1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
30 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31 * Copyright 2024 Oxide Computer Company
32 * Copyright 2025 Edgecast Cloud LLC.
33 */
34
35 #include <sys/types.h>
36 #include <sys/utsname.h>
37 #include <sys/sysmacros.h>
38 #include <sys/proc.h>
39
40 #include <alloca.h>
41 #include <rtld_db.h>
42 #include <libgen.h>
43 #include <limits.h>
44 #include <string.h>
45 #include <stdlib.h>
46 #include <unistd.h>
47 #include <errno.h>
48 #include <gelf.h>
49 #include <stddef.h>
50 #include <signal.h>
51
52 #include "libproc.h"
53 #include "Pcontrol.h"
54 #include "P32ton.h"
55 #include "Putil.h"
56 #include "proc_fd.h"
57 #ifdef __x86
58 #include "Pcore_linux.h"
59 #endif
60
61 /*
62 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
63 * allocate an additional structure to hold information from the core
64 * file, and attach this to the standard ps_prochandle in place of the
65 * ability to examine /proc/<pid>/ files.
66 */
67
68 /*
69 * Basic i/o function for reading and writing from the process address space
70 * stored in the core file and associated shared libraries. We compute the
71 * appropriate fd and offsets, and let the provided prw function do the rest.
72 */
73 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))74 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
75 ssize_t (*prw)(int, void *, size_t, off64_t))
76 {
77 ssize_t resid = n;
78
79 while (resid != 0) {
80 map_info_t *mp = Paddr2mptr(P, addr);
81
82 uintptr_t mapoff;
83 ssize_t len;
84 off64_t off;
85 int fd;
86
87 if (mp == NULL)
88 break; /* No mapping for this address */
89
90 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
91 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
92 break; /* No file or file not open */
93
94 fd = mp->map_file->file_fd;
95 } else
96 fd = P->asfd;
97
98 mapoff = addr - mp->map_pmap.pr_vaddr;
99 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
100 off = mp->map_offset + mapoff;
101
102 if ((len = prw(fd, buf, len, off)) <= 0)
103 break;
104
105 resid -= len;
106 addr += len;
107 buf = (char *)buf + len;
108 }
109
110 /*
111 * Important: Be consistent with the behavior of i/o on the as file:
112 * writing to an invalid address yields EIO; reading from an invalid
113 * address falls through to returning success and zero bytes.
114 */
115 if (resid == n && n != 0 && prw != pread64) {
116 errno = EIO;
117 return (-1);
118 }
119
120 return (n - resid);
121 }
122
123 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)124 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
125 void *data)
126 {
127 return (core_rw(P, buf, n, addr, pread64));
128 }
129
130 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)131 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
132 void *data)
133 {
134 return (core_rw(P, (void *)buf, n, addr,
135 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
136 }
137
138 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)139 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
140 {
141 core_info_t *core = data;
142
143 if (core->core_cred != NULL) {
144 /*
145 * Avoid returning more supplementary group data than the
146 * caller has allocated in their buffer. We expect them to
147 * check pr_ngroups afterward and potentially call us again.
148 */
149 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
150
151 (void) memcpy(pcrp, core->core_cred,
152 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
153
154 return (0);
155 }
156
157 errno = ENODATA;
158 return (-1);
159 }
160
161 static int
Psecflags_core(struct ps_prochandle * P,prsecflags_t ** psf,void * data)162 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
163 {
164 core_info_t *core = data;
165
166 if (core->core_secflags == NULL) {
167 errno = ENODATA;
168 return (-1);
169 }
170
171 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
172 return (-1);
173
174 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
175
176 return (0);
177 }
178
179 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)180 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
181 {
182 core_info_t *core = data;
183
184 if (core->core_priv == NULL) {
185 errno = ENODATA;
186 return (-1);
187 }
188
189 *pprv = malloc(core->core_priv_size);
190 if (*pprv == NULL) {
191 return (-1);
192 }
193
194 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
195 return (0);
196 }
197
198 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)199 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
200 {
201 return (&P->psinfo);
202 }
203
204 static void
Pfini_core(struct ps_prochandle * P,void * data)205 Pfini_core(struct ps_prochandle *P, void *data)
206 {
207 core_info_t *core = data;
208
209 if (core != NULL) {
210 extern void __priv_free_info(void *);
211 lwp_info_t *lwp;
212
213 while ((lwp = list_remove_head(&core->core_lwp_head)) != NULL) {
214 #ifdef __sparc
215 if (lwp->lwp_gwins != NULL)
216 free(lwp->lwp_gwins);
217 if (lwp->lwp_xregs != NULL)
218 free(lwp->lwp_xregs);
219 if (lwp->lwp_asrs != NULL)
220 free(lwp->lwp_asrs);
221 #endif
222 free(lwp);
223 }
224
225 if (core->core_platform != NULL)
226 free(core->core_platform);
227 if (core->core_uts != NULL)
228 free(core->core_uts);
229 if (core->core_cred != NULL)
230 free(core->core_cred);
231 if (core->core_priv != NULL)
232 free(core->core_priv);
233 if (core->core_privinfo != NULL)
234 __priv_free_info(core->core_privinfo);
235 if (core->core_ppii != NULL)
236 free(core->core_ppii);
237 if (core->core_zonename != NULL)
238 free(core->core_zonename);
239 if (core->core_secflags != NULL)
240 free(core->core_secflags);
241 if (core->core_upanic != NULL)
242 free(core->core_upanic);
243 if (core->core_cwd != NULL)
244 free(core->core_cwd);
245 #ifdef __x86
246 if (core->core_ldt != NULL)
247 free(core->core_ldt);
248 #endif
249
250 free(core);
251 }
252 }
253
254 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)255 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
256 {
257 core_info_t *core = data;
258
259 if (core->core_platform == NULL) {
260 errno = ENODATA;
261 return (NULL);
262 }
263 (void) strncpy(s, core->core_platform, n - 1);
264 s[n - 1] = '\0';
265 return (s);
266 }
267
268 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)269 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
270 {
271 core_info_t *core = data;
272
273 if (core->core_uts == NULL) {
274 errno = ENODATA;
275 return (-1);
276 }
277 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
278 return (0);
279 }
280
281 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)282 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
283 {
284 core_info_t *core = data;
285
286 if (core->core_zonename == NULL) {
287 errno = ENODATA;
288 return (NULL);
289 }
290 (void) strlcpy(s, core->core_zonename, n);
291 return (s);
292 }
293
294 static int
Pcwd_core(struct ps_prochandle * P,prcwd_t ** cwdp,void * data)295 Pcwd_core(struct ps_prochandle *P, prcwd_t **cwdp, void *data)
296 {
297 prcwd_t *cwd;
298 core_info_t *core = data;
299
300 if (core->core_cwd == NULL) {
301 errno = ENODATA;
302 return (-1);
303 }
304
305 if ((cwd = calloc(1, sizeof (prcwd_t))) == NULL)
306 return (-1);
307
308 (void) memcpy(cwd, core->core_cwd, sizeof (prcwd_t));
309 cwd->prcwd_fsname[sizeof (cwd->prcwd_fsname) - 1] = '\0';
310 cwd->prcwd_mntpt[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
311 cwd->prcwd_mntspec[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
312 cwd->prcwd_cwd[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
313 *cwdp = cwd;
314
315 return (0);
316 }
317
318 #ifdef __x86
319 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)320 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
321 {
322 core_info_t *core = data;
323
324 if (pldt == NULL || nldt == 0)
325 return (core->core_nldt);
326
327 if (core->core_ldt != NULL) {
328 nldt = MIN(nldt, core->core_nldt);
329
330 (void) memcpy(pldt, core->core_ldt,
331 nldt * sizeof (struct ssd));
332
333 return (nldt);
334 }
335
336 errno = ENODATA;
337 return (-1);
338 }
339 #endif
340
341 static const ps_ops_t P_core_ops = {
342 .pop_pread = Pread_core,
343 .pop_pwrite = Pwrite_core,
344 .pop_cred = Pcred_core,
345 .pop_priv = Ppriv_core,
346 .pop_psinfo = Ppsinfo_core,
347 .pop_fini = Pfini_core,
348 .pop_platform = Pplatform_core,
349 .pop_uname = Puname_core,
350 .pop_zonename = Pzonename_core,
351 .pop_secflags = Psecflags_core,
352 .pop_cwd = Pcwd_core,
353 #ifdef __x86
354 .pop_ldt = Pldt_core
355 #endif
356 };
357
358 /*
359 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
360 * encountered yet, allocate a new structure and return a pointer to it.
361 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
362 */
363 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)364 lwpid2info(struct ps_prochandle *P, lwpid_t id)
365 {
366 core_info_t *core = P->data;
367 lwp_info_t *lwp, *prev;
368
369 for (lwp = list_head(&core->core_lwp_head); lwp != NULL;
370 lwp = list_next(&core->core_lwp_head, lwp)) {
371 if (lwp->lwp_id == id) {
372 core->core_lwp = lwp;
373 return (lwp);
374 }
375 if (lwp->lwp_id < id) {
376 break;
377 }
378 }
379
380 prev = lwp;
381 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
382 return (NULL);
383
384 list_insert_before(&core->core_lwp_head, prev, lwp);
385 lwp->lwp_id = id;
386
387 core->core_lwp = lwp;
388
389 return (lwp);
390 }
391
392 /*
393 * The core file itself contains a series of NOTE segments containing saved
394 * structures from /proc at the time the process died. For each note we
395 * comprehend, we define a function to read it in from the core file,
396 * convert it to our native data model if necessary, and store it inside
397 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
398 * seek pointer on P->asfd positioned appropriately. We populate a table
399 * of pointers to these note functions below.
400 */
401
402 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)403 note_pstatus(struct ps_prochandle *P, size_t nbytes)
404 {
405 #ifdef _LP64
406 core_info_t *core = P->data;
407
408 if (core->core_dmodel == PR_MODEL_ILP32) {
409 pstatus32_t ps32;
410
411 if (nbytes < sizeof (pstatus32_t) ||
412 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
413 goto err;
414
415 pstatus_32_to_n(&ps32, &P->status);
416
417 } else
418 #endif
419 if (nbytes < sizeof (pstatus_t) ||
420 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
421 goto err;
422
423 P->orig_status = P->status;
424 P->pid = P->status.pr_pid;
425
426 return (0);
427
428 err:
429 Pdprintf("Pgrab_core: failed to read NT_PSTATUS\n");
430 return (-1);
431 }
432
433 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)434 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
435 {
436 lwp_info_t *lwp;
437 lwpstatus_t lps;
438
439 #ifdef _LP64
440 core_info_t *core = P->data;
441
442 if (core->core_dmodel == PR_MODEL_ILP32) {
443 lwpstatus32_t l32;
444
445 if (nbytes < sizeof (lwpstatus32_t) ||
446 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
447 goto err;
448
449 lwpstatus_32_to_n(&l32, &lps);
450 } else
451 #endif
452 if (nbytes < sizeof (lwpstatus_t) ||
453 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
454 goto err;
455
456 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
457 Pdprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
458 return (-1);
459 }
460
461 /*
462 * Erase a useless and confusing artifact of the kernel implementation:
463 * the lwps which did *not* create the core will show SIGKILL. We can
464 * be assured this is bogus because SIGKILL can't produce core files.
