xref: /illumos-gate/usr/src/lib/libproc/common/Pcore.c (revision 5ae4a8043b127f983ca8ff85a7778c1536621879)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013 by Delphix. All rights reserved.
29  * Copyright 2015 Gary Mills
30  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31  * Copyright 2024 Oxide Computer Company
32  * Copyright 2025 Edgecast Cloud LLC.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/utsname.h>
37 #include <sys/sysmacros.h>
38 #include <sys/proc.h>
39 
40 #include <alloca.h>
41 #include <rtld_db.h>
42 #include <libgen.h>
43 #include <limits.h>
44 #include <string.h>
45 #include <stdlib.h>
46 #include <unistd.h>
47 #include <errno.h>
48 #include <gelf.h>
49 #include <stddef.h>
50 #include <signal.h>
51 
52 #include "libproc.h"
53 #include "Pcontrol.h"
54 #include "P32ton.h"
55 #include "Putil.h"
56 #include "proc_fd.h"
57 #ifdef __x86
58 #include "Pcore_linux.h"
59 #endif
60 
61 /*
62  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
63  * allocate an additional structure to hold information from the core
64  * file, and attach this to the standard ps_prochandle in place of the
65  * ability to examine /proc/<pid>/ files.
66  */
67 
68 /*
69  * Basic i/o function for reading and writing from the process address space
70  * stored in the core file and associated shared libraries.  We compute the
71  * appropriate fd and offsets, and let the provided prw function do the rest.
72  */
73 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))74 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
75     ssize_t (*prw)(int, void *, size_t, off64_t))
76 {
77 	ssize_t resid = n;
78 
79 	while (resid != 0) {
80 		map_info_t *mp = Paddr2mptr(P, addr);
81 
82 		uintptr_t mapoff;
83 		ssize_t len;
84 		off64_t off;
85 		int fd;
86 
87 		if (mp == NULL)
88 			break;	/* No mapping for this address */
89 
90 		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
91 			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
92 				break;	/* No file or file not open */
93 
94 			fd = mp->map_file->file_fd;
95 		} else
96 			fd = P->asfd;
97 
98 		mapoff = addr - mp->map_pmap.pr_vaddr;
99 		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
100 		off = mp->map_offset + mapoff;
101 
102 		if ((len = prw(fd, buf, len, off)) <= 0)
103 			break;
104 
105 		resid -= len;
106 		addr += len;
107 		buf = (char *)buf + len;
108 	}
109 
110 	/*
111 	 * Important: Be consistent with the behavior of i/o on the as file:
112 	 * writing to an invalid address yields EIO; reading from an invalid
113 	 * address falls through to returning success and zero bytes.
114 	 */
115 	if (resid == n && n != 0 && prw != pread64) {
116 		errno = EIO;
117 		return (-1);
118 	}
119 
120 	return (n - resid);
121 }
122 
123 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)124 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
125     void *data)
126 {
127 	return (core_rw(P, buf, n, addr, pread64));
128 }
129 
130 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)131 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
132     void *data)
133 {
134 	return (core_rw(P, (void *)buf, n, addr,
135 	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
136 }
137 
138 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)139 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
140 {
141 	core_info_t *core = data;
142 
143 	if (core->core_cred != NULL) {
144 		/*
145 		 * Avoid returning more supplementary group data than the
146 		 * caller has allocated in their buffer.  We expect them to
147 		 * check pr_ngroups afterward and potentially call us again.
148 		 */
149 		ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
150 
151 		(void) memcpy(pcrp, core->core_cred,
152 		    sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
153 
154 		return (0);
155 	}
156 
157 	errno = ENODATA;
158 	return (-1);
159 }
160 
161 static int
Psecflags_core(struct ps_prochandle * P,prsecflags_t ** psf,void * data)162 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
163 {
164 	core_info_t *core = data;
165 
166 	if (core->core_secflags == NULL) {
167 		errno = ENODATA;
168 		return (-1);
169 	}
170 
171 	if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
172 		return (-1);
173 
174 	(void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
175 
176 	return (0);
177 }
178 
179 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)180 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
181 {
182 	core_info_t *core = data;
183 
184 	if (core->core_priv == NULL) {
185 		errno = ENODATA;
186 		return (-1);
187 	}
188 
189 	*pprv = malloc(core->core_priv_size);
190 	if (*pprv == NULL) {
191 		return (-1);
192 	}
193 
194 	(void) memcpy(*pprv, core->core_priv, core->core_priv_size);
195 	return (0);
196 }
197 
198 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)199 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
200 {
201 	return (&P->psinfo);
202 }
203 
204 static void
Pfini_core(struct ps_prochandle * P,void * data)205 Pfini_core(struct ps_prochandle *P, void *data)
206 {
207 	core_info_t *core = data;
208 
209 	if (core != NULL) {
210 		extern void __priv_free_info(void *);
211 		lwp_info_t *lwp;
212 
213 		while ((lwp = list_remove_head(&core->core_lwp_head)) != NULL) {
214 #ifdef __sparc
215 			if (lwp->lwp_gwins != NULL)
216 				free(lwp->lwp_gwins);
217 			if (lwp->lwp_xregs != NULL)
218 				free(lwp->lwp_xregs);
219 			if (lwp->lwp_asrs != NULL)
220 				free(lwp->lwp_asrs);
221 #endif
222 			free(lwp);
223 		}
224 
225 		if (core->core_platform != NULL)
226 			free(core->core_platform);
227 		if (core->core_uts != NULL)
228 			free(core->core_uts);
229 		if (core->core_cred != NULL)
230 			free(core->core_cred);
231 		if (core->core_priv != NULL)
232 			free(core->core_priv);
233 		if (core->core_privinfo != NULL)
234 			__priv_free_info(core->core_privinfo);
235 		if (core->core_ppii != NULL)
236 			free(core->core_ppii);
237 		if (core->core_zonename != NULL)
238 			free(core->core_zonename);
239 		if (core->core_secflags != NULL)
240 			free(core->core_secflags);
241 		if (core->core_upanic != NULL)
242 			free(core->core_upanic);
243 		if (core->core_cwd != NULL)
244 			free(core->core_cwd);
245 #ifdef __x86
246 		if (core->core_ldt != NULL)
247 			free(core->core_ldt);
248 #endif
249 
250 		free(core);
251 	}
252 }
253 
254 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)255 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
256 {
257 	core_info_t *core = data;
258 
259 	if (core->core_platform == NULL) {
260 		errno = ENODATA;
261 		return (NULL);
262 	}
263 	(void) strncpy(s, core->core_platform, n - 1);
264 	s[n - 1] = '\0';
265 	return (s);
266 }
267 
268 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)269 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
270 {
271 	core_info_t *core = data;
272 
273 	if (core->core_uts == NULL) {
274 		errno = ENODATA;
275 		return (-1);
276 	}
277 	(void) memcpy(u, core->core_uts, sizeof (struct utsname));
278 	return (0);
279 }
280 
281 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)282 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
283 {
284 	core_info_t *core = data;
285 
286 	if (core->core_zonename == NULL) {
287 		errno = ENODATA;
288 		return (NULL);
289 	}
290 	(void) strlcpy(s, core->core_zonename, n);
291 	return (s);
292 }
293 
294 static int
Pcwd_core(struct ps_prochandle * P,prcwd_t ** cwdp,void * data)295 Pcwd_core(struct ps_prochandle *P, prcwd_t **cwdp, void *data)
296 {
297 	prcwd_t *cwd;
298 	core_info_t *core = data;
299 
300 	if (core->core_cwd == NULL) {
301 		errno = ENODATA;
302 		return (-1);
303 	}
304 
305 	if ((cwd = calloc(1, sizeof (prcwd_t))) == NULL)
306 		return (-1);
307 
308 	(void) memcpy(cwd, core->core_cwd, sizeof (prcwd_t));
309 	cwd->prcwd_fsname[sizeof (cwd->prcwd_fsname) - 1] = '\0';
310 	cwd->prcwd_mntpt[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
311 	cwd->prcwd_mntspec[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
312 	cwd->prcwd_cwd[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
313 	*cwdp = cwd;
314 
315 	return (0);
316 }
317 
318 #ifdef __x86
319 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)320 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
321 {
322 	core_info_t *core = data;
323 
324 	if (pldt == NULL || nldt == 0)
325 		return (core->core_nldt);
326 
327 	if (core->core_ldt != NULL) {
328 		nldt = MIN(nldt, core->core_nldt);
329 
330 		(void) memcpy(pldt, core->core_ldt,
331 		    nldt * sizeof (struct ssd));
332 
333 		return (nldt);
334 	}
335 
336 	errno = ENODATA;
337 	return (-1);
338 }
339 #endif
340 
341 static const ps_ops_t P_core_ops = {
342 	.pop_pread	= Pread_core,
343 	.pop_pwrite	= Pwrite_core,
344 	.pop_cred	= Pcred_core,
345 	.pop_priv	= Ppriv_core,
346 	.pop_psinfo	= Ppsinfo_core,
347 	.pop_fini	= Pfini_core,
348 	.pop_platform	= Pplatform_core,
349 	.pop_uname	= Puname_core,
350 	.pop_zonename	= Pzonename_core,
351 	.pop_secflags	= Psecflags_core,
352 	.pop_cwd	= Pcwd_core,
353 #ifdef __x86
354 	.pop_ldt	= Pldt_core
355 #endif
356 };
357 
358 /*
359  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
360  * encountered yet, allocate a new structure and return a pointer to it.
361  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
362  */
363 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)364 lwpid2info(struct ps_prochandle *P, lwpid_t id)
365 {
366 	core_info_t *core = P->data;
367 	lwp_info_t *lwp, *prev;
368 
369 	for (lwp = list_head(&core->core_lwp_head); lwp != NULL;
370 	    lwp = list_next(&core->core_lwp_head, lwp)) {
371 		if (lwp->lwp_id == id) {
372 			core->core_lwp = lwp;
373 			return (lwp);
374 		}
375 		if (lwp->lwp_id < id) {
376 			break;
377 		}
378 	}
379 
380 	prev = lwp;
381 	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
382 		return (NULL);
383 
384 	list_insert_before(&core->core_lwp_head, prev, lwp);
385 	lwp->lwp_id = id;
386 
387 	core->core_lwp = lwp;
388 
389 	return (lwp);
390 }
391 
392 /*
393  * The core file itself contains a series of NOTE segments containing saved
394  * structures from /proc at the time the process died.  For each note we
395  * comprehend, we define a function to read it in from the core file,
396  * convert it to our native data model if necessary, and store it inside
397  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
398  * seek pointer on P->asfd positioned appropriately.  We populate a table
399  * of pointers to these note functions below.
400  */
401 
402 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)403 note_pstatus(struct ps_prochandle *P, size_t nbytes)
404 {
405 #ifdef _LP64
406 	core_info_t *core = P->data;
407 
408 	if (core->core_dmodel == PR_MODEL_ILP32) {
409 		pstatus32_t ps32;
410 
411 		if (nbytes < sizeof (pstatus32_t) ||
412 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
413 			goto err;
414 
415 		pstatus_32_to_n(&ps32, &P->status);
416 
417 	} else
418 #endif
419 	if (nbytes < sizeof (pstatus_t) ||
420 	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
421 		goto err;
422 
423 	P->orig_status = P->status;
424 	P->pid = P->status.pr_pid;
425 
426 	return (0);
427 
428 err:
429 	Pdprintf("Pgrab_core: failed to read NT_PSTATUS\n");
430 	return (-1);
431 }
432 
433 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)434 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
435 {
436 	lwp_info_t *lwp;
437 	lwpstatus_t lps;
438 
439 #ifdef _LP64
440 	core_info_t *core = P->data;
441 
442 	if (core->core_dmodel == PR_MODEL_ILP32) {
443 		lwpstatus32_t l32;
444 
445 		if (nbytes < sizeof (lwpstatus32_t) ||
446 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
447 			goto err;
448 
449 		lwpstatus_32_to_n(&l32, &lps);
450 	} else
451 #endif
452 	if (nbytes < sizeof (lwpstatus_t) ||
453 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
454 		goto err;
455 
456 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
457 		Pdprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
458 		return (-1);
459 	}
460 
461 	/*
462 	 * Erase a useless and confusing artifact of the kernel implementation:
463 	 * the lwps which did *not* create the core will show SIGKILL.  We can
464 	 * be assured this is bogus because SIGKILL can't produce core files.
