1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 static void swap_entries_free(struct swap_info_struct *si, 56 struct swap_cluster_info *ci, 57 swp_entry_t entry, unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 62 unsigned long offset); 63 static inline void unlock_cluster(struct swap_cluster_info *ci); 64 65 static DEFINE_SPINLOCK(swap_lock); 66 static unsigned int nr_swapfiles; 67 atomic_long_t nr_swap_pages; 68 /* 69 * Some modules use swappable objects and may try to swap them out under 70 * memory pressure (via the shrinker). Before doing so, they may wish to 71 * check to see if any swap space is available. 72 */ 73 EXPORT_SYMBOL_GPL(nr_swap_pages); 74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 75 long total_swap_pages; 76 static int least_priority = -1; 77 unsigned long swapfile_maximum_size; 78 #ifdef CONFIG_MIGRATION 79 bool swap_migration_ad_supported; 80 #endif /* CONFIG_MIGRATION */ 81 82 static const char Bad_file[] = "Bad swap file entry "; 83 static const char Unused_file[] = "Unused swap file entry "; 84 static const char Bad_offset[] = "Bad swap offset entry "; 85 static const char Unused_offset[] = "Unused swap offset entry "; 86 87 /* 88 * all active swap_info_structs 89 * protected with swap_lock, and ordered by priority. 90 */ 91 static PLIST_HEAD(swap_active_head); 92 93 /* 94 * all available (active, not full) swap_info_structs 95 * protected with swap_avail_lock, ordered by priority. 96 * This is used by folio_alloc_swap() instead of swap_active_head 97 * because swap_active_head includes all swap_info_structs, 98 * but folio_alloc_swap() doesn't need to look at full ones. 99 * This uses its own lock instead of swap_lock because when a 100 * swap_info_struct changes between not-full/full, it needs to 101 * add/remove itself to/from this list, but the swap_info_struct->lock 102 * is held and the locking order requires swap_lock to be taken 103 * before any swap_info_struct->lock. 104 */ 105 static struct plist_head *swap_avail_heads; 106 static DEFINE_SPINLOCK(swap_avail_lock); 107 108 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 109 110 static DEFINE_MUTEX(swapon_mutex); 111 112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 113 /* Activity counter to indicate that a swapon or swapoff has occurred */ 114 static atomic_t proc_poll_event = ATOMIC_INIT(0); 115 116 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 117 118 struct percpu_swap_cluster { 119 struct swap_info_struct *si[SWAP_NR_ORDERS]; 120 unsigned long offset[SWAP_NR_ORDERS]; 121 local_lock_t lock; 122 }; 123 124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 125 .si = { NULL }, 126 .offset = { SWAP_ENTRY_INVALID }, 127 .lock = INIT_LOCAL_LOCK(), 128 }; 129 130 static struct swap_info_struct *swap_type_to_swap_info(int type) 131 { 132 if (type >= MAX_SWAPFILES) 133 return NULL; 134 135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 136 } 137 138 static inline unsigned char swap_count(unsigned char ent) 139 { 140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 141 } 142 143 /* 144 * Use the second highest bit of inuse_pages counter as the indicator 145 * if one swap device is on the available plist, so the atomic can 146 * still be updated arithmetically while having special data embedded. 147 * 148 * inuse_pages counter is the only thing indicating if a device should 149 * be on avail_lists or not (except swapon / swapoff). By embedding the 150 * off-list bit in the atomic counter, updates no longer need any lock 151 * to check the list status. 152 * 153 * This bit will be set if the device is not on the plist and not 154 * usable, will be cleared if the device is on the plist. 155 */ 156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 158 static long swap_usage_in_pages(struct swap_info_struct *si) 159 { 160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 161 } 162 163 /* Reclaim the swap entry anyway if possible */ 164 #define TTRS_ANYWAY 0x1 165 /* 166 * Reclaim the swap entry if there are no more mappings of the 167 * corresponding page 168 */ 169 #define TTRS_UNMAPPED 0x2 170 /* Reclaim the swap entry if swap is getting full */ 171 #define TTRS_FULL 0x4 172 173 static bool swap_only_has_cache(struct swap_info_struct *si, 174 unsigned long offset, int nr_pages) 175 { 176 unsigned char *map = si->swap_map + offset; 177 unsigned char *map_end = map + nr_pages; 178 179 do { 180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 181 if (*map != SWAP_HAS_CACHE) 182 return false; 183 } while (++map < map_end); 184 185 return true; 186 } 187 188 static bool swap_is_last_map(struct swap_info_struct *si, 189 unsigned long offset, int nr_pages, bool *has_cache) 190 { 191 unsigned char *map = si->swap_map + offset; 192 unsigned char *map_end = map + nr_pages; 193 unsigned char count = *map; 194 195 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM) 196 return false; 197 198 while (++map < map_end) { 199 if (*map != count) 200 return false; 201 } 202 203 *has_cache = !!(count & SWAP_HAS_CACHE); 204 return true; 205 } 206 207 /* 208 * returns number of pages in the folio that backs the swap entry. If positive, 209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 210 * folio was associated with the swap entry. 211 */ 212 static int __try_to_reclaim_swap(struct swap_info_struct *si, 213 unsigned long offset, unsigned long flags) 214 { 215 swp_entry_t entry = swp_entry(si->type, offset); 216 struct address_space *address_space = swap_address_space(entry); 217 struct swap_cluster_info *ci; 218 struct folio *folio; 219 int ret, nr_pages; 220 bool need_reclaim; 221 222 again: 223 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 224 if (IS_ERR(folio)) 225 return 0; 226 227 nr_pages = folio_nr_pages(folio); 228 ret = -nr_pages; 229 230 /* 231 * When this function is called from scan_swap_map_slots() and it's 232 * called by vmscan.c at reclaiming folios. So we hold a folio lock 233 * here. We have to use trylock for avoiding deadlock. This is a special 234 * case and you should use folio_free_swap() with explicit folio_lock() 235 * in usual operations. 236 */ 237 if (!folio_trylock(folio)) 238 goto out; 239 240 /* 241 * Offset could point to the middle of a large folio, or folio 242 * may no longer point to the expected offset before it's locked. 243 */ 244 entry = folio->swap; 245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) { 246 folio_unlock(folio); 247 folio_put(folio); 248 goto again; 249 } 250 offset = swp_offset(entry); 251 252 need_reclaim = ((flags & TTRS_ANYWAY) || 253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 255 if (!need_reclaim || !folio_swapcache_freeable(folio)) 256 goto out_unlock; 257 258 /* 259 * It's safe to delete the folio from swap cache only if the folio's 260 * swap_map is HAS_CACHE only, which means the slots have no page table 261 * reference or pending writeback, and can't be allocated to others. 262 */ 263 ci = lock_cluster(si, offset); 264 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 265 unlock_cluster(ci); 266 if (!need_reclaim) 267 goto out_unlock; 268 269 delete_from_swap_cache(folio); 270 folio_set_dirty(folio); 271 ret = nr_pages; 272 out_unlock: 273 folio_unlock(folio); 274 out: 275 folio_put(folio); 276 return ret; 277 } 278 279 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 280 { 281 struct rb_node *rb = rb_first(&sis->swap_extent_root); 282 return rb_entry(rb, struct swap_extent, rb_node); 283 } 284 285 static inline struct swap_extent *next_se(struct swap_extent *se) 286 { 287 struct rb_node *rb = rb_next(&se->rb_node); 288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 289 } 290 291 /* 292 * swapon tell device that all the old swap contents can be discarded, 293 * to allow the swap device to optimize its wear-levelling. 294 */ 295 static int discard_swap(struct swap_info_struct *si) 296 { 297 struct swap_extent *se; 298 sector_t start_block; 299 sector_t nr_blocks; 300 int err = 0; 301 302 /* Do not discard the swap header page! */ 303 se = first_se(si); 304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 306 if (nr_blocks) { 307 err = blkdev_issue_discard(si->bdev, start_block, 308 nr_blocks, GFP_KERNEL); 309 if (err) 310 return err; 311 cond_resched(); 312 } 313 314 for (se = next_se(se); se; se = next_se(se)) { 315 start_block = se->start_block << (PAGE_SHIFT - 9); 316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 317 318 err = blkdev_issue_discard(si->bdev, start_block, 319 nr_blocks, GFP_KERNEL); 320 if (err) 321 break; 322 323 cond_resched(); 324 } 325 return err; /* That will often be -EOPNOTSUPP */ 326 } 327 328 static struct swap_extent * 329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 330 { 331 struct swap_extent *se; 332 struct rb_node *rb; 333 334 rb = sis->swap_extent_root.rb_node; 335 while (rb) { 336 se = rb_entry(rb, struct swap_extent, rb_node); 337 if (offset < se->start_page) 338 rb = rb->rb_left; 339 else if (offset >= se->start_page + se->nr_pages) 340 rb = rb->rb_right; 341 else 342 return se; 343 } 344 /* It *must* be present */ 345 BUG(); 346 } 347 348 sector_t swap_folio_sector(struct folio *folio) 349 { 350 struct swap_info_struct *sis = swp_swap_info(folio->swap); 351 struct swap_extent *se; 352 sector_t sector; 353 pgoff_t offset; 354 355 offset = swp_offset(folio->swap); 356 se = offset_to_swap_extent(sis, offset); 357 sector = se->start_block + (offset - se->start_page); 358 return sector << (PAGE_SHIFT - 9); 359 } 360 361 /* 362 * swap allocation tell device that a cluster of swap can now be discarded, 363 * to allow the swap device to optimize its wear-levelling. 364 */ 365 static void discard_swap_cluster(struct swap_info_struct *si, 366 pgoff_t start_page, pgoff_t nr_pages) 367 { 368 struct swap_extent *se = offset_to_swap_extent(si, start_page); 369 370 while (nr_pages) { 371 pgoff_t offset = start_page - se->start_page; 372 sector_t start_block = se->start_block + offset; 373 sector_t nr_blocks = se->nr_pages - offset; 374 375 if (nr_blocks > nr_pages) 376 nr_blocks = nr_pages; 377 start_page += nr_blocks; 378 nr_pages -= nr_blocks; 379 380 start_block <<= PAGE_SHIFT - 9; 381 nr_blocks <<= PAGE_SHIFT - 9; 382 if (blkdev_issue_discard(si->bdev, start_block, 383 nr_blocks, GFP_NOIO)) 384 break; 385 386 se = next_se(se); 387 } 388 } 389 390 #ifdef CONFIG_THP_SWAP 391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 392 393 #define swap_entry_order(order) (order) 394 #else 395 #define SWAPFILE_CLUSTER 256 396 397 /* 398 * Define swap_entry_order() as constant to let compiler to optimize 399 * out some code if !CONFIG_THP_SWAP 400 */ 401 #define swap_entry_order(order) 0 402 #endif 403 #define LATENCY_LIMIT 256 404 405 static inline bool cluster_is_empty(struct swap_cluster_info *info) 406 { 407 return info->count == 0; 408 } 409 410 static inline bool cluster_is_discard(struct swap_cluster_info *info) 411 { 412 return info->flags == CLUSTER_FLAG_DISCARD; 413 } 414 415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 416 { 417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 418 return false; 419 if (!order) 420 return true; 421 return cluster_is_empty(ci) || order == ci->order; 422 } 423 424 static inline unsigned int cluster_index(struct swap_info_struct *si, 425 struct swap_cluster_info *ci) 426 { 427 return ci - si->cluster_info; 428 } 429 430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si, 431 unsigned long offset) 432 { 433 return &si->cluster_info[offset / SWAPFILE_CLUSTER]; 434 } 435 436 static inline unsigned int cluster_offset(struct swap_info_struct *si, 437 struct swap_cluster_info *ci) 438 { 439 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 440 } 441 442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 443 unsigned long offset) 444 { 445 struct swap_cluster_info *ci; 446 447 ci = offset_to_cluster(si, offset); 448 spin_lock(&ci->lock); 449 450 return ci; 451 } 452 453 static inline void unlock_cluster(struct swap_cluster_info *ci) 454 { 455 spin_unlock(&ci->lock); 456 } 457 458 static void move_cluster(struct swap_info_struct *si, 459 struct swap_cluster_info *ci, struct list_head *list, 460 enum swap_cluster_flags new_flags) 461 { 462 VM_WARN_ON(ci->flags == new_flags); 463 464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 465 lockdep_assert_held(&ci->lock); 466 467 spin_lock(&si->lock); 468 if (ci->flags == CLUSTER_FLAG_NONE) 469 list_add_tail(&ci->list, list); 470 else 471 list_move_tail(&ci->list, list); 472 spin_unlock(&si->lock); 473 474 if (ci->flags == CLUSTER_FLAG_FRAG) 475 atomic_long_dec(&si->frag_cluster_nr[ci->order]); 476 else if (new_flags == CLUSTER_FLAG_FRAG) 477 atomic_long_inc(&si->frag_cluster_nr[ci->order]); 478 ci->flags = new_flags; 479 } 480 481 /* Add a cluster to discard list and schedule it to do discard */ 482 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 483 struct swap_cluster_info *ci) 484 { 485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 487 schedule_work(&si->discard_work); 488 } 489 490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 491 { 492 lockdep_assert_held(&ci->lock); 493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 494 ci->order = 0; 495 } 496 497 /* 498 * Isolate and lock the first cluster that is not contented on a list, 499 * clean its flag before taken off-list. Cluster flag must be in sync 500 * with list status, so cluster updaters can always know the cluster 501 * list status without touching si lock. 502 * 503 * Note it's possible that all clusters on a list are contented so 504 * this returns NULL for an non-empty list. 505 */ 506 static struct swap_cluster_info *isolate_lock_cluster( 507 struct swap_info_struct *si, struct list_head *list) 508 { 509 struct swap_cluster_info *ci, *ret = NULL; 510 511 spin_lock(&si->lock); 512 513 if (unlikely(!