1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/prefetch.h>
58 #include <linux/property.h>
59 #include <linux/ptrace.h>
60 #include <linux/regmap.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/skbuff.h>
63 #include <linux/slab.h>
64 #include <linux/spinlock.h>
65 #include <linux/string.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/workqueue.h>
69 #include <net/ip.h>
70 #include <net/page_pool/helpers.h>
71 #include <net/selftests.h>
72 #include <net/tso.h>
73 #include <soc/imx/cpuidle.h>
74
75 #include "fec.h"
76
77 static void set_multicast_list(struct net_device *ndev);
78 static void fec_enet_itr_coal_set(struct net_device *ndev);
79 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
80 int cpu, struct xdp_buff *xdp,
81 u32 dma_sync_len);
82
83 #define DRIVER_NAME "fec"
84
85 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
86
87 #define FEC_ENET_RSEM_V 0x84
88 #define FEC_ENET_RSFL_V 16
89 #define FEC_ENET_RAEM_V 0x8
90 #define FEC_ENET_RAFL_V 0x8
91 #define FEC_ENET_OPD_V 0xFFF0
92 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
93
94 #define FEC_ENET_XDP_PASS 0
95 #define FEC_ENET_XDP_CONSUMED BIT(0)
96 #define FEC_ENET_XDP_TX BIT(1)
97 #define FEC_ENET_XDP_REDIR BIT(2)
98
99 struct fec_devinfo {
100 u32 quirks;
101 };
102
103 static const struct fec_devinfo fec_imx25_info = {
104 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
105 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
106 };
107
108 static const struct fec_devinfo fec_imx27_info = {
109 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
110 FEC_QUIRK_HAS_MDIO_C45,
111 };
112
113 static const struct fec_devinfo fec_imx28_info = {
114 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
115 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
116 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
117 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
118 };
119
120 static const struct fec_devinfo fec_imx6q_info = {
121 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
124 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
125 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
126 };
127
128 static const struct fec_devinfo fec_mvf600_info = {
129 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
130 FEC_QUIRK_HAS_MDIO_C45,
131 };
132
133 static const struct fec_devinfo fec_imx6sx_info = {
134 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
135 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
136 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
137 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
138 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
139 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
140 FEC_QUIRK_HAS_MDIO_C45,
141 };
142
143 static const struct fec_devinfo fec_imx6ul_info = {
144 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
145 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
146 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
147 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
148 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
149 FEC_QUIRK_HAS_MDIO_C45,
150 };
151
152 static const struct fec_devinfo fec_imx8mq_info = {
153 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
154 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
155 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
156 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
157 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
158 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
159 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
160 FEC_QUIRK_HAS_MDIO_C45,
161 };
162
163 static const struct fec_devinfo fec_imx8qm_info = {
164 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
165 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
166 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
167 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
168 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
169 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
170 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45 |
171 FEC_QUIRK_JUMBO_FRAME,
172 };
173
174 static const struct fec_devinfo fec_s32v234_info = {
175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 FEC_QUIRK_HAS_MDIO_C45,
180 };
181
182 static struct platform_device_id fec_devtype[] = {
183 {
184 /* keep it for coldfire */
185 .name = DRIVER_NAME,
186 .driver_data = 0,
187 }, {
188 /* sentinel */
189 }
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193 static const struct of_device_id fec_dt_ids[] = {
194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 { /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212 #if defined(CONFIG_M5272)
213 /*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217 #if defined(CONFIG_NETtel)
218 #define FEC_FLASHMAC 0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define FEC_FLASHMAC 0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define FEC_FLASHMAC 0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define FEC_FLASHMAC (0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC 0xffc0406b
227 #else
228 #define FEC_FLASHMAC 0
229 #endif
230 #endif /* CONFIG_M5272 */
231
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237 #define MAX_JUMBO_BUF_SIZE (round_down(16384 - FEC_DRV_RESERVE_SPACE - 64, 64))
238 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
239 #define PKT_MINBUF_SIZE 64
240
241 /* FEC receive acceleration */
242 #define FEC_RACC_IPDIS BIT(1)
243 #define FEC_RACC_PRODIS BIT(2)
244 #define FEC_RACC_SHIFT16 BIT(7)
245 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
246
247 /* MIB Control Register */
248 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
249
250 /*
251 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
252 * size bits. Other FEC hardware does not, so we need to take that into
253 * account when setting it.
254 */
255 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
256 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
257 defined(CONFIG_ARM64)
258 #define OPT_ARCH_HAS_MAX_FL 1
259 #else
260 #define OPT_ARCH_HAS_MAX_FL 0
261 #endif
262
263 /* FEC MII MMFR bits definition */
264 #define FEC_MMFR_ST (1 << 30)
265 #define FEC_MMFR_ST_C45 (0)
266 #define FEC_MMFR_OP_READ (2 << 28)
267 #define FEC_MMFR_OP_READ_C45 (3 << 28)
268 #define FEC_MMFR_OP_WRITE (1 << 28)
269 #define FEC_MMFR_OP_ADDR_WRITE (0)
270 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
271 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
272 #define FEC_MMFR_TA (2 << 16)
273 #define FEC_MMFR_DATA(v) (v & 0xffff)
274 /* FEC ECR bits definition */
275 #define FEC_ECR_RESET BIT(0)
276 #define FEC_ECR_ETHEREN BIT(1)
277 #define FEC_ECR_MAGICEN BIT(2)
278 #define FEC_ECR_SLEEP BIT(3)
279 #define FEC_ECR_EN1588 BIT(4)
280 #define FEC_ECR_SPEED BIT(5)
281 #define FEC_ECR_BYTESWP BIT(8)
282 /* FEC RCR bits definition */
283 #define FEC_RCR_LOOP BIT(0)
284 #define FEC_RCR_DRT BIT(1)
285 #define FEC_RCR_MII BIT(2)
286 #define FEC_RCR_PROMISC BIT(3)
287 #define FEC_RCR_BC_REJ BIT(4)
288 #define FEC_RCR_FLOWCTL BIT(5)
289 #define FEC_RCR_RGMII BIT(6)
290 #define FEC_RCR_RMII BIT(8)
291 #define FEC_RCR_10BASET BIT(9)
292 #define FEC_RCR_NLC BIT(30)
293 /* TX WMARK bits */
294 #define FEC_TXWMRK_STRFWD BIT(8)
295
296 #define FEC_MII_TIMEOUT 30000 /* us */
297
298 /* Transmitter timeout */
299 #define TX_TIMEOUT (2 * HZ)
300
301 #define FEC_PAUSE_FLAG_AUTONEG 0x1
302 #define FEC_PAUSE_FLAG_ENABLE 0x2
303 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
304 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
305 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
306
307 /* Max number of allowed TCP segments for software TSO */
308 #define FEC_MAX_TSO_SEGS 100
309 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
310
311 #define IS_TSO_HEADER(txq, addr) \
312 ((addr >= txq->tso_hdrs_dma) && \
313 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
314
315 static int mii_cnt;
316
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)317 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
318 struct bufdesc_prop *bd)
319 {
320 return (bdp >= bd->last) ? bd->base
321 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
322 }
323
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)324 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
325 struct bufdesc_prop *bd)
326 {
327 return (bdp <= bd->base) ? bd->last
328 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
329 }
330
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)331 static int fec_enet_get_bd_index(struct bufdesc *bdp,
332 struct bufdesc_prop *bd)
333 {
334 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
335 }
336
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)337 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
338 {
339 int entries;
340
341 entries = (((const char *)txq->dirty_tx -
342 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
343
344 return entries >= 0 ? entries : entries + txq->bd.ring_size;
345 }
346
swap_buffer(void * bufaddr,int len)347 static void swap_buffer(void *bufaddr, int len)
348 {
349 int i;
350 unsigned int *buf = bufaddr;
351
352 for (i = 0; i < len; i += 4, buf++)
353 swab32s(buf);
354 }
355
fec_dump(struct net_device * ndev)356 static void fec_dump(struct net_device *ndev)
357 {
358 struct fec_enet_private *fep = netdev_priv(ndev);
359 struct bufdesc *bdp;
360 struct fec_enet_priv_tx_q *txq;
361 int index = 0;
362
363 netdev_info(ndev, "TX ring dump\n");
364 pr_info("Nr SC addr len SKB\n");
365
366 txq = fep->tx_queue[0];
367 bdp = txq->bd.base;
368
369 do {
370 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
371 index,
372 bdp == txq->bd.cur ? 'S' : ' ',
373 bdp == txq->dirty_tx ? 'H' : ' ',
374 fec16_to_cpu(bdp->cbd_sc),
375 fec32_to_cpu(bdp->cbd_bufaddr),
376 fec16_to_cpu(bdp->cbd_datlen),
377 txq->tx_buf[index].buf_p);
378 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
379 index++;
380 } while (bdp != txq->bd.base);
381 }
382
383 /*
384 * Coldfire does not support DMA coherent allocations, and has historically used
385 * a band-aid with a manual flush in fec_enet_rx_queue.
386 */
387 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)388 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
389 gfp_t gfp)
390 {
391 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
392 }
393
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)394 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
395 dma_addr_t handle)
396 {
397 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
398 }
399 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)400 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
401 gfp_t gfp)
402 {
403 return dma_alloc_coherent(dev, size, handle, gfp);
404 }
405
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)406 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
407 dma_addr_t handle)
408 {
409 dma_free_coherent(dev, size, cpu_addr, handle);
410 }
411 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
412
413 struct fec_dma_devres {
414 size_t size;
415 void *vaddr;
416 dma_addr_t dma_handle;
417 };
418
fec_dmam_release(struct device * dev,void * res)419 static void fec_dmam_release(struct device *dev, void *res)
420 {
421 struct fec_dma_devres *this = res;
422
423 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
424 }
425
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)426 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
427 gfp_t gfp)
428 {
429 struct fec_dma_devres *dr;
430 void *vaddr;
431
432 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
433 if (!dr)
434 return NULL;
435 vaddr = fec_dma_alloc(dev, size, handle, gfp);
436 if (!vaddr) {
437 devres_free(dr);
438 return NULL;
439 }
440 dr->vaddr = vaddr;
441 dr->dma_handle = *handle;
442 dr->size = size;
443 devres_add(dev, dr);
444 return vaddr;
445 }
446
is_ipv4_pkt(struct sk_buff * skb)447 static inline bool is_ipv4_pkt(struct sk_buff *skb)
448 {
449 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
450 }
451
452 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)453 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
454 {
455 /* Only run for packets requiring a checksum. */
456 if (skb->ip_summed != CHECKSUM_PARTIAL)
457 return 0;
458
459 if (unlikely(skb_cow_head(skb, 0)))
460 return -1;
461
462 if (is_ipv4_pkt(skb))
463 ip_hdr(skb)->check = 0;
464 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
465
466 return 0;
467 }
468
469 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)470 fec_enet_create_page_pool(struct fec_enet_private *fep,
471 struct fec_enet_priv_rx_q *rxq, int size)
472 {
473 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
474 struct page_pool_params pp_params = {
475 .order = fep->pagepool_order,
476 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
477 .pool_size = size,
478 .nid = dev_to_node(&fep->pdev->dev),
479 .dev = &fep->pdev->dev,
480 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
481 .offset = FEC_ENET_XDP_HEADROOM,
482 .max_len = fep->rx_frame_size,
483 };
484 int err;
485
486 rxq->page_pool = page_pool_create(&pp_params);
487 if (IS_ERR(rxq->page_pool)) {
488 err = PTR_ERR(rxq->page_pool);
489 rxq->page_pool = NULL;
490 return err;
491 }
492
493 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
494 if (err < 0)
495 goto err_free_pp;
496
497 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
498 rxq->page_pool);
499 if (err)
500 goto err_unregister_rxq;
501
502 return 0;
503
504 err_unregister_rxq:
505 xdp_rxq_info_unreg(&rxq->xdp_rxq);
506 err_free_pp:
507 page_pool_destroy(rxq->page_pool);
508 rxq->page_pool = NULL;
509 return err;
510 }
511
512 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)513 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
514 struct sk_buff *skb,
515 struct net_device *ndev)
516 {
517 struct fec_enet_private *fep = netdev_priv(ndev);
518 struct bufdesc *bdp = txq->bd.cur;
519 struct bufdesc_ex *ebdp;
520 int nr_frags = skb_shinfo(skb)->nr_frags;
521 int frag, frag_len;
522 unsigned short status;
523 unsigned int estatus = 0;
524 skb_frag_t *this_frag;
525 unsigned int index;
526 void *bufaddr;
527 dma_addr_t addr;
528 int i;
529
530 for (frag = 0; frag < nr_frags; frag++) {
531 this_frag = &skb_shinfo(skb)->frags[frag];
532 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
533 ebdp = (struct bufdesc_ex *)bdp;
534
535 status = fec16_to_cpu(bdp->cbd_sc);
536 status &= ~BD_ENET_TX_STATS;
537 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
538 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
539
540 /* Handle the last BD specially */
541 if (frag == nr_frags - 1) {
542 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
543 if (fep->bufdesc_ex) {
544 estatus |= BD_ENET_TX_INT;
545 if (unlikely(skb_shinfo(skb)->tx_flags &
546 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
547 estatus |= BD_ENET_TX_TS;
548 }
549 }
550
551 if (fep->bufdesc_ex) {
552 if (fep->quirks & FEC_QUIRK_HAS_AVB)
553 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
554 if (skb->ip_summed == CHECKSUM_PARTIAL)
555 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
556
557 ebdp->cbd_bdu = 0;
558 ebdp->cbd_esc = cpu_to_fec32(estatus);
559 }
560
561 bufaddr = skb_frag_address(this_frag);
562
563 index = fec_enet_get_bd_index(bdp, &txq->bd);
564 if (((unsigned long) bufaddr) & fep->tx_align ||
565 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
566 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
567 bufaddr = txq->tx_bounce[index];
568
569 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
570 swap_buffer(bufaddr, frag_len);
571 }
572
573 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
574 DMA_TO_DEVICE);
575 if (dma_mapping_error(&fep->pdev->dev, addr)) {
576 if (net_ratelimit())
577 netdev_err(ndev, "Tx DMA memory map failed\n");
578 goto dma_mapping_error;
579 }
580
581 bdp->cbd_bufaddr = cpu_to_fec32(addr);
582 bdp->cbd_datlen = cpu_to_fec16(frag_len);
583 /* Make sure the updates to rest of the descriptor are
584 * performed before transferring ownership.
585 */
586 wmb();
587 bdp->cbd_sc = cpu_to_fec16(status);
588 }
589
590 return bdp;
591 dma_mapping_error:
592 bdp = txq->bd.cur;
593 for (i = 0; i < frag; i++) {
594 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
595 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
596 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
597 }
598 return ERR_PTR(-ENOMEM);
599 }
600
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)601 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
602 struct sk_buff *skb, struct net_device *ndev)
603 {
604 struct fec_enet_private *fep = netdev_priv(ndev);
605 int nr_frags = skb_shinfo(skb)->nr_frags;
606 struct bufdesc *bdp, *last_bdp;
607 void *bufaddr;
608 dma_addr_t addr;
609 unsigned short status;
610 unsigned short buflen;
611 unsigned int estatus = 0;
612 unsigned int index;
613 int entries_free;
614
615 entries_free = fec_enet_get_free_txdesc_num(txq);
616 if (entries_free < MAX_SKB_FRAGS + 1) {
617 dev_kfree_skb_any(skb);
618 if (net_ratelimit())
619 netdev_err(ndev, "NOT enough BD for SG!\n");
620 return NETDEV_TX_OK;
621 }
622
623 /* Protocol checksum off-load for TCP and UDP. */
624 if (fec_enet_clear_csum(skb, ndev)) {
625 dev_kfree_skb_any(skb);
626 return NETDEV_TX_OK;
627 }
628
629 /* Fill in a Tx ring entry */
630 bdp = txq->bd.cur;
631 last_bdp = bdp;
632 status = fec16_to_cpu(bdp->cbd_sc);
633 status &= ~BD_ENET_TX_STATS;
634
635 /* Set buffer length and buffer pointer */
636 bufaddr = skb->data;
637 buflen = skb_headlen(skb);
638
639 index = fec_enet_get_bd_index(bdp, &txq->bd);
640 if (((unsigned long) bufaddr) & fep->tx_align ||
641 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
642 memcpy(txq->tx_bounce[index], skb->data, buflen);
643 bufaddr = txq->tx_bounce[index];
644
645 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
646 swap_buffer(bufaddr, buflen);
647 }
648
649 /* Push the data cache so the CPM does not get stale memory data. */
650 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
651 if (dma_mapping_error(&fep->pdev->dev, addr)) {
652 dev_kfree_skb_any(skb);
653 if (net_ratelimit())
654 netdev_err(ndev, "Tx DMA memory map failed\n");
655 return NETDEV_TX_OK;
656 }
657
658 if (nr_frags) {
659 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
660 if (IS_ERR(last_bdp)) {
661 dma_unmap_single(&fep->pdev->dev, addr,
662 buflen, DMA_TO_DEVICE);
663 dev_kfree_skb_any(skb);
664 return NETDEV_TX_OK;
665 }
666 } else {
667 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
668 if (fep->bufdesc_ex) {
669 estatus = BD_ENET_TX_INT;
670 if (unlikely(skb_shinfo(skb)->tx_flags &
671 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
672 estatus |= BD_ENET_TX_TS;
673 }
674 }
675 bdp->cbd_bufaddr = cpu_to_fec32(addr);
676 bdp->cbd_datlen = cpu_to_fec16(buflen);
677
678 if (fep->bufdesc_ex) {
679
680 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
681
682 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
683 fep->hwts_tx_en))
684 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
685
686 if (fep->quirks & FEC_QUIRK_HAS_AVB)
687 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
688
689 if (skb->ip_summed == CHECKSUM_PARTIAL)
690 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
691
692 ebdp->cbd_bdu = 0;
693 ebdp->cbd_esc = cpu_to_fec32(estatus);
694 }
695
696 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
697 /* Save skb pointer */
698 txq->tx_buf[index].buf_p = skb;
699
700 /* Make sure the updates to rest of the descriptor are performed before
701 * transferring ownership.
702 */
703 wmb();
704
705 /* Send it on its way. Tell FEC it's ready, interrupt when done,
706 * it's the last BD of the frame, and to put the CRC on the end.
