1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
26 */
27
28 #include <assert.h>
29 #include <fcntl.h>
30 #include <libgen.h>
31 #include <poll.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <libzutil.h>
37 #include <sys/crypto/icp.h>
38 #include <sys/processor.h>
39 #include <sys/rrwlock.h>
40 #include <sys/spa.h>
41 #include <sys/spa_impl.h>
42 #include <sys/stat.h>
43 #include <sys/systeminfo.h>
44 #include <sys/time.h>
45 #include <sys/utsname.h>
46 #include <sys/zfs_context.h>
47 #include <sys/zfs_onexit.h>
48 #include <sys/zfs_vfsops.h>
49 #include <sys/zstd/zstd.h>
50 #include <sys/zvol.h>
51 #include <zfs_fletcher.h>
52 #include <zlib.h>
53
54 /*
55 * Emulation of kernel services in userland.
56 */
57
58 uint64_t physmem;
59 uint32_t hostid;
60 struct utsname hw_utsname;
61
62 /* If set, all blocks read will be copied to the specified directory. */
63 char *vn_dumpdir = NULL;
64
65 /* this only exists to have its address taken */
66 struct proc p0;
67
68 /*
69 * =========================================================================
70 * threads
71 * =========================================================================
72 *
73 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While
74 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
75 * the expected stack depth while small enough to avoid exhausting address
76 * space with high thread counts.
77 */
78 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768)
79 #define TS_STACK_MAX (256 * 1024)
80
81 struct zk_thread_wrapper {
82 void (*func)(void *);
83 void *arg;
84 };
85
86 static void *
zk_thread_wrapper(void * arg)87 zk_thread_wrapper(void *arg)
88 {
89 struct zk_thread_wrapper ztw;
90 memcpy(&ztw, arg, sizeof (ztw));
91 free(arg);
92 ztw.func(ztw.arg);
93 return (NULL);
94 }
95
96 kthread_t *
zk_thread_create(const char * name,void (* func)(void *),void * arg,size_t stksize,int state)97 zk_thread_create(const char *name, void (*func)(void *), void *arg,
98 size_t stksize, int state)
99 {
100 pthread_attr_t attr;
101 pthread_t tid;
102 char *stkstr;
103 struct zk_thread_wrapper *ztw;
104 int detachstate = PTHREAD_CREATE_DETACHED;
105
106 VERIFY0(pthread_attr_init(&attr));
107
108 if (state & TS_JOINABLE)
109 detachstate = PTHREAD_CREATE_JOINABLE;
110
111 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
112
113 /*
114 * We allow the default stack size in user space to be specified by
115 * setting the ZFS_STACK_SIZE environment variable. This allows us
116 * the convenience of observing and debugging stack overruns in
117 * user space. Explicitly specified stack sizes will be honored.
118 * The usage of ZFS_STACK_SIZE is discussed further in the
119 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
120 */
121 if (stksize == 0) {
122 stkstr = getenv("ZFS_STACK_SIZE");
123
124 if (stkstr == NULL)
125 stksize = TS_STACK_MAX;
126 else
127 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
128 }
129
130 VERIFY3S(stksize, >, 0);
131 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
132
133 /*
134 * If this ever fails, it may be because the stack size is not a
135 * multiple of system page size.
136 */
137 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
138 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
139
140 VERIFY(ztw = malloc(sizeof (*ztw)));
141 ztw->func = func;
142 ztw->arg = arg;
143 VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw));
144 VERIFY0(pthread_attr_destroy(&attr));
145
146 pthread_setname_np(tid, name);
147
148 return ((void *)(uintptr_t)tid);
149 }
150
151 /*
152 * =========================================================================
153 * kstats
154 * =========================================================================
155 */
156 kstat_t *
kstat_create(const char * module,int instance,const char * name,const char * class,uchar_t type,ulong_t ndata,uchar_t ks_flag)157 kstat_create(const char *module, int instance, const char *name,
158 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
159 {
160 (void) module, (void) instance, (void) name, (void) class, (void) type,
161 (void) ndata, (void) ks_flag;
162 return (NULL);
163 }
164
165 void
kstat_install(kstat_t * ksp)166 kstat_install(kstat_t *ksp)
167 {
168 (void) ksp;
169 }
170
171 void
kstat_delete(kstat_t * ksp)172 kstat_delete(kstat_t *ksp)
173 {
174 (void) ksp;
175 }
176
177 void
kstat_set_raw_ops(kstat_t * ksp,int (* headers)(char * buf,size_t size),int (* data)(char * buf,size_t size,void * data),void * (* addr)(kstat_t * ksp,loff_t index))178 kstat_set_raw_ops(kstat_t *ksp,
179 int (*headers)(char *buf, size_t size),
180 int (*data)(char *buf, size_t size, void *data),
181 void *(*addr)(kstat_t *ksp, loff_t index))
182 {
183 (void) ksp, (void) headers, (void) data, (void) addr;
184 }
185
186 /*
187 * =========================================================================
188 * mutexes
189 * =========================================================================
190 */
191
192 void
mutex_init(kmutex_t * mp,char * name,int type,void * cookie)193 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
194 {
195 (void) name, (void) type, (void) cookie;
196 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
197 memset(&mp->m_owner, 0, sizeof (pthread_t));
198 }
199
200 void
mutex_destroy(kmutex_t * mp)201 mutex_destroy(kmutex_t *mp)
202 {
203 VERIFY0(pthread_mutex_destroy(&mp->m_lock));
204 }
205
206 void
mutex_enter(kmutex_t * mp)207 mutex_enter(kmutex_t *mp)
208 {
209 VERIFY0(pthread_mutex_lock(&mp->m_lock));
210 mp->m_owner = pthread_self();
211 }
212
213 int
mutex_enter_check_return(kmutex_t * mp)214 mutex_enter_check_return(kmutex_t *mp)
215 {
216 int error = pthread_mutex_lock(&mp->m_lock);
217 if (error == 0)
218 mp->m_owner = pthread_self();