(si->flags & SWP_WRITEOK))) 514 goto out; 515 516 list_for_each_entry(ci, list, list) { 517 if (!spin_trylock(&ci->lock)) 518 continue; 519 520 /* We may only isolate and clear flags of following lists */ 521 VM_BUG_ON(!ci->flags); 522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 523 ci->flags != CLUSTER_FLAG_FULL); 524 525 list_del(&ci->list); 526 ci->flags = CLUSTER_FLAG_NONE; 527 ret = ci; 528 break; 529 } 530 out: 531 spin_unlock(&si->lock); 532 533 return ret; 534 } 535 536 /* 537 * Doing discard actually. After a cluster discard is finished, the cluster 538 * will be added to free cluster list. Discard cluster is a bit special as 539 * they don't participate in allocation or reclaim, so clusters marked as 540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 541 */ 542 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 543 { 544 struct swap_cluster_info *ci; 545 bool ret = false; 546 unsigned int idx; 547 548 spin_lock(&si->lock); 549 while (!list_empty(&si->discard_clusters)) { 550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 551 /* 552 * Delete the cluster from list to prepare for discard, but keep 553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 554 * pointing to it, or ran into by relocate_cluster. 555 */ 556 list_del(&ci->list); 557 idx = cluster_index(si, ci); 558 spin_unlock(&si->lock); 559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 560 SWAPFILE_CLUSTER); 561 562 spin_lock(&ci->lock); 563 /* 564 * Discard is done, clear its flags as it's off-list, then 565 * return the cluster to allocation list. 566 */ 567 ci->flags = CLUSTER_FLAG_NONE; 568 __free_cluster(si, ci); 569 spin_unlock(&ci->lock); 570 ret = true; 571 spin_lock(&si->lock); 572 } 573 spin_unlock(&si->lock); 574 return ret; 575 } 576 577 static void swap_discard_work(struct work_struct *work) 578 { 579 struct swap_info_struct *si; 580 581 si = container_of(work, struct swap_info_struct, discard_work); 582 583 swap_do_scheduled_discard(si); 584 } 585 586 static void swap_users_ref_free(struct percpu_ref *ref) 587 { 588 struct swap_info_struct *si; 589 590 si = container_of(ref, struct swap_info_struct, users); 591 complete(&si->comp); 592 } 593 594 /* 595 * Must be called after freeing if ci->count == 0, moves the cluster to free 596 * or discard list. 597 */ 598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 599 { 600 VM_BUG_ON(ci->count != 0); 601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 602 lockdep_assert_held(&ci->lock); 603 604 /* 605 * If the swap is discardable, prepare discard the cluster 606 * instead of free it immediately. The cluster will be freed 607 * after discard. 608 */ 609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 611 swap_cluster_schedule_discard(si, ci); 612 return; 613 } 614 615 __free_cluster(si, ci); 616 } 617 618 /* 619 * Must be called after freeing if ci->count != 0, moves the cluster to 620 * nonfull list. 621 */ 622 static void partial_free_cluster(struct swap_info_struct *si, 623 struct swap_cluster_info *ci) 624 { 625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 626 lockdep_assert_held(&ci->lock); 627 628 if (ci->flags != CLUSTER_FLAG_NONFULL) 629 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 630 CLUSTER_FLAG_NONFULL); 631 } 632 633 /* 634 * Must be called after allocation, moves the cluster to full or frag list. 635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 636 * reclaim, so the cluster could be any where when called. 637 */ 638 static void relocate_cluster(struct swap_info_struct *si, 639 struct swap_cluster_info *ci) 640 { 641 lockdep_assert_held(&ci->lock); 642 643 /* Discard cluster must remain off-list or on discard list */ 644 if (cluster_is_discard(ci)) 645 return; 646 647 if (!ci->count) { 648 if (ci->flags != CLUSTER_FLAG_FREE) 649 free_cluster(si, ci); 650 } else if (ci->count != SWAPFILE_CLUSTER) { 651 if (ci->flags != CLUSTER_FLAG_FRAG) 652 move_cluster(si, ci, &si->frag_clusters[ci->order], 653 CLUSTER_FLAG_FRAG); 654 } else { 655 if (ci->flags != CLUSTER_FLAG_FULL) 656 move_cluster(si, ci, &si->full_clusters, 657 CLUSTER_FLAG_FULL); 658 } 659 } 660 661 /* 662 * The cluster corresponding to page_nr will be used. The cluster will not be 663 * added to free cluster list and its usage counter will be increased by 1. 664 * Only used for initialization. 665 */ 666 static void inc_cluster_info_page(struct swap_info_struct *si, 667 struct swap_cluster_info *cluster_info, unsigned long page_nr) 668 { 669 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 670 struct swap_cluster_info *ci; 671 672 ci = cluster_info + idx; 673 ci->count++; 674 675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 676 VM_BUG_ON(ci->flags); 677 } 678 679 static bool cluster_reclaim_range(struct swap_info_struct *si, 680 struct swap_cluster_info *ci, 681 unsigned long start, unsigned long end) 682 { 683 unsigned char *map = si->swap_map; 684 unsigned long offset = start; 685 int nr_reclaim; 686 687 spin_unlock(&ci->lock); 688 do { 689 switch (READ_ONCE(map[offset])) { 690 case 0: 691 offset++; 692 break; 693 case SWAP_HAS_CACHE: 694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 695 if (nr_reclaim > 0) 696 offset += nr_reclaim; 697 else 698 goto out; 699 break; 700 default: 701 goto out; 702 } 703 } while (offset < end); 704 out: 705 spin_lock(&ci->lock); 706 /* 707 * Recheck the range no matter reclaim succeeded or not, the slot 708 * could have been be freed while we are not holding the lock. 709 */ 710 for (offset = start; offset < end; offset++) 711 if (READ_ONCE(map[offset])) 712 return false; 713 714 return true; 715 } 716 717 static bool cluster_scan_range(struct swap_info_struct *si, 718 struct swap_cluster_info *ci, 719 unsigned long start, unsigned int nr_pages, 720 bool *need_reclaim) 721 { 722 unsigned long offset, end = start + nr_pages; 723 unsigned char *map = si->swap_map; 724 725 if (cluster_is_empty(ci)) 726 return true; 727 728 for (offset = start; offset < end; offset++) { 729 switch (READ_ONCE(map[offset])) { 730 case 0: 731 continue; 732 case SWAP_HAS_CACHE: 733 if (!vm_swap_full()) 734 return false; 735 *need_reclaim = true; 736 continue; 737 default: 738 return false; 739 } 740 } 741 742 return true; 743 } 744 745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 746 unsigned int start, unsigned char usage, 747 unsigned int order) 748 { 749 unsigned int nr_pages = 1 << order; 750 751 lockdep_assert_held(&ci->lock); 752 753 if (!(si->flags & SWP_WRITEOK)) 754 return false; 755 756 /* 757 * The first allocation in a cluster makes the 758 * cluster exclusive to this order 759 */ 760 if (cluster_is_empty(ci)) 761 ci->order = order; 762 763 memset(si->swap_map + start, usage, nr_pages); 764 swap_range_alloc(si, nr_pages); 765 ci->count += nr_pages; 766 767 return true; 768 } 769 770 /* Try use a new cluster for current CPU and allocate from it. */ 771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 772 struct swap_cluster_info *ci, 773 unsigned long offset, 774 unsigned int order, 775 unsigned char usage) 776 { 777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 780 unsigned int nr_pages = 1 << order; 781 bool need_reclaim, ret; 782 783 lockdep_assert_held(&ci->lock); 784 785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 786 goto out; 787 788 for (end -= nr_pages; offset <= end; offset += nr_pages) { 789 need_reclaim = false; 790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 791 continue; 792 if (need_reclaim) { 793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 794 /* 795 * Reclaim drops ci->lock and cluster could be used 796 * by another order. Not checking flag as off-list 797 * cluster has no flag set, and change of list 798 * won't cause fragmentation. 799 */ 800 if (!cluster_is_usable(ci, order)) 801 goto out; 802 if (cluster_is_empty(ci)) 803 offset = start; 804 /* Reclaim failed but cluster is usable, try next */ 805 if (!ret) 806 continue; 807 } 808 if (!cluster_alloc_range(si, ci, offset, usage, order)) 809 break; 810 found = offset; 811 offset += nr_pages; 812 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 813 next = offset; 814 break; 815 } 816 out: 817 relocate_cluster(si, ci); 818 unlock_cluster(ci); 819 if (si->flags & SWP_SOLIDSTATE) { 820 this_cpu_write(percpu_swap_cluster.offset[order], next); 821 this_cpu_write(percpu_swap_cluster.si[order], si); 822 } else { 823 si->global_cluster->next[order] = next; 824 } 825 return found; 826 } 827 828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 829 { 830 long to_scan = 1; 831 unsigned long offset, end; 832 struct swap_cluster_info *ci; 833 unsigned char *map = si->swap_map; 834 int nr_reclaim; 835 836 if (force) 837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 838 839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 840 offset = cluster_offset(si, ci); 841 end = min(si->max, offset + SWAPFILE_CLUSTER); 842 to_scan--; 843 844 while (offset < end) { 845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 846 spin_unlock(&ci->lock); 847 nr_reclaim = __try_to_reclaim_swap(si, offset, 848 TTRS_ANYWAY); 849 spin_lock(&ci->lock); 850 if (nr_reclaim) { 851 offset += abs(nr_reclaim); 852 continue; 853 } 854 } 855 offset++; 856 } 857 858 /* in case no swap cache is reclaimed */ 859 if (ci->flags == CLUSTER_FLAG_NONE) 860 relocate_cluster(si, ci); 861 862 unlock_cluster(ci); 863 if (to_scan <= 0) 864 break; 865 } 866 } 867 868 static void swap_reclaim_work(struct work_struct *work) 869 { 870 struct swap_info_struct *si; 871 872 si = container_of(work, struct swap_info_struct, reclaim_work); 873 874 swap_reclaim_full_clusters(si, true); 875 } 876 877 /* 878 * Try to allocate swap entries with specified order and try set a new 879 * cluster for current CPU too. 880 */ 881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 882 unsigned char usage) 883 { 884 struct swap_cluster_info *ci; 885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 886 887 /* 888 * Swapfile is not block device so unable 889 * to allocate large entries. 890 */ 891 if (order && !(si->flags & SWP_BLKDEV)) 892 return 0; 893 894 if (!(si->flags & SWP_SOLIDSTATE)) { 895 /* Serialize HDD SWAP allocation for each device. */ 896 spin_lock(&si->global_cluster_lock); 897 offset = si->global_cluster->next[order]; 898 if (offset == SWAP_ENTRY_INVALID) 899 goto new_cluster; 900 901 ci = lock_cluster(si, offset); 902 /* Cluster could have been used by another order */ 903 if (cluster_is_usable(ci, order)) { 904 if (cluster_is_empty(ci)) 905 offset = cluster_offset(si, ci); 906 found = alloc_swap_scan_cluster(si, ci, offset, 907 order, usage); 908 } else { 909 unlock_cluster(ci); 910 } 911 if (found) 912 goto done; 913 } 914 915 new_cluster: 916 ci = isolate_lock_cluster(si, &si->free_clusters); 917 if (ci) { 918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 919 order, usage); 920 if (found) 921 goto done; 922 } 923 924 /* Try reclaim from full clusters if free clusters list is drained */ 925 if (vm_swap_full()) 926 swap_reclaim_full_clusters(si, false); 927 928 if (order < PMD_ORDER) { 929 unsigned int frags = 0, frags_existing; 930 931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) { 932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 933 order, usage); 934 if (found) 935 goto done; 936 /* Clusters failed to allocate are moved to frag_clusters */ 937 frags++; 938 } 939 940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]); 941 while (frags < frags_existing && 942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) { 943 atomic_long_dec(&si->frag_cluster_nr[order]); 944 /* 945 * Rotate the frag list to iterate, they were all 946 * failing high order allocation or moved here due to 947 * per-CPU usage, but they could contain newly released 948 * reclaimable (eg. lazy-freed swap cache) slots. 949 */ 950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 951 order, usage); 952 if (found) 953 goto done; 954 frags++; 955 } 956 } 957 958 /* 959 * We don't have free cluster but have some clusters in discarding, 960 * do discard now and reclaim them. 961 */ 962 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 963 goto new_cluster; 964 965 if (order) 966 goto done; 967 968 /* Order 0 stealing from higher order */ 969 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 970 /* 971 * Clusters here have at least one usable slots and can't fail order 0 972 * allocation, but reclaim may drop si->lock and race with another user. 973 */ 974 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) { 975 atomic_long_dec(&si->frag_cluster_nr[o]); 976 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 977 0, usage); 978 if (found) 979 goto done; 980 } 981 982 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) { 983 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 984 0, usage); 985 if (found) 986 goto done; 987 } 988 } 989 done: 990 if (!(si->flags & SWP_SOLIDSTATE)) 991 spin_unlock(&si->global_cluster_lock); 992 return found; 993 } 994 995 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 996 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 997 { 998 int nid; 999 unsigned long pages; 1000 1001 spin_lock(&swap_avail_lock); 1002 1003 if (swapoff) { 1004 /* 1005 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1006 * swapoff here so it's synchronized by both si->lock and 1007 * swap_avail_lock, to ensure the result can be seen by 1008 * add_to_avail_list. 1009 */ 1010 lockdep_assert_held(&si->lock); 1011 si->flags &= ~SWP_WRITEOK; 1012 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1013 } else { 1014 /* 1015 * If not called by swapoff, take it off-list only if it's 1016 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1017 * si->inuse_pages == pages), any concurrent slot freeing, 1018 * or device already removed from plist by someone else 1019 * will make this return false. 