1 /*
2 * Copyright 2011-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * AES low level APIs are deprecated for public use, but still ok for internal
12 * use where we're using them to implement the higher level EVP interface, as is
13 * the case here.
14 */
15 #include "internal/deprecated.h"
16
17 #include <stdio.h>
18 #include <string.h>
19 #include <openssl/opensslconf.h>
20 #include <openssl/evp.h>
21 #include <openssl/objects.h>
22 #include <openssl/aes.h>
23 #include <openssl/sha.h>
24 #include <openssl/rand.h>
25 #include "internal/cryptlib.h"
26 #include "crypto/modes.h"
27 #include "crypto/evp.h"
28 #include "internal/constant_time.h"
29 #include "evp_local.h"
30
31 typedef struct {
32 AES_KEY ks;
33 SHA_CTX head, tail, md;
34 size_t payload_length; /* AAD length in decrypt case */
35 union {
36 unsigned int tls_ver;
37 unsigned char tls_aad[16]; /* 13 used */
38 } aux;
39 } EVP_AES_HMAC_SHA1;
40
41 #define NO_PAYLOAD_LENGTH ((size_t)-1)
42
43 #if defined(AES_ASM) && (defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64))
44
45 #define AESNI_CAPABLE (1 << (57 - 32))
46
47 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
48 AES_KEY *key);
49 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
50 AES_KEY *key);
51
52 void aesni_cbc_encrypt(const unsigned char *in,
53 unsigned char *out,
54 size_t length,
55 const AES_KEY *key, unsigned char *ivec, int enc);
56
57 void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
58 const AES_KEY *key, unsigned char iv[16],
59 SHA_CTX *ctx, const void *in0);
60
61 void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
62 const AES_KEY *key, unsigned char iv[16],
63 SHA_CTX *ctx, const void *in0);
64
65 #define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
66
aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX * ctx,const unsigned char * inkey,const unsigned char * iv,int enc)67 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
68 const unsigned char *inkey,
69 const unsigned char *iv, int enc)
70 {
71 EVP_AES_HMAC_SHA1 *key = data(ctx);
72 int ret;
73 const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
74
75 if (keylen <= 0) {
76 ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
77 return 0;
78 }
79 if (enc)
80 ret = aesni_set_encrypt_key(inkey, keylen, &key->ks);
81 else
82 ret = aesni_set_decrypt_key(inkey, keylen, &key->ks);
83
84 SHA1_Init(&key->head); /* handy when benchmarking */
85 key->tail = key->head;
86 key->md = key->head;
87
88 key->payload_length = NO_PAYLOAD_LENGTH;
89
90 return ret < 0 ? 0 : 1;
91 }
92
93 #define STITCHED_CALL
94 #undef STITCHED_DECRYPT_CALL
95
96 #if !defined(STITCHED_CALL)
97 #define aes_off 0
98 #endif
99
100 void sha1_block_data_order(void *c, const void *p, size_t len);
101
sha1_update(SHA_CTX * c,const void * data,size_t len)102 static void sha1_update(SHA_CTX *c, const void *data, size_t len)
103 {
104 const unsigned char *ptr = data;
105 size_t res;
106
107 if ((res = c->num)) {
108 res = SHA_CBLOCK - res;
109 if (len < res)
110 res = len;
111 SHA1_Update(c, ptr, res);
112 ptr += res;
113 len -= res;
114 }
115
116 res = len % SHA_CBLOCK;
117 len -= res;
118
119 if (len) {
120 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
121
122 ptr += len;
123 c->Nh += len >> 29;
124 c->Nl += len <<= 3;
125 if (c->Nl < (unsigned int)len)
126 c->Nh++;
127 }
128
129 if (res)
130 SHA1_Update(c, ptr, res);
131 }
132
133 #ifdef SHA1_Update
134 #undef SHA1_Update
