xref: /freebsd/sys/kern/vfs_mount.c (revision be8bae67002503baff6bb9fb77fbe6b80f035c33)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/smp.h>
42 #include <sys/devctl.h>
43 #include <sys/eventhandler.h>
44 #include <sys/fcntl.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/libkern.h>
49 #include <sys/limits.h>
50 #include <sys/malloc.h>
51 #include <sys/mount.h>
52 #include <sys/mutex.h>
53 #include <sys/namei.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/filedesc.h>
57 #include <sys/reboot.h>
58 #include <sys/sbuf.h>
59 #include <sys/stdarg.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/sysproto.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/taskqueue.h>
66 #include <sys/vnode.h>
67 #include <vm/uma.h>
68 
69 #include <geom/geom.h>
70 
71 #include <security/audit/audit.h>
72 #include <security/mac/mac_framework.h>
73 
74 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
75 
76 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
77 		    uint64_t fsflags, bool jail_export,
78 		    struct vfsoptlist **optlist);
79 static void	free_mntarg(struct mntarg *ma);
80 
81 static int	usermount = 0;
82 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
83     "Unprivileged users may mount and unmount file systems");
84 
85 static bool	default_autoro = false;
86 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
87     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
88 
89 static bool	recursive_forced_unmount = false;
90 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
91     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
92     " when a file system is forcibly unmounted");
93 
94 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
95     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
96 
97 static unsigned int	deferred_unmount_retry_limit = 10;
98 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
99     &deferred_unmount_retry_limit, 0,
100     "Maximum number of retries for deferred unmount failure");
101 
102 static int	deferred_unmount_retry_delay_hz;
103 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
104     &deferred_unmount_retry_delay_hz, 0,
105     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
106 
107 static int	deferred_unmount_total_retries = 0;
108 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
109     &deferred_unmount_total_retries, 0,
110     "Total number of retried deferred unmounts");
111 
112 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
113 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
114 static uma_zone_t mount_zone;
115 
116 /* List of mounted filesystems. */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 
119 /* For any iteration/modification of mountlist */
120 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
121 
122 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
123 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
124 
125 static void vfs_deferred_unmount(void *arg, int pending);
126 static struct timeout_task deferred_unmount_task;
127 static struct mtx deferred_unmount_lock;
128 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
129     MTX_DEF);
130 static STAILQ_HEAD(, mount) deferred_unmount_list =
131     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
132 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
133 
134 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
135 
136 /*
137  * Global opts, taken by all filesystems
138  */
139 static const char *global_opts[] = {
140 	"errmsg",
141 	"fstype",
142 	"fspath",
143 	"ro",
144 	"rw",
145 	"nosuid",
146 	"noexec",
147 	NULL
148 };
149 
150 static int
mount_init(void * mem,int size,int flags)151 mount_init(void *mem, int size, int flags)
152 {
153 	struct mount *mp;
154 
155 	mp = (struct mount *)mem;
156 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
157 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
158 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
159 	lockinit(&mp->mnt_renamelock, PVFS, "rename", 0, 0);
160 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
161 	mp->mnt_ref = 0;
162 	mp->mnt_vfs_ops = 1;
163 	mp->mnt_rootvnode = NULL;
164 	return (0);
165 }
166 
167 static void
mount_fini(void * mem,int size)168 mount_fini(void *mem, int size)
169 {
170 	struct mount *mp;
171 
172 	mp = (struct mount *)mem;
173 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
174 	lockdestroy(&mp->mnt_renamelock);
175 	lockdestroy(&mp->mnt_explock);
176 	mtx_destroy(&mp->mnt_listmtx);
177 	mtx_destroy(&mp->mnt_mtx);
178 }
179 
180 static void
vfs_mount_init(void * dummy __unused)181 vfs_mount_init(void *dummy __unused)
182 {
183 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
184 	    0, vfs_deferred_unmount, NULL);
185 	deferred_unmount_retry_delay_hz = hz;
186 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
187 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
188 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
189 }
190 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
191 
192 /*
193  * ---------------------------------------------------------------------
194  * Functions for building and sanitizing the mount options
195  */
196 
197 /* Remove one mount option. */
198 static void
vfs_freeopt(struct vfsoptlist * opts,struct vfsopt * opt)199 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
200 {
201 
202 	TAILQ_REMOVE(opts, opt, link);
203 	free(opt->name, M_MOUNT);
204 	if (opt->value != NULL)
205 		free(opt->value, M_MOUNT);
206 	free(opt, M_MOUNT);
207 }
208 
209 /* Release all resources related to the mount options. */
210 void
vfs_freeopts(struct vfsoptlist * opts)211 vfs_freeopts(struct vfsoptlist *opts)
212 {
213 	struct vfsopt *opt;
214 
215 	while (!TAILQ_EMPTY(opts)) {
216 		opt = TAILQ_FIRST(opts);
217 		vfs_freeopt(opts, opt);
218 	}
219 	free(opts, M_MOUNT);
220 }
221 
222 void
vfs_deleteopt(struct vfsoptlist * opts,const char * name)223 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
224 {
225 	struct vfsopt *opt, *temp;
226 
227 	if (opts == NULL)
228 		return;
229 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
230 		if (strcmp(opt->name, name) == 0)
231 			vfs_freeopt(opts, opt);
232 	}
233 }
234 
235 static int
vfs_isopt_ro(const char * opt)236 vfs_isopt_ro(const char *opt)
237 {
238 
239 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
240 	    strcmp(opt, "norw") == 0)
241 		return (1);
242 	return (0);
243 }
244 
245 static int
vfs_isopt_rw(const char * opt)246 vfs_isopt_rw(const char *opt)
247 {
248 
249 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
250 		return (1);
251 	return (0);
252 }
253 
254 /*
255  * Check if options are equal (with or without the "no" prefix).
256  */
257 static int
vfs_equalopts(const char * opt1,const char * opt2)258 vfs_equalopts(const char *opt1, const char *opt2)
259 {
260 	char *p;
261 
262 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
263 	if (strcmp(opt1, opt2) == 0)
264 		return (1);
265 	/* "noopt" vs. "opt" */
266 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
267 		return (1);
268 	/* "opt" vs. "noopt" */
269 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
270 		return (1);
271 	while ((p = strchr(opt1, '.')) != NULL &&
272 	    !strncmp(opt1, opt2, ++p - opt1)) {
273 		opt2 += p - opt1;
274 		opt1 = p;
275 		/* "foo.noopt" vs. "foo.opt" */
276 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
277 			return (1);
278 		/* "foo.opt" vs. "foo.noopt" */
279 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
280 			return (1);
281 	}
282 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
283 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
284 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
285 		return (1);
286 	return (0);
287 }
288 
289 /*
290  * If a mount option is specified several times,
291  * (with or without the "no" prefix) only keep
292  * the last occurrence of it.
293  */
294 static void
vfs_sanitizeopts(struct vfsoptlist * opts)295 vfs_sanitizeopts(struct vfsoptlist *opts)
296 {
297 	struct vfsopt *opt, *opt2, *tmp;
298 
299 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
300 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
301 		while (opt2 != NULL) {
302 			if (vfs_equalopts(opt->name, opt2->name)) {
303 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
304 				vfs_freeopt(opts, opt2);
305 				opt2 = tmp;
306 			} else {
307 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
308 			}
309 		}
310 	}
311 }
312 
313 /*
314  * Build a linked list of mount options from a struct uio.
315  */
316 int
vfs_buildopts(struct uio * auio,struct vfsoptlist ** options)317 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
318 {
319 	struct vfsoptlist *opts;
320 	struct vfsopt *opt;
321 	size_t memused, namelen, optlen;
322 	unsigned int i, iovcnt;
323 	int error;
324 
325 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
326 	TAILQ_INIT(opts);
327 	memused = 0;
328 	iovcnt = auio->uio_iovcnt;
329 	for (i = 0; i < iovcnt; i += 2) {
330 		namelen = auio->uio_iov[i].iov_len;
331 		optlen = auio->uio_iov[i + 1].iov_len;
332 		memused += sizeof(struct vfsopt) + optlen + namelen;
333 		/*
334 		 * Avoid consuming too much memory, and attempts to overflow
335 		 * memused.
336 		 */
337 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
338 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
339 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
340 			error = EINVAL;
341 			goto bad;
342 		}
343 
344 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
345 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
346 		opt->value = NULL;
347 		opt->len = 0;
348 		opt->pos = i / 2;
349 		opt->seen = 0;
350 
351 		/*
352 		 * Do this early, so jumps to "bad" will free the current
353 		 * option.
354 		 */
355 		TAILQ_INSERT_TAIL(opts, opt, link);
356 
357 		if (auio->uio_segflg == UIO_SYSSPACE) {
358 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
359 		} else {
360 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
361 			    namelen);
362 			if (error)
363 				goto bad;
364 		}
365 		/* Ensure names are null-terminated strings. */
366 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
367 			error = EINVAL;
368 			goto bad;
369 		}
370 		if (optlen != 0) {
371 			opt->len = optlen;
372 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
373 			if (auio->uio_segflg == UIO_SYSSPACE) {
374 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
375 				    optlen);
376 			} else {
377 				error = copyin(auio->uio_iov[i + 1].iov_base,
378 				    opt->value, optlen);
379 				if (error)
380 					goto bad;
381 			}
382 		}
383 	}
384 	vfs_sanitizeopts(opts);
385 	*options = opts;
386 	return (0);
387 bad:
388 	vfs_freeopts(opts);
389 	return (error);
390 }
391 
392 /*
393  * Merge the old mount options with the new ones passed
394  * in the MNT_UPDATE case.
395  *
396  * XXX: This function will keep a "nofoo" option in the new
397  * options.  E.g, if the option's canonical name is "foo",
398  * "nofoo" ends up in the mount point's active options.
399  */
400 static void
vfs_mergeopts(struct vfsoptlist * toopts,struct vfsoptlist * oldopts)401 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
402 {
403 	struct vfsopt *opt, *new;
404 
405 	TAILQ_FOREACH(opt, oldopts, link) {
406 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
407 		new->name = strdup(opt->name, M_MOUNT);
408 		if (opt->len != 0) {
409 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
410 			bcopy(opt->value, new->value, opt->len);
411 		} else
412 			new->value = NULL;
413 		new->len = opt->len;
414 		new->seen = opt->seen;
415 		TAILQ_INSERT_HEAD(toopts, new, link);
416 	}
417 	vfs_sanitizeopts(toopts);
418 }
419 
420 /*
421  * Mount a filesystem.
422  */
423 #ifndef _SYS_SYSPROTO_H_
424 struct nmount_args {
425 	struct iovec *iovp;
426 	unsigned int iovcnt;
427 	int flags;
428 };
429 #endif
430 int
sys_nmount(struct thread * td,struct nmount_args * uap)431 sys_nmount(struct thread *td, struct nmount_args *uap)
432 {
433 	struct uio *auio;
434 	int error;
435 	u_int iovcnt;
436 	uint64_t flags;
437 
438 	/*
439 	 * Mount flags are now 64-bits. On 32-bit archtectures only
440 	 * 32-bits are passed in, but from here on everything handles
441 	 * 64-bit flags correctly.
442 	 */
443 	flags = uap->flags;
444 
445 	AUDIT_ARG_FFLAGS(flags);
446 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
447 	    uap->iovp, uap->iovcnt, flags);
448 
449 	/*
450 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
451 	 * userspace to set this flag, but we must filter it out if we want
452 	 * MNT_UPDATE on the root file system to work.
453 	 * MNT_ROOTFS should only be set by the kernel when mounting its
454 	 * root file system.
455 	 */
456 	flags &= ~MNT_ROOTFS;
457 
458 	iovcnt = uap->iovcnt;
459 	/*
460 	 * Check that we have an even number of iovec's
461 	 * and that we have at least two options.
462 	 */
463 	if ((iovcnt & 1) || (iovcnt < 4)) {
464 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
465 		    uap->iovcnt);
466 		return (EINVAL);
467 	}
468 
469 	error = copyinuio(uap->iovp, iovcnt, &auio);
470 	if (error) {
471 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
472 		    __func__, error);
473 		return (error);
474 	}
475 	error = vfs_donmount(td, flags, auio);
476 
477 	freeuio(auio);
478 	return (error);
479 }
480 
481 /*
482  * ---------------------------------------------------------------------
483  * Various utility functions
484  */
485 
486 /*
487  * Get a reference on a mount point from a vnode.
488  *
489  * The vnode is allowed to be passed unlocked and race against dooming. Note in
490  * such case there are no guarantees the referenced mount point will still be
491  * associated with it after the function returns.
