xref: /freebsd/sys/kern/kern_sig.c (revision fd5bc306ff3d8f908f36703d6ab714322f9f3c75)
1  /*-
2   * SPDX-License-Identifier: BSD-3-Clause
3   *
4   * Copyright (c) 1982, 1986, 1989, 1991, 1993
5   *	The Regents of the University of California.  All rights reserved.
6   * (c) UNIX System Laboratories, Inc.
7   * All or some portions of this file are derived from material licensed
8   * to the University of California by American Telephone and Telegraph
9   * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10   * the permission of UNIX System Laboratories, Inc.
11   *
12   * Redistribution and use in source and binary forms, with or without
13   * modification, are permitted provided that the following conditions
14   * are met:
15   * 1. Redistributions of source code must retain the above copyright
16   *    notice, this list of conditions and the following disclaimer.
17   * 2. Redistributions in binary form must reproduce the above copyright
18   *    notice, this list of conditions and the following disclaimer in the
19   *    documentation and/or other materials provided with the distribution.
20   * 3. Neither the name of the University nor the names of its contributors
21   *    may be used to endorse or promote products derived from this software
22   *    without specific prior written permission.
23   *
24   * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27   * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34   * SUCH DAMAGE.
35   */
36  
37  #include "opt_capsicum.h"
38  #include "opt_ktrace.h"
39  
40  #include <sys/param.h>
41  #include <sys/capsicum.h>
42  #include <sys/ctype.h>
43  #include <sys/systm.h>
44  #include <sys/signalvar.h>
45  #include <sys/vnode.h>
46  #include <sys/acct.h>
47  #include <sys/capsicum.h>
48  #include <sys/compressor.h>
49  #include <sys/condvar.h>
50  #include <sys/devctl.h>
51  #include <sys/event.h>
52  #include <sys/fcntl.h>
53  #include <sys/imgact.h>
54  #include <sys/jail.h>
55  #include <sys/kernel.h>
56  #include <sys/ktr.h>
57  #include <sys/ktrace.h>
58  #include <sys/limits.h>
59  #include <sys/lock.h>
60  #include <sys/malloc.h>
61  #include <sys/mutex.h>
62  #include <sys/refcount.h>
63  #include <sys/namei.h>
64  #include <sys/proc.h>
65  #include <sys/procdesc.h>
66  #include <sys/ptrace.h>
67  #include <sys/posix4.h>
68  #include <sys/racct.h>
69  #include <sys/resourcevar.h>
70  #include <sys/sdt.h>
71  #include <sys/sbuf.h>
72  #include <sys/sleepqueue.h>
73  #include <sys/smp.h>
74  #include <sys/stat.h>
75  #include <sys/sx.h>
76  #include <sys/syscall.h>
77  #include <sys/syscallsubr.h>
78  #include <sys/sysctl.h>
79  #include <sys/sysent.h>
80  #include <sys/syslog.h>
81  #include <sys/sysproto.h>
82  #include <sys/timers.h>
83  #include <sys/unistd.h>
84  #include <sys/vmmeter.h>
85  #include <sys/wait.h>
86  #include <vm/vm.h>
87  #include <vm/vm_extern.h>
88  #include <vm/uma.h>
89  
90  #include <machine/cpu.h>
91  
92  #include <security/audit/audit.h>
93  
94  #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
95  
96  SDT_PROVIDER_DECLARE(proc);
97  SDT_PROBE_DEFINE3(proc, , , signal__send,
98      "struct thread *", "struct proc *", "int");
99  SDT_PROBE_DEFINE2(proc, , , signal__clear,
100      "int", "ksiginfo_t *");
101  SDT_PROBE_DEFINE3(proc, , , signal__discard,
102      "struct thread *", "struct proc *", "int");
103  
104  static int	coredump(struct thread *);
105  static int	killpg1(struct thread *td, int sig, int pgid, int all,
106  		    ksiginfo_t *ksi);
107  static int	issignal(struct thread *td);
108  static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
109  static int	sigprop(int sig);
110  static void	tdsigwakeup(struct thread *, int, sig_t, int);
111  static void	sig_suspend_threads(struct thread *, struct proc *);
112  static int	filt_sigattach(struct knote *kn);
113  static void	filt_sigdetach(struct knote *kn);
114  static int	filt_signal(struct knote *kn, long hint);
115  static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
116  static void	sigqueue_start(void);
117  static void	sigfastblock_setpend(struct thread *td, bool resched);
118  
119  static uma_zone_t	ksiginfo_zone = NULL;
120  const struct filterops sig_filtops = {
121  	.f_isfd = 0,
122  	.f_attach = filt_sigattach,
123  	.f_detach = filt_sigdetach,
124  	.f_event = filt_signal,
125  };
126  
127  static int	kern_logsigexit = 1;
128  SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
129      &kern_logsigexit, 0,
130      "Log processes quitting on abnormal signals to syslog(3)");
131  
132  static int	kern_forcesigexit = 1;
133  SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
134      &kern_forcesigexit, 0, "Force trap signal to be handled");
135  
136  static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
137      "POSIX real time signal");
138  
139  static int	max_pending_per_proc = 128;
140  SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
141      &max_pending_per_proc, 0, "Max pending signals per proc");
142  
143  static int	preallocate_siginfo = 1024;
144  SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
145      &preallocate_siginfo, 0, "Preallocated signal memory size");
146  
147  static int	signal_overflow = 0;
148  SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
149      &signal_overflow, 0, "Number of signals overflew");
150  
151  static int	signal_alloc_fail = 0;
152  SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
153      &signal_alloc_fail, 0, "signals failed to be allocated");
154  
155  static int	kern_lognosys = 0;
156  SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
157      "Log invalid syscalls");
158  
159  static int	kern_signosys = 1;
160  SYSCTL_INT(_kern, OID_AUTO, signosys, CTLFLAG_RWTUN, &kern_signosys, 0,
161      "Send SIGSYS on return from invalid syscall");
162  
163  __read_frequently bool sigfastblock_fetch_always = false;
164  SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
165      &sigfastblock_fetch_always, 0,
166      "Fetch sigfastblock word on each syscall entry for proper "
167      "blocking semantic");
168  
169  static bool	kern_sig_discard_ign = true;
170  SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
171      &kern_sig_discard_ign, 0,
172      "Discard ignored signals on delivery, otherwise queue them to "
173      "the target queue");
174  
175  SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
176  
177  /*
178   * Policy -- Can ucred cr1 send SIGIO to process cr2?
179   * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
180   * in the right situations.
181   */
182  #define CANSIGIO(cr1, cr2) \
183  	((cr1)->cr_uid == 0 || \
184  	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
185  	    (cr1)->cr_uid == (cr2)->cr_ruid || \
186  	    (cr1)->cr_ruid == (cr2)->cr_uid || \
187  	    (cr1)->cr_uid == (cr2)->cr_uid)
188  
189  static int	sugid_coredump;
190  SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
191      &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
192  
193  static int	capmode_coredump;
194  SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
195      &capmode_coredump, 0, "Allow processes in capability mode to dump core");
196  
197  static int	do_coredump = 1;
198  SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
199  	&do_coredump, 0, "Enable/Disable coredumps");
200  
201  static int	set_core_nodump_flag = 0;
202  SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
203  	0, "Enable setting the NODUMP flag on coredump files");
204  
205  static int	coredump_devctl = 0;
206  SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
207  	0, "Generate a devctl notification when processes coredump");
208  
209  /*
210   * Signal properties and actions.
211   * The array below categorizes the signals and their default actions
212   * according to the following properties:
213   */
214  #define	SIGPROP_KILL		0x01	/* terminates process by default */
215  #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
216  #define	SIGPROP_STOP		0x04	/* suspend process */
217  #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
218  #define	SIGPROP_IGNORE		0x10	/* ignore by default */
219  #define	SIGPROP_CONT		0x20	/* continue if suspended */
220  
221  static const int sigproptbl[NSIG] = {
222  	[SIGHUP] =	SIGPROP_KILL,
223  	[SIGINT] =	SIGPROP_KILL,
224  	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
225  	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
226  	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
227  	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
228  	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
229  	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
230  	[SIGKILL] =	SIGPROP_KILL,
231  	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
232  	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
233  	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
234  	[SIGPIPE] =	SIGPROP_KILL,
235  	[SIGALRM] =	SIGPROP_KILL,
236  	[SIGTERM] =	SIGPROP_KILL,
237  	[SIGURG] =	SIGPROP_IGNORE,
238  	[SIGSTOP] =	SIGPROP_STOP,
239  	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
240  	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
241  	[SIGCHLD] =	SIGPROP_IGNORE,
242  	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
243  	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
244  	[SIGIO] =	SIGPROP_IGNORE,
245  	[SIGXCPU] =	SIGPROP_KILL,
246  	[SIGXFSZ] =	SIGPROP_KILL,
247  	[SIGVTALRM] =	SIGPROP_KILL,
248  	[SIGPROF] =	SIGPROP_KILL,
249  	[SIGWINCH] =	SIGPROP_IGNORE,
250  	[SIGINFO] =	SIGPROP_IGNORE,
251  	[SIGUSR1] =	SIGPROP_KILL,
252  	[SIGUSR2] =	SIGPROP_KILL,
253  };
254  
255  #define	_SIG_FOREACH_ADVANCE(i, set) ({					\
256  	int __found;							\
257  	for (;;) {							\
258  		if (__bits != 0) {					\
259  			int __sig = ffs(__bits);			\
260  			__bits &= ~(1u << (__sig - 1));			\
261  			sig = __i * sizeof((set)->__bits[0]) * NBBY + __sig; \
262  			__found = 1;					\
263  			break;						\
264  		}							\
265  		if (++__i == _SIG_WORDS) {				\
266  			__found = 0;					\
267  			break;						\
268  		}							\
269  		__bits = (set)->__bits[__i];				\
270  	}								\
271  	__found != 0;							\
272  })
273  
274  #define	SIG_FOREACH(i, set)						\
275  	for (int32_t __i = -1, __bits = 0;				\
276  	    _SIG_FOREACH_ADVANCE(i, set); )				\
277  
278  static sigset_t fastblock_mask;
279  
280  static void
ast_sig(struct thread * td,int tda)281  ast_sig(struct thread *td, int tda)
282  {
283  	struct proc *p;
284  	int old_boundary, sig;
285  	bool resched_sigs;
286  
287  	p = td->td_proc;
288  
289  #ifdef DIAGNOSTIC
290  	if (p->p_numthreads == 1 && (tda & (TDAI(TDA_SIG) |
291  	    TDAI(TDA_AST))) == 0) {
292  		PROC_LOCK(p);
293  		thread_lock(td);
294  		/*
295  		 * Note that TDA_SIG should be re-read from
296  		 * td_ast, since signal might have been delivered
297  		 * after we cleared td_flags above.  This is one of
298  		 * the reason for looping check for AST condition.
