xref: /linux/mm/swapfile.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 			      struct swap_cluster_info *ci,
57 			      swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 					      unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64 
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69  * Some modules use swappable objects and may try to swap them out under
70  * memory pressure (via the shrinker). Before doing so, they may wish to
71  * check to see if any swap space is available.
72  */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif	/* CONFIG_MIGRATION */
81 
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86 
87 /*
88  * all active swap_info_structs
89  * protected with swap_lock, and ordered by priority.
90  */
91 static PLIST_HEAD(swap_active_head);
92 
93 /*
94  * all available (active, not full) swap_info_structs
95  * protected with swap_avail_lock, ordered by priority.
96  * This is used by folio_alloc_swap() instead of swap_active_head
97  * because swap_active_head includes all swap_info_structs,
98  * but folio_alloc_swap() doesn't need to look at full ones.
99  * This uses its own lock instead of swap_lock because when a
100  * swap_info_struct changes between not-full/full, it needs to
101  * add/remove itself to/from this list, but the swap_info_struct->lock
102  * is held and the locking order requires swap_lock to be taken
103  * before any swap_info_struct->lock.
104  */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107 
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109 
110 static DEFINE_MUTEX(swapon_mutex);
111 
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115 
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117 
118 struct percpu_swap_cluster {
119 	struct swap_info_struct *si[SWAP_NR_ORDERS];
120 	unsigned long offset[SWAP_NR_ORDERS];
121 	local_lock_t lock;
122 };
123 
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 	.si = { NULL },
126 	.offset = { SWAP_ENTRY_INVALID },
127 	.lock = INIT_LOCAL_LOCK(),
128 };
129 
130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 	if (type >= MAX_SWAPFILES)
133 		return NULL;
134 
135 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137 
138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
141 }
142 
143 /*
144  * Use the second highest bit of inuse_pages counter as the indicator
145  * if one swap device is on the available plist, so the atomic can
146  * still be updated arithmetically while having special data embedded.
147  *
148  * inuse_pages counter is the only thing indicating if a device should
149  * be on avail_lists or not (except swapon / swapoff). By embedding the
150  * off-list bit in the atomic counter, updates no longer need any lock
151  * to check the list status.
152  *
153  * This bit will be set if the device is not on the plist and not
154  * usable, will be cleared if the device is on the plist.
155  */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162 
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY		0x1
165 /*
166  * Reclaim the swap entry if there are no more mappings of the
167  * corresponding page
168  */
169 #define TTRS_UNMAPPED		0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL		0x4
172 
173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 			      unsigned long offset, int nr_pages)
175 {
176 	unsigned char *map = si->swap_map + offset;
177 	unsigned char *map_end = map + nr_pages;
178 
179 	do {
180 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 		if (*map != SWAP_HAS_CACHE)
182 			return false;
183 	} while (++map < map_end);
184 
185 	return true;
186 }
187 
188 static bool swap_is_last_map(struct swap_info_struct *si,
189 		unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 	unsigned char *map = si->swap_map + offset;
192 	unsigned char *map_end = map + nr_pages;
193 	unsigned char count = *map;
194 
195 	if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
196 		return false;
197 
198 	while (++map < map_end) {
199 		if (*map != count)
200 			return false;
201 	}
202 
203 	*has_cache = !!(count & SWAP_HAS_CACHE);
204 	return true;
205 }
206 
207 /*
208  * returns number of pages in the folio that backs the swap entry. If positive,
209  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210  * folio was associated with the swap entry.
211  */
212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 				 unsigned long offset, unsigned long flags)
214 {
215 	swp_entry_t entry = swp_entry(si->type, offset);
216 	struct address_space *address_space = swap_address_space(entry);
217 	struct swap_cluster_info *ci;
218 	struct folio *folio;
219 	int ret, nr_pages;
220 	bool need_reclaim;
221 
222 again:
223 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 	if (IS_ERR(folio))
225 		return 0;
226 
227 	nr_pages = folio_nr_pages(folio);
228 	ret = -nr_pages;
229 
230 	/*
231 	 * When this function is called from scan_swap_map_slots() and it's
232 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 	 * here. We have to use trylock for avoiding deadlock. This is a special
234 	 * case and you should use folio_free_swap() with explicit folio_lock()
235 	 * in usual operations.
236 	 */
237 	if (!folio_trylock(folio))
238 		goto out;
239 
240 	/*
241 	 * Offset could point to the middle of a large folio, or folio
242 	 * may no longer point to the expected offset before it's locked.
243 	 */
244 	entry = folio->swap;
245 	if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 		folio_unlock(folio);
247 		folio_put(folio);
248 		goto again;
249 	}
250 	offset = swp_offset(entry);
251 
252 	need_reclaim = ((flags & TTRS_ANYWAY) ||
253 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 	if (!need_reclaim || !folio_swapcache_freeable(folio))
256 		goto out_unlock;
257 
258 	/*
259 	 * It's safe to delete the folio from swap cache only if the folio's
260 	 * swap_map is HAS_CACHE only, which means the slots have no page table
261 	 * reference or pending writeback, and can't be allocated to others.
262 	 */
263 	ci = lock_cluster(si, offset);
264 	need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 	unlock_cluster(ci);
266 	if (!need_reclaim)
267 		goto out_unlock;
268 
269 	delete_from_swap_cache(folio);
270 	folio_set_dirty(folio);
271 	ret = nr_pages;
272 out_unlock:
273 	folio_unlock(folio);
274 out:
275 	folio_put(folio);
276 	return ret;
277 }
278 
279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 	return rb_entry(rb, struct swap_extent, rb_node);
283 }
284 
285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 	struct rb_node *rb = rb_next(&se->rb_node);
288 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290 
291 /*
292  * swapon tell device that all the old swap contents can be discarded,
293  * to allow the swap device to optimize its wear-levelling.
294  */
295 static int discard_swap(struct swap_info_struct *si)
296 {
297 	struct swap_extent *se;
298 	sector_t start_block;
299 	sector_t nr_blocks;
300 	int err = 0;
301 
302 	/* Do not discard the swap header page! */
303 	se = first_se(si);
304 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 	if (nr_blocks) {
307 		err = blkdev_issue_discard(si->bdev, start_block,
308 				nr_blocks, GFP_KERNEL);
309 		if (err)
310 			return err;
311 		cond_resched();
312 	}
313 
314 	for (se = next_se(se); se; se = next_se(se)) {
315 		start_block = se->start_block << (PAGE_SHIFT - 9);
316 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317 
318 		err = blkdev_issue_discard(si->bdev, start_block,
319 				nr_blocks, GFP_KERNEL);
320 		if (err)
321 			break;
322 
323 		cond_resched();
324 	}
325 	return err;		/* That will often be -EOPNOTSUPP */
326 }
327 
328 static struct swap_extent *
329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 	struct swap_extent *se;
332 	struct rb_node *rb;
333 
334 	rb = sis->swap_extent_root.rb_node;
335 	while (rb) {
336 		se = rb_entry(rb, struct swap_extent, rb_node);
337 		if (offset < se->start_page)
338 			rb = rb->rb_left;
339 		else if (offset >= se->start_page + se->nr_pages)
340 			rb = rb->rb_right;
341 		else
342 			return se;
343 	}
344 	/* It *must* be present */
345 	BUG();
346 }
347 
348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 	struct swap_extent *se;
352 	sector_t sector;
353 	pgoff_t offset;
354 
355 	offset = swp_offset(folio->swap);
356 	se = offset_to_swap_extent(sis, offset);
357 	sector = se->start_block + (offset - se->start_page);
358 	return sector << (PAGE_SHIFT - 9);
359 }
360 
361 /*
362  * swap allocation tell device that a cluster of swap can now be discarded,
363  * to allow the swap device to optimize its wear-levelling.
364  */
365 static void discard_swap_cluster(struct swap_info_struct *si,
366 				 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
369 
370 	while (nr_pages) {
371 		pgoff_t offset = start_page - se->start_page;
372 		sector_t start_block = se->start_block + offset;
373 		sector_t nr_blocks = se->nr_pages - offset;
374 
375 		if (nr_blocks > nr_pages)
376 			nr_blocks = nr_pages;
377 		start_page += nr_blocks;
378 		nr_pages -= nr_blocks;
379 
380 		start_block <<= PAGE_SHIFT - 9;
381 		nr_blocks <<= PAGE_SHIFT - 9;
382 		if (blkdev_issue_discard(si->bdev, start_block,
383 					nr_blocks, GFP_NOIO))
384 			break;
385 
386 		se = next_se(se);
387 	}
388 }
389 
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
392 
393 #define swap_entry_order(order)	(order)
394 #else
395 #define SWAPFILE_CLUSTER	256
396 
397 /*
398  * Define swap_entry_order() as constant to let compiler to optimize
399  * out some code if !CONFIG_THP_SWAP
400  */
401 #define swap_entry_order(order)	0
402 #endif
403 #define LATENCY_LIMIT		256
404 
405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 	return info->count == 0;
408 }
409 
410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 	return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414 
415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 		return false;
419 	if (!order)
420 		return true;
421 	return cluster_is_empty(ci) || order == ci->order;
422 }
423 
424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 					 struct swap_cluster_info *ci)
426 {
427 	return ci - si->cluster_info;
428 }
429 
430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 							  unsigned long offset)
432 {
433 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435 
436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 					  struct swap_cluster_info *ci)
438 {
439 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441 
442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 						     unsigned long offset)
444 {
445 	struct swap_cluster_info *ci;
446 
447 	ci = offset_to_cluster(si, offset);
448 	spin_lock(&ci->lock);
449 
450 	return ci;
451 }
452 
453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 	spin_unlock(&ci->lock);
456 }
457 
458 static void move_cluster(struct swap_info_struct *si,
459 			 struct swap_cluster_info *ci, struct list_head *list,
460 			 enum swap_cluster_flags new_flags)
461 {
462 	VM_WARN_ON(ci->flags == new_flags);
463 
464 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 	lockdep_assert_held(&ci->lock);
466 
467 	spin_lock(&si->lock);
468 	if (ci->flags == CLUSTER_FLAG_NONE)
469 		list_add_tail(&ci->list, list);
470 	else
471 		list_move_tail(&ci->list, list);
472 	spin_unlock(&si->lock);
473 
474 	if (ci->flags == CLUSTER_FLAG_FRAG)
475 		atomic_long_dec(&si->frag_cluster_nr[ci->order]);
476 	else if (new_flags == CLUSTER_FLAG_FRAG)
477 		atomic_long_inc(&si->frag_cluster_nr[ci->order]);
478 	ci->flags = new_flags;
479 }
480 
481 /* Add a cluster to discard list and schedule it to do discard */
482 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
483 		struct swap_cluster_info *ci)
484 {
485 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
486 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
487 	schedule_work(&si->discard_work);
488 }
489 
490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
491 {
492 	lockdep_assert_held(&ci->lock);
493 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
494 	ci->order = 0;
495 }
496 
497 /*
498  * Isolate and lock the first cluster that is not contented on a list,
499  * clean its flag before taken off-list. Cluster flag must be in sync
500  * with list status, so cluster updaters can always know the cluster
501  * list status without touching si lock.
502  *
503  * Note it's possible that all clusters on a list are contented so
504  * this returns NULL for an non-empty list.
505  */
506 static struct swap_cluster_info *isolate_lock_cluster(
507 		struct swap_info_struct *si, struct list_head *list)
508 {
509 	struct swap_cluster_info *ci, *ret = NULL;
510 
511 	spin_lock(&si->lock);
512 
513 	if (unlikely(!(si->flags & SWP_WRITEOK)))
514 		goto out;
515 
516 	list_for_each_entry(ci, list, list) {
517 		if (!spin_trylock(&ci->lock))
518 			continue;
519 
520 		/* We may only isolate and clear flags of following lists */
521 		VM_BUG_ON(!ci->flags);
522 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
523 			  ci->flags != CLUSTER_FLAG_FULL);
524 
525 		list_del(&ci->list);
526 		ci->flags = CLUSTER_FLAG_NONE;
527 		ret = ci;
528 		break;
529 	}
530 out:
531 	spin_unlock(&si->lock);
532 
533 	return ret;
534 }
535 
536 /*
537  * Doing discard actually. After a cluster discard is finished, the cluster
538  * will be added to free cluster list. Discard cluster is a bit special as
539  * they don't participate in allocation or reclaim, so clusters marked as
540  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
541  */
542 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
543 {
544 	struct swap_cluster_info *ci;
545 	bool ret = false;
546 	unsigned int idx;
547 
548 	spin_lock(&si->lock);
549 	while (!list_empty(&si->discard_clusters)) {
550 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
551 		/*
552 		 * Delete the cluster from list to prepare for discard, but keep
553 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
554 		 * pointing to it, or ran into by relocate_cluster.
555 		 */
556 		list_del(&ci->list);
557 		idx = cluster_index(si, ci);
558 		spin_unlock(&si->lock);
559 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
560 				SWAPFILE_CLUSTER);
561 
562 		spin_lock(&ci->lock);
563 		/*
564 		 * Discard is done, clear its flags as it's off-list, then
565 		 * return the cluster to allocation list.
566 		 */
567 		ci->flags = CLUSTER_FLAG_NONE;
568 		__free_cluster(si, ci);
569 		spin_unlock(&ci->lock);
570 		ret = true;
571 		spin_lock(&si->lock);
572 	}
573 	spin_unlock(&si->lock);
574 	return ret;
575 }
576 
577 static void swap_discard_work(struct work_struct *work)
578 {
579 	struct swap_info_struct *si;
580 
581 	si = container_of(work, struct swap_info_struct, discard_work);
582 
583 	swap_do_scheduled_discard(si);
584 }
585 
586 static void swap_users_ref_free(struct percpu_ref *ref)
587 {
588 	struct swap_info_struct *si;
589 
590 	si = container_of(ref, struct swap_info_struct, users);
591 	complete(&si->comp);
592 }
593 
594 /*
595  * Must be called after freeing if ci->count == 0, moves the cluster to free
596  * or discard list.
597  */
598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
599 {
600 	VM_BUG_ON(ci->count != 0);
601 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
602 	lockdep_assert_held(&ci->lock);
603 
604 	/*
605 	 * If the swap is discardable, prepare discard the cluster
606 	 * instead of free it immediately. The cluster will be freed
607 	 * after discard.
608 	 */
609 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
610 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
611 		swap_cluster_schedule_discard(si, ci);
612 		return;
613 	}
614 
615 	__free_cluster(si, ci);
616 }
617 
618 /*
619  * Must be called after freeing if ci->count != 0, moves the cluster to
620  * nonfull list.
621  */
622 static void partial_free_cluster(struct swap_info_struct *si,
623 				 struct swap_cluster_info *ci)
624 {
625 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
626 	lockdep_assert_held(&ci->lock);
627 
628 	if (ci->flags != CLUSTER_FLAG_NONFULL)
629 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
630 			     CLUSTER_FLAG_NONFULL);
631 }
632 
633 /*
634  * Must be called after allocation, moves the cluster to full or frag list.
