xref: /linux/drivers/i2c/busses/i2c-tegra.c (revision 7e161a991ea71e6ec526abc8f40c6852ebe3d946)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 #define I2C_MASTER_RESET_CNTRL			0x0a8
138 
139 /* configuration load timeout in microseconds */
140 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
141 
142 /* packet header size in bytes */
143 #define I2C_PACKET_HEADER_SIZE			12
144 
145 /*
146  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
147  * avoid DMA overhead, otherwise external APB DMA controller will be used.
148  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
149  * I2C_PACKET_HEADER_SIZE.
150  */
151 #define I2C_PIO_MODE_PREFERRED_LEN		32
152 
153 /*
154  * msg_end_type: The bus control which needs to be sent at end of transfer.
155  * @MSG_END_STOP: Send stop pulse.
156  * @MSG_END_REPEAT_START: Send repeat-start.
157  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
158  */
159 enum msg_end_type {
160 	MSG_END_STOP,
161 	MSG_END_REPEAT_START,
162 	MSG_END_CONTINUE,
163 };
164 
165 /**
166  * struct tegra_i2c_hw_feature : per hardware generation features
167  * @has_continue_xfer_support: continue-transfer supported
168  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
169  *		completion interrupt on per packet basis.
170  * @has_config_load_reg: Has the config load register to load the new
171  *		configuration.
172  * @clk_divisor_hs_mode: Clock divisor in HS mode.
173  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
174  *		applicable if there is no fast clock source i.e. single clock
175  *		source.
176  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
177  *		applicable if there is no fast clock source i.e. single clock
178  *		source.
179  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
180  *		applicable if there is no fast clock source (i.e. single
181  *		clock source).
182  * @has_multi_master_mode: The I2C controller supports running in single-master
183  *		or multi-master mode.
184  * @has_slcg_override_reg: The I2C controller supports a register that
185  *		overrides the second level clock gating.
186  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
187  *		provides additional features and allows for longer messages to
188  *		be transferred in one go.
189  * @has_mst_reset: The I2C controller contains MASTER_RESET_CTRL register which
190  *		provides an alternative to controller reset when configured as
191  *		I2C master
192  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
193  *		allowing 0 length transfers.
194  * @supports_bus_clear: Bus Clear support to recover from bus hang during
195  *		SDA stuck low from device for some unknown reasons.
196  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
197  * @tlow_std_mode: Low period of the clock in standard mode.
198  * @thigh_std_mode: High period of the clock in standard mode.
199  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
200  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
201  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
202  *		in standard mode.
203  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
204  *		conditions in fast/fast-plus modes.
205  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
206  *		in HS mode.
207  * @has_interface_timing_reg: Has interface timing register to program the tuned
208  *		timing settings.
209  */
210 struct tegra_i2c_hw_feature {
211 	bool has_continue_xfer_support;
212 	bool has_per_pkt_xfer_complete_irq;
213 	bool has_config_load_reg;
214 	u32 clk_divisor_hs_mode;
215 	u32 clk_divisor_std_mode;
216 	u32 clk_divisor_fast_mode;
217 	u32 clk_divisor_fast_plus_mode;
218 	bool has_multi_master_mode;
219 	bool has_slcg_override_reg;
220 	bool has_mst_fifo;
221 	bool has_mst_reset;
222 	const struct i2c_adapter_quirks *quirks;
223 	bool supports_bus_clear;
224 	bool has_apb_dma;
225 	u32 tlow_std_mode;
226 	u32 thigh_std_mode;
227 	u32 tlow_fast_fastplus_mode;
228 	u32 thigh_fast_fastplus_mode;
229 	u32 setup_hold_time_std_mode;
230 	u32 setup_hold_time_fast_fast_plus_mode;
231 	u32 setup_hold_time_hs_mode;
232 	bool has_interface_timing_reg;
233 };
234 
235 /**
236  * struct tegra_i2c_dev - per device I2C context
237  * @dev: device reference for power management
238  * @hw: Tegra I2C HW feature
239  * @adapter: core I2C layer adapter information
240  * @div_clk: clock reference for div clock of I2C controller
241  * @clocks: array of I2C controller clocks
242  * @nclocks: number of clocks in the array
243  * @rst: reset control for the I2C controller
244  * @base: ioremapped registers cookie
245  * @base_phys: physical base address of the I2C controller
246  * @cont_id: I2C controller ID, used for packet header
247  * @irq: IRQ number of transfer complete interrupt
248  * @is_dvc: identifies the DVC I2C controller, has a different register layout
249  * @is_vi: identifies the VI I2C controller, has a different register layout
250  * @msg_complete: transfer completion notifier
251  * @msg_buf_remaining: size of unsent data in the message buffer
252  * @msg_len: length of message in current transfer
253  * @msg_err: error code for completed message
254  * @msg_buf: pointer to current message data
255  * @msg_read: indicates that the transfer is a read access
256  * @timings: i2c timings information like bus frequency
257  * @multimaster_mode: indicates that I2C controller is in multi-master mode
258  * @dma_chan: DMA channel
259  * @dma_phys: handle to DMA resources
260  * @dma_buf: pointer to allocated DMA buffer
261  * @dma_buf_size: DMA buffer size
262  * @dma_dev: DMA device used for transfers
263  * @dma_mode: indicates active DMA transfer
264  * @dma_complete: DMA completion notifier
265  * @atomic_mode: indicates active atomic transfer
266  */
267 struct tegra_i2c_dev {
268 	struct device *dev;
269 	struct i2c_adapter adapter;
270 
271 	const struct tegra_i2c_hw_feature *hw;
272 	struct reset_control *rst;
273 	unsigned int cont_id;
274 	unsigned int irq;
275 
276 	phys_addr_t base_phys;
277 	void __iomem *base;
278 
279 	struct clk_bulk_data clocks[2];
280 	unsigned int nclocks;
281 
282 	struct clk *div_clk;
283 	struct i2c_timings timings;
284 
285 	struct completion msg_complete;
286 	size_t msg_buf_remaining;
287 	unsigned int msg_len;
288 	int msg_err;
289 	u8 *msg_buf;
290 
291 	struct completion dma_complete;
292 	struct dma_chan *dma_chan;
293 	unsigned int dma_buf_size;
294 	struct device *dma_dev;
295 	dma_addr_t dma_phys;
296 	void *dma_buf;
297 
298 	bool multimaster_mode;
299 	bool atomic_mode;
300 	bool dma_mode;
301 	bool msg_read;
302 	bool is_dvc;
303 	bool is_vi;
304 };
305 
306 #define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
307 #define IS_VI(dev)  (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
308 
dvc_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)309 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
310 		       unsigned int reg)
311 {
312 	writel_relaxed(val, i2c_dev->base + reg);
313 }
314 
dvc_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)315 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
316 {
317 	return readl_relaxed(i2c_dev->base + reg);
318 }
319 
320 /*
321  * If necessary, i2c_writel() and i2c_readl() will offset the register
322  * in order to talk to the I2C block inside the DVC block.