465 */
466 if (lps.pr_cursig == SIGKILL)
467 lps.pr_cursig = 0;
468
469 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
470 return (0);
471
472 err:
473 Pdprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
474 return (-1);
475 }
476
477 #ifdef __x86
478
479 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)480 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
481 {
482 psinfo->pr_flag = p32->pr_flag;
483 psinfo->pr_pid = p32->pr_pid;
484 psinfo->pr_ppid = p32->pr_ppid;
485 psinfo->pr_uid = p32->pr_uid;
486 psinfo->pr_gid = p32->pr_gid;
487 psinfo->pr_sid = p32->pr_sid;
488 psinfo->pr_pgid = p32->pr_pgrp;
489
490 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
491 sizeof (psinfo->pr_fname));
492 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
493 sizeof (psinfo->pr_psargs));
494 }
495
496 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)497 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
498 {
499 psinfo->pr_flag = p64->pr_flag;
500 psinfo->pr_pid = p64->pr_pid;
501 psinfo->pr_ppid = p64->pr_ppid;
502 psinfo->pr_uid = p64->pr_uid;
503 psinfo->pr_gid = p64->pr_gid;
504 psinfo->pr_sid = p64->pr_sid;
505 psinfo->pr_pgid = p64->pr_pgrp;
506 psinfo->pr_pgid = p64->pr_pgrp;
507
508 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
509 sizeof (psinfo->pr_fname));
510 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
511 sizeof (psinfo->pr_psargs));
512 }
513
514 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)515 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
516 {
517 core_info_t *core = P->data;
518 lx_prpsinfo32_t p32;
519 lx_prpsinfo64_t p64;
520
521 if (core->core_dmodel == PR_MODEL_ILP32) {
522 if (nbytes < sizeof (p32) ||
523 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
524 goto err;
525
526 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
527 } else {
528 if (nbytes < sizeof (p64) ||
529 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
530 goto err;
531
532 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
533 }
534
535
536 P->status.pr_pid = P->psinfo.pr_pid;
537 P->status.pr_ppid = P->psinfo.pr_ppid;
538 P->status.pr_pgid = P->psinfo.pr_pgid;
539 P->status.pr_sid = P->psinfo.pr_sid;
540
541 P->psinfo.pr_nlwp = 0;
542 P->status.pr_nlwp = 0;
543
544 return (0);
545 err:
546 Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
547 return (-1);
548 }
549
550 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)551 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
552 {
553 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
554 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
555
556 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
557 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
558 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
559 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
560 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
561 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
562 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
563 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
564
565 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
566 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
567 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
568 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
569 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
570 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
571 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
572
573 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
574 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
575 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
576 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
577 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
578 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
579 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
580 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
581
582 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
583 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
584 }
585
586 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)587 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
588 {
589 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
590 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
591
592 #ifdef __amd64
593 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
594 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
595 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
596 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
597 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
598 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
599 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
600 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
601 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
602 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
603 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
604 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
605 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
606 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
607 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
608 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
609 #else /* __amd64 */
610 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
611 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
612 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
613 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
614 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
615 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
616 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
617 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
618 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
619
620 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
621 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
622 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
623 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
624 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
625 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
626
627 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
628 #endif /* !__amd64 */
629 }
630
631 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)632 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
633 {
634 core_info_t *core = P->data;
635
636 lx_prstatus64_t prs64;
637 lx_prstatus32_t prs32;
638 lwp_info_t *lwp;
639 lwpid_t tid;
640
641 Pdprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
642 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
643 if (core->core_dmodel == PR_MODEL_ILP32) {
644 if (nbytes < sizeof (prs32) ||
645 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
646 goto err;
647 tid = prs32.pr_pid;
648 } else {
649 if (nbytes < sizeof (prs64) ||
650 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
651 goto err;
652 tid = prs64.pr_pid;
653 }
654
655 if ((lwp = lwpid2info(P, tid)) == NULL) {
656 Pdprintf("Pgrab_core: failed to add lwpid2info "
657 "linux_prstatus\n");
658 return (-1);
659 }
660
661 P->psinfo.pr_nlwp++;
662 P->status.pr_nlwp++;
663
664 lwp->lwp_status.pr_lwpid = tid;
665
666 if (core->core_dmodel == PR_MODEL_ILP32)
667 lx_prstatus32_to_lwp(&prs32, lwp);
668 else
669 lx_prstatus64_to_lwp(&prs64, lwp);
670
671 return (0);
672 err:
673 Pdprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
674 return (-1);
675 }
676
677 #endif /* __x86 */
678
679 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)680 note_psinfo(struct ps_prochandle *P, size_t nbytes)
681 {
682 #ifdef _LP64
683 core_info_t *core = P->data;
684
685 if (core->core_dmodel == PR_MODEL_ILP32) {
686 psinfo32_t ps32;
687
688 if (nbytes < sizeof (psinfo32_t) ||
689 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
690 goto err;
691
692 psinfo_32_to_n(&ps32, &P->psinfo);
693 } else
694 #endif
695 if (nbytes < sizeof (psinfo_t) ||
696 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
697 goto err;
698
699 Pdprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
700 Pdprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
701 Pdprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
702
703 return (0);
704
705 err:
706 Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
707 return (-1);
708 }
709
710 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)711 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
712 {
713 lwp_info_t *lwp;
714 lwpsinfo_t lps;
715
716 #ifdef _LP64
717 core_info_t *core = P->data;
718
719 if (core->core_dmodel == PR_MODEL_ILP32) {
720 lwpsinfo32_t l32;
721
722 if (nbytes < sizeof (lwpsinfo32_t) ||
723 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
724 goto err;
725
726 lwpsinfo_32_to_n(&l32, &lps);
727 } else
728 #endif
729 if (nbytes < sizeof (lwpsinfo_t) ||
730 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
731 goto err;
732
733 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
734 Pdprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
735 return (-1);
736 }
737
738 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
739 return (0);
740
741 err:
742 Pdprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
743 return (-1);
744 }
745
746 static int
note_lwpname(struct ps_prochandle * P,size_t nbytes)747 note_lwpname(struct ps_prochandle *P, size_t nbytes)
748 {
749 prlwpname_t name;
750 lwp_info_t *lwp;
751
752 if (nbytes != sizeof (name) ||
753 read(P->asfd, &name, sizeof (name)) != sizeof (name))
754 goto err;
755
756 if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
757 goto err;
758
759 if (strlcpy(lwp->lwp_name, name.pr_lwpname,
760 sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
761 errno = ENAMETOOLONG;
762 goto err;
763 }
764
765 return (0);
766
767 err:
768 Pdprintf("Pgrab_core: failed to read NT_LWPNAME\n");
769 return (-1);
770 }
771
772 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)773 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
774 {
775 prfdinfo_core_t prfd;
776 fd_info_t *fip;
777
778 if ((nbytes < sizeof (prfd)) ||
779 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
780 Pdprintf("Pgrab_core: failed to read NT_FDINFO\n");
781 return (-1);
782 }
783
784 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
785 Pdprintf("Pgrab_core: failed to add NT_FDINFO\n");
786 return (-1);
787 }
788 if (fip->fd_info == NULL) {
789 if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
790 Pdprintf("Pgrab_core: failed to convert NT_FDINFO\n");
791 return (-1);
792 }
793 }
794
795 return (0);
796 }
797
798 static int
note_platform(struct ps_prochandle * P,size_t nbytes)799 note_platform(struct ps_prochandle *P, size_t nbytes)
800 {
801 core_info_t *core = P->data;
802 char *plat;
803
804 if (core->core_platform != NULL)
805 return (0); /* Already seen */
806
807 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
808 if (read(P->asfd, plat, nbytes) != nbytes) {
809 Pdprintf("Pgrab_core: failed to read NT_PLATFORM\n");
810 free(plat);
811 return (-1);
812 }
813 plat[nbytes - 1] = '\0';
814 core->core_platform = plat;
815 }
816
817 return (0);
818 }
819
820 static int
note_secflags(struct ps_prochandle * P,size_t nbytes)821 note_secflags(struct ps_prochandle *P, size_t nbytes)
822 {
823 core_info_t *core = P->data;
824 prsecflags_t *psf;
825
826 if (core->core_secflags != NULL)
827 return (0); /* Already seen */
828
829 if (sizeof (*psf) != nbytes) {
830 Pdprintf("Pgrab_core: NT_SECFLAGS changed size."
831 " Need to handle a version change?\n");
832 return (-1);
833 }
834
835 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
836 if (read(P->asfd, psf, nbytes) != nbytes) {
837 Pdprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
838 free(psf);
839 return (-1);
840 }
841
842 core->core_secflags = psf;
843 }
844
845 return (0);
846 }
847
848 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)849 note_utsname(struct ps_prochandle *P, size_t nbytes)
850 {
851 core_info_t *core = P->data;
852 size_t ubytes = sizeof (struct utsname);
853 struct utsname *utsp;
854
855 if (core->core_uts != NULL || nbytes < ubytes)
856 return (0); /* Already seen or bad size */
857
858 if ((utsp = malloc(ubytes)) == NULL)
859 return (-1);
860
861 if (read(P->asfd, utsp, ubytes) != ubytes) {
862 Pdprintf("Pgrab_core: failed to read NT_UTSNAME\n");
863 free(utsp);
864 return (-1);
865 }
866
867 if (_libproc_debug) {
868 Pdprintf("uts.sysname = \"%s\"\n", utsp->sysname);
869 Pdprintf("uts.nodename = \"%s\"\n", utsp->nodename);
870 Pdprintf("uts.release = \"%s\"\n", utsp->release);
871 Pdprintf("uts.version = \"%s\"\n", utsp->version);
872 Pdprintf("uts.machine = \"%s\"\n", utsp->machine);
873 }
874
875 core->core_uts = utsp;
876 return (0);
877 }
878
879 static int
note_content(struct ps_prochandle * P,size_t nbytes)880 note_content(struct ps_prochandle *P, size_t nbytes)
881 {
882 core_info_t *core = P->data;
883 core_content_t content;
884
885 if (sizeof (core->core_content) != nbytes)
886 return (-1);
887
888 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
889 return (-1);
890
891 core->core_content = content;
892
893 Pdprintf("core content = %llx\n", content);
894
895 return (0);
896 }
897
898 static int
note_cred(struct ps_prochandle * P,size_t nbytes)899 note_cred(struct ps_prochandle *P, size_t nbytes)
900 {
901 core_info_t *core = P->data;
902 prcred_t *pcrp;
903 int ngroups;
904 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
905
906 /*
907 * We allow for prcred_t notes that are actually smaller than a
908 * prcred_t since the last member isn't essential if there are
909 * no group memberships. This allows for more flexibility when it
910 * comes to slightly malformed -- but still valid -- notes.