635  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
636  * reclaim, so the cluster could be any where when called.
637  */
638 static void relocate_cluster(struct swap_info_struct *si,
639 			     struct swap_cluster_info *ci)
640 {
641 	lockdep_assert_held(&ci->lock);
642 
643 	/* Discard cluster must remain off-list or on discard list */
644 	if (cluster_is_discard(ci))
645 		return;
646 
647 	if (!ci->count) {
648 		if (ci->flags != CLUSTER_FLAG_FREE)
649 			free_cluster(si, ci);
650 	} else if (ci->count != SWAPFILE_CLUSTER) {
651 		if (ci->flags != CLUSTER_FLAG_FRAG)
652 			move_cluster(si, ci, &si->frag_clusters[ci->order],
653 				     CLUSTER_FLAG_FRAG);
654 	} else {
655 		if (ci->flags != CLUSTER_FLAG_FULL)
656 			move_cluster(si, ci, &si->full_clusters,
657 				     CLUSTER_FLAG_FULL);
658 	}
659 }
660 
661 /*
662  * The cluster corresponding to page_nr will be used. The cluster will not be
663  * added to free cluster list and its usage counter will be increased by 1.
664  * Only used for initialization.
665  */
666 static void inc_cluster_info_page(struct swap_info_struct *si,
667 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
668 {
669 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
670 	struct swap_cluster_info *ci;
671 
672 	ci = cluster_info + idx;
673 	ci->count++;
674 
675 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
676 	VM_BUG_ON(ci->flags);
677 }
678 
679 static bool cluster_reclaim_range(struct swap_info_struct *si,
680 				  struct swap_cluster_info *ci,
681 				  unsigned long start, unsigned long end)
682 {
683 	unsigned char *map = si->swap_map;
684 	unsigned long offset = start;
685 	int nr_reclaim;
686 
687 	spin_unlock(&ci->lock);
688 	do {
689 		switch (READ_ONCE(map[offset])) {
690 		case 0:
691 			offset++;
692 			break;
693 		case SWAP_HAS_CACHE:
694 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
695 			if (nr_reclaim > 0)
696 				offset += nr_reclaim;
697 			else
698 				goto out;
699 			break;
700 		default:
701 			goto out;
702 		}
703 	} while (offset < end);
704 out:
705 	spin_lock(&ci->lock);
706 	/*
707 	 * Recheck the range no matter reclaim succeeded or not, the slot
708 	 * could have been be freed while we are not holding the lock.
709 	 */
710 	for (offset = start; offset < end; offset++)
711 		if (READ_ONCE(map[offset]))
712 			return false;
713 
714 	return true;
715 }
716 
717 static bool cluster_scan_range(struct swap_info_struct *si,
718 			       struct swap_cluster_info *ci,
719 			       unsigned long start, unsigned int nr_pages,
720 			       bool *need_reclaim)
721 {
722 	unsigned long offset, end = start + nr_pages;
723 	unsigned char *map = si->swap_map;
724 
725 	if (cluster_is_empty(ci))
726 		return true;
727 
728 	for (offset = start; offset < end; offset++) {
729 		switch (READ_ONCE(map[offset])) {
730 		case 0:
731 			continue;
732 		case SWAP_HAS_CACHE:
733 			if (!vm_swap_full())
734 				return false;
735 			*need_reclaim = true;
736 			continue;
737 		default:
738 			return false;
739 		}
740 	}
741 
742 	return true;
743 }
744 
745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
746 				unsigned int start, unsigned char usage,
747 				unsigned int order)
748 {
749 	unsigned int nr_pages = 1 << order;
750 
751 	lockdep_assert_held(&ci->lock);
752 
753 	if (!(si->flags & SWP_WRITEOK))
754 		return false;
755 
756 	/*
757 	 * The first allocation in a cluster makes the
758 	 * cluster exclusive to this order
759 	 */
760 	if (cluster_is_empty(ci))
761 		ci->order = order;
762 
763 	memset(si->swap_map + start, usage, nr_pages);
764 	swap_range_alloc(si, nr_pages);
765 	ci->count += nr_pages;
766 
767 	return true;
768 }
769 
770 /* Try use a new cluster for current CPU and allocate from it. */
771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
772 					    struct swap_cluster_info *ci,
773 					    unsigned long offset,
774 					    unsigned int order,
775 					    unsigned char usage)
776 {
777 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
778 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
779 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
780 	unsigned int nr_pages = 1 << order;
781 	bool need_reclaim, ret;
782 
783 	lockdep_assert_held(&ci->lock);
784 
785 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
786 		goto out;
787 
788 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
789 		need_reclaim = false;
790 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
791 			continue;
792 		if (need_reclaim) {
793 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
794 			/*
795 			 * Reclaim drops ci->lock and cluster could be used
796 			 * by another order. Not checking flag as off-list
797 			 * cluster has no flag set, and change of list
798 			 * won't cause fragmentation.
799 			 */
800 			if (!cluster_is_usable(ci, order))
801 				goto out;
802 			if (cluster_is_empty(ci))
803 				offset = start;
804 			/* Reclaim failed but cluster is usable, try next */
805 			if (!ret)
806 				continue;
807 		}
808 		if (!cluster_alloc_range(si, ci, offset, usage, order))
809 			break;
810 		found = offset;
811 		offset += nr_pages;
812 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
813 			next = offset;
814 		break;
815 	}
816 out:
817 	relocate_cluster(si, ci);
818 	unlock_cluster(ci);
819 	if (si->flags & SWP_SOLIDSTATE) {
820 		this_cpu_write(percpu_swap_cluster.offset[order], next);
821 		this_cpu_write(percpu_swap_cluster.si[order], si);
822 	} else {
823 		si->global_cluster->next[order] = next;
824 	}
825 	return found;
826 }
827 
828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
829 {
830 	long to_scan = 1;
831 	unsigned long offset, end;
832 	struct swap_cluster_info *ci;
833 	unsigned char *map = si->swap_map;
834 	int nr_reclaim;
835 
836 	if (force)
837 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
838 
839 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
840 		offset = cluster_offset(si, ci);
841 		end = min(si->max, offset + SWAPFILE_CLUSTER);
842 		to_scan--;
843 
844 		while (offset < end) {
845 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
846 				spin_unlock(&ci->lock);
847 				nr_reclaim = __try_to_reclaim_swap(si, offset,
848 								   TTRS_ANYWAY);
849 				spin_lock(&ci->lock);
850 				if (nr_reclaim) {
851 					offset += abs(nr_reclaim);
852 					continue;
853 				}
854 			}
855 			offset++;
856 		}
857 
858 		/* in case no swap cache is reclaimed */
859 		if (ci->flags == CLUSTER_FLAG_NONE)
860 			relocate_cluster(si, ci);
861 
862 		unlock_cluster(ci);
863 		if (to_scan <= 0)
864 			break;
865 	}
866 }
867 
868 static void swap_reclaim_work(struct work_struct *work)
869 {
870 	struct swap_info_struct *si;
871 
872 	si = container_of(work, struct swap_info_struct, reclaim_work);
873 
874 	swap_reclaim_full_clusters(si, true);
875 }
876 
877 /*
878  * Try to allocate swap entries with specified order and try set a new
879  * cluster for current CPU too.
880  */
881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
882 					      unsigned char usage)
883 {
884 	struct swap_cluster_info *ci;
885 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
886 
887 	/*
888 	 * Swapfile is not block device so unable
889 	 * to allocate large entries.
890 	 */
891 	if (order && !(si->flags & SWP_BLKDEV))
892 		return 0;
893 
894 	if (!(si->flags & SWP_SOLIDSTATE)) {
895 		/* Serialize HDD SWAP allocation for each device. */
896 		spin_lock(&si->global_cluster_lock);
897 		offset = si->global_cluster->next[order];
898 		if (offset == SWAP_ENTRY_INVALID)
899 			goto new_cluster;
900 
901 		ci = lock_cluster(si, offset);
902 		/* Cluster could have been used by another order */
903 		if (cluster_is_usable(ci, order)) {
904 			if (cluster_is_empty(ci))
905 				offset = cluster_offset(si, ci);
906 			found = alloc_swap_scan_cluster(si, ci, offset,
907 							order, usage);
908 		} else {
909 			unlock_cluster(ci);
910 		}
911 		if (found)
912 			goto done;
913 	}
914 
915 new_cluster:
916 	ci = isolate_lock_cluster(si, &si->free_clusters);
917 	if (ci) {
918 		found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
919 						order, usage);
920 		if (found)
921 			goto done;
922 	}
923 
924 	/* Try reclaim from full clusters if free clusters list is drained */
925 	if (vm_swap_full())
926 		swap_reclaim_full_clusters(si, false);
927 
928 	if (order < PMD_ORDER) {
929 		unsigned int frags = 0, frags_existing;
930 
931 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
932 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
933 							order, usage);
934 			if (found)
935 				goto done;
936 			/* Clusters failed to allocate are moved to frag_clusters */
937 			frags++;
938 		}
939 
940 		frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
941 		while (frags < frags_existing &&
942 		       (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
943 			atomic_long_dec(&si->frag_cluster_nr[order]);
944 			/*
945 			 * Rotate the frag list to iterate, they were all
946 			 * failing high order allocation or moved here due to
947 			 * per-CPU usage, but they could contain newly released
948 			 * reclaimable (eg. lazy-freed swap cache) slots.
949 			 */
950 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
951 							order, usage);
952 			if (found)
953 				goto done;
954 			frags++;
955 		}
956 	}
957 
958 	/*
959 	 * We don't have free cluster but have some clusters in discarding,
960 	 * do discard now and reclaim them.
961 	 */
962 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
963 		goto new_cluster;
964 
965 	if (order)
966 		goto done;
967 
968 	/* Order 0 stealing from higher order */
969 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
970 		/*
971 		 * Clusters here have at least one usable slots and can't fail order 0
972 		 * allocation, but reclaim may drop si->lock and race with another user.
973 		 */
974 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
975 			atomic_long_dec(&si->frag_cluster_nr[o]);
976 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
977 							0, usage);
978 			if (found)
979 				goto done;
980 		}
981 
982 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
983 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
984 							0, usage);
985 			if (found)
986 				goto done;
987 		}
988 	}
989 done:
990 	if (!(si->flags & SWP_SOLIDSTATE))
991 		spin_unlock(&si->global_cluster_lock);
992 	return found;
993 }
994 
995 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
996 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
997 {
998 	int nid;
999 	unsigned long pages;
1000 
1001 	spin_lock(&swap_avail_lock);
1002 
1003 	if (swapoff) {
1004 		/*
1005 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1006 		 * swapoff here so it's synchronized by both si->lock and
1007 		 * swap_avail_lock, to ensure the result can be seen by
1008 		 * add_to_avail_list.
1009 		 */
1010 		lockdep_assert_held(&si->lock);
1011 		si->flags &= ~SWP_WRITEOK;
1012 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1013 	} else {
1014 		/*
1015 		 * If not called by swapoff, take it off-list only if it's
1016 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1017 		 * si->inuse_pages == pages), any concurrent slot freeing,
1018 		 * or device already removed from plist by someone else
1019 		 * will make this return false.
1020 		 */
1021 		pages = si->pages;
1022 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1023 					     pages | SWAP_USAGE_OFFLIST_BIT))
1024 			goto skip;
1025 	}
1026 
1027 	for_each_node(nid)
1028 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1029 
1030 skip:
1031 	spin_unlock(&swap_avail_lock);
1032 }
1033 
1034 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1035 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1036 {
1037 	int nid;
1038 	long val;
1039 	unsigned long pages;
1040 
1041 	spin_lock(&swap_avail_lock);
1042 
1043 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1044 	if (swapon) {
1045 		lockdep_assert_held(&si->lock);
1046 		si->flags |= SWP_WRITEOK;
1047 	} else {
1048 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1049 			goto skip;
1050 	}
1051 
1052 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1053 		goto skip;
1054 
1055 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1056 
1057 	/*
1058 	 * When device is full and device is on the plist, only one updater will
1059 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1060 	 * that updater happen to be here, just skip adding.
1061 	 */
1062 	pages = si->pages;
1063 	if (val == pages) {
1064 		/* Just like the cmpxchg in del_from_avail_list */
1065 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1066 					    pages | SWAP_USAGE_OFFLIST_BIT))
1067 			goto skip;
1068 	}
1069 
1070 	for_each_node(nid)
1071 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1072 
1073 skip:
1074 	spin_unlock(&swap_avail_lock);
1075 }
1076 
1077 /*
1078  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1079  * within each cluster, so the total contribution to the global counter should
1080  * always be positive and cannot exceed the total number of usable slots.
1081  */
1082 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1083 {
1084 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1085 
1086 	/*
1087 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1088 	 * remove it from the plist.
1089 	 */
1090 	if (unlikely(val == si->pages)) {
1091 		del_from_avail_list(si, false);
1092 		return true;
1093 	}
1094 
1095 	return false;
1096 }
1097 
1098 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1099 {
1100 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1101 
1102 	/*
1103 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1104 	 * add it to the plist.
1105 	 */
1106 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1107 		add_to_avail_list(si, false);
1108 }
1109 
1110 static void swap_range_alloc(struct swap_info_struct *si,
1111 			     unsigned int nr_entries)
1112 {
1113 	if (swap_usage_add(si, nr_entries)) {
1114 		if (vm_swap_full())
1115 			schedule_work(&si->reclaim_work);
1116 	}
1117 	atomic_long_sub(nr_entries, &nr_swap_pages);
1118 }
1119 
1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1121 			    unsigned int nr_entries)
1122 {
1123 	unsigned long begin = offset;
1124 	unsigned long end = offset + nr_entries - 1;
1125 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1126 	unsigned int i;
1127 
1128 	/*
1129 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1130 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1131 	 */
1132 	for (i = 0; i < nr_entries; i++) {
1133 		clear_bit(offset + i, si->zeromap);
1134 		zswap_invalidate(swp_entry(si->type, offset + i));
1135 	}
1136 
1137 	if (si->flags & SWP_BLKDEV)
1138 		swap_slot_free_notify =
1139 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1140 	else
1141 		swap_slot_free_notify = NULL;
1142 	while (offset <= end) {
1143 		arch_swap_invalidate_page(si->type, offset);
1144 		if (swap_slot_free_notify)
1145 			swap_slot_free_notify(si->bdev, offset);
1146 		offset++;
1147 	}
1148 	clear_shadow_from_swap_cache(si->type, begin, end);
1149 
1150 	/*
1151 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1152 	 * only after the above cleanups are done.