707 */
708 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
709 bdp->cbd_sc = cpu_to_fec16(status);
710
711 /* If this was the last BD in the ring, start at the beginning again. */
712 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
713
714 skb_tx_timestamp(skb);
715
716 /* Make sure the update to bdp is performed before txq->bd.cur. */
717 wmb();
718 txq->bd.cur = bdp;
719
720 /* Trigger transmission start */
721 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
722 !readl(txq->bd.reg_desc_active) ||
723 !readl(txq->bd.reg_desc_active) ||
724 !readl(txq->bd.reg_desc_active) ||
725 !readl(txq->bd.reg_desc_active))
726 writel(0, txq->bd.reg_desc_active);
727
728 return 0;
729 }
730
731 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)732 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
733 struct net_device *ndev,
734 struct bufdesc *bdp, int index, char *data,
735 int size, bool last_tcp, bool is_last)
736 {
737 struct fec_enet_private *fep = netdev_priv(ndev);
738 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
739 unsigned short status;
740 unsigned int estatus = 0;
741 dma_addr_t addr;
742
743 status = fec16_to_cpu(bdp->cbd_sc);
744 status &= ~BD_ENET_TX_STATS;
745
746 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
747
748 if (((unsigned long) data) & fep->tx_align ||
749 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
750 memcpy(txq->tx_bounce[index], data, size);
751 data = txq->tx_bounce[index];
752
753 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
754 swap_buffer(data, size);
755 }
756
757 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
758 if (dma_mapping_error(&fep->pdev->dev, addr)) {
759 dev_kfree_skb_any(skb);
760 if (net_ratelimit())
761 netdev_err(ndev, "Tx DMA memory map failed\n");
762 return NETDEV_TX_OK;
763 }
764
765 bdp->cbd_datlen = cpu_to_fec16(size);
766 bdp->cbd_bufaddr = cpu_to_fec32(addr);
767
768 if (fep->bufdesc_ex) {
769 if (fep->quirks & FEC_QUIRK_HAS_AVB)
770 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
771 if (skb->ip_summed == CHECKSUM_PARTIAL)
772 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
773 ebdp->cbd_bdu = 0;
774 ebdp->cbd_esc = cpu_to_fec32(estatus);
775 }
776
777 /* Handle the last BD specially */
778 if (last_tcp)
779 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
780 if (is_last) {
781 status |= BD_ENET_TX_INTR;
782 if (fep->bufdesc_ex)
783 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
784 }
785
786 bdp->cbd_sc = cpu_to_fec16(status);
787
788 return 0;
789 }
790
791 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)792 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
793 struct sk_buff *skb, struct net_device *ndev,
794 struct bufdesc *bdp, int index)
795 {
796 struct fec_enet_private *fep = netdev_priv(ndev);
797 int hdr_len = skb_tcp_all_headers(skb);
798 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
799 void *bufaddr;
800 unsigned long dmabuf;
801 unsigned short status;
802 unsigned int estatus = 0;
803
804 status = fec16_to_cpu(bdp->cbd_sc);
805 status &= ~BD_ENET_TX_STATS;
806 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
807
808 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
809 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
810 if (((unsigned long)bufaddr) & fep->tx_align ||
811 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
812 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
813 bufaddr = txq->tx_bounce[index];
814
815 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
816 swap_buffer(bufaddr, hdr_len);
817
818 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
819 hdr_len, DMA_TO_DEVICE);
820 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
821 dev_kfree_skb_any(skb);
822 if (net_ratelimit())
823 netdev_err(ndev, "Tx DMA memory map failed\n");
824 return NETDEV_TX_OK;
825 }
826 }
827
828 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
829 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
830
831 if (fep->bufdesc_ex) {
832 if (fep->quirks & FEC_QUIRK_HAS_AVB)
833 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
834 if (skb->ip_summed == CHECKSUM_PARTIAL)
835 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
836 ebdp->cbd_bdu = 0;
837 ebdp->cbd_esc = cpu_to_fec32(estatus);
838 }
839
840 bdp->cbd_sc = cpu_to_fec16(status);
841
842 return 0;
843 }
844
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)845 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
846 struct sk_buff *skb,
847 struct net_device *ndev)
848 {
849 struct fec_enet_private *fep = netdev_priv(ndev);
850 int hdr_len, total_len, data_left;
851 struct bufdesc *bdp = txq->bd.cur;
852 struct bufdesc *tmp_bdp;
853 struct bufdesc_ex *ebdp;
854 struct tso_t tso;
855 unsigned int index = 0;
856 int ret;
857
858 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
859 dev_kfree_skb_any(skb);
860 if (net_ratelimit())
861 netdev_err(ndev, "NOT enough BD for TSO!\n");
862 return NETDEV_TX_OK;
863 }
864
865 /* Protocol checksum off-load for TCP and UDP. */
866 if (fec_enet_clear_csum(skb, ndev)) {
867 dev_kfree_skb_any(skb);
868 return NETDEV_TX_OK;
869 }
870
871 /* Initialize the TSO handler, and prepare the first payload */
872 hdr_len = tso_start(skb, &tso);
873
874 total_len = skb->len - hdr_len;
875 while (total_len > 0) {
876 char *hdr;
877
878 index = fec_enet_get_bd_index(bdp, &txq->bd);
879 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
880 total_len -= data_left;
881
882 /* prepare packet headers: MAC + IP + TCP */
883 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
884 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
885 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
886 if (ret)
887 goto err_release;
888
889 while (data_left > 0) {
890 int size;
891
892 size = min_t(int, tso.size, data_left);
893 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
894 index = fec_enet_get_bd_index(bdp, &txq->bd);
895 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
896 bdp, index,
897 tso.data, size,
898 size == data_left,
899 total_len == 0);
900 if (ret)
901 goto err_release;
902
903 data_left -= size;
904 tso_build_data(skb, &tso, size);
905 }
906
907 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
908 }
909
910 /* Save skb pointer */
911 txq->tx_buf[index].buf_p = skb;
912
913 skb_tx_timestamp(skb);
914 txq->bd.cur = bdp;
915
916 /* Trigger transmission start */
917 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
918 !readl(txq->bd.reg_desc_active) ||
919 !readl(txq->bd.reg_desc_active) ||
920 !readl(txq->bd.reg_desc_active) ||
921 !readl(txq->bd.reg_desc_active))
922 writel(0, txq->bd.reg_desc_active);
923
924 return 0;
925
926 err_release:
927 /* Release all used data descriptors for TSO */
928 tmp_bdp = txq->bd.cur;
929
930 while (tmp_bdp != bdp) {
931 /* Unmap data buffers */
932 if (tmp_bdp->cbd_bufaddr &&
933 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
934 dma_unmap_single(&fep->pdev->dev,
935 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
936 fec16_to_cpu(tmp_bdp->cbd_datlen),
937 DMA_TO_DEVICE);
938
939 /* Clear standard buffer descriptor fields */
940 tmp_bdp->cbd_sc = 0;
941 tmp_bdp->cbd_datlen = 0;
942 tmp_bdp->cbd_bufaddr = 0;
943
944 /* Handle extended descriptor if enabled */
945 if (fep->bufdesc_ex) {
946 ebdp = (struct bufdesc_ex *)tmp_bdp;
947 ebdp->cbd_esc = 0;
948 }
949
950 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
951 }
952
953 dev_kfree_skb_any(skb);
954
955 return ret;
956 }
957
958 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)959 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
960 {
961 struct fec_enet_private *fep = netdev_priv(ndev);
962 int entries_free;
963 unsigned short queue;
964 struct fec_enet_priv_tx_q *txq;
965 struct netdev_queue *nq;
966 int ret;
967
968 queue = skb_get_queue_mapping(skb);
969 txq = fep->tx_queue[queue];
970 nq = netdev_get_tx_queue(ndev, queue);
971
972 if (skb_is_gso(skb))
973 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
974 else
975 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
976 if (ret)
977 return ret;
978
979 entries_free = fec_enet_get_free_txdesc_num(txq);
980 if (entries_free <= txq->tx_stop_threshold)
981 netif_tx_stop_queue(nq);
982
983 return NETDEV_TX_OK;
984 }
985
986 /* Init RX & TX buffer descriptors
987 */
fec_enet_bd_init(struct net_device * dev)988 static void fec_enet_bd_init(struct net_device *dev)
989 {
990 struct fec_enet_private *fep = netdev_priv(dev);
991 struct fec_enet_priv_tx_q *txq;
992 struct fec_enet_priv_rx_q *rxq;
993 struct bufdesc *bdp;
994 unsigned int i;
995 unsigned int q;
996
997 for (q = 0; q < fep->num_rx_queues; q++) {
998 /* Initialize the receive buffer descriptors. */
999 rxq = fep->rx_queue[q];
1000 bdp = rxq->bd.base;
1001
1002 for (i = 0; i < rxq->bd.ring_size; i++) {
1003
1004 /* Initialize the BD for every fragment in the page. */
1005 if (bdp->cbd_bufaddr)
1006 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1007 else
1008 bdp->cbd_sc = cpu_to_fec16(0);
1009 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1010 }
1011
1012 /* Set the last buffer to wrap */
1013 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1014 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1015
1016 rxq->bd.cur = rxq->bd.base;
1017 }
1018
1019 for (q = 0; q < fep->num_tx_queues; q++) {
1020 /* ...and the same for transmit */
1021 txq = fep->tx_queue[q];
1022 bdp = txq->bd.base;
1023 txq->bd.cur = bdp;
1024
1025 for (i = 0; i < txq->bd.ring_size; i++) {
1026 /* Initialize the BD for every fragment in the page. */
1027 bdp->cbd_sc = cpu_to_fec16(0);
1028 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1029 if (bdp->cbd_bufaddr &&
1030 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1031 dma_unmap_single(&fep->pdev->dev,
1032 fec32_to_cpu(bdp->cbd_bufaddr),
1033 fec16_to_cpu(bdp->cbd_datlen),
1034 DMA_TO_DEVICE);
1035 if (txq->tx_buf[i].buf_p)
1036 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1037 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1038 if (bdp->cbd_bufaddr)
1039 dma_unmap_single(&fep->pdev->dev,
1040 fec32_to_cpu(bdp->cbd_bufaddr),
1041 fec16_to_cpu(bdp->cbd_datlen),
1042 DMA_TO_DEVICE);
1043
1044 if (txq->tx_buf[i].buf_p)
1045 xdp_return_frame(txq->tx_buf[i].buf_p);
1046 } else {
1047 struct page *page = txq->tx_buf[i].buf_p;
1048
1049 if (page)
1050 page_pool_put_page(pp_page_to_nmdesc(page)->pp,
1051 page, 0,
1052 false);
1053 }
1054
1055 txq->tx_buf[i].buf_p = NULL;
1056 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1057 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1058 bdp->cbd_bufaddr = cpu_to_fec32(0);
1059 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1060 }
1061
1062 /* Set the last buffer to wrap */
1063 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1064 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1065 txq->dirty_tx = bdp;
1066 }
1067 }
1068
fec_enet_active_rxring(struct net_device * ndev)1069 static void fec_enet_active_rxring(struct net_device *ndev)
1070 {
1071 struct fec_enet_private *fep = netdev_priv(ndev);
1072 int i;
1073
1074 for (i = 0; i < fep->num_rx_queues; i++)
1075 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1076 }
1077
fec_enet_enable_ring(struct net_device * ndev)1078 static void fec_enet_enable_ring(struct net_device *ndev)
1079 {
1080 struct fec_enet_private *fep = netdev_priv(ndev);
1081 struct fec_enet_priv_tx_q *txq;
1082 struct fec_enet_priv_rx_q *rxq;
1083 int i;
1084
1085 for (i = 0; i < fep->num_rx_queues; i++) {
1086 rxq = fep->rx_queue[i];
1087 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1088 writel(fep->max_buf_size, fep->hwp + FEC_R_BUFF_SIZE(i));
1089
1090 /* enable DMA1/2 */
1091 if (i)
1092 writel(RCMR_MATCHEN | RCMR_CMP(i),
1093 fep->hwp + FEC_RCMR(i));
1094 }
1095
1096 for (i = 0; i < fep->num_tx_queues; i++) {
1097 txq = fep->tx_queue[i];
1098 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1099
1100 /* enable DMA1/2 */
1101 if (i)
1102 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1103 fep->hwp + FEC_DMA_CFG(i));
1104 }
1105 }
1106
1107 /* Whack a reset. We should wait for this.
1108 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1109 * instead of reset MAC itself.
1110 */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1111 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1112 {
1113 u32 val;
1114
1115 if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1117 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1118 writel(0, fep->hwp + FEC_ECNTRL);
1119 } else {
1120 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1121 udelay(10);
1122 }
1123 } else {
1124 val = readl(fep->hwp + FEC_ECNTRL);
1125 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1126 writel(val, fep->hwp + FEC_ECNTRL);
1127 }
1128 }
1129
fec_set_hw_mac_addr(struct net_device * ndev)1130 static void fec_set_hw_mac_addr(struct net_device *ndev)
1131 {
1132 struct fec_enet_private *fep = netdev_priv(ndev);
1133
1134 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1135 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1136 fep->hwp + FEC_ADDR_LOW);
1137 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1138 fep->hwp + FEC_ADDR_HIGH);
1139 }
1140
1141 /*
1142 * This function is called to start or restart the FEC during a link
1143 * change, transmit timeout, or to reconfigure the FEC. The network
1144 * packet processing for this device must be stopped before this call.
1145 */
1146 static void
fec_restart(struct net_device * ndev)1147 fec_restart(struct net_device *ndev)
1148 {
1149 struct fec_enet_private *fep = netdev_priv(ndev);
1150 u32 ecntl = FEC_ECR_ETHEREN;
1151 u32 rcntl = FEC_RCR_MII;
1152
1153 if (OPT_ARCH_HAS_MAX_FL)
1154 rcntl |= (fep->netdev->mtu + ETH_HLEN + ETH_FCS_LEN) << 16;
1155
1156 if (fep->bufdesc_ex)
1157 fec_ptp_save_state(fep);
1158
1159 fec_ctrl_reset(fep, false);
1160
1161 /*
1162 * enet-mac reset will reset mac address registers too,
1163 * so need to reconfigure it.
1164 */
1165 fec_set_hw_mac_addr(ndev);
1166
1167 /* Clear any outstanding interrupt, except MDIO. */
1168 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1169
1170 fec_enet_bd_init(ndev);
1171
1172 fec_enet_enable_ring(ndev);
1173
1174 /* Enable MII mode */
1175 if (fep->full_duplex == DUPLEX_FULL) {
1176 /* FD enable */
1177 writel(0x04, fep->hwp + FEC_X_CNTRL);
1178 } else {
1179 /* No Rcv on Xmit */
1180 rcntl |= FEC_RCR_DRT;
1181 writel(0x0, fep->hwp + FEC_X_CNTRL);
1182 }
1183
1184 /* Set MII speed */
1185 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186
1187 #if !defined(CONFIG_M5272)
1188 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1189 u32 val = readl(fep->hwp + FEC_RACC);
1190
1191 /* align IP header */
1192 val |= FEC_RACC_SHIFT16;
1193 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1194 /* set RX checksum */
1195 val |= FEC_RACC_OPTIONS;
1196 else
1197 val &= ~FEC_RACC_OPTIONS;
1198 writel(val, fep->hwp + FEC_RACC);
1199 writel(min(fep->rx_frame_size, fep->max_buf_size), fep->hwp + FEC_FTRL);
1200 }
1201 #endif
1202
1203 /*
1204 * The phy interface and speed need to get configured
1205 * differently on enet-mac.
1206 */
1207 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1208 /* Enable flow control and length check */
1209 rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1210
1211 /* RGMII, RMII or MII */
1212 if (phy_interface_mode_is_rgmii(fep->phy_interface))
1213 rcntl |= FEC_RCR_RGMII;
1214 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1215 rcntl |= FEC_RCR_RMII;
1216 else
1217 rcntl &= ~FEC_RCR_RMII;
1218
1219 /* 1G, 100M or 10M */
1220 if (ndev->phydev) {
1221 if (ndev->phydev->speed == SPEED_1000)
1222 ecntl |= FEC_ECR_SPEED;
1223 else if (ndev->phydev->speed == SPEED_100)
1224 rcntl &= ~FEC_RCR_10BASET;
1225 else
1226 rcntl |= FEC_RCR_10BASET;
1227 }
1228 } else {
1229 #ifdef FEC_MIIGSK_ENR
1230 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1231 u32 cfgr;
1232 /* disable the gasket and wait */
1233 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1234 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1235 udelay(1);
1236
1237 /*
1238 * configure the gasket:
1239 * RMII, 50 MHz, no loopback, no echo
1240 * MII, 25 MHz, no loopback, no echo
1241 */
1242 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1243 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1244 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1245 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1246 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1247
1248 /* re-enable the gasket */
1249 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1250 }
1251 #endif
1252 }
1253
1254 #if !defined(CONFIG_M5272)
1255 /* enable pause frame*/
1256 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1257 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1258 ndev->phydev && ndev->phydev->pause)) {
1259 rcntl |= FEC_RCR_FLOWCTL;
1260
1261 /* set FIFO threshold parameter to reduce overrun */
1262 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1263 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1264 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1265 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1266
1267 /* OPD */
1268 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1269 } else {
1270 rcntl &= ~FEC_RCR_FLOWCTL;
1271 }
1272 #endif /* !defined(CONFIG_M5272) */
1273
1274 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1275
1276 /* Setup multicast filter. */
1277 set_multicast_list(ndev);
1278 #ifndef CONFIG_M5272
1279 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1280 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1281 #endif
1282
1283 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1284 /* enable ENET endian swap */
1285 ecntl |= FEC_ECR_BYTESWP;
1286
1287 /* When Jumbo Frame is enabled, the FIFO may not be large enough
1288 * to hold an entire frame. In such cases, if the MTU exceeds
1289 * (PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN), configure the interface
1290 * to operate in cut-through mode, triggered by the FIFO threshold.
1291 * Otherwise, enable the ENET store-and-forward mode.