135 #endif
136 #define SHA1_Update sha1_update
137
138 #if !defined(OPENSSL_NO_MULTIBLOCK)
139
140 typedef struct {
141 unsigned int A[8], B[8], C[8], D[8], E[8];
142 } SHA1_MB_CTX;
143 typedef struct {
144 const unsigned char *ptr;
145 int blocks;
146 } HASH_DESC;
147
148 void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
149
150 typedef struct {
151 const unsigned char *inp;
152 unsigned char *out;
153 int blocks;
154 u64 iv[2];
155 } CIPH_DESC;
156
157 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
158
tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 * key,unsigned char * out,const unsigned char * inp,size_t inp_len,int n4x)159 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
160 unsigned char *out,
161 const unsigned char *inp,
162 size_t inp_len, int n4x)
163 { /* n4x is 1 or 2 */
164 HASH_DESC hash_d[8], edges[8];
165 CIPH_DESC ciph_d[8];
166 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
167 union {
168 u64 q[16];
169 u32 d[32];
170 u8 c[128];
171 } blocks[8];
172 SHA1_MB_CTX *ctx;
173 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed = 0;
174 size_t ret = 0;
175 u8 *IVs;
176 #if defined(BSWAP8)
177 u64 seqnum;
178 #endif
179
180 /* ask for IVs in bulk */
181 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
182 return 0;
183
184 ctx = (SHA1_MB_CTX *)(storage + 32 - ((size_t)storage % 32)); /* align */
185
186 frag = (unsigned int)inp_len >> (1 + n4x);
187 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
188 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
189 frag++;
190 last -= x4 - 1;
191 }
192
193 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
194
195 /* populate descriptors with pointers and IVs */
196 hash_d[0].ptr = inp;
197 ciph_d[0].inp = inp;
198 /* 5+16 is place for header and explicit IV */
199 ciph_d[0].out = out + 5 + 16;
200 memcpy(ciph_d[0].out - 16, IVs, 16);
201 memcpy(ciph_d[0].iv, IVs, 16);
202 IVs += 16;
203
204 for (i = 1; i < x4; i++) {
205 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
206 ciph_d[i].out = ciph_d[i - 1].out + packlen;
207 memcpy(ciph_d[i].out - 16, IVs, 16);
208 memcpy(ciph_d[i].iv, IVs, 16);
209 IVs += 16;
210 }
211
212 #if defined(BSWAP8)
213 memcpy(blocks[0].c, key->md.data, 8);
214 seqnum = BSWAP8(blocks[0].q[0]);
215 #endif
216 for (i = 0; i < x4; i++) {
217 unsigned int len = (i == (x4 - 1) ? last : frag);
218 #if !defined(BSWAP8)
219 unsigned int carry, j;
220 #endif
221
222 ctx->A[i] = key->md.h0;
223 ctx->B[i] = key->md.h1;
224 ctx->C[i] = key->md.h2;
225 ctx->D[i] = key->md.h3;
226 ctx->E[i] = key->md.h4;
227
228 /* fix seqnum */
229 #if defined(BSWAP8)
230 blocks[i].q[0] = BSWAP8(seqnum + i);
231 #else
232 for (carry = i, j = 8; j--;) {
233 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
234 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
235 }
236 #endif
237 blocks[i].c[8] = ((u8 *)key->md.data)[8];
238 blocks[i].c[9] = ((u8 *)key->md.data)[9];
239 blocks[i].c[10] = ((u8 *)key->md.data)[10];
240 /* fix length */
241 blocks[i].c[11] = (u8)(len >> 8);
242 blocks[i].c[12] = (u8)(len);
243
244 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
245 hash_d[i].ptr += 64 - 13;
246 hash_d[i].blocks = (len - (64 - 13)) / 64;
247
248 edges[i].ptr = blocks[i].c;
249 edges[i].blocks = 1;
250 }
251
252 /* hash 13-byte headers and first 64-13 bytes of inputs */
253 sha1_multi_block(ctx, edges, n4x);
254 /* hash bulk inputs */
255 #define MAXCHUNKSIZE 2048
256 #if MAXCHUNKSIZE % 64