219 return (error);
220 }
221
222 int
mutex_tryenter(kmutex_t * mp)223 mutex_tryenter(kmutex_t *mp)
224 {
225 int error = pthread_mutex_trylock(&mp->m_lock);
226 if (error == 0) {
227 mp->m_owner = pthread_self();
228 return (1);
229 } else {
230 VERIFY3S(error, ==, EBUSY);
231 return (0);
232 }
233 }
234
235 void
mutex_exit(kmutex_t * mp)236 mutex_exit(kmutex_t *mp)
237 {
238 memset(&mp->m_owner, 0, sizeof (pthread_t));
239 VERIFY0(pthread_mutex_unlock(&mp->m_lock));
240 }
241
242 /*
243 * =========================================================================
244 * rwlocks
245 * =========================================================================
246 */
247
248 void
rw_init(krwlock_t * rwlp,char * name,int type,void * arg)249 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
250 {
251 (void) name, (void) type, (void) arg;
252 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
253 rwlp->rw_readers = 0;
254 rwlp->rw_owner = 0;
255 }
256
257 void
rw_destroy(krwlock_t * rwlp)258 rw_destroy(krwlock_t *rwlp)
259 {
260 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
261 }
262
263 void
rw_enter(krwlock_t * rwlp,krw_t rw)264 rw_enter(krwlock_t *rwlp, krw_t rw)
265 {
266 if (rw == RW_READER) {
267 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
268 atomic_inc_uint(&rwlp->rw_readers);
269 } else {
270 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
271 rwlp->rw_owner = pthread_self();
272 }
273 }
274
275 void
rw_exit(krwlock_t * rwlp)276 rw_exit(krwlock_t *rwlp)
277 {
278 if (RW_READ_HELD(rwlp))
279 atomic_dec_uint(&rwlp->rw_readers);
280 else
281 rwlp->rw_owner = 0;
282
283 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
284 }
285
286 int
rw_tryenter(krwlock_t * rwlp,krw_t rw)287 rw_tryenter(krwlock_t *rwlp, krw_t rw)
288 {
289 int error;
290
291 if (rw == RW_READER)
292 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
293 else
294 error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
295
296 if (error == 0) {
297 if (rw == RW_READER)
298 atomic_inc_uint(&rwlp->rw_readers);
299 else
300 rwlp->rw_owner = pthread_self();
301
302 return (1);
303 }
304
305 VERIFY3S(error, ==, EBUSY);
306
307 return (0);
308 }
309
310 uint32_t
zone_get_hostid(void * zonep)311 zone_get_hostid(void *zonep)
312 {
313 /*
314 * We're emulating the system's hostid in userland.
315 */
316 (void) zonep;
317 return (hostid);
318 }
319
320 int
rw_tryupgrade(krwlock_t * rwlp)321 rw_tryupgrade(krwlock_t *rwlp)
322 {
323 (void) rwlp;
324 return (0);
325 }
326
327 /*
328 * =========================================================================
329 * condition variables
330 * =========================================================================
331 */
332
333 void
cv_init(kcondvar_t * cv,char * name,int type,void * arg)334 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
335 {
336 (void) name, (void) type, (void) arg;
337 VERIFY0(pthread_cond_init(cv, NULL));
338 }
339
340 void
cv_destroy(kcondvar_t * cv)341 cv_destroy(kcondvar_t *cv)
342 {
343 VERIFY0(pthread_cond_destroy(cv));
344 }
345
346 void
cv_wait(kcondvar_t * cv,kmutex_t * mp)347 cv_wait(kcondvar_t *cv, kmutex_t *mp)
348 {
349 memset(&mp->m_owner, 0, sizeof (pthread_t));
350 VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
351 mp->m_owner = pthread_self();
352 }
353
354 int
cv_wait_sig(kcondvar_t * cv,kmutex_t * mp)355 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
356 {
357 cv_wait(cv, mp);
358 return (1);
359 }
360
361 int
cv_timedwait(kcondvar_t * cv,kmutex_t * mp,clock_t abstime)362 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
363 {
364 int error;
365 struct timeval tv;
366 struct timespec ts;
367 clock_t delta;
368
369 delta = abstime - ddi_get_lbolt();
370 if (delta <= 0)
371 return (-1);
372
373 VERIFY0(gettimeofday(&tv, NULL));
374
375 ts.tv_sec = tv.tv_sec + delta / hz;
376 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
377 if (ts.tv_nsec >= NANOSEC) {
378 ts.tv_sec++;
379 ts.tv_nsec -= NANOSEC;
380 }
381
382 memset(&mp->m_owner, 0, sizeof (pthread_t));
383 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
384 mp->m_owner = pthread_self();
385
386 if (error == ETIMEDOUT)
387 return (-1);
388
389 VERIFY0(error);
390
391 return (1);
392 }
393
394 int
cv_timedwait_hires(kcondvar_t * cv,kmutex_t * mp,hrtime_t tim,hrtime_t res,int flag)395 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
396 int flag)
397 {
398 (void) res;
399 int error;
400 struct timeval tv;
401 struct timespec ts;
402 hrtime_t delta;
403
404 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
405
406 delta = tim;
407 if (flag & CALLOUT_FLAG_ABSOLUTE)
408 delta -= gethrtime();
409
410 if (delta <= 0)
411 return (-1);
412
413 VERIFY0(gettimeofday(&tv, NULL));
414
415 ts.tv_sec = tv.tv_sec + delta / NANOSEC;
416 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
417 if (ts.tv_nsec >= NANOSEC) {
418 ts.tv_sec++;
419 ts.tv_nsec -= NANOSEC;
420 }
421
422 memset(&mp->m_owner, 0, sizeof (pthread_t));
423 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
424 mp->m_owner = pthread_self();
425
426 if (error == ETIMEDOUT)
427 return (-1);
428
429 VERIFY0(error);
430
431 return (1);
432 }
433
434 void
cv_signal(kcondvar_t * cv)435 cv_signal(kcondvar_t *cv)
436 {
437 VERIFY0(pthread_cond_signal(cv));
438 }
439
440 void
cv_broadcast(kcondvar_t * cv)441 cv_broadcast(kcondvar_t *cv)
442 {
443 VERIFY0(pthread_cond_broadcast(cv));
444 }
445
446 /*
447 * =========================================================================
448 * procfs list
449 * =========================================================================
450 */
451
452 void
seq_printf(struct seq_file * m,const char * fmt,...)453 seq_printf(struct seq_file *m, const char *fmt, ...)
