1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
26 * Copyright 2019 Joyent, Inc.
27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
28 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org>
29 */
30
31 #include <sys/dsl_scan.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dnode.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/ddt.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/zfeature.h>
54 #include <sys/abd.h>
55 #include <sys/range_tree.h>
56 #ifdef _KERNEL
57 #include <sys/zfs_vfsops.h>
58 #endif
59
60 /*
61 * Grand theory statement on scan queue sorting
62 *
63 * Scanning is implemented by recursively traversing all indirection levels
64 * in an object and reading all blocks referenced from said objects. This
65 * results in us approximately traversing the object from lowest logical
66 * offset to the highest. For best performance, we would want the logical
67 * blocks to be physically contiguous. However, this is frequently not the
68 * case with pools given the allocation patterns of copy-on-write filesystems.
69 * So instead, we put the I/Os into a reordering queue and issue them in a
70 * way that will most benefit physical disks (LBA-order).
71 *
72 * Queue management:
73 *
74 * Ideally, we would want to scan all metadata and queue up all block I/O
75 * prior to starting to issue it, because that allows us to do an optimal
76 * sorting job. This can however consume large amounts of memory. Therefore
77 * we continuously monitor the size of the queues and constrain them to 5%
78 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
79 * limit, we clear out a few of the largest extents at the head of the queues
80 * to make room for more scanning. Hopefully, these extents will be fairly
81 * large and contiguous, allowing us to approach sequential I/O throughput
82 * even without a fully sorted tree.
83 *
84 * Metadata scanning takes place in dsl_scan_visit(), which is called from
85 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
86 * metadata on the pool, or we need to make room in memory because our
87 * queues are too large, dsl_scan_visit() is postponed and
88 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
89 * that metadata scanning and queued I/O issuing are mutually exclusive. This
90 * allows us to provide maximum sequential I/O throughput for the majority of
91 * I/O's issued since sequential I/O performance is significantly negatively
92 * impacted if it is interleaved with random I/O.
93 *
94 * Implementation Notes
95 *
96 * One side effect of the queued scanning algorithm is that the scanning code
97 * needs to be notified whenever a block is freed. This is needed to allow
98 * the scanning code to remove these I/Os from the issuing queue. Additionally,
99 * we do not attempt to queue gang blocks to be issued sequentially since this
100 * is very hard to do and would have an extremely limited performance benefit.
101 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
102 * algorithm.
103 *
104 * Backwards compatibility
105 *
106 * This new algorithm is backwards compatible with the legacy on-disk data
107 * structures (and therefore does not require a new feature flag).
108 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
109 * will stop scanning metadata (in logical order) and wait for all outstanding
110 * sorted I/O to complete. Once this is done, we write out a checkpoint
111 * bookmark, indicating that we have scanned everything logically before it.
112 * If the pool is imported on a machine without the new sorting algorithm,
113 * the scan simply resumes from the last checkpoint using the legacy algorithm.
114 */
115
116 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
117 const zbookmark_phys_t *);
118
119 static scan_cb_t dsl_scan_scrub_cb;
120
121 static int scan_ds_queue_compare(const void *a, const void *b);
122 static int scan_prefetch_queue_compare(const void *a, const void *b);
123 static void scan_ds_queue_clear(dsl_scan_t *scn);
124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
125 uint64_t *txg);
126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
129
130 extern int zfs_vdev_async_write_active_min_dirty_percent;
131
132 /*
133 * By default zfs will check to ensure it is not over the hard memory
134 * limit before each txg. If finer-grained control of this is needed
135 * this value can be set to 1 to enable checking before scanning each
136 * block.
137 */
138 int zfs_scan_strict_mem_lim = B_FALSE;
139
140 /*
141 * Maximum number of parallelly executing I/Os per top-level vdev.
142 * Tune with care. Very high settings (hundreds) are known to trigger
143 * some firmware bugs and resets on certain SSDs.
144 */
145 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */
146
147 /*
148 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
149 * to strike a balance here between keeping the vdev queues full of I/Os
150 * at all times and not overflowing the queues to cause long latency,
151 * which would cause long txg sync times. No matter what, we will not
152 * overload the drives with I/O, since that is protected by
153 * zfs_vdev_scrub_max_active.
154 */
155 unsigned long zfs_scan_vdev_limit = 4 << 20;
156
157 int zfs_scan_issue_strategy = 0;
158 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
159 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
160
161 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */
162 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval)
163
164 /*
165 * fill_weight is non-tunable at runtime, so we copy it at module init from
166 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
167 * break queue sorting.
168 */
169 uint64_t zfs_scan_fill_weight = 3;
170 static uint64_t fill_weight;
171
172 /* See dsl_scan_should_clear() for details on the memory limit tunables */
173 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
174 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
175 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
176 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
177
178 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
179 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
180 /* min millisecs to obsolete per txg */
181 unsigned int zfs_obsolete_min_time_ms = 500;
182 /* min millisecs to resilver per txg */
183 unsigned int zfs_resilver_min_time_ms = 3000;
184 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
185 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
186 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
187 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
188 /* max number of blocks to free in a single TXG */
189 uint64_t zfs_async_block_max_blocks = UINT64_MAX;
190
191 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
192
193 /*
194 * We wait a few txgs after importing a pool to begin scanning so that
195 * the import / mounting code isn't held up by scrub / resilver IO.
196 * Unfortunately, it is a bit difficult to determine exactly how long
197 * this will take since userspace will trigger fs mounts asynchronously
198 * and the kernel will create zvol minors asynchronously. As a result,
199 * the value provided here is a bit arbitrary, but represents a
200 * reasonable estimate of how many txgs it will take to finish fully
201 * importing a pool
202 */
203 #define SCAN_IMPORT_WAIT_TXGS 5
204
205
206 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
207 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
208 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
209
210 extern int zfs_txg_timeout;
211
212 /*
213 * Enable/disable the processing of the free_bpobj object.
214 */
215 boolean_t zfs_free_bpobj_enabled = B_TRUE;
216
217 /* the order has to match pool_scan_type */
218 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
219 NULL,
220 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
221 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
222 };
223
224 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
225 typedef struct {
226 uint64_t sds_dsobj;
227 uint64_t sds_txg;
228 avl_node_t sds_node;
229 } scan_ds_t;
230
231 /*
232 * This controls what conditions are placed on dsl_scan_sync_state():
233 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
234 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
235 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
236 * write out the scn_phys_cached version.
237 * See dsl_scan_sync_state for details.
238 */
239 typedef enum {
240 SYNC_OPTIONAL,
241 SYNC_MANDATORY,
242 SYNC_CACHED
243 } state_sync_type_t;
244
245 /*
246 * This struct represents the minimum information needed to reconstruct a
247 * zio for sequential scanning. This is useful because many of these will
248 * accumulate in the sequential IO queues before being issued, so saving
249 * memory matters here.
250 */
251 typedef struct scan_io {
252 /* fields from blkptr_t */
253 uint64_t sio_blk_prop;
254 uint64_t sio_phys_birth;
255 uint64_t sio_birth;
256 zio_cksum_t sio_cksum;
257 uint32_t sio_nr_dvas;
258
259 /* fields from zio_t */
260 uint32_t sio_flags;
261 zbookmark_phys_t sio_zb;
262
263 /* members for queue sorting */
264 union {
265 avl_node_t sio_addr_node; /* link into issuing queue */
266 list_node_t sio_list_node; /* link for issuing to disk */
267 } sio_nodes;
268
269 /*
270 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
271 * depending on how many were in the original bp. Only the
272 * first DVA is really used for sorting and issuing purposes.
273 * The other DVAs (if provided) simply exist so that the zio
274 * layer can find additional copies to repair from in the
275 * event of an error. This array must go at the end of the
276 * struct to allow this for the variable number of elements.
277 */
278 dva_t sio_dva[0];
279 } scan_io_t;
280
281 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
282 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
283 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
284 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
285 #define SIO_GET_END_OFFSET(sio) \
286 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
287 #define SIO_GET_MUSED(sio) \
288 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
289
290 struct dsl_scan_io_queue {
291 dsl_scan_t *q_scn; /* associated dsl_scan_t */
292 vdev_t *q_vd; /* top-level vdev that this queue represents */
293
294 /* trees used for sorting I/Os and extents of I/Os */
295 range_tree_t *q_exts_by_addr;
296 zfs_btree_t q_exts_by_size;
297 avl_tree_t q_sios_by_addr;
298 uint64_t q_sio_memused;
299
300 /* members for zio rate limiting */
301 uint64_t q_maxinflight_bytes;
302 uint64_t q_inflight_bytes;
303 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
304
305 /* per txg statistics */
306 uint64_t q_total_seg_size_this_txg;
307 uint64_t q_segs_this_txg;
308 uint64_t q_total_zio_size_this_txg;
309 uint64_t q_zios_this_txg;
310 };
311
312 /* private data for dsl_scan_prefetch_cb() */
313 typedef struct scan_prefetch_ctx {
314 zfs_refcount_t spc_refcnt; /* refcount for memory management */
315 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
316 boolean_t spc_root; /* is this prefetch for an objset? */
317 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
318 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
319 } scan_prefetch_ctx_t;
320
321 /* private data for dsl_scan_prefetch() */
322 typedef struct scan_prefetch_issue_ctx {
323 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
324 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
325 blkptr_t spic_bp; /* bp to prefetch */
326 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
327 } scan_prefetch_issue_ctx_t;
328
329 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
330 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
331 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
332 scan_io_t *sio);
333
334 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
335 static void scan_io_queues_destroy(dsl_scan_t *scn);
336
337 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
338
339 /* sio->sio_nr_dvas must be set so we know which cache to free from */
340 static void
sio_free(scan_io_t * sio)341 sio_free(scan_io_t *sio)
342 {
343 ASSERT3U(sio->sio_nr_dvas, >, 0);
344 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
345
346 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
347 }
348
349 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
350 static scan_io_t *
sio_alloc(unsigned short nr_dvas)351 sio_alloc(unsigned short nr_dvas)
352 {
353 ASSERT3U(nr_dvas, >, 0);
354 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
355
356 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
357 }
358
359 void
scan_init(void)360 scan_init(void)
361 {
362 /*
363 * This is used in ext_size_compare() to weight segments
364 * based on how sparse they are. This cannot be changed
365 * mid-scan and the tree comparison functions don't currently
366 * have a mechansim for passing additional context to the
367 * compare functions. Thus we store this value globally and
368 * we only allow it to be set at module intiailization time
369 */
370 fill_weight = zfs_scan_fill_weight;
371
372 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
373 char name[36];
374
375 (void) sprintf(name, "sio_cache_%d", i);
376 sio_cache[i] = kmem_cache_create(name,
377 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
378 0, NULL, NULL, NULL, NULL, NULL, 0);
379 }
380 }
381
382 void
scan_fini(void)383 scan_fini(void)
384 {
385 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
386 kmem_cache_destroy(sio_cache[i]);
387 }
388 }
389
390 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)391 dsl_scan_is_running(const dsl_scan_t *scn)
392 {
393 return (scn->scn_phys.scn_state == DSS_SCANNING);
394 }
395
396 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)397 dsl_scan_resilvering(dsl_pool_t *dp)
398 {
399 return (dsl_scan_is_running(dp->dp_scan) &&
400 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
401 }
402
403 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)404 sio2bp(const scan_io_t *sio, blkptr_t *bp)
405 {
406 bzero(bp, sizeof (*bp));
407 bp->blk_prop = sio->sio_blk_prop;
408 bp->blk_phys_birth = sio->sio_phys_birth;
409 bp->blk_birth = sio->sio_birth;
410 bp->blk_fill = 1; /* we always only work with data pointers */
411 bp->blk_cksum = sio->sio_cksum;
412
413 ASSERT3U(sio->sio_nr_dvas, >, 0);
414 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
415
416 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
417 }
418
419 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)420 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
421 {
422 sio->sio_blk_prop = bp->blk_prop;
423 sio->sio_phys_birth = bp->blk_phys_birth;
424 sio->sio_birth = bp->blk_birth;
425 sio->sio_cksum = bp->blk_cksum;
426 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
427
428 /*
429 * Copy the DVAs to the sio. We need all copies of the block so
430 * that the self healing code can use the alternate copies if the
431 * first is corrupted. We want the DVA at index dva_i to be first
432 * in the sio since this is the primary one that we want to issue.
433 */
434 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
435 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
436 }
437 }
438
439 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)440 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
441 {
442 int err;
443 dsl_scan_t *scn;
444 spa_t *spa = dp->dp_spa;
445 uint64_t f;
446
447 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
448 scn->scn_dp = dp;
449
450 /*
451 * It's possible that we're resuming a scan after a reboot so
452 * make sure that the scan_async_destroying flag is initialized
453 * appropriately.
454 */
455 ASSERT(!scn->scn_async_destroying);
456 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
457 SPA_FEATURE_ASYNC_DESTROY);
458
459 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
460 offsetof(scan_ds_t, sds_node));
461 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
462 sizeof (scan_prefetch_issue_ctx_t),
463 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
464
465 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
466 "scrub_func", sizeof (uint64_t), 1, &f);
467 if (err == 0) {
468 /*
469 * There was an old-style scrub in progress. Restart a
470 * new-style scrub from the beginning.
471 */
472 scn->scn_restart_txg = txg;
473 zfs_dbgmsg("old-style scrub was in progress; "
474 "restarting new-style scrub in txg %llu",
475 (longlong_t)scn->scn_restart_txg);
476
477 /*
478 * Load the queue obj from the old location so that it
479 * can be freed by dsl_scan_done().
480 */
481 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
482 "scrub_queue", sizeof (uint64_t), 1,
483 &scn->scn_phys.scn_queue_obj);
484 } else {
485 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
486 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
487 &scn->scn_phys);
488
489 /*
490 * Detect if the pool contains the signature of #2094. If it
491 * does properly update the scn->scn_phys structure and notify
492 * the administrator by setting an errata for the pool.
493 */
494 if (err == EOVERFLOW) {
495 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
496 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
497 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
498 (23 * sizeof (uint64_t)));
499
500 err = zap_lookup(dp->dp_meta_objset,
501 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
502 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
503 if (err == 0) {
504 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
505
506 if (overflow & ~DSF_VISIT_DS_AGAIN ||
507 scn->scn_async_destroying) {
508 spa->spa_errata =
509 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
510 return (EOVERFLOW);
511 }
512
513 bcopy(zaptmp, &scn->scn_phys,
514 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
515 scn->scn_phys.scn_flags = overflow;
516
517 /* Required scrub already in progress. */
518 if (scn->scn_phys.scn_state == DSS_FINISHED ||
519 scn->scn_phys.scn_state == DSS_CANCELED)
520 spa->spa_errata =
521 ZPOOL_ERRATA_ZOL_2094_SCRUB;
522 }
523 }
524
525 if (err == ENOENT)
526 return (0);
527 else if (err)
528 return (err);
529
530 /*
531 * We might be restarting after a reboot, so jump the issued
532 * counter to how far we've scanned. We know we're consistent
533 * up to here.
534 */
535 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
536
537 if (dsl_scan_is_running(scn) &&
538 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
539 /*
540 * A new-type scrub was in progress on an old
541 * pool, and the pool was accessed by old
542 * software. Restart from the beginning, since
543 * the old software may have changed the pool in
544 * the meantime.
545 */
546 scn->scn_restart_txg = txg;
547 zfs_dbgmsg("new-style scrub was modified "
548 "by old software; restarting in txg %llu",
549 (longlong_t)scn->scn_restart_txg);
550 } else if (dsl_scan_resilvering(dp)) {
551 /*
552 * If a resilver is in progress and there are already
553 * errors, restart it instead of finishing this scan and
554 * then restarting it. If there haven't been any errors
555 * then remember that the incore DTL is valid.
