xref: /freebsd/stand/libsa/zfs/zfsimpl.c (revision 6dd0803ffd31c60a84488d06928813353c6303d3)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  *	Stand-alone ZFS file reader.
29  */
30 
31 #include <stdbool.h>
32 #include <sys/endian.h>
33 #include <sys/stat.h>
34 #include <sys/stdint.h>
35 #include <sys/list.h>
36 #include <sys/zfs_bootenv.h>
37 #include <machine/_inttypes.h>
38 
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41 
42 #ifdef HAS_ZSTD_ZFS
43 extern int zstd_init(void);
44 #endif
45 
46 struct zfsmount {
47 	char			*path;
48 	const spa_t		*spa;
49 	objset_phys_t		objset;
50 	uint64_t		rootobj;
51 	STAILQ_ENTRY(zfsmount)	next;
52 };
53 
54 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
55 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
56 
57 /*
58  * The indirect_child_t represents the vdev that we will read from, when we
59  * need to read all copies of the data (e.g. for scrub or reconstruction).
60  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
61  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
62  * ic_vdev is a child of the mirror.
63  */
64 typedef struct indirect_child {
65 	void *ic_data;
66 	vdev_t *ic_vdev;
67 } indirect_child_t;
68 
69 /*
70  * The indirect_split_t represents one mapped segment of an i/o to the
71  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
72  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
73  * For split blocks, there will be several of these.
74  */
75 typedef struct indirect_split {
76 	list_node_t is_node; /* link on iv_splits */
77 
78 	/*
79 	 * is_split_offset is the offset into the i/o.
80 	 * This is the sum of the previous splits' is_size's.
81 	 */
82 	uint64_t is_split_offset;
83 
84 	vdev_t *is_vdev; /* top-level vdev */
85 	uint64_t is_target_offset; /* offset on is_vdev */
86 	uint64_t is_size;
87 	int is_children; /* number of entries in is_child[] */
88 
89 	/*
90 	 * is_good_child is the child that we are currently using to
91 	 * attempt reconstruction.
92 	 */
93 	int is_good_child;
94 
95 	indirect_child_t is_child[1]; /* variable-length */
96 } indirect_split_t;
97 
98 /*
99  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
100  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
101  */
102 typedef struct indirect_vsd {
103 	boolean_t iv_split_block;
104 	boolean_t iv_reconstruct;
105 
106 	list_t iv_splits; /* list of indirect_split_t's */
107 } indirect_vsd_t;
108 
109 /*
110  * List of all vdevs, chained through v_alllink.
111  */
112 static vdev_list_t zfs_vdevs;
113 
114 /*
115  * List of supported read-incompatible ZFS features.  Do not add here features
116  * marked as ZFEATURE_FLAG_READONLY_COMPAT, they are irrelevant for read-only!
117  */
118 static const char *features_for_read[] = {
119 	"com.datto:bookmark_v2",
120 	"com.datto:encryption",
121 	"com.delphix:bookmark_written",
122 	"com.delphix:device_removal",
123 	"com.delphix:embedded_data",
124 	"com.delphix:extensible_dataset",
125 	"com.delphix:head_errlog",
126 	"com.delphix:hole_birth",
127 	"com.joyent:multi_vdev_crash_dump",
128 	"com.klarasystems:vdev_zaps_v2",
129 	"org.freebsd:zstd_compress",
130 	"org.illumos:lz4_compress",
131 	"org.illumos:sha512",
132 	"org.illumos:skein",
133 	"org.open-zfs:large_blocks",
134 	"org.openzfs:blake3",
135 	"org.zfsonlinux:large_dnode",
136 	NULL
137 };
138 
139 /*
140  * List of all pools, chained through spa_link.
141  */
142 static spa_list_t zfs_pools;
143 
144 static const dnode_phys_t *dnode_cache_obj;
145 static uint64_t dnode_cache_bn;
146 static char *dnode_cache_buf;
147 
148 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
149 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
150 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
151 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
152     const char *name, uint64_t integer_size, uint64_t num_integers,
153     void *value);
154 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
155     dnode_phys_t *);
156 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
157     size_t);
158 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
159     size_t);
160 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
161 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
162     uint64_t);
163 vdev_indirect_mapping_entry_phys_t *
164     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
165     uint64_t, uint64_t *);
166 
167 static void
zfs_init(void)168 zfs_init(void)
169 {
170 	STAILQ_INIT(&zfs_vdevs);
171 	STAILQ_INIT(&zfs_pools);
172 
173 	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
174 
175 	zfs_init_crc();
176 #ifdef HAS_ZSTD_ZFS
177 	zstd_init();
178 #endif
179 }
180 
181 static int
nvlist_check_features_for_read(nvlist_t * nvl)182 nvlist_check_features_for_read(nvlist_t *nvl)
183 {
184 	nvlist_t *features = NULL;
185 	nvs_data_t *data;
186 	nvp_header_t *nvp;
187 	nv_string_t *nvp_name;
188 	int rc;
189 
190 	rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
191 	    DATA_TYPE_NVLIST, NULL, &features, NULL);
192 	switch (rc) {
193 	case 0:
194 		break;		/* Continue with checks */
195 
196 	case ENOENT:
197 		return (0);	/* All features are disabled */
198 
199 	default:
200 		return (rc);	/* Error while reading nvlist */
201 	}
202 
203 	data = (nvs_data_t *)features->nv_data;
204 	nvp = &data->nvl_pair;	/* first pair in nvlist */
205 
206 	while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
207 		int i, found;
208 
209 		nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
210 		found = 0;
211 
212 		for (i = 0; features_for_read[i] != NULL; i++) {
213 			if (memcmp(nvp_name->nv_data, features_for_read[i],
214 			    nvp_name->nv_size) == 0) {
215 				found = 1;
216 				break;
217 			}
218 		}
219 
220 		if (!found) {
221 			printf("ZFS: unsupported feature: %.*s\n",
222 			    nvp_name->nv_size, nvp_name->nv_data);
223 			rc = EIO;
224 		}
225 		nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
226 	}
227 	nvlist_destroy(features);
228 
229 	return (rc);
230 }
231 
232 static int
vdev_read_phys(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t size)233 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
234     off_t offset, size_t size)
235 {
236 	size_t psize;
237 	int rc;
238 
239 	if (vdev->v_phys_read == NULL)
240 		return (ENOTSUP);
241 
242 	if (bp) {
243 		psize = BP_GET_PSIZE(bp);
244 	} else {
245 		psize = size;
246 	}
247 
248 	rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
249 	if (rc == 0) {
250 		if (bp != NULL)
251 			rc = zio_checksum_verify(vdev->v_spa, bp, buf);
252 	}
253 
254 	return (rc);
255 }
256 
257 static int
vdev_write_phys(vdev_t * vdev,void * buf,off_t offset,size_t size)258 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
259 {
260 	if (vdev->v_phys_write == NULL)
261 		return (ENOTSUP);
262 
263 	return (vdev->v_phys_write(vdev, offset, buf, size));
264 }
265 
266 typedef struct remap_segment {
267 	vdev_t *rs_vd;
268 	uint64_t rs_offset;
269 	uint64_t rs_asize;
270 	uint64_t rs_split_offset;
271 	list_node_t rs_node;
272 } remap_segment_t;
273 
274 static remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)275 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
276 {
277 	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
278 
279 	if (rs != NULL) {
280 		rs->rs_vd = vd;
281 		rs->rs_offset = offset;
282 		rs->rs_asize = asize;
283 		rs->rs_split_offset = split_offset;
284 	}
285 
286 	return (rs);
287 }
288 
289 vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t * spa,objset_phys_t * os,uint64_t mapping_object)290 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
291     uint64_t mapping_object)
292 {
293 	vdev_indirect_mapping_t *vim;
294 	vdev_indirect_mapping_phys_t *vim_phys;
295 	int rc;
296 
297 	vim = calloc(1, sizeof (*vim));
298 	if (vim == NULL)
299 		return (NULL);
300 
301 	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
302 	if (vim->vim_dn == NULL) {
303 		free(vim);
304 		return (NULL);
305 	}
306 
307 	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
308 	if (rc != 0) {
309 		free(vim->vim_dn);
310 		free(vim);
311 		return (NULL);
312 	}
313 
314 	vim->vim_spa = spa;
315 	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
316 	if (vim->vim_phys == NULL) {
317 		free(vim->vim_dn);
318 		free(vim);
319 		return (NULL);
320 	}
321 
322 	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
323 	*vim->vim_phys = *vim_phys;
324 
325 	vim->vim_objset = os;
326 	vim->vim_object = mapping_object;
327 	vim->vim_entries = NULL;
328 
329 	vim->vim_havecounts =
330 	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
331 
332 	return (vim);
333 }
334 
335 /*
336  * Compare an offset with an indirect mapping entry; there are three
337  * possible scenarios:
338  *
339  *     1. The offset is "less than" the mapping entry; meaning the
340  *        offset is less than the source offset of the mapping entry. In
341  *        this case, there is no overlap between the offset and the
342  *        mapping entry and -1 will be returned.
343  *
344  *     2. The offset is "greater than" the mapping entry; meaning the
345  *        offset is greater than the mapping entry's source offset plus
346  *        the entry's size. In this case, there is no overlap between
347  *        the offset and the mapping entry and 1 will be returned.
348  *
349  *        NOTE: If the offset is actually equal to the entry's offset
350  *        plus size, this is considered to be "greater" than the entry,
351  *        and this case applies (i.e. 1 will be returned). Thus, the
352  *        entry's "range" can be considered to be inclusive at its
353  *        start, but exclusive at its end: e.g. [src, src + size).
354  *
355  *     3. The last case to consider is if the offset actually falls
356  *        within the mapping entry's range. If this is the case, the
357  *        offset is considered to be "equal to" the mapping entry and
358  *        0 will be returned.
359  *
360  *        NOTE: If the offset is equal to the entry's source offset,
361  *        this case applies and 0 will be returned. If the offset is
362  *        equal to the entry's source plus its size, this case does
363  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
364  *        returned.
365  */
366 static int
dva_mapping_overlap_compare(const void * v_key,const void * v_array_elem)367 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
368 {
369 	const uint64_t *key = v_key;
370 	const vdev_indirect_mapping_entry_phys_t *array_elem =
371 	    v_array_elem;
372 	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
373 
374 	if (*key < src_offset) {
375 		return (-1);
376 	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
377 		return (0);
378 	} else {
379 		return (1);
380 	}
381 }
382 
383 /*
384  * Return array entry.
385  */
386 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t * vim,uint64_t index)387 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
388 {
389 	uint64_t size;
390 	off_t offset = 0;
391 	int rc;
392 
393 	if (vim->vim_phys->vimp_num_entries == 0)
394 		return (NULL);
395 
396 	if (vim->vim_entries == NULL) {
397 		uint64_t bsize;
398 
399 		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
400 		size = vim->vim_phys->vimp_num_entries *
401 		    sizeof (*vim->vim_entries);
402 		if (size > bsize) {
403 			size = bsize / sizeof (*vim->vim_entries);
404 			size *= sizeof (*vim->vim_entries);
405 		}
406 		vim->vim_entries = malloc(size);
407 		if (vim->vim_entries == NULL)
408 			return (NULL);
409 		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
410 		offset = index * sizeof (*vim->vim_entries);
411 	}
412 
413 	/* We have data in vim_entries */
414 	if (offset == 0) {
415 		if (index >= vim->vim_entry_offset &&
416 		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
417 			index -= vim->vim_entry_offset;
418 			return (&vim->vim_entries[index]);
419 		}
420 		offset = index * sizeof (*vim->vim_entries);
421 	}
422 
423 	vim->vim_entry_offset = index;
424 	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
425 	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
426 	    size);
427 	if (rc != 0) {
428 		/* Read error, invalidate vim_entries. */
429 		free(vim->vim_entries);
430 		vim->vim_entries = NULL;
431 		return (NULL);
432 	}
433 	index -= vim->vim_entry_offset;
434 	return (&vim->vim_entries[index]);
435 }
436 
437 /*
438  * Returns the mapping entry for the given offset.
439  *
440  * It's possible that the given offset will not be in the mapping table
441  * (i.e. no mapping entries contain this offset), in which case, the
442  * return value depends on the "next_if_missing" parameter.
443  *
444  * If the offset is not found in the table and "next_if_missing" is
445  * B_FALSE, then NULL will always be returned. The behavior is intended
446  * to allow consumers to get the entry corresponding to the offset
447  * parameter, iff the offset overlaps with an entry in the table.
448  *
449  * If the offset is not found in the table and "next_if_missing" is
450  * B_TRUE, then the entry nearest to the given offset will be returned,
451  * such that the entry's source offset is greater than the offset
452  * passed in (i.e. the "next" mapping entry in the table is returned, if
453  * the offset is missing from the table). If there are no entries whose
454  * source offset is greater than the passed in offset, NULL is returned.
455  */
456 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t * vim,uint64_t offset)457 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
458     uint64_t offset)
459 {
460 	ASSERT(vim->vim_phys->vimp_num_entries > 0);
461 
462 	vdev_indirect_mapping_entry_phys_t *entry;
463 
464 	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
465 	uint64_t base = 0;
466 
467 	/*
468 	 * We don't define these inside of the while loop because we use
469 	 * their value in the case that offset isn't in the mapping.
470 	 */
471 	uint64_t mid;
472 	int result;
473 
474 	while (last >= base) {
475 		mid = base + ((last - base) >> 1);
476 
477 		entry = vdev_indirect_mapping_entry(vim, mid);
478 		if (entry == NULL)
479 			break;
480 		result = dva_mapping_overlap_compare(&offset, entry);
481 
482 		if (result == 0) {
483 			break;
484 		} else if (result < 0) {
485 			last = mid - 1;
486 		} else {
487 			base = mid + 1;
488 		}
489 	}
490 	return (entry);
491 }
492 
493 /*
494  * Given an indirect vdev and an extent on that vdev, it duplicates the
495  * physical entries of the indirect mapping that correspond to the extent
496  * to a new array and returns a pointer to it. In addition, copied_entries
497  * is populated with the number of mapping entries that were duplicated.
498  *
499  * Finally, since we are doing an allocation, it is up to the caller to
500  * free the array allocated in this function.
501  */
502 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)503 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
504     uint64_t asize, uint64_t *copied_entries)
505 {
506 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
507 	vdev_indirect_mapping_t *vim = vd->v_mapping;
508 	uint64_t entries = 0;
509 
510 	vdev_indirect_mapping_entry_phys_t *first_mapping =
511 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
512 	ASSERT3P(first_mapping, !=, NULL);
513 
514 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
515 	while (asize > 0) {
516 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
517 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
518 		uint64_t inner_size = MIN(asize, size - inner_offset);
519 
520 		offset += inner_size;
521 		asize -= inner_size;
522 		entries++;
523 		m++;
524 	}
525 
526 	size_t copy_length = entries * sizeof (*first_mapping);
527 	duplicate_mappings = malloc(copy_length);
528 	if (duplicate_mappings != NULL)
529 		bcopy(first_mapping, duplicate_mappings, copy_length);
530 	else
531 		entries = 0;
532 
533 	*copied_entries = entries;
534 
535 	return (duplicate_mappings);
536 }
537 
538 static vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)539 vdev_lookup_top(spa_t *spa, uint64_t vdev)
540 {
541 	vdev_t *rvd;
542 	vdev_list_t *vlist;
543 
544 	vlist = &spa->spa_root_vdev->v_children;
545 	STAILQ_FOREACH(rvd, vlist, v_childlink)
546 		if (rvd->v_id == vdev)
547 			break;
548 
549 	return (rvd);
550 }
551 
552 /*
553  * This is a callback for vdev_indirect_remap() which allocates an
554  * indirect_split_t for each split segment and adds it to iv_splits.