1153 	 */
1154 	smp_wmb();
1155 	atomic_long_add(nr_entries, &nr_swap_pages);
1156 	swap_usage_sub(si, nr_entries);
1157 }
1158 
1159 static bool get_swap_device_info(struct swap_info_struct *si)
1160 {
1161 	if (!percpu_ref_tryget_live(&si->users))
1162 		return false;
1163 	/*
1164 	 * Guarantee the si->users are checked before accessing other
1165 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1166 	 * up to dated.
1167 	 *
1168 	 * Paired with the spin_unlock() after setup_swap_info() in
1169 	 * enable_swap_info(), and smp_wmb() in swapoff.
1170 	 */
1171 	smp_rmb();
1172 	return true;
1173 }
1174 
1175 /*
1176  * Fast path try to get swap entries with specified order from current
1177  * CPU's swap entry pool (a cluster).
1178  */
1179 static bool swap_alloc_fast(swp_entry_t *entry,
1180 			    int order)
1181 {
1182 	struct swap_cluster_info *ci;
1183 	struct swap_info_struct *si;
1184 	unsigned int offset, found = SWAP_ENTRY_INVALID;
1185 
1186 	/*
1187 	 * Once allocated, swap_info_struct will never be completely freed,
1188 	 * so checking it's liveness by get_swap_device_info is enough.
1189 	 */
1190 	si = this_cpu_read(percpu_swap_cluster.si[order]);
1191 	offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1192 	if (!si || !offset || !get_swap_device_info(si))
1193 		return false;
1194 
1195 	ci = lock_cluster(si, offset);
1196 	if (cluster_is_usable(ci, order)) {
1197 		if (cluster_is_empty(ci))
1198 			offset = cluster_offset(si, ci);
1199 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1200 		if (found)
1201 			*entry = swp_entry(si->type, found);
1202 	} else {
1203 		unlock_cluster(ci);
1204 	}
1205 
1206 	put_swap_device(si);
1207 	return !!found;
1208 }
1209 
1210 /* Rotate the device and switch to a new cluster */
1211 static bool swap_alloc_slow(swp_entry_t *entry,
1212 			    int order)
1213 {
1214 	int node;
1215 	unsigned long offset;
1216 	struct swap_info_struct *si, *next;
1217 
1218 	node = numa_node_id();
1219 	spin_lock(&swap_avail_lock);
1220 start_over:
1221 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1222 		/* Rotate the device and switch to a new cluster */
1223 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1224 		spin_unlock(&swap_avail_lock);
1225 		if (get_swap_device_info(si)) {
1226 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1227 			put_swap_device(si);
1228 			if (offset) {
1229 				*entry = swp_entry(si->type, offset);
1230 				return true;
1231 			}
1232 			if (order)
1233 				return false;
1234 		}
1235 
1236 		spin_lock(&swap_avail_lock);
1237 		/*
1238 		 * if we got here, it's likely that si was almost full before,
1239 		 * and since scan_swap_map_slots() can drop the si->lock,
1240 		 * multiple callers probably all tried to get a page from the
1241 		 * same si and it filled up before we could get one; or, the si
1242 		 * filled up between us dropping swap_avail_lock and taking
1243 		 * si->lock. Since we dropped the swap_avail_lock, the
1244 		 * swap_avail_head list may have been modified; so if next is
1245 		 * still in the swap_avail_head list then try it, otherwise
1246 		 * start over if we have not gotten any slots.
1247 		 */
1248 		if (plist_node_empty(&next->avail_lists[node]))
1249 			goto start_over;
1250 	}
1251 	spin_unlock(&swap_avail_lock);
1252 	return false;
1253 }
1254 
1255 /**
1256  * folio_alloc_swap - allocate swap space for a folio
1257  * @folio: folio we want to move to swap
1258  * @gfp: gfp mask for shadow nodes
1259  *
1260  * Allocate swap space for the folio and add the folio to the
1261  * swap cache.
1262  *
1263  * Context: Caller needs to hold the folio lock.
1264  * Return: Whether the folio was added to the swap cache.
1265  */
1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1267 {
1268 	unsigned int order = folio_order(folio);
1269 	unsigned int size = 1 << order;
1270 	swp_entry_t entry = {};
1271 
1272 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1273 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1274 
1275 	if (order) {
1276 		/*
1277 		 * Reject large allocation when THP_SWAP is disabled,
1278 		 * the caller should split the folio and try again.
1279 		 */
1280 		if (!IS_ENABLED(CONFIG_THP_SWAP))
1281 			return -EAGAIN;
1282 
1283 		/*
1284 		 * Allocation size should never exceed cluster size
1285 		 * (HPAGE_PMD_SIZE).
1286 		 */
1287 		if (size > SWAPFILE_CLUSTER) {
1288 			VM_WARN_ON_ONCE(1);
1289 			return -EINVAL;
1290 		}
1291 	}
1292 
1293 	local_lock(&percpu_swap_cluster.lock);
1294 	if (!swap_alloc_fast(&entry, order))
1295 		swap_alloc_slow(&entry, order);
1296 	local_unlock(&percpu_swap_cluster.lock);
1297 
1298 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1299 	if (mem_cgroup_try_charge_swap(folio, entry))
1300 		goto out_free;
1301 
1302 	if (!entry.val)
1303 		return -ENOMEM;
1304 
1305 	/*
1306 	 * XArray node allocations from PF_MEMALLOC contexts could
1307 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1308 	 * stops emergency reserves from being allocated.
1309 	 *
1310 	 * TODO: this could cause a theoretical memory reclaim
1311 	 * deadlock in the swap out path.
1312 	 */
1313 	if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1314 		goto out_free;
1315 
1316 	return 0;
1317 
1318 out_free:
1319 	put_swap_folio(folio, entry);
1320 	return -ENOMEM;
1321 }
1322 
1323 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1324 {
1325 	struct swap_info_struct *si;
1326 	unsigned long offset;
1327 
1328 	if (!entry.val)
1329 		goto out;
1330 	si = swp_swap_info(entry);
1331 	if (!si)
1332 		goto bad_nofile;
1333 	if (data_race(!(si->flags & SWP_USED)))
1334 		goto bad_device;
1335 	offset = swp_offset(entry);
1336 	if (offset >= si->max)
1337 		goto bad_offset;
1338 	if (data_race(!si->swap_map[swp_offset(entry)]))
1339 		goto bad_free;
1340 	return si;
1341 
1342 bad_free:
1343 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1344 	goto out;
1345 bad_offset:
1346 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1347 	goto out;
1348 bad_device:
1349 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1350 	goto out;
1351 bad_nofile:
1352 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1353 out:
1354 	return NULL;
1355 }
1356 
1357 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1358 					   struct swap_cluster_info *ci,
1359 					   swp_entry_t entry,
1360 					   unsigned char usage)
1361 {
1362 	unsigned long offset = swp_offset(entry);
1363 	unsigned char count;
1364 	unsigned char has_cache;
1365 
1366 	count = si->swap_map[offset];
1367 
1368 	has_cache = count & SWAP_HAS_CACHE;
1369 	count &= ~SWAP_HAS_CACHE;
1370 
1371 	if (usage == SWAP_HAS_CACHE) {
1372 		VM_BUG_ON(!has_cache);
1373 		has_cache = 0;
1374 	} else if (count == SWAP_MAP_SHMEM) {
1375 		/*
1376 		 * Or we could insist on shmem.c using a special
1377 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1378 		 */
1379 		count = 0;
1380 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1381 		if (count == COUNT_CONTINUED) {
1382 			if (swap_count_continued(si, offset, count))
1383 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1384 			else
1385 				count = SWAP_MAP_MAX;
1386 		} else
1387 			count--;
1388 	}
1389 
1390 	usage = count | has_cache;
1391 	if (usage)
1392 		WRITE_ONCE(si->swap_map[offset], usage);
1393 	else
1394 		swap_entries_free(si, ci, entry, 1);
1395 
1396 	return usage;
1397 }
1398 
1399 /*
1400  * When we get a swap entry, if there aren't some other ways to
1401  * prevent swapoff, such as the folio in swap cache is locked, RCU
1402  * reader side is locked, etc., the swap entry may become invalid
1403  * because of swapoff.  Then, we need to enclose all swap related
1404  * functions with get_swap_device() and put_swap_device(), unless the
1405  * swap functions call get/put_swap_device() by themselves.
1406  *
1407  * RCU reader side lock (including any spinlock) is sufficient to
1408  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1409  * before freeing data structures.
1410  *
1411  * Check whether swap entry is valid in the swap device.  If so,
1412  * return pointer to swap_info_struct, and keep the swap entry valid
1413  * via preventing the swap device from being swapoff, until
1414  * put_swap_device() is called.  Otherwise return NULL.
1415  *
1416  * Notice that swapoff or swapoff+swapon can still happen before the
1417  * percpu_ref_tryget_live() in get_swap_device() or after the
1418  * percpu_ref_put() in put_swap_device() if there isn't any other way
1419  * to prevent swapoff.  The caller must be prepared for that.  For
1420  * example, the following situation is possible.
1421  *
1422  *   CPU1				CPU2
1423  *   do_swap_page()
1424  *     ...				swapoff+swapon
1425  *     __read_swap_cache_async()
1426  *       swapcache_prepare()
1427  *         __swap_duplicate()
1428  *           // check swap_map
1429  *     // verify PTE not changed
1430  *
1431  * In __swap_duplicate(), the swap_map need to be checked before
1432  * changing partly because the specified swap entry may be for another
1433  * swap device which has been swapoff.  And in do_swap_page(), after
1434  * the page is read from the swap device, the PTE is verified not
1435  * changed with the page table locked to check whether the swap device
1436  * has been swapoff or swapoff+swapon.
1437  */
1438 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1439 {
1440 	struct swap_info_struct *si;
1441 	unsigned long offset;
1442 
1443 	if (!entry.val)
1444 		goto out;
1445 	si = swp_swap_info(entry);
1446 	if (!si)
1447 		goto bad_nofile;
1448 	if (!get_swap_device_info(si))
1449 		goto out;
1450 	offset = swp_offset(entry);
1451 	if (offset >= si->max)
1452 		goto put_out;
1453 
1454 	return si;
1455 bad_nofile:
1456 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1457 out:
1458 	return NULL;
1459 put_out:
1460 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1461 	percpu_ref_put(&si->users);
1462 	return NULL;
1463 }
1464 
1465 static void swap_entries_put_cache(struct swap_info_struct *si,
1466 				   swp_entry_t entry, int nr)
1467 {
1468 	unsigned long offset = swp_offset(entry);
1469 	struct swap_cluster_info *ci;
1470 
1471 	ci = lock_cluster(si, offset);
1472 	if (swap_only_has_cache(si, offset, nr))
1473 		swap_entries_free(si, ci, entry, nr);
1474 	else {
1475 		for (int i = 0; i < nr; i++, entry.val++)
1476 			swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1477 	}
1478 	unlock_cluster(ci);
1479 }
1480 
1481 static bool swap_entries_put_map(struct swap_info_struct *si,
1482 				 swp_entry_t entry, int nr)
1483 {
1484 	unsigned long offset = swp_offset(entry);
1485 	struct swap_cluster_info *ci;
1486 	bool has_cache = false;
1487 	unsigned char count;
1488 	int i;
1489 
1490 	if (nr <= 1)
1491 		goto fallback;
1492 	count = swap_count(data_race(si->swap_map[offset]));
1493 	if (count != 1 && count != SWAP_MAP_SHMEM)
1494 		goto fallback;
1495 
1496 	ci = lock_cluster(si, offset);
1497 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1498 		goto locked_fallback;
1499 	}
1500 	if (!has_cache)
1501 		swap_entries_free(si, ci, entry, nr);
1502 	else
1503 		for (i = 0; i < nr; i++)
1504 			WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1505 	unlock_cluster(ci);
1506 
1507 	return has_cache;
1508 
1509 fallback:
1510 	ci = lock_cluster(si, offset);
1511 locked_fallback:
1512 	for (i = 0; i < nr; i++, entry.val++) {
1513 		count = swap_entry_put_locked(si, ci, entry, 1);
1514 		if (count == SWAP_HAS_CACHE)
1515 			has_cache = true;
1516 	}
1517 	unlock_cluster(ci);
1518 	return has_cache;
1519 
1520 }
1521 
1522 /*
1523  * Only functions with "_nr" suffix are able to free entries spanning
1524  * cross multi clusters, so ensure the range is within a single cluster
1525  * when freeing entries with functions without "_nr" suffix.
1526  */
1527 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1528 				    swp_entry_t entry, int nr)
1529 {
1530 	int cluster_nr, cluster_rest;
1531 	unsigned long offset = swp_offset(entry);
1532 	bool has_cache = false;
1533 
1534 	cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1535 	while (nr) {
1536 		cluster_nr = min(nr, cluster_rest);
1537 		has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1538 		cluster_rest = SWAPFILE_CLUSTER;
1539 		nr -= cluster_nr;
1540 		entry.val += cluster_nr;
1541 	}
1542 
1543 	return has_cache;
1544 }
1545 
1546 /*
1547  * Check if it's the last ref of swap entry in the freeing path.
1548  * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1549  */
1550 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1551 {
1552 	return (count == SWAP_HAS_CACHE) || (count == 1) ||
1553 	       (count == SWAP_MAP_SHMEM);
1554 }
1555 
1556 /*
1557  * Drop the last ref of swap entries, caller have to ensure all entries
1558  * belong to the same cgroup and cluster.
1559  */
1560 static void swap_entries_free(struct swap_info_struct *si,
1561 			      struct swap_cluster_info *ci,
1562 			      swp_entry_t entry, unsigned int nr_pages)
1563 {
1564 	unsigned long offset = swp_offset(entry);
1565 	unsigned char *map = si->swap_map + offset;
1566 	unsigned char *map_end = map + nr_pages;
1567 
1568 	/* It should never free entries across different clusters */
1569 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1570 	VM_BUG_ON(cluster_is_empty(ci));
1571 	VM_BUG_ON(ci->count < nr_pages);
1572 
1573 	ci->count -= nr_pages;
1574 	do {
1575 		VM_BUG_ON(!swap_is_last_ref(*map));
1576 		*map = 0;
1577 	} while (++map < map_end);
1578 
1579 	mem_cgroup_uncharge_swap(entry, nr_pages);
1580 	swap_range_free(si, offset, nr_pages);
1581 
1582 	if (!ci->count)
1583 		free_cluster(si, ci);
1584 	else
1585 		partial_free_cluster(si, ci);
1586 }
1587 
1588 /*
1589  * Caller has made sure that the swap device corresponding to entry
1590  * is still around or has not been recycled.
1591  */
1592 void swap_free_nr(swp_entry_t entry, int nr_pages)
1593 {
1594 	int nr;
1595 	struct swap_info_struct *sis;
1596 	unsigned long offset = swp_offset(entry);
1597 
1598 	sis = _swap_info_get(entry);
1599 	if (!sis)
1600 		return;
1601 
1602 	while (nr_pages) {
1603 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1604 		swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1605 		offset += nr;
1606 		nr_pages -= nr;
1607 	}
1608 }
1609 
1610 /*
1611  * Called after dropping swapcache to decrease refcnt to swap entries.