323  */
tegra_i2c_reg_addr(struct tegra_i2c_dev * i2c_dev,unsigned int reg)324 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
325 {
326 	if (IS_DVC(i2c_dev))
327 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
328 	else if (IS_VI(i2c_dev))
329 		reg = 0xc00 + (reg << 2);
330 
331 	return reg;
332 }
333 
i2c_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)334 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
335 {
336 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
337 
338 	/* read back register to make sure that register writes completed */
339 	if (reg != I2C_TX_FIFO)
340 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
341 	else if (IS_VI(i2c_dev))
342 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
343 }
344 
i2c_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)345 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
346 {
347 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
348 }
349 
i2c_writesl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)350 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
351 			unsigned int reg, unsigned int len)
352 {
353 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
354 }
355 
i2c_writesl_vi(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)356 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
357 			   unsigned int reg, unsigned int len)
358 {
359 	u32 *data32 = data;
360 
361 	/*
362 	 * VI I2C controller has known hardware bug where writes get stuck
363 	 * when immediate multiple writes happen to TX_FIFO register.
364 	 * Recommended software work around is to read I2C register after
365 	 * each write to TX_FIFO register to flush out the data.
366 	 */
367 	while (len--)
368 		i2c_writel(i2c_dev, *data32++, reg);
369 }
370 
i2c_readsl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)371 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
372 		       unsigned int reg, unsigned int len)
373 {
374 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
375 }
376 
tegra_i2c_mask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)377 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
378 {
379 	u32 int_mask;
380 
381 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
382 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
383 }
384 
tegra_i2c_unmask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)385 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
386 {
387 	u32 int_mask;
388 
389 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
390 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
391 }
392 
tegra_i2c_dma_complete(void * args)393 static void tegra_i2c_dma_complete(void *args)
394 {
395 	struct tegra_i2c_dev *i2c_dev = args;
396 
397 	complete(&i2c_dev->dma_complete);
398 }
399 
tegra_i2c_dma_submit(struct tegra_i2c_dev * i2c_dev,size_t len)400 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
401 {
402 	struct dma_async_tx_descriptor *dma_desc;
403 	enum dma_transfer_direction dir;
404 
405 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
406 
407 	reinit_completion(&i2c_dev->dma_complete);
408 
409 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
410 
411 	dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
412 					       len, dir, DMA_PREP_INTERRUPT |
413 					       DMA_CTRL_ACK);
414 	if (!dma_desc) {
415 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
416 			i2c_dev->msg_read ? "RX" : "TX");
417 		return -EINVAL;
418 	}
419 
420 	dma_desc->callback = tegra_i2c_dma_complete;
421 	dma_desc->callback_param = i2c_dev;
422 
423 	dmaengine_submit(dma_desc);
424 	dma_async_issue_pending(i2c_dev->dma_chan);
425 
426 	return 0;
427 }
428 
tegra_i2c_release_dma(struct tegra_i2c_dev * i2c_dev)429 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
430 {
431 	if (i2c_dev->dma_buf) {
432 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
433 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
434 		i2c_dev->dma_buf = NULL;
435 	}
436 
437 	if (i2c_dev->dma_chan) {
438 		dma_release_channel(i2c_dev->dma_chan);
439 		i2c_dev->dma_chan = NULL;
440 	}
441 }
442 
tegra_i2c_init_dma(struct tegra_i2c_dev * i2c_dev)443 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
444 {
445 	dma_addr_t dma_phys;
446 	u32 *dma_buf;
447 	int err;
448 
449 	if (IS_VI(i2c_dev))
450 		return 0;
451 
452 	if (i2c_dev->hw->has_apb_dma) {
453 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
454 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
455 			return 0;
456 		}
457 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
458 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
459 		return 0;
460 	}
461 
462 	/*
463 	 * The same channel will be used for both RX and TX.
464 	 * Keeping the name as "tx" for backward compatibility
465 	 * with existing devicetrees.
466 	 */
467 	i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
468 	if (IS_ERR(i2c_dev->dma_chan)) {
469 		err = PTR_ERR(i2c_dev->dma_chan);
470 		i2c_dev->dma_chan = NULL;
471 		goto err_out;
472 	}
473 
474 	i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
475 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
476 				I2C_PACKET_HEADER_SIZE;
477 
478 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
479 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
480 	if (!dma_buf) {
481 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
482 		err = -ENOMEM;
483 		goto err_out;
484 	}
485 
486 	i2c_dev->dma_buf = dma_buf;
487 	i2c_dev->dma_phys = dma_phys;
488 
489 	return 0;
490 
491 err_out:
492 	tegra_i2c_release_dma(i2c_dev);
493 	if (err != -EPROBE_DEFER) {
494 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
495 		dev_err(i2c_dev->dev, "falling back to PIO\n");
496 		return 0;
497 	}
498 
499 	return err;
500 }
501 
502 /*
503  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
504  * block.  This block is identical to the rest of the I2C blocks, except that
505  * it only supports master mode, it has registers moved around, and it needs
506  * some extra init to get it into I2C mode.  The register moves are handled
507  * by i2c_readl() and i2c_writel().
508  */
tegra_dvc_init(struct tegra_i2c_dev * i2c_dev)509 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
510 {
511 	u32 val;
512 
513 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
514 	val |= DVC_CTRL_REG3_SW_PROG;
515 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
516 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
517 
518 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
519 	val |= DVC_CTRL_REG1_INTR_EN;
520 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
521 }
522 
tegra_i2c_vi_init(struct tegra_i2c_dev * i2c_dev)523 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
524 {
525 	u32 value;
526 
527 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
528 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
529 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
530 
531 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
532 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
533 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
534 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
535 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
536 
537 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
538 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
539 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
540 
541 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
542 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
543 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
544 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
545 
546 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
547 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
548 
549 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
550 }
551 
tegra_i2c_poll_register(struct tegra_i2c_dev * i2c_dev,u32 reg,u32 mask,u32 delay_us,u32 timeout_us)552 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
553 				   u32 reg, u32 mask, u32 delay_us,
554 				   u32 timeout_us)
555 {
556 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
557 	u32 val;
558 
559 	if (!i2c_dev->atomic_mode)
560 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
561 						  delay_us, timeout_us);
562 
563 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
564 						 delay_us, timeout_us);
565 }
566 
tegra_i2c_flush_fifos(struct tegra_i2c_dev * i2c_dev)567 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
568 {
569 	u32 mask, val, offset;
570 	int err;
571 
572 	if (i2c_dev->hw->has_mst_fifo) {
573 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
574 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
575 		offset = I2C_MST_FIFO_CONTROL;
576 	} else {
577 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
578 		       I2C_FIFO_CONTROL_RX_FLUSH;
579 		offset = I2C_FIFO_CONTROL;
580 	}
581 
582 	val = i2c_readl(i2c_dev, offset);
583 	val |= mask;
584 	i2c_writel(i2c_dev, val, offset);
585 
586 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
587 	if (err) {
588 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
589 		return err;
590 	}
591 
592 	return 0;
593 }
594 
tegra_i2c_wait_for_config_load(struct tegra_i2c_dev * i2c_dev)595 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
596 {
597 	int err;
598 
599 	if (!i2c_dev->hw->has_config_load_reg)
600 		return 0;
601 
602 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
603 
604 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
605 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
606 	if (err) {
607 		dev_err(i2c_dev->dev, "failed to load config\n");
608 		return err;
609 	}
610 
611 	return 0;
612 }
613 
tegra_i2c_master_reset(struct tegra_i2c_dev * i2c_dev)614 static int tegra_i2c_master_reset(struct tegra_i2c_dev *i2c_dev)
615 {
616 	if (!i2c_dev->hw->has_mst_reset)
617 		return -EOPNOTSUPP;
618 
619 	/*
620 	 * Writing 1 to I2C_MASTER_RESET_CNTRL will reset all internal state of
621 	 * Master logic including FIFOs. Clear this bit to 0 for normal operation.