911 */
912 if (core->core_cred != NULL || nbytes < min_size)
913 return (0); /* Already seen or bad size */
914
915 ngroups = (nbytes - min_size) / sizeof (gid_t);
916 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
917
918 if ((pcrp = malloc(nbytes)) == NULL)
919 return (-1);
920
921 if (read(P->asfd, pcrp, nbytes) != nbytes) {
922 Pdprintf("Pgrab_core: failed to read NT_PRCRED\n");
923 free(pcrp);
924 return (-1);
925 }
926
927 if (pcrp->pr_ngroups > ngroups) {
928 Pdprintf(
929 "pr_ngroups = %d; resetting to %d based on note size\n",
930 pcrp->pr_ngroups, ngroups);
931 pcrp->pr_ngroups = ngroups;
932 }
933
934 core->core_cred = pcrp;
935 return (0);
936 }
937
938 #ifdef __x86
939 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)940 note_ldt(struct ps_prochandle *P, size_t nbytes)
941 {
942 core_info_t *core = P->data;
943 struct ssd *pldt;
944 uint_t nldt;
945
946 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
947 return (0); /* Already seen or bad size */
948
949 nldt = nbytes / sizeof (struct ssd);
950 nbytes = nldt * sizeof (struct ssd);
951
952 if ((pldt = malloc(nbytes)) == NULL)
953 return (-1);
954
955 if (read(P->asfd, pldt, nbytes) != nbytes) {
956 Pdprintf("Pgrab_core: failed to read NT_LDT\n");
957 free(pldt);
958 return (-1);
959 }
960
961 core->core_ldt = pldt;
962 core->core_nldt = nldt;
963 return (0);
964 }
965 #endif /* __i386 */
966
967 static int
note_priv(struct ps_prochandle * P,size_t nbytes)968 note_priv(struct ps_prochandle *P, size_t nbytes)
969 {
970 core_info_t *core = P->data;
971 prpriv_t *pprvp;
972
973 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
974 return (0); /* Already seen or bad size */
975
976 if ((pprvp = malloc(nbytes)) == NULL)
977 return (-1);
978
979 if (read(P->asfd, pprvp, nbytes) != nbytes) {
980 Pdprintf("Pgrab_core: failed to read NT_PRPRIV\n");
981 free(pprvp);
982 return (-1);
983 }
984
985 core->core_priv = pprvp;
986 core->core_priv_size = nbytes;
987 return (0);
988 }
989
990 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)991 note_priv_info(struct ps_prochandle *P, size_t nbytes)
992 {
993 core_info_t *core = P->data;
994 extern void *__priv_parse_info();
995 priv_impl_info_t *ppii;
996
997 if (core->core_privinfo != NULL ||
998 nbytes < sizeof (priv_impl_info_t))
999 return (0); /* Already seen or bad size */
1000
1001 if ((ppii = malloc(nbytes)) == NULL)
1002 return (-1);
1003
1004 if (read(P->asfd, ppii, nbytes) != nbytes ||
1005 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
1006 Pdprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
1007 free(ppii);
1008 return (-1);
1009 }
1010
1011 core->core_privinfo = __priv_parse_info(ppii);
1012 core->core_ppii = ppii;
1013 return (0);
1014 }
1015
1016 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)1017 note_zonename(struct ps_prochandle *P, size_t nbytes)
1018 {
1019 core_info_t *core = P->data;
1020 char *zonename;
1021
1022 if (core->core_zonename != NULL)
1023 return (0); /* Already seen */
1024
1025 if (nbytes != 0) {
1026 if ((zonename = malloc(nbytes)) == NULL)
1027 return (-1);
1028 if (read(P->asfd, zonename, nbytes) != nbytes) {
1029 Pdprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1030 free(zonename);
1031 return (-1);
1032 }
1033 zonename[nbytes - 1] = '\0';
1034 core->core_zonename = zonename;
1035 }
1036
1037 return (0);
1038 }
1039
1040 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)1041 note_auxv(struct ps_prochandle *P, size_t nbytes)
1042 {
1043 size_t n, i;
1044
1045 #ifdef _LP64
1046 core_info_t *core = P->data;
1047
1048 if (core->core_dmodel == PR_MODEL_ILP32) {
1049 auxv32_t *a32;
1050
1051 n = nbytes / sizeof (auxv32_t);
1052 nbytes = n * sizeof (auxv32_t);
1053 a32 = alloca(nbytes);
1054
1055 if (read(P->asfd, a32, nbytes) != nbytes) {
1056 Pdprintf("Pgrab_core: failed to read NT_AUXV\n");
1057 return (-1);
1058 }
1059
1060 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1061 return (-1);
1062
1063 for (i = 0; i < n; i++)
1064 auxv_32_to_n(&a32[i], &P->auxv[i]);
1065
1066 } else {
1067 #endif
1068 n = nbytes / sizeof (auxv_t);
1069 nbytes = n * sizeof (auxv_t);
1070
1071 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1072 return (-1);
1073
1074 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1075 free(P->auxv);
1076 P->auxv = NULL;
1077 return (-1);
1078 }
1079 #ifdef _LP64
1080 }
1081 #endif
1082
1083 if (_libproc_debug) {
1084 for (i = 0; i < n; i++) {
1085 Pdprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1086 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1087 }
1088 }
1089
1090 /*
1091 * Defensive coding for loops which depend upon the auxv array being
1092 * terminated by an AT_NULL element; in each case, we've allocated
1093 * P->auxv to have an additional element which we force to be AT_NULL.
1094 */
1095 P->auxv[n].a_type = AT_NULL;
1096 P->auxv[n].a_un.a_val = 0L;
1097 P->nauxv = (int)n;
1098
1099 return (0);
1100 }
1101
1102 /*
1103 * The xregs are not a fixed size on all architectures (notably x86) and in
1104 * general the prxregset_t has become opaque to deal with this. This means that
1105 * validating the note itself can be a little more challenging. Especially as
1106 * this can change across time. In this case we require that our consumers
1107 * perform this validation.
1108 */
1109 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1110 note_xreg(struct ps_prochandle *P, size_t nbytes)
1111 {
1112 core_info_t *core = P->data;
1113 lwp_info_t *lwp = core->core_lwp;
1114 prxregset_t *xregs;
1115 ssize_t sret;
1116
1117 if (lwp == NULL || lwp->lwp_xregs != NULL)
1118 return (0); /* No lwp yet, already seen, or bad size */
1119
1120 if ((xregs = malloc(nbytes)) == NULL)
1121 return (-1);
1122
1123 sret = read(P->asfd, xregs, nbytes);
1124 if (sret < 0 || (size_t)sret != nbytes) {
1125 Pdprintf("Pgrab_core: failed to read NT_PRXREG\n");
1126 free(xregs);
1127 return (-1);
1128 }
1129
1130 lwp->lwp_xregs = xregs;
1131 lwp->lwp_xregsize = nbytes;
1132 return (0);
1133 }
1134
1135 #ifdef __sparc
1136 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1137 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1138 {
1139 core_info_t *core = P->data;
1140 lwp_info_t *lwp = core->core_lwp;
1141
1142 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1143 return (0); /* No lwp yet or already seen or no data */
1144
1145 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1146 return (-1);
1147
1148 /*
1149 * Since the amount of gwindows data varies with how many windows were
1150 * actually saved, we just read up to the minimum of the note size
1151 * and the size of the gwindows_t type. It doesn't matter if the read
1152 * fails since we have to zero out gwindows first anyway.
1153 */
1154 #ifdef _LP64
1155 if (core->core_dmodel == PR_MODEL_ILP32) {
1156 gwindows32_t g32;
1157
1158 (void) memset(&g32, 0, sizeof (g32));
1159 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1160 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1161
1162 } else {
1163 #endif
1164 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1165 (void) read(P->asfd, lwp->lwp_gwins,
1166 MIN(nbytes, sizeof (gwindows_t)));
1167 #ifdef _LP64
1168 }
1169 #endif
1170 return (0);
1171 }
1172
1173 #ifdef __sparcv9
1174 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1175 note_asrs(struct ps_prochandle *P, size_t nbytes)
1176 {
1177 core_info_t *core = P->data;
1178 lwp_info_t *lwp = core->core_lwp;
1179 int64_t *asrs;
1180
1181 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1182 return (0); /* No lwp yet, already seen, or bad size */
1183
1184 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1185 return (-1);
1186
1187 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1188 Pdprintf("Pgrab_core: failed to read NT_ASRS\n");
1189 free(asrs);
1190 return (-1);
1191 }
1192
1193 lwp->lwp_asrs = asrs;
1194 return (0);
1195 }
1196 #endif /* __sparcv9 */
1197 #endif /* __sparc */
1198
1199 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1200 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1201 {
1202 #ifdef _LP64
1203 core_info_t *core = P->data;
1204
1205 if (core->core_dmodel == PR_MODEL_ILP32) {
1206 psinfo32_t ps32;
1207
1208 if (nbytes < sizeof (psinfo32_t) ||
1209 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1210 goto err;
1211
1212 psinfo_32_to_n(&ps32, &P->spymaster);
1213 } else
1214 #endif
1215 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1216 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1217 goto err;
1218
1219 Pdprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1220 Pdprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1221 Pdprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1222
1223 return (0);
1224
1225 err:
1226 Pdprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1227 return (-1);
1228 }
1229
1230 static int
note_upanic(struct ps_prochandle * P,size_t nbytes)1231 note_upanic(struct ps_prochandle *P, size_t nbytes)
1232 {
1233 core_info_t *core = P->data;
1234 prupanic_t *pru;
1235
1236 if (core->core_upanic != NULL)
1237 return (0);
1238
1239 if (sizeof (*pru) != nbytes) {
1240 Pdprintf("Pgrab_core: NT_UPANIC changed size."
1241 " Need to handle a version change?\n");
1242 return (-1);
1243 }
1244
1245 if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1246 if (read(P->asfd, pru, nbytes) != nbytes) {
1247 Pdprintf("Pgrab_core: failed to read NT_UPANIC\n");
1248 free(pru);
1249 return (-1);
1250 }
1251
1252 core->core_upanic = pru;
1253 }
1254
1255 return (0);
1256 }
1257
1258 static int
note_cwd(struct ps_prochandle * P,size_t nbytes)1259 note_cwd(struct ps_prochandle *P, size_t nbytes)
1260 {
1261 core_info_t *core = P->data;
1262 prcwd_t *cwd;
1263
1264 if (core->core_cwd != NULL)
1265 return (0);