1612  */
1613 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1614 {
1615 	struct swap_info_struct *si;
1616 	int size = 1 << swap_entry_order(folio_order(folio));
1617 
1618 	si = _swap_info_get(entry);
1619 	if (!si)
1620 		return;
1621 
1622 	swap_entries_put_cache(si, entry, size);
1623 }
1624 
1625 int __swap_count(swp_entry_t entry)
1626 {
1627 	struct swap_info_struct *si = swp_swap_info(entry);
1628 	pgoff_t offset = swp_offset(entry);
1629 
1630 	return swap_count(si->swap_map[offset]);
1631 }
1632 
1633 /*
1634  * How many references to @entry are currently swapped out?
1635  * This does not give an exact answer when swap count is continued,
1636  * but does include the high COUNT_CONTINUED flag to allow for that.
1637  */
1638 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1639 {
1640 	pgoff_t offset = swp_offset(entry);
1641 	struct swap_cluster_info *ci;
1642 	int count;
1643 
1644 	ci = lock_cluster(si, offset);
1645 	count = swap_count(si->swap_map[offset]);
1646 	unlock_cluster(ci);
1647 	return !!count;
1648 }
1649 
1650 /*
1651  * How many references to @entry are currently swapped out?
1652  * This considers COUNT_CONTINUED so it returns exact answer.
1653  */
1654 int swp_swapcount(swp_entry_t entry)
1655 {
1656 	int count, tmp_count, n;
1657 	struct swap_info_struct *si;
1658 	struct swap_cluster_info *ci;
1659 	struct page *page;
1660 	pgoff_t offset;
1661 	unsigned char *map;
1662 
1663 	si = _swap_info_get(entry);
1664 	if (!si)
1665 		return 0;
1666 
1667 	offset = swp_offset(entry);
1668 
1669 	ci = lock_cluster(si, offset);
1670 
1671 	count = swap_count(si->swap_map[offset]);
1672 	if (!(count & COUNT_CONTINUED))
1673 		goto out;
1674 
1675 	count &= ~COUNT_CONTINUED;
1676 	n = SWAP_MAP_MAX + 1;
1677 
1678 	page = vmalloc_to_page(si->swap_map + offset);
1679 	offset &= ~PAGE_MASK;
1680 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1681 
1682 	do {
1683 		page = list_next_entry(page, lru);
1684 		map = kmap_local_page(page);
1685 		tmp_count = map[offset];
1686 		kunmap_local(map);
1687 
1688 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1689 		n *= (SWAP_CONT_MAX + 1);
1690 	} while (tmp_count & COUNT_CONTINUED);
1691 out:
1692 	unlock_cluster(ci);
1693 	return count;
1694 }
1695 
1696 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1697 					 swp_entry_t entry, int order)
1698 {
1699 	struct swap_cluster_info *ci;
1700 	unsigned char *map = si->swap_map;
1701 	unsigned int nr_pages = 1 << order;
1702 	unsigned long roffset = swp_offset(entry);
1703 	unsigned long offset = round_down(roffset, nr_pages);
1704 	int i;
1705 	bool ret = false;
1706 
1707 	ci = lock_cluster(si, offset);
1708 	if (nr_pages == 1) {
1709 		if (swap_count(map[roffset]))
1710 			ret = true;
1711 		goto unlock_out;
1712 	}
1713 	for (i = 0; i < nr_pages; i++) {
1714 		if (swap_count(map[offset + i])) {
1715 			ret = true;
1716 			break;
1717 		}
1718 	}
1719 unlock_out:
1720 	unlock_cluster(ci);
1721 	return ret;
1722 }
1723 
1724 static bool folio_swapped(struct folio *folio)
1725 {
1726 	swp_entry_t entry = folio->swap;
1727 	struct swap_info_struct *si = _swap_info_get(entry);
1728 
1729 	if (!si)
1730 		return false;
1731 
1732 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1733 		return swap_entry_swapped(si, entry);
1734 
1735 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1736 }
1737 
1738 static bool folio_swapcache_freeable(struct folio *folio)
1739 {
1740 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1741 
1742 	if (!folio_test_swapcache(folio))
1743 		return false;
1744 	if (folio_test_writeback(folio))
1745 		return false;
1746 
1747 	/*
1748 	 * Once hibernation has begun to create its image of memory,
1749 	 * there's a danger that one of the calls to folio_free_swap()
1750 	 * - most probably a call from __try_to_reclaim_swap() while
1751 	 * hibernation is allocating its own swap pages for the image,
1752 	 * but conceivably even a call from memory reclaim - will free
1753 	 * the swap from a folio which has already been recorded in the
1754 	 * image as a clean swapcache folio, and then reuse its swap for
1755 	 * another page of the image.  On waking from hibernation, the
1756 	 * original folio might be freed under memory pressure, then
1757 	 * later read back in from swap, now with the wrong data.
1758 	 *
1759 	 * Hibernation suspends storage while it is writing the image
1760 	 * to disk so check that here.
1761 	 */
1762 	if (pm_suspended_storage())
1763 		return false;
1764 
1765 	return true;
1766 }
1767 
1768 /**
1769  * folio_free_swap() - Free the swap space used for this folio.
1770  * @folio: The folio to remove.
1771  *
1772  * If swap is getting full, or if there are no more mappings of this folio,
1773  * then call folio_free_swap to free its swap space.
1774  *
1775  * Return: true if we were able to release the swap space.
1776  */
1777 bool folio_free_swap(struct folio *folio)
1778 {
1779 	if (!folio_swapcache_freeable(folio))
1780 		return false;
1781 	if (folio_swapped(folio))
1782 		return false;
1783 
1784 	delete_from_swap_cache(folio);
1785 	folio_set_dirty(folio);
1786 	return true;
1787 }
1788 
1789 /**
1790  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1791  *                            reclaim their cache if no more references remain.
1792  * @entry: First entry of range.
1793  * @nr: Number of entries in range.
1794  *
1795  * For each swap entry in the contiguous range, release a reference. If any swap
1796  * entries become free, try to reclaim their underlying folios, if present. The
1797  * offset range is defined by [entry.offset, entry.offset + nr).
1798  */
1799 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1800 {
1801 	const unsigned long start_offset = swp_offset(entry);
1802 	const unsigned long end_offset = start_offset + nr;
1803 	struct swap_info_struct *si;
1804 	bool any_only_cache = false;
1805 	unsigned long offset;
1806 
1807 	si = get_swap_device(entry);
1808 	if (!si)
1809 		return;
1810 
1811 	if (WARN_ON(end_offset > si->max))
1812 		goto out;
1813 
1814 	/*
1815 	 * First free all entries in the range.
1816 	 */
1817 	any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1818 
1819 	/*
1820 	 * Short-circuit the below loop if none of the entries had their
1821 	 * reference drop to zero.
1822 	 */
1823 	if (!any_only_cache)
1824 		goto out;
1825 
1826 	/*
1827 	 * Now go back over the range trying to reclaim the swap cache.
1828 	 */
1829 	for (offset = start_offset; offset < end_offset; offset += nr) {
1830 		nr = 1;
1831 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1832 			/*
1833 			 * Folios are always naturally aligned in swap so
1834 			 * advance forward to the next boundary. Zero means no
1835 			 * folio was found for the swap entry, so advance by 1
1836 			 * in this case. Negative value means folio was found
1837 			 * but could not be reclaimed. Here we can still advance
1838 			 * to the next boundary.
1839 			 */
1840 			nr = __try_to_reclaim_swap(si, offset,
1841 						   TTRS_UNMAPPED | TTRS_FULL);
1842 			if (nr == 0)
1843 				nr = 1;
1844 			else if (nr < 0)
1845 				nr = -nr;
1846 			nr = ALIGN(offset + 1, nr) - offset;
1847 		}
1848 	}
1849 
1850 out:
1851 	put_swap_device(si);
1852 }
1853 
1854 #ifdef CONFIG_HIBERNATION
1855 
1856 swp_entry_t get_swap_page_of_type(int type)
1857 {
1858 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1859 	unsigned long offset;
1860 	swp_entry_t entry = {0};
1861 
1862 	if (!si)
1863 		goto fail;
1864 
1865 	/* This is called for allocating swap entry, not cache */
1866 	if (get_swap_device_info(si)) {
1867 		if (si->flags & SWP_WRITEOK) {
1868 			offset = cluster_alloc_swap_entry(si, 0, 1);
1869 			if (offset) {
1870 				entry = swp_entry(si->type, offset);
1871 				atomic_long_dec(&nr_swap_pages);
1872 			}
1873 		}
1874 		put_swap_device(si);
1875 	}
1876 fail:
1877 	return entry;
1878 }
1879 
1880 /*
1881  * Find the swap type that corresponds to given device (if any).
1882  *
1883  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1884  * from 0, in which the swap header is expected to be located.
1885  *
1886  * This is needed for the suspend to disk (aka swsusp).
1887  */
1888 int swap_type_of(dev_t device, sector_t offset)
1889 {
1890 	int type;
1891 
1892 	if (!device)
1893 		return -1;
1894 
1895 	spin_lock(&swap_lock);
1896 	for (type = 0; type < nr_swapfiles; type++) {
1897 		struct swap_info_struct *sis = swap_info[type];
1898 
1899 		if (!(sis->flags & SWP_WRITEOK))
1900 			continue;
1901 
1902 		if (device == sis->bdev->bd_dev) {
1903 			struct swap_extent *se = first_se(sis);
1904 
1905 			if (se->start_block == offset) {
1906 				spin_unlock(&swap_lock);
1907 				return type;
1908 			}
1909 		}
1910 	}
1911 	spin_unlock(&swap_lock);
1912 	return -ENODEV;
1913 }
1914 
1915 int find_first_swap(dev_t *device)
1916 {
1917 	int type;
1918 
1919 	spin_lock(&swap_lock);
1920 	for (type = 0; type < nr_swapfiles; type++) {
1921 		struct swap_info_struct *sis = swap_info[type];
1922 
1923 		if (!(sis->flags & SWP_WRITEOK))
1924 			continue;
1925 		*device = sis->bdev->bd_dev;
1926 		spin_unlock(&swap_lock);
1927 		return type;
1928 	}
1929 	spin_unlock(&swap_lock);
1930 	return -ENODEV;
1931 }
1932 
1933 /*
1934  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1935  * corresponding to given index in swap_info (swap type).
1936  */
1937 sector_t swapdev_block(int type, pgoff_t offset)
1938 {
1939 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1940 	struct swap_extent *se;
1941 
1942 	if (!si || !(si->flags & SWP_WRITEOK))
1943 		return 0;
1944 	se = offset_to_swap_extent(si, offset);
1945 	return se->start_block + (offset - se->start_page);
1946 }
1947 
1948 /*
1949  * Return either the total number of swap pages of given type, or the number
1950  * of free pages of that type (depending on @free)
1951  *
1952  * This is needed for software suspend
1953  */
1954 unsigned int count_swap_pages(int type, int free)
1955 {
1956 	unsigned int n = 0;
1957 
1958 	spin_lock(&swap_lock);
1959 	if ((unsigned int)type < nr_swapfiles) {
1960 		struct swap_info_struct *sis = swap_info[type];
1961 
1962 		spin_lock(&sis->lock);
1963 		if (sis->flags & SWP_WRITEOK) {
1964 			n = sis->pages;
1965 			if (free)
1966 				n -= swap_usage_in_pages(sis);
1967 		}
1968 		spin_unlock(&sis->lock);
1969 	}
1970 	spin_unlock(&swap_lock);
1971 	return n;
1972 }
1973 #endif /* CONFIG_HIBERNATION */
1974 
1975 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1976 {
1977 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1978 }
1979 
1980 /*
1981  * No need to decide whether this PTE shares the swap entry with others,
1982  * just let do_wp_page work it out if a write is requested later - to
1983  * force COW, vm_page_prot omits write permission from any private vma.
1984  */
1985 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1986 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1987 {
1988 	struct page *page;
1989 	struct folio *swapcache;
1990 	spinlock_t *ptl;
1991 	pte_t *pte, new_pte, old_pte;
1992 	bool hwpoisoned = false;
1993 	int ret = 1;
1994 
1995 	swapcache = folio;
1996 	folio = ksm_might_need_to_copy(folio, vma, addr);
1997 	if (unlikely(!folio))
1998 		return -ENOMEM;
1999 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2000 		hwpoisoned = true;
2001 		folio = swapcache;
2002 	}
2003 
2004 	page = folio_file_page(folio, swp_offset(entry));
2005 	if (PageHWPoison(page))
2006 		hwpoisoned = true;
2007 
2008 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2009 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2010 						swp_entry_to_pte(entry)))) {
2011 		ret = 0;
2012 		goto out;
2013 	}
2014 
2015 	old_pte = ptep_get(pte);
2016 
2017 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2018 		swp_entry_t swp_entry;
2019 
2020 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2021 		if (hwpoisoned) {
2022 			swp_entry = make_hwpoison_entry(page);
2023 		} else {
2024 			swp_entry = make_poisoned_swp_entry();
2025 		}
2026 		new_pte = swp_entry_to_pte(swp_entry);
2027 		ret = 0;
2028 		goto setpte;
2029 	}
2030 
2031 	/*
2032 	 * Some architectures may have to restore extra metadata to the page
2033 	 * when reading from swap. This metadata may be indexed by swap entry
2034 	 * so this must be called before swap_free().
2035 	 */
2036 	arch_swap_restore(folio_swap(entry, folio), folio);
2037 
2038 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2039 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2040 	folio_get(folio);
2041 	if (folio == swapcache) {
2042 		rmap_t rmap_flags = RMAP_NONE;
2043 
2044 		/*
2045 		 * See do_swap_page(): writeback would be problematic.
2046 		 * However, we do a folio_wait_writeback() just before this
2047 		 * call and have the folio locked.
2048 		 */
2049 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2050 		if (pte_swp_exclusive(old_pte))
2051 			rmap_flags |= RMAP_EXCLUSIVE;
2052 		/*
2053 		 * We currently only expect small !anon folios, which are either
2054 		 * fully exclusive or fully shared. If we ever get large folios
2055 		 * here, we have to be careful.
