xref: /freebsd/sys/kern/uipc_sockbuf.c (revision b93e930ca233e3b3cb5e017bc9b09086f8909800)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_kern_tls.h"
34 #include "opt_param.h"
35 
36 #include <sys/param.h>
37 #include <sys/aio.h> /* for aio_swake proto */
38 #include <sys/kernel.h>
39 #include <sys/ktls.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/msan.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sx.h>
52 #include <sys/sysctl.h>
53 
54 #include <netinet/in.h>
55 
56 /*
57  * Function pointer set by the AIO routines so that the socket buffer code
58  * can call back into the AIO module if it is loaded.
59  */
60 void	(*aio_swake)(struct socket *, struct sockbuf *);
61 
62 /*
63  * Primitive routines for operating on socket buffers
64  */
65 
66 #define	BUF_MAX_ADJ(_sz)	(((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
67 
68 u_long	sb_max = SB_MAX;
69 u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 #ifdef KERN_TLS
74 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75     struct mbuf *n);
76 #endif
77 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
78 static void		sbunreserve_locked(struct socket *so, sb_which which);
79 
80 /*
81  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82  */
83 static void
sbm_clrprotoflags(struct mbuf * m,int flags)84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 	int mask;
87 
88 	mask = ~M_PROTOFLAGS;
89 	if (flags & PRUS_NOTREADY)
90 		mask |= M_NOTREADY;
91 	while (m) {
92 		m->m_flags &= mask;
93 		m = m->m_next;
94 	}
95 }
96 
97 /*
98  * Compress M_NOTREADY mbufs after they have been readied by sbready().
99  *
100  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101  * be copied at the time of sbcompress().  This function combines small
102  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
103  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104  * ready.
105  */
106 static void
sbready_compress(struct sockbuf * sb,struct mbuf * m0,struct mbuf * end)107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 	struct mbuf *m, *n;
110 	int ext_size;
111 
112 	SOCKBUF_LOCK_ASSERT(sb);
113 
114 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 		return;
116 
117 	for (m = m0; m != end; m = m->m_next) {
118 		MPASS((m->m_flags & M_NOTREADY) == 0);
119 		/*
120 		 * NB: In sbcompress(), 'n' is the last mbuf in the
121 		 * socket buffer and 'm' is the new mbuf being copied
122 		 * into the trailing space of 'n'.  Here, the roles
123 		 * are reversed and 'n' is the next mbuf after 'm'
124 		 * that is being copied into the trailing space of
125 		 * 'm'.
126 		 */
127 		n = m->m_next;
128 #ifdef KERN_TLS
129 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 		    (m->m_flags & M_EXTPG) &&
132 		    (n->m_flags & M_EXTPG) &&
133 		    !mbuf_has_tls_session(m) &&
134 		    !mbuf_has_tls_session(n)) {
135 			int hdr_len, trail_len;
136 
137 			hdr_len = n->m_epg_hdrlen;
138 			trail_len = m->m_epg_trllen;
139 			if (trail_len != 0 && hdr_len != 0 &&
140 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 				/* copy n's header to m's trailer */
142 				memcpy(&m->m_epg_trail[trail_len],
143 				    n->m_epg_hdr, hdr_len);
144 				m->m_epg_trllen += hdr_len;
145 				m->m_len += hdr_len;
146 				n->m_epg_hdrlen = 0;
147 				n->m_len -= hdr_len;
148 			}
149 		}
150 #endif
151 
152 		/* Compress small unmapped mbufs into plain mbufs. */
153 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 		    !mbuf_has_tls_session(m)) {
155 			ext_size = m->m_ext.ext_size;
156 			if (mb_unmapped_compress(m) == 0)
157 				sb->sb_mbcnt -= ext_size;
158 		}
159 
160 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
161 		    M_WRITABLE(m) &&
162 		    (m->m_flags & M_EXTPG) == 0 &&
163 		    !mbuf_has_tls_session(n) &&
164 		    !mbuf_has_tls_session(m) &&
165 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
166 		    n->m_len <= M_TRAILINGSPACE(m) &&
167 		    m->m_type == n->m_type) {
168 			KASSERT(sb->sb_lastrecord != n,
169 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
170 			    __func__, n, m));
171 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
172 			m->m_len += n->m_len;
173 			m->m_next = n->m_next;
174 			m->m_flags |= n->m_flags & M_EOR;
175 			if (sb->sb_mbtail == n)
176 				sb->sb_mbtail = m;
177 
178 			sb->sb_mbcnt -= MSIZE;
179 			if (n->m_flags & M_EXT)
180 				sb->sb_mbcnt -= n->m_ext.ext_size;
181 			m_free(n);
182 			n = m->m_next;
183 		}
184 	}
185 	SBLASTRECORDCHK(sb);
186 	SBLASTMBUFCHK(sb);
187 }
188 
189 /*
190  * Mark ready "count" units of I/O starting with "m".  Most mbufs
191  * count as a single unit of I/O except for M_EXTPG mbufs which
192  * are backed by multiple pages.
193  */
194 int
sbready(struct sockbuf * sb,struct mbuf * m0,int count)195 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
196 {
197 	struct mbuf *m;
198 	bool blocker;
199 
200 	SOCKBUF_LOCK_ASSERT(sb);
201 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
202 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
203 
204 	m = m0;
205 	blocker = (sb->sb_fnrdy == m);
206 
207 	while (count > 0) {
208 		KASSERT(m->m_flags & M_NOTREADY,
209 		    ("%s: m %p !M_NOTREADY", __func__, m));
210 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
211 			if (count < m->m_epg_nrdy) {
212 				m->m_epg_nrdy -= count;
213 				count = 0;
214 				break;
215 			}
216 			count -= m->m_epg_nrdy;
217 			m->m_epg_nrdy = 0;
218 		} else
219 			count--;
220 		m->m_flags &= ~M_NOTREADY;
221 		if (blocker)
222 			sb->sb_acc += m->m_len;
223 		m = m->m_next;
224 	}
225 
226 	/*
227 	 * If the first mbuf is still not fully ready because only
228 	 * some of its backing pages were readied, no further progress
229 	 * can be made.
230 	 */
231 	if (m0 == m) {
232 		MPASS(m->m_flags & M_NOTREADY);
233 		return (EINPROGRESS);
234 	}
235 
236 	if (!blocker) {
237 		sbready_compress(sb, m0, m);
238 		return (EINPROGRESS);
239 	}
240 
241 	/* This one was blocking all the queue. */
242 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next)
243 		sb->sb_acc += m->m_len;
244 
245 	sb->sb_fnrdy = m;
246 	sbready_compress(sb, m0, m);
247 
248 	return (0);
249 }
250 
251 /*
252  * Adjust sockbuf state reflecting allocation of m.
253  */
254 void
sballoc(struct sockbuf * sb,struct mbuf * m)255 sballoc(struct sockbuf *sb, struct mbuf *m)
256 {
257 
258 	SOCKBUF_LOCK_ASSERT(sb);
259 
260 	sb->sb_ccc += m->m_len;
261 
262 	if (sb->sb_fnrdy == NULL) {
263 		if (m->m_flags & M_NOTREADY)
264 			sb->sb_fnrdy = m;
265 		else
266 			sb->sb_acc += m->m_len;
267 	}
268 
269 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
270 		sb->sb_ctl += m->m_len;
271 
272 	sb->sb_mbcnt += MSIZE;
273 
274 	if (m->m_flags & M_EXT)
275 		sb->sb_mbcnt += m->m_ext.ext_size;
276 }
277 
278 /*
279  * Adjust sockbuf state reflecting freeing of m.