556 */
557 if (scn->scn_phys.scn_errors > 0) {
558 scn->scn_restart_txg = txg;
559 zfs_dbgmsg("resilver can't excise DTL_MISSING "
560 "when finished; restarting in txg %llu",
561 (u_longlong_t)scn->scn_restart_txg);
562 } else {
563 /* it's safe to excise DTL when finished */
564 spa->spa_scrub_started = B_TRUE;
565 }
566 }
567 }
568
569 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
570
571 /* reload the queue into the in-core state */
572 if (scn->scn_phys.scn_queue_obj != 0) {
573 zap_cursor_t zc;
574 zap_attribute_t za;
575
576 for (zap_cursor_init(&zc, dp->dp_meta_objset,
577 scn->scn_phys.scn_queue_obj);
578 zap_cursor_retrieve(&zc, &za) == 0;
579 (void) zap_cursor_advance(&zc)) {
580 scan_ds_queue_insert(scn,
581 zfs_strtonum(za.za_name, NULL),
582 za.za_first_integer);
583 }
584 zap_cursor_fini(&zc);
585 }
586
587 spa_scan_stat_init(spa);
588 return (0);
589 }
590
591 void
dsl_scan_fini(dsl_pool_t * dp)592 dsl_scan_fini(dsl_pool_t *dp)
593 {
594 if (dp->dp_scan != NULL) {
595 dsl_scan_t *scn = dp->dp_scan;
596
597 if (scn->scn_taskq != NULL)
598 taskq_destroy(scn->scn_taskq);
599 scan_ds_queue_clear(scn);
600 avl_destroy(&scn->scn_queue);
601 avl_destroy(&scn->scn_prefetch_queue);
602
603 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
604 dp->dp_scan = NULL;
605 }
606 }
607
608 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)609 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
610 {
611 return (scn->scn_restart_txg != 0 &&
612 scn->scn_restart_txg <= tx->tx_txg);
613 }
614
615 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)616 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
617 {
618 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
619 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
620 }
621
622 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)623 dsl_scan_scrubbing(const dsl_pool_t *dp)
624 {
625 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
626
627 return (scn_phys->scn_state == DSS_SCANNING &&
628 scn_phys->scn_func == POOL_SCAN_SCRUB);
629 }
630
631 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)632 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
633 {
634 return (dsl_scan_scrubbing(scn->scn_dp) &&
635 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
636 }
637
638 /*
639 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
640 * Because we can be running in the block sorting algorithm, we do not always
641 * want to write out the record, only when it is "safe" to do so. This safety
642 * condition is achieved by making sure that the sorting queues are empty
643 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
644 * is inconsistent with how much actual scanning progress has been made. The
645 * kind of sync to be performed is specified by the sync_type argument. If the
646 * sync is optional, we only sync if the queues are empty. If the sync is
647 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
648 * third possible state is a "cached" sync. This is done in response to:
649 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
650 * destroyed, so we wouldn't be able to restart scanning from it.
651 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
652 * superseded by a newer snapshot.
653 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
654 * swapped with its clone.
655 * In all cases, a cached sync simply rewrites the last record we've written,
656 * just slightly modified. For the modifications that are performed to the
657 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
658 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
659 */
660 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)661 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
662 {
663 int i;
664 spa_t *spa = scn->scn_dp->dp_spa;
665
666 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
667 if (scn->scn_bytes_pending == 0) {
668 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
669 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
670 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
671
672 if (q == NULL)
673 continue;
674
675 mutex_enter(&vd->vdev_scan_io_queue_lock);
676 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
677 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
678 NULL);
679 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
680 mutex_exit(&vd->vdev_scan_io_queue_lock);
681 }
682
683 if (scn->scn_phys.scn_queue_obj != 0)
684 scan_ds_queue_sync(scn, tx);
685 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
686 DMU_POOL_DIRECTORY_OBJECT,
687 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
688 &scn->scn_phys, tx));
689 bcopy(&scn->scn_phys, &scn->scn_phys_cached,
690 sizeof (scn->scn_phys));
691
692 if (scn->scn_checkpointing)
693 zfs_dbgmsg("finish scan checkpoint");
694
695 scn->scn_checkpointing = B_FALSE;
696 scn->scn_last_checkpoint = ddi_get_lbolt();
697 } else if (sync_type == SYNC_CACHED) {
698 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
699 DMU_POOL_DIRECTORY_OBJECT,
700 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
701 &scn->scn_phys_cached, tx));
702 }
703 }
704
705 /* ARGSUSED */
706 static int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)707 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
708 {
709 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
710
711 if (dsl_scan_is_running(scn))
712 return (SET_ERROR(EBUSY));
713
714 return (0);
715 }
716
717 static void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)718 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
719 {
720 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
721 pool_scan_func_t *funcp = arg;
722 dmu_object_type_t ot = 0;
723 dsl_pool_t *dp = scn->scn_dp;
724 spa_t *spa = dp->dp_spa;
725
726 ASSERT(!dsl_scan_is_running(scn));
727 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
728 bzero(&scn->scn_phys, sizeof (scn->scn_phys));
729 scn->scn_phys.scn_func = *funcp;
730 scn->scn_phys.scn_state = DSS_SCANNING;
731 scn->scn_phys.scn_min_txg = 0;
732 scn->scn_phys.scn_max_txg = tx->tx_txg;
733 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
734 scn->scn_phys.scn_start_time = gethrestime_sec();
735 scn->scn_phys.scn_errors = 0;
736 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
737 scn->scn_issued_before_pass = 0;
738 scn->scn_restart_txg = 0;
739 scn->scn_done_txg = 0;
740 scn->scn_last_checkpoint = 0;
741 scn->scn_checkpointing = B_FALSE;
742 spa_scan_stat_init(spa);
743
744 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
745 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
746
747 /* rewrite all disk labels */
748 vdev_config_dirty(spa->spa_root_vdev);
749
750 if (vdev_resilver_needed(spa->spa_root_vdev,
751 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
752 spa_event_notify(spa, NULL, NULL,
753 ESC_ZFS_RESILVER_START);
754 } else {
755 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
756 }
757
758 spa->spa_scrub_started = B_TRUE;
759 /*
760 * If this is an incremental scrub, limit the DDT scrub phase
761 * to just the auto-ditto class (for correctness); the rest
762 * of the scrub should go faster using top-down pruning.
763 */
764 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
765 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
766
767 }
768
769 /* back to the generic stuff */
770
771 if (dp->dp_blkstats == NULL) {
772 dp->dp_blkstats =
773 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
774 mutex_init(&dp->dp_blkstats->zab_lock, NULL,
775 MUTEX_DEFAULT, NULL);
776 }
777 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
778
779 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
780 ot = DMU_OT_ZAP_OTHER;
781
782 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
783 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
784
785 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
786
787 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
788
789 spa_history_log_internal(spa, "scan setup", tx,
790 "func=%u mintxg=%llu maxtxg=%llu",
791 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
792 }
793
794 /*
795 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
796 * Can also be called to resume a paused scrub.
797 */
798 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func)799 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
800 {
801 spa_t *spa = dp->dp_spa;
802 dsl_scan_t *scn = dp->dp_scan;
803
804 /*
805 * Purge all vdev caches and probe all devices. We do this here
806 * rather than in sync context because this requires a writer lock
807 * on the spa_config lock, which we can't do from sync context. The
808 * spa_scrub_reopen flag indicates that vdev_open() should not
809 * attempt to start another scrub.
810 */
811 spa_vdev_state_enter(spa, SCL_NONE);
812 spa->spa_scrub_reopen = B_TRUE;
813 vdev_reopen(spa->spa_root_vdev);
814 spa->spa_scrub_reopen = B_FALSE;
815 (void) spa_vdev_state_exit(spa, NULL, 0);
816
817 if (func == POOL_SCAN_RESILVER) {
818 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
819 return (0);
820 }
821
822 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
823 /* got scrub start cmd, resume paused scrub */
824 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
825 POOL_SCRUB_NORMAL);
826 if (err == 0) {
827 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
828 return (ECANCELED);
829 }
830 return (SET_ERROR(err));
831 }
832
833 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
834 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
835 }
836
837 /* ARGSUSED */
838 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)839 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
840 {
841 static const char *old_names[] = {
842 "scrub_bookmark",
843 "scrub_ddt_bookmark",
844 "scrub_ddt_class_max",
845 "scrub_queue",
846 "scrub_min_txg",
847 "scrub_max_txg",
848 "scrub_func",
849 "scrub_errors",
850 NULL
851 };
852
853 dsl_pool_t *dp = scn->scn_dp;
854 spa_t *spa = dp->dp_spa;
855 int i;
856
857 /* Remove any remnants of an old-style scrub. */
858 for (i = 0; old_names[i]; i++) {
859 (void) zap_remove(dp->dp_meta_objset,
860 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
861 }
862
863 if (scn->scn_phys.scn_queue_obj != 0) {
864 VERIFY0(dmu_object_free(dp->dp_meta_objset,
865 scn->scn_phys.scn_queue_obj, tx));
866 scn->scn_phys.scn_queue_obj = 0;
867 }
868 scan_ds_queue_clear(scn);
869
870 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
871
872 /*
873 * If we were "restarted" from a stopped state, don't bother
874 * with anything else.
875 */
876 if (!dsl_scan_is_running(scn)) {
877 ASSERT(!scn->scn_is_sorted);
878 return;
879 }
880
881 if (scn->scn_is_sorted) {
882 scan_io_queues_destroy(scn);
883 scn->scn_is_sorted = B_FALSE;
884
885 if (scn->scn_taskq != NULL) {
886 taskq_destroy(scn->scn_taskq);
887 scn->scn_taskq = NULL;
888 }
889 }
890
891 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
892
893 if (dsl_scan_restarting(scn, tx))
894 spa_history_log_internal(spa, "scan aborted, restarting", tx,
895 "errors=%llu", spa_get_errlog_size(spa));
896 else if (!complete)
897 spa_history_log_internal(spa, "scan cancelled", tx,
898 "errors=%llu", spa_get_errlog_size(spa));
899 else
900 spa_history_log_internal(spa, "scan done", tx,
901 "errors=%llu", spa_get_errlog_size(spa));
902
903 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
904 spa->spa_scrub_active = B_FALSE;
905
906 /*
907 * If the scrub/resilver completed, update all DTLs to
908 * reflect this. Whether it succeeded or not, vacate
909 * all temporary scrub DTLs.
910 *
911 * As the scrub does not currently support traversing
912 * data that have been freed but are part of a checkpoint,
913 * we don't mark the scrub as done in the DTLs as faults
914 * may still exist in those vdevs.
915 */
916 if (complete &&
917 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
918 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
919 scn->scn_phys.scn_max_txg, B_TRUE);
920
921 spa_event_notify(spa, NULL, NULL,
922 scn->scn_phys.scn_min_txg ?
923 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
924 } else {
925 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
926 0, B_TRUE);
927 }
928 spa_errlog_rotate(spa);
929
930 /*
931 * Don't clear flag until after vdev_dtl_reassess to ensure that
932 * DTL_MISSING will get updated when possible.
933 */
934 spa->spa_scrub_started = B_FALSE;
935
936 /*
937 * We may have finished replacing a device.
938 * Let the async thread assess this and handle the detach.
939 */
940 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
941
942 /*
943 * Clear any resilver_deferred flags in the config.
944 * If there are drives that need resilvering, kick
945 * off an asynchronous request to start resilver.
946 * vdev_clear_resilver_deferred() may update the config
947 * before the resilver can restart. In the event of
948 * a crash during this period, the spa loading code
949 * will find the drives that need to be resilvered
950 * and start the resilver then.
951 */
952 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
953 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
954 spa_history_log_internal(spa,
955 "starting deferred resilver", tx, "errors=%llu",
956 (u_longlong_t)spa_get_errlog_size(spa));
957 spa_async_request(spa, SPA_ASYNC_RESILVER);
958 }
959 }
960
961 scn->scn_phys.scn_end_time = gethrestime_sec();
962
963 ASSERT(!dsl_scan_is_running(scn));
964 }
965
966 /* ARGSUSED */
967 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)968 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
969 {
970 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
971
972 if (!dsl_scan_is_running(scn))
973 return (SET_ERROR(ENOENT));
974 return (0);
975 }
976
977 /* ARGSUSED */
978 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)979 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
980 {
981 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
982
983 dsl_scan_done(scn, B_FALSE, tx);
984 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
985 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
986 }
987
988 int
dsl_scan_cancel(dsl_pool_t * dp)989 dsl_scan_cancel(dsl_pool_t *dp)
990 {
991 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
992 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
993 }
994
995 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)996 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
997 {
998 pool_scrub_cmd_t *cmd = arg;
999 dsl_pool_t *dp = dmu_tx_pool(tx);
1000 dsl_scan_t *scn = dp->dp_scan;
1001
1002 if (*cmd == POOL_SCRUB_PAUSE) {
1003 /* can't pause a scrub when there is no in-progress scrub */
1004 if (!dsl_scan_scrubbing(dp))
1005 return (SET_ERROR(ENOENT));
1006
1007 /* can't pause a paused scrub */
1008 if (dsl_scan_is_paused_scrub(scn))
1009 return (SET_ERROR(EBUSY));
1010 } else if (*cmd != POOL_SCRUB_NORMAL) {
1011 return (SET_ERROR(ENOTSUP));
1012 }
1013
1014 return (0);
1015 }
1016
1017 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1018 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1019 {
1020 pool_scrub_cmd_t *cmd = arg;
1021 dsl_pool_t *dp = dmu_tx_pool(tx);
1022 spa_t *spa = dp->dp_spa;
1023 dsl_scan_t *scn = dp->dp_scan;
1024
1025 if (*cmd == POOL_SCRUB_PAUSE) {
1026 /* can't pause a scrub when there is no in-progress scrub */
1027 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1028 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1029 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1030 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1031 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1032 } else {
1033 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1034 if (dsl_scan_is_paused_scrub(scn)) {
1035 /*
1036 * We need to keep track of how much time we spend
1037 * paused per pass so that we can adjust the scrub rate
1038 * shown in the output of 'zpool status'
1039 */
1040 spa->spa_scan_pass_scrub_spent_paused +=
1041 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1042 spa->spa_scan_pass_scrub_pause = 0;
1043 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1044 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1045 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1046 }
1047 }
1048 }
1049
1050 /*
1051 * Set scrub pause/resume state if it makes sense to do so
1052 */
1053 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1054 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1055 {
1056 return (dsl_sync_task(spa_name(dp->dp_spa),
1057 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1058 ZFS_SPACE_CHECK_RESERVED));
1059 }
1060
1061
1062 /* start a new scan, or restart an existing one. */
1063 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1064 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1065 {
1066 if (txg == 0) {
1067 dmu_tx_t *tx;
1068 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1069 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1070
1071 txg = dmu_tx_get_txg(tx);
1072 dp->dp_scan->scn_restart_txg = txg;
1073 dmu_tx_commit(tx);
1074 } else {
1075 dp->dp_scan->scn_restart_txg = txg;
1076 }
1077 zfs_dbgmsg("restarting resilver txg=%llu", txg);
1078 }
1079
1080 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1081 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1082 {
1083 zio_free(dp->dp_spa, txg, bp);
1084 }
1085
1086 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1087 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1088 {
1089 ASSERT(dsl_pool_sync_context(dp));
1090 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1091 }
1092
1093 static int
scan_ds_queue_compare(const void * a,const void * b)1094 scan_ds_queue_compare(const void *a, const void *b)
1095 {
1096 const scan_ds_t *sds_a = a, *sds_b = b;
1097
1098 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1099 return (-1);
1100 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1101 return (0);
1102 return (1);
1103 }
1104
1105 static void
scan_ds_queue_clear(dsl_scan_t * scn)1106 scan_ds_queue_clear(dsl_scan_t *scn)
1107 {
1108 void *cookie = NULL;
1109 scan_ds_t *sds;
1110 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1111 kmem_free(sds, sizeof (*sds));
1112 }
1113 }
1114
1115 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1116 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1117 {
1118 scan_ds_t srch, *sds;
1119
1120 srch.sds_dsobj = dsobj;
1121 sds = avl_find(&scn->scn_queue, &srch, NULL);
1122 if (sds != NULL && txg != NULL)
1123 *txg = sds->sds_txg;
1124 return (sds != NULL);
1125 }
1126
1127 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1128 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1129 {
1130 scan_ds_t *sds;
1131 avl_index_t where;
1132
1133 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1134 sds->sds_dsobj = dsobj;
1135 sds->sds_txg = txg;
1136
1137 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1138 avl_insert(&scn->scn_queue, sds, where);
1139 }
1140
1141 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1142 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1143 {
1144 scan_ds_t srch, *sds;
1145
1146 srch.sds_dsobj = dsobj;
1147
1148 sds = avl_find(&scn->scn_queue, &srch, NULL);
1149 VERIFY(sds != NULL);
1150 avl_remove(&scn->scn_queue, sds);
1151 kmem_free(sds, sizeof (*sds));
1152 }
1153
1154 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1155 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1156 {
1157 dsl_pool_t *dp = scn->scn_dp;
1158 spa_t *spa = dp->dp_spa;
1159 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1160 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1161
1162 ASSERT0(scn->scn_bytes_pending);
1163 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1164
1165 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1166 scn->scn_phys.scn_queue_obj, tx));
1167 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1168 DMU_OT_NONE, 0, tx);
1169 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1170 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1171 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1172 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1173 sds->sds_txg, tx));
1174 }
1175 }
1176
1177 /*
1178 * Computes the memory limit state that we're currently in. A sorted scan
1179 * needs quite a bit of memory to hold the sorting queue, so we need to
1180 * reasonably constrain the size so it doesn't impact overall system
1181 * performance. We compute two limits:
1182 * 1) Hard memory limit: if the amount of memory used by the sorting
1183 * queues on a pool gets above this value, we stop the metadata
1184 * scanning portion and start issuing the queued up and sorted
1185 * I/Os to reduce memory usage.
