1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(reg,
26 spinand->scratchbuf);
27 int ret;
28
29 ret = spi_mem_exec_op(spinand->spimem, &op);
30 if (ret)
31 return ret;
32
33 *val = *spinand->scratchbuf;
34 return 0;
35 }
36
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 struct spi_mem_op op = SPINAND_SET_FEATURE_1S_1S_1S_OP(reg,
40 spinand->scratchbuf);
41
42 *spinand->scratchbuf = val;
43 return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 struct nand_device *nand = spinand_to_nand(spinand);
54
55 if (WARN_ON(spinand->cur_target < 0 ||
56 spinand->cur_target >= nand->memorg.ntargets))
57 return -EINVAL;
58
59 *cfg = spinand->cfg_cache[spinand->cur_target];
60 return 0;
61 }
62
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 struct nand_device *nand = spinand_to_nand(spinand);
66 int ret;
67
68 if (WARN_ON(spinand->cur_target < 0 ||
69 spinand->cur_target >= nand->memorg.ntargets))
70 return -EINVAL;
71
72 if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 return 0;
74
75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 if (ret)
77 return ret;
78
79 spinand->cfg_cache[spinand->cur_target] = cfg;
80 return 0;
81 }
82
83 /**
84 * spinand_upd_cfg() - Update the configuration register
85 * @spinand: the spinand device
86 * @mask: the mask encoding the bits to update in the config reg
87 * @val: the new value to apply
88 *
89 * Update the configuration register.
90 *
91 * Return: 0 on success, a negative error code otherwise.
92 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 int ret;
96 u8 cfg;
97
98 ret = spinand_get_cfg(spinand, &cfg);
99 if (ret)
100 return ret;
101
102 cfg &= ~mask;
103 cfg |= val;
104
105 return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109 * spinand_select_target() - Select a specific NAND target/die
110 * @spinand: the spinand device
111 * @target: the target/die to select
112 *
113 * Select a new target/die. If chip only has one die, this function is a NOOP.
114 *
115 * Return: 0 on success, a negative error code otherwise.
116 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 struct nand_device *nand = spinand_to_nand(spinand);
120 int ret;
121
122 if (WARN_ON(target >= nand->memorg.ntargets))
123 return -EINVAL;
124
125 if (spinand->cur_target == target)
126 return 0;
127
128 if (nand->memorg.ntargets == 1) {
129 spinand->cur_target = target;
130 return 0;
131 }
132
133 ret = spinand->select_target(spinand, target);
134 if (ret)
135 return ret;
136
137 spinand->cur_target = target;
138 return 0;
139 }
140
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 struct nand_device *nand = spinand_to_nand(spinand);
144 unsigned int target;
145 int ret;
146
147 for (target = 0; target < nand->memorg.ntargets; target++) {
148 ret = spinand_select_target(spinand, target);
149 if (ret)
150 return ret;
151
152 /*
153 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 * here to bypass the config cache.
155 */
156 ret = spinand_read_reg_op(spinand, REG_CFG,
157 &spinand->cfg_cache[target]);
158 if (ret)
159 return ret;
160 }
161
162 return 0;
163 }
164
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 struct nand_device *nand = spinand_to_nand(spinand);
168 struct device *dev = &spinand->spimem->spi->dev;
169
170 spinand->cfg_cache = devm_kcalloc(dev,
171 nand->memorg.ntargets,
172 sizeof(*spinand->cfg_cache),
173 GFP_KERNEL);
174 if (!spinand->cfg_cache)
175 return -ENOMEM;
176
177 return 0;
178 }
179
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 bool enable = false;
183
184 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 return 0;
186
187 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 spinand->op_templates.write_cache->data.buswidth == 4 ||
189 spinand->op_templates.update_cache->data.buswidth == 4)
190 enable = true;
191
192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 enable ? CFG_QUAD_ENABLE : 0);
194 }
195
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 bool enable)
198 {
199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 enable ? CFG_ECC_ENABLE : 0);
201 }
202
spinand_cont_read_enable(struct spinand_device * spinand,bool enable)203 static int spinand_cont_read_enable(struct spinand_device *spinand,
204 bool enable)
205 {
206 return spinand->set_cont_read(spinand, enable);
207 }
208
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)209 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
210 {
211 struct nand_device *nand = spinand_to_nand(spinand);
212
213 if (spinand->eccinfo.get_status)
214 return spinand->eccinfo.get_status(spinand, status);
215
216 switch (status & STATUS_ECC_MASK) {
217 case STATUS_ECC_NO_BITFLIPS:
218 return 0;
219
220 case STATUS_ECC_HAS_BITFLIPS:
221 /*
222 * We have no way to know exactly how many bitflips have been
223 * fixed, so let's return the maximum possible value so that
224 * wear-leveling layers move the data immediately.
225 */
226 return nanddev_get_ecc_conf(nand)->strength;
227
228 case STATUS_ECC_UNCOR_ERROR:
229 return -EBADMSG;
230
231 default:
232 break;
233 }
234
235 return -EINVAL;
236 }
237
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *region)
240 {
241 return -ERANGE;
242 }
243
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)244 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
245 struct mtd_oob_region *region)
246 {
247 if (section)
248 return -ERANGE;
249
250 /* Reserve 2 bytes for the BBM. */
251 region->offset = 2;
252 region->length = 62;
253
254 return 0;
255 }
256
257 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
258 .ecc = spinand_noecc_ooblayout_ecc,
259 .free = spinand_noecc_ooblayout_free,
260 };
261
spinand_ondie_ecc_init_ctx(struct nand_device * nand)262 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
263 {
264 struct spinand_device *spinand = nand_to_spinand(nand);
265 struct mtd_info *mtd = nanddev_to_mtd(nand);
266 struct spinand_ondie_ecc_conf *engine_conf;
267
268 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
269 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
270 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
271
272 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
273 if (!engine_conf)
274 return -ENOMEM;
275
276 nand->ecc.ctx.priv = engine_conf;
277
278 if (spinand->eccinfo.ooblayout)
279 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
280 else
281 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
282
283 return 0;
284 }
285
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)286 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
287 {
288 kfree(nand->ecc.ctx.priv);
289 }
290
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)291 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
292 struct nand_page_io_req *req)
293 {
294 struct spinand_device *spinand = nand_to_spinand(nand);
295 bool enable = (req->mode != MTD_OPS_RAW);
296
297 if (!enable && spinand->flags & SPINAND_NO_RAW_ACCESS)
298 return -EOPNOTSUPP;
299
300 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
301
302 /* Only enable or disable the engine */
303 return spinand_ecc_enable(spinand, enable);
304 }
305
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)306 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
307 struct nand_page_io_req *req)
308 {
309 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
310 struct spinand_device *spinand = nand_to_spinand(nand);
311 struct mtd_info *mtd = spinand_to_mtd(spinand);
312 int ret;
313
314 if (req->mode == MTD_OPS_RAW)
315 return 0;
316
317 /* Nothing to do when finishing a page write */
318 if (req->type == NAND_PAGE_WRITE)
319 return 0;
320
321 /* Finish a page read: check the status, report errors/bitflips */
322 ret = spinand_check_ecc_status(spinand, engine_conf->status);
323 if (ret == -EBADMSG) {
324 mtd->ecc_stats.failed++;
325 } else if (ret > 0) {
326 unsigned int pages;
327
328 /*
329 * Continuous reads don't allow us to get the detail,
330 * so we may exagerate the actual number of corrected bitflips.
