1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <linux/uaccess.h>
43 #include <vdso/vsyscall.h>
44 #include <vdso/clocksource.h>
45 #include <vdso/helpers.h>
46 #include <asm/facility.h>
47 #include <asm/delay.h>
48 #include <asm/div64.h>
49 #include <asm/vdso.h>
50 #include <asm/irq.h>
51 #include <asm/irq_regs.h>
52 #include <asm/vtimer.h>
53 #include <asm/stp.h>
54 #include <asm/cio.h>
55 #include "entry.h"
56
57 union tod_clock __bootdata_preserved(tod_clock_base);
58 EXPORT_SYMBOL_GPL(tod_clock_base);
59
60 u64 __bootdata_preserved(clock_comparator_max);
61 EXPORT_SYMBOL_GPL(clock_comparator_max);
62
63 static DEFINE_PER_CPU(struct clock_event_device, comparators);
64
65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
66 EXPORT_SYMBOL(s390_epoch_delta_notifier);
67
68 unsigned char ptff_function_mask[16];
69
70 static unsigned long lpar_offset;
71 static unsigned long initial_leap_seconds;
72 static unsigned long tod_steering_end;
73 static long tod_steering_delta;
74
75 /*
76 * Get time offsets with PTFF
77 */
time_early_init(void)78 void __init time_early_init(void)
79 {
80 struct ptff_qto qto;
81 struct ptff_qui qui;
82
83 /* Initialize TOD steering parameters */
84 tod_steering_end = tod_clock_base.tod;
85 vdso_k_time_data->arch_data.tod_steering_end = tod_steering_end;
86
87 if (!test_facility(28))
88 return;
89
90 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
91
92 /* get LPAR offset */
93 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
94 lpar_offset = qto.tod_epoch_difference;
95
96 /* get initial leap seconds */
97 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
98 initial_leap_seconds = (unsigned long)
99 ((long) qui.old_leap * 4096000000L);
100 }
101
sched_clock_noinstr(void)102 unsigned long long noinstr sched_clock_noinstr(void)
103 {
104 return tod_to_ns(__get_tod_clock_monotonic());
105 }
106
107 /*
108 * Scheduler clock - returns current time in nanosec units.
109 */
sched_clock(void)110 unsigned long long notrace sched_clock(void)
111 {
112 return tod_to_ns(get_tod_clock_monotonic());
113 }
114 NOKPROBE_SYMBOL(sched_clock);
115
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)116 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
117 {
118 unsigned long rem, sec, nsec;
119
120 sec = clk->us;
121 rem = do_div(sec, 1000000);
122 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
123 xt->tv_sec = sec;
124 xt->tv_nsec = nsec;
125 }
126
clock_comparator_work(void)127 void clock_comparator_work(void)
128 {
129 struct clock_event_device *cd;
130
131 get_lowcore()->clock_comparator = clock_comparator_max;
132 cd = this_cpu_ptr(&comparators);
133 cd->event_handler(cd);
134 }
135
s390_next_event(unsigned long delta,struct clock_event_device * evt)136 static int s390_next_event(unsigned long delta,
137 struct clock_event_device *evt)
138 {
139 get_lowcore()->clock_comparator = get_tod_clock() + delta;
140 set_clock_comparator(get_lowcore()->clock_comparator);
141 return 0;
142 }
143
144 /*
145 * Set up lowcore and control register of the current cpu to
146 * enable TOD clock and clock comparator interrupts.