1186 * This limit is calculated as a fraction of physmem (by default 5%).
1187 * We constrain the lower bound of the hard limit to an absolute
1188 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1189 * the upper bound to 5% of the total pool size - no chance we'll
1190 * ever need that much memory, but just to keep the value in check.
1191 * 2) Soft memory limit: once we hit the hard memory limit, we start
1192 * issuing I/O to reduce queue memory usage, but we don't want to
1193 * completely empty out the queues, since we might be able to find I/Os
1194 * that will fill in the gaps of our non-sequential IOs at some point
1195 * in the future. So we stop the issuing of I/Os once the amount of
1196 * memory used drops below the soft limit (at which point we stop issuing
1197 * I/O and start scanning metadata again).
1198 *
1199 * This limit is calculated by subtracting a fraction of the hard
1200 * limit from the hard limit. By default this fraction is 5%, so
1201 * the soft limit is 95% of the hard limit. We cap the size of the
1202 * difference between the hard and soft limits at an absolute
1203 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1204 * sufficient to not cause too frequent switching between the
1205 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1206 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1207 * that should take at least a decent fraction of a second).
1208 */
1209 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1210 dsl_scan_should_clear(dsl_scan_t *scn)
1211 {
1212 spa_t *spa = scn->scn_dp->dp_spa;
1213 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1214 uint64_t alloc, mlim_hard, mlim_soft, mused;
1215
1216 if (arc_memory_is_low()) {
1217 /*
1218 * System memory is tight, and scanning requires allocation.
1219 * Throttle the scan until we have more headroom.
1220 */
1221 return (B_TRUE);
1222 }
1223
1224 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1225 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1226 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1227
1228 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1229 zfs_scan_mem_lim_min);
1230 mlim_hard = MIN(mlim_hard, alloc / 20);
1231 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1232 zfs_scan_mem_lim_soft_max);
1233 mused = 0;
1234 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1235 vdev_t *tvd = rvd->vdev_child[i];
1236 dsl_scan_io_queue_t *queue;
1237
1238 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1239 queue = tvd->vdev_scan_io_queue;
1240 if (queue != NULL) {
1241 /*
1242 * # of extents in exts_by_size = # in exts_by_addr.
1243 * B-tree efficiency is ~75%, but can be as low as 50%.
1244 */
1245 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1246 3 * sizeof (range_seg_gap_t) + queue->q_sio_memused;
1247 }
1248 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1249 }
1250
1251 dprintf_zfs("current scan memory usage: %llu bytes\n",
1252 (longlong_t)mused);
1253
1254 if (mused == 0)
1255 ASSERT0(scn->scn_bytes_pending);
1256
1257 /*
1258 * If we are above our hard limit, we need to clear out memory.
1259 * If we are below our soft limit, we need to accumulate sequential IOs.
1260 * Otherwise, we should keep doing whatever we are currently doing.
1261 */
1262 if (mused >= mlim_hard)
1263 return (B_TRUE);
1264 else if (mused < mlim_soft)
1265 return (B_FALSE);
1266 else
1267 return (scn->scn_clearing);
1268 }
1269
1270 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1271 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1272 {
1273 /* we never skip user/group accounting objects */
1274 if (zb && (int64_t)zb->zb_object < 0)
1275 return (B_FALSE);
1276
1277 if (scn->scn_suspending)
1278 return (B_TRUE); /* we're already suspending */
1279
1280 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1281 return (B_FALSE); /* we're resuming */
1282
1283 /* We only know how to resume from level-0 blocks. */
1284 if (zb && zb->zb_level != 0)
1285 return (B_FALSE);
1286
1287 /*
1288 * We suspend if:
1289 * - we have scanned for at least the minimum time (default 1 sec
1290 * for scrub, 3 sec for resilver), and either we have sufficient
1291 * dirty data that we are starting to write more quickly
1292 * (default 30%), or someone is explicitly waiting for this txg
1293 * to complete.
1294 * or
1295 * - the spa is shutting down because this pool is being exported
1296 * or the machine is rebooting.
1297 * or
1298 * - the scan queue has reached its memory use limit
1299 */
1300 hrtime_t curr_time_ns = gethrtime();
1301 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1302 uint64_t sync_time_ns = curr_time_ns -
1303 scn->scn_dp->dp_spa->spa_sync_starttime;
1304
1305 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1306 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1307 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1308
1309 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1310 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1311 txg_sync_waiting(scn->scn_dp) ||
1312 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1313 spa_shutting_down(scn->scn_dp->dp_spa) ||
1314 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1315 if (zb) {
1316 dprintf_zfs("suspending at bookmark "
1317 "%llx/%llx/%llx/%llx\n",
1318 (longlong_t)zb->zb_objset,
1319 (longlong_t)zb->zb_object,
1320 (longlong_t)zb->zb_level,
1321 (longlong_t)zb->zb_blkid);
1322 scn->scn_phys.scn_bookmark = *zb;
1323 } else {
1324 dsl_scan_phys_t *scnp = &scn->scn_phys;
1325
1326 dprintf_zfs("suspending at DDT bookmark "
1327 "%llx/%llx/%llx/%llx\n",
1328 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1329 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1330 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1331 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1332 }
1333 scn->scn_suspending = B_TRUE;
1334 return (B_TRUE);
1335 }
1336 return (B_FALSE);
1337 }
1338
1339 typedef struct zil_scan_arg {
1340 dsl_pool_t *zsa_dp;
1341 zil_header_t *zsa_zh;
1342 } zil_scan_arg_t;
1343
1344 /* ARGSUSED */
1345 static int
dsl_scan_zil_block(zilog_t * zilog,blkptr_t * bp,void * arg,uint64_t claim_txg)1346 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1347 {
1348 zil_scan_arg_t *zsa = arg;
1349 dsl_pool_t *dp = zsa->zsa_dp;
1350 dsl_scan_t *scn = dp->dp_scan;
1351 zil_header_t *zh = zsa->zsa_zh;
1352 zbookmark_phys_t zb;
1353
1354 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1355 return (0);
1356
1357 /*
1358 * One block ("stubby") can be allocated a long time ago; we
1359 * want to visit that one because it has been allocated
1360 * (on-disk) even if it hasn't been claimed (even though for
1361 * scrub there's nothing to do to it).
1362 */
1363 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1364 return (0);
1365
1366 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1367 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1368
1369 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1370 return (0);
1371 }
1372
1373 /* ARGSUSED */
1374 static int
dsl_scan_zil_record(zilog_t * zilog,lr_t * lrc,void * arg,uint64_t claim_txg)1375 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1376 {
1377 if (lrc->lrc_txtype == TX_WRITE) {
1378 zil_scan_arg_t *zsa = arg;
1379 dsl_pool_t *dp = zsa->zsa_dp;
1380 dsl_scan_t *scn = dp->dp_scan;
1381 zil_header_t *zh = zsa->zsa_zh;
1382 lr_write_t *lr = (lr_write_t *)lrc;
1383 blkptr_t *bp = &lr->lr_blkptr;
1384 zbookmark_phys_t zb;
1385
1386 if (BP_IS_HOLE(bp) ||
1387 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1388 return (0);
1389
1390 /*
1391 * birth can be < claim_txg if this record's txg is
1392 * already txg sync'ed (but this log block contains
1393 * other records that are not synced)
1394 */
1395 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1396 return (0);
1397
1398 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1399 lr->lr_foid, ZB_ZIL_LEVEL,
1400 lr->lr_offset / BP_GET_LSIZE(bp));
1401
1402 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1403 }
1404 return (0);
1405 }
1406
1407 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1408 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1409 {
1410 uint64_t claim_txg = zh->zh_claim_txg;
1411 zil_scan_arg_t zsa = { dp, zh };
1412 zilog_t *zilog;
1413
1414 ASSERT(spa_writeable(dp->dp_spa));
1415
1416 /*
1417 * We only want to visit blocks that have been claimed
1418 * but not yet replayed.
1419 */
1420 if (claim_txg == 0)
1421 return;
1422
1423 zilog = zil_alloc(dp->dp_meta_objset, zh);
1424
1425 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1426 claim_txg, B_FALSE);
1427
1428 zil_free(zilog);
1429 }
1430
1431 /*
1432 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1433 * here is to sort the AVL tree by the order each block will be needed.
1434 */
1435 static int
scan_prefetch_queue_compare(const void * a,const void * b)1436 scan_prefetch_queue_compare(const void *a, const void *b)
1437 {
1438 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1439 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1440 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1441
1442 return (zbookmark_compare(spc_a->spc_datablkszsec,
1443 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1444 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1445 }
1446
1447 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,void * tag)1448 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1449 {
1450 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1451 zfs_refcount_destroy(&spc->spc_refcnt);
1452 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1453 }
1454 }
1455
1456 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,void * tag)1457 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1458 {
1459 scan_prefetch_ctx_t *spc;
1460
1461 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1462 zfs_refcount_create(&spc->spc_refcnt);
1463 zfs_refcount_add(&spc->spc_refcnt, tag);
1464 spc->spc_scn = scn;
1465 if (dnp != NULL) {
1466 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1467 spc->spc_indblkshift = dnp->dn_indblkshift;
1468 spc->spc_root = B_FALSE;
1469 } else {
1470 spc->spc_datablkszsec = 0;
1471 spc->spc_indblkshift = 0;
1472 spc->spc_root = B_TRUE;
1473 }
1474
1475 return (spc);
1476 }
1477
1478 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,void * tag)1479 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1480 {
1481 zfs_refcount_add(&spc->spc_refcnt, tag);
1482 }
1483
1484 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1485 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1486 const zbookmark_phys_t *zb)
1487 {
1488 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1489 dnode_phys_t tmp_dnp;
1490 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1491
1492 if (zb->zb_objset != last_zb->zb_objset)
1493 return (B_TRUE);
1494 if ((int64_t)zb->zb_object < 0)
1495 return (B_FALSE);
1496
1497 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1498 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1499
1500 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1501 return (B_TRUE);
1502
1503 return (B_FALSE);
1504 }
1505
1506 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1507 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1508 {
1509 avl_index_t idx;
1510 dsl_scan_t *scn = spc->spc_scn;
1511 spa_t *spa = scn->scn_dp->dp_spa;
1512 scan_prefetch_issue_ctx_t *spic;
1513
1514 if (zfs_no_scrub_prefetch)
1515 return;
1516
1517 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1518 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1519 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1520 return;
1521
1522 if (dsl_scan_check_prefetch_resume(spc, zb))
1523 return;
1524
1525 scan_prefetch_ctx_add_ref(spc, scn);
1526 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1527 spic->spic_spc = spc;
1528 spic->spic_bp = *bp;
1529 spic->spic_zb = *zb;
1530
1531 /*
1532 * Add the IO to the queue of blocks to prefetch. This allows us to
1533 * prioritize blocks that we will need first for the main traversal
1534 * thread.
1535 */
1536 mutex_enter(&spa->spa_scrub_lock);
1537 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1538 /* this block is already queued for prefetch */
1539 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1540 scan_prefetch_ctx_rele(spc, scn);
1541 mutex_exit(&spa->spa_scrub_lock);
1542 return;
1543 }
1544
1545 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1546 cv_broadcast(&spa->spa_scrub_io_cv);
1547 mutex_exit(&spa->spa_scrub_lock);
1548 }
1549
1550 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1551 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1552 uint64_t objset, uint64_t object)
1553 {
1554 int i;
1555 zbookmark_phys_t zb;
1556 scan_prefetch_ctx_t *spc;
1557
1558 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1559 return;
1560
1561 SET_BOOKMARK(&zb, objset, object, 0, 0);
1562
1563 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1564
1565 for (i = 0; i < dnp->dn_nblkptr; i++) {
1566 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1567 zb.zb_blkid = i;
1568 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1569 }
1570
1571 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1572 zb.zb_level = 0;
1573 zb.zb_blkid = DMU_SPILL_BLKID;
1574 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb);
1575 }
1576
1577 scan_prefetch_ctx_rele(spc, FTAG);
1578 }
1579
1580 void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)1581 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1582 arc_buf_t *buf, void *private)
1583 {
1584 scan_prefetch_ctx_t *spc = private;
1585 dsl_scan_t *scn = spc->spc_scn;
1586 spa_t *spa = scn->scn_dp->dp_spa;
1587
1588 /* broadcast that the IO has completed for rate limitting purposes */
1589 mutex_enter(&spa->spa_scrub_lock);
1590 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1591 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1592 cv_broadcast(&spa->spa_scrub_io_cv);
1593 mutex_exit(&spa->spa_scrub_lock);
1594
1595 /* if there was an error or we are done prefetching, just cleanup */
1596 if (buf == NULL || scn->scn_suspending)
1597 goto out;
1598
1599 if (BP_GET_LEVEL(bp) > 0) {
1600 int i;
1601 blkptr_t *cbp;
1602 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1603 zbookmark_phys_t czb;
1604
1605 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1606 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1607 zb->zb_level - 1, zb->zb_blkid * epb + i);
1608 dsl_scan_prefetch(spc, cbp, &czb);
1609 }
1610 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1611 dnode_phys_t *cdnp = buf->b_data;
1612 int i;
1613 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1614
1615 for (i = 0, cdnp = buf->b_data; i < epb;
1616 i += cdnp->dn_extra_slots + 1,
1617 cdnp += cdnp->dn_extra_slots + 1) {
1618 dsl_scan_prefetch_dnode(scn, cdnp,
1619 zb->zb_objset, zb->zb_blkid * epb + i);
1620 }
1621 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1622 objset_phys_t *osp = buf->b_data;
1623
1624 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1625 zb->zb_objset, DMU_META_DNODE_OBJECT);
1626
1627 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1628 dsl_scan_prefetch_dnode(scn,
1629 &osp->os_groupused_dnode, zb->zb_objset,
1630 DMU_GROUPUSED_OBJECT);
1631 dsl_scan_prefetch_dnode(scn,
1632 &osp->os_userused_dnode, zb->zb_objset,
1633 DMU_USERUSED_OBJECT);
1634 }
1635 }
1636
1637 out:
1638 if (buf != NULL)
1639 arc_buf_destroy(buf, private);
1640 scan_prefetch_ctx_rele(spc, scn);
1641 }
1642
1643 /* ARGSUSED */
1644 static void
dsl_scan_prefetch_thread(void * arg)1645 dsl_scan_prefetch_thread(void *arg)
1646 {
1647 dsl_scan_t *scn = arg;
1648 spa_t *spa = scn->scn_dp->dp_spa;
1649 vdev_t *rvd = spa->spa_root_vdev;
1650 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
1651 scan_prefetch_issue_ctx_t *spic;
1652
1653 /* loop until we are told to stop */
1654 while (!scn->scn_prefetch_stop) {
1655 arc_flags_t flags = ARC_FLAG_NOWAIT |
1656 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1657 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1658
1659 mutex_enter(&spa->spa_scrub_lock);
1660
1661 /*
1662 * Wait until we have an IO to issue and are not above our
1663 * maximum in flight limit.