331 */
332 if (!req->continuous)
333 pages = 1;
334 else
335 pages = req->datalen / nanddev_page_size(nand);
336
337 mtd->ecc_stats.corrected += ret * pages;
338 }
339
340 return ret;
341 }
342
343 static const struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
344 .init_ctx = spinand_ondie_ecc_init_ctx,
345 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
346 .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
347 .finish_io_req = spinand_ondie_ecc_finish_io_req,
348 };
349
350 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
351 .ops = &spinand_ondie_ecc_engine_ops,
352 };
353
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)354 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
355 {
356 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
357
358 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
359 engine_conf)
360 engine_conf->status = status;
361 }
362
spinand_write_enable_op(struct spinand_device * spinand)363 int spinand_write_enable_op(struct spinand_device *spinand)
364 {
365 struct spi_mem_op op = SPINAND_WR_EN_DIS_1S_0_0_OP(true);
366
367 return spi_mem_exec_op(spinand->spimem, &op);
368 }
369
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)370 static int spinand_load_page_op(struct spinand_device *spinand,
371 const struct nand_page_io_req *req)
372 {
373 struct nand_device *nand = spinand_to_nand(spinand);
374 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
375 struct spi_mem_op op = SPINAND_PAGE_READ_1S_1S_0_OP(row);
376
377 return spi_mem_exec_op(spinand->spimem, &op);
378 }
379
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)380 static int spinand_read_from_cache_op(struct spinand_device *spinand,
381 const struct nand_page_io_req *req)
382 {
383 struct nand_device *nand = spinand_to_nand(spinand);
384 struct mtd_info *mtd = spinand_to_mtd(spinand);
385 struct spi_mem_dirmap_desc *rdesc;
386 unsigned int nbytes = 0;
387 void *buf = NULL;
388 u16 column = 0;
389 ssize_t ret;
390
391 if (req->datalen) {
392 buf = spinand->databuf;
393 if (!req->continuous)
394 nbytes = nanddev_page_size(nand);
395 else
396 nbytes = round_up(req->dataoffs + req->datalen,
397 nanddev_page_size(nand));
398 column = 0;
399 }
400
401 if (req->ooblen) {
402 nbytes += nanddev_per_page_oobsize(nand);
403 if (!buf) {
404 buf = spinand->oobbuf;
405 column = nanddev_page_size(nand);
406 }
407 }
408
409 if (req->mode == MTD_OPS_RAW)
410 rdesc = spinand->dirmaps[req->pos.plane].rdesc;
411 else
412 rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
413
414 if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT)
415 column |= req->pos.plane << fls(nanddev_page_size(nand));
416
417 while (nbytes) {
418 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
419 if (ret < 0)
420 return ret;
421
422 if (!ret || ret > nbytes)
423 return -EIO;
424
425 nbytes -= ret;
426 column += ret;
427 buf += ret;
428
429 /*
430 * Dirmap accesses are allowed to toggle the CS.
431 * Toggling the CS during a continuous read is forbidden.
432 */
433 if (nbytes && req->continuous)
434 return -EIO;
435 }
436
437 if (req->datalen)
438 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
439 req->datalen);
440
441 if (req->ooblen) {
442 if (req->mode == MTD_OPS_AUTO_OOB)
443 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
444 spinand->oobbuf,
445 req->ooboffs,
446 req->ooblen);
447 else
448 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
449 req->ooblen);
450 }
451
452 return 0;
453 }
454
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)455 static int spinand_write_to_cache_op(struct spinand_device *spinand,
456 const struct nand_page_io_req *req)
457 {
458 struct nand_device *nand = spinand_to_nand(spinand);
459 struct mtd_info *mtd = spinand_to_mtd(spinand);
460 struct spi_mem_dirmap_desc *wdesc;
461 unsigned int nbytes, column = 0;
462 void *buf = spinand->databuf;
463 ssize_t ret;
464
465 /*
466 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
467 * the cache content to 0xFF (depends on vendor implementation), so we
468 * must fill the page cache entirely even if we only want to program
469 * the data portion of the page, otherwise we might corrupt the BBM or
470 * user data previously programmed in OOB area.
471 *
472 * Only reset the data buffer manually, the OOB buffer is prepared by
473 * ECC engines ->prepare_io_req() callback.
