xref: /linux/fs/libfs.c (revision 672dcda246071e1940eab8bb5a03d04ea026f46e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "internal.h"
31 
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 		   struct kstat *stat, u32 request_mask,
34 		   unsigned int query_flags)
35 {
36 	struct inode *inode = d_inode(path->dentry);
37 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 
47 	buf->f_fsid = u64_to_fsid(id);
48 	buf->f_type = dentry->d_sb->s_magic;
49 	buf->f_bsize = PAGE_SIZE;
50 	buf->f_namelen = NAME_MAX;
51 	return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54 
55 /*
56  * Retaining negative dentries for an in-memory filesystem just wastes
57  * memory and lookup time: arrange for them to be deleted immediately.
58  */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 	return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64 
65 /*
66  * Lookup the data. This is trivial - if the dentry didn't already
67  * exist, we know it is negative.  Set d_op to delete negative dentries.
68  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 	if (dentry->d_name.len > NAME_MAX)
72 		return ERR_PTR(-ENAMETOOLONG);
73 	if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
74 		spin_lock(&dentry->d_lock);
75 		dentry->d_flags |= DCACHE_DONTCACHE;
76 		spin_unlock(&dentry->d_lock);
77 	}
78 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
79 		return NULL;
80 
81 	d_add(dentry, NULL);
82 	return NULL;
83 }
84 EXPORT_SYMBOL(simple_lookup);
85 
dcache_dir_open(struct inode * inode,struct file * file)86 int dcache_dir_open(struct inode *inode, struct file *file)
87 {
88 	file->private_data = d_alloc_cursor(file->f_path.dentry);
89 
90 	return file->private_data ? 0 : -ENOMEM;
91 }
92 EXPORT_SYMBOL(dcache_dir_open);
93 
dcache_dir_close(struct inode * inode,struct file * file)94 int dcache_dir_close(struct inode *inode, struct file *file)
95 {
96 	dput(file->private_data);
97 	return 0;
98 }
99 EXPORT_SYMBOL(dcache_dir_close);
100 
101 /* parent is locked at least shared */
102 /*
103  * Returns an element of siblings' list.
104  * We are looking for <count>th positive after <p>; if
105  * found, dentry is grabbed and returned to caller.
106  * If no such element exists, NULL is returned.
107  */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)108 static struct dentry *scan_positives(struct dentry *cursor,
109 					struct hlist_node **p,
110 					loff_t count,
111 					struct dentry *last)
112 {
113 	struct dentry *dentry = cursor->d_parent, *found = NULL;
114 
115 	spin_lock(&dentry->d_lock);
116 	while (*p) {
117 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
118 		p = &d->d_sib.next;
119 		// we must at least skip cursors, to avoid livelocks
120 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
121 			continue;
122 		if (simple_positive(d) && !--count) {
123 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
124 			if (simple_positive(d))
125 				found = dget_dlock(d);
126 			spin_unlock(&d->d_lock);
127 			if (likely(found))
128 				break;
129 			count = 1;
130 		}
131 		if (need_resched()) {
132 			if (!hlist_unhashed(&cursor->d_sib))
133 				__hlist_del(&cursor->d_sib);
134 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
135 			p = &cursor->d_sib.next;
136 			spin_unlock(&dentry->d_lock);
137 			cond_resched();
138 			spin_lock(&dentry->d_lock);
139 		}
140 	}
141 	spin_unlock(&dentry->d_lock);
142 	dput(last);
143 	return found;
144 }
145 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147 {
148 	struct dentry *dentry = file->f_path.dentry;
149 	switch (whence) {
150 		case 1:
151 			offset += file->f_pos;
152 			fallthrough;
153 		case 0:
154 			if (offset >= 0)
155 				break;
156 			fallthrough;
157 		default:
158 			return -EINVAL;
159 	}
160 	if (offset != file->f_pos) {
161 		struct dentry *cursor = file->private_data;
162 		struct dentry *to = NULL;
163 
164 		inode_lock_shared(dentry->d_inode);
165 
166 		if (offset > 2)
167 			to = scan_positives(cursor, &dentry->d_children.first,
168 					    offset - 2, NULL);
169 		spin_lock(&dentry->d_lock);
170 		hlist_del_init(&cursor->d_sib);
171 		if (to)
172 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
173 		spin_unlock(&dentry->d_lock);
174 		dput(to);
175 
176 		file->f_pos = offset;
177 
178 		inode_unlock_shared(dentry->d_inode);
179 	}
180 	return offset;
181 }
182 EXPORT_SYMBOL(dcache_dir_lseek);
183 
184 /*
185  * Directory is locked and all positive dentries in it are safe, since
186  * for ramfs-type trees they can't go away without unlink() or rmdir(),
187  * both impossible due to the lock on directory.
188  */
189 
dcache_readdir(struct file * file,struct dir_context * ctx)190 int dcache_readdir(struct file *file, struct dir_context *ctx)
191 {
192 	struct dentry *dentry = file->f_path.dentry;
193 	struct dentry *cursor = file->private_data;
194 	struct dentry *next = NULL;
195 	struct hlist_node **p;
196 
197 	if (!dir_emit_dots(file, ctx))
198 		return 0;
199 
200 	if (ctx->pos == 2)
201 		p = &dentry->d_children.first;
202 	else
203 		p = &cursor->d_sib.next;
204 
205 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 			      d_inode(next)->i_ino,
208 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
209 			break;
210 		ctx->pos++;
211 		p = &next->d_sib.next;
212 	}
213 	spin_lock(&dentry->d_lock);
214 	hlist_del_init(&cursor->d_sib);
215 	if (next)
216 		hlist_add_before(&cursor->d_sib, &next->d_sib);
217 	spin_unlock(&dentry->d_lock);
218 	dput(next);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 	return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229 
230 const struct file_operations simple_dir_operations = {
231 	.open		= dcache_dir_open,
232 	.release	= dcache_dir_close,
233 	.llseek		= dcache_dir_lseek,
234 	.read		= generic_read_dir,
235 	.iterate_shared	= dcache_readdir,
236 	.fsync		= noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239 
240 const struct inode_operations simple_dir_inode_operations = {
241 	.lookup		= simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244 
245 /* simple_offset_add() never assigns these to a dentry */
246 enum {
247 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
248 	DIR_OFFSET_EOD		= S32_MAX,
249 };
250 
251 /* simple_offset_add() allocation range */
252 enum {
253 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
254 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
255 };
256 
offset_set(struct dentry * dentry,long offset)257 static void offset_set(struct dentry *dentry, long offset)
258 {
259 	dentry->d_fsdata = (void *)offset;
260 }
261 
dentry2offset(struct dentry * dentry)262 static long dentry2offset(struct dentry *dentry)
263 {
264 	return (long)dentry->d_fsdata;
265 }
266 
267 static struct lock_class_key simple_offset_lock_class;
268 
269 /**
270  * simple_offset_init - initialize an offset_ctx
271  * @octx: directory offset map to be initialized
272  *
273  */
simple_offset_init(struct offset_ctx * octx)274 void simple_offset_init(struct offset_ctx *octx)
275 {
276 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
277 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
278 	octx->next_offset = DIR_OFFSET_MIN;
279 }
280 
281 /**
282  * simple_offset_add - Add an entry to a directory's offset map
283  * @octx: directory offset ctx to be updated
284  * @dentry: new dentry being added
285  *
286  * Returns zero on success. @octx and the dentry's offset are updated.
287  * Otherwise, a negative errno value is returned.
288  */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)289 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
290 {
291 	unsigned long offset;
292 	int ret;
293 
294 	if (dentry2offset(dentry) != 0)
295 		return -EBUSY;
296 
297 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
298 				 DIR_OFFSET_MAX, &octx->next_offset,
299 				 GFP_KERNEL);
300 	if (unlikely(ret < 0))
301 		return ret == -EBUSY ? -ENOSPC : ret;
302 
303 	offset_set(dentry, offset);
304 	return 0;
305 }
306 
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)307 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
308 				 long offset)
309 {
310 	int ret;
311 
312 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
313 	if (ret)
314 		return ret;
315 	offset_set(dentry, offset);
316 	return 0;
317 }
318 
319 /**
320  * simple_offset_remove - Remove an entry to a directory's offset map
321  * @octx: directory offset ctx to be updated
322  * @dentry: dentry being removed
323  *
324  */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)325 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
326 {
327 	long offset;
328 
329 	offset = dentry2offset(dentry);
330 	if (offset == 0)
331 		return;
332 
333 	mtree_erase(&octx->mt, offset);
334 	offset_set(dentry, 0);
335 }
336 
337 /**
338  * simple_offset_rename - handle directory offsets for rename
339  * @old_dir: parent directory of source entry
340  * @old_dentry: dentry of source entry
341  * @new_dir: parent_directory of destination entry
342  * @new_dentry: dentry of destination
343  *
344  * Caller provides appropriate serialization.
345  *
346  * User space expects the directory offset value of the replaced
347  * (new) directory entry to be unchanged after a rename.
348  *
349  * Returns zero on success, a negative errno value on failure.
