xref: /freebsd/crypto/openssl/ssl/t1_lib.c (revision f25b8c9fb4f58cf61adb47d7570abe7caa6d385d)
1 /*
2  * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <ctype.h>
13 #include <openssl/objects.h>
14 #include <openssl/evp.h>
15 #include <openssl/hmac.h>
16 #include <openssl/core_names.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/conf.h>
19 #include <openssl/x509v3.h>
20 #include <openssl/dh.h>
21 #include <openssl/bn.h>
22 #include <openssl/provider.h>
23 #include <openssl/param_build.h>
24 #include "internal/nelem.h"
25 #include "internal/sizes.h"
26 #include "internal/tlsgroups.h"
27 #include "internal/ssl_unwrap.h"
28 #include "ssl_local.h"
29 #include "quic/quic_local.h"
30 #include <openssl/ct.h>
31 
32 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34 
35 SSL3_ENC_METHOD const TLSv1_enc_data = {
36     tls1_setup_key_block,
37     tls1_generate_master_secret,
38     tls1_change_cipher_state,
39     tls1_final_finish_mac,
40     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42     tls1_alert_code,
43     tls1_export_keying_material,
44     0,
45     ssl3_set_handshake_header,
46     tls_close_construct_packet,
47     ssl3_handshake_write
48 };
49 
50 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51     tls1_setup_key_block,
52     tls1_generate_master_secret,
53     tls1_change_cipher_state,
54     tls1_final_finish_mac,
55     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57     tls1_alert_code,
58     tls1_export_keying_material,
59     0,
60     ssl3_set_handshake_header,
61     tls_close_construct_packet,
62     ssl3_handshake_write
63 };
64 
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66     tls1_setup_key_block,
67     tls1_generate_master_secret,
68     tls1_change_cipher_state,
69     tls1_final_finish_mac,
70     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72     tls1_alert_code,
73     tls1_export_keying_material,
74     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75         | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76     ssl3_set_handshake_header,
77     tls_close_construct_packet,
78     ssl3_handshake_write
79 };
80 
81 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82     tls13_setup_key_block,
83     tls13_generate_master_secret,
84     tls13_change_cipher_state,
85     tls13_final_finish_mac,
86     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88     tls13_alert_code,
89     tls13_export_keying_material,
90     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91     ssl3_set_handshake_header,
92     tls_close_construct_packet,
93     ssl3_handshake_write
94 };
95 
tls1_default_timeout(void)96 OSSL_TIME tls1_default_timeout(void)
97 {
98     /*
99      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100      * http, the cache would over fill
101      */
102     return ossl_seconds2time(60 * 60 * 2);
103 }
104 
tls1_new(SSL * s)105 int tls1_new(SSL *s)
106 {
107     if (!ssl3_new(s))
108         return 0;
109     if (!s->method->ssl_clear(s))
110         return 0;
111 
112     return 1;
113 }
114 
tls1_free(SSL * s)115 void tls1_free(SSL *s)
116 {
117     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118 
119     if (sc == NULL)
120         return;
121 
122     OPENSSL_free(sc->ext.session_ticket);
123     ssl3_free(s);
124 }
125 
tls1_clear(SSL * s)126 int tls1_clear(SSL *s)
127 {
128     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129 
130     if (sc == NULL)
131         return 0;
132 
133     if (!ssl3_clear(s))
134         return 0;
135 
136     if (s->method->version == TLS_ANY_VERSION)
137         sc->version = TLS_MAX_VERSION_INTERNAL;
138     else
139         sc->version = s->method->version;
140 
141     return 1;
142 }
143 
144 /* Legacy NID to group_id mapping. Only works for groups we know about */
145 static const struct {
146     int nid;
147     uint16_t group_id;
148 } nid_to_group[] = {
149     { NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1 },
150     { NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1 },
151     { NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2 },
152     { NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1 },
153     { NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2 },
154     { NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1 },
155     { NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1 },
156     { NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1 },
157     { NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1 },
158     { NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1 },
159     { NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1 },
160     { NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1 },
161     { NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1 },
162     { NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1 },
163     { NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1 },
164     { NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1 },
165     { NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2 },
166     { NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1 },
167     { NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1 },
168     { NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1 },
169     { NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1 },
170     { NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1 },
171     { NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1 },
172     { NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1 },
173     { NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1 },
174     { NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1 },
175     { NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1 },
176     { NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1 },
177     { EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519 },
178     { EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448 },
179     { NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13 },
180     { NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13 },
181     { NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13 },
182     { NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A },
183     { NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B },
184     { NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C },
185     { NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D },
186     { NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A },
187     { NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B },
188     { NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C },
189     { NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048 },
190     { NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072 },
191     { NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096 },
192     { NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144 },
193     { NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192 }
194 };
195 
196 static const unsigned char ecformats_default[] = {
197     TLSEXT_ECPOINTFORMAT_uncompressed,
198     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200 };
201 
202 /* Group list string of the built-in pseudo group DEFAULT */
203 #define DEFAULT_GROUP_NAME "DEFAULT"
204 #define TLS_DEFAULT_GROUP_LIST \
205     "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206 
207 static const uint16_t suiteb_curves[] = {
208     OSSL_TLS_GROUP_ID_secp256r1,
209     OSSL_TLS_GROUP_ID_secp384r1,
210 };
211 
212 /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213 #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214 #define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215 
216 struct provider_ctx_data_st {
217     SSL_CTX *ctx;
218     OSSL_PROVIDER *provider;
219 };
220 
221 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
222 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)223 static int add_provider_groups(const OSSL_PARAM params[], void *data)
224 {
225     struct provider_ctx_data_st *pgd = data;
226     SSL_CTX *ctx = pgd->ctx;
227     const OSSL_PARAM *p;
228     TLS_GROUP_INFO *ginf = NULL;
229     EVP_KEYMGMT *keymgmt;
230     unsigned int gid;
231     unsigned int is_kem = 0;
232     int ret = 0;
233 
234     if (ctx->group_list_max_len == ctx->group_list_len) {
235         TLS_GROUP_INFO *tmp = NULL;
236 
237         if (ctx->group_list_max_len == 0)
238             tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240         else
241             tmp = OPENSSL_realloc(ctx->group_list,
242                 (ctx->group_list_max_len
243                     + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244                     * sizeof(TLS_GROUP_INFO));
245         if (tmp == NULL)
246             return 0;
247         ctx->group_list = tmp;
248         memset(tmp + ctx->group_list_max_len,
249             0,
250             sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252     }
253 
254     ginf = &ctx->group_list[ctx->group_list_len];
255 
256     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259         goto err;
260     }
261     ginf->tlsname = OPENSSL_strdup(p->data);
262     if (ginf->tlsname == NULL)
263         goto err;
264 
265     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268         goto err;
269     }
270     ginf->realname = OPENSSL_strdup(p->data);
271     if (ginf->realname == NULL)
272         goto err;
273 
274     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277         goto err;
278     }
279     ginf->group_id = (uint16_t)gid;
280 
281     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284         goto err;
285     }
286     ginf->algorithm = OPENSSL_strdup(p->data);
287     if (ginf->algorithm == NULL)
288         goto err;
289 
290     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293         goto err;
294     }
295 
296     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299         goto err;
300     }
301     ginf->is_kem = 1 & is_kem;
302 
303     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306         goto err;
307     }
308 
309     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312         goto err;
313     }
314 
315     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318         goto err;
319     }
320 
321     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324         goto err;
325     }
326     /*
327      * Now check that the algorithm is actually usable for our property query
328      * string. Regardless of the result we still return success because we have
329      * successfully processed this group, even though we may decide not to use
330      * it.
331      */
332     ret = 1;
333     ERR_set_mark();
334     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335     if (keymgmt != NULL) {
336         /* We have successfully fetched the algorithm, we can use the group. */
337         ctx->group_list_len++;
338         ginf = NULL;
339         EVP_KEYMGMT_free(keymgmt);
340     }
341     ERR_pop_to_mark();
342 err:
343     if (ginf != NULL) {
344         OPENSSL_free(ginf->tlsname);
345         OPENSSL_free(ginf->realname);
346         OPENSSL_free(ginf->algorithm);
347         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348     }
349     return ret;
350 }
351 
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)352 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353 {
354     struct provider_ctx_data_st pgd;
355 
356     pgd.ctx = vctx;
357     pgd.provider = provider;
358     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359         add_provider_groups, &pgd);
360 }
361 
ssl_load_groups(SSL_CTX * ctx)362 int ssl_load_groups(SSL_CTX *ctx)
363 {
364     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365         return 0;
366 
367     return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368 }
369 
inferred_keytype(const TLS_SIGALG_INFO * sinf)370 static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
371 {
372     return (sinf->keytype != NULL
373             ? sinf->keytype
374             : (sinf->sig_name != NULL
375                       ? sinf->sig_name
376                       : sinf->sigalg_name));
377 }
378 
379 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
380 static OSSL_CALLBACK add_provider_sigalgs;
add_provider_sigalgs(const OSSL_PARAM params[],void * data)381 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
382 {
383     struct provider_ctx_data_st *pgd = data;
384     SSL_CTX *ctx = pgd->ctx;
385     OSSL_PROVIDER *provider = pgd->provider;
386     const OSSL_PARAM *p;
387     TLS_SIGALG_INFO *sinf = NULL;
388     EVP_KEYMGMT *keymgmt;
389     const char *keytype;
390     unsigned int code_point = 0;
391     int ret = 0;
392 
393     if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
394         TLS_SIGALG_INFO *tmp = NULL;
395 
396         if (ctx->sigalg_list_max_len == 0)
397             tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
398                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
399         else
400             tmp = OPENSSL_realloc(ctx->sigalg_list,
401                 (ctx->sigalg_list_max_len
402                     + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
403                     * sizeof(TLS_SIGALG_INFO));
404         if (tmp == NULL)
405             return 0;
406         ctx->sigalg_list = tmp;
407         memset(tmp + ctx->sigalg_list_max_len, 0,
408             sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
409         ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
410     }
411 
412     sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
413 
414     /* First, mandatory parameters */
415     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
416     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
417         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
418         goto err;
419     }
420     OPENSSL_free(sinf->sigalg_name);
421     sinf->sigalg_name = OPENSSL_strdup(p->data);
422     if (sinf->sigalg_name == NULL)
423         goto err;
424 
425     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
426     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
427         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
428         goto err;
429     }
430     OPENSSL_free(sinf->name);
431     sinf->name = OPENSSL_strdup(p->data);
432     if (sinf->name == NULL)
433         goto err;
434 
435     p = OSSL_PARAM_locate_const(params,
436         OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
437     if (p == NULL
438         || !OSSL_PARAM_get_uint(p, &code_point)
439         || code_point > UINT16_MAX) {
440         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
441         goto err;
442     }
443     sinf->code_point = (uint16_t)code_point;
444 
445     p = OSSL_PARAM_locate_const(params,
446         OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
447     if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
448         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
449         goto err;
450     }
451 
452     /* Now, optional parameters */
453     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
454     if (p == NULL) {
455         sinf->sigalg_oid = NULL;
456     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
457         goto err;
458     } else {
459         OPENSSL_free(sinf->sigalg_oid);
460         sinf->sigalg_oid = OPENSSL_strdup(p->data);
461         if (sinf->sigalg_oid == NULL)
462             goto err;
463     }
464 
465     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
466     if (p == NULL) {
467         sinf->sig_name = NULL;
468     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
469         goto err;
470     } else {
471         OPENSSL_free(sinf->sig_name);
472         sinf->sig_name = OPENSSL_strdup(p->data);
473         if (sinf->sig_name == NULL)
474             goto err;
475     }
476 
477     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
478     if (p == NULL) {
479         sinf->sig_oid = NULL;
480     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
481         goto err;
482     } else {
483         OPENSSL_free(sinf->sig_oid);
484         sinf->sig_oid = OPENSSL_strdup(p->data);
485         if (sinf->sig_oid == NULL)
486             goto err;
487     }
488 
489     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
490     if (p == NULL) {
491         sinf->hash_name = NULL;
492     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
493         goto err;
494     } else {
495         OPENSSL_free(sinf->hash_name);
496         sinf->hash_name = OPENSSL_strdup(p->data);
497         if (sinf->hash_name == NULL)
498             goto err;
499     }
500 
501     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
502     if (p == NULL) {
503         sinf->hash_oid = NULL;
504     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
505         goto err;
506     } else {
507         OPENSSL_free(sinf->hash_oid);
508         sinf->hash_oid = OPENSSL_strdup(p->data);
509         if (sinf->hash_oid == NULL)
510             goto err;
511     }
512 
513     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
514     if (p == NULL) {
515         sinf->keytype = NULL;
516     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
517         goto err;
518     } else {
519         OPENSSL_free(sinf->keytype);
520         sinf->keytype = OPENSSL_strdup(p->data);
521         if (sinf->keytype == NULL)
522             goto err;
523     }
524 
525     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
526     if (p == NULL) {
527         sinf->keytype_oid = NULL;
528     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
529         goto err;
530     } else {
531         OPENSSL_free(sinf->keytype_oid);
532         sinf->keytype_oid = OPENSSL_strdup(p->data);
533         if (sinf->keytype_oid == NULL)
534             goto err;
535     }
536 
537     /* Optional, not documented prior to 3.5 */
538     sinf->mindtls = sinf->maxdtls = -1;
539     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
540     if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
541         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542         goto err;
543     }
544     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
545     if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
546         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
547         goto err;
548     }
549     /* DTLS version numbers grow downward */
550     if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && ((sinf->maxdtls > sinf->mindtls))) {
551         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
552         goto err;
553     }
554     /* No provider sigalgs are supported in DTLS, reset after checking. */
555     sinf->mindtls = sinf->maxdtls = -1;
556 
557     /* The remaining parameters below are mandatory again */
558     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
559     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
560         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
561         goto err;
562     }
563     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
564     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
565         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
566         goto err;
567     }
568     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < sinf->mintls))) {
569         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
570         goto err;
571     }
572     if ((sinf->mintls != 0) && (sinf->mintls != -1) && ((sinf->mintls > TLS1_3_VERSION)))
573         sinf->mintls = sinf->maxtls = -1;
574     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && ((sinf->maxtls < TLS1_3_VERSION)))
575         sinf->mintls = sinf->maxtls = -1;
576 
577     /* Ignore unusable sigalgs */
578     if (sinf->mintls == -1 && sinf->mindtls == -1) {
579         ret = 1;
580         goto err;
581     }
582 
583     /*
584      * Now check that the algorithm is actually usable for our property query
585      * string. Regardless of the result we still return success because we have
586      * successfully processed this signature, even though we may decide not to
587      * use it.
588      */
589     ret = 1;
590     ERR_set_mark();
591     keytype = inferred_keytype(sinf);
592     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
593     if (keymgmt != NULL) {
594         /*
595          * We have successfully fetched the algorithm - however if the provider
596          * doesn't match this one then we ignore it.
597          *
598          * Note: We're cheating a little here. Technically if the same algorithm
599          * is available from more than one provider then it is undefined which
600          * implementation you will get back. Theoretically this could be
601          * different every time...we assume here that you'll always get the
602          * same one back if you repeat the exact same fetch. Is this a reasonable
603          * assumption to make (in which case perhaps we should document this
604          * behaviour)?
605          */
606         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
607             /*
608              * We have a match - so we could use this signature;
609              * Check proper object registration first, though.
610              * Don't care about return value as this may have been
611              * done within providers or previous calls to
612              * add_provider_sigalgs.
613              */
614             OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
615             /* sanity check: Without successful registration don't use alg */
616             if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617                 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618                 goto err;
619             }
620             if (sinf->sig_name != NULL)
621                 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622             if (sinf->keytype != NULL)
623                 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624             if (sinf->hash_name != NULL)
625                 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626             OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627                 (sinf->hash_name != NULL
628                         ? OBJ_txt2nid(sinf->hash_name)
629                         : NID_undef),
630                 OBJ_txt2nid(keytype));
631             ctx->sigalg_list_len++;
632             sinf = NULL;
633         }
634         EVP_KEYMGMT_free(keymgmt);
635     }
636     ERR_pop_to_mark();
637 err:
638     if (sinf != NULL) {
639         OPENSSL_free(sinf->name);
640         sinf->name = NULL;
641         OPENSSL_free(sinf->sigalg_name);
642         sinf->sigalg_name = NULL;
643         OPENSSL_free(sinf->sigalg_oid);
644         sinf->sigalg_oid = NULL;
645         OPENSSL_free(sinf->sig_name);
646         sinf->sig_name = NULL;
647         OPENSSL_free(sinf->sig_oid);
648         sinf->sig_oid = NULL;
649         OPENSSL_free(sinf->hash_name);
650         sinf->hash_name = NULL;
651         OPENSSL_free(sinf->hash_oid);
652         sinf->hash_oid = NULL;
653         OPENSSL_free(sinf->keytype);
654         sinf->keytype = NULL;
655         OPENSSL_free(sinf->keytype_oid);
656         sinf->keytype_oid = NULL;
657     }
658     return ret;
659 }
660 
discover_provider_sigalgs(OSSL_PROVIDER * provider,void * vctx)661 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662 {
663     struct provider_ctx_data_st pgd;
664 
665     pgd.ctx = vctx;
666     pgd.provider = provider;
667     OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668         add_provider_sigalgs, &pgd);
669     /*
670      * Always OK, even if provider doesn't support the capability:
671      * Reconsider testing retval when legacy sigalgs are also loaded this way.
672      */
673     return 1;
674 }
675 
ssl_load_sigalgs(SSL_CTX * ctx)676 int ssl_load_sigalgs(SSL_CTX *ctx)
677 {
678     size_t i;
679     SSL_CERT_LOOKUP lu;
680 
681     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682         return 0;
683 
684     /* now populate ctx->ssl_cert_info */
685     if (ctx->sigalg_list_len > 0) {
686         OPENSSL_free(ctx->ssl_cert_info);
687         ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688         if (ctx->ssl_cert_info == NULL)
689             return 0;
690         for (i = 0; i < ctx->sigalg_list_len; i++) {
691             const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
692             ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
693             ctx->ssl_cert_info[i].amask = SSL_aANY;
694         }
695     }
696 
697     /*
698      * For now, leave it at this: legacy sigalgs stay in their own
699      * data structures until "legacy cleanup" occurs.