454 {
455 (void) m, (void) fmt;
456 }
457
458 void
procfs_list_install(const char * module,const char * submodule,const char * name,mode_t mode,procfs_list_t * procfs_list,int (* show)(struct seq_file * f,void * p),int (* show_header)(struct seq_file * f),int (* clear)(procfs_list_t * procfs_list),size_t procfs_list_node_off)459 procfs_list_install(const char *module,
460 const char *submodule,
461 const char *name,
462 mode_t mode,
463 procfs_list_t *procfs_list,
464 int (*show)(struct seq_file *f, void *p),
465 int (*show_header)(struct seq_file *f),
466 int (*clear)(procfs_list_t *procfs_list),
467 size_t procfs_list_node_off)
468 {
469 (void) module, (void) submodule, (void) name, (void) mode, (void) show,
470 (void) show_header, (void) clear;
471 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
472 list_create(&procfs_list->pl_list,
473 procfs_list_node_off + sizeof (procfs_list_node_t),
474 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
475 procfs_list->pl_next_id = 1;
476 procfs_list->pl_node_offset = procfs_list_node_off;
477 }
478
479 void
procfs_list_uninstall(procfs_list_t * procfs_list)480 procfs_list_uninstall(procfs_list_t *procfs_list)
481 {
482 (void) procfs_list;
483 }
484
485 void
procfs_list_destroy(procfs_list_t * procfs_list)486 procfs_list_destroy(procfs_list_t *procfs_list)
487 {
488 ASSERT(list_is_empty(&procfs_list->pl_list));
489 list_destroy(&procfs_list->pl_list);
490 mutex_destroy(&procfs_list->pl_lock);
491 }
492
493 #define NODE_ID(procfs_list, obj) \
494 (((procfs_list_node_t *)(((char *)obj) + \
495 (procfs_list)->pl_node_offset))->pln_id)
496
497 void
procfs_list_add(procfs_list_t * procfs_list,void * p)498 procfs_list_add(procfs_list_t *procfs_list, void *p)
499 {
500 ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
501 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
502 list_insert_tail(&procfs_list->pl_list, p);
503 }
504
505 /*
506 * =========================================================================
507 * vnode operations
508 * =========================================================================
509 */
510
511 /*
512 * =========================================================================
513 * Figure out which debugging statements to print
514 * =========================================================================
515 */
516
517 static char *dprintf_string;
518 static int dprintf_print_all;
519
520 int
dprintf_find_string(const char * string)521 dprintf_find_string(const char *string)
522 {
523 char *tmp_str = dprintf_string;
524 int len = strlen(string);
525
526 /*
527 * Find out if this is a string we want to print.
528 * String format: file1.c,function_name1,file2.c,file3.c
529 */
530
531 while (tmp_str != NULL) {
532 if (strncmp(tmp_str, string, len) == 0 &&
533 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
534 return (1);
535 tmp_str = strchr(tmp_str, ',');
536 if (tmp_str != NULL)
537 tmp_str++; /* Get rid of , */
538 }
539 return (0);
540 }
541
542 void
dprintf_setup(int * argc,char ** argv)543 dprintf_setup(int *argc, char **argv)
544 {
545 int i, j;
546
547 /*
548 * Debugging can be specified two ways: by setting the
549 * environment variable ZFS_DEBUG, or by including a
550 * "debug=..." argument on the command line. The command
551 * line setting overrides the environment variable.
552 */
553
554 for (i = 1; i < *argc; i++) {
555 int len = strlen("debug=");
556 /* First look for a command line argument */
557 if (strncmp("debug=", argv[i], len) == 0) {
558 dprintf_string = argv[i] + len;
559 /* Remove from args */
560 for (j = i; j < *argc; j++)
561 argv[j] = argv[j+1];
562 argv[j] = NULL;
563 (*argc)--;
564 }
565 }
566
567 if (dprintf_string == NULL) {
568 /* Look for ZFS_DEBUG environment variable */
569 dprintf_string = getenv("ZFS_DEBUG");
570 }
571
572 /*
573 * Are we just turning on all debugging?
