xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision db87bd2ad1f736c2f7ab231f9b40c885934f6b2c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/prefetch.h>
58 #include <linux/property.h>
59 #include <linux/ptrace.h>
60 #include <linux/regmap.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/skbuff.h>
63 #include <linux/slab.h>
64 #include <linux/spinlock.h>
65 #include <linux/string.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/workqueue.h>
69 #include <net/ip.h>
70 #include <net/page_pool/helpers.h>
71 #include <net/selftests.h>
72 #include <net/tso.h>
73 #include <soc/imx/cpuidle.h>
74 
75 #include "fec.h"
76 
77 static void set_multicast_list(struct net_device *ndev);
78 static void fec_enet_itr_coal_set(struct net_device *ndev);
79 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
80 				int cpu, struct xdp_buff *xdp,
81 				u32 dma_sync_len);
82 
83 #define DRIVER_NAME	"fec"
84 
85 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
86 
87 #define FEC_ENET_RSEM_V	0x84
88 #define FEC_ENET_RSFL_V	16
89 #define FEC_ENET_RAEM_V	0x8
90 #define FEC_ENET_RAFL_V	0x8
91 #define FEC_ENET_OPD_V	0xFFF0
92 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
93 
94 #define FEC_ENET_XDP_PASS          0
95 #define FEC_ENET_XDP_CONSUMED      BIT(0)
96 #define FEC_ENET_XDP_TX            BIT(1)
97 #define FEC_ENET_XDP_REDIR         BIT(2)
98 
99 struct fec_devinfo {
100 	u32 quirks;
101 };
102 
103 static const struct fec_devinfo fec_imx25_info = {
104 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
105 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
106 };
107 
108 static const struct fec_devinfo fec_imx27_info = {
109 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
110 		  FEC_QUIRK_HAS_MDIO_C45,
111 };
112 
113 static const struct fec_devinfo fec_imx28_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
115 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
116 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
117 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
118 };
119 
120 static const struct fec_devinfo fec_imx6q_info = {
121 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
125 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
126 };
127 
128 static const struct fec_devinfo fec_mvf600_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_MDIO_C45,
131 };
132 
133 static const struct fec_devinfo fec_imx6sx_info = {
134 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
135 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
136 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
137 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
138 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
139 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
140 		  FEC_QUIRK_HAS_MDIO_C45,
141 };
142 
143 static const struct fec_devinfo fec_imx6ul_info = {
144 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
145 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
146 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
147 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
148 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
149 		  FEC_QUIRK_HAS_MDIO_C45,
150 };
151 
152 static const struct fec_devinfo fec_imx8mq_info = {
153 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
154 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
155 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
156 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
157 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
158 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
159 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
160 		  FEC_QUIRK_HAS_MDIO_C45,
161 };
162 
163 static const struct fec_devinfo fec_imx8qm_info = {
164 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
165 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
166 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
167 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
168 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
169 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
170 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
171 };
172 
173 static const struct fec_devinfo fec_s32v234_info = {
174 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
175 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
176 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
177 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
178 		  FEC_QUIRK_HAS_MDIO_C45,
179 };
180 
181 static struct platform_device_id fec_devtype[] = {
182 	{
183 		/* keep it for coldfire */
184 		.name = DRIVER_NAME,
185 		.driver_data = 0,
186 	}, {
187 		/* sentinel */
188 	}
189 };
190 MODULE_DEVICE_TABLE(platform, fec_devtype);
191 
192 static const struct of_device_id fec_dt_ids[] = {
193 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
194 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
195 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
196 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
197 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
198 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
199 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
200 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
201 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
202 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
203 	{ /* sentinel */ }
204 };
205 MODULE_DEVICE_TABLE(of, fec_dt_ids);
206 
207 static unsigned char macaddr[ETH_ALEN];
208 module_param_array(macaddr, byte, NULL, 0);
209 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
210 
211 #if defined(CONFIG_M5272)
212 /*
213  * Some hardware gets it MAC address out of local flash memory.
214  * if this is non-zero then assume it is the address to get MAC from.
215  */
216 #if defined(CONFIG_NETtel)
217 #define	FEC_FLASHMAC	0xf0006006
218 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
219 #define	FEC_FLASHMAC	0xf0006000
220 #elif defined(CONFIG_CANCam)
221 #define	FEC_FLASHMAC	0xf0020000
222 #elif defined (CONFIG_M5272C3)
223 #define	FEC_FLASHMAC	(0xffe04000 + 4)
224 #elif defined(CONFIG_MOD5272)
225 #define FEC_FLASHMAC	0xffc0406b
226 #else
227 #define	FEC_FLASHMAC	0
228 #endif
229 #endif /* CONFIG_M5272 */
230 
231 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
232  *
233  * 2048 byte skbufs are allocated. However, alignment requirements
234  * varies between FEC variants. Worst case is 64, so round down by 64.
235  */
236 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
237 #define PKT_MINBUF_SIZE		64
238 
239 /* FEC receive acceleration */
240 #define FEC_RACC_IPDIS		BIT(1)
241 #define FEC_RACC_PRODIS		BIT(2)
242 #define FEC_RACC_SHIFT16	BIT(7)
243 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
244 
245 /* MIB Control Register */
246 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
247 
248 /*
249  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
250  * size bits. Other FEC hardware does not, so we need to take that into
251  * account when setting it.
252  */
253 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
254     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
255     defined(CONFIG_ARM64)
256 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
257 #else
258 #define	OPT_FRAME_SIZE	0
259 #endif
260 
261 /* FEC MII MMFR bits definition */
262 #define FEC_MMFR_ST		(1 << 30)
263 #define FEC_MMFR_ST_C45		(0)
264 #define FEC_MMFR_OP_READ	(2 << 28)
265 #define FEC_MMFR_OP_READ_C45	(3 << 28)
266 #define FEC_MMFR_OP_WRITE	(1 << 28)
267 #define FEC_MMFR_OP_ADDR_WRITE	(0)
268 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
269 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
270 #define FEC_MMFR_TA		(2 << 16)
271 #define FEC_MMFR_DATA(v)	(v & 0xffff)
272 /* FEC ECR bits definition */
273 #define FEC_ECR_RESET           BIT(0)
274 #define FEC_ECR_ETHEREN         BIT(1)
275 #define FEC_ECR_MAGICEN         BIT(2)
276 #define FEC_ECR_SLEEP           BIT(3)
277 #define FEC_ECR_EN1588          BIT(4)
278 #define FEC_ECR_SPEED           BIT(5)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_DRT		BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RGMII		BIT(6)
288 #define FEC_RCR_RMII            BIT(8)
289 #define FEC_RCR_10BASET         BIT(9)
290 #define FEC_RCR_NLC		BIT(30)
291 /* TX WMARK bits */
292 #define FEC_TXWMRK_STRFWD       BIT(8)
293 
294 #define FEC_MII_TIMEOUT		30000 /* us */
295 
296 /* Transmitter timeout */
297 #define TX_TIMEOUT (2 * HZ)
298 
299 #define FEC_PAUSE_FLAG_AUTONEG	0x1
300 #define FEC_PAUSE_FLAG_ENABLE	0x2
301 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
302 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
303 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
304 
305 /* Max number of allowed TCP segments for software TSO */
306 #define FEC_MAX_TSO_SEGS	100
307 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
308 
309 #define IS_TSO_HEADER(txq, addr) \
310 	((addr >= txq->tso_hdrs_dma) && \
311 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
312 
313 static int mii_cnt;
314 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)315 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
316 					     struct bufdesc_prop *bd)
317 {
318 	return (bdp >= bd->last) ? bd->base
319 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
320 }
321 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)322 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
323 					     struct bufdesc_prop *bd)
324 {
325 	return (bdp <= bd->base) ? bd->last
326 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
327 }
328 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)329 static int fec_enet_get_bd_index(struct bufdesc *bdp,
330 				 struct bufdesc_prop *bd)
331 {
332 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
333 }
334 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)335 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
336 {
337 	int entries;
338 
339 	entries = (((const char *)txq->dirty_tx -
340 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
341 
342 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
343 }
344 
swap_buffer(void * bufaddr,int len)345 static void swap_buffer(void *bufaddr, int len)
346 {
347 	int i;
348 	unsigned int *buf = bufaddr;
349 
350 	for (i = 0; i < len; i += 4, buf++)
351 		swab32s(buf);
352 }
353 
fec_dump(struct net_device * ndev)354 static void fec_dump(struct net_device *ndev)
355 {
356 	struct fec_enet_private *fep = netdev_priv(ndev);
357 	struct bufdesc *bdp;
358 	struct fec_enet_priv_tx_q *txq;
359 	int index = 0;
360 
361 	netdev_info(ndev, "TX ring dump\n");
362 	pr_info("Nr     SC     addr       len  SKB\n");
363 
364 	txq = fep->tx_queue[0];
365 	bdp = txq->bd.base;
366 
367 	do {
368 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
369 			index,
370 			bdp == txq->bd.cur ? 'S' : ' ',
371 			bdp == txq->dirty_tx ? 'H' : ' ',
372 			fec16_to_cpu(bdp->cbd_sc),
373 			fec32_to_cpu(bdp->cbd_bufaddr),
374 			fec16_to_cpu(bdp->cbd_datlen),
375 			txq->tx_buf[index].buf_p);
376 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
377 		index++;
378 	} while (bdp != txq->bd.base);
379 }
380 
381 /*
382  * Coldfire does not support DMA coherent allocations, and has historically used
383  * a band-aid with a manual flush in fec_enet_rx_queue.
384  */
385 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)386 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
387 		gfp_t gfp)
388 {
389 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
390 }
391 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)392 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
393 		dma_addr_t handle)
394 {
395 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
396 }
397 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)398 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
399 		gfp_t gfp)
400 {
401 	return dma_alloc_coherent(dev, size, handle, gfp);
402 }
403 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)404 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
405 		dma_addr_t handle)
406 {
407 	dma_free_coherent(dev, size, cpu_addr, handle);
408 }
409 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
410 
411 struct fec_dma_devres {
412 	size_t		size;
413 	void		*vaddr;
414 	dma_addr_t	dma_handle;
415 };
416 
fec_dmam_release(struct device * dev,void * res)417 static void fec_dmam_release(struct device *dev, void *res)
418 {
419 	struct fec_dma_devres *this = res;
420 
421 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
422 }
423 
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)424 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
425 		gfp_t gfp)
426 {
427 	struct fec_dma_devres *dr;
428 	void *vaddr;
429 
430 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
431 	if (!dr)
432 		return NULL;
433 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
434 	if (!vaddr) {
435 		devres_free(dr);
436 		return NULL;
437 	}
438 	dr->vaddr = vaddr;
439 	dr->dma_handle = *handle;
440 	dr->size = size;
441 	devres_add(dev, dr);
442 	return vaddr;
443 }
444 
is_ipv4_pkt(struct sk_buff * skb)445 static inline bool is_ipv4_pkt(struct sk_buff *skb)
446 {
447 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
448 }
449 
450 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)451 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
452 {
453 	/* Only run for packets requiring a checksum. */
454 	if (skb->ip_summed != CHECKSUM_PARTIAL)
455 		return 0;
456 
457 	if (unlikely(skb_cow_head(skb, 0)))
458 		return -1;
459 
460 	if (is_ipv4_pkt(skb))
461 		ip_hdr(skb)->check = 0;
462 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
463 
464 	return 0;
465 }
466 
467 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)468 fec_enet_create_page_pool(struct fec_enet_private *fep,
469 			  struct fec_enet_priv_rx_q *rxq, int size)
470 {
471 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
472 	struct page_pool_params pp_params = {
473 		.order = 0,
474 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
475 		.pool_size = size,
476 		.nid = dev_to_node(&fep->pdev->dev),
477 		.dev = &fep->pdev->dev,
478 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
479 		.offset = FEC_ENET_XDP_HEADROOM,
480 		.max_len = FEC_ENET_RX_FRSIZE,
481 	};
482 	int err;
483 
484 	rxq->page_pool = page_pool_create(&pp_params);
485 	if (IS_ERR(rxq->page_pool)) {
486 		err = PTR_ERR(rxq->page_pool);
487 		rxq->page_pool = NULL;
488 		return err;
489 	}
490 
491 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
492 	if (err < 0)
493 		goto err_free_pp;
494 
495 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
496 					 rxq->page_pool);
497 	if (err)
498 		goto err_unregister_rxq;
499 
500 	return 0;
501 
502 err_unregister_rxq:
503 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
504 err_free_pp:
505 	page_pool_destroy(rxq->page_pool);
506 	rxq->page_pool = NULL;
507 	return err;
508 }
509 
510 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)511 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
512 			     struct sk_buff *skb,
513 			     struct net_device *ndev)
514 {
515 	struct fec_enet_private *fep = netdev_priv(ndev);
516 	struct bufdesc *bdp = txq->bd.cur;
517 	struct bufdesc_ex *ebdp;
518 	int nr_frags = skb_shinfo(skb)->nr_frags;
519 	int frag, frag_len;
520 	unsigned short status;
521 	unsigned int estatus = 0;
522 	skb_frag_t *this_frag;
523 	unsigned int index;
524 	void *bufaddr;
525 	dma_addr_t addr;
526 	int i;
527 
528 	for (frag = 0; frag < nr_frags; frag++) {
529 		this_frag = &skb_shinfo(skb)->frags[frag];
530 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
531 		ebdp = (struct bufdesc_ex *)bdp;
532 
533 		status = fec16_to_cpu(bdp->cbd_sc);
534 		status &= ~BD_ENET_TX_STATS;
535 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
536 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
537 
538 		/* Handle the last BD specially */
539 		if (frag == nr_frags - 1) {
540 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
541 			if (fep->bufdesc_ex) {
542 				estatus |= BD_ENET_TX_INT;
543 				if (unlikely(skb_shinfo(skb)->tx_flags &
544 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
545 					estatus |= BD_ENET_TX_TS;
546 			}
547 		}
548 
549 		if (fep->bufdesc_ex) {
550 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 			if (skb->ip_summed == CHECKSUM_PARTIAL)
553 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
554 
555 			ebdp->cbd_bdu = 0;
556 			ebdp->cbd_esc = cpu_to_fec32(estatus);
557 		}
558 
559 		bufaddr = skb_frag_address(this_frag);
560 
561 		index = fec_enet_get_bd_index(bdp, &txq->bd);
562 		if (((unsigned long) bufaddr) & fep->tx_align ||
563 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
564 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
565 			bufaddr = txq->tx_bounce[index];
566 
567 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
568 				swap_buffer(bufaddr, frag_len);
569 		}
570 
571 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
572 				      DMA_TO_DEVICE);
573 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
574 			if (net_ratelimit())
575 				netdev_err(ndev, "Tx DMA memory map failed\n");
576 			goto dma_mapping_error;
577 		}
578 
579 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
580 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
581 		/* Make sure the updates to rest of the descriptor are
582 		 * performed before transferring ownership.
583 		 */
584 		wmb();
585 		bdp->cbd_sc = cpu_to_fec16(status);
586 	}
587 
588 	return bdp;
589 dma_mapping_error:
590 	bdp = txq->bd.cur;
591 	for (i = 0; i < frag; i++) {
592 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
593 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
594 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
595 	}
596 	return ERR_PTR(-ENOMEM);
597 }
598 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)599 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
600 				   struct sk_buff *skb, struct net_device *ndev)
601 {
602 	struct fec_enet_private *fep = netdev_priv(ndev);
603 	int nr_frags = skb_shinfo(skb)->nr_frags;
604 	struct bufdesc *bdp, *last_bdp;
605 	void *bufaddr;
606 	dma_addr_t addr;
607 	unsigned short status;
608 	unsigned short buflen;
609 	unsigned int estatus = 0;
610 	unsigned int index;
611 	int entries_free;
612 
613 	entries_free = fec_enet_get_free_txdesc_num(txq);
614 	if (entries_free < MAX_SKB_FRAGS + 1) {
615 		dev_kfree_skb_any(skb);
616 		if (net_ratelimit())
617 			netdev_err(ndev, "NOT enough BD for SG!\n");
618 		return NETDEV_TX_OK;
619 	}
620 
621 	/* Protocol checksum off-load for TCP and UDP. */
622 	if (fec_enet_clear_csum(skb, ndev)) {
623 		dev_kfree_skb_any(skb);
624 		return NETDEV_TX_OK;
625 	}
626 
627 	/* Fill in a Tx ring entry */
628 	bdp = txq->bd.cur;
629 	last_bdp = bdp;
630 	status = fec16_to_cpu(bdp->cbd_sc);
631 	status &= ~BD_ENET_TX_STATS;
632 
633 	/* Set buffer length and buffer pointer */
634 	bufaddr = skb->data;
635 	buflen = skb_headlen(skb);
636 
637 	index = fec_enet_get_bd_index(bdp, &txq->bd);
638 	if (((unsigned long) bufaddr) & fep->tx_align ||
639 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
640 		memcpy(txq->tx_bounce[index], skb->data, buflen);
641 		bufaddr = txq->tx_bounce[index];
642 
643 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
644 			swap_buffer(bufaddr, buflen);
645 	}
646 
647 	/* Push the data cache so the CPM does not get stale memory data. */
648 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
649 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
650 		dev_kfree_skb_any(skb);
651 		if (net_ratelimit())
652 			netdev_err(ndev, "Tx DMA memory map failed\n");
653 		return NETDEV_TX_OK;
654 	}
655 
656 	if (nr_frags) {
657 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
658 		if (IS_ERR(last_bdp)) {
659 			dma_unmap_single(&fep->pdev->dev, addr,
660 					 buflen, DMA_TO_DEVICE);
661 			dev_kfree_skb_any(skb);
662 			return NETDEV_TX_OK;
663 		}
664 	} else {
665 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
666 		if (fep->bufdesc_ex) {
667 			estatus = BD_ENET_TX_INT;
668 			if (unlikely(skb_shinfo(skb)->tx_flags &
669 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
670 				estatus |= BD_ENET_TX_TS;
671 		}
672 	}
673 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
674 	bdp->cbd_datlen = cpu_to_fec16(buflen);
675 
676 	if (fep->bufdesc_ex) {
677 
678 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
679 
680 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
681 			fep->hwts_tx_en))
682 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
683 
684 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
685 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
686 
687 		if (skb->ip_summed == CHECKSUM_PARTIAL)
688 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
689 
690 		ebdp->cbd_bdu = 0;
691 		ebdp->cbd_esc = cpu_to_fec32(estatus);
692 	}
693 
694 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
695 	/* Save skb pointer */
696 	txq->tx_buf[index].buf_p = skb;
697 
698 	/* Make sure the updates to rest of the descriptor are performed before
699 	 * transferring ownership.