492  */
493 struct mount *
vfs_ref_from_vp(struct vnode * vp)494 vfs_ref_from_vp(struct vnode *vp)
495 {
496 	struct mount *mp;
497 	struct mount_pcpu *mpcpu;
498 
499 	mp = atomic_load_ptr(&vp->v_mount);
500 	if (__predict_false(mp == NULL)) {
501 		return (mp);
502 	}
503 	if (vfs_op_thread_enter(mp, mpcpu)) {
504 		if (__predict_true(mp == vp->v_mount)) {
505 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
506 			vfs_op_thread_exit(mp, mpcpu);
507 		} else {
508 			vfs_op_thread_exit(mp, mpcpu);
509 			mp = NULL;
510 		}
511 	} else {
512 		MNT_ILOCK(mp);
513 		if (mp == vp->v_mount) {
514 			MNT_REF(mp);
515 			MNT_IUNLOCK(mp);
516 		} else {
517 			MNT_IUNLOCK(mp);
518 			mp = NULL;
519 		}
520 	}
521 	return (mp);
522 }
523 
524 void
vfs_ref(struct mount * mp)525 vfs_ref(struct mount *mp)
526 {
527 	struct mount_pcpu *mpcpu;
528 
529 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
530 	if (vfs_op_thread_enter(mp, mpcpu)) {
531 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
532 		vfs_op_thread_exit(mp, mpcpu);
533 		return;
534 	}
535 
536 	MNT_ILOCK(mp);
537 	MNT_REF(mp);
538 	MNT_IUNLOCK(mp);
539 }
540 
541 /*
542  * Register ump as an upper mount of the mount associated with
543  * vnode vp.  This registration will be tracked through
544  * mount_upper_node upper, which should be allocated by the
545  * caller and stored in per-mount data associated with mp.
546  *
547  * If successful, this function will return the mount associated
548  * with vp, and will ensure that it cannot be unmounted until
549  * ump has been unregistered as one of its upper mounts.
550  *
551  * Upon failure this function will return NULL.
552  */
553 struct mount *
vfs_register_upper_from_vp(struct vnode * vp,struct mount * ump,struct mount_upper_node * upper)554 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
555     struct mount_upper_node *upper)
556 {
557 	struct mount *mp;
558 
559 	mp = atomic_load_ptr(&vp->v_mount);
560 	if (mp == NULL)
561 		return (NULL);
562 	MNT_ILOCK(mp);
563 	if (mp != vp->v_mount ||
564 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
565 		MNT_IUNLOCK(mp);
566 		return (NULL);
567 	}
568 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
569 	upper->mp = ump;
570 	MNT_REF(mp);
571 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
572 	MNT_IUNLOCK(mp);
573 	return (mp);
574 }
575 
576 /*
577  * Register upper mount ump to receive vnode unlink/reclaim
578  * notifications from lower mount mp. This registration will
579  * be tracked through mount_upper_node upper, which should be
580  * allocated by the caller and stored in per-mount data
581  * associated with mp.
582  *
583  * ump must already be registered as an upper mount of mp
584  * through a call to vfs_register_upper_from_vp().
585  */
586 void
vfs_register_for_notification(struct mount * mp,struct mount * ump,struct mount_upper_node * upper)587 vfs_register_for_notification(struct mount *mp, struct mount *ump,
588     struct mount_upper_node *upper)
589 {
590 	upper->mp = ump;
591 	MNT_ILOCK(mp);
592 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
593 	MNT_IUNLOCK(mp);
594 }
595 
596 static void
vfs_drain_upper_locked(struct mount * mp)597 vfs_drain_upper_locked(struct mount *mp)
598 {
599 	mtx_assert(MNT_MTX(mp), MA_OWNED);
600 	while (mp->mnt_upper_pending != 0) {
601 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
602 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
603 	}
604 }
605 
606 /*
607  * Undo a previous call to vfs_register_for_notification().
608  * The mount represented by upper must be currently registered
609  * as an upper mount for mp.
610  */
611 void
vfs_unregister_for_notification(struct mount * mp,struct mount_upper_node * upper)612 vfs_unregister_for_notification(struct mount *mp,
613     struct mount_upper_node *upper)
614 {
615 	MNT_ILOCK(mp);
616 	vfs_drain_upper_locked(mp);
617 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
618 	MNT_IUNLOCK(mp);
619 }
620 
621 /*
622  * Undo a previous call to vfs_register_upper_from_vp().
623  * This must be done before mp can be unmounted.
624  */
625 void
vfs_unregister_upper(struct mount * mp,struct mount_upper_node * upper)626 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
627 {
628 	MNT_ILOCK(mp);
629 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
630 	    ("registered upper with pending unmount"));
631 	vfs_drain_upper_locked(mp);
632 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
633 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
634 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
635 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
636 		wakeup(&mp->mnt_taskqueue_link);
637 	}
638 	MNT_REL(mp);
639 	MNT_IUNLOCK(mp);
640 }
641 
642 void
vfs_rel(struct mount * mp)643 vfs_rel(struct mount *mp)
644 {
645 	struct mount_pcpu *mpcpu;
646 
647 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
648 	if (vfs_op_thread_enter(mp, mpcpu)) {
649 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
650 		vfs_op_thread_exit(mp, mpcpu);
651 		return;
652 	}
653 
654 	MNT_ILOCK(mp);
655 	MNT_REL(mp);
656 	MNT_IUNLOCK(mp);
657 }
658 
659 /*
660  * Allocate and initialize the mount point struct.
661  */
662 struct mount *
vfs_mount_alloc(struct vnode * vp,struct vfsconf * vfsp,const char * fspath,struct ucred * cred)663 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
664     struct ucred *cred)
665 {
666 	struct mount *mp;
667 
668 	mp = uma_zalloc(mount_zone, M_WAITOK);
669 	bzero(&mp->mnt_startzero,
670 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
671 	mp->mnt_kern_flag = 0;
672 	mp->mnt_flag = 0;
673 	mp->mnt_rootvnode = NULL;
674 	mp->mnt_vnodecovered = NULL;
675 	mp->mnt_op = NULL;
676 	mp->mnt_vfc = NULL;
677 	TAILQ_INIT(&mp->mnt_nvnodelist);
678 	mp->mnt_nvnodelistsize = 0;
679 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
680 	mp->mnt_lazyvnodelistsize = 0;
681 	MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
682 	    mp->mnt_writeopcount == 0, mp);
683 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
684 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
685 	(void) vfs_busy(mp, MBF_NOWAIT);
686 	mp->mnt_op = vfsp->vfc_vfsops;
687 	mp->mnt_vfc = vfsp;
688 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
689 	mp->mnt_gen++;
690 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
691 	mp->mnt_vnodecovered = vp;
692 	mp->mnt_cred = crdup(cred);
693 	mp->mnt_stat.f_owner = cred->cr_uid;
694 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
695 	mp->mnt_iosize_max = DFLTPHYS;
696 #ifdef MAC
697 	mac_mount_init(mp);
698 	mac_mount_create(cred, mp);
699 #endif
700 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
701 	mp->mnt_upper_pending = 0;
702 	TAILQ_INIT(&mp->mnt_uppers);
703 	TAILQ_INIT(&mp->mnt_notify);
704 	mp->mnt_taskqueue_flags = 0;
705 	mp->mnt_unmount_retries = 0;
706 	return (mp);
707 }
708 
709 /*
710  * Destroy the mount struct previously allocated by vfs_mount_alloc().
711  */
712 void
vfs_mount_destroy(struct mount * mp)713 vfs_mount_destroy(struct mount *mp)
714 {
715 
716 	MPPASS(mp->mnt_vfs_ops != 0, mp);
717 
718 	vfs_assert_mount_counters(mp);
719 
720 	MNT_ILOCK(mp);
721 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
722 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
723 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
724 		wakeup(mp);
725 	}
726 	while (mp->mnt_ref)
727 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
728 	KASSERT(mp->mnt_ref == 0,
729 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
730 	    __FILE__, __LINE__));
731 	MPPASS(mp->mnt_writeopcount == 0, mp);
732 	MPPASS(mp->mnt_secondary_writes == 0, mp);
733 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
734 		struct vnode *vp;
735 
736 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
737 			vn_printf(vp, "dangling vnode ");
738 		panic("unmount: dangling vnode");
739 	}
740 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
741 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
742 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
743 	MPPASS(mp->mnt_nvnodelistsize == 0, mp);
744 	MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
745 	MPPASS(mp->mnt_lockref == 0, mp);
746 	MNT_IUNLOCK(mp);
747 
748 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
749 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
750 
751 	MPASSERT(mp->mnt_rootvnode == NULL, mp,
752 	    ("mount point still has a root vnode %p", mp->mnt_rootvnode));
753 
754 	if (mp->mnt_vnodecovered != NULL)
755 		vrele(mp->mnt_vnodecovered);
756 #ifdef MAC
757 	mac_mount_destroy(mp);
758 #endif
759 	if (mp->mnt_opt != NULL)
760 		vfs_freeopts(mp->mnt_opt);
761 	if (mp->mnt_exjail != NULL) {
762 		atomic_subtract_int(&mp->mnt_exjail->cr_prison->pr_exportcnt,
763 		    1);
764 		crfree(mp->mnt_exjail);
765 	}
766 	if (mp->mnt_export != NULL) {
767 		vfs_free_addrlist(mp->mnt_export);
768 		free(mp->mnt_export, M_MOUNT);
769 	}
770 	vfsconf_lock();
771 	mp->mnt_vfc->vfc_refcount--;
772 	vfsconf_unlock();
773 	crfree(mp->mnt_cred);
774 	uma_zfree(mount_zone, mp);
775 }
776 
777 static bool
vfs_should_downgrade_to_ro_mount(uint64_t fsflags,int error)778 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
779 {
780 	/* This is an upgrade of an exisiting mount. */
781 	if ((fsflags & MNT_UPDATE) != 0)
782 		return (false);
783 	/* This is already an R/O mount. */
784 	if ((fsflags & MNT_RDONLY) != 0)
785 		return (false);
786 
787 	switch (error) {
788 	case ENODEV:	/* generic, geom, ... */
789 	case EACCES:	/* cam/scsi, ... */
790 	case EROFS:	/* md, mmcsd, ... */
791 		/*
792 		 * These errors can be returned by the storage layer to signal
793 		 * that the media is read-only.  No harm in the R/O mount
794 		 * attempt if the error was returned for some other reason.
795 		 */
796 		return (true);
797 	default:
798 		return (false);
799 	}
800 }
801 
802 int
vfs_donmount(struct thread * td,uint64_t fsflags,struct uio * fsoptions)803 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
804 {
805 	struct vfsoptlist *optlist;
806 	struct vfsopt *opt, *tmp_opt;
807 	char *fstype, *fspath, *errmsg;
808 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
809 	bool autoro, has_nonexport, jail_export;
810 
811 	errmsg = fspath = NULL;
812 	errmsg_len = fspathlen = 0;
813 	errmsg_pos = -1;
814 	autoro = default_autoro;
815 
816 	error = vfs_buildopts(fsoptions, &optlist);
817 	if (error)
818 		return (error);
819 
820 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
821 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
822 
823 	/*
824 	 * We need these two options before the others,
825 	 * and they are mandatory for any filesystem.
826 	 * Ensure they are NUL terminated as well.
827 	 */
828 	fstypelen = 0;
829 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
830 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
831 		error = EINVAL;
832 		if (errmsg != NULL)
833 			strncpy(errmsg, "Invalid fstype", errmsg_len);
834 		goto bail;
835 	}
836 	fspathlen = 0;
837 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
838 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
839 		error = EINVAL;
840 		if (errmsg != NULL)
841 			strncpy(errmsg, "Invalid fspath", errmsg_len);
842 		goto bail;
843 	}
844 
845 	/*
846 	 * Check to see that "export" is only used with the "update", "fstype",
847 	 * "fspath", "from" and "errmsg" options when in a vnet jail.
848 	 * These are the ones used to set/update exports by mountd(8).
849 	 * If only the above options are set in a jail that can run mountd(8),
850 	 * then the jail_export argument of vfs_domount() will be true.
851 	 * When jail_export is true, the vfs_suser() check does not cause
852 	 * failure, but limits the update to exports only.
853 	 * This allows mountd(8) running within the vnet jail
854 	 * to export file systems visible within the jail, but
855 	 * mounted outside of the jail.
856 	 */
857 	/*
858 	 * We need to see if we have the "update" option
859 	 * before we call vfs_domount(), since vfs_domount() has special
860 	 * logic based on MNT_UPDATE.  This is very important
861 	 * when we want to update the root filesystem.