1664 */
1665 while (!scn->scn_prefetch_stop &&
1666 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1667 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1668 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1669 }
1670
1671 /* recheck if we should stop since we waited for the cv */
1672 if (scn->scn_prefetch_stop) {
1673 mutex_exit(&spa->spa_scrub_lock);
1674 break;
1675 }
1676
1677 /* remove the prefetch IO from the tree */
1678 spic = avl_first(&scn->scn_prefetch_queue);
1679 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1680 avl_remove(&scn->scn_prefetch_queue, spic);
1681
1682 mutex_exit(&spa->spa_scrub_lock);
1683
1684 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1685 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1686 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1687 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1688 zio_flags |= ZIO_FLAG_RAW;
1689 }
1690
1691 /* issue the prefetch asynchronously */
1692 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1693 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1694 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1695
1696 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1697 }
1698
1699 ASSERT(scn->scn_prefetch_stop);
1700
1701 /* free any prefetches we didn't get to complete */
1702 mutex_enter(&spa->spa_scrub_lock);
1703 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1704 avl_remove(&scn->scn_prefetch_queue, spic);
1705 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1706 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1707 }
1708 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1709 mutex_exit(&spa->spa_scrub_lock);
1710 }
1711
1712 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)1713 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1714 const zbookmark_phys_t *zb)
1715 {
1716 /*
1717 * We never skip over user/group accounting objects (obj<0)
1718 */
1719 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1720 (int64_t)zb->zb_object >= 0) {
1721 /*
1722 * If we already visited this bp & everything below (in
1723 * a prior txg sync), don't bother doing it again.
1724 */
1725 if (zbookmark_subtree_completed(dnp, zb,
1726 &scn->scn_phys.scn_bookmark))
1727 return (B_TRUE);
1728
1729 /*
1730 * If we found the block we're trying to resume from, or
1731 * we went past it to a different object, zero it out to
1732 * indicate that it's OK to start checking for suspending
1733 * again.
1734 */
1735 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1736 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1737 dprintf_zfs("resuming at %llx/%llx/%llx/%llx\n",
1738 (longlong_t)zb->zb_objset,
1739 (longlong_t)zb->zb_object,
1740 (longlong_t)zb->zb_level,
1741 (longlong_t)zb->zb_blkid);
1742 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1743 }
1744 }
1745 return (B_FALSE);
1746 }
1747
1748 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1749 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1750 dmu_objset_type_t ostype, dmu_tx_t *tx);
1751 static void dsl_scan_visitdnode(
1752 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1753 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1754
1755 /*
1756 * Return nonzero on i/o error.
1757 * Return new buf to write out in *bufp.
1758 */
1759 static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)1760 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1761 dnode_phys_t *dnp, const blkptr_t *bp,
1762 const zbookmark_phys_t *zb, dmu_tx_t *tx)
1763 {
1764 dsl_pool_t *dp = scn->scn_dp;
1765 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1766 int err;
1767
1768 if (BP_GET_LEVEL(bp) > 0) {
1769 arc_flags_t flags = ARC_FLAG_WAIT;
1770 int i;
1771 blkptr_t *cbp;
1772 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1773 arc_buf_t *buf;
1774
1775 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1776 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1777 if (err) {
1778 scn->scn_phys.scn_errors++;
1779 return (err);
1780 }
1781 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1782 zbookmark_phys_t czb;
1783
1784 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1785 zb->zb_level - 1,
1786 zb->zb_blkid * epb + i);
1787 dsl_scan_visitbp(cbp, &czb, dnp,
1788 ds, scn, ostype, tx);
1789 }
1790 arc_buf_destroy(buf, &buf);
1791 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1792 arc_flags_t flags = ARC_FLAG_WAIT;
1793 dnode_phys_t *cdnp;
1794 int i;
1795 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1796 arc_buf_t *buf;
1797
1798 if (BP_IS_PROTECTED(bp)) {
1799 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1800 zio_flags |= ZIO_FLAG_RAW;
1801 }
1802
1803 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1804 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1805 if (err) {
1806 scn->scn_phys.scn_errors++;
1807 return (err);
1808 }
1809 for (i = 0, cdnp = buf->b_data; i < epb;
1810 i += cdnp->dn_extra_slots + 1,
1811 cdnp += cdnp->dn_extra_slots + 1) {
1812 dsl_scan_visitdnode(scn, ds, ostype,
1813 cdnp, zb->zb_blkid * epb + i, tx);
1814 }
1815
1816 arc_buf_destroy(buf, &buf);
1817 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1818 arc_flags_t flags = ARC_FLAG_WAIT;
1819 objset_phys_t *osp;
1820 arc_buf_t *buf;
1821
1822 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1823 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1824 if (err) {
1825 scn->scn_phys.scn_errors++;
1826 return (err);
1827 }
1828
1829 osp = buf->b_data;
1830
1831 dsl_scan_visitdnode(scn, ds, osp->os_type,
1832 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1833
1834 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1835 /*
1836 * We also always visit user/group/project accounting
1837 * objects, and never skip them, even if we are
1838 * suspending. This is necessary so that the space
1839 * deltas from this txg get integrated.
1840 */
1841 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1842 dsl_scan_visitdnode(scn, ds, osp->os_type,
1843 &osp->os_projectused_dnode,
1844 DMU_PROJECTUSED_OBJECT, tx);
1845 dsl_scan_visitdnode(scn, ds, osp->os_type,
1846 &osp->os_groupused_dnode,
1847 DMU_GROUPUSED_OBJECT, tx);
1848 dsl_scan_visitdnode(scn, ds, osp->os_type,
1849 &osp->os_userused_dnode,
1850 DMU_USERUSED_OBJECT, tx);
1851 }
1852 arc_buf_destroy(buf, &buf);
1853 }
1854
1855 return (0);
1856 }
1857
1858 static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)1859 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1860 dmu_objset_type_t ostype, dnode_phys_t *dnp,
1861 uint64_t object, dmu_tx_t *tx)
1862 {
1863 int j;
1864
1865 for (j = 0; j < dnp->dn_nblkptr; j++) {
1866 zbookmark_phys_t czb;
1867
1868 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1869 dnp->dn_nlevels - 1, j);
1870 dsl_scan_visitbp(&dnp->dn_blkptr[j],
1871 &czb, dnp, ds, scn, ostype, tx);
1872 }
1873
1874 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1875 zbookmark_phys_t czb;
1876 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1877 0, DMU_SPILL_BLKID);
1878 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1879 &czb, dnp, ds, scn, ostype, tx);
1880 }
1881 }
1882
1883 /*
1884 * The arguments are in this order because mdb can only print the
1885 * first 5; we want them to be useful.
1886 */
1887 static void
dsl_scan_visitbp(blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)1888 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1889 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1890 dmu_objset_type_t ostype, dmu_tx_t *tx)
1891 {
1892 dsl_pool_t *dp = scn->scn_dp;
1893 blkptr_t *bp_toread = NULL;
1894
1895 if (dsl_scan_check_suspend(scn, zb))
1896 return;
1897
1898 if (dsl_scan_check_resume(scn, dnp, zb))
1899 return;
1900
1901 scn->scn_visited_this_txg++;
1902
1903 /*
1904 * This debugging is commented out to conserve stack space. This
1905 * function is called recursively and the debugging addes several
1906 * bytes to the stack for each call. It can be commented back in
1907 * if required to debug an issue in dsl_scan_visitbp().
1908 *
1909 * dprintf_bp(bp,
1910 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1911 * ds, ds ? ds->ds_object : 0,
1912 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1913 * bp);
1914 */
1915
1916 if (BP_IS_HOLE(bp)) {
1917 scn->scn_holes_this_txg++;
1918 return;
1919 }
1920
1921 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1922 scn->scn_lt_min_this_txg++;
1923 return;
1924 }
1925
1926 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1927 *bp_toread = *bp;
1928
1929 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1930 goto out;
1931
1932 /*
1933 * If dsl_scan_ddt() has already visited this block, it will have
1934 * already done any translations or scrubbing, so don't call the
1935 * callback again.
1936 */
1937 if (ddt_class_contains(dp->dp_spa,
1938 scn->scn_phys.scn_ddt_class_max, bp)) {
1939 scn->scn_ddt_contained_this_txg++;
1940 goto out;
1941 }
1942
1943 /*
1944 * If this block is from the future (after cur_max_txg), then we
1945 * are doing this on behalf of a deleted snapshot, and we will
1946 * revisit the future block on the next pass of this dataset.
1947 * Don't scan it now unless we need to because something
1948 * under it was modified.
1949 */
1950 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1951 scn->scn_gt_max_this_txg++;
1952 goto out;
1953 }
1954
1955 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1956
1957 out:
1958 kmem_free(bp_toread, sizeof (blkptr_t));
1959 }
1960
1961 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)1962 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1963 dmu_tx_t *tx)
1964 {
1965 zbookmark_phys_t zb;
1966 scan_prefetch_ctx_t *spc;
1967
1968 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1969 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1970
1971 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1972 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1973 zb.zb_objset, 0, 0, 0);
1974 } else {
1975 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1976 }
1977
1978 scn->scn_objsets_visited_this_txg++;
1979
1980 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1981 dsl_scan_prefetch(spc, bp, &zb);
1982 scan_prefetch_ctx_rele(spc, FTAG);
1983
1984 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1985
1986 dprintf_ds(ds, "finished scan%s", "");
1987 }
1988
1989 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)1990 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1991 {
1992 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1993 if (ds->ds_is_snapshot) {
1994 /*
1995 * Note:
1996 * - scn_cur_{min,max}_txg stays the same.
1997 * - Setting the flag is not really necessary if
1998 * scn_cur_max_txg == scn_max_txg, because there
1999 * is nothing after this snapshot that we care
2000 * about. However, we set it anyway and then
2001 * ignore it when we retraverse it in
2002 * dsl_scan_visitds().
2003 */
2004 scn_phys->scn_bookmark.zb_objset =
2005 dsl_dataset_phys(ds)->ds_next_snap_obj;
2006 zfs_dbgmsg("destroying ds %llu; currently traversing; "
2007 "reset zb_objset to %llu",
2008 (u_longlong_t)ds->ds_object,
2009 (u_longlong_t)dsl_dataset_phys(ds)->
2010 ds_next_snap_obj);
2011 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2012 } else {
2013 SET_BOOKMARK(&scn_phys->scn_bookmark,
2014 ZB_DESTROYED_OBJSET, 0, 0, 0);
2015 zfs_dbgmsg("destroying ds %llu; currently traversing; "
2016 "reset bookmark to -1,0,0,0",
2017 (u_longlong_t)ds->ds_object);
2018 }
2019 }
2020 }
2021
2022 /*
2023 * Invoked when a dataset is destroyed. We need to make sure that:
2024 *
2025 * 1) If it is the dataset that was currently being scanned, we write
2026 * a new dsl_scan_phys_t and marking the objset reference in it
2027 * as destroyed.
2028 * 2) Remove it from the work queue, if it was present.
2029 *
2030 * If the dataset was actually a snapshot, instead of marking the dataset
2031 * as destroyed, we instead substitute the next snapshot in line.
2032 */
2033 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2034 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2035 {
2036 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2037 dsl_scan_t *scn = dp->dp_scan;
2038 uint64_t mintxg;
2039
2040 if (!dsl_scan_is_running(scn))
2041 return;
2042
2043 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2044 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2045
2046 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2047 scan_ds_queue_remove(scn, ds->ds_object);
2048 if (ds->ds_is_snapshot)
2049 scan_ds_queue_insert(scn,
2050 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2051 }
2052
2053 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2054 ds->ds_object, &mintxg) == 0) {
2055 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2056 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2057 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2058 if (ds->ds_is_snapshot) {
2059 /*
2060 * We keep the same mintxg; it could be >
2061 * ds_creation_txg if the previous snapshot was
2062 * deleted too.
2063 */
2064 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2065 scn->scn_phys.scn_queue_obj,
2066 dsl_dataset_phys(ds)->ds_next_snap_obj,
2067 mintxg, tx) == 0);
2068 zfs_dbgmsg("destroying ds %llu; in queue; "
2069 "replacing with %llu",
2070 (u_longlong_t)ds->ds_object,
2071 (u_longlong_t)dsl_dataset_phys(ds)->
2072 ds_next_snap_obj);
2073 } else {
2074 zfs_dbgmsg("destroying ds %llu; in queue; removing",
2075 (u_longlong_t)ds->ds_object);
2076 }
2077 }
2078
2079 /*
2080 * dsl_scan_sync() should be called after this, and should sync
2081 * out our changed state, but just to be safe, do it here.
2082 */
2083 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2084 }
2085
2086 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2087 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2088 {
2089 if (scn_bookmark->zb_objset == ds->ds_object) {
2090 scn_bookmark->zb_objset =
2091 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2092 zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2093 "reset zb_objset to %llu",
2094 (u_longlong_t)ds->ds_object,
2095 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2096 }
2097 }
2098
2099 /*
2100 * Called when a dataset is snapshotted. If we were currently traversing
2101 * this snapshot, we reset our bookmark to point at the newly created
2102 * snapshot. We also modify our work queue to remove the old snapshot and
2103 * replace with the new one.
2104 */
2105 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2106 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2107 {
2108 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2109 dsl_scan_t *scn = dp->dp_scan;
2110 uint64_t mintxg;
2111
2112 if (!dsl_scan_is_running(scn))
2113 return;
2114
2115 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2116
2117 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2118 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2119
2120 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2121 scan_ds_queue_remove(scn, ds->ds_object);
2122 scan_ds_queue_insert(scn,
2123 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2124 }
2125
2126 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2127 ds->ds_object, &mintxg) == 0) {
2128 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2129 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2130 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2131 scn->scn_phys.scn_queue_obj,
2132 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2133 zfs_dbgmsg("snapshotting ds %llu; in queue; "
2134 "replacing with %llu",
2135 (u_longlong_t)ds->ds_object,
2136 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2137 }
2138
2139 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2140 }
2141
2142 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2143 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2144 zbookmark_phys_t *scn_bookmark)
2145 {
2146 if (scn_bookmark->zb_objset == ds1->ds_object) {
2147 scn_bookmark->zb_objset = ds2->ds_object;
2148 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2149 "reset zb_objset to %llu",
2150 (u_longlong_t)ds1->ds_object,
2151 (u_longlong_t)ds2->ds_object);
2152 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2153 scn_bookmark->zb_objset = ds1->ds_object;
2154 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2155 "reset zb_objset to %llu",
2156 (u_longlong_t)ds2->ds_object,
2157 (u_longlong_t)ds1->ds_object);
2158 }
2159 }
2160
2161 /*
2162 * Called when a parent dataset and its clone are swapped. If we were
2163 * currently traversing the dataset, we need to switch to traversing the
2164 * newly promoted parent.
2165 */
2166 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2167 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2168 {
2169 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2170 dsl_scan_t *scn = dp->dp_scan;
2171 uint64_t mintxg;
2172
2173 if (!dsl_scan_is_running(scn))
2174 return;
2175
2176 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2177 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2178
2179 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2180 scan_ds_queue_remove(scn, ds1->ds_object);
2181 scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2182 }
2183 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2184 scan_ds_queue_remove(scn, ds2->ds_object);
2185 scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2186 }
2187
2188 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2189 ds1->ds_object, &mintxg) == 0) {
2190 int err;
2191 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2192 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2193 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2194 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2195 err = zap_add_int_key(dp->dp_meta_objset,
2196 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2197 VERIFY(err == 0 || err == EEXIST);
2198 if (err == EEXIST) {
2199 /* Both were there to begin with */
2200 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2201 scn->scn_phys.scn_queue_obj,
2202 ds1->ds_object, mintxg, tx));
2203 }
2204 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2205 "replacing with %llu",
2206 (u_longlong_t)ds1->ds_object,
2207 (u_longlong_t)ds2->ds_object);
2208 }
2209 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2210 ds2->ds_object, &mintxg) == 0) {
2211 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2212 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2213 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2214 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2215 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2216 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2217 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2218 "replacing with %llu",
2219 (u_longlong_t)ds2->ds_object,
2220 (u_longlong_t)ds1->ds_object);
2221 }
2222
2223 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2224 }
2225
2226 /* ARGSUSED */
2227 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2228 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2229 {
2230 uint64_t originobj = *(uint64_t *)arg;
2231 dsl_dataset_t *ds;
2232 int err;
2233 dsl_scan_t *scn = dp->dp_scan;
2234
2235 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2236 return (0);
2237
2238 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2239 if (err)
2240 return (err);
2241
2242 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2243 dsl_dataset_t *prev;
2244 err = dsl_dataset_hold_obj(dp,
2245 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2246
2247 dsl_dataset_rele(ds, FTAG);
2248 if (err)
2249 return (err);
2250 ds = prev;
2251 }
2252 scan_ds_queue_insert(scn, ds->ds_object,
2253 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2254 dsl_dataset_rele(ds, FTAG);
2255 return (0);
2256 }
2257
2258 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2259 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2260 {
2261 dsl_pool_t *dp = scn->scn_dp;
2262 dsl_dataset_t *ds;
2263
2264 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2265
2266 if (scn->scn_phys.scn_cur_min_txg >=
2267 scn->scn_phys.scn_max_txg) {
2268 /*
2269 * This can happen if this snapshot was created after the
2270 * scan started, and we already completed a previous snapshot
2271 * that was created after the scan started. This snapshot
2272 * only references blocks with:
2273 *
2274 * birth < our ds_creation_txg
2275 * cur_min_txg is no less than ds_creation_txg.