257 #error "MAXCHUNKSIZE is not divisible by 64"
258 #elif MAXCHUNKSIZE
259 /*
260 * goal is to minimize pressure on L1 cache by moving in shorter steps,
261 * so that hashed data is still in the cache by the time we encrypt it
262 */
263 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
264 if (minblocks > MAXCHUNKSIZE / 64) {
265 for (i = 0; i < x4; i++) {
266 edges[i].ptr = hash_d[i].ptr;
267 edges[i].blocks = MAXCHUNKSIZE / 64;
268 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
269 }
270 do {
271 sha1_multi_block(ctx, edges, n4x);
272 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
273
274 for (i = 0; i < x4; i++) {
275 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
276 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
277 edges[i].blocks = MAXCHUNKSIZE / 64;
278 ciph_d[i].inp += MAXCHUNKSIZE;
279 ciph_d[i].out += MAXCHUNKSIZE;
280 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
281 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
282 }
283 processed += MAXCHUNKSIZE;
284 minblocks -= MAXCHUNKSIZE / 64;
285 } while (minblocks > MAXCHUNKSIZE / 64);
286 }
287 #endif
288 #undef MAXCHUNKSIZE
289 sha1_multi_block(ctx, hash_d, n4x);
290
291 memset(blocks, 0, sizeof(blocks));
292 for (i = 0; i < x4; i++) {
293 unsigned int len = (i == (x4 - 1) ? last : frag),
294 off = hash_d[i].blocks * 64;
295 const unsigned char *ptr = hash_d[i].ptr + off;
296
297 off = (len - processed) - (64 - 13) - off; /* remainder actually */
298 memcpy(blocks[i].c, ptr, off);
299 blocks[i].c[off] = 0x80;
300 len += 64 + 13; /* 64 is HMAC header */
301 len *= 8; /* convert to bits */
302 if (off < (64 - 8)) {
303 #ifdef BSWAP4
304 blocks[i].d[15] = BSWAP4(len);
305 #else
306 PUTU32(blocks[i].c + 60, len);
307 #endif
308 edges[i].blocks = 1;
309 } else {
310 #ifdef BSWAP4
311 blocks[i].d[31] = BSWAP4(len);
312 #else
313 PUTU32(blocks[i].c + 124, len);
314 #endif
315 edges[i].blocks = 2;
316 }
317 edges[i].ptr = blocks[i].c;
318 }
319
320 /* hash input tails and finalize */
321 sha1_multi_block(ctx, edges, n4x);
322
323 memset(blocks, 0, sizeof(blocks));
324 for (i = 0; i < x4; i++) {
325 #ifdef BSWAP4
326 blocks[i].d[0] = BSWAP4(ctx->A[i]);
327 ctx->A[i] = key->tail.h0;
328 blocks[i].d[1] = BSWAP4(ctx->B[i]);
329 ctx->B[i] = key->tail.h1;
330 blocks[i].d[2] = BSWAP4(ctx->C[i]);
331 ctx->C[i] = key->tail.h2;
332 blocks[i].d[3] = BSWAP4(ctx->D[i]);
333 ctx->D[i] = key->tail.h3;
334 blocks[i].d[4] = BSWAP4(ctx->E[i]);
335 ctx->E[i] = key->tail.h4;
336 blocks[i].c[20] = 0x80;
337 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
338 #else
339 PUTU32(blocks[i].c + 0, ctx->A[i]);
340 ctx->A[i] = key->tail.h0;
341 PUTU32(blocks[i].c + 4, ctx->B[i]);
342 ctx->B[i] = key->tail.h1;
343 PUTU32(blocks[i].c + 8, ctx->C[i]);
344 ctx->C[i] = key->tail.h2;
345 PUTU32(blocks[i].c + 12, ctx->D[i]);
346 ctx->D[i] = key->tail.h3;
347 PUTU32(blocks[i].c + 16, ctx->E[i]);
348 ctx->E[i] = key->tail.h4;
349 blocks[i].c[20] = 0x80;
350 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
351 #endif
352 edges[i].ptr = blocks[i].c;
353 edges[i].blocks = 1;
354 }
355
356 /* finalize MACs */
357 sha1_multi_block(ctx, edges, n4x);
358
359 for (i = 0; i < x4; i++) {
360 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
361 unsigned char *out0 = out;
362
363 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
364 ciph_d[i].inp = ciph_d[i].out;
365
366 out += 5 + 16 + len;
367
368 /* write MAC */