700      */
701 
702     return 1;
703 }
704 
tls1_group_name2id(SSL_CTX * ctx,const char * name)705 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
706 {
707     size_t i;
708 
709     for (i = 0; i < ctx->group_list_len; i++) {
710         if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
711             || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
712             return ctx->group_list[i].group_id;
713     }
714 
715     return 0;
716 }
717 
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)718 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
719 {
720     size_t i;
721 
722     for (i = 0; i < ctx->group_list_len; i++) {
723         if (ctx->group_list[i].group_id == group_id)
724             return &ctx->group_list[i];
725     }
726 
727     return NULL;
728 }
729 
tls1_group_id2name(SSL_CTX * ctx,uint16_t group_id)730 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
731 {
732     const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
733 
734     if (tls_group_info == NULL)
735         return NULL;
736 
737     return tls_group_info->tlsname;
738 }
739 
tls1_group_id2nid(uint16_t group_id,int include_unknown)740 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
741 {
742     size_t i;
743 
744     if (group_id == 0)
745         return NID_undef;
746 
747     /*
748      * Return well known Group NIDs - for backwards compatibility. This won't
749      * work for groups we don't know about.
750      */
751     for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
752         if (nid_to_group[i].group_id == group_id)
753             return nid_to_group[i].nid;
754     }
755     if (!include_unknown)
756         return NID_undef;
757     return TLSEXT_nid_unknown | (int)group_id;
758 }
759 
tls1_nid2group_id(int nid)760 uint16_t tls1_nid2group_id(int nid)
761 {
762     size_t i;
763 
764     /*
765      * Return well known Group ids - for backwards compatibility. This won't
766      * work for groups we don't know about.
767      */
768     for (i = 0; i < OSSL_NELEM(nid_to_group); i++) {
769         if (nid_to_group[i].nid == nid)
770             return nid_to_group[i].group_id;
771     }
772 
773     return 0;
774 }
775 
776 /*
777  * Set *pgroups to the supported groups list and *pgroupslen to
778  * the number of groups supported.
779  */
tls1_get_supported_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)780 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
781     size_t *pgroupslen)
782 {
783     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
784 
785     /* For Suite B mode only include P-256, P-384 */
786     switch (tls1_suiteb(s)) {
787     case SSL_CERT_FLAG_SUITEB_128_LOS:
788         *pgroups = suiteb_curves;
789         *pgroupslen = OSSL_NELEM(suiteb_curves);
790         break;
791 
792     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
793         *pgroups = suiteb_curves;
794         *pgroupslen = 1;
795         break;
796 
797     case SSL_CERT_FLAG_SUITEB_192_LOS:
798         *pgroups = suiteb_curves + 1;
799         *pgroupslen = 1;
800         break;
801 
802     default:
803         if (s->ext.supportedgroups == NULL) {
804             *pgroups = sctx->ext.supportedgroups;
805             *pgroupslen = sctx->ext.supportedgroups_len;
806         } else {
807             *pgroups = s->ext.supportedgroups;
808             *pgroupslen = s->ext.supportedgroups_len;
809         }
810         break;
811     }
812 }
813 
814 /*
815  * Some comments for the function below:
816  * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
817  * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
818  * eligible group from the legacy list. Therefore, we provide the entire list of supported
819  * groups in this case.
820  *
821  * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
822  * but the groupID to 0.
823  * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
824  * the "list of requested key share groups" is used, or the "list of supported groups" in
825  * combination with setting add_only_one = 1 is applied.
826  */
tls1_get_requested_keyshare_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)827 void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
828     size_t *pgroupslen)
829 {
830     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
831 
832     if (s->ext.supportedgroups == NULL) {
833         *pgroups = sctx->ext.supportedgroups;
834         *pgroupslen = sctx->ext.supportedgroups_len;
835     } else {
836         *pgroups = s->ext.keyshares;
837         *pgroupslen = s->ext.keyshares_len;
838     }
839 }
840 
tls1_get_group_tuples(SSL_CONNECTION * s,const size_t ** ptuples,size_t * ptupleslen)841 void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
842     size_t *ptupleslen)
843 {
844     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
845 
846     if (s->ext.supportedgroups == NULL) {
847         *ptuples = sctx->ext.tuples;
848         *ptupleslen = sctx->ext.tuples_len;
849     } else {
850         *ptuples = s->ext.tuples;
851         *ptupleslen = s->ext.tuples_len;
852     }
853 }
854 
tls_valid_group(SSL_CONNECTION * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)855 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
856     int minversion, int maxversion,
857     int isec, int *okfortls13)
858 {
859     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
860         group_id);
861     int ret;
862     int group_minversion, group_maxversion;
863 
864     if (okfortls13 != NULL)
865         *okfortls13 = 0;
866 
867     if (ginfo == NULL)
868         return 0;
869 
870     group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
871     group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
872 
873     if (group_minversion < 0 || group_maxversion < 0)
874         return 0;
875     if (group_maxversion == 0)
876         ret = 1;
877     else
878         ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
879     if (group_minversion > 0)
880         ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
881 
882     if (!SSL_CONNECTION_IS_DTLS(s)) {
883         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
884             *okfortls13 = (group_maxversion == 0)
885                 || (group_maxversion >= TLS1_3_VERSION);
886     }
887     ret &= !isec
888         || strcmp(ginfo->algorithm, "EC") == 0
889         || strcmp(ginfo->algorithm, "X25519") == 0
890         || strcmp(ginfo->algorithm, "X448") == 0;
891 
892     return ret;
893 }
894 
895 /* See if group is allowed by security callback */
tls_group_allowed(SSL_CONNECTION * s,uint16_t group,int op)896 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
897 {
898     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
899         group);
900     unsigned char gtmp[2];
901 
902     if (ginfo == NULL)
903         return 0;
904 
905     gtmp[0] = group >> 8;
906     gtmp[1] = group & 0xff;
907     return ssl_security(s, op, ginfo->secbits,
908         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
909 }
910 
911 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)912 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
913 {
914     size_t i;
915     for (i = 0; i < listlen; i++)
916         if (list[i] == id)
917             return 1;
918     return 0;
919 }
920 
921 typedef struct {
922     TLS_GROUP_INFO *grp;
923     size_t ix;
924 } TLS_GROUP_IX;
925 
DEFINE_STACK_OF(TLS_GROUP_IX)926 DEFINE_STACK_OF(TLS_GROUP_IX)
927 
928 static void free_wrapper(TLS_GROUP_IX *a)
929 {
930     OPENSSL_free(a);
931 }
932 
tls_group_ix_cmp(const TLS_GROUP_IX * const * a,const TLS_GROUP_IX * const * b)933 static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
934     const TLS_GROUP_IX *const *b)
935 {
936     int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
937     int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
938     int ixcmpab = (*a)->ix < (*b)->ix;
939     int ixcmpba = (*b)->ix < (*a)->ix;
940 
941     /* Ascending by group id */
942     if (idcmpab != idcmpba)
943         return (idcmpba - idcmpab);
944     /* Ascending by original appearance index */
945     return ixcmpba - ixcmpab;
946 }
947 
tls1_get0_implemented_groups(int min_proto_version,int max_proto_version,TLS_GROUP_INFO * grps,size_t num,long all,STACK_OF (OPENSSL_CSTRING)* out)948 int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
949     TLS_GROUP_INFO *grps, size_t num, long all,
950     STACK_OF(OPENSSL_CSTRING) *out)
951 {
952     STACK_OF(TLS_GROUP_IX) *collect = NULL;
953     TLS_GROUP_IX *gix;
954     uint16_t id = 0;
955     int ret = 0;
956     size_t ix;
957 
958     if (grps == NULL || out == NULL)
959         return 0;
960     if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
961         return 0;
962     for (ix = 0; ix < num; ++ix, ++grps) {
963         if (grps->mintls > 0 && max_proto_version > 0
964             && grps->mintls > max_proto_version)
965             continue;
966         if (grps->maxtls > 0 && min_proto_version > 0
967             && grps->maxtls < min_proto_version)
968             continue;
969 
970         if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
971             goto end;
972         gix->grp = grps;
973         gix->ix = ix;
974         if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
975             OPENSSL_free(gix);
976             goto end;
977         }
978     }
979 
980     sk_TLS_GROUP_IX_sort(collect);
981     num = sk_TLS_GROUP_IX_num(collect);
982     for (ix = 0; ix < num; ++ix) {
983         gix = sk_TLS_GROUP_IX_value(collect, ix);
984         if (!all && gix->grp->group_id == id)
985             continue;
986         id = gix->grp->group_id;
987         if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
988             goto end;
989     }
990     ret = 1;
991 
992 end:
993     sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
994     return ret;
995 }
996 
997 /*-
998  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
999  * if there is no match.
1000  * For nmatch == -1, return number of matches
1001  * For nmatch == -2, return the id of the group to use for
1002  * a tmp key, or 0 if there is no match.
1003  */
tls1_shared_group(SSL_CONNECTION * s,int nmatch)1004 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1005 {
1006     const uint16_t *pref, *supp;
1007     size_t num_pref, num_supp, i;
1008     int k;
1009     SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1010 
1011     /* Can't do anything on client side */
1012     if (s->server == 0)
1013         return 0;
1014     if (nmatch == -2) {
1015         if (tls1_suiteb(s)) {
1016             /*
1017              * For Suite B ciphersuite determines curve: we already know
1018              * these are acceptable due to previous checks.
1019              */
1020             unsigned long cid = s->s3.tmp.new_cipher->id;
1021 
1022             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1023                 return OSSL_TLS_GROUP_ID_secp256r1;
1024             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1025                 return OSSL_TLS_GROUP_ID_secp384r1;
1026             /* Should never happen */
1027             return 0;
1028         }
1029         /* If not Suite B just return first preference shared curve */
1030         nmatch = 0;
1031     }
1032     /*
1033      * If server preference set, our groups are the preference order
1034      * otherwise peer decides.
1035      */
1036     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1037         tls1_get_supported_groups(s, &pref, &num_pref);
1038         tls1_get_peer_groups(s, &supp, &num_supp);
1039     } else {
1040         tls1_get_peer_groups(s, &pref, &num_pref);
1041         tls1_get_supported_groups(s, &supp, &num_supp);
1042     }
1043 
1044     for (k = 0, i = 0; i < num_pref; i++) {
1045         uint16_t id = pref[i];
1046         const TLS_GROUP_INFO *inf;
1047         int minversion, maxversion;
1048 
1049         if (!tls1_in_list(id, supp, num_supp)
1050             || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1051             continue;
1052         inf = tls1_group_id_lookup(ctx, id);
1053         if (!ossl_assert(inf != NULL))
1054             return 0;
1055 
1056         minversion = SSL_CONNECTION_IS_DTLS(s)
1057             ? inf->mindtls
1058             : inf->mintls;
1059         maxversion = SSL_CONNECTION_IS_DTLS(s)
1060             ? inf->maxdtls
1061             : inf->maxtls;
1062         if (maxversion == -1)
1063             continue;
1064         if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1065             || (maxversion != 0
1066                 && ssl_version_cmp(s, s->version, maxversion) > 0))
1067             continue;
1068 
1069         if (nmatch == k)
1070             return id;
1071         k++;
1072     }
1073     if (nmatch == -1)
1074         return k;
1075     /* Out of range (nmatch > k). */
1076     return 0;
1077 }
1078 
tls1_set_groups(uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,int * groups,size_t ngroups)1079 int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1080     uint16_t **ksext, size_t *ksextlen,
1081     size_t **tplext, size_t *tplextlen,
1082     int *groups, size_t ngroups)
1083 {
1084     uint16_t *glist = NULL, *kslist = NULL;
1085     size_t *tpllist = NULL;
1086     size_t i;
1087     /*
1088      * Bitmap of groups included to detect duplicates: two variables are added
1089      * to detect duplicates as some values are more than 32.
1090      */
1091     unsigned long *dup_list = NULL;
1092     unsigned long dup_list_egrp = 0;
1093     unsigned long dup_list_dhgrp = 0;
1094 
1095     if (ngroups == 0) {
1096         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1097         return 0;
1098     }
1099     if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1100         goto err;
1101     if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1102         goto err;
1103     if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1104         goto err;
1105     for (i = 0; i < ngroups; i++) {
1106         unsigned long idmask;
1107         uint16_t id;
1108         id = tls1_nid2group_id(groups[i]);
1109         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1110             goto err;
1111         idmask = 1L << (id & 0x00FF);
1112         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1113         if (!id || ((*dup_list) & idmask))
1114             goto err;
1115         *dup_list |= idmask;
1116         glist[i] = id;
1117     }
1118     OPENSSL_free(*grpext);
1119     OPENSSL_free(*ksext);
1120     OPENSSL_free(*tplext);
1121     *grpext = glist;
1122     *grpextlen = ngroups;
1123     /*
1124      * No * prefix was used, let tls_construct_ctos_key_share choose a key
1125      * share. This has the advantage that it will filter unsupported groups
1126      * before choosing one, which this function does not do. See also the
1127      * comment for tls1_get_requested_keyshare_groups.
1128      */
1129     kslist[0] = 0;
1130     *ksext = kslist;
1131     *ksextlen = 1;
1132     tpllist[0] = ngroups;
1133     *tplext = tpllist;
1134     *tplextlen = 1;
1135     return 1;
1136 err:
1137     OPENSSL_free(glist);
1138     OPENSSL_free(kslist);
1139     OPENSSL_free(tpllist);
1140     return 0;
1141 }
1142 
1143 /*
1144  * Definition of DEFAULT[_XYZ] pseudo group names.
1145  * A pseudo group name is actually a full list of groups, including prefixes
1146  * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1147  * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1148  * groups not backed by a provider will always silently be ignored, even without '?' prefix
1149  */
1150 typedef struct {
1151     const char *list_name; /* The name of this pseudo group */
1152     const char *group_string; /* The group string of this pseudo group */
1153 } default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1154 
1155 /* Built-in pseudo group-names must start with a (D or d) */
1156 static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1157 
1158 /* The list of all built-in pseudo-group-name structures */
1159 static const default_group_string_st default_group_strings[] = {
1160     { DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST },
1161     { SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST }
1162 };
1163 
1164 /*
1165  * Some GOST names are not resolved by tls1_group_name2id,
1166  * hence we'll check for those manually
1167  */
1168 typedef struct {
1169     const char *group_name;
1170     uint16_t groupID;
1171 } name2id_st;
1172 static const name2id_st name2id_arr[] = {
1173     { "GC256A", OSSL_TLS_GROUP_ID_gc256A },
1174     { "GC256B", OSSL_TLS_GROUP_ID_gc256B },
1175     { "GC256C", OSSL_TLS_GROUP_ID_gc256C },
1176     { "GC256D", OSSL_TLS_GROUP_ID_gc256D },
1177     { "GC512A", OSSL_TLS_GROUP_ID_gc512A },
1178     { "GC512B", OSSL_TLS_GROUP_ID_gc512B },
1179     { "GC512C", OSSL_TLS_GROUP_ID_gc512C },
1180 };
1181 
1182 /*
1183  * Group list management:
1184  * We establish three lists along with their related size counters:
1185  * 1) List of (unique) groups
1186  * 2) List of number of groups per group-priority-tuple
1187  * 3) List of (unique) key share groups
1188  */
1189 #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1190 #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1191 
1192 /*
1193  * Preparation of the prefix used to indicate the desire to send a key share,
1194  * the characters used as separators between groups or tuples of groups, the
1195  * character to indicate that an unknown group should be ignored, and the
1196  * character to indicate that a group should be deleted from a list
1197  */
1198 #ifndef TUPLE_DELIMITER_CHARACTER
1199 /* The prefix characters to indicate group tuple boundaries */
1200 #define TUPLE_DELIMITER_CHARACTER '/'
1201 #endif
1202 #ifndef GROUP_DELIMITER_CHARACTER
1203 /* The prefix characters to indicate group tuple boundaries */
1204 #define GROUP_DELIMITER_CHARACTER ':'
1205 #endif
1206 #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1207 /* The prefix character to ignore unknown groups */
1208 #define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1209 #endif
1210 #ifndef KEY_SHARE_INDICATOR_CHARACTER
1211 /* The prefix character to trigger a key share addition */
1212 #define KEY_SHARE_INDICATOR_CHARACTER '*'
1213 #endif
1214 #ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1215 /* The prefix character to trigger a key share removal */
1216 #define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1217 #endif
1218 static const char prefixes[] = { TUPLE_DELIMITER_CHARACTER,
1219     GROUP_DELIMITER_CHARACTER,
1220     IGNORE_UNKNOWN_GROUP_CHARACTER,
1221     KEY_SHARE_INDICATOR_CHARACTER,
1222     REMOVE_GROUP_INDICATOR_CHARACTER,
1223     '\0' };
1224 
1225 /*
1226  * High-level description of how group strings are analyzed:
1227  * A first call back function (tuple_cb) is used to process group tuples, and a
1228  * second callback function (gid_cb) is used to process the groups inside a tuple.
1229  * Those callback functions are (indirectly) called by CONF_parse_list with
1230  * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1231  * is used to keep track of the parsing results between the various calls
1232  */
1233 
1234 typedef struct {
1235     SSL_CTX *ctx;
1236     /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1237     size_t gidmax; /* The memory allocation chunk size for the group IDs */
1238     size_t gidcnt; /* Number of groups */
1239     uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1240     size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1241     size_t tplcnt; /* Number of tuples */
1242     size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1243     size_t ksidmax; /* The memory allocation chunk size */
1244     size_t ksidcnt; /* Number of key shares */
1245     uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1246     /* Variable to keep state between execution of callback or helper functions */
1247     size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1248     int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1249 } gid_cb_st;
1250 
1251 /* Forward declaration of tuple callback function */
1252 static int tuple_cb(const char *tuple, int len, void *arg);
1253 
1254 /*
1255  * Extract and process the individual groups (and their prefixes if present)
1256  * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1257  * and must be appended by a \0 if used as \0-terminated string
1258  */
gid_cb(const char * elem,int len,void * arg)1259 static int gid_cb(const char *elem, int len, void *arg)
1260 {
1261     gid_cb_st *garg = arg;
1262     size_t i, j, k;
1263     uint16_t gid = 0;
1264     int found_group = 0;
1265     char etmp[GROUP_NAME_BUFFER_LENGTH];
1266     int retval = 1; /* We assume success */
1267     char *current_prefix;
1268     int ignore_unknown = 0;
1269     int add_keyshare = 0;
1270     int remove_group = 0;
1271     size_t restored_prefix_index = 0;
1272     char *restored_default_group_string;
1273     int continue_while_loop = 1;
1274 
1275     /* Sanity checks */
1276     if (garg == NULL || elem == NULL || len <= 0) {
1277         ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1278         return 0;
1279     }
1280 
1281     /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1282     while (continue_while_loop && len > 0
1283         && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1284             || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1285 
1286         switch (*current_prefix) {
1287         case TUPLE_DELIMITER_CHARACTER:
1288             /* tuple delimiter not allowed here -> syntax error */
1289             return -1;
1290             break;
1291         case GROUP_DELIMITER_CHARACTER:
1292             return -1; /* Not a valid prefix for a single group name-> syntax error */
1293             break;
1294         case KEY_SHARE_INDICATOR_CHARACTER:
1295             if (add_keyshare)
1296                 return -1; /* Only single key share prefix allowed -> syntax error */
1297             add_keyshare = 1;
1298             ++elem;
1299             --len;
1300             break;
1301         case REMOVE_GROUP_INDICATOR_CHARACTER:
1302             if (remove_group)
1303                 return -1; /* Only single remove group prefix allowed -> syntax error */
1304             remove_group = 1;
1305             ++elem;
1306             --len;
1307             break;
1308         case IGNORE_UNKNOWN_GROUP_CHARACTER:
1309             if (ignore_unknown)
1310                 return -1; /* Only single ? allowed -> syntax error */
1311             ignore_unknown = 1;
1312             ++elem;
1313             --len;
1314             break;
1315         default:
1316             /*
1317              * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1318              * list of groups) should be added
1319              */
1320             for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1321                 if ((size_t)len == (strlen(default_group_strings[i].list_name))
1322                     && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1323                     /*
1324                      * We're asked to insert an entire list of groups from a
1325                      * DEFAULT[_XYZ] 'pseudo group' which we do by
1326                      * recursively calling this function (indirectly via
1327                      * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1328                      * group string like a tuple which is appended to the current tuple
1329                      * rather then starting a new tuple. Variable tuple_mode is the flag which
1330                      * controls append tuple vs start new tuple.