1292 */
1293 if ((fep->quirks & FEC_QUIRK_JUMBO_FRAME) &&
1294 (ndev->mtu > (PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN)))
1295 writel(0xF, fep->hwp + FEC_X_WMRK);
1296 else
1297 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1298 }
1299
1300 if (fep->bufdesc_ex)
1301 ecntl |= FEC_ECR_EN1588;
1302
1303 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1304 fep->rgmii_txc_dly)
1305 ecntl |= FEC_ENET_TXC_DLY;
1306 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1307 fep->rgmii_rxc_dly)
1308 ecntl |= FEC_ENET_RXC_DLY;
1309
1310 #ifndef CONFIG_M5272
1311 /* Enable the MIB statistic event counters */
1312 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1313 #endif
1314
1315 /* And last, enable the transmit and receive processing */
1316 writel(ecntl, fep->hwp + FEC_ECNTRL);
1317 fec_enet_active_rxring(ndev);
1318
1319 if (fep->bufdesc_ex) {
1320 fec_ptp_start_cyclecounter(ndev);
1321 fec_ptp_restore_state(fep);
1322 }
1323
1324 /* Enable interrupts we wish to service */
1325 if (fep->link)
1326 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1327 else
1328 writel(0, fep->hwp + FEC_IMASK);
1329
1330 /* Init the interrupt coalescing */
1331 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1332 fec_enet_itr_coal_set(ndev);
1333 }
1334
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1335 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1336 {
1337 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1338 of_machine_is_compatible("fsl,imx8qxp") ||
1339 of_machine_is_compatible("fsl,imx8dxl")))
1340 return 0;
1341
1342 return imx_scu_get_handle(&fep->ipc_handle);
1343 }
1344
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1345 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1346 {
1347 struct device_node *np = fep->pdev->dev.of_node;
1348 u32 rsrc_id, val;
1349 int idx;
1350
1351 if (!np || !fep->ipc_handle)
1352 return;
1353
1354 idx = of_alias_get_id(np, "ethernet");
1355 if (idx < 0)
1356 idx = 0;
1357 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1358
1359 val = enabled ? 1 : 0;
1360 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1361 }
1362
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1363 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1364 {
1365 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1366 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1367
1368 if (stop_gpr->gpr) {
1369 if (enabled)
1370 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1371 BIT(stop_gpr->bit),
1372 BIT(stop_gpr->bit));
1373 else
1374 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1375 BIT(stop_gpr->bit), 0);
1376 } else if (pdata && pdata->sleep_mode_enable) {
1377 pdata->sleep_mode_enable(enabled);
1378 } else {
1379 fec_enet_ipg_stop_set(fep, enabled);
1380 }
1381 }
1382
fec_irqs_disable(struct net_device * ndev)1383 static void fec_irqs_disable(struct net_device *ndev)
1384 {
1385 struct fec_enet_private *fep = netdev_priv(ndev);
1386
1387 writel(0, fep->hwp + FEC_IMASK);
1388 }
1389
fec_irqs_disable_except_wakeup(struct net_device * ndev)1390 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1391 {
1392 struct fec_enet_private *fep = netdev_priv(ndev);
1393
1394 writel(0, fep->hwp + FEC_IMASK);
1395 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1396 }
1397
1398 static void
fec_stop(struct net_device * ndev)1399 fec_stop(struct net_device *ndev)
1400 {
1401 struct fec_enet_private *fep = netdev_priv(ndev);
1402 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1403 u32 val;
1404
1405 /* We cannot expect a graceful transmit stop without link !!! */
1406 if (fep->link) {
1407 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1408 udelay(10);
1409 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1410 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1411 }
1412
1413 if (fep->bufdesc_ex)
1414 fec_ptp_save_state(fep);
1415
1416 fec_ctrl_reset(fep, true);
1417 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1418 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1419
1420 /* We have to keep ENET enabled to have MII interrupt stay working */
1421 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1422 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1423 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1424 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1425 }
1426
1427 if (fep->bufdesc_ex) {
1428 val = readl(fep->hwp + FEC_ECNTRL);
1429 val |= FEC_ECR_EN1588;
1430 writel(val, fep->hwp + FEC_ECNTRL);
1431
1432 fec_ptp_start_cyclecounter(ndev);
1433 fec_ptp_restore_state(fep);
1434 }
1435 }
1436
1437 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1438 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1439 {
1440 struct fec_enet_private *fep = netdev_priv(ndev);
1441
1442 fec_dump(ndev);
1443
1444 ndev->stats.tx_errors++;
1445
1446 schedule_work(&fep->tx_timeout_work);
1447 }
1448
fec_enet_timeout_work(struct work_struct * work)1449 static void fec_enet_timeout_work(struct work_struct *work)
1450 {
1451 struct fec_enet_private *fep =
1452 container_of(work, struct fec_enet_private, tx_timeout_work);
1453 struct net_device *ndev = fep->netdev;
1454
1455 rtnl_lock();
1456 if (netif_device_present(ndev) || netif_running(ndev)) {
1457 napi_disable(&fep->napi);
1458 netif_tx_lock_bh(ndev);
1459 fec_restart(ndev);
1460 netif_tx_wake_all_queues(ndev);
1461 netif_tx_unlock_bh(ndev);
1462 napi_enable(&fep->napi);
1463 }
1464 rtnl_unlock();
1465 }
1466
1467 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1468 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1469 struct skb_shared_hwtstamps *hwtstamps)
1470 {
1471 unsigned long flags;
1472 u64 ns;
1473
1474 spin_lock_irqsave(&fep->tmreg_lock, flags);
1475 ns = timecounter_cyc2time(&fep->tc, ts);
1476 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1477
1478 memset(hwtstamps, 0, sizeof(*hwtstamps));
1479 hwtstamps->hwtstamp = ns_to_ktime(ns);
1480 }
1481
1482 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1483 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1484 {
1485 struct fec_enet_private *fep;
1486 struct xdp_frame *xdpf;
1487 struct bufdesc *bdp;
1488 unsigned short status;
1489 struct sk_buff *skb;
1490 struct fec_enet_priv_tx_q *txq;
1491 struct netdev_queue *nq;
1492 int index = 0;
1493 int entries_free;
1494 struct page *page;
1495 int frame_len;
1496
1497 fep = netdev_priv(ndev);
1498
1499 txq = fep->tx_queue[queue_id];
1500 /* get next bdp of dirty_tx */
1501 nq = netdev_get_tx_queue(ndev, queue_id);
1502 bdp = txq->dirty_tx;
1503
1504 /* get next bdp of dirty_tx */
1505 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1506
1507 while (bdp != READ_ONCE(txq->bd.cur)) {
1508 /* Order the load of bd.cur and cbd_sc */
1509 rmb();
1510 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1511 if (status & BD_ENET_TX_READY)
1512 break;
1513
1514 index = fec_enet_get_bd_index(bdp, &txq->bd);
1515
1516 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1517 skb = txq->tx_buf[index].buf_p;
1518 if (bdp->cbd_bufaddr &&
1519 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1520 dma_unmap_single(&fep->pdev->dev,
1521 fec32_to_cpu(bdp->cbd_bufaddr),
1522 fec16_to_cpu(bdp->cbd_datlen),
1523 DMA_TO_DEVICE);
1524 bdp->cbd_bufaddr = cpu_to_fec32(0);
1525 if (!skb)
1526 goto tx_buf_done;
1527 } else {
1528 /* Tx processing cannot call any XDP (or page pool) APIs if
1529 * the "budget" is 0. Because NAPI is called with budget of
1530 * 0 (such as netpoll) indicates we may be in an IRQ context,
1531 * however, we can't use the page pool from IRQ context.
1532 */
1533 if (unlikely(!budget))
1534 break;
1535
1536 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1537 xdpf = txq->tx_buf[index].buf_p;
1538 if (bdp->cbd_bufaddr)
1539 dma_unmap_single(&fep->pdev->dev,
1540 fec32_to_cpu(bdp->cbd_bufaddr),
1541 fec16_to_cpu(bdp->cbd_datlen),
1542 DMA_TO_DEVICE);
1543 } else {
1544 page = txq->tx_buf[index].buf_p;
1545 }
1546
1547 bdp->cbd_bufaddr = cpu_to_fec32(0);
1548 if (unlikely(!txq->tx_buf[index].buf_p)) {
1549 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1550 goto tx_buf_done;
1551 }
1552
1553 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1554 }
1555
1556 /* Check for errors. */
1557 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1558 BD_ENET_TX_RL | BD_ENET_TX_UN |
1559 BD_ENET_TX_CSL)) {
1560 ndev->stats.tx_errors++;
1561 if (status & BD_ENET_TX_HB) /* No heartbeat */
1562 ndev->stats.tx_heartbeat_errors++;
1563 if (status & BD_ENET_TX_LC) /* Late collision */
1564 ndev->stats.tx_window_errors++;
1565 if (status & BD_ENET_TX_RL) /* Retrans limit */
1566 ndev->stats.tx_aborted_errors++;
1567 if (status & BD_ENET_TX_UN) /* Underrun */
1568 ndev->stats.tx_fifo_errors++;
1569 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1570 ndev->stats.tx_carrier_errors++;
1571 } else {
1572 ndev->stats.tx_packets++;
1573
1574 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1575 ndev->stats.tx_bytes += skb->len;
1576 else
1577 ndev->stats.tx_bytes += frame_len;
1578 }
1579
1580 /* Deferred means some collisions occurred during transmit,
1581 * but we eventually sent the packet OK.
1582 */
1583 if (status & BD_ENET_TX_DEF)
1584 ndev->stats.collisions++;
1585
1586 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1587 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1588 * are to time stamp the packet, so we still need to check time
1589 * stamping enabled flag.
1590 */
1591 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1592 fep->hwts_tx_en) && fep->bufdesc_ex) {
1593 struct skb_shared_hwtstamps shhwtstamps;
1594 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1595
1596 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1597 skb_tstamp_tx(skb, &shhwtstamps);
1598 }
1599
1600 /* Free the sk buffer associated with this last transmit */
1601 napi_consume_skb(skb, budget);
1602 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1603 xdp_return_frame_rx_napi(xdpf);
1604 } else { /* recycle pages of XDP_TX frames */
1605 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1606 page_pool_put_page(pp_page_to_nmdesc(page)->pp, page,
1607 0, true);
1608 }
1609
1610 txq->tx_buf[index].buf_p = NULL;
1611 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1612 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1613
1614 tx_buf_done:
1615 /* Make sure the update to bdp and tx_buf are performed
1616 * before dirty_tx
1617 */
1618 wmb();
1619 txq->dirty_tx = bdp;
1620
1621 /* Update pointer to next buffer descriptor to be transmitted */
1622 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1623
1624 /* Since we have freed up a buffer, the ring is no longer full
1625 */
1626 if (netif_tx_queue_stopped(nq)) {
1627 entries_free = fec_enet_get_free_txdesc_num(txq);
1628 if (entries_free >= txq->tx_wake_threshold)
1629 netif_tx_wake_queue(nq);
1630 }
1631 }
1632
1633 /* ERR006358: Keep the transmitter going */
1634 if (bdp != txq->bd.cur &&
1635 readl(txq->bd.reg_desc_active) == 0)
1636 writel(0, txq->bd.reg_desc_active);
1637 }
1638
fec_enet_tx(struct net_device * ndev,int budget)1639 static void fec_enet_tx(struct net_device *ndev, int budget)
1640 {
1641 struct fec_enet_private *fep = netdev_priv(ndev);
1642 int i;
1643
1644 /* Make sure that AVB queues are processed first. */
1645 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1646 fec_enet_tx_queue(ndev, i, budget);
1647 }
1648
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1649 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1650 struct bufdesc *bdp, int index)
1651 {
1652 struct page *new_page;
1653 dma_addr_t phys_addr;
1654
1655 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1656 if (unlikely(!new_page))
1657 return -ENOMEM;
1658
1659 rxq->rx_skb_info[index].page = new_page;
1660 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1661 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1662 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1663
1664 return 0;
1665 }
1666
1667 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1668 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1669 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1670 {
1671 unsigned int sync, len = xdp->data_end - xdp->data;
1672 u32 ret = FEC_ENET_XDP_PASS;
1673 struct page *page;
1674 int err;
1675 u32 act;
1676
1677 act = bpf_prog_run_xdp(prog, xdp);
1678
1679 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1680 * max len CPU touch
1681 */
1682 sync = xdp->data_end - xdp->data;
1683 sync = max(sync, len);
1684
1685 switch (act) {
1686 case XDP_PASS:
1687 rxq->stats[RX_XDP_PASS]++;
1688 ret = FEC_ENET_XDP_PASS;
1689 break;
1690
1691 case XDP_REDIRECT:
1692 rxq->stats[RX_XDP_REDIRECT]++;
1693 err = xdp_do_redirect(fep->netdev, xdp, prog);
1694 if (unlikely(err))
1695 goto xdp_err;
1696
1697 ret = FEC_ENET_XDP_REDIR;
1698 break;
1699
1700 case XDP_TX:
1701 rxq->stats[RX_XDP_TX]++;
1702 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1703 if (unlikely(err)) {
1704 rxq->stats[RX_XDP_TX_ERRORS]++;
1705 goto xdp_err;
1706 }
1707
1708 ret = FEC_ENET_XDP_TX;
1709 break;
1710
1711 default:
1712 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1713 fallthrough;
1714
1715 case XDP_ABORTED:
1716 fallthrough; /* handle aborts by dropping packet */
1717
1718 case XDP_DROP:
1719 rxq->stats[RX_XDP_DROP]++;
1720 xdp_err:
1721 ret = FEC_ENET_XDP_CONSUMED;
1722 page = virt_to_head_page(xdp->data);
1723 page_pool_put_page(rxq->page_pool, page, sync, true);
1724 if (act != XDP_DROP)
1725 trace_xdp_exception(fep->netdev, prog, act);
1726 break;
1727 }
1728
1729 return ret;
1730 }
1731
fec_enet_rx_vlan(const struct net_device * ndev,struct sk_buff * skb)1732 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1733 {
1734 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1735 const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1736 const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1737
1738 /* Push and remove the vlan tag */
1739
1740 memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1741 skb_pull(skb, VLAN_HLEN);
1742 __vlan_hwaccel_put_tag(skb,
1743 htons(ETH_P_8021Q),
1744 vlan_tag);
1745 }
1746 }
1747
1748 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1749 * When we update through the ring, if the next incoming buffer has
1750 * not been given to the system, we just set the empty indicator,
1751 * effectively tossing the packet.
1752 */
1753 static int
fec_enet_rx_queue(struct net_device * ndev,u16 queue_id,int budget)1754 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1755 {
1756 struct fec_enet_private *fep = netdev_priv(ndev);
1757 struct fec_enet_priv_rx_q *rxq;
1758 struct bufdesc *bdp;
1759 unsigned short status;
1760 struct sk_buff *skb;
1761 ushort pkt_len;
1762 int pkt_received = 0;
1763 struct bufdesc_ex *ebdp = NULL;
1764 int index = 0;
1765 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1766 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1767 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1768 u32 data_start = FEC_ENET_XDP_HEADROOM;
1769 int cpu = smp_processor_id();
1770 struct xdp_buff xdp;
1771 struct page *page;
1772 __fec32 cbd_bufaddr;
1773 u32 sub_len = 4;
1774
1775 #if !defined(CONFIG_M5272)
1776 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1777 * FEC_RACC_SHIFT16 is set by default in the probe function.
1778 */
1779 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1780 data_start += 2;
1781 sub_len += 2;
1782 }
1783 #endif
1784
1785 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1786 /*
1787 * Hacky flush of all caches instead of using the DMA API for the TSO
1788 * headers.
1789 */
1790 flush_cache_all();
1791 #endif
1792 rxq = fep->rx_queue[queue_id];
1793
1794 /* First, grab all of the stats for the incoming packet.
1795 * These get messed up if we get called due to a busy condition.
1796 */
1797 bdp = rxq->bd.cur;
1798 xdp_init_buff(&xdp, PAGE_SIZE << fep->pagepool_order, &rxq->xdp_rxq);
1799
1800 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1801
1802 if (pkt_received >= budget)
1803 break;
1804 pkt_received++;
1805
1806 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1807
1808 /* Check for errors. */
1809 status ^= BD_ENET_RX_LAST;
1810 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1811 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1812 BD_ENET_RX_CL)) {
1813 ndev->stats.rx_errors++;
1814 if (status & BD_ENET_RX_OV) {
1815 /* FIFO overrun */
1816 ndev->stats.rx_fifo_errors++;
1817 goto rx_processing_done;
1818 }
1819 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1820 | BD_ENET_RX_LAST)) {
1821 /* Frame too long or too short. */
1822 ndev->stats.rx_length_errors++;
1823 if (status & BD_ENET_RX_LAST)
1824 netdev_err(ndev, "rcv is not +last\n");
1825 }
1826 if (status & BD_ENET_RX_CR) /* CRC Error */
1827 ndev->stats.rx_crc_errors++;
1828 /* Report late collisions as a frame error. */
1829 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1830 ndev->stats.rx_frame_errors++;
1831 goto rx_processing_done;
1832 }
1833
1834 /* Process the incoming frame. */
1835 ndev->stats.rx_packets++;
1836 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1837 ndev->stats.rx_bytes += pkt_len;
1838 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1839 ndev->stats.rx_bytes -= 2;
1840
1841 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1842 page = rxq->rx_skb_info[index].page;
1843 cbd_bufaddr = bdp->cbd_bufaddr;
1844 if (fec_enet_update_cbd(rxq, bdp, index)) {
1845 ndev->stats.rx_dropped++;
1846 goto rx_processing_done;
1847 }
1848
1849 dma_sync_single_for_cpu(&fep->pdev->dev,
1850 fec32_to_cpu(cbd_bufaddr),
1851 pkt_len,
1852 DMA_FROM_DEVICE);
1853 prefetch(page_address(page));
1854
1855 if (xdp_prog) {
1856 xdp_buff_clear_frags_flag(&xdp);
1857 /* subtract 16bit shift and FCS */
1858 xdp_prepare_buff(&xdp, page_address(page),
1859 data_start, pkt_len - sub_len, false);
1860 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1861 xdp_result |= ret;
1862 if (ret != FEC_ENET_XDP_PASS)
1863 goto rx_processing_done;
1864 }
1865
1866 /* The packet length includes FCS, but we don't want to
1867 * include that when passing upstream as it messes up
1868 * bridging applications.