474 */
475 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
476 memset(spinand->databuf, 0xff, nanddev_page_size(nand));
477
478 if (req->datalen)
479 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
480 req->datalen);
481
482 if (req->ooblen) {
483 if (req->mode == MTD_OPS_AUTO_OOB)
484 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
485 spinand->oobbuf,
486 req->ooboffs,
487 req->ooblen);
488 else
489 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
490 req->ooblen);
491 }
492
493 if (req->mode == MTD_OPS_RAW)
494 wdesc = spinand->dirmaps[req->pos.plane].wdesc;
495 else
496 wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
497
498 if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT)
499 column |= req->pos.plane << fls(nanddev_page_size(nand));
500
501 while (nbytes) {
502 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
503 if (ret < 0)
504 return ret;
505
506 if (!ret || ret > nbytes)
507 return -EIO;
508
509 nbytes -= ret;
510 column += ret;
511 buf += ret;
512 }
513
514 return 0;
515 }
516
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)517 static int spinand_program_op(struct spinand_device *spinand,
518 const struct nand_page_io_req *req)
519 {
520 struct nand_device *nand = spinand_to_nand(spinand);
521 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
522 struct spi_mem_op op = SPINAND_PROG_EXEC_1S_1S_0_OP(row);
523
524 return spi_mem_exec_op(spinand->spimem, &op);
525 }
526
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)527 static int spinand_erase_op(struct spinand_device *spinand,
528 const struct nand_pos *pos)
529 {
530 struct nand_device *nand = spinand_to_nand(spinand);
531 unsigned int row = nanddev_pos_to_row(nand, pos);
532 struct spi_mem_op op = SPINAND_BLK_ERASE_1S_1S_0_OP(row);
533
534 return spi_mem_exec_op(spinand->spimem, &op);
535 }
536
537 /**
538 * spinand_wait() - Poll memory device status
539 * @spinand: the spinand device
540 * @initial_delay_us: delay in us before starting to poll
541 * @poll_delay_us: time to sleep between reads in us
542 * @s: the pointer to variable to store the value of REG_STATUS
543 *
544 * This function polls a status register (REG_STATUS) and returns when
545 * the STATUS_READY bit is 0 or when the timeout has expired.
546 *
547 * Return: 0 on success, a negative error code otherwise.
548 */
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)549 int spinand_wait(struct spinand_device *spinand, unsigned long initial_delay_us,
550 unsigned long poll_delay_us, u8 *s)
551 {
552 struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(REG_STATUS,
553 spinand->scratchbuf);
554 u8 status;
555 int ret;
556
557 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
558 initial_delay_us,
559 poll_delay_us,
560 SPINAND_WAITRDY_TIMEOUT_MS);
561 if (ret)
562 return ret;
563
564 status = *spinand->scratchbuf;
565 if (!(status & STATUS_BUSY))
566 goto out;
567
568 /*
569 * Extra read, just in case the STATUS_READY bit has changed
570 * since our last check
571 */
572 ret = spinand_read_status(spinand, &status);
573 if (ret)
574 return ret;
575
576 out:
577 if (s)
578 *s = status;
579
580 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
581 }
582
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)583 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
584 u8 ndummy, u8 *buf)
585 {
586 struct spi_mem_op op = SPINAND_READID_1S_1S_1S_OP(
587 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
588 int ret;
589
590 ret = spi_mem_exec_op(spinand->spimem, &op);
591 if (!ret)
592 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
593
594 return ret;
595 }
596
spinand_reset_op(struct spinand_device * spinand)597 static int spinand_reset_op(struct spinand_device *spinand)
598 {
599 struct spi_mem_op op = SPINAND_RESET_1S_0_0_OP;
600 int ret;
601
602 ret = spi_mem_exec_op(spinand->spimem, &op);
603 if (ret)
604 return ret;
605
606 return spinand_wait(spinand,
607 SPINAND_RESET_INITIAL_DELAY_US,
608 SPINAND_RESET_POLL_DELAY_US,
609 NULL);
610 }
611
spinand_lock_block(struct spinand_device * spinand,u8 lock)612 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
613 {
614 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
615 }
616
617 /**
618 * spinand_read_page() - Read a page
619 * @spinand: the spinand device
620 * @req: the I/O request
621 *
622 * Return: 0 or a positive number of bitflips corrected on success.
623 * A negative error code otherwise.
624 */
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)625 int spinand_read_page(struct spinand_device *spinand,
626 const struct nand_page_io_req *req)
627 {
628 struct nand_device *nand = spinand_to_nand(spinand);
629 u8 status;
630 int ret;
631
632 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
633 if (ret)
634 return ret;
635
636 ret = spinand_load_page_op(spinand, req);
637 if (ret)
638 return ret;
639
640 ret = spinand_wait(spinand,
641 SPINAND_READ_INITIAL_DELAY_US,
642 SPINAND_READ_POLL_DELAY_US,
643 &status);
644 if (ret < 0)
645 return ret;
646
647 spinand_ondie_ecc_save_status(nand, status);
648
649 ret = spinand_read_from_cache_op(spinand, req);
650 if (ret)
651 return ret;
652
653 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
654 }
655
656 /**
657 * spinand_write_page() - Write a page
658 * @spinand: the spinand device
659 * @req: the I/O request
660 *
661 * Return: 0 or a positive number of bitflips corrected on success.
662 * A negative error code otherwise.