350  */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)351 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
352 			 struct inode *new_dir, struct dentry *new_dentry)
353 {
354 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
355 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
356 	long new_offset = dentry2offset(new_dentry);
357 
358 	simple_offset_remove(old_ctx, old_dentry);
359 
360 	if (new_offset) {
361 		offset_set(new_dentry, 0);
362 		return simple_offset_replace(new_ctx, old_dentry, new_offset);
363 	}
364 	return simple_offset_add(new_ctx, old_dentry);
365 }
366 
367 /**
368  * simple_offset_rename_exchange - exchange rename with directory offsets
369  * @old_dir: parent of dentry being moved
370  * @old_dentry: dentry being moved
371  * @new_dir: destination parent
372  * @new_dentry: destination dentry
373  *
374  * This API preserves the directory offset values. Caller provides
375  * appropriate serialization.
376  *
377  * Returns zero on success. Otherwise a negative errno is returned and the
378  * rename is rolled back.
379  */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)380 int simple_offset_rename_exchange(struct inode *old_dir,
381 				  struct dentry *old_dentry,
382 				  struct inode *new_dir,
383 				  struct dentry *new_dentry)
384 {
385 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
386 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
387 	long old_index = dentry2offset(old_dentry);
388 	long new_index = dentry2offset(new_dentry);
389 	int ret;
390 
391 	simple_offset_remove(old_ctx, old_dentry);
392 	simple_offset_remove(new_ctx, new_dentry);
393 
394 	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
395 	if (ret)
396 		goto out_restore;
397 
398 	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
399 	if (ret) {
400 		simple_offset_remove(new_ctx, old_dentry);
401 		goto out_restore;
402 	}
403 
404 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
405 	if (ret) {
406 		simple_offset_remove(new_ctx, old_dentry);
407 		simple_offset_remove(old_ctx, new_dentry);
408 		goto out_restore;
409 	}
410 	return 0;
411 
412 out_restore:
413 	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
414 	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
415 	return ret;
416 }
417 
418 /**
419  * simple_offset_destroy - Release offset map
420  * @octx: directory offset ctx that is about to be destroyed
421  *
422  * During fs teardown (eg. umount), a directory's offset map might still
423  * contain entries. xa_destroy() cleans out anything that remains.
424  */
simple_offset_destroy(struct offset_ctx * octx)425 void simple_offset_destroy(struct offset_ctx *octx)
426 {
427 	mtree_destroy(&octx->mt);
428 }
429 
430 /**
431  * offset_dir_llseek - Advance the read position of a directory descriptor
432  * @file: an open directory whose position is to be updated
433  * @offset: a byte offset
434  * @whence: enumerator describing the starting position for this update
435  *
436  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
437  *
438  * Returns the updated read position if successful; otherwise a
439  * negative errno is returned and the read position remains unchanged.
440  */
offset_dir_llseek(struct file * file,loff_t offset,int whence)441 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
442 {
443 	switch (whence) {
444 	case SEEK_CUR:
445 		offset += file->f_pos;
446 		fallthrough;
447 	case SEEK_SET:
448 		if (offset >= 0)
449 			break;
450 		fallthrough;
451 	default:
452 		return -EINVAL;
453 	}
454 
455 	return vfs_setpos(file, offset, LONG_MAX);
456 }
457 
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)458 static struct dentry *find_positive_dentry(struct dentry *parent,
459 					   struct dentry *dentry,
460 					   bool next)
461 {
462 	struct dentry *found = NULL;
463 
464 	spin_lock(&parent->d_lock);
465 	if (next)
466 		dentry = d_next_sibling(dentry);
467 	else if (!dentry)
468 		dentry = d_first_child(parent);
469 	hlist_for_each_entry_from(dentry, d_sib) {
470 		if (!simple_positive(dentry))
471 			continue;
472 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
473 		if (simple_positive(dentry))
474 			found = dget_dlock(dentry);
475 		spin_unlock(&dentry->d_lock);
476 		if (likely(found))
477 			break;
478 	}
479 	spin_unlock(&parent->d_lock);
480 	return found;
481 }
482 
483 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)484 offset_dir_lookup(struct dentry *parent, loff_t offset)
485 {
486 	struct inode *inode = d_inode(parent);
487 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
488 	struct dentry *child, *found = NULL;
489 
490 	MA_STATE(mas, &octx->mt, offset, offset);
491 
492 	if (offset == DIR_OFFSET_FIRST)
493 		found = find_positive_dentry(parent, NULL, false);
494 	else {
495 		rcu_read_lock();
496 		child = mas_find_rev(&mas, DIR_OFFSET_MIN);
497 		found = find_positive_dentry(parent, child, false);
498 		rcu_read_unlock();
499 	}
500 	return found;
501 }
502 
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)503 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
504 {
505 	struct inode *inode = d_inode(dentry);
506 
507 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
508 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
509 }
510 
offset_iterate_dir(struct file * file,struct dir_context * ctx)511 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
512 {
513 	struct dentry *dir = file->f_path.dentry;
514 	struct dentry *dentry;
515 
516 	dentry = offset_dir_lookup(dir, ctx->pos);
517 	if (!dentry)
518 		goto out_eod;
519 	while (true) {
520 		struct dentry *next;
521 
522 		ctx->pos = dentry2offset(dentry);
523 		if (!offset_dir_emit(ctx, dentry))
524 			break;
525 
526 		next = find_positive_dentry(dir, dentry, true);
527 		dput(dentry);
528 
529 		if (!next)
530 			goto out_eod;
531 		dentry = next;
532 	}
533 	dput(dentry);
534 	return;
535 
536 out_eod:
537 	ctx->pos = DIR_OFFSET_EOD;
538 }
539 
540 /**
541  * offset_readdir - Emit entries starting at offset @ctx->pos
542  * @file: an open directory to iterate over
543  * @ctx: directory iteration context
544  *
545  * Caller must hold @file's i_rwsem to prevent insertion or removal of
546  * entries during this call.
547  *
548  * On entry, @ctx->pos contains an offset that represents the first entry
549  * to be read from the directory.
550  *
551  * The operation continues until there are no more entries to read, or
552  * until the ctx->actor indicates there is no more space in the caller's
553  * output buffer.
554  *
555  * On return, @ctx->pos contains an offset that will read the next entry
556  * in this directory when offset_readdir() is called again with @ctx.
557  * Caller places this value in the d_off field of the last entry in the
558  * user's buffer.
559  *
560  * Return values:
561  *   %0 - Complete
562  */
offset_readdir(struct file * file,struct dir_context * ctx)563 static int offset_readdir(struct file *file, struct dir_context *ctx)
564 {
565 	struct dentry *dir = file->f_path.dentry;
566 
567 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
568 
569 	if (!dir_emit_dots(file, ctx))
570 		return 0;
571 	if (ctx->pos != DIR_OFFSET_EOD)
572 		offset_iterate_dir(file, ctx);
573 	return 0;
574 }
575 
576 const struct file_operations simple_offset_dir_operations = {
577 	.llseek		= offset_dir_llseek,
578 	.iterate_shared	= offset_readdir,
579 	.read		= generic_read_dir,
580 	.fsync		= noop_fsync,
581 };
582 
find_next_child(struct dentry * parent,struct dentry * prev)583 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
584 {
585 	struct dentry *child = NULL, *d;
586 
587 	spin_lock(&parent->d_lock);
588 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
589 	hlist_for_each_entry_from(d, d_sib) {
590 		if (simple_positive(d)) {
591 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
592 			if (simple_positive(d))
593 				child = dget_dlock(d);
594 			spin_unlock(&d->d_lock);
595 			if (likely(child))
596 				break;
597 		}
598 	}
599 	spin_unlock(&parent->d_lock);
600 	dput(prev);
601 	return child;
602 }
603 EXPORT_SYMBOL(find_next_child);
604 
__simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *),bool locked)605 static void __simple_recursive_removal(struct dentry *dentry,
606                               void (*callback)(struct dentry *),
607 			      bool locked)
608 {
609 	struct dentry *this = dget(dentry);
610 	while (true) {
611 		struct dentry *victim = NULL, *child;
612 		struct inode *inode = this->d_inode;
613 
614 		inode_lock_nested(inode, I_MUTEX_CHILD);
615 		if (d_is_dir(this))
616 			inode->i_flags |= S_DEAD;
617 		while ((child = find_next_child(this, victim)) == NULL) {
618 			// kill and ascend
619 			// update metadata while it's still locked
620 			inode_set_ctime_current(inode);
621 			clear_nlink(inode);
622 			inode_unlock(inode);
623 			victim = this;
624 			this = this->d_parent;
625 			inode = this->d_inode;
626 			if (!locked || victim != dentry)
627 				inode_lock_nested(inode, I_MUTEX_CHILD);
628 			if (simple_positive(victim)) {
629 				d_invalidate(victim);	// avoid lost mounts
630 				if (callback)
631 					callback(victim);
632 				fsnotify_delete(inode, d_inode(victim), victim);
633 				dput(victim);		// unpin it
634 			}
635 			if (victim == dentry) {
636 				inode_set_mtime_to_ts(inode,
637 						      inode_set_ctime_current(inode));
638 				if (d_is_dir(dentry))
639 					drop_nlink(inode);
640 				if (!locked)
641 					inode_unlock(inode);
642 				dput(dentry);
643 				return;
644 			}
645 		}
646 		inode_unlock(inode);
647 		this = child;
648 	}
649 }
650 
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))651 void simple_recursive_removal(struct dentry *dentry,
652                               void (*callback)(struct dentry *))
653 {
654 	return __simple_recursive_removal(dentry, callback, false);
655 }
656 EXPORT_SYMBOL(simple_recursive_removal);
657 
658 /* caller holds parent directory with I_MUTEX_PARENT */
locked_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))659 void locked_recursive_removal(struct dentry *dentry,
660                               void (*callback)(struct dentry *))
661 {
662 	return __simple_recursive_removal(dentry, callback, true);
663 }
664 EXPORT_SYMBOL(locked_recursive_removal);
665 
666 static const struct super_operations simple_super_operations = {
667 	.statfs		= simple_statfs,
668 };
669 
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)670 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
671 {
672 	struct pseudo_fs_context *ctx = fc->fs_private;
673 	struct inode *root;
674 
675 	s->s_maxbytes = MAX_LFS_FILESIZE;
676 	s->s_blocksize = PAGE_SIZE;
677 	s->s_blocksize_bits = PAGE_SHIFT;
678 	s->s_magic = ctx->magic;
679 	s->s_op = ctx->ops ?: &simple_super_operations;
680 	s->s_export_op = ctx->eops;
681 	s->s_xattr = ctx->xattr;
682 	s->s_time_gran = 1;
683 	root = new_inode(s);
684 	if (!root)
685 		return -ENOMEM;
686 
687 	/*
688 	 * since this is the first inode, make it number 1. New inodes created
689 	 * after this must take care not to collide with it (by passing
690 	 * max_reserved of 1 to iunique).