2056 		 */
2057 		if (!folio_test_anon(folio)) {
2058 			VM_WARN_ON_ONCE(folio_test_large(folio));
2059 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2060 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2061 		} else {
2062 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2063 		}
2064 	} else { /* ksm created a completely new copy */
2065 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2066 		folio_add_lru_vma(folio, vma);
2067 	}
2068 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2069 	if (pte_swp_soft_dirty(old_pte))
2070 		new_pte = pte_mksoft_dirty(new_pte);
2071 	if (pte_swp_uffd_wp(old_pte))
2072 		new_pte = pte_mkuffd_wp(new_pte);
2073 setpte:
2074 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2075 	swap_free(entry);
2076 out:
2077 	if (pte)
2078 		pte_unmap_unlock(pte, ptl);
2079 	if (folio != swapcache) {
2080 		folio_unlock(folio);
2081 		folio_put(folio);
2082 	}
2083 	return ret;
2084 }
2085 
2086 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2087 			unsigned long addr, unsigned long end,
2088 			unsigned int type)
2089 {
2090 	pte_t *pte = NULL;
2091 	struct swap_info_struct *si;
2092 
2093 	si = swap_info[type];
2094 	do {
2095 		struct folio *folio;
2096 		unsigned long offset;
2097 		unsigned char swp_count;
2098 		swp_entry_t entry;
2099 		int ret;
2100 		pte_t ptent;
2101 
2102 		if (!pte++) {
2103 			pte = pte_offset_map(pmd, addr);
2104 			if (!pte)
2105 				break;
2106 		}
2107 
2108 		ptent = ptep_get_lockless(pte);
2109 
2110 		if (!is_swap_pte(ptent))
2111 			continue;
2112 
2113 		entry = pte_to_swp_entry(ptent);
2114 		if (swp_type(entry) != type)
2115 			continue;
2116 
2117 		offset = swp_offset(entry);
2118 		pte_unmap(pte);
2119 		pte = NULL;
2120 
2121 		folio = swap_cache_get_folio(entry, vma, addr);
2122 		if (!folio) {
2123 			struct vm_fault vmf = {
2124 				.vma = vma,
2125 				.address = addr,
2126 				.real_address = addr,
2127 				.pmd = pmd,
2128 			};
2129 
2130 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2131 						&vmf);
2132 		}
2133 		if (!folio) {
2134 			swp_count = READ_ONCE(si->swap_map[offset]);
2135 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2136 				continue;
2137 			return -ENOMEM;
2138 		}
2139 
2140 		folio_lock(folio);
2141 		folio_wait_writeback(folio);
2142 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2143 		if (ret < 0) {
2144 			folio_unlock(folio);
2145 			folio_put(folio);
2146 			return ret;
2147 		}
2148 
2149 		folio_free_swap(folio);
2150 		folio_unlock(folio);
2151 		folio_put(folio);
2152 	} while (addr += PAGE_SIZE, addr != end);
2153 
2154 	if (pte)
2155 		pte_unmap(pte);
2156 	return 0;
2157 }
2158 
2159 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2160 				unsigned long addr, unsigned long end,
2161 				unsigned int type)
2162 {
2163 	pmd_t *pmd;
2164 	unsigned long next;
2165 	int ret;
2166 
2167 	pmd = pmd_offset(pud, addr);
2168 	do {
2169 		cond_resched();
2170 		next = pmd_addr_end(addr, end);
2171 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2172 		if (ret)
2173 			return ret;
2174 	} while (pmd++, addr = next, addr != end);
2175 	return 0;
2176 }
2177 
2178 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2179 				unsigned long addr, unsigned long end,
2180 				unsigned int type)
2181 {
2182 	pud_t *pud;
2183 	unsigned long next;
2184 	int ret;
2185 
2186 	pud = pud_offset(p4d, addr);
2187 	do {
2188 		next = pud_addr_end(addr, end);
2189 		if (pud_none_or_clear_bad(pud))
2190 			continue;
2191 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2192 		if (ret)
2193 			return ret;
2194 	} while (pud++, addr = next, addr != end);
2195 	return 0;
2196 }
2197 
2198 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2199 				unsigned long addr, unsigned long end,
2200 				unsigned int type)
2201 {
2202 	p4d_t *p4d;
2203 	unsigned long next;
2204 	int ret;
2205 
2206 	p4d = p4d_offset(pgd, addr);
2207 	do {
2208 		next = p4d_addr_end(addr, end);
2209 		if (p4d_none_or_clear_bad(p4d))
2210 			continue;
2211 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2212 		if (ret)
2213 			return ret;
2214 	} while (p4d++, addr = next, addr != end);
2215 	return 0;
2216 }
2217 
2218 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2219 {
2220 	pgd_t *pgd;
2221 	unsigned long addr, end, next;
2222 	int ret;
2223 
2224 	addr = vma->vm_start;
2225 	end = vma->vm_end;
2226 
2227 	pgd = pgd_offset(vma->vm_mm, addr);
2228 	do {
2229 		next = pgd_addr_end(addr, end);
2230 		if (pgd_none_or_clear_bad(pgd))
2231 			continue;
2232 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2233 		if (ret)
2234 			return ret;
2235 	} while (pgd++, addr = next, addr != end);
2236 	return 0;
2237 }
2238 
2239 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2240 {
2241 	struct vm_area_struct *vma;
2242 	int ret = 0;
2243 	VMA_ITERATOR(vmi, mm, 0);
2244 
2245 	mmap_read_lock(mm);
2246 	for_each_vma(vmi, vma) {
2247 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2248 			ret = unuse_vma(vma, type);
2249 			if (ret)
2250 				break;
2251 		}
2252 
2253 		cond_resched();
2254 	}
2255 	mmap_read_unlock(mm);
2256 	return ret;
2257 }
2258 
2259 /*
2260  * Scan swap_map from current position to next entry still in use.
2261  * Return 0 if there are no inuse entries after prev till end of
2262  * the map.
2263  */
2264 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2265 					unsigned int prev)
2266 {
2267 	unsigned int i;
2268 	unsigned char count;
2269 
2270 	/*
2271 	 * No need for swap_lock here: we're just looking
2272 	 * for whether an entry is in use, not modifying it; false
2273 	 * hits are okay, and sys_swapoff() has already prevented new
2274 	 * allocations from this area (while holding swap_lock).
2275 	 */
2276 	for (i = prev + 1; i < si->max; i++) {
2277 		count = READ_ONCE(si->swap_map[i]);
2278 		if (count && swap_count(count) != SWAP_MAP_BAD)
2279 			break;
2280 		if ((i % LATENCY_LIMIT) == 0)
2281 			cond_resched();
2282 	}
2283 
2284 	if (i == si->max)
2285 		i = 0;
2286 
2287 	return i;
2288 }
2289 
2290 static int try_to_unuse(unsigned int type)
2291 {
2292 	struct mm_struct *prev_mm;
2293 	struct mm_struct *mm;
2294 	struct list_head *p;
2295 	int retval = 0;
2296 	struct swap_info_struct *si = swap_info[type];
2297 	struct folio *folio;
2298 	swp_entry_t entry;
2299 	unsigned int i;
2300 
2301 	if (!swap_usage_in_pages(si))
2302 		goto success;
2303 
2304 retry:
2305 	retval = shmem_unuse(type);
2306 	if (retval)
2307 		return retval;
2308 
2309 	prev_mm = &init_mm;
2310 	mmget(prev_mm);
2311 
2312 	spin_lock(&mmlist_lock);
2313 	p = &init_mm.mmlist;
2314 	while (swap_usage_in_pages(si) &&
2315 	       !signal_pending(current) &&
2316 	       (p = p->next) != &init_mm.mmlist) {
2317 
2318 		mm = list_entry(p, struct mm_struct, mmlist);
2319 		if (!mmget_not_zero(mm))
2320 			continue;
2321 		spin_unlock(&mmlist_lock);
2322 		mmput(prev_mm);
2323 		prev_mm = mm;
2324 		retval = unuse_mm(mm, type);
2325 		if (retval) {
2326 			mmput(prev_mm);
2327 			return retval;
2328 		}
2329 
2330 		/*
2331 		 * Make sure that we aren't completely killing
2332 		 * interactive performance.
2333 		 */
2334 		cond_resched();
2335 		spin_lock(&mmlist_lock);
2336 	}
2337 	spin_unlock(&mmlist_lock);
2338 
2339 	mmput(prev_mm);
2340 
2341 	i = 0;
2342 	while (swap_usage_in_pages(si) &&
2343 	       !signal_pending(current) &&
2344 	       (i = find_next_to_unuse(si, i)) != 0) {
2345 
2346 		entry = swp_entry(type, i);
2347 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2348 		if (IS_ERR(folio))
2349 			continue;
2350 
2351 		/*
2352 		 * It is conceivable that a racing task removed this folio from
2353 		 * swap cache just before we acquired the page lock. The folio
2354 		 * might even be back in swap cache on another swap area. But
2355 		 * that is okay, folio_free_swap() only removes stale folios.
2356 		 */
2357 		folio_lock(folio);
2358 		folio_wait_writeback(folio);
2359 		folio_free_swap(folio);
2360 		folio_unlock(folio);
2361 		folio_put(folio);
2362 	}
2363 
2364 	/*
2365 	 * Lets check again to see if there are still swap entries in the map.
2366 	 * If yes, we would need to do retry the unuse logic again.
2367 	 * Under global memory pressure, swap entries can be reinserted back
2368 	 * into process space after the mmlist loop above passes over them.
2369 	 *
2370 	 * Limit the number of retries? No: when mmget_not_zero()
2371 	 * above fails, that mm is likely to be freeing swap from
2372 	 * exit_mmap(), which proceeds at its own independent pace;
2373 	 * and even shmem_writeout() could have been preempted after
2374 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2375 	 * and robust (though cpu-intensive) just to keep retrying.
2376 	 */
2377 	if (swap_usage_in_pages(si)) {
2378 		if (!signal_pending(current))
2379 			goto retry;
2380 		return -EINTR;
2381 	}
2382 
2383 success:
2384 	/*
2385 	 * Make sure that further cleanups after try_to_unuse() returns happen
2386 	 * after swap_range_free() reduces si->inuse_pages to 0.
2387 	 */
2388 	smp_mb();
2389 	return 0;
2390 }
2391 
2392 /*
2393  * After a successful try_to_unuse, if no swap is now in use, we know
2394  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2395  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2396  * added to the mmlist just after page_duplicate - before would be racy.
2397  */
2398 static void drain_mmlist(void)
2399 {
2400 	struct list_head *p, *next;
2401 	unsigned int type;
2402 
2403 	for (type = 0; type < nr_swapfiles; type++)
2404 		if (swap_usage_in_pages(swap_info[type]))
2405 			return;
2406 	spin_lock(&mmlist_lock);
2407 	list_for_each_safe(p, next, &init_mm.mmlist)
2408 		list_del_init(p);
2409 	spin_unlock(&mmlist_lock);
2410 }
2411 
2412 /*
2413  * Free all of a swapdev's extent information
2414  */
2415 static void destroy_swap_extents(struct swap_info_struct *sis)
2416 {
2417 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2418 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2419 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2420 
2421 		rb_erase(rb, &sis->swap_extent_root);
2422 		kfree(se);
2423 	}
2424 
2425 	if (sis->flags & SWP_ACTIVATED) {
2426 		struct file *swap_file = sis->swap_file;
2427 		struct address_space *mapping = swap_file->f_mapping;
2428 
2429 		sis->flags &= ~SWP_ACTIVATED;
2430 		if (mapping->a_ops->swap_deactivate)
2431 			mapping->a_ops->swap_deactivate(swap_file);
2432 	}
2433 }
2434 
2435 /*
2436  * Add a block range (and the corresponding page range) into this swapdev's
2437  * extent tree.
2438  *
2439  * This function rather assumes that it is called in ascending page order.
2440  */
2441 int
2442 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2443 		unsigned long nr_pages, sector_t start_block)
2444 {
2445 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2446 	struct swap_extent *se;
2447 	struct swap_extent *new_se;
2448 
2449 	/*
2450 	 * place the new node at the right most since the
2451 	 * function is called in ascending page order.
2452 	 */
2453 	while (*link) {
2454 		parent = *link;
2455 		link = &parent->rb_right;
2456 	}
2457 
2458 	if (parent) {
2459 		se = rb_entry(parent, struct swap_extent, rb_node);
2460 		BUG_ON(se->start_page + se->nr_pages != start_page);
2461 		if (se->start_block + se->nr_pages == start_block) {
2462 			/* Merge it */
2463 			se->nr_pages += nr_pages;
2464 			return 0;
2465 		}
2466 	}
2467 
2468 	/* No merge, insert a new extent. */
2469 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2470 	if (new_se == NULL)
2471 		return -ENOMEM;
2472 	new_se->start_page = start_page;
2473 	new_se->nr_pages = nr_pages;
2474 	new_se->start_block = start_block;
2475 
2476 	rb_link_node(&new_se->rb_node, parent, link);
2477 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2478 	return 1;
2479 }
2480 EXPORT_SYMBOL_GPL(add_swap_extent);
2481 
2482 /*
2483  * A `swap extent' is a simple thing which maps a contiguous range of pages
2484  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2485  * built at swapon time and is then used at swap_writepage/swap_read_folio
2486  * time for locating where on disk a page belongs.
2487  *
2488  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2489  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2490  * swap files identically.
2491  *
2492  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2493  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2494  * swapfiles are handled *identically* after swapon time.
2495  *
2496  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2497  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2498  * blocks are found which do not fall within the PAGE_SIZE alignment
2499  * requirements, they are simply tossed out - we will never use those blocks
2500  * for swapping.
2501  *
2502  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2503  * prevents users from writing to the swap device, which will corrupt memory.
2504  *
2505  * The amount of disk space which a single swap extent represents varies.
2506  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2507  * extents in the rbtree. - akpm.
2508  */
2509 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2510 {
2511 	struct file *swap_file = sis->swap_file;
2512 	struct address_space *mapping = swap_file->f_mapping;
2513 	struct inode *inode = mapping->host;
2514 	int ret;
2515 
2516 	if (S_ISBLK(inode->i_mode)) {
2517 		ret = add_swap_extent(sis, 0, sis->max, 0);
2518 		*span = sis->pages;
2519 		return ret;
2520 	}
2521 
2522 	if (mapping->a_ops->swap_activate) {
2523 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2524 		if (ret < 0)
2525 			return ret;
2526 		sis->flags |= SWP_ACTIVATED;
2527 		if ((sis->flags & SWP_FS_OPS) &&
2528 		    sio_pool_init() != 0) {
2529 			destroy_swap_extents(sis);
2530 			return -ENOMEM;
2531 		}
2532 		return ret;
2533 	}
2534 
2535 	return generic_swapfile_activate(sis, swap_file, span);
2536 }
2537 
2538 static int swap_node(struct swap_info_struct *si)
2539 {
2540 	struct block_device *bdev;
2541 
2542 	if (si->bdev)
2543 		bdev = si->bdev;
2544 	else
2545 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2546 
2547 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2548 }
2549 
2550 static void setup_swap_info(struct swap_info_struct *si, int prio,
2551 			    unsigned char *swap_map,
2552 			    struct swap_cluster_info *cluster_info,
2553 			    unsigned long *zeromap)
2554 {
2555 	int i;
2556 
2557 	if (prio >= 0)
2558 		si->prio = prio;
2559 	else
2560 		si->prio = --least_priority;
2561 	/*
2562 	 * the plist prio is negated because plist ordering is
2563 	 * low-to-high, while swap ordering is high-to-low
2564 	 */
2565 	si->list.prio = -si->prio;
2566 	for_each_node(i) {
2567 		if (si->prio >= 0)
2568 			si->avail_lists[i].prio = -si->prio;
2569 		else {
2570 			if (swap_node(si) == i)
2571 				si->avail_lists[i].prio = 1;
2572 			else
2573 				si->avail_lists[i].prio = -si->prio;
2574 		}
2575 	}
2576 	si->swap_map = swap_map;
2577 	si->cluster_info = cluster_info;
2578 	si->zeromap = zeromap;
2579 }
2580 
2581 static void _enable_swap_info(struct swap_info_struct *si)
2582 {
2583 	atomic_long_add(si->pages, &nr_swap_pages);
2584 	total_swap_pages += si->pages;
2585 
2586 	assert_spin_locked(&swap_lock);
2587 	/*
2588 	 * both lists are plists, and thus priority ordered.