574 */
575 if (dprintf_find_string("on"))
576 dprintf_print_all = 1;
577
578 if (dprintf_string != NULL)
579 zfs_flags |= ZFS_DEBUG_DPRINTF;
580 }
581
582 /*
583 * =========================================================================
584 * debug printfs
585 * =========================================================================
586 */
587 void
__dprintf(boolean_t dprint,const char * file,const char * func,int line,const char * fmt,...)588 __dprintf(boolean_t dprint, const char *file, const char *func,
589 int line, const char *fmt, ...)
590 {
591 /* Get rid of annoying "../common/" prefix to filename. */
592 const char *newfile = zfs_basename(file);
593
594 va_list adx;
595 if (dprint) {
596 /* dprintf messages are printed immediately */
597
598 if (!dprintf_print_all &&
599 !dprintf_find_string(newfile) &&
600 !dprintf_find_string(func))
601 return;
602
603 /* Print out just the function name if requested */
604 flockfile(stdout);
605 if (dprintf_find_string("pid"))
606 (void) printf("%d ", getpid());
607 if (dprintf_find_string("tid"))
608 (void) printf("%ju ",
609 (uintmax_t)(uintptr_t)pthread_self());
610 if (dprintf_find_string("cpu"))
611 (void) printf("%u ", getcpuid());
612 if (dprintf_find_string("time"))
613 (void) printf("%llu ", gethrtime());
614 if (dprintf_find_string("long"))
615 (void) printf("%s, line %d: ", newfile, line);
616 (void) printf("dprintf: %s: ", func);
617 va_start(adx, fmt);
618 (void) vprintf(fmt, adx);
619 va_end(adx);
620 funlockfile(stdout);
621 } else {
622 /* zfs_dbgmsg is logged for dumping later */
623 size_t size;
624 char *buf;
625 int i;
626
627 size = 1024;
628 buf = umem_alloc(size, UMEM_NOFAIL);
629 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
630
631 if (i < size) {
632 va_start(adx, fmt);
633 (void) vsnprintf(buf + i, size - i, fmt, adx);
634 va_end(adx);
635 }
636
637 __zfs_dbgmsg(buf);
638
639 umem_free(buf, size);
640 }
641 }
642
643 /*
644 * =========================================================================
645 * cmn_err() and panic()
646 * =========================================================================
647 */
648 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
649 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
650
651 __attribute__((noreturn)) void
vpanic(const char * fmt,va_list adx)652 vpanic(const char *fmt, va_list adx)
653 {
654 (void) fprintf(stderr, "error: ");
655 (void) vfprintf(stderr, fmt, adx);
656 (void) fprintf(stderr, "\n");
657
658 abort(); /* think of it as a "user-level crash dump" */
659 }
660
661 __attribute__((noreturn)) void
panic(const char * fmt,...)662 panic(const char *fmt, ...)
663 {
664 va_list adx;
665
666 va_start(adx, fmt);
667 vpanic(fmt, adx);
668 va_end(adx);
669 }
670
671 void
vcmn_err(int ce,const char * fmt,va_list adx)672 vcmn_err(int ce, const char *fmt, va_list adx)
673 {
674 if (ce == CE_PANIC)
675 vpanic(fmt, adx);
676 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
677 (void) fprintf(stderr, "%s", ce_prefix[ce]);
678 (void) vfprintf(stderr, fmt, adx);
679 (void) fprintf(stderr, "%s", ce_suffix[ce]);
680 }
681 }
682
683 void
cmn_err(int ce,const char * fmt,...)684 cmn_err(int ce, const char *fmt, ...)
685 {
686 va_list adx;
687
688 va_start(adx, fmt);
689 vcmn_err(ce, fmt, adx);
690 va_end(adx);
691 }
692
693 /*
694 * =========================================================================
695 * misc routines
696 * =========================================================================
697 */
698
699 void
delay(clock_t ticks)700 delay(clock_t ticks)
701 {
702 (void) poll(0, 0, ticks * (1000 / hz));
703 }
704
705 /*
706 * Find highest one bit set.
707 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
708 * The __builtin_clzll() function is supported by both GCC and Clang.
709 */
710 int
highbit64(uint64_t i)711 highbit64(uint64_t i)
712 {
713 if (i == 0)
714 return (0);
715
716 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
717 }
718
719 /*
720 * Find lowest one bit set.
721 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
722 * The __builtin_ffsll() function is supported by both GCC and Clang.