1020 */ 1021 pages = si->pages; 1022 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1023 pages | SWAP_USAGE_OFFLIST_BIT)) 1024 goto skip; 1025 } 1026 1027 for_each_node(nid) 1028 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1029 1030 skip: 1031 spin_unlock(&swap_avail_lock); 1032 } 1033 1034 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1035 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1036 { 1037 int nid; 1038 long val; 1039 unsigned long pages; 1040 1041 spin_lock(&swap_avail_lock); 1042 1043 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1044 if (swapon) { 1045 lockdep_assert_held(&si->lock); 1046 si->flags |= SWP_WRITEOK; 1047 } else { 1048 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1049 goto skip; 1050 } 1051 1052 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1053 goto skip; 1054 1055 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1056 1057 /* 1058 * When device is full and device is on the plist, only one updater will 1059 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1060 * that updater happen to be here, just skip adding. 1061 */ 1062 pages = si->pages; 1063 if (val == pages) { 1064 /* Just like the cmpxchg in del_from_avail_list */ 1065 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1066 pages | SWAP_USAGE_OFFLIST_BIT)) 1067 goto skip; 1068 } 1069 1070 for_each_node(nid) 1071 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1072 1073 skip: 1074 spin_unlock(&swap_avail_lock); 1075 } 1076 1077 /* 1078 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1079 * within each cluster, so the total contribution to the global counter should 1080 * always be positive and cannot exceed the total number of usable slots. 1081 */ 1082 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1083 { 1084 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1085 1086 /* 1087 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1088 * remove it from the plist. 1089 */ 1090 if (unlikely(val == si->pages)) { 1091 del_from_avail_list(si, false); 1092 return true; 1093 } 1094 1095 return false; 1096 } 1097 1098 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1099 { 1100 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1101 1102 /* 1103 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1104 * add it to the plist. 1105 */ 1106 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1107 add_to_avail_list(si, false); 1108 } 1109 1110 static void swap_range_alloc(struct swap_info_struct *si, 1111 unsigned int nr_entries) 1112 { 1113 if (swap_usage_add(si, nr_entries)) { 1114 if (vm_swap_full()) 1115 schedule_work(&si->reclaim_work); 1116 } 1117 atomic_long_sub(nr_entries, &nr_swap_pages); 1118 } 1119 1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1121 unsigned int nr_entries) 1122 { 1123 unsigned long begin = offset; 1124 unsigned long end = offset + nr_entries - 1; 1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1126 unsigned int i; 1127 1128 /* 1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1131 */ 1132 for (i = 0; i < nr_entries; i++) { 1133 clear_bit(offset + i, si->zeromap); 1134 zswap_invalidate(swp_entry(si->type, offset + i)); 1135 } 1136 1137 if (si->flags & SWP_BLKDEV) 1138 swap_slot_free_notify = 1139 si->bdev->bd_disk->fops->swap_slot_free_notify; 1140 else 1141 swap_slot_free_notify = NULL; 1142 while (offset <= end) { 1143 arch_swap_invalidate_page(si->type, offset); 1144 if (swap_slot_free_notify) 1145 swap_slot_free_notify(si->bdev, offset); 1146 offset++; 1147 } 1148 clear_shadow_from_swap_cache(si->type, begin, end); 1149 1150 /* 1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1152 * only after the above cleanups are done. 1153 */ 1154 smp_wmb(); 1155 atomic_long_add(nr_entries, &nr_swap_pages); 1156 swap_usage_sub(si, nr_entries); 1157 } 1158 1159 static bool get_swap_device_info(struct swap_info_struct *si) 1160 { 1161 if (!percpu_ref_tryget_live(&si->users)) 1162 return false; 1163 /* 1164 * Guarantee the si->users are checked before accessing other 1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1166 * up to dated. 1167 * 1168 * Paired with the spin_unlock() after setup_swap_info() in 1169 * enable_swap_info(), and smp_wmb() in swapoff. 1170 */ 1171 smp_rmb(); 1172 return true; 1173 } 1174 1175 /* 1176 * Fast path try to get swap entries with specified order from current 1177 * CPU's swap entry pool (a cluster). 1178 */ 1179 static bool swap_alloc_fast(swp_entry_t *entry, 1180 int order) 1181 { 1182 struct swap_cluster_info *ci; 1183 struct swap_info_struct *si; 1184 unsigned int offset, found = SWAP_ENTRY_INVALID; 1185 1186 /* 1187 * Once allocated, swap_info_struct will never be completely freed, 1188 * so checking it's liveness by get_swap_device_info is enough. 1189 */ 1190 si = this_cpu_read(percpu_swap_cluster.si[order]); 1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1192 if (!si || !offset || !get_swap_device_info(si)) 1193 return false; 1194 1195 ci = lock_cluster(si, offset); 1196 if (cluster_is_usable(ci, order)) { 1197 if (cluster_is_empty(ci)) 1198 offset = cluster_offset(si, ci); 1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1200 if (found) 1201 *entry = swp_entry(si->type, found); 1202 } else { 1203 unlock_cluster(ci); 1204 } 1205 1206 put_swap_device(si); 1207 return !!found; 1208 } 1209 1210 /* Rotate the device and switch to a new cluster */ 1211 static bool swap_alloc_slow(swp_entry_t *entry, 1212 int order) 1213 { 1214 int node; 1215 unsigned long offset; 1216 struct swap_info_struct *si, *next; 1217 1218 node = numa_node_id(); 1219 spin_lock(&swap_avail_lock); 1220 start_over: 1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1222 /* Rotate the device and switch to a new cluster */ 1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1224 spin_unlock(&swap_avail_lock); 1225 if (get_swap_device_info(si)) { 1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1227 put_swap_device(si); 1228 if (offset) { 1229 *entry = swp_entry(si->type, offset); 1230 return true; 1231 } 1232 if (order) 1233 return false; 1234 } 1235 1236 spin_lock(&swap_avail_lock); 1237 /* 1238 * if we got here, it's likely that si was almost full before, 1239 * and since scan_swap_map_slots() can drop the si->lock, 1240 * multiple callers probably all tried to get a page from the 1241 * same si and it filled up before we could get one; or, the si 1242 * filled up between us dropping swap_avail_lock and taking 1243 * si->lock. Since we dropped the swap_avail_lock, the 1244 * swap_avail_head list may have been modified; so if next is 1245 * still in the swap_avail_head list then try it, otherwise 1246 * start over if we have not gotten any slots. 1247 */ 1248 if (plist_node_empty(&next->avail_lists[node])) 1249 goto start_over; 1250 } 1251 spin_unlock(&swap_avail_lock); 1252 return false; 1253 } 1254 1255 /** 1256 * folio_alloc_swap - allocate swap space for a folio 1257 * @folio: folio we want to move to swap 1258 * @gfp: gfp mask for shadow nodes 1259 * 1260 * Allocate swap space for the folio and add the folio to the 1261 * swap cache. 1262 * 1263 * Context: Caller needs to hold the folio lock. 1264 * Return: Whether the folio was added to the swap cache. 1265 */ 1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp) 1267 { 1268 unsigned int order = folio_order(folio); 1269 unsigned int size = 1 << order; 1270 swp_entry_t entry = {}; 1271 1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1274 1275 if (order) { 1276 /* 1277 * Reject large allocation when THP_SWAP is disabled, 1278 * the caller should split the folio and try again. 1279 */ 1280 if (!IS_ENABLED(CONFIG_THP_SWAP)) 1281 return -EAGAIN; 1282 1283 /* 1284 * Allocation size should never exceed cluster size 1285 * (HPAGE_PMD_SIZE). 1286 */ 1287 if (size > SWAPFILE_CLUSTER) { 1288 VM_WARN_ON_ONCE(1); 1289 return -EINVAL; 1290 } 1291 } 1292 1293 local_lock(&percpu_swap_cluster.lock); 1294 if (!swap_alloc_fast(&entry, order)) 1295 swap_alloc_slow(&entry, order); 1296 local_unlock(&percpu_swap_cluster.lock); 1297 1298 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1299 if (mem_cgroup_try_charge_swap(folio, entry)) 1300 goto out_free; 1301 1302 if (!entry.val) 1303 return -ENOMEM; 1304 1305 /* 1306 * XArray node allocations from PF_MEMALLOC contexts could 1307 * completely exhaust the page allocator. __GFP_NOMEMALLOC 1308 * stops emergency reserves from being allocated. 1309 * 1310 * TODO: this could cause a theoretical memory reclaim 1311 * deadlock in the swap out path. 1312 */ 1313 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL)) 1314 goto out_free; 1315 1316 return 0; 1317 1318 out_free: 1319 put_swap_folio(folio, entry); 1320 return -ENOMEM; 1321 } 1322 1323 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1324 { 1325 struct swap_info_struct *si; 1326 unsigned long offset; 1327 1328 if (!entry.val) 1329 goto out; 1330 si = swp_swap_info(entry); 1331 if (!si) 1332 goto bad_nofile; 1333 if (data_race(!(si->flags & SWP_USED))) 1334 goto bad_device; 1335 offset = swp_offset(entry); 1336 if (offset >= si->max) 1337 goto bad_offset; 1338 if (data_race(!si->swap_map[swp_offset(entry)])) 1339 goto bad_free; 1340 return si; 1341 1342 bad_free: 1343 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1344 goto out; 1345 bad_offset: 1346 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1347 goto out; 1348 bad_device: 1349 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1350 goto out; 1351 bad_nofile: 1352 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1353 out: 1354 return NULL; 1355 } 1356 1357 static unsigned char swap_entry_put_locked(struct swap_info_struct *si, 1358 struct swap_cluster_info *ci, 1359 swp_entry_t entry, 1360 unsigned char usage) 1361 { 1362 unsigned long offset = swp_offset(entry); 1363 unsigned char count; 1364 unsigned char has_cache; 1365 1366 count = si->swap_map[offset]; 1367 1368 has_cache = count & SWAP_HAS_CACHE; 1369 count &= ~SWAP_HAS_CACHE; 1370 1371 if (usage == SWAP_HAS_CACHE) { 1372 VM_BUG_ON(!has_cache); 1373 has_cache = 0; 1374 } else if (count == SWAP_MAP_SHMEM) { 1375 /* 1376 * Or we could insist on shmem.c using a special 1377 * swap_shmem_free() and free_shmem_swap_and_cache()... 1378 */ 1379 count = 0; 1380 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1381 if (count == COUNT_CONTINUED) { 1382 if (swap_count_continued(si, offset, count)) 1383 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1384 else 1385 count = SWAP_MAP_MAX; 1386 } else 1387 count--; 1388 } 1389 1390 usage = count | has_cache; 1391 if (usage) 1392 WRITE_ONCE(si->swap_map[offset], usage); 1393 else 1394 swap_entries_free(si, ci, entry, 1); 1395 1396 return usage; 1397 } 1398 1399 /* 1400 * When we get a swap entry, if there aren't some other ways to 1401 * prevent swapoff, such as the folio in swap cache is locked, RCU 1402 * reader side is locked, etc., the swap entry may become invalid 1403 * because of swapoff. Then, we need to enclose all swap related 1404 * functions with get_swap_device() and put_swap_device(), unless the 1405 * swap functions call get/put_swap_device() by themselves. 1406 * 1407 * RCU reader side lock (including any spinlock) is sufficient to 1408 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1409 * before freeing data structures. 1410 * 1411 * Check whether swap entry is valid in the swap device. If so, 1412 * return pointer to swap_info_struct, and keep the swap entry valid 1413 * via preventing the swap device from being swapoff, until 1414 * put_swap_device() is called. Otherwise return NULL. 1415 * 1416 * Notice that swapoff or swapoff+swapon can still happen before the 1417 * percpu_ref_tryget_live() in get_swap_device() or after the 1418 * percpu_ref_put() in put_swap_device() if there isn't any other way 1419 * to prevent swapoff. The caller must be prepared for that. For 1420 * example, the following situation is possible. 1421 * 1422 * CPU1 CPU2 1423 * do_swap_page() 1424 * ... swapoff+swapon 1425 * __read_swap_cache_async() 1426 * swapcache_prepare() 1427 * __swap_duplicate() 1428 * // check swap_map 1429 * // verify PTE not changed 1430 * 1431 * In __swap_duplicate(), the swap_map need to be checked before 1432 * changing partly because the specified swap entry may be for another 1433 * swap device which has been swapoff. And in do_swap_page(), after 1434 * the page is read from the swap device, the PTE is verified not 1435 * changed with the page table locked to check whether the swap device 1436 * has been swapoff or swapoff+swapon. 1437 */ 1438 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1439 { 1440 struct swap_info_struct *si; 1441 unsigned long offset; 1442 1443 if (!entry.val) 1444 goto out; 1445 si = swp_swap_info(entry); 1446 if (!si) 1447 goto bad_nofile; 1448 if (!get_swap_device_info(si)) 1449 goto out; 1450 offset = swp_offset(entry); 1451 if (offset >= si->max) 1452 goto put_out; 1453 1454 return si; 1455 bad_nofile: 1456 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1457 out: 1458 return NULL; 1459 put_out: 1460 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1461 percpu_ref_put(&si->users); 1462 return NULL; 1463 } 1464 1465 static void swap_entries_put_cache(struct swap_info_struct *si, 1466 swp_entry_t entry, int nr) 1467 { 1468 unsigned long offset = swp_offset(entry); 1469 struct swap_cluster_info *ci; 1470 1471 ci = lock_cluster(si, offset); 1472 if (swap_only_has_cache(si, offset, nr)) 1473 swap_entries_free(si, ci, entry, nr); 1474 else { 1475 for (int i = 0; i < nr; i++, entry.val++) 1476 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); 1477 } 1478 unlock_cluster(ci); 1479 } 1480 1481 static bool swap_entries_put_map(struct swap_info_struct *si, 1482 swp_entry_t entry, int nr) 1483 { 1484 unsigned long offset = swp_offset(entry); 1485 struct swap_cluster_info *ci; 1486 bool has_cache = false; 1487 unsigned char count; 1488 int i; 1489 1490 if (nr <= 1) 1491 goto fallback; 1492 count = swap_count(data_race(si->swap_map[offset])); 1493 if (count != 1 && count != SWAP_MAP_SHMEM) 1494 goto fallback; 1495 1496 ci = lock_cluster(si, offset); 1497 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1498 goto locked_fallback; 1499 } 1500 if (!has_cache) 1501 swap_entries_free(si, ci, entry, nr); 1502 else 1503 for (i = 0; i < nr; i++) 1504 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1505 unlock_cluster(ci); 1506 1507 return has_cache; 1508 1509 fallback: 1510 ci = lock_cluster(si, offset); 1511 locked_fallback: 1512 for (i = 0; i < nr; i++, entry.val++) { 1513 count = swap_entry_put_locked(si, ci, entry, 1); 1514 if (count == SWAP_HAS_CACHE) 1515 has_cache = true; 1516 } 1517 unlock_cluster(ci); 1518 return has_cache; 1519 1520 } 1521 1522 /* 1523 * Only functions with "_nr" suffix are able to free entries spanning 1524 * cross multi clusters, so ensure the range is within a single cluster 1525 * when freeing entries with functions without "_nr" suffix. 