862 	 */
863 	has_nonexport = false;
864 	jail_export = false;
865 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
866 		int do_freeopt = 0;
867 
868 		if (jailed(td->td_ucred) &&
869 		    strcmp(opt->name, "export") != 0 &&
870 		    strcmp(opt->name, "update") != 0 &&
871 		    strcmp(opt->name, "fstype") != 0 &&
872 		    strcmp(opt->name, "fspath") != 0 &&
873 		    strcmp(opt->name, "from") != 0 &&
874 		    strcmp(opt->name, "errmsg") != 0)
875 			has_nonexport = true;
876 		if (strcmp(opt->name, "update") == 0) {
877 			fsflags |= MNT_UPDATE;
878 			do_freeopt = 1;
879 		}
880 		else if (strcmp(opt->name, "async") == 0)
881 			fsflags |= MNT_ASYNC;
882 		else if (strcmp(opt->name, "force") == 0) {
883 			fsflags |= MNT_FORCE;
884 			do_freeopt = 1;
885 		}
886 		else if (strcmp(opt->name, "reload") == 0) {
887 			fsflags |= MNT_RELOAD;
888 			do_freeopt = 1;
889 		}
890 		else if (strcmp(opt->name, "multilabel") == 0)
891 			fsflags |= MNT_MULTILABEL;
892 		else if (strcmp(opt->name, "noasync") == 0)
893 			fsflags &= ~MNT_ASYNC;
894 		else if (strcmp(opt->name, "noatime") == 0)
895 			fsflags |= MNT_NOATIME;
896 		else if (strcmp(opt->name, "atime") == 0) {
897 			free(opt->name, M_MOUNT);
898 			opt->name = strdup("nonoatime", M_MOUNT);
899 		}
900 		else if (strcmp(opt->name, "noclusterr") == 0)
901 			fsflags |= MNT_NOCLUSTERR;
902 		else if (strcmp(opt->name, "clusterr") == 0) {
903 			free(opt->name, M_MOUNT);
904 			opt->name = strdup("nonoclusterr", M_MOUNT);
905 		}
906 		else if (strcmp(opt->name, "noclusterw") == 0)
907 			fsflags |= MNT_NOCLUSTERW;
908 		else if (strcmp(opt->name, "clusterw") == 0) {
909 			free(opt->name, M_MOUNT);
910 			opt->name = strdup("nonoclusterw", M_MOUNT);
911 		}
912 		else if (strcmp(opt->name, "noexec") == 0)
913 			fsflags |= MNT_NOEXEC;
914 		else if (strcmp(opt->name, "exec") == 0) {
915 			free(opt->name, M_MOUNT);
916 			opt->name = strdup("nonoexec", M_MOUNT);
917 		}
918 		else if (strcmp(opt->name, "nosuid") == 0)
919 			fsflags |= MNT_NOSUID;
920 		else if (strcmp(opt->name, "suid") == 0) {
921 			free(opt->name, M_MOUNT);
922 			opt->name = strdup("nonosuid", M_MOUNT);
923 		}
924 		else if (strcmp(opt->name, "nosymfollow") == 0)
925 			fsflags |= MNT_NOSYMFOLLOW;
926 		else if (strcmp(opt->name, "symfollow") == 0) {
927 			free(opt->name, M_MOUNT);
928 			opt->name = strdup("nonosymfollow", M_MOUNT);
929 		}
930 		else if (strcmp(opt->name, "noro") == 0) {
931 			fsflags &= ~MNT_RDONLY;
932 			autoro = false;
933 		}
934 		else if (strcmp(opt->name, "rw") == 0) {
935 			fsflags &= ~MNT_RDONLY;
936 			autoro = false;
937 		}
938 		else if (strcmp(opt->name, "ro") == 0) {
939 			fsflags |= MNT_RDONLY;
940 			autoro = false;
941 		}
942 		else if (strcmp(opt->name, "rdonly") == 0) {
943 			free(opt->name, M_MOUNT);
944 			opt->name = strdup("ro", M_MOUNT);
945 			fsflags |= MNT_RDONLY;
946 			autoro = false;
947 		}
948 		else if (strcmp(opt->name, "autoro") == 0) {
949 			do_freeopt = 1;
950 			autoro = true;
951 		}
952 		else if (strcmp(opt->name, "suiddir") == 0)
953 			fsflags |= MNT_SUIDDIR;
954 		else if (strcmp(opt->name, "sync") == 0)
955 			fsflags |= MNT_SYNCHRONOUS;
956 		else if (strcmp(opt->name, "union") == 0)
957 			fsflags |= MNT_UNION;
958 		else if (strcmp(opt->name, "export") == 0) {
959 			fsflags |= MNT_EXPORTED;
960 			jail_export = true;
961 		} else if (strcmp(opt->name, "automounted") == 0) {
962 			fsflags |= MNT_AUTOMOUNTED;
963 			do_freeopt = 1;
964 		} else if (strcmp(opt->name, "nocover") == 0) {
965 			fsflags |= MNT_NOCOVER;
966 			do_freeopt = 1;
967 		} else if (strcmp(opt->name, "cover") == 0) {
968 			fsflags &= ~MNT_NOCOVER;
969 			do_freeopt = 1;
970 		} else if (strcmp(opt->name, "emptydir") == 0) {
971 			fsflags |= MNT_EMPTYDIR;
972 			do_freeopt = 1;
973 		} else if (strcmp(opt->name, "noemptydir") == 0) {
974 			fsflags &= ~MNT_EMPTYDIR;
975 			do_freeopt = 1;
976 		}
977 		if (do_freeopt)
978 			vfs_freeopt(optlist, opt);
979 	}
980 
981 	/*
982 	 * Be ultra-paranoid about making sure the type and fspath
983 	 * variables will fit in our mp buffers, including the
984 	 * terminating NUL.
985 	 */
986 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
987 		error = ENAMETOOLONG;
988 		goto bail;
989 	}
990 
991 	/*
992 	 * If has_nonexport is true or the caller is not running within a
993 	 * vnet prison that can run mountd(8), set jail_export false.
994 	 */
995 	if (has_nonexport || !jailed(td->td_ucred) ||
996 	    !prison_check_nfsd(td->td_ucred))
997 		jail_export = false;
998 
999 	error = vfs_domount(td, fstype, fspath, fsflags, jail_export, &optlist);
1000 	if (error == ENODEV) {
1001 		error = EINVAL;
1002 		if (errmsg != NULL)
1003 			strncpy(errmsg, "Invalid fstype", errmsg_len);
1004 		goto bail;
1005 	}
1006 
1007 	/*
1008 	 * See if we can mount in the read-only mode if the error code suggests
1009 	 * that it could be possible and the mount options allow for that.
1010 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
1011 	 * overridden by "autoro".
1012 	 */
1013 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
1014 		printf("%s: R/W mount failed, possibly R/O media,"
1015 		    " trying R/O mount\n", __func__);
1016 		fsflags |= MNT_RDONLY;
1017 		error = vfs_domount(td, fstype, fspath, fsflags, jail_export,
1018 		    &optlist);
1019 	}
1020 bail:
1021 	/* copyout the errmsg */
1022 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
1023 	    && errmsg_len > 0 && errmsg != NULL) {
1024 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
1025 			bcopy(errmsg,
1026 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1027 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1028 		} else {
1029 			(void)copyout(errmsg,
1030 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1031 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1032 		}
1033 	}
1034 
1035 	if (optlist != NULL)
1036 		vfs_freeopts(optlist);
1037 	return (error);
1038 }
1039 
1040 /*
1041  * Old mount API.
1042  */
1043 #ifndef _SYS_SYSPROTO_H_
1044 struct mount_args {
1045 	char	*type;
1046 	char	*path;
1047 	int	flags;
1048 	caddr_t	data;
1049 };
1050 #endif
1051 /* ARGSUSED */
1052 int
sys_mount(struct thread * td,struct mount_args * uap)1053 sys_mount(struct thread *td, struct mount_args *uap)
1054 {
1055 	char *fstype;
1056 	struct vfsconf *vfsp = NULL;
1057 	struct mntarg *ma = NULL;
1058 	uint64_t flags;
1059 	int error;
1060 
1061 	/*
1062 	 * Mount flags are now 64-bits. On 32-bit architectures only
1063 	 * 32-bits are passed in, but from here on everything handles
1064 	 * 64-bit flags correctly.
1065 	 */
1066 	flags = uap->flags;
1067 
1068 	AUDIT_ARG_FFLAGS(flags);
1069 
1070 	/*
1071 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1072 	 * userspace to set this flag, but we must filter it out if we want
1073 	 * MNT_UPDATE on the root file system to work.
1074 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1075 	 * root file system.
1076 	 */
1077 	flags &= ~MNT_ROOTFS;
1078 
1079 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1080 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1081 	if (error) {
1082 		free(fstype, M_TEMP);
1083 		return (error);
1084 	}
1085 
1086 	AUDIT_ARG_TEXT(fstype);
1087 	vfsp = vfs_byname_kld(fstype, td, &error);
1088 	free(fstype, M_TEMP);
1089 	if (vfsp == NULL)
1090 		return (EINVAL);
1091 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1092 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1093 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1094 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1095 		return (EOPNOTSUPP);
1096 
1097 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1098 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1099 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1100 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1101 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1102 
1103 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1104 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1105 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1106 }
1107 
1108 /*
1109  * vfs_domount_first(): first file system mount (not update)
1110  */
1111 static int
vfs_domount_first(struct thread * td,struct vfsconf * vfsp,char * fspath,struct vnode * vp,uint64_t fsflags,struct vfsoptlist ** optlist)1112 vfs_domount_first(
1113 	struct thread *td,		/* Calling thread. */
1114 	struct vfsconf *vfsp,		/* File system type. */
1115 	char *fspath,			/* Mount path. */
1116 	struct vnode *vp,		/* Vnode to be covered. */
1117 	uint64_t fsflags,		/* Flags common to all filesystems. */
1118 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1119 	)
1120 {
1121 	struct vattr va;
1122 	struct mount *mp;
1123 	struct vnode *newdp, *rootvp;
1124 	int error, error1;
1125 	bool unmounted;
1126 
1127 	ASSERT_VOP_ELOCKED(vp, __func__);
1128 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1129 
1130 	/*
1131 	 * If the jail of the calling thread lacks permission for this type of
1132 	 * file system, or is trying to cover its own root, deny immediately.
1133 	 */
1134 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1135 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1136 		vput(vp);
1137 		vfs_unref_vfsconf(vfsp);
1138 		return (EPERM);
1139 	}
1140 
1141 	/*
1142 	 * If the user is not root, ensure that they own the directory
1143 	 * onto which we are attempting to mount.
1144 	 */
1145 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1146 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1147 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1148 	if (error == 0)
1149 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1150 	if (vfsp->vfc_flags & VFCF_FILEMOUNT) {
1151 		if (error == 0 && vp->v_type != VDIR && vp->v_type != VREG)
1152 			error = EINVAL;
1153 		/*
1154 		 * For file mounts, ensure that there is only one hardlink to the file.
1155 		 */
1156 		if (error == 0 && vp->v_type == VREG && va.va_nlink != 1)
1157 			error = EINVAL;
1158 	} else {
1159 		if (error == 0 && vp->v_type != VDIR)
1160 			error = ENOTDIR;
1161 	}
1162 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1163 		error = vn_dir_check_empty(vp);
1164 	if (error == 0) {
1165 		VI_LOCK(vp);
1166 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1167 			vp->v_iflag |= VI_MOUNT;
1168 		else
1169 			error = EBUSY;
1170 		VI_UNLOCK(vp);
1171 	}
1172 	if (error != 0) {
1173 		vput(vp);
1174 		vfs_unref_vfsconf(vfsp);
1175 		return (error);
1176 	}
1177 	vn_seqc_write_begin(vp);
1178 	VOP_UNLOCK(vp);
1179 
1180 	/* Allocate and initialize the filesystem. */
1181 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1182 	/* XXXMAC: pass to vfs_mount_alloc? */
1183 	mp->mnt_optnew = *optlist;
1184 	/* Set the mount level flags. */
1185 	mp->mnt_flag = (fsflags &
1186 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1187 
1188 	/*
1189 	 * Mount the filesystem.
1190 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1191 	 * get.  No freeing of cn_pnbuf.
1192 	 */
1193 	error1 = 0;
1194 	unmounted = true;
1195 	if ((error = VFS_MOUNT(mp)) != 0 ||
1196 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1197 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1198 		rootvp = NULL;
1199 		if (error1 != 0) {
1200 			MPASS(error == 0);
1201 			rootvp = vfs_cache_root_clear(mp);
1202 			if (rootvp != NULL) {
1203 				vhold(rootvp);
1204 				vrele(rootvp);
1205 			}
1206 			(void)vn_start_write(NULL, &mp, V_WAIT);
1207 			MNT_ILOCK(mp);
1208 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1209 			MNT_IUNLOCK(mp);
1210 			VFS_PURGE(mp);
1211 			error = VFS_UNMOUNT(mp, 0);
1212 			vn_finished_write(mp);
1213 			if (error != 0) {
1214 				printf(
1215 		    "failed post-mount (%d): rollback unmount returned %d\n",
1216 				    error1, error);
1217 				unmounted = false;
1218 			}
1219 			error = error1;
1220 		}
1221 		vfs_unbusy(mp);
1222 		mp->mnt_vnodecovered = NULL;
1223 		if (unmounted) {
1224 			/* XXXKIB wait for mnt_lockref drain? */
1225 			vfs_mount_destroy(mp);
1226 		}
1227 		VI_LOCK(vp);
1228 		vp->v_iflag &= ~VI_MOUNT;
1229 		VI_UNLOCK(vp);
1230 		if (rootvp != NULL) {
1231 			vn_seqc_write_end(rootvp);
1232 			vdrop(rootvp);
1233 		}
1234 		vn_seqc_write_end(vp);
1235 		vrele(vp);
1236 		return (error);
1237 	}
1238 	vn_seqc_write_begin(newdp);
1239 	VOP_UNLOCK(newdp);
1240 
1241 	if (mp->mnt_opt != NULL)
1242 		vfs_freeopts(mp->mnt_opt);
1243 	mp->mnt_opt = mp->mnt_optnew;
1244 	*optlist = NULL;
1245 
1246 	/*
1247 	 * Prevent external consumers of mount options from reading mnt_optnew.
