1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2010-2011 Neil Brown
4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/slab.h>
10 #include <linux/module.h>
11
12 #include "md.h"
13 #include "raid1.h"
14 #include "raid5.h"
15 #include "raid10.h"
16 #include "md-bitmap.h"
17 #include "dm-core.h"
18
19 #include <linux/device-mapper.h>
20
21 #define DM_MSG_PREFIX "raid"
22 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
23
24 /*
25 * Minimum sectors of free reshape space per raid device
26 */
27 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
28
29 /*
30 * Minimum journal space 4 MiB in sectors.
31 */
32 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
33
34 static bool devices_handle_discard_safely;
35
36 /*
37 * The following flags are used by dm-raid to set up the array state.
38 * They must be cleared before md_run is called.
39 */
40 #define FirstUse 10 /* rdev flag */
41
42 struct raid_dev {
43 /*
44 * Two DM devices, one to hold metadata and one to hold the
45 * actual data/parity. The reason for this is to not confuse
46 * ti->len and give more flexibility in altering size and
47 * characteristics.
48 *
49 * While it is possible for this device to be associated
50 * with a different physical device than the data_dev, it
51 * is intended for it to be the same.
52 * |--------- Physical Device ---------|
53 * |- meta_dev -|------ data_dev ------|
54 */
55 struct dm_dev *meta_dev;
56 struct dm_dev *data_dev;
57 struct md_rdev rdev;
58 };
59
60 /*
61 * Bits for establishing rs->ctr_flags
62 *
63 * 1 = no flag value
64 * 2 = flag with value
65 */
66 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
67 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
68 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
71 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
72 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
73 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
74 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
75 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
76 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
77 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
78 /* New for v1.9.0 */
79 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
80 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
81 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
82
83 /* New for v1.10.0 */
84 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
85
86 /* New for v1.11.1 */
87 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
88
89 /*
90 * Flags for rs->ctr_flags field.
91 */
92 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
93 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
94 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
95 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
96 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
97 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
98 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
99 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
100 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
101 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
102 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
103 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
104 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
105 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
106 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
107 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
108 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
109
110 /*
111 * Definitions of various constructor flags to
112 * be used in checks of valid / invalid flags
113 * per raid level.
114 */
115 /* Define all any sync flags */
116 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
117
118 /* Define flags for options without argument (e.g. 'nosync') */
119 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
120 CTR_FLAG_RAID10_USE_NEAR_SETS)
121
122 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
123 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
124 CTR_FLAG_WRITE_MOSTLY | \
125 CTR_FLAG_DAEMON_SLEEP | \
126 CTR_FLAG_MIN_RECOVERY_RATE | \
127 CTR_FLAG_MAX_RECOVERY_RATE | \
128 CTR_FLAG_MAX_WRITE_BEHIND | \
129 CTR_FLAG_STRIPE_CACHE | \
130 CTR_FLAG_REGION_SIZE | \
131 CTR_FLAG_RAID10_COPIES | \
132 CTR_FLAG_RAID10_FORMAT | \
133 CTR_FLAG_DELTA_DISKS | \
134 CTR_FLAG_DATA_OFFSET | \
135 CTR_FLAG_JOURNAL_DEV | \
136 CTR_FLAG_JOURNAL_MODE)
137
138 /* Valid options definitions per raid level... */
139
140 /* "raid0" does only accept data offset */
141 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
142
143 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
144 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
145 CTR_FLAG_REBUILD | \
146 CTR_FLAG_WRITE_MOSTLY | \
147 CTR_FLAG_DAEMON_SLEEP | \
148 CTR_FLAG_MIN_RECOVERY_RATE | \
149 CTR_FLAG_MAX_RECOVERY_RATE | \
150 CTR_FLAG_MAX_WRITE_BEHIND | \
151 CTR_FLAG_REGION_SIZE | \
152 CTR_FLAG_DELTA_DISKS | \
153 CTR_FLAG_DATA_OFFSET)
154
155 /* "raid10" does not accept any raid1 or stripe cache options */
156 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
157 CTR_FLAG_REBUILD | \
158 CTR_FLAG_DAEMON_SLEEP | \
159 CTR_FLAG_MIN_RECOVERY_RATE | \
160 CTR_FLAG_MAX_RECOVERY_RATE | \
161 CTR_FLAG_REGION_SIZE | \
162 CTR_FLAG_RAID10_COPIES | \
163 CTR_FLAG_RAID10_FORMAT | \
164 CTR_FLAG_DELTA_DISKS | \
165 CTR_FLAG_DATA_OFFSET | \
166 CTR_FLAG_RAID10_USE_NEAR_SETS)
167
168 /*
169 * "raid4/5/6" do not accept any raid1 or raid10 specific options
170 *
171 * "raid6" does not accept "nosync", because it is not guaranteed
172 * that both parity and q-syndrome are being written properly with
173 * any writes
174 */
175 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
176 CTR_FLAG_REBUILD | \
177 CTR_FLAG_DAEMON_SLEEP | \
178 CTR_FLAG_MIN_RECOVERY_RATE | \
179 CTR_FLAG_MAX_RECOVERY_RATE | \
180 CTR_FLAG_STRIPE_CACHE | \
181 CTR_FLAG_REGION_SIZE | \
182 CTR_FLAG_DELTA_DISKS | \
183 CTR_FLAG_DATA_OFFSET | \
184 CTR_FLAG_JOURNAL_DEV | \
185 CTR_FLAG_JOURNAL_MODE)
186
187 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
188 CTR_FLAG_REBUILD | \
189 CTR_FLAG_DAEMON_SLEEP | \
190 CTR_FLAG_MIN_RECOVERY_RATE | \
191 CTR_FLAG_MAX_RECOVERY_RATE | \
192 CTR_FLAG_STRIPE_CACHE | \
193 CTR_FLAG_REGION_SIZE | \
194 CTR_FLAG_DELTA_DISKS | \
195 CTR_FLAG_DATA_OFFSET | \
196 CTR_FLAG_JOURNAL_DEV | \
197 CTR_FLAG_JOURNAL_MODE)
198 /* ...valid options definitions per raid level */
199
200 /*
201 * Flags for rs->runtime_flags field
202 * (RT_FLAG prefix meaning "runtime flag")
203 *
204 * These are all internal and used to define runtime state,
205 * e.g. to prevent another resume from preresume processing
206 * the raid set all over again.
207 */
208 #define RT_FLAG_RS_PRERESUMED 0
209 #define RT_FLAG_RS_RESUMED 1
210 #define RT_FLAG_RS_BITMAP_LOADED 2
211 #define RT_FLAG_UPDATE_SBS 3
212 #define RT_FLAG_RESHAPE_RS 4
213 #define RT_FLAG_RS_SUSPENDED 5
214 #define RT_FLAG_RS_IN_SYNC 6
215 #define RT_FLAG_RS_RESYNCING 7
216 #define RT_FLAG_RS_GROW 8
217 #define RT_FLAG_RS_FROZEN 9
218
219 /* Array elements of 64 bit needed for rebuild/failed disk bits */
220 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
221
222 /*
223 * raid set level, layout and chunk sectors backup/restore
224 */
225 struct rs_layout {
226 int new_level;
227 int new_layout;
228 int new_chunk_sectors;
229 };
230
231 struct raid_set {
232 struct dm_target *ti;
233
234 uint32_t stripe_cache_entries;
235 unsigned long ctr_flags;
236 unsigned long runtime_flags;
237
238 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
239
240 int raid_disks;
241 int delta_disks;
242 int data_offset;
243 int raid10_copies;
244 int requested_bitmap_chunk_sectors;
245
246 struct mddev md;
247 struct raid_type *raid_type;
248
249 sector_t array_sectors;
250 sector_t dev_sectors;
251
252 /* Optional raid4/5/6 journal device */
253 struct journal_dev {
254 struct dm_dev *dev;
255 struct md_rdev rdev;
256 int mode;
257 } journal_dev;
258
259 struct raid_dev dev[] __counted_by(raid_disks);
260 };
261
rs_config_backup(struct raid_set * rs,struct rs_layout * l)262 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
263 {
264 struct mddev *mddev = &rs->md;
265
266 l->new_level = mddev->new_level;
267 l->new_layout = mddev->new_layout;
268 l->new_chunk_sectors = mddev->new_chunk_sectors;
269 }
270
rs_config_restore(struct raid_set * rs,struct rs_layout * l)271 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
272 {
273 struct mddev *mddev = &rs->md;
274
275 mddev->new_level = l->new_level;
276 mddev->new_layout = l->new_layout;
277 mddev->new_chunk_sectors = l->new_chunk_sectors;
278 }
279
280 /* raid10 algorithms (i.e. formats) */
281 #define ALGORITHM_RAID10_DEFAULT 0
282 #define ALGORITHM_RAID10_NEAR 1
283 #define ALGORITHM_RAID10_OFFSET 2
284 #define ALGORITHM_RAID10_FAR 3
285
286 /* Supported raid types and properties. */
287 static struct raid_type {
288 const char *name; /* RAID algorithm. */
289 const char *descr; /* Descriptor text for logging. */
290 const unsigned int parity_devs; /* # of parity devices. */
291 const unsigned int minimal_devs;/* minimal # of devices in set. */
292 const unsigned int level; /* RAID level. */
293 const unsigned int algorithm; /* RAID algorithm. */
294 } raid_types[] = {
295 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
296 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
297 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
298 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
299 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
300 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
301 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
302 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
303 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
304 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
305 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
306 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
307 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
308 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
309 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
310 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
311 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
312 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
313 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
314 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
315 };
316
317 /* True, if @v is in inclusive range [@min, @max] */
__within_range(long v,long min,long max)318 static bool __within_range(long v, long min, long max)
319 {
320 return v >= min && v <= max;
321 }
322
323 /* All table line arguments are defined here */
324 static struct arg_name_flag {
325 const unsigned long flag;
326 const char *name;
327 } __arg_name_flags[] = {
328 { CTR_FLAG_SYNC, "sync"},
329 { CTR_FLAG_NOSYNC, "nosync"},
330 { CTR_FLAG_REBUILD, "rebuild"},
331 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
332 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
333 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
334 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
335 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
336 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
337 { CTR_FLAG_REGION_SIZE, "region_size"},
338 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
339 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
340 { CTR_FLAG_DATA_OFFSET, "data_offset"},
341 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
342 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
343 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
344 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
345 };
346
347 /* Return argument name string for given @flag */
dm_raid_arg_name_by_flag(const uint32_t flag)348 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
349 {
350 if (hweight32(flag) == 1) {
351 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
352
353 while (anf-- > __arg_name_flags)
354 if (flag & anf->flag)
355 return anf->name;
356
357 } else
358 DMERR("%s called with more than one flag!", __func__);
359
360 return NULL;
361 }
362
363 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
364 static struct {
365 const int mode;
366 const char *param;
367 } _raid456_journal_mode[] = {
368 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
369 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" }
370 };
371
372 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
dm_raid_journal_mode_to_md(const char * mode)373 static int dm_raid_journal_mode_to_md(const char *mode)
374 {
375 int m = ARRAY_SIZE(_raid456_journal_mode);
376
377 while (m--)
378 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
379 return _raid456_journal_mode[m].mode;
380
381 return -EINVAL;
382 }
383
384 /* Return dm-raid raid4/5/6 journal mode string for @mode */
md_journal_mode_to_dm_raid(const int mode)385 static const char *md_journal_mode_to_dm_raid(const int mode)
386 {
387 int m = ARRAY_SIZE(_raid456_journal_mode);
388
389 while (m--)
390 if (mode == _raid456_journal_mode[m].mode)
391 return _raid456_journal_mode[m].param;
392
393 return "unknown";
394 }
395
396 /*
397 * Bool helpers to test for various raid levels of a raid set.
398 * It's level as reported by the superblock rather than
399 * the requested raid_type passed to the constructor.
400 */
401 /* Return true, if raid set in @rs is raid0 */
rs_is_raid0(struct raid_set * rs)402 static bool rs_is_raid0(struct raid_set *rs)
403 {
404 return !rs->md.level;
405 }
406
407 /* Return true, if raid set in @rs is raid1 */
rs_is_raid1(struct raid_set * rs)408 static bool rs_is_raid1(struct raid_set *rs)
409 {
410 return rs->md.level == 1;
411 }
412
413 /* Return true, if raid set in @rs is raid10 */
rs_is_raid10(struct raid_set * rs)414 static bool rs_is_raid10(struct raid_set *rs)
415 {
416 return rs->md.level == 10;
417 }
418
419 /* Return true, if raid set in @rs is level 6 */
rs_is_raid6(struct raid_set * rs)420 static bool rs_is_raid6(struct raid_set *rs)
421 {
422 return rs->md.level == 6;
423 }
424
425 /* Return true, if raid set in @rs is level 4, 5 or 6 */
rs_is_raid456(struct raid_set * rs)426 static bool rs_is_raid456(struct raid_set *rs)
427 {
428 return __within_range(rs->md.level, 4, 6);
429 }
430
431 /* Return true, if raid set in @rs is reshapable */
432 static bool __is_raid10_far(int layout);
rs_is_reshapable(struct raid_set * rs)433 static bool rs_is_reshapable(struct raid_set *rs)
434 {
435 return rs_is_raid456(rs) ||
436 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
437 }
438
439 /* Return true, if raid set in @rs is recovering */
rs_is_recovering(struct raid_set * rs)440 static bool rs_is_recovering(struct raid_set *rs)
441 {
442 return rs->md.recovery_cp < rs->md.dev_sectors;
443 }
444
445 /* Return true, if raid set in @rs is reshaping */
rs_is_reshaping(struct raid_set * rs)446 static bool rs_is_reshaping(struct raid_set *rs)
447 {
448 return rs->md.reshape_position != MaxSector;
449 }
450
451 /*
452 * bool helpers to test for various raid levels of a raid type @rt
453 */
454
455 /* Return true, if raid type in @rt is raid0 */
rt_is_raid0(struct raid_type * rt)456 static bool rt_is_raid0(struct raid_type *rt)
457 {
458 return !rt->level;
459 }
460
461 /* Return true, if raid type in @rt is raid1 */
rt_is_raid1(struct raid_type * rt)462 static bool rt_is_raid1(struct raid_type *rt)
463 {
464 return rt->level == 1;
465 }
466
467 /* Return true, if raid type in @rt is raid10 */
rt_is_raid10(struct raid_type * rt)468 static bool rt_is_raid10(struct raid_type *rt)
469 {
470 return rt->level == 10;
471 }
472
473 /* Return true, if raid type in @rt is raid4/5 */
rt_is_raid45(struct raid_type * rt)474 static bool rt_is_raid45(struct raid_type *rt)
475 {
476 return __within_range(rt->level, 4, 5);
477 }
478
479 /* Return true, if raid type in @rt is raid6 */
rt_is_raid6(struct raid_type * rt)480 static bool rt_is_raid6(struct raid_type *rt)
481 {
482 return rt->level == 6;
483 }
484
485 /* Return true, if raid type in @rt is raid4/5/6 */
rt_is_raid456(struct raid_type * rt)486 static bool rt_is_raid456(struct raid_type *rt)
487 {
488 return __within_range(rt->level, 4, 6);
489 }
490 /* END: raid level bools */
491
492 /* Return valid ctr flags for the raid level of @rs */
__valid_flags(struct raid_set * rs)493 static unsigned long __valid_flags(struct raid_set *rs)
494 {
495 if (rt_is_raid0(rs->raid_type))
496 return RAID0_VALID_FLAGS;
497 else if (rt_is_raid1(rs->raid_type))
498 return RAID1_VALID_FLAGS;
499 else if (rt_is_raid10(rs->raid_type))
500 return RAID10_VALID_FLAGS;
501 else if (rt_is_raid45(rs->raid_type))
502 return RAID45_VALID_FLAGS;
503 else if (rt_is_raid6(rs->raid_type))
504 return RAID6_VALID_FLAGS;
505
506 return 0;
507 }
508
509 /*
510 * Check for valid flags set on @rs
511 *
512 * Has to be called after parsing of the ctr flags!