622 	 * SW needs to wait for 2us after assertion and de-assertion of this soft
623 	 * reset.
624 	 */
625 	i2c_writel(i2c_dev, 0x1, I2C_MASTER_RESET_CNTRL);
626 	fsleep(2);
627 
628 	i2c_writel(i2c_dev, 0x0, I2C_MASTER_RESET_CNTRL);
629 	fsleep(2);
630 
631 	return 0;
632 }
633 
tegra_i2c_init(struct tegra_i2c_dev * i2c_dev)634 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
635 {
636 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
637 	struct i2c_timings *t = &i2c_dev->timings;
638 	int err;
639 
640 	/*
641 	 * Reset the controller before initializing it.
642 	 * In case if device_reset() returns -ENOENT, i.e. when the reset is
643 	 * not available, the internal software reset will be used if it is
644 	 * supported by the controller.
645 	 */
646 	err = device_reset(i2c_dev->dev);
647 	if (err == -ENOENT)
648 		err = tegra_i2c_master_reset(i2c_dev);
649 
650 	/*
651 	 * The reset shouldn't ever fail in practice. The failure will be a
652 	 * sign of a severe problem that needs to be resolved. Still we don't
653 	 * want to fail the initialization completely because this may break
654 	 * kernel boot up since voltage regulators use I2C. Hence, we will
655 	 * emit a noisy warning on error, which won't stay unnoticed and
656 	 * won't hose machine entirely.
657 	 */
658 	WARN_ON_ONCE(err);
659 
660 	if (IS_DVC(i2c_dev))
661 		tegra_dvc_init(i2c_dev);
662 
663 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
664 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
665 
666 	if (i2c_dev->hw->has_multi_master_mode)
667 		val |= I2C_CNFG_MULTI_MASTER_MODE;
668 
669 	i2c_writel(i2c_dev, val, I2C_CNFG);
670 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
671 
672 	if (IS_VI(i2c_dev))
673 		tegra_i2c_vi_init(i2c_dev);
674 
675 	switch (t->bus_freq_hz) {
676 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
677 	default:
678 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
679 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
680 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
681 
682 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
683 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
684 		else
685 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
686 		break;
687 
688 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
689 		tlow = i2c_dev->hw->tlow_std_mode;
690 		thigh = i2c_dev->hw->thigh_std_mode;
691 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
692 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
693 		break;
694 	}
695 
696 	/* make sure clock divisor programmed correctly */
697 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
698 				 i2c_dev->hw->clk_divisor_hs_mode) |
699 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
700 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
701 
702 	if (i2c_dev->hw->has_interface_timing_reg) {
703 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
704 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
705 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
706 	}
707 
708 	/*
709 	 * Configure setup and hold times only when tsu_thd is non-zero.
710 	 * Otherwise, preserve the chip default values.
711 	 */
712 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
713 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
714 
715 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
716 
717 	err = clk_set_rate(i2c_dev->div_clk,
718 			   t->bus_freq_hz * clk_multiplier);
719 	if (err) {
720 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
721 		return err;
722 	}
723 
724 	if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
725 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
726 
727 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
728 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
729 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
730 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
731 	}
732 
733 	err = tegra_i2c_flush_fifos(i2c_dev);
734 	if (err)
735 		return err;
736 
737 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
738 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
739 
740 	err = tegra_i2c_wait_for_config_load(i2c_dev);
741 	if (err)
742 		return err;
743 
744 	return 0;
745 }
746 
tegra_i2c_disable_packet_mode(struct tegra_i2c_dev * i2c_dev)747 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
748 {
749 	u32 cnfg;
750 
751 	/*
752 	 * NACK interrupt is generated before the I2C controller generates
753 	 * the STOP condition on the bus.  So, wait for 2 clock periods
754 	 * before disabling the controller so that the STOP condition has
755 	 * been delivered properly.
756 	 */
757 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
758 
759 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
760 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
761 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
762 
763 	return tegra_i2c_wait_for_config_load(i2c_dev);
764 }
765 
tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev * i2c_dev)766 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
767 {
768 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
769 	unsigned int words_to_transfer, rx_fifo_avail;
770 	u8 *buf = i2c_dev->msg_buf;
771 	u32 val;
772 
773 	/*
774 	 * Catch overflow due to message fully sent before the check for
775 	 * RX FIFO availability.
776 	 */
777 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
778 		return -EINVAL;
779 
780 	if (i2c_dev->hw->has_mst_fifo) {
781 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
782 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
783 	} else {
784 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
785 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
786 	}
787 
788 	/* round down to exclude partial word at the end of buffer */
789 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
790 	if (words_to_transfer > rx_fifo_avail)
791 		words_to_transfer = rx_fifo_avail;
792 
793 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
794 
795 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
796 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
797 	rx_fifo_avail -= words_to_transfer;
798 
799 	/*
800 	 * If there is a partial word at the end of buffer, handle it
801 	 * manually to prevent overwriting past the end of buffer.
802 	 */
803 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
804 		/*
805 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
806 		 * when (words_to_transfer was > rx_fifo_avail) earlier
807 		 * in this function.
808 		 */
809 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
810 		val = cpu_to_le32(val);
811 		memcpy(buf, &val, buf_remaining);
812 		buf_remaining = 0;
813 		rx_fifo_avail--;
814 	}
815 
816 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
817 	if (WARN_ON_ONCE(rx_fifo_avail))
818 		return -EINVAL;
819 
820 	i2c_dev->msg_buf_remaining = buf_remaining;
821 	i2c_dev->msg_buf = buf;
822 
823 	return 0;
824 }
825 
tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev * i2c_dev)826 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
827 {
828 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
829 	unsigned int words_to_transfer, tx_fifo_avail;
830 	u8 *buf = i2c_dev->msg_buf;
831 	u32 val;
832 
833 	if (i2c_dev->hw->has_mst_fifo) {
834 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
835 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
836 	} else {
837 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
838 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
839 	}
840 
841 	/* round down to exclude partial word at the end of buffer */
842 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
843 
844 	/*
845 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
846 	 *
847 	 * It's very common to have < 4 bytes, hence there is no word
848 	 * to push if we have less than 4 bytes to transfer.