691 	 */
692 	root->i_ino = 1;
693 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
694 	simple_inode_init_ts(root);
695 	s->s_root = d_make_root(root);
696 	if (!s->s_root)
697 		return -ENOMEM;
698 	set_default_d_op(s, ctx->dops);
699 	return 0;
700 }
701 
pseudo_fs_get_tree(struct fs_context * fc)702 static int pseudo_fs_get_tree(struct fs_context *fc)
703 {
704 	return get_tree_nodev(fc, pseudo_fs_fill_super);
705 }
706 
pseudo_fs_free(struct fs_context * fc)707 static void pseudo_fs_free(struct fs_context *fc)
708 {
709 	kfree(fc->fs_private);
710 }
711 
712 static const struct fs_context_operations pseudo_fs_context_ops = {
713 	.free		= pseudo_fs_free,
714 	.get_tree	= pseudo_fs_get_tree,
715 };
716 
717 /*
718  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
719  * will never be mountable)
720  */
init_pseudo(struct fs_context * fc,unsigned long magic)721 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
722 					unsigned long magic)
723 {
724 	struct pseudo_fs_context *ctx;
725 
726 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
727 	if (likely(ctx)) {
728 		ctx->magic = magic;
729 		fc->fs_private = ctx;
730 		fc->ops = &pseudo_fs_context_ops;
731 		fc->sb_flags |= SB_NOUSER;
732 		fc->global = true;
733 	}
734 	return ctx;
735 }
736 EXPORT_SYMBOL(init_pseudo);
737 
simple_open(struct inode * inode,struct file * file)738 int simple_open(struct inode *inode, struct file *file)
739 {
740 	if (inode->i_private)
741 		file->private_data = inode->i_private;
742 	return 0;
743 }
744 EXPORT_SYMBOL(simple_open);
745 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)746 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
747 {
748 	struct inode *inode = d_inode(old_dentry);
749 
750 	inode_set_mtime_to_ts(dir,
751 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
752 	inc_nlink(inode);
753 	ihold(inode);
754 	dget(dentry);
755 	d_instantiate(dentry, inode);
756 	return 0;
757 }
758 EXPORT_SYMBOL(simple_link);
759 
simple_empty(struct dentry * dentry)760 int simple_empty(struct dentry *dentry)
761 {
762 	struct dentry *child;
763 	int ret = 0;
764 
765 	spin_lock(&dentry->d_lock);
766 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
767 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
768 		if (simple_positive(child)) {
769 			spin_unlock(&child->d_lock);
770 			goto out;
771 		}
772 		spin_unlock(&child->d_lock);
773 	}
774 	ret = 1;
775 out:
776 	spin_unlock(&dentry->d_lock);
777 	return ret;
778 }
779 EXPORT_SYMBOL(simple_empty);
780 
simple_unlink(struct inode * dir,struct dentry * dentry)781 int simple_unlink(struct inode *dir, struct dentry *dentry)
782 {
783 	struct inode *inode = d_inode(dentry);
784 
785 	inode_set_mtime_to_ts(dir,
786 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
787 	drop_nlink(inode);
788 	dput(dentry);
789 	return 0;
790 }
791 EXPORT_SYMBOL(simple_unlink);
792 
simple_rmdir(struct inode * dir,struct dentry * dentry)793 int simple_rmdir(struct inode *dir, struct dentry *dentry)
794 {
795 	if (!simple_empty(dentry))
796 		return -ENOTEMPTY;
797 
798 	drop_nlink(d_inode(dentry));
799 	simple_unlink(dir, dentry);
800 	drop_nlink(dir);
801 	return 0;
802 }
803 EXPORT_SYMBOL(simple_rmdir);
804 
805 /**
806  * simple_rename_timestamp - update the various inode timestamps for rename
807  * @old_dir: old parent directory
808  * @old_dentry: dentry that is being renamed
809  * @new_dir: new parent directory
810  * @new_dentry: target for rename
811  *
812  * POSIX mandates that the old and new parent directories have their ctime and
813  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
814  * their ctime updated.
815  */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)816 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
817 			     struct inode *new_dir, struct dentry *new_dentry)
818 {
819 	struct inode *newino = d_inode(new_dentry);
820 
821 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
822 	if (new_dir != old_dir)
823 		inode_set_mtime_to_ts(new_dir,
824 				      inode_set_ctime_current(new_dir));
825 	inode_set_ctime_current(d_inode(old_dentry));
826 	if (newino)
827 		inode_set_ctime_current(newino);
828 }
829 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
830 
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)831 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
832 			   struct inode *new_dir, struct dentry *new_dentry)
833 {
834 	bool old_is_dir = d_is_dir(old_dentry);
835 	bool new_is_dir = d_is_dir(new_dentry);
836 
837 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
838 		if (old_is_dir) {
839 			drop_nlink(old_dir);
840 			inc_nlink(new_dir);
841 		} else {
842 			drop_nlink(new_dir);
843 			inc_nlink(old_dir);
844 		}
845 	}
846 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
847 	return 0;
848 }
849 EXPORT_SYMBOL_GPL(simple_rename_exchange);
850 
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)851 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
852 		  struct dentry *old_dentry, struct inode *new_dir,
853 		  struct dentry *new_dentry, unsigned int flags)
854 {
855 	int they_are_dirs = d_is_dir(old_dentry);
856 
857 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
858 		return -EINVAL;
859 
860 	if (flags & RENAME_EXCHANGE)
861 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
862 
863 	if (!simple_empty(new_dentry))
864 		return -ENOTEMPTY;
865 
866 	if (d_really_is_positive(new_dentry)) {
867 		simple_unlink(new_dir, new_dentry);
868 		if (they_are_dirs) {
869 			drop_nlink(d_inode(new_dentry));
870 			drop_nlink(old_dir);
871 		}
872 	} else if (they_are_dirs) {
873 		drop_nlink(old_dir);
874 		inc_nlink(new_dir);
875 	}
876 
877 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
878 	return 0;
879 }
880 EXPORT_SYMBOL(simple_rename);
881 
882 /**
883  * simple_setattr - setattr for simple filesystem
884  * @idmap: idmap of the target mount
885  * @dentry: dentry
886  * @iattr: iattr structure
887  *
888  * Returns 0 on success, -error on failure.
889  *
890  * simple_setattr is a simple ->setattr implementation without a proper
891  * implementation of size changes.
892  *
893  * It can either be used for in-memory filesystems or special files
894  * on simple regular filesystems.  Anything that needs to change on-disk
895  * or wire state on size changes needs its own setattr method.