2276 * We have already visited these blocks.
2277 * or
2278 * birth > scn_max_txg
2279 * The scan requested not to visit these blocks.
2280 *
2281 * Subsequent snapshots (and clones) can reference our
2282 * blocks, or blocks with even higher birth times.
2283 * Therefore we do not need to visit them either,
2284 * so we do not add them to the work queue.
2285 *
2286 * Note that checking for cur_min_txg >= cur_max_txg
2287 * is not sufficient, because in that case we may need to
2288 * visit subsequent snapshots. This happens when min_txg > 0,
2289 * which raises cur_min_txg. In this case we will visit
2290 * this dataset but skip all of its blocks, because the
2291 * rootbp's birth time is < cur_min_txg. Then we will
2292 * add the next snapshots/clones to the work queue.
2293 */
2294 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
2295 dsl_dataset_name(ds, dsname);
2296 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2297 "cur_min_txg (%llu) >= max_txg (%llu)",
2298 (longlong_t)dsobj, dsname,
2299 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2300 (longlong_t)scn->scn_phys.scn_max_txg);
2301 kmem_free(dsname, MAXNAMELEN);
2302
2303 goto out;
2304 }
2305
2306 /*
2307 * Only the ZIL in the head (non-snapshot) is valid. Even though
2308 * snapshots can have ZIL block pointers (which may be the same
2309 * BP as in the head), they must be ignored. In addition, $ORIGIN
2310 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2311 * need to look for a ZIL in it either. So we traverse the ZIL here,
2312 * rather than in scan_recurse(), because the regular snapshot
2313 * block-sharing rules don't apply to it.
2314 */
2315 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) &&
2316 (dp->dp_origin_snap == NULL ||
2317 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2318 objset_t *os;
2319 if (dmu_objset_from_ds(ds, &os) != 0) {
2320 goto out;
2321 }
2322 dsl_scan_zil(dp, &os->os_zil_header);
2323 }
2324
2325 /*
2326 * Iterate over the bps in this ds.
2327 */
2328 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2329 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2330 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2331 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2332
2333 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2334 dsl_dataset_name(ds, dsname);
2335 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2336 "suspending=%u",
2337 (longlong_t)dsobj, dsname,
2338 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2339 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2340 (int)scn->scn_suspending);
2341 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2342
2343 if (scn->scn_suspending)
2344 goto out;
2345
2346 /*
2347 * We've finished this pass over this dataset.
2348 */
2349
2350 /*
2351 * If we did not completely visit this dataset, do another pass.
2352 */
2353 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2354 zfs_dbgmsg("incomplete pass; visiting again");
2355 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2356 scan_ds_queue_insert(scn, ds->ds_object,
2357 scn->scn_phys.scn_cur_max_txg);
2358 goto out;
2359 }
2360
2361 /*
2362 * Add descendent datasets to work queue.
2363 */
2364 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2365 scan_ds_queue_insert(scn,
2366 dsl_dataset_phys(ds)->ds_next_snap_obj,
2367 dsl_dataset_phys(ds)->ds_creation_txg);
2368 }
2369 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2370 boolean_t usenext = B_FALSE;
2371 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2372 uint64_t count;
2373 /*
2374 * A bug in a previous version of the code could
2375 * cause upgrade_clones_cb() to not set
2376 * ds_next_snap_obj when it should, leading to a
2377 * missing entry. Therefore we can only use the
2378 * next_clones_obj when its count is correct.
2379 */
2380 int err = zap_count(dp->dp_meta_objset,
2381 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2382 if (err == 0 &&
2383 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2384 usenext = B_TRUE;
2385 }
2386
2387 if (usenext) {
2388 zap_cursor_t zc;
2389 zap_attribute_t za;
2390 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2391 dsl_dataset_phys(ds)->ds_next_clones_obj);
2392 zap_cursor_retrieve(&zc, &za) == 0;
2393 (void) zap_cursor_advance(&zc)) {
2394 scan_ds_queue_insert(scn,
2395 zfs_strtonum(za.za_name, NULL),
2396 dsl_dataset_phys(ds)->ds_creation_txg);
2397 }
2398 zap_cursor_fini(&zc);
2399 } else {
2400 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2401 enqueue_clones_cb, &ds->ds_object,
2402 DS_FIND_CHILDREN));
2403 }
2404 }
2405
2406 out:
2407 dsl_dataset_rele(ds, FTAG);
2408 }
2409
2410 /* ARGSUSED */
2411 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2412 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2413 {
2414 dsl_dataset_t *ds;
2415 int err;
2416 dsl_scan_t *scn = dp->dp_scan;
2417
2418 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2419 if (err)
2420 return (err);
2421
2422 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2423 dsl_dataset_t *prev;
2424 err = dsl_dataset_hold_obj(dp,
2425 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2426 if (err) {
2427 dsl_dataset_rele(ds, FTAG);
2428 return (err);
2429 }
2430
2431 /*
2432 * If this is a clone, we don't need to worry about it for now.
2433 */
2434 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2435 dsl_dataset_rele(ds, FTAG);
2436 dsl_dataset_rele(prev, FTAG);
2437 return (0);
2438 }
2439 dsl_dataset_rele(ds, FTAG);
2440 ds = prev;
2441 }
2442
2443 scan_ds_queue_insert(scn, ds->ds_object,
2444 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2445 dsl_dataset_rele(ds, FTAG);
2446 return (0);
2447 }
2448
2449 /* ARGSUSED */
2450 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_entry_t * dde,dmu_tx_t * tx)2451 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2452 ddt_entry_t *dde, dmu_tx_t *tx)
2453 {
2454 const ddt_key_t *ddk = &dde->dde_key;
2455 ddt_phys_t *ddp = dde->dde_phys;
2456 blkptr_t bp;
2457 zbookmark_phys_t zb = { 0 };
2458 int p;
2459
2460 if (scn->scn_phys.scn_state != DSS_SCANNING)
2461 return;
2462
2463 /*
2464 * This function is special because it is the only thing
2465 * that can add scan_io_t's to the vdev scan queues from
2466 * outside dsl_scan_sync(). For the most part this is ok
2467 * as long as it is called from within syncing context.
2468 * However, dsl_scan_sync() expects that no new sio's will
2469 * be added between when all the work for a scan is done
2470 * and the next txg when the scan is actually marked as
2471 * completed. This check ensures we do not issue new sio's
2472 * during this period.
2473 */
2474 if (scn->scn_done_txg != 0)
2475 return;
2476
2477 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2478 if (ddp->ddp_phys_birth == 0 ||
2479 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2480 continue;
2481 ddt_bp_create(checksum, ddk, ddp, &bp);
2482
2483 scn->scn_visited_this_txg++;
2484 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2485 }
2486 }
2487
2488 /*
2489 * Scrub/dedup interaction.
2490 *
2491 * If there are N references to a deduped block, we don't want to scrub it
2492 * N times -- ideally, we should scrub it exactly once.
2493 *
2494 * We leverage the fact that the dde's replication class (enum ddt_class)
2495 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2496 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2497 *
2498 * To prevent excess scrubbing, the scrub begins by walking the DDT
2499 * to find all blocks with refcnt > 1, and scrubs each of these once.
2500 * Since there are two replication classes which contain blocks with
2501 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2502 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2503 *
2504 * There would be nothing more to say if a block's refcnt couldn't change
2505 * during a scrub, but of course it can so we must account for changes
2506 * in a block's replication class.
2507 *
2508 * Here's an example of what can occur:
2509 *
2510 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2511 * when visited during the top-down scrub phase, it will be scrubbed twice.
2512 * This negates our scrub optimization, but is otherwise harmless.
2513 *
2514 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2515 * on each visit during the top-down scrub phase, it will never be scrubbed.
2516 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2517 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2518 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2519 * while a scrub is in progress, it scrubs the block right then.
2520 */
2521 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)2522 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2523 {
2524 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2525 ddt_entry_t dde = { 0 };
2526 int error;
2527 uint64_t n = 0;
2528
2529 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2530 ddt_t *ddt;
2531
2532 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2533 break;
2534 dprintf_zfs("visiting ddb=%llu/%llu/%llu/%llx\n",
2535 (longlong_t)ddb->ddb_class,
2536 (longlong_t)ddb->ddb_type,
2537 (longlong_t)ddb->ddb_checksum,
2538 (longlong_t)ddb->ddb_cursor);
2539
2540 /* There should be no pending changes to the dedup table */
2541 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2542 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2543
2544 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2545 n++;
2546
2547 if (dsl_scan_check_suspend(scn, NULL))
2548 break;
2549 }
2550
2551 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2552 "suspending=%u", (longlong_t)n,
2553 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2554
2555 ASSERT(error == 0 || error == ENOENT);
2556 ASSERT(error != ENOENT ||
2557 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2558 }
2559
2560 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)2561 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2562 {
2563 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2564 if (ds->ds_is_snapshot)
2565 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2566 return (smt);
2567 }
2568
2569 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)2570 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2571 {
2572 scan_ds_t *sds;
2573 dsl_pool_t *dp = scn->scn_dp;
2574
2575 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2576 scn->scn_phys.scn_ddt_class_max) {
2577 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2578 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2579 dsl_scan_ddt(scn, tx);
2580 if (scn->scn_suspending)
2581 return;
2582 }
2583
2584 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2585 /* First do the MOS & ORIGIN */
2586
2587 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2588 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2589 dsl_scan_visit_rootbp(scn, NULL,
2590 &dp->dp_meta_rootbp, tx);
2591 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2592 if (scn->scn_suspending)
2593 return;
2594
2595 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2596 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2597 enqueue_cb, NULL, DS_FIND_CHILDREN));
2598 } else {
2599 dsl_scan_visitds(scn,
2600 dp->dp_origin_snap->ds_object, tx);
2601 }
2602 ASSERT(!scn->scn_suspending);
2603 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2604 ZB_DESTROYED_OBJSET) {
2605 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2606 /*
2607 * If we were suspended, continue from here. Note if the
2608 * ds we were suspended on was deleted, the zb_objset may
2609 * be -1, so we will skip this and find a new objset
2610 * below.
2611 */
2612 dsl_scan_visitds(scn, dsobj, tx);
2613 if (scn->scn_suspending)
2614 return;
2615 }
2616
2617 /*
2618 * In case we suspended right at the end of the ds, zero the
2619 * bookmark so we don't think that we're still trying to resume.
2620 */
2621 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2622
2623 /*
2624 * Keep pulling things out of the dataset avl queue. Updates to the
2625 * persistent zap-object-as-queue happen only at checkpoints.
2626 */
2627 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2628 dsl_dataset_t *ds;
2629 uint64_t dsobj = sds->sds_dsobj;
2630 uint64_t txg = sds->sds_txg;
2631
2632 /* dequeue and free the ds from the queue */
2633 scan_ds_queue_remove(scn, dsobj);
2634 sds = NULL; /* must not be touched after removal */
2635
2636 /* Set up min / max txg */
2637 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2638 if (txg != 0) {
2639 scn->scn_phys.scn_cur_min_txg =
2640 MAX(scn->scn_phys.scn_min_txg, txg);
2641 } else {
2642 scn->scn_phys.scn_cur_min_txg =
2643 MAX(scn->scn_phys.scn_min_txg,
2644 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2645 }
2646 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2647 dsl_dataset_rele(ds, FTAG);
2648
2649 dsl_scan_visitds(scn, dsobj, tx);
2650 if (scn->scn_suspending)
2651 return;
2652 }
2653 /* No more objsets to fetch, we're done */
2654 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2655 ASSERT0(scn->scn_suspending);
2656 }
2657
2658 static uint64_t
dsl_scan_count_leaves(vdev_t * vd)2659 dsl_scan_count_leaves(vdev_t *vd)
2660 {
2661 uint64_t i, leaves = 0;
2662
2663 /* we only count leaves that belong to the main pool and are readable */
2664 if (vd->vdev_islog || vd->vdev_isspare ||
2665 vd->vdev_isl2cache || !vdev_readable(vd))
2666 return (0);
2667
2668 if (vd->vdev_ops->vdev_op_leaf)
2669 return (1);
2670
2671 for (i = 0; i < vd->vdev_children; i++) {
2672 leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2673 }
2674
2675 return (leaves);
2676 }
2677
2678
2679 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)2680 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2681 {
2682 int i;
2683 uint64_t cur_size = 0;
2684
2685 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2686 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2687 }
2688
2689 q->q_total_zio_size_this_txg += cur_size;
2690 q->q_zios_this_txg++;
2691 }
2692
2693 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)2694 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2695 uint64_t end)
2696 {
2697 q->q_total_seg_size_this_txg += end - start;
2698 q->q_segs_this_txg++;
2699 }
2700
2701 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)2702 scan_io_queue_check_suspend(dsl_scan_t *scn)
2703 {
2704 /* See comment in dsl_scan_check_suspend() */
2705 uint64_t curr_time_ns = gethrtime();
2706 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2707 uint64_t sync_time_ns = curr_time_ns -
2708 scn->scn_dp->dp_spa->spa_sync_starttime;
2709 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2710 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2711 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2712
2713 return ((NSEC2MSEC(scan_time_ns) > mintime &&
2714 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2715 txg_sync_waiting(scn->scn_dp) ||
2716 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2717 spa_shutting_down(scn->scn_dp->dp_spa));
2718 }
2719
2720 /*
2721 * Given a list of scan_io_t's in io_list, this issues the io's out to
2722 * disk. This consumes the io_list and frees the scan_io_t's. This is
2723 * called when emptying queues, either when we're up against the memory
2724 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2725 * processing the list before we finished. Any zios that were not issued
2726 * will remain in the io_list.
2727 */
2728 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)2729 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2730 {
2731 dsl_scan_t *scn = queue->q_scn;
2732 scan_io_t *sio;
2733 int64_t bytes_issued = 0;
2734 boolean_t suspended = B_FALSE;
2735
2736 while ((sio = list_head(io_list)) != NULL) {
2737 blkptr_t bp;
2738
2739 if (scan_io_queue_check_suspend(scn)) {
2740 suspended = B_TRUE;
2741 break;
2742 }
2743
2744 sio2bp(sio, &bp);
2745 bytes_issued += SIO_GET_ASIZE(sio);
2746 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2747 &sio->sio_zb, queue);
2748 (void) list_remove_head(io_list);
2749 scan_io_queues_update_zio_stats(queue, &bp);
2750 sio_free(sio);
2751 }
2752
2753 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2754
2755 return (suspended);
2756 }
2757
2758 /*
2759 * Given a range_seg_t (extent) and a list, this function passes over a
2760 * scan queue and gathers up the appropriate ios which fit into that
2761 * scan seg (starting from lowest LBA). At the end, we remove the segment
2762 * from the q_exts_by_addr range tree.
2763 */
2764 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,range_seg_t * rs,list_t * list)2765 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2766 {
2767 scan_io_t *srch_sio, *sio, *next_sio;
2768 avl_index_t idx;
2769 uint_t num_sios = 0;
2770 int64_t bytes_issued = 0;
2771
2772 ASSERT(rs != NULL);
2773 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2774
2775 srch_sio = sio_alloc(1);
2776 srch_sio->sio_nr_dvas = 1;
2777 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2778
2779 /*
2780 * The exact start of the extent might not contain any matching zios,
2781 * so if that's the case, examine the next one in the tree.