663 */
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)664 int spinand_write_page(struct spinand_device *spinand,
665 const struct nand_page_io_req *req)
666 {
667 struct nand_device *nand = spinand_to_nand(spinand);
668 u8 status;
669 int ret;
670
671 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
672 if (ret)
673 return ret;
674
675 ret = spinand_write_enable_op(spinand);
676 if (ret)
677 return ret;
678
679 ret = spinand_write_to_cache_op(spinand, req);
680 if (ret)
681 return ret;
682
683 ret = spinand_program_op(spinand, req);
684 if (ret)
685 return ret;
686
687 ret = spinand_wait(spinand,
688 SPINAND_WRITE_INITIAL_DELAY_US,
689 SPINAND_WRITE_POLL_DELAY_US,
690 &status);
691 if (ret)
692 return ret;
693
694 if (status & STATUS_PROG_FAILED)
695 return -EIO;
696
697 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
698 }
699
spinand_mtd_regular_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)700 static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from,
701 struct mtd_oob_ops *ops,
702 unsigned int *max_bitflips)
703 {
704 struct spinand_device *spinand = mtd_to_spinand(mtd);
705 struct nand_device *nand = mtd_to_nanddev(mtd);
706 struct mtd_ecc_stats old_stats;
707 struct nand_io_iter iter;
708 bool disable_ecc = false;
709 bool ecc_failed = false;
710 unsigned int retry_mode = 0;
711 int ret;
712
713 old_stats = mtd->ecc_stats;
714
715 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
716 disable_ecc = true;
717
718 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
719 if (disable_ecc)
720 iter.req.mode = MTD_OPS_RAW;
721
722 ret = spinand_select_target(spinand, iter.req.pos.target);
723 if (ret)
724 break;
725
726 read_retry:
727 ret = spinand_read_page(spinand, &iter.req);
728 if (ret < 0 && ret != -EBADMSG)
729 break;
730
731 if (ret == -EBADMSG && spinand->set_read_retry) {
732 if (spinand->read_retries && (++retry_mode <= spinand->read_retries)) {
733 ret = spinand->set_read_retry(spinand, retry_mode);
734 if (ret < 0) {
735 spinand->set_read_retry(spinand, 0);
736 return ret;
737 }
738
739 /* Reset ecc_stats; retry */
740 mtd->ecc_stats = old_stats;
741 goto read_retry;
742 } else {
743 /* No more retry modes; real failure */
744 ecc_failed = true;
745 }
746 } else if (ret == -EBADMSG) {
747 ecc_failed = true;
748 } else {
749 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
750 }
751
752 ret = 0;
753 ops->retlen += iter.req.datalen;
754 ops->oobretlen += iter.req.ooblen;
755
756 /* Reset to retry mode 0 */
757 if (retry_mode) {
758 retry_mode = 0;
759 ret = spinand->set_read_retry(spinand, retry_mode);
760 if (ret < 0)
761 return ret;
762 }
763 }
764
765 if (ecc_failed && !ret)
766 ret = -EBADMSG;
767
768 return ret;
769 }
770
spinand_mtd_continuous_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)771 static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from,
772 struct mtd_oob_ops *ops,
773 unsigned int *max_bitflips)
774 {
775 struct spinand_device *spinand = mtd_to_spinand(mtd);
776 struct nand_device *nand = mtd_to_nanddev(mtd);
777 struct nand_io_iter iter;
778 u8 status;
779 int ret;
780
781 ret = spinand_cont_read_enable(spinand, true);
782 if (ret)
783 return ret;
784
785 /*
786 * The cache is divided into two halves. While one half of the cache has
787 * the requested data, the other half is loaded with the next chunk of data.
788 * Therefore, the host can read out the data continuously from page to page.
789 * Each data read must be a multiple of 4-bytes and full pages should be read;
790 * otherwise, the data output might get out of sequence from one read command
791 * to another.
792 */
793 nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) {
794 ret = spinand_select_target(spinand, iter.req.pos.target);
795 if (ret)
796 goto end_cont_read;
797
798 ret = nand_ecc_prepare_io_req(nand, &iter.req);
799 if (ret)
800 goto end_cont_read;
801
802 ret = spinand_load_page_op(spinand, &iter.req);
803 if (ret)
804 goto end_cont_read;
805
806 ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US,
807 SPINAND_READ_POLL_DELAY_US, NULL);
808 if (ret < 0)
809 goto end_cont_read;
810
811 ret = spinand_read_from_cache_op(spinand, &iter.req);
812 if (ret)
813 goto end_cont_read;
814
815 ops->retlen += iter.req.datalen;
816
817 ret = spinand_read_status(spinand, &status);
818 if (ret)
819 goto end_cont_read;
820
821 spinand_ondie_ecc_save_status(nand, status);
822
823 ret = nand_ecc_finish_io_req(nand, &iter.req);
824 if (ret < 0)
825 goto end_cont_read;
826
827 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
828 ret = 0;
829 }
830
831 end_cont_read:
832 /*
833 * Once all the data has been read out, the host can either pull CS#
834 * high and wait for tRST or manually clear the bit in the configuration
835 * register to terminate the continuous read operation. We have no
836 * guarantee the SPI controller drivers will effectively deassert the CS
837 * when we expect them to, so take the register based approach.
838 */
839 spinand_cont_read_enable(spinand, false);
840
841 return ret;
842 }
843
spinand_cont_read_init(struct spinand_device * spinand)844 static void spinand_cont_read_init(struct spinand_device *spinand)
845 {
846 struct nand_device *nand = spinand_to_nand(spinand);
847 enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type;
848
849 /* OOBs cannot be retrieved so external/on-host ECC engine won't work */
850 if (spinand->set_cont_read &&
851 (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE ||
852 engine_type == NAND_ECC_ENGINE_TYPE_NONE)) {
853 spinand->cont_read_possible = true;
854 }
855 }
856
spinand_use_cont_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)857 static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from,
858 struct mtd_oob_ops *ops)
859 {
860 struct nand_device *nand = mtd_to_nanddev(mtd);
861 struct spinand_device *spinand = nand_to_spinand(nand);
862 struct nand_pos start_pos, end_pos;
863
864 if (!spinand->cont_read_possible)
865 return false;
866
867 /* OOBs won't be retrieved */
868 if (ops->ooblen || ops->oobbuf)
869 return false;
870
871 nanddev_offs_to_pos(nand, from, &start_pos);
872 nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos);
873
874 /*
875 * Continuous reads never cross LUN boundaries. Some devices don't
876 * support crossing planes boundaries. Some devices don't even support
877 * crossing blocks boundaries. The common case being to read through UBI,
878 * we will very rarely read two consequent blocks or more, so it is safer
879 * and easier (can be improved) to only enable continuous reads when
880 * reading within the same erase block.