896  */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)897 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
898 		   struct iattr *iattr)
899 {
900 	struct inode *inode = d_inode(dentry);
901 	int error;
902 
903 	error = setattr_prepare(idmap, dentry, iattr);
904 	if (error)
905 		return error;
906 
907 	if (iattr->ia_valid & ATTR_SIZE)
908 		truncate_setsize(inode, iattr->ia_size);
909 	setattr_copy(idmap, inode, iattr);
910 	mark_inode_dirty(inode);
911 	return 0;
912 }
913 EXPORT_SYMBOL(simple_setattr);
914 
simple_read_folio(struct file * file,struct folio * folio)915 static int simple_read_folio(struct file *file, struct folio *folio)
916 {
917 	folio_zero_range(folio, 0, folio_size(folio));
918 	flush_dcache_folio(folio);
919 	folio_mark_uptodate(folio);
920 	folio_unlock(folio);
921 	return 0;
922 }
923 
simple_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)924 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
925 			loff_t pos, unsigned len,
926 			struct folio **foliop, void **fsdata)
927 {
928 	struct folio *folio;
929 
930 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
931 			mapping_gfp_mask(mapping));
932 	if (IS_ERR(folio))
933 		return PTR_ERR(folio);
934 
935 	*foliop = folio;
936 
937 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
938 		size_t from = offset_in_folio(folio, pos);
939 
940 		folio_zero_segments(folio, 0, from,
941 				from + len, folio_size(folio));
942 	}
943 	return 0;
944 }
945 EXPORT_SYMBOL(simple_write_begin);
946 
947 /**
948  * simple_write_end - .write_end helper for non-block-device FSes
949  * @iocb: kernel I/O control block
950  * @mapping: 		"
951  * @pos: 		"
952  * @len: 		"
953  * @copied: 		"
954  * @folio: 		"
955  * @fsdata: 		"
956  *
957  * simple_write_end does the minimum needed for updating a folio after
958  * writing is done. It has the same API signature as the .write_end of
959  * address_space_operations vector. So it can just be set onto .write_end for
960  * FSes that don't need any other processing. i_rwsem is assumed to be held
961  * exclusively.
962  * Block based filesystems should use generic_write_end().
963  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
964  * is not called, so a filesystem that actually does store data in .write_inode
965  * should extend on what's done here with a call to mark_inode_dirty() in the
966  * case that i_size has changed.
967  *
968  * Use *ONLY* with simple_read_folio()
969  */
simple_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)970 static int simple_write_end(const struct kiocb *iocb,
971 			    struct address_space *mapping,
972 			    loff_t pos, unsigned len, unsigned copied,
973 			    struct folio *folio, void *fsdata)
974 {
975 	struct inode *inode = folio->mapping->host;
976 	loff_t last_pos = pos + copied;
977 
978 	/* zero the stale part of the folio if we did a short copy */
979 	if (!folio_test_uptodate(folio)) {
980 		if (copied < len) {
981 			size_t from = offset_in_folio(folio, pos);
982 
983 			folio_zero_range(folio, from + copied, len - copied);
984 		}
985 		folio_mark_uptodate(folio);
986 	}
987 	/*
988 	 * No need to use i_size_read() here, the i_size
989 	 * cannot change under us because we hold the i_rwsem.
990 	 */
991 	if (last_pos > inode->i_size)
992 		i_size_write(inode, last_pos);
993 
994 	folio_mark_dirty(folio);
995 	folio_unlock(folio);
996 	folio_put(folio);
997 
998 	return copied;
999 }
1000 
1001 /*
1002  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1003  */
1004 const struct address_space_operations ram_aops = {
1005 	.read_folio	= simple_read_folio,
1006 	.write_begin	= simple_write_begin,
1007 	.write_end	= simple_write_end,
1008 	.dirty_folio	= noop_dirty_folio,
1009 };
1010 EXPORT_SYMBOL(ram_aops);
1011 
1012 /*
1013  * the inodes created here are not hashed. If you use iunique to generate
1014  * unique inode values later for this filesystem, then you must take care
1015  * to pass it an appropriate max_reserved value to avoid collisions.
1016  */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1017 int simple_fill_super(struct super_block *s, unsigned long magic,
1018 		      const struct tree_descr *files)
1019 {
1020 	struct inode *inode;
1021 	struct dentry *dentry;
1022 	int i;
1023 
1024 	s->s_blocksize = PAGE_SIZE;
1025 	s->s_blocksize_bits = PAGE_SHIFT;
1026 	s->s_magic = magic;
1027 	s->s_op = &simple_super_operations;
1028 	s->s_time_gran = 1;
1029 
1030 	inode = new_inode(s);
1031 	if (!inode)
1032 		return -ENOMEM;
1033 	/*
1034 	 * because the root inode is 1, the files array must not contain an
1035 	 * entry at index 1
1036 	 */
1037 	inode->i_ino = 1;
1038 	inode->i_mode = S_IFDIR | 0755;
1039 	simple_inode_init_ts(inode);
1040 	inode->i_op = &simple_dir_inode_operations;
1041 	inode->i_fop = &simple_dir_operations;
1042 	set_nlink(inode, 2);
1043 	s->s_root = d_make_root(inode);
1044 	if (!s->s_root)
1045 		return -ENOMEM;
1046 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1047 		if (!files->name)
1048 			continue;
1049 
1050 		/* warn if it tries to conflict with the root inode */
1051 		if (unlikely(i == 1))
1052 			printk(KERN_WARNING "%s: %s passed in a files array"
1053 				"with an index of 1!\n", __func__,
1054 				s->s_type->name);
1055 
1056 		dentry = d_alloc_name(s->s_root, files->name);
1057 		if (!dentry)
1058 			return -ENOMEM;
1059 		inode = new_inode(s);
1060 		if (!inode) {
1061 			dput(dentry);
1062 			return -ENOMEM;
1063 		}
1064 		inode->i_mode = S_IFREG | files->mode;
1065 		simple_inode_init_ts(inode);
1066 		inode->i_fop = files->ops;
1067 		inode->i_ino = i;
1068 		d_add(dentry, inode);
1069 	}
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL(simple_fill_super);
1073 
1074 static DEFINE_SPINLOCK(pin_fs_lock);
1075 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1076 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1077 {
1078 	struct vfsmount *mnt = NULL;
1079 	spin_lock(&pin_fs_lock);
1080 	if (unlikely(!*mount)) {
1081 		spin_unlock(&pin_fs_lock);
1082 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1083 		if (IS_ERR(mnt))
1084 			return PTR_ERR(mnt);
1085 		spin_lock(&pin_fs_lock);
1086 		if (!*mount)
1087 			*mount = mnt;
1088 	}
1089 	mntget(*mount);
1090 	++*count;
1091 	spin_unlock(&pin_fs_lock);
1092 	mntput(mnt);
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL(simple_pin_fs);
1096 
simple_release_fs(struct vfsmount ** mount,int * count)1097 void simple_release_fs(struct vfsmount **mount, int *count)
1098 {
1099 	struct vfsmount *mnt;
1100 	spin_lock(&pin_fs_lock);
1101 	mnt = *mount;
1102 	if (!--*count)
1103 		*mount = NULL;
1104 	spin_unlock(&pin_fs_lock);
1105 	mntput(mnt);
1106 }
1107 EXPORT_SYMBOL(simple_release_fs);
1108 
1109 /**
1110  * simple_read_from_buffer - copy data from the buffer to user space
1111  * @to: the user space buffer to read to
1112  * @count: the maximum number of bytes to read
1113  * @ppos: the current position in the buffer
1114  * @from: the buffer to read from
1115  * @available: the size of the buffer
1116  *
1117  * The simple_read_from_buffer() function reads up to @count bytes from the
1118  * buffer @from at offset @ppos into the user space address starting at @to.
1119  *
1120  * On success, the number of bytes read is returned and the offset @ppos is
1121  * advanced by this number, or negative value is returned on error.
1122  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1123 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1124 				const void *from, size_t available)
1125 {
1126 	loff_t pos = *ppos;
1127 	size_t ret;
1128 
1129 	if (pos < 0)
1130 		return -EINVAL;
1131 	if (pos >= available || !count)
1132 		return 0;
1133 	if (count > available - pos)
1134 		count = available - pos;
1135 	ret = copy_to_user(to, from + pos, count);
1136 	if (ret == count)
1137 		return -EFAULT;
1138 	count -= ret;
1139 	*ppos = pos + count;
1140 	return count;
1141 }
1142 EXPORT_SYMBOL(simple_read_from_buffer);
1143 
1144 /**
1145  * simple_write_to_buffer - copy data from user space to the buffer
1146  * @to: the buffer to write to
1147  * @available: the size of the buffer
1148  * @ppos: the current position in the buffer
1149  * @from: the user space buffer to read from
1150  * @count: the maximum number of bytes to read
1151  *
1152  * The simple_write_to_buffer() function reads up to @count bytes from the user
1153  * space address starting at @from into the buffer @to at offset @ppos.
1154  *
1155  * On success, the number of bytes written is returned and the offset @ppos is
1156  * advanced by this number, or negative value is returned on error.
1157  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1158 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1159 		const void __user *from, size_t count)
1160 {
1161 	loff_t pos = *ppos;
1162 	size_t res;
1163 
1164 	if (pos < 0)
1165 		return -EINVAL;
1166 	if (pos >= available || !count)
1167 		return 0;
1168 	if (count > available - pos)
1169 		count = available - pos;
1170 	res = copy_from_user(to + pos, from, count);
1171 	if (res == count)
1172 		return -EFAULT;
1173 	count -= res;
1174 	*ppos = pos + count;
1175 	return count;
1176 }
1177 EXPORT_SYMBOL(simple_write_to_buffer);
1178 
1179 /**
1180  * memory_read_from_buffer - copy data from the buffer
1181  * @to: the kernel space buffer to read to
1182  * @count: the maximum number of bytes to read
1183  * @ppos: the current position in the buffer
1184  * @from: the buffer to read from
1185  * @available: the size of the buffer
1186  *
1187  * The memory_read_from_buffer() function reads up to @count bytes from the
1188  * buffer @from at offset @ppos into the kernel space address starting at @to.