1266
1267 if (sizeof (*cwd) != nbytes) {
1268 Pdprintf("Pgrab_core: NT_CWD changed size."
1269 " Need to handle a version change?\n");
1270 return (-1);
1271 }
1272
1273 if (nbytes != 0 && ((cwd = malloc(nbytes)) != NULL)) {
1274 if (read(P->asfd, cwd, nbytes) != nbytes) {
1275 Pdprintf("Pgrab_core: failed to read NT_CWD\n");
1276 free(cwd);
1277 return (-1);
1278 }
1279
1280 core->core_cwd = cwd;
1281 }
1282
1283 return (0);
1284 }
1285
1286 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1287 note_notsup(struct ps_prochandle *P, size_t nbytes)
1288 {
1289 Pdprintf("skipping unsupported note type of size %ld bytes\n",
1290 (ulong_t)nbytes);
1291 return (0);
1292 }
1293
1294 #if NT_NUM != NT_CWD
1295 #error "NT_NUM has grown. Update nhdlrs array"
1296 #endif
1297
1298 /*
1299 * Populate a table of function pointers indexed by Note type with our
1300 * functions to process each type of core file note:
1301 */
1302 static int (*nhdlrs[NT_NUM + 1])(struct ps_prochandle *, size_t) = {
1303 #ifdef __x86
1304 [NT_PRSTATUS] = note_linux_prstatus,
1305 #endif
1306 [NT_PRFPREG] = note_notsup,
1307 #ifdef __x86
1308 [NT_PRPSINFO] = note_linux_psinfo,
1309 #endif
1310 [NT_PRXREG] = note_xreg,
1311 [NT_PLATFORM] = note_platform,
1312 [NT_AUXV] = note_auxv,
1313 #ifdef __sparc
1314 [NT_GWINDOWS] = note_gwindows,
1315 #ifdef __sparcv9
1316 [NT_ASRS] = note_asrs,
1317 #endif
1318 #endif
1319 #ifdef __x86
1320 [NT_LDT] = note_ldt,
1321 #endif
1322 [NT_PSTATUS] = note_pstatus,
1323 [NT_PSINFO] = note_psinfo,
1324 [NT_PRCRED] = note_cred,
1325 [NT_UTSNAME] = note_utsname,
1326 [NT_LWPSTATUS] = note_lwpstatus,
1327 [NT_LWPSINFO] = note_lwpsinfo,
1328 [NT_PRPRIV] = note_priv,
1329 [NT_PRPRIVINFO] = note_priv_info,
1330 [NT_CONTENT] = note_content,
1331 [NT_ZONENAME] = note_zonename,
1332 [NT_FDINFO] = note_fdinfo,
1333 [NT_SPYMASTER] = note_spymaster,
1334 [NT_SECFLAGS] = note_secflags,
1335 [NT_LWPNAME] = note_lwpname,
1336 [NT_UPANIC] = note_upanic,
1337 [NT_CWD] = note_cwd
1338 };
1339
1340 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1341 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1342 {
1343 prkillinfo_t killinfo;
1344 siginfo_t *si = &killinfo.prk_info;
1345 char signame[SIG2STR_MAX], sig[64], info[64];
1346 void *addr = (void *)(uintptr_t)php->p_vaddr;
1347
1348 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1349 const char *incfmt = "core file incomplete due to %s%s\n";
1350 const char *msgfmt = "mappings at and above %p are missing\n";
1351
1352 if (!(php->p_flags & PF_SUNW_KILLED)) {
1353 int err = 0;
1354
1355 (void) pread64(P->asfd, &err,
1356 sizeof (err), (off64_t)php->p_offset);
1357
1358 Perror_printf(P, errfmt, addr, strerror(err));
1359 Pdprintf(errfmt, addr, strerror(err));
1360 return;
1361 }
1362
1363 if (!(php->p_flags & PF_SUNW_SIGINFO))
1364 return;
1365
1366 (void) memset(&killinfo, 0, sizeof (killinfo));
1367
1368 (void) pread64(P->asfd, &killinfo,
1369 sizeof (killinfo), (off64_t)php->p_offset);
1370
1371 /*
1372 * While there is (or at least should be) only one segment that has
1373 * PF_SUNW_SIGINFO set, the signal information there is globally
1374 * useful (even if only to those debugging libproc consumers); we hang
1375 * the signal information gleaned here off of the ps_prochandle.
1376 */
1377 P->map_missing = php->p_vaddr;
1378 P->killinfo = killinfo.prk_info;
1379
1380 if (sig2str(si->si_signo, signame) == -1) {
1381 (void) snprintf(sig, sizeof (sig),
1382 "<Unknown signal: 0x%x>, ", si->si_signo);
1383 } else {
1384 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1385 }
1386
1387 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1388 (void) snprintf(info, sizeof (info),
1389 "pid=%d uid=%d zone=%d ctid=%d",
1390 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1391 } else {
1392 (void) snprintf(info, sizeof (info),
1393 "code=%d", si->si_code);
1394 }
1395
1396 Perror_printf(P, incfmt, sig, info);
1397 Perror_printf(P, msgfmt, addr);
1398
1399 Pdprintf(incfmt, sig, info);
1400 Pdprintf(msgfmt, addr);
1401 }
1402
1403 /*
1404 * Add information on the address space mapping described by the given
1405 * PT_LOAD program header. We fill in more information on the mapping later.
1406 */
1407 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1408 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1409 {
1410 core_info_t *core = P->data;
1411 prmap_t pmap;
1412
1413 Pdprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1414 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1415 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1416
1417 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1418 pmap.pr_size = php->p_memsz;
1419
1420 /*
1421 * If Pgcore() or elfcore() fail to write a mapping, they will set
1422 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1423 */
1424 if (php->p_flags & PF_SUNW_FAILURE) {
1425 core_report_mapping(P, php);
1426 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1427 Perror_printf(P, "core file may be corrupt -- data for mapping "
1428 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1429 Pdprintf("core file may be corrupt -- data for mapping "
1430 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1431 }
1432
1433 /*
1434 * The mapping name and offset will hopefully be filled in
1435 * by the librtld_db agent. Unfortunately, if it isn't a
1436 * shared library mapping, this information is gone forever.
1437 */
1438 pmap.pr_mapname[0] = '\0';
1439 pmap.pr_offset = 0;
1440
1441 pmap.pr_mflags = 0;
1442 if (php->p_flags & PF_R)
1443 pmap.pr_mflags |= MA_READ;
1444 if (php->p_flags & PF_W)
1445 pmap.pr_mflags |= MA_WRITE;
1446 if (php->p_flags & PF_X)
1447 pmap.pr_mflags |= MA_EXEC;
1448
1449 if (php->p_filesz == 0)
1450 pmap.pr_mflags |= MA_RESERVED1;
1451
1452 /*
1453 * At the time of adding this mapping, we just zero the pagesize.
1454 * Once we've processed more of the core file, we'll have the
1455 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1456 */
1457 pmap.pr_pagesize = 0;
1458
1459 /*
1460 * Unfortunately whether or not the mapping was a System V
1461 * shared memory segment is lost. We use -1 to mark it as not shm.
1462 */
1463 pmap.pr_shmid = -1;
1464
1465 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1466 }
1467
1468 /*
1469 * Given a virtual address, name the mapping at that address using the
1470 * specified name, and return the map_info_t pointer.
1471 */
1472 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1473 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1474 {
1475 map_info_t *mp = Paddr2mptr(P, addr);
1476
1477 if (mp != NULL) {
1478 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1479 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1480 }
1481
1482 return (mp);
1483 }
1484
1485 /*
1486 * libproc uses libelf for all of its symbol table manipulation. This function
1487 * takes a symbol table and string table from a core file and places them
1488 * in a memory backed elf file.