2589 	 * swap_active_head needs to be priority ordered for swapoff(),
2590 	 * which on removal of any swap_info_struct with an auto-assigned
2591 	 * (i.e. negative) priority increments the auto-assigned priority
2592 	 * of any lower-priority swap_info_structs.
2593 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2594 	 * which allocates swap pages from the highest available priority
2595 	 * swap_info_struct.
2596 	 */
2597 	plist_add(&si->list, &swap_active_head);
2598 
2599 	/* Add back to available list */
2600 	add_to_avail_list(si, true);
2601 }
2602 
2603 static void enable_swap_info(struct swap_info_struct *si, int prio,
2604 				unsigned char *swap_map,
2605 				struct swap_cluster_info *cluster_info,
2606 				unsigned long *zeromap)
2607 {
2608 	spin_lock(&swap_lock);
2609 	spin_lock(&si->lock);
2610 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2611 	spin_unlock(&si->lock);
2612 	spin_unlock(&swap_lock);
2613 	/*
2614 	 * Finished initializing swap device, now it's safe to reference it.
2615 	 */
2616 	percpu_ref_resurrect(&si->users);
2617 	spin_lock(&swap_lock);
2618 	spin_lock(&si->lock);
2619 	_enable_swap_info(si);
2620 	spin_unlock(&si->lock);
2621 	spin_unlock(&swap_lock);
2622 }
2623 
2624 static void reinsert_swap_info(struct swap_info_struct *si)
2625 {
2626 	spin_lock(&swap_lock);
2627 	spin_lock(&si->lock);
2628 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2629 	_enable_swap_info(si);
2630 	spin_unlock(&si->lock);
2631 	spin_unlock(&swap_lock);
2632 }
2633 
2634 /*
2635  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2636  * see the updated flags, so there will be no more allocations.
2637  */
2638 static void wait_for_allocation(struct swap_info_struct *si)
2639 {
2640 	unsigned long offset;
2641 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2642 	struct swap_cluster_info *ci;
2643 
2644 	BUG_ON(si->flags & SWP_WRITEOK);
2645 
2646 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2647 		ci = lock_cluster(si, offset);
2648 		unlock_cluster(ci);
2649 	}
2650 }
2651 
2652 /*
2653  * Called after swap device's reference count is dead, so
2654  * neither scan nor allocation will use it.
2655  */
2656 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2657 {
2658 	int cpu, i;
2659 	struct swap_info_struct **pcp_si;
2660 
2661 	for_each_possible_cpu(cpu) {
2662 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2663 		/*
2664 		 * Invalidate the percpu swap cluster cache, si->users
2665 		 * is dead, so no new user will point to it, just flush
2666 		 * any existing user.
2667 		 */
2668 		for (i = 0; i < SWAP_NR_ORDERS; i++)
2669 			cmpxchg(&pcp_si[i], si, NULL);
2670 	}
2671 }
2672 
2673 
2674 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2675 {
2676 	struct swap_info_struct *p = NULL;
2677 	unsigned char *swap_map;
2678 	unsigned long *zeromap;
2679 	struct swap_cluster_info *cluster_info;
2680 	struct file *swap_file, *victim;
2681 	struct address_space *mapping;
2682 	struct inode *inode;
2683 	struct filename *pathname;
2684 	int err, found = 0;
2685 
2686 	if (!capable(CAP_SYS_ADMIN))
2687 		return -EPERM;
2688 
2689 	BUG_ON(!current->mm);
2690 
2691 	pathname = getname(specialfile);
2692 	if (IS_ERR(pathname))
2693 		return PTR_ERR(pathname);
2694 
2695 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2696 	err = PTR_ERR(victim);
2697 	if (IS_ERR(victim))
2698 		goto out;
2699 
2700 	mapping = victim->f_mapping;
2701 	spin_lock(&swap_lock);
2702 	plist_for_each_entry(p, &swap_active_head, list) {
2703 		if (p->flags & SWP_WRITEOK) {
2704 			if (p->swap_file->f_mapping == mapping) {
2705 				found = 1;
2706 				break;
2707 			}
2708 		}
2709 	}
2710 	if (!found) {
2711 		err = -EINVAL;
2712 		spin_unlock(&swap_lock);
2713 		goto out_dput;
2714 	}
2715 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2716 		vm_unacct_memory(p->pages);
2717 	else {
2718 		err = -ENOMEM;
2719 		spin_unlock(&swap_lock);
2720 		goto out_dput;
2721 	}
2722 	spin_lock(&p->lock);
2723 	del_from_avail_list(p, true);
2724 	if (p->prio < 0) {
2725 		struct swap_info_struct *si = p;
2726 		int nid;
2727 
2728 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2729 			si->prio++;
2730 			si->list.prio--;
2731 			for_each_node(nid) {
2732 				if (si->avail_lists[nid].prio != 1)
2733 					si->avail_lists[nid].prio--;
2734 			}
2735 		}
2736 		least_priority++;
2737 	}
2738 	plist_del(&p->list, &swap_active_head);
2739 	atomic_long_sub(p->pages, &nr_swap_pages);
2740 	total_swap_pages -= p->pages;
2741 	spin_unlock(&p->lock);
2742 	spin_unlock(&swap_lock);
2743 
2744 	wait_for_allocation(p);
2745 
2746 	set_current_oom_origin();
2747 	err = try_to_unuse(p->type);
2748 	clear_current_oom_origin();
2749 
2750 	if (err) {
2751 		/* re-insert swap space back into swap_list */
2752 		reinsert_swap_info(p);
2753 		goto out_dput;
2754 	}
2755 
2756 	/*
2757 	 * Wait for swap operations protected by get/put_swap_device()
2758 	 * to complete.  Because of synchronize_rcu() here, all swap
2759 	 * operations protected by RCU reader side lock (including any
2760 	 * spinlock) will be waited too.  This makes it easy to
2761 	 * prevent folio_test_swapcache() and the following swap cache
2762 	 * operations from racing with swapoff.
2763 	 */
2764 	percpu_ref_kill(&p->users);
2765 	synchronize_rcu();
2766 	wait_for_completion(&p->comp);
2767 
2768 	flush_work(&p->discard_work);
2769 	flush_work(&p->reclaim_work);
2770 	flush_percpu_swap_cluster(p);
2771 
2772 	destroy_swap_extents(p);
2773 	if (p->flags & SWP_CONTINUED)
2774 		free_swap_count_continuations(p);
2775 
2776 	if (!p->bdev || !bdev_nonrot(p->bdev))
2777 		atomic_dec(&nr_rotate_swap);
2778 
2779 	mutex_lock(&swapon_mutex);
2780 	spin_lock(&swap_lock);
2781 	spin_lock(&p->lock);
2782 	drain_mmlist();
2783 
2784 	swap_file = p->swap_file;
2785 	p->swap_file = NULL;
2786 	p->max = 0;
2787 	swap_map = p->swap_map;
2788 	p->swap_map = NULL;
2789 	zeromap = p->zeromap;
2790 	p->zeromap = NULL;
2791 	cluster_info = p->cluster_info;
2792 	p->cluster_info = NULL;
2793 	spin_unlock(&p->lock);
2794 	spin_unlock(&swap_lock);
2795 	arch_swap_invalidate_area(p->type);
2796 	zswap_swapoff(p->type);
2797 	mutex_unlock(&swapon_mutex);
2798 	kfree(p->global_cluster);
2799 	p->global_cluster = NULL;
2800 	vfree(swap_map);
2801 	kvfree(zeromap);
2802 	kvfree(cluster_info);
2803 	/* Destroy swap account information */
2804 	swap_cgroup_swapoff(p->type);
2805 	exit_swap_address_space(p->type);
2806 
2807 	inode = mapping->host;
2808 
2809 	inode_lock(inode);
2810 	inode->i_flags &= ~S_SWAPFILE;
2811 	inode_unlock(inode);
2812 	filp_close(swap_file, NULL);
2813 
2814 	/*
2815 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2816 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2817 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2818 	 */
2819 	spin_lock(&swap_lock);
2820 	p->flags = 0;
2821 	spin_unlock(&swap_lock);
2822 
2823 	err = 0;
2824 	atomic_inc(&proc_poll_event);
2825 	wake_up_interruptible(&proc_poll_wait);
2826 
2827 out_dput:
2828 	filp_close(victim, NULL);
2829 out:
2830 	putname(pathname);
2831 	return err;
2832 }
2833 
2834 #ifdef CONFIG_PROC_FS
2835 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2836 {
2837 	struct seq_file *seq = file->private_data;
2838 
2839 	poll_wait(file, &proc_poll_wait, wait);
2840 
2841 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2842 		seq->poll_event = atomic_read(&proc_poll_event);
2843 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2844 	}
2845 
2846 	return EPOLLIN | EPOLLRDNORM;
2847 }
2848 
2849 /* iterator */
2850 static void *swap_start(struct seq_file *swap, loff_t *pos)
2851 {
2852 	struct swap_info_struct *si;
2853 	int type;
2854 	loff_t l = *pos;
2855 
2856 	mutex_lock(&swapon_mutex);
2857 
2858 	if (!l)
2859 		return SEQ_START_TOKEN;
2860 
2861 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2862 		if (!(si->flags & SWP_USED) || !si->swap_map)
2863 			continue;
2864 		if (!--l)
2865 			return si;
2866 	}
2867 
2868 	return NULL;
2869 }
2870 
2871 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2872 {
2873 	struct swap_info_struct *si = v;
2874 	int type;
2875 
2876 	if (v == SEQ_START_TOKEN)
2877 		type = 0;
2878 	else
2879 		type = si->type + 1;
2880 
2881 	++(*pos);
2882 	for (; (si = swap_type_to_swap_info(type)); type++) {
2883 		if (!(si->flags & SWP_USED) || !si->swap_map)
2884 			continue;
2885 		return si;
2886 	}
2887 
2888 	return NULL;
2889 }
2890 
2891 static void swap_stop(struct seq_file *swap, void *v)
2892 {
2893 	mutex_unlock(&swapon_mutex);
2894 }
2895 
2896 static int swap_show(struct seq_file *swap, void *v)
2897 {
2898 	struct swap_info_struct *si = v;
2899 	struct file *file;
2900 	int len;
2901 	unsigned long bytes, inuse;
2902 
2903 	if (si == SEQ_START_TOKEN) {
2904 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2905 		return 0;
2906 	}
2907 
2908 	bytes = K(si->pages);
2909 	inuse = K(swap_usage_in_pages(si));
2910 
2911 	file = si->swap_file;
2912 	len = seq_file_path(swap, file, " \t\n\\");
2913 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2914 			len < 40 ? 40 - len : 1, " ",
2915 			S_ISBLK(file_inode(file)->i_mode) ?
2916 				"partition" : "file\t",
2917 			bytes, bytes < 10000000 ? "\t" : "",
2918 			inuse, inuse < 10000000 ? "\t" : "",
2919 			si->prio);
2920 	return 0;
2921 }
2922 
2923 static const struct seq_operations swaps_op = {
2924 	.start =	swap_start,
2925 	.next =		swap_next,
2926 	.stop =		swap_stop,
2927 	.show =		swap_show
2928 };
2929 
2930 static int swaps_open(struct inode *inode, struct file *file)
2931 {
2932 	struct seq_file *seq;
2933 	int ret;
2934 
2935 	ret = seq_open(file, &swaps_op);
2936 	if (ret)
2937 		return ret;
2938 
2939 	seq = file->private_data;
2940 	seq->poll_event = atomic_read(&proc_poll_event);
2941 	return 0;
2942 }
2943 
2944 static const struct proc_ops swaps_proc_ops = {
2945 	.proc_flags	= PROC_ENTRY_PERMANENT,
2946 	.proc_open	= swaps_open,
2947 	.proc_read	= seq_read,
2948 	.proc_lseek	= seq_lseek,
2949 	.proc_release	= seq_release,
2950 	.proc_poll	= swaps_poll,
2951 };
2952 
2953 static int __init procswaps_init(void)
2954 {
2955 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2956 	return 0;
2957 }
2958 __initcall(procswaps_init);
2959 #endif /* CONFIG_PROC_FS */
2960 
2961 #ifdef MAX_SWAPFILES_CHECK
2962 static int __init max_swapfiles_check(void)
2963 {
2964 	MAX_SWAPFILES_CHECK();
2965 	return 0;
2966 }
2967 late_initcall(max_swapfiles_check);
2968 #endif
2969 
2970 static struct swap_info_struct *alloc_swap_info(void)
2971 {
2972 	struct swap_info_struct *p;
2973 	struct swap_info_struct *defer = NULL;
2974 	unsigned int type;
2975 	int i;
2976 
2977 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2978 	if (!p)
2979 		return ERR_PTR(-ENOMEM);
2980 
2981 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2982 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2983 		kvfree(p);
2984 		return ERR_PTR(-ENOMEM);
2985 	}
2986 
2987 	spin_lock(&swap_lock);
2988 	for (type = 0; type < nr_swapfiles; type++) {
2989 		if (!(swap_info[type]->flags & SWP_USED))
2990 			break;
2991 	}
2992 	if (type >= MAX_SWAPFILES) {
2993 		spin_unlock(&swap_lock);
2994 		percpu_ref_exit(&p->users);
2995 		kvfree(p);
2996 		return ERR_PTR(-EPERM);
2997 	}
2998 	if (type >= nr_swapfiles) {
2999 		p->type = type;
3000 		/*
3001 		 * Publish the swap_info_struct after initializing it.
3002 		 * Note that kvzalloc() above zeroes all its fields.
3003 		 */
3004 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3005 		nr_swapfiles++;
3006 	} else {
3007 		defer = p;
3008 		p = swap_info[type];
3009 		/*
3010 		 * Do not memset this entry: a racing procfs swap_next()
3011 		 * would be relying on p->type to remain valid.