700 	 */
701 	wmb();
702 
703 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
704 	 * it's the last BD of the frame, and to put the CRC on the end.
705 	 */
706 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
707 	bdp->cbd_sc = cpu_to_fec16(status);
708 
709 	/* If this was the last BD in the ring, start at the beginning again. */
710 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
711 
712 	skb_tx_timestamp(skb);
713 
714 	/* Make sure the update to bdp is performed before txq->bd.cur. */
715 	wmb();
716 	txq->bd.cur = bdp;
717 
718 	/* Trigger transmission start */
719 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
720 	    !readl(txq->bd.reg_desc_active) ||
721 	    !readl(txq->bd.reg_desc_active) ||
722 	    !readl(txq->bd.reg_desc_active) ||
723 	    !readl(txq->bd.reg_desc_active))
724 		writel(0, txq->bd.reg_desc_active);
725 
726 	return 0;
727 }
728 
729 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)730 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
731 			  struct net_device *ndev,
732 			  struct bufdesc *bdp, int index, char *data,
733 			  int size, bool last_tcp, bool is_last)
734 {
735 	struct fec_enet_private *fep = netdev_priv(ndev);
736 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
737 	unsigned short status;
738 	unsigned int estatus = 0;
739 	dma_addr_t addr;
740 
741 	status = fec16_to_cpu(bdp->cbd_sc);
742 	status &= ~BD_ENET_TX_STATS;
743 
744 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
745 
746 	if (((unsigned long) data) & fep->tx_align ||
747 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
748 		memcpy(txq->tx_bounce[index], data, size);
749 		data = txq->tx_bounce[index];
750 
751 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
752 			swap_buffer(data, size);
753 	}
754 
755 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
756 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
757 		dev_kfree_skb_any(skb);
758 		if (net_ratelimit())
759 			netdev_err(ndev, "Tx DMA memory map failed\n");
760 		return NETDEV_TX_OK;
761 	}
762 
763 	bdp->cbd_datlen = cpu_to_fec16(size);
764 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
765 
766 	if (fep->bufdesc_ex) {
767 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
768 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
769 		if (skb->ip_summed == CHECKSUM_PARTIAL)
770 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
771 		ebdp->cbd_bdu = 0;
772 		ebdp->cbd_esc = cpu_to_fec32(estatus);
773 	}
774 
775 	/* Handle the last BD specially */
776 	if (last_tcp)
777 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
778 	if (is_last) {
779 		status |= BD_ENET_TX_INTR;
780 		if (fep->bufdesc_ex)
781 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
782 	}
783 
784 	bdp->cbd_sc = cpu_to_fec16(status);
785 
786 	return 0;
787 }
788 
789 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)790 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
791 			 struct sk_buff *skb, struct net_device *ndev,
792 			 struct bufdesc *bdp, int index)
793 {
794 	struct fec_enet_private *fep = netdev_priv(ndev);
795 	int hdr_len = skb_tcp_all_headers(skb);
796 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
797 	void *bufaddr;
798 	unsigned long dmabuf;
799 	unsigned short status;
800 	unsigned int estatus = 0;
801 
802 	status = fec16_to_cpu(bdp->cbd_sc);
803 	status &= ~BD_ENET_TX_STATS;
804 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
805 
806 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
807 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
808 	if (((unsigned long)bufaddr) & fep->tx_align ||
809 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
810 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
811 		bufaddr = txq->tx_bounce[index];
812 
813 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
814 			swap_buffer(bufaddr, hdr_len);
815 
816 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
817 					hdr_len, DMA_TO_DEVICE);
818 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
819 			dev_kfree_skb_any(skb);
820 			if (net_ratelimit())
821 				netdev_err(ndev, "Tx DMA memory map failed\n");
822 			return NETDEV_TX_OK;
823 		}
824 	}
825 
826 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
827 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
828 
829 	if (fep->bufdesc_ex) {
830 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
831 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
832 		if (skb->ip_summed == CHECKSUM_PARTIAL)
833 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
834 		ebdp->cbd_bdu = 0;
835 		ebdp->cbd_esc = cpu_to_fec32(estatus);
836 	}
837 
838 	bdp->cbd_sc = cpu_to_fec16(status);
839 
840 	return 0;
841 }
842 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)843 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
844 				   struct sk_buff *skb,
845 				   struct net_device *ndev)
846 {
847 	struct fec_enet_private *fep = netdev_priv(ndev);
848 	int hdr_len, total_len, data_left;
849 	struct bufdesc *bdp = txq->bd.cur;
850 	struct bufdesc *tmp_bdp;
851 	struct bufdesc_ex *ebdp;
852 	struct tso_t tso;
853 	unsigned int index = 0;
854 	int ret;
855 
856 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
857 		dev_kfree_skb_any(skb);
858 		if (net_ratelimit())
859 			netdev_err(ndev, "NOT enough BD for TSO!\n");
860 		return NETDEV_TX_OK;
861 	}
862 
863 	/* Protocol checksum off-load for TCP and UDP. */
864 	if (fec_enet_clear_csum(skb, ndev)) {
865 		dev_kfree_skb_any(skb);
866 		return NETDEV_TX_OK;
867 	}
868 
869 	/* Initialize the TSO handler, and prepare the first payload */
870 	hdr_len = tso_start(skb, &tso);
871 
872 	total_len = skb->len - hdr_len;
873 	while (total_len > 0) {
874 		char *hdr;
875 
876 		index = fec_enet_get_bd_index(bdp, &txq->bd);
877 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
878 		total_len -= data_left;
879 
880 		/* prepare packet headers: MAC + IP + TCP */
881 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
882 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
883 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
884 		if (ret)
885 			goto err_release;
886 
887 		while (data_left > 0) {
888 			int size;
889 
890 			size = min_t(int, tso.size, data_left);
891 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
892 			index = fec_enet_get_bd_index(bdp, &txq->bd);
893 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
894 							bdp, index,
895 							tso.data, size,
896 							size == data_left,
897 							total_len == 0);
898 			if (ret)
899 				goto err_release;
900 
901 			data_left -= size;
902 			tso_build_data(skb, &tso, size);
903 		}
904 
905 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
906 	}
907 
908 	/* Save skb pointer */
909 	txq->tx_buf[index].buf_p = skb;
910 
911 	skb_tx_timestamp(skb);
912 	txq->bd.cur = bdp;
913 
914 	/* Trigger transmission start */
915 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
916 	    !readl(txq->bd.reg_desc_active) ||
917 	    !readl(txq->bd.reg_desc_active) ||
918 	    !readl(txq->bd.reg_desc_active) ||
919 	    !readl(txq->bd.reg_desc_active))
920 		writel(0, txq->bd.reg_desc_active);
921 
922 	return 0;
923 
924 err_release:
925 	/* Release all used data descriptors for TSO */
926 	tmp_bdp = txq->bd.cur;
927 
928 	while (tmp_bdp != bdp) {
929 		/* Unmap data buffers */
930 		if (tmp_bdp->cbd_bufaddr &&
931 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
932 			dma_unmap_single(&fep->pdev->dev,
933 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
934 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
935 					 DMA_TO_DEVICE);
936 
937 		/* Clear standard buffer descriptor fields */
938 		tmp_bdp->cbd_sc = 0;
939 		tmp_bdp->cbd_datlen = 0;
940 		tmp_bdp->cbd_bufaddr = 0;
941 
942 		/* Handle extended descriptor if enabled */
943 		if (fep->bufdesc_ex) {
944 			ebdp = (struct bufdesc_ex *)tmp_bdp;
945 			ebdp->cbd_esc = 0;
946 		}
947 
948 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
949 	}
950 
951 	dev_kfree_skb_any(skb);
952 
953 	return ret;
954 }
955 
956 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)957 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
958 {
959 	struct fec_enet_private *fep = netdev_priv(ndev);
960 	int entries_free;
961 	unsigned short queue;
962 	struct fec_enet_priv_tx_q *txq;
963 	struct netdev_queue *nq;
964 	int ret;
965 
966 	queue = skb_get_queue_mapping(skb);
967 	txq = fep->tx_queue[queue];
968 	nq = netdev_get_tx_queue(ndev, queue);
969 
970 	if (skb_is_gso(skb))
971 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
972 	else
973 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
974 	if (ret)
975 		return ret;
976 
977 	entries_free = fec_enet_get_free_txdesc_num(txq);
978 	if (entries_free <= txq->tx_stop_threshold)
979 		netif_tx_stop_queue(nq);
980 
981 	return NETDEV_TX_OK;
982 }
983 
984 /* Init RX & TX buffer descriptors
985  */
fec_enet_bd_init(struct net_device * dev)986 static void fec_enet_bd_init(struct net_device *dev)
987 {
988 	struct fec_enet_private *fep = netdev_priv(dev);
989 	struct fec_enet_priv_tx_q *txq;
990 	struct fec_enet_priv_rx_q *rxq;
991 	struct bufdesc *bdp;
992 	unsigned int i;
993 	unsigned int q;
994 
995 	for (q = 0; q < fep->num_rx_queues; q++) {
996 		/* Initialize the receive buffer descriptors. */
997 		rxq = fep->rx_queue[q];
998 		bdp = rxq->bd.base;
999 
1000 		for (i = 0; i < rxq->bd.ring_size; i++) {
1001 
1002 			/* Initialize the BD for every fragment in the page. */
1003 			if (bdp->cbd_bufaddr)
1004 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1005 			else
1006 				bdp->cbd_sc = cpu_to_fec16(0);
1007 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1008 		}
1009 
1010 		/* Set the last buffer to wrap */
1011 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1012 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1013 
1014 		rxq->bd.cur = rxq->bd.base;
1015 	}
1016 
1017 	for (q = 0; q < fep->num_tx_queues; q++) {
1018 		/* ...and the same for transmit */
1019 		txq = fep->tx_queue[q];
1020 		bdp = txq->bd.base;
1021 		txq->bd.cur = bdp;
1022 
1023 		for (i = 0; i < txq->bd.ring_size; i++) {
1024 			/* Initialize the BD for every fragment in the page. */
1025 			bdp->cbd_sc = cpu_to_fec16(0);
1026 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1027 				if (bdp->cbd_bufaddr &&
1028 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1029 					dma_unmap_single(&fep->pdev->dev,
1030 							 fec32_to_cpu(bdp->cbd_bufaddr),
1031 							 fec16_to_cpu(bdp->cbd_datlen),
1032 							 DMA_TO_DEVICE);
1033 				if (txq->tx_buf[i].buf_p)
1034 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1035 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1036 				if (bdp->cbd_bufaddr)
1037 					dma_unmap_single(&fep->pdev->dev,
1038 							 fec32_to_cpu(bdp->cbd_bufaddr),
1039 							 fec16_to_cpu(bdp->cbd_datlen),
1040 							 DMA_TO_DEVICE);
1041 
1042 				if (txq->tx_buf[i].buf_p)
1043 					xdp_return_frame(txq->tx_buf[i].buf_p);
1044 			} else {
1045 				struct page *page = txq->tx_buf[i].buf_p;
1046 
1047 				if (page)
1048 					page_pool_put_page(pp_page_to_nmdesc(page)->pp,
1049 							   page, 0,
1050 							   false);
1051 			}
1052 
1053 			txq->tx_buf[i].buf_p = NULL;
1054 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1055 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1056 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1057 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1058 		}
1059 
1060 		/* Set the last buffer to wrap */
1061 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1062 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1063 		txq->dirty_tx = bdp;
1064 	}
1065 }
1066 
fec_enet_active_rxring(struct net_device * ndev)1067 static void fec_enet_active_rxring(struct net_device *ndev)
1068 {
1069 	struct fec_enet_private *fep = netdev_priv(ndev);
1070 	int i;
1071 
1072 	for (i = 0; i < fep->num_rx_queues; i++)
1073 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1074 }
1075 
fec_enet_enable_ring(struct net_device * ndev)1076 static void fec_enet_enable_ring(struct net_device *ndev)
1077 {
1078 	struct fec_enet_private *fep = netdev_priv(ndev);
1079 	struct fec_enet_priv_tx_q *txq;
1080 	struct fec_enet_priv_rx_q *rxq;
1081 	int i;
1082 
1083 	for (i = 0; i < fep->num_rx_queues; i++) {
1084 		rxq = fep->rx_queue[i];
1085 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1086 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1087 
1088 		/* enable DMA1/2 */
1089 		if (i)
1090 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1091 			       fep->hwp + FEC_RCMR(i));
1092 	}
1093 
1094 	for (i = 0; i < fep->num_tx_queues; i++) {
1095 		txq = fep->tx_queue[i];
1096 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1097 
1098 		/* enable DMA1/2 */
1099 		if (i)
1100 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1101 			       fep->hwp + FEC_DMA_CFG(i));
1102 	}
1103 }
1104 
1105 /* Whack a reset.  We should wait for this.
1106  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107  * instead of reset MAC itself.
1108  */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1109 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1110 {
1111 	u32 val;
1112 
1113 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1114 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1115 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1116 			writel(0, fep->hwp + FEC_ECNTRL);
1117 		} else {
1118 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1119 			udelay(10);
1120 		}
1121 	} else {
1122 		val = readl(fep->hwp + FEC_ECNTRL);
1123 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1124 		writel(val, fep->hwp + FEC_ECNTRL);
1125 	}
1126 }
1127 
fec_set_hw_mac_addr(struct net_device * ndev)1128 static void fec_set_hw_mac_addr(struct net_device *ndev)
1129 {
1130 	struct fec_enet_private *fep = netdev_priv(ndev);
1131 
1132 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1133 	       (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1134 	       fep->hwp + FEC_ADDR_LOW);
1135 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1136 	       fep->hwp + FEC_ADDR_HIGH);
1137 }
1138 
1139 /*
1140  * This function is called to start or restart the FEC during a link
1141  * change, transmit timeout, or to reconfigure the FEC.  The network
1142  * packet processing for this device must be stopped before this call.
1143  */
1144 static void
fec_restart(struct net_device * ndev)1145 fec_restart(struct net_device *ndev)
1146 {
1147 	struct fec_enet_private *fep = netdev_priv(ndev);
1148 	u32 rcntl = OPT_FRAME_SIZE | FEC_RCR_MII;
1149 	u32 ecntl = FEC_ECR_ETHEREN;
1150 
1151 	if (fep->bufdesc_ex)
1152 		fec_ptp_save_state(fep);
1153 
1154 	fec_ctrl_reset(fep, false);
1155 
1156 	/*
1157 	 * enet-mac reset will reset mac address registers too,
1158 	 * so need to reconfigure it.
1159 	 */
1160 	fec_set_hw_mac_addr(ndev);
1161 
1162 	/* Clear any outstanding interrupt, except MDIO. */
1163 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1164 
1165 	fec_enet_bd_init(ndev);
1166 
1167 	fec_enet_enable_ring(ndev);
1168 
1169 	/* Enable MII mode */
1170 	if (fep->full_duplex == DUPLEX_FULL) {
1171 		/* FD enable */
1172 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1173 	} else {
1174 		/* No Rcv on Xmit */
1175 		rcntl |= FEC_RCR_DRT;
1176 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1177 	}
1178 
1179 	/* Set MII speed */
1180 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1181 
1182 #if !defined(CONFIG_M5272)
1183 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1184 		u32 val = readl(fep->hwp + FEC_RACC);
1185 
1186 		/* align IP header */
1187 		val |= FEC_RACC_SHIFT16;
1188 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1189 			/* set RX checksum */
1190 			val |= FEC_RACC_OPTIONS;
1191 		else
1192 			val &= ~FEC_RACC_OPTIONS;
1193 		writel(val, fep->hwp + FEC_RACC);
1194 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1195 	}
1196 #endif
1197 
1198 	/*
1199 	 * The phy interface and speed need to get configured
1200 	 * differently on enet-mac.