299  		 * See comment in userret() about P_PPWAIT.
300  		 */
301  		if ((p->p_flag & P_PPWAIT) == 0 &&
302  		    (td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
303  			if (SIGPENDING(td) && ((tda | td->td_ast) &
304  			    (TDAI(TDA_SIG) | TDAI(TDA_AST))) == 0) {
305  				thread_unlock(td); /* fix dumps */
306  				panic(
307  				    "failed2 to set signal flags for ast p %p "
308  				    "td %p tda %#x td_ast %#x fl %#x",
309  				    p, td, tda, td->td_ast, td->td_flags);
310  			}
311  		}
312  		thread_unlock(td);
313  		PROC_UNLOCK(p);
314  	}
315  #endif
316  
317  	/*
318  	 * Check for signals. Unlocked reads of p_pendingcnt or
319  	 * p_siglist might cause process-directed signal to be handled
320  	 * later.
321  	 */
322  	if ((tda & TDAI(TDA_SIG)) != 0 || p->p_pendingcnt > 0 ||
323  	    !SIGISEMPTY(p->p_siglist)) {
324  		sigfastblock_fetch(td);
325  		PROC_LOCK(p);
326  		old_boundary = ~TDB_BOUNDARY | (td->td_dbgflags & TDB_BOUNDARY);
327  		td->td_dbgflags |= TDB_BOUNDARY;
328  		mtx_lock(&p->p_sigacts->ps_mtx);
329  		while ((sig = cursig(td)) != 0) {
330  			KASSERT(sig >= 0, ("sig %d", sig));
331  			postsig(sig);
332  		}
333  		mtx_unlock(&p->p_sigacts->ps_mtx);
334  		td->td_dbgflags &= old_boundary;
335  		PROC_UNLOCK(p);
336  		resched_sigs = true;
337  	} else {
338  		resched_sigs = false;
339  	}
340  
341  	/*
342  	 * Handle deferred update of the fast sigblock value, after
343  	 * the postsig() loop was performed.
344  	 */
345  	sigfastblock_setpend(td, resched_sigs);
346  
347  	/*
348  	 * Clear td_sa.code: signal to ptrace that syscall arguments
349  	 * are unavailable after this point. This AST handler is the
350  	 * last chance for ptracestop() to signal the tracer before
351  	 * the tracee returns to userspace.
352  	 */
353  	td->td_sa.code = 0;
354  }
355  
356  static void
ast_sigsuspend(struct thread * td,int tda __unused)357  ast_sigsuspend(struct thread *td, int tda __unused)
358  {
359  	MPASS((td->td_pflags & TDP_OLDMASK) != 0);
360  	td->td_pflags &= ~TDP_OLDMASK;
361  	kern_sigprocmask(td, SIG_SETMASK, &td->td_oldsigmask, NULL, 0);
362  }
363  
364  static void
sigqueue_start(void)365  sigqueue_start(void)
366  {
367  	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
368  		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
369  	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
370  	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
371  	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
372  	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
373  	SIGFILLSET(fastblock_mask);
374  	SIG_CANTMASK(fastblock_mask);
375  	ast_register(TDA_SIG, ASTR_UNCOND, 0, ast_sig);
376  
377  	/*
378  	 * TDA_PSELECT is for the case where the signal mask should be restored
379  	 * before delivering any signals so that we do not deliver any that are
380  	 * blocked by the normal thread mask.  It is mutually exclusive with
381  	 * TDA_SIGSUSPEND, which should be used if we *do* want to deliver
382  	 * signals that are normally blocked, e.g., if it interrupted our sleep.
383  	 */
384  	ast_register(TDA_PSELECT, ASTR_ASTF_REQUIRED | ASTR_TDP,
385  	    TDP_OLDMASK, ast_sigsuspend);
386  	ast_register(TDA_SIGSUSPEND, ASTR_ASTF_REQUIRED | ASTR_TDP,
387  	    TDP_OLDMASK, ast_sigsuspend);
388  }
389  
390  ksiginfo_t *
ksiginfo_alloc(int mwait)391  ksiginfo_alloc(int mwait)
392  {
393  	MPASS(mwait == M_WAITOK || mwait == M_NOWAIT);
394  
395  	if (ksiginfo_zone == NULL)
396  		return (NULL);
397  	return (uma_zalloc(ksiginfo_zone, mwait | M_ZERO));
398  }
399  
400  void
ksiginfo_free(ksiginfo_t * ksi)401  ksiginfo_free(ksiginfo_t *ksi)
402  {
403  	uma_zfree(ksiginfo_zone, ksi);
404  }
405  
406  static __inline bool
ksiginfo_tryfree(ksiginfo_t * ksi)407  ksiginfo_tryfree(ksiginfo_t *ksi)
408  {
409  	if ((ksi->ksi_flags & KSI_EXT) == 0) {
410  		uma_zfree(ksiginfo_zone, ksi);
411  		return (true);
412  	}
413  	return (false);
414  }
415  
416  void
sigqueue_init(sigqueue_t * list,struct proc * p)417  sigqueue_init(sigqueue_t *list, struct proc *p)
418  {
419  	SIGEMPTYSET(list->sq_signals);
420  	SIGEMPTYSET(list->sq_kill);
421  	SIGEMPTYSET(list->sq_ptrace);
422  	TAILQ_INIT(&list->sq_list);
423  	list->sq_proc = p;
424  	list->sq_flags = SQ_INIT;
425  }
426  
427  /*
428   * Get a signal's ksiginfo.
429   * Return:
430   *	0	-	signal not found
431   *	others	-	signal number
432   */
433  static int
sigqueue_get(sigqueue_t * sq,int signo,ksiginfo_t * si)434  sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
435  {
436  	struct proc *p = sq->sq_proc;
437  	struct ksiginfo *ksi, *next;
438  	int count = 0;
439  
440  	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
441  
442  	if (!SIGISMEMBER(sq->sq_signals, signo))
443  		return (0);
444  
445  	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
446  		count++;
447  		SIGDELSET(sq->sq_ptrace, signo);
448  		si->ksi_flags |= KSI_PTRACE;
449  	}
450  	if (SIGISMEMBER(sq->sq_kill, signo)) {
451  		count++;
452  		if (count == 1)
453  			SIGDELSET(sq->sq_kill, signo);
454  	}
455  
456  	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
457  		if (ksi->ksi_signo == signo) {
458  			if (count == 0) {
459  				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
460  				ksi->ksi_sigq = NULL;
461  				ksiginfo_copy(ksi, si);
462  				if (ksiginfo_tryfree(ksi) && p != NULL)
463  					p->p_pendingcnt--;
464  			}
465  			if (++count > 1)
466  				break;
467  		}
468  	}
469  
470  	if (count <= 1)
471  		SIGDELSET(sq->sq_signals, signo);
472  	si->ksi_signo = signo;
473  	return (signo);
474  }
475  
476  void
sigqueue_take(ksiginfo_t * ksi)477  sigqueue_take(ksiginfo_t *ksi)
478  {
479  	struct ksiginfo *kp;
480  	struct proc	*p;
481  	sigqueue_t	*sq;
482  
483  	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
484  		return;
485  
486  	p = sq->sq_proc;
487  	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
488  	ksi->ksi_sigq = NULL;
489  	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
490  		p->p_pendingcnt--;
491  
492  	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
493  	     kp = TAILQ_NEXT(kp, ksi_link)) {
494  		if (kp->ksi_signo == ksi->ksi_signo)
495  			break;
496  	}
497  	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
498  	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
499  		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
500  }
501  
502  static int
sigqueue_add(sigqueue_t * sq,int signo,ksiginfo_t * si)503  sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
504  {
505  	struct proc *p = sq->sq_proc;
506  	struct ksiginfo *ksi;
507  	int ret = 0;
508  
509  	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
510  
511  	/*
512  	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
513  	 * for these signals.