147 */
init_cpu_timer(void)148 void init_cpu_timer(void)
149 {
150 struct clock_event_device *cd;
151 int cpu;
152
153 get_lowcore()->clock_comparator = clock_comparator_max;
154 set_clock_comparator(get_lowcore()->clock_comparator);
155
156 cpu = smp_processor_id();
157 cd = &per_cpu(comparators, cpu);
158 cd->name = "comparator";
159 cd->features = CLOCK_EVT_FEAT_ONESHOT;
160 cd->mult = 16777;
161 cd->shift = 12;
162 cd->min_delta_ns = 1;
163 cd->min_delta_ticks = 1;
164 cd->max_delta_ns = LONG_MAX;
165 cd->max_delta_ticks = ULONG_MAX;
166 cd->rating = 400;
167 cd->cpumask = cpumask_of(cpu);
168 cd->set_next_event = s390_next_event;
169
170 clockevents_register_device(cd);
171
172 /* Enable clock comparator timer interrupt. */
173 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
174
175 /* Always allow the timing alert external interrupt. */
176 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
177 }
178
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)179 static void clock_comparator_interrupt(struct ext_code ext_code,
180 unsigned int param32,
181 unsigned long param64)
182 {
183 inc_irq_stat(IRQEXT_CLK);
184 if (get_lowcore()->clock_comparator == clock_comparator_max)
185 set_clock_comparator(get_lowcore()->clock_comparator);
186 }
187
188 static void stp_timing_alert(struct stp_irq_parm *);
189
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)190 static void timing_alert_interrupt(struct ext_code ext_code,
191 unsigned int param32, unsigned long param64)
192 {
193 inc_irq_stat(IRQEXT_TLA);
194 if (param32 & 0x00038000)
195 stp_timing_alert((struct stp_irq_parm *) ¶m32);
196 }
197
198 static void stp_reset(void);
199
read_persistent_clock64(struct timespec64 * ts)200 void read_persistent_clock64(struct timespec64 *ts)
201 {
202 union tod_clock clk;
203 u64 delta;
204
205 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
206 store_tod_clock_ext(&clk);
207 clk.eitod -= delta;
208 ext_to_timespec64(&clk, ts);
209 }
210
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)211 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
212 struct timespec64 *boot_offset)
213 {
214 struct timespec64 boot_time;
215 union tod_clock clk;
216 u64 delta;
217
218 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
219 clk = tod_clock_base;
220 clk.eitod -= delta;
221 ext_to_timespec64(&clk, &boot_time);
222
223 read_persistent_clock64(wall_time);
224 *boot_offset = timespec64_sub(*wall_time, boot_time);
225 }
226
read_tod_clock(struct clocksource * cs)227 static u64 read_tod_clock(struct clocksource *cs)
228 {
229 unsigned long now, adj;
230
231 preempt_disable(); /* protect from changes to steering parameters */
232 now = get_tod_clock();
233 adj = tod_steering_end - now;
234 if (unlikely((s64) adj > 0))
235 /*
236 * manually steer by 1 cycle every 2^16 cycles. This
237 * corresponds to shifting the tod delta by 15. 1s is
238 * therefore steered in ~9h. The adjust will decrease
239 * over time, until it finally reaches 0.
240 */
241 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
242 preempt_enable();
243 return now;
244 }
245
246 static struct clocksource clocksource_tod = {
247 .name = "tod",
248 .rating = 400,
249 .read = read_tod_clock,
250 .mask = CLOCKSOURCE_MASK(64),
251 .mult = 4096000,
252 .shift = 24,
253 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
254 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
255 .id = CSID_S390_TOD,
256 };
257
clocksource_default_clock(void)258 struct clocksource * __init clocksource_default_clock(void)
259 {
260 return &clocksource_tod;
261 }
262
263 /*
264 * Initialize the TOD clock and the CPU timer of
265 * the boot cpu.
266 */
time_init(void)267 void __init time_init(void)
268 {
269 /* Reset time synchronization interfaces. */
270 stp_reset();
271
272 /* request the clock comparator external interrupt */
273 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
274 panic("Couldn't request external interrupt 0x1004");
275
276 /* request the timing alert external interrupt */
277 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
278 panic("Couldn't request external interrupt 0x1406");
279
280 if (__clocksource_register(&clocksource_tod) != 0)
281 panic("Could not register TOD clock source");
282
283 /* Enable TOD clock interrupts on the boot cpu. */
284 init_cpu_timer();
285
286 /* Enable cpu timer interrupts on the boot cpu. */
287 vtime_init();
288 }
289
290 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
291 static DEFINE_MUTEX(stp_mutex);
292 static unsigned long clock_sync_flags;
293
294 #define CLOCK_SYNC_HAS_STP 0
295 #define CLOCK_SYNC_STP 1
296 #define CLOCK_SYNC_STPINFO_VALID 2
297
298 /*
299 * The get_clock function for the physical clock. It will get the current
300 * TOD clock, subtract the LPAR offset and write the result to *clock.