1331                      */
1332 
1333                     if (ignore_unknown || remove_group)
1334                         return -1; /* removal or ignore not allowed here -> syntax error */
1335 
1336                     /*
1337                      * First, we restore any keyshare prefix in a new zero-terminated string
1338                      * (if not already present)
1339                      */
1340                     restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + strlen(default_group_strings[i].group_string) + 1 /* \0 */) * sizeof(char));
1341                     if (restored_default_group_string == NULL)
1342                         return 0;
1343                     if (add_keyshare
1344                         /* Remark: we tolerate a duplicated keyshare indicator here */
1345                         && default_group_strings[i].group_string[0]
1346                             != KEY_SHARE_INDICATOR_CHARACTER)
1347                         restored_default_group_string[restored_prefix_index++] = KEY_SHARE_INDICATOR_CHARACTER;
1348 
1349                     memcpy(restored_default_group_string + restored_prefix_index,
1350                         default_group_strings[i].group_string,
1351                         strlen(default_group_strings[i].group_string));
1352                     restored_default_group_string[strlen(default_group_strings[i].group_string) + restored_prefix_index] = '\0';
1353                     /* We execute the recursive call */
1354                     garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1355                     /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1356                     garg->tuple_mode = 0;
1357                     /* We use the tuple_cb callback to process the pseudo group tuple */
1358                     retval = CONF_parse_list(restored_default_group_string,
1359                         TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1360                     garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1361                     garg->ignore_unknown_default = 0; /* reset to original value */
1362                     /* We don't need the \0-terminated string anymore */
1363                     OPENSSL_free(restored_default_group_string);
1364 
1365                     return retval;
1366                 }
1367             }
1368             /*
1369              * If we reached this point, a group name started with a 'd' or 'D', but no request
1370              * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1371              * name can continue as usual (= the while loop checking prefixes can end)
1372              */
1373             continue_while_loop = 0;
1374             break;
1375         }
1376     }
1377 
1378     if (len == 0)
1379         return -1; /* Seems we have prefxes without a group name -> syntax error */
1380 
1381     if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1382         ignore_unknown = 1;
1383 
1384     /* Memory management in case more groups are present compared to initial allocation */
1385     if (garg->gidcnt == garg->gidmax) {
1386         uint16_t *tmp = OPENSSL_realloc(garg->gid_arr,
1387             (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1388 
1389         if (tmp == NULL)
1390             return 0;
1391 
1392         garg->gidmax += GROUPLIST_INCREMENT;
1393         garg->gid_arr = tmp;
1394     }
1395     /* Memory management for key share groups */
1396     if (garg->ksidcnt == garg->ksidmax) {
1397         uint16_t *tmp = OPENSSL_realloc(garg->ksid_arr,
1398             (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1399 
1400         if (tmp == NULL)
1401             return 0;
1402         garg->ksidmax += GROUPLIST_INCREMENT;
1403         garg->ksid_arr = tmp;
1404     }
1405 
1406     if (len > (int)(sizeof(etmp) - 1))
1407         return -1; /* group name to long  -> syntax error */
1408 
1409     /*
1410      * Prepare addition or removal of a single group by converting
1411      * a group name into its groupID equivalent
1412      */
1413 
1414     /* Create a \0-terminated string and get the gid for this group if possible */
1415     memcpy(etmp, elem, len);
1416     etmp[len] = 0;
1417 
1418     /* Get the groupID */
1419     gid = tls1_group_name2id(garg->ctx, etmp);
1420     /*
1421      * Handle the case where no valid groupID was returned
1422      * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1423      */
1424     if (gid == 0) {
1425         /* Is it one of the GOST groups ? */
1426         for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1427             if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1428                 gid = name2id_arr[i].groupID;
1429                 break;
1430             }
1431         }
1432         if (gid == 0) { /* still not found */
1433             /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1434             retval = ignore_unknown;
1435             goto done;
1436         }
1437     }
1438 
1439     /* Make sure that at least one provider is supporting this groupID */
1440     found_group = 0;
1441     for (j = 0; j < garg->ctx->group_list_len; j++)
1442         if (garg->ctx->group_list[j].group_id == gid) {
1443             found_group = 1;
1444             break;
1445         }
1446 
1447     /*
1448      * No provider supports this group - ignore if
1449      * ignore_unknown; trigger error otherwise
1450      */
1451     if (found_group == 0) {
1452         retval = ignore_unknown;
1453         goto done;
1454     }
1455     /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1456     if (remove_group) {
1457         /* Is the current group specified anywhere in the entire list so far? */
1458         found_group = 0;
1459         for (i = 0; i < garg->gidcnt; i++)
1460             if (garg->gid_arr[i] == gid) {
1461                 found_group = 1;
1462                 break;
1463             }
1464         /* The group to remove is at position i in the list of (zero indexed) groups */
1465         if (found_group) {
1466             /* We remove that group from its position (which is at i)... */
1467             for (j = i; j < (garg->gidcnt - 1); j++)
1468                 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1469             garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1470 
1471             /*
1472              * We also must update the number of groups either in a previous tuple (which we
1473              * must identify and check whether it becomes empty due to the deletion) or in
1474              * the current tuple, pending where the deleted group resides
1475              */
1476             k = 0;
1477             for (j = 0; j < garg->tplcnt; j++) {
1478                 k += garg->tuplcnt_arr[j];
1479                 /* Remark: i is zero-indexed, k is one-indexed */
1480                 if (k > i) { /* remove from one of the previous tuples */
1481                     garg->tuplcnt_arr[j]--;
1482                     break; /* We took care not to have group duplicates, hence we can stop here */
1483                 }
1484             }
1485             if (k <= i) /* remove from current tuple */
1486                 garg->tuplcnt_arr[j]--;
1487 
1488             /* We also remove the group from the list of keyshares (if present) */
1489             found_group = 0;
1490             for (i = 0; i < garg->ksidcnt; i++)
1491                 if (garg->ksid_arr[i] == gid) {
1492                     found_group = 1;
1493                     break;
1494                 }
1495             if (found_group) {
1496                 /* Found, hence we remove that keyshare from its position (which is at i)... */
1497                 for (j = i; j < (garg->ksidcnt - 1); j++)
1498                     garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1499                 /* ... and update the book keeping */
1500                 garg->ksidcnt--;
1501             }
1502         }
1503     } else { /* Processing addition of a single new group */
1504 
1505         /* Check for duplicates */
1506         for (i = 0; i < garg->gidcnt; i++)
1507             if (garg->gid_arr[i] == gid) {
1508                 /* Duplicate group anywhere in the list of groups - ignore */
1509                 goto done;
1510             }
1511 
1512         /* Add the current group to the 'flat' list of groups */
1513         garg->gid_arr[garg->gidcnt++] = gid;
1514         /* and update the book keeping for the number of groups in current tuple */
1515         garg->tuplcnt_arr[garg->tplcnt]++;
1516 
1517         /* We memorize if needed that we want to add a key share for the current group */
1518         if (add_keyshare)
1519             garg->ksid_arr[garg->ksidcnt++] = gid;
1520     }
1521 
1522 done:
1523     return retval;
1524 }
1525 
1526 /* Extract and process a tuple of groups */
tuple_cb(const char * tuple,int len,void * arg)1527 static int tuple_cb(const char *tuple, int len, void *arg)
1528 {
1529     gid_cb_st *garg = arg;
1530     int retval = 1; /* We assume success */
1531     char *restored_tuple_string;
1532 
1533     /* Sanity checks */
1534     if (garg == NULL || tuple == NULL || len <= 0) {
1535         ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1536         return 0;
1537     }
1538 
1539     /* Memory management for tuples */
1540     if (garg->tplcnt == garg->tplmax) {
1541         size_t *tmp = OPENSSL_realloc(garg->tuplcnt_arr,
1542             (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543 
1544         if (tmp == NULL)
1545             return 0;
1546         garg->tplmax += GROUPLIST_INCREMENT;
1547         garg->tuplcnt_arr = tmp;
1548     }
1549 
1550     /* Convert to \0-terminated string */
1551     restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552     if (restored_tuple_string == NULL)
1553         return 0;
1554     memcpy(restored_tuple_string, tuple, len);
1555     restored_tuple_string[len] = '\0';
1556 
1557     /* Analyze group list of this tuple */
1558     retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559 
1560     /* We don't need the \o-terminated string anymore */
1561     OPENSSL_free(restored_tuple_string);
1562 
1563     if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564         if (garg->tuple_mode) {
1565             /* We 'close' the tuple */
1566             garg->tplcnt++;
1567             garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568             garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569         }
1570     }
1571 
1572     return retval;
1573 }
1574 
1575 /*
1576  * Set groups and prepare generation of keyshares based on a string of groupnames,
1577  * names separated by the group or the tuple delimiter, with per-group prefixes to
1578  * (1) add a key share for this group, (2) ignore the group if unknown to the current
1579  * context, (3) delete a previous occurrence of the group in the current tuple.
1580  *
1581  * The list parsing is done in two hierarchical steps: The top-level step extracts the
1582  * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583  * parse and process the groups inside a tuple
1584  */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,const char * str)1585 int tls1_set_groups_list(SSL_CTX *ctx,
1586     uint16_t **grpext, size_t *grpextlen,
1587     uint16_t **ksext, size_t *ksextlen,
1588     size_t **tplext, size_t *tplextlen,
1589     const char *str)
1590 {
1591     size_t i = 0, j;
1592     int ret = 0, parse_ret = 0;
1593     gid_cb_st gcb;
1594 
1595     /* Sanity check */
1596     if (ctx == NULL) {
1597         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598         return 0;
1599     }
1600 
1601     memset(&gcb, 0, sizeof(gcb));
1602     gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603     gcb.ignore_unknown_default = 0;
1604     gcb.gidmax = GROUPLIST_INCREMENT;
1605     gcb.tplmax = GROUPLIST_INCREMENT;
1606     gcb.ksidmax = GROUPLIST_INCREMENT;
1607     gcb.ctx = ctx;
1608 
1609     /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610     gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611     if (gcb.gid_arr == NULL)
1612         goto end;
1613     gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614     if (gcb.tuplcnt_arr == NULL)
1615         goto end;
1616     gcb.tuplcnt_arr[0] = 0;
1617     gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618     if (gcb.ksid_arr == NULL)
1619         goto end;
1620 
1621     while (str[0] != '\0' && isspace((unsigned char)*str))
1622         str++;
1623     if (str[0] == '\0')
1624         goto empty_list;
1625 
1626     /*
1627      * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628      * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629      */
1630     parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631 
1632     if (parse_ret == 0)
1633         goto end;
1634     if (parse_ret == -1) {
1635         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636             "Syntax error in '%s'", str);
1637         goto end;
1638     }
1639 
1640     /*
1641      * We check whether a tuple was completely emptied by using "-" prefix
1642      * excessively, in which case we remove the tuple
1643      */
1644     for (i = j = 0; j < gcb.tplcnt; j++) {
1645         if (gcb.tuplcnt_arr[j] == 0)
1646             continue;
1647         /* If there's a gap, move to first unfilled slot */
1648         if (j == i)
1649             ++i;
1650         else
1651             gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652     }
1653     gcb.tplcnt = i;
1654 
1655     if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657             "To many keyshares requested in '%s' (max = %d)",
1658             str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659         goto end;
1660     }
1661 
1662     /*
1663      * For backward compatibility we let the rest of the code know that a key share
1664      * for the first valid group should be added if no "*" prefix was used anywhere
1665      */
1666     if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667         /*
1668          * No key share group prefix character was used, hence we indicate that a single
1669          * key share should be sent and flag that it should come from the supported_groups list
1670          */
1671         gcb.ksidcnt = 1;
1672         gcb.ksid_arr[0] = 0;
1673     }
1674 
1675 empty_list:
1676     /*
1677      * A call to tls1_set_groups_list with any of the args (other than ctx) set
1678      * to NULL only does a syntax check, hence we're done here and report success
1679      */
1680     if (grpext == NULL || ksext == NULL || tplext == NULL || grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1681         ret = 1;
1682         goto end;
1683     }
1684 
1685     /*
1686      * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1687      * can just go ahead and set the results (after disposing the existing)
1688      */
1689     OPENSSL_free(*grpext);
1690     *grpext = gcb.gid_arr;
1691     *grpextlen = gcb.gidcnt;
1692     OPENSSL_free(*ksext);
1693     *ksext = gcb.ksid_arr;
1694     *ksextlen = gcb.ksidcnt;
1695     OPENSSL_free(*tplext);
1696     *tplext = gcb.tuplcnt_arr;
1697     *tplextlen = gcb.tplcnt;
1698 
1699     return 1;
1700 
1701 end:
1702     OPENSSL_free(gcb.gid_arr);
1703     OPENSSL_free(gcb.tuplcnt_arr);
1704     OPENSSL_free(gcb.ksid_arr);
1705     return ret;
1706 }
1707 
1708 /* Check a group id matches preferences */
tls1_check_group_id(SSL_CONNECTION * s,uint16_t group_id,int check_own_groups)1709 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1710     int check_own_groups)
1711 {
1712     const uint16_t *groups;
1713     size_t groups_len;
1714 
1715     if (group_id == 0)
1716         return 0;
1717 
1718     /* Check for Suite B compliance */
1719     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1720         unsigned long cid = s->s3.tmp.new_cipher->id;
1721 
1722         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1723             if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1724                 return 0;
1725         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1726             if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1727                 return 0;
1728         } else {
1729             /* Should never happen */
1730             return 0;
1731         }
1732     }
1733 
1734     if (check_own_groups) {
1735         /* Check group is one of our preferences */
1736         tls1_get_supported_groups(s, &groups, &groups_len);
1737         if (!tls1_in_list(group_id, groups, groups_len))
1738             return 0;
1739     }
1740 
1741     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1742         return 0;
1743 
1744     /* For clients, nothing more to check */
1745     if (!s->server)
1746         return 1;
1747 
1748     /* Check group is one of peers preferences */
1749     tls1_get_peer_groups(s, &groups, &groups_len);
1750 
1751     /*
1752      * RFC 4492 does not require the supported elliptic curves extension
1753      * so if it is not sent we can just choose any curve.
1754      * It is invalid to send an empty list in the supported groups
1755      * extension, so groups_len == 0 always means no extension.
1756      */
1757     if (groups_len == 0)
1758         return 1;
1759     return tls1_in_list(group_id, groups, groups_len);
1760 }
1761 
tls1_get_formatlist(SSL_CONNECTION * s,const unsigned char ** pformats,size_t * num_formats)1762 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1763     size_t *num_formats)
1764 {
1765     /*
1766      * If we have a custom point format list use it otherwise use default
1767      */
1768     if (s->ext.ecpointformats) {
1769         *pformats = s->ext.ecpointformats;
1770         *num_formats = s->ext.ecpointformats_len;
1771     } else {
1772         *pformats = ecformats_default;
1773         /* For Suite B we don't support char2 fields */
1774         if (tls1_suiteb(s))
1775             *num_formats = sizeof(ecformats_default) - 1;
1776         else
1777             *num_formats = sizeof(ecformats_default);
1778     }
1779 }
1780 
1781 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL_CONNECTION * s,EVP_PKEY * pkey)1782 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1783 {
1784     unsigned char comp_id;
1785     size_t i;
1786     int point_conv;
1787 
1788     /* If not an EC key nothing to check */
1789     if (!EVP_PKEY_is_a(pkey, "EC"))
1790         return 1;
1791 
1792     /* Get required compression id */
1793     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1794     if (point_conv == 0)
1795         return 0;
1796     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1797         comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1798     } else if (SSL_CONNECTION_IS_TLS13(s)) {
1799         /*
1800          * ec_point_formats extension is not used in TLSv1.3 so we ignore
1801          * this check.
1802          */
1803         return 1;
1804     } else {
1805         int field_type = EVP_PKEY_get_field_type(pkey);
1806 
1807         if (field_type == NID_X9_62_prime_field)
1808             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1809         else if (field_type == NID_X9_62_characteristic_two_field)
1810             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1811         else
1812             return 0;
1813     }
1814     /*
1815      * If point formats extension present check it, otherwise everything is
1816      * supported (see RFC4492).
1817      */
1818     if (s->ext.peer_ecpointformats == NULL)
1819         return 1;
1820 
1821     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1822         if (s->ext.peer_ecpointformats[i] == comp_id)
1823             return 1;
1824     }
1825     return 0;
1826 }
1827 
1828 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)1829 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1830 {
1831     int curve_nid = ssl_get_EC_curve_nid(pkey);
1832 
1833     if (curve_nid == NID_undef)
1834         return 0;
1835     return tls1_nid2group_id(curve_nid);
1836 }
1837 
1838 /*
1839  * Check cert parameters compatible with extensions: currently just checks EC
1840  * certificates have compatible curves and compression.
1841  */
tls1_check_cert_param(SSL_CONNECTION * s,X509 * x,int check_ee_md)1842 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1843 {
1844     uint16_t group_id;
1845     EVP_PKEY *pkey;
1846     pkey = X509_get0_pubkey(x);
1847     if (pkey == NULL)
1848         return 0;
1849     /* If not EC nothing to do */
1850     if (!EVP_PKEY_is_a(pkey, "EC"))
1851         return 1;
1852     /* Check compression */
1853     if (!tls1_check_pkey_comp(s, pkey))
1854         return 0;
1855     group_id = tls1_get_group_id(pkey);
1856     /*
1857      * For a server we allow the certificate to not be in our list of supported
1858      * groups.
