only get here if the application has called SSL_check_chain(),
4134 * so check_flags is always set.
4135 */
4136 if (find_sig_alg(s, x, pk) != NULL)
4137 rv |= CERT_PKEY_EE_SIGNATURE;
4138 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4139 if (!check_flags)
4140 goto end;
4141 } else
4142 rv |= CERT_PKEY_EE_SIGNATURE;
4143 rv |= CERT_PKEY_CA_SIGNATURE;
4144 for (i = 0; i < sk_X509_num(chain); i++) {
4145 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4146 if (check_flags) {
4147 rv &= ~CERT_PKEY_CA_SIGNATURE;
4148 break;
4149 } else
4150 goto end;
4151 }
4152 }
4153 }
4154 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4155 else if (check_flags)
4156 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4157 skip_sigs:
4158 /* Check cert parameters are consistent */
4159 if (tls1_check_cert_param(s, x, 1))
4160 rv |= CERT_PKEY_EE_PARAM;
4161 else if (!check_flags)
4162 goto end;
4163 if (!s->server)
4164 rv |= CERT_PKEY_CA_PARAM;
4165 /* In strict mode check rest of chain too */
4166 else if (strict_mode) {
4167 rv |= CERT_PKEY_CA_PARAM;
4168 for (i = 0; i < sk_X509_num(chain); i++) {
4169 X509 *ca = sk_X509_value(chain, i);
4170 if (!tls1_check_cert_param(s, ca, 0)) {
4171 if (check_flags) {
4172 rv &= ~CERT_PKEY_CA_PARAM;
4173 break;
4174 } else
4175 goto end;
4176 }
4177 }
4178 }
4179 if (!s->server && strict_mode) {
4180 STACK_OF(X509_NAME) *ca_dn;
4181 int check_type = 0;
4182
4183 if (EVP_PKEY_is_a(pk, "RSA"))
4184 check_type = TLS_CT_RSA_SIGN;
4185 else if (EVP_PKEY_is_a(pk, "DSA"))
4186 check_type = TLS_CT_DSS_SIGN;
4187 else if (EVP_PKEY_is_a(pk, "EC"))
4188 check_type = TLS_CT_ECDSA_SIGN;
4189
4190 if (check_type) {
4191 const uint8_t *ctypes = s->s3.tmp.ctype;
4192 size_t j;
4193
4194 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4195 if (*ctypes == check_type) {
4196 rv |= CERT_PKEY_CERT_TYPE;
4197 break;
4198 }
4199 }
4200 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4201 goto end;
4202 } else {
4203 rv |= CERT_PKEY_CERT_TYPE;
4204 }
4205
4206 ca_dn = s->s3.tmp.peer_ca_names;
4207
4208 if (ca_dn == NULL
4209 || sk_X509_NAME_num(ca_dn) == 0
4210 || ssl_check_ca_name(ca_dn, x))
4211 rv |= CERT_PKEY_ISSUER_NAME;
4212 else
4213 for (i = 0; i < sk_X509_num(chain); i++) {
4214 X509 *xtmp = sk_X509_value(chain, i);
4215
4216 if (ssl_check_ca_name(ca_dn, xtmp)) {
4217 rv |= CERT_PKEY_ISSUER_NAME;
4218 break;
4219 }
4220 }
4221
4222 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4223 goto end;
4224 } else
4225 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4226
4227 if (!check_flags || (rv & check_flags) == check_flags)
4228 rv |= CERT_PKEY_VALID;
4229
4230 end:
4231
4232 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4233 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4234 else
4235 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4236
4237 /*
4238 * When checking a CERT_PKEY structure all flags are irrelevant if the
4239 * chain is invalid.
