xref: /linux/kernel/time/ntp.c (revision 02dc9d15d7784afb42ffde0ae3d8156dd09c2ff7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
21 #include <linux/timekeeper_internal.h>
22 
23 #include "ntp_internal.h"
24 #include "timekeeping_internal.h"
25 
26 /**
27  * struct ntp_data - Structure holding all NTP related state
28  * @tick_usec:		USER_HZ period in microseconds
29  * @tick_length:	Adjusted tick length
30  * @tick_length_base:	Base value for @tick_length
31  * @time_state:		State of the clock synchronization
32  * @time_status:	Clock status bits
33  * @time_offset:	Time adjustment in nanoseconds
34  * @time_constant:	PLL time constant
35  * @time_maxerror:	Maximum error in microseconds holding the NTP sync distance
36  *			(NTP dispersion + delay / 2)
37  * @time_esterror:	Estimated error in microseconds holding NTP dispersion
38  * @time_freq:		Frequency offset scaled nsecs/secs
39  * @time_reftime:	Time at last adjustment in seconds
40  * @time_adjust:	Adjustment value
41  * @ntp_tick_adj:	Constant boot-param configurable NTP tick adjustment (upscaled)
42  * @ntp_next_leap_sec:	Second value of the next pending leapsecond, or TIME64_MAX if no leap
43  *
44  * @pps_valid:		PPS signal watchdog counter
45  * @pps_tf:		PPS phase median filter
46  * @pps_jitter:		PPS current jitter in nanoseconds
47  * @pps_fbase:		PPS beginning of the last freq interval
48  * @pps_shift:		PPS current interval duration in seconds (shift value)
49  * @pps_intcnt:		PPS interval counter
50  * @pps_freq:		PPS frequency offset in scaled ns/s
51  * @pps_stabil:		PPS current stability in scaled ns/s
52  * @pps_calcnt:		PPS monitor: calibration intervals
53  * @pps_jitcnt:		PPS monitor: jitter limit exceeded
54  * @pps_stbcnt:		PPS monitor: stability limit exceeded
55  * @pps_errcnt:		PPS monitor: calibration errors
56  *
57  * Protected by the timekeeping locks.
58  */
59 struct ntp_data {
60 	unsigned long		tick_usec;
61 	u64			tick_length;
62 	u64			tick_length_base;
63 	int			time_state;
64 	int			time_status;
65 	s64			time_offset;
66 	long			time_constant;
67 	long			time_maxerror;
68 	long			time_esterror;
69 	s64			time_freq;
70 	time64_t		time_reftime;
71 	long			time_adjust;
72 	s64			ntp_tick_adj;
73 	time64_t		ntp_next_leap_sec;
74 #ifdef CONFIG_NTP_PPS
75 	int			pps_valid;
76 	long			pps_tf[3];
77 	long			pps_jitter;
78 	struct timespec64	pps_fbase;
79 	int			pps_shift;
80 	int			pps_intcnt;
81 	s64			pps_freq;
82 	long			pps_stabil;
83 	long			pps_calcnt;
84 	long			pps_jitcnt;
85 	long			pps_stbcnt;
86 	long			pps_errcnt;
87 #endif
88 };
89 
90 static struct ntp_data tk_ntp_data[TIMEKEEPERS_MAX] = {
91 	[ 0 ... TIMEKEEPERS_MAX - 1 ] = {
92 		.tick_usec		= USER_TICK_USEC,
93 		.time_state		= TIME_OK,
94 		.time_status		= STA_UNSYNC,
95 		.time_constant		= 2,
96 		.time_maxerror		= NTP_PHASE_LIMIT,
97 		.time_esterror		= NTP_PHASE_LIMIT,
98 		.ntp_next_leap_sec	= TIME64_MAX,
99 	},
100 };
101 
102 #define SECS_PER_DAY		86400
103 #define MAX_TICKADJ		500LL		/* usecs */
104 #define MAX_TICKADJ_SCALED \
105 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
106 #define MAX_TAI_OFFSET		100000
107 
108 #ifdef CONFIG_NTP_PPS
109 
110 /*
111  * The following variables are used when a pulse-per-second (PPS) signal
112  * is available. They establish the engineering parameters of the clock
113  * discipline loop when controlled by the PPS signal.
114  */
115 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
116 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
117 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
118 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
119 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
120 				   increase pps_shift or consecutive bad
121 				   intervals to decrease it */
122 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
123 
124 /*
125  * PPS kernel consumer compensates the whole phase error immediately.
126  * Otherwise, reduce the offset by a fixed factor times the time constant.