881 */
882 if (start_pos.target != end_pos.target ||
883 start_pos.plane != end_pos.plane ||
884 start_pos.eraseblock != end_pos.eraseblock)
885 return false;
886
887 return start_pos.page < end_pos.page;
888 }
889
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)890 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
891 struct mtd_oob_ops *ops)
892 {
893 struct spinand_device *spinand = mtd_to_spinand(mtd);
894 struct mtd_ecc_stats old_stats;
895 unsigned int max_bitflips = 0;
896 int ret;
897
898 mutex_lock(&spinand->lock);
899
900 old_stats = mtd->ecc_stats;
901
902 if (spinand_use_cont_read(mtd, from, ops))
903 ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips);
904 else
905 ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
906
907 if (ops->stats) {
908 ops->stats->uncorrectable_errors +=
909 mtd->ecc_stats.failed - old_stats.failed;
910 ops->stats->corrected_bitflips +=
911 mtd->ecc_stats.corrected - old_stats.corrected;
912 }
913
914 mutex_unlock(&spinand->lock);
915
916 return ret ? ret : max_bitflips;
917 }
918
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)919 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
920 struct mtd_oob_ops *ops)
921 {
922 struct spinand_device *spinand = mtd_to_spinand(mtd);
923 struct nand_device *nand = mtd_to_nanddev(mtd);
924 struct nand_io_iter iter;
925 bool disable_ecc = false;
926 int ret = 0;
927
928 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
929 disable_ecc = true;
930
931 mutex_lock(&spinand->lock);
932
933 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
934 if (disable_ecc)
935 iter.req.mode = MTD_OPS_RAW;
936
937 ret = spinand_select_target(spinand, iter.req.pos.target);
938 if (ret)
939 break;
940
941 ret = spinand_write_page(spinand, &iter.req);
942 if (ret)
943 break;
944
945 ops->retlen += iter.req.datalen;
946 ops->oobretlen += iter.req.ooblen;
947 }
948
949 mutex_unlock(&spinand->lock);
950
951 return ret;
952 }
953
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)954 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
955 {
956 struct spinand_device *spinand = nand_to_spinand(nand);
957 u8 marker[2] = { };
958 struct nand_page_io_req req = {
959 .pos = *pos,
960 .ooblen = sizeof(marker),
961 .ooboffs = 0,
962 .oobbuf.in = marker,
963 .mode = MTD_OPS_RAW,
964 };
965 int ret;
966
967 spinand_select_target(spinand, pos->target);
968
969 ret = spinand_read_page(spinand, &req);
970 if (ret == -EOPNOTSUPP) {
971 /* Retry with ECC in case raw access is not supported */
972 req.mode = MTD_OPS_PLACE_OOB;
973 spinand_read_page(spinand, &req);
974 }
975
976 if (marker[0] != 0xff || marker[1] != 0xff)
977 return true;
978
979 return false;
980 }
981
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)982 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
983 {
984 struct nand_device *nand = mtd_to_nanddev(mtd);
985 struct spinand_device *spinand = nand_to_spinand(nand);
986 struct nand_pos pos;
987 int ret;
988
989 nanddev_offs_to_pos(nand, offs, &pos);
990 mutex_lock(&spinand->lock);
991 ret = nanddev_isbad(nand, &pos);
992 mutex_unlock(&spinand->lock);
993
994 return ret;
995 }
996
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)997 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
998 {
999 struct spinand_device *spinand = nand_to_spinand(nand);
1000 u8 marker[2] = { };
1001 struct nand_page_io_req req = {
1002 .pos = *pos,
1003 .ooboffs = 0,
1004 .ooblen = sizeof(marker),
1005 .oobbuf.out = marker,
1006 .mode = MTD_OPS_RAW,
1007 };
1008 int ret;
1009
1010 ret = spinand_select_target(spinand, pos->target);
1011 if (ret)
1012 return ret;
1013
1014 ret = spinand_write_page(spinand, &req);
1015 if (ret == -EOPNOTSUPP) {
1016 /* Retry with ECC in case raw access is not supported */
1017 req.mode = MTD_OPS_PLACE_OOB;
1018 ret = spinand_write_page(spinand, &req);
1019 }
1020
1021 return ret;
1022 }
1023
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)1024 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
1025 {
1026 struct nand_device *nand = mtd_to_nanddev(mtd);
1027 struct spinand_device *spinand = nand_to_spinand(nand);
1028 struct nand_pos pos;
1029 int ret;
1030
1031 nanddev_offs_to_pos(nand, offs, &pos);
1032 mutex_lock(&spinand->lock);
1033 ret = nanddev_markbad(nand, &pos);
1034 mutex_unlock(&spinand->lock);
1035
1036 return ret;
1037 }
1038
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)1039 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
1040 {
1041 struct spinand_device *spinand = nand_to_spinand(nand);
1042 u8 status;
1043 int ret;
1044
1045 ret = spinand_select_target(spinand, pos->target);
1046 if (ret)
1047 return ret;
1048
1049 ret = spinand_write_enable_op(spinand);
1050 if (ret)
1051 return ret;
1052
1053 ret = spinand_erase_op(spinand, pos);
1054 if (ret)
1055 return ret;
1056
1057 ret = spinand_wait(spinand,
1058 SPINAND_ERASE_INITIAL_DELAY_US,
1059 SPINAND_ERASE_POLL_DELAY_US,
1060 &status);
1061
1062 if (!ret && (status & STATUS_ERASE_FAILED))
1063 ret = -EIO;
1064
1065 return ret;
1066 }
1067
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)1068 static int spinand_mtd_erase(struct mtd_info *mtd,
1069 struct erase_info *einfo)
1070 {
1071 struct spinand_device *spinand = mtd_to_spinand(mtd);
1072 int ret;
1073
1074 mutex_lock(&spinand->lock);
1075 ret = nanddev_mtd_erase(mtd, einfo);
1076 mutex_unlock(&spinand->lock);
1077
1078 return ret;
1079 }
1080
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)1081 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
1082 {
1083 struct spinand_device *spinand = mtd_to_spinand(mtd);
1084 struct nand_device *nand = mtd_to_nanddev(mtd);
1085 struct nand_pos pos;
1086 int ret;
1087
1088 nanddev_offs_to_pos(nand, offs, &pos);
1089 mutex_lock(&spinand->lock);
1090 ret = nanddev_isreserved(nand, &pos);
1091 mutex_unlock(&spinand->lock);
1092
1093 return ret;
1094 }
1095
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)1096 static int spinand_create_dirmap(struct spinand_device *spinand,
1097 unsigned int plane)
1098 {
1099 struct nand_device *nand = spinand_to_nand(spinand);
1100 struct spi_mem_dirmap_info info = {
1101 .length = nanddev_page_size(nand) +
1102 nanddev_per_page_oobsize(nand),
1103 };
1104 struct spi_mem_dirmap_desc *desc;
1105
1106 if (spinand->cont_read_possible)
1107 info.length = nanddev_eraseblock_size(nand);
1108
1109 /* The plane number is passed in MSB just above the column address */
1110 info.offset = plane << fls(nand->memorg.pagesize);
1111