280  */
281 void
sbfree(struct sockbuf * sb,struct mbuf * m)282 sbfree(struct sockbuf *sb, struct mbuf *m)
283 {
284 	struct mbuf *n;
285 
286 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
287 	SOCKBUF_LOCK_ASSERT(sb);
288 #endif
289 	sb->sb_ccc -= m->m_len;
290 
291 	if (m == sb->sb_fnrdy) {
292 		KASSERT(m->m_flags & M_NOTREADY,
293 		    ("%s: m %p !M_NOTREADY", __func__, m));
294 
295 		n = m->m_next;
296 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
297 			sb->sb_acc += n->m_len;
298 			n = n->m_next;
299 		}
300 		sb->sb_fnrdy = n;
301 	} else {
302 		/* Assert that mbuf is not behind sb_fnrdy. */
303 		for (n = sb->sb_fnrdy; n != NULL; n = n->m_next)
304 			KASSERT(n != m, ("%s: sb %p freeing %p behind sb_fnrdy",
305 			    __func__, sb, m));
306 		sb->sb_acc -= m->m_len;
307 	}
308 
309 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
310 		sb->sb_ctl -= m->m_len;
311 
312 	sb->sb_mbcnt -= MSIZE;
313 	if (m->m_flags & M_EXT)
314 		sb->sb_mbcnt -= m->m_ext.ext_size;
315 
316 	if (sb->sb_sndptr == m) {
317 		sb->sb_sndptr = NULL;
318 		sb->sb_sndptroff = 0;
319 	}
320 	if (sb->sb_sndptroff != 0)
321 		sb->sb_sndptroff -= m->m_len;
322 }
323 
324 #ifdef KERN_TLS
325 /*
326  * Similar to sballoc/sbfree but does not adjust state associated with
327  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
328  * are not ready.
329  */
330 void
sballoc_ktls_rx(struct sockbuf * sb,struct mbuf * m)331 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
332 {
333 
334 	SOCKBUF_LOCK_ASSERT(sb);
335 
336 	sb->sb_ccc += m->m_len;
337 	sb->sb_tlscc += m->m_len;
338 
339 	sb->sb_mbcnt += MSIZE;
340 
341 	if (m->m_flags & M_EXT)
342 		sb->sb_mbcnt += m->m_ext.ext_size;
343 }
344 
345 void
sbfree_ktls_rx(struct sockbuf * sb,struct mbuf * m)346 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
347 {
348 
349 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
350 	SOCKBUF_LOCK_ASSERT(sb);
351 #endif
352 
353 	sb->sb_ccc -= m->m_len;
354 	sb->sb_tlscc -= m->m_len;
355 
356 	sb->sb_mbcnt -= MSIZE;
357 
358 	if (m->m_flags & M_EXT)
359 		sb->sb_mbcnt -= m->m_ext.ext_size;
360 }
361 #endif
362 
363 /*
364  * Socantsendmore indicates that no more data will be sent on the socket; it
365  * would normally be applied to a socket when the user informs the system
366  * that no more data is to be sent, by the protocol code (in case
367  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
368  * received, and will normally be applied to the socket by a protocol when it
369  * detects that the peer will send no more data.  Data queued for reading in
370  * the socket may yet be read.
371  */
372 void
socantsendmore_locked(struct socket * so)373 socantsendmore_locked(struct socket *so)
374 {
375 
376 	SOCK_SENDBUF_LOCK_ASSERT(so);
377 
378 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
379 	sowwakeup_locked(so);
380 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
381 }
382 
383 void
socantsendmore(struct socket * so)384 socantsendmore(struct socket *so)
385 {
386 
387 	SOCK_SENDBUF_LOCK(so);
388 	socantsendmore_locked(so);
389 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
390 }
391 
392 void
socantrcvmore_locked(struct socket * so)393 socantrcvmore_locked(struct socket *so)
394 {
395 
396 	SOCK_RECVBUF_LOCK_ASSERT(so);
397 
398 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
399 #ifdef KERN_TLS
400 	if (so->so_rcv.sb_flags & SB_TLS_RX)
401 		ktls_check_rx(&so->so_rcv);
402 #endif
403 	sorwakeup_locked(so);
404 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
405 }
406 
407 void
socantrcvmore(struct socket * so)408 socantrcvmore(struct socket *so)
409 {
410 
411 	SOCK_RECVBUF_LOCK(so);
412 	socantrcvmore_locked(so);
413 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
414 }
415 
416 void
soroverflow_locked(struct socket * so)417 soroverflow_locked(struct socket *so)
418 {
419 
420 	SOCK_RECVBUF_LOCK_ASSERT(so);
421 
422 	if (so->so_options & SO_RERROR) {
423 		so->so_rerror = ENOBUFS;
424 		sorwakeup_locked(so);
425 	} else
426 		SOCK_RECVBUF_UNLOCK(so);
427 
428 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
429 }
430 
431 void
soroverflow(struct socket * so)432 soroverflow(struct socket *so)
433 {
434 
435 	SOCK_RECVBUF_LOCK(so);
436 	soroverflow_locked(so);
437 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
438 }
439 
440 /*
441  * Wait for data to arrive at/drain from a socket buffer.
442  */
443 int
sbwait(struct socket * so,sb_which which)444 sbwait(struct socket *so, sb_which which)
445 {
446 	struct sockbuf *sb;
447 
448 	SOCK_BUF_LOCK_ASSERT(so, which);
449 
450 	sb = sobuf(so, which);
451 	sb->sb_flags |= SB_WAIT;
452 	return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
453 	    PSOCK | PCATCH, "sbwait", sb->sb_timeo, 0, 0));
454 }
455 
456 /*
457  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
458  * via SIGIO if the socket has the SS_ASYNC flag set.
459  *
460  * Called with the socket buffer lock held; will release the lock by the end
461  * of the function.  This allows the caller to acquire the socket buffer lock
462  * while testing for the need for various sorts of wakeup and hold it through
463  * to the point where it's no longer required.  We currently hold the lock
464  * through calls out to other subsystems (with the exception of kqueue), and
465  * then release it to avoid lock order issues.  It's not clear that's
466  * correct.
467  */
468 static __always_inline void
sowakeup(struct socket * so,const sb_which which)469 sowakeup(struct socket *so, const sb_which which)
470 {
471 	struct sockbuf *sb;
472 	int ret;
473 
474 	SOCK_BUF_LOCK_ASSERT(so, which);
475 
476 	sb = sobuf(so, which);
477 	selwakeuppri(sb->sb_sel, PSOCK);
478 	if (!SEL_WAITING(sb->sb_sel))
479 		sb->sb_flags &= ~SB_SEL;
480 	if (sb->sb_flags & SB_WAIT) {
481 		sb->sb_flags &= ~SB_WAIT;
482 		wakeup(&sb->sb_acc);
483 	}
484 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
485 	if (sb->sb_upcall != NULL) {
486 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
487 		if (ret == SU_ISCONNECTED) {
488 			KASSERT(sb == &so->so_rcv,
489 			    ("SO_SND upcall returned SU_ISCONNECTED"));
490 			soupcall_clear(so, SO_RCV);
491 		}
492 	} else
493 		ret = SU_OK;
494 	if (sb->sb_flags & SB_AIO)
495 		sowakeup_aio(so, which);
496 	SOCK_BUF_UNLOCK(so, which);
497 	if (ret == SU_ISCONNECTED)
498 		soisconnected(so);
499 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
500 		pgsigio(&so->so_sigio, SIGIO, 0);
501 	SOCK_BUF_UNLOCK_ASSERT(so, which);
502 }
503 
504 static void
splice_push(struct socket * so)505 splice_push(struct socket *so)
506 {
507 	struct so_splice *sp;
508 
509 	SOCK_RECVBUF_LOCK_ASSERT(so);
510 
511 	sp = so->so_splice;
512 	mtx_lock(&sp->mtx);
513 	SOCK_RECVBUF_UNLOCK(so);
514 	so_splice_dispatch(sp);
515 }
516 
517 static void
splice_pull(struct socket * so)518 splice_pull(struct socket *so)
519 {
520 	struct so_splice *sp;
521 
522 	SOCK_SENDBUF_LOCK_ASSERT(so);
523 
524 	sp = so->so_splice_back;
525 	mtx_lock(&sp->mtx);
526 	SOCK_SENDBUF_UNLOCK(so);
527 	so_splice_dispatch(sp);
528 }
529 
530 /*
531  * Do we need to notify the other side when I/O is possible?