1189  *
1190  * On success, the number of bytes read is returned and the offset @ppos is
1191  * advanced by this number, or negative value is returned on error.
1192  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1193 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1194 				const void *from, size_t available)
1195 {
1196 	loff_t pos = *ppos;
1197 
1198 	if (pos < 0)
1199 		return -EINVAL;
1200 	if (pos >= available)
1201 		return 0;
1202 	if (count > available - pos)
1203 		count = available - pos;
1204 	memcpy(to, from + pos, count);
1205 	*ppos = pos + count;
1206 
1207 	return count;
1208 }
1209 EXPORT_SYMBOL(memory_read_from_buffer);
1210 
1211 /*
1212  * Transaction based IO.
1213  * The file expects a single write which triggers the transaction, and then
1214  * possibly a read which collects the result - which is stored in a
1215  * file-local buffer.
1216  */
1217 
simple_transaction_set(struct file * file,size_t n)1218 void simple_transaction_set(struct file *file, size_t n)
1219 {
1220 	struct simple_transaction_argresp *ar = file->private_data;
1221 
1222 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1223 
1224 	/*
1225 	 * The barrier ensures that ar->size will really remain zero until
1226 	 * ar->data is ready for reading.
1227 	 */
1228 	smp_mb();
1229 	ar->size = n;
1230 }
1231 EXPORT_SYMBOL(simple_transaction_set);
1232 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1233 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1234 {
1235 	struct simple_transaction_argresp *ar;
1236 	static DEFINE_SPINLOCK(simple_transaction_lock);
1237 
1238 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1239 		return ERR_PTR(-EFBIG);
1240 
1241 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1242 	if (!ar)
1243 		return ERR_PTR(-ENOMEM);
1244 
1245 	spin_lock(&simple_transaction_lock);
1246 
1247 	/* only one write allowed per open */
1248 	if (file->private_data) {
1249 		spin_unlock(&simple_transaction_lock);
1250 		free_page((unsigned long)ar);
1251 		return ERR_PTR(-EBUSY);
1252 	}
1253 
1254 	file->private_data = ar;
1255 
1256 	spin_unlock(&simple_transaction_lock);
1257 
1258 	if (copy_from_user(ar->data, buf, size))
1259 		return ERR_PTR(-EFAULT);
1260 
1261 	return ar->data;
1262 }
1263 EXPORT_SYMBOL(simple_transaction_get);
1264 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1265 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1266 {
1267 	struct simple_transaction_argresp *ar = file->private_data;
1268 
1269 	if (!ar)
1270 		return 0;
1271 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1272 }
1273 EXPORT_SYMBOL(simple_transaction_read);
1274 
simple_transaction_release(struct inode * inode,struct file * file)1275 int simple_transaction_release(struct inode *inode, struct file *file)
1276 {
1277 	free_page((unsigned long)file->private_data);
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL(simple_transaction_release);
1281 
1282 /* Simple attribute files */
1283 
1284 struct simple_attr {
1285 	int (*get)(void *, u64 *);
1286 	int (*set)(void *, u64);
1287 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1288 	char set_buf[24];
1289 	void *data;
1290 	const char *fmt;	/* format for read operation */
1291 	struct mutex mutex;	/* protects access to these buffers */
1292 };
1293 
1294 /* simple_attr_open is called by an actual attribute open file operation
1295  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1296 int simple_attr_open(struct inode *inode, struct file *file,
1297 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1298 		     const char *fmt)
1299 {
1300 	struct simple_attr *attr;
1301 
1302 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1303 	if (!attr)
1304 		return -ENOMEM;
1305 
1306 	attr->get = get;
1307 	attr->set = set;
1308 	attr->data = inode->i_private;
1309 	attr->fmt = fmt;
1310 	mutex_init(&attr->mutex);
1311 
1312 	file->private_data = attr;
1313 
1314 	return nonseekable_open(inode, file);
1315 }
1316 EXPORT_SYMBOL_GPL(simple_attr_open);
1317 
simple_attr_release(struct inode * inode,struct file * file)1318 int simple_attr_release(struct inode *inode, struct file *file)
1319 {
1320 	kfree(file->private_data);
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1324 
1325 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1326 ssize_t simple_attr_read(struct file *file, char __user *buf,
1327 			 size_t len, loff_t *ppos)
1328 {
1329 	struct simple_attr *attr;
1330 	size_t size;
1331 	ssize_t ret;
1332 
1333 	attr = file->private_data;
1334 
1335 	if (!attr->get)
1336 		return -EACCES;
1337 
1338 	ret = mutex_lock_interruptible(&attr->mutex);
1339 	if (ret)
1340 		return ret;
1341 
1342 	if (*ppos && attr->get_buf[0]) {
1343 		/* continued read */
1344 		size = strlen(attr->get_buf);
1345 	} else {
1346 		/* first read */
1347 		u64 val;
1348 		ret = attr->get(attr->data, &val);
1349 		if (ret)
1350 			goto out;
1351 
1352 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1353 				 attr->fmt, (unsigned long long)val);
1354 	}
1355 
1356 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1357 out:
1358 	mutex_unlock(&attr->mutex);
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(simple_attr_read);
1362 
1363 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1364 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1365 			  size_t len, loff_t *ppos, bool is_signed)
1366 {
1367 	struct simple_attr *attr;
1368 	unsigned long long val;
1369 	size_t size;
1370 	ssize_t ret;
1371 
1372 	attr = file->private_data;
1373 	if (!attr->set)
1374 		return -EACCES;
1375 
1376 	ret = mutex_lock_interruptible(&attr->mutex);
1377 	if (ret)
1378 		return ret;
1379 
1380 	ret = -EFAULT;
1381 	size = min(sizeof(attr->set_buf) - 1, len);
1382 	if (copy_from_user(attr->set_buf, buf, size))
1383 		goto out;
1384 
1385 	attr->set_buf[size] = '\0';
1386 	if (is_signed)
1387 		ret = kstrtoll(attr->set_buf, 0, &val);
1388 	else
1389 		ret = kstrtoull(attr->set_buf, 0, &val);
1390 	if (ret)
1391 		goto out;
1392 	ret = attr->set(attr->data, val);
1393 	if (ret == 0)
1394 		ret = len; /* on success, claim we got the whole input */
1395 out:
1396 	mutex_unlock(&attr->mutex);
1397 	return ret;
1398 }
1399 
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1400 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1401 			  size_t len, loff_t *ppos)
1402 {
1403 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1404 }
1405 EXPORT_SYMBOL_GPL(simple_attr_write);
1406 
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1407 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1408 			  size_t len, loff_t *ppos)
1409 {
1410 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1411 }
1412 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1413 
1414 /**
1415  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1416  * @inode:   the object to encode
1417  * @fh:      where to store the file handle fragment
1418  * @max_len: maximum length to store there (in 4 byte units)
1419  * @parent:  parent directory inode, if wanted
1420  *
1421  * This generic encode_fh function assumes that the 32 inode number
1422  * is suitable for locating an inode, and that the generation number
1423  * can be used to check that it is still valid.  It places them in the
1424  * filehandle fragment where export_decode_fh expects to find them.
1425  */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1426 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1427 			    struct inode *parent)
1428 {
1429 	struct fid *fid = (void *)fh;
1430 	int len = *max_len;
1431 	int type = FILEID_INO32_GEN;
1432 
1433 	if (parent && (len < 4)) {
1434 		*max_len = 4;
1435 		return FILEID_INVALID;
1436 	} else if (len < 2) {
1437 		*max_len = 2;
1438 		return FILEID_INVALID;
1439 	}
1440 
1441 	len = 2;
1442 	fid->i32.ino = inode->i_ino;
1443 	fid->i32.gen = inode->i_generation;
1444 	if (parent) {
1445 		fid->i32.parent_ino = parent->i_ino;
1446 		fid->i32.parent_gen = parent->i_generation;
1447 		len = 4;
1448 		type = FILEID_INO32_GEN_PARENT;
1449 	}
1450 	*max_len = len;
1451 	return type;
1452 }
1453 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1454 
1455 /**
1456  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1457  * @sb:		filesystem to do the file handle conversion on
1458  * @fid:	file handle to convert
1459  * @fh_len:	length of the file handle in bytes
1460  * @fh_type:	type of file handle
1461  * @get_inode:	filesystem callback to retrieve inode
1462  *
1463  * This function decodes @fid as long as it has one of the well-known
1464  * Linux filehandle types and calls @get_inode on it to retrieve the
1465  * inode for the object specified in the file handle.
1466  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1467 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1468 		int fh_len, int fh_type, struct inode *(*get_inode)
1469 			(struct super_block *sb, u64 ino, u32 gen))
1470 {
1471 	struct inode *inode = NULL;
1472 
1473 	if (fh_len < 2)
1474 		return NULL;
1475 
1476 	switch (fh_type) {
1477 	case FILEID_INO32_GEN:
1478 	case FILEID_INO32_GEN_PARENT:
1479 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1480 		break;
1481 	}
1482 
1483 	return d_obtain_alias(inode);
1484 }
1485 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1486 
1487 /**
1488  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1489  * @sb:		filesystem to do the file handle conversion on
1490  * @fid:	file handle to convert
1491  * @fh_len:	length of the file handle in bytes
1492  * @fh_type:	type of file handle
1493  * @get_inode:	filesystem callback to retrieve inode
1494  *
1495  * This function decodes @fid as long as it has one of the well-known
1496  * Linux filehandle types and calls @get_inode on it to retrieve the
1497  * inode for the _parent_ object specified in the file handle if it
1498  * is specified in the file handle, or NULL otherwise.