301 * The function returns 0 if the clock is in sync with the external time
302 * source. If the clock mode is local it will return -EOPNOTSUPP and
303 * -EAGAIN if the clock is not in sync with the external reference.
304 */
get_phys_clock(unsigned long * clock)305 int get_phys_clock(unsigned long *clock)
306 {
307 atomic_t *sw_ptr;
308 unsigned int sw0, sw1;
309
310 sw_ptr = &get_cpu_var(clock_sync_word);
311 sw0 = atomic_read(sw_ptr);
312 *clock = get_tod_clock() - lpar_offset;
313 sw1 = atomic_read(sw_ptr);
314 put_cpu_var(clock_sync_word);
315 if (sw0 == sw1 && (sw0 & 0x80000000U))
316 /* Success: time is in sync. */
317 return 0;
318 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
319 return -EOPNOTSUPP;
320 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
321 return -EACCES;
322 return -EAGAIN;
323 }
324 EXPORT_SYMBOL(get_phys_clock);
325
326 /*
327 * Make get_phys_clock() return -EAGAIN.
328 */
disable_sync_clock(void * dummy)329 static void disable_sync_clock(void *dummy)
330 {
331 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
332 /*
333 * Clear the in-sync bit 2^31. All get_phys_clock calls will
334 * fail until the sync bit is turned back on. In addition
335 * increase the "sequence" counter to avoid the race of an
336 * stp event and the complete recovery against get_phys_clock.
337 */
338 atomic_andnot(0x80000000, sw_ptr);
339 atomic_inc(sw_ptr);
340 }
341
342 /*
343 * Make get_phys_clock() return 0 again.
344 * Needs to be called from a context disabled for preemption.
345 */
enable_sync_clock(void)346 static void enable_sync_clock(void)
347 {
348 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
349 atomic_or(0x80000000, sw_ptr);
350 }
351
352 /*
353 * Function to check if the clock is in sync.
354 */
check_sync_clock(void)355 static inline int check_sync_clock(void)
356 {
357 atomic_t *sw_ptr;
358 int rc;
359
360 sw_ptr = &get_cpu_var(clock_sync_word);
361 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
362 put_cpu_var(clock_sync_word);
363 return rc;
364 }
365
366 /*
367 * Apply clock delta to the global data structures.
368 * This is called once on the CPU that performed the clock sync.
369 */
clock_sync_global(long delta)370 static void clock_sync_global(long delta)
371 {
372 unsigned long now, adj;
373 struct ptff_qto qto;
374
375 /* Fixup the monotonic sched clock. */
376 tod_clock_base.eitod += delta;
377 /* Adjust TOD steering parameters. */
378 now = get_tod_clock();
379 adj = tod_steering_end - now;
380 if (unlikely((s64) adj >= 0))
381 /* Calculate how much of the old adjustment is left. */
382 tod_steering_delta = (tod_steering_delta < 0) ?
383 -(adj >> 15) : (adj >> 15);
384 tod_steering_delta += delta;
385 if ((abs(tod_steering_delta) >> 48) != 0)
386 panic("TOD clock sync offset %li is too large to drift\n",
387 tod_steering_delta);
388 tod_steering_end = now + (abs(tod_steering_delta) << 15);
389 vdso_k_time_data->arch_data.tod_steering_end = tod_steering_end;
390 vdso_k_time_data->arch_data.tod_steering_delta = tod_steering_delta;
391
392 /* Update LPAR offset. */
393 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
394 lpar_offset = qto.tod_epoch_difference;
395 /* Call the TOD clock change notifier. */
396 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
397 }
398
399 /*
400 * Apply clock delta to the per-CPU data structures of this CPU.
401 * This is called for each online CPU after the call to clock_sync_global.