555  */
556 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)557 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
558     uint64_t size, void *arg)
559 {
560 	int n = 1;
561 	zio_t *zio = arg;
562 	indirect_vsd_t *iv = zio->io_vsd;
563 
564 	if (vd->v_read == vdev_indirect_read)
565 		return;
566 
567 	if (vd->v_read == vdev_mirror_read)
568 		n = vd->v_nchildren;
569 
570 	indirect_split_t *is =
571 	    malloc(offsetof(indirect_split_t, is_child[n]));
572 	if (is == NULL) {
573 		zio->io_error = ENOMEM;
574 		return;
575 	}
576 	bzero(is, offsetof(indirect_split_t, is_child[n]));
577 
578 	is->is_children = n;
579 	is->is_size = size;
580 	is->is_split_offset = split_offset;
581 	is->is_target_offset = offset;
582 	is->is_vdev = vd;
583 
584 	/*
585 	 * Note that we only consider multiple copies of the data for
586 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
587 	 * though they use the same ops as mirror, because there's only one
588 	 * "good" copy under the replacing/spare.
589 	 */
590 	if (vd->v_read == vdev_mirror_read) {
591 		int i = 0;
592 		vdev_t *kid;
593 
594 		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
595 			is->is_child[i++].ic_vdev = kid;
596 		}
597 	} else {
598 		is->is_child[0].ic_vdev = vd;
599 	}
600 
601 	list_insert_tail(&iv->iv_splits, is);
602 }
603 
604 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void * arg)605 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
606 {
607 	list_t stack;
608 	spa_t *spa = vd->v_spa;
609 	zio_t *zio = arg;
610 	remap_segment_t *rs;
611 
612 	list_create(&stack, sizeof (remap_segment_t),
613 	    offsetof(remap_segment_t, rs_node));
614 
615 	rs = rs_alloc(vd, offset, asize, 0);
616 	if (rs == NULL) {
617 		printf("vdev_indirect_remap: out of memory.\n");
618 		zio->io_error = ENOMEM;
619 	}
620 	for (; rs != NULL; rs = list_remove_head(&stack)) {
621 		vdev_t *v = rs->rs_vd;
622 		uint64_t num_entries = 0;
623 		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
624 		vdev_indirect_mapping_entry_phys_t *mapping =
625 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
626 		    rs->rs_offset, rs->rs_asize, &num_entries);
627 
628 		if (num_entries == 0)
629 			zio->io_error = ENOMEM;
630 
631 		for (uint64_t i = 0; i < num_entries; i++) {
632 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
633 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
634 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
635 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
636 			uint64_t inner_offset = rs->rs_offset -
637 			    DVA_MAPPING_GET_SRC_OFFSET(m);
638 			uint64_t inner_size =
639 			    MIN(rs->rs_asize, size - inner_offset);
640 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
641 
642 			if (dst_v->v_read == vdev_indirect_read) {
643 				remap_segment_t *o;
644 
645 				o = rs_alloc(dst_v, dst_offset + inner_offset,
646 				    inner_size, rs->rs_split_offset);
647 				if (o == NULL) {
648 					printf("vdev_indirect_remap: "
649 					    "out of memory.\n");
650 					zio->io_error = ENOMEM;
651 					break;
652 				}
653 
654 				list_insert_head(&stack, o);
655 			}
656 			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
657 			    dst_offset + inner_offset,
658 			    inner_size, arg);
659 
660 			/*
661 			 * vdev_indirect_gather_splits can have memory
662 			 * allocation error, we can not recover from it.
663 			 */
664 			if (zio->io_error != 0)
665 				break;
666 			rs->rs_offset += inner_size;
667 			rs->rs_asize -= inner_size;
668 			rs->rs_split_offset += inner_size;
669 		}
670 
671 		free(mapping);
672 		free(rs);
673 		if (zio->io_error != 0)
674 			break;
675 	}
676 
677 	list_destroy(&stack);
678 }
679 
680 static void
vdev_indirect_map_free(zio_t * zio)681 vdev_indirect_map_free(zio_t *zio)
682 {
683 	indirect_vsd_t *iv = zio->io_vsd;
684 	indirect_split_t *is;
685 
686 	while ((is = list_head(&iv->iv_splits)) != NULL) {
687 		for (int c = 0; c < is->is_children; c++) {
688 			indirect_child_t *ic = &is->is_child[c];
689 			free(ic->ic_data);
690 		}
691 		list_remove(&iv->iv_splits, is);
692 		free(is);
693 	}
694 	free(iv);
695 }
696 
697 static int
vdev_indirect_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)698 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
699     off_t offset, size_t bytes)
700 {
701 	zio_t zio;
702 	spa_t *spa = vdev->v_spa;
703 	indirect_vsd_t *iv;
704 	indirect_split_t *first;
705 	int rc = EIO;
706 
707 	iv = calloc(1, sizeof(*iv));
708 	if (iv == NULL)
709 		return (ENOMEM);
710 
711 	list_create(&iv->iv_splits,
712 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
713 
714 	bzero(&zio, sizeof(zio));
715 	zio.io_spa = spa;
716 	zio.io_bp = (blkptr_t *)bp;
717 	zio.io_data = buf;
718 	zio.io_size = bytes;
719 	zio.io_offset = offset;
720 	zio.io_vd = vdev;
721 	zio.io_vsd = iv;
722 
723 	if (vdev->v_mapping == NULL) {
724 		vdev_indirect_config_t *vic;
725 
726 		vic = &vdev->vdev_indirect_config;
727 		vdev->v_mapping = vdev_indirect_mapping_open(spa,
728 		    spa->spa_mos, vic->vic_mapping_object);
729 	}
730 
731 	vdev_indirect_remap(vdev, offset, bytes, &zio);
732 	if (zio.io_error != 0)
733 		return (zio.io_error);
734 
735 	first = list_head(&iv->iv_splits);
736 	if (first->is_size == zio.io_size) {
737 		/*
738 		 * This is not a split block; we are pointing to the entire
739 		 * data, which will checksum the same as the original data.
740 		 * Pass the BP down so that the child i/o can verify the
741 		 * checksum, and try a different location if available
742 		 * (e.g. on a mirror).
743 		 *
744 		 * While this special case could be handled the same as the
745 		 * general (split block) case, doing it this way ensures
746 		 * that the vast majority of blocks on indirect vdevs
747 		 * (which are not split) are handled identically to blocks
748 		 * on non-indirect vdevs.  This allows us to be less strict
749 		 * about performance in the general (but rare) case.
750 		 */
751 		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
752 		    zio.io_data, first->is_target_offset, bytes);
753 	} else {
754 		iv->iv_split_block = B_TRUE;
755 		/*
756 		 * Read one copy of each split segment, from the
757 		 * top-level vdev.  Since we don't know the
758 		 * checksum of each split individually, the child
759 		 * zio can't ensure that we get the right data.
760 		 * E.g. if it's a mirror, it will just read from a
761 		 * random (healthy) leaf vdev.  We have to verify
762 		 * the checksum in vdev_indirect_io_done().
763 		 */
764 		for (indirect_split_t *is = list_head(&iv->iv_splits);
765 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
766 			char *ptr = zio.io_data;
767 
768 			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
769 			    ptr + is->is_split_offset, is->is_target_offset,
770 			    is->is_size);
771 		}
772 		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
773 			rc = ECKSUM;
774 		else
775 			rc = 0;
776 	}
777 
778 	vdev_indirect_map_free(&zio);
779 	if (rc == 0)
780 		rc = zio.io_error;
781 
782 	return (rc);
783 }
784 
785 static int
vdev_disk_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)786 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
787     off_t offset, size_t bytes)
788 {
789 
790 	return (vdev_read_phys(vdev, bp, buf,
791 	    offset + VDEV_LABEL_START_SIZE, bytes));
792 }
793 
794 static int
vdev_missing_read(vdev_t * vdev __unused,const blkptr_t * bp __unused,void * buf __unused,off_t offset __unused,size_t bytes __unused)795 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
796     void *buf __unused, off_t offset __unused, size_t bytes __unused)
797 {
798 
799 	return (ENOTSUP);
800 }
801 
802 static int
vdev_mirror_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)803 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
804     off_t offset, size_t bytes)
805 {
806 	vdev_t *kid;
807 	int rc;
808 
809 	rc = EIO;
810 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
811 		if (kid->v_state != VDEV_STATE_HEALTHY)
812 			continue;
813 		rc = kid->v_read(kid, bp, buf, offset, bytes);
814 		if (!rc)
815 			return (0);
816 	}
817 
818 	return (rc);
819 }
820 
821 static int
vdev_replacing_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)822 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
823     off_t offset, size_t bytes)
824 {
825 	vdev_t *kid;
826 
827 	/*
828 	 * Here we should have two kids:
829 	 * First one which is the one we are replacing and we can trust
830 	 * only this one to have valid data, but it might not be present.
831 	 * Second one is that one we are replacing with. It is most likely
832 	 * healthy, but we can't trust it has needed data, so we won't use it.
833 	 */
834 	kid = STAILQ_FIRST(&vdev->v_children);
835 	if (kid == NULL)
836 		return (EIO);
837 	if (kid->v_state != VDEV_STATE_HEALTHY)
838 		return (EIO);
839 	return (kid->v_read(kid, bp, buf, offset, bytes));
840 }
841 
842 static vdev_t *
vdev_find(uint64_t guid)843 vdev_find(uint64_t guid)
844 {
845 	vdev_t *vdev;
846 
847 	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
848 		if (vdev->v_guid == guid)
849 			return (vdev);
850 
851 	return (0);
852 }
853 
854 static vdev_t *
vdev_create(uint64_t guid,vdev_read_t * _read)855 vdev_create(uint64_t guid, vdev_read_t *_read)
856 {
857 	vdev_t *vdev;
858 	vdev_indirect_config_t *vic;
859 
860 	vdev = calloc(1, sizeof(vdev_t));
861 	if (vdev != NULL) {
862 		STAILQ_INIT(&vdev->v_children);
863 		vdev->v_guid = guid;
864 		vdev->v_read = _read;
865 
866 		/*
867 		 * root vdev has no read function, we use this fact to
868 		 * skip setting up data we do not need for root vdev.
869 		 * We only point root vdev from spa.
870 		 */
871 		if (_read != NULL) {
872 			vic = &vdev->vdev_indirect_config;
873 			vic->vic_prev_indirect_vdev = UINT64_MAX;
874 			STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
875 		}
876 	}
877 
878 	return (vdev);
879 }
880 
881 static void
vdev_set_initial_state(vdev_t * vdev,const nvlist_t * nvlist)882 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
883 {
884 	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
885 	uint64_t is_log;
886 
887 	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
888 	is_log = 0;
889 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
890 	    &is_offline, NULL);
891 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
892 	    &is_removed, NULL);
893 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
894 	    &is_faulted, NULL);
895 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
896 	    NULL, &is_degraded, NULL);
897 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
898 	    NULL, &isnt_present, NULL);
899 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
900 	    &is_log, NULL);
901 
902 	if (is_offline != 0)
903 		vdev->v_state = VDEV_STATE_OFFLINE;
904 	else if (is_removed != 0)
905 		vdev->v_state = VDEV_STATE_REMOVED;
906 	else if (is_faulted != 0)
907 		vdev->v_state = VDEV_STATE_FAULTED;
908 	else if (is_degraded != 0)
909 		vdev->v_state = VDEV_STATE_DEGRADED;
910 	else if (isnt_present != 0)
911 		vdev->v_state = VDEV_STATE_CANT_OPEN;
912 
913 	vdev->v_islog = is_log != 0;
914 }
915 
916 static int
vdev_init(uint64_t guid,const nvlist_t * nvlist,vdev_t ** vdevp)917 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
918 {
919 	uint64_t id, ashift, asize, nparity;
920 	const char *path;
921 	const char *type;
922 	int len, pathlen;
923 	char *name;
924 	vdev_t *vdev;
925 
926 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
927 	    NULL) ||
928 	    nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
929 	    &type, &len)) {
930 		return (ENOENT);
931 	}
932 
933 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
934 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
935 #ifdef ZFS_TEST
936 	    memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
937 #endif
938 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
939 	    memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
940 	    memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
941 	    memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
942 		printf("ZFS: can only boot from disk, mirror, raidz1, "
943 		    "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
944 		return (EIO);
945 	}
946 
947 	if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
948 		vdev = vdev_create(guid, vdev_mirror_read);
949 	else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
950 		vdev = vdev_create(guid, vdev_raidz_read);
951 	else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
952 		vdev = vdev_create(guid, vdev_replacing_read);
953 	else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
954 		vdev_indirect_config_t *vic;
955 
956 		vdev = vdev_create(guid, vdev_indirect_read);
957 		if (vdev != NULL) {
958 			vdev->v_state = VDEV_STATE_HEALTHY;
959 			vic = &vdev->vdev_indirect_config;
960 
961 			nvlist_find(nvlist,
962 			    ZPOOL_CONFIG_INDIRECT_OBJECT,
963 			    DATA_TYPE_UINT64,
964 			    NULL, &vic->vic_mapping_object, NULL);
965 			nvlist_find(nvlist,
966 			    ZPOOL_CONFIG_INDIRECT_BIRTHS,
967 			    DATA_TYPE_UINT64,
968 			    NULL, &vic->vic_births_object, NULL);
969 			nvlist_find(nvlist,
970 			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
971 			    DATA_TYPE_UINT64,
972 			    NULL, &vic->vic_prev_indirect_vdev, NULL);
973 		}
974 	} else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
975 		vdev = vdev_create(guid, vdev_missing_read);
976 	} else {
977 		vdev = vdev_create(guid, vdev_disk_read);
978 	}
979 
980 	if (vdev == NULL)
981 		return (ENOMEM);
982 
983 	vdev_set_initial_state(vdev, nvlist);
984 	vdev->v_id = id;
985 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
986 	    DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
987 		vdev->v_ashift = ashift;
988 
989 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
990 	    DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
991 		vdev->v_psize = asize +
992 		    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
993 	}
994 
995 	if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
996 	    DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
997 		vdev->v_nparity = nparity;
998 
999 	if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1000 	    DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1001 		char prefix[] = "/dev/";
1002 
1003 		len = strlen(prefix);
1004 		if (len < pathlen && memcmp(path, prefix, len) == 0) {
1005 			path += len;
1006 			pathlen -= len;
1007 		}
1008 		name = malloc(pathlen + 1);
1009 		bcopy(path, name, pathlen);
1010 		name[pathlen] = '\0';
1011 		vdev->v_name = name;
1012 	} else {
1013 		name = NULL;
1014 		if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1015 			if (vdev->v_nparity < 1 ||
1016 			    vdev->v_nparity > 3) {
1017 				printf("ZFS: invalid raidz parity: %d\n",
1018 				    vdev->v_nparity);
1019 				return (EIO);
1020 			}
1021 			(void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1022 			    vdev->v_nparity, id);
1023 		} else {
1024 			(void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1025 		}
1026 		vdev->v_name = name;
1027 	}
1028 	*vdevp = vdev;
1029 	return (0);
1030 }
1031 
1032 /*
1033  * Find slot for vdev. We return either NULL to signal to use
1034  * STAILQ_INSERT_HEAD, or we return link element to be used with
1035  * STAILQ_INSERT_AFTER.