1869 */
1870 skb = build_skb(page_address(page),
1871 PAGE_SIZE << fep->pagepool_order);
1872 if (unlikely(!skb)) {
1873 page_pool_recycle_direct(rxq->page_pool, page);
1874 ndev->stats.rx_dropped++;
1875
1876 netdev_err_once(ndev, "build_skb failed!\n");
1877 goto rx_processing_done;
1878 }
1879
1880 skb_reserve(skb, data_start);
1881 skb_put(skb, pkt_len - sub_len);
1882 skb_mark_for_recycle(skb);
1883
1884 if (unlikely(need_swap)) {
1885 u8 *data;
1886
1887 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1888 swap_buffer(data, pkt_len);
1889 }
1890
1891 /* Extract the enhanced buffer descriptor */
1892 ebdp = NULL;
1893 if (fep->bufdesc_ex)
1894 ebdp = (struct bufdesc_ex *)bdp;
1895
1896 /* If this is a VLAN packet remove the VLAN Tag */
1897 if (fep->bufdesc_ex &&
1898 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1899 fec_enet_rx_vlan(ndev, skb);
1900
1901 skb->protocol = eth_type_trans(skb, ndev);
1902
1903 /* Get receive timestamp from the skb */
1904 if (fep->hwts_rx_en && fep->bufdesc_ex)
1905 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1906 skb_hwtstamps(skb));
1907
1908 if (fep->bufdesc_ex &&
1909 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1910 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1911 /* don't check it */
1912 skb->ip_summed = CHECKSUM_UNNECESSARY;
1913 } else {
1914 skb_checksum_none_assert(skb);
1915 }
1916 }
1917
1918 skb_record_rx_queue(skb, queue_id);
1919 napi_gro_receive(&fep->napi, skb);
1920
1921 rx_processing_done:
1922 /* Clear the status flags for this buffer */
1923 status &= ~BD_ENET_RX_STATS;
1924
1925 /* Mark the buffer empty */
1926 status |= BD_ENET_RX_EMPTY;
1927
1928 if (fep->bufdesc_ex) {
1929 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1930
1931 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1932 ebdp->cbd_prot = 0;
1933 ebdp->cbd_bdu = 0;
1934 }
1935 /* Make sure the updates to rest of the descriptor are
1936 * performed before transferring ownership.
1937 */
1938 wmb();
1939 bdp->cbd_sc = cpu_to_fec16(status);
1940
1941 /* Update BD pointer to next entry */
1942 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1943
1944 /* Doing this here will keep the FEC running while we process
1945 * incoming frames. On a heavily loaded network, we should be
1946 * able to keep up at the expense of system resources.
1947 */
1948 writel(0, rxq->bd.reg_desc_active);
1949 }
1950 rxq->bd.cur = bdp;
1951
1952 if (xdp_result & FEC_ENET_XDP_REDIR)
1953 xdp_do_flush();
1954
1955 return pkt_received;
1956 }
1957
fec_enet_rx(struct net_device * ndev,int budget)1958 static int fec_enet_rx(struct net_device *ndev, int budget)
1959 {
1960 struct fec_enet_private *fep = netdev_priv(ndev);
1961 int i, done = 0;
1962
1963 /* Make sure that AVB queues are processed first. */
1964 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1965 done += fec_enet_rx_queue(ndev, i, budget - done);
1966
1967 return done;
1968 }
1969
fec_enet_collect_events(struct fec_enet_private * fep)1970 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1971 {
1972 uint int_events;
1973
1974 int_events = readl(fep->hwp + FEC_IEVENT);
1975
1976 /* Don't clear MDIO events, we poll for those */
1977 int_events &= ~FEC_ENET_MII;
1978
1979 writel(int_events, fep->hwp + FEC_IEVENT);
1980
1981 return int_events != 0;
1982 }
1983
1984 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1985 fec_enet_interrupt(int irq, void *dev_id)
1986 {
1987 struct net_device *ndev = dev_id;
1988 struct fec_enet_private *fep = netdev_priv(ndev);
1989 irqreturn_t ret = IRQ_NONE;
1990
1991 if (fec_enet_collect_events(fep) && fep->link) {
1992 ret = IRQ_HANDLED;
1993
1994 if (napi_schedule_prep(&fep->napi)) {
1995 /* Disable interrupts */
1996 writel(0, fep->hwp + FEC_IMASK);
1997 __napi_schedule(&fep->napi);
1998 }
1999 }
2000
2001 return ret;
2002 }
2003
fec_enet_rx_napi(struct napi_struct * napi,int budget)2004 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
2005 {
2006 struct net_device *ndev = napi->dev;
2007 struct fec_enet_private *fep = netdev_priv(ndev);
2008 int done = 0;
2009
2010 do {
2011 done += fec_enet_rx(ndev, budget - done);
2012 fec_enet_tx(ndev, budget);
2013 } while ((done < budget) && fec_enet_collect_events(fep));
2014
2015 if (done < budget) {
2016 napi_complete_done(napi, done);
2017 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
2018 }
2019
2020 return done;
2021 }
2022
2023 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2024 static int fec_get_mac(struct net_device *ndev)
2025 {
2026 struct fec_enet_private *fep = netdev_priv(ndev);
2027 unsigned char *iap, tmpaddr[ETH_ALEN];
2028 int ret;
2029
2030 /*
2031 * try to get mac address in following order:
2032 *
2033 * 1) module parameter via kernel command line in form
2034 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2035 */
2036 iap = macaddr;
2037
2038 /*
2039 * 2) from device tree data
2040 */
2041 if (!is_valid_ether_addr(iap)) {
2042 struct device_node *np = fep->pdev->dev.of_node;
2043 if (np) {
2044 ret = of_get_mac_address(np, tmpaddr);
2045 if (!ret)
2046 iap = tmpaddr;
2047 else if (ret == -EPROBE_DEFER)
2048 return ret;
2049 }
2050 }
2051
2052 /*
2053 * 3) from flash or fuse (via platform data)
2054 */
2055 if (!is_valid_ether_addr(iap)) {
2056 #ifdef CONFIG_M5272
2057 if (FEC_FLASHMAC)
2058 iap = (unsigned char *)FEC_FLASHMAC;
2059 #else
2060 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2061
2062 if (pdata)
2063 iap = (unsigned char *)&pdata->mac;
2064 #endif
2065 }
2066
2067 /*
2068 * 4) FEC mac registers set by bootloader
2069 */
2070 if (!is_valid_ether_addr(iap)) {
2071 *((__be32 *) &tmpaddr[0]) =
2072 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2073 *((__be16 *) &tmpaddr[4]) =
2074 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2075 iap = &tmpaddr[0];
2076 }
2077
2078 /*
2079 * 5) random mac address
2080 */
2081 if (!is_valid_ether_addr(iap)) {
2082 /* Report it and use a random ethernet address instead */
2083 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2084 eth_hw_addr_random(ndev);
2085 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2086 ndev->dev_addr);
2087 return 0;
2088 }
2089
2090 /* Adjust MAC if using macaddr */
2091 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2092
2093 return 0;
2094 }
2095
2096 /* ------------------------------------------------------------------------- */
2097
2098 /*
2099 * Phy section
2100 */
2101
2102 /* LPI Sleep Ts count base on tx clk (clk_ref).
2103 * The lpi sleep cnt value = X us / (cycle_ns).
2104 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2105 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2106 {
2107 struct fec_enet_private *fep = netdev_priv(ndev);
2108
2109 return us * (fep->clk_ref_rate / 1000) / 1000;
2110 }
2111
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2112 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2113 bool enable)
2114 {
2115 struct fec_enet_private *fep = netdev_priv(ndev);
2116 unsigned int sleep_cycle, wake_cycle;
2117
2118 if (enable) {
2119 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2120 wake_cycle = sleep_cycle;
2121 } else {
2122 sleep_cycle = 0;
2123 wake_cycle = 0;
2124 }
2125
2126 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2127 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2128
2129 return 0;
2130 }
2131
fec_enet_adjust_link(struct net_device * ndev)2132 static void fec_enet_adjust_link(struct net_device *ndev)
2133 {
2134 struct fec_enet_private *fep = netdev_priv(ndev);
2135 struct phy_device *phy_dev = ndev->phydev;
2136 int status_change = 0;
2137
2138 /*
2139 * If the netdev is down, or is going down, we're not interested
2140 * in link state events, so just mark our idea of the link as down
2141 * and ignore the event.
2142 */
2143 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2144 fep->link = 0;
2145 } else if (phy_dev->link) {
2146 if (!fep->link) {
2147 fep->link = phy_dev->link;
2148 status_change = 1;
2149 }
2150
2151 if (fep->full_duplex != phy_dev->duplex) {
2152 fep->full_duplex = phy_dev->duplex;
2153 status_change = 1;
2154 }
2155
2156 if (phy_dev->speed != fep->speed) {
2157 fep->speed = phy_dev->speed;
2158 status_change = 1;
2159 }
2160
2161 /* if any of the above changed restart the FEC */
2162 if (status_change) {
2163 netif_stop_queue(ndev);
2164 napi_disable(&fep->napi);
2165 netif_tx_lock_bh(ndev);
2166 fec_restart(ndev);
2167 netif_tx_wake_all_queues(ndev);
2168 netif_tx_unlock_bh(ndev);
2169 napi_enable(&fep->napi);
2170 }
2171 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2172 fec_enet_eee_mode_set(ndev,
2173 phy_dev->eee_cfg.tx_lpi_timer,
2174 phy_dev->enable_tx_lpi);
2175 } else {
2176 if (fep->link) {
2177 netif_stop_queue(ndev);
2178 napi_disable(&fep->napi);
2179 netif_tx_lock_bh(ndev);
2180 fec_stop(ndev);
2181 netif_tx_unlock_bh(ndev);
2182 napi_enable(&fep->napi);
2183 fep->link = phy_dev->link;
2184 status_change = 1;
2185 }
2186 }
2187
2188 if (status_change)
2189 phy_print_status(phy_dev);
2190 }
2191
fec_enet_mdio_wait(struct fec_enet_private * fep)2192 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2193 {
2194 uint ievent;
2195 int ret;
2196
2197 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2198 ievent & FEC_ENET_MII, 2, 30000);
2199
2200 if (!ret)
2201 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2202
2203 return ret;
2204 }
2205
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2206 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2207 {
2208 struct fec_enet_private *fep = bus->priv;
2209 struct device *dev = &fep->pdev->dev;
2210 int ret = 0, frame_start, frame_addr, frame_op;
2211
2212 ret = pm_runtime_resume_and_get(dev);
2213 if (ret < 0)
2214 return ret;
2215
2216 /* C22 read */
2217 frame_op = FEC_MMFR_OP_READ;
2218 frame_start = FEC_MMFR_ST;
2219 frame_addr = regnum;
2220
2221 /* start a read op */
2222 writel(frame_start | frame_op |
2223 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2224 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2225
2226 /* wait for end of transfer */
2227 ret = fec_enet_mdio_wait(fep);
2228 if (ret) {
2229 netdev_err(fep->netdev, "MDIO read timeout\n");
2230 goto out;
2231 }
2232
2233 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2234
2235 out:
2236 pm_runtime_mark_last_busy(dev);
2237 pm_runtime_put_autosuspend(dev);
2238
2239 return ret;
2240 }
2241
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2242 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2243 int devad, int regnum)
2244 {
2245 struct fec_enet_private *fep = bus->priv;
2246 struct device *dev = &fep->pdev->dev;
2247 int ret = 0, frame_start, frame_op;
2248
2249 ret = pm_runtime_resume_and_get(dev);
2250 if (ret < 0)
2251 return ret;
2252
2253 frame_start = FEC_MMFR_ST_C45;
2254
2255 /* write address */
2256 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2257 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2258 FEC_MMFR_TA | (regnum & 0xFFFF),
2259 fep->hwp + FEC_MII_DATA);
2260
2261 /* wait for end of transfer */
2262 ret = fec_enet_mdio_wait(fep);
2263 if (ret) {
2264 netdev_err(fep->netdev, "MDIO address write timeout\n");
2265 goto out;
2266 }
2267
2268 frame_op = FEC_MMFR_OP_READ_C45;
2269
2270 /* start a read op */
2271 writel(frame_start | frame_op |
2272 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2273 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2274
2275 /* wait for end of transfer */
2276 ret = fec_enet_mdio_wait(fep);
2277 if (ret) {
2278 netdev_err(fep->netdev, "MDIO read timeout\n");
2279 goto out;
2280 }
2281
2282 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2283
2284 out:
2285 pm_runtime_mark_last_busy(dev);
2286 pm_runtime_put_autosuspend(dev);
2287
2288 return ret;
2289 }
2290
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2291 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2292 u16 value)
2293 {
2294 struct fec_enet_private *fep = bus->priv;
2295 struct device *dev = &fep->pdev->dev;
2296 int ret, frame_start, frame_addr;
2297
2298 ret = pm_runtime_resume_and_get(dev);
2299 if (ret < 0)
2300 return ret;
2301
2302 /* C22 write */
2303 frame_start = FEC_MMFR_ST;
2304 frame_addr = regnum;
2305
2306 /* start a write op */
2307 writel(frame_start | FEC_MMFR_OP_WRITE |
2308 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2309 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2310 fep->hwp + FEC_MII_DATA);
2311
2312 /* wait for end of transfer */
2313 ret = fec_enet_mdio_wait(fep);
2314 if (ret)
2315 netdev_err(fep->netdev, "MDIO write timeout\n");
2316
2317 pm_runtime_mark_last_busy(dev);
2318 pm_runtime_put_autosuspend(dev);
2319
2320 return ret;
2321 }
2322
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2323 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2324 int devad, int regnum, u16 value)
2325 {
2326 struct fec_enet_private *fep = bus->priv;
2327 struct device *dev = &fep->pdev->dev;
2328 int ret, frame_start;
2329
2330 ret = pm_runtime_resume_and_get(dev);
2331 if (ret < 0)
2332 return ret;
2333
2334 frame_start = FEC_MMFR_ST_C45;
2335
2336 /* write address */
2337 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2338 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2339 FEC_MMFR_TA | (regnum & 0xFFFF),
2340 fep->hwp + FEC_MII_DATA);
2341
2342 /* wait for end of transfer */
2343 ret = fec_enet_mdio_wait(fep);
2344 if (ret) {
2345 netdev_err(fep->netdev, "MDIO address write timeout\n");
2346 goto out;
2347 }
2348
2349 /* start a write op */
2350 writel(frame_start | FEC_MMFR_OP_WRITE |
2351 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2352 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2353 fep->hwp + FEC_MII_DATA);
2354
2355 /* wait for end of transfer */
2356 ret = fec_enet_mdio_wait(fep);
2357 if (ret)
2358 netdev_err(fep->netdev, "MDIO write timeout\n");
2359
2360 out:
2361 pm_runtime_mark_last_busy(dev);
2362 pm_runtime_put_autosuspend(dev);
2363
2364 return ret;
2365 }
2366
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2367 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2368 {
2369 struct fec_enet_private *fep = netdev_priv(ndev);
2370 struct phy_device *phy_dev = ndev->phydev;
2371
2372 if (phy_dev) {
2373 phy_reset_after_clk_enable(phy_dev);
2374 } else if (fep->phy_node) {
2375 /*
2376 * If the PHY still is not bound to the MAC, but there is
2377 * OF PHY node and a matching PHY device instance already,
2378 * use the OF PHY node to obtain the PHY device instance,
2379 * and then use that PHY device instance when triggering
2380 * the PHY reset.