1526 */ 1527 static bool swap_entries_put_map_nr(struct swap_info_struct *si, 1528 swp_entry_t entry, int nr) 1529 { 1530 int cluster_nr, cluster_rest; 1531 unsigned long offset = swp_offset(entry); 1532 bool has_cache = false; 1533 1534 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; 1535 while (nr) { 1536 cluster_nr = min(nr, cluster_rest); 1537 has_cache |= swap_entries_put_map(si, entry, cluster_nr); 1538 cluster_rest = SWAPFILE_CLUSTER; 1539 nr -= cluster_nr; 1540 entry.val += cluster_nr; 1541 } 1542 1543 return has_cache; 1544 } 1545 1546 /* 1547 * Check if it's the last ref of swap entry in the freeing path. 1548 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. 1549 */ 1550 static inline bool __maybe_unused swap_is_last_ref(unsigned char count) 1551 { 1552 return (count == SWAP_HAS_CACHE) || (count == 1) || 1553 (count == SWAP_MAP_SHMEM); 1554 } 1555 1556 /* 1557 * Drop the last ref of swap entries, caller have to ensure all entries 1558 * belong to the same cgroup and cluster. 1559 */ 1560 static void swap_entries_free(struct swap_info_struct *si, 1561 struct swap_cluster_info *ci, 1562 swp_entry_t entry, unsigned int nr_pages) 1563 { 1564 unsigned long offset = swp_offset(entry); 1565 unsigned char *map = si->swap_map + offset; 1566 unsigned char *map_end = map + nr_pages; 1567 1568 /* It should never free entries across different clusters */ 1569 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1)); 1570 VM_BUG_ON(cluster_is_empty(ci)); 1571 VM_BUG_ON(ci->count < nr_pages); 1572 1573 ci->count -= nr_pages; 1574 do { 1575 VM_BUG_ON(!swap_is_last_ref(*map)); 1576 *map = 0; 1577 } while (++map < map_end); 1578 1579 mem_cgroup_uncharge_swap(entry, nr_pages); 1580 swap_range_free(si, offset, nr_pages); 1581 1582 if (!ci->count) 1583 free_cluster(si, ci); 1584 else 1585 partial_free_cluster(si, ci); 1586 } 1587 1588 /* 1589 * Caller has made sure that the swap device corresponding to entry 1590 * is still around or has not been recycled. 1591 */ 1592 void swap_free_nr(swp_entry_t entry, int nr_pages) 1593 { 1594 int nr; 1595 struct swap_info_struct *sis; 1596 unsigned long offset = swp_offset(entry); 1597 1598 sis = _swap_info_get(entry); 1599 if (!sis) 1600 return; 1601 1602 while (nr_pages) { 1603 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1604 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr); 1605 offset += nr; 1606 nr_pages -= nr; 1607 } 1608 } 1609 1610 /* 1611 * Called after dropping swapcache to decrease refcnt to swap entries. 1612 */ 1613 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1614 { 1615 struct swap_info_struct *si; 1616 int size = 1 << swap_entry_order(folio_order(folio)); 1617 1618 si = _swap_info_get(entry); 1619 if (!si) 1620 return; 1621 1622 swap_entries_put_cache(si, entry, size); 1623 } 1624 1625 int __swap_count(swp_entry_t entry) 1626 { 1627 struct swap_info_struct *si = swp_swap_info(entry); 1628 pgoff_t offset = swp_offset(entry); 1629 1630 return swap_count(si->swap_map[offset]); 1631 } 1632 1633 /* 1634 * How many references to @entry are currently swapped out? 1635 * This does not give an exact answer when swap count is continued, 1636 * but does include the high COUNT_CONTINUED flag to allow for that. 1637 */ 1638 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1639 { 1640 pgoff_t offset = swp_offset(entry); 1641 struct swap_cluster_info *ci; 1642 int count; 1643 1644 ci = lock_cluster(si, offset); 1645 count = swap_count(si->swap_map[offset]); 1646 unlock_cluster(ci); 1647 return !!count; 1648 } 1649 1650 /* 1651 * How many references to @entry are currently swapped out? 1652 * This considers COUNT_CONTINUED so it returns exact answer. 1653 */ 1654 int swp_swapcount(swp_entry_t entry) 1655 { 1656 int count, tmp_count, n; 1657 struct swap_info_struct *si; 1658 struct swap_cluster_info *ci; 1659 struct page *page; 1660 pgoff_t offset; 1661 unsigned char *map; 1662 1663 si = _swap_info_get(entry); 1664 if (!si) 1665 return 0; 1666 1667 offset = swp_offset(entry); 1668 1669 ci = lock_cluster(si, offset); 1670 1671 count = swap_count(si->swap_map[offset]); 1672 if (!(count & COUNT_CONTINUED)) 1673 goto out; 1674 1675 count &= ~COUNT_CONTINUED; 1676 n = SWAP_MAP_MAX + 1; 1677 1678 page = vmalloc_to_page(si->swap_map + offset); 1679 offset &= ~PAGE_MASK; 1680 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1681 1682 do { 1683 page = list_next_entry(page, lru); 1684 map = kmap_local_page(page); 1685 tmp_count = map[offset]; 1686 kunmap_local(map); 1687 1688 count += (tmp_count & ~COUNT_CONTINUED) * n; 1689 n *= (SWAP_CONT_MAX + 1); 1690 } while (tmp_count & COUNT_CONTINUED); 1691 out: 1692 unlock_cluster(ci); 1693 return count; 1694 } 1695 1696 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1697 swp_entry_t entry, int order) 1698 { 1699 struct swap_cluster_info *ci; 1700 unsigned char *map = si->swap_map; 1701 unsigned int nr_pages = 1 << order; 1702 unsigned long roffset = swp_offset(entry); 1703 unsigned long offset = round_down(roffset, nr_pages); 1704 int i; 1705 bool ret = false; 1706 1707 ci = lock_cluster(si, offset); 1708 if (nr_pages == 1) { 1709 if (swap_count(map[roffset])) 1710 ret = true; 1711 goto unlock_out; 1712 } 1713 for (i = 0; i < nr_pages; i++) { 1714 if (swap_count(map[offset + i])) { 1715 ret = true; 1716 break; 1717 } 1718 } 1719 unlock_out: 1720 unlock_cluster(ci); 1721 return ret; 1722 } 1723 1724 static bool folio_swapped(struct folio *folio) 1725 { 1726 swp_entry_t entry = folio->swap; 1727 struct swap_info_struct *si = _swap_info_get(entry); 1728 1729 if (!si) 1730 return false; 1731 1732 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1733 return swap_entry_swapped(si, entry); 1734 1735 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1736 } 1737 1738 static bool folio_swapcache_freeable(struct folio *folio) 1739 { 1740 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1741 1742 if (!folio_test_swapcache(folio)) 1743 return false; 1744 if (folio_test_writeback(folio)) 1745 return false; 1746 1747 /* 1748 * Once hibernation has begun to create its image of memory, 1749 * there's a danger that one of the calls to folio_free_swap() 1750 * - most probably a call from __try_to_reclaim_swap() while 1751 * hibernation is allocating its own swap pages for the image, 1752 * but conceivably even a call from memory reclaim - will free 1753 * the swap from a folio which has already been recorded in the 1754 * image as a clean swapcache folio, and then reuse its swap for 1755 * another page of the image. On waking from hibernation, the 1756 * original folio might be freed under memory pressure, then 1757 * later read back in from swap, now with the wrong data. 1758 * 1759 * Hibernation suspends storage while it is writing the image 1760 * to disk so check that here. 1761 */ 1762 if (pm_suspended_storage()) 1763 return false; 1764 1765 return true; 1766 } 1767 1768 /** 1769 * folio_free_swap() - Free the swap space used for this folio. 1770 * @folio: The folio to remove. 1771 * 1772 * If swap is getting full, or if there are no more mappings of this folio, 1773 * then call folio_free_swap to free its swap space. 1774 * 1775 * Return: true if we were able to release the swap space. 1776 */ 1777 bool folio_free_swap(struct folio *folio) 1778 { 1779 if (!folio_swapcache_freeable(folio)) 1780 return false; 1781 if (folio_swapped(folio)) 1782 return false; 1783 1784 delete_from_swap_cache(folio); 1785 folio_set_dirty(folio); 1786 return true; 1787 } 1788 1789 /** 1790 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1791 * reclaim their cache if no more references remain. 1792 * @entry: First entry of range. 1793 * @nr: Number of entries in range. 1794 * 1795 * For each swap entry in the contiguous range, release a reference. If any swap 1796 * entries become free, try to reclaim their underlying folios, if present. The 1797 * offset range is defined by [entry.offset, entry.offset + nr). 1798 */ 1799 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1800 { 1801 const unsigned long start_offset = swp_offset(entry); 1802 const unsigned long end_offset = start_offset + nr; 1803 struct swap_info_struct *si; 1804 bool any_only_cache = false; 1805 unsigned long offset; 1806 1807 si = get_swap_device(entry); 1808 if (!si) 1809 return; 1810 1811 if (WARN_ON(end_offset > si->max)) 1812 goto out; 1813 1814 /* 1815 * First free all entries in the range. 1816 */ 1817 any_only_cache = swap_entries_put_map_nr(si, entry, nr); 1818 1819 /* 1820 * Short-circuit the below loop if none of the entries had their 1821 * reference drop to zero. 1822 */ 1823 if (!any_only_cache) 1824 goto out; 1825 1826 /* 1827 * Now go back over the range trying to reclaim the swap cache. 1828 */ 1829 for (offset = start_offset; offset < end_offset; offset += nr) { 1830 nr = 1; 1831 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1832 /* 1833 * Folios are always naturally aligned in swap so 1834 * advance forward to the next boundary. Zero means no 1835 * folio was found for the swap entry, so advance by 1 1836 * in this case. Negative value means folio was found 1837 * but could not be reclaimed. Here we can still advance 1838 * to the next boundary. 1839 */ 1840 nr = __try_to_reclaim_swap(si, offset, 1841 TTRS_UNMAPPED | TTRS_FULL); 1842 if (nr == 0) 1843 nr = 1; 1844 else if (nr < 0) 1845 nr = -nr; 1846 nr = ALIGN(offset + 1, nr) - offset; 1847 } 1848 } 1849 1850 out: 1851 put_swap_device(si); 1852 } 1853 1854 #ifdef CONFIG_HIBERNATION 1855 1856 swp_entry_t get_swap_page_of_type(int type) 1857 { 1858 struct swap_info_struct *si = swap_type_to_swap_info(type); 1859 unsigned long offset; 1860 swp_entry_t entry = {0}; 1861 1862 if (!si) 1863 goto fail; 1864 1865 /* This is called for allocating swap entry, not cache */ 1866 if (get_swap_device_info(si)) { 1867 if (si->flags & SWP_WRITEOK) { 1868 offset = cluster_alloc_swap_entry(si, 0, 1); 1869 if (offset) { 1870 entry = swp_entry(si->type, offset); 1871 atomic_long_dec(&nr_swap_pages); 1872 } 1873 } 1874 put_swap_device(si); 1875 } 1876 fail: 1877 return entry; 1878 } 1879 1880 /* 1881 * Find the swap type that corresponds to given device (if any). 1882 * 1883 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1884 * from 0, in which the swap header is expected to be located. 1885 * 1886 * This is needed for the suspend to disk (aka swsusp). 1887 */ 1888 int swap_type_of(dev_t device, sector_t offset) 1889 { 1890 int type; 1891 1892 if (!device) 1893 return -1; 1894 1895 spin_lock(&swap_lock); 1896 for (type = 0; type < nr_swapfiles; type++) { 1897 struct swap_info_struct *sis = swap_info[type]; 1898 1899 if (!(sis->flags & SWP_WRITEOK)) 1900 continue; 1901 1902 if (device == sis->bdev->bd_dev) { 1903 struct swap_extent *se = first_se(sis); 1904 1905 if (se->start_block == offset) { 1906 spin_unlock(&swap_lock); 1907 return type; 1908 } 1909 } 1910 } 1911 spin_unlock(&swap_lock); 1912 return -ENODEV; 1913 } 1914 1915 int find_first_swap(dev_t *device) 1916 { 1917 int type; 1918 1919 spin_lock(&swap_lock); 1920 for (type = 0; type < nr_swapfiles; type++) { 1921 struct swap_info_struct *sis = swap_info[type]; 1922 1923 if (!(sis->flags & SWP_WRITEOK)) 1924 continue; 1925 *device = sis->bdev->bd_dev; 1926 spin_unlock(&swap_lock); 1927 return type; 1928 } 1929 spin_unlock(&swap_lock); 1930 return -ENODEV; 1931 } 1932 1933 /* 1934 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1935 * corresponding to given index in swap_info (swap type). 1936 */ 1937 sector_t swapdev_block(int type, pgoff_t offset) 1938 { 1939 struct swap_info_struct *si = swap_type_to_swap_info(type); 1940 struct swap_extent *se; 1941 1942 if (!si || !