1036  */
1037 static vdev_t *
vdev_find_previous(vdev_t * top_vdev,vdev_t * vdev)1038 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1039 {
1040 	vdev_t *v, *previous;
1041 
1042 	if (STAILQ_EMPTY(&top_vdev->v_children))
1043 		return (NULL);
1044 
1045 	previous = NULL;
1046 	STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1047 		if (v->v_id > vdev->v_id)
1048 			return (previous);
1049 
1050 		if (v->v_id == vdev->v_id)
1051 			return (v);
1052 
1053 		if (v->v_id < vdev->v_id)
1054 			previous = v;
1055 	}
1056 	return (previous);
1057 }
1058 
1059 static size_t
vdev_child_count(vdev_t * vdev)1060 vdev_child_count(vdev_t *vdev)
1061 {
1062 	vdev_t *v;
1063 	size_t count;
1064 
1065 	count = 0;
1066 	STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1067 		count++;
1068 	}
1069 	return (count);
1070 }
1071 
1072 /*
1073  * Insert vdev into top_vdev children list. List is ordered by v_id.
1074  */
1075 static void
vdev_insert(vdev_t * top_vdev,vdev_t * vdev)1076 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1077 {
1078 	vdev_t *previous;
1079 	size_t count;
1080 
1081 	/*
1082 	 * The top level vdev can appear in random order, depending how
1083 	 * the firmware is presenting the disk devices.
1084 	 * However, we will insert vdev to create list ordered by v_id,
1085 	 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1086 	 * as STAILQ does not have insert before.
1087 	 */
1088 	previous = vdev_find_previous(top_vdev, vdev);
1089 
1090 	if (previous == NULL) {
1091 		STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1092 	} else if (previous->v_id == vdev->v_id) {
1093 		/*
1094 		 * This vdev was configured from label config,
1095 		 * do not insert duplicate.
1096 		 */
1097 		return;
1098 	} else {
1099 		STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1100 		    v_childlink);
1101 	}
1102 
1103 	count = vdev_child_count(top_vdev);
1104 	if (top_vdev->v_nchildren < count)
1105 		top_vdev->v_nchildren = count;
1106 }
1107 
1108 static int
vdev_from_nvlist(spa_t * spa,uint64_t top_guid,uint64_t txg,const nvlist_t * nvlist)1109 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, uint64_t txg,
1110     const nvlist_t *nvlist)
1111 {
1112 	vdev_t *top_vdev, *vdev;
1113 	nvlist_t **kids = NULL;
1114 	int rc, nkids;
1115 
1116 	/* Get top vdev. */
1117 	top_vdev = vdev_find(top_guid);
1118 	if (top_vdev == NULL) {
1119 		rc = vdev_init(top_guid, nvlist, &top_vdev);
1120 		if (rc != 0)
1121 			return (rc);
1122 		top_vdev->v_spa = spa;
1123 		top_vdev->v_top = top_vdev;
1124 		top_vdev->v_txg = txg;
1125 		vdev_insert(spa->spa_root_vdev, top_vdev);
1126 	}
1127 
1128 	/* Add children if there are any. */
1129 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1130 	    &nkids, &kids, NULL);
1131 	if (rc == 0) {
1132 		for (int i = 0; i < nkids; i++) {
1133 			uint64_t guid;
1134 
1135 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1136 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1137 			if (rc != 0)
1138 				goto done;
1139 
1140 			rc = vdev_init(guid, kids[i], &vdev);
1141 			if (rc != 0)
1142 				goto done;
1143 
1144 			vdev->v_spa = spa;
1145 			vdev->v_top = top_vdev;
1146 			vdev_insert(top_vdev, vdev);
1147 		}
1148 	} else {
1149 		/*
1150 		 * When there are no children, nvlist_find() does return
1151 		 * error, reset it because leaf devices have no children.
1152 		 */
1153 		rc = 0;
1154 	}
1155 done:
1156 	if (kids != NULL) {
1157 		for (int i = 0; i < nkids; i++)
1158 			nvlist_destroy(kids[i]);
1159 		free(kids);
1160 	}
1161 
1162 	return (rc);
1163 }
1164 
1165 static int
vdev_init_from_label(spa_t * spa,const nvlist_t * nvlist)1166 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1167 {
1168 	uint64_t pool_guid, top_guid, txg;
1169 	nvlist_t *vdevs;
1170 	int rc;
1171 
1172 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1173 	    NULL, &pool_guid, NULL) ||
1174 	    nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1175 	    NULL, &top_guid, NULL) ||
1176 	    nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1177 	    NULL, &txg, NULL) != 0 ||
1178 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1179 	    NULL, &vdevs, NULL)) {
1180 		printf("ZFS: can't find vdev details\n");
1181 		return (ENOENT);
1182 	}
1183 
1184 	rc = vdev_from_nvlist(spa, top_guid, txg, vdevs);
1185 	nvlist_destroy(vdevs);
1186 	return (rc);
1187 }
1188 
1189 static void
vdev_set_state(vdev_t * vdev)1190 vdev_set_state(vdev_t *vdev)
1191 {
1192 	vdev_t *kid;
1193 	int good_kids;
1194 	int bad_kids;
1195 
1196 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1197 		vdev_set_state(kid);
1198 	}
1199 
1200 	/*
1201 	 * A mirror or raidz is healthy if all its kids are healthy. A
1202 	 * mirror is degraded if any of its kids is healthy; a raidz
1203 	 * is degraded if at most nparity kids are offline.
1204 	 */
1205 	if (STAILQ_FIRST(&vdev->v_children)) {
1206 		good_kids = 0;
1207 		bad_kids = 0;
1208 		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1209 			if (kid->v_state == VDEV_STATE_HEALTHY)
1210 				good_kids++;
1211 			else
1212 				bad_kids++;
1213 		}
1214 		if (bad_kids == 0) {
1215 			vdev->v_state = VDEV_STATE_HEALTHY;
1216 		} else {
1217 			if (vdev->v_read == vdev_mirror_read) {
1218 				if (good_kids) {
1219 					vdev->v_state = VDEV_STATE_DEGRADED;
1220 				} else {
1221 					vdev->v_state = VDEV_STATE_OFFLINE;
1222 				}
1223 			} else if (vdev->v_read == vdev_raidz_read) {
1224 				if (bad_kids > vdev->v_nparity) {
1225 					vdev->v_state = VDEV_STATE_OFFLINE;
1226 				} else {
1227 					vdev->v_state = VDEV_STATE_DEGRADED;
1228 				}
1229 			}
1230 		}
1231 	}
1232 }
1233 
1234 static int
vdev_update_from_nvlist(uint64_t top_guid,const nvlist_t * nvlist)1235 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1236 {
1237 	vdev_t *vdev;
1238 	nvlist_t **kids = NULL;
1239 	int rc, nkids;
1240 
1241 	/* Update top vdev. */
1242 	vdev = vdev_find(top_guid);
1243 	if (vdev != NULL)
1244 		vdev_set_initial_state(vdev, nvlist);
1245 
1246 	/* Update children if there are any. */
1247 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1248 	    &nkids, &kids, NULL);
1249 	if (rc == 0) {
1250 		for (int i = 0; i < nkids; i++) {
1251 			uint64_t guid;
1252 
1253 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1254 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1255 			if (rc != 0)
1256 				break;
1257 
1258 			vdev = vdev_find(guid);
1259 			if (vdev != NULL)
1260 				vdev_set_initial_state(vdev, kids[i]);
1261 		}
1262 	} else {
1263 		rc = 0;
1264 	}
1265 	if (kids != NULL) {
1266 		for (int i = 0; i < nkids; i++)
1267 			nvlist_destroy(kids[i]);
1268 		free(kids);
1269 	}
1270 
1271 	return (rc);
1272 }
1273 
1274 /*
1275  * Shall not be called on root vdev, that is not linked into zfs_vdevs.
1276  * See comment in vdev_create().
1277  */
1278 static void
vdev_free(struct vdev * vdev)1279 vdev_free(struct vdev *vdev)
1280 {
1281 	struct vdev *kid, *safe;
1282 
1283 	STAILQ_FOREACH_SAFE(kid, &vdev->v_children, v_childlink, safe)
1284 		vdev_free(kid);
1285 	STAILQ_REMOVE(&zfs_vdevs, vdev, vdev, v_alllink);
1286 	free(vdev);
1287 }
1288 
1289 static int
vdev_init_from_nvlist(spa_t * spa,const nvlist_t * nvlist)1290 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1291 {
1292 	uint64_t pool_guid, vdev_children;
1293 	nvlist_t *vdevs = NULL, **kids = NULL;
1294 	int rc, nkids;
1295 
1296 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1297 	    NULL, &pool_guid, NULL) ||
1298 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1299 	    NULL, &vdev_children, NULL) ||
1300 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1301 	    NULL, &vdevs, NULL)) {
1302 		printf("ZFS: can't find vdev details\n");
1303 		return (ENOENT);
1304 	}
1305 
1306 	/* Wrong guid?! */
1307 	if (spa->spa_guid != pool_guid) {
1308 		nvlist_destroy(vdevs);
1309 		return (EINVAL);
1310 	}
1311 
1312 	spa->spa_root_vdev->v_nchildren = vdev_children;
1313 
1314 	rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1315 	    &nkids, &kids, NULL);
1316 	nvlist_destroy(vdevs);
1317 
1318 	/*
1319 	 * MOS config has at least one child for root vdev.
1320 	 */
1321 	if (rc != 0)
1322 		return (rc);
1323 
1324 	for (int i = 0; i < nkids; i++) {
1325 		uint64_t guid;
1326 		vdev_t *vdev;
1327 
1328 		rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1329 		    NULL, &guid, NULL);
1330 		if (rc != 0)
1331 			break;
1332 		vdev = vdev_find(guid);
1333 		/*
1334 		 * Top level vdev is missing, create it.
1335 		 * XXXGL: how can this happen?
1336 		 */
1337 		if (vdev == NULL)
1338 			rc = vdev_from_nvlist(spa, guid, 0, kids[i]);
1339 		else
1340 			rc = vdev_update_from_nvlist(guid, kids[i]);
1341 		if (rc != 0)
1342 			break;
1343 	}
1344 	if (kids != NULL) {
1345 		for (int i = 0; i < nkids; i++)
1346 			nvlist_destroy(kids[i]);
1347 		free(kids);
1348 	}
1349 
1350 	/*
1351 	 * Re-evaluate top-level vdev state.
1352 	 */
1353 	vdev_set_state(spa->spa_root_vdev);
1354 
1355 	return (rc);
1356 }
1357 
1358 static spa_t *
spa_find_by_guid(uint64_t guid)1359 spa_find_by_guid(uint64_t guid)
1360 {
1361 	spa_t *spa;
1362 
1363 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1364 		if (spa->spa_guid == guid)
1365 			return (spa);
1366 
1367 	return (NULL);
1368 }
1369 
1370 static spa_t *
spa_find_by_name(const char * name)1371 spa_find_by_name(const char *name)
1372 {
1373 	spa_t *spa;
1374 
1375 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1376 		if (strcmp(spa->spa_name, name) == 0)
1377 			return (spa);
1378 
1379 	return (NULL);
1380 }
1381 
1382 static spa_t *
spa_create(uint64_t guid,const char * name)1383 spa_create(uint64_t guid, const char *name)
1384 {
1385 	spa_t *spa;
1386 
1387 	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1388 		return (NULL);
1389 	if ((spa->spa_name = strdup(name)) == NULL) {
1390 		free(spa);
1391 		return (NULL);
1392 	}
1393 	spa->spa_uberblock = &spa->spa_uberblock_master;
1394 	spa->spa_mos = &spa->spa_mos_master;
1395 	spa->spa_guid = guid;
1396 	spa->spa_root_vdev = vdev_create(guid, NULL);
1397 	if (spa->spa_root_vdev == NULL) {
1398 		free(spa->spa_name);
1399 		free(spa);
1400 		return (NULL);
1401 	}
1402 	spa->spa_root_vdev->v_name = spa->spa_name;
1403 	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1404 
1405 	return (spa);
1406 }
1407 
1408 static const char *
state_name(vdev_state_t state)1409 state_name(vdev_state_t state)
1410 {
1411 	static const char *names[] = {
1412 		"UNKNOWN",
1413 		"CLOSED",
1414 		"OFFLINE",
1415 		"REMOVED",
1416 		"CANT_OPEN",
1417 		"FAULTED",
1418 		"DEGRADED",
1419 		"ONLINE"
1420 	};
1421 	return (names[state]);
1422 }
1423 
1424 #ifdef BOOT2
1425 
1426 #define pager_printf printf
1427 
1428 #else
1429 
1430 static int
pager_printf(const char * fmt,...)1431 pager_printf(const char *fmt, ...)