2381 */
2382 phy_dev = of_phy_find_device(fep->phy_node);
2383 phy_reset_after_clk_enable(phy_dev);
2384 if (phy_dev)
2385 put_device(&phy_dev->mdio.dev);
2386 }
2387 }
2388
fec_enet_clk_enable(struct net_device * ndev,bool enable)2389 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2390 {
2391 struct fec_enet_private *fep = netdev_priv(ndev);
2392 int ret;
2393
2394 if (enable) {
2395 ret = clk_prepare_enable(fep->clk_enet_out);
2396 if (ret)
2397 return ret;
2398
2399 if (fep->clk_ptp) {
2400 mutex_lock(&fep->ptp_clk_mutex);
2401 ret = clk_prepare_enable(fep->clk_ptp);
2402 if (ret) {
2403 mutex_unlock(&fep->ptp_clk_mutex);
2404 goto failed_clk_ptp;
2405 } else {
2406 fep->ptp_clk_on = true;
2407 }
2408 mutex_unlock(&fep->ptp_clk_mutex);
2409 }
2410
2411 ret = clk_prepare_enable(fep->clk_ref);
2412 if (ret)
2413 goto failed_clk_ref;
2414
2415 ret = clk_prepare_enable(fep->clk_2x_txclk);
2416 if (ret)
2417 goto failed_clk_2x_txclk;
2418
2419 fec_enet_phy_reset_after_clk_enable(ndev);
2420 } else {
2421 clk_disable_unprepare(fep->clk_enet_out);
2422 if (fep->clk_ptp) {
2423 mutex_lock(&fep->ptp_clk_mutex);
2424 clk_disable_unprepare(fep->clk_ptp);
2425 fep->ptp_clk_on = false;
2426 mutex_unlock(&fep->ptp_clk_mutex);
2427 }
2428 clk_disable_unprepare(fep->clk_ref);
2429 clk_disable_unprepare(fep->clk_2x_txclk);
2430 }
2431
2432 return 0;
2433
2434 failed_clk_2x_txclk:
2435 if (fep->clk_ref)
2436 clk_disable_unprepare(fep->clk_ref);
2437 failed_clk_ref:
2438 if (fep->clk_ptp) {
2439 mutex_lock(&fep->ptp_clk_mutex);
2440 clk_disable_unprepare(fep->clk_ptp);
2441 fep->ptp_clk_on = false;
2442 mutex_unlock(&fep->ptp_clk_mutex);
2443 }
2444 failed_clk_ptp:
2445 clk_disable_unprepare(fep->clk_enet_out);
2446
2447 return ret;
2448 }
2449
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2450 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2451 struct device_node *np)
2452 {
2453 u32 rgmii_tx_delay, rgmii_rx_delay;
2454
2455 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2456 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2457 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2458 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2459 return -EINVAL;
2460 } else if (rgmii_tx_delay == 2000) {
2461 fep->rgmii_txc_dly = true;
2462 }
2463 }
2464
2465 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2466 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2467 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2468 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2469 return -EINVAL;
2470 } else if (rgmii_rx_delay == 2000) {
2471 fep->rgmii_rxc_dly = true;
2472 }
2473 }
2474
2475 return 0;
2476 }
2477
fec_enet_mii_probe(struct net_device * ndev)2478 static int fec_enet_mii_probe(struct net_device *ndev)
2479 {
2480 struct fec_enet_private *fep = netdev_priv(ndev);
2481 struct phy_device *phy_dev = NULL;
2482 char mdio_bus_id[MII_BUS_ID_SIZE];
2483 char phy_name[MII_BUS_ID_SIZE + 3];
2484 int phy_id;
2485 int dev_id = fep->dev_id;
2486
2487 if (fep->phy_node) {
2488 phy_dev = of_phy_connect(ndev, fep->phy_node,
2489 &fec_enet_adjust_link, 0,
2490 fep->phy_interface);
2491 if (!phy_dev) {
2492 netdev_err(ndev, "Unable to connect to phy\n");
2493 return -ENODEV;
2494 }
2495 } else {
2496 /* check for attached phy */
2497 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2498 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2499 continue;
2500 if (dev_id--)
2501 continue;
2502 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2503 break;
2504 }
2505
2506 if (phy_id >= PHY_MAX_ADDR) {
2507 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2508 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2509 phy_id = 0;
2510 }
2511
2512 snprintf(phy_name, sizeof(phy_name),
2513 PHY_ID_FMT, mdio_bus_id, phy_id);
2514 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2515 fep->phy_interface);
2516 }
2517
2518 if (IS_ERR(phy_dev)) {
2519 netdev_err(ndev, "could not attach to PHY\n");
2520 return PTR_ERR(phy_dev);
2521 }
2522
2523 /* mask with MAC supported features */
2524 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2525 phy_set_max_speed(phy_dev, 1000);
2526 phy_remove_link_mode(phy_dev,
2527 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2528 #if !defined(CONFIG_M5272)
2529 phy_support_sym_pause(phy_dev);
2530 #endif
2531 }
2532 else
2533 phy_set_max_speed(phy_dev, 100);
2534
2535 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2536 phy_support_eee(phy_dev);
2537
2538 fep->link = 0;
2539 fep->full_duplex = 0;
2540
2541 phy_attached_info(phy_dev);
2542
2543 return 0;
2544 }
2545
fec_enet_mii_init(struct platform_device * pdev)2546 static int fec_enet_mii_init(struct platform_device *pdev)
2547 {
2548 static struct mii_bus *fec0_mii_bus;
2549 struct net_device *ndev = platform_get_drvdata(pdev);
2550 struct fec_enet_private *fep = netdev_priv(ndev);
2551 bool suppress_preamble = false;
2552 struct phy_device *phydev;
2553 struct device_node *node;
2554 int err = -ENXIO;
2555 u32 mii_speed, holdtime;
2556 u32 bus_freq;
2557 int addr;
2558
2559 /*
2560 * The i.MX28 dual fec interfaces are not equal.
2561 * Here are the differences:
2562 *
2563 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2564 * - fec0 acts as the 1588 time master while fec1 is slave
2565 * - external phys can only be configured by fec0
2566 *
2567 * That is to say fec1 can not work independently. It only works
2568 * when fec0 is working. The reason behind this design is that the
2569 * second interface is added primarily for Switch mode.
2570 *
2571 * Because of the last point above, both phys are attached on fec0
2572 * mdio interface in board design, and need to be configured by
2573 * fec0 mii_bus.
2574 */
2575 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2576 /* fec1 uses fec0 mii_bus */
2577 if (mii_cnt && fec0_mii_bus) {
2578 fep->mii_bus = fec0_mii_bus;
2579 mii_cnt++;
2580 return 0;
2581 }
2582 return -ENOENT;
2583 }
2584
2585 bus_freq = 2500000; /* 2.5MHz by default */
2586 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2587 if (node) {
2588 of_property_read_u32(node, "clock-frequency", &bus_freq);
2589 suppress_preamble = of_property_read_bool(node,
2590 "suppress-preamble");
2591 }
2592
2593 /*
2594 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2595 *
2596 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2597 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2598 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2599 * document.
2600 */
2601 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2602 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2603 mii_speed--;
2604 if (mii_speed > 63) {
2605 dev_err(&pdev->dev,
2606 "fec clock (%lu) too fast to get right mii speed\n",
2607 clk_get_rate(fep->clk_ipg));
2608 err = -EINVAL;
2609 goto err_out;
2610 }
2611
2612 /*
2613 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2614 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2615 * versions are RAZ there, so just ignore the difference and write the
2616 * register always.
2617 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2618 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2619 * output.
2620 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2621 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2622 * holdtime cannot result in a value greater than 3.
2623 */
2624 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2625
2626 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2627
2628 if (suppress_preamble)
2629 fep->phy_speed |= BIT(7);
2630
2631 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2632 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2633 * MII event generation condition:
2634 * - writing MSCR:
2635 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2636 * mscr_reg_data_in[7:0] != 0
2637 * - writing MMFR:
2638 * - mscr[7:0]_not_zero
2639 */
2640 writel(0, fep->hwp + FEC_MII_DATA);
2641 }
2642
2643 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2644
2645 /* Clear any pending transaction complete indication */
2646 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2647
2648 fep->mii_bus = mdiobus_alloc();
2649 if (fep->mii_bus == NULL) {
2650 err = -ENOMEM;
2651 goto err_out;
2652 }
2653
2654 fep->mii_bus->name = "fec_enet_mii_bus";
2655 fep->mii_bus->read = fec_enet_mdio_read_c22;
2656 fep->mii_bus->write = fec_enet_mdio_write_c22;
2657 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2658 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2659 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2660 }
2661 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2662 pdev->name, fep->dev_id + 1);
2663 fep->mii_bus->priv = fep;
2664 fep->mii_bus->parent = &pdev->dev;
2665
2666 err = of_mdiobus_register(fep->mii_bus, node);
2667 if (err)
2668 goto err_out_free_mdiobus;
2669 of_node_put(node);
2670
2671 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2672 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2673 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2674 if (phydev)
2675 phydev->mac_managed_pm = true;
2676 }
2677
2678 mii_cnt++;
2679
2680 /* save fec0 mii_bus */
2681 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2682 fec0_mii_bus = fep->mii_bus;
2683
2684 return 0;
2685
2686 err_out_free_mdiobus:
2687 mdiobus_free(fep->mii_bus);
2688 err_out:
2689 of_node_put(node);
2690 return err;
2691 }
2692
fec_enet_mii_remove(struct fec_enet_private * fep)2693 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2694 {
2695 if (--mii_cnt == 0) {
2696 mdiobus_unregister(fep->mii_bus);
2697 mdiobus_free(fep->mii_bus);
2698 }
2699 }
2700
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2701 static void fec_enet_get_drvinfo(struct net_device *ndev,
2702 struct ethtool_drvinfo *info)
2703 {
2704 struct fec_enet_private *fep = netdev_priv(ndev);
2705
2706 strscpy(info->driver, fep->pdev->dev.driver->name,
2707 sizeof(info->driver));
2708 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2709 }
2710
fec_enet_get_regs_len(struct net_device * ndev)2711 static int fec_enet_get_regs_len(struct net_device *ndev)
2712 {
2713 struct fec_enet_private *fep = netdev_priv(ndev);
2714 struct resource *r;
2715 int s = 0;
2716
2717 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2718 if (r)
2719 s = resource_size(r);
2720
2721 return s;
2722 }
2723
2724 /* List of registers that can be safety be read to dump them with ethtool */
2725 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2726 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2727 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2728 static __u32 fec_enet_register_version = 2;
2729 static u32 fec_enet_register_offset[] = {
2730 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2731 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2732 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2733 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2734 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2735 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2736 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2737 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2738 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2739 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2740 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2741 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2742 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2743 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2744 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2745 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2746 RMON_T_P_GTE2048, RMON_T_OCTETS,
2747 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2748 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2749 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2750 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2751 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2752 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2753 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2754 RMON_R_P_GTE2048, RMON_R_OCTETS,
2755 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2756 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2757 };
2758 /* for i.MX6ul */
2759 static u32 fec_enet_register_offset_6ul[] = {
2760 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2761 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2762 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2763 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2764 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2765 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2766 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2767 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2768 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2769 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2770 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2771 RMON_T_P_GTE2048, RMON_T_OCTETS,
2772 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2773 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2774 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2775 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2776 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2777 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2778 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2779 RMON_R_P_GTE2048, RMON_R_OCTETS,
2780 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2781 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2782 };
2783 #else
2784 static __u32 fec_enet_register_version = 1;
2785 static u32 fec_enet_register_offset[] = {
2786 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2787 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2788 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2789 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2790 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2791 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2792 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2793 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2794 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2795 };
2796 #endif
2797
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2798 static void fec_enet_get_regs(struct net_device *ndev,
2799 struct ethtool_regs *regs, void *regbuf)
2800 {
2801 struct fec_enet_private *fep = netdev_priv(ndev);
2802 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2803 struct device *dev = &fep->pdev->dev;
2804 u32 *buf = (u32 *)regbuf;
2805 u32 i, off;
2806 int ret;
2807 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2808 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2809 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2810 u32 *reg_list;
2811 u32 reg_cnt;
2812
2813 if (!of_machine_is_compatible("fsl,imx6ul")) {
2814 reg_list = fec_enet_register_offset;
2815 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2816 } else {
2817 reg_list = fec_enet_register_offset_6ul;
2818 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2819 }
2820 #else
2821 /* coldfire */
2822 static u32 *reg_list = fec_enet_register_offset;
2823 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2824 #endif
2825 ret = pm_runtime_resume_and_get(dev);
2826 if (ret < 0)
2827 return;
2828
2829 regs->version = fec_enet_register_version;
2830
2831 memset(buf, 0, regs->len);
2832
2833 for (i = 0; i < reg_cnt; i++) {
2834 off = reg_list[i];
2835
2836 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2837 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2838 continue;
2839
2840 off >>= 2;
2841 buf[off] = readl(&theregs[off]);
2842 }
2843
2844 pm_runtime_mark_last_busy(dev);
2845 pm_runtime_put_autosuspend(dev);
2846 }
2847
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2848 static int fec_enet_get_ts_info(struct net_device *ndev,
2849 struct kernel_ethtool_ts_info *info)
2850 {
2851 struct fec_enet_private *fep = netdev_priv(ndev);
2852
2853 if (fep->bufdesc_ex) {
2854
2855 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2856 SOF_TIMESTAMPING_TX_HARDWARE |
2857 SOF_TIMESTAMPING_RX_HARDWARE |
2858 SOF_TIMESTAMPING_RAW_HARDWARE;
2859 if (fep->ptp_clock)
2860 info->phc_index = ptp_clock_index(fep->ptp_clock);
2861
2862 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2863 (1 << HWTSTAMP_TX_ON);
2864
2865 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2866 (1 << HWTSTAMP_FILTER_ALL);
2867 return 0;
2868 } else {
2869 return ethtool_op_get_ts_info(ndev, info);
2870 }
2871 }
2872
2873 #if !defined(CONFIG_M5272)
2874
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2875 static void fec_enet_get_pauseparam(struct net_device *ndev,
2876 struct ethtool_pauseparam *pause)
2877 {
2878 struct fec_enet_private *fep = netdev_priv(ndev);
2879
2880 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2881 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2882 pause->rx_pause = pause->tx_pause;
2883 }
2884
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2885 static int fec_enet_set_pauseparam(struct net_device *ndev,
2886 struct ethtool_pauseparam *pause)
2887 {
2888 struct fec_enet_private *fep = netdev_priv(ndev);
2889
2890 if (!ndev->phydev)
2891 return -ENODEV;
2892
2893 if (pause->tx_pause != pause->rx_pause) {
2894 netdev_info(ndev,
2895 "hardware only support enable/disable both tx and rx");
2896 return -EINVAL;
2897 }
2898
2899 fep->pause_flag = 0;
2900
2901 /* tx pause must be same as rx pause */
2902 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2903 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2904
2905 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2906 pause->autoneg);
2907
2908 if (pause->autoneg) {
2909 if (netif_running(ndev))
2910 fec_stop(ndev);
2911 phy_start_aneg(ndev->phydev);
2912 }
2913 if (netif_running(ndev)) {
2914 napi_disable(&fep->napi);
2915 netif_tx_lock_bh(ndev);
2916 fec_restart(ndev);
2917 netif_tx_wake_all_queues(ndev);
2918 netif_tx_unlock_bh(ndev);
2919 napi_enable(&fep->napi);
2920 }
2921
2922 return 0;
2923 }
2924
2925 static const struct fec_stat {
2926 char name[ETH_GSTRING_LEN];
2927 u16 offset;
2928 } fec_stats[] = {
2929 /* RMON TX */
2930 { "tx_dropped", RMON_T_DROP },
2931 { "tx_packets", RMON_T_PACKETS },
2932 { "tx_broadcast", RMON_T_BC_PKT },
2933 { "tx_multicast", RMON_T_MC_PKT },
2934 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2935 { "tx_undersize", RMON_T_UNDERSIZE },
2936 { "tx_oversize", RMON_T_OVERSIZE },
2937 { "tx_fragment", RMON_T_FRAG },
2938 { "tx_jabber", RMON_T_JAB },
2939 { "tx_collision", RMON_T_COL },
2940 { "tx_64byte", RMON_T_P64 },
2941 { "tx_65to127byte", RMON_T_P65TO127 },
2942 { "tx_128to255byte", RMON_T_P128TO255 },
2943 { "tx_256to511byte", RMON_T_P256TO511 },
2944 { "tx_512to1023byte", RMON_T_P512TO1023 },
2945 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2946 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2947 { "tx_octets", RMON_T_OCTETS },
2948
2949 /* IEEE TX */
2950 { "IEEE_tx_drop", IEEE_T_DROP },
2951 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2952 { "IEEE_tx_1col", IEEE_T_1COL },
2953 { "IEEE_tx_mcol", IEEE_T_MCOL },
2954 { "IEEE_tx_def", IEEE_T_DEF },
2955 { "IEEE_tx_lcol", IEEE_T_LCOL },
2956 { "IEEE_tx_excol", IEEE_T_EXCOL },
2957 { "IEEE_tx_macerr", IEEE_T_MACERR },
2958 { "IEEE_tx_cserr", IEEE_T_CSERR },
2959 { "IEEE_tx_sqe", IEEE_T_SQE },
2960 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2961 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2962
2963 /* RMON RX */
2964 { "rx_packets", RMON_R_PACKETS },
2965 { "rx_broadcast", RMON_R_BC_PKT },
2966 { "rx_multicast", RMON_R_MC_PKT },
2967 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2968 { "rx_undersize", RMON_R_UNDERSIZE },
2969 { "rx_oversize", RMON_R_OVERSIZE },
2970 { "rx_fragment", RMON_R_FRAG },
2971 { "rx_jabber", RMON_R_JAB },
2972 { "rx_64byte", RMON_R_P64 },
2973 { "rx_65to127byte", RMON_R_P65TO127 },
2974 { "rx_128to255byte", RMON_R_P128TO255 },
2975 { "rx_256to511byte", RMON_R_P256TO511 },
2976 { "rx_512to1023byte", RMON_R_P512TO1023 },
2977 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2978 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2979 { "rx_octets", RMON_R_OCTETS },
2980
2981 /* IEEE RX */
2982 { "IEEE_rx_drop", IEEE_R_DROP },
2983 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2984 { "IEEE_rx_crc", IEEE_R_CRC },
2985 { "IEEE_rx_align", IEEE_R_ALIGN },
2986 { "IEEE_rx_macerr", IEEE_R_MACERR },
2987 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2988 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2989 };
2990
2991 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2992
2993 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2994 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2995 "rx_xdp_pass", /* RX_XDP_PASS, */
2996 "rx_xdp_drop", /* RX_XDP_DROP, */
2997 "rx_xdp_tx", /* RX_XDP_TX, */
2998 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2999 "tx_xdp_xmit", /* TX_XDP_XMIT, */
3000 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
3001 };
3002
fec_enet_update_ethtool_stats(struct net_device * dev)3003 static void fec_enet_update_ethtool_stats(struct net_device *dev)
3004 {
3005 struct fec_enet_private *fep = netdev_priv(dev);
3006 int i;
3007
3008 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3009 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
3010 }
3011
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)3012 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
3013 {
3014 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
3015 struct fec_enet_priv_rx_q *rxq;
3016 int i, j;
3017
3018 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3019 rxq = fep->rx_queue[i];
3020
3021 for (j = 0; j < XDP_STATS_TOTAL; j++)
3022 xdp_stats[j] += rxq->stats[j];
3023 }
3024
3025 memcpy(data, xdp_stats, sizeof(xdp_stats));
3026 }
3027
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3028 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3029 {
3030 #ifdef CONFIG_PAGE_POOL_STATS
3031 struct page_pool_stats stats = {};
3032 struct fec_enet_priv_rx_q *rxq;
3033 int i;
3034
3035 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3036 rxq = fep->rx_queue[i];
3037
3038 if (!rxq->page_pool)
3039 continue;
3040
3041 page_pool_get_stats(rxq->page_pool, &stats);
3042 }
3043
3044 page_pool_ethtool_stats_get(data, &stats);
3045 #endif
3046 }
3047
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3048 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3049 struct ethtool_stats *stats, u64 *data)
3050 {
3051 struct fec_enet_private *fep = netdev_priv(dev);
3052
3053 if (netif_running(dev))
3054 fec_enet_update_ethtool_stats(dev);
3055
3056 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3057 data += FEC_STATS_SIZE / sizeof(u64);
3058
3059 fec_enet_get_xdp_stats(fep, data);
3060 data += XDP_STATS_TOTAL;
3061
3062 fec_enet_page_pool_stats(fep, data);
3063 }
3064
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3065 static void fec_enet_get_strings(struct net_device *netdev,
3066 u32 stringset, u8 *data)
3067 {
3068 int i;
3069 switch (stringset) {
3070 case ETH_SS_STATS:
3071 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3072 ethtool_puts(&data, fec_stats[i].name);
3073 }
3074 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3075 ethtool_puts(&data, fec_xdp_stat_strs[i]);
3076 }
3077 page_pool_ethtool_stats_get_strings(data);
3078
3079 break;
3080 case ETH_SS_TEST:
3081 net_selftest_get_strings(data);
3082 break;
3083 }
3084 }
3085
fec_enet_get_sset_count(struct net_device * dev,int sset)3086 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3087 {
3088 int count;
3089
3090 switch (sset) {
3091 case ETH_SS_STATS:
3092 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3093 count += page_pool_ethtool_stats_get_count();
3094 return count;
3095
3096 case ETH_SS_TEST:
3097 return net_selftest_get_count();
3098 default:
3099 return -EOPNOTSUPP;
3100 }
3101 }
3102
fec_enet_clear_ethtool_stats(struct net_device * dev)3103 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3104 {
3105 struct fec_enet_private *fep = netdev_priv(dev);
3106 struct fec_enet_priv_rx_q *rxq;
3107 int i, j;
3108
3109 /* Disable MIB statistics counters */
3110 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3111
3112 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3113 writel(0, fep->hwp + fec_stats[i].offset);
3114
3115 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3116 rxq = fep->rx_queue[i];
3117 for (j = 0; j < XDP_STATS_TOTAL; j++)
3118 rxq->stats[j] = 0;
3119 }
3120
3121 /* Don't disable MIB statistics counters */
3122 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3123 }
3124
3125 #else /* !defined(CONFIG_M5272) */
3126 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3127 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3128 {
3129 }
3130
fec_enet_clear_ethtool_stats(struct net_device * dev)3131 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3132 {
3133 }
3134 #endif /* !defined(CONFIG_M5272) */
3135
3136 /* ITR clock source is enet system clock (clk_ahb).