127  */
ntp_offset_chunk(struct ntp_data * ntpdata,s64 offset)128 static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
129 {
130 	if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
131 		return offset;
132 	else
133 		return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
134 }
135 
pps_reset_freq_interval(struct ntp_data * ntpdata)136 static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
137 {
138 	/* The PPS calibration interval may end surprisingly early */
139 	ntpdata->pps_shift = PPS_INTMIN;
140 	ntpdata->pps_intcnt = 0;
141 }
142 
143 /**
144  * pps_clear - Clears the PPS state variables
145  * @ntpdata:	Pointer to ntp data
146  */
pps_clear(struct ntp_data * ntpdata)147 static inline void pps_clear(struct ntp_data *ntpdata)
148 {
149 	pps_reset_freq_interval(ntpdata);
150 	ntpdata->pps_tf[0] = 0;
151 	ntpdata->pps_tf[1] = 0;
152 	ntpdata->pps_tf[2] = 0;
153 	ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
154 	ntpdata->pps_freq = 0;
155 }
156 
157 /*
158  * Decrease pps_valid to indicate that another second has passed since the
159  * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
160  */
pps_dec_valid(struct ntp_data * ntpdata)161 static inline void pps_dec_valid(struct ntp_data *ntpdata)
162 {
163 	if (ntpdata->pps_valid > 0) {
164 		ntpdata->pps_valid--;
165 	} else {
166 		ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
167 					  STA_PPSWANDER | STA_PPSERROR);
168 		pps_clear(ntpdata);
169 	}
170 }
171 
pps_set_freq(struct ntp_data * ntpdata)172 static inline void pps_set_freq(struct ntp_data *ntpdata)
173 {
174 	ntpdata->pps_freq = ntpdata->time_freq;
175 }
176 
is_error_status(int status)177 static inline bool is_error_status(int status)
178 {
179 	return (status & (STA_UNSYNC|STA_CLOCKERR))
180 		/*
181 		 * PPS signal lost when either PPS time or PPS frequency
182 		 * synchronization requested
183 		 */
184 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
185 			&& !(status & STA_PPSSIGNAL))
186 		/*
187 		 * PPS jitter exceeded when PPS time synchronization
188 		 * requested
189 		 */
190 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
191 			== (STA_PPSTIME|STA_PPSJITTER))
192 		/*
193 		 * PPS wander exceeded or calibration error when PPS
194 		 * frequency synchronization requested
195 		 */
196 		|| ((status & STA_PPSFREQ)
197 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
198 }
199 
pps_fill_timex(struct ntp_data * ntpdata,struct __kernel_timex * txc)200 static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
201 {
202 	txc->ppsfreq	   = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
203 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
204 	txc->jitter	   = ntpdata->pps_jitter;
205 	if (!(ntpdata->time_status & STA_NANO))
206 		txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
207 	txc->shift	   = ntpdata->pps_shift;
208 	txc->stabil	   = ntpdata->pps_stabil;
209 	txc->jitcnt	   = ntpdata->pps_jitcnt;
210 	txc->calcnt	   = ntpdata->pps_calcnt;
211 	txc->errcnt	   = ntpdata->pps_errcnt;
212 	txc->stbcnt	   = ntpdata->pps_stbcnt;
213 }
214 
215 #else /* !CONFIG_NTP_PPS */
216 
ntp_offset_chunk(struct ntp_data * ntpdata,s64 offset)217 static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
218 {
219 	return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
220 }
221 
pps_reset_freq_interval(struct ntp_data * ntpdata)222 static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
pps_clear(struct ntp_data * ntpdata)223 static inline void pps_clear(struct ntp_data *ntpdata) {}
pps_dec_valid(struct ntp_data * ntpdata)224 static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
pps_set_freq(struct ntp_data * ntpdata)225 static inline void pps_set_freq(struct ntp_data *ntpdata) {}
226 
is_error_status(int status)227 static inline bool is_error_status(int status)
228 {
229 	return status & (STA_UNSYNC|STA_CLOCKERR);
230 }
231 
pps_fill_timex(struct ntp_data * ntpdata,struct __kernel_timex * txc)232 static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
233 {
234 	/* PPS is not implemented, so these are zero */
235 	txc->ppsfreq	   = 0;
236 	txc->jitter	   = 0;
237 	txc->shift	   = 0;
238 	txc->stabil	   = 0;
239 	txc->jitcnt	   = 0;
240 	txc->calcnt	   = 0;
241 	txc->errcnt	   = 0;
242 	txc->stbcnt	   = 0;
243 }
244 
245 #endif /* CONFIG_NTP_PPS */
246 
247 /*
248  * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
249  * time_freq:
250  */
ntp_update_frequency(struct ntp_data * ntpdata)251 static void ntp_update_frequency(struct ntp_data *ntpdata)
252 {
253 	u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
254 
255 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
256 
257 	second_length		+= ntpdata->ntp_tick_adj;
258 	second_length		+= ntpdata->time_freq;
259 
260 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
261 
262 	/*
263 	 * Don't wait for the next second_overflow, apply the change to the
264 	 * tick length immediately:
265 	 */
266 	ntpdata->tick_length		+= new_base - ntpdata->tick_length_base;
267 	ntpdata->tick_length_base	 = new_base;
268 }
269 
ntp_update_offset_fll(struct ntp_data * ntpdata,s64 offset64,long secs)270 static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
271 {
272 	ntpdata->time_status &= ~STA_MODE;
273 
274 	if (secs < MINSEC)
275 		return 0;
276 
277 	if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
278 		return 0;
279 
280 	ntpdata->time_status |= STA_MODE;
281 
282 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
283 }
284 
ntp_update_offset(struct ntp_data * ntpdata,long offset)285 static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
286 {
287 	s64 freq_adj, offset64;
288 	long secs, real_secs;
289 
290 	if (!(ntpdata->time_status & STA_PLL))
291 		return;
292 
293 	if (!(ntpdata->time_status & STA_NANO)) {
294 		/* Make sure the multiplication below won't overflow */
295 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
296 		offset *= NSEC_PER_USEC;
297 	}
298 
299 	/* Scale the phase adjustment and clamp to the operating range. */
300 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
301 
302 	/*
303 	 * Select how the frequency is to be controlled
304 	 * and in which mode (PLL or FLL).