1201 	 */
1202 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1203 		/* Enable flow control and length check */
1204 		rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1205 
1206 		/* RGMII, RMII or MII */
1207 		if (phy_interface_mode_is_rgmii(fep->phy_interface))
1208 			rcntl |= FEC_RCR_RGMII;
1209 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1210 			rcntl |= FEC_RCR_RMII;
1211 		else
1212 			rcntl &= ~FEC_RCR_RMII;
1213 
1214 		/* 1G, 100M or 10M */
1215 		if (ndev->phydev) {
1216 			if (ndev->phydev->speed == SPEED_1000)
1217 				ecntl |= FEC_ECR_SPEED;
1218 			else if (ndev->phydev->speed == SPEED_100)
1219 				rcntl &= ~FEC_RCR_10BASET;
1220 			else
1221 				rcntl |= FEC_RCR_10BASET;
1222 		}
1223 	} else {
1224 #ifdef FEC_MIIGSK_ENR
1225 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1226 			u32 cfgr;
1227 			/* disable the gasket and wait */
1228 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1229 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1230 				udelay(1);
1231 
1232 			/*
1233 			 * configure the gasket:
1234 			 *   RMII, 50 MHz, no loopback, no echo
1235 			 *   MII, 25 MHz, no loopback, no echo
1236 			 */
1237 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1238 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1239 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1240 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1241 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1242 
1243 			/* re-enable the gasket */
1244 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1245 		}
1246 #endif
1247 	}
1248 
1249 #if !defined(CONFIG_M5272)
1250 	/* enable pause frame*/
1251 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1252 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1253 	     ndev->phydev && ndev->phydev->pause)) {
1254 		rcntl |= FEC_RCR_FLOWCTL;
1255 
1256 		/* set FIFO threshold parameter to reduce overrun */
1257 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1258 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1259 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1260 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1261 
1262 		/* OPD */
1263 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1264 	} else {
1265 		rcntl &= ~FEC_RCR_FLOWCTL;
1266 	}
1267 #endif /* !defined(CONFIG_M5272) */
1268 
1269 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1270 
1271 	/* Setup multicast filter. */
1272 	set_multicast_list(ndev);
1273 #ifndef CONFIG_M5272
1274 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1275 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1276 #endif
1277 
1278 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1279 		/* enable ENET endian swap */
1280 		ecntl |= FEC_ECR_BYTESWP;
1281 		/* enable ENET store and forward mode */
1282 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1283 	}
1284 
1285 	if (fep->bufdesc_ex)
1286 		ecntl |= FEC_ECR_EN1588;
1287 
1288 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1289 	    fep->rgmii_txc_dly)
1290 		ecntl |= FEC_ENET_TXC_DLY;
1291 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1292 	    fep->rgmii_rxc_dly)
1293 		ecntl |= FEC_ENET_RXC_DLY;
1294 
1295 #ifndef CONFIG_M5272
1296 	/* Enable the MIB statistic event counters */
1297 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1298 #endif
1299 
1300 	/* And last, enable the transmit and receive processing */
1301 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1302 	fec_enet_active_rxring(ndev);
1303 
1304 	if (fep->bufdesc_ex) {
1305 		fec_ptp_start_cyclecounter(ndev);
1306 		fec_ptp_restore_state(fep);
1307 	}
1308 
1309 	/* Enable interrupts we wish to service */
1310 	if (fep->link)
1311 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1312 	else
1313 		writel(0, fep->hwp + FEC_IMASK);
1314 
1315 	/* Init the interrupt coalescing */
1316 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1317 		fec_enet_itr_coal_set(ndev);
1318 }
1319 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1320 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1321 {
1322 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1323 	      of_machine_is_compatible("fsl,imx8qxp") ||
1324 	      of_machine_is_compatible("fsl,imx8dxl")))
1325 		return 0;
1326 
1327 	return imx_scu_get_handle(&fep->ipc_handle);
1328 }
1329 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1330 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1331 {
1332 	struct device_node *np = fep->pdev->dev.of_node;
1333 	u32 rsrc_id, val;
1334 	int idx;
1335 
1336 	if (!np || !fep->ipc_handle)
1337 		return;
1338 
1339 	idx = of_alias_get_id(np, "ethernet");
1340 	if (idx < 0)
1341 		idx = 0;
1342 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1343 
1344 	val = enabled ? 1 : 0;
1345 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1346 }
1347 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1348 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1349 {
1350 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1351 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1352 
1353 	if (stop_gpr->gpr) {
1354 		if (enabled)
1355 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1356 					   BIT(stop_gpr->bit),
1357 					   BIT(stop_gpr->bit));
1358 		else
1359 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1360 					   BIT(stop_gpr->bit), 0);
1361 	} else if (pdata && pdata->sleep_mode_enable) {
1362 		pdata->sleep_mode_enable(enabled);
1363 	} else {
1364 		fec_enet_ipg_stop_set(fep, enabled);
1365 	}
1366 }
1367 
fec_irqs_disable(struct net_device * ndev)1368 static void fec_irqs_disable(struct net_device *ndev)
1369 {
1370 	struct fec_enet_private *fep = netdev_priv(ndev);
1371 
1372 	writel(0, fep->hwp + FEC_IMASK);
1373 }
1374 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1375 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1376 {
1377 	struct fec_enet_private *fep = netdev_priv(ndev);
1378 
1379 	writel(0, fep->hwp + FEC_IMASK);
1380 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1381 }
1382 
1383 static void
fec_stop(struct net_device * ndev)1384 fec_stop(struct net_device *ndev)
1385 {
1386 	struct fec_enet_private *fep = netdev_priv(ndev);
1387 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1388 	u32 val;
1389 
1390 	/* We cannot expect a graceful transmit stop without link !!! */
1391 	if (fep->link) {
1392 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1393 		udelay(10);
1394 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1395 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1396 	}
1397 
1398 	if (fep->bufdesc_ex)
1399 		fec_ptp_save_state(fep);
1400 
1401 	fec_ctrl_reset(fep, true);
1402 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1403 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1404 
1405 	/* We have to keep ENET enabled to have MII interrupt stay working */
1406 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1407 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1408 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1409 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1410 	}
1411 
1412 	if (fep->bufdesc_ex) {
1413 		val = readl(fep->hwp + FEC_ECNTRL);
1414 		val |= FEC_ECR_EN1588;
1415 		writel(val, fep->hwp + FEC_ECNTRL);
1416 
1417 		fec_ptp_start_cyclecounter(ndev);
1418 		fec_ptp_restore_state(fep);
1419 	}
1420 }
1421 
1422 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1423 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1424 {
1425 	struct fec_enet_private *fep = netdev_priv(ndev);
1426 
1427 	fec_dump(ndev);
1428 
1429 	ndev->stats.tx_errors++;
1430 
1431 	schedule_work(&fep->tx_timeout_work);
1432 }
1433 
fec_enet_timeout_work(struct work_struct * work)1434 static void fec_enet_timeout_work(struct work_struct *work)
1435 {
1436 	struct fec_enet_private *fep =
1437 		container_of(work, struct fec_enet_private, tx_timeout_work);
1438 	struct net_device *ndev = fep->netdev;
1439 
1440 	rtnl_lock();
1441 	if (netif_device_present(ndev) || netif_running(ndev)) {
1442 		napi_disable(&fep->napi);
1443 		netif_tx_lock_bh(ndev);
1444 		fec_restart(ndev);
1445 		netif_tx_wake_all_queues(ndev);
1446 		netif_tx_unlock_bh(ndev);
1447 		napi_enable(&fep->napi);
1448 	}
1449 	rtnl_unlock();
1450 }
1451 
1452 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1453 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1454 	struct skb_shared_hwtstamps *hwtstamps)
1455 {
1456 	unsigned long flags;
1457 	u64 ns;
1458 
1459 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1460 	ns = timecounter_cyc2time(&fep->tc, ts);
1461 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1462 
1463 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1464 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1465 }
1466 
1467 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1468 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1469 {
1470 	struct	fec_enet_private *fep;
1471 	struct xdp_frame *xdpf;
1472 	struct bufdesc *bdp;
1473 	unsigned short status;
1474 	struct	sk_buff	*skb;
1475 	struct fec_enet_priv_tx_q *txq;
1476 	struct netdev_queue *nq;
1477 	int	index = 0;
1478 	int	entries_free;
1479 	struct page *page;
1480 	int frame_len;
1481 
1482 	fep = netdev_priv(ndev);
1483 
1484 	txq = fep->tx_queue[queue_id];
1485 	/* get next bdp of dirty_tx */
1486 	nq = netdev_get_tx_queue(ndev, queue_id);
1487 	bdp = txq->dirty_tx;
1488 
1489 	/* get next bdp of dirty_tx */
1490 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1491 
1492 	while (bdp != READ_ONCE(txq->bd.cur)) {
1493 		/* Order the load of bd.cur and cbd_sc */
1494 		rmb();
1495 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1496 		if (status & BD_ENET_TX_READY)
1497 			break;
1498 
1499 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1500 
1501 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1502 			skb = txq->tx_buf[index].buf_p;
1503 			if (bdp->cbd_bufaddr &&
1504 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1505 				dma_unmap_single(&fep->pdev->dev,
1506 						 fec32_to_cpu(bdp->cbd_bufaddr),
1507 						 fec16_to_cpu(bdp->cbd_datlen),
1508 						 DMA_TO_DEVICE);
1509 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1510 			if (!skb)
1511 				goto tx_buf_done;
1512 		} else {
1513 			/* Tx processing cannot call any XDP (or page pool) APIs if
1514 			 * the "budget" is 0. Because NAPI is called with budget of
1515 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1516 			 * however, we can't use the page pool from IRQ context.
1517 			 */
1518 			if (unlikely(!budget))
1519 				break;
1520 
1521 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1522 				xdpf = txq->tx_buf[index].buf_p;
1523 				if (bdp->cbd_bufaddr)
1524 					dma_unmap_single(&fep->pdev->dev,
1525 							 fec32_to_cpu(bdp->cbd_bufaddr),
1526 							 fec16_to_cpu(bdp->cbd_datlen),
1527 							 DMA_TO_DEVICE);
1528 			} else {
1529 				page = txq->tx_buf[index].buf_p;
1530 			}
1531 
1532 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1533 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1534 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1535 				goto tx_buf_done;
1536 			}
1537 
1538 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1539 		}
1540 
1541 		/* Check for errors. */
1542 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1543 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1544 				   BD_ENET_TX_CSL)) {
1545 			ndev->stats.tx_errors++;
1546 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1547 				ndev->stats.tx_heartbeat_errors++;
1548 			if (status & BD_ENET_TX_LC)  /* Late collision */
1549 				ndev->stats.tx_window_errors++;
1550 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1551 				ndev->stats.tx_aborted_errors++;
1552 			if (status & BD_ENET_TX_UN)  /* Underrun */
1553 				ndev->stats.tx_fifo_errors++;
1554 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1555 				ndev->stats.tx_carrier_errors++;
1556 		} else {
1557 			ndev->stats.tx_packets++;
1558 
1559 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1560 				ndev->stats.tx_bytes += skb->len;
1561 			else
1562 				ndev->stats.tx_bytes += frame_len;
1563 		}
1564 
1565 		/* Deferred means some collisions occurred during transmit,
1566 		 * but we eventually sent the packet OK.
1567 		 */
1568 		if (status & BD_ENET_TX_DEF)
1569 			ndev->stats.collisions++;
1570 
1571 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1572 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1573 			 * are to time stamp the packet, so we still need to check time
1574 			 * stamping enabled flag.
1575 			 */
1576 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1577 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1578 				struct skb_shared_hwtstamps shhwtstamps;
1579 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1580 
1581 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1582 				skb_tstamp_tx(skb, &shhwtstamps);
1583 			}
1584 
1585 			/* Free the sk buffer associated with this last transmit */
1586 			napi_consume_skb(skb, budget);
1587 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1588 			xdp_return_frame_rx_napi(xdpf);
1589 		} else { /* recycle pages of XDP_TX frames */
1590 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1591 			page_pool_put_page(pp_page_to_nmdesc(page)->pp, page,
1592 					   0, true);
1593 		}
1594 
1595 		txq->tx_buf[index].buf_p = NULL;
1596 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1597 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1598 
1599 tx_buf_done:
1600 		/* Make sure the update to bdp and tx_buf are performed
1601 		 * before dirty_tx
1602 		 */
1603 		wmb();
1604 		txq->dirty_tx = bdp;
1605 
1606 		/* Update pointer to next buffer descriptor to be transmitted */
1607 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1608 
1609 		/* Since we have freed up a buffer, the ring is no longer full
1610 		 */
1611 		if (netif_tx_queue_stopped(nq)) {
1612 			entries_free = fec_enet_get_free_txdesc_num(txq);
1613 			if (entries_free >= txq->tx_wake_threshold)
1614 				netif_tx_wake_queue(nq);
1615 		}
1616 	}
1617 
1618 	/* ERR006358: Keep the transmitter going */
1619 	if (bdp != txq->bd.cur &&
1620 	    readl(txq->bd.reg_desc_active) == 0)
1621 		writel(0, txq->bd.reg_desc_active);
1622 }
1623 
fec_enet_tx(struct net_device * ndev,int budget)1624 static void fec_enet_tx(struct net_device *ndev, int budget)
1625 {
1626 	struct fec_enet_private *fep = netdev_priv(ndev);
1627 	int i;
1628 
1629 	/* Make sure that AVB queues are processed first. */
1630 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1631 		fec_enet_tx_queue(ndev, i, budget);
1632 }
1633 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1634 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1635 				struct bufdesc *bdp, int index)
1636 {
1637 	struct page *new_page;
1638 	dma_addr_t phys_addr;
1639 
1640 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1641 	if (unlikely(!new_page))
1642 		return -ENOMEM;
1643 
1644 	rxq->rx_skb_info[index].page = new_page;
1645 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1646 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1647 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1648 
1649 	return 0;
1650 }
1651 
1652 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1653 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1654 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1655 {
1656 	unsigned int sync, len = xdp->data_end - xdp->data;
1657 	u32 ret = FEC_ENET_XDP_PASS;
1658 	struct page *page;
1659 	int err;
1660 	u32 act;
1661 
1662 	act = bpf_prog_run_xdp(prog, xdp);
1663 
1664 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1665 	 * max len CPU touch
1666 	 */
1667 	sync = xdp->data_end - xdp->data;
1668 	sync = max(sync, len);
1669 
1670 	switch (act) {
1671 	case XDP_PASS:
1672 		rxq->stats[RX_XDP_PASS]++;
1673 		ret = FEC_ENET_XDP_PASS;
1674 		break;
1675 
1676 	case XDP_REDIRECT:
1677 		rxq->stats[RX_XDP_REDIRECT]++;
1678 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1679 		if (unlikely(err))
1680 			goto xdp_err;
1681 
1682 		ret = FEC_ENET_XDP_REDIR;
1683 		break;
1684 
1685 	case XDP_TX:
1686 		rxq->stats[RX_XDP_TX]++;
1687 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1688 		if (unlikely(err)) {
1689 			rxq->stats[RX_XDP_TX_ERRORS]++;
1690 			goto xdp_err;
1691 		}
1692 
1693 		ret = FEC_ENET_XDP_TX;
1694 		break;
1695 
1696 	default:
1697 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1698 		fallthrough;
1699 
1700 	case XDP_ABORTED:
1701 		fallthrough;    /* handle aborts by dropping packet */
1702 
1703 	case XDP_DROP:
1704 		rxq->stats[RX_XDP_DROP]++;
1705 xdp_err:
1706 		ret = FEC_ENET_XDP_CONSUMED;
1707 		page = virt_to_head_page(xdp->data);
1708 		page_pool_put_page(rxq->page_pool, page, sync, true);
1709 		if (act != XDP_DROP)
1710 			trace_xdp_exception(fep->netdev, prog, act);
1711 		break;
1712 	}
1713 
1714 	return ret;
1715 }
1716 
fec_enet_rx_vlan(const struct net_device * ndev,struct sk_buff * skb)1717 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1718 {
1719 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1720 		const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1721 		const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1722 
1723 		/* Push and remove the vlan tag */
1724 
1725 		memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1726 		skb_pull(skb, VLAN_HLEN);
1727 		__vlan_hwaccel_put_tag(skb,
1728 				       htons(ETH_P_8021Q),
1729 				       vlan_tag);
1730 	}
1731 }
1732 
1733 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1734  * When we update through the ring, if the next incoming buffer has
1735  * not been given to the system, we just set the empty indicator,
1736  * effectively tossing the packet.
1737  */
1738 static int
fec_enet_rx_queue(struct net_device * ndev,u16 queue_id,int budget)1739 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1740 {
1741 	struct fec_enet_private *fep = netdev_priv(ndev);
1742 	struct fec_enet_priv_rx_q *rxq;
1743 	struct bufdesc *bdp;
1744 	unsigned short status;
1745 	struct  sk_buff *skb;
1746 	ushort	pkt_len;
1747 	int	pkt_received = 0;
1748 	struct	bufdesc_ex *ebdp = NULL;
1749 	int	index = 0;
1750 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1751 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1752 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1753 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1754 	int cpu = smp_processor_id();
1755 	struct xdp_buff xdp;
1756 	struct page *page;
1757 	__fec32 cbd_bufaddr;
1758 	u32 sub_len = 4;
1759 
1760 #if !defined(CONFIG_M5272)
1761 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1762 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1763 	 */
1764 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1765 		data_start += 2;
1766 		sub_len += 2;
1767 	}
1768 #endif
1769 
1770 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1771 	/*
1772 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1773 	 * headers.
1774 	 */
1775 	flush_cache_all();
1776 #endif
1777 	rxq = fep->rx_queue[queue_id];
1778 
1779 	/* First, grab all of the stats for the incoming packet.
1780 	 * These get messed up if we get called due to a busy condition.
1781 	 */
1782 	bdp = rxq->bd.cur;
1783 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1784 
1785 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1786 
1787 		if (pkt_received >= budget)
1788 			break;
1789 		pkt_received++;
1790 
1791 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1792 
1793 		/* Check for errors. */
1794 		status ^= BD_ENET_RX_LAST;
1795 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1796 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1797 			   BD_ENET_RX_CL)) {
1798 			ndev->stats.rx_errors++;
1799 			if (status & BD_ENET_RX_OV) {
1800 				/* FIFO overrun */
1801 				ndev->stats.rx_fifo_errors++;
1802 				goto rx_processing_done;
1803 			}
1804 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1805 						| BD_ENET_RX_LAST)) {
1806 				/* Frame too long or too short. */
1807 				ndev->stats.rx_length_errors++;
1808 				if (status & BD_ENET_RX_LAST)
1809 					netdev_err(ndev, "rcv is not +last\n");
1810 			}
1811 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1812 				ndev->stats.rx_crc_errors++;
1813 			/* Report late collisions as a frame error. */
1814 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1815 				ndev->stats.rx_frame_errors++;
1816 			goto rx_processing_done;
1817 		}
1818 
1819 		/* Process the incoming frame. */
1820 		ndev->stats.rx_packets++;
1821 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1822 		ndev->stats.rx_bytes += pkt_len;
1823 
1824 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1825 		page = rxq->rx_skb_info[index].page;
1826 		cbd_bufaddr = bdp->cbd_bufaddr;
1827 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1828 			ndev->stats.rx_dropped++;
1829 			goto rx_processing_done;
1830 		}
1831 
1832 		dma_sync_single_for_cpu(&fep->pdev->dev,
1833 					fec32_to_cpu(cbd_bufaddr),
1834 					pkt_len,
1835 					DMA_FROM_DEVICE);
1836 		prefetch(page_address(page));
1837 
1838 		if (xdp_prog) {
1839 			xdp_buff_clear_frags_flag(&xdp);
1840 			/* subtract 16bit shift and FCS */
1841 			xdp_prepare_buff(&xdp, page_address(page),
1842 					 data_start, pkt_len - sub_len, false);
1843 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1844 			xdp_result |= ret;
1845 			if (ret != FEC_ENET_XDP_PASS)
1846 				goto rx_processing_done;
1847 		}
1848 
1849 		/* The packet length includes FCS, but we don't want to
1850 		 * include that when passing upstream as it messes up
1851 		 * bridging applications.