723 */
724 int
lowbit64(uint64_t i)725 lowbit64(uint64_t i)
726 {
727 if (i == 0)
728 return (0);
729
730 return (__builtin_ffsll(i));
731 }
732
733 const char *random_path = "/dev/random";
734 const char *urandom_path = "/dev/urandom";
735 static int random_fd = -1, urandom_fd = -1;
736
737 void
random_init(void)738 random_init(void)
739 {
740 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
741 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
742 }
743
744 void
random_fini(void)745 random_fini(void)
746 {
747 close(random_fd);
748 close(urandom_fd);
749
750 random_fd = -1;
751 urandom_fd = -1;
752 }
753
754 static int
random_get_bytes_common(uint8_t * ptr,size_t len,int fd)755 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
756 {
757 size_t resid = len;
758 ssize_t bytes;
759
760 ASSERT(fd != -1);
761
762 while (resid != 0) {
763 bytes = read(fd, ptr, resid);
764 ASSERT3S(bytes, >=, 0);
765 ptr += bytes;
766 resid -= bytes;
767 }
768
769 return (0);
770 }
771
772 int
random_get_bytes(uint8_t * ptr,size_t len)773 random_get_bytes(uint8_t *ptr, size_t len)
774 {
775 return (random_get_bytes_common(ptr, len, random_fd));
776 }
777
778 int
random_get_pseudo_bytes(uint8_t * ptr,size_t len)779 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
780 {
781 return (random_get_bytes_common(ptr, len, urandom_fd));
782 }
783
784 int
ddi_strtoull(const char * str,char ** nptr,int base,u_longlong_t * result)785 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
786 {
787 errno = 0;
788 *result = strtoull(str, nptr, base);
789 if (*result == 0)
790 return (errno);
791 return (0);
792 }
793
794 utsname_t *
utsname(void)795 utsname(void)
796 {
797 return (&hw_utsname);
798 }
799
800 /*
801 * =========================================================================
802 * kernel emulation setup & teardown
803 * =========================================================================
804 */
805 static int
umem_out_of_memory(void)806 umem_out_of_memory(void)
807 {
808 char errmsg[] = "out of memory -- generating core dump\n";
809
810 (void) fprintf(stderr, "%s", errmsg);
811 abort();
812 return (0);
813 }
814
815 static void
spa_config_load(void)816 spa_config_load(void)
817 {
818 void *buf = NULL;
819 nvlist_t *nvlist, *child;
820 nvpair_t *nvpair;
821 char *pathname;
822 zfs_file_t *fp;
823 zfs_file_attr_t zfa;
824 uint64_t fsize;
825 int err;
826
827 /*
828 * Open the configuration file.
829 */
830 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
831
832 (void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path);
833
834 err = zfs_file_open(pathname, O_RDONLY, 0, &fp);
835 if (err)
836 err = zfs_file_open(ZPOOL_CACHE_BOOT, O_RDONLY, 0, &fp);
837
838 kmem_free(pathname, MAXPATHLEN);
839
840 if (err)
841 return;
842
843 if (zfs_file_getattr(fp, &zfa))
844 goto out;
845
846 fsize = zfa.zfa_size;
847 buf = kmem_alloc(fsize, KM_SLEEP);
848
849 /*
850 * Read the nvlist from the file.
851 */
852 if (zfs_file_read(fp, buf, fsize, NULL) < 0)
853 goto out;
854
855 /*
856 * Unpack the nvlist.
857 */
858 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
859 goto out;
860
861 /*
862 * Iterate over all elements in the nvlist, creating a new spa_t for
863 * each one with the specified configuration.
864 */
865 mutex_enter(&spa_namespace_lock);
866 nvpair = NULL;
867 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
868 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
869 continue;
870
871 child = fnvpair_value_nvlist(nvpair);
872
873 if (spa_lookup(nvpair_name(nvpair)) != NULL)
874 continue;
875 (void) spa_add(nvpair_name(nvpair), child, NULL);
876 }
877 mutex_exit(&spa_namespace_lock);
878
879 nvlist_free(nvlist);
880
881 out:
882 if (buf != NULL)
883 kmem_free(buf, fsize);
884
885 zfs_file_close(fp);
886 }
887
888 void
kernel_init(int mode)889 kernel_init(int mode)
890 {
891 extern uint_t rrw_tsd_key;
892
893 umem_nofail_callback(umem_out_of_memory);
894
895 physmem = sysconf(_SC_PHYS_PAGES);
896
897 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem,
898 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
899
900 hostid = (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0;
901
902 random_init();
903
904 VERIFY0(uname(&hw_utsname));
905
906 system_taskq_init();
907 icp_init();
908
909 zstd_init();
910
911 spa_init((spa_mode_t)mode);
912 spa_config_load();
913
914 fletcher_4_init();
915
916 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
917 }
918
919 void
kernel_fini(void)920 kernel_fini(void)
921 {
922 fletcher_4_fini();
923 spa_fini();
924
925 zstd_fini();
926
927 icp_fini();
928 system_taskq_fini();
929
930 random_fini();
931 }
932
933 uid_t
crgetuid(cred_t * cr)934 crgetuid(cred_t *cr)
935 {
936 (void) cr;
937 return (0);
938 }
939
940 uid_t
crgetruid(cred_t * cr)941 crgetruid(cred_t *cr)
942 {
943 (void) cr;
944 return (0);
945 }
946
947 gid_t
crgetgid(cred_t * cr)948 crgetgid(cred_t *cr)
949 {
950 (void) cr;
951 return (0);
952 }
953
954 int
crgetngroups(cred_t * cr)955 crgetngroups(cred_t *cr)
956 {
957 (void) cr;
958 return (0);
959 }
960
961 gid_t *
crgetgroups(cred_t * cr)962 crgetgroups(cred_t *cr)
963 {
964 (void) cr;
965 return (NULL);
966 }
967
968 int
zfs_secpolicy_snapshot_perms(const char * name,cred_t * cr)969 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
970 {
971 (void) name, (void) cr;
972 return (0);
973 }
974
975 int
zfs_secpolicy_rename_perms(const char * from,const char * to,cred_t * cr)976 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
977 {
978 (void) from, (void) to, (void) cr;
979 return (0);
980 }
981
982 int
zfs_secpolicy_destroy_perms(const char * name,cred_t * cr)983 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
984 {
985 (void) name, (void) cr;
986 return (0);
987 }
988
989 int
secpolicy_zfs(const cred_t * cr)990 secpolicy_zfs(const cred_t *cr)
991 {
992 (void) cr;
993 return (0);
994 }
995
996 ksiddomain_t *
ksid_lookupdomain(const char * dom)997 ksid_lookupdomain(const char *dom)
998 {
999 ksiddomain_t *kd;
1000
1001 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1002 kd->kd_name = spa_strdup(dom);
1003 return (kd);
1004 }
1005
1006 void
ksiddomain_rele(ksiddomain_t * ksid)1007 ksiddomain_rele(ksiddomain_t *ksid)
1008 {
1009 spa_strfree(ksid->kd_name);
1010 umem_free(ksid, sizeof (ksiddomain_t));
1011 }
1012
1013 char *
kmem_vasprintf(const char * fmt,va_list adx)1014 kmem_vasprintf(const char *fmt, va_list adx)
1015 {
1016 char *buf = NULL;
1017 va_list adx_copy;
1018
1019 va_copy(adx_copy, adx);
1020 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1021 va_end(adx_copy);
1022
1023 return (buf);
1024 }
1025
1026 char *
kmem_asprintf(const char * fmt,...)1027 kmem_asprintf(const char *fmt, ...)