1432 {
1433 	char line[80];
1434 	va_list args;
1435 
1436 	va_start(args, fmt);
1437 	vsnprintf(line, sizeof(line), fmt, args);
1438 	va_end(args);
1439 	return (pager_output(line));
1440 }
1441 
1442 #endif
1443 
1444 #define	STATUS_FORMAT	"        %s %s\n"
1445 
1446 static int
print_state(int indent,const char * name,vdev_state_t state)1447 print_state(int indent, const char *name, vdev_state_t state)
1448 {
1449 	int i;
1450 	char buf[512];
1451 
1452 	buf[0] = 0;
1453 	for (i = 0; i < indent; i++)
1454 		strcat(buf, "  ");
1455 	strcat(buf, name);
1456 	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1457 }
1458 
1459 static int
vdev_status(vdev_t * vdev,int indent)1460 vdev_status(vdev_t *vdev, int indent)
1461 {
1462 	vdev_t *kid;
1463 	int ret;
1464 
1465 	if (vdev->v_islog) {
1466 		(void) pager_output("        logs\n");
1467 		indent++;
1468 	}
1469 
1470 	ret = print_state(indent, vdev->v_name, vdev->v_state);
1471 	if (ret != 0)
1472 		return (ret);
1473 
1474 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1475 		ret = vdev_status(kid, indent + 1);
1476 		if (ret != 0)
1477 			return (ret);
1478 	}
1479 	return (ret);
1480 }
1481 
1482 static int
spa_status(spa_t * spa)1483 spa_status(spa_t *spa)
1484 {
1485 	static char bootfs[ZFS_MAXNAMELEN];
1486 	uint64_t rootid;
1487 	vdev_list_t *vlist;
1488 	vdev_t *vdev;
1489 	int good_kids, bad_kids, degraded_kids, ret;
1490 	vdev_state_t state;
1491 
1492 	ret = pager_printf("  pool: %s\n", spa->spa_name);
1493 	if (ret != 0)
1494 		return (ret);
1495 
1496 	if (zfs_get_root(spa, &rootid) == 0 &&
1497 	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1498 		if (bootfs[0] == '\0')
1499 			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1500 		else
1501 			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1502 			    bootfs);
1503 		if (ret != 0)
1504 			return (ret);
1505 	}
1506 	ret = pager_printf("config:\n\n");
1507 	if (ret != 0)
1508 		return (ret);
1509 	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1510 	if (ret != 0)
1511 		return (ret);
1512 
1513 	good_kids = 0;
1514 	degraded_kids = 0;
1515 	bad_kids = 0;
1516 	vlist = &spa->spa_root_vdev->v_children;
1517 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1518 		if (vdev->v_state == VDEV_STATE_HEALTHY)
1519 			good_kids++;
1520 		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1521 			degraded_kids++;
1522 		else
1523 			bad_kids++;
1524 	}
1525 
1526 	state = VDEV_STATE_CLOSED;
1527 	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1528 		state = VDEV_STATE_HEALTHY;
1529 	else if ((good_kids + degraded_kids) > 0)
1530 		state = VDEV_STATE_DEGRADED;
1531 
1532 	ret = print_state(0, spa->spa_name, state);
1533 	if (ret != 0)
1534 		return (ret);
1535 
1536 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1537 		ret = vdev_status(vdev, 1);
1538 		if (ret != 0)
1539 			return (ret);
1540 	}
1541 	return (ret);
1542 }
1543 
1544 static int
spa_all_status(void)1545 spa_all_status(void)
1546 {
1547 	spa_t *spa;
1548 	int first = 1, ret = 0;
1549 
1550 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1551 		if (!first) {
1552 			ret = pager_printf("\n");
1553 			if (ret != 0)
1554 				return (ret);
1555 		}
1556 		first = 0;
1557 		ret = spa_status(spa);
1558 		if (ret != 0)
1559 			return (ret);
1560 	}
1561 	return (ret);
1562 }
1563 
1564 static uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)1565 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1566 {
1567 	uint64_t label_offset;
1568 
1569 	if (l < VDEV_LABELS / 2)
1570 		label_offset = 0;
1571 	else
1572 		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1573 
1574 	return (offset + l * sizeof (vdev_label_t) + label_offset);
1575 }
1576 
1577 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1578 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1579 {
1580 	unsigned int seq1 = 0;
1581 	unsigned int seq2 = 0;
1582 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1583 
1584 	if (cmp != 0)
1585 		return (cmp);
1586 
1587 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1588 	if (cmp != 0)
1589 		return (cmp);
1590 
1591 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1592 		seq1 = MMP_SEQ(ub1);
1593 
1594 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1595 		seq2 = MMP_SEQ(ub2);
1596 
1597 	return (AVL_CMP(seq1, seq2));
1598 }
1599 
1600 static int
uberblock_verify(uberblock_t * ub)1601 uberblock_verify(uberblock_t *ub)
1602 {
1603 	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1604 		byteswap_uint64_array(ub, sizeof (uberblock_t));
1605 	}
1606 
1607 	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1608 	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1609 		return (EINVAL);
1610 
1611 	return (0);
1612 }
1613 
1614 static int
vdev_label_read(vdev_t * vd,int l,void * buf,uint64_t offset,size_t size)1615 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1616     size_t size)
1617 {
1618 	blkptr_t bp;
1619 	off_t off;
1620 
1621 	off = vdev_label_offset(vd->v_psize, l, offset);
1622 
1623 	BP_ZERO(&bp);
1624 	BP_SET_LSIZE(&bp, size);
1625 	BP_SET_PSIZE(&bp, size);
1626 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1627 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1628 	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1629 	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1630 
1631 	return (vdev_read_phys(vd, &bp, buf, off, size));
1632 }
1633 
1634 /*
1635  * We do need to be sure we write to correct location.
1636  * Our vdev label does consist of 4 fields:
1637  * pad1 (8k), reserved.
1638  * bootenv (8k), checksummed, previously reserved, may contian garbage.
1639  * vdev_phys (112k), checksummed
1640  * uberblock ring (128k), checksummed.
1641  *
1642  * Since bootenv area may contain garbage, we can not reliably read it, as
1643  * we can get checksum errors.
1644  * Next best thing is vdev_phys - it is just after bootenv. It still may
1645  * be corrupted, but in such case we will miss this one write.
1646  */
1647 static int
vdev_label_write_validate(vdev_t * vd,int l,uint64_t offset)1648 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1649 {
1650 	uint64_t off, o_phys;
1651 	void *buf;
1652 	size_t size = VDEV_PHYS_SIZE;
1653 	int rc;
1654 
1655 	o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1656 	off = vdev_label_offset(vd->v_psize, l, o_phys);
1657 
1658 	/* off should be 8K from bootenv */
1659 	if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1660 		return (EINVAL);
1661 
1662 	buf = malloc(size);
1663 	if (buf == NULL)
1664 		return (ENOMEM);
1665 
1666 	/* Read vdev_phys */
1667 	rc = vdev_label_read(vd, l, buf, o_phys, size);
1668 	free(buf);
1669 	return (rc);
1670 }
1671 
1672 static int
vdev_label_write(vdev_t * vd,int l,vdev_boot_envblock_t * be,uint64_t offset)1673 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1674 {
1675 	zio_checksum_info_t *ci;
1676 	zio_cksum_t cksum;
1677 	off_t off;
1678 	size_t size = VDEV_PAD_SIZE;
1679 	int rc;
1680 
1681 	if (vd->v_phys_write == NULL)
1682 		return (ENOTSUP);
1683 
1684 	off = vdev_label_offset(vd->v_psize, l, offset);
1685 
1686 	rc = vdev_label_write_validate(vd, l, offset);
1687 	if (rc != 0) {
1688 		return (rc);
1689 	}
1690 
1691 	ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1692 	be->vbe_zbt.zec_magic = ZEC_MAGIC;
1693 	zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1694 	ci->ci_func[0](be, size, NULL, &cksum);
1695 	be->vbe_zbt.zec_cksum = cksum;
1696 
1697 	return (vdev_write_phys(vd, be, off, size));
1698 }
1699 
1700 static int
vdev_write_bootenv_impl(vdev_t * vdev,vdev_boot_envblock_t * be)1701 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1702 {
1703 	vdev_t *kid;
1704 	int rv = 0, err;
1705 
1706 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1707 		if (kid->v_state != VDEV_STATE_HEALTHY)
1708 			continue;
1709 		err = vdev_write_bootenv_impl(kid, be);
1710 		if (err != 0)
1711 			rv = err;
1712 	}
1713 
1714 	/*
1715 	 * Non-leaf vdevs do not have v_phys_write.
1716 	 */
1717 	if (vdev->v_phys_write == NULL)
1718 		return (rv);
1719 
1720 	for (int l = 0; l < VDEV_LABELS; l++) {
1721 		err = vdev_label_write(vdev, l, be,
1722 		    offsetof(vdev_label_t, vl_be));
1723 		if (err != 0) {
1724 			printf("failed to write bootenv to %s label %d: %d\n",
1725 			    vdev->v_name ? vdev->v_name : "unknown", l, err);
1726 			rv = err;
1727 		}
1728 	}
1729 	return (rv);
1730 }
1731 
1732 int
vdev_write_bootenv(vdev_t * vdev,nvlist_t * nvl)1733 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1734 {
1735 	vdev_boot_envblock_t *be;
1736 	nvlist_t nv, *nvp;
1737 	uint64_t version;
1738 	int rv;
1739 
1740 	if (nvl->nv_size > sizeof(be->vbe_bootenv))
1741 		return (E2BIG);
1742 
1743 	version = VB_RAW;
1744 	nvp = vdev_read_bootenv(vdev);
1745 	if (nvp != NULL) {
1746 		nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1747 		    &version, NULL);
1748 		nvlist_destroy(nvp);
1749 	}
1750 
1751 	be = calloc(1, sizeof(*be));
1752 	if (be == NULL)
1753 		return (ENOMEM);
1754 
1755 	be->vbe_version = version;
1756 	switch (version) {
1757 	case VB_RAW:
1758 		/*
1759 		 * If there is no envmap, we will just wipe bootenv.
1760 		 */
1761 		nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1762 		    be->vbe_bootenv, NULL);
1763 		rv = 0;
1764 		break;
1765 
1766 	case VB_NVLIST:
1767 		nv.nv_header = nvl->nv_header;
1768 		nv.nv_asize = nvl->nv_asize;
1769 		nv.nv_size = nvl->nv_size;
1770 
1771 		bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1772 		nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1773 		bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1774 		rv = nvlist_export(&nv);
1775 		break;
1776 
1777 	default:
1778 		rv = EINVAL;
1779 		break;
1780 	}
1781 
1782 	if (rv == 0) {
1783 		be->vbe_version = htobe64(be->vbe_version);
1784 		rv = vdev_write_bootenv_impl(vdev, be);
1785 	}
1786 	free(be);
1787 	return (rv);
1788 }
1789 
1790 /*
1791  * Read the bootenv area from pool label, return the nvlist from it.
1792  * We return from first successful read.
1793  */
1794 nvlist_t *
vdev_read_bootenv(vdev_t * vdev)1795 vdev_read_bootenv(vdev_t *vdev)
1796 {
1797 	vdev_t *kid;
1798 	nvlist_t *benv;
1799 	vdev_boot_envblock_t *be;
1800 	char *command;
1801 	bool ok;
1802 	int rv;
1803 
1804 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1805 		if (kid->v_state != VDEV_STATE_HEALTHY)
1806 			continue;
1807 
1808 		benv = vdev_read_bootenv(kid);
1809 		if (benv != NULL)
1810 			return (benv);
1811 	}
1812 
1813 	be = malloc(sizeof (*be));
1814 	if (be == NULL)
1815 		return (NULL);
1816 
1817 	rv = 0;
1818 	for (int l = 0; l < VDEV_LABELS; l++) {
1819 		rv = vdev_label_read(vdev, l, be,
1820 		    offsetof(vdev_label_t, vl_be),
1821 		    sizeof (*be));
1822 		if (rv == 0)
1823 			break;
1824 	}
1825 	if (rv != 0) {
1826 		free(be);
1827 		return (NULL);
1828 	}
1829 
1830 	be->vbe_version = be64toh(be->vbe_version);
1831 	switch (be->vbe_version) {
1832 	case VB_RAW:
1833 		/*
1834 		 * we have textual data in vbe_bootenv, create nvlist
1835 		 * with key "envmap".
1836 		 */
1837 		benv = nvlist_create(NV_UNIQUE_NAME);
1838 		if (benv != NULL) {
1839 			if (*be->vbe_bootenv == '\0') {
1840 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1841 				    VB_NVLIST);
1842 				break;
1843 			}
1844 			nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1845 			be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1846 			nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1847 		}
1848 		break;
1849 
1850 	case VB_NVLIST:
1851 		benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1852 		break;
1853 
1854 	default:
1855 		command = (char *)be;
1856 		ok = false;
1857 
1858 		/* Check for legacy zfsbootcfg command string */
1859 		for (int i = 0; command[i] != '\0'; i++) {
1860 			if (iscntrl(command[i])) {
1861 				ok = false;
1862 				break;
1863 			} else {
1864 				ok = true;
1865 			}
1866 		}
1867 		benv = nvlist_create(NV_UNIQUE_NAME);
1868 		if (benv != NULL) {
1869 			if (ok)
1870 				nvlist_add_string(benv, FREEBSD_BOOTONCE,
1871 				    command);
1872 			else
1873 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1874 				    VB_NVLIST);
1875 		}
1876 		break;
1877 	}
1878 	free(be);
1879 	return (benv);
1880 }
1881 
1882 static uint64_t
vdev_get_label_asize(nvlist_t * nvl)1883 vdev_get_label_asize(nvlist_t *nvl)
1884 {
1885 	nvlist_t *vdevs;
1886 	uint64_t asize;
1887 	const char *type;
1888 	int len;
1889 
1890 	asize = 0;
1891 	/* Get vdev tree */
1892 	if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1893 	    NULL, &vdevs, NULL) != 0)
1894 		return (asize);
1895 
1896 	/*
1897 	 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1898 	 * For raidz, the asize is raw size of all children.
1899 	 */
1900 	if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1901 	    NULL, &type, &len) != 0)
1902 		goto done;
1903 
1904 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1905 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1906 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1907 		goto done;
1908 
1909 	if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1910 	    NULL, &asize, NULL) != 0)
1911 		goto done;
1912 
1913 	if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1914 		nvlist_t **kids;
1915 		int nkids;
1916 
1917 		if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1918 		    DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1919 			asize = 0;
1920 			goto done;
1921 		}
1922 
1923 		asize /= nkids;
1924 		for (int i = 0; i < nkids; i++)
1925 			nvlist_destroy(kids[i]);
1926 		free(kids);
1927 	}
1928 
1929 	asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1930 done:
1931 	nvlist_destroy(vdevs);
1932 	return (asize);
1933 }
1934 
1935 static nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)1936 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1937 {
1938 	vdev_phys_t *label;
1939 	uint64_t best_txg = 0;
1940 	uint64_t label_txg = 0;
1941 	uint64_t asize;
1942 	nvlist_t *nvl = NULL, *tmp;
1943 	int error;
1944 
1945 	label = malloc(sizeof (vdev_phys_t));
1946 	if (label == NULL)
1947 		return (NULL);
1948 
1949 	for (int l = 0; l < VDEV_LABELS; l++) {
1950 		if (vdev_label_read(vd, l, label,
1951 		    offsetof(vdev_label_t, vl_vdev_phys),
1952 		    sizeof (vdev_phys_t)))
1953 			continue;
1954 
1955 		tmp = nvlist_import(label->vp_nvlist,
1956 		    sizeof(label->vp_nvlist));
1957 		if (tmp == NULL)
1958 			continue;
1959 
1960 		error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1961 		    DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1962 		if (error != 0 || label_txg == 0) {
1963 			nvlist_destroy(nvl);
1964 			nvl = tmp;
1965 			goto done;
1966 		}
1967 
1968 		if (label_txg <= txg && label_txg > best_txg) {
1969 			best_txg = label_txg;
1970 			nvlist_destroy(nvl);
1971 			nvl = tmp;
1972 			tmp = NULL;
1973 
1974 			/*
1975 			 * Use asize from pool config. We need this
1976 			 * because we can get bad value from BIOS.