1499  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1500 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1501 		int fh_len, int fh_type, struct inode *(*get_inode)
1502 			(struct super_block *sb, u64 ino, u32 gen))
1503 {
1504 	struct inode *inode = NULL;
1505 
1506 	if (fh_len <= 2)
1507 		return NULL;
1508 
1509 	switch (fh_type) {
1510 	case FILEID_INO32_GEN_PARENT:
1511 		inode = get_inode(sb, fid->i32.parent_ino,
1512 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1513 		break;
1514 	}
1515 
1516 	return d_obtain_alias(inode);
1517 }
1518 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1519 
1520 /**
1521  * __generic_file_fsync - generic fsync implementation for simple filesystems
1522  *
1523  * @file:	file to synchronize
1524  * @start:	start offset in bytes
1525  * @end:	end offset in bytes (inclusive)
1526  * @datasync:	only synchronize essential metadata if true
1527  *
1528  * This is a generic implementation of the fsync method for simple
1529  * filesystems which track all non-inode metadata in the buffers list
1530  * hanging off the address_space structure.
1531  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1532 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1533 				 int datasync)
1534 {
1535 	struct inode *inode = file->f_mapping->host;
1536 	int err;
1537 	int ret;
1538 
1539 	err = file_write_and_wait_range(file, start, end);
1540 	if (err)
1541 		return err;
1542 
1543 	inode_lock(inode);
1544 	ret = sync_mapping_buffers(inode->i_mapping);
1545 	if (!(inode->i_state & I_DIRTY_ALL))
1546 		goto out;
1547 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1548 		goto out;
1549 
1550 	err = sync_inode_metadata(inode, 1);
1551 	if (ret == 0)
1552 		ret = err;
1553 
1554 out:
1555 	inode_unlock(inode);
1556 	/* check and advance again to catch errors after syncing out buffers */
1557 	err = file_check_and_advance_wb_err(file);
1558 	if (ret == 0)
1559 		ret = err;
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(__generic_file_fsync);
1563 
1564 /**
1565  * generic_file_fsync - generic fsync implementation for simple filesystems
1566  *			with flush
1567  * @file:	file to synchronize
1568  * @start:	start offset in bytes
1569  * @end:	end offset in bytes (inclusive)
1570  * @datasync:	only synchronize essential metadata if true
1571  *
1572  */
1573 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1574 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1575 		       int datasync)
1576 {
1577 	struct inode *inode = file->f_mapping->host;
1578 	int err;
1579 
1580 	err = __generic_file_fsync(file, start, end, datasync);
1581 	if (err)
1582 		return err;
1583 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1584 }
1585 EXPORT_SYMBOL(generic_file_fsync);
1586 
1587 /**
1588  * generic_check_addressable - Check addressability of file system
1589  * @blocksize_bits:	log of file system block size
1590  * @num_blocks:		number of blocks in file system
1591  *
1592  * Determine whether a file system with @num_blocks blocks (and a
1593  * block size of 2**@blocksize_bits) is addressable by the sector_t
1594  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1595  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1596 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1597 {
1598 	u64 last_fs_block = num_blocks - 1;
1599 	u64 last_fs_page, max_bytes;
1600 
1601 	if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1602 		return -EFBIG;
1603 
1604 	last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1605 
1606 	if (unlikely(num_blocks == 0))
1607 		return 0;
1608 
1609 	if (blocksize_bits < 9)
1610 		return -EINVAL;
1611 
1612 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1613 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1614 		return -EFBIG;
1615 	}
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL(generic_check_addressable);
1619 
1620 /*
1621  * No-op implementation of ->fsync for in-memory filesystems.
1622  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1623 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1624 {
1625 	return 0;
1626 }
1627 EXPORT_SYMBOL(noop_fsync);
1628 
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1629 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1630 {
1631 	/*
1632 	 * iomap based filesystems support direct I/O without need for
1633 	 * this callback. However, it still needs to be set in
1634 	 * inode->a_ops so that open/fcntl know that direct I/O is
1635 	 * generally supported.
1636 	 */
1637 	return -EINVAL;
1638 }
1639 EXPORT_SYMBOL_GPL(noop_direct_IO);
1640 
1641 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1642 void kfree_link(void *p)
1643 {
1644 	kfree(p);
1645 }
1646 EXPORT_SYMBOL(kfree_link);
1647 
alloc_anon_inode(struct super_block * s)1648 struct inode *alloc_anon_inode(struct super_block *s)
1649 {
1650 	static const struct address_space_operations anon_aops = {
1651 		.dirty_folio	= noop_dirty_folio,
1652 	};
1653 	struct inode *inode = new_inode_pseudo(s);
1654 
1655 	if (!inode)
1656 		return ERR_PTR(-ENOMEM);
1657 
1658 	inode->i_ino = get_next_ino();
1659 	inode->i_mapping->a_ops = &anon_aops;
1660 
1661 	/*
1662 	 * Mark the inode dirty from the very beginning,
1663 	 * that way it will never be moved to the dirty
1664 	 * list because mark_inode_dirty() will think
1665 	 * that it already _is_ on the dirty list.
1666 	 */
1667 	inode->i_state = I_DIRTY;
1668 	/*
1669 	 * Historically anonymous inodes don't have a type at all and
1670 	 * userspace has come to rely on this.
1671 	 */
1672 	inode->i_mode = S_IRUSR | S_IWUSR;
1673 	inode->i_uid = current_fsuid();
1674 	inode->i_gid = current_fsgid();
1675 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1676 	simple_inode_init_ts(inode);
1677 	return inode;
1678 }
1679 EXPORT_SYMBOL(alloc_anon_inode);
1680 
1681 /**
1682  * simple_nosetlease - generic helper for prohibiting leases
1683  * @filp: file pointer
1684  * @arg: type of lease to obtain
1685  * @flp: new lease supplied for insertion
1686  * @priv: private data for lm_setup operation
1687  *
1688  * Generic helper for filesystems that do not wish to allow leases to be set.
1689  * All arguments are ignored and it just returns -EINVAL.
1690  */
1691 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1692 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1693 		  void **priv)
1694 {
1695 	return -EINVAL;
1696 }
1697 EXPORT_SYMBOL(simple_nosetlease);
1698 
1699 /**
1700  * simple_get_link - generic helper to get the target of "fast" symlinks
1701  * @dentry: not used here
1702  * @inode: the symlink inode
1703  * @done: not used here
1704  *
1705  * Generic helper for filesystems to use for symlink inodes where a pointer to
1706  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1707  * since as an optimization the path lookup code uses any non-NULL ->i_link
1708  * directly, without calling ->get_link().  But ->get_link() still must be set,
1709  * to mark the inode_operations as being for a symlink.
1710  *
1711  * Return: the symlink target
1712  */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1713 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1714 			    struct delayed_call *done)
1715 {
1716 	return inode->i_link;
1717 }
1718 EXPORT_SYMBOL(simple_get_link);
1719 
1720 const struct inode_operations simple_symlink_inode_operations = {
1721 	.get_link = simple_get_link,
1722 };
1723 EXPORT_SYMBOL(simple_symlink_inode_operations);
1724 
1725 /*
1726  * Operations for a permanently empty directory.
1727  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1728 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1729 {
1730 	return ERR_PTR(-ENOENT);
1731 }
1732 
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1733 static int empty_dir_setattr(struct mnt_idmap *idmap,
1734 			     struct dentry *dentry, struct iattr *attr)
1735 {
1736 	return -EPERM;
1737 }
1738 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1739 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1740 {
1741 	return -EOPNOTSUPP;
1742 }
1743 
1744 static const struct inode_operations empty_dir_inode_operations = {
1745 	.lookup		= empty_dir_lookup,
1746 	.setattr	= empty_dir_setattr,
1747 	.listxattr	= empty_dir_listxattr,
1748 };
1749 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1750 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1751 {
1752 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1753 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1754 }
1755 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1756 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1757 {
1758 	dir_emit_dots(file, ctx);
1759 	return 0;
1760 }
1761 
1762 static const struct file_operations empty_dir_operations = {
1763 	.llseek		= empty_dir_llseek,
1764 	.read		= generic_read_dir,
1765 	.iterate_shared	= empty_dir_readdir,
1766 	.fsync		= noop_fsync,
1767 };
1768 
1769 
make_empty_dir_inode(struct inode * inode)1770 void make_empty_dir_inode(struct inode *inode)
1771 {
1772 	set_nlink(inode, 2);
1773 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1774 	inode->i_uid = GLOBAL_ROOT_UID;
1775 	inode->i_gid = GLOBAL_ROOT_GID;
1776 	inode->i_rdev = 0;
1777 	inode->i_size = 0;
1778 	inode->i_blkbits = PAGE_SHIFT;
1779 	inode->i_blocks = 0;
1780 
1781 	inode->i_op = &empty_dir_inode_operations;
1782 	inode->i_opflags &= ~IOP_XATTR;
1783 	inode->i_fop = &empty_dir_operations;
1784 }
1785 
is_empty_dir_inode(struct inode * inode)1786 bool is_empty_dir_inode(struct inode *inode)
1787 {
1788 	return (inode->i_fop == &empty_dir_operations) &&
1789 		(inode->i_op == &empty_dir_inode_operations);
1790 }
1791 
1792 #if IS_ENABLED(CONFIG_UNICODE)
1793 /**
1794  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1795  * @dentry:	dentry whose name we are checking against
1796  * @len:	len of name of dentry
1797  * @str:	str pointer to name of dentry
1798  * @name:	Name to compare against
1799  *
1800  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1801  */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1802 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1803 			 const char *str, const struct qstr *name)
1804 {
1805 	const struct dentry *parent;
1806 	const struct inode *dir;
1807 	union shortname_store strbuf;
1808 	struct qstr qstr;
1809 
1810 	/*
1811 	 * Attempt a case-sensitive match first. It is cheaper and
1812 	 * should cover most lookups, including all the sane
1813 	 * applications that expect a case-sensitive filesystem.