1028 {
1029 char *buf = NULL;
1030 va_list adx;
1031
1032 va_start(adx, fmt);
1033 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1034 va_end(adx);
1035
1036 return (buf);
1037 }
1038
1039 /*
1040 * kmem_scnprintf() will return the number of characters that it would have
1041 * printed whenever it is limited by value of the size variable, rather than
1042 * the number of characters that it did print. This can cause misbehavior on
1043 * subsequent uses of the return value, so we define a safe version that will
1044 * return the number of characters actually printed, minus the NULL format
1045 * character. Subsequent use of this by the safe string functions is safe
1046 * whether it is snprintf(), strlcat() or strlcpy().
1047 */
1048 int
kmem_scnprintf(char * restrict str,size_t size,const char * restrict fmt,...)1049 kmem_scnprintf(char *restrict str, size_t size, const char *restrict fmt, ...)
1050 {
1051 int n;
1052 va_list ap;
1053
1054 /* Make the 0 case a no-op so that we do not return -1 */
1055 if (size == 0)
1056 return (0);
1057
1058 va_start(ap, fmt);
1059 n = vsnprintf(str, size, fmt, ap);
1060 va_end(ap);
1061
1062 if (n >= size)
1063 n = size - 1;
1064
1065 return (n);
1066 }
1067
1068 zfs_file_t *
zfs_onexit_fd_hold(int fd,minor_t * minorp)1069 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1070 {
1071 (void) fd;
1072 *minorp = 0;
1073 return (NULL);
1074 }
1075
1076 void
zfs_onexit_fd_rele(zfs_file_t * fp)1077 zfs_onexit_fd_rele(zfs_file_t *fp)
1078 {
1079 (void) fp;
1080 }
1081
1082 int
zfs_onexit_add_cb(minor_t minor,void (* func)(void *),void * data,uintptr_t * action_handle)1083 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1084 uintptr_t *action_handle)
1085 {
1086 (void) minor, (void) func, (void) data, (void) action_handle;
1087 return (0);
1088 }
1089
1090 fstrans_cookie_t
spl_fstrans_mark(void)1091 spl_fstrans_mark(void)
1092 {
1093 return ((fstrans_cookie_t)0);
1094 }
1095
1096 void
spl_fstrans_unmark(fstrans_cookie_t cookie)1097 spl_fstrans_unmark(fstrans_cookie_t cookie)
1098 {
1099 (void) cookie;
1100 }
1101
1102 int
kmem_cache_reap_active(void)1103 kmem_cache_reap_active(void)
1104 {
1105 return (0);
1106 }
1107
1108 void
zvol_create_minors(const char * name)1109 zvol_create_minors(const char *name)
1110 {
1111 (void) name;
1112 }
1113
1114 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)1115 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1116 {
1117 (void) spa, (void) name, (void) async;
1118 }
1119
1120 void
zvol_rename_minors(spa_t * spa,const char * oldname,const char * newname,boolean_t async)1121 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1122 boolean_t async)
1123 {
1124 (void) spa, (void) oldname, (void) newname, (void) async;
1125 }
1126
1127 /*
1128 * Open file
1129 *
1130 * path - fully qualified path to file
1131 * flags - file attributes O_READ / O_WRITE / O_EXCL
1132 * fpp - pointer to return file pointer
1133 *
1134 * Returns 0 on success underlying error on failure.
1135 */
1136 int
zfs_file_open(const char * path,int flags,int mode,zfs_file_t ** fpp)1137 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1138 {
1139 int fd;
1140 int dump_fd;
1141 int err;
1142 int old_umask = 0;
1143 zfs_file_t *fp;
1144 struct stat64 st;
1145
1146 if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1147 return (errno);
1148
1149 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1150 flags |= O_DIRECT;
1151
1152 if (flags & O_CREAT)
1153 old_umask = umask(0);
1154
1155 fd = open64(path, flags, mode);
1156 if (fd == -1)
1157 return (errno);
1158
1159 if (flags & O_CREAT)
1160 (void) umask(old_umask);
1161
1162 if (vn_dumpdir != NULL) {
1163 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1164 const char *inpath = zfs_basename(path);
1165
1166 (void) snprintf(dumppath, MAXPATHLEN,
1167 "%s/%s", vn_dumpdir, inpath);
1168 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1169 umem_free(dumppath, MAXPATHLEN);
1170 if (dump_fd == -1) {
1171 err = errno;
1172 close(fd);
1173 return (err);
1174 }
1175 } else {
1176 dump_fd = -1;
1177 }
1178
1179 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1180
1181 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1182 fp->f_fd = fd;
1183 fp->f_dump_fd = dump_fd;
1184 *fpp = fp;
1185
1186 return (0);
1187 }
1188
1189 void
zfs_file_close(zfs_file_t * fp)1190 zfs_file_close(zfs_file_t *fp)
1191 {
1192 close(fp->f_fd);
1193 if (fp->f_dump_fd != -1)
1194 close(fp->f_dump_fd);
1195
1196 umem_free(fp, sizeof (zfs_file_t));
1197 }
1198
1199 /*
1200 * Stateful write - use os internal file pointer to determine where to
1201 * write and update on successful completion.
