xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21 
22 struct msm_gem_submit;
23 struct msm_gem_vm_log_entry;
24 struct msm_gpu_perfcntr;
25 struct msm_gpu_state;
26 struct msm_context;
27 
28 struct msm_gpu_config {
29 	const char *ioname;
30 	unsigned int nr_rings;
31 };
32 
33 /* So far, with hardware that I've seen to date, we can have:
34  *  + zero, one, or two z180 2d cores
35  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
36  *    for the CP seems to implement some different PM4 packet types
37  *    but the basics of cmdstream submission are the same)
38  *
39  * Which means that the eventual complete "class" hierarchy, once
40  * support for all past and present hw is in place, becomes:
41  *  + msm_gpu
42  *    + adreno_gpu
43  *      + a3xx_gpu
44  *      + a2xx_gpu
45  *    + z180_gpu
46  */
47 struct msm_gpu_funcs {
48 	int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx,
49 			 uint32_t param, uint64_t *value, uint32_t *len);
50 	int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx,
51 			 uint32_t param, uint64_t value, uint32_t len);
52 	int (*hw_init)(struct msm_gpu *gpu);
53 
54 	/**
55 	 * @ucode_load: Optional hook to upload fw to GEM objs
56 	 */
57 	int (*ucode_load)(struct msm_gpu *gpu);
58 
59 	int (*pm_suspend)(struct msm_gpu *gpu);
60 	int (*pm_resume)(struct msm_gpu *gpu);
61 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
62 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
63 	irqreturn_t (*irq)(struct msm_gpu *irq);
64 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
65 	void (*recover)(struct msm_gpu *gpu);
66 	void (*destroy)(struct msm_gpu *gpu);
67 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
68 	/* show GPU status in debugfs: */
69 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
70 			struct drm_printer *p);
71 	/* for generation specific debugfs: */
72 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
73 #endif
74 	/* note: gpu_busy() can assume that we have been pm_resumed */
75 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
76 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
77 	int (*gpu_state_put)(struct msm_gpu_state *state);
78 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
79 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
80 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
81 			     bool suspended);
82 	struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev);
83 	struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed);
84 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
85 
86 	/**
87 	 * progress: Has the GPU made progress?
88 	 *
89 	 * Return true if GPU position in cmdstream has advanced (or changed)
90 	 * since the last call.  To avoid false negatives, this should account
91 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
92 	 */
93 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
94 };
95 
96 /* Additional state for iommu faults: */
97 struct msm_gpu_fault_info {
98 	u64 ttbr0;
99 	unsigned long iova;
100 	int flags;
101 	const char *type;
102 	const char *block;
103 
104 	/* Information about what we think/expect is the current SMMU state,
105 	 * for example expected_ttbr0 should match smmu_info.ttbr0 which
106 	 * was read back from SMMU registers.
107 	 */
108 	phys_addr_t pgtbl_ttbr0;
109 	u64 ptes[4];
110 	int asid;
111 };
112 
113 /**
114  * struct msm_gpu_devfreq - devfreq related state
115  */
116 struct msm_gpu_devfreq {
117 	/** devfreq: devfreq instance */
118 	struct devfreq *devfreq;
119 
120 	/** lock: lock for "suspended", "busy_cycles", and "time" */
121 	struct mutex lock;
122 
123 	/**
124 	 * idle_freq:
125 	 *
126 	 * Shadow frequency used while the GPU is idle.  From the PoV of
127 	 * the devfreq governor, we are continuing to sample busyness and
128 	 * adjust frequency while the GPU is idle, but we use this shadow
129 	 * value as the GPU is actually clamped to minimum frequency while
130 	 * it is inactive.
131 	 */
132 	unsigned long idle_freq;
133 
134 	/**
135 	 * boost_constraint:
136 	 *
137 	 * A PM QoS constraint to boost min freq for a period of time
138 	 * until the boost expires.
139 	 */
140 	struct dev_pm_qos_request boost_freq;
141 
142 	/**
143 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
144 	 * cycles since last sampling period.
145 	 */
146 	u64 busy_cycles;
147 
148 	/** time: Time of last sampling period. */
149 	ktime_t time;
150 
151 	/** idle_time: Time of last transition to idle: */
152 	ktime_t idle_time;
153 
154 	/**
155 	 * idle_work:
156 	 *
157 	 * Used to delay clamping to idle freq on active->idle transition.