1489 */
1490 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1491 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1492 GElf_Shdr *symtab, GElf_Shdr *strtab)
1493 {
1494 size_t size;
1495 off64_t off, base;
1496 map_info_t *mp;
1497 file_info_t *fp;
1498 Elf_Scn *scn;
1499 Elf_Data *data;
1500
1501 if (symtab->sh_addr == 0 ||
1502 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1503 (fp = mp->map_file) == NULL) {
1504 Pdprintf("fake_up_symtab: invalid section\n");
1505 return;
1506 }
1507
1508 if (fp->file_symtab.sym_data_pri != NULL) {
1509 Pdprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1510 (long)symtab->sh_addr);
1511 return;
1512 }
1513
1514 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1515 struct {
1516 Elf32_Ehdr ehdr;
1517 Elf32_Shdr shdr[3];
1518 char data[1];
1519 } *b;
1520
1521 base = sizeof (b->ehdr) + sizeof (b->shdr);
1522 size = base + symtab->sh_size + strtab->sh_size;
1523
1524 if ((b = calloc(1, size)) == NULL)
1525 return;
1526
1527 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1528 sizeof (ehdr->e_ident));
1529 b->ehdr.e_type = ehdr->e_type;
1530 b->ehdr.e_machine = ehdr->e_machine;
1531 b->ehdr.e_version = ehdr->e_version;
1532 b->ehdr.e_flags = ehdr->e_flags;
1533 b->ehdr.e_ehsize = sizeof (b->ehdr);
1534 b->ehdr.e_shoff = sizeof (b->ehdr);
1535 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1536 b->ehdr.e_shnum = 3;
1537 off = 0;
1538
1539 b->shdr[1].sh_size = symtab->sh_size;
1540 b->shdr[1].sh_type = SHT_SYMTAB;
1541 b->shdr[1].sh_offset = off + base;
1542 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1543 b->shdr[1].sh_link = 2;
1544 b->shdr[1].sh_info = symtab->sh_info;
1545 b->shdr[1].sh_addralign = symtab->sh_addralign;
1546
1547 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1548 symtab->sh_offset) != b->shdr[1].sh_size) {
1549 Pdprintf("fake_up_symtab: pread of symtab[1] failed\n");
1550 free(b);
1551 return;
1552 }
1553
1554 off += b->shdr[1].sh_size;
1555
1556 b->shdr[2].sh_flags = SHF_STRINGS;
1557 b->shdr[2].sh_size = strtab->sh_size;
1558 b->shdr[2].sh_type = SHT_STRTAB;
1559 b->shdr[2].sh_offset = off + base;
1560 b->shdr[2].sh_info = strtab->sh_info;
1561 b->shdr[2].sh_addralign = 1;
1562
1563 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1564 strtab->sh_offset) != b->shdr[2].sh_size) {
1565 Pdprintf("fake_up_symtab: pread of symtab[2] failed\n");
1566 free(b);
1567 return;
1568 }
1569
1570 off += b->shdr[2].sh_size;
1571
1572 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1573 if (fp->file_symtab.sym_elf == NULL) {
1574 free(b);
1575 return;
1576 }
1577
1578 fp->file_symtab.sym_elfmem = b;
1579 #ifdef _LP64
1580 } else {
1581 struct {
1582 Elf64_Ehdr ehdr;
1583 Elf64_Shdr shdr[3];
1584 char data[1];
1585 } *b;
1586
1587 base = sizeof (b->ehdr) + sizeof (b->shdr);
1588 size = base + symtab->sh_size + strtab->sh_size;
1589
1590 if ((b = calloc(1, size)) == NULL)
1591 return;
1592
1593 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1594 sizeof (ehdr->e_ident));
1595 b->ehdr.e_type = ehdr->e_type;
1596 b->ehdr.e_machine = ehdr->e_machine;
1597 b->ehdr.e_version = ehdr->e_version;
1598 b->ehdr.e_flags = ehdr->e_flags;
1599 b->ehdr.e_ehsize = sizeof (b->ehdr);
1600 b->ehdr.e_shoff = sizeof (b->ehdr);
1601 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1602 b->ehdr.e_shnum = 3;
1603 off = 0;
1604
1605 b->shdr[1].sh_size = symtab->sh_size;
1606 b->shdr[1].sh_type = SHT_SYMTAB;
1607 b->shdr[1].sh_offset = off + base;
1608 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1609 b->shdr[1].sh_link = 2;
1610 b->shdr[1].sh_info = symtab->sh_info;
1611 b->shdr[1].sh_addralign = symtab->sh_addralign;
1612
1613 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1614 symtab->sh_offset) != b->shdr[1].sh_size) {
1615 free(b);
1616 return;
1617 }
1618
1619 off += b->shdr[1].sh_size;
1620
1621 b->shdr[2].sh_flags = SHF_STRINGS;
1622 b->shdr[2].sh_size = strtab->sh_size;
1623 b->shdr[2].sh_type = SHT_STRTAB;
1624 b->shdr[2].sh_offset = off + base;
1625 b->shdr[2].sh_info = strtab->sh_info;
1626 b->shdr[2].sh_addralign = 1;
1627
1628 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1629 strtab->sh_offset) != b->shdr[2].sh_size) {
1630 free(b);
1631 return;
1632 }
1633
1634 off += b->shdr[2].sh_size;
1635
1636 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1637 if (fp->file_symtab.sym_elf == NULL) {
1638 free(b);
1639 return;
1640 }
1641
1642 fp->file_symtab.sym_elfmem = b;
1643 #endif
1644 }
1645
1646 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1647 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1648 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1649 (data = elf_getdata(scn, NULL)) == NULL) {
1650 Pdprintf("fake_up_symtab: failed to get section data at %p\n",
1651 (void *)scn);
1652 goto err;
1653 }
1654
1655 fp->file_symtab.sym_strs = data->d_buf;
1656 fp->file_symtab.sym_strsz = data->d_size;
1657 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1658 fp->file_symtab.sym_hdr_pri = *symtab;
1659 fp->file_symtab.sym_strhdr = *strtab;
1660
1661 optimize_symtab(&fp->file_symtab);
1662
1663 return;
1664 err:
1665 (void) elf_end(fp->file_symtab.sym_elf);
1666 free(fp->file_symtab.sym_elfmem);
1667 fp->file_symtab.sym_elf = NULL;
1668 fp->file_symtab.sym_elfmem = NULL;
1669 }
1670
1671 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1672 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1673 {
1674 dst->p_type = src->p_type;
1675 dst->p_flags = src->p_flags;
1676 dst->p_offset = (Elf64_Off)src->p_offset;
1677 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1678 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1679 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1680 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1681 dst->p_align = (Elf64_Xword)src->p_align;
1682 }
1683
1684 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1685 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1686 {
1687 dst->sh_name = src->sh_name;
1688 dst->sh_type = src->sh_type;
1689 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1690 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1691 dst->sh_offset = (Elf64_Off)src->sh_offset;
1692 dst->sh_size = (Elf64_Xword)src->sh_size;
1693 dst->sh_link = src->sh_link;
1694 dst->sh_info = src->sh_info;
1695 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1696 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1697 }
1698
1699 /*
1700 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1701 */
1702 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1703 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1704 {
1705 #ifdef _BIG_ENDIAN
1706 uchar_t order = ELFDATA2MSB;
1707 #else
1708 uchar_t order = ELFDATA2LSB;
1709 #endif
1710 Elf32_Ehdr e32;
1711 int is_noelf = -1;
1712 int isa_err = 0;
1713
1714 /*
1715 * Because 32-bit libelf cannot deal with large files, we need to read,
1716 * check, and convert the file header manually in case type == ET_CORE.
1717 */
1718 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1719 if (perr != NULL)
1720 *perr = G_FORMAT;
1721 goto err;
1722 }
1723 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1724 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1725 e32.e_version != EV_CURRENT) {
1726 if (perr != NULL) {
1727 if (is_noelf == 0 && isa_err) {
1728 *perr = G_ISAINVAL;
1729 } else {
1730 *perr = G_FORMAT;
1731 }
1732 }
1733 goto err;
1734 }
1735
1736 /*
1737 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1738 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1739 * and convert it to a elf_file_header_t. Otherwise, the file is
1740 * 32-bit, so convert e32 to a elf_file_header_t.
1741 */
1742 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1743 #ifdef _LP64
1744 Elf64_Ehdr e64;
1745
1746 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1747 if (perr != NULL)
1748 *perr = G_FORMAT;
1749 goto err;
1750 }
1751
1752 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1753 efp->e_hdr.e_type = e64.e_type;
1754 efp->e_hdr.e_machine = e64.e_machine;
1755 efp->e_hdr.e_version = e64.e_version;
1756 efp->e_hdr.e_entry = e64.e_entry;
1757 efp->e_hdr.e_phoff = e64.e_phoff;
1758 efp->e_hdr.e_shoff = e64.e_shoff;
1759 efp->e_hdr.e_flags = e64.e_flags;
1760 efp->e_hdr.e_ehsize = e64.e_ehsize;
1761 efp->e_hdr.e_phentsize = e64.e_phentsize;
1762 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1763 efp->e_hdr.e_shentsize = e64.e_shentsize;
1764 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1765 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1766 #else /* _LP64 */
1767 if (perr != NULL)
1768 *perr = G_LP64;
1769 goto err;
1770 #endif /* _LP64 */
1771 } else {
1772 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1773 efp->e_hdr.e_type = e32.e_type;
1774 efp->e_hdr.e_machine = e32.e_machine;
1775 efp->e_hdr.e_version = e32.e_version;
1776 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1777 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1778 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1779 efp->e_hdr.e_flags = e32.e_flags;
1780 efp->e_hdr.e_ehsize = e32.e_ehsize;
1781 efp->e_hdr.e_phentsize = e32.e_phentsize;
1782 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1783 efp->e_hdr.e_shentsize = e32.e_shentsize;
1784 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1785 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1786 }
1787
1788 /*
1789 * If the number of section headers or program headers or the section
1790 * header string table index would overflow their respective fields
1791 * in the ELF header, they're stored in the section header at index
1792 * zero. To simplify use elsewhere, we look for those sentinel values
1793 * here.
1794 */
1795 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1796 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1797 efp->e_hdr.e_phnum == PN_XNUM) {
1798 GElf_Shdr shdr;
1799
1800 Pdprintf("extended ELF header\n");
1801
1802 if (efp->e_hdr.e_shoff == 0) {
1803 if (perr != NULL)
1804 *perr = G_FORMAT;
1805 goto err;
1806 }
1807
1808 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1809 Elf32_Shdr shdr32;
1810
1811 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1812 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1813 if (perr != NULL)
1814 *perr = G_FORMAT;
1815 goto err;
1816 }
1817
1818 core_shdr_to_gelf(&shdr32, &shdr);
1819 } else {
1820 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1821 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1822 if (perr != NULL)
1823 *perr = G_FORMAT;
1824 goto err;
1825 }
1826 }
1827
1828 if (efp->e_hdr.e_shnum == 0) {
1829 efp->e_hdr.e_shnum = shdr.sh_size;
1830 Pdprintf("section header count %lu\n",
1831 (ulong_t)shdr.sh_size);
1832 }
1833
1834 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1835 efp->e_hdr.e_shstrndx = shdr.sh_link;
1836 Pdprintf("section string index %u\n", shdr.sh_link);
1837 }
1838
1839 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1840 efp->e_hdr.e_phnum = shdr.sh_info;
1841 Pdprintf("program header count %u\n", shdr.sh_info);
1842 }
1843
1844 } else if (efp->e_hdr.e_phoff != 0) {
1845 GElf_Phdr phdr;
1846 uint64_t phnum;
1847
1848 /*
1849 * It's possible this core file came from a system that
1850 * accidentally truncated the e_phnum field without correctly
1851 * using the extended format in the section header at index
1852 * zero. We try to detect and correct that specific type of
1853 * corruption by using the knowledge that the core dump
1854 * routines usually place the data referenced by the first
1855 * program header immediately after the last header element.
1856 */
1857 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1858 Elf32_Phdr phdr32;
1859
1860 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1861 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1862 if (perr != NULL)
1863 *perr = G_FORMAT;
1864 goto err;
1865 }
1866
1867 core_phdr_to_gelf(&phdr32, &phdr);
1868 } else {
1869 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1870 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1871 if (perr != NULL)
1872 *perr = G_FORMAT;
1873 goto err;
1874 }
1875 }
1876
1877 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1878 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1879 phnum /= efp->e_hdr.e_phentsize;
1880
1881 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1882 Pdprintf("suspicious program header count %u %u\n",
1883 (uint_t)phnum, efp->e_hdr.e_phnum);
1884
1885 /*
1886 * If the new program header count we computed doesn't
1887 * jive with count in the ELF header, we'll use the
1888 * data that's there and hope for the best.
1889 *
1890 * If it does, it's also possible that the section
1891 * header offset is incorrect; we'll check that and
1892 * possibly try to fix it.
1893 */
1894 if (phnum <= INT_MAX &&
1895 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1896
1897 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1898 efp->e_hdr.e_phentsize *
1899 (uint_t)efp->e_hdr.e_phnum) {
1900 efp->e_hdr.e_shoff =
1901 efp->e_hdr.e_phoff +
1902 efp->e_hdr.e_phentsize * phnum;
1903 }
1904
1905 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1906 Pdprintf("using new program header count\n");
1907 } else {
1908 Pdprintf("inconsistent program header count\n");
1909 }
1910 }
1911 }
1912
1913 /*
1914 * The libelf implementation was never ported to be large-file aware.