369 PUTU32(out + 0, ctx->A[i]);
370 PUTU32(out + 4, ctx->B[i]);
371 PUTU32(out + 8, ctx->C[i]);
372 PUTU32(out + 12, ctx->D[i]);
373 PUTU32(out + 16, ctx->E[i]);
374 out += 20;
375 len += 20;
376
377 /* pad */
378 pad = 15 - len % 16;
379 for (j = 0; j <= pad; j++)
380 *(out++) = pad;
381 len += pad + 1;
382
383 ciph_d[i].blocks = (len - processed) / 16;
384 len += 16; /* account for explicit iv */
385
386 /* arrange header */
387 out0[0] = ((u8 *)key->md.data)[8];
388 out0[1] = ((u8 *)key->md.data)[9];
389 out0[2] = ((u8 *)key->md.data)[10];
390 out0[3] = (u8)(len >> 8);
391 out0[4] = (u8)(len);
392
393 ret += len + 5;
394 inp += frag;
395 }
396
397 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
398
399 OPENSSL_cleanse(blocks, sizeof(blocks));
400 OPENSSL_cleanse(ctx, sizeof(*ctx));
401
402 return ret;
403 }
404 #endif
405
aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t len)406 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
407 const unsigned char *in, size_t len)
408 {
409 EVP_AES_HMAC_SHA1 *key = data(ctx);
410 unsigned int l;
411 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
412 * later */
413 sha_off = 0;
414 #if defined(STITCHED_CALL)
415 size_t aes_off = 0, blocks;
416
417 sha_off = SHA_CBLOCK - key->md.num;
418 #endif
419
420 key->payload_length = NO_PAYLOAD_LENGTH;
421
422 if (len % AES_BLOCK_SIZE)
423 return 0;
424
425 if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
426 if (plen == NO_PAYLOAD_LENGTH)
427 plen = len;
428 else if (len != ((plen + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
429 return 0;
430 else if (key->aux.tls_ver >= TLS1_1_VERSION)
431 iv = AES_BLOCK_SIZE;
432
433 #if defined(STITCHED_CALL)
434 if (plen > (sha_off + iv)
435 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
436 SHA1_Update(&key->md, in + iv, sha_off);
437
438 aesni_cbc_sha1_enc(in, out, blocks, &key->ks, ctx->iv,
439 &key->md, in + iv + sha_off);
440 blocks *= SHA_CBLOCK;
441 aes_off += blocks;
442 sha_off += blocks;
443 key->md.Nh += blocks >> 29;
444 key->md.Nl += blocks <<= 3;
445 if (key->md.Nl < (unsigned int)blocks)
446 key->md.Nh++;
447 } else {
448 sha_off = 0;
449 }
450 #endif
451 sha_off += iv;
452 SHA1_Update(&key->md, in + sha_off, plen - sha_off);
453
454 if (plen != len) { /* "TLS" mode of operation */
455 if (in != out)
456 memcpy(out + aes_off, in + aes_off, plen - aes_off);
457
458 /* calculate HMAC and append it to payload */
459 SHA1_Final(out + plen, &key->md);
460 key->md = key->tail;
461 SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
462 SHA1_Final(out + plen, &key->md);
463
464 /* pad the payload|hmac */
465 plen += SHA_DIGEST_LENGTH;
466 for (l = len - plen - 1; plen < len; plen++)
467 out[plen] = l;
468 /* encrypt HMAC|padding at once */
469 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
470 &key->ks, ctx->iv, 1);
471 } else {
472 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
473 &key->ks, ctx->iv, 1);
474 }
475 } else {
476 union {
477 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
478 unsigned char c[32 + SHA_DIGEST_LENGTH];
479 } mac, *pmac;
480
481 /* arrange cache line alignment */
482 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
483
484 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
485 size_t inp_len, mask, j, i;
486 unsigned int res, maxpad, pad, bitlen;
487 int ret = 1;
488 union {
489 unsigned int u[SHA_LBLOCK];
490 unsigned char c[SHA_CBLOCK];