(si->flags & SWP_WRITEOK)) 1943 return 0; 1944 se = offset_to_swap_extent(si, offset); 1945 return se->start_block + (offset - se->start_page); 1946 } 1947 1948 /* 1949 * Return either the total number of swap pages of given type, or the number 1950 * of free pages of that type (depending on @free) 1951 * 1952 * This is needed for software suspend 1953 */ 1954 unsigned int count_swap_pages(int type, int free) 1955 { 1956 unsigned int n = 0; 1957 1958 spin_lock(&swap_lock); 1959 if ((unsigned int)type < nr_swapfiles) { 1960 struct swap_info_struct *sis = swap_info[type]; 1961 1962 spin_lock(&sis->lock); 1963 if (sis->flags & SWP_WRITEOK) { 1964 n = sis->pages; 1965 if (free) 1966 n -= swap_usage_in_pages(sis); 1967 } 1968 spin_unlock(&sis->lock); 1969 } 1970 spin_unlock(&swap_lock); 1971 return n; 1972 } 1973 #endif /* CONFIG_HIBERNATION */ 1974 1975 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1976 { 1977 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1978 } 1979 1980 /* 1981 * No need to decide whether this PTE shares the swap entry with others, 1982 * just let do_wp_page work it out if a write is requested later - to 1983 * force COW, vm_page_prot omits write permission from any private vma. 1984 */ 1985 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1986 unsigned long addr, swp_entry_t entry, struct folio *folio) 1987 { 1988 struct page *page; 1989 struct folio *swapcache; 1990 spinlock_t *ptl; 1991 pte_t *pte, new_pte, old_pte; 1992 bool hwpoisoned = false; 1993 int ret = 1; 1994 1995 swapcache = folio; 1996 folio = ksm_might_need_to_copy(folio, vma, addr); 1997 if (unlikely(!folio)) 1998 return -ENOMEM; 1999 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2000 hwpoisoned = true; 2001 folio = swapcache; 2002 } 2003 2004 page = folio_file_page(folio, swp_offset(entry)); 2005 if (PageHWPoison(page)) 2006 hwpoisoned = true; 2007 2008 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2009 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2010 swp_entry_to_pte(entry)))) { 2011 ret = 0; 2012 goto out; 2013 } 2014 2015 old_pte = ptep_get(pte); 2016 2017 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2018 swp_entry_t swp_entry; 2019 2020 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2021 if (hwpoisoned) { 2022 swp_entry = make_hwpoison_entry(page); 2023 } else { 2024 swp_entry = make_poisoned_swp_entry(); 2025 } 2026 new_pte = swp_entry_to_pte(swp_entry); 2027 ret = 0; 2028 goto setpte; 2029 } 2030 2031 /* 2032 * Some architectures may have to restore extra metadata to the page 2033 * when reading from swap. This metadata may be indexed by swap entry 2034 * so this must be called before swap_free(). 2035 */ 2036 arch_swap_restore(folio_swap(entry, folio), folio); 2037 2038 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2039 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2040 folio_get(folio); 2041 if (folio == swapcache) { 2042 rmap_t rmap_flags = RMAP_NONE; 2043 2044 /* 2045 * See do_swap_page(): writeback would be problematic. 2046 * However, we do a folio_wait_writeback() just before this 2047 * call and have the folio locked. 2048 */ 2049 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2050 if (pte_swp_exclusive(old_pte)) 2051 rmap_flags |= RMAP_EXCLUSIVE; 2052 /* 2053 * We currently only expect small !anon folios, which are either 2054 * fully exclusive or fully shared. If we ever get large folios 2055 * here, we have to be careful. 2056 */ 2057 if (!folio_test_anon(folio)) { 2058 VM_WARN_ON_ONCE(folio_test_large(folio)); 2059 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2060 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2061 } else { 2062 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2063 } 2064 } else { /* ksm created a completely new copy */ 2065 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2066 folio_add_lru_vma(folio, vma); 2067 } 2068 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2069 if (pte_swp_soft_dirty(old_pte)) 2070 new_pte = pte_mksoft_dirty(new_pte); 2071 if (pte_swp_uffd_wp(old_pte)) 2072 new_pte = pte_mkuffd_wp(new_pte); 2073 setpte: 2074 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2075 swap_free(entry); 2076 out: 2077 if (pte) 2078 pte_unmap_unlock(pte, ptl); 2079 if (folio != swapcache) { 2080 folio_unlock(folio); 2081 folio_put(folio); 2082 } 2083 return ret; 2084 } 2085 2086 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2087 unsigned long addr, unsigned long end, 2088 unsigned int type) 2089 { 2090 pte_t *pte = NULL; 2091 struct swap_info_struct *si; 2092 2093 si = swap_info[type]; 2094 do { 2095 struct folio *folio; 2096 unsigned long offset; 2097 unsigned char swp_count; 2098 swp_entry_t entry; 2099 int ret; 2100 pte_t ptent; 2101 2102 if (!pte++) { 2103 pte = pte_offset_map(pmd, addr); 2104 if (!pte) 2105 break; 2106 } 2107 2108 ptent = ptep_get_lockless(pte); 2109 2110 if (!is_swap_pte(ptent)) 2111 continue; 2112 2113 entry = pte_to_swp_entry(ptent); 2114 if (swp_type(entry) != type) 2115 continue; 2116 2117 offset = swp_offset(entry); 2118 pte_unmap(pte); 2119 pte = NULL; 2120 2121 folio = swap_cache_get_folio(entry, vma, addr); 2122 if (!folio) { 2123 struct vm_fault vmf = { 2124 .vma = vma, 2125 .address = addr, 2126 .real_address = addr, 2127 .pmd = pmd, 2128 }; 2129 2130 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2131 &vmf); 2132 } 2133 if (!folio) { 2134 swp_count = READ_ONCE(si->swap_map[offset]); 2135 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2136 continue; 2137 return -ENOMEM; 2138 } 2139 2140 folio_lock(folio); 2141 folio_wait_writeback(folio); 2142 ret = unuse_pte(vma, pmd, addr, entry, folio); 2143 if (ret < 0) { 2144 folio_unlock(folio); 2145 folio_put(folio); 2146 return ret; 2147 } 2148 2149 folio_free_swap(folio); 2150 folio_unlock(folio); 2151 folio_put(folio); 2152 } while (addr += PAGE_SIZE, addr != end); 2153 2154 if (pte) 2155 pte_unmap(pte); 2156 return 0; 2157 } 2158 2159 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2160 unsigned long addr, unsigned long end, 2161 unsigned int type) 2162 { 2163 pmd_t *pmd; 2164 unsigned long next; 2165 int ret; 2166 2167 pmd = pmd_offset(pud, addr); 2168 do { 2169 cond_resched(); 2170 next = pmd_addr_end(addr, end); 2171 ret = unuse_pte_range(vma, pmd, addr, next, type); 2172 if (ret) 2173 return ret; 2174 } while (pmd++, addr = next, addr != end); 2175 return 0; 2176 } 2177 2178 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2179 unsigned long addr, unsigned long end, 2180 unsigned int type) 2181 { 2182 pud_t *pud; 2183 unsigned long next; 2184 int ret; 2185 2186 pud = pud_offset(p4d, addr); 2187 do { 2188 next = pud_addr_end(addr, end); 2189 if (pud_none_or_clear_bad(pud)) 2190 continue; 2191 ret = unuse_pmd_range(vma, pud, addr, next, type); 2192 if (ret) 2193 return ret; 2194 } while (pud++, addr = next, addr != end); 2195 return 0; 2196 } 2197 2198 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2199 unsigned long addr, unsigned long end, 2200 unsigned int type) 2201 { 2202 p4d_t *p4d; 2203 unsigned long next; 2204 int ret; 2205 2206 p4d = p4d_offset(pgd, addr); 2207 do { 2208 next = p4d_addr_end(addr, end); 2209 if (p4d_none_or_clear_bad(p4d)) 2210 continue; 2211 ret = unuse_pud_range(vma, p4d, addr, next, type); 2212 if (ret) 2213 return ret; 2214 } while (p4d++, addr = next, addr != end); 2215 return 0; 2216 } 2217 2218 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2219 { 2220 pgd_t *pgd; 2221 unsigned long addr, end, next; 2222 int ret; 2223 2224 addr = vma->vm_start; 2225 end = vma->vm_end; 2226 2227 pgd = pgd_offset(vma->vm_mm, addr); 2228 do { 2229 next = pgd_addr_end(addr, end); 2230 if (pgd_none_or_clear_bad(pgd)) 2231 continue; 2232 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2233 if (ret) 2234 return ret; 2235 } while (pgd++, addr = next, addr != end); 2236 return 0; 2237 } 2238 2239 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2240 { 2241 struct vm_area_struct *vma; 2242 int ret = 0; 2243 VMA_ITERATOR(vmi, mm, 0); 2244 2245 mmap_read_lock(mm); 2246 for_each_vma(vmi, vma) { 2247 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2248 ret = unuse_vma(vma, type); 2249 if (ret) 2250 break; 2251 } 2252 2253 cond_resched(); 2254 } 2255 mmap_read_unlock(mm); 2256 return ret; 2257 } 2258 2259 /* 2260 * Scan swap_map from current position to next entry still in use. 2261 * Return 0 if there are no inuse entries after prev till end of 2262 * the map. 2263 */ 2264 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2265 unsigned int prev) 2266 { 2267 unsigned int i; 2268 unsigned char count; 2269 2270 /* 2271 * No need for swap_lock here: we're just looking 2272 * for whether an entry is in use, not modifying it; false 2273 * hits are okay, and sys_swapoff() has already prevented new 2274 * allocations from this area (while holding swap_lock). 2275 */ 2276 for (i = prev + 1; i < si->max; i++) { 2277 count = READ_ONCE(si->swap_map[i]); 2278 if (count && swap_count(count) != SWAP_MAP_BAD) 2279 break; 2280 if ((i % LATENCY_LIMIT) == 0) 2281 cond_resched(); 2282 } 2283 2284 if (i == si->max) 2285 i = 0; 2286 2287 return i; 2288 } 2289 2290 static int try_to_unuse(unsigned int type) 2291 { 2292 struct mm_struct *prev_mm; 2293 struct mm_struct *mm; 2294 struct list_head *p; 2295 int retval = 0; 2296 struct swap_info_struct *si = swap_info[type]; 2297 struct folio *folio; 2298 swp_entry_t entry; 2299 unsigned int i; 2300 2301 if (!swap_usage_in_pages(si)) 2302 goto success; 2303 2304 retry: 2305 retval = shmem_unuse(type); 2306 if (retval) 2307 return retval; 2308 2309 prev_mm = &init_mm; 2310 mmget(prev_mm); 2311 2312 spin_lock(&mmlist_lock); 2313 p = &init_mm.mmlist; 2314 while (swap_usage_in_pages(si) && 2315 !signal_pending(current) && 2316 (p = p->next) != &init_mm.mmlist) { 2317 2318 mm = list_entry(p, struct mm_struct, mmlist); 2319 if (!mmget_not_zero(mm)) 2320 continue; 2321 spin_unlock(&mmlist_lock); 2322 mmput(prev_mm); 2323 prev_mm = mm; 2324 retval = unuse_mm(mm, type); 2325 if (retval) { 2326 mmput(prev_mm); 2327 return retval; 2328 } 2329 2330 /* 2331 * Make sure that we aren't completely killing 2332 * interactive performance. 2333 */ 2334 cond_resched(); 2335 spin_lock(&mmlist_lock); 2336 } 2337 spin_unlock(&mmlist_lock); 2338 2339 mmput(prev_mm); 2340 2341 i = 0; 2342 while (swap_usage_in_pages(si) && 2343 !signal_pending(current) && 2344 (i = find_next_to_unuse(si, i)) != 0) { 2345 2346 entry = swp_entry(type, i); 2347 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2348 if (IS_ERR(folio)) 2349 continue; 2350 2351 /* 2352 * It is conceivable that a racing task removed this folio from 2353 * swap cache just before we acquired the page lock. The folio 2354 * might even be back in swap cache on another swap area. But 2355 * that is okay, folio_free_swap() only removes stale folios. 2356 */ 2357 folio_lock(folio); 2358 folio_wait_writeback(folio); 2359 folio_free_swap(folio); 2360 folio_unlock(folio); 2361 folio_put(folio); 2362 } 2363 2364 /* 2365 * Lets check again to see if there are still swap entries in the map. 2366 * If yes, we would need to do retry the unuse logic again. 2367 * Under global memory pressure, swap entries can be reinserted back 2368 * into process space after the mmlist loop above passes over them. 2369 * 2370 * Limit the number of retries? No: when mmget_not_zero() 2371 * above fails, that mm is likely to be freeing swap from 2372 * exit_mmap(), which proceeds at its own independent pace; 2373 * and even shmem_writeout() could have been preempted after 2374 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2375 * and robust (though cpu-intensive) just to keep retrying. 2376 */ 2377 if (swap_usage_in_pages(si)) { 2378 if (!signal_pending(current)) 2379 goto retry; 2380 return -EINTR; 2381 } 2382 2383 success: 2384 /* 2385 * Make sure that further cleanups after try_to_unuse() returns happen 2386 * after swap_range_free() reduces si->inuse_pages to 0. 2387 */ 2388 smp_mb(); 2389 return 0; 2390 } 2391 2392 /* 2393 * After a successful try_to_unuse, if no swap is now in use, we know 2394 * we can empty the mmlist. swap_lock must be held on entry and exit. 2395 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2396 * added to the mmlist just after page_duplicate - before would be racy. 2397 */ 2398 static void drain_mmlist(void) 2399 { 2400 struct list_head *p, *next; 2401 unsigned int type; 2402 2403 for (type = 0; type < nr_swapfiles; type++) 2404 if (swap_usage_in_pages(swap_info[type])) 2405 return; 2406 spin_lock(&mmlist_lock); 2407 list_for_each_safe(p, next, &init_mm.mmlist) 2408 list_del_init(p); 2409 spin_unlock(&mmlist_lock); 2410 } 2411 2412 /* 2413 * Free all of a swapdev's extent information 2414 */ 2415 static void destroy_swap_extents(struct swap_info_struct *sis) 2416 { 2417 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2418 struct rb_node *rb = sis->swap_extent_root.rb_node; 2419 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2420 2421 rb_erase(rb, &sis->swap_extent_root); 2422 kfree(se); 2423 } 2424 2425 if (sis->flags & SWP_ACTIVATED) { 2426 struct file *swap_file = sis->swap_file; 2427 struct address_space *mapping = swap_file->f_mapping; 2428 2429 sis->flags &= ~SWP_ACTIVATED; 2430 if (mapping->a_ops->swap_deactivate) 2431 mapping->a_ops->swap_deactivate(swap_file); 2432 } 2433 } 2434 2435 /* 2436 * Add a block range (and the corresponding page range) into this swapdev's 2437 * extent tree. 2438 * 2439 * This function rather assumes that it is called in ascending page order. 2440 */ 2441 int 2442 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2443 unsigned long nr_pages, sector_t start_block) 2444 { 2445 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2446 struct swap_extent *se; 2447 struct swap_extent *new_se; 2448 2449 /* 2450 * place the new node at the right most since the 2451 * function is called in ascending page order. 2452 */ 2453 while (*link) { 2454 parent = *link; 2455 link = &parent->rb_right; 2456 } 2457 2458 if (parent) { 2459 se = rb_entry(parent, struct swap_extent, rb_node); 2460 BUG_ON(se->start_page + se->nr_pages != start_page); 2461 if (se->start_block + se->nr_pages == start_block) { 2462 /* Merge it */ 2463 se->nr_pages += nr_pages; 2464 return 0; 2465 } 2466 } 2467 2468 /* No merge, insert a new extent. */ 2469 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2470 if (new_se == NULL) 2471 return -ENOMEM; 2472 new_se->start_page = start_page; 2473 new_se->nr_pages = nr_pages; 2474 new_se->start_block = start_block; 2475 2476 rb_link_node(&new_se->rb_node, parent, link); 2477 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2478 return 1; 2479 } 2480 EXPORT_SYMBOL_GPL(add_swap_extent); 2481 2482 /* 2483 * A `swap extent' is a simple thing which maps a contiguous range of pages 2484 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2485 * built at swapon time and is then used at swap_writepage/swap_read_folio 2486 * time for locating where on disk a page belongs. 2487 * 2488 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2489 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2490 * swap files identically. 