513 */
rs_check_for_valid_flags(struct raid_set * rs)514 static int rs_check_for_valid_flags(struct raid_set *rs)
515 {
516 if (rs->ctr_flags & ~__valid_flags(rs)) {
517 rs->ti->error = "Invalid flags combination";
518 return -EINVAL;
519 }
520
521 return 0;
522 }
523
524 /* MD raid10 bit definitions and helpers */
525 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
526 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
527 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
528 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
529
530 /* Return md raid10 near copies for @layout */
__raid10_near_copies(int layout)531 static unsigned int __raid10_near_copies(int layout)
532 {
533 return layout & 0xFF;
534 }
535
536 /* Return md raid10 far copies for @layout */
__raid10_far_copies(int layout)537 static unsigned int __raid10_far_copies(int layout)
538 {
539 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
540 }
541
542 /* Return true if md raid10 offset for @layout */
__is_raid10_offset(int layout)543 static bool __is_raid10_offset(int layout)
544 {
545 return !!(layout & RAID10_OFFSET);
546 }
547
548 /* Return true if md raid10 near for @layout */
__is_raid10_near(int layout)549 static bool __is_raid10_near(int layout)
550 {
551 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
552 }
553
554 /* Return true if md raid10 far for @layout */
__is_raid10_far(int layout)555 static bool __is_raid10_far(int layout)
556 {
557 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
558 }
559
560 /* Return md raid10 layout string for @layout */
raid10_md_layout_to_format(int layout)561 static const char *raid10_md_layout_to_format(int layout)
562 {
563 /*
564 * Bit 16 stands for "offset"
565 * (i.e. adjacent stripes hold copies)
566 *
567 * Refer to MD's raid10.c for details
568 */
569 if (__is_raid10_offset(layout))
570 return "offset";
571
572 if (__raid10_near_copies(layout) > 1)
573 return "near";
574
575 if (__raid10_far_copies(layout) > 1)
576 return "far";
577
578 return "unknown";
579 }
580
581 /* Return md raid10 algorithm for @name */
raid10_name_to_format(const char * name)582 static int raid10_name_to_format(const char *name)
583 {
584 if (!strcasecmp(name, "near"))
585 return ALGORITHM_RAID10_NEAR;
586 else if (!strcasecmp(name, "offset"))
587 return ALGORITHM_RAID10_OFFSET;
588 else if (!strcasecmp(name, "far"))
589 return ALGORITHM_RAID10_FAR;
590
591 return -EINVAL;
592 }
593
594 /* Return md raid10 copies for @layout */
raid10_md_layout_to_copies(int layout)595 static unsigned int raid10_md_layout_to_copies(int layout)
596 {
597 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
598 }
599
600 /* Return md raid10 format id for @format string */
raid10_format_to_md_layout(struct raid_set * rs,unsigned int algorithm,unsigned int copies)601 static int raid10_format_to_md_layout(struct raid_set *rs,
602 unsigned int algorithm,
603 unsigned int copies)
604 {
605 unsigned int n = 1, f = 1, r = 0;
606
607 /*
608 * MD resilienece flaw:
609 *
610 * enabling use_far_sets for far/offset formats causes copies
611 * to be colocated on the same devs together with their origins!
612 *
613 * -> disable it for now in the definition above
614 */
615 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
616 algorithm == ALGORITHM_RAID10_NEAR)
617 n = copies;
618
619 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
620 f = copies;
621 r = RAID10_OFFSET;
622 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
623 r |= RAID10_USE_FAR_SETS;
624
625 } else if (algorithm == ALGORITHM_RAID10_FAR) {
626 f = copies;
627 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
628 r |= RAID10_USE_FAR_SETS;
629
630 } else
631 return -EINVAL;
632
633 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
634 }
635 /* END: MD raid10 bit definitions and helpers */
636
637 /* Check for any of the raid10 algorithms */
__got_raid10(struct raid_type * rtp,const int layout)638 static bool __got_raid10(struct raid_type *rtp, const int layout)
639 {
640 if (rtp->level == 10) {
641 switch (rtp->algorithm) {
642 case ALGORITHM_RAID10_DEFAULT:
643 case ALGORITHM_RAID10_NEAR:
644 return __is_raid10_near(layout);
645 case ALGORITHM_RAID10_OFFSET:
646 return __is_raid10_offset(layout);
647 case ALGORITHM_RAID10_FAR:
648 return __is_raid10_far(layout);
649 default:
650 break;
651 }
652 }
653
654 return false;
655 }
656
657 /* Return raid_type for @name */
get_raid_type(const char * name)658 static struct raid_type *get_raid_type(const char *name)
659 {
660 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
661
662 while (rtp-- > raid_types)
663 if (!strcasecmp(rtp->name, name))
664 return rtp;
665
666 return NULL;
667 }
668
669 /* Return raid_type for @name based derived from @level and @layout */
get_raid_type_by_ll(const int level,const int layout)670 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
671 {
672 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
673
674 while (rtp-- > raid_types) {
675 /* RAID10 special checks based on @layout flags/properties */
676 if (rtp->level == level &&
677 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
678 return rtp;
679 }
680
681 return NULL;
682 }
683
684 /* Adjust rdev sectors */
rs_set_rdev_sectors(struct raid_set * rs)685 static void rs_set_rdev_sectors(struct raid_set *rs)
686 {
687 struct mddev *mddev = &rs->md;
688 struct md_rdev *rdev;
689
690 /*
691 * raid10 sets rdev->sector to the device size, which
692 * is unintended in case of out-of-place reshaping
693 */
694 rdev_for_each(rdev, mddev)
695 if (!test_bit(Journal, &rdev->flags))
696 rdev->sectors = mddev->dev_sectors;
697 }
698
699 /*
700 * Change bdev capacity of @rs in case of a disk add/remove reshape
701 */
rs_set_capacity(struct raid_set * rs)702 static void rs_set_capacity(struct raid_set *rs)
703 {
704 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
705
706 set_capacity_and_notify(gendisk, rs->md.array_sectors);
707 }
708
709 /*
710 * Set the mddev properties in @rs to the current
711 * ones retrieved from the freshest superblock
712 */
rs_set_cur(struct raid_set * rs)713 static void rs_set_cur(struct raid_set *rs)
714 {
715 struct mddev *mddev = &rs->md;
716
717 mddev->new_level = mddev->level;
718 mddev->new_layout = mddev->layout;
719 mddev->new_chunk_sectors = mddev->chunk_sectors;
720 }
721
722 /*
723 * Set the mddev properties in @rs to the new
724 * ones requested by the ctr
725 */
rs_set_new(struct raid_set * rs)726 static void rs_set_new(struct raid_set *rs)
727 {
728 struct mddev *mddev = &rs->md;
729
730 mddev->level = mddev->new_level;
731 mddev->layout = mddev->new_layout;
732 mddev->chunk_sectors = mddev->new_chunk_sectors;
733 mddev->raid_disks = rs->raid_disks;
734 mddev->delta_disks = 0;
735 }
736
raid_set_alloc(struct dm_target * ti,struct raid_type * raid_type,unsigned int raid_devs)737 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
738 unsigned int raid_devs)
739 {
740 unsigned int i;
741 struct raid_set *rs;
742
743 if (raid_devs <= raid_type->parity_devs) {
744 ti->error = "Insufficient number of devices";
745 return ERR_PTR(-EINVAL);
746 }
747
748 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
749 if (!rs) {
750 ti->error = "Cannot allocate raid context";
751 return ERR_PTR(-ENOMEM);
752 }
753
754 if (mddev_init(&rs->md)) {
755 kfree(rs);
756 ti->error = "Cannot initialize raid context";
757 return ERR_PTR(-ENOMEM);
758 }
759
760 rs->raid_disks = raid_devs;
761 rs->delta_disks = 0;
762
763 rs->ti = ti;
764 rs->raid_type = raid_type;
765 rs->stripe_cache_entries = 256;
766 rs->md.raid_disks = raid_devs;
767 rs->md.level = raid_type->level;
768 rs->md.new_level = rs->md.level;
769 rs->md.layout = raid_type->algorithm;
770 rs->md.new_layout = rs->md.layout;
771 rs->md.delta_disks = 0;
772 rs->md.recovery_cp = MaxSector;
773
774 for (i = 0; i < raid_devs; i++)
775 md_rdev_init(&rs->dev[i].rdev);
776
777 /*
778 * Remaining items to be initialized by further RAID params:
779 * rs->md.persistent
780 * rs->md.external
781 * rs->md.chunk_sectors
782 * rs->md.new_chunk_sectors
783 * rs->md.dev_sectors
784 */
785
786 return rs;
787 }
788
789 /* Free all @rs allocations */
raid_set_free(struct raid_set * rs)790 static void raid_set_free(struct raid_set *rs)
791 {
792 int i;
793
794 if (rs->journal_dev.dev) {
795 md_rdev_clear(&rs->journal_dev.rdev);
796 dm_put_device(rs->ti, rs->journal_dev.dev);
797 }
798
799 for (i = 0; i < rs->raid_disks; i++) {
800 if (rs->dev[i].meta_dev)
801 dm_put_device(rs->ti, rs->dev[i].meta_dev);
802 md_rdev_clear(&rs->dev[i].rdev);
803 if (rs->dev[i].data_dev)
804 dm_put_device(rs->ti, rs->dev[i].data_dev);
805 }
806
807 mddev_destroy(&rs->md);
808 kfree(rs);
809 }
810
811 /*
812 * For every device we have two words
813 * <meta_dev>: meta device name or '-' if missing
814 * <data_dev>: data device name or '-' if missing
815 *
816 * The following are permitted:
817 * - -
818 * - <data_dev>
819 * <meta_dev> <data_dev>
820 *
821 * The following is not allowed:
822 * <meta_dev> -
823 *
824 * This code parses those words. If there is a failure,
825 * the caller must use raid_set_free() to unwind the operations.
826 */
parse_dev_params(struct raid_set * rs,struct dm_arg_set * as)827 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
828 {
829 int i;
830 int rebuild = 0;
831 int metadata_available = 0;
832 int r = 0;
833 const char *arg;
834
835 /* Put off the number of raid devices argument to get to dev pairs */
836 arg = dm_shift_arg(as);
837 if (!arg)
838 return -EINVAL;
839
840 for (i = 0; i < rs->raid_disks; i++) {
841 rs->dev[i].rdev.raid_disk = i;
842
843 rs->dev[i].meta_dev = NULL;
844 rs->dev[i].data_dev = NULL;
845
846 /*
847 * There are no offsets initially.
848 * Out of place reshape will set them accordingly.
849 */
850 rs->dev[i].rdev.data_offset = 0;
851 rs->dev[i].rdev.new_data_offset = 0;
852 rs->dev[i].rdev.mddev = &rs->md;
853
854 arg = dm_shift_arg(as);
855 if (!arg)
856 return -EINVAL;
857
858 if (strcmp(arg, "-")) {
859 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
860 &rs->dev[i].meta_dev);
861 if (r) {
862 rs->ti->error = "RAID metadata device lookup failure";
863 return r;
864 }
865
866 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
867 if (!rs->dev[i].rdev.sb_page) {
868 rs->ti->error = "Failed to allocate superblock page";
869 return -ENOMEM;
870 }
871 }
872
873 arg = dm_shift_arg(as);
874 if (!arg)
875 return -EINVAL;
876
877 if (!strcmp(arg, "-")) {
878 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
879 (!rs->dev[i].rdev.recovery_offset)) {
880 rs->ti->error = "Drive designated for rebuild not specified";
881 return -EINVAL;
882 }
883
884 if (rs->dev[i].meta_dev) {
885 rs->ti->error = "No data device supplied with metadata device";
886 return -EINVAL;
887 }
888
889 continue;
890 }
891
892 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
893 &rs->dev[i].data_dev);
894 if (r) {
895 rs->ti->error = "RAID device lookup failure";
896 return r;
897 }
898
899 if (rs->dev[i].meta_dev) {
900 metadata_available = 1;
901 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
902 }
903 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
904 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
905 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
906 rebuild++;
907 }
908
909 if (rs->journal_dev.dev)
910 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
911
912 if (metadata_available) {
913 rs->md.external = 0;
914 rs->md.persistent = 1;
915 rs->md.major_version = 2;
916 } else if (rebuild && !rs->md.recovery_cp) {
917 /*
918 * Without metadata, we will not be able to tell if the array
919 * is in-sync or not - we must assume it is not. Therefore,
920 * it is impossible to rebuild a drive.
921 *
922 * Even if there is metadata, the on-disk information may
923 * indicate that the array is not in-sync and it will then
924 * fail at that time.
925 *
926 * User could specify 'nosync' option if desperate.
927 */
928 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
929 return -EINVAL;
930 }
931
932 return 0;
933 }
934
935 /*
936 * validate_region_size
937 * @rs
938 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
939 *
940 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
941 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
942 *
943 * Returns: 0 on success, -EINVAL on failure.
944 */
validate_region_size(struct raid_set * rs,unsigned long region_size)945 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
946 {
947 unsigned long min_region_size = rs->ti->len / (1 << 21);
948
949 if (rs_is_raid0(rs))
950 return 0;
951
952 if (!region_size) {
953 /*
954 * Choose a reasonable default. All figures in sectors.
955 */
956 if (min_region_size > (1 << 13)) {
957 /* If not a power of 2, make it the next power of 2 */
958 region_size = roundup_pow_of_two(min_region_size);
959 DMINFO("Choosing default region size of %lu sectors",
960 region_size);
961 } else {
962 DMINFO("Choosing default region size of 4MiB");
963 region_size = 1 << 13; /* sectors */
964 }
965 } else {
966 /*
967 * Validate user-supplied value.
968 */
969 if (region_size > rs->ti->len) {
970 rs->ti->error = "Supplied region size is too large";
971 return -EINVAL;
972 }
973
974 if (region_size < min_region_size) {
975 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
976 region_size, min_region_size);
977 rs->ti->error = "Supplied region size is too small";
978 return -EINVAL;
979 }
980
981 if (!is_power_of_2(region_size)) {
982 rs->ti->error = "Region size is not a power of 2";
983 return -EINVAL;
984 }
985
986 if (region_size < rs->md.chunk_sectors) {
987 rs->ti->error = "Region size is smaller than the chunk size";
988 return -EINVAL;
989 }
990 }
991
992 /*
993 * Convert sectors to bytes.
994 */
995 rs->md.bitmap_info.chunksize = to_bytes(region_size);
996
997 return 0;
998 }
999
1000 /*
1001 * validate_raid_redundancy
1002 * @rs
1003 *
1004 * Determine if there are enough devices in the array that haven't
1005 * failed (or are being rebuilt) to form a usable array.
1006 *
1007 * Returns: 0 on success, -EINVAL on failure.
1008 */
validate_raid_redundancy(struct raid_set * rs)1009 static int validate_raid_redundancy(struct raid_set *rs)
1010 {
1011 unsigned int i, rebuild_cnt = 0;
1012 unsigned int rebuilds_per_group = 0, copies, raid_disks;
1013 unsigned int group_size, last_group_start;
1014
1015 for (i = 0; i < rs->raid_disks; i++)
1016 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1017 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1018 !rs->dev[i].rdev.sb_page)))
1019 rebuild_cnt++;
1020
1021 switch (rs->md.level) {
1022 case 0:
1023 break;
1024 case 1:
1025 if (rebuild_cnt >= rs->md.raid_disks)
1026 goto too_many;
1027 break;
1028 case 4:
1029 case 5:
1030 case 6:
1031 if (rebuild_cnt > rs->raid_type->parity_devs)
1032 goto too_many;
1033 break;
1034 case 10:
1035 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1036 if (copies < 2) {
1037 DMERR("Bogus raid10 data copies < 2!");
1038 return -EINVAL;
1039 }
1040
1041 if (rebuild_cnt < copies)
1042 break;
1043
1044 /*
1045 * It is possible to have a higher rebuild count for RAID10,
1046 * as long as the failed devices occur in different mirror
1047 * groups (i.e. different stripes).