402 */
clock_sync_local(long delta)403 static void clock_sync_local(long delta)
404 {
405 /* Add the delta to the clock comparator. */
406 if (get_lowcore()->clock_comparator != clock_comparator_max) {
407 get_lowcore()->clock_comparator += delta;
408 set_clock_comparator(get_lowcore()->clock_comparator);
409 }
410 /* Adjust the last_update_clock time-stamp. */
411 get_lowcore()->last_update_clock += delta;
412 }
413
414 /* Single threaded workqueue used for stp sync events */
415 static struct workqueue_struct *time_sync_wq;
416
time_init_wq(void)417 static void __init time_init_wq(void)
418 {
419 if (time_sync_wq)
420 return;
421 time_sync_wq = create_singlethread_workqueue("timesync");
422 }
423
424 struct clock_sync_data {
425 atomic_t cpus;
426 int in_sync;
427 long clock_delta;
428 };
429
430 /*
431 * Server Time Protocol (STP) code.
432 */
433 static bool stp_online;
434 static struct stp_sstpi stp_info;
435 static void *stp_page;
436
437 static void stp_work_fn(struct work_struct *work);
438 static DECLARE_WORK(stp_work, stp_work_fn);
439 static struct timer_list stp_timer;
440
early_parse_stp(char * p)441 static int __init early_parse_stp(char *p)
442 {
443 return kstrtobool(p, &stp_online);
444 }
445 early_param("stp", early_parse_stp);
446
447 /*
448 * Reset STP attachment.
449 */
stp_reset(void)450 static void __init stp_reset(void)
451 {
452 int rc;
453
454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
456 if (rc == 0)
457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
458 else if (stp_online) {
459 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
460 free_page((unsigned long) stp_page);
461 stp_page = NULL;
462 stp_online = false;
463 }
464 }
465
stp_enabled(void)466 bool stp_enabled(void)
467 {
468 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online;
469 }
470 EXPORT_SYMBOL(stp_enabled);
471
stp_timeout(struct timer_list * unused)472 static void stp_timeout(struct timer_list *unused)
473 {
474 queue_work(time_sync_wq, &stp_work);
475 }
476
stp_init(void)477 static int __init stp_init(void)
478 {
479 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
480 return 0;
481 timer_setup(&stp_timer, stp_timeout, 0);
482 time_init_wq();
483 if (!stp_online)
484 return 0;
485 queue_work(time_sync_wq, &stp_work);
486 return 0;
487 }
488
489 arch_initcall(stp_init);
490
491 /*
492 * STP timing alert. There are three causes:
493 * 1) timing status change
494 * 2) link availability change
495 * 3) time control parameter change
496 * In all three cases we are only interested in the clock source state.
497 * If a STP clock source is now available use it.
498 */
stp_timing_alert(struct stp_irq_parm * intparm)499 static void stp_timing_alert(struct stp_irq_parm *intparm)
500 {
501 if (intparm->tsc || intparm->lac || intparm->tcpc)
502 queue_work(time_sync_wq, &stp_work);
503 }
504
505 /*
506 * STP sync check machine check. This is called when the timing state
507 * changes from the synchronized state to the unsynchronized state.
508 * After a STP sync check the clock is not in sync. The machine check
509 * is broadcasted to all cpus at the same time.
510 */
stp_sync_check(void)511 int stp_sync_check(void)
512 {
513 disable_sync_clock(NULL);
514 return 1;
515 }
516
517 /*
518 * STP island condition machine check. This is called when an attached
519 * server attempts to communicate over an STP link and the servers
520 * have matching CTN ids and have a valid stratum-1 configuration
521 * but the configurations do not match.