849 	 */
850 	if (words_to_transfer) {
851 		if (words_to_transfer > tx_fifo_avail)
852 			words_to_transfer = tx_fifo_avail;
853 
854 		/*
855 		 * Update state before writing to FIFO.  Note that this may
856 		 * cause us to finish writing all bytes (AKA buf_remaining
857 		 * goes to 0), hence we have a potential for an interrupt
858 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
859 		 * is disabled at this point.
860 		 */
861 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
862 		tx_fifo_avail -= words_to_transfer;
863 
864 		i2c_dev->msg_buf_remaining = buf_remaining;
865 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
866 
867 		if (IS_VI(i2c_dev))
868 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
869 		else
870 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
871 
872 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
873 	}
874 
875 	/*
876 	 * If there is a partial word at the end of buffer, handle it manually
877 	 * to prevent reading past the end of buffer, which could cross a page
878 	 * boundary and fault.
879 	 */
880 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
881 		/*
882 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
883 		 * when (words_to_transfer was > tx_fifo_avail) earlier
884 		 * in this function for non-zero words_to_transfer.
885 		 */
886 		memcpy(&val, buf, buf_remaining);
887 		val = le32_to_cpu(val);
888 
889 		i2c_dev->msg_buf_remaining = 0;
890 		i2c_dev->msg_buf = NULL;
891 
892 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
893 	}
894 
895 	return 0;
896 }
897 
tegra_i2c_isr(int irq,void * dev_id)898 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
899 {
900 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
901 	struct tegra_i2c_dev *i2c_dev = dev_id;
902 	u32 status;
903 
904 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
905 
906 	if (status == 0) {
907 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
908 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
909 			 i2c_readl(i2c_dev, I2C_STATUS),
910 			 i2c_readl(i2c_dev, I2C_CNFG));
911 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
912 		goto err;
913 	}
914 
915 	if (status & status_err) {
916 		tegra_i2c_disable_packet_mode(i2c_dev);
917 		if (status & I2C_INT_NO_ACK)
918 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
919 		if (status & I2C_INT_ARBITRATION_LOST)
920 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
921 		goto err;
922 	}
923 
924 	/*
925 	 * I2C transfer is terminated during the bus clear, so skip
926 	 * processing the other interrupts.
927 	 */
928 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
929 		goto err;
930 
931 	if (!i2c_dev->dma_mode) {
932 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
933 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
934 				/*
935 				 * Overflow error condition: message fully sent,
936 				 * with no XFER_COMPLETE interrupt but hardware
937 				 * asks to transfer more.
938 				 */
939 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
940 				goto err;
941 			}
942 		}
943 
944 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
945 			if (i2c_dev->msg_buf_remaining)
946 				tegra_i2c_fill_tx_fifo(i2c_dev);
947 			else
948 				tegra_i2c_mask_irq(i2c_dev,
949 						   I2C_INT_TX_FIFO_DATA_REQ);
950 		}
951 	}
952 
953 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
954 	if (IS_DVC(i2c_dev))
955 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
956 
957 	/*
958 	 * During message read XFER_COMPLETE interrupt is triggered prior to
959 	 * DMA completion and during message write XFER_COMPLETE interrupt is
960 	 * triggered after DMA completion.
961 	 *
962 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
963 	 * so forcing msg_buf_remaining to 0 in DMA mode.
964 	 */
965 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
966 		if (i2c_dev->dma_mode)
967 			i2c_dev->msg_buf_remaining = 0;
968 		/*
969 		 * Underflow error condition: XFER_COMPLETE before message
970 		 * fully sent.
971 		 */
972 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
973 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
974 			goto err;
975 		}
976 		complete(&i2c_dev->msg_complete);
977 	}
978 	goto done;
979 err:
980 	/* mask all interrupts on error */
981 	tegra_i2c_mask_irq(i2c_dev,
982 			   I2C_INT_NO_ACK |
983 			   I2C_INT_ARBITRATION_LOST |
984 			   I2C_INT_PACKET_XFER_COMPLETE |
985 			   I2C_INT_TX_FIFO_DATA_REQ |
986 			   I2C_INT_RX_FIFO_DATA_REQ);
987 
988 	if (i2c_dev->hw->supports_bus_clear)
989 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
990 
991 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
992 
993 	if (IS_DVC(i2c_dev))
994 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
995 
996 	if (i2c_dev->dma_mode) {
997 		dmaengine_terminate_async(i2c_dev->dma_chan);
998 		complete(&i2c_dev->dma_complete);
999 	}
1000 
1001 	complete(&i2c_dev->msg_complete);
1002 done:
1003 	return IRQ_HANDLED;
1004 }
1005 
tegra_i2c_config_fifo_trig(struct tegra_i2c_dev * i2c_dev,size_t len)1006 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
1007 				       size_t len)
1008 {
1009 	struct dma_slave_config slv_config = {0};
1010 	u32 val, reg, dma_burst, reg_offset;
1011 	int err;
1012 
1013 	if (i2c_dev->hw->has_mst_fifo)
1014 		reg = I2C_MST_FIFO_CONTROL;
1015 	else
1016 		reg = I2C_FIFO_CONTROL;
1017 
1018 	if (i2c_dev->dma_mode) {
1019 		if (len & 0xF)
1020 			dma_burst = 1;
1021 		else if (len & 0x10)
1022 			dma_burst = 4;
1023 		else
1024 			dma_burst = 8;
1025 
1026 		if (i2c_dev->msg_read) {
1027 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1028 
1029 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1030 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1031 			slv_config.src_maxburst = dma_burst;
1032 
1033 			if (i2c_dev->hw->has_mst_fifo)
1034 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1035 			else
1036 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1037 		} else {
1038 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1039 
1040 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1041 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1042 			slv_config.dst_maxburst = dma_burst;
1043 
1044 			if (i2c_dev->hw->has_mst_fifo)
1045 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1046 			else
1047 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1048 		}
1049 
1050 		slv_config.device_fc = true;
1051 		err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1052 		if (err) {
1053 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1054 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1055 
1056 			tegra_i2c_release_dma(i2c_dev);
1057 			i2c_dev->dma_mode = false;
1058 		} else {
1059 			goto out;
1060 		}
1061 	}
1062 
1063 	if (i2c_dev->hw->has_mst_fifo)
1064 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1065 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1066 	else
1067 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1068 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1069 out:
1070 	i2c_writel(i2c_dev, val, reg);
1071 }
1072 
tegra_i2c_poll_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1073 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1074 					       struct completion *complete,
1075 					       unsigned int timeout_ms)
1076 {
1077 	ktime_t ktime = ktime_get();
1078 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1079 
1080 	do {
1081 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1082 
1083 		if (status)
1084 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1085 
1086 		if (completion_done(complete)) {
1087 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1088 
1089 			return msecs_to_jiffies(delta) ?: 1;
1090 		}
1091 
1092 		ktime = ktime_get();
1093 
1094 	} while (ktime_before(ktime, ktimeout));
1095 
1096 	return 0;
1097 }
1098 
tegra_i2c_wait_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1099 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1100 					       struct completion *complete,
1101 					       unsigned int timeout_ms)
1102 {
1103 	unsigned long ret;
1104 
1105 	if (i2c_dev->atomic_mode) {
1106 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1107 	} else {
1108 		enable_irq(i2c_dev->irq);
1109 		ret = wait_for_completion_timeout(complete,
1110 						  msecs_to_jiffies(timeout_ms));
1111 		disable_irq(i2c_dev->irq);
1112 
1113 		/*
1114 		 * Under some rare circumstances (like running KASAN +
1115 		 * NFS root) CPU, which handles interrupt, may stuck in
1116 		 * uninterruptible state for a significant time.  In this
1117 		 * case we will get timeout if I2C transfer is running on
1118 		 * a sibling CPU, despite of IRQ being raised.