1859      */
1860     if (!tls1_check_group_id(s, group_id, !s->server))
1861         return 0;
1862     /*
1863      * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1864      * SHA384+P-384.
1865      */
1866     if (check_ee_md && tls1_suiteb(s)) {
1867         int check_md;
1868         size_t i;
1869 
1870         /* Check to see we have necessary signing algorithm */
1871         if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1872             check_md = NID_ecdsa_with_SHA256;
1873         else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1874             check_md = NID_ecdsa_with_SHA384;
1875         else
1876             return 0; /* Should never happen */
1877         for (i = 0; i < s->shared_sigalgslen; i++) {
1878             if (check_md == s->shared_sigalgs[i]->sigandhash)
1879                 return 1;
1880         }
1881         return 0;
1882     }
1883     return 1;
1884 }
1885 
1886 /*
1887  * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1888  * @s: SSL connection
1889  * @cid: Cipher ID we're considering using
1890  *
1891  * Checks that the kECDHE cipher suite we're considering using
1892  * is compatible with the client extensions.
1893  *
1894  * Returns 0 when the cipher can't be used or 1 when it can.
1895  */
tls1_check_ec_tmp_key(SSL_CONNECTION * s,unsigned long cid)1896 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1897 {
1898     /* If not Suite B just need a shared group */
1899     if (!tls1_suiteb(s))
1900         return tls1_shared_group(s, 0) != 0;
1901     /*
1902      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1903      * curves permitted.
1904      */
1905     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1906         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1907     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1908         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1909 
1910     return 0;
1911 }
1912 
1913 /* Default sigalg schemes */
1914 static const uint16_t tls12_sigalgs[] = {
1915     TLSEXT_SIGALG_mldsa65,
1916     TLSEXT_SIGALG_mldsa87,
1917     TLSEXT_SIGALG_mldsa44,
1918     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1919     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1920     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1921     TLSEXT_SIGALG_ed25519,
1922     TLSEXT_SIGALG_ed448,
1923     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1924     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1925     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1926 
1927     TLSEXT_SIGALG_rsa_pss_pss_sha256,
1928     TLSEXT_SIGALG_rsa_pss_pss_sha384,
1929     TLSEXT_SIGALG_rsa_pss_pss_sha512,
1930     TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1931     TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1932     TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1933 
1934     TLSEXT_SIGALG_rsa_pkcs1_sha256,
1935     TLSEXT_SIGALG_rsa_pkcs1_sha384,
1936     TLSEXT_SIGALG_rsa_pkcs1_sha512,
1937 
1938     TLSEXT_SIGALG_ecdsa_sha224,
1939     TLSEXT_SIGALG_ecdsa_sha1,
1940 
1941     TLSEXT_SIGALG_rsa_pkcs1_sha224,
1942     TLSEXT_SIGALG_rsa_pkcs1_sha1,
1943 
1944     TLSEXT_SIGALG_dsa_sha224,
1945     TLSEXT_SIGALG_dsa_sha1,
1946 
1947     TLSEXT_SIGALG_dsa_sha256,
1948     TLSEXT_SIGALG_dsa_sha384,
1949     TLSEXT_SIGALG_dsa_sha512,
1950 
1951 #ifndef OPENSSL_NO_GOST
1952     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1953     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1954     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1955     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1956     TLSEXT_SIGALG_gostr34102001_gostr3411,
1957 #endif
1958 };
1959 
1960 static const uint16_t suiteb_sigalgs[] = {
1961     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1962     TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1963 };
1964 
1965 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1966     { TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1967         "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1968         NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1969         NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1970         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1971     { TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1972         "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1973         NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1974         NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1975         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1976     { TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1977         "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1978         NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979         NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1980         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1981 
1982     { TLSEXT_SIGALG_ed25519_name,
1983         NULL, TLSEXT_SIGALG_ed25519,
1984         NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1985         NID_undef, NID_undef, 1, 0,
1986         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1987     { TLSEXT_SIGALG_ed448_name,
1988         NULL, TLSEXT_SIGALG_ed448,
1989         NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1990         NID_undef, NID_undef, 1, 0,
1991         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
1992 
1993     { TLSEXT_SIGALG_ecdsa_sha224_name,
1994         "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1995         NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1996         NID_ecdsa_with_SHA224, NID_undef, 1, 0,
1997         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
1998     { TLSEXT_SIGALG_ecdsa_sha1_name,
1999         "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2000         NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2001         NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2002         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2003 
2004     { TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2005         TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2006         TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2007         NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2008         NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2009         TLS1_3_VERSION, 0, -1, -1 },
2010     { TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2011         TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2012         TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2013         NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2014         NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2015         TLS1_3_VERSION, 0, -1, -1 },
2016     { TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2017         TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2018         TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2019         NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2020         NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2021         TLS1_3_VERSION, 0, -1, -1 },
2022 
2023     { TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2024         "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2025         NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2026         NID_undef, NID_undef, 1, 0,
2027         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2028     { TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2029         "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2030         NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2031         NID_undef, NID_undef, 1, 0,
2032         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2033     { TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2034         "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2035         NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036         NID_undef, NID_undef, 1, 0,
2037         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2038 
2039     { TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2040         NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2041         NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2042         NID_undef, NID_undef, 1, 0,
2043         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2044     { TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2045         NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2046         NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2047         NID_undef, NID_undef, 1, 0,
2048         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2049     { TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2050         NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2051         NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052         NID_undef, NID_undef, 1, 0,
2053         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2054 
2055     { TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2056         "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2057         NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2058         NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2059         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2060     { TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2061         "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2062         NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2063         NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2064         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2065     { TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2066         "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2067         NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068         NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2069         TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0 },
2070 
2071     { TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2072         "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2073         NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2074         NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2075         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2076     { TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2077         "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2078         NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2079         NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2080         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2081 
2082     { TLSEXT_SIGALG_dsa_sha256_name,
2083         "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2084         NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2085         NID_dsa_with_SHA256, NID_undef, 1, 0,
2086         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2087     { TLSEXT_SIGALG_dsa_sha384_name,
2088         "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2089         NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2090         NID_undef, NID_undef, 1, 0,
2091         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2092     { TLSEXT_SIGALG_dsa_sha512_name,
2093         "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2094         NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095         NID_undef, NID_undef, 1, 0,
2096         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2097     { TLSEXT_SIGALG_dsa_sha224_name,
2098         "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2099         NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100         NID_undef, NID_undef, 1, 0,
2101         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2102     { TLSEXT_SIGALG_dsa_sha1_name,
2103         "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2104         NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105         NID_dsaWithSHA1, NID_undef, 1, 0,
2106         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2107 
2108 #ifndef OPENSSL_NO_GOST
2109     { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2110         TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2111         TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2112         NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2113         NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2114         NID_undef, NID_undef, 1, 0,
2115         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2116     { TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2117         TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2118         TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2119         NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2120         NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2121         NID_undef, NID_undef, 1, 0,
2122         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2123 
2124     { TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2125         NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2126         NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2127         NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2128         NID_undef, NID_undef, 1, 0,
2129         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2130     { TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2131         NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2132         NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2133         NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2134         NID_undef, NID_undef, 1, 0,
2135         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2136     { TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2137         NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2138         NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2139         NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2140         NID_undef, NID_undef, 1, 0,
2141         TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION },
2142 #endif
2143 };
2144 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2145 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2146     "rsa_pkcs1_md5_sha1", NULL, 0,
2147     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2148     EVP_PKEY_RSA, SSL_PKEY_RSA,
2149     NID_undef, NID_undef, 1, 0,
2150     TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2151 };
2152 
2153 /*
2154  * Default signature algorithm values used if signature algorithms not present.
2155  * From RFC5246. Note: order must match certificate index order.
2156  */
2157 static const uint16_t tls_default_sigalg[] = {
2158     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2159     0, /* SSL_PKEY_RSA_PSS_SIGN */
2160     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2161     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2162     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2163     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2164     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2165     0, /* SSL_PKEY_ED25519 */
2166     0, /* SSL_PKEY_ED448 */
2167 };
2168 
ssl_setup_sigalgs(SSL_CTX * ctx)2169 int ssl_setup_sigalgs(SSL_CTX *ctx)
2170 {
2171     size_t i, cache_idx, sigalgs_len, enabled;
2172     const SIGALG_LOOKUP *lu;
2173     SIGALG_LOOKUP *cache = NULL;
2174     uint16_t *tls12_sigalgs_list = NULL;
2175     EVP_PKEY *tmpkey = EVP_PKEY_new();
2176     int istls;
2177     int ret = 0;
2178 
2179     if (ctx == NULL)
2180         goto err;
2181 
2182     istls = !SSL_CTX_IS_DTLS(ctx);
2183 
2184     sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2185 
2186     cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2187     if (cache == NULL || tmpkey == NULL)
2188         goto err;
2189 
2190     tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2191     if (tls12_sigalgs_list == NULL)
2192         goto err;
2193 
2194     ERR_set_mark();
2195     /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2196     for (i = 0, lu = sigalg_lookup_tbl;
2197         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2198         EVP_PKEY_CTX *pctx;
2199 
2200         cache[i] = *lu;
2201 
2202         /*
2203          * Check hash is available.
2204          * This test is not perfect. A provider could have support
2205          * for a signature scheme, but not a particular hash. However the hash
2206          * could be available from some other loaded provider. In that case it
2207          * could be that the signature is available, and the hash is available
2208          * independently - but not as a combination. We ignore this for now.
2209          */
2210         if (lu->hash != NID_undef
2211             && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2212             cache[i].available = 0;
2213             continue;
2214         }
2215 
2216         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2217             cache[i].available = 0;
2218             continue;
2219         }
2220         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2221         /* If unable to create pctx we assume the sig algorithm is unavailable */
2222         if (pctx == NULL)
2223             cache[i].available = 0;
2224         EVP_PKEY_CTX_free(pctx);
2225     }
2226 
2227     /* Now complete cache and tls12_sigalgs list with provider sig information */
2228     cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2229     for (i = 0; i < ctx->sigalg_list_len; i++) {
2230         TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2231         cache[cache_idx].name = si.name;
2232         cache[cache_idx].name12 = si.sigalg_name;
2233         cache[cache_idx].sigalg = si.code_point;
2234         tls12_sigalgs_list[cache_idx] = si.code_point;
2235         cache[cache_idx].hash = si.hash_name ? OBJ_txt2nid(si.hash_name) : NID_undef;
2236         cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2237         cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2238         cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2239         cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2240         cache[cache_idx].curve = NID_undef;
2241         cache[cache_idx].mintls = TLS1_3_VERSION;
2242         cache[cache_idx].maxtls = TLS1_3_VERSION;
2243         cache[cache_idx].mindtls = -1;
2244         cache[cache_idx].maxdtls = -1;
2245         /* Compatibility with TLS 1.3 is checked on load */
2246         cache[cache_idx].available = istls;
2247         cache[cache_idx].advertise = 0;
2248         cache_idx++;
2249     }
2250     ERR_pop_to_mark();
2251 
2252     enabled = 0;
2253     for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2254         SIGALG_LOOKUP *ent = cache;
2255         size_t j;
2256 
2257         for (j = 0; j < sigalgs_len; ent++, j++) {
2258             if (ent->sigalg != tls12_sigalgs[i])
2259                 continue;
2260             /* Dedup by marking cache entry as default enabled. */
2261             if (ent->available && !ent->advertise) {
2262                 ent->advertise = 1;
2263                 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2264             }
2265             break;
2266         }
2267     }
2268 
2269     /* Append any provider sigalgs not yet handled */
2270     for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2271         SIGALG_LOOKUP *ent = &cache[i];
2272 
2273         if (ent->available && !ent->advertise)
2274             tls12_sigalgs_list[enabled++] = ent->sigalg;
2275     }
2276 
2277     ctx->sigalg_lookup_cache = cache;
2278     ctx->sigalg_lookup_cache_len = sigalgs_len;
2279     ctx->tls12_sigalgs = tls12_sigalgs_list;
2280     ctx->tls12_sigalgs_len = enabled;
2281     cache = NULL;
2282     tls12_sigalgs_list = NULL;
2283 
2284     ret = 1;
2285 err:
2286     OPENSSL_free(cache);
2287     OPENSSL_free(tls12_sigalgs_list);
2288     EVP_PKEY_free(tmpkey);
2289     return ret;
2290 }
2291 
2292 #define SIGLEN_BUF_INCREMENT 100
2293 
SSL_get1_builtin_sigalgs(OSSL_LIB_CTX * libctx)2294 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2295 {
2296     size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2297     const SIGALG_LOOKUP *lu;
2298     EVP_PKEY *tmpkey = EVP_PKEY_new();
2299     char *retval = OPENSSL_malloc(maxretlen);
2300 
2301     if (retval == NULL)
2302         return NULL;
2303 
2304     /* ensure retval string is NUL terminated */
2305     retval[0] = (char)0;
2306 
2307     for (i = 0, lu = sigalg_lookup_tbl;
2308         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2309         EVP_PKEY_CTX *pctx;
2310         int enabled = 1;
2311 
2312         ERR_set_mark();
2313         /* Check hash is available in some provider. */
2314         if (lu->hash != NID_undef) {
2315             EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2316 
2317             /* If unable to create we assume the hash algorithm is unavailable */
2318             if (hash == NULL) {
2319                 enabled = 0;
2320                 ERR_pop_to_mark();
2321                 continue;
2322             }
2323             EVP_MD_free(hash);
2324         }
2325 
2326         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2327             enabled = 0;
2328             ERR_pop_to_mark();
2329             continue;
2330         }
2331         pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2332         /* If unable to create pctx we assume the sig algorithm is unavailable */
2333         if (pctx == NULL)
2334             enabled = 0;
2335         ERR_pop_to_mark();
2336         EVP_PKEY_CTX_free(pctx);
2337 
2338         if (enabled) {
2339             const char *sa = lu->name;
2340 
2341             if (sa != NULL) {
2342                 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2343                     char *tmp;
2344 
2345                     maxretlen += SIGLEN_BUF_INCREMENT;
2346                     tmp = OPENSSL_realloc(retval, maxretlen);
2347                     if (tmp == NULL) {
2348                         OPENSSL_free(retval);
2349                         return NULL;
2350                     }
2351                     retval = tmp;
2352                 }
2353                 if (strlen(retval) > 0)
2354                     OPENSSL_strlcat(retval, ":", maxretlen);
2355                 OPENSSL_strlcat(retval, sa, maxretlen);
2356             } else {
2357                 /* lu->name must not be NULL */
2358                 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2359             }
2360         }
2361     }
2362 
2363     EVP_PKEY_free(tmpkey);
2364     return retval;
2365 }
2366 
2367 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL_CTX * ctx,uint16_t sigalg)2368 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2369     uint16_t sigalg)
2370 {
2371     size_t i;
2372     const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2373 
2374     for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2375         if (lu->sigalg == sigalg) {
2376             if (!lu->available)
2377                 return NULL;
2378             return lu;
2379         }
2380     }
2381     return NULL;
2382 }
2383 
2384 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)2385 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2386 {
2387     const EVP_MD *md;
2388 
2389     if (lu == NULL)
2390         return 0;
2391     /* lu->hash == NID_undef means no associated digest */
2392     if (lu->hash == NID_undef) {
2393         md = NULL;
2394     } else {
2395         md = ssl_md(ctx, lu->hash_idx);
2396         if (md == NULL)
2397             return 0;
2398     }
2399     if (pmd)
2400         *pmd = md;
2401     return 1;
2402 }
2403 
2404 /*
2405  * Check if key is large enough to generate RSA-PSS signature.
2406  *
2407  * The key must greater than or equal to 2 * hash length + 2.
2408  * SHA512 has a hash length of 64 bytes, which is incompatible
2409  * with a 128 byte (1024 bit) key.
2410  */
2411 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)2412 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2413     const SIGALG_LOOKUP *lu)
2414 {
2415     const EVP_MD *md;
2416 
2417     if (pkey == NULL)
2418         return 0;
2419     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2420         return 0;
2421     if (EVP_MD_get_size(md) <= 0)
2422         return 0;
2423     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2424         return 0;
2425     return 1;
2426 }
2427 
2428 /*
2429  * Returns a signature algorithm when the peer did not send a list of supported
2430  * signature algorithms. The signature algorithm is fixed for the certificate
2431  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2432  * certificate type from |s| will be used.
2433  * Returns the signature algorithm to use, or NULL on error.
2434  */
tls1_get_legacy_sigalg(const SSL_CONNECTION * s,int idx)2435 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2436     int idx)
2437 {
2438     if (idx == -1) {
2439         if (s->server) {
2440             size_t i;
2441 
2442             /* Work out index corresponding to ciphersuite */
2443             for (i = 0; i < s->ssl_pkey_num; i++) {
2444                 const SSL_CERT_LOOKUP *clu
2445                     = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2446 
2447                 if (clu == NULL)
2448                     continue;
2449                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2450                     idx = i;
2451                     break;
2452                 }
2453             }
2454 
2455             /*
2456              * Some GOST ciphersuites allow more than one signature algorithms
2457              * */
2458             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2459                 int real_idx;
2460 
2461                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2462                     real_idx--) {
2463                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2464                         idx = real_idx;
2465                         break;
2466                     }
2467                 }
2468             }
2469             /*
2470              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2471              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2472              */
2473             else if (idx == SSL_PKEY_GOST12_256) {
2474                 int real_idx;
2475 
2476                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2477                     real_idx--) {
2478                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2479                         idx = real_idx;
2480                         break;
2481                     }
2482                 }
2483             }
2484         } else {
2485             idx = s->cert->key - s->cert->pkeys;
2486         }
2487     }
2488     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2489         return NULL;
2490 
2491     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2492         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2493             tls_default_sigalg[idx]);
2494 
2495         if (lu == NULL)
2496             return NULL;
2497         if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2498             return NULL;
2499         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2500             return NULL;
2501         return lu;
2502     }
2503     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2504         return NULL;
2505     return &legacy_rsa_sigalg;
2506 }
2507 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL_CONNECTION * s,const EVP_PKEY * pkey)2508 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2509 {
2510     size_t idx;
2511     const SIGALG_LOOKUP *lu;
2512 
2513     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2514         return 0;
2515     lu = tls1_get_legacy_sigalg(s, idx);
2516     if (lu == NULL)
2517         return 0;
2518     s->s3.tmp.peer_sigalg = lu;
2519     return 1;
2520 }
2521 
tls12_get_psigalgs(SSL_CONNECTION * s,int sent,const uint16_t ** psigs)2522 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2523 {
2524     /*
2525      * If Suite B mode use Suite B sigalgs only, ignore any other
2526      * preferences.