1248 	 */
1249 	mp->mnt_optnew = NULL;
1250 
1251 	MNT_ILOCK(mp);
1252 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1253 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1254 		mp->mnt_kern_flag |= MNTK_ASYNC;
1255 	else
1256 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1257 	MNT_IUNLOCK(mp);
1258 
1259 	/*
1260 	 * VIRF_MOUNTPOINT and v_mountedhere need to be set under the
1261 	 * vp lock to satisfy vfs_lookup() requirements.
1262 	 */
1263 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1264 	VI_LOCK(vp);
1265 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1266 	vp->v_mountedhere = mp;
1267 	VI_UNLOCK(vp);
1268 	VOP_UNLOCK(vp);
1269 	cache_purge(vp);
1270 
1271 	/*
1272 	 * We need to lock both vnodes.
1273 	 *
1274 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1275 	 * from different filesystems.
1276 	 */
1277 	vn_lock_pair(vp, false, LK_EXCLUSIVE, newdp, false, LK_EXCLUSIVE);
1278 
1279 	VI_LOCK(vp);
1280 	vp->v_iflag &= ~VI_MOUNT;
1281 	VI_UNLOCK(vp);
1282 	/* Place the new filesystem at the end of the mount list. */
1283 	mtx_lock(&mountlist_mtx);
1284 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1285 	mtx_unlock(&mountlist_mtx);
1286 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1287 	VOP_UNLOCK(vp);
1288 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1289 	VOP_UNLOCK(newdp);
1290 	mount_devctl_event("MOUNT", mp, false);
1291 	mountcheckdirs(vp, newdp);
1292 	vn_seqc_write_end(vp);
1293 	vn_seqc_write_end(newdp);
1294 	vrele(newdp);
1295 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1296 		vfs_allocate_syncvnode(mp);
1297 	vfs_op_exit(mp);
1298 	vfs_unbusy(mp);
1299 	return (0);
1300 }
1301 
1302 /*
1303  * vfs_domount_update(): update of mounted file system
1304  */
1305 static int
vfs_domount_update(struct thread * td,struct vnode * vp,uint64_t fsflags,bool jail_export,struct vfsoptlist ** optlist)1306 vfs_domount_update(
1307 	struct thread *td,		/* Calling thread. */
1308 	struct vnode *vp,		/* Mount point vnode. */
1309 	uint64_t fsflags,		/* Flags common to all filesystems. */
1310 	bool jail_export,		/* Got export option in vnet prison. */
1311 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1312 	)
1313 {
1314 	struct export_args export;
1315 	struct o2export_args o2export;
1316 	struct vnode *rootvp;
1317 	void *bufp;
1318 	struct mount *mp;
1319 	int error, export_error, i, len, fsid_up_len;
1320 	uint64_t flag, mnt_union;
1321 	gid_t *grps;
1322 	fsid_t *fsid_up;
1323 	bool vfs_suser_failed;
1324 
1325 	ASSERT_VOP_ELOCKED(vp, __func__);
1326 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1327 	mp = vp->v_mount;
1328 
1329 	if ((vp->v_vflag & VV_ROOT) == 0) {
1330 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1331 		    == 0)
1332 			error = EXDEV;
1333 		else
1334 			error = EINVAL;
1335 		vput(vp);
1336 		return (error);
1337 	}
1338 
1339 	/*
1340 	 * We only allow the filesystem to be reloaded if it
1341 	 * is currently mounted read-only.
1342 	 */
1343 	flag = mp->mnt_flag;
1344 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1345 		vput(vp);
1346 		return (EOPNOTSUPP);	/* Needs translation */
1347 	}
1348 	/*
1349 	 * Only privileged root, or (if MNT_USER is set) the user that
1350 	 * did the original mount is permitted to update it.
1351 	 */
1352 	/*
1353 	 * For the case of mountd(8) doing exports in a jail, the vfs_suser()
1354 	 * call does not cause failure.  vfs_domount() has already checked
1355 	 * that "root" is doing this and vfs_suser() will fail when
1356 	 * the file system has been mounted outside the jail.
1357 	 * jail_export set true indicates that "export" is not mixed
1358 	 * with other options that change mount behaviour.
1359 	 */
1360 	vfs_suser_failed = false;
1361 	error = vfs_suser(mp, td);
1362 	if (jail_export && error != 0) {
1363 		error = 0;
1364 		vfs_suser_failed = true;
1365 	}
1366 	if (error != 0) {
1367 		vput(vp);
1368 		return (error);
1369 	}
1370 	if (vfs_busy(mp, MBF_NOWAIT)) {
1371 		vput(vp);
1372 		return (EBUSY);
1373 	}
1374 	VI_LOCK(vp);
1375 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1376 		VI_UNLOCK(vp);
1377 		vfs_unbusy(mp);
1378 		vput(vp);
1379 		return (EBUSY);
1380 	}
1381 	vp->v_iflag |= VI_MOUNT;
1382 	VI_UNLOCK(vp);
1383 	VOP_UNLOCK(vp);
1384 
1385 	rootvp = NULL;
1386 	vfs_op_enter(mp);
1387 	vn_seqc_write_begin(vp);
1388 
1389 	if (vfs_getopt(*optlist, "fsid", (void **)&fsid_up,
1390 	    &fsid_up_len) == 0) {
1391 		if (fsid_up_len != sizeof(*fsid_up)) {
1392 			error = EINVAL;
1393 			goto end;
1394 		}
1395 		if (fsidcmp(fsid_up, &mp->mnt_stat.f_fsid) != 0) {
1396 			error = ENOENT;
1397 			goto end;
1398 		}
1399 		vfs_deleteopt(*optlist, "fsid");
1400 	}
1401 
1402 	mnt_union = 0;
1403 	MNT_ILOCK(mp);
1404 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1405 		MNT_IUNLOCK(mp);
1406 		error = EBUSY;
1407 		goto end;
1408 	}
1409 	if (vfs_suser_failed) {
1410 		KASSERT((fsflags & (MNT_EXPORTED | MNT_UPDATE)) ==
1411 		    (MNT_EXPORTED | MNT_UPDATE),
1412 		    ("%s: jailed export did not set expected fsflags",
1413 		     __func__));
1414 		/*
1415 		 * For this case, only MNT_UPDATE and
1416 		 * MNT_EXPORTED have been set in fsflags
1417 		 * by the options.  Only set MNT_UPDATE,
1418 		 * since that is the one that would be set
1419 		 * when set in fsflags, below.
1420 		 */
1421 		mp->mnt_flag |= MNT_UPDATE;
1422 	} else {
1423 		mp->mnt_flag &= ~MNT_UPDATEMASK;
1424 		if ((mp->mnt_flag & MNT_UNION) == 0 &&
1425 		    (fsflags & MNT_UNION) != 0) {
1426 			fsflags &= ~MNT_UNION;
1427 			mnt_union = MNT_UNION;
1428 		}
1429 		mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1430 		    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1431 		if ((mp->mnt_flag & MNT_ASYNC) == 0)
1432 			mp->mnt_kern_flag &= ~MNTK_ASYNC;
1433 	}
1434 	rootvp = vfs_cache_root_clear(mp);
1435 	MNT_IUNLOCK(mp);
1436 	mp->mnt_optnew = *optlist;
1437 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1438 
1439 	/*
1440 	 * Mount the filesystem.
1441 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1442 	 * get.  No freeing of cn_pnbuf.
1443 	 */
1444 	/*
1445 	 * For the case of mountd(8) doing exports from within a vnet jail,
1446 	 * "from" is typically not set correctly such that VFS_MOUNT() will
1447 	 * return ENOENT. It is not obvious that VFS_MOUNT() ever needs to be
1448 	 * called when mountd is doing exports, but this check only applies to
1449 	 * the specific case where it is running inside a vnet jail, to
1450 	 * avoid any POLA violation.
1451 	 */
1452 	error = 0;
1453 	if (!jail_export)
1454 		error = VFS_MOUNT(mp);
1455 
1456 	export_error = 0;
1457 	/* Process the export option. */
1458 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1459 	    &len) == 0) {
1460 		/* Assume that there is only 1 ABI for each length. */
1461 		switch (len) {
1462 		case (sizeof(struct oexport_args)):
1463 			bzero(&o2export, sizeof(o2export));
1464 			/* FALLTHROUGH */
1465 		case (sizeof(o2export)):
1466 			bcopy(bufp, &o2export, len);
1467 			export.ex_flags = (uint64_t)o2export.ex_flags;
1468 			export.ex_root = o2export.ex_root;
1469 			export.ex_uid = o2export.ex_anon.cr_uid;
1470 			export.ex_groups = NULL;
1471 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1472 			if (export.ex_ngroups > 0) {
1473 				if (export.ex_ngroups <= XU_NGROUPS) {
1474 					export.ex_groups = malloc(
1475 					    export.ex_ngroups * sizeof(gid_t),
1476 					    M_TEMP, M_WAITOK);
1477 					for (i = 0; i < export.ex_ngroups; i++)
1478 						export.ex_groups[i] =
1479 						  o2export.ex_anon.cr_groups[i];
1480 				} else
1481 					export_error = EINVAL;
1482 			} else if (export.ex_ngroups < 0)
1483 				export_error = EINVAL;
1484 			export.ex_addr = o2export.ex_addr;
1485 			export.ex_addrlen = o2export.ex_addrlen;
1486 			export.ex_mask = o2export.ex_mask;
1487 			export.ex_masklen = o2export.ex_masklen;
1488 			export.ex_indexfile = o2export.ex_indexfile;
1489 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1490 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1491 				for (i = 0; i < export.ex_numsecflavors; i++)
1492 					export.ex_secflavors[i] =
1493 					    o2export.ex_secflavors[i];
1494 			} else
1495 				export_error = EINVAL;
1496 			if (export_error == 0)
1497 				export_error = vfs_export(mp, &export, true);
1498 			free(export.ex_groups, M_TEMP);
1499 			break;
1500 		case (sizeof(export)):
1501 			bcopy(bufp, &export, len);
1502 			grps = NULL;
1503 			if (export.ex_ngroups > 0) {
1504 				if (export.ex_ngroups <= ngroups_max + 1) {
1505 					grps = malloc(export.ex_ngroups *
1506 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1507 					export_error = copyin(export.ex_groups,
1508 					    grps, export.ex_ngroups *
1509 					    sizeof(gid_t));
1510 					if (export_error == 0)
1511 						export.ex_groups = grps;
1512 				} else
1513 					export_error = EINVAL;
1514 			} else if (export.ex_ngroups == 0)
1515 				export.ex_groups = NULL;
1516 			else
1517 				export_error = EINVAL;
1518 			if (export_error == 0)
1519 				export_error = vfs_export(mp, &export, true);
1520 			free(grps, M_TEMP);
1521 			break;
1522 		default:
1523 			export_error = EINVAL;
1524 			break;
1525 		}
1526 	}
1527 
1528 	MNT_ILOCK(mp);
1529 	if (error == 0) {
1530 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1531 		    MNT_SNAPSHOT);
1532 		mp->mnt_flag |= mnt_union;
1533 	} else {
1534 		/*
1535 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1536 		 * because it is not part of MNT_UPDATEMASK, but it could have
1537 		 * changed in the meantime if quotactl(2) was called.
1538 		 * All in all we want current value of MNT_QUOTA, not the old
1539 		 * one.
1540 		 */
1541 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1542 	}
1543 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1544 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1545 		mp->mnt_kern_flag |= MNTK_ASYNC;
1546 	else
1547 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1548 	MNT_IUNLOCK(mp);
1549 
1550 	if (error != 0)
1551 		goto end;
1552 
1553 	mount_devctl_event("REMOUNT", mp, true);
1554 	if (mp->mnt_opt != NULL)
1555 		vfs_freeopts(mp->mnt_opt);
1556 	mp->mnt_opt = mp->mnt_optnew;
1557 	*optlist = NULL;
1558 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1559 	/*
1560 	 * Prevent external consumers of mount options from reading
1561 	 * mnt_optnew.
1562 	 */
1563 	mp->mnt_optnew = NULL;
1564 
1565 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1566 		vfs_allocate_syncvnode(mp);
1567 	else
1568 		vfs_deallocate_syncvnode(mp);
1569 end:
1570 	vfs_op_exit(mp);
1571 	if (rootvp != NULL) {
1572 		vn_seqc_write_end(rootvp);
1573 		vrele(rootvp);
1574 	}
1575 	vn_seqc_write_end(vp);
1576 	vfs_unbusy(mp);
1577 	VI_LOCK(vp);
1578 	vp->v_iflag &= ~VI_MOUNT;
1579 	VI_UNLOCK(vp);
1580 	vrele(vp);
1581 	return (error != 0 ? error : export_error);
1582 }
1583 
1584 /*
1585  * vfs_domount(): actually attempt a filesystem mount.