1048 *
1049 * When checking "near" format, make sure no adjacent devices
1050 * have failed beyond what can be handled. In addition to the
1051 * simple case where the number of devices is a multiple of the
1052 * number of copies, we must also handle cases where the number
1053 * of devices is not a multiple of the number of copies.
1054 * E.g. dev1 dev2 dev3 dev4 dev5
1055 * A A B B C
1056 * C D D E E
1057 */
1058 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1059 if (__is_raid10_near(rs->md.new_layout)) {
1060 for (i = 0; i < raid_disks; i++) {
1061 if (!(i % copies))
1062 rebuilds_per_group = 0;
1063 if ((!rs->dev[i].rdev.sb_page ||
1064 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1065 (++rebuilds_per_group >= copies))
1066 goto too_many;
1067 }
1068 break;
1069 }
1070
1071 /*
1072 * When checking "far" and "offset" formats, we need to ensure
1073 * that the device that holds its copy is not also dead or
1074 * being rebuilt. (Note that "far" and "offset" formats only
1075 * support two copies right now. These formats also only ever
1076 * use the 'use_far_sets' variant.)
1077 *
1078 * This check is somewhat complicated by the need to account
1079 * for arrays that are not a multiple of (far) copies. This
1080 * results in the need to treat the last (potentially larger)
1081 * set differently.
1082 */
1083 group_size = (raid_disks / copies);
1084 last_group_start = (raid_disks / group_size) - 1;
1085 last_group_start *= group_size;
1086 for (i = 0; i < raid_disks; i++) {
1087 if (!(i % copies) && !(i > last_group_start))
1088 rebuilds_per_group = 0;
1089 if ((!rs->dev[i].rdev.sb_page ||
1090 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1091 (++rebuilds_per_group >= copies))
1092 goto too_many;
1093 }
1094 break;
1095 default:
1096 if (rebuild_cnt)
1097 return -EINVAL;
1098 }
1099
1100 return 0;
1101
1102 too_many:
1103 return -EINVAL;
1104 }
1105
1106 /*
1107 * Possible arguments are...
1108 * <chunk_size> [optional_args]
1109 *
1110 * Argument definitions
1111 * <chunk_size> The number of sectors per disk that
1112 * will form the "stripe"
1113 * [[no]sync] Force or prevent recovery of the
1114 * entire array
1115 * [rebuild <idx>] Rebuild the drive indicated by the index
1116 * [daemon_sleep <ms>] Time between bitmap daemon work to
1117 * clear bits
1118 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1119 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1120 * [write_mostly <idx>] Indicate a write mostly drive via index
1121 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1122 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1123 * [region_size <sectors>] Defines granularity of bitmap
1124 * [journal_dev <dev>] raid4/5/6 journaling deviice
1125 * (i.e. write hole closing log)
1126 *
1127 * RAID10-only options:
1128 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1129 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1130 */
parse_raid_params(struct raid_set * rs,struct dm_arg_set * as,unsigned int num_raid_params)1131 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1132 unsigned int num_raid_params)
1133 {
1134 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1135 unsigned int raid10_copies = 2;
1136 unsigned int i, write_mostly = 0;
1137 unsigned int region_size = 0;
1138 sector_t max_io_len;
1139 const char *arg, *key;
1140 struct raid_dev *rd;
1141 struct raid_type *rt = rs->raid_type;
1142
1143 arg = dm_shift_arg(as);
1144 num_raid_params--; /* Account for chunk_size argument */
1145
1146 if (kstrtoint(arg, 10, &value) < 0) {
1147 rs->ti->error = "Bad numerical argument given for chunk_size";
1148 return -EINVAL;
1149 }
1150
1151 /*
1152 * First, parse the in-order required arguments
1153 * "chunk_size" is the only argument of this type.
1154 */
1155 if (rt_is_raid1(rt)) {
1156 if (value)
1157 DMERR("Ignoring chunk size parameter for RAID 1");
1158 value = 0;
1159 } else if (!is_power_of_2(value)) {
1160 rs->ti->error = "Chunk size must be a power of 2";
1161 return -EINVAL;
1162 } else if (value < 8) {
1163 rs->ti->error = "Chunk size value is too small";
1164 return -EINVAL;
1165 }
1166
1167 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1168
1169 /*
1170 * We set each individual device as In_sync with a completed
1171 * 'recovery_offset'. If there has been a device failure or
1172 * replacement then one of the following cases applies:
1173 *
1174 * 1) User specifies 'rebuild'.
1175 * - Device is reset when param is read.
1176 * 2) A new device is supplied.
1177 * - No matching superblock found, resets device.
1178 * 3) Device failure was transient and returns on reload.
1179 * - Failure noticed, resets device for bitmap replay.
1180 * 4) Device hadn't completed recovery after previous failure.
1181 * - Superblock is read and overrides recovery_offset.
1182 *
1183 * What is found in the superblocks of the devices is always
1184 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1185 */
1186 for (i = 0; i < rs->raid_disks; i++) {
1187 set_bit(In_sync, &rs->dev[i].rdev.flags);
1188 rs->dev[i].rdev.recovery_offset = MaxSector;
1189 }
1190
1191 /*
1192 * Second, parse the unordered optional arguments
1193 */
1194 for (i = 0; i < num_raid_params; i++) {
1195 key = dm_shift_arg(as);
1196 if (!key) {
1197 rs->ti->error = "Not enough raid parameters given";
1198 return -EINVAL;
1199 }
1200
1201 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1202 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1203 rs->ti->error = "Only one 'nosync' argument allowed";
1204 return -EINVAL;
1205 }
1206 continue;
1207 }
1208 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1209 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1210 rs->ti->error = "Only one 'sync' argument allowed";
1211 return -EINVAL;
1212 }
1213 continue;
1214 }
1215 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1216 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1217 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1218 return -EINVAL;
1219 }
1220 continue;
1221 }
1222
1223 arg = dm_shift_arg(as);
1224 i++; /* Account for the argument pairs */
1225 if (!arg) {
1226 rs->ti->error = "Wrong number of raid parameters given";
1227 return -EINVAL;
1228 }
1229
1230 /*
1231 * Parameters that take a string value are checked here.
1232 */
1233 /* "raid10_format {near|offset|far} */
1234 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1235 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1236 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1237 return -EINVAL;
1238 }
1239 if (!rt_is_raid10(rt)) {
1240 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1241 return -EINVAL;
1242 }
1243 raid10_format = raid10_name_to_format(arg);
1244 if (raid10_format < 0) {
1245 rs->ti->error = "Invalid 'raid10_format' value given";
1246 return raid10_format;
1247 }
1248 continue;
1249 }
1250
1251 /* "journal_dev <dev>" */
1252 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1253 int r;
1254 struct md_rdev *jdev;
1255
1256 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1257 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1258 return -EINVAL;
1259 }
1260 if (!rt_is_raid456(rt)) {
1261 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1262 return -EINVAL;
1263 }
1264 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1265 &rs->journal_dev.dev);
1266 if (r) {
1267 rs->ti->error = "raid4/5/6 journal device lookup failure";
1268 return r;
1269 }
1270 jdev = &rs->journal_dev.rdev;
1271 md_rdev_init(jdev);
1272 jdev->mddev = &rs->md;
1273 jdev->bdev = rs->journal_dev.dev->bdev;
1274 jdev->sectors = bdev_nr_sectors(jdev->bdev);
1275 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1276 rs->ti->error = "No space for raid4/5/6 journal";
1277 return -ENOSPC;
1278 }
1279 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1280 set_bit(Journal, &jdev->flags);
1281 continue;
1282 }
1283
1284 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1285 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1286 int r;
1287
1288 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1289 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1290 return -EINVAL;
1291 }
1292 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1293 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1294 return -EINVAL;
1295 }
1296 r = dm_raid_journal_mode_to_md(arg);
1297 if (r < 0) {
1298 rs->ti->error = "Invalid 'journal_mode' argument";
1299 return r;
1300 }
1301 rs->journal_dev.mode = r;
1302 continue;
1303 }
1304
1305 /*
1306 * Parameters with number values from here on.
1307 */
1308 if (kstrtoint(arg, 10, &value) < 0) {
1309 rs->ti->error = "Bad numerical argument given in raid params";
1310 return -EINVAL;
1311 }
1312
1313 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1314 /*
1315 * "rebuild" is being passed in by userspace to provide
1316 * indexes of replaced devices and to set up additional
1317 * devices on raid level takeover.
1318 */
1319 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1320 rs->ti->error = "Invalid rebuild index given";
1321 return -EINVAL;
1322 }
1323
1324 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1325 rs->ti->error = "rebuild for this index already given";
1326 return -EINVAL;
1327 }
1328
1329 rd = rs->dev + value;
1330 clear_bit(In_sync, &rd->rdev.flags);
1331 clear_bit(Faulty, &rd->rdev.flags);
1332 rd->rdev.recovery_offset = 0;
1333 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1334 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1335 if (!rt_is_raid1(rt)) {
1336 rs->ti->error = "write_mostly option is only valid for RAID1";
1337 return -EINVAL;
1338 }
1339
1340 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1341 rs->ti->error = "Invalid write_mostly index given";
1342 return -EINVAL;
1343 }
1344
1345 write_mostly++;
1346 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1347 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1348 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1349 if (!rt_is_raid1(rt)) {
1350 rs->ti->error = "max_write_behind option is only valid for RAID1";
1351 return -EINVAL;
1352 }
1353
1354 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1355 rs->ti->error = "Only one max_write_behind argument pair allowed";
1356 return -EINVAL;
1357 }
1358
1359 if (value < 0) {
1360 rs->ti->error = "Max write-behind limit out of range";
1361 return -EINVAL;
1362 }
1363
1364 rs->md.bitmap_info.max_write_behind = value / 2;
1365 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1366 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1367 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1368 return -EINVAL;
1369 }
1370 if (value < 0) {
1371 rs->ti->error = "daemon sleep period out of range";
1372 return -EINVAL;
1373 }
1374 rs->md.bitmap_info.daemon_sleep = value;
1375 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1376 /* Userspace passes new data_offset after having extended the data image LV */
1377 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1378 rs->ti->error = "Only one data_offset argument pair allowed";
1379 return -EINVAL;
1380 }
1381 /* Ensure sensible data offset */
1382 if (value < 0 ||
1383 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1384 rs->ti->error = "Bogus data_offset value";
1385 return -EINVAL;
1386 }
1387 rs->data_offset = value;
1388 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1389 /* Define the +/-# of disks to add to/remove from the given raid set */
1390 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1391 rs->ti->error = "Only one delta_disks argument pair allowed";
1392 return -EINVAL;
1393 }
1394 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1395 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1396 rs->ti->error = "Too many delta_disk requested";
1397 return -EINVAL;
1398 }
1399
1400 rs->delta_disks = value;
1401 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1402 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1403 rs->ti->error = "Only one stripe_cache argument pair allowed";
1404 return -EINVAL;
1405 }
1406
1407 if (!rt_is_raid456(rt)) {
1408 rs->ti->error = "Inappropriate argument: stripe_cache";
1409 return -EINVAL;
1410 }
1411
1412 if (value < 0) {
1413 rs->ti->error = "Bogus stripe cache entries value";
1414 return -EINVAL;
1415 }
1416 rs->stripe_cache_entries = value;
1417 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1418 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1419 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1420 return -EINVAL;
1421 }
1422
1423 if (value < 0) {
1424 rs->ti->error = "min_recovery_rate out of range";
1425 return -EINVAL;
1426 }
1427 rs->md.sync_speed_min = value;
1428 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1429 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1430 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1431 return -EINVAL;
1432 }
1433
1434 if (value < 0) {
1435 rs->ti->error = "max_recovery_rate out of range";
1436 return -EINVAL;
1437 }
1438 rs->md.sync_speed_max = value;
1439 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1440 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1441 rs->ti->error = "Only one region_size argument pair allowed";
1442 return -EINVAL;
1443 }
1444
1445 region_size = value;
1446 rs->requested_bitmap_chunk_sectors = value;
1447 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1448 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1449 rs->ti->error = "Only one raid10_copies argument pair allowed";
1450 return -EINVAL;
1451 }
1452
1453 if (!__within_range(value, 2, rs->md.raid_disks)) {
1454 rs->ti->error = "Bad value for 'raid10_copies'";
1455 return -EINVAL;
1456 }
1457
1458 raid10_copies = value;
1459 } else {
1460 DMERR("Unable to parse RAID parameter: %s", key);
1461 rs->ti->error = "Unable to parse RAID parameter";
1462 return -EINVAL;
1463 }
1464 }
1465
1466 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1467 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1468 rs->ti->error = "sync and nosync are mutually exclusive";
1469 return -EINVAL;
1470 }
1471
1472 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1473 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1474 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1475 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1476 return -EINVAL;
1477 }
1478
1479 if (write_mostly >= rs->md.raid_disks) {
1480 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1481 return -EINVAL;
1482 }
1483
1484 if (rs->md.sync_speed_max &&
1485 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1486 rs->ti->error = "Bogus recovery rates";
1487 return -EINVAL;
1488 }
1489
1490 if (validate_region_size(rs, region_size))
1491 return -EINVAL;
1492
1493 if (rs->md.chunk_sectors)
1494 max_io_len = rs->md.chunk_sectors;
1495 else
1496 max_io_len = region_size;
1497
1498 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1499 return -EINVAL;
1500
1501 if (rt_is_raid10(rt)) {
1502 if (raid10_copies > rs->md.raid_disks) {
1503 rs->ti->error = "Not enough devices to satisfy specification";
1504 return -EINVAL;
1505 }
1506
1507 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1508 if (rs->md.new_layout < 0) {
1509 rs->ti->error = "Error getting raid10 format";
1510 return rs->md.new_layout;
1511 }
1512
1513 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1514 if (!rt) {
1515 rs->ti->error = "Failed to recognize new raid10 layout";
1516 return -EINVAL;
1517 }
1518
1519 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1520 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1521 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1522 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1523 return -EINVAL;
1524 }
1525 }
1526
1527 rs->raid10_copies = raid10_copies;
1528
1529 /* Assume there are no metadata devices until the drives are parsed */
1530 rs->md.persistent = 0;
1531 rs->md.external = 1;
1532
1533 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1534 return rs_check_for_valid_flags(rs);
1535 }
1536
1537 /* Set raid4/5/6 cache size */
rs_set_raid456_stripe_cache(struct raid_set * rs)1538 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1539 {
1540 int r;
1541 struct r5conf *conf;
1542 struct mddev *mddev = &rs->md;
1543 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1544 uint32_t nr_stripes = rs->stripe_cache_entries;
1545
1546 if (!rt_is_raid456(rs->raid_type)) {
1547 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1548 return -EINVAL;
1549 }
1550
1551 if (nr_stripes < min_stripes) {
1552 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1553 nr_stripes, min_stripes);
1554 nr_stripes = min_stripes;
1555 }
1556
1557 conf = mddev->private;
1558 if (!conf) {
1559 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1560 return -EINVAL;
1561 }
1562
1563 /* Try setting number of stripes in raid456 stripe cache */
1564 if (conf->min_nr_stripes != nr_stripes) {
1565 r = raid5_set_cache_size(mddev, nr_stripes);
1566 if (r) {
1567 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1568 return r;
1569 }
1570
1571 DMINFO("%u stripe cache entries", nr_stripes);
1572 }
1573
1574 return 0;
1575 }
1576
1577 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
mddev_data_stripes(struct raid_set * rs)1578 static unsigned int mddev_data_stripes(struct raid_set *rs)
1579 {
1580 return rs->md.raid_disks - rs->raid_type->parity_devs;
1581 }
1582
1583 /* Return # of data stripes of @rs (i.e. as of ctr) */
rs_data_stripes(struct raid_set * rs)1584 static unsigned int rs_data_stripes(struct raid_set *rs)
1585 {
1586 return rs->raid_disks - rs->raid_type->parity_devs;
1587 }
1588
1589 /*
1590 * Retrieve rdev->sectors from any valid raid device of @rs
1591 * to allow userpace to pass in arbitray "- -" device tupples.