2527      */
2528     switch (tls1_suiteb(s)) {
2529     case SSL_CERT_FLAG_SUITEB_128_LOS:
2530         *psigs = suiteb_sigalgs;
2531         return OSSL_NELEM(suiteb_sigalgs);
2532 
2533     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2534         *psigs = suiteb_sigalgs;
2535         return 1;
2536 
2537     case SSL_CERT_FLAG_SUITEB_192_LOS:
2538         *psigs = suiteb_sigalgs + 1;
2539         return 1;
2540     }
2541     /*
2542      *  We use client_sigalgs (if not NULL) if we're a server
2543      *  and sending a certificate request or if we're a client and
2544      *  determining which shared algorithm to use.
2545      */
2546     if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2547         *psigs = s->cert->client_sigalgs;
2548         return s->cert->client_sigalgslen;
2549     } else if (s->cert->conf_sigalgs) {
2550         *psigs = s->cert->conf_sigalgs;
2551         return s->cert->conf_sigalgslen;
2552     } else {
2553         *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2554         return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2555     }
2556 }
2557 
2558 /*
2559  * Called by servers only. Checks that we have a sig alg that supports the
2560  * specified EC curve.
2561  */
tls_check_sigalg_curve(const SSL_CONNECTION * s,int curve)2562 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2563 {
2564     const uint16_t *sigs;
2565     size_t siglen, i;
2566 
2567     if (s->cert->conf_sigalgs) {
2568         sigs = s->cert->conf_sigalgs;
2569         siglen = s->cert->conf_sigalgslen;
2570     } else {
2571         sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2572         siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2573     }
2574 
2575     for (i = 0; i < siglen; i++) {
2576         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2577 
2578         if (lu == NULL)
2579             continue;
2580         if (lu->sig == EVP_PKEY_EC
2581             && lu->curve != NID_undef
2582             && curve == lu->curve)
2583             return 1;
2584     }
2585 
2586     return 0;
2587 }
2588 
2589 /*
2590  * Return the number of security bits for the signature algorithm, or 0 on
2591  * error.
2592  */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)2593 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2594 {
2595     const EVP_MD *md = NULL;
2596     int secbits = 0;
2597 
2598     if (!tls1_lookup_md(ctx, lu, &md))
2599         return 0;
2600     if (md != NULL) {
2601         int md_type = EVP_MD_get_type(md);
2602 
2603         /* Security bits: half digest bits */
2604         secbits = EVP_MD_get_size(md) * 4;
2605         if (secbits <= 0)
2606             return 0;
2607         /*
2608          * SHA1 and MD5 are known to be broken. Reduce security bits so that
2609          * they're no longer accepted at security level 1. The real values don't
2610          * really matter as long as they're lower than 80, which is our
2611          * security level 1.
2612          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2613          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2614          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2615          * puts a chosen-prefix attack for MD5 at 2^39.
2616          */
2617         if (md_type == NID_sha1)
2618             secbits = 64;
2619         else if (md_type == NID_md5_sha1)
2620             secbits = 67;
2621         else if (md_type == NID_md5)
2622             secbits = 39;
2623     } else {
2624         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2625         if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2626             secbits = 128;
2627         else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2628             secbits = 224;
2629     }
2630     /*
2631      * For provider-based sigalgs we have secbits information available
2632      * in the (provider-loaded) sigalg_list structure
2633      */
2634     if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2635         && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2636         secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2637     }
2638     return secbits;
2639 }
2640 
tls_sigalg_compat(SSL_CONNECTION * sc,const SIGALG_LOOKUP * lu)2641 static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2642 {
2643     int minversion, maxversion;
2644     int minproto, maxproto;
2645 
2646     if (!lu->available)
2647         return 0;
2648 
2649     if (SSL_CONNECTION_IS_DTLS(sc)) {
2650         if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2651             minproto = sc->min_proto_version;
2652             maxproto = sc->max_proto_version;
2653         } else {
2654             maxproto = minproto = sc->version;
2655         }
2656         minversion = lu->mindtls;
2657         maxversion = lu->maxdtls;
2658     } else {
2659         if (sc->ssl.method->version == TLS_ANY_VERSION) {
2660             minproto = sc->min_proto_version;
2661             maxproto = sc->max_proto_version;
2662         } else {
2663             maxproto = minproto = sc->version;
2664         }
2665         minversion = lu->mintls;
2666         maxversion = lu->maxtls;
2667     }
2668     if (minversion == -1 || maxversion == -1
2669         || (minversion != 0 && maxproto != 0
2670             && ssl_version_cmp(sc, minversion, maxproto) > 0)
2671         || (maxversion != 0 && minproto != 0
2672             && ssl_version_cmp(sc, maxversion, minproto) < 0)
2673         || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2674         return 0;
2675     return 1;
2676 }
2677 
2678 /*
2679  * Check signature algorithm is consistent with sent supported signature
2680  * algorithms and if so set relevant digest and signature scheme in
2681  * s.
2682  */
tls12_check_peer_sigalg(SSL_CONNECTION * s,uint16_t sig,EVP_PKEY * pkey)2683 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2684 {
2685     const uint16_t *sent_sigs;
2686     const EVP_MD *md = NULL;
2687     char sigalgstr[2];
2688     size_t sent_sigslen, i, cidx;
2689     int pkeyid = -1;
2690     const SIGALG_LOOKUP *lu;
2691     int secbits = 0;
2692 
2693     pkeyid = EVP_PKEY_get_id(pkey);
2694 
2695     if (SSL_CONNECTION_IS_TLS13(s)) {
2696         /* Disallow DSA for TLS 1.3 */
2697         if (pkeyid == EVP_PKEY_DSA) {
2698             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2699             return 0;
2700         }
2701         /* Only allow PSS for TLS 1.3 */
2702         if (pkeyid == EVP_PKEY_RSA)
2703             pkeyid = EVP_PKEY_RSA_PSS;
2704     }
2705 
2706     /* Is this code point available and compatible with the protocol */
2707     lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2708     if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2709         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2710         return 0;
2711     }
2712 
2713     /* If we don't know the pkey nid yet go and find it */
2714     if (pkeyid == EVP_PKEY_KEYMGMT) {
2715         const SSL_CERT_LOOKUP *scl = ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2716 
2717         if (scl == NULL) {
2718             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2719             return 0;
2720         }
2721         pkeyid = scl->pkey_nid;
2722     }
2723 
2724     /* Should never happen */
2725     if (pkeyid == -1) {
2726         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2727         return -1;
2728     }
2729 
2730     /*
2731      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2732      * is consistent with signature: RSA keys can be used for RSA-PSS
2733      */
2734     if ((SSL_CONNECTION_IS_TLS13(s)
2735             && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2736         || (pkeyid != lu->sig
2737             && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2738         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2739         return 0;
2740     }
2741     /* Check the sigalg is consistent with the key OID */
2742     if (!ssl_cert_lookup_by_nid(
2743             (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2744             &cidx, SSL_CONNECTION_GET_CTX(s))
2745         || lu->sig_idx != (int)cidx) {
2746         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2747         return 0;
2748     }
2749 
2750     if (pkeyid == EVP_PKEY_EC) {
2751 
2752         /* Check point compression is permitted */
2753         if (!tls1_check_pkey_comp(s, pkey)) {
2754             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2755                 SSL_R_ILLEGAL_POINT_COMPRESSION);
2756             return 0;
2757         }
2758 
2759         /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2760         if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2761             int curve = ssl_get_EC_curve_nid(pkey);
2762 
2763             if (lu->curve != NID_undef && curve != lu->curve) {
2764                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2765                 return 0;
2766             }
2767         }
2768         if (!SSL_CONNECTION_IS_TLS13(s)) {
2769             /* Check curve matches extensions */
2770             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2771                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2772                 return 0;
2773             }
2774             if (tls1_suiteb(s)) {
2775                 /* Check sigalg matches a permissible Suite B value */
2776                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2777                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2778                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2779                         SSL_R_WRONG_SIGNATURE_TYPE);
2780                     return 0;
2781                 }
2782             }
2783         }
2784     } else if (tls1_suiteb(s)) {
2785         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2786         return 0;
2787     }
2788 
2789     /* Check signature matches a type we sent */
2790     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2791     for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2792         if (sig == *sent_sigs)
2793             break;
2794     }
2795     /* Allow fallback to SHA1 if not strict mode */
2796     if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798         return 0;
2799     }
2800     if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802         return 0;
2803     }
2804     /*
2805      * Make sure security callback allows algorithm. For historical
2806      * reasons we have to pass the sigalg as a two byte char array.
2807      */
2808     sigalgstr[0] = (sig >> 8) & 0xff;
2809     sigalgstr[1] = sig & 0xff;
2810     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811     if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) {
2812         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2813         return 0;
2814     }
2815     /* Store the sigalg the peer uses */
2816     s->s3.tmp.peer_sigalg = lu;
2817     return 1;
2818 }
2819 
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)2820 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2821 {
2822     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2823 
2824     if (sc == NULL)
2825         return 0;
2826 
2827     if (sc->s3.tmp.peer_sigalg == NULL)
2828         return 0;
2829     *pnid = sc->s3.tmp.peer_sigalg->sig;
2830     return 1;
2831 }
2832 
SSL_get_signature_type_nid(const SSL * s,int * pnid)2833 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2834 {
2835     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2836 
2837     if (sc == NULL)
2838         return 0;
2839 
2840     if (sc->s3.tmp.sigalg == NULL)
2841         return 0;
2842     *pnid = sc->s3.tmp.sigalg->sig;
2843     return 1;
2844 }
2845 
2846 /*
2847  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2848  * supported, doesn't appear in supported signature algorithms, isn't supported
2849  * by the enabled protocol versions or by the security level.
2850  *
2851  * This function should only be used for checking which ciphers are supported
2852  * by the client.
2853  *
2854  * Call ssl_cipher_disabled() to check that it's enabled or not.
2855  */
ssl_set_client_disabled(SSL_CONNECTION * s)2856 int ssl_set_client_disabled(SSL_CONNECTION *s)
2857 {
2858     s->s3.tmp.mask_a = 0;
2859     s->s3.tmp.mask_k = 0;
2860     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2861     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2862             &s->s3.tmp.max_ver, NULL)
2863         != 0)
2864         return 0;
2865 #ifndef OPENSSL_NO_PSK
2866     /* with PSK there must be client callback set */
2867     if (!s->psk_client_callback) {
2868         s->s3.tmp.mask_a |= SSL_aPSK;
2869         s->s3.tmp.mask_k |= SSL_PSK;
2870     }
2871 #endif /* OPENSSL_NO_PSK */
2872 #ifndef OPENSSL_NO_SRP
2873     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2874         s->s3.tmp.mask_a |= SSL_aSRP;
2875         s->s3.tmp.mask_k |= SSL_kSRP;
2876     }
2877 #endif
2878     return 1;
2879 }
2880 
2881 /*
2882  * ssl_cipher_disabled - check that a cipher is disabled or not
2883  * @s: SSL connection that you want to use the cipher on
2884  * @c: cipher to check
2885  * @op: Security check that you want to do
2886  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2887  *
2888  * Returns 1 when it's disabled, 0 when enabled.
2889  */
ssl_cipher_disabled(const SSL_CONNECTION * s,const SSL_CIPHER * c,int op,int ecdhe)2890 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2891     int op, int ecdhe)
2892 {
2893     int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2894     int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2895 
2896     if (c->algorithm_mkey & s->s3.tmp.mask_k
2897         || c->algorithm_auth & s->s3.tmp.mask_a)
2898         return 1;
2899     if (s->s3.tmp.max_ver == 0)
2900         return 1;
2901 
2902     if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2903         /* For QUIC, only allow these ciphersuites. */
2904         switch (SSL_CIPHER_get_id(c)) {
2905         case TLS1_3_CK_AES_128_GCM_SHA256:
2906         case TLS1_3_CK_AES_256_GCM_SHA384:
2907         case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2908             break;
2909         default:
2910             return 1;
2911         }
2912 
2913     /*
2914      * For historical reasons we will allow ECHDE to be selected by a server
2915      * in SSLv3 if we are a client
2916      */
2917     if (minversion == TLS1_VERSION
2918         && ecdhe
2919         && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2920         minversion = SSL3_VERSION;
2921 
2922     if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2923         || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2924         return 1;
2925 
2926     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2927 }
2928 
tls_use_ticket(SSL_CONNECTION * s)2929 int tls_use_ticket(SSL_CONNECTION *s)
2930 {
2931     if ((s->options & SSL_OP_NO_TICKET))
2932         return 0;
2933     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2934 }
2935 
tls1_set_server_sigalgs(SSL_CONNECTION * s)2936 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2937 {
2938     size_t i;
2939 
2940     /* Clear any shared signature algorithms */
2941     OPENSSL_free(s->shared_sigalgs);
2942     s->shared_sigalgs = NULL;
2943     s->shared_sigalgslen = 0;
2944 
2945     /* Clear certificate validity flags */
2946     if (s->s3.tmp.valid_flags)
2947         memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2948     else
2949         s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2950     if (s->s3.tmp.valid_flags == NULL)
2951         return 0;
2952     /*
2953      * If peer sent no signature algorithms check to see if we support
2954      * the default algorithm for each certificate type
2955      */
2956     if (s->s3.tmp.peer_cert_sigalgs == NULL
2957         && s->s3.tmp.peer_sigalgs == NULL) {
2958         const uint16_t *sent_sigs;
2959         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2960 
2961         for (i = 0; i < s->ssl_pkey_num; i++) {
2962             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2963             size_t j;
2964 
2965             if (lu == NULL)
2966                 continue;
2967             /* Check default matches a type we sent */
2968             for (j = 0; j < sent_sigslen; j++) {
2969                 if (lu->sigalg == sent_sigs[j]) {
2970                     s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2971                     break;
2972                 }
2973             }
2974         }
2975         return 1;
2976     }
2977 
2978     if (!tls1_process_sigalgs(s)) {
2979         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2980         return 0;
2981     }
2982     if (s->shared_sigalgs != NULL)
2983         return 1;
2984 
2985     /* Fatal error if no shared signature algorithms */
2986     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2987         SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2988     return 0;
2989 }
2990 
2991 /*-
2992  * Gets the ticket information supplied by the client if any.
2993  *
2994  *   hello: The parsed ClientHello data
2995  *   ret: (output) on return, if a ticket was decrypted, then this is set to
2996  *       point to the resulting session.
2997  */
tls_get_ticket_from_client(SSL_CONNECTION * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)2998 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2999     CLIENTHELLO_MSG *hello,
3000     SSL_SESSION **ret)
3001 {
3002     size_t size;
3003     RAW_EXTENSION *ticketext;
3004 
3005     *ret = NULL;
3006     s->ext.ticket_expected = 0;
3007 
3008     /*
3009      * If tickets disabled or not supported by the protocol version
3010      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3011      * resumption.
3012      */
3013     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3014         return SSL_TICKET_NONE;
3015 
3016     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3017     if (!ticketext->present)
3018         return SSL_TICKET_NONE;
3019 
3020     size = PACKET_remaining(&ticketext->data);
3021 
3022     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3023         hello->session_id, hello->session_id_len, ret);
3024 }
3025 
3026 /*-
3027  * tls_decrypt_ticket attempts to decrypt a session ticket.
3028  *
3029  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3030  * expecting a pre-shared key ciphersuite, in which case we have no use for
3031  * session tickets and one will never be decrypted, nor will
3032  * s->ext.ticket_expected be set to 1.
3033  *
3034  * Side effects:
3035  *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3036  *   a new session ticket to the client because the client indicated support
3037  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3038  *   a session ticket or we couldn't use the one it gave us, or if
3039  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3040  *   Otherwise, s->ext.ticket_expected is set to 0.
3041  *
3042  *   etick: points to the body of the session ticket extension.
3043  *   eticklen: the length of the session tickets extension.
3044  *   sess_id: points at the session ID.
3045  *   sesslen: the length of the session ID.
3046  *   psess: (output) on return, if a ticket was decrypted, then this is set to
3047  *       point to the resulting session.
3048  */
tls_decrypt_ticket(SSL_CONNECTION * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)3049 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3050     const unsigned char *etick,
3051     size_t eticklen,
3052     const unsigned char *sess_id,
3053     size_t sesslen, SSL_SESSION **psess)
3054 {
3055     SSL_SESSION *sess = NULL;
3056     unsigned char *sdec;
3057     const unsigned char *p;
3058     int slen, ivlen, renew_ticket = 0, declen;
3059     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3060     size_t mlen;
3061     unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3062     SSL_HMAC *hctx = NULL;
3063     EVP_CIPHER_CTX *ctx = NULL;
3064     SSL_CTX *tctx = s->session_ctx;
3065     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3066 
3067     if (eticklen == 0) {
3068         /*
3069          * The client will accept a ticket but doesn't currently have
3070          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3071          */
3072         ret = SSL_TICKET_EMPTY;
3073         goto end;
3074     }
3075     if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3076         /*
3077          * Indicate that the ticket couldn't be decrypted rather than
3078          * generating the session from ticket now, trigger
3079          * abbreviated handshake based on external mechanism to
3080          * calculate the master secret later.
3081          */
3082         ret = SSL_TICKET_NO_DECRYPT;
3083         goto end;
3084     }
3085 
3086     /* Need at least keyname + iv */
3087     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3088         ret = SSL_TICKET_NO_DECRYPT;
3089         goto end;
3090     }
3091 
3092     /* Initialize session ticket encryption and HMAC contexts */
3093     hctx = ssl_hmac_new(tctx);
3094     if (hctx == NULL) {
3095         ret = SSL_TICKET_FATAL_ERR_MALLOC;
3096         goto end;
3097     }
3098     ctx = EVP_CIPHER_CTX_new();
3099     if (ctx == NULL) {
3100         ret = SSL_TICKET_FATAL_ERR_MALLOC;
3101         goto end;
3102     }
3103 #ifndef OPENSSL_NO_DEPRECATED_3_0
3104     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3105 #else
3106     if (tctx->ext.ticket_key_evp_cb != NULL)
3107 #endif
3108     {
3109         unsigned char *nctick = (unsigned char *)etick;
3110         int rv = 0;
3111 
3112         if (tctx->ext.ticket_key_evp_cb != NULL)
3113             rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3114                 nctick,
3115                 nctick + TLSEXT_KEYNAME_LENGTH,
3116                 ctx,
3117                 ssl_hmac_get0_EVP_MAC_CTX(hctx),
3118                 0);
3119 #ifndef OPENSSL_NO_DEPRECATED_3_0
3120         else if (tctx->ext.ticket_key_cb != NULL)
3121             /* if 0 is returned, write an empty ticket */
3122             rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3123                 nctick + TLSEXT_KEYNAME_LENGTH,
3124                 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3125 #endif
3126         if (rv < 0) {
3127             ret = SSL_TICKET_FATAL_ERR_OTHER;
3128             goto end;
3129         }
3130         if (rv == 0) {
3131             ret = SSL_TICKET_NO_DECRYPT;
3132             goto end;
3133         }
3134         if (rv == 2)
3135             renew_ticket = 1;
3136     } else {
3137         EVP_CIPHER *aes256cbc = NULL;
3138 
3139         /* Check key name matches */
3140         if (memcmp(etick, tctx->ext.tick_key_name,
3141                 TLSEXT_KEYNAME_LENGTH)
3142             != 0) {
3143             ret = SSL_TICKET_NO_DECRYPT;
3144             goto end;
3145         }
3146 
3147         aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3148             sctx->propq);
3149         if (aes256cbc == NULL
3150             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3151                    sizeof(tctx->ext.secure->tick_hmac_key),
3152                    "SHA256")
3153                 <= 0
3154             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155                    tctx->ext.secure->tick_aes_key,
3156                    etick + TLSEXT_KEYNAME_LENGTH)
3157                 <= 0) {
3158             EVP_CIPHER_free(aes256cbc);
3159             ret = SSL_TICKET_FATAL_ERR_OTHER;
3160             goto end;
3161         }
3162         EVP_CIPHER_free(aes256cbc);
3163         if (SSL_CONNECTION_IS_TLS13(s))
3164             renew_ticket = 1;
3165     }
3166     /*
3167      * Attempt to process session ticket, first conduct sanity and integrity
3168      * checks on ticket.