1112 info.op_tmpl = *spinand->op_templates.update_cache;
1113 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1114 spinand->spimem, &info);
1115 if (IS_ERR(desc))
1116 return PTR_ERR(desc);
1117
1118 spinand->dirmaps[plane].wdesc = desc;
1119
1120 info.op_tmpl = *spinand->op_templates.read_cache;
1121 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1122 spinand->spimem, &info);
1123 if (IS_ERR(desc))
1124 return PTR_ERR(desc);
1125
1126 spinand->dirmaps[plane].rdesc = desc;
1127
1128 if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
1129 spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
1130 spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
1131
1132 return 0;
1133 }
1134
1135 info.op_tmpl = *spinand->op_templates.update_cache;
1136 info.op_tmpl.data.ecc = true;
1137 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1138 spinand->spimem, &info);
1139 if (IS_ERR(desc))
1140 return PTR_ERR(desc);
1141
1142 spinand->dirmaps[plane].wdesc_ecc = desc;
1143
1144 info.op_tmpl = *spinand->op_templates.read_cache;
1145 info.op_tmpl.data.ecc = true;
1146 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1147 spinand->spimem, &info);
1148 if (IS_ERR(desc))
1149 return PTR_ERR(desc);
1150
1151 spinand->dirmaps[plane].rdesc_ecc = desc;
1152
1153 return 0;
1154 }
1155
spinand_create_dirmaps(struct spinand_device * spinand)1156 static int spinand_create_dirmaps(struct spinand_device *spinand)
1157 {
1158 struct nand_device *nand = spinand_to_nand(spinand);
1159 int i, ret;
1160
1161 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
1162 sizeof(*spinand->dirmaps) *
1163 nand->memorg.planes_per_lun,
1164 GFP_KERNEL);
1165 if (!spinand->dirmaps)
1166 return -ENOMEM;
1167
1168 for (i = 0; i < nand->memorg.planes_per_lun; i++) {
1169 ret = spinand_create_dirmap(spinand, i);
1170 if (ret)
1171 return ret;
1172 }
1173
1174 return 0;
1175 }
1176
1177 static const struct nand_ops spinand_ops = {
1178 .erase = spinand_erase,
1179 .markbad = spinand_markbad,
1180 .isbad = spinand_isbad,
1181 };
1182
1183 static const struct spinand_manufacturer *spinand_manufacturers[] = {
1184 &alliancememory_spinand_manufacturer,
1185 &ato_spinand_manufacturer,
1186 &esmt_c8_spinand_manufacturer,
1187 &foresee_spinand_manufacturer,
1188 &gigadevice_spinand_manufacturer,
1189 ¯onix_spinand_manufacturer,
1190 µn_spinand_manufacturer,
1191 ¶gon_spinand_manufacturer,
1192 &skyhigh_spinand_manufacturer,
1193 &toshiba_spinand_manufacturer,
1194 &winbond_spinand_manufacturer,
1195 &xtx_spinand_manufacturer,
1196 };
1197
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)1198 static int spinand_manufacturer_match(struct spinand_device *spinand,
1199 enum spinand_readid_method rdid_method)
1200 {
1201 u8 *id = spinand->id.data;
1202 unsigned int i;
1203 int ret;
1204
1205 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
1206 const struct spinand_manufacturer *manufacturer =
1207 spinand_manufacturers[i];
1208
1209 if (id[0] != manufacturer->id)
1210 continue;
1211
1212 ret = spinand_match_and_init(spinand,
1213 manufacturer->chips,
1214 manufacturer->nchips,
1215 rdid_method);
1216 if (ret < 0)
1217 continue;
1218
1219 spinand->manufacturer = manufacturer;
1220 return 0;
1221 }
1222 return -EOPNOTSUPP;
1223 }
1224
spinand_id_detect(struct spinand_device * spinand)1225 static int spinand_id_detect(struct spinand_device *spinand)
1226 {
1227 u8 *id = spinand->id.data;
1228 int ret;
1229
1230 ret = spinand_read_id_op(spinand, 0, 0, id);
1231 if (ret)
1232 return ret;
1233 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
1234 if (!ret)
1235 return 0;
1236
1237 ret = spinand_read_id_op(spinand, 1, 0, id);
1238 if (ret)
1239 return ret;
1240 ret = spinand_manufacturer_match(spinand,
1241 SPINAND_READID_METHOD_OPCODE_ADDR);
1242 if (!ret)
1243 return 0;
1244
1245 ret = spinand_read_id_op(spinand, 0, 1, id);
1246 if (ret)
1247 return ret;
1248 ret = spinand_manufacturer_match(spinand,
1249 SPINAND_READID_METHOD_OPCODE_DUMMY);
1250
1251 return ret;
1252 }
1253
spinand_manufacturer_init(struct spinand_device * spinand)1254 static int spinand_manufacturer_init(struct spinand_device *spinand)
1255 {
1256 int ret;
1257
1258 if (spinand->manufacturer->ops->init) {
1259 ret = spinand->manufacturer->ops->init(spinand);
1260 if (ret)
1261 return ret;
1262 }
1263
1264 if (spinand->configure_chip) {
1265 ret = spinand->configure_chip(spinand);
1266 if (ret)
1267 return ret;
1268 }
1269
1270 return 0;
1271 }
1272
spinand_manufacturer_cleanup(struct spinand_device * spinand)1273 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1274 {
1275 /* Release manufacturer private data */
1276 if (spinand->manufacturer->ops->cleanup)
1277 return spinand->manufacturer->ops->cleanup(spinand);
1278 }
1279
1280 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1281 spinand_select_op_variant(struct spinand_device *spinand,
1282 const struct spinand_op_variants *variants)
1283 {
1284 struct nand_device *nand = spinand_to_nand(spinand);
1285 const struct spi_mem_op *best_variant = NULL;
1286 u64 best_op_duration_ns = ULLONG_MAX;
1287 unsigned int i;
1288
1289 for (i = 0; i < variants->nops; i++) {
1290 struct spi_mem_op op = variants->ops[i];
1291 u64 op_duration_ns = 0;
1292 unsigned int nbytes;
1293 int ret;
1294
1295 nbytes = nanddev_per_page_oobsize(nand) +
1296 nanddev_page_size(nand);
1297
1298 while (nbytes) {
1299 op.data.nbytes = nbytes;
1300 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1301 if (ret)
1302 break;
1303
1304 spi_mem_adjust_op_freq(spinand->spimem, &op);
1305
1306 if (!spi_mem_supports_op(spinand->spimem, &op))
1307 break;
1308
1309 nbytes -= op.data.nbytes;
1310
1311 op_duration_ns += spi_mem_calc_op_duration(spinand->spimem, &op);
1312 }
1313
1314 if (!nbytes && op_duration_ns < best_op_duration_ns) {
1315 best_op_duration_ns = op_duration_ns;
1316 best_variant = &variants->ops[i];
1317 }
1318 }
1319
1320 return best_variant;
1321 }
1322
1323 /**
1324 * spinand_match_and_init() - Try to find a match between a device ID and an
1325 * entry in a spinand_info table
1326 * @spinand: SPI NAND object
1327 * @table: SPI NAND device description table
1328 * @table_size: size of the device description table
1329 * @rdid_method: read id method to match
1330 *
1331 * Match between a device ID retrieved through the READ_ID command and an
1332 * entry in the SPI NAND description table. If a match is found, the spinand
1333 * object will be initialized with information provided by the matching
1334 * spinand_info entry.