465 	 */
466 	if (lps.pr_cursig == SIGKILL)
467 		lps.pr_cursig = 0;
468 
469 	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
470 	return (0);
471 
472 err:
473 	Pdprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
474 	return (-1);
475 }
476 
477 #ifdef __x86
478 
479 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)480 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
481 {
482 	psinfo->pr_flag = p32->pr_flag;
483 	psinfo->pr_pid = p32->pr_pid;
484 	psinfo->pr_ppid = p32->pr_ppid;
485 	psinfo->pr_uid = p32->pr_uid;
486 	psinfo->pr_gid = p32->pr_gid;
487 	psinfo->pr_sid = p32->pr_sid;
488 	psinfo->pr_pgid = p32->pr_pgrp;
489 
490 	(void) memcpy(psinfo->pr_fname, p32->pr_fname,
491 	    sizeof (psinfo->pr_fname));
492 	(void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
493 	    sizeof (psinfo->pr_psargs));
494 }
495 
496 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)497 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
498 {
499 	psinfo->pr_flag = p64->pr_flag;
500 	psinfo->pr_pid = p64->pr_pid;
501 	psinfo->pr_ppid = p64->pr_ppid;
502 	psinfo->pr_uid = p64->pr_uid;
503 	psinfo->pr_gid = p64->pr_gid;
504 	psinfo->pr_sid = p64->pr_sid;
505 	psinfo->pr_pgid = p64->pr_pgrp;
506 	psinfo->pr_pgid = p64->pr_pgrp;
507 
508 	(void) memcpy(psinfo->pr_fname, p64->pr_fname,
509 	    sizeof (psinfo->pr_fname));
510 	(void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
511 	    sizeof (psinfo->pr_psargs));
512 }
513 
514 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)515 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
516 {
517 	core_info_t *core = P->data;
518 	lx_prpsinfo32_t p32;
519 	lx_prpsinfo64_t p64;
520 
521 	if (core->core_dmodel == PR_MODEL_ILP32) {
522 		if (nbytes < sizeof (p32) ||
523 		    read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
524 			goto err;
525 
526 		lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
527 	} else {
528 		if (nbytes < sizeof (p64) ||
529 		    read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
530 			goto err;
531 
532 		lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
533 	}
534 
535 
536 	P->status.pr_pid = P->psinfo.pr_pid;
537 	P->status.pr_ppid = P->psinfo.pr_ppid;
538 	P->status.pr_pgid = P->psinfo.pr_pgid;
539 	P->status.pr_sid = P->psinfo.pr_sid;
540 
541 	P->psinfo.pr_nlwp = 0;
542 	P->status.pr_nlwp = 0;
543 
544 	return (0);
545 err:
546 	Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
547 	return (-1);
548 }
549 
550 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)551 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
552 {
553 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
554 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
555 
556 	lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
557 	lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
558 	lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
559 	lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
560 	lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
561 	lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
562 	lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
563 	lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
564 
565 	lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
566 	lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
567 	lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
568 	lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
569 	lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
570 	lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
571 	lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
572 
573 	lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
574 	lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
575 	lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
576 	lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
577 	lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
578 	lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
579 	lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
580 	lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
581 
582 	lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
583 	lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
584 }
585 
586 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)587 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
588 {
589 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
590 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
591 
592 #ifdef __amd64
593 	lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
594 	lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
595 	lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
596 	lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
597 	lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
598 	lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
599 	lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
600 	lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
601 	lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
602 	lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
603 	lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
604 	lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
605 	lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
606 	lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
607 	lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
608 	lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
609 #else /* __amd64 */
610 	lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
611 	lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
612 	lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
613 	lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
614 	lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
615 	lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
616 	lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
617 	lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
618 	lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
619 
620 	lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
621 	lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
622 	lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
623 	lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
624 	lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
625 	lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
626 
627 	lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
628 #endif	/* !__amd64 */
629 }
630 
631 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)632 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
633 {
634 	core_info_t *core = P->data;
635 
636 	lx_prstatus64_t prs64;
637 	lx_prstatus32_t prs32;
638 	lwp_info_t *lwp;
639 	lwpid_t tid;
640 
641 	Pdprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
642 	    (ulong_t)nbytes, (ulong_t)sizeof (prs32));
643 	if (core->core_dmodel == PR_MODEL_ILP32) {
644 		if (nbytes < sizeof (prs32) ||
645 		    read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
646 			goto err;
647 		tid = prs32.pr_pid;
648 	} else {
649 		if (nbytes < sizeof (prs64) ||
650 		    read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
651 			goto err;
652 		tid = prs64.pr_pid;
653 	}
654 
655 	if ((lwp = lwpid2info(P, tid)) == NULL) {
656 		Pdprintf("Pgrab_core: failed to add lwpid2info "
657 		    "linux_prstatus\n");
658 		return (-1);
659 	}
660 
661 	P->psinfo.pr_nlwp++;
662 	P->status.pr_nlwp++;
663 
664 	lwp->lwp_status.pr_lwpid = tid;
665 
666 	if (core->core_dmodel == PR_MODEL_ILP32)
667 		lx_prstatus32_to_lwp(&prs32, lwp);
668 	else
669 		lx_prstatus64_to_lwp(&prs64, lwp);
670 
671 	return (0);
672 err:
673 	Pdprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
674 	return (-1);
675 }
676 
677 #endif /* __x86 */
678 
679 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)680 note_psinfo(struct ps_prochandle *P, size_t nbytes)
681 {
682 #ifdef _LP64
683 	core_info_t *core = P->data;
684 
685 	if (core->core_dmodel == PR_MODEL_ILP32) {
686 		psinfo32_t ps32;
687 
688 		if (nbytes < sizeof (psinfo32_t) ||
689 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
690 			goto err;
691 
692 		psinfo_32_to_n(&ps32, &P->psinfo);
693 	} else
694 #endif
695 	if (nbytes < sizeof (psinfo_t) ||
696 	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
697 		goto err;
698 
699 	Pdprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
700 	Pdprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
701 	Pdprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
702 
703 	return (0);
704 
705 err:
706 	Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
707 	return (-1);
708 }
709 
710 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)711 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
712 {
713 	lwp_info_t *lwp;
714 	lwpsinfo_t lps;
715 
716 #ifdef _LP64
717 	core_info_t *core = P->data;
718 
719 	if (core->core_dmodel == PR_MODEL_ILP32) {
720 		lwpsinfo32_t l32;
721 
722 		if (nbytes < sizeof (lwpsinfo32_t) ||
723 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
724 			goto err;
725 
726 		lwpsinfo_32_to_n(&l32, &lps);
727 	} else
728 #endif
729 	if (nbytes < sizeof (lwpsinfo_t) ||
730 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
731 		goto err;
732 
733 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
734 		Pdprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
735 		return (-1);
736 	}
737 
738 	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
739 	return (0);
740 
741 err:
742 	Pdprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
743 	return (-1);
744 }
745 
746 static int
note_lwpname(struct ps_prochandle * P,size_t nbytes)747 note_lwpname(struct ps_prochandle *P, size_t nbytes)
748 {
749 	prlwpname_t name;
750 	lwp_info_t *lwp;
751 
752 	if (nbytes != sizeof (name) ||
753 	    read(P->asfd, &name, sizeof (name)) != sizeof (name))
754 		goto err;
755 
756 	if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
757 		goto err;
758 
759 	if (strlcpy(lwp->lwp_name, name.pr_lwpname,
760 	    sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
761 		errno = ENAMETOOLONG;
762 		goto err;
763 	}
764 
765 	return (0);
766 
767 err:
768 	Pdprintf("Pgrab_core: failed to read NT_LWPNAME\n");
769 	return (-1);
770 }
771 
772 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)773 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
774 {
775 	prfdinfo_core_t prfd;
776 	fd_info_t *fip;
777 
778 	if ((nbytes < sizeof (prfd)) ||
779 	    (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
780 		Pdprintf("Pgrab_core: failed to read NT_FDINFO\n");
781 		return (-1);
782 	}
783 
784 	if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
785 		Pdprintf("Pgrab_core: failed to add NT_FDINFO\n");
786 		return (-1);
787 	}
788 	if (fip->fd_info == NULL) {
789 		if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
790 			Pdprintf("Pgrab_core: failed to convert NT_FDINFO\n");
791 			return (-1);
792 		}
793 	}
794 
795 	return (0);
796 }
797 
798 static int
note_platform(struct ps_prochandle * P,size_t nbytes)799 note_platform(struct ps_prochandle *P, size_t nbytes)
800 {
801 	core_info_t *core = P->data;
802 	char *plat;
803 
804 	if (core->core_platform != NULL)
805 		return (0);	/* Already seen */
806 
807 	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
808 		if (read(P->asfd, plat, nbytes) != nbytes) {
809 			Pdprintf("Pgrab_core: failed to read NT_PLATFORM\n");
810 			free(plat);
811 			return (-1);
812 		}
813 		plat[nbytes - 1] = '\0';
814 		core->core_platform = plat;
815 	}
816 
817 	return (0);
818 }
819 
820 static int
note_secflags(struct ps_prochandle * P,size_t nbytes)821 note_secflags(struct ps_prochandle *P, size_t nbytes)
822 {
823 	core_info_t *core = P->data;
824 	prsecflags_t *psf;
825 
826 	if (core->core_secflags != NULL)
827 		return (0);	/* Already seen */
828 
829 	if (sizeof (*psf) != nbytes) {
830 		Pdprintf("Pgrab_core: NT_SECFLAGS changed size."
831 		    "  Need to handle a version change?\n");
832 		return (-1);
833 	}
834 
835 	if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
836 		if (read(P->asfd, psf, nbytes) != nbytes) {
837 			Pdprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
838 			free(psf);
839 			return (-1);
840 		}
841 
842 		core->core_secflags = psf;
843 	}
844 
845 	return (0);
846 }
847 
848 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)849 note_utsname(struct ps_prochandle *P, size_t nbytes)
850 {
851 	core_info_t *core = P->data;
852 	size_t ubytes = sizeof (struct utsname);
853 	struct utsname *utsp;
854 
855 	if (core->core_uts != NULL || nbytes < ubytes)
856 		return (0);	/* Already seen or bad size */
857 
858 	if ((utsp = malloc(ubytes)) == NULL)
859 		return (-1);
860 
861 	if (read(P->asfd, utsp, ubytes) != ubytes) {
862 		Pdprintf("Pgrab_core: failed to read NT_UTSNAME\n");
863 		free(utsp);
864 		return (-1);
865 	}
866 
867 	if (_libproc_debug) {
868 		Pdprintf("uts.sysname = \"%s\"\n", utsp->sysname);
869 		Pdprintf("uts.nodename = \"%s\"\n", utsp->nodename);
870 		Pdprintf("uts.release = \"%s\"\n", utsp->release);
871 		Pdprintf("uts.version = \"%s\"\n", utsp->version);
872 		Pdprintf("uts.machine = \"%s\"\n", utsp->machine);
873 	}
874 
875 	core->core_uts = utsp;
876 	return (0);
877 }
878 
879 static int
note_content(struct ps_prochandle * P,size_t nbytes)880 note_content(struct ps_prochandle *P, size_t nbytes)
881 {
882 	core_info_t *core = P->data;
883 	core_content_t content;
884 
885 	if (sizeof (core->core_content) != nbytes)
886 		return (-1);
887 
888 	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
889 		return (-1);
890 
891 	core->core_content = content;
892 
893 	Pdprintf("core content = %llx\n", content);
894 
895 	return (0);
896 }
897 
898 static int
note_cred(struct ps_prochandle * P,size_t nbytes)899 note_cred(struct ps_prochandle *P, size_t nbytes)
900 {
901 	core_info_t *core = P->data;
902 	prcred_t *pcrp;
903 	int ngroups;
904 	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
905 
906 	/*
907 	 * We allow for prcred_t notes that are actually smaller than a
908 	 * prcred_t since the last member isn't essential if there are
909 	 * no group memberships. This allows for more flexibility when it
910 	 * comes to slightly malformed -- but still valid -- notes.