514  	 */
515  	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
516  		SIGADDSET(sq->sq_kill, signo);
517  		goto out_set_bit;
518  	}
519  
520  	/* directly insert the ksi, don't copy it */
521  	if (si->ksi_flags & KSI_INS) {
522  		if (si->ksi_flags & KSI_HEAD)
523  			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
524  		else
525  			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
526  		si->ksi_sigq = sq;
527  		goto out_set_bit;
528  	}
529  
530  	if (__predict_false(ksiginfo_zone == NULL)) {
531  		SIGADDSET(sq->sq_kill, signo);
532  		goto out_set_bit;
533  	}
534  
535  	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
536  		signal_overflow++;
537  		ret = EAGAIN;
538  	} else if ((ksi = ksiginfo_alloc(M_NOWAIT)) == NULL) {
539  		signal_alloc_fail++;
540  		ret = EAGAIN;
541  	} else {
542  		if (p != NULL)
543  			p->p_pendingcnt++;
544  		ksiginfo_copy(si, ksi);
545  		ksi->ksi_signo = signo;
546  		if (si->ksi_flags & KSI_HEAD)
547  			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
548  		else
549  			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
550  		ksi->ksi_sigq = sq;
551  	}
552  
553  	if (ret != 0) {
554  		if ((si->ksi_flags & KSI_PTRACE) != 0) {
555  			SIGADDSET(sq->sq_ptrace, signo);
556  			ret = 0;
557  			goto out_set_bit;
558  		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
559  		    (si->ksi_flags & KSI_SIGQ) == 0) {
560  			SIGADDSET(sq->sq_kill, signo);
561  			ret = 0;
562  			goto out_set_bit;
563  		}
564  		return (ret);
565  	}
566  
567  out_set_bit:
568  	SIGADDSET(sq->sq_signals, signo);
569  	return (ret);
570  }
571  
572  void
sigqueue_flush(sigqueue_t * sq)573  sigqueue_flush(sigqueue_t *sq)
574  {
575  	struct proc *p = sq->sq_proc;
576  	ksiginfo_t *ksi;
577  
578  	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
579  
580  	if (p != NULL)
581  		PROC_LOCK_ASSERT(p, MA_OWNED);
582  
583  	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
584  		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
585  		ksi->ksi_sigq = NULL;
586  		if (ksiginfo_tryfree(ksi) && p != NULL)
587  			p->p_pendingcnt--;
588  	}
589  
590  	SIGEMPTYSET(sq->sq_signals);
591  	SIGEMPTYSET(sq->sq_kill);
592  	SIGEMPTYSET(sq->sq_ptrace);
593  }
594  
595  static void
sigqueue_move_set(sigqueue_t * src,sigqueue_t * dst,const sigset_t * set)596  sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
597  {
598  	sigset_t tmp;
599  	struct proc *p1, *p2;
600  	ksiginfo_t *ksi, *next;
601  
602  	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
603  	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
604  	p1 = src->sq_proc;
605  	p2 = dst->sq_proc;
606  	/* Move siginfo to target list */
607  	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
608  		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
609  			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
610  			if (p1 != NULL)
611  				p1->p_pendingcnt--;
612  			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
613  			ksi->ksi_sigq = dst;
614  			if (p2 != NULL)
615  				p2->p_pendingcnt++;
616  		}
617  	}
618  
619  	/* Move pending bits to target list */
620  	tmp = src->sq_kill;
621  	SIGSETAND(tmp, *set);
622  	SIGSETOR(dst->sq_kill, tmp);
623  	SIGSETNAND(src->sq_kill, tmp);
624  
625  	tmp = src->sq_ptrace;
626  	SIGSETAND(tmp, *set);
627  	SIGSETOR(dst->sq_ptrace, tmp);
628  	SIGSETNAND(src->sq_ptrace, tmp);
629  
630  	tmp = src->sq_signals;
631  	SIGSETAND(tmp, *set);
632  	SIGSETOR(dst->sq_signals, tmp);
633  	SIGSETNAND(src->sq_signals, tmp);
634  }
635  
636  #if 0
637  static void
638  sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
639  {
640  	sigset_t set;
641  
642  	SIGEMPTYSET(set);
643  	SIGADDSET(set, signo);
644  	sigqueue_move_set(src, dst, &set);
645  }
646  #endif
647  
648  static void
sigqueue_delete_set(sigqueue_t * sq,const sigset_t * set)649  sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
650  {
651  	struct proc *p = sq->sq_proc;
652  	ksiginfo_t *ksi, *next;
653  
654  	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
655  
656  	/* Remove siginfo queue */
657  	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
658  		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
659  			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
660  			ksi->ksi_sigq = NULL;
661  			if (ksiginfo_tryfree(ksi) && p != NULL)
662  				p->p_pendingcnt--;
663  		}
664  	}
665  	SIGSETNAND(sq->sq_kill, *set);
666  	SIGSETNAND(sq->sq_ptrace, *set);
667  	SIGSETNAND(sq->sq_signals, *set);
668  }
669  
670  void
sigqueue_delete(sigqueue_t * sq,int signo)671  sigqueue_delete(sigqueue_t *sq, int signo)
672  {
673  	sigset_t set;
674  
675  	SIGEMPTYSET(set);
676  	SIGADDSET(set, signo);
677  	sigqueue_delete_set(sq, &set);
678  }
679  
680  /* Remove a set of signals for a process */
681  static void
sigqueue_delete_set_proc(struct proc * p,const sigset_t * set)682  sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
683  {
684  	sigqueue_t worklist;
685  	struct thread *td0;
686  
687  	PROC_LOCK_ASSERT(p, MA_OWNED);
688  
689  	sigqueue_init(&worklist, NULL);
690  	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
691  
692  	FOREACH_THREAD_IN_PROC(p, td0)
693  		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
694  
695  	sigqueue_flush(&worklist);
696  }
697  
698  void
sigqueue_delete_proc(struct proc * p,int signo)699  sigqueue_delete_proc(struct proc *p, int signo)
700  {
701  	sigset_t set;
702  
703  	SIGEMPTYSET(set);
704  	SIGADDSET(set, signo);
705  	sigqueue_delete_set_proc(p, &set);
706  }
707  
708  static void
sigqueue_delete_stopmask_proc(struct proc * p)709  sigqueue_delete_stopmask_proc(struct proc *p)
710  {
711  	sigset_t set;
712  
713  	SIGEMPTYSET(set);
714  	SIGADDSET(set, SIGSTOP);
715  	SIGADDSET(set, SIGTSTP);
716  	SIGADDSET(set, SIGTTIN);
717  	SIGADDSET(set, SIGTTOU);
718  	sigqueue_delete_set_proc(p, &set);
719  }
720  
721  /*
722   * Determine signal that should be delivered to thread td, the current
723   * thread, 0 if none.  If there is a pending stop signal with default
724   * action, the process stops in issignal().
725   */
726  int
cursig(struct thread * td)727  cursig(struct thread *td)
728  {
729  	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
730  	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
731  	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
732  	return (SIGPENDING(td) ? issignal(td) : 0);
733  }
734  
735  /*
736   * Arrange for ast() to handle unmasked pending signals on return to user
737   * mode.  This must be called whenever a signal is added to td_sigqueue or
738   * unmasked in td_sigmask.
739   */
740  void
signotify(struct thread * td)741  signotify(struct thread *td)
742  {
743  
744  	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
745  
746  	if (SIGPENDING(td))
747  		ast_sched(td, TDA_SIG);
748  }
749  
750  /*
751   * Returns 1 (true) if altstack is configured for the thread, and the
752   * passed stack bottom address falls into the altstack range.  Handles
753   * the 43 compat special case where the alt stack size is zero.
754   */
755  int
sigonstack(size_t sp)756  sigonstack(size_t sp)
757  {
758  	struct thread *td;
759  
760  	td = curthread;
761  	if ((td->td_pflags & TDP_ALTSTACK) == 0)
762  		return (0);
763  #if defined(COMPAT_43)
764  	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
765  		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
766  #endif
767  	return (sp >= (size_t)td->td_sigstk.ss_sp &&
768  	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
769  }
770  
771  static __inline int
sigprop(int sig)772  sigprop(int sig)
773  {
774  
775  	if (sig > 0 && sig < nitems(sigproptbl))
776  		return (sigproptbl[sig]);
777  	return (0);
778  }
779  
780  static bool
sigact_flag_test(const struct sigaction * act,int flag)781  sigact_flag_test(const struct sigaction *act, int flag)
782  {
783  
784  	/*
785  	 * SA_SIGINFO is reset when signal disposition is set to
786  	 * ignore or default.  Other flags are kept according to user
787  	 * settings.
788  	 */
789  	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
790  	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
791  	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
792  }
793  
794  /*
795   * kern_sigaction
796   * sigaction
797   * freebsd4_sigaction
798   * osigaction
799   */
800  int
kern_sigaction(struct thread * td,int sig,const struct sigaction * act,struct sigaction * oact,int flags)801  kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
802      struct sigaction *oact, int flags)
803  {
804  	struct sigacts *ps;
805  	struct proc *p = td->td_proc;
806  
807  	if (!_SIG_VALID(sig))
808  		return (EINVAL);
809  	if (act != NULL && act->sa_handler != SIG_DFL &&
810  	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
811  	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
812  	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
813  		return (EINVAL);
814  
815  	PROC_LOCK(p);
816  	ps = p->p_sigacts;
817  	mtx_lock(&ps->ps_mtx);
818  	if (oact) {
819  		memset(oact, 0, sizeof(*oact));
820  		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
821  		if (SIGISMEMBER(ps->ps_sigonstack, sig))
822  			oact->sa_flags |= SA_ONSTACK;
823  		if (!SIGISMEMBER(ps->ps_sigintr, sig))
824  			oact->sa_flags |= SA_RESTART;
825  		if (SIGISMEMBER(ps->ps_sigreset, sig))
826  			oact->sa_flags |= SA_RESETHAND;
827  		if (SIGISMEMBER(ps->ps_signodefer, sig))
828  			oact->sa_flags |= SA_NODEFER;
829  		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
830  			oact->sa_flags |= SA_SIGINFO;
831  			oact->sa_sigaction =
832  			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
833  		} else
834  			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
835  		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
836  			oact->sa_flags |= SA_NOCLDSTOP;
837  		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
838  			oact->sa_flags |= SA_NOCLDWAIT;
839  	}
840  	if (act) {
841  		if ((sig == SIGKILL || sig == SIGSTOP) &&
842  		    act->sa_handler != SIG_DFL) {
843  			mtx_unlock(&ps->ps_mtx);
844  			PROC_UNLOCK(p);
845  			return (EINVAL);
846  		}
847  
848  		/*
849  		 * Change setting atomically.