4240 */
4241 if (!check_flags) {
4242 if (rv & CERT_PKEY_VALID) {
4243 *pvalid = rv;
4244 } else {
4245 /* Preserve sign and explicit sign flag, clear rest */
4246 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4247 return 0;
4248 }
4249 }
4250 return rv;
4251 }
4252
4253 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL_CONNECTION * s)4254 void tls1_set_cert_validity(SSL_CONNECTION *s)
4255 {
4256 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4257 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4258 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4259 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4260 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4261 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4262 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4263 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4264 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4265 }
4266
4267 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)4268 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4269 {
4270 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4271
4272 if (sc == NULL)
4273 return 0;
4274
4275 return tls1_check_chain(sc, x, pk, chain, -1);
4276 }
4277
ssl_get_auto_dh(SSL_CONNECTION * s)4278 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4279 {
4280 EVP_PKEY *dhp = NULL;
4281 BIGNUM *p;
4282 int dh_secbits = 80, sec_level_bits;
4283 EVP_PKEY_CTX *pctx = NULL;
4284 OSSL_PARAM_BLD *tmpl = NULL;
4285 OSSL_PARAM *params = NULL;
4286 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4287
4288 if (s->cert->dh_tmp_auto != 2) {
4289 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4290 if (s->s3.tmp.new_cipher->strength_bits == 256)
4291 dh_secbits = 128;
4292 else
4293 dh_secbits = 80;
4294 } else {
4295 if (s->s3.tmp.cert == NULL)
4296 return NULL;
4297 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4298 }
4299 }
4300
4301 /* Do not pick a prime that is too weak for the current security level */
4302 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4303 NULL, NULL);
4304 if (dh_secbits < sec_level_bits)
4305 dh_secbits = sec_level_bits;
4306
4307 if (dh_secbits >= 192)
4308 p = BN_get_rfc3526_prime_8192(NULL);
4309 else if (dh_secbits >= 152)
4310 p = BN_get_rfc3526_prime_4096(NULL);
4311 else if (dh_secbits >= 128)
4312 p = BN_get_rfc3526_prime_3072(NULL);
4313 else if (dh_secbits >= 112)
4314 p = BN_get_rfc3526_prime_2048(NULL);
4315 else
4316 p = BN_get_rfc2409_prime_1024(NULL);
4317 if (p == NULL)
4318 goto err;
4319
4320 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4321 if (pctx == NULL
4322 || EVP_PKEY_fromdata_init(pctx) != 1)
4323 goto err;
4324
4325 tmpl = OSSL_PARAM_BLD_new();
4326 if (tmpl == NULL
4327 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4328 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4329 goto err;
4330
4331 params = OSSL_PARAM_BLD_to_param(tmpl);
4332 if (params == NULL
4333 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4334 goto err;
4335
4336 err:
4337 OSSL_PARAM_free(params);
4338 OSSL_PARAM_BLD_free(tmpl);
4339 EVP_PKEY_CTX_free(pctx);
4340 BN_free(p);
4341 return dhp;
4342 }
4343
ssl_security_cert_key(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4344 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4345 int op)
4346 {
4347 int secbits = -1;
4348 EVP_PKEY *pkey = X509_get0_pubkey(x);
4349
4350 if (pkey) {
4351 /*
4352 * If no parameters this will return -1 and fail using the default
4353 * security callback for any non-zero security level. This will
4354 * reject keys which omit parameters but this only affects DSA and
4355 * omission of parameters is never (?) done in practice.