305 	 */
306 	real_secs = ktime_get_ntp_seconds(ntpdata - tk_ntp_data);
307 	secs = (long)(real_secs - ntpdata->time_reftime);
308 	if (unlikely(ntpdata->time_status & STA_FREQHOLD))
309 		secs = 0;
310 
311 	ntpdata->time_reftime = real_secs;
312 
313 	offset64    = offset;
314 	freq_adj    = ntp_update_offset_fll(ntpdata, offset64, secs);
315 
316 	/*
317 	 * Clamp update interval to reduce PLL gain with low
318 	 * sampling rate (e.g. intermittent network connection)
319 	 * to avoid instability.
320 	 */
321 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
322 		secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
323 
324 	freq_adj    += (offset64 * secs) <<
325 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
326 
327 	freq_adj    = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
328 
329 	ntpdata->time_freq   = max(freq_adj, -MAXFREQ_SCALED);
330 
331 	ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
332 }
333 
__ntp_clear(struct ntp_data * ntpdata)334 static void __ntp_clear(struct ntp_data *ntpdata)
335 {
336 	/* Stop active adjtime() */
337 	ntpdata->time_adjust	= 0;
338 	ntpdata->time_status	|= STA_UNSYNC;
339 	ntpdata->time_maxerror	= NTP_PHASE_LIMIT;
340 	ntpdata->time_esterror	= NTP_PHASE_LIMIT;
341 
342 	ntp_update_frequency(ntpdata);
343 
344 	ntpdata->tick_length	= ntpdata->tick_length_base;
345 	ntpdata->time_offset	= 0;
346 
347 	ntpdata->ntp_next_leap_sec = TIME64_MAX;
348 	/* Clear PPS state variables */
349 	pps_clear(ntpdata);
350 }
351 
352 /**
353  * ntp_clear - Clears the NTP state variables
354  * @tkid:	Timekeeper ID to be able to select proper ntp data array member
355  */
ntp_clear(unsigned int tkid)356 void ntp_clear(unsigned int tkid)
357 {
358 	__ntp_clear(&tk_ntp_data[tkid]);
359 }
360 
361 
ntp_tick_length(unsigned int tkid)362 u64 ntp_tick_length(unsigned int tkid)
363 {
364 	return tk_ntp_data[tkid].tick_length;
365 }
366 
367 /**
368  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
369  * @tkid:	Timekeeper ID
370  *
371  * Returns: For @tkid == TIMEKEEPER_CORE this provides the time of the next
372  *	    leap second against CLOCK_REALTIME in a ktime_t format if a
373  *	    leap second is pending. KTIME_MAX otherwise.
374  */
ntp_get_next_leap(unsigned int tkid)375 ktime_t ntp_get_next_leap(unsigned int tkid)
376 {
377 	struct ntp_data *ntpdata = &tk_ntp_data[TIMEKEEPER_CORE];
378 
379 	if (tkid != TIMEKEEPER_CORE)
380 		return KTIME_MAX;
381 
382 	if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
383 		return ktime_set(ntpdata->ntp_next_leap_sec, 0);
384 
385 	return KTIME_MAX;
386 }
387 
388 /*
389  * This routine handles the overflow of the microsecond field
390  *
391  * The tricky bits of code to handle the accurate clock support
392  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
393  * They were originally developed for SUN and DEC kernels.
394  * All the kudos should go to Dave for this stuff.