850  		 */
851  
852  		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
853  		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
854  		if (sigact_flag_test(act, SA_SIGINFO)) {
855  			ps->ps_sigact[_SIG_IDX(sig)] =
856  			    (__sighandler_t *)act->sa_sigaction;
857  			SIGADDSET(ps->ps_siginfo, sig);
858  		} else {
859  			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
860  			SIGDELSET(ps->ps_siginfo, sig);
861  		}
862  		if (!sigact_flag_test(act, SA_RESTART))
863  			SIGADDSET(ps->ps_sigintr, sig);
864  		else
865  			SIGDELSET(ps->ps_sigintr, sig);
866  		if (sigact_flag_test(act, SA_ONSTACK))
867  			SIGADDSET(ps->ps_sigonstack, sig);
868  		else
869  			SIGDELSET(ps->ps_sigonstack, sig);
870  		if (sigact_flag_test(act, SA_RESETHAND))
871  			SIGADDSET(ps->ps_sigreset, sig);
872  		else
873  			SIGDELSET(ps->ps_sigreset, sig);
874  		if (sigact_flag_test(act, SA_NODEFER))
875  			SIGADDSET(ps->ps_signodefer, sig);
876  		else
877  			SIGDELSET(ps->ps_signodefer, sig);
878  		if (sig == SIGCHLD) {
879  			if (act->sa_flags & SA_NOCLDSTOP)
880  				ps->ps_flag |= PS_NOCLDSTOP;
881  			else
882  				ps->ps_flag &= ~PS_NOCLDSTOP;
883  			if (act->sa_flags & SA_NOCLDWAIT) {
884  				/*
885  				 * Paranoia: since SA_NOCLDWAIT is implemented
886  				 * by reparenting the dying child to PID 1 (and
887  				 * trust it to reap the zombie), PID 1 itself
888  				 * is forbidden to set SA_NOCLDWAIT.
889  				 */
890  				if (p->p_pid == 1)
891  					ps->ps_flag &= ~PS_NOCLDWAIT;
892  				else
893  					ps->ps_flag |= PS_NOCLDWAIT;
894  			} else
895  				ps->ps_flag &= ~PS_NOCLDWAIT;
896  			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
897  				ps->ps_flag |= PS_CLDSIGIGN;
898  			else
899  				ps->ps_flag &= ~PS_CLDSIGIGN;
900  		}
901  		/*
902  		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
903  		 * and for signals set to SIG_DFL where the default is to
904  		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
905  		 * have to restart the process.
906  		 */
907  		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
908  		    (sigprop(sig) & SIGPROP_IGNORE &&
909  		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
910  			/* never to be seen again */
911  			sigqueue_delete_proc(p, sig);
912  			if (sig != SIGCONT)
913  				/* easier in psignal */
914  				SIGADDSET(ps->ps_sigignore, sig);
915  			SIGDELSET(ps->ps_sigcatch, sig);
916  		} else {
917  			SIGDELSET(ps->ps_sigignore, sig);
918  			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
919  				SIGDELSET(ps->ps_sigcatch, sig);
920  			else
921  				SIGADDSET(ps->ps_sigcatch, sig);
922  		}
923  #ifdef COMPAT_FREEBSD4
924  		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
925  		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
926  		    (flags & KSA_FREEBSD4) == 0)
927  			SIGDELSET(ps->ps_freebsd4, sig);
928  		else
929  			SIGADDSET(ps->ps_freebsd4, sig);
930  #endif
931  #ifdef COMPAT_43
932  		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
933  		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
934  		    (flags & KSA_OSIGSET) == 0)
935  			SIGDELSET(ps->ps_osigset, sig);
936  		else
937  			SIGADDSET(ps->ps_osigset, sig);
938  #endif
939  	}
940  	mtx_unlock(&ps->ps_mtx);
941  	PROC_UNLOCK(p);
942  	return (0);
943  }
944  
945  #ifndef _SYS_SYSPROTO_H_
946  struct sigaction_args {
947  	int	sig;
948  	struct	sigaction *act;
949  	struct	sigaction *oact;
950  };
951  #endif
952  int
sys_sigaction(struct thread * td,struct sigaction_args * uap)953  sys_sigaction(struct thread *td, struct sigaction_args *uap)
954  {
955  	struct sigaction act, oact;
956  	struct sigaction *actp, *oactp;
957  	int error;
958  
959  	actp = (uap->act != NULL) ? &act : NULL;
960  	oactp = (uap->oact != NULL) ? &oact : NULL;
961  	if (actp) {
962  		error = copyin(uap->act, actp, sizeof(act));
963  		if (error)
964  			return (error);
965  	}
966  	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
967  	if (oactp && !error)
968  		error = copyout(oactp, uap->oact, sizeof(oact));
969  	return (error);
970  }
971  
972  #ifdef COMPAT_FREEBSD4
973  #ifndef _SYS_SYSPROTO_H_
974  struct freebsd4_sigaction_args {
975  	int	sig;
976  	struct	sigaction *act;
977  	struct	sigaction *oact;
978  };
979  #endif
980  int
freebsd4_sigaction(struct thread * td,struct freebsd4_sigaction_args * uap)981  freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
982  {
983  	struct sigaction act, oact;
984  	struct sigaction *actp, *oactp;
985  	int error;
986  
987  	actp = (uap->act != NULL) ? &act : NULL;
988  	oactp = (uap->oact != NULL) ? &oact : NULL;
989  	if (actp) {
990  		error = copyin(uap->act, actp, sizeof(act));
991  		if (error)
992  			return (error);
993  	}
994  	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
995  	if (oactp && !error)
996  		error = copyout(oactp, uap->oact, sizeof(oact));
997  	return (error);
998  }
999  #endif	/* COMAPT_FREEBSD4 */
1000  
1001  #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1002  #ifndef _SYS_SYSPROTO_H_
1003  struct osigaction_args {
1004  	int	signum;
1005  	struct	osigaction *nsa;
1006  	struct	osigaction *osa;
1007  };
1008  #endif
1009  int
osigaction(struct thread * td,struct osigaction_args * uap)1010  osigaction(struct thread *td, struct osigaction_args *uap)
1011  {
1012  	struct osigaction sa;
1013  	struct sigaction nsa, osa;
1014  	struct sigaction *nsap, *osap;
1015  	int error;
1016  
1017  	if (uap->signum <= 0 || uap->signum >= ONSIG)
1018  		return (EINVAL);
1019  
1020  	nsap = (uap->nsa != NULL) ? &nsa : NULL;
1021  	osap = (uap->osa != NULL) ? &osa : NULL;
1022  
1023  	if (nsap) {
1024  		error = copyin(uap->nsa, &sa, sizeof(sa));
1025  		if (error)
1026  			return (error);
1027  		nsap->sa_handler = sa.sa_handler;
1028  		nsap->sa_flags = sa.sa_flags;
1029  		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
1030  	}
1031  	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1032  	if (osap && !error) {
1033  		sa.sa_handler = osap->sa_handler;
1034  		sa.sa_flags = osap->sa_flags;
1035  		SIG2OSIG(osap->sa_mask, sa.sa_mask);
1036  		error = copyout(&sa, uap->osa, sizeof(sa));
1037  	}
1038  	return (error);
1039  }
1040  
1041  #if !defined(__i386__)
1042  /* Avoid replicating the same stub everywhere */
1043  int
osigreturn(struct thread * td,struct osigreturn_args * uap)1044  osigreturn(struct thread *td, struct osigreturn_args *uap)
1045  {
1046  
1047  	return (nosys(td, (struct nosys_args *)uap));
1048  }
1049  #endif
1050  #endif /* COMPAT_43 */
1051  
1052  /*
1053   * Initialize signal state for process 0;
1054   * set to ignore signals that are ignored by default.
1055   */
1056  void
siginit(struct proc * p)1057  siginit(struct proc *p)
1058  {
1059  	int i;
1060  	struct sigacts *ps;
1061  
1062  	PROC_LOCK(p);
1063  	ps = p->p_sigacts;
1064  	mtx_lock(&ps->ps_mtx);
1065  	for (i = 1; i <= NSIG; i++) {
1066  		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
1067  			SIGADDSET(ps->ps_sigignore, i);
1068  		}
1069  	}
1070  	mtx_unlock(&ps->ps_mtx);
1071  	PROC_UNLOCK(p);
1072  }
1073  
1074  /*
1075   * Reset specified signal to the default disposition.
1076   */
1077  static void
sigdflt(struct sigacts * ps,int sig)1078  sigdflt(struct sigacts *ps, int sig)
1079  {
1080  
1081  	mtx_assert(&ps->ps_mtx, MA_OWNED);
1082  	SIGDELSET(ps->ps_sigcatch, sig);
1083  	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
1084  		SIGADDSET(ps->ps_sigignore, sig);
1085  	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1086  	SIGDELSET(ps->ps_siginfo, sig);
1087  }
1088  
1089  /*
1090   * Reset signals for an exec of the specified process.