532  */
533 static __always_inline bool
sb_notify(const struct sockbuf * sb)534 sb_notify(const struct sockbuf *sb)
535 {
536 	return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
537 	    SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
538 }
539 
540 void
sorwakeup_locked(struct socket * so)541 sorwakeup_locked(struct socket *so)
542 {
543 	SOCK_RECVBUF_LOCK_ASSERT(so);
544 	if (so->so_rcv.sb_flags & SB_SPLICED)
545 		splice_push(so);
546 	else if (sb_notify(&so->so_rcv))
547 		sowakeup(so, SO_RCV);
548 	else
549 		SOCK_RECVBUF_UNLOCK(so);
550 }
551 
552 void
sowwakeup_locked(struct socket * so)553 sowwakeup_locked(struct socket *so)
554 {
555 	SOCK_SENDBUF_LOCK_ASSERT(so);
556 	if (so->so_snd.sb_flags & SB_SPLICED)
557 		splice_pull(so);
558 	else if (sb_notify(&so->so_snd))
559 		sowakeup(so, SO_SND);
560 	else
561 		SOCK_SENDBUF_UNLOCK(so);
562 }
563 
564 /*
565  * Socket buffer (struct sockbuf) utility routines.
566  *
567  * Each socket contains two socket buffers: one for sending data and one for
568  * receiving data.  Each buffer contains a queue of mbufs, information about
569  * the number of mbufs and amount of data in the queue, and other fields
570  * allowing select() statements and notification on data availability to be
571  * implemented.
572  *
573  * Data stored in a socket buffer is maintained as a list of records.  Each
574  * record is a list of mbufs chained together with the m_next field.  Records
575  * are chained together with the m_nextpkt field. The upper level routine
576  * soreceive() expects the following conventions to be observed when placing
577  * information in the receive buffer:
578  *
579  * 1. If the protocol requires each message be preceded by the sender's name,
580  *    then a record containing that name must be present before any
581  *    associated data (mbuf's must be of type MT_SONAME).
582  * 2. If the protocol supports the exchange of ``access rights'' (really just
583  *    additional data associated with the message), and there are ``rights''
584  *    to be received, then a record containing this data should be present
585  *    (mbuf's must be of type MT_RIGHTS).
586  * 3. If a name or rights record exists, then it must be followed by a data
587  *    record, perhaps of zero length.
588  *
589  * Before using a new socket structure it is first necessary to reserve
590  * buffer space to the socket, by calling sbreserve().  This should commit
591  * some of the available buffer space in the system buffer pool for the
592  * socket (currently, it does nothing but enforce limits).  The space should
593  * be released by calling sbrelease() when the socket is destroyed.
594  */
595 int
soreserve(struct socket * so,u_long sndcc,u_long rcvcc)596 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
597 {
598 	struct thread *td = curthread;
599 
600 	SOCK_SENDBUF_LOCK(so);
601 	SOCK_RECVBUF_LOCK(so);
602 	if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
603 		goto bad;
604 	if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
605 		goto bad2;
606 	if (so->so_rcv.sb_lowat == 0)
607 		so->so_rcv.sb_lowat = 1;
608 	if (so->so_snd.sb_lowat == 0)
609 		so->so_snd.sb_lowat = MCLBYTES;
610 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
611 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
612 	SOCK_RECVBUF_UNLOCK(so);
613 	SOCK_SENDBUF_UNLOCK(so);
614 	return (0);
615 bad2:
616 	sbunreserve_locked(so, SO_SND);
617 bad:
618 	SOCK_RECVBUF_UNLOCK(so);
619 	SOCK_SENDBUF_UNLOCK(so);
620 	return (ENOBUFS);
621 }
622 
623 static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)624 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
625 {
626 	int error = 0;
627 	u_long tmp_sb_max = sb_max;
628 
629 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
630 	if (error || !req->newptr)
631 		return (error);
632 	if (tmp_sb_max < MSIZE + MCLBYTES)
633 		return (EINVAL);
634 	sb_max = tmp_sb_max;
635 	sb_max_adj = BUF_MAX_ADJ(sb_max);
636 	return (0);
637 }
638 
639 /*
640  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
641  * become limiting if buffering efficiency is near the normal case.
642  */
643 bool
sbreserve_locked_limit(struct socket * so,sb_which which,u_long cc,u_long buf_max,struct thread * td)644 sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
645     u_long buf_max, struct thread *td)
646 {
647 	struct sockbuf *sb = sobuf(so, which);
648 	rlim_t sbsize_limit;
649 
650 	SOCK_BUF_LOCK_ASSERT(so, which);
651 
652 	/*
653 	 * When a thread is passed, we take into account the thread's socket
654 	 * buffer size limit.  The caller will generally pass curthread, but
655 	 * in the TCP input path, NULL will be passed to indicate that no
656 	 * appropriate thread resource limits are available.  In that case,
657 	 * we don't apply a process limit.
658 	 */
659 	if (cc > BUF_MAX_ADJ(buf_max))
660 		return (false);
661 	if (td != NULL) {
662 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
663 	} else
664 		sbsize_limit = RLIM_INFINITY;
665 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
666 	    sbsize_limit))
667 		return (false);
668 	sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
669 	if (sb->sb_lowat > sb->sb_hiwat)
670 		sb->sb_lowat = sb->sb_hiwat;
671 	return (true);
672 }
673 
674 bool
sbreserve_locked(struct socket * so,sb_which which,u_long cc,struct thread * td)675 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
676     struct thread *td)
677 {
678 	return (sbreserve_locked_limit(so, which, cc, sb_max, td));
679 }
680 
681 static void
sbunreserve_locked(struct socket * so,sb_which which)682 sbunreserve_locked(struct socket *so, sb_which which)
683 {
684 	struct sockbuf *sb = sobuf(so, which);
685 
686 	SOCK_BUF_LOCK_ASSERT(so, which);
687 
688 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
689 	    RLIM_INFINITY);
690 	sb->sb_mbmax = 0;
691 }
692 
693 int
sbsetopt(struct socket * so,struct sockopt * sopt)694 sbsetopt(struct socket *so, struct sockopt *sopt)
695 {
696 	struct sockbuf *sb;
697 	sb_which wh;
698 	short *flags;
699 	u_int cc, *hiwat, *lowat;
700 	int error, optval;
701 
702 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
703 	if (error != 0)
704 		return (error);
705 
706 	/*
707 	 * Values < 1 make no sense for any of these options,
708 	 * so disallow them.