2782 */
2783 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2784 sio_free(srch_sio);
2785
2786 if (sio == NULL)
2787 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2788
2789 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2790 queue->q_exts_by_addr) && num_sios <= 32) {
2791 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2792 queue->q_exts_by_addr));
2793 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2794 queue->q_exts_by_addr));
2795
2796 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2797 avl_remove(&queue->q_sios_by_addr, sio);
2798 queue->q_sio_memused -= SIO_GET_MUSED(sio);
2799
2800 bytes_issued += SIO_GET_ASIZE(sio);
2801 num_sios++;
2802 list_insert_tail(list, sio);
2803 sio = next_sio;
2804 }
2805
2806 /*
2807 * We limit the number of sios we process at once to 32 to avoid
2808 * biting off more than we can chew. If we didn't take everything
2809 * in the segment we update it to reflect the work we were able to
2810 * complete. Otherwise, we remove it from the range tree entirely.
2811 */
2812 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2813 queue->q_exts_by_addr)) {
2814 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2815 -bytes_issued);
2816 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2817 SIO_GET_OFFSET(sio), rs_get_end(rs,
2818 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2819
2820 return (B_TRUE);
2821 } else {
2822 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2823 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2824 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2825 return (B_FALSE);
2826 }
2827 }
2828
2829
2830 /*
2831 * This is called from the queue emptying thread and selects the next
2832 * extent from which we are to issue io's. The behavior of this function
2833 * depends on the state of the scan, the current memory consumption and
2834 * whether or not we are performing a scan shutdown.
2835 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2836 * needs to perform a checkpoint
2837 * 2) We select the largest available extent if we are up against the
2838 * memory limit.
2839 * 3) Otherwise we don't select any extents.
2840 */
2841 static const range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)2842 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2843 {
2844 dsl_scan_t *scn = queue->q_scn;
2845 range_tree_t *rt = queue->q_exts_by_addr;
2846
2847 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2848 ASSERT(scn->scn_is_sorted);
2849
2850 /* handle tunable overrides */
2851 if (scn->scn_checkpointing || scn->scn_clearing) {
2852 if (zfs_scan_issue_strategy == 1) {
2853 return (range_tree_first(rt));
2854 } else if (zfs_scan_issue_strategy == 2) {
2855 /*
2856 * We need to get the original entry in the by_addr
2857 * tree so we can modify it.
2858 */
2859 range_seg_t *size_rs =
2860 zfs_btree_first(&queue->q_exts_by_size, NULL);
2861 if (size_rs == NULL)
2862 return (NULL);
2863 uint64_t start = rs_get_start(size_rs, rt);
2864 uint64_t size = rs_get_end(size_rs, rt) - start;
2865 range_seg_t *addr_rs = range_tree_find(rt, start,
2866 size);
2867 ASSERT3P(addr_rs, !=, NULL);
2868 ASSERT3U(rs_get_start(size_rs, rt), ==,
2869 rs_get_start(addr_rs, rt));
2870 ASSERT3U(rs_get_end(size_rs, rt), ==,
2871 rs_get_end(addr_rs, rt));
2872 return (addr_rs);
2873 }
2874 }
2875
2876 /*
2877 * During normal clearing, we want to issue our largest segments
2878 * first, keeping IO as sequential as possible, and leaving the
2879 * smaller extents for later with the hope that they might eventually
2880 * grow to larger sequential segments. However, when the scan is
2881 * checkpointing, no new extents will be added to the sorting queue,
2882 * so the way we are sorted now is as good as it will ever get.
2883 * In this case, we instead switch to issuing extents in LBA order.
2884 */
2885 if (scn->scn_checkpointing) {
2886 return (range_tree_first(rt));
2887 } else if (scn->scn_clearing) {
2888 /*
2889 * We need to get the original entry in the by_addr
2890 * tree so we can modify it.
2891 */
2892 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
2893 NULL);
2894 if (size_rs == NULL)
2895 return (NULL);
2896 uint64_t start = rs_get_start(size_rs, rt);
2897 uint64_t size = rs_get_end(size_rs, rt) - start;
2898 range_seg_t *addr_rs = range_tree_find(rt, start, size);
2899 ASSERT3P(addr_rs, !=, NULL);
2900 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
2901 rt));
2902 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
2903 return (addr_rs);
2904 } else {
2905 return (NULL);
2906 }
2907 }
2908
2909 static void
scan_io_queues_run_one(void * arg)2910 scan_io_queues_run_one(void *arg)
2911 {
2912 dsl_scan_io_queue_t *queue = arg;
2913 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2914 boolean_t suspended = B_FALSE;
2915 range_seg_t *rs = NULL;
2916 scan_io_t *sio = NULL;
2917 list_t sio_list;
2918 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2919 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2920
2921 ASSERT(queue->q_scn->scn_is_sorted);
2922
2923 list_create(&sio_list, sizeof (scan_io_t),
2924 offsetof(scan_io_t, sio_nodes.sio_list_node));
2925 mutex_enter(q_lock);
2926
2927 /* calculate maximum in-flight bytes for this txg (min 1MB) */
2928 queue->q_maxinflight_bytes =
2929 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2930
2931 /* reset per-queue scan statistics for this txg */
2932 queue->q_total_seg_size_this_txg = 0;
2933 queue->q_segs_this_txg = 0;
2934 queue->q_total_zio_size_this_txg = 0;
2935 queue->q_zios_this_txg = 0;
2936
2937 /* loop until we have run out of time or sios */
2938 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) {
2939 uint64_t seg_start = 0, seg_end = 0;
2940 boolean_t more_left = B_TRUE;
2941
2942 ASSERT(list_is_empty(&sio_list));
2943
2944 /* loop while we still have sios left to process in this rs */
2945 while (more_left) {
2946 scan_io_t *first_sio, *last_sio;
2947
2948 /*
2949 * We have selected which extent needs to be
2950 * processed next. Gather up the corresponding sios.
2951 */
2952 more_left = scan_io_queue_gather(queue, rs, &sio_list);
2953 ASSERT(!list_is_empty(&sio_list));
2954 first_sio = list_head(&sio_list);
2955 last_sio = list_tail(&sio_list);
2956
2957 seg_end = SIO_GET_END_OFFSET(last_sio);
2958 if (seg_start == 0)
2959 seg_start = SIO_GET_OFFSET(first_sio);
2960
2961 /*
2962 * Issuing sios can take a long time so drop the
2963 * queue lock. The sio queue won't be updated by
2964 * other threads since we're in syncing context so
2965 * we can be sure that our trees will remain exactly
2966 * as we left them.
2967 */
2968 mutex_exit(q_lock);
2969 suspended = scan_io_queue_issue(queue, &sio_list);
2970 mutex_enter(q_lock);
2971
2972 if (suspended)
2973 break;
2974 }
2975 /* update statistics for debugging purposes */
2976 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2977
2978 if (suspended)
2979 break;
2980 }
2981
2982
2983 /*
2984 * If we were suspended in the middle of processing,
2985 * requeue any unfinished sios and exit.
2986 */
2987 while ((sio = list_head(&sio_list)) != NULL) {
2988 list_remove(&sio_list, sio);
2989 scan_io_queue_insert_impl(queue, sio);
2990 }
2991
2992 mutex_exit(q_lock);
2993 list_destroy(&sio_list);
2994 }
2995
2996 /*
2997 * Performs an emptying run on all scan queues in the pool. This just
2998 * punches out one thread per top-level vdev, each of which processes
2999 * only that vdev's scan queue. We can parallelize the I/O here because
3000 * we know that each queue's io's only affect its own top-level vdev.
3001 *
3002 * This function waits for the queue runs to complete, and must be
3003 * called from dsl_scan_sync (or in general, syncing context).
3004 */
3005 static void
scan_io_queues_run(dsl_scan_t * scn)3006 scan_io_queues_run(dsl_scan_t *scn)
3007 {
3008 spa_t *spa = scn->scn_dp->dp_spa;
3009
3010 ASSERT(scn->scn_is_sorted);
3011 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3012
3013 if (scn->scn_bytes_pending == 0)
3014 return;
3015
3016 if (scn->scn_taskq == NULL) {
3017 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16,
3018 KM_SLEEP);
3019 int nthreads = spa->spa_root_vdev->vdev_children;
3020
3021 /*
3022 * We need to make this taskq *always* execute as many
3023 * threads in parallel as we have top-level vdevs and no
3024 * less, otherwise strange serialization of the calls to
3025 * scan_io_queues_run_one can occur during spa_sync runs
3026 * and that significantly impacts performance.
3027 */
3028 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16,
3029 "dsl_scan_tq_%s", spa->spa_name);
3030 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri,
3031 nthreads, nthreads, TASKQ_PREPOPULATE);
3032 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16);
3033 }
3034
3035 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3036 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3037
3038 mutex_enter(&vd->vdev_scan_io_queue_lock);
3039 if (vd->vdev_scan_io_queue != NULL) {
3040 VERIFY(taskq_dispatch(scn->scn_taskq,
3041 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3042 TQ_SLEEP) != TASKQID_INVALID);
3043 }
3044 mutex_exit(&vd->vdev_scan_io_queue_lock);
3045 }
3046
3047 /*
3048 * Wait for the queues to finish issuing thir IOs for this run
3049 * before we return. There may still be IOs in flight at this
3050 * point.
3051 */
3052 taskq_wait(scn->scn_taskq);
3053 }
3054
3055 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3056 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3057 {
3058 uint64_t elapsed_nanosecs;
3059
3060 if (zfs_recover)
3061 return (B_FALSE);
3062
3063 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
3064 return (B_TRUE);
3065
3066 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3067 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3068 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3069 txg_sync_waiting(scn->scn_dp)) ||
3070 spa_shutting_down(scn->scn_dp->dp_spa));
3071 }
3072
3073 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3074 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3075 {
3076 dsl_scan_t *scn = arg;
3077
3078 if (!scn->scn_is_bptree ||
3079 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3080 if (dsl_scan_async_block_should_pause(scn))
3081 return (SET_ERROR(ERESTART));
3082 }
3083
3084 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3085 dmu_tx_get_txg(tx), bp, 0));
3086 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3087 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3088 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3089 scn->scn_visited_this_txg++;
3090 return (0);
3091 }
3092
3093 static void
dsl_scan_update_stats(dsl_scan_t * scn)3094 dsl_scan_update_stats(dsl_scan_t *scn)
3095 {
3096 spa_t *spa = scn->scn_dp->dp_spa;
3097 uint64_t i;
3098 uint64_t seg_size_total = 0, zio_size_total = 0;
3099 uint64_t seg_count_total = 0, zio_count_total = 0;
3100
3101 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3102 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3103 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3104
3105 if (queue == NULL)
3106 continue;
3107
3108 seg_size_total += queue->q_total_seg_size_this_txg;
3109 zio_size_total += queue->q_total_zio_size_this_txg;
3110 seg_count_total += queue->q_segs_this_txg;
3111 zio_count_total += queue->q_zios_this_txg;
3112 }
3113
3114 if (seg_count_total == 0 || zio_count_total == 0) {
3115 scn->scn_avg_seg_size_this_txg = 0;
3116 scn->scn_avg_zio_size_this_txg = 0;
3117 scn->scn_segs_this_txg = 0;
3118 scn->scn_zios_this_txg = 0;
3119 return;
3120 }
3121
3122 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3123 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3124 scn->scn_segs_this_txg = seg_count_total;
3125 scn->scn_zios_this_txg = zio_count_total;
3126 }
3127
3128 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3129 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3130 {
3131 dsl_scan_t *scn = arg;
3132 const dva_t *dva = &bp->blk_dva[0];
3133
3134 if (dsl_scan_async_block_should_pause(scn))
3135 return (SET_ERROR(ERESTART));
3136
3137 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3138 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3139 DVA_GET_ASIZE(dva), tx);
3140 scn->scn_visited_this_txg++;
3141 return (0);
3142 }
3143
3144 boolean_t
dsl_scan_active(dsl_scan_t * scn)3145 dsl_scan_active(dsl_scan_t *scn)
3146 {
3147 spa_t *spa = scn->scn_dp->dp_spa;
3148 uint64_t used = 0, comp, uncomp;
3149
3150 if (spa->spa_load_state != SPA_LOAD_NONE)
3151 return (B_FALSE);
3152 if (spa_shutting_down(spa))
3153 return (B_FALSE);
3154 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3155 (scn->scn_async_destroying && !scn->scn_async_stalled))
3156 return (B_TRUE);
3157
3158 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3159 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3160 &used, &comp, &uncomp);
3161 }
3162 return (used != 0);
3163 }
3164
3165 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3166 dsl_scan_check_deferred(vdev_t *vd)
3167 {
3168 boolean_t need_resilver = B_FALSE;
3169
3170 for (int c = 0; c < vd->vdev_children; c++) {
3171 need_resilver |=
3172 dsl_scan_check_deferred(vd->vdev_child[c]);
3173 }
3174
3175 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3176 !vd->vdev_ops->vdev_op_leaf)
3177 return (need_resilver);
3178
3179 if (!vd->vdev_resilver_deferred)
3180 need_resilver = B_TRUE;
3181
3182 return (need_resilver);
3183 }
3184
3185 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3186 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3187 uint64_t phys_birth)
3188 {
3189 vdev_t *vd;
3190
3191 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3192
3193 if (vd->vdev_ops == &vdev_indirect_ops) {
3194 /*
3195 * The indirect vdev can point to multiple
3196 * vdevs. For simplicity, always create
3197 * the resilver zio_t. zio_vdev_io_start()
3198 * will bypass the child resilver i/o's if
3199 * they are on vdevs that don't have DTL's.
3200 */
3201 return (B_TRUE);
3202 }
3203
3204 if (DVA_GET_GANG(dva)) {
3205 /*
3206 * Gang members may be spread across multiple
3207 * vdevs, so the best estimate we have is the
3208 * scrub range, which has already been checked.
3209 * XXX -- it would be better to change our
3210 * allocation policy to ensure that all
3211 * gang members reside on the same vdev.
3212 */
3213 return (B_TRUE);
3214 }
3215
3216 /*
3217 * Check if the txg falls within the range which must be
3218 * resilvered. DVAs outside this range can always be skipped.
3219 */
3220 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3221 return (B_FALSE);
3222
3223 /*
3224 * Check if the top-level vdev must resilver this offset.
3225 * When the offset does not intersect with a dirty leaf DTL
3226 * then it may be possible to skip the resilver IO. The psize
3227 * is provided instead of asize to simplify the check for RAIDZ.
3228 */
3229 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3230 return (B_FALSE);
3231
3232 /*
3233 * Check that this top-level vdev has a device under it which
3234 * is resilvering and is not deferred.
3235 */
3236 if (!dsl_scan_check_deferred(vd))
3237 return (B_FALSE);
3238
3239 return (B_TRUE);
3240 }
3241
3242 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3243 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3244 {
3245 int err = 0;
3246 dsl_scan_t *scn = dp->dp_scan;
3247 spa_t *spa = dp->dp_spa;
3248
3249 if (spa_suspend_async_destroy(spa))
3250 return (0);
3251
3252 if (zfs_free_bpobj_enabled &&
3253 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3254 scn->scn_is_bptree = B_FALSE;
3255 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3256 scn->scn_zio_root = zio_root(spa, NULL,
3257 NULL, ZIO_FLAG_MUSTSUCCEED);
3258 err = bpobj_iterate(&dp->dp_free_bpobj,
3259 dsl_scan_free_block_cb, scn, tx);
3260 VERIFY0(zio_wait(scn->scn_zio_root));
3261 scn->scn_zio_root = NULL;
3262
3263 if (err != 0 && err != ERESTART)
3264 zfs_panic_recover("error %u from bpobj_iterate()", err);
3265 }
3266
3267 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3268 ASSERT(scn->scn_async_destroying);
3269 scn->scn_is_bptree = B_TRUE;
3270 scn->scn_zio_root = zio_root(spa, NULL,
3271 NULL, ZIO_FLAG_MUSTSUCCEED);
3272 err = bptree_iterate(dp->dp_meta_objset,
3273 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3274 VERIFY0(zio_wait(scn->scn_zio_root));
3275 scn->scn_zio_root = NULL;
3276
3277 if (err == EIO || err == ECKSUM) {
3278 err = 0;
3279 } else if (err != 0 && err != ERESTART) {
3280 zfs_panic_recover("error %u from "
3281 "traverse_dataset_destroyed()", err);
3282 }
3283
3284 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3285 /* finished; deactivate async destroy feature */
3286 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3287 ASSERT(!spa_feature_is_active(spa,
3288 SPA_FEATURE_ASYNC_DESTROY));
3289 VERIFY0(zap_remove(dp->dp_meta_objset,
3290 DMU_POOL_DIRECTORY_OBJECT,
3291 DMU_POOL_BPTREE_OBJ, tx));
3292 VERIFY0(bptree_free(dp->dp_meta_objset,
3293 dp->dp_bptree_obj, tx));
3294 dp->dp_bptree_obj = 0;
3295 scn->scn_async_destroying = B_FALSE;
3296 scn->scn_async_stalled = B_FALSE;
3297 } else {
3298 /*
3299 * If we didn't make progress, mark the async
3300 * destroy as stalled, so that we will not initiate
3301 * a spa_sync() on its behalf. Note that we only
3302 * check this if we are not finished, because if the
3303 * bptree had no blocks for us to visit, we can
3304 * finish without "making progress".