1091   */
1092  void
execsigs(struct proc * p)1093  execsigs(struct proc *p)
1094  {
1095  	struct sigacts *ps;
1096  	struct thread *td;
1097  
1098  	/*
1099  	 * Reset caught signals.  Held signals remain held
1100  	 * through td_sigmask (unless they were caught,
1101  	 * and are now ignored by default).
1102  	 */
1103  	PROC_LOCK_ASSERT(p, MA_OWNED);
1104  	ps = p->p_sigacts;
1105  	mtx_lock(&ps->ps_mtx);
1106  	sig_drop_caught(p);
1107  
1108  	/*
1109  	 * Reset stack state to the user stack.
1110  	 * Clear set of signals caught on the signal stack.
1111  	 */
1112  	td = curthread;
1113  	MPASS(td->td_proc == p);
1114  	td->td_sigstk.ss_flags = SS_DISABLE;
1115  	td->td_sigstk.ss_size = 0;
1116  	td->td_sigstk.ss_sp = 0;
1117  	td->td_pflags &= ~TDP_ALTSTACK;
1118  	/*
1119  	 * Reset no zombies if child dies flag as Solaris does.
1120  	 */
1121  	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1122  	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1123  		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1124  	mtx_unlock(&ps->ps_mtx);
1125  }
1126  
1127  /*
1128   * kern_sigprocmask()
1129   *
1130   *	Manipulate signal mask.
1131   */
1132  int
kern_sigprocmask(struct thread * td,int how,sigset_t * set,sigset_t * oset,int flags)1133  kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1134      int flags)
1135  {
1136  	sigset_t new_block, oset1;
1137  	struct proc *p;
1138  	int error;
1139  
1140  	p = td->td_proc;
1141  	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1142  		PROC_LOCK_ASSERT(p, MA_OWNED);
1143  	else
1144  		PROC_LOCK(p);
1145  	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1146  	    ? MA_OWNED : MA_NOTOWNED);
1147  	if (oset != NULL)
1148  		*oset = td->td_sigmask;
1149  
1150  	error = 0;
1151  	if (set != NULL) {
1152  		switch (how) {
1153  		case SIG_BLOCK:
1154  			SIG_CANTMASK(*set);
1155  			oset1 = td->td_sigmask;
1156  			SIGSETOR(td->td_sigmask, *set);
1157  			new_block = td->td_sigmask;
1158  			SIGSETNAND(new_block, oset1);
1159  			break;
1160  		case SIG_UNBLOCK:
1161  			SIGSETNAND(td->td_sigmask, *set);
1162  			signotify(td);
1163  			goto out;
1164  		case SIG_SETMASK:
1165  			SIG_CANTMASK(*set);
1166  			oset1 = td->td_sigmask;
1167  			if (flags & SIGPROCMASK_OLD)
1168  				SIGSETLO(td->td_sigmask, *set);
1169  			else
1170  				td->td_sigmask = *set;
1171  			new_block = td->td_sigmask;
1172  			SIGSETNAND(new_block, oset1);
1173  			signotify(td);
1174  			break;
1175  		default:
1176  			error = EINVAL;
1177  			goto out;
1178  		}
1179  
1180  		/*
1181  		 * The new_block set contains signals that were not previously
1182  		 * blocked, but are blocked now.
1183  		 *
1184  		 * In case we block any signal that was not previously blocked
1185  		 * for td, and process has the signal pending, try to schedule
1186  		 * signal delivery to some thread that does not block the
1187  		 * signal, possibly waking it up.
1188  		 */
1189  		if (p->p_numthreads != 1)
1190  			reschedule_signals(p, new_block, flags);
1191  	}
1192  
1193  out:
1194  	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1195  		PROC_UNLOCK(p);
1196  	return (error);
1197  }
1198  
1199  #ifndef _SYS_SYSPROTO_H_
1200  struct sigprocmask_args {
1201  	int	how;
1202  	const sigset_t *set;
1203  	sigset_t *oset;
1204  };
1205  #endif
1206  int
sys_sigprocmask(struct thread * td,struct sigprocmask_args * uap)1207  sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1208  {
1209  	sigset_t set, oset;
1210  	sigset_t *setp, *osetp;
1211  	int error;
1212  
1213  	setp = (uap->set != NULL) ? &set : NULL;
1214  	osetp = (uap->oset != NULL) ? &oset : NULL;
1215  	if (setp) {
1216  		error = copyin(uap->set, setp, sizeof(set));
1217  		if (error)
1218  			return (error);
1219  	}
1220  	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1221  	if (osetp && !error) {
1222  		error = copyout(osetp, uap->oset, sizeof(oset));
1223  	}
1224  	return (error);
1225  }
1226  
1227  #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1228  #ifndef _SYS_SYSPROTO_H_
1229  struct osigprocmask_args {
1230  	int	how;
1231  	osigset_t mask;
1232  };
1233  #endif
1234  int
osigprocmask(struct thread * td,struct osigprocmask_args * uap)1235  osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1236  {
1237  	sigset_t set, oset;
1238  	int error;
1239  
1240  	OSIG2SIG(uap->mask, set);
1241  	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1242  	SIG2OSIG(oset, td->td_retval[0]);
1243  	return (error);
1244  }
1245  #endif /* COMPAT_43 */
1246  
1247  int
sys_sigwait(struct thread * td,struct sigwait_args * uap)1248  sys_sigwait(struct thread *td, struct sigwait_args *uap)
1249  {
1250  	ksiginfo_t ksi;
1251  	sigset_t set;
1252  	int error;
1253  
1254  	error = copyin(uap->set, &set, sizeof(set));
1255  	if (error) {
1256  		td->td_retval[0] = error;
1257  		return (0);
1258  	}
1259  
1260  	error = kern_sigtimedwait(td, set, &ksi, NULL);
1261  	if (error) {
1262  		/*
1263  		 * sigwait() function shall not return EINTR, but
1264  		 * the syscall does.  Non-ancient libc provides the
1265  		 * wrapper which hides EINTR.  Otherwise, EINTR return
1266  		 * is used by libthr to handle required cancellation
1267  		 * point in the sigwait().
1268  		 */
1269  		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1270  			return (ERESTART);
1271  		td->td_retval[0] = error;
1272  		return (0);
1273  	}
1274  
1275  	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1276  	td->td_retval[0] = error;
1277  	return (0);
1278  }
1279  
1280  int
sys_sigtimedwait(struct thread * td,struct sigtimedwait_args * uap)1281  sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1282  {
1283  	struct timespec ts;
1284  	struct timespec *timeout;
1285  	sigset_t set;
1286  	ksiginfo_t ksi;
1287  	int error;
1288  
1289  	if (uap->timeout) {
1290  		error = copyin(uap->timeout, &ts, sizeof(ts));
1291  		if (error)
1292  			return (error);
1293  
1294  		timeout = &ts;
1295  	} else
1296  		timeout = NULL;
1297  
1298  	error = copyin(uap->set, &set, sizeof(set));
1299  	if (error)
1300  		return (error);
1301  
1302  	error = kern_sigtimedwait(td, set, &ksi, timeout);
1303  	if (error)
1304  		return (error);
1305  
1306  	if (uap->info)
1307  		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1308  
1309  	if (error == 0)
1310  		td->td_retval[0] = ksi.ksi_signo;
1311  	return (error);
1312  }
1313  
1314  int
sys_sigwaitinfo(struct thread * td,struct sigwaitinfo_args * uap)1315  sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1316  {
1317  	ksiginfo_t ksi;
1318  	sigset_t set;
1319  	int error;
1320  
1321  	error = copyin(uap->set, &set, sizeof(set));
1322  	if (error)
1323  		return (error);
1324  
1325  	error = kern_sigtimedwait(td, set, &ksi, NULL);
1326  	if (error)
1327  		return (error);
1328  
1329  	if (uap->info)
1330  		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1331  
1332  	if (error == 0)
1333  		td->td_retval[0] = ksi.ksi_signo;
1334  	return (error);
1335  }
1336  
1337  static void
proc_td_siginfo_capture(struct thread * td,siginfo_t * si)1338  proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1339  {
1340  	struct thread *thr;
1341  
1342  	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1343  		if (thr == td)
1344  			thr->td_si = *si;
1345  		else
1346  			thr->td_si.si_signo = 0;
1347  	}
1348  }
1349  
1350  int
kern_sigtimedwait(struct thread * td,sigset_t waitset,ksiginfo_t * ksi,struct timespec * timeout)1351  kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1352  	struct timespec *timeout)
1353  {
1354  	struct sigacts *ps;
1355  	sigset_t saved_mask, new_block;
1356  	struct proc *p;
1357  	int error, sig, timevalid = 0;
1358  	sbintime_t sbt, precision, tsbt;
1359  	struct timespec ts;
1360  	bool traced;
1361  
1362  	p = td->td_proc;
1363  	error = 0;
1364  	traced = false;
1365  
1366  	/* Ensure the sigfastblock value is up to date. */
1367  	sigfastblock_fetch(td);
1368  
1369  	if (timeout != NULL) {
1370  		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1371  			timevalid = 1;
1372  			ts = *timeout;
1373  			if (ts.tv_sec < INT32_MAX / 2) {
1374  				tsbt = tstosbt(ts);
1375  				precision = tsbt;
1376  				precision >>= tc_precexp;
1377  				if (TIMESEL(&sbt, tsbt))
1378  					sbt += tc_tick_sbt;
1379  				sbt += tsbt;
1380  			} else
1381  				precision = sbt = 0;
1382  		}
1383  	} else
1384  		precision = sbt = 0;
1385  	ksiginfo_init(ksi);
1386  	/* Some signals can not be waited for. */
1387  	SIG_CANTMASK(waitset);
1388  	ps = p->p_sigacts;
1389  	PROC_LOCK(p);
1390  	saved_mask = td->td_sigmask;
1391  	SIGSETNAND(td->td_sigmask, waitset);
1392  	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1393  	    !kern_sig_discard_ign) {
1394  		thread_lock(td);
1395  		td->td_flags |= TDF_SIGWAIT;
1396  		thread_unlock(td);
1397  	}
1398  	for (;;) {
1399  		mtx_lock(&ps->ps_mtx);
1400  		sig = cursig(td);
1401  		mtx_unlock(&ps->ps_mtx);
1402  		KASSERT(sig >= 0, ("sig %d", sig));
1403  		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1404  			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1405  			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1406  				error = 0;
1407  				break;
1408  			}
1409  		}
1410  
1411  		if (error != 0)
1412  			break;
1413  
1414  		/*
1415  		 * POSIX says this must be checked after looking for pending
1416  		 * signals.