491 } *data = (void *)key->md.data;
492 #if defined(STITCHED_DECRYPT_CALL)
493 unsigned char tail_iv[AES_BLOCK_SIZE];
494 int stitch = 0;
495 const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
496
497 if (keylen <= 0) {
498 ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH);
499 return 0;
500 }
501 #endif
502
503 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
504 >= TLS1_1_VERSION) {
505 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
506 return 0;
507
508 /* omit explicit iv */
509 memcpy(ctx->iv, in, AES_BLOCK_SIZE);
510
511 in += AES_BLOCK_SIZE;
512 out += AES_BLOCK_SIZE;
513 len -= AES_BLOCK_SIZE;
514 } else if (len < (SHA_DIGEST_LENGTH + 1))
515 return 0;
516
517 #if defined(STITCHED_DECRYPT_CALL)
518 if (len >= 1024 && keylen == 32) {
519 /* decrypt last block */
520 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
521 AES_BLOCK_SIZE);
522 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
523 out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
524 &key->ks, tail_iv, 0);
525 stitch = 1;
526 } else
527 #endif
528 /* decrypt HMAC|padding at once */
529 aesni_cbc_encrypt(in, out, len, &key->ks,
530 ctx->iv, 0);
531
532 /* figure out payload length */
533 pad = out[len - 1];
534 maxpad = len - (SHA_DIGEST_LENGTH + 1);
535 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
536 maxpad &= 255;
537
538 mask = constant_time_ge(maxpad, pad);
539 ret &= mask;
540 /*
541 * If pad is invalid then we will fail the above test but we must
542 * continue anyway because we are in constant time code. However,
543 * we'll use the maxpad value instead of the supplied pad to make
544 * sure we perform well defined pointer arithmetic.
545 */
546 pad = constant_time_select(mask, pad, maxpad);
547
548 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
549
550 key->aux.tls_aad[plen - 2] = inp_len >> 8;
551 key->aux.tls_aad[plen - 1] = inp_len;
552
553 /* calculate HMAC */
554 key->md = key->head;
555 SHA1_Update(&key->md, key->aux.tls_aad, plen);
556
557 #if defined(STITCHED_DECRYPT_CALL)
558 if (stitch) {
559 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
560 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
561 sha_off = SHA_CBLOCK - plen;
562
563 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
564
565 SHA1_Update(&key->md, out, sha_off);
566 aesni256_cbc_sha1_dec(in + aes_off,
567 out + aes_off, blocks, &key->ks,
568 ctx->iv, &key->md, out + sha_off);
569
570 sha_off += blocks *= SHA_CBLOCK;
571 out += sha_off;
572 len -= sha_off;
573 inp_len -= sha_off;
574
575 key->md.Nl += (blocks << 3); /* at most 18 bits */
576 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
577 }
578 #endif
579
580 #if 1 /* see original reference version in #else */
581 len -= SHA_DIGEST_LENGTH; /* amend mac */
582 if (len >= (256 + SHA_CBLOCK)) {
583 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
584 j += SHA_CBLOCK - key->md.num;
585 SHA1_Update(&key->md, out, j);
586 out += j;
587 len -= j;
588 inp_len -= j;
589 }
590
591 /* but pretend as if we hashed padded payload */
592 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
593 #ifdef BSWAP4
594 bitlen = BSWAP4(bitlen);
595 #else
596 mac.c[0] = 0;
597 mac.c[1] = (unsigned char)(bitlen >> 16);
598 mac.c[2] = (unsigned char)(bitlen >> 8);
599 mac.c[3] = (unsigned char)bitlen;
600 bitlen = mac.u[0];
601 #endif
602
603 pmac->u[0] = 0;
604 pmac->u[1] = 0;
605 pmac->u[2] = 0;
606 pmac->u[3] = 0;
607 pmac->u[4] = 0;
608