911 	 */
912 	if (core->core_cred != NULL || nbytes < min_size)
913 		return (0);	/* Already seen or bad size */
914 
915 	ngroups = (nbytes - min_size) / sizeof (gid_t);
916 	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
917 
918 	if ((pcrp = malloc(nbytes)) == NULL)
919 		return (-1);
920 
921 	if (read(P->asfd, pcrp, nbytes) != nbytes) {
922 		Pdprintf("Pgrab_core: failed to read NT_PRCRED\n");
923 		free(pcrp);
924 		return (-1);
925 	}
926 
927 	if (pcrp->pr_ngroups > ngroups) {
928 		Pdprintf(
929 		    "pr_ngroups = %d; resetting to %d based on note size\n",
930 		    pcrp->pr_ngroups, ngroups);
931 		pcrp->pr_ngroups = ngroups;
932 	}
933 
934 	core->core_cred = pcrp;
935 	return (0);
936 }
937 
938 #ifdef __x86
939 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)940 note_ldt(struct ps_prochandle *P, size_t nbytes)
941 {
942 	core_info_t *core = P->data;
943 	struct ssd *pldt;
944 	uint_t nldt;
945 
946 	if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
947 		return (0);	/* Already seen or bad size */
948 
949 	nldt = nbytes / sizeof (struct ssd);
950 	nbytes = nldt * sizeof (struct ssd);
951 
952 	if ((pldt = malloc(nbytes)) == NULL)
953 		return (-1);
954 
955 	if (read(P->asfd, pldt, nbytes) != nbytes) {
956 		Pdprintf("Pgrab_core: failed to read NT_LDT\n");
957 		free(pldt);
958 		return (-1);
959 	}
960 
961 	core->core_ldt = pldt;
962 	core->core_nldt = nldt;
963 	return (0);
964 }
965 #endif	/* __i386 */
966 
967 static int
note_priv(struct ps_prochandle * P,size_t nbytes)968 note_priv(struct ps_prochandle *P, size_t nbytes)
969 {
970 	core_info_t *core = P->data;
971 	prpriv_t *pprvp;
972 
973 	if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
974 		return (0);	/* Already seen or bad size */
975 
976 	if ((pprvp = malloc(nbytes)) == NULL)
977 		return (-1);
978 
979 	if (read(P->asfd, pprvp, nbytes) != nbytes) {
980 		Pdprintf("Pgrab_core: failed to read NT_PRPRIV\n");
981 		free(pprvp);
982 		return (-1);
983 	}
984 
985 	core->core_priv = pprvp;
986 	core->core_priv_size = nbytes;
987 	return (0);
988 }
989 
990 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)991 note_priv_info(struct ps_prochandle *P, size_t nbytes)
992 {
993 	core_info_t *core = P->data;
994 	extern void *__priv_parse_info();
995 	priv_impl_info_t *ppii;
996 
997 	if (core->core_privinfo != NULL ||
998 	    nbytes < sizeof (priv_impl_info_t))
999 		return (0);	/* Already seen or bad size */
1000 
1001 	if ((ppii = malloc(nbytes)) == NULL)
1002 		return (-1);
1003 
1004 	if (read(P->asfd, ppii, nbytes) != nbytes ||
1005 	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
1006 		Pdprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
1007 		free(ppii);
1008 		return (-1);
1009 	}
1010 
1011 	core->core_privinfo = __priv_parse_info(ppii);
1012 	core->core_ppii = ppii;
1013 	return (0);
1014 }
1015 
1016 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)1017 note_zonename(struct ps_prochandle *P, size_t nbytes)
1018 {
1019 	core_info_t *core = P->data;
1020 	char *zonename;
1021 
1022 	if (core->core_zonename != NULL)
1023 		return (0);	/* Already seen */
1024 
1025 	if (nbytes != 0) {
1026 		if ((zonename = malloc(nbytes)) == NULL)
1027 			return (-1);
1028 		if (read(P->asfd, zonename, nbytes) != nbytes) {
1029 			Pdprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1030 			free(zonename);
1031 			return (-1);
1032 		}
1033 		zonename[nbytes - 1] = '\0';
1034 		core->core_zonename = zonename;
1035 	}
1036 
1037 	return (0);
1038 }
1039 
1040 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)1041 note_auxv(struct ps_prochandle *P, size_t nbytes)
1042 {
1043 	size_t n, i;
1044 
1045 #ifdef _LP64
1046 	core_info_t *core = P->data;
1047 
1048 	if (core->core_dmodel == PR_MODEL_ILP32) {
1049 		auxv32_t *a32;
1050 
1051 		n = nbytes / sizeof (auxv32_t);
1052 		nbytes = n * sizeof (auxv32_t);
1053 		a32 = alloca(nbytes);
1054 
1055 		if (read(P->asfd, a32, nbytes) != nbytes) {
1056 			Pdprintf("Pgrab_core: failed to read NT_AUXV\n");
1057 			return (-1);
1058 		}
1059 
1060 		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1061 			return (-1);
1062 
1063 		for (i = 0; i < n; i++)
1064 			auxv_32_to_n(&a32[i], &P->auxv[i]);
1065 
1066 	} else {
1067 #endif
1068 		n = nbytes / sizeof (auxv_t);
1069 		nbytes = n * sizeof (auxv_t);
1070 
1071 		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1072 			return (-1);
1073 
1074 		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1075 			free(P->auxv);
1076 			P->auxv = NULL;
1077 			return (-1);
1078 		}
1079 #ifdef _LP64
1080 	}
1081 #endif
1082 
1083 	if (_libproc_debug) {
1084 		for (i = 0; i < n; i++) {
1085 			Pdprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1086 			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Defensive coding for loops which depend upon the auxv array being
1092 	 * terminated by an AT_NULL element; in each case, we've allocated
1093 	 * P->auxv to have an additional element which we force to be AT_NULL.
1094 	 */
1095 	P->auxv[n].a_type = AT_NULL;
1096 	P->auxv[n].a_un.a_val = 0L;
1097 	P->nauxv = (int)n;
1098 
1099 	return (0);
1100 }
1101 
1102 /*
1103  * The xregs are not a fixed size on all architectures (notably x86) and in
1104  * general the prxregset_t has become opaque to deal with this. This means that
1105  * validating the note itself can be a little more challenging. Especially as
1106  * this can change across time. In this case we require that our consumers
1107  * perform this validation.
1108  */
1109 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1110 note_xreg(struct ps_prochandle *P, size_t nbytes)
1111 {
1112 	core_info_t *core = P->data;
1113 	lwp_info_t *lwp = core->core_lwp;
1114 	prxregset_t *xregs;
1115 	ssize_t sret;
1116 
1117 	if (lwp == NULL || lwp->lwp_xregs != NULL)
1118 		return (0);	/* No lwp yet, already seen, or bad size */
1119 
1120 	if ((xregs = malloc(nbytes)) == NULL)
1121 		return (-1);
1122 
1123 	sret = read(P->asfd, xregs, nbytes);
1124 	if (sret < 0 || (size_t)sret != nbytes) {
1125 		Pdprintf("Pgrab_core: failed to read NT_PRXREG\n");
1126 		free(xregs);
1127 		return (-1);
1128 	}
1129 
1130 	lwp->lwp_xregs = xregs;
1131 	lwp->lwp_xregsize = nbytes;
1132 	return (0);
1133 }
1134 
1135 #ifdef __sparc
1136 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1137 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1138 {
1139 	core_info_t *core = P->data;
1140 	lwp_info_t *lwp = core->core_lwp;
1141 
1142 	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1143 		return (0);	/* No lwp yet or already seen or no data */
1144 
1145 	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1146 		return (-1);
1147 
1148 	/*
1149 	 * Since the amount of gwindows data varies with how many windows were
1150 	 * actually saved, we just read up to the minimum of the note size
1151 	 * and the size of the gwindows_t type.  It doesn't matter if the read
1152 	 * fails since we have to zero out gwindows first anyway.
1153 	 */
1154 #ifdef _LP64
1155 	if (core->core_dmodel == PR_MODEL_ILP32) {
1156 		gwindows32_t g32;
1157 
1158 		(void) memset(&g32, 0, sizeof (g32));
1159 		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1160 		gwindows_32_to_n(&g32, lwp->lwp_gwins);
1161 
1162 	} else {
1163 #endif
1164 		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1165 		(void) read(P->asfd, lwp->lwp_gwins,
1166 		    MIN(nbytes, sizeof (gwindows_t)));
1167 #ifdef _LP64
1168 	}
1169 #endif
1170 	return (0);
1171 }
1172 
1173 #ifdef __sparcv9
1174 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1175 note_asrs(struct ps_prochandle *P, size_t nbytes)
1176 {
1177 	core_info_t *core = P->data;
1178 	lwp_info_t *lwp = core->core_lwp;
1179 	int64_t *asrs;
1180 
1181 	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1182 		return (0);	/* No lwp yet, already seen, or bad size */
1183 
1184 	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1185 		return (-1);
1186 
1187 	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1188 		Pdprintf("Pgrab_core: failed to read NT_ASRS\n");
1189 		free(asrs);
1190 		return (-1);
1191 	}
1192 
1193 	lwp->lwp_asrs = asrs;
1194 	return (0);
1195 }
1196 #endif	/* __sparcv9 */
1197 #endif	/* __sparc */
1198 
1199 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1200 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1201 {
1202 #ifdef _LP64
1203 	core_info_t *core = P->data;
1204 
1205 	if (core->core_dmodel == PR_MODEL_ILP32) {
1206 		psinfo32_t ps32;
1207 
1208 		if (nbytes < sizeof (psinfo32_t) ||
1209 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1210 			goto err;
1211 
1212 		psinfo_32_to_n(&ps32, &P->spymaster);
1213 	} else
1214 #endif
1215 	if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1216 	    &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1217 		goto err;
1218 
1219 	Pdprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1220 	Pdprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1221 	Pdprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1222 
1223 	return (0);
1224 
1225 err:
1226 	Pdprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1227 	return (-1);
1228 }
1229 
1230 static int
note_upanic(struct ps_prochandle * P,size_t nbytes)1231 note_upanic(struct ps_prochandle *P, size_t nbytes)
1232 {
1233 	core_info_t *core = P->data;
1234 	prupanic_t *pru;
1235 
1236 	if (core->core_upanic != NULL)
1237 		return (0);