1335 *
1336 * Return: 0 on success, a negative error code otherwise.
1337 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1338 int spinand_match_and_init(struct spinand_device *spinand,
1339 const struct spinand_info *table,
1340 unsigned int table_size,
1341 enum spinand_readid_method rdid_method)
1342 {
1343 u8 *id = spinand->id.data;
1344 struct nand_device *nand = spinand_to_nand(spinand);
1345 unsigned int i;
1346
1347 for (i = 0; i < table_size; i++) {
1348 const struct spinand_info *info = &table[i];
1349 const struct spi_mem_op *op;
1350
1351 if (rdid_method != info->devid.method)
1352 continue;
1353
1354 if (memcmp(id + 1, info->devid.id, info->devid.len))
1355 continue;
1356
1357 nand->memorg = table[i].memorg;
1358 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1359 spinand->eccinfo = table[i].eccinfo;
1360 spinand->flags = table[i].flags;
1361 spinand->id.len = 1 + table[i].devid.len;
1362 spinand->select_target = table[i].select_target;
1363 spinand->configure_chip = table[i].configure_chip;
1364 spinand->set_cont_read = table[i].set_cont_read;
1365 spinand->fact_otp = &table[i].fact_otp;
1366 spinand->user_otp = &table[i].user_otp;
1367 spinand->read_retries = table[i].read_retries;
1368 spinand->set_read_retry = table[i].set_read_retry;
1369
1370 op = spinand_select_op_variant(spinand,
1371 info->op_variants.read_cache);
1372 if (!op)
1373 return -ENOTSUPP;
1374
1375 spinand->op_templates.read_cache = op;
1376
1377 op = spinand_select_op_variant(spinand,
1378 info->op_variants.write_cache);
1379 if (!op)
1380 return -ENOTSUPP;
1381
1382 spinand->op_templates.write_cache = op;
1383
1384 op = spinand_select_op_variant(spinand,
1385 info->op_variants.update_cache);
1386 spinand->op_templates.update_cache = op;
1387
1388 return 0;
1389 }
1390
1391 return -ENOTSUPP;
1392 }
1393
spinand_detect(struct spinand_device * spinand)1394 static int spinand_detect(struct spinand_device *spinand)
1395 {
1396 struct device *dev = &spinand->spimem->spi->dev;
1397 struct nand_device *nand = spinand_to_nand(spinand);
1398 int ret;
1399
1400 ret = spinand_reset_op(spinand);
1401 if (ret)
1402 return ret;
1403
1404 ret = spinand_id_detect(spinand);
1405 if (ret) {
1406 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1407 spinand->id.data);
1408 return ret;
1409 }
1410
1411 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1412 dev_err(dev,
1413 "SPI NANDs with more than one die must implement ->select_target()\n");
1414 return -EINVAL;
1415 }
1416
1417 dev_info(&spinand->spimem->spi->dev,
1418 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1419 dev_info(&spinand->spimem->spi->dev,
1420 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1421 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1422 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1423
1424 return 0;
1425 }
1426
spinand_init_flash(struct spinand_device * spinand)1427 static int spinand_init_flash(struct spinand_device *spinand)
1428 {
1429 struct device *dev = &spinand->spimem->spi->dev;
1430 struct nand_device *nand = spinand_to_nand(spinand);
1431 int ret, i;
1432
1433 ret = spinand_read_cfg(spinand);
1434 if (ret)
1435 return ret;
1436
1437 ret = spinand_init_quad_enable(spinand);
1438 if (ret)
1439 return ret;
1440
1441 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1442 if (ret)
1443 return ret;
1444
1445 ret = spinand_manufacturer_init(spinand);
1446 if (ret) {
1447 dev_err(dev,
1448 "Failed to initialize the SPI NAND chip (err = %d)\n",
1449 ret);
1450 return ret;
1451 }
1452
1453 /* After power up, all blocks are locked, so unlock them here. */
1454 for (i = 0; i < nand->memorg.ntargets; i++) {
1455 ret = spinand_select_target(spinand, i);
1456 if (ret)
1457 break;
1458
1459 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1460 if (ret)
1461 break;
1462 }
1463
1464 if (ret)
1465 spinand_manufacturer_cleanup(spinand);
1466
1467 return ret;
1468 }
1469
spinand_mtd_resume(struct mtd_info * mtd)1470 static void spinand_mtd_resume(struct mtd_info *mtd)
1471 {
1472 struct spinand_device *spinand = mtd_to_spinand(mtd);
1473 int ret;
1474
1475 ret = spinand_reset_op(spinand);
1476 if (ret)
1477 return;
1478
1479 ret = spinand_init_flash(spinand);
1480 if (ret)
1481 return;
1482
1483 spinand_ecc_enable(spinand, false);
1484 }
1485
spinand_init(struct spinand_device * spinand)1486 static int spinand_init(struct spinand_device *spinand)
1487 {
1488 struct device *dev = &spinand->spimem->spi->dev;
1489 struct mtd_info *mtd = spinand_to_mtd(spinand);
1490 struct nand_device *nand = mtd_to_nanddev(mtd);
1491 int ret;
1492
1493 /*
1494 * We need a scratch buffer because the spi_mem interface requires that
1495 * buf passed in spi_mem_op->data.buf be DMA-able.