609 for (res = key->md.num, j = 0; j < len; j++) {
610 size_t c = out[j];
611 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
612 c &= mask;
613 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
614 data->c[res++] = (unsigned char)c;
615
616 if (res != SHA_CBLOCK)
617 continue;
618
619 /* j is not incremented yet */
620 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
621 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
622 sha1_block_data_order(&key->md, data, 1);
623 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
624 pmac->u[0] |= key->md.h0 & mask;
625 pmac->u[1] |= key->md.h1 & mask;
626 pmac->u[2] |= key->md.h2 & mask;
627 pmac->u[3] |= key->md.h3 & mask;
628 pmac->u[4] |= key->md.h4 & mask;
629 res = 0;
630 }
631
632 for (i = res; i < SHA_CBLOCK; i++, j++)
633 data->c[i] = 0;
634
635 if (res > SHA_CBLOCK - 8) {
636 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
637 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
638 sha1_block_data_order(&key->md, data, 1);
639 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
640 pmac->u[0] |= key->md.h0 & mask;
641 pmac->u[1] |= key->md.h1 & mask;
642 pmac->u[2] |= key->md.h2 & mask;
643 pmac->u[3] |= key->md.h3 & mask;
644 pmac->u[4] |= key->md.h4 & mask;
645
646 memset(data, 0, SHA_CBLOCK);
647 j += 64;
648 }
649 data->u[SHA_LBLOCK - 1] = bitlen;
650 sha1_block_data_order(&key->md, data, 1);
651 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
652 pmac->u[0] |= key->md.h0 & mask;
653 pmac->u[1] |= key->md.h1 & mask;
654 pmac->u[2] |= key->md.h2 & mask;
655 pmac->u[3] |= key->md.h3 & mask;
656 pmac->u[4] |= key->md.h4 & mask;
657
658 #ifdef BSWAP4
659 pmac->u[0] = BSWAP4(pmac->u[0]);
660 pmac->u[1] = BSWAP4(pmac->u[1]);
661 pmac->u[2] = BSWAP4(pmac->u[2]);
662 pmac->u[3] = BSWAP4(pmac->u[3]);
663 pmac->u[4] = BSWAP4(pmac->u[4]);
664 #else
665 for (i = 0; i < 5; i++) {
666 res = pmac->u[i];
667 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
668 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
669 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
670 pmac->c[4 * i + 3] = (unsigned char)res;
671 }
672 #endif
673 len += SHA_DIGEST_LENGTH;
674 #else /* pre-lucky-13 reference version of above */
675 SHA1_Update(&key->md, out, inp_len);
676 res = key->md.num;
677 SHA1_Final(pmac->c, &key->md);
678
679 {
680 unsigned int inp_blocks, pad_blocks;
681
682 /* but pretend as if we hashed padded payload */
683 inp_blocks = 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
684 res += (unsigned int)(len - inp_len);
685 pad_blocks = res / SHA_CBLOCK;
686 res %= SHA_CBLOCK;
687 pad_blocks += 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
688 for (; inp_blocks < pad_blocks; inp_blocks++)
689 sha1_block_data_order(&key->md, data, 1);
690 }
691 #endif
692 key->md = key->tail;
693 SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
694 SHA1_Final(pmac->c, &key->md);
695
696 /* verify HMAC */
697 out += inp_len;
698 len -= inp_len;
699 #if 1 /* see original reference version in #else */
700 {
701 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
702 size_t off = out - p;
703 unsigned int c, cmask;
704
705 for (res = 0, i = 0, j = 0; j < maxpad + SHA_DIGEST_LENGTH; j++) {
706 c = p[j];
707 cmask = ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) * 8 - 1);
708 res |= (c ^ pad) & ~cmask; /* ... and padding */
709 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
710 res |= (c ^ pmac->c[i]) & cmask;