1238 
1239 	if (sizeof (*pru) != nbytes) {
1240 		Pdprintf("Pgrab_core: NT_UPANIC changed size."
1241 		    "  Need to handle a version change?\n");
1242 		return (-1);
1243 	}
1244 
1245 	if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1246 		if (read(P->asfd, pru, nbytes) != nbytes) {
1247 			Pdprintf("Pgrab_core: failed to read NT_UPANIC\n");
1248 			free(pru);
1249 			return (-1);
1250 		}
1251 
1252 		core->core_upanic = pru;
1253 	}
1254 
1255 	return (0);
1256 }
1257 
1258 static int
note_cwd(struct ps_prochandle * P,size_t nbytes)1259 note_cwd(struct ps_prochandle *P, size_t nbytes)
1260 {
1261 	core_info_t *core = P->data;
1262 	prcwd_t *cwd;
1263 
1264 	if (core->core_cwd != NULL)
1265 		return (0);
1266 
1267 	if (sizeof (*cwd) != nbytes) {
1268 		Pdprintf("Pgrab_core: NT_CWD changed size."
1269 		    "  Need to handle a version change?\n");
1270 		return (-1);
1271 	}
1272 
1273 	if (nbytes != 0 && ((cwd = malloc(nbytes)) != NULL)) {
1274 		if (read(P->asfd, cwd, nbytes) != nbytes) {
1275 			Pdprintf("Pgrab_core: failed to read NT_CWD\n");
1276 			free(cwd);
1277 			return (-1);
1278 		}
1279 
1280 		core->core_cwd = cwd;
1281 	}
1282 
1283 	return (0);
1284 }
1285 
1286 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1287 note_notsup(struct ps_prochandle *P, size_t nbytes)
1288 {
1289 	Pdprintf("skipping unsupported note type of size %ld bytes\n",
1290 	    (ulong_t)nbytes);
1291 	return (0);
1292 }
1293 
1294 #if NT_NUM != NT_CWD
1295 #error "NT_NUM has grown. Update nhdlrs array"
1296 #endif
1297 
1298 /*
1299  * Populate a table of function pointers indexed by Note type with our
1300  * functions to process each type of core file note:
1301  */
1302 static int (*nhdlrs[NT_NUM + 1])(struct ps_prochandle *, size_t) = {
1303 #ifdef __x86
1304 	[NT_PRSTATUS] = note_linux_prstatus,
1305 #endif
1306 	[NT_PRFPREG] = note_notsup,
1307 #ifdef __x86
1308 	[NT_PRPSINFO] = note_linux_psinfo,
1309 #endif
1310 	[NT_PRXREG] = note_xreg,
1311 	[NT_PLATFORM] = note_platform,
1312 	[NT_AUXV] = note_auxv,
1313 #ifdef __sparc
1314 	[NT_GWINDOWS] = note_gwindows,
1315 #ifdef __sparcv9
1316 	[NT_ASRS] = note_asrs,
1317 #endif
1318 #endif
1319 #ifdef __x86
1320 	[NT_LDT] = note_ldt,
1321 #endif
1322 	[NT_PSTATUS] = note_pstatus,
1323 	[NT_PSINFO] = note_psinfo,
1324 	[NT_PRCRED] = note_cred,
1325 	[NT_UTSNAME] = note_utsname,
1326 	[NT_LWPSTATUS] = note_lwpstatus,
1327 	[NT_LWPSINFO] = note_lwpsinfo,
1328 	[NT_PRPRIV] = note_priv,
1329 	[NT_PRPRIVINFO] = note_priv_info,
1330 	[NT_CONTENT] = note_content,
1331 	[NT_ZONENAME] = note_zonename,
1332 	[NT_FDINFO] = note_fdinfo,
1333 	[NT_SPYMASTER] = note_spymaster,
1334 	[NT_SECFLAGS] = note_secflags,
1335 	[NT_LWPNAME] = note_lwpname,
1336 	[NT_UPANIC] = note_upanic,
1337 	[NT_CWD] = note_cwd
1338 };
1339 
1340 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1341 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1342 {
1343 	prkillinfo_t killinfo;
1344 	siginfo_t *si = &killinfo.prk_info;
1345 	char signame[SIG2STR_MAX], sig[64], info[64];
1346 	void *addr = (void *)(uintptr_t)php->p_vaddr;
1347 
1348 	const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1349 	const char *incfmt = "core file incomplete due to %s%s\n";
1350 	const char *msgfmt = "mappings at and above %p are missing\n";
1351 
1352 	if (!(php->p_flags & PF_SUNW_KILLED)) {
1353 		int err = 0;
1354 
1355 		(void) pread64(P->asfd, &err,
1356 		    sizeof (err), (off64_t)php->p_offset);
1357 
1358 		Perror_printf(P, errfmt, addr, strerror(err));
1359 		Pdprintf(errfmt, addr, strerror(err));
1360 		return;
1361 	}
1362 
1363 	if (!(php->p_flags & PF_SUNW_SIGINFO))
1364 		return;
1365 
1366 	(void) memset(&killinfo, 0, sizeof (killinfo));
1367 
1368 	(void) pread64(P->asfd, &killinfo,
1369 	    sizeof (killinfo), (off64_t)php->p_offset);
1370 
1371 	/*
1372 	 * While there is (or at least should be) only one segment that has
1373 	 * PF_SUNW_SIGINFO set, the signal information there is globally
1374 	 * useful (even if only to those debugging libproc consumers); we hang
1375 	 * the signal information gleaned here off of the ps_prochandle.
1376 	 */
1377 	P->map_missing = php->p_vaddr;
1378 	P->killinfo = killinfo.prk_info;
1379 
1380 	if (sig2str(si->si_signo, signame) == -1) {
1381 		(void) snprintf(sig, sizeof (sig),
1382 		    "<Unknown signal: 0x%x>, ", si->si_signo);
1383 	} else {
1384 		(void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1385 	}
1386 
1387 	if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1388 		(void) snprintf(info, sizeof (info),
1389 		    "pid=%d uid=%d zone=%d ctid=%d",
1390 		    si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1391 	} else {
1392 		(void) snprintf(info, sizeof (info),
1393 		    "code=%d", si->si_code);
1394 	}
1395 
1396 	Perror_printf(P, incfmt, sig, info);
1397 	Perror_printf(P, msgfmt, addr);
1398 
1399 	Pdprintf(incfmt, sig, info);
1400 	Pdprintf(msgfmt, addr);
1401 }
1402 
1403 /*
1404  * Add information on the address space mapping described by the given
1405  * PT_LOAD program header.  We fill in more information on the mapping later.
1406  */
1407 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1408 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1409 {
1410 	core_info_t *core = P->data;
1411 	prmap_t pmap;
1412 
1413 	Pdprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1414 	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1415 	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1416 
1417 	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1418 	pmap.pr_size = php->p_memsz;
1419 
1420 	/*
1421 	 * If Pgcore() or elfcore() fail to write a mapping, they will set
1422 	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1423 	 */
1424 	if (php->p_flags & PF_SUNW_FAILURE) {
1425 		core_report_mapping(P, php);
1426 	} else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1427 		Perror_printf(P, "core file may be corrupt -- data for mapping "
1428 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1429 		Pdprintf("core file may be corrupt -- data for mapping "
1430 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1431 	}
1432 
1433 	/*
1434 	 * The mapping name and offset will hopefully be filled in
1435 	 * by the librtld_db agent.  Unfortunately, if it isn't a
1436 	 * shared library mapping, this information is gone forever.
1437 	 */
1438 	pmap.pr_mapname[0] = '\0';
1439 	pmap.pr_offset = 0;
1440 
1441 	pmap.pr_mflags = 0;
1442 	if (php->p_flags & PF_R)
1443 		pmap.pr_mflags |= MA_READ;
1444 	if (php->p_flags & PF_W)
1445 		pmap.pr_mflags |= MA_WRITE;
1446 	if (php->p_flags & PF_X)
1447 		pmap.pr_mflags |= MA_EXEC;
1448 
1449 	if (php->p_filesz == 0)
1450 		pmap.pr_mflags |= MA_RESERVED1;
1451 
1452 	/*
1453 	 * At the time of adding this mapping, we just zero the pagesize.
1454 	 * Once we've processed more of the core file, we'll have the
1455 	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1456 	 */
1457 	pmap.pr_pagesize = 0;
1458 
1459 	/*
1460 	 * Unfortunately whether or not the mapping was a System V
1461 	 * shared memory segment is lost.  We use -1 to mark it as not shm.
1462 	 */
1463 	pmap.pr_shmid = -1;
1464 
1465 	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1466 }
1467 
1468 /*
1469  * Given a virtual address, name the mapping at that address using the
1470  * specified name, and return the map_info_t pointer.
1471  */
1472 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1473 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1474 {
1475 	map_info_t *mp = Paddr2mptr(P, addr);
1476 
1477 	if (mp != NULL) {
1478 		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1479 		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1480 	}
1481 
1482 	return (mp);
1483 }
1484 
1485 /*
1486  * libproc uses libelf for all of its symbol table manipulation. This function
1487  * takes a symbol table and string table from a core file and places them
1488  * in a memory backed elf file.