3169      */
3170     mlen = ssl_hmac_size(hctx);
3171     if (mlen == 0) {
3172         ret = SSL_TICKET_FATAL_ERR_OTHER;
3173         goto end;
3174     }
3175 
3176     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3177     if (ivlen < 0) {
3178         ret = SSL_TICKET_FATAL_ERR_OTHER;
3179         goto end;
3180     }
3181 
3182     /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3183     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3184         ret = SSL_TICKET_NO_DECRYPT;
3185         goto end;
3186     }
3187     eticklen -= mlen;
3188     /* Check HMAC of encrypted ticket */
3189     if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3190         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3191         ret = SSL_TICKET_FATAL_ERR_OTHER;
3192         goto end;
3193     }
3194 
3195     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3196         ret = SSL_TICKET_NO_DECRYPT;
3197         goto end;
3198     }
3199     /* Attempt to decrypt session data */
3200     /* Move p after IV to start of encrypted ticket, update length */
3201     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3202     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3203     sdec = OPENSSL_malloc(eticklen);
3204     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) {
3205         OPENSSL_free(sdec);
3206         ret = SSL_TICKET_FATAL_ERR_OTHER;
3207         goto end;
3208     }
3209     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210         OPENSSL_free(sdec);
3211         ret = SSL_TICKET_NO_DECRYPT;
3212         goto end;
3213     }
3214     slen += declen;
3215     p = sdec;
3216 
3217     sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218     slen -= p - sdec;
3219     OPENSSL_free(sdec);
3220     if (sess) {
3221         /* Some additional consistency checks */
3222         if (slen != 0) {
3223             SSL_SESSION_free(sess);
3224             sess = NULL;
3225             ret = SSL_TICKET_NO_DECRYPT;
3226             goto end;
3227         }
3228         /*
3229          * The session ID, if non-empty, is used by some clients to detect
3230          * that the ticket has been accepted. So we copy it to the session
3231          * structure. If it is empty set length to zero as required by
3232          * standard.
3233          */
3234         if (sesslen) {
3235             memcpy(sess->session_id, sess_id, sesslen);
3236             sess->session_id_length = sesslen;
3237         }
3238         if (renew_ticket)
3239             ret = SSL_TICKET_SUCCESS_RENEW;
3240         else
3241             ret = SSL_TICKET_SUCCESS;
3242         goto end;
3243     }
3244     ERR_clear_error();
3245     /*
3246      * For session parse failure, indicate that we need to send a new ticket.
3247      */
3248     ret = SSL_TICKET_NO_DECRYPT;
3249 
3250 end:
3251     EVP_CIPHER_CTX_free(ctx);
3252     ssl_hmac_free(hctx);
3253 
3254     /*
3255      * If set, the decrypt_ticket_cb() is called unless a fatal error was
3256      * detected above. The callback is responsible for checking |ret| before it
3257      * performs any action
3258      */
3259     if (s->session_ctx->decrypt_ticket_cb != NULL
3260         && (ret == SSL_TICKET_EMPTY
3261             || ret == SSL_TICKET_NO_DECRYPT
3262             || ret == SSL_TICKET_SUCCESS
3263             || ret == SSL_TICKET_SUCCESS_RENEW)) {
3264         size_t keyname_len = eticklen;
3265         int retcb;
3266 
3267         if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268             keyname_len = TLSEXT_KEYNAME_LENGTH;
3269         retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270             sess, etick, keyname_len,
3271             ret,
3272             s->session_ctx->ticket_cb_data);
3273         switch (retcb) {
3274         case SSL_TICKET_RETURN_ABORT:
3275             ret = SSL_TICKET_FATAL_ERR_OTHER;
3276             break;
3277 
3278         case SSL_TICKET_RETURN_IGNORE:
3279             ret = SSL_TICKET_NONE;
3280             SSL_SESSION_free(sess);
3281             sess = NULL;
3282             break;
3283 
3284         case SSL_TICKET_RETURN_IGNORE_RENEW:
3285             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286                 ret = SSL_TICKET_NO_DECRYPT;
3287             /* else the value of |ret| will already do the right thing */
3288             SSL_SESSION_free(sess);
3289             sess = NULL;
3290             break;
3291 
3292         case SSL_TICKET_RETURN_USE:
3293         case SSL_TICKET_RETURN_USE_RENEW:
3294             if (ret != SSL_TICKET_SUCCESS
3295                 && ret != SSL_TICKET_SUCCESS_RENEW)
3296                 ret = SSL_TICKET_FATAL_ERR_OTHER;
3297             else if (retcb == SSL_TICKET_RETURN_USE)
3298                 ret = SSL_TICKET_SUCCESS;
3299             else
3300                 ret = SSL_TICKET_SUCCESS_RENEW;
3301             break;
3302 
3303         default:
3304             ret = SSL_TICKET_FATAL_ERR_OTHER;
3305         }
3306     }
3307 
3308     if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309         switch (ret) {
3310         case SSL_TICKET_NO_DECRYPT:
3311         case SSL_TICKET_SUCCESS_RENEW:
3312         case SSL_TICKET_EMPTY:
3313             s->ext.ticket_expected = 1;
3314         }
3315     }
3316 
3317     *psess = sess;
3318 
3319     return ret;
3320 }
3321 
3322 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL_CONNECTION * s,int op,const SIGALG_LOOKUP * lu)3323 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324     const SIGALG_LOOKUP *lu)
3325 {
3326     unsigned char sigalgstr[2];
3327     int secbits;
3328 
3329     if (lu == NULL || !lu->available)
3330         return 0;
3331     /* DSA is not allowed in TLS 1.3 */
3332     if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333         return 0;
3334     /*
3335      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336      * spec
3337      */
3338     if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339         && s->s3.tmp.min_ver >= TLS1_3_VERSION
3340         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341             || lu->hash_idx == SSL_MD_MD5_IDX
3342             || lu->hash_idx == SSL_MD_SHA224_IDX))
3343         return 0;
3344 
3345     /* See if public key algorithm allowed */
3346     if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347         return 0;
3348 
3349     if (lu->sig == NID_id_GostR3410_2012_256
3350         || lu->sig == NID_id_GostR3410_2012_512
3351         || lu->sig == NID_id_GostR3410_2001) {
3352         /* We never allow GOST sig algs on the server with TLSv1.3 */
3353         if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354             return 0;
3355         if (!s->server
3356             && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357             && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358             int i, num;
3359             STACK_OF(SSL_CIPHER) *sk;
3360 
3361             /*
3362              * We're a client that could negotiate TLSv1.3. We only allow GOST
3363              * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364              * ciphersuites enabled.
3365              */
3366 
3367             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368                 return 0;
3369 
3370             sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372             for (i = 0; i < num; i++) {
3373                 const SSL_CIPHER *c;
3374 
3375                 c = sk_SSL_CIPHER_value(sk, i);
3376                 /* Skip disabled ciphers */
3377                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378                     continue;
3379 
3380                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381                     break;
3382             }
3383             if (i == num)
3384                 return 0;
3385         }
3386     }
3387 
3388     /* Finally see if security callback allows it */
3389     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391     sigalgstr[1] = lu->sigalg & 0xff;
3392     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393 }
3394 
3395 /*
3396  * Get a mask of disabled public key algorithms based on supported signature
3397  * algorithms. For example if no signature algorithm supports RSA then RSA is
3398  * disabled.
3399  */
3400 
ssl_set_sig_mask(uint32_t * pmask_a,SSL_CONNECTION * s,int op)3401 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402 {
3403     const uint16_t *sigalgs;
3404     size_t i, sigalgslen;
3405     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406     /*
3407      * Go through all signature algorithms seeing if we support any
3408      * in disabled_mask.
3409      */
3410     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411     for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3413         const SSL_CERT_LOOKUP *clu;
3414 
3415         if (lu == NULL)
3416             continue;
3417 
3418         clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3419             SSL_CONNECTION_GET_CTX(s));
3420         if (clu == NULL)
3421             continue;
3422 
3423         /* If algorithm is disabled see if we can enable it */
3424         if ((clu->amask & disabled_mask) != 0
3425             && tls12_sigalg_allowed(s, op, lu))
3426             disabled_mask &= ~clu->amask;
3427     }
3428     *pmask_a |= disabled_mask;
3429 }
3430 
tls12_copy_sigalgs(SSL_CONNECTION * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)3431 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3432     const uint16_t *psig, size_t psiglen)
3433 {
3434     size_t i;
3435     int rv = 0;
3436 
3437     for (i = 0; i < psiglen; i++, psig++) {
3438         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3439 
3440         if (lu == NULL || !tls_sigalg_compat(s, lu))
3441             continue;
3442         if (!WPACKET_put_bytes_u16(pkt, *psig))
3443             return 0;
3444         /*
3445          * If TLS 1.3 must have at least one valid TLS 1.3 message
3446          * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3447          */
3448         if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224)))
3449             rv = 1;
3450     }
3451     if (rv == 0)
3452         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3453     return rv;
3454 }
3455 
3456 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL_CONNECTION * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)3457 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3458     const SIGALG_LOOKUP **shsig,
3459     const uint16_t *pref, size_t preflen,
3460     const uint16_t *allow, size_t allowlen)
3461 {
3462     const uint16_t *ptmp, *atmp;
3463     size_t i, j, nmatch = 0;
3464     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3465         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3466 
3467         /* Skip disabled hashes or signature algorithms */
3468         if (lu == NULL
3469             || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3470             continue;
3471         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3472             if (*ptmp == *atmp) {
3473                 nmatch++;
3474                 if (shsig)
3475                     *shsig++ = lu;
3476                 break;
3477             }
3478         }
3479     }
3480     return nmatch;
3481 }
3482 
3483 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL_CONNECTION * s)3484 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3485 {
3486     const uint16_t *pref, *allow, *conf;
3487     size_t preflen, allowlen, conflen;
3488     size_t nmatch;
3489     const SIGALG_LOOKUP **salgs = NULL;
3490     CERT *c = s->cert;
3491     unsigned int is_suiteb = tls1_suiteb(s);
3492 
3493     OPENSSL_free(s->shared_sigalgs);
3494     s->shared_sigalgs = NULL;
3495     s->shared_sigalgslen = 0;
3496     /* If client use client signature algorithms if not NULL */
3497     if (!s->server && c->client_sigalgs && !is_suiteb) {
3498         conf = c->client_sigalgs;
3499         conflen = c->client_sigalgslen;
3500     } else if (c->conf_sigalgs && !is_suiteb) {
3501         conf = c->conf_sigalgs;
3502         conflen = c->conf_sigalgslen;
3503     } else
3504         conflen = tls12_get_psigalgs(s, 0, &conf);
3505     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3506         pref = conf;
3507         preflen = conflen;
3508         allow = s->s3.tmp.peer_sigalgs;
3509         allowlen = s->s3.tmp.peer_sigalgslen;
3510     } else {
3511         allow = conf;
3512         allowlen = conflen;
3513         pref = s->s3.tmp.peer_sigalgs;
3514         preflen = s->s3.tmp.peer_sigalgslen;
3515     }
3516     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3517     if (nmatch) {
3518         if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3519             return 0;
3520         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3521     } else {
3522         salgs = NULL;
3523     }
3524     s->shared_sigalgs = salgs;
3525     s->shared_sigalgslen = nmatch;
3526     return 1;
3527 }
3528 
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)3529 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3530 {
3531     unsigned int stmp;
3532     size_t size, i;
3533     uint16_t *buf;
3534 
3535     size = PACKET_remaining(pkt);
3536 
3537     /* Invalid data length */
3538     if (size == 0 || (size & 1) != 0)
3539         return 0;
3540 
3541     size >>= 1;
3542 
3543     if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3544         return 0;
3545     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3546         buf[i] = stmp;
3547 
3548     if (i != size) {
3549         OPENSSL_free(buf);
3550         return 0;
3551     }
3552 
3553     OPENSSL_free(*pdest);
3554     *pdest = buf;
3555     *pdestlen = size;
3556 
3557     return 1;
3558 }
3559 
tls1_save_sigalgs(SSL_CONNECTION * s,PACKET * pkt,int cert)3560 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3561 {
3562     /* Extension ignored for inappropriate versions */
3563     if (!SSL_USE_SIGALGS(s))
3564         return 1;
3565     /* Should never happen */
3566     if (s->cert == NULL)
3567         return 0;
3568 
3569     if (cert)
3570         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3571             &s->s3.tmp.peer_cert_sigalgslen);
3572     else
3573         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3574             &s->s3.tmp.peer_sigalgslen);
3575 }
3576 
3577 /* Set preferred digest for each key type */
3578 
tls1_process_sigalgs(SSL_CONNECTION * s)3579 int tls1_process_sigalgs(SSL_CONNECTION *s)
3580 {
3581     size_t i;
3582     uint32_t *pvalid = s->s3.tmp.valid_flags;
3583 
3584     if (!tls1_set_shared_sigalgs(s))
3585         return 0;
3586 
3587     for (i = 0; i < s->ssl_pkey_num; i++)
3588         pvalid[i] = 0;
3589 
3590     for (i = 0; i < s->shared_sigalgslen; i++) {
3591         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3592         int idx = sigptr->sig_idx;
3593 
3594         /* Ignore PKCS1 based sig algs in TLSv1.3 */
3595         if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3596             continue;
3597         /* If not disabled indicate we can explicitly sign */
3598         if (pvalid[idx] == 0
3599             && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3600             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3601     }
3602     return 1;
3603 }
3604 
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3605 int SSL_get_sigalgs(SSL *s, int idx,
3606     int *psign, int *phash, int *psignhash,
3607     unsigned char *rsig, unsigned char *rhash)
3608 {
3609     uint16_t *psig;
3610     size_t numsigalgs;
3611     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3612 
3613     if (sc == NULL)
3614         return 0;
3615 
3616     psig = sc->s3.tmp.peer_sigalgs;
3617     numsigalgs = sc->s3.tmp.peer_sigalgslen;
3618 
3619     if (psig == NULL || numsigalgs > INT_MAX)
3620         return 0;
3621     if (idx >= 0) {
3622         const SIGALG_LOOKUP *lu;
3623 
3624         if (idx >= (int)numsigalgs)
3625             return 0;
3626         psig += idx;
3627         if (rhash != NULL)
3628             *rhash = (unsigned char)((*psig >> 8) & 0xff);
3629         if (rsig != NULL)
3630             *rsig = (unsigned char)(*psig & 0xff);
3631         lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3632         if (psign != NULL)
3633             *psign = lu != NULL ? lu->sig : NID_undef;
3634         if (phash != NULL)
3635             *phash = lu != NULL ? lu->hash : NID_undef;
3636         if (psignhash != NULL)
3637             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3638     }
3639     return (int)numsigalgs;
3640 }
3641 
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3642 int SSL_get_shared_sigalgs(SSL *s, int idx,
3643     int *psign, int *phash, int *psignhash,
3644     unsigned char *rsig, unsigned char *rhash)
3645 {
3646     const SIGALG_LOOKUP *shsigalgs;
3647     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3648 
3649     if (sc == NULL)
3650         return 0;
3651 
3652     if (sc->shared_sigalgs == NULL
3653         || idx < 0
3654         || idx >= (int)sc->shared_sigalgslen
3655         || sc->shared_sigalgslen > INT_MAX)
3656         return 0;
3657     shsigalgs = sc->shared_sigalgs[idx];
3658     if (phash != NULL)
3659         *phash = shsigalgs->hash;
3660     if (psign != NULL)
3661         *psign = shsigalgs->sig;
3662     if (psignhash != NULL)
3663         *psignhash = shsigalgs->sigandhash;
3664     if (rsig != NULL)
3665         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3666     if (rhash != NULL)
3667         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3668     return (int)sc->shared_sigalgslen;
3669 }
3670 
3671 /* Maximum possible number of unique entries in sigalgs array */
3672 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3673 
3674 typedef struct {
3675     size_t sigalgcnt;
3676     /* TLSEXT_SIGALG_XXX values */
3677     uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3678     SSL_CTX *ctx;
3679 } sig_cb_st;
3680 
get_sigorhash(int * psig,int * phash,const char * str)3681 static void get_sigorhash(int *psig, int *phash, const char *str)
3682 {
3683     if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3684         *psig = EVP_PKEY_RSA;
3685     } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3686         || OPENSSL_strcasecmp(str, "PSS") == 0) {
3687         *psig = EVP_PKEY_RSA_PSS;
3688     } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3689         *psig = EVP_PKEY_DSA;
3690     } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3691         *psig = EVP_PKEY_EC;
3692     } else {
3693         *phash = OBJ_sn2nid(str);
3694         if (*phash == NID_undef)
3695             *phash = OBJ_ln2nid(str);
3696     }
3697 }
3698 /* Maximum length of a signature algorithm string component */
3699 #define TLS_MAX_SIGSTRING_LEN 40
3700 
sig_cb(const char * elem,int len,void * arg)3701 static int sig_cb(const char *elem, int len, void *arg)
3702 {
3703     sig_cb_st *sarg = arg;
3704     size_t i = 0;
3705     const SIGALG_LOOKUP *s;
3706     char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3707     const char *iana, *alias;
3708     int sig_alg = NID_undef, hash_alg = NID_undef;
3709     int ignore_unknown = 0;
3710 
3711     if (elem == NULL)
3712         return 0;
3713     if (elem[0] == '?') {
3714         ignore_unknown = 1;
3715         ++elem;
3716         --len;
3717     }
3718     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3719         return 0;
3720     if (len > (int)(sizeof(etmp) - 1))
3721         return 0;
3722     memcpy(etmp, elem, len);
3723     etmp[len] = 0;
3724     p = strchr(etmp, '+');
3725     /*
3726      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3727      * if there's no '+' in the provided name, look for the new-style combined
3728      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3729      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3730      * rsa_pss_rsae_* that differ only by public key OID; in such cases
3731      * we will pick the _rsae_ variant, by virtue of them appearing earlier
3732      * in the table.