709 	 */
710 	if (optval < 1)
711 		return (EINVAL);
712 	cc = optval;
713 
714 	sb = NULL;
715 	SOCK_LOCK(so);
716 	if (SOLISTENING(so)) {
717 		switch (sopt->sopt_name) {
718 			case SO_SNDLOWAT:
719 			case SO_SNDBUF:
720 				lowat = &so->sol_sbsnd_lowat;
721 				hiwat = &so->sol_sbsnd_hiwat;
722 				flags = &so->sol_sbsnd_flags;
723 				break;
724 			case SO_RCVLOWAT:
725 			case SO_RCVBUF:
726 				lowat = &so->sol_sbrcv_lowat;
727 				hiwat = &so->sol_sbrcv_hiwat;
728 				flags = &so->sol_sbrcv_flags;
729 				break;
730 		}
731 	} else {
732 		switch (sopt->sopt_name) {
733 			case SO_SNDLOWAT:
734 			case SO_SNDBUF:
735 				sb = &so->so_snd;
736 				wh = SO_SND;
737 				break;
738 			case SO_RCVLOWAT:
739 			case SO_RCVBUF:
740 				sb = &so->so_rcv;
741 				wh = SO_RCV;
742 				break;
743 		}
744 		flags = &sb->sb_flags;
745 		hiwat = &sb->sb_hiwat;
746 		lowat = &sb->sb_lowat;
747 		SOCK_BUF_LOCK(so, wh);
748 	}
749 
750 	error = 0;
751 	switch (sopt->sopt_name) {
752 	case SO_SNDBUF:
753 	case SO_RCVBUF:
754 		if (SOLISTENING(so)) {
755 			if (cc > sb_max_adj) {
756 				error = ENOBUFS;
757 				break;
758 			}
759 			*hiwat = cc;
760 			if (*lowat > *hiwat)
761 				*lowat = *hiwat;
762 		} else {
763 			if (!sbreserve_locked(so, wh, cc, curthread))
764 				error = ENOBUFS;
765 		}
766 		if (error == 0)
767 			*flags &= ~SB_AUTOSIZE;
768 		break;
769 	case SO_SNDLOWAT:
770 	case SO_RCVLOWAT:
771 		/*
772 		 * Make sure the low-water is never greater than the
773 		 * high-water.
774 		 */
775 		*lowat = (cc > *hiwat) ? *hiwat : cc;
776 		*flags &= ~SB_AUTOLOWAT;
777 		break;
778 	}
779 
780 	if (!SOLISTENING(so))
781 		SOCK_BUF_UNLOCK(so, wh);
782 	SOCK_UNLOCK(so);
783 	return (error);
784 }
785 
786 /*
787  * Free mbufs held by a socket, and reserved mbuf space.
788  */
789 void
sbrelease_locked(struct socket * so,sb_which which)790 sbrelease_locked(struct socket *so, sb_which which)
791 {
792 	struct sockbuf *sb = sobuf(so, which);
793 
794 	SOCK_BUF_LOCK_ASSERT(so, which);
795 
796 	sbflush_locked(sb);
797 	sbunreserve_locked(so, which);
798 }
799 
800 void
sbrelease(struct socket * so,sb_which which)801 sbrelease(struct socket *so, sb_which which)
802 {
803 
804 	SOCK_BUF_LOCK(so, which);
805 	sbrelease_locked(so, which);
806 	SOCK_BUF_UNLOCK(so, which);
807 }
808 
809 void
sbdestroy(struct socket * so,sb_which which)810 sbdestroy(struct socket *so, sb_which which)
811 {
812 #ifdef KERN_TLS
813 	struct sockbuf *sb = sobuf(so, which);
814 
815 	if (sb->sb_tls_info != NULL)
816 		ktls_free(sb->sb_tls_info);
817 	sb->sb_tls_info = NULL;
818 #endif
819 	sbrelease_locked(so, which);
820 }
821 
822 /*
823  * Routines to add and remove data from an mbuf queue.
824  *
825  * The routines sbappend() or sbappendrecord() are normally called to append
826  * new mbufs to a socket buffer, after checking that adequate space is
827  * available, comparing the function sbspace() with the amount of data to be
828  * added.  sbappendrecord() differs from sbappend() in that data supplied is
829  * treated as the beginning of a new record.  To place a sender's address,
830  * optional access rights, and data in a socket receive buffer,
831  * sbappendaddr() should be used.  To place access rights and data in a
832  * socket receive buffer, sbappendrights() should be used.  In either case,
833  * the new data begins a new record.  Note that unlike sbappend() and
834  * sbappendrecord(), these routines check for the caller that there will be
835  * enough space to store the data.  Each fails if there is not enough space,
836  * or if it cannot find mbufs to store additional information in.
837  *
838  * Reliable protocols may use the socket send buffer to hold data awaiting
839  * acknowledgement.  Data is normally copied from a socket send buffer in a
840  * protocol with m_copy for output to a peer, and then removing the data from
841  * the socket buffer with sbdrop() or sbdroprecord() when the data is
842  * acknowledged by the peer.
843  */
844 #ifdef SOCKBUF_DEBUG
845 void
sblastrecordchk(struct sockbuf * sb,const char * file,int line)846 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
847 {
848 	struct mbuf *m = sb->sb_mb;
849 
850 	SOCKBUF_LOCK_ASSERT(sb);
851 
852 	while (m && m->m_nextpkt)
853 		m = m->m_nextpkt;
854 
855 	if (m != sb->sb_lastrecord) {
856 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
857 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
858 		printf("packet chain:\n");
859 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
860 			printf("\t%p\n", m);
861 		panic("%s from %s:%u", __func__, file, line);
862 	}
863 }
864 
865 void
sblastmbufchk(struct sockbuf * sb,const char * file,int line)866 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
867 {
868 	struct mbuf *m = sb->sb_mb;
869 	struct mbuf *n;
870 
871 	SOCKBUF_LOCK_ASSERT(sb);
872 
873 	while (m && m->m_nextpkt)
874 		m = m->m_nextpkt;
875 
876 	while (m && m->m_next)
877 		m = m->m_next;
878 
879 	if (m != sb->sb_mbtail) {
880 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
881 			__func__, sb->sb_mb, sb->sb_mbtail, m);
882 		printf("packet tree:\n");
883 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
884 			printf("\t");
885 			for (n = m; n != NULL; n = n->m_next)
886 				printf("%p ", n);
887 			printf("\n");
888 		}
889 		panic("%s from %s:%u", __func__, file, line);
890 	}
891 
892 #ifdef KERN_TLS
893 	m = sb->sb_mtls;
894 	while (m && m->m_next)
895 		m = m->m_next;
896 
897 	if (m != sb->sb_mtlstail) {
898 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
899 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
900 		printf("TLS packet tree:\n");
901 		printf("\t");
902 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
903 			printf("%p ", m);
904 		}
905 		printf("\n");
906 		panic("%s from %s:%u", __func__, file, line);
907 	}
908 #endif
909 }
910 #endif /* SOCKBUF_DEBUG */
911 
912 #define SBLINKRECORD(sb, m0) do {					\
913 	SOCKBUF_LOCK_ASSERT(sb);					\
914 	if ((sb)->sb_lastrecord != NULL)				\
915 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
916 	else								\
917 		(sb)->sb_mb = (m0);					\
918 	(sb)->sb_lastrecord = (m0);					\
919 } while (/*CONSTCOND*/0)
920 
921 /*
922  * Append mbuf chain m to the last record in the socket buffer sb.  The
923  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
924  * are discarded and mbufs are compacted where possible.
925  */
926 void
sbappend_locked(struct sockbuf * sb,struct mbuf * m,int flags)927 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
928 {
929 	struct mbuf *n;
930 
931 	SOCKBUF_LOCK_ASSERT(sb);
932 
933 	if (m == NULL)
934 		return;
935 	kmsan_check_mbuf(m, "sbappend");
936 	sbm_clrprotoflags(m, flags);
937 	SBLASTRECORDCHK(sb);
938 	n = sb->sb_mb;
939 	if (n) {
940 		while (n->m_nextpkt)
941 			n = n->m_nextpkt;
942 		do {
943 			if (n->m_flags & M_EOR) {
944 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
945 				return;
946 			}
947 		} while (n->m_next && (n = n->m_next));
948 	} else {
949 		/*
950 		 * XXX Would like to simply use sb_mbtail here, but
951 		 * XXX I need to verify that I won't miss an EOR that
952 		 * XXX way.