1119 		 *
1120 		 * In order to handle this rare condition, the IRQ status
1121 		 * needs to be checked after timeout.
1122 		 */
1123 		if (ret == 0)
1124 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1125 	}
1126 
1127 	return ret;
1128 }
1129 
tegra_i2c_issue_bus_clear(struct i2c_adapter * adap)1130 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1131 {
1132 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1133 	u32 val, time_left;
1134 	int err;
1135 
1136 	reinit_completion(&i2c_dev->msg_complete);
1137 
1138 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1139 	      I2C_BC_TERMINATE;
1140 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1141 
1142 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1143 	if (err)
1144 		return err;
1145 
1146 	val |= I2C_BC_ENABLE;
1147 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1148 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1149 
1150 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1151 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1152 
1153 	if (time_left == 0) {
1154 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1155 		return -ETIMEDOUT;
1156 	}
1157 
1158 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1159 	if (!(val & I2C_BC_STATUS)) {
1160 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1161 		return -EIO;
1162 	}
1163 
1164 	return -EAGAIN;
1165 }
1166 
tegra_i2c_push_packet_header(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1167 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1168 					 struct i2c_msg *msg,
1169 					 enum msg_end_type end_state)
1170 {
1171 	u32 *dma_buf = i2c_dev->dma_buf;
1172 	u32 packet_header;
1173 
1174 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1175 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1176 				   PACKET_HEADER0_PROTOCOL_I2C) |
1177 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1178 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1179 
1180 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1181 		*dma_buf++ = packet_header;
1182 	else
1183 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1184 
1185 	packet_header = i2c_dev->msg_len - 1;
1186 
1187 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1188 		*dma_buf++ = packet_header;
1189 	else
1190 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1191 
1192 	packet_header = I2C_HEADER_IE_ENABLE;
1193 
1194 	if (end_state == MSG_END_CONTINUE)
1195 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1196 	else if (end_state == MSG_END_REPEAT_START)
1197 		packet_header |= I2C_HEADER_REPEAT_START;
1198 
1199 	if (msg->flags & I2C_M_TEN) {
1200 		packet_header |= msg->addr;
1201 		packet_header |= I2C_HEADER_10BIT_ADDR;
1202 	} else {
1203 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1204 	}
1205 
1206 	if (msg->flags & I2C_M_IGNORE_NAK)
1207 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1208 
1209 	if (msg->flags & I2C_M_RD)
1210 		packet_header |= I2C_HEADER_READ;
1211 
1212 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1213 		*dma_buf++ = packet_header;
1214 	else
1215 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1216 }
1217 
tegra_i2c_error_recover(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg)1218 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1219 				   struct i2c_msg *msg)
1220 {
1221 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1222 		return 0;
1223 
1224 	tegra_i2c_init(i2c_dev);
1225 
1226 	/* start recovery upon arbitration loss in single master mode */
1227 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1228 		if (!i2c_dev->multimaster_mode)
1229 			return i2c_recover_bus(&i2c_dev->adapter);
1230 
1231 		return -EAGAIN;
1232 	}
1233 
1234 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1235 		if (msg->flags & I2C_M_IGNORE_NAK)
1236 			return 0;
1237 
1238 		return -EREMOTEIO;
1239 	}
1240 
1241 	return -EIO;
1242 }
1243 
tegra_i2c_xfer_msg(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1244 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1245 			      struct i2c_msg *msg,
1246 			      enum msg_end_type end_state)
1247 {
1248 	unsigned long time_left, xfer_time = 100;
1249 	size_t xfer_size;
1250 	u32 int_mask;
1251 	int err;
1252 
1253 	err = tegra_i2c_flush_fifos(i2c_dev);
1254 	if (err)
1255 		return err;
1256 
1257 	i2c_dev->msg_buf = msg->buf;
1258 	i2c_dev->msg_len = msg->len;
1259 
1260 	i2c_dev->msg_err = I2C_ERR_NONE;
1261 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1262 	reinit_completion(&i2c_dev->msg_complete);
1263 
1264 	/*
1265 	 * For SMBUS block read command, read only 1 byte in the first transfer.
1266 	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1267 	 * length.
1268 	 */
1269 	if (msg->flags & I2C_M_RECV_LEN) {
1270 		if (end_state == MSG_END_CONTINUE) {
1271 			i2c_dev->msg_len = 1;
1272 		} else {
1273 			i2c_dev->msg_buf += 1;
1274 			i2c_dev->msg_len -= 1;
1275 		}
1276 	}
1277 
1278 	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1279 
1280 	if (i2c_dev->msg_read)
1281 		xfer_size = i2c_dev->msg_len;
1282 	else
1283 		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1284 
1285 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1286 
1287 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1288 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1289 
1290 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1291 
1292 	/*
1293 	 * Transfer time in mSec = Total bits / transfer rate
1294 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1295 	 */
1296 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1297 				       i2c_dev->timings.bus_freq_hz);
1298 
1299 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1300 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1301 
1302 	if (i2c_dev->dma_mode) {
1303 		if (i2c_dev->msg_read) {
1304 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1305 			if (err)
1306 				return err;
1307 		}
1308 	}
1309 
1310 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1311 
1312 	if (!i2c_dev->msg_read) {
1313 		if (i2c_dev->dma_mode) {
1314 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1315 			       msg->buf, i2c_dev->msg_len);
1316 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1317 			if (err)
1318 				return err;
1319 		} else {
1320 			tegra_i2c_fill_tx_fifo(i2c_dev);
1321 		}
1322 	}
1323 
1324 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1325 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1326 
1327 	if (!i2c_dev->dma_mode) {
1328 		if (msg->flags & I2C_M_RD)
1329 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1330 		else if (i2c_dev->msg_buf_remaining)
1331 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1332 	}
1333 
1334 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1335 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1336 		i2c_readl(i2c_dev, I2C_INT_MASK));
1337 
1338 	if (i2c_dev->dma_mode) {
1339 		time_left = tegra_i2c_wait_completion(i2c_dev,
1340 						      &i2c_dev->dma_complete,
1341 						      xfer_time);
1342 
1343 		/*
1344 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1345 		 * performs synchronization after the transfer's termination
1346 		 * and we want to get a completion if transfer succeeded.