1852 		 */
1853 		skb = build_skb(page_address(page), PAGE_SIZE);
1854 		if (unlikely(!skb)) {
1855 			page_pool_recycle_direct(rxq->page_pool, page);
1856 			ndev->stats.rx_dropped++;
1857 
1858 			netdev_err_once(ndev, "build_skb failed!\n");
1859 			goto rx_processing_done;
1860 		}
1861 
1862 		skb_reserve(skb, data_start);
1863 		skb_put(skb, pkt_len - sub_len);
1864 		skb_mark_for_recycle(skb);
1865 
1866 		if (unlikely(need_swap)) {
1867 			u8 *data;
1868 
1869 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1870 			swap_buffer(data, pkt_len);
1871 		}
1872 
1873 		/* Extract the enhanced buffer descriptor */
1874 		ebdp = NULL;
1875 		if (fep->bufdesc_ex)
1876 			ebdp = (struct bufdesc_ex *)bdp;
1877 
1878 		/* If this is a VLAN packet remove the VLAN Tag */
1879 		if (fep->bufdesc_ex &&
1880 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1881 			fec_enet_rx_vlan(ndev, skb);
1882 
1883 		skb->protocol = eth_type_trans(skb, ndev);
1884 
1885 		/* Get receive timestamp from the skb */
1886 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1887 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1888 					  skb_hwtstamps(skb));
1889 
1890 		if (fep->bufdesc_ex &&
1891 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1892 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1893 				/* don't check it */
1894 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1895 			} else {
1896 				skb_checksum_none_assert(skb);
1897 			}
1898 		}
1899 
1900 		skb_record_rx_queue(skb, queue_id);
1901 		napi_gro_receive(&fep->napi, skb);
1902 
1903 rx_processing_done:
1904 		/* Clear the status flags for this buffer */
1905 		status &= ~BD_ENET_RX_STATS;
1906 
1907 		/* Mark the buffer empty */
1908 		status |= BD_ENET_RX_EMPTY;
1909 
1910 		if (fep->bufdesc_ex) {
1911 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1912 
1913 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1914 			ebdp->cbd_prot = 0;
1915 			ebdp->cbd_bdu = 0;
1916 		}
1917 		/* Make sure the updates to rest of the descriptor are
1918 		 * performed before transferring ownership.
1919 		 */
1920 		wmb();
1921 		bdp->cbd_sc = cpu_to_fec16(status);
1922 
1923 		/* Update BD pointer to next entry */
1924 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1925 
1926 		/* Doing this here will keep the FEC running while we process
1927 		 * incoming frames.  On a heavily loaded network, we should be
1928 		 * able to keep up at the expense of system resources.
1929 		 */
1930 		writel(0, rxq->bd.reg_desc_active);
1931 	}
1932 	rxq->bd.cur = bdp;
1933 
1934 	if (xdp_result & FEC_ENET_XDP_REDIR)
1935 		xdp_do_flush();
1936 
1937 	return pkt_received;
1938 }
1939 
fec_enet_rx(struct net_device * ndev,int budget)1940 static int fec_enet_rx(struct net_device *ndev, int budget)
1941 {
1942 	struct fec_enet_private *fep = netdev_priv(ndev);
1943 	int i, done = 0;
1944 
1945 	/* Make sure that AVB queues are processed first. */
1946 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1947 		done += fec_enet_rx_queue(ndev, i, budget - done);
1948 
1949 	return done;
1950 }
1951 
fec_enet_collect_events(struct fec_enet_private * fep)1952 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1953 {
1954 	uint int_events;
1955 
1956 	int_events = readl(fep->hwp + FEC_IEVENT);
1957 
1958 	/* Don't clear MDIO events, we poll for those */
1959 	int_events &= ~FEC_ENET_MII;
1960 
1961 	writel(int_events, fep->hwp + FEC_IEVENT);
1962 
1963 	return int_events != 0;
1964 }
1965 
1966 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1967 fec_enet_interrupt(int irq, void *dev_id)
1968 {
1969 	struct net_device *ndev = dev_id;
1970 	struct fec_enet_private *fep = netdev_priv(ndev);
1971 	irqreturn_t ret = IRQ_NONE;
1972 
1973 	if (fec_enet_collect_events(fep) && fep->link) {
1974 		ret = IRQ_HANDLED;
1975 
1976 		if (napi_schedule_prep(&fep->napi)) {
1977 			/* Disable interrupts */
1978 			writel(0, fep->hwp + FEC_IMASK);
1979 			__napi_schedule(&fep->napi);
1980 		}
1981 	}
1982 
1983 	return ret;
1984 }
1985 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1986 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1987 {
1988 	struct net_device *ndev = napi->dev;
1989 	struct fec_enet_private *fep = netdev_priv(ndev);
1990 	int done = 0;
1991 
1992 	do {
1993 		done += fec_enet_rx(ndev, budget - done);
1994 		fec_enet_tx(ndev, budget);
1995 	} while ((done < budget) && fec_enet_collect_events(fep));
1996 
1997 	if (done < budget) {
1998 		napi_complete_done(napi, done);
1999 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
2000 	}
2001 
2002 	return done;
2003 }
2004 
2005 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2006 static int fec_get_mac(struct net_device *ndev)
2007 {
2008 	struct fec_enet_private *fep = netdev_priv(ndev);
2009 	unsigned char *iap, tmpaddr[ETH_ALEN];
2010 	int ret;
2011 
2012 	/*
2013 	 * try to get mac address in following order:
2014 	 *
2015 	 * 1) module parameter via kernel command line in form
2016 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2017 	 */
2018 	iap = macaddr;
2019 
2020 	/*
2021 	 * 2) from device tree data
2022 	 */
2023 	if (!is_valid_ether_addr(iap)) {
2024 		struct device_node *np = fep->pdev->dev.of_node;
2025 		if (np) {
2026 			ret = of_get_mac_address(np, tmpaddr);
2027 			if (!ret)
2028 				iap = tmpaddr;
2029 			else if (ret == -EPROBE_DEFER)
2030 				return ret;
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * 3) from flash or fuse (via platform data)
2036 	 */
2037 	if (!is_valid_ether_addr(iap)) {
2038 #ifdef CONFIG_M5272
2039 		if (FEC_FLASHMAC)
2040 			iap = (unsigned char *)FEC_FLASHMAC;
2041 #else
2042 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2043 
2044 		if (pdata)
2045 			iap = (unsigned char *)&pdata->mac;
2046 #endif
2047 	}
2048 
2049 	/*
2050 	 * 4) FEC mac registers set by bootloader
2051 	 */
2052 	if (!is_valid_ether_addr(iap)) {
2053 		*((__be32 *) &tmpaddr[0]) =
2054 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2055 		*((__be16 *) &tmpaddr[4]) =
2056 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2057 		iap = &tmpaddr[0];
2058 	}
2059 
2060 	/*
2061 	 * 5) random mac address
2062 	 */
2063 	if (!is_valid_ether_addr(iap)) {
2064 		/* Report it and use a random ethernet address instead */
2065 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2066 		eth_hw_addr_random(ndev);
2067 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2068 			 ndev->dev_addr);
2069 		return 0;
2070 	}
2071 
2072 	/* Adjust MAC if using macaddr */
2073 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2074 
2075 	return 0;
2076 }
2077 
2078 /* ------------------------------------------------------------------------- */
2079 
2080 /*
2081  * Phy section
2082  */
2083 
2084 /* LPI Sleep Ts count base on tx clk (clk_ref).
2085  * The lpi sleep cnt value = X us / (cycle_ns).
2086  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2087 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2088 {
2089 	struct fec_enet_private *fep = netdev_priv(ndev);
2090 
2091 	return us * (fep->clk_ref_rate / 1000) / 1000;
2092 }
2093 
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2094 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2095 				 bool enable)
2096 {
2097 	struct fec_enet_private *fep = netdev_priv(ndev);
2098 	unsigned int sleep_cycle, wake_cycle;
2099 
2100 	if (enable) {
2101 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2102 		wake_cycle = sleep_cycle;
2103 	} else {
2104 		sleep_cycle = 0;
2105 		wake_cycle = 0;
2106 	}
2107 
2108 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2109 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2110 
2111 	return 0;
2112 }
2113 
fec_enet_adjust_link(struct net_device * ndev)2114 static void fec_enet_adjust_link(struct net_device *ndev)
2115 {
2116 	struct fec_enet_private *fep = netdev_priv(ndev);
2117 	struct phy_device *phy_dev = ndev->phydev;
2118 	int status_change = 0;
2119 
2120 	/*
2121 	 * If the netdev is down, or is going down, we're not interested
2122 	 * in link state events, so just mark our idea of the link as down
2123 	 * and ignore the event.
2124 	 */
2125 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2126 		fep->link = 0;
2127 	} else if (phy_dev->link) {
2128 		if (!fep->link) {
2129 			fep->link = phy_dev->link;
2130 			status_change = 1;
2131 		}
2132 
2133 		if (fep->full_duplex != phy_dev->duplex) {
2134 			fep->full_duplex = phy_dev->duplex;
2135 			status_change = 1;
2136 		}
2137 
2138 		if (phy_dev->speed != fep->speed) {
2139 			fep->speed = phy_dev->speed;
2140 			status_change = 1;
2141 		}
2142 
2143 		/* if any of the above changed restart the FEC */
2144 		if (status_change) {
2145 			netif_stop_queue(ndev);
2146 			napi_disable(&fep->napi);
2147 			netif_tx_lock_bh(ndev);
2148 			fec_restart(ndev);
2149 			netif_tx_wake_all_queues(ndev);
2150 			netif_tx_unlock_bh(ndev);
2151 			napi_enable(&fep->napi);
2152 		}
2153 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2154 			fec_enet_eee_mode_set(ndev,
2155 					      phy_dev->eee_cfg.tx_lpi_timer,
2156 					      phy_dev->enable_tx_lpi);
2157 	} else {
2158 		if (fep->link) {
2159 			netif_stop_queue(ndev);
2160 			napi_disable(&fep->napi);
2161 			netif_tx_lock_bh(ndev);
2162 			fec_stop(ndev);
2163 			netif_tx_unlock_bh(ndev);
2164 			napi_enable(&fep->napi);
2165 			fep->link = phy_dev->link;
2166 			status_change = 1;
2167 		}
2168 	}
2169 
2170 	if (status_change)
2171 		phy_print_status(phy_dev);
2172 }
2173 
fec_enet_mdio_wait(struct fec_enet_private * fep)2174 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2175 {
2176 	uint ievent;
2177 	int ret;
2178 
2179 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2180 					ievent & FEC_ENET_MII, 2, 30000);
2181 
2182 	if (!ret)
2183 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2184 
2185 	return ret;
2186 }
2187 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2188 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2189 {
2190 	struct fec_enet_private *fep = bus->priv;
2191 	struct device *dev = &fep->pdev->dev;
2192 	int ret = 0, frame_start, frame_addr, frame_op;
2193 
2194 	ret = pm_runtime_resume_and_get(dev);
2195 	if (ret < 0)
2196 		return ret;
2197 
2198 	/* C22 read */
2199 	frame_op = FEC_MMFR_OP_READ;
2200 	frame_start = FEC_MMFR_ST;
2201 	frame_addr = regnum;
2202 
2203 	/* start a read op */
2204 	writel(frame_start | frame_op |
2205 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2206 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2207 
2208 	/* wait for end of transfer */
2209 	ret = fec_enet_mdio_wait(fep);
2210 	if (ret) {
2211 		netdev_err(fep->netdev, "MDIO read timeout\n");
2212 		goto out;
2213 	}
2214 
2215 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2216 
2217 out:
2218 	pm_runtime_mark_last_busy(dev);
2219 	pm_runtime_put_autosuspend(dev);
2220 
2221 	return ret;
2222 }
2223 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2224 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2225 				  int devad, int regnum)
2226 {
2227 	struct fec_enet_private *fep = bus->priv;
2228 	struct device *dev = &fep->pdev->dev;
2229 	int ret = 0, frame_start, frame_op;
2230 
2231 	ret = pm_runtime_resume_and_get(dev);
2232 	if (ret < 0)
2233 		return ret;
2234 
2235 	frame_start = FEC_MMFR_ST_C45;
2236 
2237 	/* write address */
2238 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2239 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2240 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2241 	       fep->hwp + FEC_MII_DATA);
2242 
2243 	/* wait for end of transfer */
2244 	ret = fec_enet_mdio_wait(fep);
2245 	if (ret) {
2246 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2247 		goto out;
2248 	}
2249 
2250 	frame_op = FEC_MMFR_OP_READ_C45;
2251 
2252 	/* start a read op */
2253 	writel(frame_start | frame_op |
2254 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2255 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2256 
2257 	/* wait for end of transfer */
2258 	ret = fec_enet_mdio_wait(fep);
2259 	if (ret) {
2260 		netdev_err(fep->netdev, "MDIO read timeout\n");
2261 		goto out;
2262 	}
2263 
2264 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2265 
2266 out:
2267 	pm_runtime_mark_last_busy(dev);
2268 	pm_runtime_put_autosuspend(dev);
2269 
2270 	return ret;
2271 }
2272 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2273 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2274 				   u16 value)
2275 {
2276 	struct fec_enet_private *fep = bus->priv;
2277 	struct device *dev = &fep->pdev->dev;
2278 	int ret, frame_start, frame_addr;
2279 
2280 	ret = pm_runtime_resume_and_get(dev);
2281 	if (ret < 0)
2282 		return ret;
2283 
2284 	/* C22 write */
2285 	frame_start = FEC_MMFR_ST;
2286 	frame_addr = regnum;
2287 
2288 	/* start a write op */
2289 	writel(frame_start | FEC_MMFR_OP_WRITE |
2290 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2291 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2292 	       fep->hwp + FEC_MII_DATA);
2293 
2294 	/* wait for end of transfer */
2295 	ret = fec_enet_mdio_wait(fep);
2296 	if (ret)
2297 		netdev_err(fep->netdev, "MDIO write timeout\n");
2298 
2299 	pm_runtime_mark_last_busy(dev);
2300 	pm_runtime_put_autosuspend(dev);
2301 
2302 	return ret;
2303 }
2304 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2305 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2306 				   int devad, int regnum, u16 value)
2307 {
2308 	struct fec_enet_private *fep = bus->priv;
2309 	struct device *dev = &fep->pdev->dev;
2310 	int ret, frame_start;
2311 
2312 	ret = pm_runtime_resume_and_get(dev);
2313 	if (ret < 0)
2314 		return ret;
2315 
2316 	frame_start = FEC_MMFR_ST_C45;
2317 
2318 	/* write address */
2319 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2320 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2321 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2322 	       fep->hwp + FEC_MII_DATA);
2323 
2324 	/* wait for end of transfer */
2325 	ret = fec_enet_mdio_wait(fep);
2326 	if (ret) {
2327 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2328 		goto out;
2329 	}
2330 
2331 	/* start a write op */
2332 	writel(frame_start | FEC_MMFR_OP_WRITE |
2333 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2334 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2335 	       fep->hwp + FEC_MII_DATA);
2336 
2337 	/* wait for end of transfer */
2338 	ret = fec_enet_mdio_wait(fep);
2339 	if (ret)
2340 		netdev_err(fep->netdev, "MDIO write timeout\n");
2341 
2342 out:
2343 	pm_runtime_mark_last_busy(dev);
2344 	pm_runtime_put_autosuspend(dev);
2345 
2346 	return ret;
2347 }
2348 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2349 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2350 {
2351 	struct fec_enet_private *fep = netdev_priv(ndev);
2352 	struct phy_device *phy_dev = ndev->phydev;
2353 
2354 	if (phy_dev) {
2355 		phy_reset_after_clk_enable(phy_dev);
2356 	} else if (fep->phy_node) {
2357 		/*
2358 		 * If the PHY still is not bound to the MAC, but there is
2359 		 * OF PHY node and a matching PHY device instance already,
2360 		 * use the OF PHY node to obtain the PHY device instance,
2361 		 * and then use that PHY device instance when triggering
2362 		 * the PHY reset.