953 		 */
954 		if ((n = sb->sb_lastrecord) != NULL) {
955 			do {
956 				if (n->m_flags & M_EOR) {
957 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
958 					return;
959 				}
960 			} while (n->m_next && (n = n->m_next));
961 		} else {
962 			/*
963 			 * If this is the first record in the socket buffer,
964 			 * it's also the last record.
965 			 */
966 			sb->sb_lastrecord = m;
967 		}
968 	}
969 	sbcompress(sb, m, n);
970 	SBLASTRECORDCHK(sb);
971 }
972 
973 /*
974  * Append mbuf chain m to the last record in the socket buffer sb.  The
975  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
976  * are discarded and mbufs are compacted where possible.
977  */
978 void
sbappend(struct sockbuf * sb,struct mbuf * m,int flags)979 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
980 {
981 
982 	SOCKBUF_LOCK(sb);
983 	sbappend_locked(sb, m, flags);
984 	SOCKBUF_UNLOCK(sb);
985 }
986 
987 #ifdef KERN_TLS
988 /*
989  * Append an mbuf containing encrypted TLS data.  The data
990  * is marked M_NOTREADY until it has been decrypted and
991  * stored as a TLS record.
992  */
993 static void
sbappend_ktls_rx(struct sockbuf * sb,struct mbuf * m)994 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
995 {
996 	struct ifnet *ifp;
997 	struct mbuf *n;
998 	int flags;
999 
1000 	ifp = NULL;
1001 	flags = M_NOTREADY;
1002 
1003 	SBLASTMBUFCHK(sb);
1004 
1005 	/* Mbuf chain must start with a packet header. */
1006 	MPASS((m->m_flags & M_PKTHDR) != 0);
1007 
1008 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1009 	for (n = m; n != NULL; n = n->m_next) {
1010 		if (n->m_flags & M_PKTHDR) {
1011 			ifp = m->m_pkthdr.leaf_rcvif;
1012 			if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
1013 			    CSUM_TLS_DECRYPTED) {
1014 				/* Mark all mbufs in this packet decrypted. */
1015 				flags = M_NOTREADY | M_DECRYPTED;
1016 			} else {
1017 				flags = M_NOTREADY;
1018 			}
1019 			m_demote_pkthdr(n);
1020 		}
1021 
1022 		n->m_flags &= M_DEMOTEFLAGS;
1023 		n->m_flags |= flags;
1024 
1025 		MPASS((n->m_flags & M_NOTREADY) != 0);
1026 	}
1027 
1028 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
1029 	ktls_check_rx(sb);
1030 
1031 	/* Check for incoming packet route changes: */
1032 	if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
1033 	    sb->sb_tls_info->rx_ifp != ifp)
1034 		ktls_input_ifp_mismatch(sb, ifp);
1035 }
1036 #endif
1037 
1038 /*
1039  * This version of sbappend() should only be used when the caller absolutely
1040  * knows that there will never be more than one record in the socket buffer,
1041  * that is, a stream protocol (such as TCP).
1042  */
1043 void
sbappendstream_locked(struct sockbuf * sb,struct mbuf * m,int flags)1044 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1045 {
1046 	SOCKBUF_LOCK_ASSERT(sb);
1047 
1048 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1049 
1050 	kmsan_check_mbuf(m, "sbappend");
1051 
1052 #ifdef KERN_TLS
1053 	/*
1054 	 * Decrypted TLS records are appended as records via
1055 	 * sbappendrecord().  TCP passes encrypted TLS records to this
1056 	 * function which must be scheduled for decryption.
1057 	 */
1058 	if (sb->sb_flags & SB_TLS_RX) {
1059 		sbappend_ktls_rx(sb, m);
1060 		return;
1061 	}
1062 #endif
1063 
1064 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1065 
1066 	SBLASTMBUFCHK(sb);
1067 
1068 #ifdef KERN_TLS
1069 	if (sb->sb_tls_info != NULL)
1070 		ktls_seq(sb, m);
1071 #endif
1072 
1073 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1074 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1075 
1076 	sbcompress(sb, m, sb->sb_mbtail);
1077 
1078 	sb->sb_lastrecord = sb->sb_mb;
1079 	SBLASTRECORDCHK(sb);
1080 }
1081 
1082 /*
1083  * This version of sbappend() should only be used when the caller absolutely
1084  * knows that there will never be more than one record in the socket buffer,
1085  * that is, a stream protocol (such as TCP).
1086  */
1087 void
sbappendstream(struct sockbuf * sb,struct mbuf * m,int flags)1088 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1089 {
1090 
1091 	SOCKBUF_LOCK(sb);
1092 	sbappendstream_locked(sb, m, flags);
1093 	SOCKBUF_UNLOCK(sb);
1094 }
1095 
1096 #ifdef SOCKBUF_DEBUG
1097 void
sbcheck(struct sockbuf * sb,const char * file,int line)1098 sbcheck(struct sockbuf *sb, const char *file, int line)
1099 {
1100 	struct mbuf *m, *n, *fnrdy;
1101 	u_long acc, ccc, mbcnt;
1102 #ifdef KERN_TLS
1103 	u_long tlscc;
1104 #endif
1105 
1106 	SOCKBUF_LOCK_ASSERT(sb);
1107 
1108 	acc = ccc = mbcnt = 0;
1109 	fnrdy = NULL;
1110 
1111 	for (m = sb->sb_mb; m; m = n) {
1112 	    n = m->m_nextpkt;
1113 	    for (; m; m = m->m_next) {
1114 		if (m->m_len == 0) {
1115 			printf("sb %p empty mbuf %p\n", sb, m);
1116 			goto fail;
1117 		}
1118 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1119 			if (m != sb->sb_fnrdy) {
1120 				printf("sb %p: fnrdy %p != m %p\n",
1121 				    sb, sb->sb_fnrdy, m);
1122 				goto fail;
1123 			}
1124 			fnrdy = m;
1125 		}
1126 		if (fnrdy == NULL)
1127 			acc += m->m_len;
1128 		ccc += m->m_len;
1129 		mbcnt += MSIZE;
1130 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1131 			mbcnt += m->m_ext.ext_size;
1132 	    }
1133 	}
1134 #ifdef KERN_TLS
1135 	/*
1136 	 * Account for mbufs "detached" by ktls_detach_record() while
1137 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1138 	 * of the detached bytes that are included in ccc.  The mbufs
1139 	 * and clusters are not included in the socket buffer
1140 	 * accounting.
1141 	 */
1142 	ccc += sb->sb_tlsdcc;
1143 
1144 	tlscc = 0;
1145 	for (m = sb->sb_mtls; m; m = m->m_next) {
1146 		if (m->m_nextpkt != NULL) {
1147 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1148 			goto fail;
1149 		}
1150 		if ((m->m_flags & M_NOTREADY) == 0) {
1151 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1152 			goto fail;
1153 		}
1154 		tlscc += m->m_len;
1155 		ccc += m->m_len;
1156 		mbcnt += MSIZE;
1157 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1158 			mbcnt += m->m_ext.ext_size;
1159 	}
1160 
1161 	if (sb->sb_tlscc != tlscc) {
1162 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1163 		    sb->sb_tlsdcc);
1164 		goto fail;
1165 	}
1166 #endif
1167 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1168 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1169 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1170 #ifdef KERN_TLS
1171 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1172 		    sb->sb_tlsdcc);
1173 #endif
1174 		goto fail;
1175 	}
1176 	return;
1177 fail:
1178 	panic("%s from %s:%u", __func__, file, line);
1179 }
1180 #endif
1181 
1182 /*
1183  * As above, except the mbuf chain begins a new record.