3137 * TCTT unit is cycle_ns * 64 cycle
3138 * So, the ICTT value = X us / (cycle_ns * 64)
3139 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3140 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3141 {
3142 struct fec_enet_private *fep = netdev_priv(ndev);
3143
3144 return us * (fep->itr_clk_rate / 64000) / 1000;
3145 }
3146
3147 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3148 static void fec_enet_itr_coal_set(struct net_device *ndev)
3149 {
3150 struct fec_enet_private *fep = netdev_priv(ndev);
3151 u32 rx_itr = 0, tx_itr = 0;
3152 int rx_ictt, tx_ictt;
3153
3154 rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3155 tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3156
3157 if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3158 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3159 rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3160 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3161 rx_itr |= FEC_ITR_ICTT(rx_ictt);
3162 }
3163
3164 if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3165 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3166 tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3167 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3168 tx_itr |= FEC_ITR_ICTT(tx_ictt);
3169 }
3170
3171 writel(tx_itr, fep->hwp + FEC_TXIC0);
3172 writel(rx_itr, fep->hwp + FEC_RXIC0);
3173 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3174 writel(tx_itr, fep->hwp + FEC_TXIC1);
3175 writel(rx_itr, fep->hwp + FEC_RXIC1);
3176 writel(tx_itr, fep->hwp + FEC_TXIC2);
3177 writel(rx_itr, fep->hwp + FEC_RXIC2);
3178 }
3179 }
3180
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3181 static int fec_enet_get_coalesce(struct net_device *ndev,
3182 struct ethtool_coalesce *ec,
3183 struct kernel_ethtool_coalesce *kernel_coal,
3184 struct netlink_ext_ack *extack)
3185 {
3186 struct fec_enet_private *fep = netdev_priv(ndev);
3187
3188 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3189 return -EOPNOTSUPP;
3190
3191 ec->rx_coalesce_usecs = fep->rx_time_itr;
3192 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3193
3194 ec->tx_coalesce_usecs = fep->tx_time_itr;
3195 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3196
3197 return 0;
3198 }
3199
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3200 static int fec_enet_set_coalesce(struct net_device *ndev,
3201 struct ethtool_coalesce *ec,
3202 struct kernel_ethtool_coalesce *kernel_coal,
3203 struct netlink_ext_ack *extack)
3204 {
3205 struct fec_enet_private *fep = netdev_priv(ndev);
3206 struct device *dev = &fep->pdev->dev;
3207 unsigned int cycle;
3208
3209 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3210 return -EOPNOTSUPP;
3211
3212 if (ec->rx_max_coalesced_frames > 255) {
3213 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3214 return -EINVAL;
3215 }
3216
3217 if (ec->tx_max_coalesced_frames > 255) {
3218 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3219 return -EINVAL;
3220 }
3221
3222 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3223 if (cycle > 0xFFFF) {
3224 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3225 return -EINVAL;
3226 }
3227
3228 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3229 if (cycle > 0xFFFF) {
3230 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3231 return -EINVAL;
3232 }
3233
3234 fep->rx_time_itr = ec->rx_coalesce_usecs;
3235 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3236
3237 fep->tx_time_itr = ec->tx_coalesce_usecs;
3238 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3239
3240 fec_enet_itr_coal_set(ndev);
3241
3242 return 0;
3243 }
3244
3245 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3246 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3247 {
3248 struct fec_enet_private *fep = netdev_priv(ndev);
3249
3250 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3251 return -EOPNOTSUPP;
3252
3253 if (!netif_running(ndev))
3254 return -ENETDOWN;
3255
3256 return phy_ethtool_get_eee(ndev->phydev, edata);
3257 }
3258
3259 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3260 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3261 {
3262 struct fec_enet_private *fep = netdev_priv(ndev);
3263
3264 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3265 return -EOPNOTSUPP;
3266
3267 if (!netif_running(ndev))
3268 return -ENETDOWN;
3269
3270 return phy_ethtool_set_eee(ndev->phydev, edata);
3271 }
3272
3273 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3274 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3275 {
3276 struct fec_enet_private *fep = netdev_priv(ndev);
3277
3278 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3279 wol->supported = WAKE_MAGIC;
3280 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3281 } else {
3282 wol->supported = wol->wolopts = 0;
3283 }
3284 }
3285
3286 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3287 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3288 {
3289 struct fec_enet_private *fep = netdev_priv(ndev);
3290
3291 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3292 return -EINVAL;
3293
3294 if (wol->wolopts & ~WAKE_MAGIC)
3295 return -EINVAL;
3296
3297 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3298 if (device_may_wakeup(&ndev->dev))
3299 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3300 else
3301 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3302
3303 return 0;
3304 }
3305
3306 static const struct ethtool_ops fec_enet_ethtool_ops = {
3307 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3308 ETHTOOL_COALESCE_MAX_FRAMES,
3309 .get_drvinfo = fec_enet_get_drvinfo,
3310 .get_regs_len = fec_enet_get_regs_len,
3311 .get_regs = fec_enet_get_regs,
3312 .nway_reset = phy_ethtool_nway_reset,
3313 .get_link = ethtool_op_get_link,
3314 .get_coalesce = fec_enet_get_coalesce,
3315 .set_coalesce = fec_enet_set_coalesce,
3316 #ifndef CONFIG_M5272
3317 .get_pauseparam = fec_enet_get_pauseparam,
3318 .set_pauseparam = fec_enet_set_pauseparam,
3319 .get_strings = fec_enet_get_strings,
3320 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3321 .get_sset_count = fec_enet_get_sset_count,
3322 #endif
3323 .get_ts_info = fec_enet_get_ts_info,
3324 .get_wol = fec_enet_get_wol,
3325 .set_wol = fec_enet_set_wol,
3326 .get_eee = fec_enet_get_eee,
3327 .set_eee = fec_enet_set_eee,
3328 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3329 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3330 .self_test = net_selftest,
3331 };
3332
fec_enet_free_buffers(struct net_device * ndev)3333 static void fec_enet_free_buffers(struct net_device *ndev)
3334 {
3335 struct fec_enet_private *fep = netdev_priv(ndev);
3336 unsigned int i;
3337 struct fec_enet_priv_tx_q *txq;
3338 struct fec_enet_priv_rx_q *rxq;
3339 unsigned int q;
3340
3341 for (q = 0; q < fep->num_rx_queues; q++) {
3342 rxq = fep->rx_queue[q];
3343 for (i = 0; i < rxq->bd.ring_size; i++)
3344 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3345
3346 for (i = 0; i < XDP_STATS_TOTAL; i++)
3347 rxq->stats[i] = 0;
3348
3349 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3350 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3351 page_pool_destroy(rxq->page_pool);
3352 rxq->page_pool = NULL;
3353 }
3354
3355 for (q = 0; q < fep->num_tx_queues; q++) {
3356 txq = fep->tx_queue[q];
3357 for (i = 0; i < txq->bd.ring_size; i++) {
3358 kfree(txq->tx_bounce[i]);
3359 txq->tx_bounce[i] = NULL;
3360
3361 if (!txq->tx_buf[i].buf_p) {
3362 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3363 continue;
3364 }
3365
3366 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3367 dev_kfree_skb(txq->tx_buf[i].buf_p);
3368 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3369 xdp_return_frame(txq->tx_buf[i].buf_p);
3370 } else {
3371 struct page *page = txq->tx_buf[i].buf_p;
3372
3373 page_pool_put_page(pp_page_to_nmdesc(page)->pp,
3374 page, 0, false);
3375 }
3376
3377 txq->tx_buf[i].buf_p = NULL;
3378 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3379 }
3380 }
3381 }
3382
fec_enet_free_queue(struct net_device * ndev)3383 static void fec_enet_free_queue(struct net_device *ndev)
3384 {
3385 struct fec_enet_private *fep = netdev_priv(ndev);
3386 int i;
3387 struct fec_enet_priv_tx_q *txq;
3388
3389 for (i = 0; i < fep->num_tx_queues; i++)
3390 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3391 txq = fep->tx_queue[i];
3392 fec_dma_free(&fep->pdev->dev,
3393 txq->bd.ring_size * TSO_HEADER_SIZE,
3394 txq->tso_hdrs, txq->tso_hdrs_dma);
3395 }
3396
3397 for (i = 0; i < fep->num_rx_queues; i++)
3398 kfree(fep->rx_queue[i]);
3399 for (i = 0; i < fep->num_tx_queues; i++)
3400 kfree(fep->tx_queue[i]);
3401 }
3402
fec_enet_alloc_queue(struct net_device * ndev)3403 static int fec_enet_alloc_queue(struct net_device *ndev)
3404 {
3405 struct fec_enet_private *fep = netdev_priv(ndev);
3406 int i;
3407 int ret = 0;
3408 struct fec_enet_priv_tx_q *txq;
3409
3410 for (i = 0; i < fep->num_tx_queues; i++) {
3411 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3412 if (!txq) {
3413 ret = -ENOMEM;
3414 goto alloc_failed;
3415 }
3416
3417 fep->tx_queue[i] = txq;
3418 txq->bd.ring_size = TX_RING_SIZE;
3419 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3420
3421 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3422 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3423
3424 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3425 txq->bd.ring_size * TSO_HEADER_SIZE,
3426 &txq->tso_hdrs_dma, GFP_KERNEL);
3427 if (!txq->tso_hdrs) {
3428 ret = -ENOMEM;
3429 goto alloc_failed;
3430 }
3431 }
3432
3433 for (i = 0; i < fep->num_rx_queues; i++) {
3434 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3435 GFP_KERNEL);
3436 if (!fep->rx_queue[i]) {
3437 ret = -ENOMEM;
3438 goto alloc_failed;
3439 }
3440
3441 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3442 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3443 }
3444 return ret;
3445
3446 alloc_failed:
3447 fec_enet_free_queue(ndev);
3448 return ret;
3449 }
3450
3451 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3452 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3453 {
3454 struct fec_enet_private *fep = netdev_priv(ndev);
3455 struct fec_enet_priv_rx_q *rxq;
3456 dma_addr_t phys_addr;
3457 struct bufdesc *bdp;
3458 struct page *page;
3459 int i, err;
3460
3461 rxq = fep->rx_queue[queue];
3462 bdp = rxq->bd.base;
3463
3464 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3465 if (err < 0) {
3466 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3467 return err;
3468 }
3469
3470 for (i = 0; i < rxq->bd.ring_size; i++) {
3471 page = page_pool_dev_alloc_pages(rxq->page_pool);
3472 if (!page)
3473 goto err_alloc;
3474
3475 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3476 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3477
3478 rxq->rx_skb_info[i].page = page;
3479 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3480 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3481
3482 if (fep->bufdesc_ex) {
3483 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3484 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3485 }
3486
3487 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3488 }
3489
3490 /* Set the last buffer to wrap. */
3491 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3492 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3493 return 0;
3494
3495 err_alloc:
3496 fec_enet_free_buffers(ndev);
3497 return -ENOMEM;
3498 }
3499
3500 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3501 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3502 {
3503 struct fec_enet_private *fep = netdev_priv(ndev);
3504 unsigned int i;
3505 struct bufdesc *bdp;
3506 struct fec_enet_priv_tx_q *txq;
3507
3508 txq = fep->tx_queue[queue];
3509 bdp = txq->bd.base;
3510 for (i = 0; i < txq->bd.ring_size; i++) {
3511 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3512 if (!txq->tx_bounce[i])
3513 goto err_alloc;
3514
3515 bdp->cbd_sc = cpu_to_fec16(0);
3516 bdp->cbd_bufaddr = cpu_to_fec32(0);
3517
3518 if (fep->bufdesc_ex) {
3519 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3520 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3521 }
3522
3523 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3524 }
3525
3526 /* Set the last buffer to wrap. */
3527 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3528 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3529
3530 return 0;
3531
3532 err_alloc:
3533 fec_enet_free_buffers(ndev);
3534 return -ENOMEM;
3535 }
3536
fec_enet_alloc_buffers(struct net_device * ndev)3537 static int fec_enet_alloc_buffers(struct net_device *ndev)
3538 {
3539 struct fec_enet_private *fep = netdev_priv(ndev);
3540 unsigned int i;
3541
3542 for (i = 0; i < fep->num_rx_queues; i++)
3543 if (fec_enet_alloc_rxq_buffers(ndev, i))
3544 return -ENOMEM;
3545
3546 for (i = 0; i < fep->num_tx_queues; i++)
3547 if (fec_enet_alloc_txq_buffers(ndev, i))
3548 return -ENOMEM;
3549 return 0;
3550 }
3551
3552 static int
fec_enet_open(struct net_device * ndev)3553 fec_enet_open(struct net_device *ndev)
3554 {
3555 struct fec_enet_private *fep = netdev_priv(ndev);
3556 int ret;
3557 bool reset_again;
3558
3559 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3560 if (ret < 0)
3561 return ret;
3562
3563 pinctrl_pm_select_default_state(&fep->pdev->dev);
3564 ret = fec_enet_clk_enable(ndev, true);
3565 if (ret)
3566 goto clk_enable;
3567
3568 /* During the first fec_enet_open call the PHY isn't probed at this
3569 * point. Therefore the phy_reset_after_clk_enable() call within
3570 * fec_enet_clk_enable() fails. As we need this reset in order to be
3571 * sure the PHY is working correctly we check if we need to reset again
3572 * later when the PHY is probed
3573 */
3574 if (ndev->phydev && ndev->phydev->drv)
3575 reset_again = false;
3576 else
3577 reset_again = true;
3578
3579 /* I should reset the ring buffers here, but I don't yet know
3580 * a simple way to do that.
3581 */
3582
3583 ret = fec_enet_alloc_buffers(ndev);
3584 if (ret)
3585 goto err_enet_alloc;
3586
3587 /* Init MAC prior to mii bus probe */
3588 fec_restart(ndev);
3589
3590 /* Call phy_reset_after_clk_enable() again if it failed during
3591 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3592 */
3593 if (reset_again)
3594 fec_enet_phy_reset_after_clk_enable(ndev);
3595
3596 /* Probe and connect to PHY when open the interface */
3597 ret = fec_enet_mii_probe(ndev);
3598 if (ret)
3599 goto err_enet_mii_probe;
3600
3601 if (fep->quirks & FEC_QUIRK_ERR006687)
3602 imx6q_cpuidle_fec_irqs_used();
3603
3604 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3605 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3606
3607 napi_enable(&fep->napi);
3608 phy_start(ndev->phydev);
3609 netif_tx_start_all_queues(ndev);
3610
3611 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3612 FEC_WOL_FLAG_ENABLE);
3613
3614 return 0;
3615
3616 err_enet_mii_probe:
3617 fec_enet_free_buffers(ndev);
3618 err_enet_alloc:
3619 fec_enet_clk_enable(ndev, false);
3620 clk_enable:
3621 pm_runtime_mark_last_busy(&fep->pdev->dev);
3622 pm_runtime_put_autosuspend(&fep->pdev->dev);
3623 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3624 return ret;
3625 }
3626
3627 static int
fec_enet_close(struct net_device * ndev)3628 fec_enet_close(struct net_device *ndev)
3629 {
3630 struct fec_enet_private *fep = netdev_priv(ndev);
3631
3632 phy_stop(ndev->phydev);
3633
3634 if (netif_device_present(ndev)) {
3635 napi_disable(&fep->napi);
3636 netif_tx_disable(ndev);
3637 fec_stop(ndev);
3638 }
3639
3640 phy_disconnect(ndev->phydev);
3641
3642 if (fep->quirks & FEC_QUIRK_ERR006687)
3643 imx6q_cpuidle_fec_irqs_unused();
3644
3645 fec_enet_update_ethtool_stats(ndev);
3646
3647 fec_enet_clk_enable(ndev, false);
3648 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3649 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3650
3651 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3652 pm_runtime_mark_last_busy(&fep->pdev->dev);
3653 pm_runtime_put_autosuspend(&fep->pdev->dev);
3654
3655 fec_enet_free_buffers(ndev);
3656
3657 return 0;
3658 }
3659
3660 /* Set or clear the multicast filter for this adaptor.
3661 * Skeleton taken from sunlance driver.
3662 * The CPM Ethernet implementation allows Multicast as well as individual
3663 * MAC address filtering. Some of the drivers check to make sure it is
3664 * a group multicast address, and discard those that are not. I guess I
3665 * will do the same for now, but just remove the test if you want
3666 * individual filtering as well (do the upper net layers want or support
3667 * this kind of feature?).