1586  */
1587 static int
vfs_domount(struct thread * td,const char * fstype,char * fspath,uint64_t fsflags,bool jail_export,struct vfsoptlist ** optlist)1588 vfs_domount(
1589 	struct thread *td,		/* Calling thread. */
1590 	const char *fstype,		/* Filesystem type. */
1591 	char *fspath,			/* Mount path. */
1592 	uint64_t fsflags,		/* Flags common to all filesystems. */
1593 	bool jail_export,		/* Got export option in vnet prison. */
1594 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1595 	)
1596 {
1597 	struct vfsconf *vfsp;
1598 	struct nameidata nd;
1599 	struct vnode *vp;
1600 	char *pathbuf;
1601 	int error;
1602 
1603 	/*
1604 	 * Be ultra-paranoid about making sure the type and fspath
1605 	 * variables will fit in our mp buffers, including the
1606 	 * terminating NUL.
1607 	 */
1608 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1609 		return (ENAMETOOLONG);
1610 
1611 	if (jail_export) {
1612 		error = priv_check(td, PRIV_NFS_DAEMON);
1613 		if (error)
1614 			return (error);
1615 	} else if (jailed(td->td_ucred) || usermount == 0) {
1616 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1617 			return (error);
1618 	}
1619 
1620 	/*
1621 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1622 	 */
1623 	if (fsflags & MNT_EXPORTED) {
1624 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1625 		if (error)
1626 			return (error);
1627 	}
1628 	if (fsflags & MNT_SUIDDIR) {
1629 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1630 		if (error)
1631 			return (error);
1632 	}
1633 	/*
1634 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1635 	 */
1636 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1637 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1638 			fsflags |= MNT_NOSUID | MNT_USER;
1639 	}
1640 
1641 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1642 	vfsp = NULL;
1643 	if ((fsflags & MNT_UPDATE) == 0) {
1644 		/* Don't try to load KLDs if we're mounting the root. */
1645 		if (fsflags & MNT_ROOTFS) {
1646 			if ((vfsp = vfs_byname(fstype)) == NULL)
1647 				return (ENODEV);
1648 		} else {
1649 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1650 				return (error);
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1656 	 */
1657 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1 | WANTPARENT,
1658 	    UIO_SYSSPACE, fspath);
1659 	error = namei(&nd);
1660 	if (error != 0)
1661 		return (error);
1662 	vp = nd.ni_vp;
1663 	/*
1664 	 * Don't allow stacking file mounts to work around problems with the way
1665 	 * that namei sets nd.ni_dvp to vp_crossmp for these.
1666 	 */
1667 	if (vp->v_type == VREG)
1668 		fsflags |= MNT_NOCOVER;
1669 	if ((fsflags & MNT_UPDATE) == 0) {
1670 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1671 		    (fsflags & MNT_NOCOVER) != 0) {
1672 			vput(vp);
1673 			error = EBUSY;
1674 			goto out;
1675 		}
1676 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1677 		strcpy(pathbuf, fspath);
1678 		/*
1679 		 * Note: we allow any vnode type here. If the path sanity check
1680 		 * succeeds, the type will be validated in vfs_domount_first
1681 		 * above.
1682 		 */
1683 		if (vp->v_type == VDIR)
1684 			error = vn_path_to_global_path(td, vp, pathbuf,
1685 			    MNAMELEN);
1686 		else
1687 			error = vn_path_to_global_path_hardlink(td, vp,
1688 			    nd.ni_dvp, pathbuf, MNAMELEN,
1689 			    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
1690 		if (error == 0) {
1691 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1692 			    fsflags, optlist);
1693 		}
1694 		free(pathbuf, M_TEMP);
1695 	} else
1696 		error = vfs_domount_update(td, vp, fsflags, jail_export,
1697 		    optlist);
1698 
1699 out:
1700 	NDFREE_PNBUF(&nd);
1701 	vrele(nd.ni_dvp);
1702 
1703 	return (error);
1704 }
1705 
1706 /*
1707  * Unmount a filesystem.
1708  *
1709  * Note: unmount takes a path to the vnode mounted on as argument, not
1710  * special file (as before).
1711  */
1712 #ifndef _SYS_SYSPROTO_H_
1713 struct unmount_args {
1714 	char	*path;
1715 	int	flags;
1716 };
1717 #endif
1718 /* ARGSUSED */
1719 int
sys_unmount(struct thread * td,struct unmount_args * uap)1720 sys_unmount(struct thread *td, struct unmount_args *uap)
1721 {
1722 
1723 	return (kern_unmount(td, uap->path, uap->flags));
1724 }
1725 
1726 int
kern_unmount(struct thread * td,const char * path,int flags)1727 kern_unmount(struct thread *td, const char *path, int flags)
1728 {
1729 	struct nameidata nd;
1730 	struct mount *mp;
1731 	char *fsidbuf, *pathbuf;
1732 	fsid_t fsid;
1733 	int error;
1734 
1735 	AUDIT_ARG_VALUE(flags);
1736 	if (jailed(td->td_ucred) || usermount == 0) {
1737 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1738 		if (error)
1739 			return (error);
1740 	}
1741 
1742 	if (flags & MNT_BYFSID) {
1743 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1744 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1745 		if (error) {
1746 			free(fsidbuf, M_TEMP);
1747 			return (error);
1748 		}
1749 
1750 		AUDIT_ARG_TEXT(fsidbuf);
1751 		/* Decode the filesystem ID. */
1752 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1753 			free(fsidbuf, M_TEMP);
1754 			return (EINVAL);
1755 		}
1756 
1757 		mp = vfs_getvfs(&fsid);
1758 		free(fsidbuf, M_TEMP);
1759 		if (mp == NULL) {
1760 			return (ENOENT);
1761 		}
1762 	} else {
1763 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1764 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1765 		if (error) {
1766 			free(pathbuf, M_TEMP);
1767 			return (error);
1768 		}
1769 
1770 		/*
1771 		 * Try to find global path for path argument.
1772 		 */
1773 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1774 		    UIO_SYSSPACE, pathbuf);
1775 		if (namei(&nd) == 0) {
1776 			NDFREE_PNBUF(&nd);
1777 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1778 			    MNAMELEN);
1779 			if (error == 0)
1780 				vput(nd.ni_vp);
1781 		}
1782 		mtx_lock(&mountlist_mtx);
1783 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1784 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1785 				vfs_ref(mp);
1786 				break;
1787 			}
1788 		}
1789 		mtx_unlock(&mountlist_mtx);
1790 		free(pathbuf, M_TEMP);
1791 		if (mp == NULL) {
1792 			/*
1793 			 * Previously we returned ENOENT for a nonexistent path and
1794 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1795 			 * now, so in the !MNT_BYFSID case return the more likely
1796 			 * EINVAL for compatibility.
1797 			 */
1798 			return (EINVAL);
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * Don't allow unmounting the root filesystem.
1804 	 */
1805 	if (mp->mnt_flag & MNT_ROOTFS) {
1806 		vfs_rel(mp);
1807 		return (EINVAL);
1808 	}
1809 	error = dounmount(mp, flags, td);
1810 	return (error);
1811 }
1812 
1813 /*
1814  * Return error if any of the vnodes, ignoring the root vnode
1815  * and the syncer vnode, have non-zero usecount.
1816  *
1817  * This function is purely advisory - it can return false positives
1818  * and negatives.
1819  */
1820 static int
vfs_check_usecounts(struct mount * mp)1821 vfs_check_usecounts(struct mount *mp)
1822 {
1823 	struct vnode *vp, *mvp;
1824 
1825 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1826 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1827 		    vp->v_usecount != 0) {
1828 			VI_UNLOCK(vp);
1829 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1830 			return (EBUSY);
1831 		}
1832 		VI_UNLOCK(vp);
1833 	}
1834 
1835 	return (0);
1836 }
1837 
1838 static void
dounmount_cleanup(struct mount * mp,struct vnode * coveredvp,int mntkflags)1839 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1840 {
1841 
1842 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1843 	mp->mnt_kern_flag &= ~mntkflags;
1844 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1845 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1846 		wakeup(mp);
1847 	}
1848 	vfs_op_exit_locked(mp);
1849 	MNT_IUNLOCK(mp);
1850 	if (coveredvp != NULL) {
1851 		VOP_UNLOCK(coveredvp);
1852 		vdrop(coveredvp);
1853 	}
1854 	vn_finished_write(mp);
1855 	vfs_rel(mp);
1856 }
1857 
1858 /*
1859  * There are various reference counters associated with the mount point.
1860  * Normally it is permitted to modify them without taking the mnt ilock,
1861  * but this behavior can be temporarily disabled if stable value is needed
1862  * or callers are expected to block (e.g. to not allow new users during
1863  * forced unmount).
1864  */
1865 void
vfs_op_enter(struct mount * mp)1866 vfs_op_enter(struct mount *mp)
1867 {
1868 	struct mount_pcpu *mpcpu;
1869 	int cpu;
1870 
1871 	MNT_ILOCK(mp);
1872 	mp->mnt_vfs_ops++;
1873 	if (mp->mnt_vfs_ops > 1) {
1874 		MNT_IUNLOCK(mp);
1875 		return;
1876 	}
1877 	vfs_op_barrier_wait(mp);
1878 	CPU_FOREACH(cpu) {
1879 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1880 
1881 		mp->mnt_ref += mpcpu->mntp_ref;
1882 		mpcpu->mntp_ref = 0;
1883 
1884 		mp->mnt_lockref += mpcpu->mntp_lockref;
1885 		mpcpu->mntp_lockref = 0;
1886 
1887 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1888 		mpcpu->mntp_writeopcount = 0;
1889 	}
1890 	MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1891 	    mp->mnt_writeopcount >= 0, mp,
1892 	    ("invalid count(s): ref %d lockref %d writeopcount %d",
1893 	    mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1894 	MNT_IUNLOCK(mp);
1895 	vfs_assert_mount_counters(mp);
1896 }
1897 
1898 void
vfs_op_exit_locked(struct mount * mp)1899 vfs_op_exit_locked(struct mount *mp)
1900 {
1901 
1902 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1903 
1904 	MPASSERT(mp->mnt_vfs_ops > 0, mp,
1905 	    ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1906 	MPASSERT(mp->mnt_vfs_ops > 1 ||
1907 	    (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1908 	    ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1909 	mp->mnt_vfs_ops--;
1910 }
1911 
1912 void
vfs_op_exit(struct mount * mp)1913 vfs_op_exit(struct mount *mp)
1914 {
1915 
1916 	MNT_ILOCK(mp);
1917 	vfs_op_exit_locked(mp);
1918 	MNT_IUNLOCK(mp);
1919 }
1920 
1921 struct vfs_op_barrier_ipi {
1922 	struct mount *mp;
1923 	struct smp_rendezvous_cpus_retry_arg srcra;
1924 };
1925 
1926 static void
vfs_op_action_func(void * arg)1927 vfs_op_action_func(void *arg)
1928 {
1929 	struct vfs_op_barrier_ipi *vfsopipi;
1930 	struct mount *mp;
1931 
1932 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1933 	mp = vfsopipi->mp;
1934 
1935 	if (!vfs_op_thread_entered(mp))
1936 		smp_rendezvous_cpus_done(arg);
1937 }
1938 
1939 static void
vfs_op_wait_func(void * arg,int cpu)1940 vfs_op_wait_func(void *arg, int cpu)
1941 {
1942 	struct vfs_op_barrier_ipi *vfsopipi;
1943 	struct mount *mp;
1944 	struct mount_pcpu *mpcpu;
1945 
1946 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1947 	mp = vfsopipi->mp;
1948 
1949 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1950 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1951 		cpu_spinwait();
1952 }
1953 
1954 void
vfs_op_barrier_wait(struct mount * mp)1955 vfs_op_barrier_wait(struct mount *mp)
1956 {
1957 	struct vfs_op_barrier_ipi vfsopipi;
1958 
1959 	vfsopipi.mp = mp;
1960 
1961 	smp_rendezvous_cpus_retry(all_cpus,
1962 	    smp_no_rendezvous_barrier,
1963 	    vfs_op_action_func,
1964 	    smp_no_rendezvous_barrier,
1965 	    vfs_op_wait_func,
1966 	    &vfsopipi.srcra);
1967 }
1968 
1969 #ifdef DIAGNOSTIC
1970 void
vfs_assert_mount_counters(struct mount * mp)1971 vfs_assert_mount_counters(struct mount *mp)
1972 {
1973 	struct mount_pcpu *mpcpu;
1974 	int cpu;
1975 
1976 	if (mp->mnt_vfs_ops == 0)
1977 		return;
1978 
1979 	CPU_FOREACH(cpu) {
1980 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1981 		if (mpcpu->mntp_ref != 0 ||
1982 		    mpcpu->mntp_lockref != 0 ||
1983 		    mpcpu->mntp_writeopcount != 0)
1984 			vfs_dump_mount_counters(mp);
1985 	}
1986 }
1987 
1988 void
vfs_dump_mount_counters(struct mount * mp)1989 vfs_dump_mount_counters(struct mount *mp)
1990 {
1991 	struct mount_pcpu *mpcpu;
1992 	int ref, lockref, writeopcount;
1993 	int cpu;
1994 
1995 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1996 