1184  */
1185 void
sbappendrecord_locked(struct sockbuf * sb,struct mbuf * m0)1186 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1187 {
1188 	struct mbuf *m;
1189 
1190 	SOCKBUF_LOCK_ASSERT(sb);
1191 
1192 	if (m0 == NULL)
1193 		return;
1194 
1195 	kmsan_check_mbuf(m0, "sbappend");
1196 	m_clrprotoflags(m0);
1197 
1198 	/*
1199 	 * Put the first mbuf on the queue.  Note this permits zero length
1200 	 * records.
1201 	 */
1202 	sballoc(sb, m0);
1203 	SBLASTRECORDCHK(sb);
1204 	SBLINKRECORD(sb, m0);
1205 	sb->sb_mbtail = m0;
1206 	m = m0->m_next;
1207 	m0->m_next = 0;
1208 	if (m && (m0->m_flags & M_EOR)) {
1209 		m0->m_flags &= ~M_EOR;
1210 		m->m_flags |= M_EOR;
1211 	}
1212 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1213 	sbcompress(sb, m, m0);
1214 }
1215 
1216 /*
1217  * As above, except the mbuf chain begins a new record.
1218  */
1219 void
sbappendrecord(struct sockbuf * sb,struct mbuf * m0)1220 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1221 {
1222 
1223 	SOCKBUF_LOCK(sb);
1224 	sbappendrecord_locked(sb, m0);
1225 	SOCKBUF_UNLOCK(sb);
1226 }
1227 
1228 /* Helper routine that appends data, control, and address to a sockbuf. */
1229 static int
sbappendaddr_locked_internal(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control,struct mbuf * ctrl_last)1230 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1231     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1232 {
1233 	struct mbuf *m, *n, *nlast;
1234 
1235 	if (m0 != NULL)
1236 		kmsan_check_mbuf(m0, "sbappend");
1237 	if (control != NULL)
1238 		kmsan_check_mbuf(control, "sbappend");
1239 
1240 #if MSIZE <= 256
1241 	if (asa->sa_len > MLEN)
1242 		return (0);
1243 #endif
1244 	m = m_get(M_NOWAIT, MT_SONAME);
1245 	if (m == NULL)
1246 		return (0);
1247 	m->m_len = asa->sa_len;
1248 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1249 	if (m0) {
1250 		M_ASSERT_NO_SND_TAG(m0);
1251 		m_clrprotoflags(m0);
1252 		m_tag_delete_chain(m0, NULL);
1253 		/*
1254 		 * Clear some persistent info from pkthdr.
1255 		 * We don't use m_demote(), because some netgraph consumers
1256 		 * expect M_PKTHDR presence.
1257 		 */
1258 		m0->m_pkthdr.rcvif = NULL;
1259 		m0->m_pkthdr.flowid = 0;
1260 		m0->m_pkthdr.csum_flags = 0;
1261 		m0->m_pkthdr.fibnum = 0;
1262 		m0->m_pkthdr.rsstype = 0;
1263 	}
1264 	if (ctrl_last)
1265 		ctrl_last->m_next = m0;	/* concatenate data to control */
1266 	else
1267 		control = m0;
1268 	m->m_next = control;
1269 	for (n = m; n->m_next != NULL; n = n->m_next)
1270 		sballoc(sb, n);
1271 	sballoc(sb, n);
1272 	nlast = n;
1273 	SBLINKRECORD(sb, m);
1274 
1275 	sb->sb_mbtail = nlast;
1276 	SBLASTMBUFCHK(sb);
1277 
1278 	SBLASTRECORDCHK(sb);
1279 	return (1);
1280 }
1281 
1282 /*
1283  * Append address and data, and optionally, control (ancillary) data to the
1284  * receive queue of a socket.  If present, m0 must include a packet header
1285  * with total length.  Returns 0 if no space in sockbuf or insufficient
1286  * mbufs.
1287  */
1288 int
sbappendaddr_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1289 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1290     struct mbuf *m0, struct mbuf *control)
1291 {
1292 	struct mbuf *ctrl_last;
1293 	int space = asa->sa_len;
1294 
1295 	SOCKBUF_LOCK_ASSERT(sb);
1296 
1297 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1298 		panic("sbappendaddr_locked");
1299 	if (m0)
1300 		space += m0->m_pkthdr.len;
1301 	space += m_length(control, &ctrl_last);
1302 
1303 	if (space > sbspace(sb))
1304 		return (0);
1305 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1306 }
1307 
1308 /*
1309  * Append address and data, and optionally, control (ancillary) data to the
1310  * receive queue of a socket.  If present, m0 must include a packet header
1311  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1312  * on the receiving sockbuf.
1313  */
1314 int
sbappendaddr_nospacecheck_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1315 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1316     struct mbuf *m0, struct mbuf *control)
1317 {
1318 	struct mbuf *ctrl_last;
1319 
1320 	SOCKBUF_LOCK_ASSERT(sb);
1321 
1322 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1323 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1324 }
1325 
1326 /*
1327  * Append address and data, and optionally, control (ancillary) data to the
1328  * receive queue of a socket.  If present, m0 must include a packet header
1329  * with total length.  Returns 0 if no space in sockbuf or insufficient
1330  * mbufs.
1331  */
1332 int
sbappendaddr(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1333 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1334     struct mbuf *m0, struct mbuf *control)
1335 {
1336 	int retval;
1337 
1338 	SOCKBUF_LOCK(sb);
1339 	retval = sbappendaddr_locked(sb, asa, m0, control);
1340 	SOCKBUF_UNLOCK(sb);
1341 	return (retval);
1342 }
1343 
1344 void
sbappendcontrol_locked(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1345 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1346     struct mbuf *control, int flags)
1347 {
1348 	struct mbuf *m, *mlast;
1349 
1350 	if (m0 != NULL)
1351 		kmsan_check_mbuf(m0, "sbappend");
1352 	kmsan_check_mbuf(control, "sbappend");
1353 
1354 	sbm_clrprotoflags(m0, flags);
1355 	m_last(control)->m_next = m0;
1356 
1357 	SBLASTRECORDCHK(sb);
1358 
1359 	for (m = control; m->m_next; m = m->m_next)
1360 		sballoc(sb, m);
1361 	sballoc(sb, m);
1362 	mlast = m;
1363 	SBLINKRECORD(sb, control);
1364 
1365 	sb->sb_mbtail = mlast;
1366 	SBLASTMBUFCHK(sb);
1367 
1368 	SBLASTRECORDCHK(sb);
1369 }
1370 
1371 void
sbappendcontrol(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1372 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1373     int flags)
1374 {
1375 
1376 	SOCKBUF_LOCK(sb);
1377 	sbappendcontrol_locked(sb, m0, control, flags);
1378 	SOCKBUF_UNLOCK(sb);
1379 }
1380 
1381 /*
1382  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1383  * (n).  If (n) is NULL, the buffer is presumed empty.
1384  *
1385  * When the data is compressed, mbufs in the chain may be handled in one of
1386  * three ways:
1387  *
1388  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1389  *     record boundary, and no change in data type).
1390  *
1391  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1392  *     an mbuf already in the socket buffer.  This can occur if an
1393  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1394  *     not ready, and no merging of data types will occur.
1395  *
1396  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1397  *
1398  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1399  * end-of-record.