395  *
396  * Also handles leap second processing, and returns leap offset
397  */
second_overflow(unsigned int tkid,time64_t secs)398 int second_overflow(unsigned int tkid, time64_t secs)
399 {
400 	struct ntp_data *ntpdata = &tk_ntp_data[tkid];
401 	s64 delta;
402 	int leap = 0;
403 	s32 rem;
404 
405 	/*
406 	 * Leap second processing. If in leap-insert state at the end of the
407 	 * day, the system clock is set back one second; if in leap-delete
408 	 * state, the system clock is set ahead one second.
409 	 */
410 	switch (ntpdata->time_state) {
411 	case TIME_OK:
412 		if (ntpdata->time_status & STA_INS) {
413 			ntpdata->time_state = TIME_INS;
414 			div_s64_rem(secs, SECS_PER_DAY, &rem);
415 			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
416 		} else if (ntpdata->time_status & STA_DEL) {
417 			ntpdata->time_state = TIME_DEL;
418 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
419 			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
420 		}
421 		break;
422 	case TIME_INS:
423 		if (!(ntpdata->time_status & STA_INS)) {
424 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
425 			ntpdata->time_state = TIME_OK;
426 		} else if (secs == ntpdata->ntp_next_leap_sec) {
427 			leap = -1;
428 			ntpdata->time_state = TIME_OOP;
429 			pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
430 		}
431 		break;
432 	case TIME_DEL:
433 		if (!(ntpdata->time_status & STA_DEL)) {
434 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
435 			ntpdata->time_state = TIME_OK;
436 		} else if (secs == ntpdata->ntp_next_leap_sec) {
437 			leap = 1;
438 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
439 			ntpdata->time_state = TIME_WAIT;
440 			pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
441 		}
442 		break;
443 	case TIME_OOP:
444 		ntpdata->ntp_next_leap_sec = TIME64_MAX;
445 		ntpdata->time_state = TIME_WAIT;
446 		break;
447 	case TIME_WAIT:
448 		if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
449 			ntpdata->time_state = TIME_OK;
450 		break;
451 	}
452 
453 	/* Bump the maxerror field */
454 	ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
455 	if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
456 		ntpdata->time_maxerror = NTP_PHASE_LIMIT;
457 		ntpdata->time_status |= STA_UNSYNC;
458 	}
459 
460 	/* Compute the phase adjustment for the next second */
461 	ntpdata->tick_length	 = ntpdata->tick_length_base;
462 
463 	delta			 = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
464 	ntpdata->time_offset	-= delta;
465 	ntpdata->tick_length	+= delta;
466 
467 	/* Check PPS signal */
468 	pps_dec_valid(ntpdata);
469 
470 	if (!ntpdata->time_adjust)
471 		goto out;
472 
473 	if (ntpdata->time_adjust > MAX_TICKADJ) {
474 		ntpdata->time_adjust -= MAX_TICKADJ;
475 		ntpdata->tick_length += MAX_TICKADJ_SCALED;
476 		goto out;
477 	}
478 
479 	if (ntpdata->time_adjust < -MAX_TICKADJ) {
480 		ntpdata->time_adjust += MAX_TICKADJ;
481 		ntpdata->tick_length -= MAX_TICKADJ_SCALED;
482 		goto out;
483 	}
484 
485 	ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
486 				<< NTP_SCALE_SHIFT;
487 	ntpdata->time_adjust = 0;
488 
489 out:
490 	return leap;
491 }
492 
493 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
494 static void sync_hw_clock(struct work_struct *work);
495 static DECLARE_WORK(sync_work, sync_hw_clock);
496 static struct hrtimer sync_hrtimer;
497 #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
498 
sync_timer_callback(struct hrtimer * timer)499 static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
500 {
501 	queue_work(system_freezable_power_efficient_wq, &sync_work);
502 
503 	return HRTIMER_NORESTART;
504 }
505 
sched_sync_hw_clock(unsigned long offset_nsec,bool retry)506 static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
507 {
508 	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
509 
510 	if (retry)
511 		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
512 	else
513 		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
514 
515 	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
516 }
517 
518 /*
519  * Check whether @now is correct versus the required time to update the RTC
520  * and calculate the value which needs to be written to the RTC so that the
521  * next seconds increment of the RTC after the write is aligned with the next
522  * seconds increment of clock REALTIME.
523  *
524  * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
525  *
526  * t2.tv_nsec == 0
527  * tsched = t2 - set_offset_nsec
528  * newval = t2 - NSEC_PER_SEC
529  *
530  * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
531  *
532  * As the execution of this code is not guaranteed to happen exactly at
533  * tsched this allows it to happen within a fuzzy region:
534  *
535  *	abs(now - tsched) < FUZZ
536  *
537  * If @now is not inside the allowed window the function returns false.