1417  		 */
1418  		if (timeout != NULL && !timevalid) {
1419  			error = EINVAL;
1420  			break;
1421  		}
1422  
1423  		if (traced) {
1424  			error = EINTR;
1425  			break;
1426  		}
1427  
1428  		error = msleep_sbt(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
1429  		    "sigwait", sbt, precision, C_ABSOLUTE);
1430  
1431  		/* The syscalls can not be restarted. */
1432  		if (error == ERESTART)
1433  			error = EINTR;
1434  
1435  		/*
1436  		 * If PTRACE_SCE or PTRACE_SCX were set after
1437  		 * userspace entered the syscall, return spurious
1438  		 * EINTR after wait was done.  Only do this as last
1439  		 * resort after rechecking for possible queued signals
1440  		 * and expired timeouts.
1441  		 */
1442  		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1443  			traced = true;
1444  	}
1445  	thread_lock(td);
1446  	td->td_flags &= ~TDF_SIGWAIT;
1447  	thread_unlock(td);
1448  
1449  	new_block = saved_mask;
1450  	SIGSETNAND(new_block, td->td_sigmask);
1451  	td->td_sigmask = saved_mask;
1452  	/*
1453  	 * Fewer signals can be delivered to us, reschedule signal
1454  	 * notification.
1455  	 */
1456  	if (p->p_numthreads != 1)
1457  		reschedule_signals(p, new_block, 0);
1458  
1459  	if (error == 0) {
1460  		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1461  
1462  		if (ksi->ksi_code == SI_TIMER)
1463  			itimer_accept(p, ksi->ksi_timerid, ksi);
1464  
1465  #ifdef KTRACE
1466  		if (KTRPOINT(td, KTR_PSIG)) {
1467  			sig_t action;
1468  
1469  			mtx_lock(&ps->ps_mtx);
1470  			action = ps->ps_sigact[_SIG_IDX(sig)];
1471  			mtx_unlock(&ps->ps_mtx);
1472  			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1473  		}
1474  #endif
1475  		if (sig == SIGKILL) {
1476  			proc_td_siginfo_capture(td, &ksi->ksi_info);
1477  			sigexit(td, sig);
1478  		}
1479  	}
1480  	PROC_UNLOCK(p);
1481  	return (error);
1482  }
1483  
1484  #ifndef _SYS_SYSPROTO_H_
1485  struct sigpending_args {
1486  	sigset_t	*set;
1487  };
1488  #endif
1489  int
sys_sigpending(struct thread * td,struct sigpending_args * uap)1490  sys_sigpending(struct thread *td, struct sigpending_args *uap)
1491  {
1492  	struct proc *p = td->td_proc;
1493  	sigset_t pending;
1494  
1495  	PROC_LOCK(p);
1496  	pending = p->p_sigqueue.sq_signals;
1497  	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1498  	PROC_UNLOCK(p);
1499  	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1500  }
1501  
1502  #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1503  #ifndef _SYS_SYSPROTO_H_
1504  struct osigpending_args {
1505  	int	dummy;
1506  };
1507  #endif
1508  int
osigpending(struct thread * td,struct osigpending_args * uap)1509  osigpending(struct thread *td, struct osigpending_args *uap)
1510  {
1511  	struct proc *p = td->td_proc;
1512  	sigset_t pending;
1513  
1514  	PROC_LOCK(p);
1515  	pending = p->p_sigqueue.sq_signals;
1516  	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1517  	PROC_UNLOCK(p);
1518  	SIG2OSIG(pending, td->td_retval[0]);
1519  	return (0);
1520  }
1521  #endif /* COMPAT_43 */
1522  
1523  #if defined(COMPAT_43)
1524  /*
1525   * Generalized interface signal handler, 4.3-compatible.
1526   */
1527  #ifndef _SYS_SYSPROTO_H_
1528  struct osigvec_args {
1529  	int	signum;
1530  	struct	sigvec *nsv;
1531  	struct	sigvec *osv;
1532  };
1533  #endif
1534  /* ARGSUSED */
1535  int
osigvec(struct thread * td,struct osigvec_args * uap)1536  osigvec(struct thread *td, struct osigvec_args *uap)
1537  {
1538  	struct sigvec vec;
1539  	struct sigaction nsa, osa;
1540  	struct sigaction *nsap, *osap;
1541  	int error;
1542  
1543  	if (uap->signum <= 0 || uap->signum >= ONSIG)
1544  		return (EINVAL);
1545  	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1546  	osap = (uap->osv != NULL) ? &osa : NULL;
1547  	if (nsap) {
1548  		error = copyin(uap->nsv, &vec, sizeof(vec));
1549  		if (error)
1550  			return (error);
1551  		nsap->sa_handler = vec.sv_handler;
1552  		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1553  		nsap->sa_flags = vec.sv_flags;
1554  		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1555  	}
1556  	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1557  	if (osap && !error) {
1558  		vec.sv_handler = osap->sa_handler;
1559  		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1560  		vec.sv_flags = osap->sa_flags;
1561  		vec.sv_flags &= ~SA_NOCLDWAIT;
1562  		vec.sv_flags ^= SA_RESTART;
1563  		error = copyout(&vec, uap->osv, sizeof(vec));
1564  	}
1565  	return (error);
1566  }
1567  
1568  #ifndef _SYS_SYSPROTO_H_
1569  struct osigblock_args {
1570  	int	mask;
1571  };
1572  #endif
1573  int
osigblock(struct thread * td,struct osigblock_args * uap)1574  osigblock(struct thread *td, struct osigblock_args *uap)
1575  {
1576  	sigset_t set, oset;
1577  
1578  	OSIG2SIG(uap->mask, set);
1579  	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1580  	SIG2OSIG(oset, td->td_retval[0]);
1581  	return (0);
1582  }
1583  
1584  #ifndef _SYS_SYSPROTO_H_
1585  struct osigsetmask_args {
1586  	int	mask;
1587  };
1588  #endif
1589  int
osigsetmask(struct thread * td,struct osigsetmask_args * uap)1590  osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1591  {
1592  	sigset_t set, oset;
1593  
1594  	OSIG2SIG(uap->mask, set);
1595  	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1596  	SIG2OSIG(oset, td->td_retval[0]);
1597  	return (0);
1598  }
1599  #endif /* COMPAT_43 */
1600  
1601  /*
1602   * Suspend calling thread until signal, providing mask to be set in the
1603   * meantime.
1604   */
1605  #ifndef _SYS_SYSPROTO_H_
1606  struct sigsuspend_args {
1607  	const sigset_t *sigmask;
1608  };
1609  #endif
1610  /* ARGSUSED */
1611  int
sys_sigsuspend(struct thread * td,struct sigsuspend_args * uap)1612  sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1613  {
1614  	sigset_t mask;
1615  	int error;
1616  
1617  	error = copyin(uap->sigmask, &mask, sizeof(mask));
1618  	if (error)
1619  		return (error);
1620  	return (kern_sigsuspend(td, mask));
1621  }
1622  
1623  int
kern_sigsuspend(struct thread * td,sigset_t mask)1624  kern_sigsuspend(struct thread *td, sigset_t mask)
1625  {
1626  	struct proc *p = td->td_proc;
1627  	int has_sig, sig;
1628  
1629  	/* Ensure the sigfastblock value is up to date. */
1630  	sigfastblock_fetch(td);
1631  
1632  	/*
1633  	 * When returning from sigsuspend, we want
1634  	 * the old mask to be restored after the
1635  	 * signal handler has finished.  Thus, we
1636  	 * save it here and mark the sigacts structure
1637  	 * to indicate this.
1638  	 */
1639  	PROC_LOCK(p);
1640  	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1641  	    SIGPROCMASK_PROC_LOCKED);
1642  	td->td_pflags |= TDP_OLDMASK;
1643  	ast_sched(td, TDA_SIGSUSPEND);
1644  
1645  	/*
1646  	 * Process signals now. Otherwise, we can get spurious wakeup
1647  	 * due to signal entered process queue, but delivered to other
1648  	 * thread. But sigsuspend should return only on signal
1649  	 * delivery.
1650  	 */
1651  	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1652  	for (has_sig = 0; !has_sig;) {
1653  		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1654  			0) == 0)
1655  			/* void */;
1656  		thread_suspend_check(0);
1657  		mtx_lock(&p->p_sigacts->ps_mtx);
1658  		while ((sig = cursig(td)) != 0) {
1659  			KASSERT(sig >= 0, ("sig %d", sig));
1660  			has_sig += postsig(sig);
1661  		}
1662  		mtx_unlock(&p->p_sigacts->ps_mtx);
1663  
1664  		/*
1665  		 * If PTRACE_SCE or PTRACE_SCX were set after
1666  		 * userspace entered the syscall, return spurious
1667  		 * EINTR.