1400  */
1401 void
sbcompress(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1402 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1403 {
1404 	int eor = 0;
1405 	struct mbuf *o;
1406 
1407 	SOCKBUF_LOCK_ASSERT(sb);
1408 
1409 	while (m) {
1410 		eor |= m->m_flags & M_EOR;
1411 		if (m->m_len == 0 &&
1412 		    (eor == 0 ||
1413 		     (((o = m->m_next) || (o = n)) &&
1414 		      o->m_type == m->m_type))) {
1415 			if (sb->sb_lastrecord == m)
1416 				sb->sb_lastrecord = m->m_next;
1417 			m = m_free(m);
1418 			continue;
1419 		}
1420 		if (n && (n->m_flags & M_EOR) == 0 &&
1421 		    M_WRITABLE(n) &&
1422 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1423 		    !(m->m_flags & M_NOTREADY) &&
1424 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1425 		    !mbuf_has_tls_session(m) &&
1426 		    !mbuf_has_tls_session(n) &&
1427 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1428 		    m->m_len <= M_TRAILINGSPACE(n) &&
1429 		    n->m_type == m->m_type) {
1430 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1431 			n->m_len += m->m_len;
1432 			sb->sb_ccc += m->m_len;
1433 			if (sb->sb_fnrdy == NULL)
1434 				sb->sb_acc += m->m_len;
1435 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1436 				/* XXX: Probably don't need.*/
1437 				sb->sb_ctl += m->m_len;
1438 			m = m_free(m);
1439 			continue;
1440 		}
1441 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1442 		    (m->m_flags & M_NOTREADY) == 0 &&
1443 		    !mbuf_has_tls_session(m))
1444 			(void)mb_unmapped_compress(m);
1445 		if (n)
1446 			n->m_next = m;
1447 		else
1448 			sb->sb_mb = m;
1449 		sb->sb_mbtail = m;
1450 		sballoc(sb, m);
1451 		n = m;
1452 		m->m_flags &= ~M_EOR;
1453 		m = m->m_next;
1454 		n->m_next = 0;
1455 	}
1456 	if (eor) {
1457 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1458 		n->m_flags |= eor;
1459 	}
1460 	SBLASTMBUFCHK(sb);
1461 }
1462 
1463 #ifdef KERN_TLS
1464 /*
1465  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1466  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1467  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1468  */
1469 static void
sbcompress_ktls_rx(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1470 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1471 {
1472 
1473 	SOCKBUF_LOCK_ASSERT(sb);
1474 
1475 	while (m) {
1476 		KASSERT((m->m_flags & M_EOR) == 0,
1477 		    ("TLS RX mbuf %p with EOR", m));
1478 		KASSERT(m->m_type == MT_DATA,
1479 		    ("TLS RX mbuf %p is not MT_DATA", m));
1480 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1481 		    ("TLS RX mbuf %p ready", m));
1482 		KASSERT((m->m_flags & M_EXTPG) == 0,
1483 		    ("TLS RX mbuf %p unmapped", m));
1484 
1485 		if (m->m_len == 0) {
1486 			m = m_free(m);
1487 			continue;
1488 		}
1489 
1490 		/*
1491 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1492 		 * to coalesce the data.
1493 		 */
1494 		if (n &&
1495 		    M_WRITABLE(n) &&
1496 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1497 		    !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1498 		    !(n->m_flags & M_EXTPG) &&
1499 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1500 		    m->m_len <= M_TRAILINGSPACE(n)) {
1501 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1502 			n->m_len += m->m_len;
1503 			sb->sb_ccc += m->m_len;
1504 			sb->sb_tlscc += m->m_len;
1505 			m = m_free(m);
1506 			continue;
1507 		}
1508 		if (n)
1509 			n->m_next = m;
1510 		else
1511 			sb->sb_mtls = m;
1512 		sb->sb_mtlstail = m;
1513 		sballoc_ktls_rx(sb, m);
1514 		n = m;
1515 		m = m->m_next;
1516 		n->m_next = NULL;
1517 	}
1518 	SBLASTMBUFCHK(sb);
1519 }
1520 #endif
1521 
1522 /*
1523  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1524  */
1525 void
sbflush_locked(struct sockbuf * sb)1526 sbflush_locked(struct sockbuf *sb)
1527 {
1528 
1529 	SOCKBUF_LOCK_ASSERT(sb);
1530 
1531 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1532 		/*
1533 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1534 		 * we would loop forever. Panic instead.
1535 		 */
1536 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1537 			break;
1538 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1539 	}
1540 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1541 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1542 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1543 }
1544 
1545 void
sbflush(struct sockbuf * sb)1546 sbflush(struct sockbuf *sb)
1547 {
1548 
1549 	SOCKBUF_LOCK(sb);
1550 	sbflush_locked(sb);
1551 	SOCKBUF_UNLOCK(sb);
1552 }
1553 
1554 /*
1555  * Cut data from (the front of) a sockbuf.
1556  */
1557 static struct mbuf *
sbcut_internal(struct sockbuf * sb,int len)1558 sbcut_internal(struct sockbuf *sb, int len)
1559 {
1560 	struct mbuf *m, *next, *mfree;
1561 	bool is_tls;
1562 
1563 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1564 	    __func__, len));
1565 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1566 	    __func__, len, sb->sb_ccc));
1567 
1568 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1569 	is_tls = false;
1570 	mfree = NULL;
1571 
1572 	while (len > 0) {
1573 		if (m == NULL) {
1574 #ifdef KERN_TLS
1575 			if (next == NULL && !is_tls) {
1576 				if (sb->sb_tlsdcc != 0) {
1577 					MPASS(len >= sb->sb_tlsdcc);
1578 					len -= sb->sb_tlsdcc;
1579 					sb->sb_ccc -= sb->sb_tlsdcc;
1580 					sb->sb_tlsdcc = 0;
1581 					if (len == 0)
1582 						break;
1583 				}
1584 				next = sb->sb_mtls;
1585 				is_tls = true;
1586 			}
1587 #endif
1588 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1589 			m = next;
1590 			next = m->m_nextpkt;
1591 		}
1592 		if (m->m_len > len) {
1593 			KASSERT(!(m->m_flags & M_NOTREADY),
1594 			    ("%s: m %p M_NOTREADY", __func__, m));
1595 			m->m_len -= len;
1596 			m->m_data += len;
1597 			sb->sb_ccc -= len;
1598 			sb->sb_acc -= len;
1599 			if (sb->sb_sndptroff != 0)
1600 				sb->sb_sndptroff -= len;
1601 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1602 				sb->sb_ctl -= len;
1603 			break;
1604 		}
1605 		len -= m->m_len;
1606 #ifdef KERN_TLS
1607 		if (is_tls)
1608 			sbfree_ktls_rx(sb, m);
1609 		else
1610 #endif
1611 			sbfree(sb, m);
1612 		/*
1613 		 * Do not put M_NOTREADY buffers to the free list, they
1614 		 * are referenced from outside.
1615 		 */
1616 		if (m->m_flags & M_NOTREADY && !is_tls)
1617 			m = m->m_next;
1618 		else {
1619 			struct mbuf *n;
1620 
1621 			n = m->m_next;
1622 			m->m_next = mfree;
1623 			mfree = m;
1624 			m = n;
1625 		}
1626 	}
1627 	/*
1628 	 * Free any zero-length mbufs from the buffer.
1629 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1630 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1631 	 * when sosend_generic() needs to send only control data.
1632 	 */
1633 	while (m && m->m_len == 0) {
1634 		struct mbuf *n;
1635 
1636 		sbfree(sb, m);
1637 		n = m->m_next;
1638 		m->m_next = mfree;
1639 		mfree = m;
1640 		m = n;
1641 	}
1642 #ifdef KERN_TLS
1643 	if (is_tls) {
1644 		sb->sb_mb = NULL;
1645 		sb->sb_mtls = m;
1646 		if (m == NULL)
1647 			sb->sb_mtlstail = NULL;
1648 	} else
1649 #endif
1650 	if (m) {
1651 		sb->sb_mb = m;
1652 		m->m_nextpkt = next;
1653 	} else
1654 		sb->sb_mb = next;
1655 	/*
1656 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1657 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1658 	 */
1659 	m = sb->sb_mb;
1660 	if (m == NULL) {
1661 		sb->sb_mbtail = NULL;
1662 		sb->sb_lastrecord = NULL;
1663 	} else if (m->m_nextpkt == NULL) {
1664 		sb->sb_lastrecord = m;
1665 	}
1666 
1667 	return (mfree);
1668 }
1669 
1670 /*
1671  * Drop data from (the front of) a sockbuf.