2363 		 */
2364 		phy_dev = of_phy_find_device(fep->phy_node);
2365 		phy_reset_after_clk_enable(phy_dev);
2366 		if (phy_dev)
2367 			put_device(&phy_dev->mdio.dev);
2368 	}
2369 }
2370 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2371 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2372 {
2373 	struct fec_enet_private *fep = netdev_priv(ndev);
2374 	int ret;
2375 
2376 	if (enable) {
2377 		ret = clk_prepare_enable(fep->clk_enet_out);
2378 		if (ret)
2379 			return ret;
2380 
2381 		if (fep->clk_ptp) {
2382 			mutex_lock(&fep->ptp_clk_mutex);
2383 			ret = clk_prepare_enable(fep->clk_ptp);
2384 			if (ret) {
2385 				mutex_unlock(&fep->ptp_clk_mutex);
2386 				goto failed_clk_ptp;
2387 			} else {
2388 				fep->ptp_clk_on = true;
2389 			}
2390 			mutex_unlock(&fep->ptp_clk_mutex);
2391 		}
2392 
2393 		ret = clk_prepare_enable(fep->clk_ref);
2394 		if (ret)
2395 			goto failed_clk_ref;
2396 
2397 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2398 		if (ret)
2399 			goto failed_clk_2x_txclk;
2400 
2401 		fec_enet_phy_reset_after_clk_enable(ndev);
2402 	} else {
2403 		clk_disable_unprepare(fep->clk_enet_out);
2404 		if (fep->clk_ptp) {
2405 			mutex_lock(&fep->ptp_clk_mutex);
2406 			clk_disable_unprepare(fep->clk_ptp);
2407 			fep->ptp_clk_on = false;
2408 			mutex_unlock(&fep->ptp_clk_mutex);
2409 		}
2410 		clk_disable_unprepare(fep->clk_ref);
2411 		clk_disable_unprepare(fep->clk_2x_txclk);
2412 	}
2413 
2414 	return 0;
2415 
2416 failed_clk_2x_txclk:
2417 	if (fep->clk_ref)
2418 		clk_disable_unprepare(fep->clk_ref);
2419 failed_clk_ref:
2420 	if (fep->clk_ptp) {
2421 		mutex_lock(&fep->ptp_clk_mutex);
2422 		clk_disable_unprepare(fep->clk_ptp);
2423 		fep->ptp_clk_on = false;
2424 		mutex_unlock(&fep->ptp_clk_mutex);
2425 	}
2426 failed_clk_ptp:
2427 	clk_disable_unprepare(fep->clk_enet_out);
2428 
2429 	return ret;
2430 }
2431 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2432 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2433 				      struct device_node *np)
2434 {
2435 	u32 rgmii_tx_delay, rgmii_rx_delay;
2436 
2437 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2438 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2439 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2440 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2441 			return -EINVAL;
2442 		} else if (rgmii_tx_delay == 2000) {
2443 			fep->rgmii_txc_dly = true;
2444 		}
2445 	}
2446 
2447 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2448 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2449 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2450 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2451 			return -EINVAL;
2452 		} else if (rgmii_rx_delay == 2000) {
2453 			fep->rgmii_rxc_dly = true;
2454 		}
2455 	}
2456 
2457 	return 0;
2458 }
2459 
fec_enet_mii_probe(struct net_device * ndev)2460 static int fec_enet_mii_probe(struct net_device *ndev)
2461 {
2462 	struct fec_enet_private *fep = netdev_priv(ndev);
2463 	struct phy_device *phy_dev = NULL;
2464 	char mdio_bus_id[MII_BUS_ID_SIZE];
2465 	char phy_name[MII_BUS_ID_SIZE + 3];
2466 	int phy_id;
2467 	int dev_id = fep->dev_id;
2468 
2469 	if (fep->phy_node) {
2470 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2471 					 &fec_enet_adjust_link, 0,
2472 					 fep->phy_interface);
2473 		if (!phy_dev) {
2474 			netdev_err(ndev, "Unable to connect to phy\n");
2475 			return -ENODEV;
2476 		}
2477 	} else {
2478 		/* check for attached phy */
2479 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2480 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2481 				continue;
2482 			if (dev_id--)
2483 				continue;
2484 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2485 			break;
2486 		}
2487 
2488 		if (phy_id >= PHY_MAX_ADDR) {
2489 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2490 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2491 			phy_id = 0;
2492 		}
2493 
2494 		snprintf(phy_name, sizeof(phy_name),
2495 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2496 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2497 				      fep->phy_interface);
2498 	}
2499 
2500 	if (IS_ERR(phy_dev)) {
2501 		netdev_err(ndev, "could not attach to PHY\n");
2502 		return PTR_ERR(phy_dev);
2503 	}
2504 
2505 	/* mask with MAC supported features */
2506 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2507 		phy_set_max_speed(phy_dev, 1000);
2508 		phy_remove_link_mode(phy_dev,
2509 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2510 #if !defined(CONFIG_M5272)
2511 		phy_support_sym_pause(phy_dev);
2512 #endif
2513 	}
2514 	else
2515 		phy_set_max_speed(phy_dev, 100);
2516 
2517 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2518 		phy_support_eee(phy_dev);
2519 
2520 	fep->link = 0;
2521 	fep->full_duplex = 0;
2522 
2523 	phy_attached_info(phy_dev);
2524 
2525 	return 0;
2526 }
2527 
fec_enet_mii_init(struct platform_device * pdev)2528 static int fec_enet_mii_init(struct platform_device *pdev)
2529 {
2530 	static struct mii_bus *fec0_mii_bus;
2531 	struct net_device *ndev = platform_get_drvdata(pdev);
2532 	struct fec_enet_private *fep = netdev_priv(ndev);
2533 	bool suppress_preamble = false;
2534 	struct phy_device *phydev;
2535 	struct device_node *node;
2536 	int err = -ENXIO;
2537 	u32 mii_speed, holdtime;
2538 	u32 bus_freq;
2539 	int addr;
2540 
2541 	/*
2542 	 * The i.MX28 dual fec interfaces are not equal.
2543 	 * Here are the differences:
2544 	 *
2545 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2546 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2547 	 *  - external phys can only be configured by fec0
2548 	 *
2549 	 * That is to say fec1 can not work independently. It only works
2550 	 * when fec0 is working. The reason behind this design is that the
2551 	 * second interface is added primarily for Switch mode.
2552 	 *
2553 	 * Because of the last point above, both phys are attached on fec0
2554 	 * mdio interface in board design, and need to be configured by
2555 	 * fec0 mii_bus.
2556 	 */
2557 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2558 		/* fec1 uses fec0 mii_bus */
2559 		if (mii_cnt && fec0_mii_bus) {
2560 			fep->mii_bus = fec0_mii_bus;
2561 			mii_cnt++;
2562 			return 0;
2563 		}
2564 		return -ENOENT;
2565 	}
2566 
2567 	bus_freq = 2500000; /* 2.5MHz by default */
2568 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2569 	if (node) {
2570 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2571 		suppress_preamble = of_property_read_bool(node,
2572 							  "suppress-preamble");
2573 	}
2574 
2575 	/*
2576 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2577 	 *
2578 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2579 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2580 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2581 	 * document.
2582 	 */
2583 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2584 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2585 		mii_speed--;
2586 	if (mii_speed > 63) {
2587 		dev_err(&pdev->dev,
2588 			"fec clock (%lu) too fast to get right mii speed\n",
2589 			clk_get_rate(fep->clk_ipg));
2590 		err = -EINVAL;
2591 		goto err_out;
2592 	}
2593 
2594 	/*
2595 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2596 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2597 	 * versions are RAZ there, so just ignore the difference and write the
2598 	 * register always.
2599 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2600 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2601 	 * output.
2602 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2603 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2604 	 * holdtime cannot result in a value greater than 3.
2605 	 */
2606 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2607 
2608 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2609 
2610 	if (suppress_preamble)
2611 		fep->phy_speed |= BIT(7);
2612 
2613 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2614 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2615 		 * MII event generation condition:
2616 		 * - writing MSCR:
2617 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2618 		 *	  mscr_reg_data_in[7:0] != 0
2619 		 * - writing MMFR:
2620 		 *	- mscr[7:0]_not_zero
2621 		 */
2622 		writel(0, fep->hwp + FEC_MII_DATA);
2623 	}
2624 
2625 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2626 
2627 	/* Clear any pending transaction complete indication */
2628 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2629 
2630 	fep->mii_bus = mdiobus_alloc();
2631 	if (fep->mii_bus == NULL) {
2632 		err = -ENOMEM;
2633 		goto err_out;
2634 	}
2635 
2636 	fep->mii_bus->name = "fec_enet_mii_bus";
2637 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2638 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2639 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2640 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2641 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2642 	}
2643 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2644 		pdev->name, fep->dev_id + 1);
2645 	fep->mii_bus->priv = fep;
2646 	fep->mii_bus->parent = &pdev->dev;
2647 
2648 	err = of_mdiobus_register(fep->mii_bus, node);
2649 	if (err)
2650 		goto err_out_free_mdiobus;
2651 	of_node_put(node);
2652 
2653 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2654 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2655 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2656 		if (phydev)
2657 			phydev->mac_managed_pm = true;
2658 	}
2659 
2660 	mii_cnt++;
2661 
2662 	/* save fec0 mii_bus */
2663 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2664 		fec0_mii_bus = fep->mii_bus;
2665 
2666 	return 0;
2667 
2668 err_out_free_mdiobus:
2669 	mdiobus_free(fep->mii_bus);
2670 err_out:
2671 	of_node_put(node);
2672 	return err;
2673 }
2674 
fec_enet_mii_remove(struct fec_enet_private * fep)2675 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2676 {
2677 	if (--mii_cnt == 0) {
2678 		mdiobus_unregister(fep->mii_bus);
2679 		mdiobus_free(fep->mii_bus);
2680 	}
2681 }
2682 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2683 static void fec_enet_get_drvinfo(struct net_device *ndev,
2684 				 struct ethtool_drvinfo *info)
2685 {
2686 	struct fec_enet_private *fep = netdev_priv(ndev);
2687 
2688 	strscpy(info->driver, fep->pdev->dev.driver->name,
2689 		sizeof(info->driver));
2690 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2691 }
2692 
fec_enet_get_regs_len(struct net_device * ndev)2693 static int fec_enet_get_regs_len(struct net_device *ndev)
2694 {
2695 	struct fec_enet_private *fep = netdev_priv(ndev);
2696 	struct resource *r;
2697 	int s = 0;
2698 
2699 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2700 	if (r)
2701 		s = resource_size(r);
2702 
2703 	return s;
2704 }
2705 
2706 /* List of registers that can be safety be read to dump them with ethtool */
2707 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2708 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2709 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2710 static __u32 fec_enet_register_version = 2;
2711 static u32 fec_enet_register_offset[] = {
2712 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2713 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2714 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2715 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2716 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2717 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2718 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2719 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2720 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2721 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2722 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2723 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2724 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2725 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2726 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2727 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2728 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2729 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2730 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2731 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2732 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2733 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2734 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2735 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2736 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2737 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2738 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2739 };
2740 /* for i.MX6ul */
2741 static u32 fec_enet_register_offset_6ul[] = {
2742 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2743 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2744 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2745 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2746 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2747 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2748 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2749 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2750 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2751 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2752 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2753 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2754 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2755 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2756 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2757 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2758 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2759 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2760 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2761 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2762 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2763 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2764 };
2765 #else
2766 static __u32 fec_enet_register_version = 1;
2767 static u32 fec_enet_register_offset[] = {
2768 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2769 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2770 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2771 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2772 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2773 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2774 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2775 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2776 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2777 };
2778 #endif
2779 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2780 static void fec_enet_get_regs(struct net_device *ndev,
2781 			      struct ethtool_regs *regs, void *regbuf)
2782 {
2783 	struct fec_enet_private *fep = netdev_priv(ndev);
2784 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2785 	struct device *dev = &fep->pdev->dev;
2786 	u32 *buf = (u32 *)regbuf;
2787 	u32 i, off;
2788 	int ret;
2789 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2790 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2791 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2792 	u32 *reg_list;
2793 	u32 reg_cnt;
2794 
2795 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2796 		reg_list = fec_enet_register_offset;
2797 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2798 	} else {
2799 		reg_list = fec_enet_register_offset_6ul;
2800 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2801 	}
2802 #else
2803 	/* coldfire */
2804 	static u32 *reg_list = fec_enet_register_offset;
2805 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2806 #endif
2807 	ret = pm_runtime_resume_and_get(dev);
2808 	if (ret < 0)
2809 		return;
2810 
2811 	regs->version = fec_enet_register_version;
2812 
2813 	memset(buf, 0, regs->len);
2814 
2815 	for (i = 0; i < reg_cnt; i++) {
2816 		off = reg_list[i];
2817 
2818 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2819 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2820 			continue;
2821 
2822 		off >>= 2;
2823 		buf[off] = readl(&theregs[off]);
2824 	}
2825 
2826 	pm_runtime_mark_last_busy(dev);
2827 	pm_runtime_put_autosuspend(dev);
2828 }
2829 
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2830 static int fec_enet_get_ts_info(struct net_device *ndev,
2831 				struct kernel_ethtool_ts_info *info)
2832 {
2833 	struct fec_enet_private *fep = netdev_priv(ndev);
2834 
2835 	if (fep->bufdesc_ex) {
2836 
2837 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2838 					SOF_TIMESTAMPING_TX_HARDWARE |
2839 					SOF_TIMESTAMPING_RX_HARDWARE |
2840 					SOF_TIMESTAMPING_RAW_HARDWARE;
2841 		if (fep->ptp_clock)
2842 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2843 
2844 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2845 				 (1 << HWTSTAMP_TX_ON);
2846 
2847 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2848 				   (1 << HWTSTAMP_FILTER_ALL);
2849 		return 0;
2850 	} else {
2851 		return ethtool_op_get_ts_info(ndev, info);
2852 	}
2853 }
2854 
2855 #if !defined(CONFIG_M5272)
2856 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2857 static void fec_enet_get_pauseparam(struct net_device *ndev,
2858 				    struct ethtool_pauseparam *pause)
2859 {
2860 	struct fec_enet_private *fep = netdev_priv(ndev);
2861 
2862 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2863 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2864 	pause->rx_pause = pause->tx_pause;
2865 }
2866 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2867 static int fec_enet_set_pauseparam(struct net_device *ndev,
2868 				   struct ethtool_pauseparam *pause)
2869 {
2870 	struct fec_enet_private *fep = netdev_priv(ndev);
2871 
2872 	if (!ndev->phydev)
2873 		return -ENODEV;
2874 
2875 	if (pause->tx_pause != pause->rx_pause) {
2876 		netdev_info(ndev,
2877 			"hardware only support enable/disable both tx and rx");
2878 		return -EINVAL;
2879 	}
2880 
2881 	fep->pause_flag = 0;
2882 
2883 	/* tx pause must be same as rx pause */
2884 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2885 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2886 
2887 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2888 			  pause->autoneg);
2889 
2890 	if (pause->autoneg) {
2891 		if (netif_running(ndev))
2892 			fec_stop(ndev);
2893 		phy_start_aneg(ndev->phydev);
2894 	}
2895 	if (netif_running(ndev)) {
2896 		napi_disable(&fep->napi);
2897 		netif_tx_lock_bh(ndev);
2898 		fec_restart(ndev);
2899 		netif_tx_wake_all_queues(ndev);
2900 		netif_tx_unlock_bh(ndev);
2901 		napi_enable(&fep->napi);
2902 	}
2903 
2904 	return 0;
2905 }
2906 
2907 static const struct fec_stat {
2908 	char name[ETH_GSTRING_LEN];
2909 	u16 offset;
2910 } fec_stats[] = {
2911 	/* RMON TX */
2912 	{ "tx_dropped", RMON_T_DROP },
2913 	{ "tx_packets", RMON_T_PACKETS },
2914 	{ "tx_broadcast", RMON_T_BC_PKT },
2915 	{ "tx_multicast", RMON_T_MC_PKT },
2916 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2917 	{ "tx_undersize", RMON_T_UNDERSIZE },
2918 	{ "tx_oversize", RMON_T_OVERSIZE },
2919 	{ "tx_fragment", RMON_T_FRAG },
2920 	{ "tx_jabber", RMON_T_JAB },
2921 	{ "tx_collision", RMON_T_COL },
2922 	{ "tx_64byte", RMON_T_P64 },
2923 	{ "tx_65to127byte", RMON_T_P65TO127 },
2924 	{ "tx_128to255byte", RMON_T_P128TO255 },
2925 	{ "tx_256to511byte", RMON_T_P256TO511 },
2926 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2927 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2928 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2929 	{ "tx_octets", RMON_T_OCTETS },
2930 
2931 	/* IEEE TX */
2932 	{ "IEEE_tx_drop", IEEE_T_DROP },
2933 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2934 	{ "IEEE_tx_1col", IEEE_T_1COL },
2935 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2936 	{ "IEEE_tx_def", IEEE_T_DEF },
2937 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2938 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2939 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2940 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2941 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2942 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2943 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2944 
2945 	/* RMON RX */
2946 	{ "rx_packets", RMON_R_PACKETS },
2947 	{ "rx_broadcast", RMON_R_BC_PKT },
2948 	{ "rx_multicast", RMON_R_MC_PKT },
2949 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2950 	{ "rx_undersize", RMON_R_UNDERSIZE },
2951 	{ "rx_oversize", RMON_R_OVERSIZE },
2952 	{ "rx_fragment", RMON_R_FRAG },
2953 	{ "rx_jabber", RMON_R_JAB },
2954 	{ "rx_64byte", RMON_R_P64 },
2955 	{ "rx_65to127byte", RMON_R_P65TO127 },
2956 	{ "rx_128to255byte", RMON_R_P128TO255 },
2957 	{ "rx_256to511byte", RMON_R_P256TO511 },
2958 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2959 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2960 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2961 	{ "rx_octets", RMON_R_OCTETS },
2962 
2963 	/* IEEE RX */
2964 	{ "IEEE_rx_drop", IEEE_R_DROP },
2965 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2966 	{ "IEEE_rx_crc", IEEE_R_CRC },
2967 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2968 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2969 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2970 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2971 };
2972 
2973 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2974 
2975 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2976 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2977 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2978 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2979 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2980 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2981 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2982 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2983 };
2984 
fec_enet_update_ethtool_stats(struct net_device * dev)2985 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2986 {
2987 	struct fec_enet_private *fep = netdev_priv(dev);
2988 	int i;
2989 
2990 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2991 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2992 }
2993 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2994 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2995 {
2996 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2997 	struct fec_enet_priv_rx_q *rxq;
2998 	int i, j;
2999 
3000 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3001 		rxq = fep->rx_queue[i];
3002 
3003 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3004 			xdp_stats[j] += rxq->stats[j];
3005 	}
3006 
3007 	memcpy(data, xdp_stats, sizeof(xdp_stats));
3008 }
3009 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3010 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3011 {
3012 #ifdef CONFIG_PAGE_POOL_STATS
3013 	struct page_pool_stats stats = {};
3014 	struct fec_enet_priv_rx_q *rxq;
3015 	int i;
3016 
3017 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3018 		rxq = fep->rx_queue[i];
3019 
3020 		if (!rxq->page_pool)
3021 			continue;
3022 
3023 		page_pool_get_stats(rxq->page_pool, &stats);
3024 	}
3025 
3026 	page_pool_ethtool_stats_get(data, &stats);
3027 #endif
3028 }
3029 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3030 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3031 				       struct ethtool_stats *stats, u64 *data)
3032 {
3033 	struct fec_enet_private *fep = netdev_priv(dev);
3034 
3035 	if (netif_running(dev))
3036 		fec_enet_update_ethtool_stats(dev);
3037 
3038 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3039 	data += FEC_STATS_SIZE / sizeof(u64);
3040 
3041 	fec_enet_get_xdp_stats(fep, data);
3042 	data += XDP_STATS_TOTAL;
3043 
3044 	fec_enet_page_pool_stats(fep, data);
3045 }
3046 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3047 static void fec_enet_get_strings(struct net_device *netdev,
3048 	u32 stringset, u8 *data)
3049 {
3050 	int i;
3051 	switch (stringset) {
3052 	case ETH_SS_STATS:
3053 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3054 			ethtool_puts(&data, fec_stats[i].name);
3055 		}
3056 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3057 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3058 		}
3059 		page_pool_ethtool_stats_get_strings(data);
3060 
3061 		break;
3062 	case ETH_SS_TEST:
3063 		net_selftest_get_strings(data);
3064 		break;
3065 	}
3066 }
3067 
fec_enet_get_sset_count(struct net_device * dev,int sset)3068 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3069 {
3070 	int count;
3071 
3072 	switch (sset) {
3073 	case ETH_SS_STATS:
3074 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3075 		count += page_pool_ethtool_stats_get_count();
3076 		return count;
3077 
3078 	case ETH_SS_TEST:
3079 		return net_selftest_get_count();
3080 	default:
3081 		return -EOPNOTSUPP;
3082 	}
3083 }
3084 
fec_enet_clear_ethtool_stats(struct net_device * dev)3085 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3086 {
3087 	struct fec_enet_private *fep = netdev_priv(dev);
3088 	struct fec_enet_priv_rx_q *rxq;
3089 	int i, j;
3090 
3091 	/* Disable MIB statistics counters */
3092 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3093 
3094 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3095 		writel(0, fep->hwp + fec_stats[i].offset);
3096 
3097 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3098 		rxq = fep->rx_queue[i];
3099 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3100 			rxq->stats[j] = 0;
3101 	}
3102 
3103 	/* Don't disable MIB statistics counters */
3104 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3105 }
3106 
3107 #else	/* !defined(CONFIG_M5272) */
3108 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3109 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3110 {
3111 }
3112 
fec_enet_clear_ethtool_stats(struct net_device * dev)3113 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3114 {
3115 }
3116 #endif /* !defined(CONFIG_M5272) */
3117 
3118 /* ITR clock source is enet system clock (clk_ahb).