3733      */
3734     if (p == NULL) {
3735         if (sarg->ctx != NULL) {
3736             for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3737                 iana = sarg->ctx->sigalg_lookup_cache[i].name;
3738                 alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3739                 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3740                     || OPENSSL_strcasecmp(etmp, iana) == 0) {
3741                     /* Ignore known, but unavailable sigalgs. */
3742                     if (!sarg->ctx->sigalg_lookup_cache[i].available)
3743                         return 1;
3744                     sarg->sigalgs[sarg->sigalgcnt++] = sarg->ctx->sigalg_lookup_cache[i].sigalg;
3745                     goto found;
3746                 }
3747             }
3748         } else {
3749             /* Syntax checks use the built-in sigalgs */
3750             for (i = 0, s = sigalg_lookup_tbl;
3751                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3752                 iana = s->name;
3753                 alias = s->name12;
3754                 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3755                     || OPENSSL_strcasecmp(etmp, iana) == 0) {
3756                     sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3757                     goto found;
3758                 }
3759             }
3760         }
3761     } else {
3762         *p = 0;
3763         p++;
3764         if (*p == 0)
3765             return 0;
3766         get_sigorhash(&sig_alg, &hash_alg, etmp);
3767         get_sigorhash(&sig_alg, &hash_alg, p);
3768         if (sig_alg != NID_undef && hash_alg != NID_undef) {
3769             if (sarg->ctx != NULL) {
3770                 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3771                     s = &sarg->ctx->sigalg_lookup_cache[i];
3772                     if (s->hash == hash_alg && s->sig == sig_alg) {
3773                         /* Ignore known, but unavailable sigalgs. */
3774                         if (!sarg->ctx->sigalg_lookup_cache[i].available)
3775                             return 1;
3776                         sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3777                         goto found;
3778                     }
3779                 }
3780             } else {
3781                 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3782                     s = &sigalg_lookup_tbl[i];
3783                     if (s->hash == hash_alg && s->sig == sig_alg) {
3784                         sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785                         goto found;
3786                     }
3787                 }
3788             }
3789         }
3790     }
3791     /* Ignore unknown algorithms if ignore_unknown */
3792     return ignore_unknown;
3793 
3794 found:
3795     /* Ignore duplicates */
3796     for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3797         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3798             sarg->sigalgcnt--;
3799             return 1;
3800         }
3801     }
3802     return 1;
3803 }
3804 
3805 /*
3806  * Set supported signature algorithms based on a colon separated list of the
3807  * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3808  */
tls1_set_sigalgs_list(SSL_CTX * ctx,CERT * c,const char * str,int client)3809 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3810 {
3811     sig_cb_st sig;
3812     sig.sigalgcnt = 0;
3813 
3814     if (ctx != NULL)
3815         sig.ctx = ctx;
3816     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3817         return 0;
3818     if (sig.sigalgcnt == 0) {
3819         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3820             "No valid signature algorithms in '%s'", str);
3821         return 0;
3822     }
3823     if (c == NULL)
3824         return 1;
3825     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3826 }
3827 
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)3828 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3829     int client)
3830 {
3831     uint16_t *sigalgs;
3832 
3833     if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3834         return 0;
3835     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3836 
3837     if (client) {
3838         OPENSSL_free(c->client_sigalgs);
3839         c->client_sigalgs = sigalgs;
3840         c->client_sigalgslen = salglen;
3841     } else {
3842         OPENSSL_free(c->conf_sigalgs);
3843         c->conf_sigalgs = sigalgs;
3844         c->conf_sigalgslen = salglen;
3845     }
3846 
3847     return 1;
3848 }
3849 
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)3850 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3851 {
3852     uint16_t *sigalgs, *sptr;
3853     size_t i;
3854 
3855     if (salglen & 1)
3856         return 0;
3857     if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3858         return 0;
3859     for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3860         size_t j;
3861         const SIGALG_LOOKUP *curr;
3862         int md_id = *psig_nids++;
3863         int sig_id = *psig_nids++;
3864 
3865         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3866             j++, curr++) {
3867             if (curr->hash == md_id && curr->sig == sig_id) {
3868                 *sptr++ = curr->sigalg;
3869                 break;
3870             }
3871         }
3872 
3873         if (j == OSSL_NELEM(sigalg_lookup_tbl))
3874             goto err;
3875     }
3876 
3877     if (client) {
3878         OPENSSL_free(c->client_sigalgs);
3879         c->client_sigalgs = sigalgs;
3880         c->client_sigalgslen = salglen / 2;
3881     } else {
3882         OPENSSL_free(c->conf_sigalgs);
3883         c->conf_sigalgs = sigalgs;
3884         c->conf_sigalgslen = salglen / 2;
3885     }
3886 
3887     return 1;
3888 
3889 err:
3890     OPENSSL_free(sigalgs);
3891     return 0;
3892 }
3893 
tls1_check_sig_alg(SSL_CONNECTION * s,X509 * x,int default_nid)3894 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3895 {
3896     int sig_nid, use_pc_sigalgs = 0;
3897     size_t i;
3898     const SIGALG_LOOKUP *sigalg;
3899     size_t sigalgslen;
3900 
3901     /*-
3902      * RFC 8446, section 4.2.3:
3903      *
3904      * The signatures on certificates that are self-signed or certificates
3905      * that are trust anchors are not validated, since they begin a
3906      * certification path (see [RFC5280], Section 3.2).  A certificate that
3907      * begins a certification path MAY use a signature algorithm that is not
3908      * advertised as being supported in the "signature_algorithms"
3909      * extension.
3910      */
3911     if (default_nid == -1 || X509_self_signed(x, 0))
3912         return 1;
3913     sig_nid = X509_get_signature_nid(x);
3914     if (default_nid)
3915         return sig_nid == default_nid ? 1 : 0;
3916 
3917     if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3918         /*
3919          * If we're in TLSv1.3 then we only get here if we're checking the
3920          * chain. If the peer has specified peer_cert_sigalgs then we use them
3921          * otherwise we default to normal sigalgs.
3922          */
3923         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3924         use_pc_sigalgs = 1;
3925     } else {
3926         sigalgslen = s->shared_sigalgslen;
3927     }
3928     for (i = 0; i < sigalgslen; i++) {
3929         int mdnid, pknid;
3930 
3931         sigalg = use_pc_sigalgs
3932             ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3933                   s->s3.tmp.peer_cert_sigalgs[i])
3934             : s->shared_sigalgs[i];
3935         if (sigalg == NULL)
3936             continue;
3937         if (sig_nid == sigalg->sigandhash)
3938             return 1;
3939         if (sigalg->sig != EVP_PKEY_RSA_PSS)
3940             continue;
3941         /*
3942          * Accept RSA PKCS#1 signatures in certificates when the signature
3943          * algorithms include RSA-PSS with a matching digest algorithm.
3944          *
3945          * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3946          * points, and we're doing strict checking of the certificate chain (in
3947          * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3948          * certificates in the chain, but the TLS requirement on PSS should not
3949          * extend to certificates.  Though the peer can in fact list the legacy
3950          * sigalgs for just this purpose, it is not likely that a better chain
3951          * signed with RSA-PSS is available.
3952          */
3953         if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3954             continue;
3955         if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3956             return 1;
3957     }
3958     return 0;
3959 }
3960 
3961 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)3962 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3963 {
3964     const X509_NAME *nm;
3965     int i;
3966     nm = X509_get_issuer_name(x);
3967     for (i = 0; i < sk_X509_NAME_num(names); i++) {
3968         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3969             return 1;
3970     }
3971     return 0;
3972 }
3973 
3974 /*
3975  * Check certificate chain is consistent with TLS extensions and is usable by
3976  * server. This servers two purposes: it allows users to check chains before
3977  * passing them to the server and it allows the server to check chains before
3978  * attempting to use them.
3979  */
3980 
3981 /* Flags which need to be set for a certificate when strict mode not set */
3982 
3983 #define CERT_PKEY_VALID_FLAGS \
3984     (CERT_PKEY_EE_SIGNATURE | CERT_PKEY_EE_PARAM)
3985 /* Strict mode flags */
3986 #define CERT_PKEY_STRICT_FLAGS                                           \
3987     (CERT_PKEY_VALID_FLAGS | CERT_PKEY_CA_SIGNATURE | CERT_PKEY_CA_PARAM \
3988         | CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE)
3989 
tls1_check_chain(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)3990 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3991     STACK_OF(X509) *chain, int idx)
3992 {
3993     int i;
3994     int rv = 0;
3995     int check_flags = 0, strict_mode;
3996     CERT_PKEY *cpk = NULL;
3997     CERT *c = s->cert;
3998     uint32_t *pvalid;
3999     unsigned int suiteb_flags = tls1_suiteb(s);
4000 
4001     /*
4002      * Meaning of idx:
4003      * idx == -1 means SSL_check_chain() invocation
4004      * idx == -2 means checking client certificate chains
4005      * idx >= 0 means checking SSL_PKEY index
4006      *
4007      * For RPK, where there may be no cert, we ignore -1
4008      */
4009     if (idx != -1) {
4010         if (idx == -2) {
4011             cpk = c->key;
4012             idx = (int)(cpk - c->pkeys);
4013         } else
4014             cpk = c->pkeys + idx;
4015         pvalid = s->s3.tmp.valid_flags + idx;
4016         x = cpk->x509;
4017         pk = cpk->privatekey;
4018         chain = cpk->chain;
4019         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4020         if (tls12_rpk_and_privkey(s, idx)) {
4021             if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4022                 return 0;
4023             *pvalid = rv = CERT_PKEY_RPK;
4024             return rv;
4025         }
4026         /* If no cert or key, forget it */
4027         if (x == NULL || pk == NULL)
4028             goto end;
4029     } else {
4030         size_t certidx;
4031 
4032         if (x == NULL || pk == NULL)
4033             return 0;
4034 
4035         if (ssl_cert_lookup_by_pkey(pk, &certidx,
4036                 SSL_CONNECTION_GET_CTX(s))
4037             == NULL)
4038             return 0;
4039         idx = certidx;
4040         pvalid = s->s3.tmp.valid_flags + idx;
4041 
4042         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4043             check_flags = CERT_PKEY_STRICT_FLAGS;
4044         else
4045             check_flags = CERT_PKEY_VALID_FLAGS;
4046         strict_mode = 1;
4047     }
4048 
4049     if (suiteb_flags) {
4050         int ok;
4051         if (check_flags)
4052             check_flags |= CERT_PKEY_SUITEB;
4053         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4054         if (ok == X509_V_OK)
4055             rv |= CERT_PKEY_SUITEB;
4056         else if (!check_flags)
4057             goto end;
4058     }
4059 
4060     /*
4061      * Check all signature algorithms are consistent with signature
4062      * algorithms extension if TLS 1.2 or later and strict mode.
4063      */
4064     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4065         && strict_mode) {
4066         int default_nid;
4067         int rsign = 0;
4068 
4069         if (s->s3.tmp.peer_cert_sigalgs != NULL
4070             || s->s3.tmp.peer_sigalgs != NULL) {
4071             default_nid = 0;
4072             /* If no sigalgs extension use defaults from RFC5246 */
4073         } else {
4074             switch (idx) {
4075             case SSL_PKEY_RSA:
4076                 rsign = EVP_PKEY_RSA;
4077                 default_nid = NID_sha1WithRSAEncryption;
4078                 break;
4079 
4080             case SSL_PKEY_DSA_SIGN:
4081                 rsign = EVP_PKEY_DSA;
4082                 default_nid = NID_dsaWithSHA1;
4083                 break;
4084 
4085             case SSL_PKEY_ECC:
4086                 rsign = EVP_PKEY_EC;
4087                 default_nid = NID_ecdsa_with_SHA1;
4088                 break;
4089 
4090             case SSL_PKEY_GOST01:
4091                 rsign = NID_id_GostR3410_2001;
4092                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4093                 break;
4094 
4095             case SSL_PKEY_GOST12_256:
4096                 rsign = NID_id_GostR3410_2012_256;
4097                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4098                 break;
4099 
4100             case SSL_PKEY_GOST12_512:
4101                 rsign = NID_id_GostR3410_2012_512;
4102                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4103                 break;
4104 
4105             default:
4106                 default_nid = -1;
4107                 break;
4108             }
4109         }
4110         /*
4111          * If peer sent no signature algorithms extension and we have set
4112          * preferred signature algorithms check we support sha1.
4113          */
4114         if (default_nid > 0 && c->conf_sigalgs) {
4115             size_t j;
4116             const uint16_t *p = c->conf_sigalgs;
4117             for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4118                 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4119 
4120                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4121                     break;
4122             }
4123             if (j == c->conf_sigalgslen) {
4124                 if (check_flags)
4125                     goto skip_sigs;
4126                 else
4127                     goto end;
4128             }
4129         }
4130         /* Check signature algorithm of each cert in chain */
4131         if (SSL_CONNECTION_IS_TLS13(s)) {
4132             /*
4133              * We only get here if the application has called SSL_check_chain(),
4134              * so check_flags is always set.
4135              */
4136             if (find_sig_alg(s, x, pk) != NULL)
4137                 rv |= CERT_PKEY_EE_SIGNATURE;
4138         } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4139             if (!check_flags)
4140                 goto end;
4141         } else
4142             rv |= CERT_PKEY_EE_SIGNATURE;
4143         rv |= CERT_PKEY_CA_SIGNATURE;
4144         for (i = 0; i < sk_X509_num(chain); i++) {
4145             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4146                 if (check_flags) {
4147                     rv &= ~CERT_PKEY_CA_SIGNATURE;
4148                     break;
4149                 } else
4150                     goto end;
4151             }
4152         }
4153     }
4154     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4155     else if (check_flags)
4156         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4157 skip_sigs:
4158     /* Check cert parameters are consistent */
4159     if (tls1_check_cert_param(s, x, 1))
4160         rv |= CERT_PKEY_EE_PARAM;
4161     else if (!check_flags)
4162         goto end;
4163     if (!s->server)
4164         rv |= CERT_PKEY_CA_PARAM;
4165     /* In strict mode check rest of chain too */
4166     else if (strict_mode) {
4167         rv |= CERT_PKEY_CA_PARAM;
4168         for (i = 0; i < sk_X509_num(chain); i++) {
4169             X509 *ca = sk_X509_value(chain, i);
4170             if (!tls1_check_cert_param(s, ca, 0)) {
4171                 if (check_flags) {
4172                     rv &= ~CERT_PKEY_CA_PARAM;
4173                     break;
4174                 } else
4175                     goto end;
4176             }
4177         }
4178     }
4179     if (!s->server && strict_mode) {
4180         STACK_OF(X509_NAME) *ca_dn;
4181         int check_type = 0;
4182 
4183         if (EVP_PKEY_is_a(pk, "RSA"))
4184             check_type = TLS_CT_RSA_SIGN;
4185         else if (EVP_PKEY_is_a(pk, "DSA"))
4186             check_type = TLS_CT_DSS_SIGN;
4187         else if (EVP_PKEY_is_a(pk, "EC"))
4188             check_type = TLS_CT_ECDSA_SIGN;
4189 
4190         if (check_type) {
4191             const uint8_t *ctypes = s->s3.tmp.ctype;
4192             size_t j;
4193 
4194             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4195                 if (*ctypes == check_type) {
4196                     rv |= CERT_PKEY_CERT_TYPE;
4197                     break;
4198                 }
4199             }
4200             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4201                 goto end;
4202         } else {
4203             rv |= CERT_PKEY_CERT_TYPE;
4204         }
4205 
4206         ca_dn = s->s3.tmp.peer_ca_names;
4207 
4208         if (ca_dn == NULL
4209             || sk_X509_NAME_num(ca_dn) == 0
4210             || ssl_check_ca_name(ca_dn, x))
4211             rv |= CERT_PKEY_ISSUER_NAME;
4212         else
4213             for (i = 0; i < sk_X509_num(chain); i++) {
4214                 X509 *xtmp = sk_X509_value(chain, i);
4215 
4216                 if (ssl_check_ca_name(ca_dn, xtmp)) {
4217                     rv |= CERT_PKEY_ISSUER_NAME;
4218                     break;
4219                 }
4220             }
4221 
4222         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4223             goto end;
4224     } else
4225         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4226 
4227     if (!check_flags || (rv & check_flags) == check_flags)
4228         rv |= CERT_PKEY_VALID;
4229 
4230 end:
4231 
4232     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4233         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4234     else
4235         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4236 
4237     /*
4238      * When checking a CERT_PKEY structure all flags are irrelevant if the
4239      * chain is invalid.
4240      */
4241     if (!check_flags) {
4242         if (rv & CERT_PKEY_VALID) {
4243             *pvalid = rv;
4244         } else {
4245             /* Preserve sign and explicit sign flag, clear rest */
4246             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4247             return 0;
4248         }
4249     }
4250     return rv;
4251 }
4252 
4253 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL_CONNECTION * s)4254 void tls1_set_cert_validity(SSL_CONNECTION *s)
4255 {
4256     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4257     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4258     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4259     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4260     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4261     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4262     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4263     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4264     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4265 }
4266 
4267 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)4268 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4269 {
4270     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4271 
4272     if (sc == NULL)
4273         return 0;
4274 
4275     return tls1_check_chain(sc, x, pk, chain, -1);
4276 }
4277 
ssl_get_auto_dh(SSL_CONNECTION * s)4278 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4279 {
4280     EVP_PKEY *dhp = NULL;
4281     BIGNUM *p;
4282     int dh_secbits = 80, sec_level_bits;
4283     EVP_PKEY_CTX *pctx = NULL;
4284     OSSL_PARAM_BLD *tmpl = NULL;
4285     OSSL_PARAM *params = NULL;
4286     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4287 
4288     if (s->cert->dh_tmp_auto != 2) {
4289         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4290             if (s->s3.tmp.new_cipher->strength_bits == 256)
4291                 dh_secbits = 128;
4292             else
4293                 dh_secbits = 80;
4294         } else {
4295             if (s->s3.tmp.cert == NULL)
4296                 return NULL;
4297             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4298         }
4299     }
4300 
4301     /* Do not pick a prime that is too weak for the current security level */
4302     sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4303         NULL, NULL);
4304     if (dh_secbits < sec_level_bits)
4305         dh_secbits = sec_level_bits;
4306 
4307     if (dh_secbits >= 192)
4308         p = BN_get_rfc3526_prime_8192(NULL);
4309     else if (dh_secbits >= 152)
4310         p = BN_get_rfc3526_prime_4096(NULL);
4311     else if (dh_secbits >= 128)
4312         p = BN_get_rfc3526_prime_3072(NULL);
4313     else if (dh_secbits >= 112)
4314         p = BN_get_rfc3526_prime_2048(NULL);
4315     else
4316         p = BN_get_rfc2409_prime_1024(NULL);
4317     if (p == NULL)
4318         goto err;
4319 
4320     pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4321     if (pctx == NULL
4322         || EVP_PKEY_fromdata_init(pctx) != 1)
4323         goto err;
4324 
4325     tmpl = OSSL_PARAM_BLD_new();
4326     if (tmpl == NULL
4327         || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4328         || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4329         goto err;
4330 
4331     params = OSSL_PARAM_BLD_to_param(tmpl);
4332     if (params == NULL
4333         || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4334         goto err;
4335 
4336 err:
4337     OSSL_PARAM_free(params);
4338     OSSL_PARAM_BLD_free(tmpl);
4339     EVP_PKEY_CTX_free(pctx);
4340     BN_free(p);
4341     return dhp;
4342 }
4343 
ssl_security_cert_key(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4344 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4345     int op)
4346 {
4347     int secbits = -1;
4348     EVP_PKEY *pkey = X509_get0_pubkey(x);
4349 
4350     if (pkey) {
4351         /*
4352          * If no parameters this will return -1 and fail using the default
4353          * security callback for any non-zero security level. This will
4354          * reject keys which omit parameters but this only affects DSA and
4355          * omission of parameters is never (?) done in practice.