1496 */
1497 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1498 if (!spinand->scratchbuf)
1499 return -ENOMEM;
1500
1501 ret = spinand_detect(spinand);
1502 if (ret)
1503 goto err_free_bufs;
1504
1505 /*
1506 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1507 * may use this buffer for DMA access.
1508 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1509 */
1510 spinand->databuf = kzalloc(nanddev_eraseblock_size(nand),
1511 GFP_KERNEL);
1512 if (!spinand->databuf) {
1513 ret = -ENOMEM;
1514 goto err_free_bufs;
1515 }
1516
1517 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1518
1519 ret = spinand_init_cfg_cache(spinand);
1520 if (ret)
1521 goto err_free_bufs;
1522
1523 ret = spinand_init_flash(spinand);
1524 if (ret)
1525 goto err_free_bufs;
1526
1527 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1528 if (ret)
1529 goto err_manuf_cleanup;
1530
1531 /* SPI-NAND default ECC engine is on-die */
1532 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1533 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1534
1535 spinand_ecc_enable(spinand, false);
1536 ret = nanddev_ecc_engine_init(nand);
1537 if (ret)
1538 goto err_cleanup_nanddev;
1539
1540 /*
1541 * Continuous read can only be enabled with an on-die ECC engine, so the
1542 * ECC initialization must have happened previously.
1543 */
1544 spinand_cont_read_init(spinand);
1545
1546 mtd->_read_oob = spinand_mtd_read;
1547 mtd->_write_oob = spinand_mtd_write;
1548 mtd->_block_isbad = spinand_mtd_block_isbad;
1549 mtd->_block_markbad = spinand_mtd_block_markbad;
1550 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1551 mtd->_erase = spinand_mtd_erase;
1552 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1553 mtd->_resume = spinand_mtd_resume;
1554
1555 if (spinand_user_otp_size(spinand) || spinand_fact_otp_size(spinand)) {
1556 ret = spinand_set_mtd_otp_ops(spinand);
1557 if (ret)
1558 goto err_cleanup_ecc_engine;
1559 }
1560
1561 if (nand->ecc.engine) {
1562 ret = mtd_ooblayout_count_freebytes(mtd);
1563 if (ret < 0)
1564 goto err_cleanup_ecc_engine;
1565 }
1566
1567 mtd->oobavail = ret;
1568
1569 /* Propagate ECC information to mtd_info */
1570 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1571 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1572 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1573
1574 ret = spinand_create_dirmaps(spinand);
1575 if (ret) {
1576 dev_err(dev,
1577 "Failed to create direct mappings for read/write operations (err = %d)\n",
1578 ret);
1579 goto err_cleanup_ecc_engine;
1580 }
1581
1582 return 0;
1583
1584 err_cleanup_ecc_engine:
1585 nanddev_ecc_engine_cleanup(nand);
1586
1587 err_cleanup_nanddev:
1588 nanddev_cleanup(nand);
1589
1590 err_manuf_cleanup:
1591 spinand_manufacturer_cleanup(spinand);
1592
1593 err_free_bufs:
1594 kfree(spinand->databuf);
1595 kfree(spinand->scratchbuf);
1596 return ret;
1597 }
1598
spinand_cleanup(struct spinand_device * spinand)1599 static void spinand_cleanup(struct spinand_device *spinand)
1600 {
1601 struct nand_device *nand = spinand_to_nand(spinand);
1602
1603 nanddev_ecc_engine_cleanup(nand);
1604 nanddev_cleanup(nand);
1605 spinand_manufacturer_cleanup(spinand);
1606 kfree(spinand->databuf);
1607 kfree(spinand->scratchbuf);
1608 }
1609
spinand_probe(struct spi_mem * mem)1610 static int spinand_probe(struct spi_mem *mem)
1611 {
1612 struct spinand_device *spinand;
1613 struct mtd_info *mtd;
1614 int ret;
1615
1616 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1617 GFP_KERNEL);
1618 if (!spinand)
1619 return -ENOMEM;
1620
1621 spinand->spimem = mem;
1622 spi_mem_set_drvdata(mem, spinand);
1623 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1624 mutex_init(&spinand->lock);
1625 mtd = spinand_to_mtd(spinand);
1626 mtd->dev.parent = &mem->spi->dev;
1627
1628 ret = spinand_init(spinand);
1629 if (ret)
1630 return ret;
1631
1632 ret = mtd_device_register(mtd, NULL, 0);
1633 if (ret)
1634 goto err_spinand_cleanup;
1635
1636 return 0;
1637
1638 err_spinand_cleanup:
1639 spinand_cleanup(spinand);
1640
1641 return ret;
1642 }
1643
spinand_remove(struct spi_mem * mem)1644 static int spinand_remove(struct spi_mem *mem)
1645 {
1646 struct spinand_device *spinand;
1647 struct mtd_info *mtd;
1648 int ret;
1649
1650 spinand = spi_mem_get_drvdata(mem);
1651 mtd = spinand_to_mtd(spinand);
1652
1653 ret = mtd_device_unregister(mtd);
1654 if (ret)
1655 return ret;
1656
1657 spinand_cleanup(spinand);
1658
1659 return 0;
1660 }
1661
1662 static const struct spi_device_id spinand_ids[] = {
1663 { .name = "spi-nand" },
1664 { /* sentinel */ },
1665 };
1666 MODULE_DEVICE_TABLE(spi, spinand_ids);
1667
1668 #ifdef CONFIG_OF
1669 static const struct of_device_id spinand_of_ids[] = {
1670 { .compatible = "spi-nand" },
1671 { /* sentinel */ },
1672 };
1673 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1674 #endif
1675
1676 static struct spi_mem_driver spinand_drv = {
1677 .spidrv = {
1678 .id_table = spinand_ids,
1679 .driver = {
1680 .name = "spi-nand",
1681 .of_match_table = of_match_ptr(spinand_of_ids),
1682 },
1683 },
1684 .probe = spinand_probe,
1685 .remove = spinand_remove,
1686 };
1687 module_spi_mem_driver(spinand_drv);
1688
1689 MODULE_DESCRIPTION("SPI NAND framework");
1690 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1691 MODULE_LICENSE("GPL v2");
1692