711 i += 1 & cmask;
712 }
713
714 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
715 ret &= (int)~res;
716 }
717 #else /* pre-lucky-13 reference version of above */
718 for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
719 res |= out[i] ^ pmac->c[i];
720 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
721 ret &= (int)~res;
722
723 /* verify padding */
724 pad = (pad & ~res) | (maxpad & res);
725 out = out + len - 1 - pad;
726 for (res = 0, i = 0; i < pad; i++)
727 res |= out[i] ^ pad;
728
729 res = (0 - res) >> (sizeof(res) * 8 - 1);
730 ret &= (int)~res;
731 #endif
732 return ret;
733 } else {
734 #if defined(STITCHED_DECRYPT_CALL)
735 if (len >= 1024 && keylen == 32) {
736 if (sha_off %= SHA_CBLOCK)
737 blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
738 else
739 blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
740 aes_off = len - blocks * SHA_CBLOCK;
741
742 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
743 SHA1_Update(&key->md, out, sha_off);
744 aesni256_cbc_sha1_dec(in + aes_off,
745 out + aes_off, blocks, &key->ks,
746 ctx->iv, &key->md, out + sha_off);
747
748 sha_off += blocks *= SHA_CBLOCK;
749 out += sha_off;
750 len -= sha_off;
751
752 key->md.Nh += blocks >> 29;
753 key->md.Nl += blocks <<= 3;
754 if (key->md.Nl < (unsigned int)blocks)
755 key->md.Nh++;
756 } else
757 #endif
758 /* decrypt HMAC|padding at once */
759 aesni_cbc_encrypt(in, out, len, &key->ks,
760 ctx->iv, 0);
761
762 SHA1_Update(&key->md, out, len);
763 }
764 }
765
766 return 1;
767 }
768
aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr)769 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
770 void *ptr)
771 {
772 EVP_AES_HMAC_SHA1 *key = data(ctx);
773
774 switch (type) {
775 case EVP_CTRL_AEAD_SET_MAC_KEY: {
776 unsigned int i;
777 unsigned char hmac_key[64];
778
779 memset(hmac_key, 0, sizeof(hmac_key));
780
781 if (arg > (int)sizeof(hmac_key)) {
782 SHA1_Init(&key->head);
783 SHA1_Update(&key->head, ptr, arg);
784 SHA1_Final(hmac_key, &key->head);
785 } else {
786 memcpy(hmac_key, ptr, arg);
787 }
788
789 for (i = 0; i < sizeof(hmac_key); i++)
790 hmac_key[i] ^= 0x36; /* ipad */
791 SHA1_Init(&key->head);
792 SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
793
794 for (i = 0; i < sizeof(hmac_key); i++)
795 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
796 SHA1_Init(&key->tail);
797 SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
798
799 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
800
801 return 1;
802 }
803 case EVP_CTRL_AEAD_TLS1_AAD: {
804 unsigned char *p = ptr;
805 unsigned int len;
806
807 if (arg != EVP_AEAD_TLS1_AAD_LEN)
808 return -1;
809
810 len = p[arg - 2] << 8 | p[arg - 1];
811
812 if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
813 key->payload_length = len;
814 if ((key->aux.tls_ver = p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
815 if (len < AES_BLOCK_SIZE)
816 return 0;
817 len -= AES_BLOCK_SIZE;
818 p[arg - 2] = len >> 8;
819 p[arg - 1] = len;
820 }
821 key->md = key->head;
822 SHA1_Update(&key->md, p, arg);
823
824 return (int)(((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
825 - len);
826 } else {
827 memcpy(key->aux.tls_aad, ptr, arg);
828 key->payload_length = arg;
829
830 return SHA_DIGEST_LENGTH;
831 }
832 }
833 #if !defined(OPENSSL_NO_MULTIBLOCK)
834 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
835 return (int)(5 + 16 + ((arg + 20 + 16) & -16));