3119  * TCTT unit is cycle_ns * 64 cycle
3120  * So, the ICTT value = X us / (cycle_ns * 64)
3121  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3122 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3123 {
3124 	struct fec_enet_private *fep = netdev_priv(ndev);
3125 
3126 	return us * (fep->itr_clk_rate / 64000) / 1000;
3127 }
3128 
3129 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3130 static void fec_enet_itr_coal_set(struct net_device *ndev)
3131 {
3132 	struct fec_enet_private *fep = netdev_priv(ndev);
3133 	u32 rx_itr = 0, tx_itr = 0;
3134 	int rx_ictt, tx_ictt;
3135 
3136 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3137 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3138 
3139 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3140 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3141 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3142 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3143 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3144 	}
3145 
3146 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3147 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3148 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3149 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3150 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3151 	}
3152 
3153 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3154 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3155 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3156 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3157 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3158 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3159 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3160 	}
3161 }
3162 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3163 static int fec_enet_get_coalesce(struct net_device *ndev,
3164 				 struct ethtool_coalesce *ec,
3165 				 struct kernel_ethtool_coalesce *kernel_coal,
3166 				 struct netlink_ext_ack *extack)
3167 {
3168 	struct fec_enet_private *fep = netdev_priv(ndev);
3169 
3170 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3171 		return -EOPNOTSUPP;
3172 
3173 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3174 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3175 
3176 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3177 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3178 
3179 	return 0;
3180 }
3181 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3182 static int fec_enet_set_coalesce(struct net_device *ndev,
3183 				 struct ethtool_coalesce *ec,
3184 				 struct kernel_ethtool_coalesce *kernel_coal,
3185 				 struct netlink_ext_ack *extack)
3186 {
3187 	struct fec_enet_private *fep = netdev_priv(ndev);
3188 	struct device *dev = &fep->pdev->dev;
3189 	unsigned int cycle;
3190 
3191 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3192 		return -EOPNOTSUPP;
3193 
3194 	if (ec->rx_max_coalesced_frames > 255) {
3195 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3196 		return -EINVAL;
3197 	}
3198 
3199 	if (ec->tx_max_coalesced_frames > 255) {
3200 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3201 		return -EINVAL;
3202 	}
3203 
3204 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3205 	if (cycle > 0xFFFF) {
3206 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3207 		return -EINVAL;
3208 	}
3209 
3210 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3211 	if (cycle > 0xFFFF) {
3212 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3213 		return -EINVAL;
3214 	}
3215 
3216 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3217 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3218 
3219 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3220 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3221 
3222 	fec_enet_itr_coal_set(ndev);
3223 
3224 	return 0;
3225 }
3226 
3227 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3228 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3229 {
3230 	struct fec_enet_private *fep = netdev_priv(ndev);
3231 
3232 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3233 		return -EOPNOTSUPP;
3234 
3235 	if (!netif_running(ndev))
3236 		return -ENETDOWN;
3237 
3238 	return phy_ethtool_get_eee(ndev->phydev, edata);
3239 }
3240 
3241 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3242 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3243 {
3244 	struct fec_enet_private *fep = netdev_priv(ndev);
3245 
3246 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3247 		return -EOPNOTSUPP;
3248 
3249 	if (!netif_running(ndev))
3250 		return -ENETDOWN;
3251 
3252 	return phy_ethtool_set_eee(ndev->phydev, edata);
3253 }
3254 
3255 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3256 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3257 {
3258 	struct fec_enet_private *fep = netdev_priv(ndev);
3259 
3260 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3261 		wol->supported = WAKE_MAGIC;
3262 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3263 	} else {
3264 		wol->supported = wol->wolopts = 0;
3265 	}
3266 }
3267 
3268 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3269 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3270 {
3271 	struct fec_enet_private *fep = netdev_priv(ndev);
3272 
3273 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3274 		return -EINVAL;
3275 
3276 	if (wol->wolopts & ~WAKE_MAGIC)
3277 		return -EINVAL;
3278 
3279 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3280 	if (device_may_wakeup(&ndev->dev))
3281 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3282 	else
3283 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3284 
3285 	return 0;
3286 }
3287 
3288 static const struct ethtool_ops fec_enet_ethtool_ops = {
3289 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3290 				     ETHTOOL_COALESCE_MAX_FRAMES,
3291 	.get_drvinfo		= fec_enet_get_drvinfo,
3292 	.get_regs_len		= fec_enet_get_regs_len,
3293 	.get_regs		= fec_enet_get_regs,
3294 	.nway_reset		= phy_ethtool_nway_reset,
3295 	.get_link		= ethtool_op_get_link,
3296 	.get_coalesce		= fec_enet_get_coalesce,
3297 	.set_coalesce		= fec_enet_set_coalesce,
3298 #ifndef CONFIG_M5272
3299 	.get_pauseparam		= fec_enet_get_pauseparam,
3300 	.set_pauseparam		= fec_enet_set_pauseparam,
3301 	.get_strings		= fec_enet_get_strings,
3302 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3303 	.get_sset_count		= fec_enet_get_sset_count,
3304 #endif
3305 	.get_ts_info		= fec_enet_get_ts_info,
3306 	.get_wol		= fec_enet_get_wol,
3307 	.set_wol		= fec_enet_set_wol,
3308 	.get_eee		= fec_enet_get_eee,
3309 	.set_eee		= fec_enet_set_eee,
3310 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3311 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3312 	.self_test		= net_selftest,
3313 };
3314 
fec_enet_free_buffers(struct net_device * ndev)3315 static void fec_enet_free_buffers(struct net_device *ndev)
3316 {
3317 	struct fec_enet_private *fep = netdev_priv(ndev);
3318 	unsigned int i;
3319 	struct fec_enet_priv_tx_q *txq;
3320 	struct fec_enet_priv_rx_q *rxq;
3321 	unsigned int q;
3322 
3323 	for (q = 0; q < fep->num_rx_queues; q++) {
3324 		rxq = fep->rx_queue[q];
3325 		for (i = 0; i < rxq->bd.ring_size; i++)
3326 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3327 
3328 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3329 			rxq->stats[i] = 0;
3330 
3331 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3332 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3333 		page_pool_destroy(rxq->page_pool);
3334 		rxq->page_pool = NULL;
3335 	}
3336 
3337 	for (q = 0; q < fep->num_tx_queues; q++) {
3338 		txq = fep->tx_queue[q];
3339 		for (i = 0; i < txq->bd.ring_size; i++) {
3340 			kfree(txq->tx_bounce[i]);
3341 			txq->tx_bounce[i] = NULL;
3342 
3343 			if (!txq->tx_buf[i].buf_p) {
3344 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3345 				continue;
3346 			}
3347 
3348 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3349 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3350 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3351 				xdp_return_frame(txq->tx_buf[i].buf_p);
3352 			} else {
3353 				struct page *page = txq->tx_buf[i].buf_p;
3354 
3355 				page_pool_put_page(pp_page_to_nmdesc(page)->pp,
3356 						   page, 0, false);
3357 			}
3358 
3359 			txq->tx_buf[i].buf_p = NULL;
3360 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3361 		}
3362 	}
3363 }
3364 
fec_enet_free_queue(struct net_device * ndev)3365 static void fec_enet_free_queue(struct net_device *ndev)
3366 {
3367 	struct fec_enet_private *fep = netdev_priv(ndev);
3368 	int i;
3369 	struct fec_enet_priv_tx_q *txq;
3370 
3371 	for (i = 0; i < fep->num_tx_queues; i++)
3372 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3373 			txq = fep->tx_queue[i];
3374 			fec_dma_free(&fep->pdev->dev,
3375 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3376 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3377 		}
3378 
3379 	for (i = 0; i < fep->num_rx_queues; i++)
3380 		kfree(fep->rx_queue[i]);
3381 	for (i = 0; i < fep->num_tx_queues; i++)
3382 		kfree(fep->tx_queue[i]);
3383 }
3384 
fec_enet_alloc_queue(struct net_device * ndev)3385 static int fec_enet_alloc_queue(struct net_device *ndev)
3386 {
3387 	struct fec_enet_private *fep = netdev_priv(ndev);
3388 	int i;
3389 	int ret = 0;
3390 	struct fec_enet_priv_tx_q *txq;
3391 
3392 	for (i = 0; i < fep->num_tx_queues; i++) {
3393 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3394 		if (!txq) {
3395 			ret = -ENOMEM;
3396 			goto alloc_failed;
3397 		}
3398 
3399 		fep->tx_queue[i] = txq;
3400 		txq->bd.ring_size = TX_RING_SIZE;
3401 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3402 
3403 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3404 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3405 
3406 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3407 					txq->bd.ring_size * TSO_HEADER_SIZE,
3408 					&txq->tso_hdrs_dma, GFP_KERNEL);
3409 		if (!txq->tso_hdrs) {
3410 			ret = -ENOMEM;
3411 			goto alloc_failed;
3412 		}
3413 	}
3414 
3415 	for (i = 0; i < fep->num_rx_queues; i++) {
3416 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3417 					   GFP_KERNEL);
3418 		if (!fep->rx_queue[i]) {
3419 			ret = -ENOMEM;
3420 			goto alloc_failed;
3421 		}
3422 
3423 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3424 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3425 	}
3426 	return ret;
3427 
3428 alloc_failed:
3429 	fec_enet_free_queue(ndev);
3430 	return ret;
3431 }
3432 
3433 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3434 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3435 {
3436 	struct fec_enet_private *fep = netdev_priv(ndev);
3437 	struct fec_enet_priv_rx_q *rxq;
3438 	dma_addr_t phys_addr;
3439 	struct bufdesc	*bdp;
3440 	struct page *page;
3441 	int i, err;
3442 
3443 	rxq = fep->rx_queue[queue];
3444 	bdp = rxq->bd.base;
3445 
3446 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3447 	if (err < 0) {
3448 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3449 		return err;
3450 	}
3451 
3452 	for (i = 0; i < rxq->bd.ring_size; i++) {
3453 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3454 		if (!page)
3455 			goto err_alloc;
3456 
3457 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3458 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3459 
3460 		rxq->rx_skb_info[i].page = page;
3461 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3462 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3463 
3464 		if (fep->bufdesc_ex) {
3465 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3466 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3467 		}
3468 
3469 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3470 	}
3471 
3472 	/* Set the last buffer to wrap. */
3473 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3474 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3475 	return 0;
3476 
3477  err_alloc:
3478 	fec_enet_free_buffers(ndev);
3479 	return -ENOMEM;
3480 }
3481 
3482 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3483 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3484 {
3485 	struct fec_enet_private *fep = netdev_priv(ndev);
3486 	unsigned int i;
3487 	struct bufdesc  *bdp;
3488 	struct fec_enet_priv_tx_q *txq;
3489 
3490 	txq = fep->tx_queue[queue];
3491 	bdp = txq->bd.base;
3492 	for (i = 0; i < txq->bd.ring_size; i++) {
3493 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3494 		if (!txq->tx_bounce[i])
3495 			goto err_alloc;
3496 
3497 		bdp->cbd_sc = cpu_to_fec16(0);
3498 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3499 
3500 		if (fep->bufdesc_ex) {
3501 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3502 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3503 		}
3504 
3505 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3506 	}
3507 
3508 	/* Set the last buffer to wrap. */
3509 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3510 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3511 
3512 	return 0;
3513 
3514  err_alloc:
3515 	fec_enet_free_buffers(ndev);
3516 	return -ENOMEM;
3517 }
3518 
fec_enet_alloc_buffers(struct net_device * ndev)3519 static int fec_enet_alloc_buffers(struct net_device *ndev)
3520 {
3521 	struct fec_enet_private *fep = netdev_priv(ndev);
3522 	unsigned int i;
3523 
3524 	for (i = 0; i < fep->num_rx_queues; i++)
3525 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3526 			return -ENOMEM;
3527 
3528 	for (i = 0; i < fep->num_tx_queues; i++)
3529 		if (fec_enet_alloc_txq_buffers(ndev, i))
3530 			return -ENOMEM;
3531 	return 0;
3532 }
3533 
3534 static int
fec_enet_open(struct net_device * ndev)3535 fec_enet_open(struct net_device *ndev)
3536 {
3537 	struct fec_enet_private *fep = netdev_priv(ndev);
3538 	int ret;
3539 	bool reset_again;
3540 
3541 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3542 	if (ret < 0)
3543 		return ret;
3544 
3545 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3546 	ret = fec_enet_clk_enable(ndev, true);
3547 	if (ret)
3548 		goto clk_enable;
3549 
3550 	/* During the first fec_enet_open call the PHY isn't probed at this
3551 	 * point. Therefore the phy_reset_after_clk_enable() call within
3552 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3553 	 * sure the PHY is working correctly we check if we need to reset again
3554 	 * later when the PHY is probed
3555 	 */
3556 	if (ndev->phydev && ndev->phydev->drv)
3557 		reset_again = false;
3558 	else
3559 		reset_again = true;
3560 
3561 	/* I should reset the ring buffers here, but I don't yet know
3562 	 * a simple way to do that.
3563 	 */
3564 
3565 	ret = fec_enet_alloc_buffers(ndev);
3566 	if (ret)
3567 		goto err_enet_alloc;
3568 
3569 	/* Init MAC prior to mii bus probe */
3570 	fec_restart(ndev);
3571 
3572 	/* Call phy_reset_after_clk_enable() again if it failed during
3573 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3574 	 */
3575 	if (reset_again)
3576 		fec_enet_phy_reset_after_clk_enable(ndev);
3577 
3578 	/* Probe and connect to PHY when open the interface */
3579 	ret = fec_enet_mii_probe(ndev);
3580 	if (ret)
3581 		goto err_enet_mii_probe;
3582 
3583 	if (fep->quirks & FEC_QUIRK_ERR006687)
3584 		imx6q_cpuidle_fec_irqs_used();
3585 
3586 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3587 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3588 
3589 	napi_enable(&fep->napi);
3590 	phy_start(ndev->phydev);
3591 	netif_tx_start_all_queues(ndev);
3592 
3593 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3594 				 FEC_WOL_FLAG_ENABLE);
3595 
3596 	return 0;
3597 
3598 err_enet_mii_probe:
3599 	fec_enet_free_buffers(ndev);
3600 err_enet_alloc:
3601 	fec_enet_clk_enable(ndev, false);
3602 clk_enable:
3603 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3604 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3605 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3606 	return ret;
3607 }
3608 
3609 static int
fec_enet_close(struct net_device * ndev)3610 fec_enet_close(struct net_device *ndev)
3611 {
3612 	struct fec_enet_private *fep = netdev_priv(ndev);
3613 
3614 	phy_stop(ndev->phydev);
3615 
3616 	if (netif_device_present(ndev)) {
3617 		napi_disable(&fep->napi);
3618 		netif_tx_disable(ndev);
3619 		fec_stop(ndev);
3620 	}
3621 
3622 	phy_disconnect(ndev->phydev);
3623 
3624 	if (fep->quirks & FEC_QUIRK_ERR006687)
3625 		imx6q_cpuidle_fec_irqs_unused();
3626 
3627 	fec_enet_update_ethtool_stats(ndev);
3628 
3629 	fec_enet_clk_enable(ndev, false);
3630 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3631 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3632 
3633 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3634 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3635 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3636 
3637 	fec_enet_free_buffers(ndev);
3638 
3639 	return 0;
3640 }
3641 
3642 /* Set or clear the multicast filter for this adaptor.
3643  * Skeleton taken from sunlance driver.
3644  * The CPM Ethernet implementation allows Multicast as well as individual
3645  * MAC address filtering.  Some of the drivers check to make sure it is
3646  * a group multicast address, and discard those that are not.  I guess I
3647  * will do the same for now, but just remove the test if you want
3648  * individual filtering as well (do the upper net layers want or support
3649  * this kind of feature?).