522 */
stp_island_check(void)523 int stp_island_check(void)
524 {
525 disable_sync_clock(NULL);
526 return 1;
527 }
528
stp_queue_work(void)529 void stp_queue_work(void)
530 {
531 queue_work(time_sync_wq, &stp_work);
532 }
533
__store_stpinfo(void)534 static int __store_stpinfo(void)
535 {
536 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
537
538 if (rc)
539 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
540 else
541 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
542 return rc;
543 }
544
stpinfo_valid(void)545 static int stpinfo_valid(void)
546 {
547 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
548 }
549
stp_sync_clock(void * data)550 static int stp_sync_clock(void *data)
551 {
552 struct clock_sync_data *sync = data;
553 long clock_delta, flags;
554 static int first;
555 int rc;
556
557 enable_sync_clock();
558 if (xchg(&first, 1) == 0) {
559 /* Wait until all other cpus entered the sync function. */
560 while (atomic_read(&sync->cpus) != 0)
561 cpu_relax();
562 rc = 0;
563 if (stp_info.todoff || stp_info.tmd != 2) {
564 flags = vdso_update_begin();
565 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
566 &clock_delta);
567 if (rc == 0) {
568 sync->clock_delta = clock_delta;
569 clock_sync_global(clock_delta);
570 rc = __store_stpinfo();
571 if (rc == 0 && stp_info.tmd != 2)
572 rc = -EAGAIN;
573 }
574 vdso_update_end(flags);
575 }
576 sync->in_sync = rc ? -EAGAIN : 1;
577 xchg(&first, 0);
578 } else {
579 /* Slave */
580 atomic_dec(&sync->cpus);
581 /* Wait for in_sync to be set. */
582 while (READ_ONCE(sync->in_sync) == 0)
583 __udelay(1);
584 }
585 if (sync->in_sync != 1)
586 /* Didn't work. Clear per-cpu in sync bit again. */
587 disable_sync_clock(NULL);
588 /* Apply clock delta to per-CPU fields of this CPU. */
589 clock_sync_local(sync->clock_delta);
590
591 return 0;
592 }
593
stp_clear_leap(void)594 static int stp_clear_leap(void)
595 {
596 struct __kernel_timex txc;
597 int ret;
598
599 memset(&txc, 0, sizeof(txc));
600
601 ret = do_adjtimex(&txc);
602 if (ret < 0)
603 return ret;
604
605 txc.modes = ADJ_STATUS;
606 txc.status &= ~(STA_INS|STA_DEL);
607 return do_adjtimex(&txc);
608 }
609
stp_check_leap(void)610 static void stp_check_leap(void)
611 {
612 struct stp_stzi stzi;
613 struct stp_lsoib *lsoib = &stzi.lsoib;
614 struct __kernel_timex txc;
615 int64_t timediff;
616 int leapdiff, ret;
617
618 if (!stp_info.lu || !check_sync_clock()) {
619 /*
620 * Either a scheduled leap second was removed by the operator,
621 * or STP is out of sync. In both cases, clear the leap second
622 * kernel flags.
623 */
624 if (stp_clear_leap() < 0)
625 pr_err("failed to clear leap second flags\n");
626 return;
627 }
628
629 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
630 pr_err("stzi failed\n");
631 return;
632 }
633
634 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
635 leapdiff = lsoib->nlso - lsoib->also;
636
637 if (leapdiff != 1 && leapdiff != -1) {
638 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
639 return;
640 }
641
642 if (timediff < 0) {
643 if (stp_clear_leap() < 0)
644 pr_err("failed to clear leap second flags\n");
645 } else if (timediff < 7200) {
646 memset(&txc, 0, sizeof(txc));
647 ret = do_adjtimex(&txc);
648 if (ret < 0)
649 return;
650
651 txc.modes = ADJ_STATUS;
652 if (leapdiff > 0)
653 txc.status |= STA_INS;
654 else
655 txc.status |= STA_DEL;
656 ret = do_adjtimex(&txc);
657 if (ret < 0)
658 pr_err("failed to set leap second flags\n");
659 /* arm Timer to clear leap second flags */
660 mod_timer(&stp_timer, jiffies + secs_to_jiffies(14400));
661 } else {
662 /* The day the leap second is scheduled for hasn't been reached. Retry
663 * in one hour.
664 */
665 mod_timer(&stp_timer, jiffies + secs_to_jiffies(3600));
666 }
667 }
668
669 /*
670 * STP work. Check for the STP state and take over the clock
671 * synchronization if the STP clock source is usable.