836 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: {
837 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr;
838 unsigned int n4x = 1, x4;
839 unsigned int frag, last, packlen, inp_len;
840
841 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
842 return -1;
843
844 inp_len = param->inp[11] << 8 | param->inp[12];
845
846 if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
847 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
848 return -1;
849
850 if (inp_len) {
851 if (inp_len < 4096)
852 return 0; /* too short */
853
854 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
855 n4x = 2; /* AVX2 */
856 } else if ((n4x = param->interleave / 4) && n4x <= 2)
857 inp_len = param->len;
858 else
859 return -1;
860
861 key->md = key->head;
862 SHA1_Update(&key->md, param->inp, 13);
863
864 x4 = 4 * n4x;
865 n4x += 1;
866
867 frag = inp_len >> n4x;
868 last = inp_len + frag - (frag << n4x);
869 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
870 frag++;
871 last -= x4 - 1;
872 }
873
874 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
875 packlen = (packlen << n4x) - packlen;
876 packlen += 5 + 16 + ((last + 20 + 16) & -16);
877
878 param->interleave = x4;
879
880 return (int)packlen;
881 } else
882 return -1; /* not yet */
883 }
884 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: {
885 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr;
886
887 return (int)tls1_1_multi_block_encrypt(key, param->out,
888 param->inp, param->len,
889 param->interleave / 4);
890 }
891 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
892 #endif
893 default:
894 return -1;
895 }
896 }
897
898 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
899 #ifdef NID_aes_128_cbc_hmac_sha1
900 NID_aes_128_cbc_hmac_sha1,
901 #else
902 NID_undef,
903 #endif
904 AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
905 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
906 EVP_ORIG_GLOBAL,
907 aesni_cbc_hmac_sha1_init_key,
908 aesni_cbc_hmac_sha1_cipher,
909 NULL,
910 sizeof(EVP_AES_HMAC_SHA1),
911 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
912 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
913 aesni_cbc_hmac_sha1_ctrl,
914 NULL
915 };
916
917 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
918 #ifdef NID_aes_256_cbc_hmac_sha1
919 NID_aes_256_cbc_hmac_sha1,
920 #else
921 NID_undef,
922 #endif
923 AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
924 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
925 EVP_ORIG_GLOBAL,
926 aesni_cbc_hmac_sha1_init_key,
927 aesni_cbc_hmac_sha1_cipher,
928 NULL,
929 sizeof(EVP_AES_HMAC_SHA1),
930 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
931 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
932 aesni_cbc_hmac_sha1_ctrl,
933 NULL
934 };
935
EVP_aes_128_cbc_hmac_sha1(void)936 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
937 {
938 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ? &aesni_128_cbc_hmac_sha1_cipher : NULL);
939 }
940
EVP_aes_256_cbc_hmac_sha1(void)941 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
942 {
943 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ? &aesni_256_cbc_hmac_sha1_cipher : NULL);
944 }
945 #else
EVP_aes_128_cbc_hmac_sha1(void)946 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
947 {
948 return NULL;
949 }
950
EVP_aes_256_cbc_hmac_sha1(void)951 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
952 {
953 return NULL;
954 }
955 #endif
956