4356 */
4357 secbits = EVP_PKEY_get_security_bits(pkey);
4358 }
4359 if (s != NULL)
4360 return ssl_security(s, op, secbits, 0, x);
4361 else
4362 return ssl_ctx_security(ctx, op, secbits, 0, x);
4363 }
4364
ssl_security_cert_sig(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4365 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4366 int op)
4367 {
4368 /* Lookup signature algorithm digest */
4369 int secbits, nid, pknid;
4370
4371 /* Don't check signature if self signed */
4372 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4373 return 1;
4374 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4375 secbits = -1;
4376 /* If digest NID not defined use signature NID */
4377 if (nid == NID_undef)
4378 nid = pknid;
4379 if (s != NULL)
4380 return ssl_security(s, op, secbits, nid, x);
4381 else
4382 return ssl_ctx_security(ctx, op, secbits, nid, x);
4383 }
4384
ssl_security_cert(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)4385 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4386 int is_ee)
4387 {
4388 if (vfy)
4389 vfy = SSL_SECOP_PEER;
4390 if (is_ee) {
4391 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4392 return SSL_R_EE_KEY_TOO_SMALL;
4393 } else {
4394 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4395 return SSL_R_CA_KEY_TOO_SMALL;
4396 }
4397 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4398 return SSL_R_CA_MD_TOO_WEAK;
4399 return 1;
4400 }
4401
4402 /*
4403 * Check security of a chain, if |sk| includes the end entity certificate then
4404 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4405 * one to the peer. Return values: 1 if ok otherwise error code to use
4406 */
4407
ssl_security_cert_chain(SSL_CONNECTION * s,STACK_OF (X509)* sk,X509 * x,int vfy)4408 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4409 X509 *x, int vfy)
4410 {
4411 int rv, start_idx, i;
4412
4413 if (x == NULL) {
4414 x = sk_X509_value(sk, 0);
4415 if (x == NULL)
4416 return ERR_R_INTERNAL_ERROR;
4417 start_idx = 1;
4418 } else
4419 start_idx = 0;
4420
4421 rv = ssl_security_cert(s, NULL, x, vfy, 1);
4422 if (rv != 1)
4423 return rv;
4424
4425 for (i = start_idx; i < sk_X509_num(sk); i++) {
4426 x = sk_X509_value(sk, i);
4427 rv = ssl_security_cert(s, NULL, x, vfy, 0);
4428 if (rv != 1)
4429 return rv;
4430 }
4431 return 1;
4432 }
4433
4434 /*
4435 * For TLS 1.2 servers check if we have a certificate which can be used
4436 * with the signature algorithm "lu" and return index of certificate.
4437 */
4438
tls12_get_cert_sigalg_idx(const SSL_CONNECTION * s,const SIGALG_LOOKUP * lu)4439 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4440 const SIGALG_LOOKUP *lu)
4441 {
4442 int sig_idx = lu->sig_idx;
4443 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4444 SSL_CONNECTION_GET_CTX(s));
4445
4446 /* If not recognised or not supported by cipher mask it is not suitable */
4447 if (clu == NULL
4448 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4449 || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4450 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4451 return -1;
4452
4453 /* If doing RPK, the CERT_PKEY won't be "valid" */
4454 if (tls12_rpk_and_privkey(s, sig_idx))
4455 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4456
4457 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4458 }
4459
4460 /*
4461 * Checks the given cert against signature_algorithm_cert restrictions sent by
4462 * the peer (if any) as well as whether the hash from the sigalg is usable with
4463 * the key.
4464 * Returns true if the cert is usable and false otherwise.
4465 */
check_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4466 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4467 X509 *x, EVP_PKEY *pkey)
4468 {
4469 const SIGALG_LOOKUP *lu;
4470 int mdnid, pknid, supported;
4471 size_t i;
4472 const char *mdname = NULL;
4473 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4474
4475 /*
4476 * If the given EVP_PKEY cannot support signing with this digest,
4477 * the answer is simply 'no'.
4478 */
4479 if (sig->hash != NID_undef)
4480 mdname = OBJ_nid2sn(sig->hash);
4481 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4482 mdname,
4483 sctx->propq);
4484 if (supported <= 0)
4485 return 0;
4486
4487 /*
4488 * The TLS 1.3 signature_algorithms_cert extension places restrictions
4489 * on the sigalg with which the certificate was signed (by its issuer).
4490 */
4491 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4492 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4493 return 0;
4494 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4495 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4496 s->s3.tmp.peer_cert_sigalgs[i]);
4497 if (lu == NULL)
4498 continue;
4499
4500 /*
4501 * This does not differentiate between the
4502 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4503 * have a chain here that lets us look at the key OID in the
4504 * signing certificate.
4505 */
4506 if (mdnid == lu->hash && pknid == lu->sig)
4507 return 1;
4508 }
4509 return 0;
4510 }
4511
4512 /*
4513 * Without signat_algorithms_cert, any certificate for which we have
4514 * a viable public key is permitted.