672 */
stp_work_fn(struct work_struct * work)673 static void stp_work_fn(struct work_struct *work)
674 {
675 struct clock_sync_data stp_sync;
676 int rc;
677
678 /* prevent multiple execution. */
679 mutex_lock(&stp_mutex);
680
681 if (!stp_online) {
682 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
683 timer_delete_sync(&stp_timer);
684 goto out_unlock;
685 }
686
687 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
688 if (rc)
689 goto out_unlock;
690
691 rc = __store_stpinfo();
692 if (rc || stp_info.c == 0)
693 goto out_unlock;
694
695 /* Skip synchronization if the clock is already in sync. */
696 if (!check_sync_clock()) {
697 memset(&stp_sync, 0, sizeof(stp_sync));
698 cpus_read_lock();
699 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
700 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
701 cpus_read_unlock();
702 }
703
704 if (!check_sync_clock())
705 /*
706 * There is a usable clock but the synchronization failed.
707 * Retry after a second.
708 */
709 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
710 else if (stp_info.lu)
711 stp_check_leap();
712
713 out_unlock:
714 mutex_unlock(&stp_mutex);
715 }
716
717 /*
718 * STP subsys sysfs interface functions
719 */
720 static const struct bus_type stp_subsys = {
721 .name = "stp",
722 .dev_name = "stp",
723 };
724
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)725 static ssize_t ctn_id_show(struct device *dev,
726 struct device_attribute *attr,
727 char *buf)
728 {
729 ssize_t ret = -ENODATA;
730
731 mutex_lock(&stp_mutex);
732 if (stpinfo_valid())
733 ret = sysfs_emit(buf, "%016lx\n",
734 *(unsigned long *)stp_info.ctnid);
735 mutex_unlock(&stp_mutex);
736 return ret;
737 }
738
739 static DEVICE_ATTR_RO(ctn_id);
740
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)741 static ssize_t ctn_type_show(struct device *dev,
742 struct device_attribute *attr,
743 char *buf)
744 {
745 ssize_t ret = -ENODATA;
746
747 mutex_lock(&stp_mutex);
748 if (stpinfo_valid())
749 ret = sysfs_emit(buf, "%i\n", stp_info.ctn);
750 mutex_unlock(&stp_mutex);
751 return ret;
752 }
753
754 static DEVICE_ATTR_RO(ctn_type);
755
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)756 static ssize_t dst_offset_show(struct device *dev,
757 struct device_attribute *attr,
758 char *buf)
759 {
760 ssize_t ret = -ENODATA;
761
762 mutex_lock(&stp_mutex);
763 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
764 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto);
765 mutex_unlock(&stp_mutex);
766 return ret;
767 }
768
769 static DEVICE_ATTR_RO(dst_offset);
770
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)771 static ssize_t leap_seconds_show(struct device *dev,
772 struct device_attribute *attr,
773 char *buf)
774 {
775 ssize_t ret = -ENODATA;
776
777 mutex_lock(&stp_mutex);
778 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
779 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps);
780 mutex_unlock(&stp_mutex);
781 return ret;
782 }
783
784 static DEVICE_ATTR_RO(leap_seconds);
785
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)786 static ssize_t leap_seconds_scheduled_show(struct device *dev,
787 struct device_attribute *attr,
788 char *buf)
789 {
790 struct stp_stzi stzi;
791 ssize_t ret;
792
793 mutex_lock(&stp_mutex);
794 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
795 mutex_unlock(&stp_mutex);
796 return -ENODATA;
797 }
798
799 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
800 mutex_unlock(&stp_mutex);
801 if (ret < 0)
802 return ret;
803
804 if (!stzi.lsoib.p)
805 return sysfs_emit(buf, "0,0\n");
806
807 return sysfs_emit(buf, "%lu,%d\n",
808 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
809 stzi.lsoib.nlso - stzi.lsoib.also);
810 }
811
812 static DEVICE_ATTR_RO(leap_seconds_scheduled);
813