3668 */
3669
3670 #define FEC_HASH_BITS 6 /* #bits in hash */
3671
set_multicast_list(struct net_device * ndev)3672 static void set_multicast_list(struct net_device *ndev)
3673 {
3674 struct fec_enet_private *fep = netdev_priv(ndev);
3675 struct netdev_hw_addr *ha;
3676 unsigned int crc, tmp;
3677 unsigned char hash;
3678 unsigned int hash_high = 0, hash_low = 0;
3679
3680 if (ndev->flags & IFF_PROMISC) {
3681 tmp = readl(fep->hwp + FEC_R_CNTRL);
3682 tmp |= 0x8;
3683 writel(tmp, fep->hwp + FEC_R_CNTRL);
3684 return;
3685 }
3686
3687 tmp = readl(fep->hwp + FEC_R_CNTRL);
3688 tmp &= ~0x8;
3689 writel(tmp, fep->hwp + FEC_R_CNTRL);
3690
3691 if (ndev->flags & IFF_ALLMULTI) {
3692 /* Catch all multicast addresses, so set the
3693 * filter to all 1's
3694 */
3695 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3696 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3697
3698 return;
3699 }
3700
3701 /* Add the addresses in hash register */
3702 netdev_for_each_mc_addr(ha, ndev) {
3703 /* calculate crc32 value of mac address */
3704 crc = ether_crc_le(ndev->addr_len, ha->addr);
3705
3706 /* only upper 6 bits (FEC_HASH_BITS) are used
3707 * which point to specific bit in the hash registers
3708 */
3709 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3710
3711 if (hash > 31)
3712 hash_high |= 1 << (hash - 32);
3713 else
3714 hash_low |= 1 << hash;
3715 }
3716
3717 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3718 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3719 }
3720
3721 /* Set a MAC change in hardware. */
3722 static int
fec_set_mac_address(struct net_device * ndev,void * p)3723 fec_set_mac_address(struct net_device *ndev, void *p)
3724 {
3725 struct sockaddr *addr = p;
3726
3727 if (addr) {
3728 if (!is_valid_ether_addr(addr->sa_data))
3729 return -EADDRNOTAVAIL;
3730 eth_hw_addr_set(ndev, addr->sa_data);
3731 }
3732
3733 /* Add netif status check here to avoid system hang in below case:
3734 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3735 * After ethx down, fec all clocks are gated off and then register
3736 * access causes system hang.
3737 */
3738 if (!netif_running(ndev))
3739 return 0;
3740
3741 fec_set_hw_mac_addr(ndev);
3742
3743 return 0;
3744 }
3745
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3746 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3747 netdev_features_t features)
3748 {
3749 struct fec_enet_private *fep = netdev_priv(netdev);
3750 netdev_features_t changed = features ^ netdev->features;
3751
3752 netdev->features = features;
3753
3754 /* Receive checksum has been changed */
3755 if (changed & NETIF_F_RXCSUM) {
3756 if (features & NETIF_F_RXCSUM)
3757 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3758 else
3759 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3760 }
3761 }
3762
fec_set_features(struct net_device * netdev,netdev_features_t features)3763 static int fec_set_features(struct net_device *netdev,
3764 netdev_features_t features)
3765 {
3766 struct fec_enet_private *fep = netdev_priv(netdev);
3767 netdev_features_t changed = features ^ netdev->features;
3768
3769 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3770 napi_disable(&fep->napi);
3771 netif_tx_lock_bh(netdev);
3772 fec_stop(netdev);
3773 fec_enet_set_netdev_features(netdev, features);
3774 fec_restart(netdev);
3775 netif_tx_wake_all_queues(netdev);
3776 netif_tx_unlock_bh(netdev);
3777 napi_enable(&fep->napi);
3778 } else {
3779 fec_enet_set_netdev_features(netdev, features);
3780 }
3781
3782 return 0;
3783 }
3784
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3785 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3786 struct net_device *sb_dev)
3787 {
3788 struct fec_enet_private *fep = netdev_priv(ndev);
3789 u16 vlan_tag = 0;
3790
3791 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3792 return netdev_pick_tx(ndev, skb, NULL);
3793
3794 /* VLAN is present in the payload.*/
3795 if (eth_type_vlan(skb->protocol)) {
3796 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3797
3798 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3799 /* VLAN is present in the skb but not yet pushed in the payload.*/
3800 } else if (skb_vlan_tag_present(skb)) {
3801 vlan_tag = skb->vlan_tci;
3802 } else {
3803 return vlan_tag;
3804 }
3805
3806 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3807 }
3808
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3809 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3810 {
3811 struct fec_enet_private *fep = netdev_priv(dev);
3812 bool is_run = netif_running(dev);
3813 struct bpf_prog *old_prog;
3814
3815 switch (bpf->command) {
3816 case XDP_SETUP_PROG:
3817 /* No need to support the SoCs that require to
3818 * do the frame swap because the performance wouldn't be
3819 * better than the skb mode.
3820 */
3821 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3822 return -EOPNOTSUPP;
3823
3824 if (!bpf->prog)
3825 xdp_features_clear_redirect_target(dev);
3826
3827 if (is_run) {
3828 napi_disable(&fep->napi);
3829 netif_tx_disable(dev);
3830 }
3831
3832 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3833 if (old_prog)
3834 bpf_prog_put(old_prog);
3835
3836 fec_restart(dev);
3837
3838 if (is_run) {
3839 napi_enable(&fep->napi);
3840 netif_tx_start_all_queues(dev);
3841 }
3842
3843 if (bpf->prog)
3844 xdp_features_set_redirect_target(dev, false);
3845
3846 return 0;
3847
3848 case XDP_SETUP_XSK_POOL:
3849 return -EOPNOTSUPP;
3850
3851 default:
3852 return -EOPNOTSUPP;
3853 }
3854 }
3855
3856 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3857 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3858 {
3859 if (unlikely(index < 0))
3860 return 0;
3861
3862 return (index % fep->num_tx_queues);
3863 }
3864
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3865 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3866 struct fec_enet_priv_tx_q *txq,
3867 void *frame, u32 dma_sync_len,
3868 bool ndo_xmit)
3869 {
3870 unsigned int index, status, estatus;
3871 struct bufdesc *bdp;
3872 dma_addr_t dma_addr;
3873 int entries_free;
3874 u16 frame_len;
3875
3876 entries_free = fec_enet_get_free_txdesc_num(txq);
3877 if (entries_free < MAX_SKB_FRAGS + 1) {
3878 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3879 return -EBUSY;
3880 }
3881
3882 /* Fill in a Tx ring entry */
3883 bdp = txq->bd.cur;
3884 status = fec16_to_cpu(bdp->cbd_sc);
3885 status &= ~BD_ENET_TX_STATS;
3886
3887 index = fec_enet_get_bd_index(bdp, &txq->bd);
3888
3889 if (ndo_xmit) {
3890 struct xdp_frame *xdpf = frame;
3891
3892 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3893 xdpf->len, DMA_TO_DEVICE);
3894 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3895 return -ENOMEM;
3896
3897 frame_len = xdpf->len;
3898 txq->tx_buf[index].buf_p = xdpf;
3899 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3900 } else {
3901 struct xdp_buff *xdpb = frame;
3902 struct page *page;
3903
3904 page = virt_to_page(xdpb->data);
3905 dma_addr = page_pool_get_dma_addr(page) +
3906 (xdpb->data - xdpb->data_hard_start);
3907 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3908 dma_sync_len, DMA_BIDIRECTIONAL);
3909 frame_len = xdpb->data_end - xdpb->data;
3910 txq->tx_buf[index].buf_p = page;
3911 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3912 }
3913
3914 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3915 if (fep->bufdesc_ex)
3916 estatus = BD_ENET_TX_INT;
3917
3918 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3919 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3920
3921 if (fep->bufdesc_ex) {
3922 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3923
3924 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3925 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3926
3927 ebdp->cbd_bdu = 0;
3928 ebdp->cbd_esc = cpu_to_fec32(estatus);
3929 }
3930
3931 /* Make sure the updates to rest of the descriptor are performed before
3932 * transferring ownership.
3933 */
3934 dma_wmb();
3935
3936 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3937 * it's the last BD of the frame, and to put the CRC on the end.
3938 */
3939 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3940 bdp->cbd_sc = cpu_to_fec16(status);
3941
3942 /* If this was the last BD in the ring, start at the beginning again. */
3943 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3944
3945 /* Make sure the update to bdp are performed before txq->bd.cur. */
3946 dma_wmb();
3947
3948 txq->bd.cur = bdp;
3949
3950 /* Trigger transmission start */
3951 writel(0, txq->bd.reg_desc_active);
3952
3953 return 0;
3954 }
3955
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3956 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3957 int cpu, struct xdp_buff *xdp,
3958 u32 dma_sync_len)
3959 {
3960 struct fec_enet_priv_tx_q *txq;
3961 struct netdev_queue *nq;
3962 int queue, ret;
3963
3964 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3965 txq = fep->tx_queue[queue];
3966 nq = netdev_get_tx_queue(fep->netdev, queue);
3967
3968 __netif_tx_lock(nq, cpu);
3969
3970 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3971 txq_trans_cond_update(nq);
3972 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3973
3974 __netif_tx_unlock(nq);
3975
3976 return ret;
3977 }
3978
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3979 static int fec_enet_xdp_xmit(struct net_device *dev,
3980 int num_frames,
3981 struct xdp_frame **frames,
3982 u32 flags)
3983 {
3984 struct fec_enet_private *fep = netdev_priv(dev);
3985 struct fec_enet_priv_tx_q *txq;
3986 int cpu = smp_processor_id();
3987 unsigned int sent_frames = 0;
3988 struct netdev_queue *nq;
3989 unsigned int queue;
3990 int i;
3991
3992 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3993 txq = fep->tx_queue[queue];
3994 nq = netdev_get_tx_queue(fep->netdev, queue);
3995
3996 __netif_tx_lock(nq, cpu);
3997
3998 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3999 txq_trans_cond_update(nq);
4000 for (i = 0; i < num_frames; i++) {
4001 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
4002 break;
4003 sent_frames++;
4004 }
4005
4006 __netif_tx_unlock(nq);
4007
4008 return sent_frames;
4009 }
4010
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)4011 static int fec_hwtstamp_get(struct net_device *ndev,
4012 struct kernel_hwtstamp_config *config)
4013 {
4014 struct fec_enet_private *fep = netdev_priv(ndev);
4015
4016 if (!netif_running(ndev))
4017 return -EINVAL;
4018
4019 if (!fep->bufdesc_ex)
4020 return -EOPNOTSUPP;
4021
4022 fec_ptp_get(ndev, config);
4023
4024 return 0;
4025 }
4026
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4027 static int fec_hwtstamp_set(struct net_device *ndev,
4028 struct kernel_hwtstamp_config *config,
4029 struct netlink_ext_ack *extack)
4030 {
4031 struct fec_enet_private *fep = netdev_priv(ndev);
4032
4033 if (!netif_running(ndev))
4034 return -EINVAL;
4035
4036 if (!fep->bufdesc_ex)
4037 return -EOPNOTSUPP;
4038
4039 return fec_ptp_set(ndev, config, extack);
4040 }
4041
fec_change_mtu(struct net_device * ndev,int new_mtu)4042 static int fec_change_mtu(struct net_device *ndev, int new_mtu)
4043 {
4044 struct fec_enet_private *fep = netdev_priv(ndev);
4045 int order;
4046
4047 if (netif_running(ndev))
4048 return -EBUSY;
4049
4050 order = get_order(new_mtu + ETH_HLEN + ETH_FCS_LEN
4051 + FEC_DRV_RESERVE_SPACE);
4052 fep->rx_frame_size = (PAGE_SIZE << order) - FEC_DRV_RESERVE_SPACE;
4053 fep->pagepool_order = order;
4054 WRITE_ONCE(ndev->mtu, new_mtu);
4055
4056 return 0;
4057 }
4058
4059 static const struct net_device_ops fec_netdev_ops = {
4060 .ndo_open = fec_enet_open,
4061 .ndo_stop = fec_enet_close,
4062 .ndo_start_xmit = fec_enet_start_xmit,
4063 .ndo_select_queue = fec_enet_select_queue,
4064 .ndo_set_rx_mode = set_multicast_list,
4065 .ndo_validate_addr = eth_validate_addr,
4066 .ndo_tx_timeout = fec_timeout,
4067 .ndo_set_mac_address = fec_set_mac_address,
4068 .ndo_change_mtu = fec_change_mtu,
4069 .ndo_eth_ioctl = phy_do_ioctl_running,
4070 .ndo_set_features = fec_set_features,
4071 .ndo_bpf = fec_enet_bpf,
4072 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4073 .ndo_hwtstamp_get = fec_hwtstamp_get,
4074 .ndo_hwtstamp_set = fec_hwtstamp_set,
4075 };
4076
4077 static const unsigned short offset_des_active_rxq[] = {
4078 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4079 };
4080
4081 static const unsigned short offset_des_active_txq[] = {
4082 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4083 };
4084
4085 /*
4086 * XXX: We need to clean up on failure exits here.
4087 *
4088 */
fec_enet_init(struct net_device * ndev)4089 static int fec_enet_init(struct net_device *ndev)
4090 {
4091 struct fec_enet_private *fep = netdev_priv(ndev);
4092 struct bufdesc *cbd_base;
4093 dma_addr_t bd_dma;
4094 int bd_size;
4095 unsigned int i;
4096 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4097 sizeof(struct bufdesc);
4098 unsigned dsize_log2 = __fls(dsize);
4099 int ret;
4100
4101 WARN_ON(dsize != (1 << dsize_log2));
4102 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4103 fep->rx_align = 0xf;
4104 fep->tx_align = 0xf;
4105 #else
4106 fep->rx_align = 0x3;
4107 fep->tx_align = 0x3;
4108 #endif
4109 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4110 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4111 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4112 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4113
4114 /* Check mask of the streaming and coherent API */
4115 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4116 if (ret < 0) {
4117 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4118 return ret;
4119 }
4120
4121 ret = fec_enet_alloc_queue(ndev);
4122 if (ret)
4123 return ret;
4124
4125 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4126
4127 /* Allocate memory for buffer descriptors. */
4128 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4129 GFP_KERNEL);
4130 if (!cbd_base) {
4131 ret = -ENOMEM;
4132 goto free_queue_mem;
4133 }
4134
4135 /* Get the Ethernet address */
4136 ret = fec_get_mac(ndev);
4137 if (ret)
4138 goto free_queue_mem;
4139
4140 /* Set receive and transmit descriptor base. */
4141 for (i = 0; i < fep->num_rx_queues; i++) {
4142 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4143 unsigned size = dsize * rxq->bd.ring_size;
4144
4145 rxq->bd.qid = i;
4146 rxq->bd.base = cbd_base;
4147 rxq->bd.cur = cbd_base;
4148 rxq->bd.dma = bd_dma;
4149 rxq->bd.dsize = dsize;
4150 rxq->bd.dsize_log2 = dsize_log2;
4151 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4152 bd_dma += size;
4153 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4154 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4155 }
4156
4157 for (i = 0; i < fep->num_tx_queues; i++) {
4158 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4159 unsigned size = dsize * txq->bd.ring_size;
4160
4161 txq->bd.qid = i;
4162 txq->bd.base = cbd_base;
4163 txq->bd.cur = cbd_base;
4164 txq->bd.dma = bd_dma;
4165 txq->bd.dsize = dsize;
4166 txq->bd.dsize_log2 = dsize_log2;
4167 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4168 bd_dma += size;
4169 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4170 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4171 }
4172
4173
4174 /* The FEC Ethernet specific entries in the device structure */
4175 ndev->watchdog_timeo = TX_TIMEOUT;
4176 ndev->netdev_ops = &fec_netdev_ops;
4177 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4178
4179 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4180 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4181
4182 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4183 /* enable hw VLAN support */
4184 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4185
4186 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4187 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4188
4189 /* enable hw accelerator */
4190 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4191 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4192 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4193 }
4194
4195 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4196 fep->tx_align = 0;
4197 fep->rx_align = 0x3f;
4198 }
4199
4200 ndev->hw_features = ndev->features;
4201
4202 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4203 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4204 NETDEV_XDP_ACT_REDIRECT;
4205
4206 fec_restart(ndev);
4207
4208 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4209 fec_enet_clear_ethtool_stats(ndev);
4210 else
4211 fec_enet_update_ethtool_stats(ndev);
4212
4213 return 0;
4214
4215 free_queue_mem:
4216 fec_enet_free_queue(ndev);
4217 return ret;
4218 }
4219
fec_enet_deinit(struct net_device * ndev)4220 static void fec_enet_deinit(struct net_device *ndev)
4221 {
4222 struct fec_enet_private *fep = netdev_priv(ndev);
4223
4224 netif_napi_del(&fep->napi);
4225 fec_enet_free_queue(ndev);
4226 }
4227
4228 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4229 static int fec_reset_phy(struct platform_device *pdev)
4230 {
4231 struct gpio_desc *phy_reset;
4232 int msec = 1, phy_post_delay = 0;
4233 struct device_node *np = pdev->dev.of_node;
4234 int err;
4235
4236 if (!np)
4237 return 0;
4238
4239 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4240 /* A sane reset duration should not be longer than 1s */
4241 if (!err && msec > 1000)
4242 msec = 1;
4243
4244 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4245 /* valid reset duration should be less than 1s */
4246 if (!err && phy_post_delay > 1000)
4247 return -EINVAL;
4248
4249 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4250 GPIOD_OUT_HIGH);
4251 if (IS_ERR(phy_reset))
4252 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4253 "failed to get phy-reset-gpios\n");
4254
4255 if (!phy_reset)
4256 return 0;
4257
4258 if (msec > 20)
4259 msleep(msec);
4260 else
4261 usleep_range(msec * 1000, msec * 1000 + 1000);
4262
4263 gpiod_set_value_cansleep(phy_reset, 0);
4264
4265 if (!phy_post_delay)
4266 return 0;
4267
4268 if (phy_post_delay > 20)
4269 msleep(phy_post_delay);
4270 else
4271 usleep_range(phy_post_delay * 1000,
4272 phy_post_delay * 1000 + 1000);
4273
4274 return 0;
4275 }
4276 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4277 static int fec_reset_phy(struct platform_device *pdev)
4278 {
4279 /*
4280 * In case of platform probe, the reset has been done
4281 * by machine code.