1202 *
1203 * fp - pointer to file (pipe, socket, etc) to write to
1204 * buf - buffer to write
1205 * count - # of bytes to write
1206 * resid - pointer to count of unwritten bytes (if short write)
1207 *
1208 * Returns 0 on success errno on failure.
1209 */
1210 int
zfs_file_write(zfs_file_t * fp,const void * buf,size_t count,ssize_t * resid)1211 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1212 {
1213 ssize_t rc;
1214
1215 rc = write(fp->f_fd, buf, count);
1216 if (rc < 0)
1217 return (errno);
1218
1219 if (resid) {
1220 *resid = count - rc;
1221 } else if (rc != count) {
1222 return (EIO);
1223 }
1224
1225 return (0);
1226 }
1227
1228 /*
1229 * Stateless write - os internal file pointer is not updated.
1230 *
1231 * fp - pointer to file (pipe, socket, etc) to write to
1232 * buf - buffer to write
1233 * count - # of bytes to write
1234 * off - file offset to write to (only valid for seekable types)
1235 * resid - pointer to count of unwritten bytes
1236 *
1237 * Returns 0 on success errno on failure.
1238 */
1239 int
zfs_file_pwrite(zfs_file_t * fp,const void * buf,size_t count,loff_t pos,ssize_t * resid)1240 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1241 size_t count, loff_t pos, ssize_t *resid)
1242 {
1243 ssize_t rc, split, done;
1244 int sectors;
1245
1246 /*
1247 * To simulate partial disk writes, we split writes into two
1248 * system calls so that the process can be killed in between.
1249 * This is used by ztest to simulate realistic failure modes.
1250 */
1251 sectors = count >> SPA_MINBLOCKSHIFT;
1252 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
1253 rc = pwrite64(fp->f_fd, buf, split, pos);
1254 if (rc != -1) {
1255 done = rc;
1256 rc = pwrite64(fp->f_fd, (char *)buf + split,
1257 count - split, pos + split);
1258 }
1259 #ifdef __linux__
1260 if (rc == -1 && errno == EINVAL) {
1261 /*
1262 * Under Linux, this most likely means an alignment issue
1263 * (memory or disk) due to O_DIRECT, so we abort() in order
1264 * to catch the offender.
1265 */
1266 abort();
1267 }
1268 #endif
1269
1270 if (rc < 0)
1271 return (errno);
1272
1273 done += rc;
1274
1275 if (resid) {
1276 *resid = count - done;
1277 } else if (done != count) {
1278 return (EIO);
1279 }
1280
1281 return (0);
1282 }
1283
1284 /*
1285 * Stateful read - use os internal file pointer to determine where to
1286 * read and update on successful completion.
1287 *
1288 * fp - pointer to file (pipe, socket, etc) to read from
1289 * buf - buffer to write
1290 * count - # of bytes to read
1291 * resid - pointer to count of unread bytes (if short read)
1292 *
1293 * Returns 0 on success errno on failure.
1294 */
1295 int
zfs_file_read(zfs_file_t * fp,void * buf,size_t count,ssize_t * resid)1296 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1297 {
1298 int rc;
1299
1300 rc = read(fp->f_fd, buf, count);
1301 if (rc < 0)
1302 return (errno);
1303
1304 if (resid) {
1305 *resid = count - rc;
1306 } else if (rc != count) {
1307 return (EIO);
1308 }
1309
1310 return (0);
1311 }
1312
1313 /*
1314 * Stateless read - os internal file pointer is not updated.
1315 *
1316 * fp - pointer to file (pipe, socket, etc) to read from
1317 * buf - buffer to write
1318 * count - # of bytes to write
1319 * off - file offset to read from (only valid for seekable types)
1320 * resid - pointer to count of unwritten bytes (if short write)
1321 *
1322 * Returns 0 on success errno on failure.
1323 */
1324 int
zfs_file_pread(zfs_file_t * fp,void * buf,size_t count,loff_t off,ssize_t * resid)1325 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1326 ssize_t *resid)
1327 {
1328 ssize_t rc;
1329
1330 rc = pread64(fp->f_fd, buf, count, off);
1331 if (rc < 0) {
1332 #ifdef __linux__
1333 /*
1334 * Under Linux, this most likely means an alignment issue
1335 * (memory or disk) due to O_DIRECT, so we abort() in order to
1336 * catch the offender.