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)814 static ssize_t stratum_show(struct device *dev,
815 struct device_attribute *attr,
816 char *buf)
817 {
818 ssize_t ret = -ENODATA;
819
820 mutex_lock(&stp_mutex);
821 if (stpinfo_valid())
822 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum);
823 mutex_unlock(&stp_mutex);
824 return ret;
825 }
826
827 static DEVICE_ATTR_RO(stratum);
828
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)829 static ssize_t time_offset_show(struct device *dev,
830 struct device_attribute *attr,
831 char *buf)
832 {
833 ssize_t ret = -ENODATA;
834
835 mutex_lock(&stp_mutex);
836 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
837 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto);
838 mutex_unlock(&stp_mutex);
839 return ret;
840 }
841
842 static DEVICE_ATTR_RO(time_offset);
843
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)844 static ssize_t time_zone_offset_show(struct device *dev,
845 struct device_attribute *attr,
846 char *buf)
847 {
848 ssize_t ret = -ENODATA;
849
850 mutex_lock(&stp_mutex);
851 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
852 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo);
853 mutex_unlock(&stp_mutex);
854 return ret;
855 }
856
857 static DEVICE_ATTR_RO(time_zone_offset);
858
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)859 static ssize_t timing_mode_show(struct device *dev,
860 struct device_attribute *attr,
861 char *buf)
862 {
863 ssize_t ret = -ENODATA;
864
865 mutex_lock(&stp_mutex);
866 if (stpinfo_valid())
867 ret = sysfs_emit(buf, "%i\n", stp_info.tmd);
868 mutex_unlock(&stp_mutex);
869 return ret;
870 }
871
872 static DEVICE_ATTR_RO(timing_mode);
873
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)874 static ssize_t timing_state_show(struct device *dev,
875 struct device_attribute *attr,
876 char *buf)
877 {
878 ssize_t ret = -ENODATA;
879
880 mutex_lock(&stp_mutex);
881 if (stpinfo_valid())
882 ret = sysfs_emit(buf, "%i\n", stp_info.tst);
883 mutex_unlock(&stp_mutex);
884 return ret;
885 }
886
887 static DEVICE_ATTR_RO(timing_state);
888
online_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t online_show(struct device *dev,
890 struct device_attribute *attr,
891 char *buf)
892 {
893 return sysfs_emit(buf, "%i\n", stp_online);
894 }
895
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)896 static ssize_t online_store(struct device *dev,
897 struct device_attribute *attr,
898 const char *buf, size_t count)
899 {
900 unsigned int value;
901
902 value = simple_strtoul(buf, NULL, 0);
903 if (value != 0 && value != 1)
904 return -EINVAL;
905 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
906 return -EOPNOTSUPP;
907 mutex_lock(&stp_mutex);
908 stp_online = value;
909 if (stp_online)
910 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
911 else
912 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
913 queue_work(time_sync_wq, &stp_work);
914 mutex_unlock(&stp_mutex);
915 return count;
916 }
917
918 /*
919 * Can't use DEVICE_ATTR because the attribute should be named
920 * stp/online but dev_attr_online already exists in this file ..
921 */
922 static DEVICE_ATTR_RW(online);
923
924 static struct attribute *stp_dev_attrs[] = {
925 &dev_attr_ctn_id.attr,
926 &dev_attr_ctn_type.attr,
927 &dev_attr_dst_offset.attr,
928 &dev_attr_leap_seconds.attr,
929 &dev_attr_online.attr,
930 &dev_attr_leap_seconds_scheduled.attr,
931 &dev_attr_stratum.attr,
932 &dev_attr_time_offset.attr,
933 &dev_attr_time_zone_offset.attr,
934 &dev_attr_timing_mode.attr,
935 &dev_attr_timing_state.attr,
936 NULL
937 };
938 ATTRIBUTE_GROUPS(stp_dev);
939
stp_init_sysfs(void)940 static int __init stp_init_sysfs(void)
941 {
942 return subsys_system_register(&stp_subsys, stp_dev_groups);
943 }
944
945 device_initcall(stp_init_sysfs);
946