1915 * This is typically not a problem for your average executable or
1916 * shared library, but a large 32-bit core file can exceed 2GB in size.
1917 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1918 * in Pfgrab_core() below will do its own i/o and struct conversion.
1919 */
1920
1921 if (type == ET_CORE) {
1922 efp->e_elf = NULL;
1923 return (0);
1924 }
1925
1926 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1927 if (perr != NULL)
1928 *perr = G_ELF;
1929 goto err;
1930 }
1931
1932 return (0);
1933
1934 err:
1935 efp->e_elf = NULL;
1936 return (-1);
1937 }
1938
1939 /*
1940 * Open the specified file and then do a core_elf_fdopen on it.
1941 */
1942 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1943 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1944 {
1945 (void) memset(efp, 0, sizeof (elf_file_t));
1946
1947 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1948 if (core_elf_fdopen(efp, type, perr) == 0)
1949 return (0);
1950
1951 (void) close(efp->e_fd);
1952 efp->e_fd = -1;
1953 }
1954
1955 return (-1);
1956 }
1957
1958 /*
1959 * Close the ELF handle and file descriptor.
1960 */
1961 static void
core_elf_close(elf_file_t * efp)1962 core_elf_close(elf_file_t *efp)
1963 {
1964 if (efp->e_elf != NULL) {
1965 (void) elf_end(efp->e_elf);
1966 efp->e_elf = NULL;
1967 }
1968
1969 if (efp->e_fd != -1) {
1970 (void) close(efp->e_fd);
1971 efp->e_fd = -1;
1972 }
1973 }
1974
1975 /*
1976 * Given an ELF file for a statically linked executable, locate the likely
1977 * primary text section and fill in rl_base with its virtual address.
1978 */
1979 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1980 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1981 {
1982 GElf_Phdr phdr;
1983 uint_t i;
1984 size_t nphdrs;
1985
1986 if (elf_getphdrnum(elf, &nphdrs) == -1)
1987 return (NULL);
1988
1989 for (i = 0; i < nphdrs; i++) {
1990 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1991 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1992 rlp->rl_base = phdr.p_vaddr;
1993 return (Paddr2mptr(P, rlp->rl_base));
1994 }
1995 }
1996
1997 return (NULL);
1998 }
1999
2000 /*
2001 * Given an ELF file and the librtld_db structure corresponding to its primary
2002 * text mapping, deduce where its data segment was loaded and fill in
2003 * rl_data_base and prmap_t.pr_offset accordingly.
2004 */
2005 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)2006 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
2007 {
2008 GElf_Ehdr ehdr;
2009 GElf_Phdr phdr;
2010 map_info_t *mp;
2011 uint_t i, pagemask;
2012 size_t nphdrs;
2013
2014 rlp->rl_data_base = (uintptr_t)NULL;
2015
2016 /*
2017 * Find the first loadable, writeable Phdr and compute rl_data_base
2018 * as the virtual address at which is was loaded.
2019 */
2020 if (gelf_getehdr(elf, &ehdr) == NULL ||
2021 elf_getphdrnum(elf, &nphdrs) == -1)
2022 return (NULL);
2023
2024 for (i = 0; i < nphdrs; i++) {
2025 if (gelf_getphdr(elf, i, &phdr) != NULL &&
2026 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
2027 rlp->rl_data_base = phdr.p_vaddr;
2028 if (ehdr.e_type == ET_DYN)
2029 rlp->rl_data_base += rlp->rl_base;
2030 break;
2031 }
2032 }
2033
2034 /*
2035 * If we didn't find an appropriate phdr or if the address we
2036 * computed has no mapping, return NULL.
2037 */
2038 if (rlp->rl_data_base == (uintptr_t)NULL ||
2039 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
2040 return (NULL);
2041
2042 /*
2043 * It wouldn't be procfs-related code if we didn't make use of
2044 * unclean knowledge of segvn, even in userland ... the prmap_t's
2045 * pr_offset field will be the segvn offset from mmap(2)ing the
2046 * data section, which will be the file offset & PAGEMASK.
2047 */
2048 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2049 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2050
2051 return (mp);
2052 }
2053
2054 /*
2055 * Librtld_db agent callback for iterating over load object mappings.
2056 * For each load object, we allocate a new file_info_t, perform naming,
2057 * and attempt to construct a symbol table for the load object.
2058 */
2059 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)2060 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2061 {
2062 core_info_t *core = P->data;
2063 char lname[PATH_MAX], buf[PATH_MAX];
2064 file_info_t *fp;
2065 map_info_t *mp;
2066
2067 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2068 Pdprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2069 return (1); /* Keep going; forget this if we can't get a name */
2070 }
2071
2072 Pdprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2073 lname, (void *)rlp->rl_base);
2074
2075 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2076 Pdprintf("no mapping for %p\n", (void *)rlp->rl_base);
2077 return (1); /* No mapping; advance to next mapping */
2078 }
2079
2080 /*
2081 * Create a new file_info_t for this mapping, and therefore for
2082 * this load object.
2083 *
2084 * If there's an ELF header at the beginning of this mapping,
2085 * file_info_new() will try to use its section headers to
2086 * identify any other mappings that belong to this load object.
2087 */
2088 if ((fp = mp->map_file) == NULL &&
2089 (fp = file_info_new(P, mp)) == NULL) {
2090 core->core_errno = errno;
2091 Pdprintf("failed to malloc mapping data\n");
2092 return (0); /* Abort */
2093 }
2094 fp->file_map = mp;
2095
2096 /* Create a local copy of the load object representation */
2097 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2098 core->core_errno = errno;
2099 Pdprintf("failed to malloc mapping data\n");
2100 return (0); /* Abort */
2101 }
2102 *fp->file_lo = *rlp;
2103
2104 if (lname[0] != '\0') {
2105 /*
2106 * Naming dance part 1: if we got a name from librtld_db, then
2107 * copy this name to the prmap_t if it is unnamed. If the
2108 * file_info_t is unnamed, name it after the lname.
2109 */
2110 if (mp->map_pmap.pr_mapname[0] == '\0') {
2111 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2112 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2113 }
2114
2115 if (fp->file_lname == NULL)
2116 fp->file_lname = strdup(lname);
2117
2118 } else if (fp->file_lname == NULL &&
2119 mp->map_pmap.pr_mapname[0] != '\0') {
2120 /*
2121 * Naming dance part 2: if the mapping is named and the
2122 * file_info_t is not, name the file after the mapping.
2123 */
2124 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2125 }
2126
2127 if ((fp->file_rname == NULL) &&
2128 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2129 fp->file_rname = strdup(buf);
2130
2131 if (fp->file_lname != NULL)
2132 fp->file_lbase = basename(fp->file_lname);
2133 if (fp->file_rname != NULL)
2134 fp->file_rbase = basename(fp->file_rname);
2135
2136 /* Associate the file and the mapping. */
2137 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2138 fp->file_pname[PRMAPSZ - 1] = '\0';
2139
2140 /*
2141 * If no section headers were available then we'll have to
2142 * identify this load object's other mappings with what we've
2143 * got: the start and end of the object's corresponding
2144 * address space.
2145 */
2146 if (fp->file_saddrs == NULL) {
2147 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2148 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2149
2150 if (mp->map_file == NULL) {
2151 Pdprintf("core_iter_mapping %s: associating "
2152 "segment at %p\n",
2153 fp->file_pname,
2154 (void *)mp->map_pmap.pr_vaddr);
2155 mp->map_file = fp;
2156 fp->file_ref++;
2157 } else {
2158 Pdprintf("core_iter_mapping %s: segment at "
2159 "%p already associated with %s\n",
2160 fp->file_pname,
2161 (void *)mp->map_pmap.pr_vaddr,
2162 (mp == fp->file_map ? "this file" :
2163 mp->map_file->file_pname));
2164 }
2165 }
2166 }
2167
2168 /* Ensure that all this file's mappings are named. */
2169 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2170 mp->map_file == fp; mp++) {
2171 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2172 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2173 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2174 PRMAPSZ);
2175 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2176 }
2177 }
2178
2179 /* Attempt to build a symbol table for this file. */
2180 Pbuild_file_symtab(P, fp);
2181 if (fp->file_elf == NULL)
2182 Pdprintf("core_iter_mapping: no symtab for %s\n",
2183 fp->file_pname);
2184
2185 /* Locate the start of a data segment associated with this file. */
2186 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2187 Pdprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2188 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2189 mp->map_pmap.pr_offset);
2190 } else {
2191 Pdprintf("core_iter_mapping: no data found for %s\n",
2192 fp->file_pname);
2193 }
2194
2195 return (1); /* Advance to next mapping */
2196 }
2197
2198 /*
2199 * Callback function for Pfindexec(). In order to confirm a given pathname,
2200 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2201 */
2202 static int
core_exec_open(const char * path,void * efp)2203 core_exec_open(const char *path, void *efp)
2204 {
2205 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2206 return (1);
2207 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2208 return (1);
2209 return (0);
2210 }
2211
2212 /*
2213 * Attempt to load any section headers found in the core file. If present,
2214 * this will refer to non-loadable data added to the core file by the kernel
2215 * based on coreadm(8) settings, including CTF data and the symbol table.
2216 */
2217 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2218 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2219 {
2220 GElf_Shdr *shp, *shdrs = NULL;
2221 char *shstrtab = NULL;
2222 ulong_t shstrtabsz;
2223 const char *name;
2224 map_info_t *mp;
2225
2226 size_t nbytes;
2227 void *buf;
2228 int i;
2229
2230 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2231 Pdprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2232 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2233 return;
2234 }
2235
2236 /*
2237 * Read the section header table from the core file and then iterate
2238 * over the section headers, converting each to a GElf_Shdr.
2239 */
2240 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2241 Pdprintf("failed to malloc %u section headers: %s\n",
2242 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2243 return;
2244 }
2245
2246 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2247 if ((buf = malloc(nbytes)) == NULL) {
2248 Pdprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2249 strerror(errno));
2250 free(shdrs);
2251 goto out;
2252 }
2253
2254 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2255 Pdprintf("failed to read section headers at off %lld: %s\n",
2256 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2257 free(buf);
2258 goto out;
2259 }
2260
2261 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2262 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2263
2264 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2265 core_shdr_to_gelf(p, &shdrs[i]);
2266 else
2267 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2268 }
2269
2270 free(buf);
2271 buf = NULL;
2272
2273 /*
2274 * Read the .shstrtab section from the core file, terminating it with
2275 * an extra \0 so that a corrupt section will not cause us to die.