1997 	printf("        ref : ");
1998 	ref = mp->mnt_ref;
1999 	CPU_FOREACH(cpu) {
2000 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2001 		printf("%d ", mpcpu->mntp_ref);
2002 		ref += mpcpu->mntp_ref;
2003 	}
2004 	printf("\n");
2005 	printf("    lockref : ");
2006 	lockref = mp->mnt_lockref;
2007 	CPU_FOREACH(cpu) {
2008 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2009 		printf("%d ", mpcpu->mntp_lockref);
2010 		lockref += mpcpu->mntp_lockref;
2011 	}
2012 	printf("\n");
2013 	printf("writeopcount: ");
2014 	writeopcount = mp->mnt_writeopcount;
2015 	CPU_FOREACH(cpu) {
2016 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2017 		printf("%d ", mpcpu->mntp_writeopcount);
2018 		writeopcount += mpcpu->mntp_writeopcount;
2019 	}
2020 	printf("\n");
2021 
2022 	printf("counter       struct total\n");
2023 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
2024 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
2025 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
2026 
2027 	panic("invalid counts on struct mount");
2028 }
2029 #endif
2030 
2031 int
vfs_mount_fetch_counter(struct mount * mp,enum mount_counter which)2032 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
2033 {
2034 	struct mount_pcpu *mpcpu;
2035 	int cpu, sum;
2036 
2037 	switch (which) {
2038 	case MNT_COUNT_REF:
2039 		sum = mp->mnt_ref;
2040 		break;
2041 	case MNT_COUNT_LOCKREF:
2042 		sum = mp->mnt_lockref;
2043 		break;
2044 	case MNT_COUNT_WRITEOPCOUNT:
2045 		sum = mp->mnt_writeopcount;
2046 		break;
2047 	}
2048 
2049 	CPU_FOREACH(cpu) {
2050 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2051 		switch (which) {
2052 		case MNT_COUNT_REF:
2053 			sum += mpcpu->mntp_ref;
2054 			break;
2055 		case MNT_COUNT_LOCKREF:
2056 			sum += mpcpu->mntp_lockref;
2057 			break;
2058 		case MNT_COUNT_WRITEOPCOUNT:
2059 			sum += mpcpu->mntp_writeopcount;
2060 			break;
2061 		}
2062 	}
2063 	return (sum);
2064 }
2065 
2066 static bool
deferred_unmount_enqueue(struct mount * mp,uint64_t flags,bool requeue,int timeout_ticks)2067 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
2068     int timeout_ticks)
2069 {
2070 	bool enqueued;
2071 
2072 	enqueued = false;
2073 	mtx_lock(&deferred_unmount_lock);
2074 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
2075 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
2076 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
2077 		    mnt_taskqueue_link);
2078 		enqueued = true;
2079 	}
2080 	mtx_unlock(&deferred_unmount_lock);
2081 
2082 	if (enqueued) {
2083 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
2084 		    &deferred_unmount_task, timeout_ticks);
2085 	}
2086 
2087 	return (enqueued);
2088 }
2089 
2090 /*
2091  * Taskqueue handler for processing async/recursive unmounts
2092  */
2093 static void
vfs_deferred_unmount(void * argi __unused,int pending __unused)2094 vfs_deferred_unmount(void *argi __unused, int pending __unused)
2095 {
2096 	STAILQ_HEAD(, mount) local_unmounts;
2097 	uint64_t flags;
2098 	struct mount *mp, *tmp;
2099 	int error;
2100 	unsigned int retries;
2101 	bool unmounted;
2102 
2103 	STAILQ_INIT(&local_unmounts);
2104 	mtx_lock(&deferred_unmount_lock);
2105 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
2106 	mtx_unlock(&deferred_unmount_lock);
2107 
2108 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
2109 		flags = mp->mnt_taskqueue_flags;
2110 		KASSERT((flags & MNT_DEFERRED) != 0,
2111 		    ("taskqueue unmount without MNT_DEFERRED"));
2112 		error = dounmount(mp, flags, curthread);
2113 		if (error != 0) {
2114 			MNT_ILOCK(mp);
2115 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
2116 			MNT_IUNLOCK(mp);
2117 
2118 			/*
2119 			 * The deferred unmount thread is the only thread that
2120 			 * modifies the retry counts, so locking/atomics aren't
2121 			 * needed here.
2122 			 */
2123 			retries = (mp->mnt_unmount_retries)++;
2124 			deferred_unmount_total_retries++;
2125 			if (!unmounted && retries < deferred_unmount_retry_limit) {
2126 				deferred_unmount_enqueue(mp, flags, true,
2127 				    -deferred_unmount_retry_delay_hz);
2128 			} else {
2129 				if (retries >= deferred_unmount_retry_limit) {
2130 					printf("giving up on deferred unmount "
2131 					    "of %s after %d retries, error %d\n",
2132 					    mp->mnt_stat.f_mntonname, retries, error);
2133 				}
2134 				vfs_rel(mp);
2135 			}
2136 		}
2137 	}
2138 }
2139 
2140 /*
2141  * Do the actual filesystem unmount.
2142  */
2143 int
dounmount(struct mount * mp,uint64_t flags,struct thread * td)2144 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2145 {
2146 	struct mount_upper_node *upper;
2147 	struct vnode *coveredvp, *rootvp;
2148 	int error;
2149 	uint64_t async_flag;
2150 	int mnt_gen_r;
2151 	unsigned int retries;
2152 
2153 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2154 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2155 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2156 
2157 	/*
2158 	 * If the caller has explicitly requested the unmount to be handled by
2159 	 * the taskqueue and we're not already in taskqueue context, queue
2160 	 * up the unmount request and exit.  This is done prior to any
2161 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2162 	 * initiated unmounts and will therefore be processed with the
2163 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2164 	 * should be sure this is the behavior they want.
2165 	 */
2166 	if ((flags & MNT_DEFERRED) != 0 &&
2167 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2168 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2169 			vfs_rel(mp);
2170 		return (EINPROGRESS);
2171 	}
2172 
2173 	/*
2174 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2175 	 * original mount is permitted to unmount this filesystem.
2176 	 * This check should be made prior to queueing up any recursive
2177 	 * unmounts of upper filesystems.  Those unmounts will be executed
2178 	 * with kernel thread credentials and are expected to succeed, so
2179 	 * we must at least ensure the originating context has sufficient
2180 	 * privilege to unmount the base filesystem before proceeding with
2181 	 * the uppers.
2182 	 */
2183 	error = vfs_suser(mp, td);
2184 	if (error != 0) {
2185 		KASSERT((flags & MNT_DEFERRED) == 0,
2186 		    ("taskqueue unmount with insufficient privilege"));
2187 		vfs_rel(mp);
2188 		return (error);
2189 	}
2190 
2191 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2192 		flags |= MNT_RECURSE;
2193 
2194 	if ((flags & MNT_RECURSE) != 0) {
2195 		KASSERT((flags & MNT_FORCE) != 0,
2196 		    ("MNT_RECURSE requires MNT_FORCE"));
2197 
2198 		MNT_ILOCK(mp);
2199 		/*
2200 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2201 		 * added, and note that an operation on the uppers list is in
2202 		 * progress.  This will ensure that unregistration from the
2203 		 * uppers list, and therefore any pending unmount of the upper
2204 		 * FS, can't complete until after we finish walking the list.
2205 		 */
2206 		mp->mnt_kern_flag |= MNTK_RECURSE;
2207 		mp->mnt_upper_pending++;
2208 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2209 			retries = upper->mp->mnt_unmount_retries;
2210 			if (retries > deferred_unmount_retry_limit) {
2211 				error = EBUSY;
2212 				continue;
2213 			}
2214 			MNT_IUNLOCK(mp);
2215 
2216 			vfs_ref(upper->mp);
2217 			if (!deferred_unmount_enqueue(upper->mp, flags,
2218 			    false, 0))
2219 				vfs_rel(upper->mp);
2220 			MNT_ILOCK(mp);
2221 		}
2222 		mp->mnt_upper_pending--;
2223 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2224 		    mp->mnt_upper_pending == 0) {
2225 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2226 			wakeup(&mp->mnt_uppers);
2227 		}
2228 
2229 		/*
2230 		 * If we're not on the taskqueue, wait until the uppers list
2231 		 * is drained before proceeding with unmount.  Otherwise, if
2232 		 * we are on the taskqueue and there are still pending uppers,
2233 		 * just re-enqueue on the end of the taskqueue.
2234 		 */
2235 		if ((flags & MNT_DEFERRED) == 0) {
2236 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2237 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2238 				error = msleep(&mp->mnt_taskqueue_link,
2239 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2240 			}
2241 			if (error != 0) {
2242 				MNT_REL(mp);
2243 				MNT_IUNLOCK(mp);
2244 				return (error);
2245 			}
2246 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2247 			MNT_IUNLOCK(mp);
2248 			if (error == 0)
2249 				deferred_unmount_enqueue(mp, flags, true, 0);
2250 			return (error);
2251 		}
2252 		MNT_IUNLOCK(mp);
2253 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2254 	}
2255 
2256 	/* Allow the taskqueue to safely re-enqueue on failure */
2257 	if ((flags & MNT_DEFERRED) != 0)
2258 		vfs_ref(mp);
2259 
2260 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2261 		mnt_gen_r = mp->mnt_gen;
2262 		VI_LOCK(coveredvp);
2263 		vholdl(coveredvp);
2264 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2265 		/*
2266 		 * Check for mp being unmounted while waiting for the
2267 		 * covered vnode lock.
2268 		 */
2269 		if (coveredvp->v_mountedhere != mp ||
2270 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2271 			VOP_UNLOCK(coveredvp);
2272 			vdrop(coveredvp);
2273 			vfs_rel(mp);
2274 			return (EBUSY);
2275 		}
2276 	}
2277 
2278 	vfs_op_enter(mp);
2279 
2280 	vn_start_write(NULL, &mp, V_WAIT);
2281 	MNT_ILOCK(mp);
2282 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2283 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2284 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2285 		dounmount_cleanup(mp, coveredvp, 0);
2286 		return (EBUSY);
2287 	}
2288 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2289 	rootvp = vfs_cache_root_clear(mp);
2290 	if (coveredvp != NULL)
2291 		vn_seqc_write_begin(coveredvp);
2292 	if (flags & MNT_NONBUSY) {
2293 		MNT_IUNLOCK(mp);
2294 		error = vfs_check_usecounts(mp);
2295 		MNT_ILOCK(mp);
2296 		if (error != 0) {
2297 			vn_seqc_write_end(coveredvp);
2298 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2299 			if (rootvp != NULL) {
2300 				vn_seqc_write_end(rootvp);
2301 				vrele(rootvp);
2302 			}
2303 			return (error);
2304 		}
2305 	}
2306 	/* Allow filesystems to detect that a forced unmount is in progress. */
2307 	if (flags & MNT_FORCE) {
2308 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2309 		MNT_IUNLOCK(mp);
2310 		/*
2311 		 * Must be done after setting MNTK_UNMOUNTF and before
2312 		 * waiting for mnt_lockref to become 0.
2313 		 */
2314 		VFS_PURGE(mp);
2315 		MNT_ILOCK(mp);
2316 	}
2317 	error = 0;
2318 	if (mp->mnt_lockref) {
2319 		mp->mnt_kern_flag |= MNTK_DRAINING;
2320 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2321 		    "mount drain", 0);
2322 	}
2323 	MNT_IUNLOCK(mp);
2324 	KASSERT(mp->mnt_lockref == 0,
2325 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2326 	    __func__, __FILE__, __LINE__));
2327 	KASSERT(error == 0,
2328 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2329 	    __func__, __FILE__, __LINE__));
2330 
2331 	/*
2332 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2333 	 * after we are done with unmount. Downgrade our reference to a mere
2334 	 * hold count so that we don't interefere with anything.
2335 	 */
2336 	if (rootvp != NULL) {
2337 		vhold(rootvp);
2338 		vrele(rootvp);
2339 	}
2340 
2341 	if (mp->mnt_flag & MNT_EXPUBLIC)
2342 		vfs_setpublicfs(NULL, NULL, NULL);
2343 
2344 	vfs_periodic(mp, MNT_WAIT);
2345 	MNT_ILOCK(mp);
2346 	async_flag = mp->mnt_flag & MNT_ASYNC;
2347 	mp->mnt_flag &= ~MNT_ASYNC;
2348 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2349 	MNT_IUNLOCK(mp);
2350 	vfs_deallocate_syncvnode(mp);
2351 	error = VFS_UNMOUNT(mp, flags);
2352 	vn_finished_write(mp);
2353 	vfs_rel(mp);
2354 	/*
2355 	 * If we failed to flush the dirty blocks for this mount point,
2356 	 * undo all the cdir/rdir and rootvnode changes we made above.
2357 	 * Unless we failed to do so because the device is reporting that
2358 	 * it doesn't exist anymore.