3305 */
3306 scn->scn_async_stalled =
3307 (scn->scn_visited_this_txg == 0);
3308 }
3309 }
3310 if (scn->scn_visited_this_txg) {
3311 zfs_dbgmsg("freed %llu blocks in %llums from "
3312 "free_bpobj/bptree txg %llu; err=%d",
3313 (longlong_t)scn->scn_visited_this_txg,
3314 (longlong_t)
3315 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3316 (longlong_t)tx->tx_txg, err);
3317 scn->scn_visited_this_txg = 0;
3318
3319 /*
3320 * Write out changes to the DDT that may be required as a
3321 * result of the blocks freed. This ensures that the DDT
3322 * is clean when a scrub/resilver runs.
3323 */
3324 ddt_sync(spa, tx->tx_txg);
3325 }
3326 if (err != 0)
3327 return (err);
3328 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3329 zfs_free_leak_on_eio &&
3330 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3331 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3332 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3333 /*
3334 * We have finished background destroying, but there is still
3335 * some space left in the dp_free_dir. Transfer this leaked
3336 * space to the dp_leak_dir.
3337 */
3338 if (dp->dp_leak_dir == NULL) {
3339 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3340 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3341 LEAK_DIR_NAME, tx);
3342 VERIFY0(dsl_pool_open_special_dir(dp,
3343 LEAK_DIR_NAME, &dp->dp_leak_dir));
3344 rrw_exit(&dp->dp_config_rwlock, FTAG);
3345 }
3346 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3347 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3348 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3349 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3350 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3351 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3352 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3353 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3354 }
3355
3356 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3357 /* finished; verify that space accounting went to zero */
3358 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3359 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3360 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3361 }
3362
3363 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3364 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3365 DMU_POOL_OBSOLETE_BPOBJ));
3366 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3367 ASSERT(spa_feature_is_active(dp->dp_spa,
3368 SPA_FEATURE_OBSOLETE_COUNTS));
3369
3370 scn->scn_is_bptree = B_FALSE;
3371 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3372 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3373 dsl_scan_obsolete_block_cb, scn, tx);
3374 if (err != 0 && err != ERESTART)
3375 zfs_panic_recover("error %u from bpobj_iterate()", err);
3376
3377 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3378 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3379 }
3380
3381 return (0);
3382 }
3383
3384 /*
3385 * This is the primary entry point for scans that is called from syncing
3386 * context. Scans must happen entirely during syncing context so that we
3387 * cna guarantee that blocks we are currently scanning will not change out
3388 * from under us. While a scan is active, this funciton controls how quickly
3389 * transaction groups proceed, instead of the normal handling provided by
3390 * txg_sync_thread().
3391 */
3392 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)3393 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3394 {
3395 dsl_scan_t *scn = dp->dp_scan;
3396 spa_t *spa = dp->dp_spa;
3397 int err = 0;
3398 state_sync_type_t sync_type = SYNC_OPTIONAL;
3399
3400 if (spa->spa_resilver_deferred &&
3401 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3402 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3403
3404 /*
3405 * Check for scn_restart_txg before checking spa_load_state, so
3406 * that we can restart an old-style scan while the pool is being
3407 * imported (see dsl_scan_init). We also restart scans if there
3408 * is a deferred resilver and the user has manually disabled
3409 * deferred resilvers via the tunable.
3410 */
3411 if (dsl_scan_restarting(scn, tx) ||
3412 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3413 pool_scan_func_t func = POOL_SCAN_SCRUB;
3414 dsl_scan_done(scn, B_FALSE, tx);
3415 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3416 func = POOL_SCAN_RESILVER;
3417 zfs_dbgmsg("restarting scan func=%u txg=%llu",
3418 func, (longlong_t)tx->tx_txg);
3419 dsl_scan_setup_sync(&func, tx);
3420 }
3421
3422 /*
3423 * Only process scans in sync pass 1.
3424 */
3425 if (spa_sync_pass(dp->dp_spa) > 1)
3426 return;
3427
3428 /*
3429 * If the spa is shutting down, then stop scanning. This will
3430 * ensure that the scan does not dirty any new data during the
3431 * shutdown phase.
3432 */
3433 if (spa_shutting_down(spa))
3434 return;
3435
3436 /*
3437 * If the scan is inactive due to a stalled async destroy, try again.
3438 */
3439 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3440 return;
3441
3442 /* reset scan statistics */
3443 scn->scn_visited_this_txg = 0;
3444 scn->scn_holes_this_txg = 0;
3445 scn->scn_lt_min_this_txg = 0;
3446 scn->scn_gt_max_this_txg = 0;
3447 scn->scn_ddt_contained_this_txg = 0;
3448 scn->scn_objsets_visited_this_txg = 0;
3449 scn->scn_avg_seg_size_this_txg = 0;
3450 scn->scn_segs_this_txg = 0;
3451 scn->scn_avg_zio_size_this_txg = 0;
3452 scn->scn_zios_this_txg = 0;
3453 scn->scn_suspending = B_FALSE;
3454 scn->scn_sync_start_time = gethrtime();
3455 spa->spa_scrub_active = B_TRUE;
3456
3457 /*
3458 * First process the async destroys. If we pause, don't do
3459 * any scrubbing or resilvering. This ensures that there are no
3460 * async destroys while we are scanning, so the scan code doesn't
3461 * have to worry about traversing it. It is also faster to free the
3462 * blocks than to scrub them.
3463 */
3464 err = dsl_process_async_destroys(dp, tx);
3465 if (err != 0)
3466 return;
3467
3468 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3469 return;
3470
3471 /*
3472 * Wait a few txgs after importing to begin scanning so that
3473 * we can get the pool imported quickly.
3474 */
3475 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3476 return;
3477
3478 /*
3479 * zfs_scan_suspend_progress can be set to disable scan progress.
3480 * We don't want to spin the txg_sync thread, so we add a delay
3481 * here to simulate the time spent doing a scan. This is mostly
3482 * useful for testing and debugging.
3483 */
3484 if (zfs_scan_suspend_progress) {
3485 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3486 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3487 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3488
3489 while (zfs_scan_suspend_progress &&
3490 !txg_sync_waiting(scn->scn_dp) &&
3491 !spa_shutting_down(scn->scn_dp->dp_spa) &&
3492 NSEC2MSEC(scan_time_ns) < mintime) {
3493 delay(hz);
3494 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3495 }
3496 return;
3497 }
3498
3499 /*
3500 * It is possible to switch from unsorted to sorted at any time,
3501 * but afterwards the scan will remain sorted unless reloaded from
3502 * a checkpoint after a reboot.
3503 */
3504 if (!zfs_scan_legacy) {
3505 scn->scn_is_sorted = B_TRUE;
3506 if (scn->scn_last_checkpoint == 0)
3507 scn->scn_last_checkpoint = ddi_get_lbolt();
3508 }
3509
3510 /*
3511 * For sorted scans, determine what kind of work we will be doing
3512 * this txg based on our memory limitations and whether or not we
3513 * need to perform a checkpoint.
3514 */
3515 if (scn->scn_is_sorted) {
3516 /*
3517 * If we are over our checkpoint interval, set scn_clearing
3518 * so that we can begin checkpointing immediately. The
3519 * checkpoint allows us to save a consisent bookmark
3520 * representing how much data we have scrubbed so far.
3521 * Otherwise, use the memory limit to determine if we should
3522 * scan for metadata or start issue scrub IOs. We accumulate
3523 * metadata until we hit our hard memory limit at which point
3524 * we issue scrub IOs until we are at our soft memory limit.
3525 */
3526 if (scn->scn_checkpointing ||
3527 ddi_get_lbolt() - scn->scn_last_checkpoint >
3528 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3529 if (!scn->scn_checkpointing)
3530 zfs_dbgmsg("begin scan checkpoint");
3531
3532 scn->scn_checkpointing = B_TRUE;
3533 scn->scn_clearing = B_TRUE;
3534 } else {
3535 boolean_t should_clear = dsl_scan_should_clear(scn);
3536 if (should_clear && !scn->scn_clearing) {
3537 zfs_dbgmsg("begin scan clearing");
3538 scn->scn_clearing = B_TRUE;
3539 } else if (!should_clear && scn->scn_clearing) {
3540 zfs_dbgmsg("finish scan clearing");
3541 scn->scn_clearing = B_FALSE;
3542 }
3543 }
3544 } else {
3545 ASSERT0(scn->scn_checkpointing);
3546 ASSERT0(scn->scn_clearing);
3547 }
3548
3549 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3550 /* Need to scan metadata for more blocks to scrub */
3551 dsl_scan_phys_t *scnp = &scn->scn_phys;
3552 taskqid_t prefetch_tqid;
3553 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3554 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3555
3556 /*
3557 * Calculate the max number of in-flight bytes for pool-wide
3558 * scanning operations (minimum 1MB). Limits for the issuing
3559 * phase are done per top-level vdev and are handled separately.
3560 */
3561 scn->scn_maxinflight_bytes =
3562 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3563
3564 if (scnp->scn_ddt_bookmark.ddb_class <=
3565 scnp->scn_ddt_class_max) {
3566 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3567 zfs_dbgmsg("doing scan sync txg %llu; "
3568 "ddt bm=%llu/%llu/%llu/%llx",
3569 (longlong_t)tx->tx_txg,
3570 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3571 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3572 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3573 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3574 } else {
3575 zfs_dbgmsg("doing scan sync txg %llu; "
3576 "bm=%llu/%llu/%llu/%llu",
3577 (longlong_t)tx->tx_txg,
3578 (longlong_t)scnp->scn_bookmark.zb_objset,
3579 (longlong_t)scnp->scn_bookmark.zb_object,
3580 (longlong_t)scnp->scn_bookmark.zb_level,
3581 (longlong_t)scnp->scn_bookmark.zb_blkid);
3582 }
3583
3584 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3585 NULL, ZIO_FLAG_CANFAIL);
3586
3587 scn->scn_prefetch_stop = B_FALSE;
3588 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3589 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3590 ASSERT(prefetch_tqid != TASKQID_INVALID);
3591
3592 dsl_pool_config_enter(dp, FTAG);
3593 dsl_scan_visit(scn, tx);
3594 dsl_pool_config_exit(dp, FTAG);
3595
3596 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3597 scn->scn_prefetch_stop = B_TRUE;
3598 cv_broadcast(&spa->spa_scrub_io_cv);
3599 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3600
3601 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3602 (void) zio_wait(scn->scn_zio_root);
3603 scn->scn_zio_root = NULL;
3604
3605 zfs_dbgmsg("scan visited %llu blocks in %llums "
3606 "(%llu os's, %llu holes, %llu < mintxg, "
3607 "%llu in ddt, %llu > maxtxg)",
3608 (longlong_t)scn->scn_visited_this_txg,
3609 (longlong_t)NSEC2MSEC(gethrtime() -
3610 scn->scn_sync_start_time),
3611 (longlong_t)scn->scn_objsets_visited_this_txg,
3612 (longlong_t)scn->scn_holes_this_txg,
3613 (longlong_t)scn->scn_lt_min_this_txg,
3614 (longlong_t)scn->scn_ddt_contained_this_txg,
3615 (longlong_t)scn->scn_gt_max_this_txg);
3616
3617 if (!scn->scn_suspending) {
3618 ASSERT0(avl_numnodes(&scn->scn_queue));
3619 scn->scn_done_txg = tx->tx_txg + 1;
3620 if (scn->scn_is_sorted) {
3621 scn->scn_checkpointing = B_TRUE;
3622 scn->scn_clearing = B_TRUE;
3623 }
3624 zfs_dbgmsg("scan complete txg %llu",
3625 (longlong_t)tx->tx_txg);
3626 }
3627 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3628 ASSERT(scn->scn_clearing);
3629
3630 /* need to issue scrubbing IOs from per-vdev queues */
3631 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3632 NULL, ZIO_FLAG_CANFAIL);
3633 scan_io_queues_run(scn);
3634 (void) zio_wait(scn->scn_zio_root);
3635 scn->scn_zio_root = NULL;
3636
3637 /* calculate and dprintf the current memory usage */
3638 (void) dsl_scan_should_clear(scn);
3639 dsl_scan_update_stats(scn);
3640
3641 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums "
3642 "(avg_block_size = %llu, avg_seg_size = %llu)",
3643 (longlong_t)scn->scn_zios_this_txg,
3644 (longlong_t)scn->scn_segs_this_txg,
3645 (longlong_t)NSEC2MSEC(gethrtime() -
3646 scn->scn_sync_start_time),
3647 (longlong_t)scn->scn_avg_zio_size_this_txg,
3648 (longlong_t)scn->scn_avg_seg_size_this_txg);
3649 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3650 /* Finished with everything. Mark the scrub as complete */
3651 zfs_dbgmsg("scan issuing complete txg %llu",
3652 (longlong_t)tx->tx_txg);
3653 ASSERT3U(scn->scn_done_txg, !=, 0);
3654 ASSERT0(spa->spa_scrub_inflight);
3655 ASSERT0(scn->scn_bytes_pending);
3656 dsl_scan_done(scn, B_TRUE, tx);
3657 sync_type = SYNC_MANDATORY;
3658 }
3659
3660 dsl_scan_sync_state(scn, tx, sync_type);
3661 }
3662
3663 static void
count_block(dsl_scan_t * scn,zfs_all_blkstats_t * zab,const blkptr_t * bp)3664 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3665 {
3666 int i;
3667
3668 /*
3669 * Don't count embedded bp's, since we already did the work of
3670 * scanning these when we scanned the containing block.
3671 */
3672 if (BP_IS_EMBEDDED(bp))
3673 return;
3674
3675 /*
3676 * Update the spa's stats on how many bytes we have issued.
3677 * Sequential scrubs create a zio for each DVA of the bp. Each
3678 * of these will include all DVAs for repair purposes, but the
3679 * zio code will only try the first one unless there is an issue.
3680 * Therefore, we should only count the first DVA for these IOs.
3681 */
3682 if (scn->scn_is_sorted) {
3683 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3684 DVA_GET_ASIZE(&bp->blk_dva[0]));
3685 } else {
3686 spa_t *spa = scn->scn_dp->dp_spa;
3687
3688 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3689 atomic_add_64(&spa->spa_scan_pass_issued,
3690 DVA_GET_ASIZE(&bp->blk_dva[i]));
3691 }
3692 }
3693
3694 /*
3695 * If we resume after a reboot, zab will be NULL; don't record
3696 * incomplete stats in that case.