1592 */
__rdev_sectors(struct raid_set * rs)1593 static sector_t __rdev_sectors(struct raid_set *rs)
1594 {
1595 int i;
1596
1597 for (i = 0; i < rs->raid_disks; i++) {
1598 struct md_rdev *rdev = &rs->dev[i].rdev;
1599
1600 if (!test_bit(Journal, &rdev->flags) &&
1601 rdev->bdev && rdev->sectors)
1602 return rdev->sectors;
1603 }
1604
1605 return 0;
1606 }
1607
1608 /* Check that calculated dev_sectors fits all component devices. */
_check_data_dev_sectors(struct raid_set * rs)1609 static int _check_data_dev_sectors(struct raid_set *rs)
1610 {
1611 sector_t ds = ~0;
1612 struct md_rdev *rdev;
1613
1614 rdev_for_each(rdev, &rs->md)
1615 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1616 ds = min(ds, bdev_nr_sectors(rdev->bdev));
1617 if (ds < rs->md.dev_sectors) {
1618 rs->ti->error = "Component device(s) too small";
1619 return -EINVAL;
1620 }
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* Get reshape sectors from data_offsets or raid set */
_get_reshape_sectors(struct raid_set * rs)1627 static sector_t _get_reshape_sectors(struct raid_set *rs)
1628 {
1629 struct md_rdev *rdev;
1630 sector_t reshape_sectors = 0;
1631
1632 rdev_for_each(rdev, &rs->md)
1633 if (!test_bit(Journal, &rdev->flags)) {
1634 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
1635 rdev->data_offset - rdev->new_data_offset :
1636 rdev->new_data_offset - rdev->data_offset;
1637 break;
1638 }
1639
1640 return max(reshape_sectors, (sector_t) rs->data_offset);
1641 }
1642
1643 /* Calculate the sectors per device and per array used for @rs */
rs_set_dev_and_array_sectors(struct raid_set * rs,sector_t sectors,bool use_mddev)1644 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1645 {
1646 int delta_disks;
1647 unsigned int data_stripes;
1648 sector_t array_sectors = sectors, dev_sectors = sectors;
1649 struct mddev *mddev = &rs->md;
1650
1651 if (use_mddev) {
1652 delta_disks = mddev->delta_disks;
1653 data_stripes = mddev_data_stripes(rs);
1654 } else {
1655 delta_disks = rs->delta_disks;
1656 data_stripes = rs_data_stripes(rs);
1657 }
1658
1659 /* Special raid1 case w/o delta_disks support (yet) */
1660 if (rt_is_raid1(rs->raid_type))
1661 ;
1662 else if (rt_is_raid10(rs->raid_type)) {
1663 if (rs->raid10_copies < 2 ||
1664 delta_disks < 0) {
1665 rs->ti->error = "Bogus raid10 data copies or delta disks";
1666 return -EINVAL;
1667 }
1668
1669 dev_sectors *= rs->raid10_copies;
1670 if (sector_div(dev_sectors, data_stripes))
1671 goto bad;
1672
1673 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs));
1674 if (sector_div(array_sectors, rs->raid10_copies))
1675 goto bad;
1676
1677 } else if (sector_div(dev_sectors, data_stripes))
1678 goto bad;
1679
1680 else
1681 /* Striped layouts */
1682 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs));
1683
1684 mddev->array_sectors = array_sectors;
1685 mddev->dev_sectors = dev_sectors;
1686 rs_set_rdev_sectors(rs);
1687
1688 return _check_data_dev_sectors(rs);
1689 bad:
1690 rs->ti->error = "Target length not divisible by number of data devices";
1691 return -EINVAL;
1692 }
1693
1694 /* Setup recovery on @rs */
rs_setup_recovery(struct raid_set * rs,sector_t dev_sectors)1695 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1696 {
1697 /* raid0 does not recover */
1698 if (rs_is_raid0(rs))
1699 rs->md.recovery_cp = MaxSector;
1700 /*
1701 * A raid6 set has to be recovered either
1702 * completely or for the grown part to
1703 * ensure proper parity and Q-Syndrome
1704 */
1705 else if (rs_is_raid6(rs))
1706 rs->md.recovery_cp = dev_sectors;
1707 /*
1708 * Other raid set types may skip recovery
1709 * depending on the 'nosync' flag.
1710 */
1711 else
1712 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1713 ? MaxSector : dev_sectors;
1714 }
1715
do_table_event(struct work_struct * ws)1716 static void do_table_event(struct work_struct *ws)
1717 {
1718 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1719
1720 smp_rmb(); /* Make sure we access most actual mddev properties */
1721
1722 /* Only grow size resulting from added stripe(s) after reshape ended. */
1723 if (!rs_is_reshaping(rs) &&
1724 rs->array_sectors > rs->md.array_sectors &&
1725 !rs->md.delta_disks &&
1726 rs->md.raid_disks == rs->raid_disks) {
1727 /* The raid10 personality doesn't provide proper device sizes -> correct. */
1728 if (rs_is_raid10(rs))
1729 rs_set_rdev_sectors(rs);
1730
1731 rs->md.array_sectors = rs->array_sectors;
1732 rs_set_capacity(rs);
1733 }
1734
1735 dm_table_event(rs->ti->table);
1736 }
1737
1738 /*
1739 * Make sure a valid takover (level switch) is being requested on @rs
1740 *
1741 * Conversions of raid sets from one MD personality to another
1742 * have to conform to restrictions which are enforced here.
1743 */
rs_check_takeover(struct raid_set * rs)1744 static int rs_check_takeover(struct raid_set *rs)
1745 {
1746 struct mddev *mddev = &rs->md;
1747 unsigned int near_copies;
1748
1749 if (rs->md.degraded) {
1750 rs->ti->error = "Can't takeover degraded raid set";
1751 return -EPERM;
1752 }
1753
1754 if (rs_is_reshaping(rs)) {
1755 rs->ti->error = "Can't takeover reshaping raid set";
1756 return -EPERM;
1757 }
1758
1759 switch (mddev->level) {
1760 case 0:
1761 /* raid0 -> raid1/5 with one disk */
1762 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1763 mddev->raid_disks == 1)
1764 return 0;
1765
1766 /* raid0 -> raid10 */
1767 if (mddev->new_level == 10 &&
1768 !(rs->raid_disks % mddev->raid_disks))
1769 return 0;
1770
1771 /* raid0 with multiple disks -> raid4/5/6 */
1772 if (__within_range(mddev->new_level, 4, 6) &&
1773 mddev->new_layout == ALGORITHM_PARITY_N &&
1774 mddev->raid_disks > 1)
1775 return 0;
1776
1777 break;
1778
1779 case 10:
1780 /* Can't takeover raid10_offset! */
1781 if (__is_raid10_offset(mddev->layout))
1782 break;
1783
1784 near_copies = __raid10_near_copies(mddev->layout);
1785
1786 /* raid10* -> raid0 */
1787 if (mddev->new_level == 0) {
1788 /* Can takeover raid10_near with raid disks divisable by data copies! */
1789 if (near_copies > 1 &&
1790 !(mddev->raid_disks % near_copies)) {
1791 mddev->raid_disks /= near_copies;
1792 mddev->delta_disks = mddev->raid_disks;
1793 return 0;
1794 }
1795
1796 /* Can takeover raid10_far */
1797 if (near_copies == 1 &&
1798 __raid10_far_copies(mddev->layout) > 1)
1799 return 0;
1800
1801 break;
1802 }
1803
1804 /* raid10_{near,far} -> raid1 */
1805 if (mddev->new_level == 1 &&
1806 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1807 return 0;
1808
1809 /* raid10_{near,far} with 2 disks -> raid4/5 */
1810 if (__within_range(mddev->new_level, 4, 5) &&
1811 mddev->raid_disks == 2)
1812 return 0;
1813 break;
1814
1815 case 1:
1816 /* raid1 with 2 disks -> raid4/5 */
1817 if (__within_range(mddev->new_level, 4, 5) &&
1818 mddev->raid_disks == 2) {
1819 mddev->degraded = 1;
1820 return 0;
1821 }
1822
1823 /* raid1 -> raid0 */
1824 if (mddev->new_level == 0 &&
1825 mddev->raid_disks == 1)
1826 return 0;
1827
1828 /* raid1 -> raid10 */
1829 if (mddev->new_level == 10)
1830 return 0;
1831 break;
1832
1833 case 4:
1834 /* raid4 -> raid0 */
1835 if (mddev->new_level == 0)
1836 return 0;
1837
1838 /* raid4 -> raid1/5 with 2 disks */
1839 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1840 mddev->raid_disks == 2)
1841 return 0;
1842
1843 /* raid4 -> raid5/6 with parity N */
1844 if (__within_range(mddev->new_level, 5, 6) &&
1845 mddev->layout == ALGORITHM_PARITY_N)
1846 return 0;
1847 break;
1848
1849 case 5:
1850 /* raid5 with parity N -> raid0 */
1851 if (mddev->new_level == 0 &&
1852 mddev->layout == ALGORITHM_PARITY_N)
1853 return 0;
1854
1855 /* raid5 with parity N -> raid4 */
1856 if (mddev->new_level == 4 &&
1857 mddev->layout == ALGORITHM_PARITY_N)
1858 return 0;
1859
1860 /* raid5 with 2 disks -> raid1/4/10 */
1861 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1862 mddev->raid_disks == 2)
1863 return 0;
1864
1865 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1866 if (mddev->new_level == 6 &&
1867 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1868 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1869 return 0;
1870 break;
1871
1872 case 6:
1873 /* raid6 with parity N -> raid0 */
1874 if (mddev->new_level == 0 &&
1875 mddev->layout == ALGORITHM_PARITY_N)
1876 return 0;
1877
1878 /* raid6 with parity N -> raid4 */
1879 if (mddev->new_level == 4 &&
1880 mddev->layout == ALGORITHM_PARITY_N)
1881 return 0;
1882
1883 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1884 if (mddev->new_level == 5 &&
1885 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1886 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1887 return 0;
1888 break;
1889
1890 default:
1891 break;
1892 }
1893
1894 rs->ti->error = "takeover not possible";
1895 return -EINVAL;
1896 }
1897
1898 /* True if @rs requested to be taken over */
rs_takeover_requested(struct raid_set * rs)1899 static bool rs_takeover_requested(struct raid_set *rs)
1900 {
1901 return rs->md.new_level != rs->md.level;
1902 }
1903
1904 /* True if layout is set to reshape. */
rs_is_layout_change(struct raid_set * rs,bool use_mddev)1905 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1906 {
1907 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1908 rs->md.new_layout != rs->md.layout ||
1909 rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1910 }
1911
1912 /* True if @rs is requested to reshape by ctr */
rs_reshape_requested(struct raid_set * rs)1913 static bool rs_reshape_requested(struct raid_set *rs)
1914 {
1915 bool change;
1916 struct mddev *mddev = &rs->md;
1917
1918 if (rs_takeover_requested(rs))
1919 return false;
1920
1921 if (rs_is_raid0(rs))
1922 return false;
1923
1924 change = rs_is_layout_change(rs, false);
1925
1926 /* Historical case to support raid1 reshape without delta disks */
1927 if (rs_is_raid1(rs)) {
1928 if (rs->delta_disks)
1929 return !!rs->delta_disks;
1930
1931 return !change &&
1932 mddev->raid_disks != rs->raid_disks;
1933 }
1934
1935 if (rs_is_raid10(rs))
1936 return change &&
1937 !__is_raid10_far(mddev->new_layout) &&
1938 rs->delta_disks >= 0;
1939
1940 return change;
1941 }
1942
1943 /* Features */
1944 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1945
1946 /* State flags for sb->flags */
1947 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1948 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1949
1950 /*
1951 * This structure is never routinely used by userspace, unlike md superblocks.
1952 * Devices with this superblock should only ever be accessed via device-mapper.
1953 */
1954 #define DM_RAID_MAGIC 0x64526D44
1955 struct dm_raid_superblock {
1956 __le32 magic; /* "DmRd" */
1957 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1958
1959 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1960 __le32 array_position; /* The position of this drive in the raid set */
1961
1962 __le64 events; /* Incremented by md when superblock updated */
1963 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1964 /* indicate failures (see extension below) */
1965
1966 /*
1967 * This offset tracks the progress of the repair or replacement of
1968 * an individual drive.
1969 */
1970 __le64 disk_recovery_offset;
1971
1972 /*
1973 * This offset tracks the progress of the initial raid set
1974 * synchronisation/parity calculation.
1975 */
1976 __le64 array_resync_offset;
1977
1978 /*
1979 * raid characteristics
1980 */
1981 __le32 level;
1982 __le32 layout;
1983 __le32 stripe_sectors;
1984
1985 /********************************************************************
1986 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1987 *
1988 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1989 */
1990
1991 __le32 flags; /* Flags defining array states for reshaping */
1992
1993 /*
1994 * This offset tracks the progress of a raid
1995 * set reshape in order to be able to restart it
1996 */
1997 __le64 reshape_position;
1998
1999 /*
2000 * These define the properties of the array in case of an interrupted reshape
2001 */
2002 __le32 new_level;
2003 __le32 new_layout;
2004 __le32 new_stripe_sectors;
2005 __le32 delta_disks;
2006
2007 __le64 array_sectors; /* Array size in sectors */
2008
2009 /*
2010 * Sector offsets to data on devices (reshaping).
2011 * Needed to support out of place reshaping, thus
2012 * not writing over any stripes whilst converting
2013 * them from old to new layout
2014 */
2015 __le64 data_offset;
2016 __le64 new_data_offset;
2017
2018 __le64 sectors; /* Used device size in sectors */
2019
2020 /*
2021 * Additional Bit field of devices indicating failures to support
2022 * up to 256 devices with the 1.9.0 on-disk metadata format
2023 */
2024 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2025
2026 __le32 incompat_features; /* Used to indicate any incompatible features */
2027
2028 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2029 } __packed;
2030
2031 /*
2032 * Check for reshape constraints on raid set @rs:
2033 *
2034 * - reshape function non-existent
2035 * - degraded set
2036 * - ongoing recovery
2037 * - ongoing reshape
2038 *
2039 * Returns 0 if none or -EPERM if given constraint
2040 * and error message reference in @errmsg
2041 */
rs_check_reshape(struct raid_set * rs)2042 static int rs_check_reshape(struct raid_set *rs)
2043 {
2044 struct mddev *mddev = &rs->md;
2045
2046 if (!mddev->pers || !mddev->pers->check_reshape)
2047 rs->ti->error = "Reshape not supported";
2048 else if (mddev->degraded)
2049 rs->ti->error = "Can't reshape degraded raid set";
2050 else if (rs_is_recovering(rs))
2051 rs->ti->error = "Convert request on recovering raid set prohibited";
2052 else if (rs_is_reshaping(rs))
2053 rs->ti->error = "raid set already reshaping!";
2054 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2055 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2056 else
2057 return 0;
2058
2059 return -EPERM;
2060 }
2061
read_disk_sb(struct md_rdev * rdev,int size,bool force_reload)2062 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2063 {
2064 BUG_ON(!rdev->sb_page);
2065
2066 if (rdev->sb_loaded && !force_reload)
2067 return 0;
2068
2069 rdev->sb_loaded = 0;
2070
2071 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2072 DMERR("Failed to read superblock of device at position %d",
2073 rdev->raid_disk);
2074 md_error(rdev->mddev, rdev);
2075 set_bit(Faulty, &rdev->flags);
2076 return -EIO;
2077 }
2078
2079 rdev->sb_loaded = 1;
2080
2081 return 0;
2082 }
2083
sb_retrieve_failed_devices(struct dm_raid_superblock * sb,uint64_t * failed_devices)2084 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2085 {
2086 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2087 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2088
2089 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2090 int i = ARRAY_SIZE(sb->extended_failed_devices);
2091
2092 while (i--)
2093 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2094 }
2095 }
2096
sb_update_failed_devices(struct dm_raid_superblock * sb,uint64_t * failed_devices)2097 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2098 {
2099 int i = ARRAY_SIZE(sb->extended_failed_devices);
2100
2101 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2102 while (i--)
2103 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2104 }
2105
2106 /*
2107 * Synchronize the superblock members with the raid set properties
2108 *
2109 * All superblock data is little endian.