1347 		 */
1348 		dmaengine_synchronize(i2c_dev->dma_chan);
1349 		dmaengine_terminate_sync(i2c_dev->dma_chan);
1350 
1351 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1352 			tegra_i2c_init(i2c_dev);
1353 			return -ETIMEDOUT;
1354 		}
1355 
1356 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE)
1357 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1358 	}
1359 
1360 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1361 					      xfer_time);
1362 
1363 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1364 
1365 	if (time_left == 0) {
1366 		tegra_i2c_init(i2c_dev);
1367 		return -ETIMEDOUT;
1368 	}
1369 
1370 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1371 		time_left, completion_done(&i2c_dev->msg_complete),
1372 		i2c_dev->msg_err);
1373 
1374 	i2c_dev->dma_mode = false;
1375 
1376 	err = tegra_i2c_error_recover(i2c_dev, msg);
1377 	if (err)
1378 		return err;
1379 
1380 	return 0;
1381 }
1382 
tegra_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1383 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1384 			  int num)
1385 {
1386 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1387 	int i, ret;
1388 
1389 	ret = pm_runtime_get_sync(i2c_dev->dev);
1390 	if (ret < 0) {
1391 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1392 		pm_runtime_put_noidle(i2c_dev->dev);
1393 		return ret;
1394 	}
1395 
1396 	for (i = 0; i < num; i++) {
1397 		enum msg_end_type end_type = MSG_END_STOP;
1398 
1399 		if (i < (num - 1)) {
1400 			/* check whether follow up message is coming */
1401 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1402 				end_type = MSG_END_CONTINUE;
1403 			else
1404 				end_type = MSG_END_REPEAT_START;
1405 		}
1406 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1407 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1408 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1409 			if (ret)
1410 				break;
1411 
1412 			/* Validate message length before proceeding */
1413 			if (msgs[i].buf[0] == 0 || msgs[i].buf[0] > I2C_SMBUS_BLOCK_MAX)
1414 				break;
1415 
1416 			/* Set the msg length from first byte */
1417 			msgs[i].len += msgs[i].buf[0];
1418 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1419 		}
1420 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1421 		if (ret)
1422 			break;
1423 	}
1424 
1425 	pm_runtime_put(i2c_dev->dev);
1426 
1427 	return ret ?: i;
1428 }
1429 
tegra_i2c_xfer_atomic(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1430 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1431 				 struct i2c_msg msgs[], int num)
1432 {
1433 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1434 	int ret;
1435 
1436 	i2c_dev->atomic_mode = true;
1437 	ret = tegra_i2c_xfer(adap, msgs, num);
1438 	i2c_dev->atomic_mode = false;
1439 
1440 	return ret;
1441 }
1442 
tegra_i2c_func(struct i2c_adapter * adap)1443 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1444 {
1445 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1446 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1447 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1448 
1449 	if (i2c_dev->hw->has_continue_xfer_support)
1450 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1451 
1452 	return ret;
1453 }
1454 
1455 static const struct i2c_algorithm tegra_i2c_algo = {
1456 	.xfer = tegra_i2c_xfer,
1457 	.xfer_atomic = tegra_i2c_xfer_atomic,
1458 	.functionality = tegra_i2c_func,
1459 };
1460 
1461 /* payload size is only 12 bit */
1462 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1463 	.flags = I2C_AQ_NO_ZERO_LEN,
1464 	.max_read_len = SZ_4K,
1465 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1466 };
1467 
1468 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1469 	.flags = I2C_AQ_NO_ZERO_LEN,
1470 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1471 };
1472 
1473 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1474 	.recover_bus = tegra_i2c_issue_bus_clear,
1475 };
1476 
1477 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1478 	.has_continue_xfer_support = false,
1479 	.has_per_pkt_xfer_complete_irq = false,
1480 	.clk_divisor_hs_mode = 3,
1481 	.clk_divisor_std_mode = 0,
1482 	.clk_divisor_fast_mode = 0,
1483 	.clk_divisor_fast_plus_mode = 0,
1484 	.has_config_load_reg = false,
1485 	.has_multi_master_mode = false,
1486 	.has_slcg_override_reg = false,
1487 	.has_mst_fifo = false,
1488 	.has_mst_reset = false,
1489 	.quirks = &tegra_i2c_quirks,
1490 	.supports_bus_clear = false,
1491 	.has_apb_dma = true,
1492 	.tlow_std_mode = 0x4,
1493 	.thigh_std_mode = 0x2,
1494 	.tlow_fast_fastplus_mode = 0x4,
1495 	.thigh_fast_fastplus_mode = 0x2,
1496 	.setup_hold_time_std_mode = 0x0,
1497 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1498 	.setup_hold_time_hs_mode = 0x0,
1499 	.has_interface_timing_reg = false,
1500 };
1501 
1502 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1503 	.has_continue_xfer_support = true,
1504 	.has_per_pkt_xfer_complete_irq = false,
1505 	.clk_divisor_hs_mode = 3,
1506 	.clk_divisor_std_mode = 0,
1507 	.clk_divisor_fast_mode = 0,
1508 	.clk_divisor_fast_plus_mode = 0,
1509 	.has_config_load_reg = false,
1510 	.has_multi_master_mode = false,
1511 	.has_slcg_override_reg = false,
1512 	.has_mst_fifo = false,
1513 	.has_mst_reset = false,
1514 	.quirks = &tegra_i2c_quirks,
1515 	.supports_bus_clear = false,
1516 	.has_apb_dma = true,
1517 	.tlow_std_mode = 0x4,
1518 	.thigh_std_mode = 0x2,
1519 	.tlow_fast_fastplus_mode = 0x4,
1520 	.thigh_fast_fastplus_mode = 0x2,
1521 	.setup_hold_time_std_mode = 0x0,
1522 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1523 	.setup_hold_time_hs_mode = 0x0,
1524 	.has_interface_timing_reg = false,
1525 };
1526 
1527 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1528 	.has_continue_xfer_support = true,
1529 	.has_per_pkt_xfer_complete_irq = true,
1530 	.clk_divisor_hs_mode = 1,
1531 	.clk_divisor_std_mode = 0x19,
1532 	.clk_divisor_fast_mode = 0x19,
1533 	.clk_divisor_fast_plus_mode = 0x10,
1534 	.has_config_load_reg = false,
1535 	.has_multi_master_mode = false,
1536 	.has_slcg_override_reg = false,
1537 	.has_mst_fifo = false,
1538 	.has_mst_reset = false,
1539 	.quirks = &tegra_i2c_quirks,
1540 	.supports_bus_clear = true,
1541 	.has_apb_dma = true,
1542 	.tlow_std_mode = 0x4,
1543 	.thigh_std_mode = 0x2,
1544 	.tlow_fast_fastplus_mode = 0x4,
1545 	.thigh_fast_fastplus_mode = 0x2,
1546 	.setup_hold_time_std_mode = 0x0,
1547 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1548 	.setup_hold_time_hs_mode = 0x0,
1549 	.has_interface_timing_reg = false,
1550 };
1551 
1552 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1553 	.has_continue_xfer_support = true,
1554 	.has_per_pkt_xfer_complete_irq = true,
1555 	.clk_divisor_hs_mode = 1,
1556 	.clk_divisor_std_mode = 0x19,
1557 	.clk_divisor_fast_mode = 0x19,
1558 	.clk_divisor_fast_plus_mode = 0x10,
1559 	.has_config_load_reg = true,
1560 	.has_multi_master_mode = false,
1561 	.has_slcg_override_reg = true,
1562 	.has_mst_fifo = false,
1563 	.has_mst_reset = false,
1564 	.quirks = &tegra_i2c_quirks,
1565 	.supports_bus_clear = true,
1566 	.has_apb_dma = true,
1567 	.tlow_std_mode = 0x4,
1568 	.thigh_std_mode = 0x2,
1569 	.tlow_fast_fastplus_mode = 0x4,
1570 	.thigh_fast_fastplus_mode = 0x2,
1571 	.setup_hold_time_std_mode = 0x0,
1572 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1573 	.setup_hold_time_hs_mode = 0x0,
1574 	.has_interface_timing_reg = true,
1575 };
1576 
1577 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1578 	.has_continue_xfer_support = true,