3650  */
3651 
3652 #define FEC_HASH_BITS	6		/* #bits in hash */
3653 
set_multicast_list(struct net_device * ndev)3654 static void set_multicast_list(struct net_device *ndev)
3655 {
3656 	struct fec_enet_private *fep = netdev_priv(ndev);
3657 	struct netdev_hw_addr *ha;
3658 	unsigned int crc, tmp;
3659 	unsigned char hash;
3660 	unsigned int hash_high = 0, hash_low = 0;
3661 
3662 	if (ndev->flags & IFF_PROMISC) {
3663 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3664 		tmp |= 0x8;
3665 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3666 		return;
3667 	}
3668 
3669 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3670 	tmp &= ~0x8;
3671 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3672 
3673 	if (ndev->flags & IFF_ALLMULTI) {
3674 		/* Catch all multicast addresses, so set the
3675 		 * filter to all 1's
3676 		 */
3677 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3678 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3679 
3680 		return;
3681 	}
3682 
3683 	/* Add the addresses in hash register */
3684 	netdev_for_each_mc_addr(ha, ndev) {
3685 		/* calculate crc32 value of mac address */
3686 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3687 
3688 		/* only upper 6 bits (FEC_HASH_BITS) are used
3689 		 * which point to specific bit in the hash registers
3690 		 */
3691 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3692 
3693 		if (hash > 31)
3694 			hash_high |= 1 << (hash - 32);
3695 		else
3696 			hash_low |= 1 << hash;
3697 	}
3698 
3699 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3700 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3701 }
3702 
3703 /* Set a MAC change in hardware. */
3704 static int
fec_set_mac_address(struct net_device * ndev,void * p)3705 fec_set_mac_address(struct net_device *ndev, void *p)
3706 {
3707 	struct sockaddr *addr = p;
3708 
3709 	if (addr) {
3710 		if (!is_valid_ether_addr(addr->sa_data))
3711 			return -EADDRNOTAVAIL;
3712 		eth_hw_addr_set(ndev, addr->sa_data);
3713 	}
3714 
3715 	/* Add netif status check here to avoid system hang in below case:
3716 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3717 	 * After ethx down, fec all clocks are gated off and then register
3718 	 * access causes system hang.
3719 	 */
3720 	if (!netif_running(ndev))
3721 		return 0;
3722 
3723 	fec_set_hw_mac_addr(ndev);
3724 
3725 	return 0;
3726 }
3727 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3728 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3729 	netdev_features_t features)
3730 {
3731 	struct fec_enet_private *fep = netdev_priv(netdev);
3732 	netdev_features_t changed = features ^ netdev->features;
3733 
3734 	netdev->features = features;
3735 
3736 	/* Receive checksum has been changed */
3737 	if (changed & NETIF_F_RXCSUM) {
3738 		if (features & NETIF_F_RXCSUM)
3739 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3740 		else
3741 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3742 	}
3743 }
3744 
fec_set_features(struct net_device * netdev,netdev_features_t features)3745 static int fec_set_features(struct net_device *netdev,
3746 	netdev_features_t features)
3747 {
3748 	struct fec_enet_private *fep = netdev_priv(netdev);
3749 	netdev_features_t changed = features ^ netdev->features;
3750 
3751 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3752 		napi_disable(&fep->napi);
3753 		netif_tx_lock_bh(netdev);
3754 		fec_stop(netdev);
3755 		fec_enet_set_netdev_features(netdev, features);
3756 		fec_restart(netdev);
3757 		netif_tx_wake_all_queues(netdev);
3758 		netif_tx_unlock_bh(netdev);
3759 		napi_enable(&fep->napi);
3760 	} else {
3761 		fec_enet_set_netdev_features(netdev, features);
3762 	}
3763 
3764 	return 0;
3765 }
3766 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3767 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3768 				 struct net_device *sb_dev)
3769 {
3770 	struct fec_enet_private *fep = netdev_priv(ndev);
3771 	u16 vlan_tag = 0;
3772 
3773 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3774 		return netdev_pick_tx(ndev, skb, NULL);
3775 
3776 	/* VLAN is present in the payload.*/
3777 	if (eth_type_vlan(skb->protocol)) {
3778 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3779 
3780 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3781 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3782 	} else if (skb_vlan_tag_present(skb)) {
3783 		vlan_tag = skb->vlan_tci;
3784 	} else {
3785 		return vlan_tag;
3786 	}
3787 
3788 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3789 }
3790 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3791 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3792 {
3793 	struct fec_enet_private *fep = netdev_priv(dev);
3794 	bool is_run = netif_running(dev);
3795 	struct bpf_prog *old_prog;
3796 
3797 	switch (bpf->command) {
3798 	case XDP_SETUP_PROG:
3799 		/* No need to support the SoCs that require to
3800 		 * do the frame swap because the performance wouldn't be
3801 		 * better than the skb mode.
3802 		 */
3803 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3804 			return -EOPNOTSUPP;
3805 
3806 		if (!bpf->prog)
3807 			xdp_features_clear_redirect_target(dev);
3808 
3809 		if (is_run) {
3810 			napi_disable(&fep->napi);
3811 			netif_tx_disable(dev);
3812 		}
3813 
3814 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3815 		if (old_prog)
3816 			bpf_prog_put(old_prog);
3817 
3818 		fec_restart(dev);
3819 
3820 		if (is_run) {
3821 			napi_enable(&fep->napi);
3822 			netif_tx_start_all_queues(dev);
3823 		}
3824 
3825 		if (bpf->prog)
3826 			xdp_features_set_redirect_target(dev, false);
3827 
3828 		return 0;
3829 
3830 	case XDP_SETUP_XSK_POOL:
3831 		return -EOPNOTSUPP;
3832 
3833 	default:
3834 		return -EOPNOTSUPP;
3835 	}
3836 }
3837 
3838 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3839 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3840 {
3841 	if (unlikely(index < 0))
3842 		return 0;
3843 
3844 	return (index % fep->num_tx_queues);
3845 }
3846 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3847 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3848 				   struct fec_enet_priv_tx_q *txq,
3849 				   void *frame, u32 dma_sync_len,
3850 				   bool ndo_xmit)
3851 {
3852 	unsigned int index, status, estatus;
3853 	struct bufdesc *bdp;
3854 	dma_addr_t dma_addr;
3855 	int entries_free;
3856 	u16 frame_len;
3857 
3858 	entries_free = fec_enet_get_free_txdesc_num(txq);
3859 	if (entries_free < MAX_SKB_FRAGS + 1) {
3860 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3861 		return -EBUSY;
3862 	}
3863 
3864 	/* Fill in a Tx ring entry */
3865 	bdp = txq->bd.cur;
3866 	status = fec16_to_cpu(bdp->cbd_sc);
3867 	status &= ~BD_ENET_TX_STATS;
3868 
3869 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3870 
3871 	if (ndo_xmit) {
3872 		struct xdp_frame *xdpf = frame;
3873 
3874 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3875 					  xdpf->len, DMA_TO_DEVICE);
3876 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3877 			return -ENOMEM;
3878 
3879 		frame_len = xdpf->len;
3880 		txq->tx_buf[index].buf_p = xdpf;
3881 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3882 	} else {
3883 		struct xdp_buff *xdpb = frame;
3884 		struct page *page;
3885 
3886 		page = virt_to_page(xdpb->data);
3887 		dma_addr = page_pool_get_dma_addr(page) +
3888 			   (xdpb->data - xdpb->data_hard_start);
3889 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3890 					   dma_sync_len, DMA_BIDIRECTIONAL);
3891 		frame_len = xdpb->data_end - xdpb->data;
3892 		txq->tx_buf[index].buf_p = page;
3893 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3894 	}
3895 
3896 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3897 	if (fep->bufdesc_ex)
3898 		estatus = BD_ENET_TX_INT;
3899 
3900 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3901 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3902 
3903 	if (fep->bufdesc_ex) {
3904 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3905 
3906 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3907 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3908 
3909 		ebdp->cbd_bdu = 0;
3910 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3911 	}
3912 
3913 	/* Make sure the updates to rest of the descriptor are performed before
3914 	 * transferring ownership.
3915 	 */
3916 	dma_wmb();
3917 
3918 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3919 	 * it's the last BD of the frame, and to put the CRC on the end.
3920 	 */
3921 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3922 	bdp->cbd_sc = cpu_to_fec16(status);
3923 
3924 	/* If this was the last BD in the ring, start at the beginning again. */
3925 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3926 
3927 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3928 	dma_wmb();
3929 
3930 	txq->bd.cur = bdp;
3931 
3932 	/* Trigger transmission start */
3933 	writel(0, txq->bd.reg_desc_active);
3934 
3935 	return 0;
3936 }
3937 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3938 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3939 				int cpu, struct xdp_buff *xdp,
3940 				u32 dma_sync_len)
3941 {
3942 	struct fec_enet_priv_tx_q *txq;
3943 	struct netdev_queue *nq;
3944 	int queue, ret;
3945 
3946 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3947 	txq = fep->tx_queue[queue];
3948 	nq = netdev_get_tx_queue(fep->netdev, queue);
3949 
3950 	__netif_tx_lock(nq, cpu);
3951 
3952 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3953 	txq_trans_cond_update(nq);
3954 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3955 
3956 	__netif_tx_unlock(nq);
3957 
3958 	return ret;
3959 }
3960 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3961 static int fec_enet_xdp_xmit(struct net_device *dev,
3962 			     int num_frames,
3963 			     struct xdp_frame **frames,
3964 			     u32 flags)
3965 {
3966 	struct fec_enet_private *fep = netdev_priv(dev);
3967 	struct fec_enet_priv_tx_q *txq;
3968 	int cpu = smp_processor_id();
3969 	unsigned int sent_frames = 0;
3970 	struct netdev_queue *nq;
3971 	unsigned int queue;
3972 	int i;
3973 
3974 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3975 	txq = fep->tx_queue[queue];
3976 	nq = netdev_get_tx_queue(fep->netdev, queue);
3977 
3978 	__netif_tx_lock(nq, cpu);
3979 
3980 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3981 	txq_trans_cond_update(nq);
3982 	for (i = 0; i < num_frames; i++) {
3983 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3984 			break;
3985 		sent_frames++;
3986 	}
3987 
3988 	__netif_tx_unlock(nq);
3989 
3990 	return sent_frames;
3991 }
3992 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3993 static int fec_hwtstamp_get(struct net_device *ndev,
3994 			    struct kernel_hwtstamp_config *config)
3995 {
3996 	struct fec_enet_private *fep = netdev_priv(ndev);
3997 
3998 	if (!netif_running(ndev))
3999 		return -EINVAL;
4000 
4001 	if (!fep->bufdesc_ex)
4002 		return -EOPNOTSUPP;
4003 
4004 	fec_ptp_get(ndev, config);
4005 
4006 	return 0;
4007 }
4008 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4009 static int fec_hwtstamp_set(struct net_device *ndev,
4010 			    struct kernel_hwtstamp_config *config,
4011 			    struct netlink_ext_ack *extack)
4012 {
4013 	struct fec_enet_private *fep = netdev_priv(ndev);
4014 
4015 	if (!netif_running(ndev))
4016 		return -EINVAL;
4017 
4018 	if (!fep->bufdesc_ex)
4019 		return -EOPNOTSUPP;
4020 
4021 	return fec_ptp_set(ndev, config, extack);
4022 }
4023 
4024 static const struct net_device_ops fec_netdev_ops = {
4025 	.ndo_open		= fec_enet_open,
4026 	.ndo_stop		= fec_enet_close,
4027 	.ndo_start_xmit		= fec_enet_start_xmit,
4028 	.ndo_select_queue       = fec_enet_select_queue,
4029 	.ndo_set_rx_mode	= set_multicast_list,
4030 	.ndo_validate_addr	= eth_validate_addr,
4031 	.ndo_tx_timeout		= fec_timeout,
4032 	.ndo_set_mac_address	= fec_set_mac_address,
4033 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4034 	.ndo_set_features	= fec_set_features,
4035 	.ndo_bpf		= fec_enet_bpf,
4036 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4037 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4038 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4039 };
4040 
4041 static const unsigned short offset_des_active_rxq[] = {
4042 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4043 };
4044 
4045 static const unsigned short offset_des_active_txq[] = {
4046 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4047 };
4048 
4049  /*
4050   * XXX:  We need to clean up on failure exits here.
4051   *
4052   */
fec_enet_init(struct net_device * ndev)4053 static int fec_enet_init(struct net_device *ndev)
4054 {
4055 	struct fec_enet_private *fep = netdev_priv(ndev);
4056 	struct bufdesc *cbd_base;
4057 	dma_addr_t bd_dma;
4058 	int bd_size;
4059 	unsigned int i;
4060 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4061 			sizeof(struct bufdesc);
4062 	unsigned dsize_log2 = __fls(dsize);
4063 	int ret;
4064 
4065 	WARN_ON(dsize != (1 << dsize_log2));
4066 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4067 	fep->rx_align = 0xf;
4068 	fep->tx_align = 0xf;
4069 #else
4070 	fep->rx_align = 0x3;
4071 	fep->tx_align = 0x3;
4072 #endif
4073 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4074 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4075 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4076 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4077 
4078 	/* Check mask of the streaming and coherent API */
4079 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4080 	if (ret < 0) {
4081 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4082 		return ret;
4083 	}
4084 
4085 	ret = fec_enet_alloc_queue(ndev);
4086 	if (ret)
4087 		return ret;
4088 
4089 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4090 
4091 	/* Allocate memory for buffer descriptors. */
4092 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4093 				  GFP_KERNEL);
4094 	if (!cbd_base) {
4095 		ret = -ENOMEM;
4096 		goto free_queue_mem;
4097 	}
4098 
4099 	/* Get the Ethernet address */
4100 	ret = fec_get_mac(ndev);
4101 	if (ret)
4102 		goto free_queue_mem;
4103 
4104 	/* Set receive and transmit descriptor base. */
4105 	for (i = 0; i < fep->num_rx_queues; i++) {
4106 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4107 		unsigned size = dsize * rxq->bd.ring_size;
4108 
4109 		rxq->bd.qid = i;
4110 		rxq->bd.base = cbd_base;
4111 		rxq->bd.cur = cbd_base;
4112 		rxq->bd.dma = bd_dma;
4113 		rxq->bd.dsize = dsize;
4114 		rxq->bd.dsize_log2 = dsize_log2;
4115 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4116 		bd_dma += size;
4117 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4118 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4119 	}
4120 
4121 	for (i = 0; i < fep->num_tx_queues; i++) {
4122 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4123 		unsigned size = dsize * txq->bd.ring_size;
4124 
4125 		txq->bd.qid = i;
4126 		txq->bd.base = cbd_base;
4127 		txq->bd.cur = cbd_base;
4128 		txq->bd.dma = bd_dma;
4129 		txq->bd.dsize = dsize;
4130 		txq->bd.dsize_log2 = dsize_log2;
4131 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4132 		bd_dma += size;
4133 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4134 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4135 	}
4136 
4137 
4138 	/* The FEC Ethernet specific entries in the device structure */
4139 	ndev->watchdog_timeo = TX_TIMEOUT;
4140 	ndev->netdev_ops = &fec_netdev_ops;
4141 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4142 
4143 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4144 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4145 
4146 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4147 		/* enable hw VLAN support */
4148 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4149 
4150 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4151 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4152 
4153 		/* enable hw accelerator */
4154 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4155 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4156 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4157 	}
4158 
4159 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4160 		fep->tx_align = 0;
4161 		fep->rx_align = 0x3f;
4162 	}
4163 
4164 	ndev->hw_features = ndev->features;
4165 
4166 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4167 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4168 				     NETDEV_XDP_ACT_REDIRECT;
4169 
4170 	fec_restart(ndev);
4171 
4172 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4173 		fec_enet_clear_ethtool_stats(ndev);
4174 	else
4175 		fec_enet_update_ethtool_stats(ndev);
4176 
4177 	return 0;
4178 
4179 free_queue_mem:
4180 	fec_enet_free_queue(ndev);
4181 	return ret;
4182 }
4183 
fec_enet_deinit(struct net_device * ndev)4184 static void fec_enet_deinit(struct net_device *ndev)
4185 {
4186 	struct fec_enet_private *fep = netdev_priv(ndev);
4187 
4188 	netif_napi_del(&fep->napi);
4189 	fec_enet_free_queue(ndev);
4190 }
4191 
4192 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4193 static int fec_reset_phy(struct platform_device *pdev)
4194 {
4195 	struct gpio_desc *phy_reset;
4196 	int msec = 1, phy_post_delay = 0;
4197 	struct device_node *np = pdev->dev.of_node;
4198 	int err;
4199 
4200 	if (!np)
4201 		return 0;
4202 
4203 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4204 	/* A sane reset duration should not be longer than 1s */
4205 	if (!err && msec > 1000)
4206 		msec = 1;
4207 
4208 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4209 	/* valid reset duration should be less than 1s */
4210 	if (!err && phy_post_delay > 1000)
4211 		return -EINVAL;
4212 
4213 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4214 					    GPIOD_OUT_HIGH);
4215 	if (IS_ERR(phy_reset))
4216 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4217 				     "failed to get phy-reset-gpios\n");
4218 
4219 	if (!phy_reset)
4220 		return 0;
4221 
4222 	if (msec > 20)
4223 		msleep(msec);
4224 	else
4225 		usleep_range(msec * 1000, msec * 1000 + 1000);
4226 
4227 	gpiod_set_value_cansleep(phy_reset, 0);
4228 
4229 	if (!phy_post_delay)
4230 		return 0;
4231 
4232 	if (phy_post_delay > 20)
4233 		msleep(phy_post_delay);
4234 	else
4235 		usleep_range(phy_post_delay * 1000,
4236 			     phy_post_delay * 1000 + 1000);
4237 
4238 	return 0;
4239 }
4240 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4241 static int fec_reset_phy(struct platform_device *pdev)
4242 {
4243 	/*
4244 	 * In case of platform probe, the reset has been done
4245 	 * by machine code.