3697 */
3698 if (zab == NULL)
3699 return;
3700
3701 mutex_enter(&zab->zab_lock);
3702
3703 for (i = 0; i < 4; i++) {
3704 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3705 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3706 if (t & DMU_OT_NEWTYPE)
3707 t = DMU_OT_OTHER;
3708 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3709 int equal;
3710
3711 zb->zb_count++;
3712 zb->zb_asize += BP_GET_ASIZE(bp);
3713 zb->zb_lsize += BP_GET_LSIZE(bp);
3714 zb->zb_psize += BP_GET_PSIZE(bp);
3715 zb->zb_gangs += BP_COUNT_GANG(bp);
3716
3717 switch (BP_GET_NDVAS(bp)) {
3718 case 2:
3719 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3720 DVA_GET_VDEV(&bp->blk_dva[1]))
3721 zb->zb_ditto_2_of_2_samevdev++;
3722 break;
3723 case 3:
3724 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3725 DVA_GET_VDEV(&bp->blk_dva[1])) +
3726 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3727 DVA_GET_VDEV(&bp->blk_dva[2])) +
3728 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3729 DVA_GET_VDEV(&bp->blk_dva[2]));
3730 if (equal == 1)
3731 zb->zb_ditto_2_of_3_samevdev++;
3732 else if (equal == 3)
3733 zb->zb_ditto_3_of_3_samevdev++;
3734 break;
3735 }
3736 }
3737
3738 mutex_exit(&zab->zab_lock);
3739 }
3740
3741 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)3742 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3743 {
3744 avl_index_t idx;
3745 int64_t asize = SIO_GET_ASIZE(sio);
3746 dsl_scan_t *scn = queue->q_scn;
3747
3748 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3749
3750 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3751 /* block is already scheduled for reading */
3752 atomic_add_64(&scn->scn_bytes_pending, -asize);
3753 sio_free(sio);
3754 return;
3755 }
3756 avl_insert(&queue->q_sios_by_addr, sio, idx);
3757 queue->q_sio_memused += SIO_GET_MUSED(sio);
3758 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3759 }
3760
3761 /*
3762 * Given all the info we got from our metadata scanning process, we
3763 * construct a scan_io_t and insert it into the scan sorting queue. The
3764 * I/O must already be suitable for us to process. This is controlled
3765 * by dsl_scan_enqueue().
3766 */
3767 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)3768 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3769 int zio_flags, const zbookmark_phys_t *zb)
3770 {
3771 dsl_scan_t *scn = queue->q_scn;
3772 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3773
3774 ASSERT0(BP_IS_GANG(bp));
3775 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3776
3777 bp2sio(bp, sio, dva_i);
3778 sio->sio_flags = zio_flags;
3779 sio->sio_zb = *zb;
3780
3781 /*
3782 * Increment the bytes pending counter now so that we can't
3783 * get an integer underflow in case the worker processes the
3784 * zio before we get to incrementing this counter.
3785 */
3786 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3787
3788 scan_io_queue_insert_impl(queue, sio);
3789 }
3790
3791 /*
3792 * Given a set of I/O parameters as discovered by the metadata traversal
3793 * process, attempts to place the I/O into the sorted queues (if allowed),
3794 * or immediately executes the I/O.
3795 */
3796 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)3797 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3798 const zbookmark_phys_t *zb)
3799 {
3800 spa_t *spa = dp->dp_spa;
3801
3802 ASSERT(!BP_IS_EMBEDDED(bp));
3803
3804 /*
3805 * Gang blocks are hard to issue sequentially, so we just issue them
3806 * here immediately instead of queuing them.
3807 */
3808 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3809 scan_exec_io(dp, bp, zio_flags, zb, NULL);
3810 return;
3811 }
3812 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3813 dva_t dva;
3814 vdev_t *vdev;
3815
3816 dva = bp->blk_dva[i];
3817 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3818 ASSERT(vdev != NULL);
3819
3820 mutex_enter(&vdev->vdev_scan_io_queue_lock);
3821 if (vdev->vdev_scan_io_queue == NULL)
3822 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3823 ASSERT(dp->dp_scan != NULL);
3824 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3825 i, zio_flags, zb);
3826 mutex_exit(&vdev->vdev_scan_io_queue_lock);
3827 }
3828 }
3829
3830 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)3831 dsl_scan_scrub_cb(dsl_pool_t *dp,
3832 const blkptr_t *bp, const zbookmark_phys_t *zb)
3833 {
3834 dsl_scan_t *scn = dp->dp_scan;
3835 spa_t *spa = dp->dp_spa;
3836 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3837 size_t psize = BP_GET_PSIZE(bp);
3838 boolean_t needs_io;
3839 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3840 int d;
3841
3842 if (phys_birth <= scn->scn_phys.scn_min_txg ||
3843 phys_birth >= scn->scn_phys.scn_max_txg) {
3844 count_block(scn, dp->dp_blkstats, bp);
3845 return (0);
3846 }
3847
3848 /* Embedded BP's have phys_birth==0, so we reject them above. */
3849 ASSERT(!BP_IS_EMBEDDED(bp));
3850
3851 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3852 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3853 zio_flags |= ZIO_FLAG_SCRUB;
3854 needs_io = B_TRUE;
3855 } else {
3856 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3857 zio_flags |= ZIO_FLAG_RESILVER;
3858 needs_io = B_FALSE;
3859 }
3860
3861 /* If it's an intent log block, failure is expected. */
3862 if (zb->zb_level == ZB_ZIL_LEVEL)
3863 zio_flags |= ZIO_FLAG_SPECULATIVE;
3864
3865 for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3866 const dva_t *dva = &bp->blk_dva[d];
3867
3868 /*
3869 * Keep track of how much data we've examined so that
3870 * zpool(8) status can make useful progress reports.
3871 */
3872 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3873 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3874
3875 /* if it's a resilver, this may not be in the target range */
3876 if (!needs_io)
3877 needs_io = dsl_scan_need_resilver(spa, dva, psize,
3878 phys_birth);
3879 }
3880
3881 if (needs_io && !zfs_no_scrub_io) {
3882 dsl_scan_enqueue(dp, bp, zio_flags, zb);
3883 } else {
3884 count_block(scn, dp->dp_blkstats, bp);
3885 }
3886
3887 /* do not relocate this block */
3888 return (0);
3889 }
3890
3891 static void
dsl_scan_scrub_done(zio_t * zio)3892 dsl_scan_scrub_done(zio_t *zio)
3893 {
3894 spa_t *spa = zio->io_spa;
3895 blkptr_t *bp = zio->io_bp;
3896 dsl_scan_io_queue_t *queue = zio->io_private;
3897
3898 abd_free(zio->io_abd);
3899
3900 if (queue == NULL) {
3901 mutex_enter(&spa->spa_scrub_lock);
3902 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3903 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3904 cv_broadcast(&spa->spa_scrub_io_cv);
3905 mutex_exit(&spa->spa_scrub_lock);
3906 } else {
3907 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3908 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3909 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3910 cv_broadcast(&queue->q_zio_cv);
3911 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3912 }
3913
3914 if (zio->io_error && (zio->io_error != ECKSUM ||
3915 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3916 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3917 }
3918 }
3919
3920 /*
3921 * Given a scanning zio's information, executes the zio. The zio need
3922 * not necessarily be only sortable, this function simply executes the
3923 * zio, no matter what it is. The optional queue argument allows the
3924 * caller to specify that they want per top level vdev IO rate limiting
3925 * instead of the legacy global limiting.
3926 */
3927 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)3928 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3929 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3930 {
3931 spa_t *spa = dp->dp_spa;
3932 dsl_scan_t *scn = dp->dp_scan;
3933 size_t size = BP_GET_PSIZE(bp);
3934 abd_t *data = abd_alloc_for_io(size, B_FALSE);
3935
3936 if (queue == NULL) {
3937 mutex_enter(&spa->spa_scrub_lock);
3938 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3939 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3940 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3941 mutex_exit(&spa->spa_scrub_lock);
3942 } else {
3943 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3944
3945 mutex_enter(q_lock);
3946 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3947 cv_wait(&queue->q_zio_cv, q_lock);
3948 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3949 mutex_exit(q_lock);
3950 }
3951
3952 count_block(dp->dp_scan, dp->dp_blkstats, bp);
3953 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size,
3954 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3955 }
3956
3957 /*
3958 * This is the primary extent sorting algorithm. We balance two parameters:
3959 * 1) how many bytes of I/O are in an extent
3960 * 2) how well the extent is filled with I/O (as a fraction of its total size)
3961 * Since we allow extents to have gaps between their constituent I/Os, it's
3962 * possible to have a fairly large extent that contains the same amount of
3963 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3964 * The algorithm sorts based on a score calculated from the extent's size,
3965 * the relative fill volume (in %) and a "fill weight" parameter that controls
3966 * the split between whether we prefer larger extents or more well populated
3967 * extents:
3968 *
3969 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3970 *
3971 * Example:
3972 * 1) assume extsz = 64 MiB
3973 * 2) assume fill = 32 MiB (extent is half full)
3974 * 3) assume fill_weight = 3
3975 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3976 * SCORE = 32M + (50 * 3 * 32M) / 100
3977 * SCORE = 32M + (4800M / 100)
3978 * SCORE = 32M + 48M
3979 * ^ ^
3980 * | +--- final total relative fill-based score
3981 * +--------- final total fill-based score
3982 * SCORE = 80M
3983 *
3984 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3985 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3986 * Note that as an optimization, we replace multiplication and division by
3987 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3988 */
3989 static int
ext_size_compare(const void * x,const void * y)3990 ext_size_compare(const void *x, const void *y)
3991 {
3992 const range_seg_gap_t *rsa = x, *rsb = y;
3993
3994 uint64_t sa = rsa->rs_end - rsa->rs_start;
3995 uint64_t sb = rsb->rs_end - rsb->rs_start;
3996 uint64_t score_a, score_b;
3997
3998 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3999 fill_weight * rsa->rs_fill) >> 7);
4000 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
4001 fill_weight * rsb->rs_fill) >> 7);
4002
4003 if (score_a > score_b)
4004 return (-1);
4005 if (score_a == score_b) {
4006 if (rsa->rs_start < rsb->rs_start)
4007 return (-1);
4008 if (rsa->rs_start == rsb->rs_start)
4009 return (0);
4010 return (1);
4011 }
4012 return (1);
4013 }
4014
4015 /*
4016 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4017 * based on LBA-order (from lowest to highest).
4018 */
4019 static int
sio_addr_compare(const void * x,const void * y)4020 sio_addr_compare(const void *x, const void *y)
4021 {
4022 const scan_io_t *a = x, *b = y;
4023
4024 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4025 }
4026
4027 /* IO queues are created on demand when they are needed. */
4028 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)4029 scan_io_queue_create(vdev_t *vd)
4030 {
4031 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4032 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4033
4034 q->q_scn = scn;
4035 q->q_vd = vd;
4036 q->q_sio_memused = 0;
4037 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4038 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4039 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4040 avl_create(&q->q_sios_by_addr, sio_addr_compare,
4041 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4042
4043 return (q);
4044 }
4045
4046 /*
4047 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4048 * No further execution of I/O occurs, anything pending in the queue is
4049 * simply freed without being executed.
4050 */
4051 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)4052 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4053 {
4054 dsl_scan_t *scn = queue->q_scn;
4055 scan_io_t *sio;
4056 void *cookie = NULL;
4057 int64_t bytes_dequeued = 0;
4058
4059 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4060
4061 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4062 NULL) {
4063 ASSERT(range_tree_contains(queue->q_exts_by_addr,
4064 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4065 bytes_dequeued += SIO_GET_ASIZE(sio);
4066 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4067 sio_free(sio);
4068 }
4069
4070 ASSERT0(queue->q_sio_memused);
4071 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4072 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4073 range_tree_destroy(queue->q_exts_by_addr);
4074 avl_destroy(&queue->q_sios_by_addr);
4075 cv_destroy(&queue->q_zio_cv);
4076
4077 kmem_free(queue, sizeof (*queue));
4078 }
4079
4080 /*
4081 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4082 * called on behalf of vdev_top_transfer when creating or destroying
4083 * a mirror vdev due to zpool attach/detach.
4084 */
4085 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)4086 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4087 {
4088 mutex_enter(&svd->vdev_scan_io_queue_lock);
4089 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4090
4091 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4092 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4093 svd->vdev_scan_io_queue = NULL;
4094 if (tvd->vdev_scan_io_queue != NULL)
4095 tvd->vdev_scan_io_queue->q_vd = tvd;
4096
4097 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4098 mutex_exit(&svd->vdev_scan_io_queue_lock);
4099 }
4100
4101 static void
scan_io_queues_destroy(dsl_scan_t * scn)4102 scan_io_queues_destroy(dsl_scan_t *scn)
4103 {
4104 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4105
4106 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4107 vdev_t *tvd = rvd->vdev_child[i];
4108
4109 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4110 if (tvd->vdev_scan_io_queue != NULL)
4111 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4112 tvd->vdev_scan_io_queue = NULL;
4113 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4114 }
4115 }
4116
4117 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)4118 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4119 {
4120 dsl_pool_t *dp = spa->spa_dsl_pool;
4121 dsl_scan_t *scn = dp->dp_scan;
4122 vdev_t *vdev;
4123 kmutex_t *q_lock;
4124 dsl_scan_io_queue_t *queue;
4125 scan_io_t *srch_sio, *sio;
4126 avl_index_t idx;
4127 uint64_t start, size;
4128
4129 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4130 ASSERT(vdev != NULL);
4131 q_lock = &vdev->vdev_scan_io_queue_lock;
4132 queue = vdev->vdev_scan_io_queue;
4133
4134 mutex_enter(q_lock);
4135 if (queue == NULL) {
4136 mutex_exit(q_lock);
4137 return;
4138 }
4139
4140 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4141 bp2sio(bp, srch_sio, dva_i);
4142 start = SIO_GET_OFFSET(srch_sio);
4143 size = SIO_GET_ASIZE(srch_sio);
4144
4145 /*
4146 * We can find the zio in two states:
4147 * 1) Cold, just sitting in the queue of zio's to be issued at
4148 * some point in the future. In this case, all we do is
4149 * remove the zio from the q_sios_by_addr tree, decrement
4150 * its data volume from the containing range_seg_t and
4151 * resort the q_exts_by_size tree to reflect that the
4152 * range_seg_t has lost some of its 'fill'. We don't shorten
4153 * the range_seg_t - this is usually rare enough not to be
4154 * worth the extra hassle of trying keep track of precise
4155 * extent boundaries.
4156 * 2) Hot, where the zio is currently in-flight in
4157 * dsl_scan_issue_ios. In this case, we can't simply
4158 * reach in and stop the in-flight zio's, so we instead
4159 * block the caller. Eventually, dsl_scan_issue_ios will
4160 * be done with issuing the zio's it gathered and will
4161 * signal us.
4162 */
4163 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4164 sio_free(srch_sio);
4165
4166 if (sio != NULL) {
4167 int64_t asize = SIO_GET_ASIZE(sio);
4168 blkptr_t tmpbp;
4169
4170 /* Got it while it was cold in the queue */
4171 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4172 ASSERT3U(size, ==, asize);
4173 avl_remove(&queue->q_sios_by_addr, sio);
4174 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4175
4176 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4177 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4178
4179 /*
4180 * We only update scn_bytes_pending in the cold path,
4181 * otherwise it will already have been accounted for as
4182 * part of the zio's execution.
4183 */
4184 atomic_add_64(&scn->scn_bytes_pending, -asize);
4185
4186 /* count the block as though we issued it */
4187 sio2bp(sio, &tmpbp);
4188 count_block(scn, dp->dp_blkstats, &tmpbp);
4189
4190 sio_free(sio);
4191 }
4192 mutex_exit(q_lock);
4193 }
4194
4195 /*
4196 * Callback invoked when a zio_free() zio is executing. This needs to be
4197 * intercepted to prevent the zio from deallocating a particular portion
4198 * of disk space and it then getting reallocated and written to, while we
4199 * still have it queued up for processing.
4200 */
4201 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)4202 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4203 {
4204 dsl_pool_t *dp = spa->spa_dsl_pool;
4205 dsl_scan_t *scn = dp->dp_scan;
4206
4207 ASSERT(!BP_IS_EMBEDDED(bp));
4208 ASSERT(scn != NULL);
4209 if (!dsl_scan_is_running(scn))
4210 return;
4211
4212 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4213 dsl_scan_freed_dva(spa, bp, i);
4214 }
4215
4216 /*
4217 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4218 * not started, start it. Otherwise, only restart if max txg in DTL range is
4219 * greater than the max txg in the current scan. If the DTL max is less than
4220 * the scan max, then the vdev has not missed any new data since the resilver
4221 * started, so a restart is not needed.
4222 */
4223 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)4224 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4225 {
4226 uint64_t min, max;
4227
4228 if (!vdev_resilver_needed(vd, &min, &max))
4229 return;
4230
4231 if (!dsl_scan_resilvering(dp)) {
4232 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4233 return;
4234 }
4235
4236 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4237 return;
4238
4239 /* restart is needed, check if it can be deferred */
4240 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4241 vdev_defer_resilver(vd);
4242 else
4243 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4244 }
4245