1672  */
1673 void
sbdrop_locked(struct sockbuf * sb,int len)1674 sbdrop_locked(struct sockbuf *sb, int len)
1675 {
1676 
1677 	SOCKBUF_LOCK_ASSERT(sb);
1678 	m_freem(sbcut_internal(sb, len));
1679 }
1680 
1681 /*
1682  * Drop data from (the front of) a sockbuf,
1683  * and return it to caller.
1684  */
1685 struct mbuf *
sbcut_locked(struct sockbuf * sb,int len)1686 sbcut_locked(struct sockbuf *sb, int len)
1687 {
1688 
1689 	SOCKBUF_LOCK_ASSERT(sb);
1690 	return (sbcut_internal(sb, len));
1691 }
1692 
1693 void
sbdrop(struct sockbuf * sb,int len)1694 sbdrop(struct sockbuf *sb, int len)
1695 {
1696 	struct mbuf *mfree;
1697 
1698 	SOCKBUF_LOCK(sb);
1699 	mfree = sbcut_internal(sb, len);
1700 	SOCKBUF_UNLOCK(sb);
1701 
1702 	m_freem(mfree);
1703 }
1704 
1705 struct mbuf *
sbsndptr_noadv(struct sockbuf * sb,uint32_t off,uint32_t * moff)1706 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1707 {
1708 	struct mbuf *m;
1709 
1710 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1711 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1712 		*moff = off;
1713 		if (sb->sb_sndptr == NULL) {
1714 			sb->sb_sndptr = sb->sb_mb;
1715 			sb->sb_sndptroff = 0;
1716 		}
1717 		return (sb->sb_mb);
1718 	} else {
1719 		m = sb->sb_sndptr;
1720 		off -= sb->sb_sndptroff;
1721 	}
1722 	*moff = off;
1723 	return (m);
1724 }
1725 
1726 void
sbsndptr_adv(struct sockbuf * sb,struct mbuf * mb,uint32_t len)1727 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1728 {
1729 	/*
1730 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1731 	 * it.
1732 	 */
1733 	struct mbuf *m;
1734 
1735 	if (mb != sb->sb_sndptr) {
1736 		/* Did not copyout at the same mbuf */
1737 		return;
1738 	}
1739 	m = mb;
1740 	while (m && (len > 0)) {
1741 		if (len >= m->m_len) {
1742 			len -= m->m_len;
1743 			if (m->m_next) {
1744 				sb->sb_sndptroff += m->m_len;
1745 				sb->sb_sndptr = m->m_next;
1746 			}
1747 			m = m->m_next;
1748 		} else {
1749 			len = 0;
1750 		}
1751 	}
1752 }
1753 
1754 /*
1755  * Return the first mbuf and the mbuf data offset for the provided
1756  * send offset without changing the "sb_sndptroff" field.
1757  */
1758 struct mbuf *
sbsndmbuf(struct sockbuf * sb,u_int off,u_int * moff)1759 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1760 {
1761 	struct mbuf *m;
1762 
1763 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1764 
1765 	/*
1766 	 * If the "off" is below the stored offset, which happens on
1767 	 * retransmits, just use "sb_mb":
1768 	 */
1769 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1770 		m = sb->sb_mb;
1771 	} else {
1772 		m = sb->sb_sndptr;
1773 		off -= sb->sb_sndptroff;
1774 	}
1775 	while (off > 0 && m != NULL) {
1776 		if (off < m->m_len)
1777 			break;
1778 		off -= m->m_len;
1779 		m = m->m_next;
1780 	}
1781 	*moff = off;
1782 	return (m);
1783 }
1784 
1785 /*
1786  * Drop a record off the front of a sockbuf and move the next record to the
1787  * front.
1788  */
1789 void
sbdroprecord_locked(struct sockbuf * sb)1790 sbdroprecord_locked(struct sockbuf *sb)
1791 {
1792 	struct mbuf *m;
1793 
1794 	SOCKBUF_LOCK_ASSERT(sb);
1795 
1796 	m = sb->sb_mb;
1797 	if (m) {
1798 		sb->sb_mb = m->m_nextpkt;
1799 		do {
1800 			sbfree(sb, m);
1801 			m = m_free(m);
1802 		} while (m);
1803 	}
1804 	SB_EMPTY_FIXUP(sb);
1805 }
1806 
1807 /*
1808  * Drop a record off the front of a sockbuf and move the next record to the
1809  * front.
1810  */
1811 void
sbdroprecord(struct sockbuf * sb)1812 sbdroprecord(struct sockbuf *sb)
1813 {
1814 
1815 	SOCKBUF_LOCK(sb);
1816 	sbdroprecord_locked(sb);
1817 	SOCKBUF_UNLOCK(sb);
1818 }
1819 
1820 /*
1821  * Create a "control" mbuf containing the specified data with the specified
1822  * type for presentation on a socket buffer.
1823  */
1824 struct mbuf *
sbcreatecontrol(const void * p,u_int size,int type,int level,int wait)1825 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1826 {
1827 	struct cmsghdr *cp;
1828 	struct mbuf *m;
1829 
1830 	MBUF_CHECKSLEEP(wait);
1831 
1832 	if (wait == M_NOWAIT) {
1833 		if (CMSG_SPACE(size) > MCLBYTES)
1834 			return (NULL);
1835 	} else
1836 		KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1837 		    ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1838 
1839 	if (CMSG_SPACE(size) > MLEN)
1840 		m = m_getcl(wait, MT_CONTROL, 0);
1841 	else
1842 		m = m_get(wait, MT_CONTROL);
1843 	if (m == NULL)
1844 		return (NULL);
1845 
1846 	KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1847 	    ("sbcreatecontrol: short mbuf"));
1848 	/*
1849 	 * Don't leave the padding between the msg header and the
1850 	 * cmsg data and the padding after the cmsg data un-initialized.
1851 	 */
1852 	cp = mtod(m, struct cmsghdr *);
1853 	bzero(cp, CMSG_SPACE(size));
1854 	if (p != NULL)
1855 		(void)memcpy(CMSG_DATA(cp), p, size);
1856 	m->m_len = CMSG_SPACE(size);
1857 	cp->cmsg_len = CMSG_LEN(size);
1858 	cp->cmsg_level = level;
1859 	cp->cmsg_type = type;
1860 	return (m);
1861 }
1862 
1863 /*
1864  * This does the same for socket buffers that sotoxsocket does for sockets:
1865  * generate an user-format data structure describing the socket buffer.  Note
1866  * that the xsockbuf structure, since it is always embedded in a socket, does
1867  * not include a self pointer nor a length.  We make this entry point public
1868  * in case some other mechanism needs it.
1869  */
1870 void
sbtoxsockbuf(struct sockbuf * sb,struct xsockbuf * xsb)1871 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1872 {
1873 
1874 	xsb->sb_cc = sb->sb_ccc;
1875 	xsb->sb_hiwat = sb->sb_hiwat;
1876 	xsb->sb_mbcnt = sb->sb_mbcnt;
1877 	xsb->sb_mbmax = sb->sb_mbmax;
1878 	xsb->sb_lowat = sb->sb_lowat;
1879 	xsb->sb_flags = sb->sb_flags;
1880 	xsb->sb_timeo = sb->sb_timeo;
1881 }
1882 
1883 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1884 static int dummy;
1885 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1886 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1887     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1888     sysctl_handle_sb_max, "LU",
1889     "Maximum socket buffer size");
1890 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1891     &sb_efficiency, 0, "Socket buffer size waste factor");
1892