2110 */
super_sync(struct mddev * mddev,struct md_rdev * rdev)2111 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2112 {
2113 bool update_failed_devices = false;
2114 unsigned int i;
2115 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2116 struct dm_raid_superblock *sb;
2117 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2118
2119 /* No metadata device, no superblock */
2120 if (!rdev->meta_bdev)
2121 return;
2122
2123 BUG_ON(!rdev->sb_page);
2124
2125 sb = page_address(rdev->sb_page);
2126
2127 sb_retrieve_failed_devices(sb, failed_devices);
2128
2129 for (i = 0; i < rs->raid_disks; i++)
2130 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2131 update_failed_devices = true;
2132 set_bit(i, (void *) failed_devices);
2133 }
2134
2135 if (update_failed_devices)
2136 sb_update_failed_devices(sb, failed_devices);
2137
2138 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2139 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2140
2141 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2142 sb->array_position = cpu_to_le32(rdev->raid_disk);
2143
2144 sb->events = cpu_to_le64(mddev->events);
2145
2146 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2147 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2148
2149 sb->level = cpu_to_le32(mddev->level);
2150 sb->layout = cpu_to_le32(mddev->layout);
2151 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2152
2153 /********************************************************************
2154 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2155 *
2156 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2157 */
2158 sb->new_level = cpu_to_le32(mddev->new_level);
2159 sb->new_layout = cpu_to_le32(mddev->new_layout);
2160 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2161
2162 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2163
2164 smp_rmb(); /* Make sure we access most recent reshape position */
2165 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2166 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2167 /* Flag ongoing reshape */
2168 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2169
2170 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2171 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2172 } else {
2173 /* Clear reshape flags */
2174 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2175 }
2176
2177 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2178 sb->data_offset = cpu_to_le64(rdev->data_offset);
2179 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2180 sb->sectors = cpu_to_le64(rdev->sectors);
2181 sb->incompat_features = cpu_to_le32(0);
2182
2183 /* Zero out the rest of the payload after the size of the superblock */
2184 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2185 }
2186
2187 /*
2188 * super_load
2189 *
2190 * This function creates a superblock if one is not found on the device
2191 * and will decide which superblock to use if there's a choice.
2192 *
2193 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2194 */
super_load(struct md_rdev * rdev,struct md_rdev * refdev)2195 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2196 {
2197 int r;
2198 struct dm_raid_superblock *sb;
2199 struct dm_raid_superblock *refsb;
2200 uint64_t events_sb, events_refsb;
2201
2202 r = read_disk_sb(rdev, rdev->sb_size, false);
2203 if (r)
2204 return r;
2205
2206 sb = page_address(rdev->sb_page);
2207
2208 /*
2209 * Two cases that we want to write new superblocks and rebuild:
2210 * 1) New device (no matching magic number)
2211 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2212 */
2213 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2214 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2215 super_sync(rdev->mddev, rdev);
2216
2217 set_bit(FirstUse, &rdev->flags);
2218 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2219
2220 /* Force writing of superblocks to disk */
2221 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2222
2223 /* Any superblock is better than none, choose that if given */
2224 return refdev ? 0 : 1;
2225 }
2226
2227 if (!refdev)
2228 return 1;
2229
2230 events_sb = le64_to_cpu(sb->events);
2231
2232 refsb = page_address(refdev->sb_page);
2233 events_refsb = le64_to_cpu(refsb->events);
2234
2235 return (events_sb > events_refsb) ? 1 : 0;
2236 }
2237
super_init_validation(struct raid_set * rs,struct md_rdev * rdev)2238 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2239 {
2240 int role;
2241 struct mddev *mddev = &rs->md;
2242 uint64_t events_sb;
2243 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2244 struct dm_raid_superblock *sb;
2245 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2246 struct md_rdev *r;
2247 struct dm_raid_superblock *sb2;
2248
2249 sb = page_address(rdev->sb_page);
2250 events_sb = le64_to_cpu(sb->events);
2251
2252 /*
2253 * Initialise to 1 if this is a new superblock.
2254 */
2255 mddev->events = events_sb ? : 1;
2256
2257 mddev->reshape_position = MaxSector;
2258
2259 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2260 mddev->level = le32_to_cpu(sb->level);
2261 mddev->layout = le32_to_cpu(sb->layout);
2262 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2263
2264 /*
2265 * Reshaping is supported, e.g. reshape_position is valid
2266 * in superblock and superblock content is authoritative.
2267 */
2268 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2269 /* Superblock is authoritative wrt given raid set layout! */
2270 mddev->new_level = le32_to_cpu(sb->new_level);
2271 mddev->new_layout = le32_to_cpu(sb->new_layout);
2272 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2273 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2274 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2275
2276 /* raid was reshaping and got interrupted */
2277 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2278 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2279 DMERR("Reshape requested but raid set is still reshaping");
2280 return -EINVAL;
2281 }
2282
2283 if (mddev->delta_disks < 0 ||
2284 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2285 mddev->reshape_backwards = 1;
2286 else
2287 mddev->reshape_backwards = 0;
2288
2289 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2290 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2291 }
2292
2293 } else {
2294 /*
2295 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2296 */
2297 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2298 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2299
2300 if (rs_takeover_requested(rs)) {
2301 if (rt_cur && rt_new)
2302 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2303 rt_cur->name, rt_new->name);
2304 else
2305 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2306 return -EINVAL;
2307 } else if (rs_reshape_requested(rs)) {
2308 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2309 if (mddev->layout != mddev->new_layout) {
2310 if (rt_cur && rt_new)
2311 DMERR(" current layout %s vs new layout %s",
2312 rt_cur->name, rt_new->name);
2313 else
2314 DMERR(" current layout 0x%X vs new layout 0x%X",
2315 le32_to_cpu(sb->layout), mddev->new_layout);
2316 }
2317 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2318 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2319 mddev->chunk_sectors, mddev->new_chunk_sectors);
2320 if (rs->delta_disks)
2321 DMERR(" current %u disks vs new %u disks",
2322 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2323 if (rs_is_raid10(rs)) {
2324 DMERR(" Old layout: %s w/ %u copies",
2325 raid10_md_layout_to_format(mddev->layout),
2326 raid10_md_layout_to_copies(mddev->layout));
2327 DMERR(" New layout: %s w/ %u copies",
2328 raid10_md_layout_to_format(mddev->new_layout),
2329 raid10_md_layout_to_copies(mddev->new_layout));
2330 }
2331 return -EINVAL;
2332 }
2333
2334 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2335 }
2336
2337 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2338 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2339
2340 /*
2341 * During load, we set FirstUse if a new superblock was written.
2342 * There are two reasons we might not have a superblock:
2343 * 1) The raid set is brand new - in which case, all of the
2344 * devices must have their In_sync bit set. Also,
2345 * recovery_cp must be 0, unless forced.
2346 * 2) This is a new device being added to an old raid set
2347 * and the new device needs to be rebuilt - in which
2348 * case the In_sync bit will /not/ be set and
2349 * recovery_cp must be MaxSector.
2350 * 3) This is/are a new device(s) being added to an old
2351 * raid set during takeover to a higher raid level
2352 * to provide capacity for redundancy or during reshape
2353 * to add capacity to grow the raid set.
2354 */
2355 rdev_for_each(r, mddev) {
2356 if (test_bit(Journal, &rdev->flags))
2357 continue;
2358
2359 if (test_bit(FirstUse, &r->flags))
2360 new_devs++;
2361
2362 if (!test_bit(In_sync, &r->flags)) {
2363 DMINFO("Device %d specified for rebuild; clearing superblock",
2364 r->raid_disk);
2365 rebuilds++;
2366
2367 if (test_bit(FirstUse, &r->flags))
2368 rebuild_and_new++;
2369 }
2370 }
2371
2372 if (new_devs == rs->raid_disks || !rebuilds) {
2373 /* Replace a broken device */
2374 if (new_devs == rs->raid_disks) {
2375 DMINFO("Superblocks created for new raid set");
2376 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2377 } else if (new_devs != rebuilds &&
2378 new_devs != rs->delta_disks) {
2379 DMERR("New device injected into existing raid set without "
2380 "'delta_disks' or 'rebuild' parameter specified");
2381 return -EINVAL;
2382 }
2383 } else if (new_devs && new_devs != rebuilds) {
2384 DMERR("%u 'rebuild' devices cannot be injected into"
2385 " a raid set with %u other first-time devices",
2386 rebuilds, new_devs);
2387 return -EINVAL;
2388 } else if (rebuilds) {
2389 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2390 DMERR("new device%s provided without 'rebuild'",
2391 new_devs > 1 ? "s" : "");
2392 return -EINVAL;
2393 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2394 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2395 (unsigned long long) mddev->recovery_cp);
2396 return -EINVAL;
2397 } else if (rs_is_reshaping(rs)) {
2398 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2399 (unsigned long long) mddev->reshape_position);
2400 return -EINVAL;
2401 }
2402 }
2403
2404 /*
2405 * Now we set the Faulty bit for those devices that are
2406 * recorded in the superblock as failed.
2407 */
2408 sb_retrieve_failed_devices(sb, failed_devices);
2409 rdev_for_each(r, mddev) {
2410 if (test_bit(Journal, &r->flags) ||
2411 !r->sb_page)
2412 continue;
2413 sb2 = page_address(r->sb_page);
2414 sb2->failed_devices = 0;
2415 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2416
2417 /*
2418 * Check for any device re-ordering.
2419 */
2420 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2421 role = le32_to_cpu(sb2->array_position);
2422 if (role < 0)
2423 continue;
2424
2425 if (role != r->raid_disk) {
2426 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2427 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2428 rs->raid_disks % rs->raid10_copies) {
2429 rs->ti->error =
2430 "Cannot change raid10 near set to odd # of devices!";
2431 return -EINVAL;
2432 }
2433
2434 sb2->array_position = cpu_to_le32(r->raid_disk);
2435
2436 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2437 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2438 !rt_is_raid1(rs->raid_type)) {
2439 rs->ti->error = "Cannot change device positions in raid set";
2440 return -EINVAL;
2441 }
2442
2443 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2444 }
2445
2446 /*
2447 * Partial recovery is performed on
2448 * returning failed devices.
2449 */
2450 if (test_bit(role, (void *) failed_devices))
2451 set_bit(Faulty, &r->flags);
2452 }
2453 }
2454
2455 return 0;
2456 }
2457
super_validate(struct raid_set * rs,struct md_rdev * rdev)2458 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2459 {
2460 struct mddev *mddev = &rs->md;
2461 struct dm_raid_superblock *sb;
2462
2463 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2464 return 0;
2465
2466 sb = page_address(rdev->sb_page);
2467
2468 /*
2469 * If mddev->events is not set, we know we have not yet initialized
2470 * the array.
2471 */
2472 if (!mddev->events && super_init_validation(rs, rdev))
2473 return -EINVAL;
2474
2475 if (le32_to_cpu(sb->compat_features) &&
2476 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2477 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2478 return -EINVAL;
2479 }
2480
2481 if (sb->incompat_features) {
2482 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2483 return -EINVAL;
2484 }
2485
2486 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2487 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2488 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2489
2490 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2491 /*
2492 * Retrieve rdev size stored in superblock to be prepared for shrink.
2493 * Check extended superblock members are present otherwise the size
2494 * will not be set!
2495 */
2496 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2497 rdev->sectors = le64_to_cpu(sb->sectors);
2498
2499 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2500 if (rdev->recovery_offset == MaxSector)
2501 set_bit(In_sync, &rdev->flags);
2502 /*
2503 * If no reshape in progress -> we're recovering single
2504 * disk(s) and have to set the device(s) to out-of-sync
2505 */
2506 else if (!rs_is_reshaping(rs))
2507 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2508 }
2509
2510 /*
2511 * If a device comes back, set it as not In_sync and no longer faulty.
2512 */
2513 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2514 rdev->recovery_offset = 0;
2515 clear_bit(In_sync, &rdev->flags);
2516 rdev->saved_raid_disk = rdev->raid_disk;
2517 }
2518
2519 /* Reshape support -> restore respective data offsets */
2520 rdev->data_offset = le64_to_cpu(sb->data_offset);
2521 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2522
2523 return 0;
2524 }
2525
2526 /*
2527 * Analyse superblocks and select the freshest.
2528 */
analyse_superblocks(struct dm_target * ti,struct raid_set * rs)2529 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2530 {
2531 int r;
2532 struct md_rdev *rdev, *freshest;
2533 struct mddev *mddev = &rs->md;
2534
2535 freshest = NULL;
2536 rdev_for_each(rdev, mddev) {
2537 if (test_bit(Journal, &rdev->flags))
2538 continue;
2539
2540 if (!rdev->meta_bdev)
2541 continue;
2542
2543 /* Set superblock offset/size for metadata device. */
2544 rdev->sb_start = 0;
2545 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2546 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2547 DMERR("superblock size of a logical block is no longer valid");
2548 return -EINVAL;
2549 }
2550
2551 /*
2552 * Skipping super_load due to CTR_FLAG_SYNC will cause
2553 * the array to undergo initialization again as
2554 * though it were new. This is the intended effect
2555 * of the "sync" directive.
2556 *
2557 * With reshaping capability added, we must ensure that
2558 * the "sync" directive is disallowed during the reshape.
2559 */
2560 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2561 continue;
2562
2563 r = super_load(rdev, freshest);
2564
2565 switch (r) {
2566 case 1:
2567 freshest = rdev;
2568 break;
2569 case 0:
2570 break;
2571 default:
2572 /* This is a failure to read the superblock from the metadata device. */
2573 /*
2574 * We have to keep any raid0 data/metadata device pairs or
2575 * the MD raid0 personality will fail to start the array.
2576 */
2577 if (rs_is_raid0(rs))
2578 continue;
2579
2580 /*
2581 * We keep the dm_devs to be able to emit the device tuple
2582 * properly on the table line in raid_status() (rather than
2583 * mistakenly acting as if '- -' got passed into the constructor).
2584 *
2585 * The rdev has to stay on the same_set list to allow for
2586 * the attempt to restore faulty devices on second resume.
2587 */
2588 rdev->raid_disk = rdev->saved_raid_disk = -1;
2589 break;
2590 }
2591 }
2592
2593 if (!freshest)
2594 return 0;
2595
2596 /*
2597 * Validation of the freshest device provides the source of
2598 * validation for the remaining devices.