538  */
rtc_tv_nsec_ok(unsigned long set_offset_nsec,struct timespec64 * to_set,const struct timespec64 * now)539 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
540 				  struct timespec64 *to_set,
541 				  const struct timespec64 *now)
542 {
543 	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
544 	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
545 	struct timespec64 delay = {.tv_sec = -1,
546 				   .tv_nsec = set_offset_nsec};
547 
548 	*to_set = timespec64_add(*now, delay);
549 
550 	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
551 		to_set->tv_nsec = 0;
552 		return true;
553 	}
554 
555 	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
556 		to_set->tv_sec++;
557 		to_set->tv_nsec = 0;
558 		return true;
559 	}
560 	return false;
561 }
562 
563 #ifdef CONFIG_GENERIC_CMOS_UPDATE
update_persistent_clock64(struct timespec64 now64)564 int __weak update_persistent_clock64(struct timespec64 now64)
565 {
566 	return -ENODEV;
567 }
568 #else
update_persistent_clock64(struct timespec64 now64)569 static inline int update_persistent_clock64(struct timespec64 now64)
570 {
571 	return -ENODEV;
572 }
573 #endif
574 
575 #ifdef CONFIG_RTC_SYSTOHC
576 /* Save NTP synchronized time to the RTC */
update_rtc(struct timespec64 * to_set,unsigned long * offset_nsec)577 static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
578 {
579 	struct rtc_device *rtc;
580 	struct rtc_time tm;
581 	int err = -ENODEV;
582 
583 	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
584 	if (!rtc)
585 		return -ENODEV;
586 
587 	if (!rtc->ops || !rtc->ops->set_time)
588 		goto out_close;
589 
590 	/* First call might not have the correct offset */
591 	if (*offset_nsec == rtc->set_offset_nsec) {
592 		rtc_time64_to_tm(to_set->tv_sec, &tm);
593 		err = rtc_set_time(rtc, &tm);
594 	} else {
595 		/* Store the update offset and let the caller try again */
596 		*offset_nsec = rtc->set_offset_nsec;
597 		err = -EAGAIN;
598 	}
599 out_close:
600 	rtc_class_close(rtc);
601 	return err;
602 }
603 #else
update_rtc(struct timespec64 * to_set,unsigned long * offset_nsec)604 static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
605 {
606 	return -ENODEV;
607 }
608 #endif
609 
610 /**
611  * ntp_synced - Tells whether the NTP status is not UNSYNC
612  * Returns:	true if not UNSYNC, false otherwise
613  */
ntp_synced(void)614 static inline bool ntp_synced(void)
615 {
616 	return !(tk_ntp_data[TIMEKEEPER_CORE].time_status & STA_UNSYNC);
617 }
618 
619 /*
620  * If we have an externally synchronized Linux clock, then update RTC clock
621  * accordingly every ~11 minutes. Generally RTCs can only store second
622  * precision, but many RTCs will adjust the phase of their second tick to
623  * match the moment of update. This infrastructure arranges to call to the RTC
624  * set at the correct moment to phase synchronize the RTC second tick over
625  * with the kernel clock.
626  */
sync_hw_clock(struct work_struct * work)627 static void sync_hw_clock(struct work_struct *work)
628 {
629 	/*
630 	 * The default synchronization offset is 500ms for the deprecated
631 	 * update_persistent_clock64() under the assumption that it uses
632 	 * the infamous CMOS clock (MC146818).
633 	 */
634 	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
635 	struct timespec64 now, to_set;
636 	int res = -EAGAIN;
637 
638 	/*
639 	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
640 	 * managed to schedule the work between the timer firing and the
641 	 * work being able to rearm the timer. Wait for the timer to expire.
642 	 */
643 	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
644 		return;
645 
646 	ktime_get_real_ts64(&now);
647 	/* If @now is not in the allowed window, try again */
648 	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
649 		goto rearm;
650 
651 	/* Take timezone adjusted RTCs into account */
652 	if (persistent_clock_is_local)
653 		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
654 
655 	/* Try the legacy RTC first. */
656 	res = update_persistent_clock64(to_set);
657 	if (res != -ENODEV)
658 		goto rearm;
659 
660 	/* Try the RTC class */
661 	res = update_rtc(&to_set, &offset_nsec);
662 	if (res == -ENODEV)
663 		return;
664 rearm:
665 	sched_sync_hw_clock(offset_nsec, res != 0);
666 }
667 
ntp_notify_cmos_timer(bool offset_set)668 void ntp_notify_cmos_timer(bool offset_set)
669 {
670 	/*
671 	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
672 	 * which may have been running if the time was synchronized
673 	 * prior to the ADJ_SETOFFSET call.
674 	 */
675 	if (offset_set)
676 		hrtimer_cancel(&sync_hrtimer);
677 
678 	/*
679 	 * When the work is currently executed but has not yet the timer
680 	 * rearmed this queues the work immediately again. No big issue,
681 	 * just a pointless work scheduled.