1579 	.has_per_pkt_xfer_complete_irq = true,
1580 	.clk_divisor_hs_mode = 1,
1581 	.clk_divisor_std_mode = 0x19,
1582 	.clk_divisor_fast_mode = 0x19,
1583 	.clk_divisor_fast_plus_mode = 0x10,
1584 	.has_config_load_reg = true,
1585 	.has_multi_master_mode = false,
1586 	.has_slcg_override_reg = true,
1587 	.has_mst_fifo = false,
1588 	.has_mst_reset = false,
1589 	.quirks = &tegra_i2c_quirks,
1590 	.supports_bus_clear = true,
1591 	.has_apb_dma = true,
1592 	.tlow_std_mode = 0x4,
1593 	.thigh_std_mode = 0x2,
1594 	.tlow_fast_fastplus_mode = 0x4,
1595 	.thigh_fast_fastplus_mode = 0x2,
1596 	.setup_hold_time_std_mode = 0,
1597 	.setup_hold_time_fast_fast_plus_mode = 0,
1598 	.setup_hold_time_hs_mode = 0,
1599 	.has_interface_timing_reg = true,
1600 };
1601 
1602 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1603 	.has_continue_xfer_support = true,
1604 	.has_per_pkt_xfer_complete_irq = true,
1605 	.clk_divisor_hs_mode = 1,
1606 	.clk_divisor_std_mode = 0x16,
1607 	.clk_divisor_fast_mode = 0x19,
1608 	.clk_divisor_fast_plus_mode = 0x10,
1609 	.has_config_load_reg = true,
1610 	.has_multi_master_mode = false,
1611 	.has_slcg_override_reg = true,
1612 	.has_mst_fifo = false,
1613 	.has_mst_reset = false,
1614 	.quirks = &tegra_i2c_quirks,
1615 	.supports_bus_clear = true,
1616 	.has_apb_dma = false,
1617 	.tlow_std_mode = 0x4,
1618 	.thigh_std_mode = 0x3,
1619 	.tlow_fast_fastplus_mode = 0x4,
1620 	.thigh_fast_fastplus_mode = 0x2,
1621 	.setup_hold_time_std_mode = 0,
1622 	.setup_hold_time_fast_fast_plus_mode = 0,
1623 	.setup_hold_time_hs_mode = 0,
1624 	.has_interface_timing_reg = true,
1625 };
1626 
1627 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1628 	.has_continue_xfer_support = true,
1629 	.has_per_pkt_xfer_complete_irq = true,
1630 	.clk_divisor_hs_mode = 1,
1631 	.clk_divisor_std_mode = 0x4f,
1632 	.clk_divisor_fast_mode = 0x3c,
1633 	.clk_divisor_fast_plus_mode = 0x16,
1634 	.has_config_load_reg = true,
1635 	.has_multi_master_mode = true,
1636 	.has_slcg_override_reg = true,
1637 	.has_mst_fifo = true,
1638 	.has_mst_reset = true,
1639 	.quirks = &tegra194_i2c_quirks,
1640 	.supports_bus_clear = true,
1641 	.has_apb_dma = false,
1642 	.tlow_std_mode = 0x8,
1643 	.thigh_std_mode = 0x7,
1644 	.tlow_fast_fastplus_mode = 0x2,
1645 	.thigh_fast_fastplus_mode = 0x2,
1646 	.setup_hold_time_std_mode = 0x08080808,
1647 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1648 	.setup_hold_time_hs_mode = 0x090909,
1649 	.has_interface_timing_reg = true,
1650 };
1651 
1652 static const struct of_device_id tegra_i2c_of_match[] = {
1653 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1654 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1655 #if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1656 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1657 #endif
1658 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1659 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1660 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1661 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1662 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1663 #if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1664 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1665 #endif
1666 	{},
1667 };
1668 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1669 
tegra_i2c_parse_dt(struct tegra_i2c_dev * i2c_dev)1670 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1671 {
1672 	struct device_node *np = i2c_dev->dev->of_node;
1673 	bool multi_mode;
1674 
1675 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1676 
1677 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1678 	i2c_dev->multimaster_mode = multi_mode;
1679 
1680 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1681 	    of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1682 		i2c_dev->is_dvc = true;
1683 
1684 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1685 	    of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1686 		i2c_dev->is_vi = true;
1687 }
1688 
tegra_i2c_init_clocks(struct tegra_i2c_dev * i2c_dev)1689 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1690 {
1691 	int err;
1692 
1693 	if (ACPI_HANDLE(i2c_dev->dev))
1694 		return 0;
1695 
1696 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1697 
1698 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1699 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1700 
1701 	if (IS_VI(i2c_dev))
1702 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1703 
1704 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1705 				i2c_dev->clocks);
1706 	if (err)
1707 		return err;
1708 
1709 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1710 	if (err)
1711 		return err;
1712 
1713 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1714 
1715 	if (!i2c_dev->multimaster_mode)
1716 		return 0;
1717 
1718 	err = clk_enable(i2c_dev->div_clk);
1719 	if (err) {
1720 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1721 		goto unprepare_clocks;
1722 	}
1723 
1724 	return 0;
1725 
1726 unprepare_clocks:
1727 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1728 
1729 	return err;
1730 }
1731 
tegra_i2c_release_clocks(struct tegra_i2c_dev * i2c_dev)1732 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1733 {
1734 	if (i2c_dev->multimaster_mode)
1735 		clk_disable(i2c_dev->div_clk);
1736 
1737 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1738 }
1739 
tegra_i2c_init_hardware(struct tegra_i2c_dev * i2c_dev)1740 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1741 {
1742 	int ret;
1743 
1744 	ret = pm_runtime_get_sync(i2c_dev->dev);
1745 	if (ret < 0)
1746 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1747 	else
1748 		ret = tegra_i2c_init(i2c_dev);
1749 
1750 	pm_runtime_put_sync(i2c_dev->dev);
1751 
1752 	return ret;
1753 }
1754 
tegra_i2c_probe(struct platform_device * pdev)1755 static int tegra_i2c_probe(struct platform_device *pdev)
1756 {
1757 	struct tegra_i2c_dev *i2c_dev;
1758 	struct resource *res;
1759 	int err;
1760 
1761 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1762 	if (!i2c_dev)
1763 		return -ENOMEM;
1764 
1765 	platform_set_drvdata(pdev, i2c_dev);
1766 
1767 	init_completion(&i2c_dev->msg_complete);
1768 	init_completion(&i2c_dev->dma_complete);
1769 
1770 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1771 	i2c_dev->cont_id = pdev->id;
1772 	i2c_dev->dev = &pdev->dev;
1773 
1774 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1775 	if (IS_ERR(i2c_dev->base))
1776 		return PTR_ERR(i2c_dev->base);
1777 
1778 	i2c_dev->base_phys = res->start;
1779 
1780 	err = platform_get_irq(pdev, 0);
1781 	if (err < 0)
1782 		return err;
1783 
1784 	i2c_dev->irq = err;
1785 
1786 	/* interrupt will be enabled during of transfer time */
1787 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1788 
1789 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1790 					NULL, tegra_i2c_isr,
1791 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1792 					dev_name(i2c_dev->dev), i2c_dev);
1793 	if (err)
1794 		return err;
1795 
1796 	tegra_i2c_parse_dt(i2c_dev);
1797 
1798 	err = tegra_i2c_init_clocks(i2c_dev);
1799 	if (err)
1800 		return err;
1801 
1802 	err = tegra_i2c_init_dma(i2c_dev);
1803 	if (err)
1804 		goto release_clocks;
1805 
1806 	/*
1807 	 * VI I2C is in VE power domain which is not always ON and not
1808 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1809 	 * non IRQ-safe domain because this prevents powering off the power
1810 	 * domain.