3012 		 */
3013 	}
3014 	p->swap_extent_root = RB_ROOT;
3015 	plist_node_init(&p->list, 0);
3016 	for_each_node(i)
3017 		plist_node_init(&p->avail_lists[i], 0);
3018 	p->flags = SWP_USED;
3019 	spin_unlock(&swap_lock);
3020 	if (defer) {
3021 		percpu_ref_exit(&defer->users);
3022 		kvfree(defer);
3023 	}
3024 	spin_lock_init(&p->lock);
3025 	spin_lock_init(&p->cont_lock);
3026 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3027 	init_completion(&p->comp);
3028 
3029 	return p;
3030 }
3031 
3032 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3033 {
3034 	if (S_ISBLK(inode->i_mode)) {
3035 		si->bdev = I_BDEV(inode);
3036 		/*
3037 		 * Zoned block devices contain zones that have a sequential
3038 		 * write only restriction.  Hence zoned block devices are not
3039 		 * suitable for swapping.  Disallow them here.
3040 		 */
3041 		if (bdev_is_zoned(si->bdev))
3042 			return -EINVAL;
3043 		si->flags |= SWP_BLKDEV;
3044 	} else if (S_ISREG(inode->i_mode)) {
3045 		si->bdev = inode->i_sb->s_bdev;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 
3052 /*
3053  * Find out how many pages are allowed for a single swap device. There
3054  * are two limiting factors:
3055  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3056  * 2) the number of bits in the swap pte, as defined by the different
3057  * architectures.
3058  *
3059  * In order to find the largest possible bit mask, a swap entry with
3060  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3061  * decoded to a swp_entry_t again, and finally the swap offset is
3062  * extracted.
3063  *
3064  * This will mask all the bits from the initial ~0UL mask that can't
3065  * be encoded in either the swp_entry_t or the architecture definition
3066  * of a swap pte.
3067  */
3068 unsigned long generic_max_swapfile_size(void)
3069 {
3070 	return swp_offset(pte_to_swp_entry(
3071 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3072 }
3073 
3074 /* Can be overridden by an architecture for additional checks. */
3075 __weak unsigned long arch_max_swapfile_size(void)
3076 {
3077 	return generic_max_swapfile_size();
3078 }
3079 
3080 static unsigned long read_swap_header(struct swap_info_struct *si,
3081 					union swap_header *swap_header,
3082 					struct inode *inode)
3083 {
3084 	int i;
3085 	unsigned long maxpages;
3086 	unsigned long swapfilepages;
3087 	unsigned long last_page;
3088 
3089 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3090 		pr_err("Unable to find swap-space signature\n");
3091 		return 0;
3092 	}
3093 
3094 	/* swap partition endianness hack... */
3095 	if (swab32(swap_header->info.version) == 1) {
3096 		swab32s(&swap_header->info.version);
3097 		swab32s(&swap_header->info.last_page);
3098 		swab32s(&swap_header->info.nr_badpages);
3099 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3100 			return 0;
3101 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3102 			swab32s(&swap_header->info.badpages[i]);
3103 	}
3104 	/* Check the swap header's sub-version */
3105 	if (swap_header->info.version != 1) {
3106 		pr_warn("Unable to handle swap header version %d\n",
3107 			swap_header->info.version);
3108 		return 0;
3109 	}
3110 
3111 	maxpages = swapfile_maximum_size;
3112 	last_page = swap_header->info.last_page;
3113 	if (!last_page) {
3114 		pr_warn("Empty swap-file\n");
3115 		return 0;
3116 	}
3117 	if (last_page > maxpages) {
3118 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3119 			K(maxpages), K(last_page));
3120 	}
3121 	if (maxpages > last_page) {
3122 		maxpages = last_page + 1;
3123 		/* p->max is an unsigned int: don't overflow it */
3124 		if ((unsigned int)maxpages == 0)
3125 			maxpages = UINT_MAX;
3126 	}
3127 
3128 	if (!maxpages)
3129 		return 0;
3130 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3131 	if (swapfilepages && maxpages > swapfilepages) {
3132 		pr_warn("Swap area shorter than signature indicates\n");
3133 		return 0;
3134 	}
3135 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3136 		return 0;
3137 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3138 		return 0;
3139 
3140 	return maxpages;
3141 }
3142 
3143 static int setup_swap_map(struct swap_info_struct *si,
3144 			  union swap_header *swap_header,
3145 			  unsigned char *swap_map,
3146 			  unsigned long maxpages)
3147 {
3148 	unsigned long i;
3149 
3150 	swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3151 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3152 		unsigned int page_nr = swap_header->info.badpages[i];
3153 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3154 			return -EINVAL;
3155 		if (page_nr < maxpages) {
3156 			swap_map[page_nr] = SWAP_MAP_BAD;
3157 			si->pages--;
3158 		}
3159 	}
3160 
3161 	if (!si->pages) {
3162 		pr_warn("Empty swap-file\n");
3163 		return -EINVAL;
3164 	}
3165 
3166 	return 0;
3167 }
3168 
3169 #define SWAP_CLUSTER_INFO_COLS						\
3170 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3171 #define SWAP_CLUSTER_SPACE_COLS						\
3172 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3173 #define SWAP_CLUSTER_COLS						\
3174 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3175 
3176 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3177 						union swap_header *swap_header,
3178 						unsigned long maxpages)
3179 {
3180 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3181 	struct swap_cluster_info *cluster_info;
3182 	unsigned long i, j, idx;
3183 	int err = -ENOMEM;
3184 
3185 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3186 	if (!cluster_info)
3187 		goto err;
3188 
3189 	for (i = 0; i < nr_clusters; i++)
3190 		spin_lock_init(&cluster_info[i].lock);
3191 
3192 	if (!(si->flags & SWP_SOLIDSTATE)) {
3193 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3194 				     GFP_KERNEL);
3195 		if (!si->global_cluster)
3196 			goto err_free;
3197 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3198 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3199 		spin_lock_init(&si->global_cluster_lock);
3200 	}
3201 
3202 	/*
3203 	 * Mark unusable pages as unavailable. The clusters aren't
3204 	 * marked free yet, so no list operations are involved yet.
3205 	 *
3206 	 * See setup_swap_map(): header page, bad pages,
3207 	 * and the EOF part of the last cluster.
3208 	 */
3209 	inc_cluster_info_page(si, cluster_info, 0);
3210 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3211 		unsigned int page_nr = swap_header->info.badpages[i];
3212 
3213 		if (page_nr >= maxpages)
3214 			continue;
3215 		inc_cluster_info_page(si, cluster_info, page_nr);
3216 	}
3217 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3218 		inc_cluster_info_page(si, cluster_info, i);
3219 
3220 	INIT_LIST_HEAD(&si->free_clusters);
3221 	INIT_LIST_HEAD(&si->full_clusters);
3222 	INIT_LIST_HEAD(&si->discard_clusters);
3223 
3224 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3225 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3226 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3227 		atomic_long_set(&si->frag_cluster_nr[i], 0);
3228 	}
3229 
3230 	/*
3231 	 * Reduce false cache line sharing between cluster_info and
3232 	 * sharing same address space.
3233 	 */
3234 	for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3235 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3236 			struct swap_cluster_info *ci;
3237 			idx = i * SWAP_CLUSTER_COLS + j;
3238 			ci = cluster_info + idx;
3239 			if (idx >= nr_clusters)
3240 				continue;
3241 			if (ci->count) {
3242 				ci->flags = CLUSTER_FLAG_NONFULL;
3243 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3244 				continue;
3245 			}
3246 			ci->flags = CLUSTER_FLAG_FREE;
3247 			list_add_tail(&ci->list, &si->free_clusters);
3248 		}
3249 	}
3250 
3251 	return cluster_info;
3252 
3253 err_free:
3254 	kvfree(cluster_info);
3255 err:
3256 	return ERR_PTR(err);
3257 }
3258 
3259 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3260 {
3261 	struct swap_info_struct *si;
3262 	struct filename *name;
3263 	struct file *swap_file = NULL;
3264 	struct address_space *mapping;
3265 	struct dentry *dentry;
3266 	int prio;
3267 	int error;
3268 	union swap_header *swap_header;
3269 	int nr_extents;
3270 	sector_t span;
3271 	unsigned long maxpages;
3272 	unsigned char *swap_map = NULL;
3273 	unsigned long *zeromap = NULL;
3274 	struct swap_cluster_info *cluster_info = NULL;
3275 	struct folio *folio = NULL;
3276 	struct inode *inode = NULL;
3277 	bool inced_nr_rotate_swap = false;
3278 
3279 	if (swap_flags & ~SWAP_FLAGS_VALID)
3280 		return -EINVAL;
3281 
3282 	if (!capable(CAP_SYS_ADMIN))
3283 		return -EPERM;
3284 
3285 	if (!swap_avail_heads)
3286 		return -ENOMEM;
3287 
3288 	si = alloc_swap_info();
3289 	if (IS_ERR(si))
3290 		return PTR_ERR(si);
3291 
3292 	INIT_WORK(&si->discard_work, swap_discard_work);
3293 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3294 
3295 	name = getname(specialfile);
3296 	if (IS_ERR(name)) {
3297 		error = PTR_ERR(name);
3298 		name = NULL;
3299 		goto bad_swap;
3300 	}
3301 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3302 	if (IS_ERR(swap_file)) {
3303 		error = PTR_ERR(swap_file);
3304 		swap_file = NULL;
3305 		goto bad_swap;
3306 	}
3307 
3308 	si->swap_file = swap_file;
3309 	mapping = swap_file->f_mapping;
3310 	dentry = swap_file->f_path.dentry;
3311 	inode = mapping->host;
3312 
3313 	error = claim_swapfile(si, inode);
3314 	if (unlikely(error))
3315 		goto bad_swap;
3316 
3317 	inode_lock(inode);
3318 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3319 		error = -ENOENT;
3320 		goto bad_swap_unlock_inode;
3321 	}
3322 	if (IS_SWAPFILE(inode)) {
3323 		error = -EBUSY;
3324 		goto bad_swap_unlock_inode;
3325 	}
3326 
3327 	/*
3328 	 * The swap subsystem needs a major overhaul to support this.
3329 	 * It doesn't work yet so just disable it for now.
3330 	 */
3331 	if (mapping_min_folio_order(mapping) > 0) {
3332 		error = -EINVAL;
3333 		goto bad_swap_unlock_inode;
3334 	}
3335 
3336 	/*
3337 	 * Read the swap header.
3338 	 */
3339 	if (!mapping->a_ops->read_folio) {
3340 		error = -EINVAL;
3341 		goto bad_swap_unlock_inode;
3342 	}
3343 	folio = read_mapping_folio(mapping, 0, swap_file);
3344 	if (IS_ERR(folio)) {
3345 		error = PTR_ERR(folio);
3346 		goto bad_swap_unlock_inode;
3347 	}
3348 	swap_header = kmap_local_folio(folio, 0);
3349 
3350 	maxpages = read_swap_header(si, swap_header, inode);
3351 	if (unlikely(!maxpages)) {
3352 		error = -EINVAL;
3353 		goto bad_swap_unlock_inode;
3354 	}
3355 
3356 	si->max = maxpages;
3357 	si->pages = maxpages - 1;
3358 	nr_extents = setup_swap_extents(si, &span);
3359 	if (nr_extents < 0) {
3360 		error = nr_extents;
3361 		goto bad_swap_unlock_inode;
3362 	}
3363 	if (si->pages != si->max - 1) {
3364 		pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3365 		error = -EINVAL;
3366 		goto bad_swap_unlock_inode;
3367 	}
3368 
3369 	maxpages = si->max;
3370 
3371 	/* OK, set up the swap map and apply the bad block list */
3372 	swap_map = vzalloc(maxpages);
3373 	if (!swap_map) {
3374 		error = -ENOMEM;
3375 		goto bad_swap_unlock_inode;
3376 	}
3377 
3378 	error = swap_cgroup_swapon(si->type, maxpages);
3379 	if (error)
3380 		goto bad_swap_unlock_inode;
3381 
3382 	error = setup_swap_map(si, swap_header, swap_map, maxpages);
3383 	if (error)
3384 		goto bad_swap_unlock_inode;
3385 
3386 	/*
3387 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3388 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3389 	 */
3390 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3391 				    GFP_KERNEL | __GFP_ZERO);
3392 	if (!zeromap) {
3393 		error = -ENOMEM;
3394 		goto bad_swap_unlock_inode;
3395 	}
3396 
3397 	if (si->bdev && bdev_stable_writes(si->bdev))
3398 		si->flags |= SWP_STABLE_WRITES;
3399 
3400 	if (si->bdev && bdev_synchronous(si->bdev))
3401 		si->flags |= SWP_SYNCHRONOUS_IO;
3402 
3403 	if (si->bdev && bdev_nonrot(si->bdev)) {
3404 		si->flags |= SWP_SOLIDSTATE;
3405 	} else {
3406 		atomic_inc(&nr_rotate_swap);
3407 		inced_nr_rotate_swap = true;
3408 	}
3409 
3410 	cluster_info = setup_clusters(si, swap_header, maxpages);
3411 	if (IS_ERR(cluster_info)) {
3412 		error = PTR_ERR(cluster_info);
3413 		cluster_info = NULL;
3414 		goto bad_swap_unlock_inode;
3415 	}
3416 
3417 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3418 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3419 		/*
3420 		 * When discard is enabled for swap with no particular
3421 		 * policy flagged, we set all swap discard flags here in
3422 		 * order to sustain backward compatibility with older
3423 		 * swapon(8) releases.
3424 		 */
3425 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3426 			     SWP_PAGE_DISCARD);
3427 
3428 		/*
3429 		 * By flagging sys_swapon, a sysadmin can tell us to
3430 		 * either do single-time area discards only, or to just
3431 		 * perform discards for released swap page-clusters.
3432 		 * Now it's time to adjust the p->flags accordingly.
3433 		 */
3434 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3435 			si->flags &= ~SWP_PAGE_DISCARD;
3436 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3437 			si->flags &= ~SWP_AREA_DISCARD;
3438 
3439 		/* issue a swapon-time discard if it's still required */
3440 		if (si->flags & SWP_AREA_DISCARD) {
3441 			int err = discard_swap(si);
3442 			if (unlikely(err))
3443 				pr_err("swapon: discard_swap(%p): %d\n",
3444 					si, err);
3445 		}
3446 	}
3447 
3448 	error = init_swap_address_space(si->type, maxpages);
3449 	if (error)
3450 		goto bad_swap_unlock_inode;
3451 
3452 	error = zswap_swapon(si->type, maxpages);
3453 	if (error)
3454 		goto free_swap_address_space;
3455 
3456 	/*
3457 	 * Flush any pending IO and dirty mappings before we start using this
3458 	 * swap device.