1489  */
1490 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1491 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1492     GElf_Shdr *symtab, GElf_Shdr *strtab)
1493 {
1494 	size_t size;
1495 	off64_t off, base;
1496 	map_info_t *mp;
1497 	file_info_t *fp;
1498 	Elf_Scn *scn;
1499 	Elf_Data *data;
1500 
1501 	if (symtab->sh_addr == 0 ||
1502 	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1503 	    (fp = mp->map_file) == NULL) {
1504 		Pdprintf("fake_up_symtab: invalid section\n");
1505 		return;
1506 	}
1507 
1508 	if (fp->file_symtab.sym_data_pri != NULL) {
1509 		Pdprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1510 		    (long)symtab->sh_addr);
1511 		return;
1512 	}
1513 
1514 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1515 		struct {
1516 			Elf32_Ehdr ehdr;
1517 			Elf32_Shdr shdr[3];
1518 			char data[1];
1519 		} *b;
1520 
1521 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1522 		size = base + symtab->sh_size + strtab->sh_size;
1523 
1524 		if ((b = calloc(1, size)) == NULL)
1525 			return;
1526 
1527 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1528 		    sizeof (ehdr->e_ident));
1529 		b->ehdr.e_type = ehdr->e_type;
1530 		b->ehdr.e_machine = ehdr->e_machine;
1531 		b->ehdr.e_version = ehdr->e_version;
1532 		b->ehdr.e_flags = ehdr->e_flags;
1533 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1534 		b->ehdr.e_shoff = sizeof (b->ehdr);
1535 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1536 		b->ehdr.e_shnum = 3;
1537 		off = 0;
1538 
1539 		b->shdr[1].sh_size = symtab->sh_size;
1540 		b->shdr[1].sh_type = SHT_SYMTAB;
1541 		b->shdr[1].sh_offset = off + base;
1542 		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1543 		b->shdr[1].sh_link = 2;
1544 		b->shdr[1].sh_info =  symtab->sh_info;
1545 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1546 
1547 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1548 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1549 			Pdprintf("fake_up_symtab: pread of symtab[1] failed\n");
1550 			free(b);
1551 			return;
1552 		}
1553 
1554 		off += b->shdr[1].sh_size;
1555 
1556 		b->shdr[2].sh_flags = SHF_STRINGS;
1557 		b->shdr[2].sh_size = strtab->sh_size;
1558 		b->shdr[2].sh_type = SHT_STRTAB;
1559 		b->shdr[2].sh_offset = off + base;
1560 		b->shdr[2].sh_info =  strtab->sh_info;
1561 		b->shdr[2].sh_addralign = 1;
1562 
1563 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1564 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1565 			Pdprintf("fake_up_symtab: pread of symtab[2] failed\n");
1566 			free(b);
1567 			return;
1568 		}
1569 
1570 		off += b->shdr[2].sh_size;
1571 
1572 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1573 		if (fp->file_symtab.sym_elf == NULL) {
1574 			free(b);
1575 			return;
1576 		}
1577 
1578 		fp->file_symtab.sym_elfmem = b;
1579 #ifdef _LP64
1580 	} else {
1581 		struct {
1582 			Elf64_Ehdr ehdr;
1583 			Elf64_Shdr shdr[3];
1584 			char data[1];
1585 		} *b;
1586 
1587 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1588 		size = base + symtab->sh_size + strtab->sh_size;
1589 
1590 		if ((b = calloc(1, size)) == NULL)
1591 			return;
1592 
1593 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1594 		    sizeof (ehdr->e_ident));
1595 		b->ehdr.e_type = ehdr->e_type;
1596 		b->ehdr.e_machine = ehdr->e_machine;
1597 		b->ehdr.e_version = ehdr->e_version;
1598 		b->ehdr.e_flags = ehdr->e_flags;
1599 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1600 		b->ehdr.e_shoff = sizeof (b->ehdr);
1601 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1602 		b->ehdr.e_shnum = 3;
1603 		off = 0;
1604 
1605 		b->shdr[1].sh_size = symtab->sh_size;
1606 		b->shdr[1].sh_type = SHT_SYMTAB;
1607 		b->shdr[1].sh_offset = off + base;
1608 		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1609 		b->shdr[1].sh_link = 2;
1610 		b->shdr[1].sh_info =  symtab->sh_info;
1611 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1612 
1613 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1614 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1615 			free(b);
1616 			return;
1617 		}
1618 
1619 		off += b->shdr[1].sh_size;
1620 
1621 		b->shdr[2].sh_flags = SHF_STRINGS;
1622 		b->shdr[2].sh_size = strtab->sh_size;
1623 		b->shdr[2].sh_type = SHT_STRTAB;
1624 		b->shdr[2].sh_offset = off + base;
1625 		b->shdr[2].sh_info =  strtab->sh_info;
1626 		b->shdr[2].sh_addralign = 1;
1627 
1628 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1629 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1630 			free(b);
1631 			return;
1632 		}
1633 
1634 		off += b->shdr[2].sh_size;
1635 
1636 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1637 		if (fp->file_symtab.sym_elf == NULL) {
1638 			free(b);
1639 			return;
1640 		}
1641 
1642 		fp->file_symtab.sym_elfmem = b;
1643 #endif
1644 	}
1645 
1646 	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1647 	    (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1648 	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1649 	    (data = elf_getdata(scn, NULL)) == NULL) {
1650 		Pdprintf("fake_up_symtab: failed to get section data at %p\n",
1651 		    (void *)scn);
1652 		goto err;
1653 	}
1654 
1655 	fp->file_symtab.sym_strs = data->d_buf;
1656 	fp->file_symtab.sym_strsz = data->d_size;
1657 	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1658 	fp->file_symtab.sym_hdr_pri = *symtab;
1659 	fp->file_symtab.sym_strhdr = *strtab;
1660 
1661 	optimize_symtab(&fp->file_symtab);
1662 
1663 	return;
1664 err:
1665 	(void) elf_end(fp->file_symtab.sym_elf);
1666 	free(fp->file_symtab.sym_elfmem);
1667 	fp->file_symtab.sym_elf = NULL;
1668 	fp->file_symtab.sym_elfmem = NULL;
1669 }
1670 
1671 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1672 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1673 {
1674 	dst->p_type = src->p_type;
1675 	dst->p_flags = src->p_flags;
1676 	dst->p_offset = (Elf64_Off)src->p_offset;
1677 	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1678 	dst->p_paddr = (Elf64_Addr)src->p_paddr;
1679 	dst->p_filesz = (Elf64_Xword)src->p_filesz;
1680 	dst->p_memsz = (Elf64_Xword)src->p_memsz;
1681 	dst->p_align = (Elf64_Xword)src->p_align;
1682 }
1683 
1684 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1685 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1686 {
1687 	dst->sh_name = src->sh_name;
1688 	dst->sh_type = src->sh_type;
1689 	dst->sh_flags = (Elf64_Xword)src->sh_flags;
1690 	dst->sh_addr = (Elf64_Addr)src->sh_addr;
1691 	dst->sh_offset = (Elf64_Off)src->sh_offset;
1692 	dst->sh_size = (Elf64_Xword)src->sh_size;
1693 	dst->sh_link = src->sh_link;
1694 	dst->sh_info = src->sh_info;
1695 	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1696 	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1697 }
1698 
1699 /*
1700  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1701  */
1702 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1703 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1704 {
1705 #ifdef _BIG_ENDIAN
1706 	uchar_t order = ELFDATA2MSB;
1707 #else
1708 	uchar_t order = ELFDATA2LSB;
1709 #endif
1710 	Elf32_Ehdr e32;
1711 	int is_noelf = -1;
1712 	int isa_err = 0;
1713 
1714 	/*
1715 	 * Because 32-bit libelf cannot deal with large files, we need to read,
1716 	 * check, and convert the file header manually in case type == ET_CORE.
1717 	 */
1718 	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1719 		if (perr != NULL)
1720 			*perr = G_FORMAT;
1721 		goto err;
1722 	}
1723 	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1724 	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1725 	    e32.e_version != EV_CURRENT) {
1726 		if (perr != NULL) {
1727 			if (is_noelf == 0 && isa_err) {
1728 				*perr = G_ISAINVAL;
1729 			} else {
1730 				*perr = G_FORMAT;
1731 			}
1732 		}
1733 		goto err;
1734 	}
1735 
1736 	/*
1737 	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1738 	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1739 	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1740 	 * 32-bit, so convert e32 to a elf_file_header_t.
1741 	 */
1742 	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1743 #ifdef _LP64
1744 		Elf64_Ehdr e64;
1745 
1746 		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1747 			if (perr != NULL)
1748 				*perr = G_FORMAT;
1749 			goto err;
1750 		}
1751 
1752 		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1753 		efp->e_hdr.e_type = e64.e_type;
1754 		efp->e_hdr.e_machine = e64.e_machine;
1755 		efp->e_hdr.e_version = e64.e_version;
1756 		efp->e_hdr.e_entry = e64.e_entry;
1757 		efp->e_hdr.e_phoff = e64.e_phoff;
1758 		efp->e_hdr.e_shoff = e64.e_shoff;
1759 		efp->e_hdr.e_flags = e64.e_flags;
1760 		efp->e_hdr.e_ehsize = e64.e_ehsize;
1761 		efp->e_hdr.e_phentsize = e64.e_phentsize;
1762 		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1763 		efp->e_hdr.e_shentsize = e64.e_shentsize;
1764 		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1765 		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1766 #else	/* _LP64 */
1767 		if (perr != NULL)
1768 			*perr = G_LP64;
1769 		goto err;
1770 #endif	/* _LP64 */
1771 	} else {
1772 		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1773 		efp->e_hdr.e_type = e32.e_type;
1774 		efp->e_hdr.e_machine = e32.e_machine;
1775 		efp->e_hdr.e_version = e32.e_version;
1776 		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1777 		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1778 		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1779 		efp->e_hdr.e_flags = e32.e_flags;
1780 		efp->e_hdr.e_ehsize = e32.e_ehsize;
1781 		efp->e_hdr.e_phentsize = e32.e_phentsize;
1782 		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1783 		efp->e_hdr.e_shentsize = e32.e_shentsize;
1784 		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1785 		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1786 	}
1787 
1788 	/*
1789 	 * If the number of section headers or program headers or the section
1790 	 * header string table index would overflow their respective fields
1791 	 * in the ELF header, they're stored in the section header at index
1792 	 * zero. To simplify use elsewhere, we look for those sentinel values
1793 	 * here.
1794 	 */
1795 	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1796 	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1797 	    efp->e_hdr.e_phnum == PN_XNUM) {
1798 		GElf_Shdr shdr;
1799 
1800 		Pdprintf("extended ELF header\n");
1801 
1802 		if (efp->e_hdr.e_shoff == 0) {
1803 			if (perr != NULL)
1804 				*perr = G_FORMAT;
1805 			goto err;
1806 		}
1807 
1808 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1809 			Elf32_Shdr shdr32;
1810 
1811 			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1812 			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1813 				if (perr != NULL)
1814 					*perr = G_FORMAT;
1815 				goto err;
1816 			}
1817 
1818 			core_shdr_to_gelf(&shdr32, &shdr);
1819 		} else {
1820 			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1821 			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1822 				if (perr != NULL)
1823 					*perr = G_FORMAT;
1824 				goto err;
1825 			}
1826 		}
1827 
1828 		if (efp->e_hdr.e_shnum == 0) {
1829 			efp->e_hdr.e_shnum = shdr.sh_size;
1830 			Pdprintf("section header count %lu\n",
1831 			    (ulong_t)shdr.sh_size);
1832 		}
1833 
1834 		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1835 			efp->e_hdr.e_shstrndx = shdr.sh_link;
1836 			Pdprintf("section string index %u\n", shdr.sh_link);
1837 		}
1838 
1839 		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1840 			efp->e_hdr.e_phnum = shdr.sh_info;
1841 			Pdprintf("program header count %u\n", shdr.sh_info);
1842 		}
1843 
1844 	} else if (efp->e_hdr.e_phoff != 0) {
1845 		GElf_Phdr phdr;
1846 		uint64_t phnum;
1847 
1848 		/*
1849 		 * It's possible this core file came from a system that
1850 		 * accidentally truncated the e_phnum field without correctly
1851 		 * using the extended format in the section header at index
1852 		 * zero. We try to detect and correct that specific type of
1853 		 * corruption by using the knowledge that the core dump
1854 		 * routines usually place the data referenced by the first
1855 		 * program header immediately after the last header element.
1856 		 */
1857 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1858 			Elf32_Phdr phdr32;
1859 
1860 			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1861 			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1862 				if (perr != NULL)
1863 					*perr = G_FORMAT;
1864 				goto err;
1865 			}
1866 
1867 			core_phdr_to_gelf(&phdr32, &phdr);
1868 		} else {
1869 			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1870 			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1871 				if (perr != NULL)
1872 					*perr = G_FORMAT;
1873 				goto err;
1874 			}
1875 		}
1876 
1877 		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1878 		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1879 		phnum /= efp->e_hdr.e_phentsize;
1880 
1881 		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1882 			Pdprintf("suspicious program header count %u %u\n",
1883 			    (uint_t)phnum, efp->e_hdr.e_phnum);
1884 
1885 			/*
1886 			 * If the new program header count we computed doesn't
1887 			 * jive with count in the ELF header, we'll use the
1888 			 * data that's there and hope for the best.
1889 			 *
1890 			 * If it does, it's also possible that the section
1891 			 * header offset is incorrect; we'll check that and
1892 			 * possibly try to fix it.
1893 			 */
1894 			if (phnum <= INT_MAX &&
1895 			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1896 
1897 				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1898 				    efp->e_hdr.e_phentsize *
1899 				    (uint_t)efp->e_hdr.e_phnum) {
1900 					efp->e_hdr.e_shoff =
1901 					    efp->e_hdr.e_phoff +
1902 					    efp->e_hdr.e_phentsize * phnum;
1903 				}
1904 
1905 				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1906 				Pdprintf("using new program header count\n");
1907 			} else {
1908 				Pdprintf("inconsistent program header count\n");
1909 			}
1910 		}
1911 	}
1912 
1913 	/*
1914 	 * The libelf implementation was never ported to be large-file aware.