158 	 */
159 	struct msm_hrtimer_work idle_work;
160 
161 	/**
162 	 * boost_work:
163 	 *
164 	 * Used to reset the boost_constraint after the boost period has
165 	 * elapsed
166 	 */
167 	struct msm_hrtimer_work boost_work;
168 
169 	/** suspended: tracks if we're suspended */
170 	bool suspended;
171 };
172 
173 struct msm_gpu {
174 	const char *name;
175 	struct drm_device *dev;
176 	struct platform_device *pdev;
177 	const struct msm_gpu_funcs *funcs;
178 
179 	struct adreno_smmu_priv adreno_smmu;
180 
181 	/* performance counters (hw & sw): */
182 	spinlock_t perf_lock;
183 	bool perfcntr_active;
184 	struct {
185 		bool active;
186 		ktime_t time;
187 	} last_sample;
188 	uint32_t totaltime, activetime;    /* sw counters */
189 	uint32_t last_cntrs[5];            /* hw counters */
190 	const struct msm_gpu_perfcntr *perfcntrs;
191 	uint32_t num_perfcntrs;
192 
193 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
194 	int nr_rings;
195 
196 	/**
197 	 * sysprof_active:
198 	 *
199 	 * The count of contexts that have enabled system profiling.
200 	 */
201 	refcount_t sysprof_active;
202 
203 	/**
204 	 * lock:
205 	 *
206 	 * General lock for serializing all the gpu things.
207 	 *
208 	 * TODO move to per-ring locking where feasible (ie. submit/retire
209 	 * path, etc)
210 	 */
211 	struct mutex lock;
212 
213 	/**
214 	 * active_submits:
215 	 *
216 	 * The number of submitted but not yet retired submits, used to
217 	 * determine transitions between active and idle.
218 	 *
219 	 * Protected by active_lock
220 	 */
221 	int active_submits;
222 
223 	/** lock: protects active_submits and idle/active transitions */
224 	struct mutex active_lock;
225 
226 	/* does gpu need hw_init? */
227 	bool needs_hw_init;
228 
229 	/**
230 	 * global_faults: number of GPU hangs not attributed to a particular
231 	 * address space
232 	 */
233 	int global_faults;
234 
235 	void __iomem *mmio;
236 	int irq;
237 
238 	struct drm_gpuvm *vm;
239 
240 	/* Power Control: */
241 	struct regulator *gpu_reg, *gpu_cx;
242 	struct clk_bulk_data *grp_clks;
243 	int nr_clocks;
244 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
245 	uint32_t fast_rate;
246 
247 	/* Hang and Inactivity Detection:
248 	 */
249 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
250 
251 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
252 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
253 	struct timer_list hangcheck_timer;
254 
255 	/* work for handling GPU recovery: */
256 	struct kthread_work recover_work;
257 
258 	/** retire_event: notified when submits are retired: */
259 	wait_queue_head_t retire_event;
260 
261 	/* work for handling active-list retiring: */
262 	struct kthread_work retire_work;
263 
264 	/* worker for retire/recover: */
265 	struct kthread_worker *worker;
266 
267 	struct drm_gem_object *memptrs_bo;
268 
269 	struct msm_gpu_devfreq devfreq;
270 
271 	uint32_t suspend_count;
272 
273 	struct msm_gpu_state *crashstate;
274 
275 	/* True if the hardware supports expanded apriv (a650 and newer) */
276 	bool hw_apriv;
277 
278 	/**
279 	 * @allow_relocs: allow relocs in SUBMIT ioctl
280 	 *
281 	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
282 	 * switch-over happened early enough in mesa a6xx bringup that we
283 	 * can disallow relocs for a6xx and newer.
284 	 */
285 	bool allow_relocs;
286 
287 	struct thermal_cooling_device *cooling;
288 };
289 
dev_to_gpu(struct device * dev)290 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
291 {
292 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
293 
294 	if (!adreno_smmu)
295 		return NULL;
296 
297 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
298 }
299 
300 /* It turns out that all targets use the same ringbuffer size */
301 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
302 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
303 
304 #define MSM_GPU_RB_CNTL_DEFAULT \
305 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
306 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
307 
msm_gpu_active(struct msm_gpu * gpu)308 static inline bool msm_gpu_active(struct msm_gpu *gpu)
309 {
310 	int i;
311 
312 	for (i = 0; i < gpu->nr_rings; i++) {
313 		struct msm_ringbuffer *ring = gpu->rb[i];
314 
315 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
316 			return true;
317 	}
318 
319 	return false;
320 }
321 
322 /* Perf-Counters:
323  * The select_reg and select_val are just there for the benefit of the child
324  * class that actually enables the perf counter..  but msm_gpu base class
325  * will handle sampling/displaying the counters.