2599 */
2600 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2601 if (super_validate(rs, freshest))
2602 return -EINVAL;
2603
2604 if (validate_raid_redundancy(rs)) {
2605 rs->ti->error = "Insufficient redundancy to activate array";
2606 return -EINVAL;
2607 }
2608
2609 rdev_for_each(rdev, mddev)
2610 if (!test_bit(Journal, &rdev->flags) &&
2611 rdev != freshest &&
2612 super_validate(rs, rdev))
2613 return -EINVAL;
2614 return 0;
2615 }
2616
2617 /*
2618 * Adjust data_offset and new_data_offset on all disk members of @rs
2619 * for out of place reshaping if requested by constructor
2620 *
2621 * We need free space at the beginning of each raid disk for forward
2622 * and at the end for backward reshapes which userspace has to provide
2623 * via remapping/reordering of space.
2624 */
rs_adjust_data_offsets(struct raid_set * rs)2625 static int rs_adjust_data_offsets(struct raid_set *rs)
2626 {
2627 sector_t data_offset = 0, new_data_offset = 0;
2628 struct md_rdev *rdev;
2629
2630 /* Constructor did not request data offset change */
2631 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2632 if (!rs_is_reshapable(rs))
2633 goto out;
2634
2635 return 0;
2636 }
2637
2638 /* HM FIXME: get In_Sync raid_dev? */
2639 rdev = &rs->dev[0].rdev;
2640
2641 if (rs->delta_disks < 0) {
2642 /*
2643 * Removing disks (reshaping backwards):
2644 *
2645 * - before reshape: data is at offset 0 and free space
2646 * is at end of each component LV
2647 *
2648 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2649 */
2650 data_offset = 0;
2651 new_data_offset = rs->data_offset;
2652
2653 } else if (rs->delta_disks > 0) {
2654 /*
2655 * Adding disks (reshaping forwards):
2656 *
2657 * - before reshape: data is at offset rs->data_offset != 0 and
2658 * free space is at begin of each component LV
2659 *
2660 * - after reshape: data is at offset 0 on each component LV
2661 */
2662 data_offset = rs->data_offset;
2663 new_data_offset = 0;
2664
2665 } else {
2666 /*
2667 * User space passes in 0 for data offset after having removed reshape space
2668 *
2669 * - or - (data offset != 0)
2670 *
2671 * Changing RAID layout or chunk size -> toggle offsets
2672 *
2673 * - before reshape: data is at offset rs->data_offset 0 and
2674 * free space is at end of each component LV
2675 * -or-
2676 * data is at offset rs->data_offset != 0 and
2677 * free space is at begin of each component LV
2678 *
2679 * - after reshape: data is at offset 0 if it was at offset != 0
2680 * or at offset != 0 if it was at offset 0
2681 * on each component LV
2682 *
2683 */
2684 data_offset = rs->data_offset ? rdev->data_offset : 0;
2685 new_data_offset = data_offset ? 0 : rs->data_offset;
2686 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2687 }
2688
2689 /*
2690 * Make sure we got a minimum amount of free sectors per device
2691 */
2692 if (rs->data_offset &&
2693 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2694 rs->ti->error = data_offset ? "No space for forward reshape" :
2695 "No space for backward reshape";
2696 return -ENOSPC;
2697 }
2698 out:
2699 /*
2700 * Raise recovery_cp in case data_offset != 0 to
2701 * avoid false recovery positives in the constructor.
2702 */
2703 if (rs->md.recovery_cp < rs->md.dev_sectors)
2704 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2705
2706 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2707 rdev_for_each(rdev, &rs->md) {
2708 if (!test_bit(Journal, &rdev->flags)) {
2709 rdev->data_offset = data_offset;
2710 rdev->new_data_offset = new_data_offset;
2711 }
2712 }
2713
2714 return 0;
2715 }
2716
2717 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
__reorder_raid_disk_indexes(struct raid_set * rs)2718 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2719 {
2720 int i = 0;
2721 struct md_rdev *rdev;
2722
2723 rdev_for_each(rdev, &rs->md) {
2724 if (!test_bit(Journal, &rdev->flags)) {
2725 rdev->raid_disk = i++;
2726 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2727 }
2728 }
2729 }
2730
2731 /*
2732 * Setup @rs for takeover by a different raid level
2733 */
rs_setup_takeover(struct raid_set * rs)2734 static int rs_setup_takeover(struct raid_set *rs)
2735 {
2736 struct mddev *mddev = &rs->md;
2737 struct md_rdev *rdev;
2738 unsigned int d = mddev->raid_disks = rs->raid_disks;
2739 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2740
2741 if (rt_is_raid10(rs->raid_type)) {
2742 if (rs_is_raid0(rs)) {
2743 /* Userpace reordered disks -> adjust raid_disk indexes */
2744 __reorder_raid_disk_indexes(rs);
2745
2746 /* raid0 -> raid10_far layout */
2747 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2748 rs->raid10_copies);
2749 } else if (rs_is_raid1(rs))
2750 /* raid1 -> raid10_near layout */
2751 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2752 rs->raid_disks);
2753 else
2754 return -EINVAL;
2755
2756 }
2757
2758 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2759 mddev->recovery_cp = MaxSector;
2760
2761 while (d--) {
2762 rdev = &rs->dev[d].rdev;
2763
2764 if (test_bit(d, (void *) rs->rebuild_disks)) {
2765 clear_bit(In_sync, &rdev->flags);
2766 clear_bit(Faulty, &rdev->flags);
2767 mddev->recovery_cp = rdev->recovery_offset = 0;
2768 /* Bitmap has to be created when we do an "up" takeover */
2769 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2770 }
2771
2772 rdev->new_data_offset = new_data_offset;
2773 }
2774
2775 return 0;
2776 }
2777
2778 /* Prepare @rs for reshape */
rs_prepare_reshape(struct raid_set * rs)2779 static int rs_prepare_reshape(struct raid_set *rs)
2780 {
2781 bool reshape;
2782 struct mddev *mddev = &rs->md;
2783
2784 if (rs_is_raid10(rs)) {
2785 if (rs->raid_disks != mddev->raid_disks &&
2786 __is_raid10_near(mddev->layout) &&
2787 rs->raid10_copies &&
2788 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2789 /*
2790 * raid disk have to be multiple of data copies to allow this conversion,
2791 *
2792 * This is actually not a reshape it is a
2793 * rebuild of any additional mirrors per group
2794 */
2795 if (rs->raid_disks % rs->raid10_copies) {
2796 rs->ti->error = "Can't reshape raid10 mirror groups";
2797 return -EINVAL;
2798 }
2799
2800 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2801 __reorder_raid_disk_indexes(rs);
2802 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2803 rs->raid10_copies);
2804 mddev->new_layout = mddev->layout;
2805 reshape = false;
2806 } else
2807 reshape = true;
2808
2809 } else if (rs_is_raid456(rs))
2810 reshape = true;
2811
2812 else if (rs_is_raid1(rs)) {
2813 if (rs->delta_disks) {
2814 /* Process raid1 via delta_disks */
2815 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2816 reshape = true;
2817 } else {
2818 /* Process raid1 without delta_disks */
2819 mddev->raid_disks = rs->raid_disks;
2820 reshape = false;
2821 }
2822 } else {
2823 rs->ti->error = "Called with bogus raid type";
2824 return -EINVAL;
2825 }
2826
2827 if (reshape) {
2828 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2829 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2830 } else if (mddev->raid_disks < rs->raid_disks)
2831 /* Create new superblocks and bitmaps, if any new disks */
2832 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2833
2834 return 0;
2835 }
2836
2837 /*
2838 * Reshape:
2839 * - change raid layout
2840 * - change chunk size
2841 * - add disks
2842 * - remove disks
2843 */
rs_setup_reshape(struct raid_set * rs)2844 static int rs_setup_reshape(struct raid_set *rs)
2845 {
2846 int r = 0;
2847 unsigned int cur_raid_devs, d;
2848 sector_t reshape_sectors = _get_reshape_sectors(rs);
2849 struct mddev *mddev = &rs->md;
2850 struct md_rdev *rdev;
2851
2852 mddev->delta_disks = rs->delta_disks;
2853 cur_raid_devs = mddev->raid_disks;
2854
2855 /* Ignore impossible layout change whilst adding/removing disks */
2856 if (mddev->delta_disks &&
2857 mddev->layout != mddev->new_layout) {
2858 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2859 mddev->new_layout = mddev->layout;
2860 }
2861
2862 /*
2863 * Adjust array size:
2864 *
2865 * - in case of adding disk(s), array size has
2866 * to grow after the disk adding reshape,
2867 * which'll happen in the event handler;
2868 * reshape will happen forward, so space has to
2869 * be available at the beginning of each disk
2870 *
2871 * - in case of removing disk(s), array size
2872 * has to shrink before starting the reshape,
2873 * which'll happen here;
2874 * reshape will happen backward, so space has to
2875 * be available at the end of each disk
2876 *
2877 * - data_offset and new_data_offset are
2878 * adjusted for aforementioned out of place
2879 * reshaping based on userspace passing in
2880 * the "data_offset <sectors>" key/value
2881 * pair via the constructor
2882 */
2883
2884 /* Add disk(s) */
2885 if (rs->delta_disks > 0) {
2886 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2887 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2888 rdev = &rs->dev[d].rdev;
2889 clear_bit(In_sync, &rdev->flags);
2890
2891 /*
2892 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2893 * by md, which'll store that erroneously in the superblock on reshape
2894 */
2895 rdev->saved_raid_disk = -1;
2896 rdev->raid_disk = d;
2897
2898 rdev->sectors = mddev->dev_sectors;
2899 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2900 }
2901
2902 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2903
2904 /* Remove disk(s) */
2905 } else if (rs->delta_disks < 0) {
2906 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2907 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2908
2909 /* Change layout and/or chunk size */
2910 } else {
2911 /*
2912 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2913 *
2914 * keeping number of disks and do layout change ->
2915 *
2916 * toggle reshape_backward depending on data_offset:
2917 *
2918 * - free space upfront -> reshape forward
2919 *
2920 * - free space at the end -> reshape backward
2921 *
2922 *
2923 * This utilizes free reshape space avoiding the need
2924 * for userspace to move (parts of) LV segments in
2925 * case of layout/chunksize change (for disk
2926 * adding/removing reshape space has to be at
2927 * the proper address (see above with delta_disks):
2928 *
2929 * add disk(s) -> begin
2930 * remove disk(s)-> end
2931 */
2932 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2933 }
2934
2935 /*
2936 * Adjust device size for forward reshape
2937 * because md_finish_reshape() reduces it.
2938 */
2939 if (!mddev->reshape_backwards)
2940 rdev_for_each(rdev, &rs->md)
2941 if (!test_bit(Journal, &rdev->flags))
2942 rdev->sectors += reshape_sectors;
2943
2944 return r;
2945 }
2946
2947 /*
2948 * If the md resync thread has updated superblock with max reshape position
2949 * at the end of a reshape but not (yet) reset the layout configuration
2950 * changes -> reset the latter.
2951 */
rs_reset_inconclusive_reshape(struct raid_set * rs)2952 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2953 {
2954 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2955 rs_set_cur(rs);
2956 rs->md.delta_disks = 0;
2957 rs->md.reshape_backwards = 0;
2958 }
2959 }
2960
2961 /*
2962 * Enable/disable discard support on RAID set depending on
2963 * RAID level and discard properties of underlying RAID members.
2964 */
configure_discard_support(struct raid_set * rs)2965 static void configure_discard_support(struct raid_set *rs)
2966 {
2967 int i;
2968 bool raid456;
2969 struct dm_target *ti = rs->ti;
2970
2971 /*
2972 * XXX: RAID level 4,5,6 require zeroing for safety.
2973 */
2974 raid456 = rs_is_raid456(rs);
2975
2976 for (i = 0; i < rs->raid_disks; i++) {
2977 if (!rs->dev[i].rdev.bdev ||
2978 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2979 return;
2980
2981 if (raid456) {
2982 if (!devices_handle_discard_safely) {
2983 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2984 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2985 return;
2986 }
2987 }
2988 }
2989
2990 ti->num_discard_bios = 1;
2991 }
2992
2993 /*
2994 * Construct a RAID0/1/10/4/5/6 mapping:
2995 * Args:
2996 * <raid_type> <#raid_params> <raid_params>{0,} \
2997 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2998 *
2999 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
3000 * details on possible <raid_params>.
3001 *
3002 * Userspace is free to initialize the metadata devices, hence the superblocks to
3003 * enforce recreation based on the passed in table parameters.
3004 *
3005 */
raid_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3006 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3007 {
3008 int r;
3009 bool resize = false;
3010 struct raid_type *rt;
3011 unsigned int num_raid_params, num_raid_devs;
3012 sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3013 struct raid_set *rs = NULL;
3014 const char *arg;
3015 struct rs_layout rs_layout;
3016 struct dm_arg_set as = { argc, argv }, as_nrd;
3017 struct dm_arg _args[] = {
3018 { 0, as.argc, "Cannot understand number of raid parameters" },
3019 { 1, 254, "Cannot understand number of raid devices parameters" }
3020 };
3021
3022 arg = dm_shift_arg(&as);
3023 if (!arg) {
3024 ti->error = "No arguments";
3025 return -EINVAL;
3026 }
3027
3028 rt = get_raid_type(arg);
3029 if (!rt) {
3030 ti->error = "Unrecognised raid_type";
3031 return -EINVAL;
3032 }
3033
3034 /* Must have <#raid_params> */
3035 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3036 return -EINVAL;
3037
3038 /* number of raid device tupples <meta_dev data_dev> */
3039 as_nrd = as;
3040 dm_consume_args(&as_nrd, num_raid_params);
3041 _args[1].max = (as_nrd.argc - 1) / 2;
3042 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3043 return -EINVAL;
3044
3045 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3046 ti->error = "Invalid number of supplied raid devices";
3047 return -EINVAL;
3048 }
3049
3050 rs = raid_set_alloc(ti, rt, num_raid_devs);
3051 if (IS_ERR(rs))
3052 return PTR_ERR(rs);
3053
3054 r = parse_raid_params(rs, &as, num_raid_params);
3055 if (r)
3056 goto bad;
3057
3058 r = parse_dev_params(rs, &as);
3059 if (r)
3060 goto bad;
3061
3062 rs->md.sync_super = super_sync;
3063
3064 /*
3065 * Calculate ctr requested array and device sizes to allow
3066 * for superblock analysis needing device sizes defined.
3067 *
3068 * Any existing superblock will overwrite the array and device sizes
3069 */
3070 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3071 if (r)
3072 goto bad;
3073
3074 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3075 rs->array_sectors = rs->md.array_sectors;
3076 rs->dev_sectors = rs->md.dev_sectors;
3077
3078 /*
3079 * Backup any new raid set level, layout, ...
3080 * requested to be able to compare to superblock
3081 * members for conversion decisions.
3082 */
3083 rs_config_backup(rs, &rs_layout);
3084
3085 r = analyse_superblocks(ti, rs);
3086 if (r)
3087 goto bad;
3088
3089 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3090 sb_array_sectors = rs->md.array_sectors;
3091 rdev_sectors = __rdev_sectors(rs);
3092 if (!rdev_sectors) {
3093 ti->error = "Invalid rdev size";
3094 r = -EINVAL;
3095 goto bad;
3096 }
3097
3098
3099 reshape_sectors = _get_reshape_sectors(rs);
3100 if (rs->dev_sectors != rdev_sectors) {
3101 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3102 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3103 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3104 }
3105
3106 INIT_WORK(&rs->md.event_work, do_table_event);
3107 ti->private = rs;
3108 ti->num_flush_bios = 1;
3109 ti->needs_bio_set_dev = true;
3110
3111 /* Restore any requested new layout for conversion decision */
3112 rs_config_restore(rs, &rs_layout);
3113
3114 /*
3115 * Now that we have any superblock metadata available,
3116 * check for new, recovering, reshaping, to be taken over,
3117 * to be reshaped or an existing, unchanged raid set to
3118 * run in sequence.