1668  		 */
1669  		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1670  			has_sig += 1;
1671  	}
1672  	PROC_UNLOCK(p);
1673  	td->td_errno = EINTR;
1674  	td->td_pflags |= TDP_NERRNO;
1675  	return (EJUSTRETURN);
1676  }
1677  
1678  #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1679  /*
1680   * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1681   * convention: libc stub passes mask, not pointer, to save a copyin.
1682   */
1683  #ifndef _SYS_SYSPROTO_H_
1684  struct osigsuspend_args {
1685  	osigset_t mask;
1686  };
1687  #endif
1688  /* ARGSUSED */
1689  int
osigsuspend(struct thread * td,struct osigsuspend_args * uap)1690  osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1691  {
1692  	sigset_t mask;
1693  
1694  	OSIG2SIG(uap->mask, mask);
1695  	return (kern_sigsuspend(td, mask));
1696  }
1697  #endif /* COMPAT_43 */
1698  
1699  #if defined(COMPAT_43)
1700  #ifndef _SYS_SYSPROTO_H_
1701  struct osigstack_args {
1702  	struct	sigstack *nss;
1703  	struct	sigstack *oss;
1704  };
1705  #endif
1706  /* ARGSUSED */
1707  int
osigstack(struct thread * td,struct osigstack_args * uap)1708  osigstack(struct thread *td, struct osigstack_args *uap)
1709  {
1710  	struct sigstack nss, oss;
1711  	int error = 0;
1712  
1713  	if (uap->nss != NULL) {
1714  		error = copyin(uap->nss, &nss, sizeof(nss));
1715  		if (error)
1716  			return (error);
1717  	}
1718  	oss.ss_sp = td->td_sigstk.ss_sp;
1719  	oss.ss_onstack = sigonstack(cpu_getstack(td));
1720  	if (uap->nss != NULL) {
1721  		td->td_sigstk.ss_sp = nss.ss_sp;
1722  		td->td_sigstk.ss_size = 0;
1723  		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1724  		td->td_pflags |= TDP_ALTSTACK;
1725  	}
1726  	if (uap->oss != NULL)
1727  		error = copyout(&oss, uap->oss, sizeof(oss));
1728  
1729  	return (error);
1730  }
1731  #endif /* COMPAT_43 */
1732  
1733  #ifndef _SYS_SYSPROTO_H_
1734  struct sigaltstack_args {
1735  	stack_t	*ss;
1736  	stack_t	*oss;
1737  };
1738  #endif
1739  /* ARGSUSED */
1740  int
sys_sigaltstack(struct thread * td,struct sigaltstack_args * uap)1741  sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1742  {
1743  	stack_t ss, oss;
1744  	int error;
1745  
1746  	if (uap->ss != NULL) {
1747  		error = copyin(uap->ss, &ss, sizeof(ss));
1748  		if (error)
1749  			return (error);
1750  	}
1751  	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1752  	    (uap->oss != NULL) ? &oss : NULL);
1753  	if (error)
1754  		return (error);
1755  	if (uap->oss != NULL)
1756  		error = copyout(&oss, uap->oss, sizeof(stack_t));
1757  	return (error);
1758  }
1759  
1760  int
kern_sigaltstack(struct thread * td,stack_t * ss,stack_t * oss)1761  kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1762  {
1763  	struct proc *p = td->td_proc;
1764  	int oonstack;
1765  
1766  	oonstack = sigonstack(cpu_getstack(td));
1767  
1768  	if (oss != NULL) {
1769  		*oss = td->td_sigstk;
1770  		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1771  		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1772  	}
1773  
1774  	if (ss != NULL) {
1775  		if (oonstack)
1776  			return (EPERM);
1777  		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1778  			return (EINVAL);
1779  		if (!(ss->ss_flags & SS_DISABLE)) {
1780  			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1781  				return (ENOMEM);
1782  
1783  			td->td_sigstk = *ss;
1784  			td->td_pflags |= TDP_ALTSTACK;
1785  		} else {
1786  			td->td_pflags &= ~TDP_ALTSTACK;
1787  		}
1788  	}
1789  	return (0);
1790  }
1791  
1792  struct killpg1_ctx {
1793  	struct thread *td;
1794  	ksiginfo_t *ksi;
1795  	int sig;
1796  	bool sent;
1797  	bool found;
1798  	int ret;
1799  };
1800  
1801  static void
killpg1_sendsig_locked(struct proc * p,struct killpg1_ctx * arg)1802  killpg1_sendsig_locked(struct proc *p, struct killpg1_ctx *arg)
1803  {
1804  	int err;
1805  
1806  	err = p_cansignal(arg->td, p, arg->sig);
1807  	if (err == 0 && arg->sig != 0)
1808  		pksignal(p, arg->sig, arg->ksi);
1809  	if (err != ESRCH)
1810  		arg->found = true;
1811  	if (err == 0)
1812  		arg->sent = true;
1813  	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1814  		arg->ret = err;
1815  }
1816  
1817  static void
killpg1_sendsig(struct proc * p,bool notself,struct killpg1_ctx * arg)1818  killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1819  {
1820  
1821  	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1822  	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1823  		return;
1824  
1825  	PROC_LOCK(p);
1826  	killpg1_sendsig_locked(p, arg);
1827  	PROC_UNLOCK(p);
1828  }
1829  
1830  static void
kill_processes_prison_cb(struct proc * p,void * arg)1831  kill_processes_prison_cb(struct proc *p, void *arg)
1832  {
1833  	struct killpg1_ctx *ctx = arg;
1834  
1835  	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1836  	    (p == ctx->td->td_proc) || p->p_state == PRS_NEW)
1837  		return;
1838  
1839  	killpg1_sendsig_locked(p, ctx);
1840  }
1841  
1842  /*
1843   * Common code for kill process group/broadcast kill.
1844   * td is the calling thread, as usual.
1845   */
1846  static int
killpg1(struct thread * td,int sig,int pgid,int all,ksiginfo_t * ksi)1847  killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1848  {
1849  	struct proc *p;
1850  	struct pgrp *pgrp;
1851  	struct killpg1_ctx arg;
1852  
1853  	arg.td = td;
1854  	arg.ksi = ksi;
1855  	arg.sig = sig;
1856  	arg.sent = false;
1857  	arg.found = false;
1858  	arg.ret = 0;
1859  	if (all) {
1860  		/*
1861  		 * broadcast
1862  		 */
1863  		prison_proc_iterate(td->td_ucred->cr_prison,
1864  		    kill_processes_prison_cb, &arg);
1865  	} else {
1866  again:
1867  		sx_slock(&proctree_lock);
1868  		if (pgid == 0) {
1869  			/*
1870  			 * zero pgid means send to my process group.
1871  			 */
1872  			pgrp = td->td_proc->p_pgrp;
1873  			PGRP_LOCK(pgrp);
1874  		} else {
1875  			pgrp = pgfind(pgid);
1876  			if (pgrp == NULL) {
1877  				sx_sunlock(&proctree_lock);
1878  				return (ESRCH);
1879  			}
1880  		}
1881  		sx_sunlock(&proctree_lock);
1882  		if (!sx_try_xlock(&pgrp->pg_killsx)) {
1883  			PGRP_UNLOCK(pgrp);
1884  			sx_xlock(&pgrp->pg_killsx);
1885  			sx_xunlock(&pgrp->pg_killsx);
1886  			goto again;
1887  		}
1888  		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1889  			killpg1_sendsig(p, false, &arg);
1890  		}
1891  		PGRP_UNLOCK(pgrp);
1892  		sx_xunlock(&pgrp->pg_killsx);
1893  	}
1894  	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1895  	if (arg.ret == 0 && !arg.sent)
1896  		arg.ret = arg.found ? EPERM : ESRCH;
1897  	return (arg.ret);
1898  }
1899  
1900  #ifndef _SYS_SYSPROTO_H_
1901  struct kill_args {
1902  	int	pid;
1903  	int	signum;
1904  };
1905  #endif
1906  /* ARGSUSED */
1907  int
sys_kill(struct thread * td,struct kill_args * uap)1908  sys_kill(struct thread *td, struct kill_args *uap)
1909  {
1910  
1911  	return (kern_kill(td, uap->pid, uap->signum));
1912  }
1913  
1914  int
kern_kill(struct thread * td,pid_t pid,int signum)1915  kern_kill(struct thread *td, pid_t pid, int signum)
1916  {
1917  	ksiginfo_t ksi;
1918  	struct proc *p;
1919  	int error;
1920  
1921  	/*
1922  	 * A process in capability mode can send signals only to himself.
1923  	 * The main rationale behind this is that abort(3) is implemented as
1924  	 * kill(getpid(), SIGABRT).