1977 			 */
1978 			asize = vdev_get_label_asize(nvl);
1979 			if (asize != 0) {
1980 				vd->v_psize = asize;
1981 			}
1982 		}
1983 		nvlist_destroy(tmp);
1984 	}
1985 
1986 	if (best_txg == 0) {
1987 		nvlist_destroy(nvl);
1988 		nvl = NULL;
1989 	}
1990 done:
1991 	free(label);
1992 	return (nvl);
1993 }
1994 
1995 static void
vdev_uberblock_load(vdev_t * vd,uberblock_t * ub)1996 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1997 {
1998 	uberblock_t *buf;
1999 
2000 	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
2001 	if (buf == NULL)
2002 		return;
2003 
2004 	for (int l = 0; l < VDEV_LABELS; l++) {
2005 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
2006 			if (vdev_label_read(vd, l, buf,
2007 			    VDEV_UBERBLOCK_OFFSET(vd, n),
2008 			    VDEV_UBERBLOCK_SIZE(vd)))
2009 				continue;
2010 			if (uberblock_verify(buf) != 0)
2011 				continue;
2012 
2013 			if (vdev_uberblock_compare(buf, ub) > 0)
2014 				*ub = *buf;
2015 		}
2016 	}
2017 	free(buf);
2018 }
2019 
2020 static int
vdev_probe(vdev_phys_read_t * _read,vdev_phys_write_t * _write,void * priv,spa_t ** spap)2021 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2022     spa_t **spap)
2023 {
2024 	vdev_t vtmp;
2025 	spa_t *spa;
2026 	vdev_t *vdev;
2027 	nvlist_t *nvl;
2028 	uint64_t val;
2029 	uint64_t guid, pool_guid, top_guid, txg;
2030 	const char *pool_name;
2031 	int rc, namelen;
2032 
2033 	/*
2034 	 * Load the vdev label and figure out which
2035 	 * uberblock is most current.
2036 	 */
2037 	memset(&vtmp, 0, sizeof(vtmp));
2038 	vtmp.v_phys_read = _read;
2039 	vtmp.v_phys_write = _write;
2040 	vtmp.v_priv = priv;
2041 	vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2042 	    (uint64_t)sizeof (vdev_label_t));
2043 
2044 	/* Test for minimum device size. */
2045 	if (vtmp.v_psize < SPA_MINDEVSIZE)
2046 		return (EIO);
2047 
2048 	nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2049 	if (nvl == NULL)
2050 		return (EIO);
2051 
2052 	if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2053 	    NULL, &val, NULL) != 0) {
2054 		nvlist_destroy(nvl);
2055 		return (EIO);
2056 	}
2057 
2058 	if (!SPA_VERSION_IS_SUPPORTED(val)) {
2059 		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2060 		    (unsigned)val, (unsigned)SPA_VERSION);
2061 		nvlist_destroy(nvl);
2062 		return (EIO);
2063 	}
2064 
2065 	/* Check ZFS features for read */
2066 	rc = nvlist_check_features_for_read(nvl);
2067 	if (rc != 0) {
2068 		nvlist_destroy(nvl);
2069 		return (EIO);
2070 	}
2071 
2072 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2073 	    NULL, &val, NULL) != 0) {
2074 		nvlist_destroy(nvl);
2075 		return (EIO);
2076 	}
2077 
2078 	if (val == POOL_STATE_DESTROYED) {
2079 		/* We don't boot only from destroyed pools. */
2080 		nvlist_destroy(nvl);
2081 		return (EIO);
2082 	}
2083 
2084 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2085 	    NULL, &txg, NULL) != 0 ||
2086 	    nvlist_find(nvl, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
2087 	    NULL, &top_guid, NULL) != 0 ||
2088 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2089 	    NULL, &pool_guid, NULL) != 0 ||
2090 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2091 	    NULL, &pool_name, &namelen) != 0 ||
2092 	    nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2093 	    NULL, &guid, NULL) != 0) {
2094 		/*
2095 		 * Cache and spare devices end up here - just ignore
2096 		 * them.
2097 		 */
2098 		nvlist_destroy(nvl);
2099 		return (EIO);
2100 	}
2101 
2102 	/*
2103 	 * Create the pool if this is the first time we've seen it.
2104 	 */
2105 	spa = spa_find_by_guid(pool_guid);
2106 	if (spa == NULL) {
2107 		char *name;
2108 
2109 		name = malloc(namelen + 1);
2110 		if (name == NULL) {
2111 			nvlist_destroy(nvl);
2112 			return (ENOMEM);
2113 		}
2114 		bcopy(pool_name, name, namelen);
2115 		name[namelen] = '\0';
2116 		spa = spa_create(pool_guid, name);
2117 		free(name);
2118 		if (spa == NULL) {
2119 			nvlist_destroy(nvl);
2120 			return (ENOMEM);
2121 		}
2122 	} else {
2123 		struct vdev *kid;
2124 
2125 		STAILQ_FOREACH(kid, &spa->spa_root_vdev->v_children,
2126 		    v_childlink)
2127 			if (kid->v_guid == top_guid && kid->v_txg < txg) {
2128 				printf("ZFS: pool %s vdev %s ignoring stale "
2129 				    "label from txg 0x%jx, using 0x%jx@0x%jx\n",
2130 				    spa->spa_name, kid->v_name,
2131 				    kid->v_txg, guid, txg);
2132 				STAILQ_REMOVE(&spa->spa_root_vdev->v_children,
2133 				    kid, vdev, v_childlink);
2134 				vdev_free(kid);
2135 				break;
2136 			}
2137 	}
2138 
2139 	/*
2140 	 * Get the vdev tree and create our in-core copy of it.
2141 	 * If we already have a vdev with this guid, this must
2142 	 * be some kind of alias (overlapping slices, dangerously dedicated
2143 	 * disks etc).
2144 	 */
2145 	vdev = vdev_find(guid);
2146 	/* Has this vdev already been inited? */
2147 	if (vdev && vdev->v_phys_read) {
2148 		nvlist_destroy(nvl);
2149 		return (EIO);
2150 	}
2151 
2152 	rc = vdev_init_from_label(spa, nvl);
2153 	nvlist_destroy(nvl);
2154 	if (rc != 0)
2155 		return (rc);
2156 
2157 	/*
2158 	 * We should already have created an incomplete vdev for this
2159 	 * vdev. Find it and initialise it with our read proc.
2160 	 */
2161 	vdev = vdev_find(guid);
2162 	if (vdev != NULL) {
2163 		vdev->v_phys_read = _read;
2164 		vdev->v_phys_write = _write;
2165 		vdev->v_priv = priv;
2166 		vdev->v_psize = vtmp.v_psize;
2167 		/*
2168 		 * If no other state is set, mark vdev healthy.
2169 		 */
2170 		if (vdev->v_state == VDEV_STATE_UNKNOWN)
2171 			vdev->v_state = VDEV_STATE_HEALTHY;
2172 	} else {
2173 		printf("ZFS: inconsistent nvlist contents\n");
2174 		return (EIO);
2175 	}
2176 
2177 	if (vdev->v_islog)
2178 		spa->spa_with_log = vdev->v_islog;
2179 
2180 	/*
2181 	 * Re-evaluate top-level vdev state.
2182 	 */
2183 	vdev_set_state(vdev->v_top);
2184 
2185 	/*
2186 	 * Ok, we are happy with the pool so far. Lets find
2187 	 * the best uberblock and then we can actually access
2188 	 * the contents of the pool.
2189 	 */
2190 	vdev_uberblock_load(vdev, spa->spa_uberblock);
2191 
2192 	if (spap != NULL)
2193 		*spap = spa;
2194 	return (0);
2195 }
2196 
2197 static int
ilog2(int n)2198 ilog2(int n)
2199 {
2200 	int v;
2201 
2202 	for (v = 0; v < 32; v++)
2203 		if (n == (1 << v))
2204 			return (v);
2205 	return (-1);
2206 }
2207 
2208 static int
zio_read_gang(const spa_t * spa,const blkptr_t * bp,void * buf)2209 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2210 {
2211 	blkptr_t gbh_bp;
2212 	zio_gbh_phys_t zio_gb;
2213 	char *pbuf;
2214 	int i;
2215 
2216 	/* Artificial BP for gang block header. */
2217 	gbh_bp = *bp;
2218 	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2219 	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2220 	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2221 	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2222 	for (i = 0; i < SPA_DVAS_PER_BP; i++)
2223 		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2224 
2225 	/* Read gang header block using the artificial BP. */
2226 	if (zio_read(spa, &gbh_bp, &zio_gb))
2227 		return (EIO);
2228 
2229 	pbuf = buf;
2230 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2231 		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2232 
2233 		if (BP_IS_HOLE(gbp))
2234 			continue;
2235 		if (zio_read(spa, gbp, pbuf))
2236 			return (EIO);
2237 		pbuf += BP_GET_PSIZE(gbp);
2238 	}
2239 
2240 	if (zio_checksum_verify(spa, bp, buf))
2241 		return (EIO);
2242 	return (0);
2243 }
2244 
2245 static int
zio_read(const spa_t * spa,const blkptr_t * bp,void * buf)2246 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2247 {
2248 	int cpfunc = BP_GET_COMPRESS(bp);
2249 	uint64_t align, size;
2250 	void *pbuf;
2251 	int i, error;
2252 
2253 	/*
2254 	 * Process data embedded in block pointer
2255 	 */
2256 	if (BP_IS_EMBEDDED(bp)) {
2257 		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2258 
2259 		size = BPE_GET_PSIZE(bp);
2260 		ASSERT(size <= BPE_PAYLOAD_SIZE);
2261 
2262 		if (cpfunc != ZIO_COMPRESS_OFF)
2263 			pbuf = malloc(size);
2264 		else
2265 			pbuf = buf;
2266 
2267 		if (pbuf == NULL)
2268 			return (ENOMEM);
2269 
2270 		decode_embedded_bp_compressed(bp, pbuf);
2271 		error = 0;
2272 
2273 		if (cpfunc != ZIO_COMPRESS_OFF) {
2274 			error = zio_decompress_data(cpfunc, pbuf,
2275 			    size, buf, BP_GET_LSIZE(bp));
2276 			free(pbuf);
2277 		}
2278 		if (error != 0)
2279 			printf("ZFS: i/o error - unable to decompress "
2280 			    "block pointer data, error %d\n", error);
2281 		return (error);
2282 	}
2283 
2284 	error = EIO;
2285 
2286 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2287 		const dva_t *dva = &bp->blk_dva[i];
2288 		vdev_t *vdev;
2289 		vdev_list_t *vlist;
2290 		uint64_t vdevid;
2291 		off_t offset;
2292 
2293 		if (!dva->dva_word[0] && !dva->dva_word[1])
2294 			continue;
2295 
2296 		vdevid = DVA_GET_VDEV(dva);
2297 		offset = DVA_GET_OFFSET(dva);
2298 		vlist = &spa->spa_root_vdev->v_children;
2299 		STAILQ_FOREACH(vdev, vlist, v_childlink) {
2300 			if (vdev->v_id == vdevid)
2301 				break;
2302 		}
2303 		if (!vdev || !vdev->v_read)
2304 			continue;
2305 
2306 		size = BP_GET_PSIZE(bp);
2307 		if (vdev->v_read == vdev_raidz_read) {
2308 			align = 1ULL << vdev->v_ashift;
2309 			if (P2PHASE(size, align) != 0)
2310 				size = P2ROUNDUP(size, align);
2311 		}
2312 		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2313 			pbuf = malloc(size);
2314 		else
2315 			pbuf = buf;
2316 
2317 		if (pbuf == NULL) {
2318 			error = ENOMEM;
2319 			break;
2320 		}
2321 
2322 		if (DVA_GET_GANG(dva))
2323 			error = zio_read_gang(spa, bp, pbuf);
2324 		else
2325 			error = vdev->v_read(vdev, bp, pbuf, offset, size);
2326 		if (error == 0) {
2327 			if (cpfunc != ZIO_COMPRESS_OFF)
2328 				error = zio_decompress_data(cpfunc, pbuf,
2329 				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2330 			else if (size != BP_GET_PSIZE(bp))
2331 				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2332 		} else {
2333 			printf("zio_read error: %d\n", error);
2334 		}
2335 		if (buf != pbuf)
2336 			free(pbuf);
2337 		if (error == 0)
2338 			break;
2339 	}
2340 	if (error != 0)
2341 		printf("ZFS: i/o error - all block copies unavailable\n");
2342 
2343 	return (error);
2344 }
2345 
2346 static int
dnode_read(const spa_t * spa,const dnode_phys_t * dnode,off_t offset,void * buf,size_t buflen)2347 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2348     void *buf, size_t buflen)
2349 {
2350 	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2351 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2352 	int nlevels = dnode->dn_nlevels;
2353 	int i, rc;
2354 
2355 	if (bsize > SPA_MAXBLOCKSIZE) {
2356 		printf("ZFS: I/O error - blocks larger than %llu are not "
2357 		    "supported\n", SPA_MAXBLOCKSIZE);
2358 		return (EIO);
2359 	}
2360 
2361 	/*
2362 	 * Handle odd block sizes, mirrors dmu_read_impl().  Data can't exist
2363 	 * past the first block, so we'll clip the read to the portion of the
2364 	 * buffer within bsize and zero out the remainder.
2365 	 */
2366 	if (dnode->dn_maxblkid == 0) {
2367 		size_t newbuflen;
2368 
2369 		newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2370 		bzero((char *)buf + newbuflen, buflen - newbuflen);
2371 		buflen = newbuflen;
2372 	}
2373 
2374 	/*
2375 	 * Note: bsize may not be a power of two here so we need to do an
2376 	 * actual divide rather than a bitshift.
2377 	 */
2378 	while (buflen > 0) {
2379 		uint64_t bn = offset / bsize;
2380 		int boff = offset % bsize;
2381 		int ibn;
2382 		const blkptr_t *indbp;
2383 		blkptr_t bp;
2384 
2385 		if (bn > dnode->dn_maxblkid)
2386 			return (EIO);
2387 
2388 		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2389 			goto cached;
2390 
2391 		indbp = dnode->dn_blkptr;
2392 		for (i = 0; i < nlevels; i++) {
2393 			/*
2394 			 * Copy the bp from the indirect array so that
2395 			 * we can re-use the scratch buffer for multi-level
2396 			 * objects.
2397 			 */
2398 			ibn = bn >> ((nlevels - i - 1) * ibshift);
2399 			ibn &= ((1 << ibshift) - 1);
2400 			bp = indbp[ibn];
2401 			if (BP_IS_HOLE(&bp)) {
2402 				memset(dnode_cache_buf, 0, bsize);
2403 				break;
2404 			}
2405 			rc = zio_read(spa, &bp, dnode_cache_buf);
2406 			if (rc)
2407 				return (rc);
2408 			indbp = (const blkptr_t *) dnode_cache_buf;
2409 		}
2410 		dnode_cache_obj = dnode;
2411 		dnode_cache_bn = bn;
2412 	cached:
2413 
2414 		/*
2415 		 * The buffer contains our data block. Copy what we
2416 		 * need from it and loop.
2417 		 */
2418 		i = bsize - boff;
2419 		if (i > buflen) i = buflen;
2420 		memcpy(buf, &dnode_cache_buf[boff], i);
2421 		buf = ((char *)buf) + i;
2422 		offset += i;
2423 		buflen -= i;
2424 	}
2425 
2426 	return (0);
2427 }
2428 
2429 /*
2430  * Lookup a value in a microzap directory.