4515 */
4516 return 1;
4517 }
4518
4519 /*
4520 * Returns true if |s| has a usable certificate configured for use
4521 * with signature scheme |sig|.
4522 * "Usable" includes a check for presence as well as applying
4523 * the signature_algorithm_cert restrictions sent by the peer (if any).
4524 * Returns false if no usable certificate is found.
4525 */
has_usable_cert(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,int idx)4526 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4527 {
4528 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4529 if (idx == -1)
4530 idx = sig->sig_idx;
4531 if (!ssl_has_cert(s, idx))
4532 return 0;
4533
4534 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4535 s->cert->pkeys[idx].privatekey);
4536 }
4537
4538 /*
4539 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4540 * specified signature scheme |sig|, or false otherwise.
4541 */
is_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4542 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4543 EVP_PKEY *pkey)
4544 {
4545 size_t idx;
4546
4547 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4548 return 0;
4549
4550 /* Check the key is consistent with the sig alg */
4551 if ((int)idx != sig->sig_idx)
4552 return 0;
4553
4554 return check_cert_usable(s, sig, x, pkey);
4555 }
4556
4557 /*
4558 * Find a signature scheme that works with the supplied certificate |x| and key
4559 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4560 * available certs/keys to find one that works.
4561 */
find_sig_alg(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pkey)4562 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4563 EVP_PKEY *pkey)
4564 {
4565 const SIGALG_LOOKUP *lu = NULL;
4566 size_t i;
4567 int curve = -1;
4568 EVP_PKEY *tmppkey;
4569 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4570
4571 /* Look for a shared sigalgs matching possible certificates */
4572 for (i = 0; i < s->shared_sigalgslen; i++) {
4573 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4574 lu = s->shared_sigalgs[i];
4575 if (lu->hash == NID_sha1
4576 || lu->hash == NID_sha224
4577 || lu->sig == EVP_PKEY_DSA
4578 || lu->sig == EVP_PKEY_RSA
4579 || !tls_sigalg_compat(s, lu))
4580 continue;
4581
4582 /* Check that we have a cert, and signature_algorithms_cert */
4583 if (!tls1_lookup_md(sctx, lu, NULL))
4584 continue;
4585 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4586 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4587 continue;
4588
4589 tmppkey = (pkey != NULL) ? pkey
4590 : s->cert->pkeys[lu->sig_idx].privatekey;
4591
4592 if (lu->sig == EVP_PKEY_EC) {
4593 if (curve == -1)
4594 curve = ssl_get_EC_curve_nid(tmppkey);
4595 if (lu->curve != NID_undef && curve != lu->curve)
4596 continue;
4597 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4598 /* validate that key is large enough for the signature algorithm */
4599 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4600 continue;
4601 }
4602 break;
4603 }
4604
4605 if (i == s->shared_sigalgslen)
4606 return NULL;
4607
4608 return lu;
4609 }
4610
4611 /*
4612 * Choose an appropriate signature algorithm based on available certificates
4613 * Sets chosen certificate and signature algorithm.
4614 *
4615 * For servers if we fail to find a required certificate it is a fatal error,
4616 * an appropriate error code is set and a TLS alert is sent.
4617 *
4618 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4619 * a fatal error: we will either try another certificate or not present one
4620 * to the server. In this case no error is set.