2276 */
2277 shp = &shdrs[efp->e_hdr.e_shstrndx];
2278 shstrtabsz = shp->sh_size;
2279
2280 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2281 Pdprintf("failed to allocate %lu bytes for shstrtab\n",
2282 (ulong_t)shstrtabsz);
2283 goto out;
2284 }
2285
2286 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2287 shp->sh_offset) != shstrtabsz) {
2288 Pdprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2289 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2290 goto out;
2291 }
2292
2293 shstrtab[shstrtabsz] = '\0';
2294
2295 /*
2296 * Now iterate over each section in the section header table, locating
2297 * sections of interest and initializing more of the ps_prochandle.
2298 */
2299 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2300 shp = &shdrs[i];
2301 name = shstrtab + shp->sh_name;
2302
2303 if (shp->sh_name >= shstrtabsz) {
2304 Pdprintf("skipping section [%d]: corrupt sh_name\n", i);
2305 continue;
2306 }
2307
2308 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2309 Pdprintf("skipping section [%d]: corrupt sh_link\n", i);
2310 continue;
2311 }
2312
2313 Pdprintf("found section header %s (sh_addr 0x%llx)\n",
2314 name, (u_longlong_t)shp->sh_addr);
2315
2316 if (strcmp(name, ".SUNW_ctf") == 0) {
2317 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2318 Pdprintf("no map at addr 0x%llx for %s [%d]\n",
2319 (u_longlong_t)shp->sh_addr, name, i);
2320 continue;
2321 }
2322
2323 if (mp->map_file == NULL ||
2324 mp->map_file->file_ctf_buf != NULL) {
2325 Pdprintf("no mapping file or duplicate buffer "
2326 "for %s [%d]\n", name, i);
2327 continue;
2328 }
2329
2330 if ((buf = malloc(shp->sh_size)) == NULL ||
2331 pread64(efp->e_fd, buf, shp->sh_size,
2332 shp->sh_offset) != shp->sh_size) {
2333 Pdprintf("skipping section %s [%d]: %s\n",
2334 name, i, strerror(errno));
2335 free(buf);
2336 continue;
2337 }
2338
2339 mp->map_file->file_ctf_size = shp->sh_size;
2340 mp->map_file->file_ctf_buf = buf;
2341
2342 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2343 mp->map_file->file_ctf_dyn = 1;
2344
2345 } else if (strcmp(name, ".symtab") == 0) {
2346 fake_up_symtab(P, &efp->e_hdr,
2347 shp, &shdrs[shp->sh_link]);
2348 }
2349 }
2350 out:
2351 free(shstrtab);
2352 free(shdrs);
2353 }
2354
2355 /*
2356 * Main engine for core file initialization: given an fd for the core file
2357 * and an optional pathname, construct the ps_prochandle. The aout_path can
2358 * either be a suggested executable pathname, or a suggested directory to
2359 * use as a possible current working directory.
2360 */
2361 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2362 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2363 {
2364 struct ps_prochandle *P;
2365 core_info_t *core_info;
2366 map_info_t *stk_mp, *brk_mp;
2367 const char *execname;
2368 char *interp;
2369 int i, notes, pagesize;
2370 uintptr_t addr, base_addr;
2371 struct stat64 stbuf;
2372 void *phbuf, *php;
2373 size_t nbytes;
2374 #ifdef __x86
2375 boolean_t from_linux = B_FALSE;
2376 #endif
2377
2378 elf_file_t aout;
2379 elf_file_t core;
2380
2381 Elf_Scn *scn, *intp_scn = NULL;
2382 Elf_Data *dp;
2383
2384 GElf_Phdr phdr, note_phdr;
2385 GElf_Shdr shdr;
2386 GElf_Xword nleft;
2387
2388 if (elf_version(EV_CURRENT) == EV_NONE) {
2389 Pdprintf("libproc ELF version is more recent than libelf\n");
2390 *perr = G_ELF;
2391 return (NULL);
2392 }
2393
2394 aout.e_elf = NULL;
2395 aout.e_fd = -1;
2396
2397 core.e_elf = NULL;
2398 core.e_fd = core_fd;
2399
2400 /*
2401 * Allocate and initialize a ps_prochandle structure for the core.
2402 * There are several key pieces of initialization here:
2403 *
2404 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2405 * PS_DEAD also thus prevents all operations which require state
2406 * to be PS_STOP from operating on this handle.
2407 *
2408 * 2. We keep the core file fd in P->asfd since the core file contains
2409 * the remnants of the process address space.
2410 *
2411 * 3. We set the P->info_valid bit because all information about the
2412 * core is determined by the end of this function; there is no need
2413 * for proc_update_maps() to reload mappings at any later point.
2414 *
2415 * 4. The read/write ops vector uses our core_rw() function defined
2416 * above to handle i/o requests.
2417 */
2418 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2419 *perr = G_STRANGE;
2420 return (NULL);
2421 }
2422
2423 (void) memset(P, 0, sizeof (struct ps_prochandle));
2424 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2425 P->state = PS_DEAD;
2426 P->pid = (pid_t)-1;
2427 P->asfd = core.e_fd;
2428 P->ctlfd = -1;
2429 P->statfd = -1;
2430 P->agentctlfd = -1;
2431 P->agentstatfd = -1;
2432 P->zoneroot = NULL;
2433 P->info_valid = 1;
2434 Pinit_ops(&P->ops, &P_core_ops);
2435
2436 Pinitsym(P);
2437 Pinitfd(P);
2438
2439 /*
2440 * Fstat and open the core file and make sure it is a valid ELF core.
2441 */
2442 if (fstat64(P->asfd, &stbuf) == -1) {
2443 *perr = G_STRANGE;
2444 goto err;
2445 }
2446
2447 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2448 goto err;
2449
2450 /*
2451 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2452 * structure. We keep all core-specific information in this structure.
2453 */
2454 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2455 *perr = G_STRANGE;
2456 goto err;
2457 }
2458
2459 P->data = core_info;
2460 list_create(&core_info->core_lwp_head, sizeof (lwp_info_t),
2461 offsetof(lwp_info_t, lwp_list));
2462 core_info->core_size = stbuf.st_size;
2463 /*
2464 * In the days before adjustable core file content, this was the
2465 * default core file content. For new core files, this value will
2466 * be overwritten by the NT_CONTENT note section.
2467 */
2468 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2469 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2470 CC_CONTENT_SHANON;
2471
2472 switch (core.e_hdr.e_ident[EI_CLASS]) {
2473 case ELFCLASS32:
2474 core_info->core_dmodel = PR_MODEL_ILP32;
2475 break;
2476 case ELFCLASS64:
2477 core_info->core_dmodel = PR_MODEL_LP64;
2478 break;
2479 default:
2480 *perr = G_FORMAT;
2481 goto err;
2482 }
2483 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2484
2485 /*
2486 * Because the core file may be a large file, we can't use libelf to
2487 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2488 */
2489 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2490
2491 if ((phbuf = malloc(nbytes)) == NULL) {
2492 *perr = G_STRANGE;
2493 goto err;
2494 }
2495
2496 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2497 *perr = G_STRANGE;
2498 free(phbuf);
2499 goto err;
2500 }
2501
2502 /*
2503 * Iterate through the program headers in the core file.
2504 * We're interested in two types of Phdrs: PT_NOTE (which
2505 * contains a set of saved /proc structures), and PT_LOAD (which
2506 * represents a memory mapping from the process's address space).
2507 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2508 * in the core file; currently the first PT_NOTE (if present)
2509 * contains /proc structs in the pre-2.6 unstructured /proc format.
2510 */
2511 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2512 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2513 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2514 else
2515 core_phdr_to_gelf(php, &phdr);
2516
2517 switch (phdr.p_type) {
2518 case PT_NOTE:
2519 note_phdr = phdr;
2520 notes++;
2521 break;
2522
2523 case PT_LOAD:
2524 if (core_add_mapping(P, &phdr) == -1) {
2525 *perr = G_STRANGE;
2526 free(phbuf);
2527 goto err;
2528 }
2529 break;
2530 default:
2531 Pdprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2532 break;
2533 }
2534
2535 php = (char *)php + core.e_hdr.e_phentsize;
2536 }
2537
2538 free(phbuf);
2539
2540 Psort_mappings(P);
2541
2542 /*
2543 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2544 * was present, abort. The core file is either corrupt or too old.
2545 */
2546 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2547 ELFOSABI_SOLARIS)) {
2548 *perr = G_NOTE;
2549 goto err;
2550 }
2551
2552 /*
2553 * Advance the seek pointer to the start of the PT_NOTE data
2554 */
2555 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2556 Pdprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2557 *perr = G_STRANGE;
2558 goto err;
2559 }
2560
2561 /*
2562 * Now process the PT_NOTE structures. Each one is preceded by
2563 * an Elf{32/64}_Nhdr structure describing its type and size.
2564 *
2565 * +--------+
2566 * | header |
2567 * +--------+
2568 * | name |
2569 * | ... |
2570 * +--------+
2571 * | desc |
2572 * | ... |
2573 * +--------+
2574 */
2575 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2576 Elf64_Nhdr nhdr;
2577 off64_t off, namesz, descsz;
2578
2579 /*
2580 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2581 * as different types, they are both of the same content and
2582 * size, so we don't need to worry about 32/64 conversion here.
2583 */
2584 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2585 Pdprintf(
2586 "Pgrab_core: failed to read ELF note header\n");
2587 *perr = G_NOTE;
2588 goto err;
2589 }
2590
2591 /*
2592 * According to the System V ABI, the amount of padding
2593 * following the name field should align the description
2594 * field on a 4 byte boundary for 32-bit binaries or on an 8
2595 * byte boundary for 64-bit binaries. However, this change
2596 * was not made correctly during the 64-bit port so all
2597 * descriptions can assume only 4-byte alignment. We ignore
2598 * the name field and the padding to 4-byte alignment.
2599 */
2600 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2601
2602 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2603 Pdprintf("failed to seek past name and padding\n");
2604 *perr = G_STRANGE;
2605 goto err;
2606 }
2607
2608 Pdprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2609 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2610
2611 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2612
2613 /*
2614 * Invoke the note handler function from our table
2615 */
2616 if (nhdr.n_type < ARRAY_SIZE(nhdlrs) &&
2617 nhdlrs[nhdr.n_type] != NULL) {
2618 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2619 Pdprintf("handler for type %d returned < 0",
2620 nhdr.n_type);
2621 *perr = G_NOTE;
2622 goto err;
2623 }
2624 /*
2625 * The presence of either of these notes indicates that
2626 * the dump was generated on Linux.
2627 */
2628 #ifdef __x86
2629 if (nhdr.n_type == NT_PRSTATUS ||
2630 nhdr.n_type == NT_PRPSINFO)
2631 from_linux = B_TRUE;
2632 #endif
2633 } else {
2634 (void) note_notsup(P, nhdr.n_descsz);
2635 }
2636
2637 /*
2638 * Seek past the current note data to the next Elf_Nhdr
2639 */
2640 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2641 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2642 Pdprintf("Pgrab_core: failed to seek to next nhdr\n");
2643 *perr = G_STRANGE;
2644 goto err;
2645 }
2646
2647 /*
2648 * Subtract the size of the header and its data from what
2649 * we have left to process.