2431  */
2432 static int
mzap_lookup(const mzap_phys_t * mz,size_t size,const char * name,uint64_t * value)2433 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2434     uint64_t *value)
2435 {
2436 	const mzap_ent_phys_t *mze;
2437 	int chunks, i;
2438 
2439 	/*
2440 	 * Microzap objects use exactly one block. Read the whole
2441 	 * thing.
2442 	 */
2443 	chunks = size / MZAP_ENT_LEN - 1;
2444 	for (i = 0; i < chunks; i++) {
2445 		mze = &mz->mz_chunk[i];
2446 		if (strcmp(mze->mze_name, name) == 0) {
2447 			*value = mze->mze_value;
2448 			return (0);
2449 		}
2450 	}
2451 
2452 	return (ENOENT);
2453 }
2454 
2455 /*
2456  * Compare a name with a zap leaf entry. Return non-zero if the name
2457  * matches.
2458  */
2459 static int
fzap_name_equal(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,const char * name)2460 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2461     const char *name)
2462 {
2463 	size_t namelen;
2464 	const zap_leaf_chunk_t *nc;
2465 	const char *p;
2466 
2467 	namelen = zc->l_entry.le_name_numints;
2468 
2469 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2470 	p = name;
2471 	while (namelen > 0) {
2472 		size_t len;
2473 
2474 		len = namelen;
2475 		if (len > ZAP_LEAF_ARRAY_BYTES)
2476 			len = ZAP_LEAF_ARRAY_BYTES;
2477 		if (memcmp(p, nc->l_array.la_array, len))
2478 			return (0);
2479 		p += len;
2480 		namelen -= len;
2481 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2482 	}
2483 
2484 	return (1);
2485 }
2486 
2487 /*
2488  * Extract a uint64_t value from a zap leaf entry.
2489  */
2490 static uint64_t
fzap_leaf_value(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc)2491 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2492 {
2493 	const zap_leaf_chunk_t *vc;
2494 	int i;
2495 	uint64_t value;
2496 	const uint8_t *p;
2497 
2498 	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2499 	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2500 		value = (value << 8) | p[i];
2501 	}
2502 
2503 	return (value);
2504 }
2505 
2506 static void
stv(int len,void * addr,uint64_t value)2507 stv(int len, void *addr, uint64_t value)
2508 {
2509 	switch (len) {
2510 	case 1:
2511 		*(uint8_t *)addr = value;
2512 		return;
2513 	case 2:
2514 		*(uint16_t *)addr = value;
2515 		return;
2516 	case 4:
2517 		*(uint32_t *)addr = value;
2518 		return;
2519 	case 8:
2520 		*(uint64_t *)addr = value;
2521 		return;
2522 	}
2523 }
2524 
2525 /*
2526  * Extract a array from a zap leaf entry.
2527  */
2528 static void
fzap_leaf_array(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,uint64_t integer_size,uint64_t num_integers,void * buf)2529 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2530     uint64_t integer_size, uint64_t num_integers, void *buf)
2531 {
2532 	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2533 	uint64_t value = 0;
2534 	uint64_t *u64 = buf;
2535 	char *p = buf;
2536 	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2537 	int chunk = zc->l_entry.le_value_chunk;
2538 	int byten = 0;
2539 
2540 	if (integer_size == 8 && len == 1) {
2541 		*u64 = fzap_leaf_value(zl, zc);
2542 		return;
2543 	}
2544 
2545 	while (len > 0) {
2546 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2547 		int i;
2548 
2549 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2550 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2551 			value = (value << 8) | la->la_array[i];
2552 			byten++;
2553 			if (byten == array_int_len) {
2554 				stv(integer_size, p, value);
2555 				byten = 0;
2556 				len--;
2557 				if (len == 0)
2558 					return;
2559 				p += integer_size;
2560 			}
2561 		}
2562 		chunk = la->la_next;
2563 	}
2564 }
2565 
2566 static int
fzap_check_size(uint64_t integer_size,uint64_t num_integers)2567 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2568 {
2569 
2570 	switch (integer_size) {
2571 	case 1:
2572 	case 2:
2573 	case 4:
2574 	case 8:
2575 		break;
2576 	default:
2577 		return (EINVAL);
2578 	}
2579 
2580 	if (integer_size * num_integers > ZAP_MAXVALUELEN)
2581 		return (E2BIG);
2582 
2583 	return (0);
2584 }
2585 
2586 static void
zap_leaf_free(zap_leaf_t * leaf)2587 zap_leaf_free(zap_leaf_t *leaf)
2588 {
2589 	free(leaf->l_phys);
2590 	free(leaf);
2591 }
2592 
2593 static int
zap_get_leaf_byblk(fat_zap_t * zap,uint64_t blk,zap_leaf_t ** lp)2594 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2595 {
2596 	int bs = FZAP_BLOCK_SHIFT(zap);
2597 	int err;
2598 
2599 	*lp = malloc(sizeof(**lp));
2600 	if (*lp == NULL)
2601 		return (ENOMEM);
2602 
2603 	(*lp)->l_bs = bs;
2604 	(*lp)->l_phys = malloc(1 << bs);
2605 
2606 	if ((*lp)->l_phys == NULL) {
2607 		free(*lp);
2608 		return (ENOMEM);
2609 	}
2610 	err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2611 	    1 << bs);
2612 	if (err != 0) {
2613 		zap_leaf_free(*lp);
2614 	}
2615 	return (err);
2616 }
2617 
2618 static int
zap_table_load(fat_zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)2619 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2620     uint64_t *valp)
2621 {
2622 	int bs = FZAP_BLOCK_SHIFT(zap);
2623 	uint64_t blk = idx >> (bs - 3);
2624 	uint64_t off = idx & ((1 << (bs - 3)) - 1);
2625 	uint64_t *buf;
2626 	int rc;
2627 
2628 	buf = malloc(1 << zap->zap_block_shift);
2629 	if (buf == NULL)
2630 		return (ENOMEM);
2631 	rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2632 	    buf, 1 << zap->zap_block_shift);
2633 	if (rc == 0)
2634 		*valp = buf[off];
2635 	free(buf);
2636 	return (rc);
2637 }
2638 
2639 static int
zap_idx_to_blk(fat_zap_t * zap,uint64_t idx,uint64_t * valp)2640 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2641 {
2642 	if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2643 		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2644 		return (0);
2645 	} else {
2646 		return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2647 		    idx, valp));
2648 	}
2649 }
2650 
2651 #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2652 static int
zap_deref_leaf(fat_zap_t * zap,uint64_t h,zap_leaf_t ** lp)2653 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2654 {
2655 	uint64_t idx, blk;
2656 	int err;
2657 
2658 	idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2659 	err = zap_idx_to_blk(zap, idx, &blk);
2660 	if (err != 0)
2661 		return (err);
2662 	return (zap_get_leaf_byblk(zap, blk, lp));
2663 }
2664 
2665 #define	CHAIN_END	0xffff	/* end of the chunk chain */
2666 #define	LEAF_HASH(l, h) \
2667 	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2668 	((h) >> \
2669 	(64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2670 #define	LEAF_HASH_ENTPTR(l, h)	(&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2671 
2672 static int
zap_leaf_lookup(zap_leaf_t * zl,uint64_t hash,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2673 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2674     uint64_t integer_size, uint64_t num_integers, void *value)
2675 {
2676 	int rc;
2677 	uint16_t *chunkp;
2678 	struct zap_leaf_entry *le;
2679 
2680 	/*
2681 	 * Make sure this chunk matches our hash.
2682 	 */
2683 	if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2684 	    zl->l_phys->l_hdr.lh_prefix !=
2685 	    hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2686 		return (EIO);
2687 
2688 	rc = ENOENT;
2689 	for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2690 	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
2691 		zap_leaf_chunk_t *zc;
2692 		uint16_t chunk = *chunkp;
2693 
2694 		le = ZAP_LEAF_ENTRY(zl, chunk);
2695 		if (le->le_hash != hash)
2696 			continue;
2697 		zc = &ZAP_LEAF_CHUNK(zl, chunk);
2698 		if (fzap_name_equal(zl, zc, name)) {
2699 			if (zc->l_entry.le_value_intlen > integer_size) {
2700 				rc = EINVAL;
2701 			} else {
2702 				fzap_leaf_array(zl, zc, integer_size,
2703 				    num_integers, value);
2704 				rc = 0;
2705 			}
2706 			break;
2707 		}
2708 	}
2709 	return (rc);
2710 }
2711 
2712 /*
2713  * Lookup a value in a fatzap directory.
2714  */
2715 static int
fzap_lookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2716 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2717     const char *name, uint64_t integer_size, uint64_t num_integers,
2718     void *value)
2719 {
2720 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2721 	fat_zap_t z;
2722 	zap_leaf_t *zl;
2723 	uint64_t hash;
2724 	int rc;
2725 
2726 	if (zh->zap_magic != ZAP_MAGIC)
2727 		return (EIO);
2728 
2729 	if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2730 		return (rc);
2731 	}
2732 
2733 	z.zap_block_shift = ilog2(bsize);
2734 	z.zap_phys = zh;
2735 	z.zap_spa = spa;
2736 	z.zap_dnode = dnode;
2737 
2738 	hash = zap_hash(zh->zap_salt, name);
2739 	rc = zap_deref_leaf(&z, hash, &zl);
2740 	if (rc != 0)
2741 		return (rc);
2742 
2743 	rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2744 
2745 	zap_leaf_free(zl);
2746 	return (rc);
2747 }
2748 
2749 /*
2750  * Lookup a name in a zap object and return its value as a uint64_t.
2751  */
2752 static int
zap_lookup(const spa_t * spa,const dnode_phys_t * dnode,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2753 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2754     uint64_t integer_size, uint64_t num_integers, void *value)
2755 {
2756 	int rc;
2757 	zap_phys_t *zap;
2758 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2759 
2760 	zap = malloc(size);
2761 	if (zap == NULL)
2762 		return (ENOMEM);
2763 
2764 	rc = dnode_read(spa, dnode, 0, zap, size);
2765 	if (rc)
2766 		goto done;
2767 
2768 	switch (zap->zap_block_type) {
2769 	case ZBT_MICRO:
2770 		rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2771 		break;
2772 	case ZBT_HEADER:
2773 		rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2774 		    num_integers, value);
2775 		break;
2776 	default:
2777 		printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2778 		    zap->zap_block_type);
2779 		rc = EIO;
2780 	}
2781 done:
2782 	free(zap);
2783 	return (rc);
2784 }
2785 
2786 /*
2787  * List a microzap directory.
2788  */
2789 static int
mzap_list(const mzap_phys_t * mz,size_t size,int (* callback)(const char *,uint64_t))2790 mzap_list(const mzap_phys_t *mz, size_t size,
2791     int (*callback)(const char *, uint64_t))
2792 {
2793 	const mzap_ent_phys_t *mze;
2794 	int chunks, i, rc;
2795 
2796 	/*
2797 	 * Microzap objects use exactly one block. Read the whole
2798 	 * thing.
2799 	 */
2800 	rc = 0;
2801 	chunks = size / MZAP_ENT_LEN - 1;
2802 	for (i = 0; i < chunks; i++) {
2803 		mze = &mz->mz_chunk[i];
2804 		if (mze->mze_name[0]) {
2805 			rc = callback(mze->mze_name, mze->mze_value);
2806 			if (rc != 0)
2807 				break;
2808 		}
2809 	}
2810 
2811 	return (rc);
2812 }
2813 
2814 /*
2815  * List a fatzap directory.
2816  */
2817 static int
fzap_list(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,int (* callback)(const char *,uint64_t))2818 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2819     int (*callback)(const char *, uint64_t))
2820 {
2821 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2822 	fat_zap_t z;
2823 	uint64_t i;
2824 	int j, rc;
2825 
2826 	if (zh->zap_magic != ZAP_MAGIC)
2827 		return (EIO);
2828 
2829 	z.zap_block_shift = ilog2(bsize);
2830 	z.zap_phys = zh;
2831 
2832 	/*
2833 	 * This assumes that the leaf blocks start at block 1. The
2834 	 * documentation isn't exactly clear on this.
2835 	 */
2836 	zap_leaf_t zl;
2837 	zl.l_bs = z.zap_block_shift;
2838 	zl.l_phys = malloc(bsize);
2839 	if (zl.l_phys == NULL)
2840 		return (ENOMEM);
2841 
2842 	for (i = 0; i < zh->zap_num_leafs; i++) {
2843 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2844 		char name[256], *p;
2845 		uint64_t value;
2846 
2847 		if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2848 			free(zl.l_phys);
2849 			return (EIO);
2850 		}
2851 
2852 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2853 			zap_leaf_chunk_t *zc, *nc;
2854 			int namelen;
2855 
2856 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2857 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2858 				continue;
2859 			namelen = zc->l_entry.le_name_numints;
2860 			if (namelen > sizeof(name))
2861 				namelen = sizeof(name);
2862 
2863 			/*
2864 			 * Paste the name back together.
2865 			 */
2866 			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2867 			p = name;
2868 			while (namelen > 0) {
2869 				int len;
2870 				len = namelen;
2871 				if (len > ZAP_LEAF_ARRAY_BYTES)
2872 					len = ZAP_LEAF_ARRAY_BYTES;
2873 				memcpy(p, nc->l_array.la_array, len);
2874 				p += len;
2875 				namelen -= len;
2876 				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2877 			}
2878 
2879 			/*
2880 			 * Assume the first eight bytes of the value are
2881 			 * a uint64_t.
2882 			 */
2883 			value = fzap_leaf_value(&zl, zc);
2884 
2885 			/* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2886 			rc = callback((const char *)name, value);
2887 			if (rc != 0) {
2888 				free(zl.l_phys);
2889 				return (rc);
2890 			}
2891 		}
2892 	}
2893 
2894 	free(zl.l_phys);
2895 	return (0);
2896 }
2897 
zfs_printf(const char * name,uint64_t value __unused)2898 static int zfs_printf(const char *name, uint64_t value __unused)
2899 {
2900 
2901 	printf("%s\n", name);
2902 
2903 	return (0);
2904 }
2905 
2906 /*
2907  * List a zap directory.
2908  */
2909 static int
zap_list(const spa_t * spa,const dnode_phys_t * dnode)2910 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2911 {
2912 	zap_phys_t *zap;
2913 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2914 	int rc;
2915 
2916 	zap = malloc(size);
2917 	if (zap == NULL)
2918 		return (ENOMEM);
2919 
2920 	rc = dnode_read(spa, dnode, 0, zap, size);
2921 	if (rc == 0) {
2922 		if (zap->zap_block_type == ZBT_MICRO)
2923 			rc = mzap_list((const mzap_phys_t *)zap, size,
2924 			    zfs_printf);
2925 		else
2926 			rc = fzap_list(spa, dnode, zap, zfs_printf);
2927 	}
2928 	free(zap);
2929 	return (rc);
2930 }
2931 
2932 static int
objset_get_dnode(const spa_t * spa,const objset_phys_t * os,uint64_t objnum,dnode_phys_t * dnode)2933 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2934     dnode_phys_t *dnode)
2935 {
2936 	off_t offset;
2937 
2938 	offset = objnum * sizeof(dnode_phys_t);
2939 	return dnode_read(spa, &os->os_meta_dnode, offset,
2940 		dnode, sizeof(dnode_phys_t));
2941 }
2942 
2943 /*
2944  * Lookup a name in a microzap directory.