3119 */
3120 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3121 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3122 if (rs_is_raid6(rs) &&
3123 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3124 ti->error = "'nosync' not allowed for new raid6 set";
3125 r = -EINVAL;
3126 goto bad;
3127 }
3128 rs_setup_recovery(rs, 0);
3129 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3130 rs_set_new(rs);
3131 } else if (rs_is_recovering(rs)) {
3132 /* A recovering raid set may be resized */
3133 goto size_check;
3134 } else if (rs_is_reshaping(rs)) {
3135 /* Have to reject size change request during reshape */
3136 if (resize) {
3137 ti->error = "Can't resize a reshaping raid set";
3138 r = -EPERM;
3139 goto bad;
3140 }
3141 /* skip setup rs */
3142 } else if (rs_takeover_requested(rs)) {
3143 if (rs_is_reshaping(rs)) {
3144 ti->error = "Can't takeover a reshaping raid set";
3145 r = -EPERM;
3146 goto bad;
3147 }
3148
3149 /* We can't takeover a journaled raid4/5/6 */
3150 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3151 ti->error = "Can't takeover a journaled raid4/5/6 set";
3152 r = -EPERM;
3153 goto bad;
3154 }
3155
3156 /*
3157 * If a takeover is needed, userspace sets any additional
3158 * devices to rebuild and we can check for a valid request here.
3159 *
3160 * If acceptable, set the level to the new requested
3161 * one, prohibit requesting recovery, allow the raid
3162 * set to run and store superblocks during resume.
3163 */
3164 r = rs_check_takeover(rs);
3165 if (r)
3166 goto bad;
3167
3168 r = rs_setup_takeover(rs);
3169 if (r)
3170 goto bad;
3171
3172 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3173 /* Takeover ain't recovery, so disable recovery */
3174 rs_setup_recovery(rs, MaxSector);
3175 rs_set_new(rs);
3176 } else if (rs_reshape_requested(rs)) {
3177 /* Only request grow on raid set size extensions, not on reshapes. */
3178 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3179
3180 /*
3181 * No need to check for 'ongoing' takeover here, because takeover
3182 * is an instant operation as oposed to an ongoing reshape.
3183 */
3184
3185 /* We can't reshape a journaled raid4/5/6 */
3186 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3187 ti->error = "Can't reshape a journaled raid4/5/6 set";
3188 r = -EPERM;
3189 goto bad;
3190 }
3191
3192 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3193 if (reshape_sectors || rs_is_raid1(rs)) {
3194 /*
3195 * We can only prepare for a reshape here, because the
3196 * raid set needs to run to provide the respective reshape
3197 * check functions via its MD personality instance.
3198 *
3199 * So do the reshape check after md_run() succeeded.
3200 */
3201 r = rs_prepare_reshape(rs);
3202 if (r)
3203 goto bad;
3204
3205 /* Reshaping ain't recovery, so disable recovery */
3206 rs_setup_recovery(rs, MaxSector);
3207 }
3208 rs_set_cur(rs);
3209 } else {
3210 size_check:
3211 /* May not set recovery when a device rebuild is requested */
3212 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3213 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3214 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3215 rs_setup_recovery(rs, MaxSector);
3216 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3217 /*
3218 * Set raid set to current size, i.e. size as of
3219 * superblocks to grow to larger size in preresume.
3220 */
3221 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3222 if (r)
3223 goto bad;
3224
3225 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3226 } else {
3227 /* This is no size change or it is shrinking, update size and record in superblocks */
3228 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3229 if (r)
3230 goto bad;
3231
3232 if (sb_array_sectors > rs->array_sectors)
3233 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3234 }
3235 rs_set_cur(rs);
3236 }
3237
3238 /* If constructor requested it, change data and new_data offsets */
3239 r = rs_adjust_data_offsets(rs);
3240 if (r)
3241 goto bad;
3242
3243 /* Catch any inconclusive reshape superblock content. */
3244 rs_reset_inconclusive_reshape(rs);
3245
3246 /* Start raid set read-only and assumed clean to change in raid_resume() */
3247 rs->md.ro = 1;
3248 rs->md.in_sync = 1;
3249
3250 /* Has to be held on running the array */
3251 mddev_suspend_and_lock_nointr(&rs->md);
3252
3253 /* Keep array frozen until resume. */
3254 md_frozen_sync_thread(&rs->md);
3255
3256 r = md_run(&rs->md);
3257 rs->md.in_sync = 0; /* Assume already marked dirty */
3258 if (r) {
3259 ti->error = "Failed to run raid array";
3260 mddev_unlock(&rs->md);
3261 goto bad;
3262 }
3263
3264 r = md_start(&rs->md);
3265 if (r) {
3266 ti->error = "Failed to start raid array";
3267 goto bad_unlock;
3268 }
3269
3270 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3271 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3272 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3273 if (r) {
3274 ti->error = "Failed to set raid4/5/6 journal mode";
3275 goto bad_unlock;
3276 }
3277 }
3278
3279 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3280
3281 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3282 if (rs_is_raid456(rs)) {
3283 r = rs_set_raid456_stripe_cache(rs);
3284 if (r)
3285 goto bad_unlock;
3286 }
3287
3288 /* Now do an early reshape check */
3289 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3290 r = rs_check_reshape(rs);
3291 if (r)
3292 goto bad_unlock;
3293
3294 /* Restore new, ctr requested layout to perform check */
3295 rs_config_restore(rs, &rs_layout);
3296
3297 if (rs->md.pers->start_reshape) {
3298 r = rs->md.pers->check_reshape(&rs->md);
3299 if (r) {
3300 ti->error = "Reshape check failed";
3301 goto bad_unlock;
3302 }
3303 }
3304 }
3305
3306 /* Disable/enable discard support on raid set. */
3307 configure_discard_support(rs);
3308 rs->md.dm_gendisk = ti->table->md->disk;
3309
3310 mddev_unlock(&rs->md);
3311 return 0;
3312
3313 bad_unlock:
3314 md_stop(&rs->md);
3315 mddev_unlock(&rs->md);
3316 bad:
3317 raid_set_free(rs);
3318
3319 return r;
3320 }
3321
raid_dtr(struct dm_target * ti)3322 static void raid_dtr(struct dm_target *ti)
3323 {
3324 struct raid_set *rs = ti->private;
3325
3326 mddev_lock_nointr(&rs->md);
3327 md_stop(&rs->md);
3328 rs->md.dm_gendisk = NULL;
3329 mddev_unlock(&rs->md);
3330
3331 if (work_pending(&rs->md.event_work))
3332 flush_work(&rs->md.event_work);
3333 raid_set_free(rs);
3334 }
3335
raid_map(struct dm_target * ti,struct bio * bio)3336 static int raid_map(struct dm_target *ti, struct bio *bio)
3337 {
3338 struct raid_set *rs = ti->private;
3339 struct mddev *mddev = &rs->md;
3340
3341 /*
3342 * If we're reshaping to add disk(s), ti->len and
3343 * mddev->array_sectors will differ during the process
3344 * (ti->len > mddev->array_sectors), so we have to requeue
3345 * bios with addresses > mddev->array_sectors here or
3346 * there will occur accesses past EOD of the component
3347 * data images thus erroring the raid set.
3348 */
3349 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors))
3350 return DM_MAPIO_REQUEUE;
3351
3352 if (unlikely(!md_handle_request(mddev, bio)))
3353 return DM_MAPIO_REQUEUE;
3354
3355 return DM_MAPIO_SUBMITTED;
3356 }
3357
3358 /* Return sync state string for @state */
3359 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
sync_str(enum sync_state state)3360 static const char *sync_str(enum sync_state state)
3361 {
3362 /* Has to be in above sync_state order! */
3363 static const char *sync_strs[] = {
3364 "frozen",
3365 "reshape",
3366 "resync",
3367 "check",
3368 "repair",
3369 "recover",
3370 "idle"
3371 };
3372
3373 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3374 };
3375
3376 /* Return enum sync_state for @mddev derived from @recovery flags */
decipher_sync_action(struct mddev * mddev,unsigned long recovery)3377 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3378 {
3379 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3380 return st_frozen;
3381
3382 /* The MD sync thread can be done with io or be interrupted but still be running */
3383 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3384 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3385 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3386 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3387 return st_reshape;
3388
3389 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3390 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3391 return st_resync;
3392 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3393 return st_check;
3394 return st_repair;
3395 }
3396
3397 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3398 return st_recover;
3399
3400 if (mddev->reshape_position != MaxSector)
3401 return st_reshape;
3402 }
3403
3404 return st_idle;
3405 }
3406
3407 /*
3408 * Return status string for @rdev
3409 *
3410 * Status characters:
3411 *
3412 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3413 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3414 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3415 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3416 */
__raid_dev_status(struct raid_set * rs,struct md_rdev * rdev)3417 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3418 {
3419 if (!rdev->bdev)
3420 return "-";
3421 else if (test_bit(Faulty, &rdev->flags))
3422 return "D";
3423 else if (test_bit(Journal, &rdev->flags))
3424 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3425 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3426 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3427 !test_bit(In_sync, &rdev->flags)))
3428 return "a";
3429 else
3430 return "A";
3431 }
3432
3433 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
rs_get_progress(struct raid_set * rs,unsigned long recovery,enum sync_state state,sector_t resync_max_sectors)3434 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3435 enum sync_state state, sector_t resync_max_sectors)
3436 {
3437 sector_t r;
3438 struct mddev *mddev = &rs->md;
3439
3440 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3441 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3442
3443 if (rs_is_raid0(rs)) {
3444 r = resync_max_sectors;
3445 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3446
3447 } else {
3448 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3449 r = mddev->recovery_cp;
3450 else
3451 r = mddev->curr_resync_completed;
3452
3453 if (state == st_idle && r >= resync_max_sectors) {
3454 /*
3455 * Sync complete.
3456 */
3457 /* In case we have finished recovering, the array is in sync. */
3458 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3459 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3460
3461 } else if (state == st_recover)
3462 /*
3463 * In case we are recovering, the array is not in sync
3464 * and health chars should show the recovering legs.
3465 *
3466 * Already retrieved recovery offset from curr_resync_completed above.
3467 */
3468 ;
3469
3470 else if (state == st_resync || state == st_reshape)
3471 /*
3472 * If "resync/reshape" is occurring, the raid set
3473 * is or may be out of sync hence the health
3474 * characters shall be 'a'.
3475 */
3476 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3477
3478 else if (state == st_check || state == st_repair)
3479 /*
3480 * If "check" or "repair" is occurring, the raid set has
3481 * undergone an initial sync and the health characters
3482 * should not be 'a' anymore.
3483 */
3484 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3485
3486 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3487 /*
3488 * We are idle and recovery is needed, prevent 'A' chars race
3489 * caused by components still set to in-sync by constructor.
3490 */
3491 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3492
3493 else {
3494 /*
3495 * We are idle and the raid set may be doing an initial
3496 * sync, or it may be rebuilding individual components.
3497 * If all the devices are In_sync, then it is the raid set
3498 * that is being initialized.
3499 */
3500 struct md_rdev *rdev;
3501
3502 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3503 rdev_for_each(rdev, mddev)
3504 if (!test_bit(Journal, &rdev->flags) &&
3505 !test_bit(In_sync, &rdev->flags)) {
3506 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3507 break;
3508 }
3509 }
3510 }
3511
3512 return min(r, resync_max_sectors);
3513 }
3514
3515 /* Helper to return @dev name or "-" if !@dev */
__get_dev_name(struct dm_dev * dev)3516 static const char *__get_dev_name(struct dm_dev *dev)
3517 {
3518 return dev ? dev->name : "-";
3519 }
3520
raid_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3521 static void raid_status(struct dm_target *ti, status_type_t type,
3522 unsigned int status_flags, char *result, unsigned int maxlen)
3523 {
3524 struct raid_set *rs = ti->private;
3525 struct mddev *mddev = &rs->md;
3526 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3527 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3528 unsigned long recovery;
3529 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3530 unsigned int sz = 0;
3531 unsigned int rebuild_writemostly_count = 0;
3532 sector_t progress, resync_max_sectors, resync_mismatches;
3533 enum sync_state state;
3534 struct raid_type *rt;
3535
3536 switch (type) {
3537 case STATUSTYPE_INFO:
3538 /* *Should* always succeed */
3539 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3540 if (!rt)
3541 return;
3542
3543 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3544
3545 /* Access most recent mddev properties for status output */
3546 smp_rmb();
3547 /* Get sensible max sectors even if raid set not yet started */
3548 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3549 mddev->resync_max_sectors : mddev->dev_sectors;
3550 recovery = rs->md.recovery;
3551 state = decipher_sync_action(mddev, recovery);
3552 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3553 resync_mismatches = mddev->last_sync_action == ACTION_CHECK ?
3554 atomic64_read(&mddev->resync_mismatches) : 0;
3555
3556 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3557 for (i = 0; i < rs->raid_disks; i++)
3558 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3559
3560 /*
3561 * In-sync/Reshape ratio:
3562 * The in-sync ratio shows the progress of:
3563 * - Initializing the raid set
3564 * - Rebuilding a subset of devices of the raid set
3565 * The user can distinguish between the two by referring
3566 * to the status characters.
3567 *
3568 * The reshape ratio shows the progress of
3569 * changing the raid layout or the number of
3570 * disks of a raid set
3571 */
3572 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3573 (unsigned long long) resync_max_sectors);
3574
3575 /*
3576 * v1.5.0+:
3577 *
3578 * Sync action:
3579 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
3580 * information on each of these states.
3581 */
3582 DMEMIT(" %s", sync_str(state));
3583
3584 /*
3585 * v1.5.0+:
3586 *
3587 * resync_mismatches/mismatch_cnt
3588 * This field shows the number of discrepancies found when
3589 * performing a "check" of the raid set.
3590 */
3591 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3592
3593 /*
3594 * v1.9.0+:
3595 *
3596 * data_offset (needed for out of space reshaping)
3597 * This field shows the data offset into the data
3598 * image LV where the first stripes data starts.
3599 *
3600 * We keep data_offset equal on all raid disks of the set,
3601 * so retrieving it from the first raid disk is sufficient.
3602 */
3603 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3604
3605 /*
3606 * v1.10.0+:
3607 */
3608 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3609 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3610 break;
3611
3612 case STATUSTYPE_TABLE:
3613 /* Report the table line string you would use to construct this raid set */
3614
3615 /*
3616 * Count any rebuild or writemostly argument pairs and subtract the
3617 * hweight count being added below of any rebuild and writemostly ctr flags.