1814 	 *
1815 	 * This comparison is safe under RCU because the caller
1816 	 * guarantees the consistency between str and len. See
1817 	 * __d_lookup_rcu_op_compare() for details.
1818 	 */
1819 	if (len == name->len && !memcmp(str, name->name, len))
1820 		return 0;
1821 
1822 	parent = READ_ONCE(dentry->d_parent);
1823 	dir = READ_ONCE(parent->d_inode);
1824 	if (!dir || !IS_CASEFOLDED(dir))
1825 		return 1;
1826 
1827 	qstr.len = len;
1828 	qstr.name = str;
1829 	/*
1830 	 * If the dentry name is stored in-line, then it may be concurrently
1831 	 * modified by a rename.  If this happens, the VFS will eventually retry
1832 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1833 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1834 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1835 	 * As above, len is guaranteed to match str, so the shortname case
1836 	 * is exactly when str points to ->d_shortname.
1837 	 */
1838 	if (qstr.name == dentry->d_shortname.string) {
1839 		strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1840 		qstr.name = strbuf.string;
1841 		/* prevent compiler from optimizing out the temporary buffer */
1842 		barrier();
1843 	}
1844 
1845 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1846 }
1847 EXPORT_SYMBOL(generic_ci_d_compare);
1848 
1849 /**
1850  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1851  * @dentry:	dentry of the parent directory
1852  * @str:	qstr of name whose hash we should fill in
1853  *
1854  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1855  */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1856 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1857 {
1858 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1859 	struct super_block *sb = dentry->d_sb;
1860 	const struct unicode_map *um = sb->s_encoding;
1861 	int ret;
1862 
1863 	if (!dir || !IS_CASEFOLDED(dir))
1864 		return 0;
1865 
1866 	ret = utf8_casefold_hash(um, dentry, str);
1867 	if (ret < 0 && sb_has_strict_encoding(sb))
1868 		return -EINVAL;
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(generic_ci_d_hash);
1872 
1873 static const struct dentry_operations generic_ci_dentry_ops = {
1874 	.d_hash = generic_ci_d_hash,
1875 	.d_compare = generic_ci_d_compare,
1876 #ifdef CONFIG_FS_ENCRYPTION
1877 	.d_revalidate = fscrypt_d_revalidate,
1878 #endif
1879 };
1880 
1881 /**
1882  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1883  * This is a filesystem helper for comparison with directory entries.
1884  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1885  *
1886  * @parent: Inode of the parent of the dirent under comparison
1887  * @name: name under lookup.
1888  * @folded_name: Optional pre-folded name under lookup
1889  * @de_name: Dirent name.
1890  * @de_name_len: dirent name length.
1891  *
1892  * Test whether a case-insensitive directory entry matches the filename
1893  * being searched.  If @folded_name is provided, it is used instead of
1894  * recalculating the casefold of @name.
1895  *
1896  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1897  * < 0 on error.
1898  */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1899 int generic_ci_match(const struct inode *parent,
1900 		     const struct qstr *name,
1901 		     const struct qstr *folded_name,
1902 		     const u8 *de_name, u32 de_name_len)
1903 {
1904 	const struct super_block *sb = parent->i_sb;
1905 	const struct unicode_map *um = sb->s_encoding;
1906 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1907 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1908 	int res = 0;
1909 
1910 	if (IS_ENCRYPTED(parent)) {
1911 		const struct fscrypt_str encrypted_name =
1912 			FSTR_INIT((u8 *) de_name, de_name_len);
1913 
1914 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1915 			return -EINVAL;
1916 
1917 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1918 		if (!decrypted_name.name)
1919 			return -ENOMEM;
1920 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1921 						&decrypted_name);
1922 		if (res < 0) {
1923 			kfree(decrypted_name.name);
1924 			return res;
1925 		}
1926 		dirent.name = decrypted_name.name;
1927 		dirent.len = decrypted_name.len;
1928 	}
1929 
1930 	/*
1931 	 * Attempt a case-sensitive match first. It is cheaper and
1932 	 * should cover most lookups, including all the sane
1933 	 * applications that expect a case-sensitive filesystem.
1934 	 */
1935 
1936 	if (dirent.len == name->len &&
1937 	    !memcmp(name->name, dirent.name, dirent.len))
1938 		goto out;
1939 
1940 	if (folded_name->name)
1941 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1942 	else
1943 		res = utf8_strncasecmp(um, name, &dirent);
1944 
1945 out:
1946 	kfree(decrypted_name.name);
1947 	if (res < 0 && sb_has_strict_encoding(sb)) {
1948 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1949 		return 0;
1950 	}
1951 	return !res;
1952 }
1953 EXPORT_SYMBOL(generic_ci_match);
1954 #endif
1955 
1956 #ifdef CONFIG_FS_ENCRYPTION
1957 static const struct dentry_operations generic_encrypted_dentry_ops = {
1958 	.d_revalidate = fscrypt_d_revalidate,
1959 };
1960 #endif
1961 
1962 /**
1963  * generic_set_sb_d_ops - helper for choosing the set of
1964  * filesystem-wide dentry operations for the enabled features
1965  * @sb: superblock to be configured
1966  *
1967  * Filesystems supporting casefolding and/or fscrypt can call this
1968  * helper at mount-time to configure default dentry_operations to the
1969  * best set of dentry operations required for the enabled features.
1970  * The helper must be called after these have been configured, but
1971  * before the root dentry is created.
1972  */
generic_set_sb_d_ops(struct super_block * sb)1973 void generic_set_sb_d_ops(struct super_block *sb)
1974 {
1975 #if IS_ENABLED(CONFIG_UNICODE)
1976 	if (sb->s_encoding) {
1977 		set_default_d_op(sb, &generic_ci_dentry_ops);
1978 		return;
1979 	}
1980 #endif
1981 #ifdef CONFIG_FS_ENCRYPTION
1982 	if (sb->s_cop) {
1983 		set_default_d_op(sb, &generic_encrypted_dentry_ops);
1984 		return;
1985 	}
1986 #endif
1987 }
1988 EXPORT_SYMBOL(generic_set_sb_d_ops);
1989 
1990 /**
1991  * inode_maybe_inc_iversion - increments i_version
1992  * @inode: inode with the i_version that should be updated
1993  * @force: increment the counter even if it's not necessary?
1994  *
1995  * Every time the inode is modified, the i_version field must be seen to have
1996  * changed by any observer.
1997  *
1998  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1999  * the value, and clear the queried flag.
2000  *
2001  * In the common case where neither is set, then we can return "false" without
2002  * updating i_version.
2003  *
2004  * If this function returns false, and no other metadata has changed, then we
2005  * can avoid logging the metadata.
2006  */
inode_maybe_inc_iversion(struct inode * inode,bool force)2007 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2008 {
2009 	u64 cur, new;
2010 
2011 	/*
2012 	 * The i_version field is not strictly ordered with any other inode
2013 	 * information, but the legacy inode_inc_iversion code used a spinlock
2014 	 * to serialize increments.
2015 	 *
2016 	 * We add a full memory barrier to ensure that any de facto ordering
2017 	 * with other state is preserved (either implicitly coming from cmpxchg
2018 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2019 	 * the former).
2020 	 *
2021 	 * These barriers pair with inode_query_iversion().
2022 	 */
2023 	cur = inode_peek_iversion_raw(inode);
2024 	if (!force && !(cur & I_VERSION_QUERIED)) {
2025 		smp_mb();
2026 		cur = inode_peek_iversion_raw(inode);
2027 	}
2028 
2029 	do {
2030 		/* If flag is clear then we needn't do anything */
2031 		if (!force && !(cur & I_VERSION_QUERIED))
2032 			return false;
2033 
2034 		/* Since lowest bit is flag, add 2 to avoid it */
2035 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2036 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2037 	return true;
2038 }
2039 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2040 
2041 /**
2042  * inode_query_iversion - read i_version for later use
2043  * @inode: inode from which i_version should be read
2044  *
2045  * Read the inode i_version counter. This should be used by callers that wish
2046  * to store the returned i_version for later comparison. This will guarantee
2047  * that a later query of the i_version will result in a different value if
2048  * anything has changed.