1915 	 * This is typically not a problem for your average executable or
1916 	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1917 	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1918 	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1919 	 */
1920 
1921 	if (type == ET_CORE) {
1922 		efp->e_elf = NULL;
1923 		return (0);
1924 	}
1925 
1926 	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1927 		if (perr != NULL)
1928 			*perr = G_ELF;
1929 		goto err;
1930 	}
1931 
1932 	return (0);
1933 
1934 err:
1935 	efp->e_elf = NULL;
1936 	return (-1);
1937 }
1938 
1939 /*
1940  * Open the specified file and then do a core_elf_fdopen on it.
1941  */
1942 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1943 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1944 {
1945 	(void) memset(efp, 0, sizeof (elf_file_t));
1946 
1947 	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1948 		if (core_elf_fdopen(efp, type, perr) == 0)
1949 			return (0);
1950 
1951 		(void) close(efp->e_fd);
1952 		efp->e_fd = -1;
1953 	}
1954 
1955 	return (-1);
1956 }
1957 
1958 /*
1959  * Close the ELF handle and file descriptor.
1960  */
1961 static void
core_elf_close(elf_file_t * efp)1962 core_elf_close(elf_file_t *efp)
1963 {
1964 	if (efp->e_elf != NULL) {
1965 		(void) elf_end(efp->e_elf);
1966 		efp->e_elf = NULL;
1967 	}
1968 
1969 	if (efp->e_fd != -1) {
1970 		(void) close(efp->e_fd);
1971 		efp->e_fd = -1;
1972 	}
1973 }
1974 
1975 /*
1976  * Given an ELF file for a statically linked executable, locate the likely
1977  * primary text section and fill in rl_base with its virtual address.
1978  */
1979 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1980 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1981 {
1982 	GElf_Phdr phdr;
1983 	uint_t i;
1984 	size_t nphdrs;
1985 
1986 	if (elf_getphdrnum(elf, &nphdrs) == -1)
1987 		return (NULL);
1988 
1989 	for (i = 0; i < nphdrs; i++) {
1990 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1991 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1992 			rlp->rl_base = phdr.p_vaddr;
1993 			return (Paddr2mptr(P, rlp->rl_base));
1994 		}
1995 	}
1996 
1997 	return (NULL);
1998 }
1999 
2000 /*
2001  * Given an ELF file and the librtld_db structure corresponding to its primary
2002  * text mapping, deduce where its data segment was loaded and fill in
2003  * rl_data_base and prmap_t.pr_offset accordingly.
2004  */
2005 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)2006 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
2007 {
2008 	GElf_Ehdr ehdr;
2009 	GElf_Phdr phdr;
2010 	map_info_t *mp;
2011 	uint_t i, pagemask;
2012 	size_t nphdrs;
2013 
2014 	rlp->rl_data_base = (uintptr_t)NULL;
2015 
2016 	/*
2017 	 * Find the first loadable, writeable Phdr and compute rl_data_base
2018 	 * as the virtual address at which is was loaded.
2019 	 */
2020 	if (gelf_getehdr(elf, &ehdr) == NULL ||
2021 	    elf_getphdrnum(elf, &nphdrs) == -1)
2022 		return (NULL);
2023 
2024 	for (i = 0; i < nphdrs; i++) {
2025 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
2026 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
2027 			rlp->rl_data_base = phdr.p_vaddr;
2028 			if (ehdr.e_type == ET_DYN)
2029 				rlp->rl_data_base += rlp->rl_base;
2030 			break;
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * If we didn't find an appropriate phdr or if the address we
2036 	 * computed has no mapping, return NULL.
2037 	 */
2038 	if (rlp->rl_data_base == (uintptr_t)NULL ||
2039 	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
2040 		return (NULL);
2041 
2042 	/*
2043 	 * It wouldn't be procfs-related code if we didn't make use of
2044 	 * unclean knowledge of segvn, even in userland ... the prmap_t's
2045 	 * pr_offset field will be the segvn offset from mmap(2)ing the
2046 	 * data section, which will be the file offset & PAGEMASK.
2047 	 */
2048 	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2049 	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2050 
2051 	return (mp);
2052 }
2053 
2054 /*
2055  * Librtld_db agent callback for iterating over load object mappings.
2056  * For each load object, we allocate a new file_info_t, perform naming,
2057  * and attempt to construct a symbol table for the load object.
2058  */
2059 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)2060 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2061 {
2062 	core_info_t *core = P->data;
2063 	char lname[PATH_MAX], buf[PATH_MAX];
2064 	file_info_t *fp;
2065 	map_info_t *mp;
2066 
2067 	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2068 		Pdprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2069 		return (1); /* Keep going; forget this if we can't get a name */
2070 	}
2071 
2072 	Pdprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2073 	    lname, (void *)rlp->rl_base);
2074 
2075 	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2076 		Pdprintf("no mapping for %p\n", (void *)rlp->rl_base);
2077 		return (1); /* No mapping; advance to next mapping */
2078 	}
2079 
2080 	/*
2081 	 * Create a new file_info_t for this mapping, and therefore for
2082 	 * this load object.
2083 	 *
2084 	 * If there's an ELF header at the beginning of this mapping,
2085 	 * file_info_new() will try to use its section headers to
2086 	 * identify any other mappings that belong to this load object.
2087 	 */
2088 	if ((fp = mp->map_file) == NULL &&
2089 	    (fp = file_info_new(P, mp)) == NULL) {
2090 		core->core_errno = errno;
2091 		Pdprintf("failed to malloc mapping data\n");
2092 		return (0); /* Abort */
2093 	}
2094 	fp->file_map = mp;
2095 
2096 	/* Create a local copy of the load object representation */
2097 	if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2098 		core->core_errno = errno;
2099 		Pdprintf("failed to malloc mapping data\n");
2100 		return (0); /* Abort */
2101 	}
2102 	*fp->file_lo = *rlp;
2103 
2104 	if (lname[0] != '\0') {
2105 		/*
2106 		 * Naming dance part 1: if we got a name from librtld_db, then
2107 		 * copy this name to the prmap_t if it is unnamed.  If the
2108 		 * file_info_t is unnamed, name it after the lname.
2109 		 */
2110 		if (mp->map_pmap.pr_mapname[0] == '\0') {
2111 			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2112 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2113 		}
2114 
2115 		if (fp->file_lname == NULL)
2116 			fp->file_lname = strdup(lname);
2117 
2118 	} else if (fp->file_lname == NULL &&
2119 	    mp->map_pmap.pr_mapname[0] != '\0') {
2120 		/*
2121 		 * Naming dance part 2: if the mapping is named and the
2122 		 * file_info_t is not, name the file after the mapping.
2123 		 */
2124 		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2125 	}
2126 
2127 	if ((fp->file_rname == NULL) &&
2128 	    (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2129 		fp->file_rname = strdup(buf);
2130 
2131 	if (fp->file_lname != NULL)
2132 		fp->file_lbase = basename(fp->file_lname);
2133 	if (fp->file_rname != NULL)
2134 		fp->file_rbase = basename(fp->file_rname);
2135 
2136 	/* Associate the file and the mapping. */
2137 	(void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2138 	fp->file_pname[PRMAPSZ - 1] = '\0';
2139 
2140 	/*
2141 	 * If no section headers were available then we'll have to
2142 	 * identify this load object's other mappings with what we've
2143 	 * got: the start and end of the object's corresponding
2144 	 * address space.
2145 	 */
2146 	if (fp->file_saddrs == NULL) {
2147 		for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2148 		    mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2149 
2150 			if (mp->map_file == NULL) {
2151 				Pdprintf("core_iter_mapping %s: associating "
2152 				    "segment at %p\n",
2153 				    fp->file_pname,
2154 				    (void *)mp->map_pmap.pr_vaddr);
2155 				mp->map_file = fp;
2156 				fp->file_ref++;
2157 			} else {
2158 				Pdprintf("core_iter_mapping %s: segment at "
2159 				    "%p already associated with %s\n",
2160 				    fp->file_pname,
2161 				    (void *)mp->map_pmap.pr_vaddr,
2162 				    (mp == fp->file_map ? "this file" :
2163 				    mp->map_file->file_pname));
2164 			}
2165 		}
2166 	}
2167 
2168 	/* Ensure that all this file's mappings are named. */
2169 	for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2170 	    mp->map_file == fp; mp++) {
2171 		if (mp->map_pmap.pr_mapname[0] == '\0' &&
2172 		    !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2173 			(void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2174 			    PRMAPSZ);
2175 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2176 		}
2177 	}
2178 
2179 	/* Attempt to build a symbol table for this file. */
2180 	Pbuild_file_symtab(P, fp);
2181 	if (fp->file_elf == NULL)
2182 		Pdprintf("core_iter_mapping: no symtab for %s\n",
2183 		    fp->file_pname);
2184 
2185 	/* Locate the start of a data segment associated with this file. */
2186 	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2187 		Pdprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2188 		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
2189 		    mp->map_pmap.pr_offset);
2190 	} else {
2191 		Pdprintf("core_iter_mapping: no data found for %s\n",
2192 		    fp->file_pname);
2193 	}
2194 
2195 	return (1); /* Advance to next mapping */
2196 }
2197 
2198 /*
2199  * Callback function for Pfindexec().  In order to confirm a given pathname,
2200  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2201  */
2202 static int
core_exec_open(const char * path,void * efp)2203 core_exec_open(const char *path, void *efp)
2204 {
2205 	if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2206 		return (1);
2207 	if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2208 		return (1);
2209 	return (0);
2210 }
2211 
2212 /*
2213  * Attempt to load any section headers found in the core file.  If present,
2214  * this will refer to non-loadable data added to the core file by the kernel
2215  * based on coreadm(8) settings, including CTF data and the symbol table.
2216  */
2217 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2218 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2219 {
2220 	GElf_Shdr *shp, *shdrs = NULL;
2221 	char *shstrtab = NULL;
2222 	ulong_t shstrtabsz;
2223 	const char *name;
2224 	map_info_t *mp;
2225 
2226 	size_t nbytes;
2227 	void *buf;
2228 	int i;
2229 
2230 	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2231 		Pdprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2232 		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * Read the section header table from the core file and then iterate
2238 	 * over the section headers, converting each to a GElf_Shdr.
2239 	 */
2240 	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2241 		Pdprintf("failed to malloc %u section headers: %s\n",
2242 		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2243 		return;
2244 	}
2245 
2246 	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2247 	if ((buf = malloc(nbytes)) == NULL) {
2248 		Pdprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2249 		    strerror(errno));
2250 		free(shdrs);
2251 		goto out;
2252 	}
2253 
2254 	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2255 		Pdprintf("failed to read section headers at off %lld: %s\n",
2256 		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2257 		free(buf);
2258 		goto out;
2259 	}
2260 
2261 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2262 		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2263 
2264 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2265 			core_shdr_to_gelf(p, &shdrs[i]);
2266 		else
2267 			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2268 	}
2269 
2270 	free(buf);
2271 	buf = NULL;
2272 
2273 	/*
2274 	 * Read the .shstrtab section from the core file, terminating it with
2275 	 * an extra \0 so that a corrupt section will not cause us to die.
2276 	 */
2277 	shp = &shdrs[efp->e_hdr.e_shstrndx];
2278 	shstrtabsz = shp->sh_size;
2279 
2280 	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2281 		Pdprintf("failed to allocate %lu bytes for shstrtab\n",
2282 		    (ulong_t)shstrtabsz);
2283 		goto out;
2284 	}
2285 
2286 	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2287 	    shp->sh_offset) != shstrtabsz) {
2288 		Pdprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2289 		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2290 		goto out;
2291 	}
2292 
2293 	shstrtab[shstrtabsz] = '\0';
2294 
2295 	/*
2296 	 * Now iterate over each section in the section header table, locating
2297 	 * sections of interest and initializing more of the ps_prochandle.