4282 */
4283 return 0;
4284 }
4285 #endif /* CONFIG_OF */
4286
4287 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4288 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4289 {
4290 struct device_node *np = pdev->dev.of_node;
4291
4292 *num_tx = *num_rx = 1;
4293
4294 if (!np || !of_device_is_available(np))
4295 return;
4296
4297 /* parse the num of tx and rx queues */
4298 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4299
4300 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4301
4302 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4303 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4304 *num_tx);
4305 *num_tx = 1;
4306 return;
4307 }
4308
4309 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4310 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4311 *num_rx);
4312 *num_rx = 1;
4313 return;
4314 }
4315
4316 }
4317
fec_enet_get_irq_cnt(struct platform_device * pdev)4318 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4319 {
4320 int irq_cnt = platform_irq_count(pdev);
4321
4322 if (irq_cnt > FEC_IRQ_NUM)
4323 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4324 else if (irq_cnt == 2)
4325 irq_cnt = 1; /* last for pps */
4326 else if (irq_cnt <= 0)
4327 irq_cnt = 1; /* At least 1 irq is needed */
4328 return irq_cnt;
4329 }
4330
fec_enet_get_wakeup_irq(struct platform_device * pdev)4331 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4332 {
4333 struct net_device *ndev = platform_get_drvdata(pdev);
4334 struct fec_enet_private *fep = netdev_priv(ndev);
4335
4336 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4337 fep->wake_irq = fep->irq[2];
4338 else
4339 fep->wake_irq = fep->irq[0];
4340 }
4341
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4342 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4343 struct device_node *np)
4344 {
4345 struct device_node *gpr_np;
4346 u32 out_val[3];
4347 int ret = 0;
4348
4349 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4350 if (!gpr_np)
4351 return 0;
4352
4353 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4354 ARRAY_SIZE(out_val));
4355 if (ret) {
4356 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4357 goto out;
4358 }
4359
4360 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4361 if (IS_ERR(fep->stop_gpr.gpr)) {
4362 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4363 ret = PTR_ERR(fep->stop_gpr.gpr);
4364 fep->stop_gpr.gpr = NULL;
4365 goto out;
4366 }
4367
4368 fep->stop_gpr.reg = out_val[1];
4369 fep->stop_gpr.bit = out_val[2];
4370
4371 out:
4372 of_node_put(gpr_np);
4373
4374 return ret;
4375 }
4376
4377 static int
fec_probe(struct platform_device * pdev)4378 fec_probe(struct platform_device *pdev)
4379 {
4380 struct fec_enet_private *fep;
4381 struct fec_platform_data *pdata;
4382 phy_interface_t interface;
4383 struct net_device *ndev;
4384 int i, irq, ret = 0;
4385 static int dev_id;
4386 struct device_node *np = pdev->dev.of_node, *phy_node;
4387 int num_tx_qs;
4388 int num_rx_qs;
4389 char irq_name[8];
4390 int irq_cnt;
4391 const struct fec_devinfo *dev_info;
4392
4393 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4394
4395 /* Init network device */
4396 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4397 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4398 if (!ndev)
4399 return -ENOMEM;
4400
4401 SET_NETDEV_DEV(ndev, &pdev->dev);
4402
4403 /* setup board info structure */
4404 fep = netdev_priv(ndev);
4405
4406 dev_info = device_get_match_data(&pdev->dev);
4407 if (!dev_info)
4408 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4409 if (dev_info)
4410 fep->quirks = dev_info->quirks;
4411
4412 fep->netdev = ndev;
4413 fep->num_rx_queues = num_rx_qs;
4414 fep->num_tx_queues = num_tx_qs;
4415
4416 #if !defined(CONFIG_M5272)
4417 /* default enable pause frame auto negotiation */
4418 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4419 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4420 #endif
4421
4422 /* Select default pin state */
4423 pinctrl_pm_select_default_state(&pdev->dev);
4424
4425 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4426 if (IS_ERR(fep->hwp)) {
4427 ret = PTR_ERR(fep->hwp);
4428 goto failed_ioremap;
4429 }
4430
4431 fep->pdev = pdev;
4432 fep->dev_id = dev_id++;
4433
4434 platform_set_drvdata(pdev, ndev);
4435
4436 if ((of_machine_is_compatible("fsl,imx6q") ||
4437 of_machine_is_compatible("fsl,imx6dl")) &&
4438 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4439 fep->quirks |= FEC_QUIRK_ERR006687;
4440
4441 ret = fec_enet_ipc_handle_init(fep);
4442 if (ret)
4443 goto failed_ipc_init;
4444
4445 if (of_property_read_bool(np, "fsl,magic-packet"))
4446 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4447
4448 ret = fec_enet_init_stop_mode(fep, np);
4449 if (ret)
4450 goto failed_stop_mode;
4451
4452 phy_node = of_parse_phandle(np, "phy-handle", 0);
4453 if (!phy_node && of_phy_is_fixed_link(np)) {
4454 ret = of_phy_register_fixed_link(np);
4455 if (ret < 0) {
4456 dev_err(&pdev->dev,
4457 "broken fixed-link specification\n");
4458 goto failed_phy;
4459 }
4460 phy_node = of_node_get(np);
4461 }
4462 fep->phy_node = phy_node;
4463
4464 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4465 if (ret) {
4466 pdata = dev_get_platdata(&pdev->dev);
4467 if (pdata)
4468 fep->phy_interface = pdata->phy;
4469 else
4470 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4471 } else {
4472 fep->phy_interface = interface;
4473 }
4474
4475 ret = fec_enet_parse_rgmii_delay(fep, np);
4476 if (ret)
4477 goto failed_rgmii_delay;
4478
4479 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4480 if (IS_ERR(fep->clk_ipg)) {
4481 ret = PTR_ERR(fep->clk_ipg);
4482 goto failed_clk;
4483 }
4484
4485 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4486 if (IS_ERR(fep->clk_ahb)) {
4487 ret = PTR_ERR(fep->clk_ahb);
4488 goto failed_clk;
4489 }
4490
4491 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4492
4493 /* enet_out is optional, depends on board */
4494 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4495 if (IS_ERR(fep->clk_enet_out)) {
4496 ret = PTR_ERR(fep->clk_enet_out);
4497 goto failed_clk;
4498 }
4499
4500 fep->ptp_clk_on = false;
4501 mutex_init(&fep->ptp_clk_mutex);
4502
4503 /* clk_ref is optional, depends on board */
4504 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4505 if (IS_ERR(fep->clk_ref)) {
4506 ret = PTR_ERR(fep->clk_ref);
4507 goto failed_clk;
4508 }
4509 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4510
4511 /* clk_2x_txclk is optional, depends on board */
4512 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4513 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4514 if (IS_ERR(fep->clk_2x_txclk))
4515 fep->clk_2x_txclk = NULL;
4516 }
4517
4518 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4519 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4520 if (IS_ERR(fep->clk_ptp)) {
4521 fep->clk_ptp = NULL;
4522 fep->bufdesc_ex = false;
4523 }
4524
4525 ret = fec_enet_clk_enable(ndev, true);
4526 if (ret)
4527 goto failed_clk;
4528
4529 ret = clk_prepare_enable(fep->clk_ipg);
4530 if (ret)
4531 goto failed_clk_ipg;
4532 ret = clk_prepare_enable(fep->clk_ahb);
4533 if (ret)
4534 goto failed_clk_ahb;
4535
4536 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4537 if (!IS_ERR(fep->reg_phy)) {
4538 ret = regulator_enable(fep->reg_phy);
4539 if (ret) {
4540 dev_err(&pdev->dev,
4541 "Failed to enable phy regulator: %d\n", ret);
4542 goto failed_regulator;
4543 }
4544 } else {
4545 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4546 ret = -EPROBE_DEFER;
4547 goto failed_regulator;
4548 }
4549 fep->reg_phy = NULL;
4550 }
4551
4552 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4553 pm_runtime_use_autosuspend(&pdev->dev);
4554 pm_runtime_get_noresume(&pdev->dev);
4555 pm_runtime_set_active(&pdev->dev);
4556 pm_runtime_enable(&pdev->dev);
4557
4558 ret = fec_reset_phy(pdev);
4559 if (ret)
4560 goto failed_reset;
4561
4562 irq_cnt = fec_enet_get_irq_cnt(pdev);
4563 if (fep->bufdesc_ex)
4564 fec_ptp_init(pdev, irq_cnt);
4565
4566 ret = fec_enet_init(ndev);
4567 if (ret)
4568 goto failed_init;
4569
4570 for (i = 0; i < irq_cnt; i++) {
4571 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4572 irq = platform_get_irq_byname_optional(pdev, irq_name);
4573 if (irq < 0)
4574 irq = platform_get_irq(pdev, i);
4575 if (irq < 0) {
4576 ret = irq;
4577 goto failed_irq;
4578 }
4579 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4580 0, pdev->name, ndev);
4581 if (ret)
4582 goto failed_irq;
4583
4584 fep->irq[i] = irq;
4585 }
4586
4587 /* Decide which interrupt line is wakeup capable */
4588 fec_enet_get_wakeup_irq(pdev);
4589
4590 ret = fec_enet_mii_init(pdev);
4591 if (ret)
4592 goto failed_mii_init;
4593
4594 /* Carrier starts down, phylib will bring it up */
4595 netif_carrier_off(ndev);
4596 fec_enet_clk_enable(ndev, false);
4597 pinctrl_pm_select_sleep_state(&pdev->dev);
4598
4599 fep->pagepool_order = 0;
4600 fep->rx_frame_size = FEC_ENET_RX_FRSIZE;
4601
4602 if (fep->quirks & FEC_QUIRK_JUMBO_FRAME)
4603 fep->max_buf_size = MAX_JUMBO_BUF_SIZE;
4604 else
4605 fep->max_buf_size = PKT_MAXBUF_SIZE;
4606
4607 ndev->max_mtu = fep->max_buf_size - ETH_HLEN - ETH_FCS_LEN;
4608
4609 ret = register_netdev(ndev);
4610 if (ret)
4611 goto failed_register;
4612
4613 device_init_wakeup(&ndev->dev, fep->wol_flag &
4614 FEC_WOL_HAS_MAGIC_PACKET);
4615
4616 if (fep->bufdesc_ex && fep->ptp_clock)
4617 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4618
4619 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4620
4621 pm_runtime_mark_last_busy(&pdev->dev);
4622 pm_runtime_put_autosuspend(&pdev->dev);
4623
4624 return 0;
4625
4626 failed_register:
4627 fec_enet_mii_remove(fep);
4628 failed_mii_init:
4629 failed_irq:
4630 fec_enet_deinit(ndev);
4631 failed_init:
4632 fec_ptp_stop(pdev);
4633 failed_reset:
4634 pm_runtime_put_noidle(&pdev->dev);
4635 pm_runtime_disable(&pdev->dev);
4636 if (fep->reg_phy)
4637 regulator_disable(fep->reg_phy);
4638 failed_regulator:
4639 clk_disable_unprepare(fep->clk_ahb);
4640 failed_clk_ahb:
4641 clk_disable_unprepare(fep->clk_ipg);
4642 failed_clk_ipg:
4643 fec_enet_clk_enable(ndev, false);
4644 failed_clk:
4645 failed_rgmii_delay:
4646 if (of_phy_is_fixed_link(np))
4647 of_phy_deregister_fixed_link(np);
4648 of_node_put(phy_node);
4649 failed_stop_mode:
4650 failed_ipc_init:
4651 failed_phy:
4652 dev_id--;
4653 failed_ioremap:
4654 free_netdev(ndev);
4655
4656 return ret;
4657 }
4658
4659 static void
fec_drv_remove(struct platform_device * pdev)4660 fec_drv_remove(struct platform_device *pdev)
4661 {
4662 struct net_device *ndev = platform_get_drvdata(pdev);
4663 struct fec_enet_private *fep = netdev_priv(ndev);
4664 struct device_node *np = pdev->dev.of_node;
4665 int ret;
4666
4667 ret = pm_runtime_get_sync(&pdev->dev);
4668 if (ret < 0)
4669 dev_err(&pdev->dev,
4670 "Failed to resume device in remove callback (%pe)\n",
4671 ERR_PTR(ret));
4672
4673 cancel_work_sync(&fep->tx_timeout_work);
4674 fec_ptp_stop(pdev);
4675 unregister_netdev(ndev);
4676 fec_enet_mii_remove(fep);
4677 if (fep->reg_phy)
4678 regulator_disable(fep->reg_phy);
4679
4680 if (of_phy_is_fixed_link(np))
4681 of_phy_deregister_fixed_link(np);
4682 of_node_put(fep->phy_node);
4683
4684 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4685 * disabling them again.
4686 */
4687 if (ret >= 0) {
4688 clk_disable_unprepare(fep->clk_ahb);
4689 clk_disable_unprepare(fep->clk_ipg);
4690 }
4691 pm_runtime_put_noidle(&pdev->dev);
4692 pm_runtime_disable(&pdev->dev);
4693
4694 fec_enet_deinit(ndev);
4695 free_netdev(ndev);
4696 }
4697
fec_suspend(struct device * dev)4698 static int fec_suspend(struct device *dev)
4699 {
4700 struct net_device *ndev = dev_get_drvdata(dev);
4701 struct fec_enet_private *fep = netdev_priv(ndev);
4702 int ret;
4703
4704 rtnl_lock();
4705 if (netif_running(ndev)) {
4706 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4707 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4708 phy_stop(ndev->phydev);
4709 napi_disable(&fep->napi);
4710 netif_tx_lock_bh(ndev);
4711 netif_device_detach(ndev);
4712 netif_tx_unlock_bh(ndev);
4713 fec_stop(ndev);
4714 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4715 fec_irqs_disable(ndev);
4716 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4717 } else {
4718 fec_irqs_disable_except_wakeup(ndev);
4719 if (fep->wake_irq > 0) {
4720 disable_irq(fep->wake_irq);
4721 enable_irq_wake(fep->wake_irq);
4722 }
4723 fec_enet_stop_mode(fep, true);
4724 }
4725 /* It's safe to disable clocks since interrupts are masked */
4726 fec_enet_clk_enable(ndev, false);
4727
4728 fep->rpm_active = !pm_runtime_status_suspended(dev);
4729 if (fep->rpm_active) {
4730 ret = pm_runtime_force_suspend(dev);
4731 if (ret < 0) {
4732 rtnl_unlock();
4733 return ret;
4734 }
4735 }
4736 }
4737 rtnl_unlock();
4738
4739 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4740 regulator_disable(fep->reg_phy);
4741
4742 /* SOC supply clock to phy, when clock is disabled, phy link down
4743 * SOC control phy regulator, when regulator is disabled, phy link down
4744 */
4745 if (fep->clk_enet_out || fep->reg_phy)
4746 fep->link = 0;
4747
4748 return 0;
4749 }
4750
fec_resume(struct device * dev)4751 static int fec_resume(struct device *dev)
4752 {
4753 struct net_device *ndev = dev_get_drvdata(dev);
4754 struct fec_enet_private *fep = netdev_priv(ndev);
4755 int ret;
4756 int val;
4757
4758 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4759 ret = regulator_enable(fep->reg_phy);
4760 if (ret)
4761 return ret;
4762 }
4763
4764 rtnl_lock();
4765 if (netif_running(ndev)) {
4766 if (fep->rpm_active)
4767 pm_runtime_force_resume(dev);
4768
4769 ret = fec_enet_clk_enable(ndev, true);
4770 if (ret) {
4771 rtnl_unlock();
4772 goto failed_clk;
4773 }
4774 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4775 fec_enet_stop_mode(fep, false);
4776 if (fep->wake_irq) {
4777 disable_irq_wake(fep->wake_irq);
4778 enable_irq(fep->wake_irq);
4779 }
4780
4781 val = readl(fep->hwp + FEC_ECNTRL);
4782 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4783 writel(val, fep->hwp + FEC_ECNTRL);
4784 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4785 } else {
4786 pinctrl_pm_select_default_state(&fep->pdev->dev);
4787 }
4788 fec_restart(ndev);
4789 netif_tx_lock_bh(ndev);
4790 netif_device_attach(ndev);
4791 netif_tx_unlock_bh(ndev);
4792 napi_enable(&fep->napi);
4793 phy_init_hw(ndev->phydev);
4794 phy_start(ndev->phydev);
4795 }
4796 rtnl_unlock();
4797
4798 return 0;
4799
4800 failed_clk:
4801 if (fep->reg_phy)
4802 regulator_disable(fep->reg_phy);
4803 return ret;
4804 }
4805
fec_runtime_suspend(struct device * dev)4806 static int fec_runtime_suspend(struct device *dev)
4807 {
4808 struct net_device *ndev = dev_get_drvdata(dev);
4809 struct fec_enet_private *fep = netdev_priv(ndev);
4810
4811 clk_disable_unprepare(fep->clk_ahb);
4812 clk_disable_unprepare(fep->clk_ipg);
4813
4814 return 0;
4815 }
4816
fec_runtime_resume(struct device * dev)4817 static int fec_runtime_resume(struct device *dev)
4818 {
4819 struct net_device *ndev = dev_get_drvdata(dev);
4820 struct fec_enet_private *fep = netdev_priv(ndev);
4821 int ret;
4822
4823 ret = clk_prepare_enable(fep->clk_ahb);
4824 if (ret)
4825 return ret;
4826 ret = clk_prepare_enable(fep->clk_ipg);
4827 if (ret)
4828 goto failed_clk_ipg;
4829
4830 return 0;
4831
4832 failed_clk_ipg:
4833 clk_disable_unprepare(fep->clk_ahb);
4834 return ret;
4835 }
4836
4837 static const struct dev_pm_ops fec_pm_ops = {
4838 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4839 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4840 };
4841
4842 static struct platform_driver fec_driver = {
4843 .driver = {
4844 .name = DRIVER_NAME,
4845 .pm = pm_ptr(&fec_pm_ops),
4846 .of_match_table = fec_dt_ids,
4847 .suppress_bind_attrs = true,
4848 },
4849 .id_table = fec_devtype,
4850 .probe = fec_probe,
4851 .remove = fec_drv_remove,
4852 };
4853
4854 module_platform_driver(fec_driver);
4855
4856 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4857 MODULE_LICENSE("GPL");
4858