326  */
327 
328 struct msm_gpu_perfcntr {
329 	uint32_t select_reg;
330 	uint32_t sample_reg;
331 	uint32_t select_val;
332 	const char *name;
333 };
334 
335 /*
336  * The number of priority levels provided by drm gpu scheduler.  The
337  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
338  * cases, so we don't use it (no need for kernel generated jobs).
339  */
340 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
341 
342 /**
343  * struct msm_context - per-drm_file context
344  */
345 struct msm_context {
346 	/** @queuelock: synchronizes access to submitqueues list */
347 	rwlock_t queuelock;
348 
349 	/** @submitqueues: list of &msm_gpu_submitqueue created by userspace */
350 	struct list_head submitqueues;
351 
352 	/**
353 	 * @queueid:
354 	 *
355 	 * Counter incremented each time a submitqueue is created, used to
356 	 * assign &msm_gpu_submitqueue.id
357 	 */
358 	int queueid;
359 
360 	/**
361 	 * @closed: The device file associated with this context has been closed.
362 	 *
363 	 * Once the device is closed, any submits that have not been written
364 	 * to the ring buffer are no-op'd.
365 	 */
366 	bool closed;
367 
368 	/**
369 	 * @userspace_managed_vm:
370 	 *
371 	 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via
372 	 * MSM_PARAM_EN_VM_BIND?
373 	 */
374 	bool userspace_managed_vm;
375 
376 	/**
377 	 * @vm:
378 	 *
379 	 * The per-process GPU address-space.  Do not access directly, use
380 	 * msm_context_vm().
381 	 */
382 	struct drm_gpuvm *vm;
383 
384 	/** @kref: the reference count */
385 	struct kref ref;
386 
387 	/**
388 	 * @seqno:
389 	 *
390 	 * A unique per-process sequence number.  Used to detect context
391 	 * switches, without relying on keeping a, potentially dangling,
392 	 * pointer to the previous context.
393 	 */
394 	int seqno;
395 
396 	/**
397 	 * @sysprof:
398 	 *
399 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
400 	 * intended to be used by system profiling tools like Mesa's
401 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
402 	 *
403 	 * Setting a value of 1 will preserve performance counters across
404 	 * context switches.  Setting a value of 2 will in addition
405 	 * suppress suspend.  (Performance counters lose state across
406 	 * power collapse, which is undesirable for profiling in some
407 	 * cases.)
408 	 *
409 	 * The value automatically reverts to zero when the drm device
410 	 * file is closed.
411 	 */
412 	int sysprof;
413 
414 	/**
415 	 * @comm: Overridden task comm, see MSM_PARAM_COMM
416 	 *
417 	 * Accessed under msm_gpu::lock
418 	 */
419 	char *comm;
420 
421 	/**
422 	 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
423 	 *
424 	 * Accessed under msm_gpu::lock
425 	 */
426 	char *cmdline;
427 
428 	/**
429 	 * @elapsed:
430 	 *
431 	 * The total (cumulative) elapsed time GPU was busy with rendering
432 	 * from this context in ns.
433 	 */
434 	uint64_t elapsed_ns;
435 
436 	/**
437 	 * @cycles:
438 	 *
439 	 * The total (cumulative) GPU cycles elapsed attributed to this
440 	 * context.
441 	 */
442 	uint64_t cycles;
443 
444 	/**
445 	 * @entities:
446 	 *
447 	 * Table of per-priority-level sched entities used by submitqueues
448 	 * associated with this &drm_file.  Because some userspace apps
449 	 * make assumptions about rendering from multiple gl contexts
450 	 * (of the same priority) within the process happening in FIFO
451 	 * order without requiring any fencing beyond MakeCurrent(), we
452 	 * create at most one &drm_sched_entity per-process per-priority-
453 	 * level.
454 	 */
455 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
456 
457 	/**
458 	 * @ctx_mem:
459 	 *
460 	 * Total amount of memory of GEM buffers with handles attached for
461 	 * this context.
462 	 */
463 	atomic64_t ctx_mem;
464 };
465 
466 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx);
467 
468 /**
469  * msm_context_is_vm_bind() - has userspace opted in to VM_BIND?