682 	 */
683 	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
684 		queue_work(system_freezable_power_efficient_wq, &sync_work);
685 }
686 
ntp_init_cmos_sync(void)687 static void __init ntp_init_cmos_sync(void)
688 {
689 	hrtimer_setup(&sync_hrtimer, sync_timer_callback, CLOCK_REALTIME, HRTIMER_MODE_ABS);
690 }
691 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
ntp_init_cmos_sync(void)692 static inline void __init ntp_init_cmos_sync(void) { }
693 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
694 
695 /*
696  * Propagate a new txc->status value into the NTP state:
697  */
process_adj_status(struct ntp_data * ntpdata,const struct __kernel_timex * txc)698 static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
699 {
700 	if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
701 		ntpdata->time_state = TIME_OK;
702 		ntpdata->time_status = STA_UNSYNC;
703 		ntpdata->ntp_next_leap_sec = TIME64_MAX;
704 		/* Restart PPS frequency calibration */
705 		pps_reset_freq_interval(ntpdata);
706 	}
707 
708 	/*
709 	 * If we turn on PLL adjustments then reset the
710 	 * reference time to current time.
711 	 */
712 	if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
713 		ntpdata->time_reftime = ktime_get_ntp_seconds(ntpdata - tk_ntp_data);
714 
715 	/* only set allowed bits */
716 	ntpdata->time_status &= STA_RONLY;
717 	ntpdata->time_status |= txc->status & ~STA_RONLY;
718 }
719 
process_adjtimex_modes(struct ntp_data * ntpdata,const struct __kernel_timex * txc,s32 * time_tai)720 static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
721 					  s32 *time_tai)
722 {
723 	if (txc->modes & ADJ_STATUS)
724 		process_adj_status(ntpdata, txc);
725 
726 	if (txc->modes & ADJ_NANO)
727 		ntpdata->time_status |= STA_NANO;
728 
729 	if (txc->modes & ADJ_MICRO)
730 		ntpdata->time_status &= ~STA_NANO;
731 
732 	if (txc->modes & ADJ_FREQUENCY) {
733 		ntpdata->time_freq = txc->freq * PPM_SCALE;
734 		ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
735 		ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
736 		/* Update pps_freq */
737 		pps_set_freq(ntpdata);
738 	}
739 
740 	if (txc->modes & ADJ_MAXERROR)
741 		ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
742 
743 	if (txc->modes & ADJ_ESTERROR)
744 		ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
745 
746 	if (txc->modes & ADJ_TIMECONST) {
747 		ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
748 		if (!(ntpdata->time_status & STA_NANO))
749 			ntpdata->time_constant += 4;
750 		ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
751 	}
752 
753 	if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
754 		*time_tai = txc->constant;
755 
756 	if (txc->modes & ADJ_OFFSET)
757 		ntp_update_offset(ntpdata, txc->offset);
758 
759 	if (txc->modes & ADJ_TICK)
760 		ntpdata->tick_usec = txc->tick;
761 
762 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
763 		ntp_update_frequency(ntpdata);
764 }
765 
766 /*
767  * adjtimex() mainly allows reading (and writing, if superuser) of
768  * kernel time-keeping variables. used by xntpd.
769  */
ntp_adjtimex(unsigned int tkid,struct __kernel_timex * txc,const struct timespec64 * ts,s32 * time_tai,struct audit_ntp_data * ad)770 int ntp_adjtimex(unsigned int tkid, struct __kernel_timex *txc, const struct timespec64 *ts,
771 		 s32 *time_tai, struct audit_ntp_data *ad)
772 {
773 	struct ntp_data *ntpdata = &tk_ntp_data[tkid];
774 	int result;
775 
776 	if (txc->modes & ADJ_ADJTIME) {
777 		long save_adjust = ntpdata->time_adjust;
778 
779 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
780 			/* adjtime() is independent from ntp_adjtime() */
781 			ntpdata->time_adjust = txc->offset;
782 			ntp_update_frequency(ntpdata);
783 
784 			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
785 			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	ntpdata->time_adjust);
786 		}
787 		txc->offset = save_adjust;
788 	} else {
789 		/* If there are input parameters, then process them: */
790 		if (txc->modes) {
791 			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
792 			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
793 			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
794 			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
795 			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
796 
797 			process_adjtimex_modes(ntpdata, txc, time_tai);
798 
799 			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
800 			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
801 			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
802 			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
803 			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
804 		}
805 
806 		txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
807 		if (!(ntpdata->time_status & STA_NANO))
808 			txc->offset = div_s64(txc->offset, NSEC_PER_USEC);
809 	}
810 
811 	result = ntpdata->time_state;
812 	if (is_error_status(ntpdata->time_status))
813 		result = TIME_ERROR;