4621 */
tls_choose_sigalg(SSL_CONNECTION * s,int fatalerrs)4622 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4623 {
4624 const SIGALG_LOOKUP *lu = NULL;
4625 int sig_idx = -1;
4626
4627 s->s3.tmp.cert = NULL;
4628 s->s3.tmp.sigalg = NULL;
4629
4630 if (SSL_CONNECTION_IS_TLS13(s)) {
4631 lu = find_sig_alg(s, NULL, NULL);
4632 if (lu == NULL) {
4633 if (!fatalerrs)
4634 return 1;
4635 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4636 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4637 return 0;
4638 }
4639 } else {
4640 /* If ciphersuite doesn't require a cert nothing to do */
4641 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4642 return 1;
4643 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4644 return 1;
4645
4646 if (SSL_USE_SIGALGS(s)) {
4647 size_t i;
4648 if (s->s3.tmp.peer_sigalgs != NULL) {
4649 int curve = -1;
4650 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4651
4652 /* For Suite B need to match signature algorithm to curve */
4653 if (tls1_suiteb(s))
4654 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4655 .privatekey);
4656
4657 /*
4658 * Find highest preference signature algorithm matching
4659 * cert type
4660 */
4661 for (i = 0; i < s->shared_sigalgslen; i++) {
4662 /* Check the sigalg version bounds */
4663 lu = s->shared_sigalgs[i];
4664 if (!tls_sigalg_compat(s, lu))
4665 continue;
4666 if (s->server) {
4667 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4668 continue;
4669 } else {
4670 int cc_idx = s->cert->key - s->cert->pkeys;
4671
4672 sig_idx = lu->sig_idx;
4673 if (cc_idx != sig_idx)
4674 continue;
4675 }
4676 /* Check that we have a cert, and sig_algs_cert */
4677 if (!has_usable_cert(s, lu, sig_idx))
4678 continue;
4679 if (lu->sig == EVP_PKEY_RSA_PSS) {
4680 /* validate that key is large enough for the signature algorithm */
4681 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4682
4683 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4684 continue;
4685 }
4686 if (curve == -1 || lu->curve == curve)
4687 break;
4688 }
4689 #ifndef OPENSSL_NO_GOST
4690 /*
4691 * Some Windows-based implementations do not send GOST algorithms indication
4692 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4693 * we have to assume GOST support.
4694 */
4695 if (i == s->shared_sigalgslen
4696 && (s->s3.tmp.new_cipher->algorithm_auth
4697 & (SSL_aGOST01 | SSL_aGOST12))
4698 != 0) {
4699 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4700 if (!fatalerrs)
4701 return 1;
4702 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4703 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4704 return 0;
4705 } else {
4706 i = 0;
4707 sig_idx = lu->sig_idx;
4708 }
4709 }
4710 #endif
4711 if (i == s->shared_sigalgslen) {
4712 if (!fatalerrs)
4713 return 1;
4714 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4715 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4716 return 0;
4717 }
4718 } else {
4719 /*
4720 * If we have no sigalg use defaults
4721 */
4722 const uint16_t *sent_sigs;
4723 size_t sent_sigslen;
4724
4725 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4726 if (!fatalerrs)
4727 return 1;
4728 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4729 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4730 return 0;
4731 }
4732
4733 /* Check signature matches a type we sent */
4734 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4735 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4736 if (lu->sigalg == *sent_sigs
4737 && has_usable_cert(s, lu, lu->sig_idx))
4738 break;
4739 }
4740 if (i == sent_sigslen) {
4741 if (!fatalerrs)
4742 return 1;
4743 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4744 SSL_R_WRONG_SIGNATURE_TYPE);
4745 return 0;
4746 }
4747 }
4748 } else {
4749 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4750 if (!fatalerrs)
4751 return 1;
4752 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4753 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4754 return 0;
4755 }
4756 }
4757 }
4758 if (sig_idx == -1)
4759 sig_idx = lu->sig_idx;
4760 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4761 s->cert->key = s->s3.tmp.cert;
4762 s->s3.tmp.sigalg = lu;
4763 return 1;
4764 }
4765
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)4766 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4767 {
4768 if (mode != TLSEXT_max_fragment_length_DISABLED
4769 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4770 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4771 return 0;
4772 }
4773
4774 ctx->ext.max_fragment_len_mode = mode;
4775 return 1;
4776 }
4777
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)4778 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4779 {
4780 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4781
4782 if (sc == NULL
4783 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4784 return 0;
4785
4786 if (mode != TLSEXT_max_fragment_length_DISABLED
4787 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4788 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4789 return 0;
4790 }
4791
4792 sc->ext.max_fragment_len_mode = mode;
4793 return 1;
4794 }
4795
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)4796 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4797 {
4798 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4799 return TLSEXT_max_fragment_length_DISABLED;
4800 return session->ext.max_fragment_len_mode;
4801 }
4802
4803 /*
4804 * Helper functions for HMAC access with legacy support included.