4356          */
4357         secbits = EVP_PKEY_get_security_bits(pkey);
4358     }
4359     if (s != NULL)
4360         return ssl_security(s, op, secbits, 0, x);
4361     else
4362         return ssl_ctx_security(ctx, op, secbits, 0, x);
4363 }
4364 
ssl_security_cert_sig(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4365 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4366     int op)
4367 {
4368     /* Lookup signature algorithm digest */
4369     int secbits, nid, pknid;
4370 
4371     /* Don't check signature if self signed */
4372     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4373         return 1;
4374     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4375         secbits = -1;
4376     /* If digest NID not defined use signature NID */
4377     if (nid == NID_undef)
4378         nid = pknid;
4379     if (s != NULL)
4380         return ssl_security(s, op, secbits, nid, x);
4381     else
4382         return ssl_ctx_security(ctx, op, secbits, nid, x);
4383 }
4384 
ssl_security_cert(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)4385 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4386     int is_ee)
4387 {
4388     if (vfy)
4389         vfy = SSL_SECOP_PEER;
4390     if (is_ee) {
4391         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4392             return SSL_R_EE_KEY_TOO_SMALL;
4393     } else {
4394         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4395             return SSL_R_CA_KEY_TOO_SMALL;
4396     }
4397     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4398         return SSL_R_CA_MD_TOO_WEAK;
4399     return 1;
4400 }
4401 
4402 /*
4403  * Check security of a chain, if |sk| includes the end entity certificate then
4404  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4405  * one to the peer. Return values: 1 if ok otherwise error code to use
4406  */
4407 
ssl_security_cert_chain(SSL_CONNECTION * s,STACK_OF (X509)* sk,X509 * x,int vfy)4408 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4409     X509 *x, int vfy)
4410 {
4411     int rv, start_idx, i;
4412 
4413     if (x == NULL) {
4414         x = sk_X509_value(sk, 0);
4415         if (x == NULL)
4416             return ERR_R_INTERNAL_ERROR;
4417         start_idx = 1;
4418     } else
4419         start_idx = 0;
4420 
4421     rv = ssl_security_cert(s, NULL, x, vfy, 1);
4422     if (rv != 1)
4423         return rv;
4424 
4425     for (i = start_idx; i < sk_X509_num(sk); i++) {
4426         x = sk_X509_value(sk, i);
4427         rv = ssl_security_cert(s, NULL, x, vfy, 0);
4428         if (rv != 1)
4429             return rv;
4430     }
4431     return 1;
4432 }
4433 
4434 /*
4435  * For TLS 1.2 servers check if we have a certificate which can be used
4436  * with the signature algorithm "lu" and return index of certificate.
4437  */
4438 
tls12_get_cert_sigalg_idx(const SSL_CONNECTION * s,const SIGALG_LOOKUP * lu)4439 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4440     const SIGALG_LOOKUP *lu)
4441 {
4442     int sig_idx = lu->sig_idx;
4443     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4444         SSL_CONNECTION_GET_CTX(s));
4445 
4446     /* If not recognised or not supported by cipher mask it is not suitable */
4447     if (clu == NULL
4448         || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4449         || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4450             && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4451         return -1;
4452 
4453     /* If doing RPK, the CERT_PKEY won't be "valid" */
4454     if (tls12_rpk_and_privkey(s, sig_idx))
4455         return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4456 
4457     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4458 }
4459 
4460 /*
4461  * Checks the given cert against signature_algorithm_cert restrictions sent by
4462  * the peer (if any) as well as whether the hash from the sigalg is usable with
4463  * the key.
4464  * Returns true if the cert is usable and false otherwise.
4465  */
check_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4466 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4467     X509 *x, EVP_PKEY *pkey)
4468 {
4469     const SIGALG_LOOKUP *lu;
4470     int mdnid, pknid, supported;
4471     size_t i;
4472     const char *mdname = NULL;
4473     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4474 
4475     /*
4476      * If the given EVP_PKEY cannot support signing with this digest,
4477      * the answer is simply 'no'.
4478      */
4479     if (sig->hash != NID_undef)
4480         mdname = OBJ_nid2sn(sig->hash);
4481     supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4482         mdname,
4483         sctx->propq);
4484     if (supported <= 0)
4485         return 0;
4486 
4487     /*
4488      * The TLS 1.3 signature_algorithms_cert extension places restrictions
4489      * on the sigalg with which the certificate was signed (by its issuer).
4490      */
4491     if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4492         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4493             return 0;
4494         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4495             lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4496                 s->s3.tmp.peer_cert_sigalgs[i]);
4497             if (lu == NULL)
4498                 continue;
4499 
4500             /*
4501              * This does not differentiate between the
4502              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4503              * have a chain here that lets us look at the key OID in the
4504              * signing certificate.
4505              */
4506             if (mdnid == lu->hash && pknid == lu->sig)
4507                 return 1;
4508         }
4509         return 0;
4510     }
4511 
4512     /*
4513      * Without signat_algorithms_cert, any certificate for which we have
4514      * a viable public key is permitted.
4515      */
4516     return 1;
4517 }
4518 
4519 /*
4520  * Returns true if |s| has a usable certificate configured for use
4521  * with signature scheme |sig|.
4522  * "Usable" includes a check for presence as well as applying
4523  * the signature_algorithm_cert restrictions sent by the peer (if any).
4524  * Returns false if no usable certificate is found.
4525  */
has_usable_cert(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,int idx)4526 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4527 {
4528     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4529     if (idx == -1)
4530         idx = sig->sig_idx;
4531     if (!ssl_has_cert(s, idx))
4532         return 0;
4533 
4534     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4535         s->cert->pkeys[idx].privatekey);
4536 }
4537 
4538 /*
4539  * Returns true if the supplied cert |x| and key |pkey| is usable with the
4540  * specified signature scheme |sig|, or false otherwise.
4541  */
is_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4542 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4543     EVP_PKEY *pkey)
4544 {
4545     size_t idx;
4546 
4547     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4548         return 0;
4549 
4550     /* Check the key is consistent with the sig alg */
4551     if ((int)idx != sig->sig_idx)
4552         return 0;
4553 
4554     return check_cert_usable(s, sig, x, pkey);
4555 }
4556 
4557 /*
4558  * Find a signature scheme that works with the supplied certificate |x| and key
4559  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4560  * available certs/keys to find one that works.
4561  */
find_sig_alg(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pkey)4562 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4563     EVP_PKEY *pkey)
4564 {
4565     const SIGALG_LOOKUP *lu = NULL;
4566     size_t i;
4567     int curve = -1;
4568     EVP_PKEY *tmppkey;
4569     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4570 
4571     /* Look for a shared sigalgs matching possible certificates */
4572     for (i = 0; i < s->shared_sigalgslen; i++) {
4573         /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4574         lu = s->shared_sigalgs[i];
4575         if (lu->hash == NID_sha1
4576             || lu->hash == NID_sha224
4577             || lu->sig == EVP_PKEY_DSA
4578             || lu->sig == EVP_PKEY_RSA
4579             || !tls_sigalg_compat(s, lu))
4580             continue;
4581 
4582         /* Check that we have a cert, and signature_algorithms_cert */
4583         if (!tls1_lookup_md(sctx, lu, NULL))
4584             continue;
4585         if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4586             || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4587             continue;
4588 
4589         tmppkey = (pkey != NULL) ? pkey
4590                                  : s->cert->pkeys[lu->sig_idx].privatekey;
4591 
4592         if (lu->sig == EVP_PKEY_EC) {
4593             if (curve == -1)
4594                 curve = ssl_get_EC_curve_nid(tmppkey);
4595             if (lu->curve != NID_undef && curve != lu->curve)
4596                 continue;
4597         } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4598             /* validate that key is large enough for the signature algorithm */
4599             if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4600                 continue;
4601         }
4602         break;
4603     }
4604 
4605     if (i == s->shared_sigalgslen)
4606         return NULL;
4607 
4608     return lu;
4609 }
4610 
4611 /*
4612  * Choose an appropriate signature algorithm based on available certificates
4613  * Sets chosen certificate and signature algorithm.
4614  *
4615  * For servers if we fail to find a required certificate it is a fatal error,
4616  * an appropriate error code is set and a TLS alert is sent.
4617  *
4618  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4619  * a fatal error: we will either try another certificate or not present one
4620  * to the server. In this case no error is set.
4621  */
tls_choose_sigalg(SSL_CONNECTION * s,int fatalerrs)4622 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4623 {
4624     const SIGALG_LOOKUP *lu = NULL;
4625     int sig_idx = -1;
4626 
4627     s->s3.tmp.cert = NULL;
4628     s->s3.tmp.sigalg = NULL;
4629 
4630     if (SSL_CONNECTION_IS_TLS13(s)) {
4631         lu = find_sig_alg(s, NULL, NULL);
4632         if (lu == NULL) {
4633             if (!fatalerrs)
4634                 return 1;
4635             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4636                 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4637             return 0;
4638         }
4639     } else {
4640         /* If ciphersuite doesn't require a cert nothing to do */
4641         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4642             return 1;
4643         if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4644             return 1;
4645 
4646         if (SSL_USE_SIGALGS(s)) {
4647             size_t i;
4648             if (s->s3.tmp.peer_sigalgs != NULL) {
4649                 int curve = -1;
4650                 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4651 
4652                 /* For Suite B need to match signature algorithm to curve */
4653                 if (tls1_suiteb(s))
4654                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4655                             .privatekey);
4656 
4657                 /*
4658                  * Find highest preference signature algorithm matching
4659                  * cert type
4660                  */
4661                 for (i = 0; i < s->shared_sigalgslen; i++) {
4662                     /* Check the sigalg version bounds */
4663                     lu = s->shared_sigalgs[i];
4664                     if (!tls_sigalg_compat(s, lu))
4665                         continue;
4666                     if (s->server) {
4667                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4668                             continue;
4669                     } else {
4670                         int cc_idx = s->cert->key - s->cert->pkeys;
4671 
4672                         sig_idx = lu->sig_idx;
4673                         if (cc_idx != sig_idx)
4674                             continue;
4675                     }
4676                     /* Check that we have a cert, and sig_algs_cert */
4677                     if (!has_usable_cert(s, lu, sig_idx))
4678                         continue;
4679                     if (lu->sig == EVP_PKEY_RSA_PSS) {
4680                         /* validate that key is large enough for the signature algorithm */
4681                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4682 
4683                         if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4684                             continue;
4685                     }
4686                     if (curve == -1 || lu->curve == curve)
4687                         break;
4688                 }
4689 #ifndef OPENSSL_NO_GOST
4690                 /*
4691                  * Some Windows-based implementations do not send GOST algorithms indication
4692                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4693                  * we have to assume GOST support.
4694                  */
4695                 if (i == s->shared_sigalgslen
4696                     && (s->s3.tmp.new_cipher->algorithm_auth
4697                            & (SSL_aGOST01 | SSL_aGOST12))
4698                         != 0) {
4699                     if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4700                         if (!fatalerrs)
4701                             return 1;
4702                         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4703                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4704                         return 0;
4705                     } else {
4706                         i = 0;
4707                         sig_idx = lu->sig_idx;
4708                     }
4709                 }
4710 #endif
4711                 if (i == s->shared_sigalgslen) {
4712                     if (!fatalerrs)
4713                         return 1;
4714                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4715                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4716                     return 0;
4717                 }
4718             } else {
4719                 /*
4720                  * If we have no sigalg use defaults
4721                  */
4722                 const uint16_t *sent_sigs;
4723                 size_t sent_sigslen;
4724 
4725                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4726                     if (!fatalerrs)
4727                         return 1;
4728                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4729                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4730                     return 0;
4731                 }
4732 
4733                 /* Check signature matches a type we sent */
4734                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4735                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4736                     if (lu->sigalg == *sent_sigs
4737                         && has_usable_cert(s, lu, lu->sig_idx))
4738                         break;
4739                 }
4740                 if (i == sent_sigslen) {
4741                     if (!fatalerrs)
4742                         return 1;
4743                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4744                         SSL_R_WRONG_SIGNATURE_TYPE);
4745                     return 0;
4746                 }
4747             }
4748         } else {
4749             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4750                 if (!fatalerrs)
4751                     return 1;
4752                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4753                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4754                 return 0;
4755             }
4756         }
4757     }
4758     if (sig_idx == -1)
4759         sig_idx = lu->sig_idx;
4760     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4761     s->cert->key = s->s3.tmp.cert;
4762     s->s3.tmp.sigalg = lu;
4763     return 1;
4764 }
4765 
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)4766 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4767 {
4768     if (mode != TLSEXT_max_fragment_length_DISABLED
4769         && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4770         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4771         return 0;
4772     }
4773 
4774     ctx->ext.max_fragment_len_mode = mode;
4775     return 1;
4776 }
4777 
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)4778 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4779 {
4780     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4781 
4782     if (sc == NULL
4783         || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4784         return 0;
4785 
4786     if (mode != TLSEXT_max_fragment_length_DISABLED
4787         && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4788         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4789         return 0;
4790     }
4791 
4792     sc->ext.max_fragment_len_mode = mode;
4793     return 1;
4794 }
4795 
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)4796 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4797 {
4798     if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4799         return TLSEXT_max_fragment_length_DISABLED;
4800     return session->ext.max_fragment_len_mode;
4801 }
4802 
4803 /*
4804  * Helper functions for HMAC access with legacy support included.
4805  */
ssl_hmac_new(const SSL_CTX * ctx)4806 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4807 {
4808     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4809     EVP_MAC *mac = NULL;
4810 
4811     if (ret == NULL)
4812         return NULL;
4813 #ifndef OPENSSL_NO_DEPRECATED_3_0
4814     if (ctx->ext.ticket_key_evp_cb == NULL
4815         && ctx->ext.ticket_key_cb != NULL) {
4816         if (!ssl_hmac_old_new(ret))
4817             goto err;
4818         return ret;
4819     }
4820 #endif
4821     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4822     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4823         goto err;
4824     EVP_MAC_free(mac);
4825     return ret;
4826 err:
4827     EVP_MAC_CTX_free(ret->ctx);
4828     EVP_MAC_free(mac);
4829     OPENSSL_free(ret);
4830     return NULL;
4831 }
4832 
ssl_hmac_free(SSL_HMAC * ctx)4833 void ssl_hmac_free(SSL_HMAC *ctx)
4834 {
4835     if (ctx != NULL) {
4836         EVP_MAC_CTX_free(ctx->ctx);
4837 #ifndef OPENSSL_NO_DEPRECATED_3_0
4838         ssl_hmac_old_free(ctx);
4839 #endif
4840         OPENSSL_free(ctx);
4841     }
4842 }
4843 
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)4844 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4845 {
4846     return ctx->ctx;
4847 }
4848 
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)4849 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4850 {
4851     OSSL_PARAM params[2], *p = params;
4852 
4853     if (ctx->ctx != NULL) {
4854         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4855         *p = OSSL_PARAM_construct_end();
4856         if (EVP_MAC_init(ctx->ctx, key, len, params))
4857             return 1;
4858     }
4859 #ifndef OPENSSL_NO_DEPRECATED_3_0
4860     if (ctx->old_ctx != NULL)
4861         return ssl_hmac_old_init(ctx, key, len, md);
4862 #endif
4863     return 0;
4864 }
4865 
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)4866 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4867 {
4868     if (ctx->ctx != NULL)
4869         return EVP_MAC_update(ctx->ctx, data, len);
4870 #ifndef OPENSSL_NO_DEPRECATED_3_0
4871     if (ctx->old_ctx != NULL)
4872         return ssl_hmac_old_update(ctx, data, len);
4873 #endif
4874     return 0;
4875 }
4876 
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)4877 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4878     size_t max_size)
4879 {
4880     if (ctx->ctx != NULL)
4881         return EVP_MAC_final(ctx->ctx, md, len, max_size);
4882 #ifndef OPENSSL_NO_DEPRECATED_3_0
4883     if (ctx->old_ctx != NULL)
4884         return ssl_hmac_old_final(ctx, md, len);
4885 #endif
4886     return 0;
4887 }
4888 
ssl_hmac_size(const SSL_HMAC * ctx)4889 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4890 {
4891     if (ctx->ctx != NULL)
4892         return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4893 #ifndef OPENSSL_NO_DEPRECATED_3_0
4894     if (ctx->old_ctx != NULL)
4895         return ssl_hmac_old_size(ctx);
4896 #endif
4897     return 0;
4898 }
4899 
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)4900 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4901 {
4902     char gname[OSSL_MAX_NAME_SIZE];
4903 
4904     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4905         return OBJ_txt2nid(gname);
4906 
4907     return NID_undef;
4908 }
4909 
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)4910 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4911     const unsigned char *enckey,
4912     size_t enckeylen)
4913 {
4914     if (EVP_PKEY_is_a(pkey, "DH")) {
4915         int bits = EVP_PKEY_get_bits(pkey);
4916 
4917         if (bits <= 0 || enckeylen != (size_t)bits / 8)
4918             /* the encoded key must be padded to the length of the p */
4919             return 0;
4920     } else if (EVP_PKEY_is_a(pkey, "EC")) {
4921         if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4922             || enckey[0] != 0x04)
4923             return 0;
4924     }
4925 
4926     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4927 }
4928