814 
815 	txc->freq	   = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
816 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
817 	txc->maxerror	   = ntpdata->time_maxerror;
818 	txc->esterror	   = ntpdata->time_esterror;
819 	txc->status	   = ntpdata->time_status;
820 	txc->constant	   = ntpdata->time_constant;
821 	txc->precision	   = 1;
822 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
823 	txc->tick	   = ntpdata->tick_usec;
824 	txc->tai	   = *time_tai;
825 
826 	/* Fill PPS status fields */
827 	pps_fill_timex(ntpdata, txc);
828 
829 	txc->time.tv_sec = ts->tv_sec;
830 	txc->time.tv_usec = ts->tv_nsec;
831 	if (!(ntpdata->time_status & STA_NANO))
832 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
833 
834 	/* Handle leapsec adjustments */
835 	if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
836 		if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
837 			result = TIME_OOP;
838 			txc->tai++;
839 			txc->time.tv_sec--;
840 		}
841 		if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
842 			result = TIME_WAIT;
843 			txc->tai--;
844 			txc->time.tv_sec++;
845 		}
846 		if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
847 			result = TIME_WAIT;
848 	}
849 
850 	return result;
851 }
852 
853 #ifdef	CONFIG_NTP_PPS
854 
855 /*
856  * struct pps_normtime is basically a struct timespec, but it is
857  * semantically different (and it is the reason why it was invented):
858  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
859  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
860  */
861 struct pps_normtime {
862 	s64		sec;	/* seconds */
863 	long		nsec;	/* nanoseconds */
864 };
865 
866 /*
867  * Normalize the timestamp so that nsec is in the
868  * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
869  */
pps_normalize_ts(struct timespec64 ts)870 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
871 {
872 	struct pps_normtime norm = {
873 		.sec = ts.tv_sec,
874 		.nsec = ts.tv_nsec
875 	};
876 
877 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
878 		norm.nsec -= NSEC_PER_SEC;
879 		norm.sec++;
880 	}
881 
882 	return norm;
883 }
884 
885 /* Get current phase correction and jitter */
pps_phase_filter_get(struct ntp_data * ntpdata,long * jitter)886 static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
887 {
888 	*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
889 	if (*jitter < 0)
890 		*jitter = -*jitter;
891 
892 	/* TODO: test various filters */
893 	return ntpdata->pps_tf[0];
894 }
895 
896 /* Add the sample to the phase filter */
pps_phase_filter_add(struct ntp_data * ntpdata,long err)897 static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
898 {
899 	ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
900 	ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
901 	ntpdata->pps_tf[0] = err;
902 }
903 
904 /*
905  * Decrease frequency calibration interval length. It is halved after four
906  * consecutive unstable intervals.
907  */
pps_dec_freq_interval(struct ntp_data * ntpdata)908 static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
909 {
910 	if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
911 		ntpdata->pps_intcnt = -PPS_INTCOUNT;
912 		if (ntpdata->pps_shift > PPS_INTMIN) {
913 			ntpdata->pps_shift--;
914 			ntpdata->pps_intcnt = 0;
915 		}
916 	}
917 }
918 
919 /*
920  * Increase frequency calibration interval length. It is doubled after
921  * four consecutive stable intervals.
922  */
pps_inc_freq_interval(struct ntp_data * ntpdata)923 static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
924 {
925 	if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
926 		ntpdata->pps_intcnt = PPS_INTCOUNT;
927 		if (ntpdata->pps_shift < PPS_INTMAX) {
928 			ntpdata->pps_shift++;
929 			ntpdata->pps_intcnt = 0;
930 		}
931 	}
932 }
933 
934 /*
935  * Update clock frequency based on MONOTONIC_RAW clock PPS signal
936  * timestamps
937  *
938  * At the end of the calibration interval the difference between the
939  * first and last MONOTONIC_RAW clock timestamps divided by the length
940  * of the interval becomes the frequency update. If the interval was
941  * too long, the data are discarded.
942  * Returns the difference between old and new frequency values.
943  */
hardpps_update_freq(struct ntp_data * ntpdata,struct pps_normtime freq_norm)944 static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
945 {
946 	long delta, delta_mod;
947 	s64 ftemp;
948 
949 	/* Check if the frequency interval was too long */
950 	if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
951 		ntpdata->time_status |= STA_PPSERROR;
952 		ntpdata->pps_errcnt++;
953 		pps_dec_freq_interval(ntpdata);
954 		printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
955 				freq_norm.sec);
956 		return 0;
957 	}
958 
959 	/*
960 	 * Here the raw frequency offset and wander (stability) is
961 	 * calculated. If the wander is less than the wander threshold the
962 	 * interval is increased; otherwise it is decreased.