1337 */
1338 if (errno == EINVAL)
1339 abort();
1340 #endif
1341 return (errno);
1342 }
1343
1344 if (fp->f_dump_fd != -1) {
1345 int status;
1346
1347 status = pwrite64(fp->f_dump_fd, buf, rc, off);
1348 ASSERT(status != -1);
1349 }
1350
1351 if (resid) {
1352 *resid = count - rc;
1353 } else if (rc != count) {
1354 return (EIO);
1355 }
1356
1357 return (0);
1358 }
1359
1360 /*
1361 * lseek - set / get file pointer
1362 *
1363 * fp - pointer to file (pipe, socket, etc) to read from
1364 * offp - value to seek to, returns current value plus passed offset
1365 * whence - see man pages for standard lseek whence values
1366 *
1367 * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1368 */
1369 int
zfs_file_seek(zfs_file_t * fp,loff_t * offp,int whence)1370 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1371 {
1372 loff_t rc;
1373
1374 rc = lseek(fp->f_fd, *offp, whence);
1375 if (rc < 0)
1376 return (errno);
1377
1378 *offp = rc;
1379
1380 return (0);
1381 }
1382
1383 /*
1384 * Get file attributes
1385 *
1386 * filp - file pointer
1387 * zfattr - pointer to file attr structure
1388 *
1389 * Currently only used for fetching size and file mode
1390 *
1391 * Returns 0 on success or error code of underlying getattr call on failure.
1392 */
1393 int
zfs_file_getattr(zfs_file_t * fp,zfs_file_attr_t * zfattr)1394 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1395 {
1396 struct stat64 st;
1397
1398 if (fstat64_blk(fp->f_fd, &st) == -1)
1399 return (errno);
1400
1401 zfattr->zfa_size = st.st_size;
1402 zfattr->zfa_mode = st.st_mode;
1403
1404 return (0);
1405 }
1406
1407 /*
1408 * Sync file to disk
1409 *
1410 * filp - file pointer
1411 * flags - O_SYNC and or O_DSYNC
1412 *
1413 * Returns 0 on success or error code of underlying sync call on failure.
1414 */
1415 int
zfs_file_fsync(zfs_file_t * fp,int flags)1416 zfs_file_fsync(zfs_file_t *fp, int flags)
1417 {
1418 (void) flags;
1419
1420 if (fsync(fp->f_fd) < 0)
1421 return (errno);
1422
1423 return (0);
1424 }
1425
1426 /*
1427 * deallocate - zero and/or deallocate file storage
1428 *
1429 * fp - file pointer
1430 * offset - offset to start zeroing or deallocating
1431 * len - length to zero or deallocate
1432 */
1433 int
zfs_file_deallocate(zfs_file_t * fp,loff_t offset,loff_t len)1434 zfs_file_deallocate(zfs_file_t *fp, loff_t offset, loff_t len)
1435 {
1436 int rc;
1437 #if defined(__linux__)
1438 rc = fallocate(fp->f_fd,
1439 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, offset, len);
1440 #elif defined(__FreeBSD__) && (__FreeBSD_version >= 1400029)
1441 struct spacectl_range rqsr = {
1442 .r_offset = offset,
1443 .r_len = len,
1444 };
1445 rc = fspacectl(fp->f_fd, SPACECTL_DEALLOC, &rqsr, 0, &rqsr);
1446 #else
1447 (void) fp, (void) offset, (void) len;
1448 rc = EOPNOTSUPP;
1449 #endif
1450 if (rc)
1451 return (SET_ERROR(rc));
1452 return (0);
1453 }
1454
1455 /*
1456 * Request current file pointer offset
1457 *
1458 * fp - pointer to file
1459 *
1460 * Returns current file offset.
1461 */
1462 loff_t
zfs_file_off(zfs_file_t * fp)1463 zfs_file_off(zfs_file_t *fp)
1464 {
1465 return (lseek(fp->f_fd, SEEK_CUR, 0));
1466 }
1467
1468 /*
1469 * unlink file
1470 *
1471 * path - fully qualified file path
1472 *
1473 * Returns 0 on success.
1474 *
1475 * OPTIONAL
1476 */
1477 int
zfs_file_unlink(const char * path)1478 zfs_file_unlink(const char *path)
1479 {
1480 return (remove(path));
1481 }
1482
1483 /*
1484 * Get reference to file pointer
1485 *
1486 * fd - input file descriptor
1487 *
1488 * Returns pointer to file struct or NULL.
1489 * Unsupported in user space.
1490 */
1491 zfs_file_t *
zfs_file_get(int fd)1492 zfs_file_get(int fd)
1493 {
1494 (void) fd;
1495 abort();
1496 return (NULL);
1497 }
1498 /*
1499 * Drop reference to file pointer
1500 *
1501 * fp - pointer to file struct
1502 *
1503 * Unsupported in user space.
1504 */
1505 void
zfs_file_put(zfs_file_t * fp)1506 zfs_file_put(zfs_file_t *fp)
1507 {
1508 abort();
1509 (void) fp;
1510 }
1511
1512 void
zfsvfs_update_fromname(const char * oldname,const char * newname)1513 zfsvfs_update_fromname(const char *oldname, const char *newname)
1514 {
1515 (void) oldname, (void) newname;
1516 }
1517
1518 void
spa_import_os(spa_t * spa)1519 spa_import_os(spa_t *spa)
1520 {
1521 (void) spa;
1522 }
1523
1524 void
spa_export_os(spa_t * spa)1525 spa_export_os(spa_t *spa)
1526 {
1527 (void) spa;
1528 }
1529
1530 void
spa_activate_os(spa_t * spa)1531 spa_activate_os(spa_t *spa)
1532 {
1533 (void) spa;
1534 }
1535
1536 void
spa_deactivate_os(spa_t * spa)1537 spa_deactivate_os(spa_t *spa)
1538 {
1539 (void) spa;
1540 }
1541