2945  */
2946 static int
mzap_rlookup(const mzap_phys_t * mz,size_t size,char * name,uint64_t value)2947 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2948 {
2949 	const mzap_ent_phys_t *mze;
2950 	int chunks, i;
2951 
2952 	/*
2953 	 * Microzap objects use exactly one block. Read the whole
2954 	 * thing.
2955 	 */
2956 	chunks = size / MZAP_ENT_LEN - 1;
2957 	for (i = 0; i < chunks; i++) {
2958 		mze = &mz->mz_chunk[i];
2959 		if (value == mze->mze_value) {
2960 			strcpy(name, mze->mze_name);
2961 			return (0);
2962 		}
2963 	}
2964 
2965 	return (ENOENT);
2966 }
2967 
2968 static void
fzap_name_copy(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,char * name)2969 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2970 {
2971 	size_t namelen;
2972 	const zap_leaf_chunk_t *nc;
2973 	char *p;
2974 
2975 	namelen = zc->l_entry.le_name_numints;
2976 
2977 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2978 	p = name;
2979 	while (namelen > 0) {
2980 		size_t len;
2981 		len = namelen;
2982 		if (len > ZAP_LEAF_ARRAY_BYTES)
2983 			len = ZAP_LEAF_ARRAY_BYTES;
2984 		memcpy(p, nc->l_array.la_array, len);
2985 		p += len;
2986 		namelen -= len;
2987 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2988 	}
2989 
2990 	*p = '\0';
2991 }
2992 
2993 static int
fzap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,char * name,uint64_t value)2994 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2995     char *name, uint64_t value)
2996 {
2997 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2998 	fat_zap_t z;
2999 	uint64_t i;
3000 	int j, rc;
3001 
3002 	if (zh->zap_magic != ZAP_MAGIC)
3003 		return (EIO);
3004 
3005 	z.zap_block_shift = ilog2(bsize);
3006 	z.zap_phys = zh;
3007 
3008 	/*
3009 	 * This assumes that the leaf blocks start at block 1. The
3010 	 * documentation isn't exactly clear on this.
3011 	 */
3012 	zap_leaf_t zl;
3013 	zl.l_bs = z.zap_block_shift;
3014 	zl.l_phys = malloc(bsize);
3015 	if (zl.l_phys == NULL)
3016 		return (ENOMEM);
3017 
3018 	for (i = 0; i < zh->zap_num_leafs; i++) {
3019 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
3020 
3021 		rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
3022 		if (rc != 0)
3023 			goto done;
3024 
3025 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
3026 			zap_leaf_chunk_t *zc;
3027 
3028 			zc = &ZAP_LEAF_CHUNK(&zl, j);
3029 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3030 				continue;
3031 			if (zc->l_entry.le_value_intlen != 8 ||
3032 			    zc->l_entry.le_value_numints != 1)
3033 				continue;
3034 
3035 			if (fzap_leaf_value(&zl, zc) == value) {
3036 				fzap_name_copy(&zl, zc, name);
3037 				goto done;
3038 			}
3039 		}
3040 	}
3041 
3042 	rc = ENOENT;
3043 done:
3044 	free(zl.l_phys);
3045 	return (rc);
3046 }
3047 
3048 static int
zap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,char * name,uint64_t value)3049 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3050     uint64_t value)
3051 {
3052 	zap_phys_t *zap;
3053 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3054 	int rc;
3055 
3056 	zap = malloc(size);
3057 	if (zap == NULL)
3058 		return (ENOMEM);
3059 
3060 	rc = dnode_read(spa, dnode, 0, zap, size);
3061 	if (rc == 0) {
3062 		if (zap->zap_block_type == ZBT_MICRO)
3063 			rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3064 			    name, value);
3065 		else
3066 			rc = fzap_rlookup(spa, dnode, zap, name, value);
3067 	}
3068 	free(zap);
3069 	return (rc);
3070 }
3071 
3072 static int
zfs_rlookup(const spa_t * spa,uint64_t objnum,char * result)3073 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3074 {
3075 	char name[256];
3076 	char component[256];
3077 	uint64_t dir_obj, parent_obj, child_dir_zapobj;
3078 	dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3079 	dsl_dir_phys_t *dd;
3080 	dsl_dataset_phys_t *ds;
3081 	char *p;
3082 	int len;
3083 	boolean_t issnap = B_FALSE;
3084 
3085 	p = &name[sizeof(name) - 1];
3086 	*p = '\0';
3087 
3088 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3089 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3090 		return (EIO);
3091 	}
3092 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3093 	dir_obj = ds->ds_dir_obj;
3094 	if (ds->ds_snapnames_zapobj == 0)
3095 		issnap = B_TRUE;
3096 
3097 	for (;;) {
3098 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3099 			return (EIO);
3100 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3101 
3102 		/* Actual loop condition. */
3103 		parent_obj = dd->dd_parent_obj;
3104 		if (parent_obj == 0)
3105 			break;
3106 
3107 		if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3108 		    &parent) != 0)
3109 			return (EIO);
3110 		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3111 		if (issnap == B_TRUE) {
3112 			/*
3113 			 * The dataset we are looking up is a snapshot
3114 			 * the dir_obj is the parent already, we don't want
3115 			 * the grandparent just yet. Reset to the parent.
3116 			 */
3117 			dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3118 			/* Lookup the dataset to get the snapname ZAP */
3119 			if (objset_get_dnode(spa, spa->spa_mos,
3120 			    dd->dd_head_dataset_obj, &dataset))
3121 				return (EIO);
3122 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3123 			if (objset_get_dnode(spa, spa->spa_mos,
3124 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3125 				return (EIO);
3126 			/* Get the name of the snapshot */
3127 			if (zap_rlookup(spa, &snapnames_zap, component,
3128 			    objnum) != 0)
3129 				return (EIO);
3130 			len = strlen(component);
3131 			p -= len;
3132 			memcpy(p, component, len);
3133 			--p;
3134 			*p = '@';
3135 			issnap = B_FALSE;
3136 			continue;
3137 		}
3138 
3139 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3140 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3141 		    &child_dir_zap) != 0)
3142 			return (EIO);
3143 		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3144 			return (EIO);
3145 
3146 		len = strlen(component);
3147 		p -= len;
3148 		memcpy(p, component, len);
3149 		--p;
3150 		*p = '/';
3151 
3152 		/* Actual loop iteration. */
3153 		dir_obj = parent_obj;
3154 	}
3155 
3156 	if (*p != '\0')
3157 		++p;
3158 	strcpy(result, p);
3159 
3160 	return (0);
3161 }
3162 
3163 static int
zfs_lookup_dataset(const spa_t * spa,const char * name,uint64_t * objnum)3164 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3165 {
3166 	char element[256];
3167 	uint64_t dir_obj, child_dir_zapobj;
3168 	dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3169 	dsl_dir_phys_t *dd;
3170 	dsl_dataset_phys_t *ds;
3171 	const char *p, *q;
3172 	boolean_t issnap = B_FALSE;
3173 
3174 	if (objset_get_dnode(spa, spa->spa_mos,
3175 	    DMU_POOL_DIRECTORY_OBJECT, &dir))
3176 		return (EIO);
3177 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3178 	    1, &dir_obj))
3179 		return (EIO);
3180 
3181 	p = name;
3182 	for (;;) {
3183 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3184 			return (EIO);
3185 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3186 
3187 		while (*p == '/')
3188 			p++;
3189 		/* Actual loop condition #1. */
3190 		if (*p == '\0')
3191 			break;
3192 
3193 		q = strchr(p, '/');
3194 		if (q) {
3195 			memcpy(element, p, q - p);
3196 			element[q - p] = '\0';
3197 			p = q + 1;
3198 		} else {
3199 			strcpy(element, p);
3200 			p += strlen(p);
3201 		}
3202 
3203 		if (issnap == B_TRUE) {
3204 		        if (objset_get_dnode(spa, spa->spa_mos,
3205 			    dd->dd_head_dataset_obj, &dataset))
3206 		                return (EIO);
3207 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3208 			if (objset_get_dnode(spa, spa->spa_mos,
3209 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3210 				return (EIO);
3211 			/* Actual loop condition #2. */
3212 			if (zap_lookup(spa, &snapnames_zap, element,
3213 			    sizeof (dir_obj), 1, &dir_obj) != 0)
3214 				return (ENOENT);
3215 			*objnum = dir_obj;
3216 			return (0);
3217 		} else if ((q = strchr(element, '@')) != NULL) {
3218 			issnap = B_TRUE;
3219 			element[q - element] = '\0';
3220 			p = q + 1;
3221 		}
3222 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3223 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3224 		    &child_dir_zap) != 0)
3225 			return (EIO);
3226 
3227 		/* Actual loop condition #2. */
3228 		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3229 		    1, &dir_obj) != 0)
3230 			return (ENOENT);
3231 	}
3232 
3233 	*objnum = dd->dd_head_dataset_obj;
3234 	return (0);
3235 }
3236 
3237 #ifndef BOOT2
3238 static int
zfs_list_dataset(const spa_t * spa,uint64_t objnum)3239 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3240 {
3241 	uint64_t dir_obj, child_dir_zapobj;
3242 	dnode_phys_t child_dir_zap, dir, dataset;
3243 	dsl_dataset_phys_t *ds;
3244 	dsl_dir_phys_t *dd;
3245 
3246 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3247 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3248 		return (EIO);
3249 	}
3250 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3251 	dir_obj = ds->ds_dir_obj;
3252 
3253 	if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3254 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3255 		return (EIO);
3256 	}
3257 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3258 
3259 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3260 	if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3261 	    &child_dir_zap) != 0) {
3262 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3263 		return (EIO);
3264 	}
3265 
3266 	return (zap_list(spa, &child_dir_zap) != 0);
3267 }
3268 
3269 int
zfs_callback_dataset(const spa_t * spa,uint64_t objnum,int (* callback)(const char *,uint64_t))3270 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3271     int (*callback)(const char *, uint64_t))
3272 {
3273 	uint64_t dir_obj, child_dir_zapobj;
3274 	dnode_phys_t child_dir_zap, dir, dataset;
3275 	dsl_dataset_phys_t *ds;
3276 	dsl_dir_phys_t *dd;
3277 	zap_phys_t *zap;
3278 	size_t size;
3279 	int err;
3280 
3281 	err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3282 	if (err != 0) {
3283 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3284 		return (err);
3285 	}
3286 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3287 	dir_obj = ds->ds_dir_obj;
3288 
3289 	err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3290 	if (err != 0) {
3291 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3292 		return (err);
3293 	}
3294 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3295 
3296 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3297 	err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3298 	    &child_dir_zap);
3299 	if (err != 0) {
3300 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3301 		return (err);
3302 	}
3303 
3304 	size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3305 	zap = malloc(size);
3306 	if (zap != NULL) {
3307 		err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3308 		if (err != 0)
3309 			goto done;
3310 
3311 		if (zap->zap_block_type == ZBT_MICRO)
3312 			err = mzap_list((const mzap_phys_t *)zap, size,
3313 			    callback);
3314 		else
3315 			err = fzap_list(spa, &child_dir_zap, zap, callback);
3316 	} else {
3317 		err = ENOMEM;
3318 	}
3319 done:
3320 	free(zap);
3321 	return (err);
3322 }
3323 #endif
3324 
3325 /*
3326  * Find the object set given the object number of its dataset object
3327  * and return its details in *objset
3328  */
3329 static int
zfs_mount_dataset(const spa_t * spa,uint64_t objnum,objset_phys_t * objset)3330 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3331 {
3332 	dnode_phys_t dataset;
3333 	dsl_dataset_phys_t *ds;
3334 
3335 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3336 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3337 		return (EIO);
3338 	}
3339 
3340 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3341 	if (zio_read(spa, &ds->ds_bp, objset)) {
3342 		printf("ZFS: can't read object set for dataset %ju\n",
3343 		    (uintmax_t)objnum);
3344 		return (EIO);
3345 	}
3346 
3347 	return (0);
3348 }
3349 
3350 /*
3351  * Find the object set pointed to by the BOOTFS property or the root
3352  * dataset if there is none and return its details in *objset
3353  */
3354 static int
zfs_get_root(const spa_t * spa,uint64_t * objid)3355 zfs_get_root(const spa_t *spa, uint64_t *objid)
3356 {
3357 	dnode_phys_t dir, propdir;
3358 	uint64_t props, bootfs, root;
3359 
3360 	*objid = 0;
3361 
3362 	/*
3363 	 * Start with the MOS directory object.
3364 	 */
3365 	if (objset_get_dnode(spa, spa->spa_mos,
3366 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3367 		printf("ZFS: can't read MOS object directory\n");
3368 		return (EIO);
3369 	}
3370 
3371 	/*
3372 	 * Lookup the pool_props and see if we can find a bootfs.
3373 	 */
3374 	if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3375 	    sizeof(props), 1, &props) == 0 &&
3376 	    objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3377 	    zap_lookup(spa, &propdir, "bootfs",
3378 	    sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3379 		*objid = bootfs;
3380 		return (0);
3381 	}
3382 	/*
3383 	 * Lookup the root dataset directory
3384 	 */
3385 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3386 	    sizeof(root), 1, &root) ||
3387 	    objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3388 		printf("ZFS: can't find root dsl_dir\n");
3389 		return (EIO);
3390 	}
3391 
3392 	/*
3393 	 * Use the information from the dataset directory's bonus buffer
3394 	 * to find the dataset object and from that the object set itself.
3395 	 */
3396 	dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3397 	*objid = dd->dd_head_dataset_obj;
3398 	return (0);
3399 }
3400 
3401 static int
zfs_mount_impl(const spa_t * spa,uint64_t rootobj,struct zfsmount * mount)3402 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3403 {
3404 
3405 	mount->spa = spa;
3406 
3407 	/*
3408 	 * Find the root object set if not explicitly provided
3409 	 */
3410 	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3411 		printf("ZFS: can't find root filesystem\n");
3412 		return (EIO);
3413 	}
3414 
3415 	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3416 		printf("ZFS: can't open root filesystem\n");
3417 		return (EIO);
3418 	}
3419 
3420 	mount->rootobj = rootobj;
3421 
3422 	return (0);
3423 }
3424 
3425 /*
3426  * callback function for feature name checks.
3427  */
3428 static int
check_feature(const char * name,uint64_t value)3429 check_feature(const char *name, uint64_t value)
3430 {
3431 	int i;
3432 
3433 	if (value == 0)
3434 		return (0);
3435 	if (name[0] == '\0')
3436 		return (0);
3437 
3438 	for (i = 0; features_for_read[i] != NULL; i++) {
3439 		if (strcmp(name, features_for_read[i]) == 0)
3440 			return (0);
3441 	}
3442 	printf("ZFS: unsupported feature: %s\n", name);
3443 	return (EIO);
3444 }
3445 
3446 /*
3447  * Checks whether the MOS features that are active are supported.