2359 	 */
2360 	if (error && error != ENXIO) {
2361 		MNT_ILOCK(mp);
2362 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2363 			MNT_IUNLOCK(mp);
2364 			vfs_allocate_syncvnode(mp);
2365 			MNT_ILOCK(mp);
2366 		}
2367 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2368 		mp->mnt_flag |= async_flag;
2369 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2370 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2371 			mp->mnt_kern_flag |= MNTK_ASYNC;
2372 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2373 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2374 			wakeup(mp);
2375 		}
2376 		vfs_op_exit_locked(mp);
2377 		MNT_IUNLOCK(mp);
2378 		if (coveredvp) {
2379 			vn_seqc_write_end(coveredvp);
2380 			VOP_UNLOCK(coveredvp);
2381 			vdrop(coveredvp);
2382 		}
2383 		if (rootvp != NULL) {
2384 			vn_seqc_write_end(rootvp);
2385 			vdrop(rootvp);
2386 		}
2387 		return (error);
2388 	}
2389 
2390 	mtx_lock(&mountlist_mtx);
2391 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2392 	mtx_unlock(&mountlist_mtx);
2393 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2394 	if (coveredvp != NULL) {
2395 		VI_LOCK(coveredvp);
2396 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2397 		coveredvp->v_mountedhere = NULL;
2398 		vn_seqc_write_end_locked(coveredvp);
2399 		VI_UNLOCK(coveredvp);
2400 		VOP_UNLOCK(coveredvp);
2401 		vdrop(coveredvp);
2402 	}
2403 	mount_devctl_event("UNMOUNT", mp, false);
2404 	if (rootvp != NULL) {
2405 		vn_seqc_write_end(rootvp);
2406 		vdrop(rootvp);
2407 	}
2408 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2409 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2410 		vrele(rootvnode);
2411 		rootvnode = NULL;
2412 	}
2413 	if (mp == rootdevmp)
2414 		rootdevmp = NULL;
2415 	if ((flags & MNT_DEFERRED) != 0)
2416 		vfs_rel(mp);
2417 	vfs_mount_destroy(mp);
2418 	return (0);
2419 }
2420 
2421 /*
2422  * Report errors during filesystem mounting.
2423  */
2424 void
vfs_mount_error(struct mount * mp,const char * fmt,...)2425 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2426 {
2427 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2428 	va_list ap;
2429 	int error, len;
2430 	char *errmsg;
2431 
2432 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2433 	if (error || errmsg == NULL || len <= 0)
2434 		return;
2435 
2436 	va_start(ap, fmt);
2437 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2438 	va_end(ap);
2439 }
2440 
2441 void
vfs_opterror(struct vfsoptlist * opts,const char * fmt,...)2442 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2443 {
2444 	va_list ap;
2445 	int error, len;
2446 	char *errmsg;
2447 
2448 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2449 	if (error || errmsg == NULL || len <= 0)
2450 		return;
2451 
2452 	va_start(ap, fmt);
2453 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2454 	va_end(ap);
2455 }
2456 
2457 /*
2458  * ---------------------------------------------------------------------
2459  * Functions for querying mount options/arguments from filesystems.
2460  */
2461 
2462 /*
2463  * Check that no unknown options are given
2464  */
2465 int
vfs_filteropt(struct vfsoptlist * opts,const char ** legal)2466 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2467 {
2468 	struct vfsopt *opt;
2469 	char errmsg[255];
2470 	const char **t, *p, *q;
2471 	int ret = 0;
2472 
2473 	TAILQ_FOREACH(opt, opts, link) {
2474 		p = opt->name;
2475 		q = NULL;
2476 		if (p[0] == 'n' && p[1] == 'o')
2477 			q = p + 2;
2478 		for(t = global_opts; *t != NULL; t++) {
2479 			if (strcmp(*t, p) == 0)
2480 				break;
2481 			if (q != NULL) {
2482 				if (strcmp(*t, q) == 0)
2483 					break;
2484 			}
2485 		}
2486 		if (*t != NULL)
2487 			continue;
2488 		for(t = legal; *t != NULL; t++) {
2489 			if (strcmp(*t, p) == 0)
2490 				break;
2491 			if (q != NULL) {
2492 				if (strcmp(*t, q) == 0)
2493 					break;
2494 			}
2495 		}
2496 		if (*t != NULL)
2497 			continue;
2498 		snprintf(errmsg, sizeof(errmsg),
2499 		    "mount option <%s> is unknown", p);
2500 		ret = EINVAL;
2501 	}
2502 	if (ret != 0) {
2503 		TAILQ_FOREACH(opt, opts, link) {
2504 			if (strcmp(opt->name, "errmsg") == 0) {
2505 				strncpy((char *)opt->value, errmsg, opt->len);
2506 				break;
2507 			}
2508 		}
2509 		if (opt == NULL)
2510 			printf("%s\n", errmsg);
2511 	}
2512 	return (ret);
2513 }
2514 
2515 /*
2516  * Get a mount option by its name.
2517  *
2518  * Return 0 if the option was found, ENOENT otherwise.
2519  * If len is non-NULL it will be filled with the length
2520  * of the option. If buf is non-NULL, it will be filled
2521  * with the address of the option.
2522  */
2523 int
vfs_getopt(struct vfsoptlist * opts,const char * name,void ** buf,int * len)2524 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2525 {
2526 	struct vfsopt *opt;
2527 
2528 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2529 
2530 	TAILQ_FOREACH(opt, opts, link) {
2531 		if (strcmp(name, opt->name) == 0) {
2532 			opt->seen = 1;
2533 			if (len != NULL)
2534 				*len = opt->len;
2535 			if (buf != NULL)
2536 				*buf = opt->value;
2537 			return (0);
2538 		}
2539 	}
2540 	return (ENOENT);
2541 }
2542 
2543 int
vfs_getopt_pos(struct vfsoptlist * opts,const char * name)2544 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2545 {
2546 	struct vfsopt *opt;
2547 
2548 	if (opts == NULL)
2549 		return (-1);
2550 
2551 	TAILQ_FOREACH(opt, opts, link) {
2552 		if (strcmp(name, opt->name) == 0) {
2553 			opt->seen = 1;
2554 			return (opt->pos);
2555 		}
2556 	}
2557 	return (-1);
2558 }
2559 
2560 int
vfs_getopt_size(struct vfsoptlist * opts,const char * name,off_t * value)2561 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2562 {
2563 	char *opt_value, *vtp;
2564 	quad_t iv;
2565 	int error, opt_len;
2566 
2567 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2568 	if (error != 0)
2569 		return (error);
2570 	if (opt_len == 0 || opt_value == NULL)
2571 		return (EINVAL);
2572 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2573 		return (EINVAL);
2574 	iv = strtoq(opt_value, &vtp, 0);
2575 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2576 		return (EINVAL);
2577 	if (iv < 0)
2578 		return (EINVAL);
2579 	switch (vtp[0]) {
2580 	case 't': case 'T':
2581 		iv *= 1024;
2582 		/* FALLTHROUGH */
2583 	case 'g': case 'G':
2584 		iv *= 1024;
2585 		/* FALLTHROUGH */
2586 	case 'm': case 'M':
2587 		iv *= 1024;
2588 		/* FALLTHROUGH */
2589 	case 'k': case 'K':
2590 		iv *= 1024;
2591 	case '\0':
2592 		break;
2593 	default:
2594 		return (EINVAL);
2595 	}
2596 	*value = iv;
2597 
2598 	return (0);
2599 }
2600 
2601 char *
vfs_getopts(struct vfsoptlist * opts,const char * name,int * error)2602 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2603 {
2604 	struct vfsopt *opt;
2605 
2606 	*error = 0;
2607 	TAILQ_FOREACH(opt, opts, link) {
2608 		if (strcmp(name, opt->name) != 0)
2609 			continue;
2610 		opt->seen = 1;
2611 		if (opt->len == 0 ||
2612 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2613 			*error = EINVAL;
2614 			return (NULL);
2615 		}
2616 		return (opt->value);
2617 	}
2618 	*error = ENOENT;
2619 	return (NULL);
2620 }
2621 
2622 int
vfs_flagopt(struct vfsoptlist * opts,const char * name,uint64_t * w,uint64_t val)2623 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2624 	uint64_t val)
2625 {
2626 	struct vfsopt *opt;
2627 
2628 	TAILQ_FOREACH(opt, opts, link) {
2629 		if (strcmp(name, opt->name) == 0) {
2630 			opt->seen = 1;
2631 			if (w != NULL)
2632 				*w |= val;
2633 			return (1);
2634 		}
2635 	}
2636 	if (w != NULL)
2637 		*w &= ~val;
2638 	return (0);
2639 }
2640 
2641 int
vfs_scanopt(struct vfsoptlist * opts,const char * name,const char * fmt,...)2642 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2643 {
2644 	va_list ap;
2645 	struct vfsopt *opt;
2646 	int ret;
2647 
2648 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2649 
2650 	TAILQ_FOREACH(opt, opts, link) {
2651 		if (strcmp(name, opt->name) != 0)
2652 			continue;
2653 		opt->seen = 1;
2654 		if (opt->len == 0 || opt->value == NULL)
2655 			return (0);
2656 		if (((char *)opt->value)[opt->len - 1] != '\0')
2657 			return (0);
2658 		va_start(ap, fmt);
2659 		ret = vsscanf(opt->value, fmt, ap);
2660 		va_end(ap);
2661 		return (ret);
2662 	}
2663 	return (0);
2664 }
2665 
2666 int
vfs_setopt(struct vfsoptlist * opts,const char * name,void * value,int len)2667 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2668 {
2669 	struct vfsopt *opt;
2670 
2671 	TAILQ_FOREACH(opt, opts, link) {
2672 		if (strcmp(name, opt->name) != 0)
2673 			continue;
2674 		opt->seen = 1;
2675 		if (opt->value == NULL)
2676 			opt->len = len;
2677 		else {
2678 			if (opt->len != len)
2679 				return (EINVAL);
2680 			bcopy(value, opt->value, len);
2681 		}
2682 		return (0);
2683 	}
2684 	return (ENOENT);
2685 }
2686 
2687 int
vfs_setopt_part(struct vfsoptlist * opts,const char * name,void * value,int len)2688 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2689 {
2690 	struct vfsopt *opt;
2691 
2692 	TAILQ_FOREACH(opt, opts, link) {
2693 		if (strcmp(name, opt->name) != 0)
2694 			continue;
2695 		opt->seen = 1;
2696 		if (opt->value == NULL)
2697 			opt->len = len;
2698 		else {
2699 			if (opt->len < len)
2700 				return (EINVAL);
2701 			opt->len = len;
2702 			bcopy(value, opt->value, len);
2703 		}
2704 		return (0);
2705 	}
2706 	return (ENOENT);
2707 }
2708 
2709 int
vfs_setopts(struct vfsoptlist * opts,const char * name,const char * value)2710 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2711 {
2712 	struct vfsopt *opt;
2713 
2714 	TAILQ_FOREACH(opt, opts, link) {
2715 		if (strcmp(name, opt->name) != 0)
2716 			continue;
2717 		opt->seen = 1;
2718 		if (opt->value == NULL)
2719 			opt->len = strlen(value) + 1;
2720 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2721 			return (EINVAL);
2722 		return (0);
2723 	}
2724 	return (ENOENT);
2725 }
2726 
2727 /*
2728  * Find and copy a mount option.
2729  *
2730  * The size of the buffer has to be specified
2731  * in len, if it is not the same length as the
2732  * mount option, EINVAL is returned.
2733  * Returns ENOENT if the option is not found.
2734  */
2735 int
vfs_copyopt(struct vfsoptlist * opts,const char * name,void * dest,int len)2736 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2737 {
2738 	struct vfsopt *opt;
2739 
2740 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2741 
2742 	TAILQ_FOREACH(opt, opts, link) {
2743 		if (strcmp(name, opt->name) == 0) {
2744 			opt->seen = 1;
2745 			if (len != opt->len)
2746 				return (EINVAL);
2747 			bcopy(opt->value, dest, opt->len);
2748 			return (0);
2749 		}
2750 	}
2751 	return (ENOENT);
2752 }
2753 
2754 int
__vfs_statfs(struct mount * mp,struct statfs * sbp)2755 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2756 {
2757 	/*
2758 	 * Filesystems only fill in part of the structure for updates, we
2759 	 * have to read the entirety first to get all content.
2760 	 */
2761 	if (sbp != &mp->mnt_stat)
2762 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2763 
2764 	/*
2765 	 * Set these in case the underlying filesystem fails to do so.
2766 	 */
2767 	sbp->f_version = STATFS_VERSION;
2768 	sbp->f_namemax = NAME_MAX;
2769 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2770 	sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2771 
2772 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2773 }
2774 
2775 void
vfs_mountedfrom(struct mount * mp,const char * from)2776 vfs_mountedfrom(struct mount *mp, const char *from)
2777 {
2778 
2779 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2780 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2781 	    sizeof mp->mnt_stat.f_mntfromname);
2782 }
2783 
2784 /*
2785  * ---------------------------------------------------------------------
2786  * This is the api for building mount args and mounting filesystems from
2787  * inside the kernel.
2788  *
2789  * The API works by accumulation of individual args.  First error is
2790  * latched.
2791  *
2792  * XXX: should be documented in new manpage kernel_mount(9)
2793  */
2794 
2795 /* A memory allocation which must be freed when we are done */
2796 struct mntaarg {
2797 	SLIST_ENTRY(mntaarg)	next;
2798 };
2799 
2800 /* The header for the mount arguments */
2801 struct mntarg {
2802 	struct iovec *v;
2803 	int len;
2804 	int error;
2805 	SLIST_HEAD(, mntaarg)	list;
2806 };
2807 
2808 /*
2809  * Add a boolean argument.