2650 */
2651 nleft -= sizeof (nhdr) + namesz + descsz;
2652 }
2653
2654 #ifdef __x86
2655 if (from_linux) {
2656 size_t pid;
2657 lwp_info_t *lwp;
2658
2659 P->status.pr_dmodel = core_info->core_dmodel;
2660
2661 pid = P->status.pr_pid;
2662
2663 for (lwp = list_head(&core_info->core_lwp_head); lwp != NULL;
2664 lwp = list_next(&core_info->core_lwp_head, lwp)) {
2665 Pdprintf("Linux thread with id %d\n", lwp->lwp_id);
2666
2667 /*
2668 * In the case we don't have a valid psinfo (i.e. pid is
2669 * 0, probably because of gdb creating the core) assume
2670 * lowest pid count is the first thread (what if the
2671 * next thread wraps the pid around?)
2672 */
2673 if (P->status.pr_pid == 0 &&
2674 ((pid == 0 && lwp->lwp_id > 0) ||
2675 (lwp->lwp_id < pid))) {
2676 pid = lwp->lwp_id;
2677 }
2678 }
2679
2680 if (P->status.pr_pid != pid) {
2681 Pdprintf("No valid pid, setting to %ld\n",
2682 (ulong_t)pid);
2683 P->status.pr_pid = pid;
2684 P->psinfo.pr_pid = pid;
2685 }
2686
2687 /*
2688 * Consumers like mdb expect the first thread to actually have
2689 * an id of 1, on linux that is actually the pid. Find the the
2690 * thread with our process id, and set the id to 1
2691 */
2692 if ((lwp = lwpid2info(P, pid)) == NULL) {
2693 Pdprintf("Couldn't find first thread\n");
2694 *perr = G_STRANGE;
2695 goto err;
2696 }
2697
2698 Pdprintf("setting representative thread: %d\n", lwp->lwp_id);
2699
2700 lwp->lwp_id = 1;
2701 lwp->lwp_status.pr_lwpid = 1;
2702
2703 /* set representative thread */
2704 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2705 sizeof (P->status.pr_lwp));
2706 }
2707 #endif /* __x86 */
2708
2709 if (nleft != 0) {
2710 Pdprintf("Pgrab_core: note section malformed\n");
2711 *perr = G_STRANGE;
2712 goto err;
2713 }
2714
2715 /*
2716 * Now that we can get AT_PAGESZ we can fill in the correct pr_pagesize
2717 * for each mapping.
2718 */
2719 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2720 pagesize = getpagesize();
2721 Pdprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2722 }
2723
2724 for (i = 0; i < P->map_count; i++) {
2725 P->mappings[i].map_pmap.pr_pagesize = pagesize;
2726 }
2727
2728 /*
2729 * Locate and label the mappings corresponding to the end of the
2730 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2731 */
2732 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2733 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2734 P->status.pr_brksize - 1)) != NULL)
2735 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2736 else
2737 brk_mp = NULL;
2738
2739 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2740 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2741
2742 /*
2743 * At this point, we have enough information to look for the
2744 * executable and open it: we have access to the auxv, a psinfo_t,
2745 * and the ability to read from mappings provided by the core file.
2746 */
2747 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2748 Pdprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2749 execname = P->execname ? P->execname : "a.out";
2750
2751 /*
2752 * Iterate through the sections, looking for the .dynamic and .interp
2753 * sections. If we encounter them, remember their section pointers.
2754 */
2755 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2756 char *sname;
2757
2758 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2759 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2760 (size_t)shdr.sh_name)) == NULL)
2761 continue;
2762
2763 if (strcmp(sname, ".interp") == 0)
2764 intp_scn = scn;
2765 }
2766
2767 /*
2768 * Get the AT_BASE auxv element. If this is missing (-1), then
2769 * we assume this is a statically-linked executable.
2770 */
2771 base_addr = Pgetauxval(P, AT_BASE);
2772
2773 /*
2774 * In order to get librtld_db initialized, we'll need to identify
2775 * and name the mapping corresponding to the run-time linker. The
2776 * AT_BASE auxv element tells us the address where it was mapped,
2777 * and the .interp section of the executable tells us its path.
2778 * If for some reason that doesn't pan out, just use ld.so.1.
2779 */
2780 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2781 dp->d_size != 0) {
2782 Pdprintf(".interp = <%s>\n", (char *)dp->d_buf);
2783 interp = dp->d_buf;
2784
2785 } else if (base_addr != (uintptr_t)-1L) {
2786 if (core_info->core_dmodel == PR_MODEL_LP64)
2787 interp = "/usr/lib/64/ld.so.1";
2788 else
2789 interp = "/usr/lib/ld.so.1";
2790
2791 Pdprintf(".interp section is missing or could not be read; "
2792 "defaulting to %s\n", interp);
2793 } else
2794 Pdprintf("detected statically linked executable\n");
2795
2796 /*
2797 * If we have an AT_BASE element, name the mapping at that address
2798 * using the interpreter pathname. Name the corresponding data
2799 * mapping after the interpreter as well.
2800 */
2801 if (base_addr != (uintptr_t)-1L) {
2802 elf_file_t intf;
2803
2804 P->map_ldso = core_name_mapping(P, base_addr, interp);
2805
2806 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2807 rd_loadobj_t rl;
2808 map_info_t *dmp;
2809
2810 rl.rl_base = base_addr;
2811 dmp = core_find_data(P, intf.e_elf, &rl);
2812
2813 if (dmp != NULL) {
2814 Pdprintf("renamed data at %p to %s\n",
2815 (void *)rl.rl_data_base, interp);
2816 (void) strncpy(dmp->map_pmap.pr_mapname,
2817 interp, PRMAPSZ);
2818 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2819 }
2820 }
2821
2822 core_elf_close(&intf);
2823 }
2824
2825 /*
2826 * If we have an AT_ENTRY element, name the mapping at that address
2827 * using the special name "a.out" just like /proc does.
2828 */
2829 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2830 P->map_exec = core_name_mapping(P, addr, "a.out");
2831
2832 /*
2833 * If we're a statically linked executable (or we're on x86 and looking
2834 * at a Linux core dump), then just locate the executable's text and
2835 * data and name them after the executable.
2836 */
2837 #ifndef __x86
2838 if (base_addr == (uintptr_t)-1L) {
2839 #else
2840 if (base_addr == (uintptr_t)-1L || from_linux) {
2841 #endif
2842 Pdprintf("looking for text and data: %s\n", execname);
2843 map_info_t *tmp, *dmp;
2844 file_info_t *fp;
2845 rd_loadobj_t rl;
2846
2847 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2848 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2849 (void) strncpy(tmp->map_pmap.pr_mapname,
2850 execname, PRMAPSZ);
2851 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2852 (void) strncpy(dmp->map_pmap.pr_mapname,
2853 execname, PRMAPSZ);
2854 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2855 }
2856
2857 if ((P->map_exec = tmp) != NULL &&
2858 (fp = malloc(sizeof (file_info_t))) != NULL) {
2859
2860 (void) memset(fp, 0, sizeof (file_info_t));
2861
2862 list_insert_head(&P->file_head, fp);
2863 tmp->map_file = fp;
2864 P->num_files++;
2865
2866 fp->file_ref = 1;
2867 fp->file_fd = -1;
2868 fp->file_dbgfile = -1;
2869
2870 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2871 fp->file_lname = strdup(execname);
2872
2873 if (fp->file_lo)
2874 *fp->file_lo = rl;
2875 if (fp->file_lname)
2876 fp->file_lbase = basename(fp->file_lname);
2877 if (fp->file_rname)
2878 fp->file_rbase = basename(fp->file_rname);
2879
2880 (void) strcpy(fp->file_pname,
2881 P->mappings[0].map_pmap.pr_mapname);
2882 fp->file_map = tmp;
2883
2884 Pbuild_file_symtab(P, fp);
2885
2886 if (dmp != NULL) {
2887 dmp->map_file = fp;
2888 fp->file_ref++;
2889 }
2890 }
2891 }
2892
2893 core_elf_close(&aout);
2894
2895 /*
2896 * We now have enough information to initialize librtld_db.
2897 * After it warms up, we can iterate through the load object chain
2898 * in the core, which will allow us to construct the file info
2899 * we need to provide symbol information for the other shared
2900 * libraries, and also to fill in the missing mapping names.
2901 */
2902 rd_log(_libproc_debug);
2903
2904 if ((P->rap = rd_new(P)) != NULL) {
2905 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2906 core_iter_mapping, P);
2907
2908 if (core_info->core_errno != 0) {
2909 errno = core_info->core_errno;
2910 *perr = G_STRANGE;
2911 goto err;
2912 }
2913 } else
2914 Pdprintf("failed to initialize rtld_db agent\n");
2915
2916 /*
2917 * If there are sections, load them and process the data from any
2918 * sections that we can use to annotate the file_info_t's.
2919 */
2920 core_load_shdrs(P, &core);
2921
2922 /*
2923 * If we previously located a stack or break mapping, and they are
2924 * still anonymous, we now assume that they were MAP_ANON mappings.
2925 * If brk_mp turns out to now have a name, then the heap is still
2926 * sitting at the end of the executable's data+bss mapping: remove
2927 * the previous MA_BREAK setting to be consistent with /proc.
2928 */
2929 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2930 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2931 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2932 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2933 else if (brk_mp != NULL)
2934 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2935
2936 *perr = 0;
2937 return (P);
2938
2939 err:
2940 Pfree(P);
2941 core_elf_close(&aout);
2942 return (NULL);
2943 }
2944
2945 /*
2946 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2947 */
2948 struct ps_prochandle *
2949 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2950 {
2951 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2952
2953 if ((fd = open64(core, oflag)) >= 0)
2954 return (Pfgrab_core(fd, aout, perr));
2955
2956 if (errno != ENOENT)
2957 *perr = G_STRANGE;
2958 else
2959 *perr = G_NOCORE;
2960
2961 return (NULL);
2962 }
2963
2964 int
2965 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2966 {
2967 core_info_t *core;
2968
2969 if (P->state != PS_DEAD) {
2970 errno = ENODATA;
2971 return (-1);
2972 }
2973
2974 core = P->data;
2975 if (core->core_upanic == NULL) {
2976 errno = ENOENT;
2977 return (-1);
2978 }
2979
2980 if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2981 errno = EINVAL;
2982 return (-1);
2983 }
2984
2985 if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2986 return (-1);
2987 (void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2988
2989 return (0);
2990 }
2991
2992 void
2993 Pupanic_free(prupanic_t *pru)
2994 {
2995 free(pru);
2996 }
2997