2491 * 2492 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2493 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2494 * swapfiles are handled *identically* after swapon time. 2495 * 2496 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2497 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2498 * blocks are found which do not fall within the PAGE_SIZE alignment 2499 * requirements, they are simply tossed out - we will never use those blocks 2500 * for swapping. 2501 * 2502 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2503 * prevents users from writing to the swap device, which will corrupt memory. 2504 * 2505 * The amount of disk space which a single swap extent represents varies. 2506 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2507 * extents in the rbtree. - akpm. 2508 */ 2509 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2510 { 2511 struct file *swap_file = sis->swap_file; 2512 struct address_space *mapping = swap_file->f_mapping; 2513 struct inode *inode = mapping->host; 2514 int ret; 2515 2516 if (S_ISBLK(inode->i_mode)) { 2517 ret = add_swap_extent(sis, 0, sis->max, 0); 2518 *span = sis->pages; 2519 return ret; 2520 } 2521 2522 if (mapping->a_ops->swap_activate) { 2523 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2524 if (ret < 0) 2525 return ret; 2526 sis->flags |= SWP_ACTIVATED; 2527 if ((sis->flags & SWP_FS_OPS) && 2528 sio_pool_init() != 0) { 2529 destroy_swap_extents(sis); 2530 return -ENOMEM; 2531 } 2532 return ret; 2533 } 2534 2535 return generic_swapfile_activate(sis, swap_file, span); 2536 } 2537 2538 static int swap_node(struct swap_info_struct *si) 2539 { 2540 struct block_device *bdev; 2541 2542 if (si->bdev) 2543 bdev = si->bdev; 2544 else 2545 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2546 2547 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2548 } 2549 2550 static void setup_swap_info(struct swap_info_struct *si, int prio, 2551 unsigned char *swap_map, 2552 struct swap_cluster_info *cluster_info, 2553 unsigned long *zeromap) 2554 { 2555 int i; 2556 2557 if (prio >= 0) 2558 si->prio = prio; 2559 else 2560 si->prio = --least_priority; 2561 /* 2562 * the plist prio is negated because plist ordering is 2563 * low-to-high, while swap ordering is high-to-low 2564 */ 2565 si->list.prio = -si->prio; 2566 for_each_node(i) { 2567 if (si->prio >= 0) 2568 si->avail_lists[i].prio = -si->prio; 2569 else { 2570 if (swap_node(si) == i) 2571 si->avail_lists[i].prio = 1; 2572 else 2573 si->avail_lists[i].prio = -si->prio; 2574 } 2575 } 2576 si->swap_map = swap_map; 2577 si->cluster_info = cluster_info; 2578 si->zeromap = zeromap; 2579 } 2580 2581 static void _enable_swap_info(struct swap_info_struct *si) 2582 { 2583 atomic_long_add(si->pages, &nr_swap_pages); 2584 total_swap_pages += si->pages; 2585 2586 assert_spin_locked(&swap_lock); 2587 /* 2588 * both lists are plists, and thus priority ordered. 2589 * swap_active_head needs to be priority ordered for swapoff(), 2590 * which on removal of any swap_info_struct with an auto-assigned 2591 * (i.e. negative) priority increments the auto-assigned priority 2592 * of any lower-priority swap_info_structs. 2593 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2594 * which allocates swap pages from the highest available priority 2595 * swap_info_struct. 2596 */ 2597 plist_add(&si->list, &swap_active_head); 2598 2599 /* Add back to available list */ 2600 add_to_avail_list(si, true); 2601 } 2602 2603 static void enable_swap_info(struct swap_info_struct *si, int prio, 2604 unsigned char *swap_map, 2605 struct swap_cluster_info *cluster_info, 2606 unsigned long *zeromap) 2607 { 2608 spin_lock(&swap_lock); 2609 spin_lock(&si->lock); 2610 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2611 spin_unlock(&si->lock); 2612 spin_unlock(&swap_lock); 2613 /* 2614 * Finished initializing swap device, now it's safe to reference it. 2615 */ 2616 percpu_ref_resurrect(&si->users); 2617 spin_lock(&swap_lock); 2618 spin_lock(&si->lock); 2619 _enable_swap_info(si); 2620 spin_unlock(&si->lock); 2621 spin_unlock(&swap_lock); 2622 } 2623 2624 static void reinsert_swap_info(struct swap_info_struct *si) 2625 { 2626 spin_lock(&swap_lock); 2627 spin_lock(&si->lock); 2628 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2629 _enable_swap_info(si); 2630 spin_unlock(&si->lock); 2631 spin_unlock(&swap_lock); 2632 } 2633 2634 /* 2635 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2636 * see the updated flags, so there will be no more allocations. 2637 */ 2638 static void wait_for_allocation(struct swap_info_struct *si) 2639 { 2640 unsigned long offset; 2641 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2642 struct swap_cluster_info *ci; 2643 2644 BUG_ON(si->flags & SWP_WRITEOK); 2645 2646 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2647 ci = lock_cluster(si, offset); 2648 unlock_cluster(ci); 2649 } 2650 } 2651 2652 /* 2653 * Called after swap device's reference count is dead, so 2654 * neither scan nor allocation will use it. 2655 */ 2656 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2657 { 2658 int cpu, i; 2659 struct swap_info_struct **pcp_si; 2660 2661 for_each_possible_cpu(cpu) { 2662 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2663 /* 2664 * Invalidate the percpu swap cluster cache, si->users 2665 * is dead, so no new user will point to it, just flush 2666 * any existing user. 2667 */ 2668 for (i = 0; i < SWAP_NR_ORDERS; i++) 2669 cmpxchg(&pcp_si[i], si, NULL); 2670 } 2671 } 2672 2673 2674 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2675 { 2676 struct swap_info_struct *p = NULL; 2677 unsigned char *swap_map; 2678 unsigned long *zeromap; 2679 struct swap_cluster_info *cluster_info; 2680 struct file *swap_file, *victim; 2681 struct address_space *mapping; 2682 struct inode *inode; 2683 struct filename *pathname; 2684 int err, found = 0; 2685 2686 if (!capable(CAP_SYS_ADMIN)) 2687 return -EPERM; 2688 2689 BUG_ON(!current->mm); 2690 2691 pathname = getname(specialfile); 2692 if (IS_ERR(pathname)) 2693 return PTR_ERR(pathname); 2694 2695 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2696 err = PTR_ERR(victim); 2697 if (IS_ERR(victim)) 2698 goto out; 2699 2700 mapping = victim->f_mapping; 2701 spin_lock(&swap_lock); 2702 plist_for_each_entry(p, &swap_active_head, list) { 2703 if (p->flags & SWP_WRITEOK) { 2704 if (p->swap_file->f_mapping == mapping) { 2705 found = 1; 2706 break; 2707 } 2708 } 2709 } 2710 if (!found) { 2711 err = -EINVAL; 2712 spin_unlock(&swap_lock); 2713 goto out_dput; 2714 } 2715 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2716 vm_unacct_memory(p->pages); 2717 else { 2718 err = -ENOMEM; 2719 spin_unlock(&swap_lock); 2720 goto out_dput; 2721 } 2722 spin_lock(&p->lock); 2723 del_from_avail_list(p, true); 2724 if (p->prio < 0) { 2725 struct swap_info_struct *si = p; 2726 int nid; 2727 2728 plist_for_each_entry_continue(si, &swap_active_head, list) { 2729 si->prio++; 2730 si->list.prio--; 2731 for_each_node(nid) { 2732 if (si->avail_lists[nid].prio != 1) 2733 si->avail_lists[nid].prio--; 2734 } 2735 } 2736 least_priority++; 2737 } 2738 plist_del(&p->list, &swap_active_head); 2739 atomic_long_sub(p->pages, &nr_swap_pages); 2740 total_swap_pages -= p->pages; 2741 spin_unlock(&p->lock); 2742 spin_unlock(&swap_lock); 2743 2744 wait_for_allocation(p); 2745 2746 set_current_oom_origin(); 2747 err = try_to_unuse(p->type); 2748 clear_current_oom_origin(); 2749 2750 if (err) { 2751 /* re-insert swap space back into swap_list */ 2752 reinsert_swap_info(p); 2753 goto out_dput; 2754 } 2755 2756 /* 2757 * Wait for swap operations protected by get/put_swap_device() 2758 * to complete. Because of synchronize_rcu() here, all swap 2759 * operations protected by RCU reader side lock (including any 2760 * spinlock) will be waited too. This makes it easy to 2761 * prevent folio_test_swapcache() and the following swap cache 2762 * operations from racing with swapoff. 2763 */ 2764 percpu_ref_kill(&p->users); 2765 synchronize_rcu(); 2766 wait_for_completion(&p->comp); 2767 2768 flush_work(&p->discard_work); 2769 flush_work(&p->reclaim_work); 2770 flush_percpu_swap_cluster(p); 2771 2772 destroy_swap_extents(p); 2773 if (p->flags & SWP_CONTINUED) 2774 free_swap_count_continuations(p); 2775 2776 if (!p->bdev || !bdev_nonrot(p->bdev)) 2777 atomic_dec(&nr_rotate_swap); 2778 2779 mutex_lock(&swapon_mutex); 2780 spin_lock(&swap_lock); 2781 spin_lock(&p->lock); 2782 drain_mmlist(); 2783 2784 swap_file = p->swap_file; 2785 p->swap_file = NULL; 2786 p->max = 0; 2787 swap_map = p->swap_map; 2788 p->swap_map = NULL; 2789 zeromap = p->zeromap; 2790 p->zeromap = NULL; 2791 cluster_info = p->cluster_info; 2792 p->cluster_info = NULL; 2793 spin_unlock(&p->lock); 2794 spin_unlock(&swap_lock); 2795 arch_swap_invalidate_area(p->type); 2796 zswap_swapoff(p->type); 2797 mutex_unlock(&swapon_mutex); 2798 kfree(p->global_cluster); 2799 p->global_cluster = NULL; 2800 vfree(swap_map); 2801 kvfree(zeromap); 2802 kvfree(cluster_info); 2803 /* Destroy swap account information */ 2804 swap_cgroup_swapoff(p->type); 2805 exit_swap_address_space(p->type); 2806 2807 inode = mapping->host; 2808 2809 inode_lock(inode); 2810 inode->i_flags &= ~S_SWAPFILE; 2811 inode_unlock(inode); 2812 filp_close(swap_file, NULL); 2813 2814 /* 2815 * Clear the SWP_USED flag after all resources are freed so that swapon 2816 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2817 * not hold p->lock after we cleared its SWP_WRITEOK. 2818 */ 2819 spin_lock(&swap_lock); 2820 p->flags = 0; 2821 spin_unlock(&swap_lock); 2822 2823 err = 0; 2824 atomic_inc(&proc_poll_event); 2825 wake_up_interruptible(&proc_poll_wait); 2826 2827 out_dput: 2828 filp_close(victim, NULL); 2829 out: 2830 putname(pathname); 2831 return err; 2832 } 2833 2834 #ifdef CONFIG_PROC_FS 2835 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2836 { 2837 struct seq_file *seq = file->private_data; 2838 2839 poll_wait(file, &proc_poll_wait, wait); 2840 2841 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2842 seq->poll_event = atomic_read(&proc_poll_event); 2843 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2844 } 2845 2846 return EPOLLIN | EPOLLRDNORM; 2847 } 2848 2849 /* iterator */ 2850 static void *swap_start(struct seq_file *swap, loff_t *pos) 2851 { 2852 struct swap_info_struct *si; 2853 int type; 2854 loff_t l = *pos; 2855 2856 mutex_lock(&swapon_mutex); 2857 2858 if (!l) 2859 return SEQ_START_TOKEN; 2860 2861 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2862 if (!(si->flags & SWP_USED) || !si->swap_map) 2863 continue; 2864 if (!--l) 2865 return si; 2866 } 2867 2868 return NULL; 2869 } 2870 2871 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2872 { 2873 struct swap_info_struct *si = v; 2874 int type; 2875 2876 if (v == SEQ_START_TOKEN) 2877 type = 0; 2878 else 2879 type = si->type + 1; 2880 2881 ++(*pos); 2882 for (; (si = swap_type_to_swap_info(type)); type++) { 2883 if (!(si->flags & SWP_USED) || !si->swap_map) 2884 continue; 2885 return si; 2886 } 2887 2888 return NULL; 2889 } 2890 2891 static void swap_stop(struct seq_file *swap, void *v) 2892 { 2893 mutex_unlock(&swapon_mutex); 2894 } 2895 2896 static int swap_show(struct seq_file *swap, void *v) 2897 { 2898 struct swap_info_struct *si = v; 2899 struct file *file; 2900 int len; 2901 unsigned long bytes, inuse; 2902 2903 if (si == SEQ_START_TOKEN) { 2904 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2905 return 0; 2906 } 2907 2908 bytes = K(si->pages); 2909 inuse = K(swap_usage_in_pages(si)); 2910 2911 file = si->swap_file; 2912 len = seq_file_path(swap, file, " \t\n\\"); 2913 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2914 len < 40 ? 40 - len : 1, " ", 2915 S_ISBLK(file_inode(file)->i_mode) ? 2916 "partition" : "file\t", 2917 bytes, bytes < 10000000 ? "\t" : "", 2918 inuse, inuse < 10000000 ? "\t" : "", 2919 si->prio); 2920 return 0; 2921 } 2922 2923 static const struct seq_operations swaps_op = { 2924 .start = swap_start, 2925 .next = swap_next, 2926 .stop = swap_stop, 2927 .show = swap_show 2928 }; 2929 2930 static int swaps_open(struct inode *inode, struct file *file) 2931 { 2932 struct seq_file *seq; 2933 int ret; 2934 2935 ret = seq_open(file, &swaps_op); 2936 if (ret) 2937 return ret; 2938 2939 seq = file->private_data; 2940 seq->poll_event = atomic_read(&proc_poll_event); 2941 return 0; 2942 } 2943 2944 static const struct proc_ops swaps_proc_ops = { 2945 .proc_flags = PROC_ENTRY_PERMANENT, 2946 .proc_open = swaps_open, 2947 .proc_read = seq_read, 2948 .proc_lseek = seq_lseek, 2949 .proc_release = seq_release, 2950 .proc_poll = swaps_poll, 2951 }; 2952 2953 static int __init procswaps_init(void) 2954 { 2955 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2956 return 0; 2957 } 2958 __initcall(procswaps_init); 2959 #endif /* CONFIG_PROC_FS */ 2960 2961 #ifdef MAX_SWAPFILES_CHECK 2962 static int __init max_swapfiles_check(void) 2963 { 2964 MAX_SWAPFILES_CHECK(); 2965 return 0; 2966 } 2967 late_initcall(max_swapfiles_check); 2968 #endif 2969 2970 static struct swap_info_struct *alloc_swap_info(void) 2971 { 2972 struct swap_info_struct *p; 2973 struct swap_info_struct *defer = NULL; 2974 unsigned int type; 2975 int i; 2976 2977 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2978 if (!p) 2979 return ERR_PTR(-ENOMEM); 2980 2981 if (percpu_ref_init(&p->users, swap_users_ref_free, 2982 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2983 kvfree(p); 2984 return ERR_PTR(-ENOMEM); 2985 } 2986 2987 spin_lock(&swap_lock); 2988 for (type = 0; type < nr_swapfiles; type++) { 2989 if (!(swap_info[type]->flags & SWP_USED)) 2990 break; 2991 } 2992 if (type >= MAX_SWAPFILES) { 2993 spin_unlock(&swap_lock); 2994 percpu_ref_exit(&p->users); 2995 kvfree(p); 2996 return ERR_PTR(-EPERM); 2997 } 2998 if (type >= nr_swapfiles) { 2999 p->type = type; 3000 /* 3001 * Publish the swap_info_struct after initializing it. 3002 * Note that kvzalloc() above zeroes all its fields. 