4805 */
ssl_hmac_new(const SSL_CTX * ctx)4806 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4807 {
4808 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4809 EVP_MAC *mac = NULL;
4810
4811 if (ret == NULL)
4812 return NULL;
4813 #ifndef OPENSSL_NO_DEPRECATED_3_0
4814 if (ctx->ext.ticket_key_evp_cb == NULL
4815 && ctx->ext.ticket_key_cb != NULL) {
4816 if (!ssl_hmac_old_new(ret))
4817 goto err;
4818 return ret;
4819 }
4820 #endif
4821 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4822 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4823 goto err;
4824 EVP_MAC_free(mac);
4825 return ret;
4826 err:
4827 EVP_MAC_CTX_free(ret->ctx);
4828 EVP_MAC_free(mac);
4829 OPENSSL_free(ret);
4830 return NULL;
4831 }
4832
ssl_hmac_free(SSL_HMAC * ctx)4833 void ssl_hmac_free(SSL_HMAC *ctx)
4834 {
4835 if (ctx != NULL) {
4836 EVP_MAC_CTX_free(ctx->ctx);
4837 #ifndef OPENSSL_NO_DEPRECATED_3_0
4838 ssl_hmac_old_free(ctx);
4839 #endif
4840 OPENSSL_free(ctx);
4841 }
4842 }
4843
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)4844 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4845 {
4846 return ctx->ctx;
4847 }
4848
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)4849 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4850 {
4851 OSSL_PARAM params[2], *p = params;
4852
4853 if (ctx->ctx != NULL) {
4854 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4855 *p = OSSL_PARAM_construct_end();
4856 if (EVP_MAC_init(ctx->ctx, key, len, params))
4857 return 1;
4858 }
4859 #ifndef OPENSSL_NO_DEPRECATED_3_0
4860 if (ctx->old_ctx != NULL)
4861 return ssl_hmac_old_init(ctx, key, len, md);
4862 #endif
4863 return 0;
4864 }
4865
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)4866 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4867 {
4868 if (ctx->ctx != NULL)
4869 return EVP_MAC_update(ctx->ctx, data, len);
4870 #ifndef OPENSSL_NO_DEPRECATED_3_0
4871 if (ctx->old_ctx != NULL)
4872 return ssl_hmac_old_update(ctx, data, len);
4873 #endif
4874 return 0;
4875 }
4876
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)4877 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4878 size_t max_size)
4879 {
4880 if (ctx->ctx != NULL)
4881 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4882 #ifndef OPENSSL_NO_DEPRECATED_3_0
4883 if (ctx->old_ctx != NULL)
4884 return ssl_hmac_old_final(ctx, md, len);
4885 #endif
4886 return 0;
4887 }
4888
ssl_hmac_size(const SSL_HMAC * ctx)4889 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4890 {
4891 if (ctx->ctx != NULL)
4892 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4893 #ifndef OPENSSL_NO_DEPRECATED_3_0
4894 if (ctx->old_ctx != NULL)
4895 return ssl_hmac_old_size(ctx);
4896 #endif
4897 return 0;
4898 }
4899
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)4900 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4901 {
4902 char gname[OSSL_MAX_NAME_SIZE];
4903
4904 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4905 return OBJ_txt2nid(gname);
4906
4907 return NID_undef;
4908 }
4909
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)4910 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4911 const unsigned char *enckey,
4912 size_t enckeylen)
4913 {
4914 if (EVP_PKEY_is_a(pkey, "DH")) {
4915 int bits = EVP_PKEY_get_bits(pkey);
4916
4917 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4918 /* the encoded key must be padded to the length of the p */
4919 return 0;
4920 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4921 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4922 || enckey[0] != 0x04)
4923 return 0;
4924 }
4925
4926 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4927 }
4928