963 	 */
964 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
965 			freq_norm.sec);
966 	delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
967 	ntpdata->pps_freq = ftemp;
968 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
969 		printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
970 		ntpdata->time_status |= STA_PPSWANDER;
971 		ntpdata->pps_stbcnt++;
972 		pps_dec_freq_interval(ntpdata);
973 	} else {
974 		/* Good sample */
975 		pps_inc_freq_interval(ntpdata);
976 	}
977 
978 	/*
979 	 * The stability metric is calculated as the average of recent
980 	 * frequency changes, but is used only for performance monitoring
981 	 */
982 	delta_mod = delta;
983 	if (delta_mod < 0)
984 		delta_mod = -delta_mod;
985 	ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
986 				     NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
987 
988 	/* If enabled, the system clock frequency is updated */
989 	if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
990 		ntpdata->time_freq = ntpdata->pps_freq;
991 		ntp_update_frequency(ntpdata);
992 	}
993 
994 	return delta;
995 }
996 
997 /* Correct REALTIME clock phase error against PPS signal */
hardpps_update_phase(struct ntp_data * ntpdata,long error)998 static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
999 {
1000 	long correction = -error;
1001 	long jitter;
1002 
1003 	/* Add the sample to the median filter */
1004 	pps_phase_filter_add(ntpdata, correction);
1005 	correction = pps_phase_filter_get(ntpdata, &jitter);
1006 
1007 	/*
1008 	 * Nominal jitter is due to PPS signal noise. If it exceeds the
1009 	 * threshold, the sample is discarded; otherwise, if so enabled,
1010 	 * the time offset is updated.
1011 	 */
1012 	if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
1013 		printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1014 				jitter, (ntpdata->pps_jitter << PPS_POPCORN));
1015 		ntpdata->time_status |= STA_PPSJITTER;
1016 		ntpdata->pps_jitcnt++;
1017 	} else if (ntpdata->time_status & STA_PPSTIME) {
1018 		/* Correct the time using the phase offset */
1019 		ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1020 					       NTP_INTERVAL_FREQ);
1021 		/* Cancel running adjtime() */
1022 		ntpdata->time_adjust = 0;
1023 	}
1024 	/* Update jitter */
1025 	ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
1026 }
1027 
1028 /*
1029  * __hardpps() - discipline CPU clock oscillator to external PPS signal
1030  *
1031  * This routine is called at each PPS signal arrival in order to
1032  * discipline the CPU clock oscillator to the PPS signal. It takes two
1033  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1034  * is used to correct clock phase error and the latter is used to
1035  * correct the frequency.
1036  *
1037  * This code is based on David Mills's reference nanokernel
1038  * implementation. It was mostly rewritten but keeps the same idea.
1039  */
__hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)1040 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1041 {
1042 	struct ntp_data *ntpdata = &tk_ntp_data[TIMEKEEPER_CORE];
1043 	struct pps_normtime pts_norm, freq_norm;
1044 
1045 	pts_norm = pps_normalize_ts(*phase_ts);
1046 
1047 	/* Clear the error bits, they will be set again if needed */
1048 	ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1049 
1050 	/* indicate signal presence */
1051 	ntpdata->time_status |= STA_PPSSIGNAL;
1052 	ntpdata->pps_valid = PPS_VALID;
1053 
1054 	/*
1055 	 * When called for the first time, just start the frequency
1056 	 * interval
1057 	 */
1058 	if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
1059 		ntpdata->pps_fbase = *raw_ts;
1060 		return;
1061 	}
1062 
1063 	/* Ok, now we have a base for frequency calculation */
1064 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
1065 
1066 	/*
1067 	 * Check that the signal is in the range
1068 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
1069 	 */
1070 	if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1071 	    (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1072 		ntpdata->time_status |= STA_PPSJITTER;
1073 		/* Restart the frequency calibration interval */
1074 		ntpdata->pps_fbase = *raw_ts;
1075 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1076 		return;
1077 	}
1078 
1079 	/* Signal is ok. Check if the current frequency interval is finished */
1080 	if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
1081 		ntpdata->pps_calcnt++;
1082 		/* Restart the frequency calibration interval */
1083 		ntpdata->pps_fbase = *raw_ts;
1084 		hardpps_update_freq(ntpdata, freq_norm);
1085 	}
1086 
1087 	hardpps_update_phase(ntpdata, pts_norm.nsec);
1088 
1089 }
1090 #endif	/* CONFIG_NTP_PPS */
1091 
ntp_tick_adj_setup(char * str)1092 static int __init ntp_tick_adj_setup(char *str)
1093 {
1094 	int rc = kstrtos64(str, 0, &tk_ntp_data[TIMEKEEPER_CORE].ntp_tick_adj);
1095 	if (rc)
1096 		return rc;
1097 
1098 	tk_ntp_data[TIMEKEEPER_CORE].ntp_tick_adj <<= NTP_SCALE_SHIFT;
1099 	return 1;
1100 }
1101 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1102 
ntp_init(void)1103 void __init ntp_init(void)
1104 {
1105 	for (int id = 0; id < TIMEKEEPERS_MAX; id++)
1106 		__ntp_clear(tk_ntp_data + id);
1107 	ntp_init_cmos_sync();
1108 }
1109