1811 	 *
1812 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1813 	 * be used for atomic transfers. ACPI device is not IRQ safe also.
1814 	 */
1815 	if (!IS_VI(i2c_dev) && !has_acpi_companion(i2c_dev->dev))
1816 		pm_runtime_irq_safe(i2c_dev->dev);
1817 
1818 	pm_runtime_enable(i2c_dev->dev);
1819 
1820 	err = tegra_i2c_init_hardware(i2c_dev);
1821 	if (err)
1822 		goto release_rpm;
1823 
1824 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1825 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1826 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1827 	i2c_dev->adapter.retries = 1;
1828 	i2c_dev->adapter.timeout = 6 * HZ;
1829 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1830 	i2c_dev->adapter.owner = THIS_MODULE;
1831 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1832 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1833 	i2c_dev->adapter.nr = pdev->id;
1834 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1835 
1836 	if (i2c_dev->hw->supports_bus_clear)
1837 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1838 
1839 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1840 		sizeof(i2c_dev->adapter.name));
1841 
1842 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1843 	if (err)
1844 		goto release_rpm;
1845 
1846 	return 0;
1847 
1848 release_rpm:
1849 	pm_runtime_disable(i2c_dev->dev);
1850 
1851 	tegra_i2c_release_dma(i2c_dev);
1852 release_clocks:
1853 	tegra_i2c_release_clocks(i2c_dev);
1854 
1855 	return err;
1856 }
1857 
tegra_i2c_remove(struct platform_device * pdev)1858 static void tegra_i2c_remove(struct platform_device *pdev)
1859 {
1860 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1861 
1862 	i2c_del_adapter(&i2c_dev->adapter);
1863 	pm_runtime_force_suspend(i2c_dev->dev);
1864 
1865 	tegra_i2c_release_dma(i2c_dev);
1866 	tegra_i2c_release_clocks(i2c_dev);
1867 }
1868 
tegra_i2c_runtime_resume(struct device * dev)1869 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1870 {
1871 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1872 	int err;
1873 
1874 	err = pinctrl_pm_select_default_state(dev);
1875 	if (err)
1876 		return err;
1877 
1878 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1879 	if (err)
1880 		return err;
1881 
1882 	/*
1883 	 * VI I2C device is attached to VE power domain which goes through
1884 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1885 	 * controller needs to be re-initialized after power ON.
1886 	 */
1887 	if (IS_VI(i2c_dev)) {
1888 		err = tegra_i2c_init(i2c_dev);
1889 		if (err)
1890 			goto disable_clocks;
1891 	}
1892 
1893 	return 0;
1894 
1895 disable_clocks:
1896 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1897 
1898 	return err;
1899 }
1900 
tegra_i2c_runtime_suspend(struct device * dev)1901 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1902 {
1903 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1904 
1905 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1906 
1907 	return pinctrl_pm_select_idle_state(dev);
1908 }
1909 
tegra_i2c_suspend(struct device * dev)1910 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1911 {
1912 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1913 	int err;
1914 
1915 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1916 
1917 	if (!pm_runtime_status_suspended(dev)) {
1918 		err = tegra_i2c_runtime_suspend(dev);
1919 		if (err)
1920 			return err;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
tegra_i2c_resume(struct device * dev)1926 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1927 {
1928 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1929 	int err;
1930 
1931 	/*
1932 	 * We need to ensure that clocks are enabled so that registers can be
1933 	 * restored in tegra_i2c_init().
1934 	 */
1935 	err = tegra_i2c_runtime_resume(dev);
1936 	if (err)
1937 		return err;
1938 
1939 	err = tegra_i2c_init(i2c_dev);
1940 	if (err)
1941 		return err;
1942 
1943 	/*
1944 	 * In case we are runtime suspended, disable clocks again so that we
1945 	 * don't unbalance the clock reference counts during the next runtime
1946 	 * resume transition.
1947 	 */
1948 	if (pm_runtime_status_suspended(dev)) {
1949 		err = tegra_i2c_runtime_suspend(dev);
1950 		if (err)
1951 			return err;
1952 	}
1953 
1954 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1955 
1956 	return 0;
1957 }
1958 
1959 static const struct dev_pm_ops tegra_i2c_pm = {
1960 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1961 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1962 			   NULL)
1963 };
1964 
1965 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1966 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1967 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1968 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1969 	{ }
1970 };
1971 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1972 
1973 static struct platform_driver tegra_i2c_driver = {
1974 	.probe = tegra_i2c_probe,
1975 	.remove = tegra_i2c_remove,
1976 	.driver = {
1977 		.name = "tegra-i2c",
1978 		.of_match_table = tegra_i2c_of_match,
1979 		.acpi_match_table = tegra_i2c_acpi_match,
1980 		.pm = &tegra_i2c_pm,
1981 	},
1982 };
1983 module_platform_driver(tegra_i2c_driver);
1984 
1985 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1986 MODULE_AUTHOR("Colin Cross");
1987 MODULE_LICENSE("GPL v2");
1988