470  *
471  * @ctx: the drm_file context
472  *
473  * See MSM_PARAM_EN_VM_BIND.  If userspace is managing the VM, it can
474  * do sparse binding including having multiple, potentially partial,
475  * mappings in the VM.  Therefore certain legacy uabi (ie. GET_IOVA,
476  * SET_IOVA) are rejected because they don't have a sensible meaning.
477  */
478 static inline bool
msm_context_is_vmbind(struct msm_context * ctx)479 msm_context_is_vmbind(struct msm_context *ctx)
480 {
481 	return ctx->userspace_managed_vm;
482 }
483 
484 /**
485  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
486  *
487  * @gpu:        the gpu instance
488  * @prio:       the userspace priority level
489  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
490  * @sched_prio: [out] the gpu scheduler priority level which the userspace
491  *              priority maps to
492  *
493  * With drm/scheduler providing it's own level of prioritization, our total
494  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
495  * Each ring is associated with it's own scheduler instance.  However, our
496  * UABI is that lower numerical values are higher priority.  So mapping the
497  * single userspace priority level into ring_nr and sched_prio takes some
498  * care.  The userspace provided priority (when a submitqueue is created)
499  * is mapped to ring nr and scheduler priority as such:
500  *
501  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
502  *   sched_prio = NR_SCHED_PRIORITIES -
503  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
504  *
505  * This allows generations without preemption (nr_rings==1) to have some
506  * amount of prioritization, and provides more priority levels for gens
507  * that do have preemption.
508  */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)509 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
510 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
511 {
512 	unsigned rn, sp;
513 
514 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
515 
516 	/* invert sched priority to map to higher-numeric-is-higher-
517 	 * priority convention
518 	 */
519 	sp = NR_SCHED_PRIORITIES - sp - 1;
520 
521 	if (rn >= gpu->nr_rings)
522 		return -EINVAL;
523 
524 	*ring_nr = rn;
525 	*sched_prio = sp;
526 
527 	return 0;
528 }
529 
530 /**
531  * struct msm_gpu_submitqueues - Userspace created context.
532  *
533  * A submitqueue is associated with a gl context or vk queue (or equiv)
534  * in userspace.
535  *
536  * @id:        userspace id for the submitqueue, unique within the drm_file
537  * @flags:     userspace flags for the submitqueue, specified at creation
538  *             (currently unusued)
539  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
540  *             by the submitqueue's priority
541  * @faults:    the number of GPU hangs associated with this submitqueue
542  * @last_fence: the sequence number of the last allocated fence (for error
543  *             checking)
544  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
545  *             which set of pgtables do submits jobs associated with the
546  *             submitqueue use)
547  * @node:      node in the context's list of submitqueues
548  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
549  *             seqno, protected by submitqueue lock
550  * @idr_lock:  for serializing access to fence_idr
551  * @lock:      submitqueue lock for serializing submits on a queue
552  * @ref:       reference count
553  * @entity:    the submit job-queue
554  */
555 struct msm_gpu_submitqueue {
556 	int id;
557 	u32 flags;
558 	u32 ring_nr;
559 	int faults;
560 	uint32_t last_fence;
561 	struct msm_context *ctx;
562 	struct list_head node;
563 	struct idr fence_idr;
564 	struct spinlock idr_lock;
565 	struct mutex lock;
566 	struct kref ref;
567 	struct drm_sched_entity *entity;
568 
569 	/** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */
570 	struct drm_sched_entity _vm_bind_entity[0];
571 };
572 
573 struct msm_gpu_state_bo {
574 	u64 iova;
575 	size_t size;
576 	u32 flags;
577 	void *data;
578 	bool encoded;
579 	char name[32];
580 };
581 
582 struct msm_gpu_state {
583 	struct kref ref;
584 	struct timespec64 time;
585 
586 	struct {
587 		u64 iova;
588 		u32 fence;
589 		u32 seqno;
590 		u32 rptr;
591 		u32 wptr;
592 		void *data;
593 		int data_size;
594 		bool encoded;
595 	} ring[MSM_GPU_MAX_RINGS];
596 
597 	int nr_registers;
598 	u32 *registers;
599 
600 	u32 rbbm_status;
601 
602 	char *comm;
603 	char *cmd;
604 
605 	struct msm_gpu_fault_info fault_info;
606 
607 	int nr_vm_logs;
608 	struct msm_gem_vm_log_entry *vm_logs;
609 
610 	int nr_bos;
611 	struct msm_gpu_state_bo *bos;
612 };
613 
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)614 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
615 {
616 	writel(data, gpu->mmio + (reg << 2));
617 }
618 
gpu_read(struct msm_gpu * gpu,u32 reg)619 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
620 {
621 	return readl(gpu->mmio + (reg << 2));
622 }
623 
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)624 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
625 {
626 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
627 }
628 
gpu_read64(struct msm_gpu * gpu,u32 reg)629 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
630 {
631 	u64 val;
632 
633 	/*
634 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
635 	 * not quad word aligned and 2) the GPU hardware designers have a bit
636 	 * of a history of putting registers where they fit, especially in
637 	 * spins. The longer a GPU family goes the higher the chance that
638 	 * we'll get burned.  We could do a series of validity checks if we
639 	 * wanted to, but really is a readq() that much better? Nah.