3003 */ 3004 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3005 nr_swapfiles++; 3006 } else { 3007 defer = p; 3008 p = swap_info[type]; 3009 /* 3010 * Do not memset this entry: a racing procfs swap_next() 3011 * would be relying on p->type to remain valid. 3012 */ 3013 } 3014 p->swap_extent_root = RB_ROOT; 3015 plist_node_init(&p->list, 0); 3016 for_each_node(i) 3017 plist_node_init(&p->avail_lists[i], 0); 3018 p->flags = SWP_USED; 3019 spin_unlock(&swap_lock); 3020 if (defer) { 3021 percpu_ref_exit(&defer->users); 3022 kvfree(defer); 3023 } 3024 spin_lock_init(&p->lock); 3025 spin_lock_init(&p->cont_lock); 3026 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3027 init_completion(&p->comp); 3028 3029 return p; 3030 } 3031 3032 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3033 { 3034 if (S_ISBLK(inode->i_mode)) { 3035 si->bdev = I_BDEV(inode); 3036 /* 3037 * Zoned block devices contain zones that have a sequential 3038 * write only restriction. Hence zoned block devices are not 3039 * suitable for swapping. Disallow them here. 3040 */ 3041 if (bdev_is_zoned(si->bdev)) 3042 return -EINVAL; 3043 si->flags |= SWP_BLKDEV; 3044 } else if (S_ISREG(inode->i_mode)) { 3045 si->bdev = inode->i_sb->s_bdev; 3046 } 3047 3048 return 0; 3049 } 3050 3051 3052 /* 3053 * Find out how many pages are allowed for a single swap device. There 3054 * are two limiting factors: 3055 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3056 * 2) the number of bits in the swap pte, as defined by the different 3057 * architectures. 3058 * 3059 * In order to find the largest possible bit mask, a swap entry with 3060 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3061 * decoded to a swp_entry_t again, and finally the swap offset is 3062 * extracted. 3063 * 3064 * This will mask all the bits from the initial ~0UL mask that can't 3065 * be encoded in either the swp_entry_t or the architecture definition 3066 * of a swap pte. 3067 */ 3068 unsigned long generic_max_swapfile_size(void) 3069 { 3070 return swp_offset(pte_to_swp_entry( 3071 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3072 } 3073 3074 /* Can be overridden by an architecture for additional checks. */ 3075 __weak unsigned long arch_max_swapfile_size(void) 3076 { 3077 return generic_max_swapfile_size(); 3078 } 3079 3080 static unsigned long read_swap_header(struct swap_info_struct *si, 3081 union swap_header *swap_header, 3082 struct inode *inode) 3083 { 3084 int i; 3085 unsigned long maxpages; 3086 unsigned long swapfilepages; 3087 unsigned long last_page; 3088 3089 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3090 pr_err("Unable to find swap-space signature\n"); 3091 return 0; 3092 } 3093 3094 /* swap partition endianness hack... */ 3095 if (swab32(swap_header->info.version) == 1) { 3096 swab32s(&swap_header->info.version); 3097 swab32s(&swap_header->info.last_page); 3098 swab32s(&swap_header->info.nr_badpages); 3099 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3100 return 0; 3101 for (i = 0; i < swap_header->info.nr_badpages; i++) 3102 swab32s(&swap_header->info.badpages[i]); 3103 } 3104 /* Check the swap header's sub-version */ 3105 if (swap_header->info.version != 1) { 3106 pr_warn("Unable to handle swap header version %d\n", 3107 swap_header->info.version); 3108 return 0; 3109 } 3110 3111 maxpages = swapfile_maximum_size; 3112 last_page = swap_header->info.last_page; 3113 if (!last_page) { 3114 pr_warn("Empty swap-file\n"); 3115 return 0; 3116 } 3117 if (last_page > maxpages) { 3118 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3119 K(maxpages), K(last_page)); 3120 } 3121 if (maxpages > last_page) { 3122 maxpages = last_page + 1; 3123 /* p->max is an unsigned int: don't overflow it */ 3124 if ((unsigned int)maxpages == 0) 3125 maxpages = UINT_MAX; 3126 } 3127 3128 if (!maxpages) 3129 return 0; 3130 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3131 if (swapfilepages && maxpages > swapfilepages) { 3132 pr_warn("Swap area shorter than signature indicates\n"); 3133 return 0; 3134 } 3135 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3136 return 0; 3137 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3138 return 0; 3139 3140 return maxpages; 3141 } 3142 3143 static int setup_swap_map(struct swap_info_struct *si, 3144 union swap_header *swap_header, 3145 unsigned char *swap_map, 3146 unsigned long maxpages) 3147 { 3148 unsigned long i; 3149 3150 swap_map[0] = SWAP_MAP_BAD; /* omit header page */ 3151 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3152 unsigned int page_nr = swap_header->info.badpages[i]; 3153 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3154 return -EINVAL; 3155 if (page_nr < maxpages) { 3156 swap_map[page_nr] = SWAP_MAP_BAD; 3157 si->pages--; 3158 } 3159 } 3160 3161 if (!si->pages) { 3162 pr_warn("Empty swap-file\n"); 3163 return -EINVAL; 3164 } 3165 3166 return 0; 3167 } 3168 3169 #define SWAP_CLUSTER_INFO_COLS \ 3170 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3171 #define SWAP_CLUSTER_SPACE_COLS \ 3172 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3173 #define SWAP_CLUSTER_COLS \ 3174 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3175 3176 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3177 union swap_header *swap_header, 3178 unsigned long maxpages) 3179 { 3180 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3181 struct swap_cluster_info *cluster_info; 3182 unsigned long i, j, idx; 3183 int err = -ENOMEM; 3184 3185 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3186 if (!cluster_info) 3187 goto err; 3188 3189 for (i = 0; i < nr_clusters; i++) 3190 spin_lock_init(&cluster_info[i].lock); 3191 3192 if (!(si->flags & SWP_SOLIDSTATE)) { 3193 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3194 GFP_KERNEL); 3195 if (!si->global_cluster) 3196 goto err_free; 3197 for (i = 0; i < SWAP_NR_ORDERS; i++) 3198 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3199 spin_lock_init(&si->global_cluster_lock); 3200 } 3201 3202 /* 3203 * Mark unusable pages as unavailable. The clusters aren't 3204 * marked free yet, so no list operations are involved yet. 3205 * 3206 * See setup_swap_map(): header page, bad pages, 3207 * and the EOF part of the last cluster. 3208 */ 3209 inc_cluster_info_page(si, cluster_info, 0); 3210 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3211 unsigned int page_nr = swap_header->info.badpages[i]; 3212 3213 if (page_nr >= maxpages) 3214 continue; 3215 inc_cluster_info_page(si, cluster_info, page_nr); 3216 } 3217 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3218 inc_cluster_info_page(si, cluster_info, i); 3219 3220 INIT_LIST_HEAD(&si->free_clusters); 3221 INIT_LIST_HEAD(&si->full_clusters); 3222 INIT_LIST_HEAD(&si->discard_clusters); 3223 3224 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3225 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3226 INIT_LIST_HEAD(&si->frag_clusters[i]); 3227 atomic_long_set(&si->frag_cluster_nr[i], 0); 3228 } 3229 3230 /* 3231 * Reduce false cache line sharing between cluster_info and 3232 * sharing same address space. 3233 */ 3234 for (j = 0; j < SWAP_CLUSTER_COLS; j++) { 3235 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3236 struct swap_cluster_info *ci; 3237 idx = i * SWAP_CLUSTER_COLS + j; 3238 ci = cluster_info + idx; 3239 if (idx >= nr_clusters) 3240 continue; 3241 if (ci->count) { 3242 ci->flags = CLUSTER_FLAG_NONFULL; 3243 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3244 continue; 3245 } 3246 ci->flags = CLUSTER_FLAG_FREE; 3247 list_add_tail(&ci->list, &si->free_clusters); 3248 } 3249 } 3250 3251 return cluster_info; 3252 3253 err_free: 3254 kvfree(cluster_info); 3255 err: 3256 return ERR_PTR(err); 3257 } 3258 3259 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3260 { 3261 struct swap_info_struct *si; 3262 struct filename *name; 3263 struct file *swap_file = NULL; 3264 struct address_space *mapping; 3265 struct dentry *dentry; 3266 int prio; 3267 int error; 3268 union swap_header *swap_header; 3269 int nr_extents; 3270 sector_t span; 3271 unsigned long maxpages; 3272 unsigned char *swap_map = NULL; 3273 unsigned long *zeromap = NULL; 3274 struct swap_cluster_info *cluster_info = NULL; 3275 struct folio *folio = NULL; 3276 struct inode *inode = NULL; 3277 bool inced_nr_rotate_swap = false; 3278 3279 if (swap_flags & ~SWAP_FLAGS_VALID) 3280 return -EINVAL; 3281 3282 if (!capable(CAP_SYS_ADMIN)) 3283 return -EPERM; 3284 3285 if (!swap_avail_heads) 3286 return -ENOMEM; 3287 3288 si = alloc_swap_info(); 3289 if (IS_ERR(si)) 3290 return PTR_ERR(si); 3291 3292 INIT_WORK(&si->discard_work, swap_discard_work); 3293 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3294 3295 name = getname(specialfile); 3296 if (IS_ERR(name)) { 3297 error = PTR_ERR(name); 3298 name = NULL; 3299 goto bad_swap; 3300 } 3301 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3302 if (IS_ERR(swap_file)) { 3303 error = PTR_ERR(swap_file); 3304 swap_file = NULL; 3305 goto bad_swap; 3306 } 3307 3308 si->swap_file = swap_file; 3309 mapping = swap_file->f_mapping; 3310 dentry = swap_file->f_path.dentry; 3311 inode = mapping->host; 3312 3313 error = claim_swapfile(si, inode); 3314 if (unlikely(error)) 3315 goto bad_swap; 3316 3317 inode_lock(inode); 3318 if (d_unlinked(dentry) || cant_mount(dentry)) { 3319 error = -ENOENT; 3320 goto bad_swap_unlock_inode; 3321 } 3322 if (IS_SWAPFILE(inode)) { 3323 error = -EBUSY; 3324 goto bad_swap_unlock_inode; 3325 } 3326 3327 /* 3328 * The swap subsystem needs a major overhaul to support this. 3329 * It doesn't work yet so just disable it for now. 3330 */ 3331 if (mapping_min_folio_order(mapping) > 0) { 3332 error = -EINVAL; 3333 goto bad_swap_unlock_inode; 3334 } 3335 3336 /* 3337 * Read the swap header. 3338 */ 3339 if (!mapping->a_ops->read_folio) { 3340 error = -EINVAL; 3341 goto bad_swap_unlock_inode; 3342 } 3343 folio = read_mapping_folio(mapping, 0, swap_file); 3344 if (IS_ERR(folio)) { 3345 error = PTR_ERR(folio); 3346 goto bad_swap_unlock_inode; 3347 } 3348 swap_header = kmap_local_folio(folio, 0); 3349 3350 maxpages = read_swap_header(si, swap_header, inode); 3351 if (unlikely(!maxpages)) { 3352 error = -EINVAL; 3353 goto bad_swap_unlock_inode; 3354 } 3355 3356 si->max = maxpages; 3357 si->pages = maxpages - 1; 3358 nr_extents = setup_swap_extents(si, &span); 3359 if (nr_extents < 0) { 3360 error = nr_extents; 3361 goto bad_swap_unlock_inode; 3362 } 3363 if (si->pages != si->max - 1) { 3364 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max); 3365 error = -EINVAL; 3366 goto bad_swap_unlock_inode; 3367 } 3368 3369 maxpages = si->max; 3370 3371 /* OK, set up the swap map and apply the bad block list */ 3372 swap_map = vzalloc(maxpages); 3373 if (!swap_map) { 3374 error = -ENOMEM; 3375 goto bad_swap_unlock_inode; 3376 } 3377 3378 error = swap_cgroup_swapon(si->type, maxpages); 3379 if (error) 3380 goto bad_swap_unlock_inode; 3381 3382 error = setup_swap_map(si, swap_header, swap_map, maxpages); 3383 if (error) 3384 goto bad_swap_unlock_inode; 3385 3386 /* 3387 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3388 * be above MAX_PAGE_ORDER incase of a large swap file. 3389 */ 3390 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3391 GFP_KERNEL | __GFP_ZERO); 3392 if (!zeromap) { 3393 error = -ENOMEM; 3394 goto bad_swap_unlock_inode; 3395 } 3396 3397 if (si->bdev && bdev_stable_writes(si->bdev)) 3398 si->flags |= SWP_STABLE_WRITES; 3399 3400 if (si->bdev && bdev_synchronous(si->bdev)) 3401 si->flags |= SWP_SYNCHRONOUS_IO; 3402 3403 if (si->bdev && bdev_nonrot(si->bdev)) { 3404 si->flags |= SWP_SOLIDSTATE; 3405 } else { 3406 atomic_inc(&nr_rotate_swap); 3407 inced_nr_rotate_swap = true; 3408 } 3409 3410 cluster_info = setup_clusters(si, swap_header, maxpages); 3411 if (IS_ERR(cluster_info)) { 3412 error = PTR_ERR(cluster_info); 3413 cluster_info = NULL; 3414 goto bad_swap_unlock_inode; 3415 } 3416 3417 if ((swap_flags & SWAP_FLAG_DISCARD) && 3418 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3419 /* 3420 * When discard is enabled for swap with no particular 3421 * policy flagged, we set all swap discard flags here in 3422 * order to sustain backward compatibility with older 3423 * swapon(8) releases. 3424 */ 3425 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3426 SWP_PAGE_DISCARD); 3427 3428 /* 3429 * By flagging sys_swapon, a sysadmin can tell us to 3430 * either do single-time area discards only, or to just 3431 * perform discards for released swap page-clusters. 3432 * Now it's time to adjust the p->flags accordingly. 3433 */ 3434 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3435 si->flags &= ~SWP_PAGE_DISCARD; 3436 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3437 si->flags &= ~SWP_AREA_DISCARD; 3438 3439 /* issue a swapon-time discard if it's still required */ 3440 if (si->flags & SWP_AREA_DISCARD) { 3441 int err = discard_swap(si); 3442 if (unlikely(err)) 3443 pr_err("swapon: discard_swap(%p): %d\n", 3444 si, err); 3445 } 3446 } 3447 3448 error = init_swap_address_space(si->type, maxpages); 3449 if (error) 3450 goto bad_swap_unlock_inode; 3451 3452 error = zswap_swapon(si->type, maxpages); 3453 if (error) 3454 goto free_swap_address_space; 3455 3456 /* 3457 * Flush any pending IO and dirty mappings before we start using this 3458 * swap device. 