2810  *
2811  * flag is the boolean value.
2812  * name must start with "no".
2813  */
2814 struct mntarg *
mount_argb(struct mntarg * ma,int flag,const char * name)2815 mount_argb(struct mntarg *ma, int flag, const char *name)
2816 {
2817 
2818 	KASSERT(name[0] == 'n' && name[1] == 'o',
2819 	    ("mount_argb(...,%s): name must start with 'no'", name));
2820 
2821 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2822 }
2823 
2824 /*
2825  * Add an argument printf style
2826  */
2827 struct mntarg *
mount_argf(struct mntarg * ma,const char * name,const char * fmt,...)2828 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2829 {
2830 	va_list ap;
2831 	struct mntaarg *maa;
2832 	struct sbuf *sb;
2833 	int len;
2834 
2835 	if (ma == NULL) {
2836 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2837 		SLIST_INIT(&ma->list);
2838 	}
2839 	if (ma->error)
2840 		return (ma);
2841 
2842 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2843 	    M_MOUNT, M_WAITOK);
2844 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2845 	ma->v[ma->len].iov_len = strlen(name) + 1;
2846 	ma->len++;
2847 
2848 	sb = sbuf_new_auto();
2849 	va_start(ap, fmt);
2850 	sbuf_vprintf(sb, fmt, ap);
2851 	va_end(ap);
2852 	sbuf_finish(sb);
2853 	len = sbuf_len(sb) + 1;
2854 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2855 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2856 	bcopy(sbuf_data(sb), maa + 1, len);
2857 	sbuf_delete(sb);
2858 
2859 	ma->v[ma->len].iov_base = maa + 1;
2860 	ma->v[ma->len].iov_len = len;
2861 	ma->len++;
2862 
2863 	return (ma);
2864 }
2865 
2866 /*
2867  * Add an argument which is a userland string.
2868  */
2869 struct mntarg *
mount_argsu(struct mntarg * ma,const char * name,const void * val,int len)2870 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2871 {
2872 	struct mntaarg *maa;
2873 	char *tbuf;
2874 
2875 	if (val == NULL)
2876 		return (ma);
2877 	if (ma == NULL) {
2878 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2879 		SLIST_INIT(&ma->list);
2880 	}
2881 	if (ma->error)
2882 		return (ma);
2883 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2884 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2885 	tbuf = (void *)(maa + 1);
2886 	ma->error = copyinstr(val, tbuf, len, NULL);
2887 	return (mount_arg(ma, name, tbuf, -1));
2888 }
2889 
2890 /*
2891  * Plain argument.
2892  *
2893  * If length is -1, treat value as a C string.
2894  */
2895 struct mntarg *
mount_arg(struct mntarg * ma,const char * name,const void * val,int len)2896 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2897 {
2898 
2899 	if (ma == NULL) {
2900 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2901 		SLIST_INIT(&ma->list);
2902 	}
2903 	if (ma->error)
2904 		return (ma);
2905 
2906 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2907 	    M_MOUNT, M_WAITOK);
2908 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2909 	ma->v[ma->len].iov_len = strlen(name) + 1;
2910 	ma->len++;
2911 
2912 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2913 	if (len < 0)
2914 		ma->v[ma->len].iov_len = strlen(val) + 1;
2915 	else
2916 		ma->v[ma->len].iov_len = len;
2917 	ma->len++;
2918 	return (ma);
2919 }
2920 
2921 /*
2922  * Free a mntarg structure
2923  */
2924 static void
free_mntarg(struct mntarg * ma)2925 free_mntarg(struct mntarg *ma)
2926 {
2927 	struct mntaarg *maa;
2928 
2929 	while (!SLIST_EMPTY(&ma->list)) {
2930 		maa = SLIST_FIRST(&ma->list);
2931 		SLIST_REMOVE_HEAD(&ma->list, next);
2932 		free(maa, M_MOUNT);
2933 	}
2934 	free(ma->v, M_MOUNT);
2935 	free(ma, M_MOUNT);
2936 }
2937 
2938 /*
2939  * Mount a filesystem
2940  */
2941 int
kernel_mount(struct mntarg * ma,uint64_t flags)2942 kernel_mount(struct mntarg *ma, uint64_t flags)
2943 {
2944 	struct uio auio;
2945 	int error;
2946 
2947 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2948 	KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2949 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2950 
2951 	error = ma->error;
2952 	if (error == 0) {
2953 		auio.uio_iov = ma->v;
2954 		auio.uio_iovcnt = ma->len;
2955 		auio.uio_segflg = UIO_SYSSPACE;
2956 		error = vfs_donmount(curthread, flags, &auio);
2957 	}
2958 	free_mntarg(ma);
2959 	return (error);
2960 }
2961 
2962 /* Map from mount options to printable formats. */
2963 static struct mntoptnames optnames[] = {
2964 	MNTOPT_NAMES
2965 };
2966 
2967 #define DEVCTL_LEN 1024
2968 static void
mount_devctl_event(const char * type,struct mount * mp,bool donew)2969 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2970 {
2971 	const uint8_t *cp;
2972 	struct mntoptnames *fp;
2973 	struct sbuf sb;
2974 	struct statfs *sfp = &mp->mnt_stat;
2975 	char *buf;
2976 
2977 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2978 	if (buf == NULL)
2979 		return;
2980 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2981 	sbuf_cpy(&sb, "mount-point=\"");
2982 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2983 	sbuf_cat(&sb, "\" mount-dev=\"");
2984 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2985 	sbuf_cat(&sb, "\" mount-type=\"");
2986 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2987 	sbuf_cat(&sb, "\" fsid=0x");
2988 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2989 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2990 		sbuf_printf(&sb, "%02x", cp[i]);
2991 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2992 	for (fp = optnames; fp->o_opt != 0; fp++) {
2993 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2994 			sbuf_cat(&sb, fp->o_name);
2995 			sbuf_putc(&sb, ';');
2996 		}
2997 	}
2998 	sbuf_putc(&sb, '"');
2999 	sbuf_finish(&sb);
3000 
3001 	/*
3002 	 * Options are not published because the form of the options depends on
3003 	 * the file system and may include binary data. In addition, they don't
3004 	 * necessarily provide enough useful information to be actionable when
3005 	 * devd processes them.
3006 	 */
3007 
3008 	if (sbuf_error(&sb) == 0)
3009 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
3010 	sbuf_delete(&sb);
3011 	free(buf, M_MOUNT);
3012 }
3013 
3014 /*
3015  * Force remount specified mount point to read-only.  The argument
3016  * must be busied to avoid parallel unmount attempts.
3017  *
3018  * Intended use is to prevent further writes if some metadata
3019  * inconsistency is detected.  Note that the function still flushes
3020  * all cached metadata and data for the mount point, which might be
3021  * not always suitable.
3022  */
3023 int
vfs_remount_ro(struct mount * mp)3024 vfs_remount_ro(struct mount *mp)
3025 {
3026 	struct vfsoptlist *opts;
3027 	struct vfsopt *opt;
3028 	struct vnode *vp_covered, *rootvp;
3029 	int error;
3030 
3031 	vfs_op_enter(mp);
3032 	KASSERT(mp->mnt_lockref > 0,
3033 	    ("vfs_remount_ro: mp %p is not busied", mp));
3034 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
3035 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
3036 
3037 	rootvp = NULL;
3038 	vp_covered = mp->mnt_vnodecovered;
3039 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
3040 	if (error != 0) {
3041 		vfs_op_exit(mp);
3042 		return (error);
3043 	}
3044 	VI_LOCK(vp_covered);
3045 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
3046 		VI_UNLOCK(vp_covered);
3047 		vput(vp_covered);
3048 		vfs_op_exit(mp);
3049 		return (EBUSY);
3050 	}
3051 	vp_covered->v_iflag |= VI_MOUNT;
3052 	VI_UNLOCK(vp_covered);
3053 	vn_seqc_write_begin(vp_covered);
3054 
3055 	MNT_ILOCK(mp);
3056 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
3057 		MNT_IUNLOCK(mp);
3058 		error = EBUSY;
3059 		goto out;
3060 	}
3061 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
3062 	rootvp = vfs_cache_root_clear(mp);
3063 	MNT_IUNLOCK(mp);
3064 
3065 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
3066 	TAILQ_INIT(opts);
3067 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
3068 	opt->name = strdup("ro", M_MOUNT);
3069 	opt->value = NULL;
3070 	TAILQ_INSERT_TAIL(opts, opt, link);
3071 	vfs_mergeopts(opts, mp->mnt_opt);
3072 	mp->mnt_optnew = opts;
3073 
3074 	error = VFS_MOUNT(mp);
3075 
3076 	if (error == 0) {
3077 		MNT_ILOCK(mp);
3078 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
3079 		MNT_IUNLOCK(mp);
3080 		vfs_deallocate_syncvnode(mp);
3081 		if (mp->mnt_opt != NULL)
3082 			vfs_freeopts(mp->mnt_opt);
3083 		mp->mnt_opt = mp->mnt_optnew;
3084 	} else {
3085 		MNT_ILOCK(mp);
3086 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
3087 		MNT_IUNLOCK(mp);
3088 		vfs_freeopts(mp->mnt_optnew);
3089 	}
3090 	mp->mnt_optnew = NULL;
3091 
3092 out:
3093 	vfs_op_exit(mp);
3094 	VI_LOCK(vp_covered);
3095 	vp_covered->v_iflag &= ~VI_MOUNT;
3096 	VI_UNLOCK(vp_covered);
3097 	vput(vp_covered);
3098 	vn_seqc_write_end(vp_covered);
3099 	if (rootvp != NULL) {
3100 		vn_seqc_write_end(rootvp);
3101 		vrele(rootvp);
3102 	}
3103 	return (error);
3104 }
3105 
3106 /*
3107  * Suspend write operations on all local writeable filesystems.  Does
3108  * full sync of them in the process.
3109  *
3110  * Iterate over the mount points in reverse order, suspending most
3111  * recently mounted filesystems first.  It handles a case where a
3112  * filesystem mounted from a md(4) vnode-backed device should be
3113  * suspended before the filesystem that owns the vnode.
3114  */
3115 void
suspend_all_fs(void)3116 suspend_all_fs(void)
3117 {
3118 	struct mount *mp;
3119 	int error;
3120 
3121 	mtx_lock(&mountlist_mtx);
3122 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
3123 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
3124 		if (error != 0)
3125 			continue;
3126 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
3127 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
3128 			mtx_lock(&mountlist_mtx);
3129 			vfs_unbusy(mp);
3130 			continue;
3131 		}
3132 		error = vfs_write_suspend(mp, 0);
3133 		if (error == 0) {
3134 			MNT_ILOCK(mp);
3135 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
3136 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
3137 			MNT_IUNLOCK(mp);
3138 			mtx_lock(&mountlist_mtx);
3139 		} else {
3140 			printf("suspend of %s failed, error %d\n",
3141 			    mp->mnt_stat.f_mntonname, error);
3142 			mtx_lock(&mountlist_mtx);
3143 			vfs_unbusy(mp);
3144 		}
3145 	}
3146 	mtx_unlock(&mountlist_mtx);
3147 }
3148 
3149 /*
3150  * Clone the mnt_exjail field to a new mount point.
3151  */
3152 void
vfs_exjail_clone(struct mount * inmp,struct mount * outmp)3153 vfs_exjail_clone(struct mount *inmp, struct mount *outmp)
3154 {
3155 	struct ucred *cr;
3156 	struct prison *pr;
3157 
3158 	MNT_ILOCK(inmp);
3159 	cr = inmp->mnt_exjail;
3160 	if (cr != NULL) {
3161 		crhold(cr);
3162 		MNT_IUNLOCK(inmp);
3163 		pr = cr->cr_prison;
3164 		sx_slock(&allprison_lock);
3165 		if (!prison_isalive(pr)) {
3166 			sx_sunlock(&allprison_lock);
3167 			crfree(cr);
3168 			return;
3169 		}
3170 		MNT_ILOCK(outmp);
3171 		if (outmp->mnt_exjail == NULL) {
3172 			outmp->mnt_exjail = cr;
3173 			atomic_add_int(&pr->pr_exportcnt, 1);
3174 			cr = NULL;
3175 		}
3176 		MNT_IUNLOCK(outmp);
3177 		sx_sunlock(&allprison_lock);
3178 		if (cr != NULL)
3179 			crfree(cr);
3180 	} else
3181 		MNT_IUNLOCK(inmp);
3182 }
3183 
3184 void
resume_all_fs(void)3185 resume_all_fs(void)
3186 {
3187 	struct mount *mp;
3188 
3189 	mtx_lock(&mountlist_mtx);
3190 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3191 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3192 			continue;
3193 		mtx_unlock(&mountlist_mtx);
3194 		MNT_ILOCK(mp);
3195 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3196 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3197 		MNT_IUNLOCK(mp);
3198 		vfs_write_resume(mp, 0);
3199 		mtx_lock(&mountlist_mtx);
3200 		vfs_unbusy(mp);
3201 	}
3202 	mtx_unlock(&mountlist_mtx);
3203 }
3204