2049  *
2050  * In this implementation, we fetch the current value, set the QUERIED flag and
2051  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2052  * that fails, we try again with the newly fetched value from the cmpxchg.
2053  */
inode_query_iversion(struct inode * inode)2054 u64 inode_query_iversion(struct inode *inode)
2055 {
2056 	u64 cur, new;
2057 	bool fenced = false;
2058 
2059 	/*
2060 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2061 	 * inode_maybe_inc_iversion(), see that routine for more details.
2062 	 */
2063 	cur = inode_peek_iversion_raw(inode);
2064 	do {
2065 		/* If flag is already set, then no need to swap */
2066 		if (cur & I_VERSION_QUERIED) {
2067 			if (!fenced)
2068 				smp_mb();
2069 			break;
2070 		}
2071 
2072 		fenced = true;
2073 		new = cur | I_VERSION_QUERIED;
2074 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2075 	return cur >> I_VERSION_QUERIED_SHIFT;
2076 }
2077 EXPORT_SYMBOL(inode_query_iversion);
2078 
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2079 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2080 		ssize_t direct_written, ssize_t buffered_written)
2081 {
2082 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2083 	loff_t pos = iocb->ki_pos - buffered_written;
2084 	loff_t end = iocb->ki_pos - 1;
2085 	int err;
2086 
2087 	/*
2088 	 * If the buffered write fallback returned an error, we want to return
2089 	 * the number of bytes which were written by direct I/O, or the error
2090 	 * code if that was zero.
2091 	 *
2092 	 * Note that this differs from normal direct-io semantics, which will
2093 	 * return -EFOO even if some bytes were written.
2094 	 */
2095 	if (unlikely(buffered_written < 0)) {
2096 		if (direct_written)
2097 			return direct_written;
2098 		return buffered_written;
2099 	}
2100 
2101 	/*
2102 	 * We need to ensure that the page cache pages are written to disk and
2103 	 * invalidated to preserve the expected O_DIRECT semantics.
2104 	 */
2105 	err = filemap_write_and_wait_range(mapping, pos, end);
2106 	if (err < 0) {
2107 		/*
2108 		 * We don't know how much we wrote, so just return the number of
2109 		 * bytes which were direct-written
2110 		 */
2111 		iocb->ki_pos -= buffered_written;
2112 		if (direct_written)
2113 			return direct_written;
2114 		return err;
2115 	}
2116 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2117 	return direct_written + buffered_written;
2118 }
2119 EXPORT_SYMBOL_GPL(direct_write_fallback);
2120 
2121 /**
2122  * simple_inode_init_ts - initialize the timestamps for a new inode
2123  * @inode: inode to be initialized
2124  *
2125  * When a new inode is created, most filesystems set the timestamps to the
2126  * current time. Add a helper to do this.
2127  */
simple_inode_init_ts(struct inode * inode)2128 struct timespec64 simple_inode_init_ts(struct inode *inode)
2129 {
2130 	struct timespec64 ts = inode_set_ctime_current(inode);
2131 
2132 	inode_set_atime_to_ts(inode, ts);
2133 	inode_set_mtime_to_ts(inode, ts);
2134 	return ts;
2135 }
2136 EXPORT_SYMBOL(simple_inode_init_ts);
2137 
stashed_dentry_get(struct dentry ** stashed)2138 struct dentry *stashed_dentry_get(struct dentry **stashed)
2139 {
2140 	struct dentry *dentry;
2141 
2142 	guard(rcu)();
2143 	dentry = rcu_dereference(*stashed);
2144 	if (!dentry)
2145 		return NULL;
2146 	if (IS_ERR(dentry))
2147 		return dentry;
2148 	if (!lockref_get_not_dead(&dentry->d_lockref))
2149 		return NULL;
2150 	return dentry;
2151 }
2152 
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2153 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2154 					  struct super_block *sb,
2155 					  void *data)
2156 {
2157 	struct dentry *dentry;
2158 	struct inode *inode;
2159 	const struct stashed_operations *sops = sb->s_fs_info;
2160 	int ret;
2161 
2162 	inode = new_inode_pseudo(sb);
2163 	if (!inode) {
2164 		sops->put_data(data);
2165 		return ERR_PTR(-ENOMEM);
2166 	}
2167 
2168 	inode->i_flags |= S_IMMUTABLE;
2169 	inode->i_mode = S_IFREG;
2170 	simple_inode_init_ts(inode);
2171 
2172 	ret = sops->init_inode(inode, data);
2173 	if (ret < 0) {
2174 		iput(inode);
2175 		return ERR_PTR(ret);
2176 	}
2177 
2178 	/* Notice when this is changed. */
2179 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2180 
2181 	dentry = d_alloc_anon(sb);
2182 	if (!dentry) {
2183 		iput(inode);
2184 		return ERR_PTR(-ENOMEM);
2185 	}
2186 
2187 	/* Store address of location where dentry's supposed to be stashed. */
2188 	dentry->d_fsdata = stashed;
2189 
2190 	/* @data is now owned by the fs */
2191 	d_instantiate(dentry, inode);
2192 	return dentry;
2193 }
2194 
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2195 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2196 {
2197 	guard(rcu)();
2198 	for (;;) {
2199 		struct dentry *old;
2200 
2201 		/* Assume any old dentry was cleared out. */
2202 		old = cmpxchg(stashed, NULL, dentry);
2203 		if (likely(!old))
2204 			return dentry;
2205 
2206 		/* Check if somebody else installed a reusable dentry. */
2207 		if (lockref_get_not_dead(&old->d_lockref))
2208 			return old;
2209 
2210 		/* There's an old dead dentry there, try to take it over. */
2211 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2212 			return dentry;
2213 	}
2214 }
2215 
2216 /**
2217  * path_from_stashed - create path from stashed or new dentry
2218  * @stashed:    where to retrieve or stash dentry
2219  * @mnt:        mnt of the filesystems to use
2220  * @data:       data to store in inode->i_private
2221  * @path:       path to create
2222  *
2223  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2224  * is still valid then it will be reused. If the dentry isn't able the function
2225  * will allocate a new dentry and inode. It will then check again whether it
2226  * can reuse an existing dentry in case one has been added in the meantime or
2227  * update @stashed with the newly added dentry.
2228  *
2229  * Special-purpose helper for nsfs and pidfs.
2230  *
2231  * Return: On success zero and on failure a negative error is returned.
2232  */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2233 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2234 		      struct path *path)
2235 {
2236 	struct dentry *dentry, *res;
2237 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2238 
2239 	/* See if dentry can be reused. */
2240 	res = stashed_dentry_get(stashed);
2241 	if (IS_ERR(res))
2242 		return PTR_ERR(res);
2243 	if (res) {
2244 		sops->put_data(data);
2245 		goto make_path;
2246 	}
2247 
2248 	/* Allocate a new dentry. */
2249 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2250 	if (IS_ERR(dentry))
2251 		return PTR_ERR(dentry);
2252 
2253 	/* Added a new dentry. @data is now owned by the filesystem. */
2254 	if (sops->stash_dentry)
2255 		res = sops->stash_dentry(stashed, dentry);
2256 	else
2257 		res = stash_dentry(stashed, dentry);
2258 	if (IS_ERR(res)) {
2259 		dput(dentry);
2260 		return PTR_ERR(res);
2261 	}
2262 	if (res != dentry)
2263 		dput(dentry);
2264 
2265 make_path:
2266 	path->dentry = res;
2267 	path->mnt = mntget(mnt);
2268 	VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2269 	VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2270 	return 0;
2271 }
2272 
stashed_dentry_prune(struct dentry * dentry)2273 void stashed_dentry_prune(struct dentry *dentry)
2274 {
2275 	struct dentry **stashed = dentry->d_fsdata;
2276 	struct inode *inode = d_inode(dentry);
2277 
2278 	if (WARN_ON_ONCE(!stashed))
2279 		return;
2280 
2281 	if (!inode)
2282 		return;
2283 
2284 	/*
2285 	 * Only replace our own @dentry as someone else might've
2286 	 * already cleared out @dentry and stashed their own
2287 	 * dentry in there.
2288 	 */
2289 	cmpxchg(stashed, dentry, NULL);
2290 }
2291 
2292 /* parent must be held exclusive */
simple_start_creating(struct dentry * parent,const char * name)2293 struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2294 {
2295 	struct dentry *dentry;
2296 	struct inode *dir = d_inode(parent);
2297 
2298 	inode_lock(dir);
2299 	if (unlikely(IS_DEADDIR(dir))) {
2300 		inode_unlock(dir);
2301 		return ERR_PTR(-ENOENT);
2302 	}
2303 	dentry = lookup_noperm(&QSTR(name), parent);
2304 	if (IS_ERR(dentry)) {
2305 		inode_unlock(dir);
2306 		return dentry;
2307 	}
2308 	if (dentry->d_inode) {
2309 		dput(dentry);
2310 		inode_unlock(dir);
2311 		return ERR_PTR(-EEXIST);
2312 	}
2313 	return dentry;
2314 }
2315 EXPORT_SYMBOL(simple_start_creating);
2316