2298 	 */
2299 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2300 		shp = &shdrs[i];
2301 		name = shstrtab + shp->sh_name;
2302 
2303 		if (shp->sh_name >= shstrtabsz) {
2304 			Pdprintf("skipping section [%d]: corrupt sh_name\n", i);
2305 			continue;
2306 		}
2307 
2308 		if (shp->sh_link >= efp->e_hdr.e_shnum) {
2309 			Pdprintf("skipping section [%d]: corrupt sh_link\n", i);
2310 			continue;
2311 		}
2312 
2313 		Pdprintf("found section header %s (sh_addr 0x%llx)\n",
2314 		    name, (u_longlong_t)shp->sh_addr);
2315 
2316 		if (strcmp(name, ".SUNW_ctf") == 0) {
2317 			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2318 				Pdprintf("no map at addr 0x%llx for %s [%d]\n",
2319 				    (u_longlong_t)shp->sh_addr, name, i);
2320 				continue;
2321 			}
2322 
2323 			if (mp->map_file == NULL ||
2324 			    mp->map_file->file_ctf_buf != NULL) {
2325 				Pdprintf("no mapping file or duplicate buffer "
2326 				    "for %s [%d]\n", name, i);
2327 				continue;
2328 			}
2329 
2330 			if ((buf = malloc(shp->sh_size)) == NULL ||
2331 			    pread64(efp->e_fd, buf, shp->sh_size,
2332 			    shp->sh_offset) != shp->sh_size) {
2333 				Pdprintf("skipping section %s [%d]: %s\n",
2334 				    name, i, strerror(errno));
2335 				free(buf);
2336 				continue;
2337 			}
2338 
2339 			mp->map_file->file_ctf_size = shp->sh_size;
2340 			mp->map_file->file_ctf_buf = buf;
2341 
2342 			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2343 				mp->map_file->file_ctf_dyn = 1;
2344 
2345 		} else if (strcmp(name, ".symtab") == 0) {
2346 			fake_up_symtab(P, &efp->e_hdr,
2347 			    shp, &shdrs[shp->sh_link]);
2348 		}
2349 	}
2350 out:
2351 	free(shstrtab);
2352 	free(shdrs);
2353 }
2354 
2355 /*
2356  * Main engine for core file initialization: given an fd for the core file
2357  * and an optional pathname, construct the ps_prochandle.  The aout_path can
2358  * either be a suggested executable pathname, or a suggested directory to
2359  * use as a possible current working directory.
2360  */
2361 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2362 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2363 {
2364 	struct ps_prochandle *P;
2365 	core_info_t *core_info;
2366 	map_info_t *stk_mp, *brk_mp;
2367 	const char *execname;
2368 	char *interp;
2369 	int i, notes, pagesize;
2370 	uintptr_t addr, base_addr;
2371 	struct stat64 stbuf;
2372 	void *phbuf, *php;
2373 	size_t nbytes;
2374 #ifdef __x86
2375 	boolean_t from_linux = B_FALSE;
2376 #endif
2377 
2378 	elf_file_t aout;
2379 	elf_file_t core;
2380 
2381 	Elf_Scn *scn, *intp_scn = NULL;
2382 	Elf_Data *dp;
2383 
2384 	GElf_Phdr phdr, note_phdr;
2385 	GElf_Shdr shdr;
2386 	GElf_Xword nleft;
2387 
2388 	if (elf_version(EV_CURRENT) == EV_NONE) {
2389 		Pdprintf("libproc ELF version is more recent than libelf\n");
2390 		*perr = G_ELF;
2391 		return (NULL);
2392 	}
2393 
2394 	aout.e_elf = NULL;
2395 	aout.e_fd = -1;
2396 
2397 	core.e_elf = NULL;
2398 	core.e_fd = core_fd;
2399 
2400 	/*
2401 	 * Allocate and initialize a ps_prochandle structure for the core.
2402 	 * There are several key pieces of initialization here:
2403 	 *
2404 	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2405 	 *    PS_DEAD also thus prevents all operations which require state
2406 	 *    to be PS_STOP from operating on this handle.
2407 	 *
2408 	 * 2. We keep the core file fd in P->asfd since the core file contains
2409 	 *    the remnants of the process address space.
2410 	 *
2411 	 * 3. We set the P->info_valid bit because all information about the
2412 	 *    core is determined by the end of this function; there is no need
2413 	 *    for proc_update_maps() to reload mappings at any later point.
2414 	 *
2415 	 * 4. The read/write ops vector uses our core_rw() function defined
2416 	 *    above to handle i/o requests.
2417 	 */
2418 	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2419 		*perr = G_STRANGE;
2420 		return (NULL);
2421 	}
2422 
2423 	(void) memset(P, 0, sizeof (struct ps_prochandle));
2424 	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2425 	P->state = PS_DEAD;
2426 	P->pid = (pid_t)-1;
2427 	P->asfd = core.e_fd;
2428 	P->ctlfd = -1;
2429 	P->statfd = -1;
2430 	P->agentctlfd = -1;
2431 	P->agentstatfd = -1;
2432 	P->zoneroot = NULL;
2433 	P->info_valid = 1;
2434 	Pinit_ops(&P->ops, &P_core_ops);
2435 
2436 	Pinitsym(P);
2437 	Pinitfd(P);
2438 
2439 	/*
2440 	 * Fstat and open the core file and make sure it is a valid ELF core.
2441 	 */
2442 	if (fstat64(P->asfd, &stbuf) == -1) {
2443 		*perr = G_STRANGE;
2444 		goto err;
2445 	}
2446 
2447 	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2448 		goto err;
2449 
2450 	/*
2451 	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2452 	 * structure.  We keep all core-specific information in this structure.
2453 	 */
2454 	if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2455 		*perr = G_STRANGE;
2456 		goto err;
2457 	}
2458 
2459 	P->data = core_info;
2460 	list_create(&core_info->core_lwp_head, sizeof (lwp_info_t),
2461 	    offsetof(lwp_info_t, lwp_list));
2462 	core_info->core_size = stbuf.st_size;
2463 	/*
2464 	 * In the days before adjustable core file content, this was the
2465 	 * default core file content. For new core files, this value will
2466 	 * be overwritten by the NT_CONTENT note section.
2467 	 */
2468 	core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2469 	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2470 	    CC_CONTENT_SHANON;
2471 
2472 	switch (core.e_hdr.e_ident[EI_CLASS]) {
2473 	case ELFCLASS32:
2474 		core_info->core_dmodel = PR_MODEL_ILP32;
2475 		break;
2476 	case ELFCLASS64:
2477 		core_info->core_dmodel = PR_MODEL_LP64;
2478 		break;
2479 	default:
2480 		*perr = G_FORMAT;
2481 		goto err;
2482 	}
2483 	core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2484 
2485 	/*
2486 	 * Because the core file may be a large file, we can't use libelf to
2487 	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2488 	 */
2489 	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2490 
2491 	if ((phbuf = malloc(nbytes)) == NULL) {
2492 		*perr = G_STRANGE;
2493 		goto err;
2494 	}
2495 
2496 	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2497 		*perr = G_STRANGE;
2498 		free(phbuf);
2499 		goto err;
2500 	}
2501 
2502 	/*
2503 	 * Iterate through the program headers in the core file.
2504 	 * We're interested in two types of Phdrs: PT_NOTE (which
2505 	 * contains a set of saved /proc structures), and PT_LOAD (which
2506 	 * represents a memory mapping from the process's address space).
2507 	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2508 	 * in the core file; currently the first PT_NOTE (if present)
2509 	 * contains /proc structs in the pre-2.6 unstructured /proc format.
2510 	 */
2511 	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2512 		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2513 			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2514 		else
2515 			core_phdr_to_gelf(php, &phdr);
2516 
2517 		switch (phdr.p_type) {
2518 		case PT_NOTE:
2519 			note_phdr = phdr;
2520 			notes++;
2521 			break;
2522 
2523 		case PT_LOAD:
2524 			if (core_add_mapping(P, &phdr) == -1) {
2525 				*perr = G_STRANGE;
2526 				free(phbuf);
2527 				goto err;
2528 			}
2529 			break;
2530 		default:
2531 			Pdprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2532 			break;
2533 		}
2534 
2535 		php = (char *)php + core.e_hdr.e_phentsize;
2536 	}
2537 
2538 	free(phbuf);
2539 
2540 	Psort_mappings(P);
2541 
2542 	/*
2543 	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2544 	 * was present, abort.  The core file is either corrupt or too old.
2545 	 */
2546 	if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2547 	    ELFOSABI_SOLARIS)) {
2548 		*perr = G_NOTE;
2549 		goto err;
2550 	}
2551 
2552 	/*
2553 	 * Advance the seek pointer to the start of the PT_NOTE data
2554 	 */
2555 	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2556 		Pdprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2557 		*perr = G_STRANGE;
2558 		goto err;
2559 	}
2560 
2561 	/*
2562 	 * Now process the PT_NOTE structures.  Each one is preceded by
2563 	 * an Elf{32/64}_Nhdr structure describing its type and size.
2564 	 *
2565 	 *  +--------+
2566 	 *  | header |
2567 	 *  +--------+
2568 	 *  | name   |
2569 	 *  | ...    |
2570 	 *  +--------+
2571 	 *  | desc   |
2572 	 *  | ...    |
2573 	 *  +--------+
2574 	 */
2575 	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2576 		Elf64_Nhdr nhdr;
2577 		off64_t off, namesz, descsz;
2578 
2579 		/*
2580 		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2581 		 * as different types, they are both of the same content and
2582 		 * size, so we don't need to worry about 32/64 conversion here.
2583 		 */
2584 		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2585 			Pdprintf(
2586 			    "Pgrab_core: failed to read ELF note header\n");
2587 			*perr = G_NOTE;
2588 			goto err;
2589 		}
2590 
2591 		/*
2592 		 * According to the System V ABI, the amount of padding
2593 		 * following the name field should align the description
2594 		 * field on a 4 byte boundary for 32-bit binaries or on an 8
2595 		 * byte boundary for 64-bit binaries. However, this change
2596 		 * was not made correctly during the 64-bit port so all
2597 		 * descriptions can assume only 4-byte alignment. We ignore
2598 		 * the name field and the padding to 4-byte alignment.
2599 		 */
2600 		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2601 
2602 		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2603 			Pdprintf("failed to seek past name and padding\n");
2604 			*perr = G_STRANGE;
2605 			goto err;
2606 		}
2607 
2608 		Pdprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2609 		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2610 
2611 		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2612 
2613 		/*
2614 		 * Invoke the note handler function from our table
2615 		 */
2616 		if (nhdr.n_type < ARRAY_SIZE(nhdlrs) &&
2617 		    nhdlrs[nhdr.n_type] != NULL) {
2618 			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2619 				Pdprintf("handler for type %d returned < 0",
2620 				    nhdr.n_type);
2621 				*perr = G_NOTE;
2622 				goto err;
2623 			}
2624 			/*
2625 			 * The presence of either of these notes indicates that
2626 			 * the dump was generated on Linux.
2627 			 */
2628 #ifdef __x86
2629 			if (nhdr.n_type == NT_PRSTATUS ||
2630 			    nhdr.n_type == NT_PRPSINFO)
2631 				from_linux = B_TRUE;
2632 #endif
2633 		} else {
2634 			(void) note_notsup(P, nhdr.n_descsz);
2635 		}
2636 
2637 		/*
2638 		 * Seek past the current note data to the next Elf_Nhdr
2639 		 */
2640 		descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2641 		if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2642 			Pdprintf("Pgrab_core: failed to seek to next nhdr\n");
2643 			*perr = G_STRANGE;
2644 			goto err;
2645 		}
2646 
2647 		/*
2648 		 * Subtract the size of the header and its data from what
2649 		 * we have left to process.