3618 */
3619 for (i = 0; i < rs->raid_disks; i++) {
3620 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3621 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3622 }
3623 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3624 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3625 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3626 raid_param_cnt += rebuild_writemostly_count +
3627 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3628 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3629 /* Emit table line */
3630 /* This has to be in the documented order for userspace! */
3631 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3632 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3633 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3634 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3635 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3636 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3637 for (i = 0; i < rs->raid_disks; i++)
3638 if (test_bit(i, (void *) rs->rebuild_disks))
3639 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3640 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3641 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3642 mddev->bitmap_info.daemon_sleep);
3643 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3644 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3645 mddev->sync_speed_min);
3646 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3647 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3648 mddev->sync_speed_max);
3649 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3650 for (i = 0; i < rs->raid_disks; i++)
3651 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3652 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3653 rs->dev[i].rdev.raid_disk);
3654 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3655 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3656 mddev->bitmap_info.max_write_behind);
3657 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3658 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3659 max_nr_stripes);
3660 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3661 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3662 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3663 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3664 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3665 raid10_md_layout_to_copies(mddev->layout));
3666 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3667 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3668 raid10_md_layout_to_format(mddev->layout));
3669 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3670 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3671 max(rs->delta_disks, mddev->delta_disks));
3672 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3673 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3674 (unsigned long long) rs->data_offset);
3675 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3676 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3677 __get_dev_name(rs->journal_dev.dev));
3678 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3679 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3680 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3681 DMEMIT(" %d", rs->raid_disks);
3682 for (i = 0; i < rs->raid_disks; i++)
3683 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3684 __get_dev_name(rs->dev[i].data_dev));
3685 break;
3686
3687 case STATUSTYPE_IMA:
3688 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3689 if (!rt)
3690 return;
3691
3692 DMEMIT_TARGET_NAME_VERSION(ti->type);
3693 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3694
3695 /* Access most recent mddev properties for status output */
3696 smp_rmb();
3697 recovery = rs->md.recovery;
3698 state = decipher_sync_action(mddev, recovery);
3699 DMEMIT(",raid_state=%s", sync_str(state));
3700
3701 for (i = 0; i < rs->raid_disks; i++) {
3702 DMEMIT(",raid_device_%d_status=", i);
3703 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3704 }
3705
3706 if (rt_is_raid456(rt)) {
3707 DMEMIT(",journal_dev_mode=");
3708 switch (rs->journal_dev.mode) {
3709 case R5C_JOURNAL_MODE_WRITE_THROUGH:
3710 DMEMIT("%s",
3711 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3712 break;
3713 case R5C_JOURNAL_MODE_WRITE_BACK:
3714 DMEMIT("%s",
3715 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3716 break;
3717 default:
3718 DMEMIT("invalid");
3719 break;
3720 }
3721 }
3722 DMEMIT(";");
3723 break;
3724 }
3725 }
3726
raid_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3727 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3728 char *result, unsigned int maxlen)
3729 {
3730 struct raid_set *rs = ti->private;
3731 struct mddev *mddev = &rs->md;
3732 int ret = 0;
3733
3734 if (!mddev->pers || !mddev->pers->sync_request)
3735 return -EINVAL;
3736
3737 if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) ||
3738 test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags))
3739 return -EBUSY;
3740
3741 if (!strcasecmp(argv[0], "frozen")) {
3742 ret = mddev_lock(mddev);
3743 if (ret)
3744 return ret;
3745
3746 md_frozen_sync_thread(mddev);
3747 mddev_unlock(mddev);
3748 } else if (!strcasecmp(argv[0], "idle")) {
3749 ret = mddev_lock(mddev);
3750 if (ret)
3751 return ret;
3752
3753 md_idle_sync_thread(mddev);
3754 mddev_unlock(mddev);
3755 }
3756
3757 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3758 if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3759 return -EBUSY;
3760 else if (!strcasecmp(argv[0], "resync"))
3761 ; /* MD_RECOVERY_NEEDED set below */
3762 else if (!strcasecmp(argv[0], "recover"))
3763 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3764 else {
3765 if (!strcasecmp(argv[0], "check")) {
3766 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3767 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3768 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3769 } else if (!strcasecmp(argv[0], "repair")) {
3770 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3771 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3772 } else
3773 return -EINVAL;
3774 }
3775 if (mddev->ro == 2) {
3776 /* A write to sync_action is enough to justify
3777 * canceling read-auto mode
3778 */
3779 mddev->ro = 0;
3780 if (!mddev->suspended)
3781 md_wakeup_thread(mddev->sync_thread);
3782 }
3783 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3784 if (!mddev->suspended)
3785 md_wakeup_thread(mddev->thread);
3786
3787 return 0;
3788 }
3789
raid_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3790 static int raid_iterate_devices(struct dm_target *ti,
3791 iterate_devices_callout_fn fn, void *data)
3792 {
3793 struct raid_set *rs = ti->private;
3794 unsigned int i;
3795 int r = 0;
3796
3797 for (i = 0; !r && i < rs->raid_disks; i++) {
3798 if (rs->dev[i].data_dev) {
3799 r = fn(ti, rs->dev[i].data_dev,
3800 0, /* No offset on data devs */
3801 rs->md.dev_sectors, data);
3802 }
3803 }
3804
3805 return r;
3806 }
3807
raid_io_hints(struct dm_target * ti,struct queue_limits * limits)3808 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3809 {
3810 struct raid_set *rs = ti->private;
3811 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3812
3813 limits->io_min = chunk_size_bytes;
3814 limits->io_opt = chunk_size_bytes * mddev_data_stripes(rs);
3815 }
3816
raid_presuspend(struct dm_target * ti)3817 static void raid_presuspend(struct dm_target *ti)
3818 {
3819 struct raid_set *rs = ti->private;
3820 struct mddev *mddev = &rs->md;
3821
3822 /*
3823 * From now on, disallow raid_message() to change sync_thread until
3824 * resume, raid_postsuspend() is too late.
3825 */
3826 set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
3827
3828 if (!reshape_interrupted(mddev))
3829 return;
3830
3831 /*
3832 * For raid456, if reshape is interrupted, IO across reshape position
3833 * will never make progress, while caller will wait for IO to be done.
3834 * Inform raid456 to handle those IO to prevent deadlock.
3835 */
3836 if (mddev->pers && mddev->pers->prepare_suspend)
3837 mddev->pers->prepare_suspend(mddev);
3838 }
3839
raid_presuspend_undo(struct dm_target * ti)3840 static void raid_presuspend_undo(struct dm_target *ti)
3841 {
3842 struct raid_set *rs = ti->private;
3843
3844 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
3845 }
3846
raid_postsuspend(struct dm_target * ti)3847 static void raid_postsuspend(struct dm_target *ti)
3848 {
3849 struct raid_set *rs = ti->private;
3850
3851 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3852 /*
3853 * sync_thread must be stopped during suspend, and writes have
3854 * to be stopped before suspending to avoid deadlocks.
3855 */
3856 md_stop_writes(&rs->md);
3857 mddev_suspend(&rs->md, false);
3858 }
3859 }
3860
attempt_restore_of_faulty_devices(struct raid_set * rs)3861 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3862 {
3863 int i;
3864 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3865 unsigned long flags;
3866 bool cleared = false;
3867 struct dm_raid_superblock *sb;
3868 struct mddev *mddev = &rs->md;
3869 struct md_rdev *r;
3870
3871 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3872 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3873 return;
3874
3875 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3876
3877 for (i = 0; i < rs->raid_disks; i++) {
3878 r = &rs->dev[i].rdev;
3879 /* HM FIXME: enhance journal device recovery processing */
3880 if (test_bit(Journal, &r->flags))
3881 continue;
3882
3883 if (test_bit(Faulty, &r->flags) &&
3884 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3885 DMINFO("Faulty %s device #%d has readable super block."
3886 " Attempting to revive it.",
3887 rs->raid_type->name, i);
3888
3889 /*
3890 * Faulty bit may be set, but sometimes the array can
3891 * be suspended before the personalities can respond
3892 * by removing the device from the array (i.e. calling
3893 * 'hot_remove_disk'). If they haven't yet removed
3894 * the failed device, its 'raid_disk' number will be
3895 * '>= 0' - meaning we must call this function
3896 * ourselves.
3897 */
3898 flags = r->flags;
3899 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3900 if (r->raid_disk >= 0) {
3901 if (mddev->pers->hot_remove_disk(mddev, r)) {
3902 /* Failed to revive this device, try next */
3903 r->flags = flags;
3904 continue;
3905 }
3906 } else
3907 r->raid_disk = r->saved_raid_disk = i;
3908
3909 clear_bit(Faulty, &r->flags);
3910 clear_bit(WriteErrorSeen, &r->flags);
3911
3912 if (mddev->pers->hot_add_disk(mddev, r)) {
3913 /* Failed to revive this device, try next */
3914 r->raid_disk = r->saved_raid_disk = -1;
3915 r->flags = flags;
3916 } else {
3917 clear_bit(In_sync, &r->flags);
3918 r->recovery_offset = 0;
3919 set_bit(i, (void *) cleared_failed_devices);
3920 cleared = true;
3921 }
3922 }
3923 }
3924
3925 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3926 if (cleared) {
3927 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3928
3929 rdev_for_each(r, &rs->md) {
3930 if (test_bit(Journal, &r->flags))
3931 continue;
3932
3933 sb = page_address(r->sb_page);
3934 sb_retrieve_failed_devices(sb, failed_devices);
3935
3936 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3937 failed_devices[i] &= ~cleared_failed_devices[i];
3938
3939 sb_update_failed_devices(sb, failed_devices);
3940 }
3941 }
3942 }
3943
__load_dirty_region_bitmap(struct raid_set * rs)3944 static int __load_dirty_region_bitmap(struct raid_set *rs)
3945 {
3946 int r = 0;
3947
3948 /* Try loading the bitmap unless "raid0", which does not have one */
3949 if (!rs_is_raid0(rs) &&
3950 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3951 struct mddev *mddev = &rs->md;
3952
3953 r = mddev->bitmap_ops->load(mddev);
3954 if (r)
3955 DMERR("Failed to load bitmap");
3956 }
3957
3958 return r;
3959 }
3960
3961 /* Enforce updating all superblocks */
rs_update_sbs(struct raid_set * rs)3962 static void rs_update_sbs(struct raid_set *rs)
3963 {
3964 struct mddev *mddev = &rs->md;
3965 int ro = mddev->ro;
3966
3967 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3968 mddev->ro = 0;
3969 md_update_sb(mddev, 1);
3970 mddev->ro = ro;
3971 }
3972
3973 /*
3974 * Reshape changes raid algorithm of @rs to new one within personality
3975 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3976 * disks from a raid set thus growing/shrinking it or resizes the set
3977 *
3978 * Call mddev_lock_nointr() before!
3979 */
rs_start_reshape(struct raid_set * rs)3980 static int rs_start_reshape(struct raid_set *rs)
3981 {
3982 int r;
3983 struct mddev *mddev = &rs->md;
3984 struct md_personality *pers = mddev->pers;
3985
3986 /* Don't allow the sync thread to work until the table gets reloaded. */
3987 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3988
3989 r = rs_setup_reshape(rs);
3990 if (r)
3991 return r;
3992
3993 /*
3994 * Check any reshape constraints enforced by the personalility
3995 *
3996 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3997 */
3998 r = pers->check_reshape(mddev);
3999 if (r) {
4000 rs->ti->error = "pers->check_reshape() failed";
4001 return r;
4002 }
4003
4004 /*
4005 * Personality may not provide start reshape method in which
4006 * case check_reshape above has already covered everything
4007 */
4008 if (pers->start_reshape) {
4009 r = pers->start_reshape(mddev);
4010 if (r) {
4011 rs->ti->error = "pers->start_reshape() failed";
4012 return r;
4013 }
4014 }
4015
4016 /*
4017 * Now reshape got set up, update superblocks to
4018 * reflect the fact so that a table reload will
4019 * access proper superblock content in the ctr.
4020 */
4021 rs_update_sbs(rs);
4022
4023 return 0;
4024 }
4025
raid_preresume(struct dm_target * ti)4026 static int raid_preresume(struct dm_target *ti)
4027 {
4028 int r;
4029 struct raid_set *rs = ti->private;
4030 struct mddev *mddev = &rs->md;
4031
4032 /* This is a resume after a suspend of the set -> it's already started. */
4033 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
4034 return 0;
4035
4036 /* If different and no explicit grow request, expose MD array size as of superblock. */
4037 if (!test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) &&
4038 rs->array_sectors != mddev->array_sectors)
4039 rs_set_capacity(rs);
4040
4041 /*
4042 * The superblocks need to be updated on disk if the
4043 * array is new or new devices got added (thus zeroed
4044 * out by userspace) or __load_dirty_region_bitmap
4045 * will overwrite them in core with old data or fail.
4046 */
4047 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
4048 rs_update_sbs(rs);
4049
4050 /* Load the bitmap from disk unless raid0 */
4051 r = __load_dirty_region_bitmap(rs);
4052 if (r)
4053 return r;
4054
4055 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
4056 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
4057 mddev->array_sectors = rs->array_sectors;
4058 mddev->dev_sectors = rs->dev_sectors;
4059 rs_set_rdev_sectors(rs);
4060 rs_set_capacity(rs);
4061 }
4062
4063 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4064 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4065 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4066 (rs->requested_bitmap_chunk_sectors &&
4067 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4068 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4069
4070 r = mddev->bitmap_ops->resize(mddev, mddev->dev_sectors,
4071 chunksize, false);
4072 if (r)
4073 DMERR("Failed to resize bitmap");
4074 }
4075
4076 /* Check for any resize/reshape on @rs and adjust/initiate */
4077 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4078 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4079 mddev->resync_min = mddev->recovery_cp;
4080 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4081 mddev->resync_max_sectors = mddev->dev_sectors;
4082 }
4083
4084 /* Check for any reshape request unless new raid set */
4085 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4086 /* Initiate a reshape. */
4087 rs_set_rdev_sectors(rs);
4088 mddev_lock_nointr(mddev);
4089 r = rs_start_reshape(rs);
4090 mddev_unlock(mddev);
4091 if (r)
4092 DMWARN("Failed to check/start reshape, continuing without change");
4093 r = 0;
4094 }
4095
4096 return r;
4097 }
4098
raid_resume(struct dm_target * ti)4099 static void raid_resume(struct dm_target *ti)
4100 {
4101 struct raid_set *rs = ti->private;
4102 struct mddev *mddev = &rs->md;
4103
4104 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4105 /*
4106 * A secondary resume while the device is active.
4107 * Take this opportunity to check whether any failed
4108 * devices are reachable again.
4109 */
4110 mddev_lock_nointr(mddev);
4111 attempt_restore_of_faulty_devices(rs);
4112 mddev_unlock(mddev);
4113 }
4114
4115 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4116 /* Only reduce raid set size before running a disk removing reshape. */
4117 if (mddev->delta_disks < 0)
4118 rs_set_capacity(rs);
4119
4120 mddev_lock_nointr(mddev);
4121 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery));
4122 WARN_ON_ONCE(rcu_dereference_protected(mddev->sync_thread,
4123 lockdep_is_held(&mddev->reconfig_mutex)));
4124 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags);
4125 mddev->ro = 0;
4126 mddev->in_sync = 0;
4127 md_unfrozen_sync_thread(mddev);
4128 mddev_unlock_and_resume(mddev);
4129 }
4130 }
4131
4132 static struct target_type raid_target = {
4133 .name = "raid",
4134 .version = {1, 15, 1},
4135 .module = THIS_MODULE,
4136 .ctr = raid_ctr,
4137 .dtr = raid_dtr,
4138 .map = raid_map,
4139 .status = raid_status,
4140 .message = raid_message,
4141 .iterate_devices = raid_iterate_devices,
4142 .io_hints = raid_io_hints,
4143 .presuspend = raid_presuspend,
4144 .presuspend_undo = raid_presuspend_undo,
4145 .postsuspend = raid_postsuspend,
4146 .preresume = raid_preresume,
4147 .resume = raid_resume,
4148 };
4149 module_dm(raid);
4150
4151 module_param(devices_handle_discard_safely, bool, 0644);
4152 MODULE_PARM_DESC(devices_handle_discard_safely,
4153 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4154
4155 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4156 MODULE_ALIAS("dm-raid0");
4157 MODULE_ALIAS("dm-raid1");
4158 MODULE_ALIAS("dm-raid10");
4159 MODULE_ALIAS("dm-raid4");
4160 MODULE_ALIAS("dm-raid5");
4161 MODULE_ALIAS("dm-raid6");
4162 MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>");
4163 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>");
4164 MODULE_LICENSE("GPL");
4165