3459 	 */
3460 	inode->i_flags |= S_SWAPFILE;
3461 	error = inode_drain_writes(inode);
3462 	if (error) {
3463 		inode->i_flags &= ~S_SWAPFILE;
3464 		goto free_swap_zswap;
3465 	}
3466 
3467 	mutex_lock(&swapon_mutex);
3468 	prio = -1;
3469 	if (swap_flags & SWAP_FLAG_PREFER)
3470 		prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3471 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3472 
3473 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3474 		K(si->pages), name->name, si->prio, nr_extents,
3475 		K((unsigned long long)span),
3476 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3477 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3478 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3479 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3480 
3481 	mutex_unlock(&swapon_mutex);
3482 	atomic_inc(&proc_poll_event);
3483 	wake_up_interruptible(&proc_poll_wait);
3484 
3485 	error = 0;
3486 	goto out;
3487 free_swap_zswap:
3488 	zswap_swapoff(si->type);
3489 free_swap_address_space:
3490 	exit_swap_address_space(si->type);
3491 bad_swap_unlock_inode:
3492 	inode_unlock(inode);
3493 bad_swap:
3494 	kfree(si->global_cluster);
3495 	si->global_cluster = NULL;
3496 	inode = NULL;
3497 	destroy_swap_extents(si);
3498 	swap_cgroup_swapoff(si->type);
3499 	spin_lock(&swap_lock);
3500 	si->swap_file = NULL;
3501 	si->flags = 0;
3502 	spin_unlock(&swap_lock);
3503 	vfree(swap_map);
3504 	kvfree(zeromap);
3505 	kvfree(cluster_info);
3506 	if (inced_nr_rotate_swap)
3507 		atomic_dec(&nr_rotate_swap);
3508 	if (swap_file)
3509 		filp_close(swap_file, NULL);
3510 out:
3511 	if (!IS_ERR_OR_NULL(folio))
3512 		folio_release_kmap(folio, swap_header);
3513 	if (name)
3514 		putname(name);
3515 	if (inode)
3516 		inode_unlock(inode);
3517 	return error;
3518 }
3519 
3520 void si_swapinfo(struct sysinfo *val)
3521 {
3522 	unsigned int type;
3523 	unsigned long nr_to_be_unused = 0;
3524 
3525 	spin_lock(&swap_lock);
3526 	for (type = 0; type < nr_swapfiles; type++) {
3527 		struct swap_info_struct *si = swap_info[type];
3528 
3529 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3530 			nr_to_be_unused += swap_usage_in_pages(si);
3531 	}
3532 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3533 	val->totalswap = total_swap_pages + nr_to_be_unused;
3534 	spin_unlock(&swap_lock);
3535 }
3536 
3537 /*
3538  * Verify that nr swap entries are valid and increment their swap map counts.
3539  *
3540  * Returns error code in following case.
3541  * - success -> 0
3542  * - swp_entry is invalid -> EINVAL
3543  * - swap-cache reference is requested but there is already one. -> EEXIST
3544  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3545  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3546  */
3547 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3548 {
3549 	struct swap_info_struct *si;
3550 	struct swap_cluster_info *ci;
3551 	unsigned long offset;
3552 	unsigned char count;
3553 	unsigned char has_cache;
3554 	int err, i;
3555 
3556 	si = swp_swap_info(entry);
3557 	if (WARN_ON_ONCE(!si)) {
3558 		pr_err("%s%08lx\n", Bad_file, entry.val);
3559 		return -EINVAL;
3560 	}
3561 
3562 	offset = swp_offset(entry);
3563 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3564 	VM_WARN_ON(usage == 1 && nr > 1);
3565 	ci = lock_cluster(si, offset);
3566 
3567 	err = 0;
3568 	for (i = 0; i < nr; i++) {
3569 		count = si->swap_map[offset + i];
3570 
3571 		/*
3572 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3573 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3574 		 */
3575 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3576 			err = -ENOENT;
3577 			goto unlock_out;
3578 		}
3579 
3580 		has_cache = count & SWAP_HAS_CACHE;
3581 		count &= ~SWAP_HAS_CACHE;
3582 
3583 		if (!count && !has_cache) {
3584 			err = -ENOENT;
3585 		} else if (usage == SWAP_HAS_CACHE) {
3586 			if (has_cache)
3587 				err = -EEXIST;
3588 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3589 			err = -EINVAL;
3590 		}
3591 
3592 		if (err)
3593 			goto unlock_out;
3594 	}
3595 
3596 	for (i = 0; i < nr; i++) {
3597 		count = si->swap_map[offset + i];
3598 		has_cache = count & SWAP_HAS_CACHE;
3599 		count &= ~SWAP_HAS_CACHE;
3600 
3601 		if (usage == SWAP_HAS_CACHE)
3602 			has_cache = SWAP_HAS_CACHE;
3603 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3604 			count += usage;
3605 		else if (swap_count_continued(si, offset + i, count))
3606 			count = COUNT_CONTINUED;
3607 		else {
3608 			/*
3609 			 * Don't need to rollback changes, because if
3610 			 * usage == 1, there must be nr == 1.
3611 			 */
3612 			err = -ENOMEM;
3613 			goto unlock_out;
3614 		}
3615 
3616 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3617 	}
3618 
3619 unlock_out:
3620 	unlock_cluster(ci);
3621 	return err;
3622 }
3623 
3624 /*
3625  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3626  * (in which case its reference count is never incremented).
3627  */
3628 void swap_shmem_alloc(swp_entry_t entry, int nr)
3629 {
3630 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3631 }
3632 
3633 /*
3634  * Increase reference count of swap entry by 1.
3635  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3636  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3637  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3638  * might occur if a page table entry has got corrupted.
3639  */
3640 int swap_duplicate(swp_entry_t entry)
3641 {
3642 	int err = 0;
3643 
3644 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3645 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3646 	return err;
3647 }
3648 
3649 /*
3650  * @entry: first swap entry from which we allocate nr swap cache.
3651  *
3652  * Called when allocating swap cache for existing swap entries,
3653  * This can return error codes. Returns 0 at success.
3654  * -EEXIST means there is a swap cache.
3655  * Note: return code is different from swap_duplicate().
3656  */
3657 int swapcache_prepare(swp_entry_t entry, int nr)
3658 {
3659 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3660 }
3661 
3662 /*
3663  * Caller should ensure entries belong to the same folio so
3664  * the entries won't span cross cluster boundary.
3665  */
3666 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3667 {
3668 	swap_entries_put_cache(si, entry, nr);
3669 }
3670 
3671 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3672 {
3673 	return swap_type_to_swap_info(swp_type(entry));
3674 }
3675 
3676 /*
3677  * add_swap_count_continuation - called when a swap count is duplicated
3678  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3679  * page of the original vmalloc'ed swap_map, to hold the continuation count
3680  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3681  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3682  *
3683  * These continuation pages are seldom referenced: the common paths all work
3684  * on the original swap_map, only referring to a continuation page when the
3685  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3686  *
3687  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3688  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3689  * can be called after dropping locks.
3690  */
3691 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3692 {
3693 	struct swap_info_struct *si;
3694 	struct swap_cluster_info *ci;
3695 	struct page *head;
3696 	struct page *page;
3697 	struct page *list_page;
3698 	pgoff_t offset;
3699 	unsigned char count;
3700 	int ret = 0;
3701 
3702 	/*
3703 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3704 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3705 	 */
3706 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3707 
3708 	si = get_swap_device(entry);
3709 	if (!si) {
3710 		/*
3711 		 * An acceptable race has occurred since the failing
3712 		 * __swap_duplicate(): the swap device may be swapoff
3713 		 */
3714 		goto outer;
3715 	}
3716 
3717 	offset = swp_offset(entry);
3718 
3719 	ci = lock_cluster(si, offset);
3720 
3721 	count = swap_count(si->swap_map[offset]);
3722 
3723 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3724 		/*
3725 		 * The higher the swap count, the more likely it is that tasks
3726 		 * will race to add swap count continuation: we need to avoid
3727 		 * over-provisioning.
3728 		 */
3729 		goto out;
3730 	}
3731 
3732 	if (!page) {
3733 		ret = -ENOMEM;
3734 		goto out;
3735 	}
3736 
3737 	head = vmalloc_to_page(si->swap_map + offset);
3738 	offset &= ~PAGE_MASK;
3739 
3740 	spin_lock(&si->cont_lock);
3741 	/*
3742 	 * Page allocation does not initialize the page's lru field,
3743 	 * but it does always reset its private field.
3744 	 */
3745 	if (!page_private(head)) {
3746 		BUG_ON(count & COUNT_CONTINUED);
3747 		INIT_LIST_HEAD(&head->lru);
3748 		set_page_private(head, SWP_CONTINUED);
3749 		si->flags |= SWP_CONTINUED;
3750 	}
3751 
3752 	list_for_each_entry(list_page, &head->lru, lru) {
3753 		unsigned char *map;
3754 
3755 		/*
3756 		 * If the previous map said no continuation, but we've found
3757 		 * a continuation page, free our allocation and use this one.
3758 		 */
3759 		if (!(count & COUNT_CONTINUED))
3760 			goto out_unlock_cont;
3761 
3762 		map = kmap_local_page(list_page) + offset;
3763 		count = *map;
3764 		kunmap_local(map);
3765 
3766 		/*
3767 		 * If this continuation count now has some space in it,
3768 		 * free our allocation and use this one.
3769 		 */
3770 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3771 			goto out_unlock_cont;
3772 	}
3773 
3774 	list_add_tail(&page->lru, &head->lru);
3775 	page = NULL;			/* now it's attached, don't free it */
3776 out_unlock_cont:
3777 	spin_unlock(&si->cont_lock);
3778 out:
3779 	unlock_cluster(ci);
3780 	put_swap_device(si);
3781 outer:
3782 	if (page)
3783 		__free_page(page);
3784 	return ret;
3785 }
3786 
3787 /*
3788  * swap_count_continued - when the original swap_map count is incremented
3789  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3790  * into, carry if so, or else fail until a new continuation page is allocated;
3791  * when the original swap_map count is decremented from 0 with continuation,
3792  * borrow from the continuation and report whether it still holds more.
3793  * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3794  * holds cluster lock.
3795  */
3796 static bool swap_count_continued(struct swap_info_struct *si,
3797 				 pgoff_t offset, unsigned char count)
3798 {
3799 	struct page *head;
3800 	struct page *page;
3801 	unsigned char *map;
3802 	bool ret;
3803 
3804 	head = vmalloc_to_page(si->swap_map + offset);
3805 	if (page_private(head) != SWP_CONTINUED) {
3806 		BUG_ON(count & COUNT_CONTINUED);
3807 		return false;		/* need to add count continuation */
3808 	}
3809 
3810 	spin_lock(&si->cont_lock);
3811 	offset &= ~PAGE_MASK;
3812 	page = list_next_entry(head, lru);
3813 	map = kmap_local_page(page) + offset;
3814 
3815 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3816 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3817 
3818 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3819 		/*
3820 		 * Think of how you add 1 to 999
3821 		 */
3822 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3823 			kunmap_local(map);
3824 			page = list_next_entry(page, lru);
3825 			BUG_ON(page == head);
3826 			map = kmap_local_page(page) + offset;
3827 		}
3828 		if (*map == SWAP_CONT_MAX) {
3829 			kunmap_local(map);
3830 			page = list_next_entry(page, lru);
3831 			if (page == head) {
3832 				ret = false;	/* add count continuation */
3833 				goto out;
3834 			}
3835 			map = kmap_local_page(page) + offset;
3836 init_map:		*map = 0;		/* we didn't zero the page */
3837 		}
3838 		*map += 1;
3839 		kunmap_local(map);
3840 		while ((page = list_prev_entry(page, lru)) != head) {
3841 			map = kmap_local_page(page) + offset;
3842 			*map = COUNT_CONTINUED;
3843 			kunmap_local(map);
3844 		}
3845 		ret = true;			/* incremented */
3846 
3847 	} else {				/* decrementing */
3848 		/*
3849 		 * Think of how you subtract 1 from 1000
3850 		 */
3851 		BUG_ON(count != COUNT_CONTINUED);
3852 		while (*map == COUNT_CONTINUED) {
3853 			kunmap_local(map);
3854 			page = list_next_entry(page, lru);
3855 			BUG_ON(page == head);
3856 			map = kmap_local_page(page) + offset;
3857 		}
3858 		BUG_ON(*map == 0);
3859 		*map -= 1;
3860 		if (*map == 0)
3861 			count = 0;
3862 		kunmap_local(map);
3863 		while ((page = list_prev_entry(page, lru)) != head) {
3864 			map = kmap_local_page(page) + offset;
3865 			*map = SWAP_CONT_MAX | count;
3866 			count = COUNT_CONTINUED;
3867 			kunmap_local(map);
3868 		}
3869 		ret = count == COUNT_CONTINUED;
3870 	}
3871 out:
3872 	spin_unlock(&si->cont_lock);
3873 	return ret;
3874 }
3875 
3876 /*
3877  * free_swap_count_continuations - swapoff free all the continuation pages
3878  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3879  */
3880 static void free_swap_count_continuations(struct swap_info_struct *si)
3881 {
3882 	pgoff_t offset;
3883 
3884 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3885 		struct page *head;
3886 		head = vmalloc_to_page(si->swap_map + offset);
3887 		if (page_private(head)) {
3888 			struct page *page, *next;
3889 
3890 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3891 				list_del(&page->lru);
3892 				__free_page(page);
3893 			}
3894 		}
3895 	}
3896 }
3897 
3898 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3899 static bool __has_usable_swap(void)
3900 {
3901 	return !plist_head_empty(&swap_active_head);
3902 }
3903 
3904 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3905 {
3906 	struct swap_info_struct *si, *next;
3907 	int nid = folio_nid(folio);
3908 
3909 	if (!(gfp & __GFP_IO))
3910 		return;
3911 
3912 	if (!__has_usable_swap())
3913 		return;
3914 
3915 	if (!blk_cgroup_congested())
3916 		return;
3917 
3918 	/*
3919 	 * We've already scheduled a throttle, avoid taking the global swap
3920 	 * lock.
3921 	 */
3922 	if (current->throttle_disk)
3923 		return;
3924 
3925 	spin_lock(&swap_avail_lock);
3926 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3927 				  avail_lists[nid]) {
3928 		if (si->bdev) {
3929 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3930 			break;
3931 		}
3932 	}
3933 	spin_unlock(&swap_avail_lock);
3934 }
3935 #endif
3936 
3937 static int __init swapfile_init(void)
3938 {
3939 	int nid;
3940 
3941 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3942 					 GFP_KERNEL);
3943 	if (!swap_avail_heads) {
3944 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3945 		return -ENOMEM;
3946 	}
3947 
3948 	for_each_node(nid)
3949 		plist_head_init(&swap_avail_heads[nid]);
3950 
3951 	swapfile_maximum_size = arch_max_swapfile_size();
3952 
3953 #ifdef CONFIG_MIGRATION
3954 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3955 		swap_migration_ad_supported = true;
3956 #endif	/* CONFIG_MIGRATION */
3957 
3958 	return 0;
3959 }
3960 subsys_initcall(swapfile_init);
3961