3448  */
3449 static int
check_mos_features(const spa_t * spa)3450 check_mos_features(const spa_t *spa)
3451 {
3452 	dnode_phys_t dir;
3453 	zap_phys_t *zap;
3454 	uint64_t objnum;
3455 	size_t size;
3456 	int rc;
3457 
3458 	if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3459 	    &dir)) != 0)
3460 		return (rc);
3461 	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3462 	    sizeof (objnum), 1, &objnum)) != 0) {
3463 		/*
3464 		 * It is older pool without features. As we have already
3465 		 * tested the label, just return without raising the error.
3466 		 */
3467 		return (0);
3468 	}
3469 
3470 	if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3471 		return (rc);
3472 
3473 	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3474 		return (EIO);
3475 
3476 	size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3477 	zap = malloc(size);
3478 	if (zap == NULL)
3479 		return (ENOMEM);
3480 
3481 	if (dnode_read(spa, &dir, 0, zap, size)) {
3482 		free(zap);
3483 		return (EIO);
3484 	}
3485 
3486 	if (zap->zap_block_type == ZBT_MICRO)
3487 		rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3488 	else
3489 		rc = fzap_list(spa, &dir, zap, check_feature);
3490 
3491 	free(zap);
3492 	return (rc);
3493 }
3494 
3495 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)3496 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3497 {
3498 	dnode_phys_t dir;
3499 	size_t size;
3500 	int rc;
3501 	char *nv;
3502 
3503 	*value = NULL;
3504 	if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3505 		return (rc);
3506 	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3507 	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3508 		return (EIO);
3509 	}
3510 
3511 	if (dir.dn_bonuslen != sizeof (uint64_t))
3512 		return (EIO);
3513 
3514 	size = *(uint64_t *)DN_BONUS(&dir);
3515 	nv = malloc(size);
3516 	if (nv == NULL)
3517 		return (ENOMEM);
3518 
3519 	rc = dnode_read(spa, &dir, 0, nv, size);
3520 	if (rc != 0) {
3521 		free(nv);
3522 		nv = NULL;
3523 		return (rc);
3524 	}
3525 	*value = nvlist_import(nv, size);
3526 	free(nv);
3527 	return (rc);
3528 }
3529 
3530 static int
zfs_spa_init(spa_t * spa)3531 zfs_spa_init(spa_t *spa)
3532 {
3533 	struct uberblock checkpoint;
3534 	dnode_phys_t dir;
3535 	uint64_t config_object;
3536 	nvlist_t *nvlist;
3537 	int rc;
3538 
3539 	if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3540 		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3541 		return (EIO);
3542 	}
3543 	if (spa->spa_mos->os_type != DMU_OST_META) {
3544 		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3545 		return (EIO);
3546 	}
3547 
3548 	if (objset_get_dnode(spa, &spa->spa_mos_master,
3549 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3550 		printf("ZFS: failed to read pool %s directory object\n",
3551 		    spa->spa_name);
3552 		return (EIO);
3553 	}
3554 	/* this is allowed to fail, older pools do not have salt */
3555 	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3556 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3557 	    spa->spa_cksum_salt.zcs_bytes);
3558 
3559 	rc = check_mos_features(spa);
3560 	if (rc != 0) {
3561 		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3562 		return (rc);
3563 	}
3564 
3565 	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3566 	    sizeof (config_object), 1, &config_object);
3567 	if (rc != 0) {
3568 		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3569 		return (EIO);
3570 	}
3571 	rc = load_nvlist(spa, config_object, &nvlist);
3572 	if (rc != 0) {
3573 		printf("ZFS: failed to load pool %s nvlist\n", spa->spa_name);
3574 		return (rc);
3575 	}
3576 
3577 	rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3578 	    sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3579 	    &checkpoint);
3580 	if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3581 		memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3582 		    sizeof(checkpoint));
3583 		if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3584 		    &spa->spa_mos_checkpoint)) {
3585 			printf("ZFS: can not read checkpoint data.\n");
3586 			return (EIO);
3587 		}
3588 	}
3589 
3590 	/*
3591 	 * Update vdevs from MOS config. Note, we do skip encoding bytes
3592 	 * here. See also vdev_label_read_config().
3593 	 */
3594 	rc = vdev_init_from_nvlist(spa, nvlist);
3595 	nvlist_destroy(nvlist);
3596 	return (rc);
3597 }
3598 
3599 static int
zfs_dnode_stat(const spa_t * spa,dnode_phys_t * dn,struct stat * sb)3600 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3601 {
3602 
3603 	if (dn->dn_bonustype != DMU_OT_SA) {
3604 		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3605 
3606 		sb->st_mode = zp->zp_mode;
3607 		sb->st_uid = zp->zp_uid;
3608 		sb->st_gid = zp->zp_gid;
3609 		sb->st_size = zp->zp_size;
3610 	} else {
3611 		sa_hdr_phys_t *sahdrp;
3612 		int hdrsize;
3613 		size_t size = 0;
3614 		void *buf = NULL;
3615 
3616 		if (dn->dn_bonuslen != 0)
3617 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3618 		else {
3619 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3620 				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3621 				int error;
3622 
3623 				size = BP_GET_LSIZE(bp);
3624 				buf = malloc(size);
3625 				if (buf == NULL)
3626 					error = ENOMEM;
3627 				else
3628 					error = zio_read(spa, bp, buf);
3629 
3630 				if (error != 0) {
3631 					free(buf);
3632 					return (error);
3633 				}
3634 				sahdrp = buf;
3635 			} else {
3636 				return (EIO);
3637 			}
3638 		}
3639 		hdrsize = SA_HDR_SIZE(sahdrp);
3640 		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3641 		    SA_MODE_OFFSET);
3642 		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3643 		    SA_UID_OFFSET);
3644 		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3645 		    SA_GID_OFFSET);
3646 		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3647 		    SA_SIZE_OFFSET);
3648 		free(buf);
3649 	}
3650 
3651 	return (0);
3652 }
3653 
3654 static int
zfs_dnode_readlink(const spa_t * spa,dnode_phys_t * dn,char * path,size_t psize)3655 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3656 {
3657 	int rc = 0;
3658 
3659 	if (dn->dn_bonustype == DMU_OT_SA) {
3660 		sa_hdr_phys_t *sahdrp = NULL;
3661 		size_t size = 0;
3662 		void *buf = NULL;
3663 		int hdrsize;
3664 		char *p;
3665 
3666 		if (dn->dn_bonuslen != 0) {
3667 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3668 		} else {
3669 			blkptr_t *bp;
3670 
3671 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3672 				return (EIO);
3673 			bp = DN_SPILL_BLKPTR(dn);
3674 
3675 			size = BP_GET_LSIZE(bp);
3676 			buf = malloc(size);
3677 			if (buf == NULL)
3678 				rc = ENOMEM;
3679 			else
3680 				rc = zio_read(spa, bp, buf);
3681 			if (rc != 0) {
3682 				free(buf);
3683 				return (rc);
3684 			}
3685 			sahdrp = buf;
3686 		}
3687 		hdrsize = SA_HDR_SIZE(sahdrp);
3688 		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3689 		memcpy(path, p, psize);
3690 		free(buf);
3691 		return (0);
3692 	}
3693 	/*
3694 	 * Second test is purely to silence bogus compiler
3695 	 * warning about accessing past the end of dn_bonus.
3696 	 */
3697 	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3698 	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3699 		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3700 	} else {
3701 		rc = dnode_read(spa, dn, 0, path, psize);
3702 	}
3703 	return (rc);
3704 }
3705 
3706 struct obj_list {
3707 	uint64_t		objnum;
3708 	STAILQ_ENTRY(obj_list)	entry;
3709 };
3710 
3711 /*
3712  * Lookup a file and return its dnode.
3713  */
3714 static int
zfs_lookup(const struct zfsmount * mount,const char * upath,dnode_phys_t * dnode)3715 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3716 {
3717 	int rc;
3718 	uint64_t objnum;
3719 	const spa_t *spa;
3720 	dnode_phys_t dn;
3721 	const char *p, *q;
3722 	char element[256];
3723 	char path[1024];
3724 	int symlinks_followed = 0;
3725 	struct stat sb;
3726 	struct obj_list *entry, *tentry;
3727 	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3728 
3729 	spa = mount->spa;
3730 	if (mount->objset.os_type != DMU_OST_ZFS) {
3731 		printf("ZFS: unexpected object set type %ju\n",
3732 		    (uintmax_t)mount->objset.os_type);
3733 		return (EIO);
3734 	}
3735 
3736 	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3737 		return (ENOMEM);
3738 
3739 	/*
3740 	 * Get the root directory dnode.
3741 	 */
3742 	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3743 	if (rc) {
3744 		free(entry);
3745 		return (rc);
3746 	}
3747 
3748 	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3749 	if (rc) {
3750 		free(entry);
3751 		return (rc);
3752 	}
3753 	entry->objnum = objnum;
3754 	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3755 
3756 	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3757 	if (rc != 0)
3758 		goto done;
3759 
3760 	p = upath;
3761 	while (p && *p) {
3762 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3763 		if (rc != 0)
3764 			goto done;
3765 
3766 		while (*p == '/')
3767 			p++;
3768 		if (*p == '\0')
3769 			break;
3770 		q = p;
3771 		while (*q != '\0' && *q != '/')
3772 			q++;
3773 
3774 		/* skip dot */
3775 		if (p + 1 == q && p[0] == '.') {
3776 			p++;
3777 			continue;
3778 		}
3779 		/* double dot */
3780 		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3781 			p += 2;
3782 			if (STAILQ_FIRST(&on_cache) ==
3783 			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3784 				rc = ENOENT;
3785 				goto done;
3786 			}
3787 			entry = STAILQ_FIRST(&on_cache);
3788 			STAILQ_REMOVE_HEAD(&on_cache, entry);
3789 			free(entry);
3790 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3791 			continue;
3792 		}
3793 		if (q - p + 1 > sizeof(element)) {
3794 			rc = ENAMETOOLONG;
3795 			goto done;
3796 		}
3797 		memcpy(element, p, q - p);
3798 		element[q - p] = 0;
3799 		p = q;
3800 
3801 		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3802 			goto done;
3803 		if (!S_ISDIR(sb.st_mode)) {
3804 			rc = ENOTDIR;
3805 			goto done;
3806 		}
3807 
3808 		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3809 		if (rc)
3810 			goto done;
3811 		objnum = ZFS_DIRENT_OBJ(objnum);
3812 
3813 		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3814 			rc = ENOMEM;
3815 			goto done;
3816 		}
3817 		entry->objnum = objnum;
3818 		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3819 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3820 		if (rc)
3821 			goto done;
3822 
3823 		/*
3824 		 * Check for symlink.
3825 		 */
3826 		rc = zfs_dnode_stat(spa, &dn, &sb);
3827 		if (rc)
3828 			goto done;
3829 		if (S_ISLNK(sb.st_mode)) {
3830 			if (symlinks_followed > 10) {
3831 				rc = EMLINK;
3832 				goto done;
3833 			}
3834 			symlinks_followed++;
3835 
3836 			/*
3837 			 * Read the link value and copy the tail of our
3838 			 * current path onto the end.
3839 			 */
3840 			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3841 				rc = ENAMETOOLONG;
3842 				goto done;
3843 			}
3844 			strcpy(&path[sb.st_size], p);
3845 
3846 			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3847 			if (rc != 0)
3848 				goto done;
3849 
3850 			/*
3851 			 * Restart with the new path, starting either at
3852 			 * the root or at the parent depending whether or
3853 			 * not the link is relative.
3854 			 */
3855 			p = path;
3856 			if (*p == '/') {
3857 				while (STAILQ_FIRST(&on_cache) !=
3858 				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3859 					entry = STAILQ_FIRST(&on_cache);
3860 					STAILQ_REMOVE_HEAD(&on_cache, entry);
3861 					free(entry);
3862 				}
3863 			} else {
3864 				entry = STAILQ_FIRST(&on_cache);
3865 				STAILQ_REMOVE_HEAD(&on_cache, entry);
3866 				free(entry);
3867 			}
3868 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3869 		}
3870 	}
3871 
3872 	*dnode = dn;
3873 done:
3874 	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3875 		free(entry);
3876 	return (rc);
3877 }
3878 
3879 /*
3880  * Return either a cached copy of the bootenv, or read each of the vdev children
3881  * looking for the bootenv. Cache what's found and return the results. Returns 0
3882  * when benvp is filled in, and some errno when not.
3883  */
3884 static int
zfs_get_bootenv_spa(spa_t * spa,nvlist_t ** benvp)3885 zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp)
3886 {
3887 	vdev_t *vd;
3888 	nvlist_t *benv = NULL;
3889 
3890 	if (spa->spa_bootenv == NULL) {
3891 		STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
3892 		    v_childlink) {
3893 			benv = vdev_read_bootenv(vd);
3894 
3895 			if (benv != NULL)
3896 				break;
3897 		}
3898 		spa->spa_bootenv = benv;
3899 	}
3900 	benv = spa->spa_bootenv;
3901 
3902 	if (benv == NULL)
3903 		return (ENOENT);
3904 
3905 	*benvp = benv;
3906 	return (0);
3907 }
3908 
3909 /*
3910  * Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
3911  */
3912 static int
zfs_set_bootenv_spa(spa_t * spa,nvlist_t * benv)3913 zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv)
3914 {
3915 	vdev_t *vd;
3916 
3917 	STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
3918 		vdev_write_bootenv(vd, benv);
3919 	}
3920 
3921 	spa->spa_bootenv = benv;
3922 	return (0);
3923 }
3924 
3925 /*
3926  * Get bootonce value by key. The bootonce <key, value> pair is removed from the
3927  * bootenv nvlist and the remaining nvlist is committed back to disk. This process
3928  * the bootonce flag since we've reached the point in the boot that we've 'used'
3929  * the BE. For chained boot scenarios, we may reach this point multiple times (but
3930  * only remove it and return 0 the first time).
3931  */
3932 static int
zfs_get_bootonce_spa(spa_t * spa,const char * key,char * buf,size_t size)3933 zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size)
3934 {
3935 	nvlist_t *benv;
3936 	char *result = NULL;
3937 	int result_size, rv;
3938 
3939 	if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0)
3940 		return (rv);
3941 
3942 	if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
3943 	    &result, &result_size)) == 0) {
3944 		if (result_size == 0) {
3945 			/* ignore empty string */
3946 			rv = ENOENT;
3947 		} else if (buf != NULL) {
3948 			size = MIN((size_t)result_size + 1, size);
3949 			strlcpy(buf, result, size);
3950 		}
3951 		(void)nvlist_remove(benv, key, DATA_TYPE_STRING);
3952 		(void)zfs_set_bootenv_spa(spa, benv);
3953 	}
3954 
3955 	return (rv);
3956 }
3957