640 	 */
641 
642 	/*
643 	 * For some lo/hi registers (like perfcounters), the hi value is latched
644 	 * when the lo is read, so make sure to read the lo first to trigger
645 	 * that
646 	 */
647 	val = (u64) readl(gpu->mmio + (reg << 2));
648 	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
649 
650 	return val;
651 }
652 
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)653 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
654 {
655 	/* Why not a writeq here? Read the screed above */
656 	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
657 	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
658 }
659 
660 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
661 int msm_gpu_pm_resume(struct msm_gpu *gpu);
662 
663 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx,
664 			 struct drm_printer *p);
665 
666 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx);
667 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx,
668 		u32 id);
669 int msm_submitqueue_create(struct drm_device *drm,
670 		struct msm_context *ctx,
671 		u32 prio, u32 flags, u32 *id);
672 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx,
673 		struct drm_msm_submitqueue_query *args);
674 int msm_submitqueue_remove(struct msm_context *ctx, u32 id);
675 void msm_submitqueue_close(struct msm_context *ctx);
676 
677 void msm_submitqueue_destroy(struct kref *kref);
678 
679 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof);
680 void __msm_context_destroy(struct kref *kref);
681 
msm_context_put(struct msm_context * ctx)682 static inline void msm_context_put(struct msm_context *ctx)
683 {
684 	kref_put(&ctx->ref, __msm_context_destroy);
685 }
686 
msm_context_get(struct msm_context * ctx)687 static inline struct msm_context *msm_context_get(
688 	struct msm_context *ctx)
689 {
690 	kref_get(&ctx->ref);
691 	return ctx;
692 }
693 
694 void msm_devfreq_init(struct msm_gpu *gpu);
695 void msm_devfreq_cleanup(struct msm_gpu *gpu);
696 void msm_devfreq_resume(struct msm_gpu *gpu);
697 void msm_devfreq_suspend(struct msm_gpu *gpu);
698 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
699 void msm_devfreq_active(struct msm_gpu *gpu);
700 void msm_devfreq_idle(struct msm_gpu *gpu);
701 
702 int msm_gpu_hw_init(struct msm_gpu *gpu);
703 
704 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
705 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
706 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
707 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
708 
709 void msm_gpu_retire(struct msm_gpu *gpu);
710 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
711 
712 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
713 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
714 		const char *name, struct msm_gpu_config *config);
715 
716 struct drm_gpuvm *
717 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task,
718 			  bool kernel_managed);
719 
720 void msm_gpu_cleanup(struct msm_gpu *gpu);
721 
722 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
723 bool adreno_has_gpu(struct device_node *node);
724 void __init adreno_register(void);
725 void __exit adreno_unregister(void);
726 
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)727 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
728 {
729 	if (queue)
730 		kref_put(&queue->ref, msm_submitqueue_destroy);
731 }
732 
msm_gpu_crashstate_get(struct msm_gpu * gpu)733 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
734 {
735 	struct msm_gpu_state *state = NULL;
736 
737 	mutex_lock(&gpu->lock);
738 
739 	if (gpu->crashstate) {
740 		kref_get(&gpu->crashstate->ref);
741 		state = gpu->crashstate;
742 	}
743 
744 	mutex_unlock(&gpu->lock);
745 
746 	return state;
747 }
748 
msm_gpu_crashstate_put(struct msm_gpu * gpu)749 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
750 {
751 	mutex_lock(&gpu->lock);
752 
753 	if (gpu->crashstate) {
754 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
755 			gpu->crashstate = NULL;
756 	}
757 
758 	mutex_unlock(&gpu->lock);
759 }
760 
761 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
762 
763 /*
764  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
765  * support expanded privileges
766  */
767 #define check_apriv(gpu, flags) \
768 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
769 
770 
771 #endif /* __MSM_GPU_H__ */
772