3459 */ 3460 inode->i_flags |= S_SWAPFILE; 3461 error = inode_drain_writes(inode); 3462 if (error) { 3463 inode->i_flags &= ~S_SWAPFILE; 3464 goto free_swap_zswap; 3465 } 3466 3467 mutex_lock(&swapon_mutex); 3468 prio = -1; 3469 if (swap_flags & SWAP_FLAG_PREFER) 3470 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3471 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3472 3473 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3474 K(si->pages), name->name, si->prio, nr_extents, 3475 K((unsigned long long)span), 3476 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3477 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3478 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3479 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3480 3481 mutex_unlock(&swapon_mutex); 3482 atomic_inc(&proc_poll_event); 3483 wake_up_interruptible(&proc_poll_wait); 3484 3485 error = 0; 3486 goto out; 3487 free_swap_zswap: 3488 zswap_swapoff(si->type); 3489 free_swap_address_space: 3490 exit_swap_address_space(si->type); 3491 bad_swap_unlock_inode: 3492 inode_unlock(inode); 3493 bad_swap: 3494 kfree(si->global_cluster); 3495 si->global_cluster = NULL; 3496 inode = NULL; 3497 destroy_swap_extents(si); 3498 swap_cgroup_swapoff(si->type); 3499 spin_lock(&swap_lock); 3500 si->swap_file = NULL; 3501 si->flags = 0; 3502 spin_unlock(&swap_lock); 3503 vfree(swap_map); 3504 kvfree(zeromap); 3505 kvfree(cluster_info); 3506 if (inced_nr_rotate_swap) 3507 atomic_dec(&nr_rotate_swap); 3508 if (swap_file) 3509 filp_close(swap_file, NULL); 3510 out: 3511 if (!IS_ERR_OR_NULL(folio)) 3512 folio_release_kmap(folio, swap_header); 3513 if (name) 3514 putname(name); 3515 if (inode) 3516 inode_unlock(inode); 3517 return error; 3518 } 3519 3520 void si_swapinfo(struct sysinfo *val) 3521 { 3522 unsigned int type; 3523 unsigned long nr_to_be_unused = 0; 3524 3525 spin_lock(&swap_lock); 3526 for (type = 0; type < nr_swapfiles; type++) { 3527 struct swap_info_struct *si = swap_info[type]; 3528 3529 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3530 nr_to_be_unused += swap_usage_in_pages(si); 3531 } 3532 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3533 val->totalswap = total_swap_pages + nr_to_be_unused; 3534 spin_unlock(&swap_lock); 3535 } 3536 3537 /* 3538 * Verify that nr swap entries are valid and increment their swap map counts. 3539 * 3540 * Returns error code in following case. 3541 * - success -> 0 3542 * - swp_entry is invalid -> EINVAL 3543 * - swap-cache reference is requested but there is already one. -> EEXIST 3544 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3545 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3546 */ 3547 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3548 { 3549 struct swap_info_struct *si; 3550 struct swap_cluster_info *ci; 3551 unsigned long offset; 3552 unsigned char count; 3553 unsigned char has_cache; 3554 int err, i; 3555 3556 si = swp_swap_info(entry); 3557 if (WARN_ON_ONCE(!si)) { 3558 pr_err("%s%08lx\n", Bad_file, entry.val); 3559 return -EINVAL; 3560 } 3561 3562 offset = swp_offset(entry); 3563 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3564 VM_WARN_ON(usage == 1 && nr > 1); 3565 ci = lock_cluster(si, offset); 3566 3567 err = 0; 3568 for (i = 0; i < nr; i++) { 3569 count = si->swap_map[offset + i]; 3570 3571 /* 3572 * swapin_readahead() doesn't check if a swap entry is valid, so the 3573 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3574 */ 3575 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3576 err = -ENOENT; 3577 goto unlock_out; 3578 } 3579 3580 has_cache = count & SWAP_HAS_CACHE; 3581 count &= ~SWAP_HAS_CACHE; 3582 3583 if (!count && !has_cache) { 3584 err = -ENOENT; 3585 } else if (usage == SWAP_HAS_CACHE) { 3586 if (has_cache) 3587 err = -EEXIST; 3588 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3589 err = -EINVAL; 3590 } 3591 3592 if (err) 3593 goto unlock_out; 3594 } 3595 3596 for (i = 0; i < nr; i++) { 3597 count = si->swap_map[offset + i]; 3598 has_cache = count & SWAP_HAS_CACHE; 3599 count &= ~SWAP_HAS_CACHE; 3600 3601 if (usage == SWAP_HAS_CACHE) 3602 has_cache = SWAP_HAS_CACHE; 3603 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3604 count += usage; 3605 else if (swap_count_continued(si, offset + i, count)) 3606 count = COUNT_CONTINUED; 3607 else { 3608 /* 3609 * Don't need to rollback changes, because if 3610 * usage == 1, there must be nr == 1. 3611 */ 3612 err = -ENOMEM; 3613 goto unlock_out; 3614 } 3615 3616 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3617 } 3618 3619 unlock_out: 3620 unlock_cluster(ci); 3621 return err; 3622 } 3623 3624 /* 3625 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3626 * (in which case its reference count is never incremented). 3627 */ 3628 void swap_shmem_alloc(swp_entry_t entry, int nr) 3629 { 3630 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3631 } 3632 3633 /* 3634 * Increase reference count of swap entry by 1. 3635 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3636 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3637 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3638 * might occur if a page table entry has got corrupted. 3639 */ 3640 int swap_duplicate(swp_entry_t entry) 3641 { 3642 int err = 0; 3643 3644 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3645 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3646 return err; 3647 } 3648 3649 /* 3650 * @entry: first swap entry from which we allocate nr swap cache. 3651 * 3652 * Called when allocating swap cache for existing swap entries, 3653 * This can return error codes. Returns 0 at success. 3654 * -EEXIST means there is a swap cache. 3655 * Note: return code is different from swap_duplicate(). 3656 */ 3657 int swapcache_prepare(swp_entry_t entry, int nr) 3658 { 3659 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3660 } 3661 3662 /* 3663 * Caller should ensure entries belong to the same folio so 3664 * the entries won't span cross cluster boundary. 3665 */ 3666 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3667 { 3668 swap_entries_put_cache(si, entry, nr); 3669 } 3670 3671 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3672 { 3673 return swap_type_to_swap_info(swp_type(entry)); 3674 } 3675 3676 /* 3677 * add_swap_count_continuation - called when a swap count is duplicated 3678 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3679 * page of the original vmalloc'ed swap_map, to hold the continuation count 3680 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3681 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3682 * 3683 * These continuation pages are seldom referenced: the common paths all work 3684 * on the original swap_map, only referring to a continuation page when the 3685 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3686 * 3687 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3688 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3689 * can be called after dropping locks. 3690 */ 3691 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3692 { 3693 struct swap_info_struct *si; 3694 struct swap_cluster_info *ci; 3695 struct page *head; 3696 struct page *page; 3697 struct page *list_page; 3698 pgoff_t offset; 3699 unsigned char count; 3700 int ret = 0; 3701 3702 /* 3703 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3704 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3705 */ 3706 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3707 3708 si = get_swap_device(entry); 3709 if (!si) { 3710 /* 3711 * An acceptable race has occurred since the failing 3712 * __swap_duplicate(): the swap device may be swapoff 3713 */ 3714 goto outer; 3715 } 3716 3717 offset = swp_offset(entry); 3718 3719 ci = lock_cluster(si, offset); 3720 3721 count = swap_count(si->swap_map[offset]); 3722 3723 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3724 /* 3725 * The higher the swap count, the more likely it is that tasks 3726 * will race to add swap count continuation: we need to avoid 3727 * over-provisioning. 3728 */ 3729 goto out; 3730 } 3731 3732 if (!page) { 3733 ret = -ENOMEM; 3734 goto out; 3735 } 3736 3737 head = vmalloc_to_page(si->swap_map + offset); 3738 offset &= ~PAGE_MASK; 3739 3740 spin_lock(&si->cont_lock); 3741 /* 3742 * Page allocation does not initialize the page's lru field, 3743 * but it does always reset its private field. 3744 */ 3745 if (!page_private(head)) { 3746 BUG_ON(count & COUNT_CONTINUED); 3747 INIT_LIST_HEAD(&head->lru); 3748 set_page_private(head, SWP_CONTINUED); 3749 si->flags |= SWP_CONTINUED; 3750 } 3751 3752 list_for_each_entry(list_page, &head->lru, lru) { 3753 unsigned char *map; 3754 3755 /* 3756 * If the previous map said no continuation, but we've found 3757 * a continuation page, free our allocation and use this one. 3758 */ 3759 if (!(count & COUNT_CONTINUED)) 3760 goto out_unlock_cont; 3761 3762 map = kmap_local_page(list_page) + offset; 3763 count = *map; 3764 kunmap_local(map); 3765 3766 /* 3767 * If this continuation count now has some space in it, 3768 * free our allocation and use this one. 3769 */ 3770 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3771 goto out_unlock_cont; 3772 } 3773 3774 list_add_tail(&page->lru, &head->lru); 3775 page = NULL; /* now it's attached, don't free it */ 3776 out_unlock_cont: 3777 spin_unlock(&si->cont_lock); 3778 out: 3779 unlock_cluster(ci); 3780 put_swap_device(si); 3781 outer: 3782 if (page) 3783 __free_page(page); 3784 return ret; 3785 } 3786 3787 /* 3788 * swap_count_continued - when the original swap_map count is incremented 3789 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3790 * into, carry if so, or else fail until a new continuation page is allocated; 3791 * when the original swap_map count is decremented from 0 with continuation, 3792 * borrow from the continuation and report whether it still holds more. 3793 * Called while __swap_duplicate() or caller of swap_entry_put_locked() 3794 * holds cluster lock. 3795 */ 3796 static bool swap_count_continued(struct swap_info_struct *si, 3797 pgoff_t offset, unsigned char count) 3798 { 3799 struct page *head; 3800 struct page *page; 3801 unsigned char *map; 3802 bool ret; 3803 3804 head = vmalloc_to_page(si->swap_map + offset); 3805 if (page_private(head) != SWP_CONTINUED) { 3806 BUG_ON(count & COUNT_CONTINUED); 3807 return false; /* need to add count continuation */ 3808 } 3809 3810 spin_lock(&si->cont_lock); 3811 offset &= ~PAGE_MASK; 3812 page = list_next_entry(head, lru); 3813 map = kmap_local_page(page) + offset; 3814 3815 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3816 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3817 3818 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3819 /* 3820 * Think of how you add 1 to 999 3821 */ 3822 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3823 kunmap_local(map); 3824 page = list_next_entry(page, lru); 3825 BUG_ON(page == head); 3826 map = kmap_local_page(page) + offset; 3827 } 3828 if (*map == SWAP_CONT_MAX) { 3829 kunmap_local(map); 3830 page = list_next_entry(page, lru); 3831 if (page == head) { 3832 ret = false; /* add count continuation */ 3833 goto out; 3834 } 3835 map = kmap_local_page(page) + offset; 3836 init_map: *map = 0; /* we didn't zero the page */ 3837 } 3838 *map += 1; 3839 kunmap_local(map); 3840 while ((page = list_prev_entry(page, lru)) != head) { 3841 map = kmap_local_page(page) + offset; 3842 *map = COUNT_CONTINUED; 3843 kunmap_local(map); 3844 } 3845 ret = true; /* incremented */ 3846 3847 } else { /* decrementing */ 3848 /* 3849 * Think of how you subtract 1 from 1000 3850 */ 3851 BUG_ON(count != COUNT_CONTINUED); 3852 while (*map == COUNT_CONTINUED) { 3853 kunmap_local(map); 3854 page = list_next_entry(page, lru); 3855 BUG_ON(page == head); 3856 map = kmap_local_page(page) + offset; 3857 } 3858 BUG_ON(*map == 0); 3859 *map -= 1; 3860 if (*map == 0) 3861 count = 0; 3862 kunmap_local(map); 3863 while ((page = list_prev_entry(page, lru)) != head) { 3864 map = kmap_local_page(page) + offset; 3865 *map = SWAP_CONT_MAX | count; 3866 count = COUNT_CONTINUED; 3867 kunmap_local(map); 3868 } 3869 ret = count == COUNT_CONTINUED; 3870 } 3871 out: 3872 spin_unlock(&si->cont_lock); 3873 return ret; 3874 } 3875 3876 /* 3877 * free_swap_count_continuations - swapoff free all the continuation pages 3878 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3879 */ 3880 static void free_swap_count_continuations(struct swap_info_struct *si) 3881 { 3882 pgoff_t offset; 3883 3884 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3885 struct page *head; 3886 head = vmalloc_to_page(si->swap_map + offset); 3887 if (page_private(head)) { 3888 struct page *page, *next; 3889 3890 list_for_each_entry_safe(page, next, &head->lru, lru) { 3891 list_del(&page->lru); 3892 __free_page(page); 3893 } 3894 } 3895 } 3896 } 3897 3898 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3899 static bool __has_usable_swap(void) 3900 { 3901 return !plist_head_empty(&swap_active_head); 3902 } 3903 3904 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3905 { 3906 struct swap_info_struct *si, *next; 3907 int nid = folio_nid(folio); 3908 3909 if (!(gfp & __GFP_IO)) 3910 return; 3911 3912 if (!__has_usable_swap()) 3913 return; 3914 3915 if (!blk_cgroup_congested()) 3916 return; 3917 3918 /* 3919 * We've already scheduled a throttle, avoid taking the global swap 3920 * lock. 3921 */ 3922 if (current->throttle_disk) 3923 return; 3924 3925 spin_lock(&swap_avail_lock); 3926 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3927 avail_lists[nid]) { 3928 if (si->bdev) { 3929 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3930 break; 3931 } 3932 } 3933 spin_unlock(&swap_avail_lock); 3934 } 3935 #endif 3936 3937 static int __init swapfile_init(void) 3938 { 3939 int nid; 3940 3941 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3942 GFP_KERNEL); 3943 if (!swap_avail_heads) { 3944 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3945 return -ENOMEM; 3946 } 3947 3948 for_each_node(nid) 3949 plist_head_init(&swap_avail_heads[nid]); 3950 3951 swapfile_maximum_size = arch_max_swapfile_size(); 3952 3953 #ifdef CONFIG_MIGRATION 3954 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3955 swap_migration_ad_supported = true; 3956 #endif /* CONFIG_MIGRATION */ 3957 3958 return 0; 3959 } 3960 subsys_initcall(swapfile_init); 3961