4246 	 */
4247 	return 0;
4248 }
4249 #endif /* CONFIG_OF */
4250 
4251 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4252 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4253 {
4254 	struct device_node *np = pdev->dev.of_node;
4255 
4256 	*num_tx = *num_rx = 1;
4257 
4258 	if (!np || !of_device_is_available(np))
4259 		return;
4260 
4261 	/* parse the num of tx and rx queues */
4262 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4263 
4264 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4265 
4266 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4267 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4268 			 *num_tx);
4269 		*num_tx = 1;
4270 		return;
4271 	}
4272 
4273 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4274 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4275 			 *num_rx);
4276 		*num_rx = 1;
4277 		return;
4278 	}
4279 
4280 }
4281 
fec_enet_get_irq_cnt(struct platform_device * pdev)4282 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4283 {
4284 	int irq_cnt = platform_irq_count(pdev);
4285 
4286 	if (irq_cnt > FEC_IRQ_NUM)
4287 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4288 	else if (irq_cnt == 2)
4289 		irq_cnt = 1;	/* last for pps */
4290 	else if (irq_cnt <= 0)
4291 		irq_cnt = 1;	/* At least 1 irq is needed */
4292 	return irq_cnt;
4293 }
4294 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4295 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4296 {
4297 	struct net_device *ndev = platform_get_drvdata(pdev);
4298 	struct fec_enet_private *fep = netdev_priv(ndev);
4299 
4300 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4301 		fep->wake_irq = fep->irq[2];
4302 	else
4303 		fep->wake_irq = fep->irq[0];
4304 }
4305 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4306 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4307 				   struct device_node *np)
4308 {
4309 	struct device_node *gpr_np;
4310 	u32 out_val[3];
4311 	int ret = 0;
4312 
4313 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4314 	if (!gpr_np)
4315 		return 0;
4316 
4317 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4318 					 ARRAY_SIZE(out_val));
4319 	if (ret) {
4320 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4321 		goto out;
4322 	}
4323 
4324 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4325 	if (IS_ERR(fep->stop_gpr.gpr)) {
4326 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4327 		ret = PTR_ERR(fep->stop_gpr.gpr);
4328 		fep->stop_gpr.gpr = NULL;
4329 		goto out;
4330 	}
4331 
4332 	fep->stop_gpr.reg = out_val[1];
4333 	fep->stop_gpr.bit = out_val[2];
4334 
4335 out:
4336 	of_node_put(gpr_np);
4337 
4338 	return ret;
4339 }
4340 
4341 static int
fec_probe(struct platform_device * pdev)4342 fec_probe(struct platform_device *pdev)
4343 {
4344 	struct fec_enet_private *fep;
4345 	struct fec_platform_data *pdata;
4346 	phy_interface_t interface;
4347 	struct net_device *ndev;
4348 	int i, irq, ret = 0;
4349 	static int dev_id;
4350 	struct device_node *np = pdev->dev.of_node, *phy_node;
4351 	int num_tx_qs;
4352 	int num_rx_qs;
4353 	char irq_name[8];
4354 	int irq_cnt;
4355 	const struct fec_devinfo *dev_info;
4356 
4357 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4358 
4359 	/* Init network device */
4360 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4361 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4362 	if (!ndev)
4363 		return -ENOMEM;
4364 
4365 	SET_NETDEV_DEV(ndev, &pdev->dev);
4366 
4367 	/* setup board info structure */
4368 	fep = netdev_priv(ndev);
4369 
4370 	dev_info = device_get_match_data(&pdev->dev);
4371 	if (!dev_info)
4372 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4373 	if (dev_info)
4374 		fep->quirks = dev_info->quirks;
4375 
4376 	fep->netdev = ndev;
4377 	fep->num_rx_queues = num_rx_qs;
4378 	fep->num_tx_queues = num_tx_qs;
4379 
4380 #if !defined(CONFIG_M5272)
4381 	/* default enable pause frame auto negotiation */
4382 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4383 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4384 #endif
4385 
4386 	/* Select default pin state */
4387 	pinctrl_pm_select_default_state(&pdev->dev);
4388 
4389 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4390 	if (IS_ERR(fep->hwp)) {
4391 		ret = PTR_ERR(fep->hwp);
4392 		goto failed_ioremap;
4393 	}
4394 
4395 	fep->pdev = pdev;
4396 	fep->dev_id = dev_id++;
4397 
4398 	platform_set_drvdata(pdev, ndev);
4399 
4400 	if ((of_machine_is_compatible("fsl,imx6q") ||
4401 	     of_machine_is_compatible("fsl,imx6dl")) &&
4402 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4403 		fep->quirks |= FEC_QUIRK_ERR006687;
4404 
4405 	ret = fec_enet_ipc_handle_init(fep);
4406 	if (ret)
4407 		goto failed_ipc_init;
4408 
4409 	if (of_property_read_bool(np, "fsl,magic-packet"))
4410 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4411 
4412 	ret = fec_enet_init_stop_mode(fep, np);
4413 	if (ret)
4414 		goto failed_stop_mode;
4415 
4416 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4417 	if (!phy_node && of_phy_is_fixed_link(np)) {
4418 		ret = of_phy_register_fixed_link(np);
4419 		if (ret < 0) {
4420 			dev_err(&pdev->dev,
4421 				"broken fixed-link specification\n");
4422 			goto failed_phy;
4423 		}
4424 		phy_node = of_node_get(np);
4425 	}
4426 	fep->phy_node = phy_node;
4427 
4428 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4429 	if (ret) {
4430 		pdata = dev_get_platdata(&pdev->dev);
4431 		if (pdata)
4432 			fep->phy_interface = pdata->phy;
4433 		else
4434 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4435 	} else {
4436 		fep->phy_interface = interface;
4437 	}
4438 
4439 	ret = fec_enet_parse_rgmii_delay(fep, np);
4440 	if (ret)
4441 		goto failed_rgmii_delay;
4442 
4443 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4444 	if (IS_ERR(fep->clk_ipg)) {
4445 		ret = PTR_ERR(fep->clk_ipg);
4446 		goto failed_clk;
4447 	}
4448 
4449 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4450 	if (IS_ERR(fep->clk_ahb)) {
4451 		ret = PTR_ERR(fep->clk_ahb);
4452 		goto failed_clk;
4453 	}
4454 
4455 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4456 
4457 	/* enet_out is optional, depends on board */
4458 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4459 	if (IS_ERR(fep->clk_enet_out)) {
4460 		ret = PTR_ERR(fep->clk_enet_out);
4461 		goto failed_clk;
4462 	}
4463 
4464 	fep->ptp_clk_on = false;
4465 	mutex_init(&fep->ptp_clk_mutex);
4466 
4467 	/* clk_ref is optional, depends on board */
4468 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4469 	if (IS_ERR(fep->clk_ref)) {
4470 		ret = PTR_ERR(fep->clk_ref);
4471 		goto failed_clk;
4472 	}
4473 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4474 
4475 	/* clk_2x_txclk is optional, depends on board */
4476 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4477 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4478 		if (IS_ERR(fep->clk_2x_txclk))
4479 			fep->clk_2x_txclk = NULL;
4480 	}
4481 
4482 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4483 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4484 	if (IS_ERR(fep->clk_ptp)) {
4485 		fep->clk_ptp = NULL;
4486 		fep->bufdesc_ex = false;
4487 	}
4488 
4489 	ret = fec_enet_clk_enable(ndev, true);
4490 	if (ret)
4491 		goto failed_clk;
4492 
4493 	ret = clk_prepare_enable(fep->clk_ipg);
4494 	if (ret)
4495 		goto failed_clk_ipg;
4496 	ret = clk_prepare_enable(fep->clk_ahb);
4497 	if (ret)
4498 		goto failed_clk_ahb;
4499 
4500 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4501 	if (!IS_ERR(fep->reg_phy)) {
4502 		ret = regulator_enable(fep->reg_phy);
4503 		if (ret) {
4504 			dev_err(&pdev->dev,
4505 				"Failed to enable phy regulator: %d\n", ret);
4506 			goto failed_regulator;
4507 		}
4508 	} else {
4509 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4510 			ret = -EPROBE_DEFER;
4511 			goto failed_regulator;
4512 		}
4513 		fep->reg_phy = NULL;
4514 	}
4515 
4516 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4517 	pm_runtime_use_autosuspend(&pdev->dev);
4518 	pm_runtime_get_noresume(&pdev->dev);
4519 	pm_runtime_set_active(&pdev->dev);
4520 	pm_runtime_enable(&pdev->dev);
4521 
4522 	ret = fec_reset_phy(pdev);
4523 	if (ret)
4524 		goto failed_reset;
4525 
4526 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4527 	if (fep->bufdesc_ex)
4528 		fec_ptp_init(pdev, irq_cnt);
4529 
4530 	ret = fec_enet_init(ndev);
4531 	if (ret)
4532 		goto failed_init;
4533 
4534 	for (i = 0; i < irq_cnt; i++) {
4535 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4536 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4537 		if (irq < 0)
4538 			irq = platform_get_irq(pdev, i);
4539 		if (irq < 0) {
4540 			ret = irq;
4541 			goto failed_irq;
4542 		}
4543 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4544 				       0, pdev->name, ndev);
4545 		if (ret)
4546 			goto failed_irq;
4547 
4548 		fep->irq[i] = irq;
4549 	}
4550 
4551 	/* Decide which interrupt line is wakeup capable */
4552 	fec_enet_get_wakeup_irq(pdev);
4553 
4554 	ret = fec_enet_mii_init(pdev);
4555 	if (ret)
4556 		goto failed_mii_init;
4557 
4558 	/* Carrier starts down, phylib will bring it up */
4559 	netif_carrier_off(ndev);
4560 	fec_enet_clk_enable(ndev, false);
4561 	pinctrl_pm_select_sleep_state(&pdev->dev);
4562 
4563 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4564 
4565 	ret = register_netdev(ndev);
4566 	if (ret)
4567 		goto failed_register;
4568 
4569 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4570 			   FEC_WOL_HAS_MAGIC_PACKET);
4571 
4572 	if (fep->bufdesc_ex && fep->ptp_clock)
4573 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4574 
4575 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4576 
4577 	pm_runtime_mark_last_busy(&pdev->dev);
4578 	pm_runtime_put_autosuspend(&pdev->dev);
4579 
4580 	return 0;
4581 
4582 failed_register:
4583 	fec_enet_mii_remove(fep);
4584 failed_mii_init:
4585 failed_irq:
4586 	fec_enet_deinit(ndev);
4587 failed_init:
4588 	fec_ptp_stop(pdev);
4589 failed_reset:
4590 	pm_runtime_put_noidle(&pdev->dev);
4591 	pm_runtime_disable(&pdev->dev);
4592 	if (fep->reg_phy)
4593 		regulator_disable(fep->reg_phy);
4594 failed_regulator:
4595 	clk_disable_unprepare(fep->clk_ahb);
4596 failed_clk_ahb:
4597 	clk_disable_unprepare(fep->clk_ipg);
4598 failed_clk_ipg:
4599 	fec_enet_clk_enable(ndev, false);
4600 failed_clk:
4601 failed_rgmii_delay:
4602 	if (of_phy_is_fixed_link(np))
4603 		of_phy_deregister_fixed_link(np);
4604 	of_node_put(phy_node);
4605 failed_stop_mode:
4606 failed_ipc_init:
4607 failed_phy:
4608 	dev_id--;
4609 failed_ioremap:
4610 	free_netdev(ndev);
4611 
4612 	return ret;
4613 }
4614 
4615 static void
fec_drv_remove(struct platform_device * pdev)4616 fec_drv_remove(struct platform_device *pdev)
4617 {
4618 	struct net_device *ndev = platform_get_drvdata(pdev);
4619 	struct fec_enet_private *fep = netdev_priv(ndev);
4620 	struct device_node *np = pdev->dev.of_node;
4621 	int ret;
4622 
4623 	ret = pm_runtime_get_sync(&pdev->dev);
4624 	if (ret < 0)
4625 		dev_err(&pdev->dev,
4626 			"Failed to resume device in remove callback (%pe)\n",
4627 			ERR_PTR(ret));
4628 
4629 	cancel_work_sync(&fep->tx_timeout_work);
4630 	fec_ptp_stop(pdev);
4631 	unregister_netdev(ndev);
4632 	fec_enet_mii_remove(fep);
4633 	if (fep->reg_phy)
4634 		regulator_disable(fep->reg_phy);
4635 
4636 	if (of_phy_is_fixed_link(np))
4637 		of_phy_deregister_fixed_link(np);
4638 	of_node_put(fep->phy_node);
4639 
4640 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4641 	 * disabling them again.
4642 	 */
4643 	if (ret >= 0) {
4644 		clk_disable_unprepare(fep->clk_ahb);
4645 		clk_disable_unprepare(fep->clk_ipg);
4646 	}
4647 	pm_runtime_put_noidle(&pdev->dev);
4648 	pm_runtime_disable(&pdev->dev);
4649 
4650 	fec_enet_deinit(ndev);
4651 	free_netdev(ndev);
4652 }
4653 
fec_suspend(struct device * dev)4654 static int fec_suspend(struct device *dev)
4655 {
4656 	struct net_device *ndev = dev_get_drvdata(dev);
4657 	struct fec_enet_private *fep = netdev_priv(ndev);
4658 	int ret;
4659 
4660 	rtnl_lock();
4661 	if (netif_running(ndev)) {
4662 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4663 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4664 		phy_stop(ndev->phydev);
4665 		napi_disable(&fep->napi);
4666 		netif_tx_lock_bh(ndev);
4667 		netif_device_detach(ndev);
4668 		netif_tx_unlock_bh(ndev);
4669 		fec_stop(ndev);
4670 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4671 			fec_irqs_disable(ndev);
4672 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4673 		} else {
4674 			fec_irqs_disable_except_wakeup(ndev);
4675 			if (fep->wake_irq > 0) {
4676 				disable_irq(fep->wake_irq);
4677 				enable_irq_wake(fep->wake_irq);
4678 			}
4679 			fec_enet_stop_mode(fep, true);
4680 		}
4681 		/* It's safe to disable clocks since interrupts are masked */
4682 		fec_enet_clk_enable(ndev, false);
4683 
4684 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4685 		if (fep->rpm_active) {
4686 			ret = pm_runtime_force_suspend(dev);
4687 			if (ret < 0) {
4688 				rtnl_unlock();
4689 				return ret;
4690 			}
4691 		}
4692 	}
4693 	rtnl_unlock();
4694 
4695 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4696 		regulator_disable(fep->reg_phy);
4697 
4698 	/* SOC supply clock to phy, when clock is disabled, phy link down
4699 	 * SOC control phy regulator, when regulator is disabled, phy link down
4700 	 */
4701 	if (fep->clk_enet_out || fep->reg_phy)
4702 		fep->link = 0;
4703 
4704 	return 0;
4705 }
4706 
fec_resume(struct device * dev)4707 static int fec_resume(struct device *dev)
4708 {
4709 	struct net_device *ndev = dev_get_drvdata(dev);
4710 	struct fec_enet_private *fep = netdev_priv(ndev);
4711 	int ret;
4712 	int val;
4713 
4714 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4715 		ret = regulator_enable(fep->reg_phy);
4716 		if (ret)
4717 			return ret;
4718 	}
4719 
4720 	rtnl_lock();
4721 	if (netif_running(ndev)) {
4722 		if (fep->rpm_active)
4723 			pm_runtime_force_resume(dev);
4724 
4725 		ret = fec_enet_clk_enable(ndev, true);
4726 		if (ret) {
4727 			rtnl_unlock();
4728 			goto failed_clk;
4729 		}
4730 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4731 			fec_enet_stop_mode(fep, false);
4732 			if (fep->wake_irq) {
4733 				disable_irq_wake(fep->wake_irq);
4734 				enable_irq(fep->wake_irq);
4735 			}
4736 
4737 			val = readl(fep->hwp + FEC_ECNTRL);
4738 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4739 			writel(val, fep->hwp + FEC_ECNTRL);
4740 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4741 		} else {
4742 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4743 		}
4744 		fec_restart(ndev);
4745 		netif_tx_lock_bh(ndev);
4746 		netif_device_attach(ndev);
4747 		netif_tx_unlock_bh(ndev);
4748 		napi_enable(&fep->napi);
4749 		phy_init_hw(ndev->phydev);
4750 		phy_start(ndev->phydev);
4751 	}
4752 	rtnl_unlock();
4753 
4754 	return 0;
4755 
4756 failed_clk:
4757 	if (fep->reg_phy)
4758 		regulator_disable(fep->reg_phy);
4759 	return ret;
4760 }
4761 
fec_runtime_suspend(struct device * dev)4762 static int fec_runtime_suspend(struct device *dev)
4763 {
4764 	struct net_device *ndev = dev_get_drvdata(dev);
4765 	struct fec_enet_private *fep = netdev_priv(ndev);
4766 
4767 	clk_disable_unprepare(fep->clk_ahb);
4768 	clk_disable_unprepare(fep->clk_ipg);
4769 
4770 	return 0;
4771 }
4772 
fec_runtime_resume(struct device * dev)4773 static int fec_runtime_resume(struct device *dev)
4774 {
4775 	struct net_device *ndev = dev_get_drvdata(dev);
4776 	struct fec_enet_private *fep = netdev_priv(ndev);
4777 	int ret;
4778 
4779 	ret = clk_prepare_enable(fep->clk_ahb);
4780 	if (ret)
4781 		return ret;
4782 	ret = clk_prepare_enable(fep->clk_ipg);
4783 	if (ret)
4784 		goto failed_clk_ipg;
4785 
4786 	return 0;
4787 
4788 failed_clk_ipg:
4789 	clk_disable_unprepare(fep->clk_ahb);
4790 	return ret;
4791 }
4792 
4793 static const struct dev_pm_ops fec_pm_ops = {
4794 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4795 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4796 };
4797 
4798 static struct platform_driver fec_driver = {
4799 	.driver	= {
4800 		.name	= DRIVER_NAME,
4801 		.pm	= pm_ptr(&fec_pm_ops),
4802 		.of_match_table = fec_dt_ids,
4803 		.suppress_bind_attrs = true,
4804 	},
4805 	.id_table = fec_devtype,
4806 	.probe	= fec_probe,
4807 	.remove = fec_drv_remove,
4808 };
4809 
4810 module_platform_driver(fec_driver);
4811 
4812 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4813 MODULE_LICENSE("GPL");
4814