2650 		 */
2651 		nleft -= sizeof (nhdr) + namesz + descsz;
2652 	}
2653 
2654 #ifdef __x86
2655 	if (from_linux) {
2656 		size_t pid;
2657 		lwp_info_t *lwp;
2658 
2659 		P->status.pr_dmodel = core_info->core_dmodel;
2660 
2661 		pid = P->status.pr_pid;
2662 
2663 		for (lwp = list_head(&core_info->core_lwp_head); lwp != NULL;
2664 		    lwp = list_next(&core_info->core_lwp_head, lwp)) {
2665 			Pdprintf("Linux thread with id %d\n", lwp->lwp_id);
2666 
2667 			/*
2668 			 * In the case we don't have a valid psinfo (i.e. pid is
2669 			 * 0, probably because of gdb creating the core) assume
2670 			 * lowest pid count is the first thread (what if the
2671 			 * next thread wraps the pid around?)
2672 			 */
2673 			if (P->status.pr_pid == 0 &&
2674 			    ((pid == 0 && lwp->lwp_id > 0) ||
2675 			    (lwp->lwp_id < pid))) {
2676 				pid = lwp->lwp_id;
2677 			}
2678 		}
2679 
2680 		if (P->status.pr_pid != pid) {
2681 			Pdprintf("No valid pid, setting to %ld\n",
2682 			    (ulong_t)pid);
2683 			P->status.pr_pid = pid;
2684 			P->psinfo.pr_pid = pid;
2685 		}
2686 
2687 		/*
2688 		 * Consumers like mdb expect the first thread to actually have
2689 		 * an id of 1, on linux that is actually the pid. Find the the
2690 		 * thread with our process id, and set the id to 1
2691 		 */
2692 		if ((lwp = lwpid2info(P, pid)) == NULL) {
2693 			Pdprintf("Couldn't find first thread\n");
2694 			*perr = G_STRANGE;
2695 			goto err;
2696 		}
2697 
2698 		Pdprintf("setting representative thread: %d\n", lwp->lwp_id);
2699 
2700 		lwp->lwp_id = 1;
2701 		lwp->lwp_status.pr_lwpid = 1;
2702 
2703 		/* set representative thread */
2704 		(void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2705 		    sizeof (P->status.pr_lwp));
2706 	}
2707 #endif /* __x86 */
2708 
2709 	if (nleft != 0) {
2710 		Pdprintf("Pgrab_core: note section malformed\n");
2711 		*perr = G_STRANGE;
2712 		goto err;
2713 	}
2714 
2715 	/*
2716 	 * Now that we can get AT_PAGESZ we can fill in the correct pr_pagesize
2717 	 * for each mapping.
2718 	 */
2719 	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2720 		pagesize = getpagesize();
2721 		Pdprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2722 	}
2723 
2724 	for (i = 0; i < P->map_count; i++) {
2725 		P->mappings[i].map_pmap.pr_pagesize = pagesize;
2726 	}
2727 
2728 	/*
2729 	 * Locate and label the mappings corresponding to the end of the
2730 	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2731 	 */
2732 	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2733 	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2734 	    P->status.pr_brksize - 1)) != NULL)
2735 		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2736 	else
2737 		brk_mp = NULL;
2738 
2739 	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2740 		stk_mp->map_pmap.pr_mflags |= MA_STACK;
2741 
2742 	/*
2743 	 * At this point, we have enough information to look for the
2744 	 * executable and open it: we have access to the auxv, a psinfo_t,
2745 	 * and the ability to read from mappings provided by the core file.
2746 	 */
2747 	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
2748 	Pdprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2749 	execname = P->execname ? P->execname : "a.out";
2750 
2751 	/*
2752 	 * Iterate through the sections, looking for the .dynamic and .interp
2753 	 * sections.  If we encounter them, remember their section pointers.
2754 	 */
2755 	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2756 		char *sname;
2757 
2758 		if ((gelf_getshdr(scn, &shdr) == NULL) ||
2759 		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2760 		    (size_t)shdr.sh_name)) == NULL)
2761 			continue;
2762 
2763 		if (strcmp(sname, ".interp") == 0)
2764 			intp_scn = scn;
2765 	}
2766 
2767 	/*
2768 	 * Get the AT_BASE auxv element.  If this is missing (-1), then
2769 	 * we assume this is a statically-linked executable.
2770 	 */
2771 	base_addr = Pgetauxval(P, AT_BASE);
2772 
2773 	/*
2774 	 * In order to get librtld_db initialized, we'll need to identify
2775 	 * and name the mapping corresponding to the run-time linker.  The
2776 	 * AT_BASE auxv element tells us the address where it was mapped,
2777 	 * and the .interp section of the executable tells us its path.
2778 	 * If for some reason that doesn't pan out, just use ld.so.1.
2779 	 */
2780 	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2781 	    dp->d_size != 0) {
2782 		Pdprintf(".interp = <%s>\n", (char *)dp->d_buf);
2783 		interp = dp->d_buf;
2784 
2785 	} else if (base_addr != (uintptr_t)-1L) {
2786 		if (core_info->core_dmodel == PR_MODEL_LP64)
2787 			interp = "/usr/lib/64/ld.so.1";
2788 		else
2789 			interp = "/usr/lib/ld.so.1";
2790 
2791 		Pdprintf(".interp section is missing or could not be read; "
2792 		    "defaulting to %s\n", interp);
2793 	} else
2794 		Pdprintf("detected statically linked executable\n");
2795 
2796 	/*
2797 	 * If we have an AT_BASE element, name the mapping at that address
2798 	 * using the interpreter pathname.  Name the corresponding data
2799 	 * mapping after the interpreter as well.
2800 	 */
2801 	if (base_addr != (uintptr_t)-1L) {
2802 		elf_file_t intf;
2803 
2804 		P->map_ldso = core_name_mapping(P, base_addr, interp);
2805 
2806 		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2807 			rd_loadobj_t rl;
2808 			map_info_t *dmp;
2809 
2810 			rl.rl_base = base_addr;
2811 			dmp = core_find_data(P, intf.e_elf, &rl);
2812 
2813 			if (dmp != NULL) {
2814 				Pdprintf("renamed data at %p to %s\n",
2815 				    (void *)rl.rl_data_base, interp);
2816 				(void) strncpy(dmp->map_pmap.pr_mapname,
2817 				    interp, PRMAPSZ);
2818 				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2819 			}
2820 		}
2821 
2822 		core_elf_close(&intf);
2823 	}
2824 
2825 	/*
2826 	 * If we have an AT_ENTRY element, name the mapping at that address
2827 	 * using the special name "a.out" just like /proc does.
2828 	 */
2829 	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2830 		P->map_exec = core_name_mapping(P, addr, "a.out");
2831 
2832 	/*
2833 	 * If we're a statically linked executable (or we're on x86 and looking
2834 	 * at a Linux core dump), then just locate the executable's text and
2835 	 * data and name them after the executable.
2836 	 */
2837 #ifndef __x86
2838 	if (base_addr == (uintptr_t)-1L) {
2839 #else
2840 	if (base_addr == (uintptr_t)-1L || from_linux) {
2841 #endif
2842 		Pdprintf("looking for text and data: %s\n", execname);
2843 		map_info_t *tmp, *dmp;
2844 		file_info_t *fp;
2845 		rd_loadobj_t rl;
2846 
2847 		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2848 		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2849 			(void) strncpy(tmp->map_pmap.pr_mapname,
2850 			    execname, PRMAPSZ);
2851 			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2852 			(void) strncpy(dmp->map_pmap.pr_mapname,
2853 			    execname, PRMAPSZ);
2854 			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2855 		}
2856 
2857 		if ((P->map_exec = tmp) != NULL &&
2858 		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2859 
2860 			(void) memset(fp, 0, sizeof (file_info_t));
2861 
2862 			list_insert_head(&P->file_head, fp);
2863 			tmp->map_file = fp;
2864 			P->num_files++;
2865 
2866 			fp->file_ref = 1;
2867 			fp->file_fd = -1;
2868 			fp->file_dbgfile = -1;
2869 
2870 			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2871 			fp->file_lname = strdup(execname);
2872 
2873 			if (fp->file_lo)
2874 				*fp->file_lo = rl;
2875 			if (fp->file_lname)
2876 				fp->file_lbase = basename(fp->file_lname);
2877 			if (fp->file_rname)
2878 				fp->file_rbase = basename(fp->file_rname);
2879 
2880 			(void) strcpy(fp->file_pname,
2881 			    P->mappings[0].map_pmap.pr_mapname);
2882 			fp->file_map = tmp;
2883 
2884 			Pbuild_file_symtab(P, fp);
2885 
2886 			if (dmp != NULL) {
2887 				dmp->map_file = fp;
2888 				fp->file_ref++;
2889 			}
2890 		}
2891 	}
2892 
2893 	core_elf_close(&aout);
2894 
2895 	/*
2896 	 * We now have enough information to initialize librtld_db.
2897 	 * After it warms up, we can iterate through the load object chain
2898 	 * in the core, which will allow us to construct the file info
2899 	 * we need to provide symbol information for the other shared
2900 	 * libraries, and also to fill in the missing mapping names.
2901 	 */
2902 	rd_log(_libproc_debug);
2903 
2904 	if ((P->rap = rd_new(P)) != NULL) {
2905 		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2906 		    core_iter_mapping, P);
2907 
2908 		if (core_info->core_errno != 0) {
2909 			errno = core_info->core_errno;
2910 			*perr = G_STRANGE;
2911 			goto err;
2912 		}
2913 	} else
2914 		Pdprintf("failed to initialize rtld_db agent\n");
2915 
2916 	/*
2917 	 * If there are sections, load them and process the data from any
2918 	 * sections that we can use to annotate the file_info_t's.
2919 	 */
2920 	core_load_shdrs(P, &core);
2921 
2922 	/*
2923 	 * If we previously located a stack or break mapping, and they are
2924 	 * still anonymous, we now assume that they were MAP_ANON mappings.
2925 	 * If brk_mp turns out to now have a name, then the heap is still
2926 	 * sitting at the end of the executable's data+bss mapping: remove
2927 	 * the previous MA_BREAK setting to be consistent with /proc.
2928 	 */
2929 	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2930 		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2931 	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2932 		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2933 	else if (brk_mp != NULL)
2934 		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2935 
2936 	*perr = 0;
2937 	return (P);
2938 
2939 err:
2940 	Pfree(P);
2941 	core_elf_close(&aout);
2942 	return (NULL);
2943 }
2944 
2945 /*
2946  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2947  */
2948 struct ps_prochandle *
2949 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2950 {
2951 	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2952 
2953 	if ((fd = open64(core, oflag)) >= 0)
2954 		return (Pfgrab_core(fd, aout, perr));
2955 
2956 	if (errno != ENOENT)
2957 		*perr = G_STRANGE;
2958 	else
2959 		*perr = G_NOCORE;
2960 
2961 	return (NULL);
2962 }
2963 
2964 int
2965 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2966 {
2967 	core_info_t *core;
2968 
2969 	if (P->state != PS_DEAD) {
2970 		errno = ENODATA;
2971 		return (-1);
2972 	}
2973 
2974 	core = P->data;
2975 	if (core->core_upanic == NULL) {
2976 		errno = ENOENT;
2977 		return (-1);
2978 	}
2979 
2980 	if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2981 		errno = EINVAL;
2982 		return (-1);
2983 	}
2984 
2985 	if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2986 		return (-1);
2987 	(void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2988 
2989 	return (0);
2990 }
2991 
2992 void
2993 Pupanic_free(prupanic_t *pru)
2994 {
2995 	free(pru);
2996 }
2997