1925  	 */
1926  	if (pid != td->td_proc->p_pid) {
1927  		if (CAP_TRACING(td))
1928  			ktrcapfail(CAPFAIL_SIGNAL, &signum);
1929  		if (IN_CAPABILITY_MODE(td))
1930  			return (ECAPMODE);
1931  	}
1932  
1933  	AUDIT_ARG_SIGNUM(signum);
1934  	AUDIT_ARG_PID(pid);
1935  	if ((u_int)signum > _SIG_MAXSIG)
1936  		return (EINVAL);
1937  
1938  	ksiginfo_init(&ksi);
1939  	ksi.ksi_signo = signum;
1940  	ksi.ksi_code = SI_USER;
1941  	ksi.ksi_pid = td->td_proc->p_pid;
1942  	ksi.ksi_uid = td->td_ucred->cr_ruid;
1943  
1944  	if (pid > 0) {
1945  		/* kill single process */
1946  		if ((p = pfind_any(pid)) == NULL)
1947  			return (ESRCH);
1948  		AUDIT_ARG_PROCESS(p);
1949  		error = p_cansignal(td, p, signum);
1950  		if (error == 0 && signum)
1951  			pksignal(p, signum, &ksi);
1952  		PROC_UNLOCK(p);
1953  		return (error);
1954  	}
1955  	switch (pid) {
1956  	case -1:		/* broadcast signal */
1957  		return (killpg1(td, signum, 0, 1, &ksi));
1958  	case 0:			/* signal own process group */
1959  		return (killpg1(td, signum, 0, 0, &ksi));
1960  	default:		/* negative explicit process group */
1961  		return (killpg1(td, signum, -pid, 0, &ksi));
1962  	}
1963  	/* NOTREACHED */
1964  }
1965  
1966  int
sys_pdkill(struct thread * td,struct pdkill_args * uap)1967  sys_pdkill(struct thread *td, struct pdkill_args *uap)
1968  {
1969  	struct proc *p;
1970  	int error;
1971  
1972  	AUDIT_ARG_SIGNUM(uap->signum);
1973  	AUDIT_ARG_FD(uap->fd);
1974  	if ((u_int)uap->signum > _SIG_MAXSIG)
1975  		return (EINVAL);
1976  
1977  	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1978  	if (error)
1979  		return (error);
1980  	AUDIT_ARG_PROCESS(p);
1981  	error = p_cansignal(td, p, uap->signum);
1982  	if (error == 0 && uap->signum)
1983  		kern_psignal(p, uap->signum);
1984  	PROC_UNLOCK(p);
1985  	return (error);
1986  }
1987  
1988  #if defined(COMPAT_43)
1989  #ifndef _SYS_SYSPROTO_H_
1990  struct okillpg_args {
1991  	int	pgid;
1992  	int	signum;
1993  };
1994  #endif
1995  /* ARGSUSED */
1996  int
okillpg(struct thread * td,struct okillpg_args * uap)1997  okillpg(struct thread *td, struct okillpg_args *uap)
1998  {
1999  	ksiginfo_t ksi;
2000  
2001  	AUDIT_ARG_SIGNUM(uap->signum);
2002  	AUDIT_ARG_PID(uap->pgid);
2003  	if ((u_int)uap->signum > _SIG_MAXSIG)
2004  		return (EINVAL);
2005  
2006  	ksiginfo_init(&ksi);
2007  	ksi.ksi_signo = uap->signum;
2008  	ksi.ksi_code = SI_USER;
2009  	ksi.ksi_pid = td->td_proc->p_pid;
2010  	ksi.ksi_uid = td->td_ucred->cr_ruid;
2011  	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
2012  }
2013  #endif /* COMPAT_43 */
2014  
2015  #ifndef _SYS_SYSPROTO_H_
2016  struct sigqueue_args {
2017  	pid_t pid;
2018  	int signum;
2019  	/* union sigval */ void *value;
2020  };
2021  #endif
2022  int
sys_sigqueue(struct thread * td,struct sigqueue_args * uap)2023  sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
2024  {
2025  	union sigval sv;
2026  
2027  	sv.sival_ptr = uap->value;
2028  
2029  	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
2030  }
2031  
2032  int
kern_sigqueue(struct thread * td,pid_t pid,int signumf,union sigval * value)2033  kern_sigqueue(struct thread *td, pid_t pid, int signumf, union sigval *value)
2034  {
2035  	ksiginfo_t ksi;
2036  	struct proc *p;
2037  	struct thread *td2;
2038  	u_int signum;
2039  	int error;
2040  
2041  	signum = signumf & ~__SIGQUEUE_TID;
2042  	if (signum > _SIG_MAXSIG)
2043  		return (EINVAL);
2044  
2045  	/*
2046  	 * Specification says sigqueue can only send signal to
2047  	 * single process.
2048  	 */
2049  	if (pid <= 0)
2050  		return (EINVAL);
2051  
2052  	if ((signumf & __SIGQUEUE_TID) == 0) {
2053  		if ((p = pfind_any(pid)) == NULL)
2054  			return (ESRCH);
2055  		td2 = NULL;
2056  	} else {
2057  		p = td->td_proc;
2058  		td2 = tdfind((lwpid_t)pid, p->p_pid);
2059  		if (td2 == NULL)
2060  			return (ESRCH);
2061  	}
2062  
2063  	error = p_cansignal(td, p, signum);
2064  	if (error == 0 && signum != 0) {
2065  		ksiginfo_init(&ksi);
2066  		ksi.ksi_flags = KSI_SIGQ;
2067  		ksi.ksi_signo = signum;
2068  		ksi.ksi_code = SI_QUEUE;
2069  		ksi.ksi_pid = td->td_proc->p_pid;
2070  		ksi.ksi_uid = td->td_ucred->cr_ruid;
2071  		ksi.ksi_value = *value;
2072  		error = tdsendsignal(p, td2, ksi.ksi_signo, &ksi);
2073  	}
2074  	PROC_UNLOCK(p);
2075  	return (error);
2076  }
2077  
2078  /*
2079   * Send a signal to a process group.  If checktty is 1,
2080   * limit to members which have a controlling terminal.
2081   */
2082  void
pgsignal(struct pgrp * pgrp,int sig,int checkctty,ksiginfo_t * ksi)2083  pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
2084  {
2085  	struct proc *p;
2086  
2087  	if (pgrp) {
2088  		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
2089  		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
2090  			PROC_LOCK(p);
2091  			if (p->p_state == PRS_NORMAL &&
2092  			    (checkctty == 0 || p->p_flag & P_CONTROLT))
2093  				pksignal(p, sig, ksi);
2094  			PROC_UNLOCK(p);
2095  		}
2096  	}
2097  }
2098  
2099  /*
2100   * Recalculate the signal mask and reset the signal disposition after
2101   * usermode frame for delivery is formed.  Should be called after
2102   * mach-specific routine, because sysent->sv_sendsig() needs correct
2103   * ps_siginfo and signal mask.
2104   */
2105  static void
postsig_done(int sig,struct thread * td,struct sigacts * ps)2106  postsig_done(int sig, struct thread *td, struct sigacts *ps)
2107  {
2108  	sigset_t mask;
2109  
2110  	mtx_assert(&ps->ps_mtx, MA_OWNED);
2111  	td->td_ru.ru_nsignals++;
2112  	mask = ps->ps_catchmask[_SIG_IDX(sig)];
2113  	if (!SIGISMEMBER(ps->ps_signodefer, sig))
2114  		SIGADDSET(mask, sig);
2115  	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2116  	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2117  	if (SIGISMEMBER(ps->ps_sigreset, sig))
2118  		sigdflt(ps, sig);
2119  }
2120  
2121  /*
2122   * Send a signal caused by a trap to the current thread.  If it will be
2123   * caught immediately, deliver it with correct code.  Otherwise, post it
2124   * normally.
2125   */
2126  void
trapsignal(struct thread * td,ksiginfo_t * ksi)2127  trapsignal(struct thread *td, ksiginfo_t *ksi)
2128  {
2129  	struct sigacts *ps;
2130  	struct proc *p;
2131  	sigset_t sigmask;
2132  	int sig;
2133  
2134  	p = td->td_proc;
2135  	sig = ksi->ksi_signo;
2136  	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2137  
2138  	sigfastblock_fetch(td);
2139  	PROC_LOCK(p);
2140  	ps = p->p_sigacts;
2141  	mtx_lock(&ps->ps_mtx);
2142  	sigmask = td->td_sigmask;
2143  	if (td->td_sigblock_val != 0)
2144  		SIGSETOR(sigmask, fastblock_mask);
2145  	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2146  	    !SIGISMEMBER(sigmask, sig)) {
2147  #ifdef KTRACE
2148  		if (KTRPOINT(curthread, KTR_PSIG))
2149  			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2150  			    &td->td_sigmask, ksi->ksi_code);
2151  #endif
2152  		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2153  		    ksi, &td->td_sigmask);
2154  		postsig_done(sig, td, ps);
2155  		mtx_unlock(&ps->ps_mtx);
2156  	} else {
2157  		/*
2158  		 * Avoid a possible infinite loop if the thread
2159  		 * masking the signal or process is ignoring the
2160  		 * signal.
2161  		 */
2162  		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2163  		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2164  			SIGDELSET(td->td_sigmask, sig);
2165  			SIGDELSET(ps->ps_sigcatch, sig);
2166  			SIGDELSET(ps->ps_sigignore, sig);
2167  			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2168  			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2169  			td->td_sigblock_val = 0;
2170  		}
2171  		mtx_unlock(&ps->ps_mtx);
2172  		p->p_sig = sig;		/* XXX to verify code */
2173  		tdsendsignal(p, td, sig, ksi);
2174  	}
2175  	PROC_UNLOCK(p);
2176  }
2177  
2178  static struct thread *
sigtd(struct proc * p,int sig,bool fast_sigblock)2179  sigtd(struct proc *p, int sig, bool fast_sigblock)
2180  {
2181  	struct thread *td, *signal_td;
2182  
2183  	PROC_LOCK_ASSERT(p, MA_OWNED);
2184  	MPASS(!fast_sigblock || p == curproc);
2185  
2186  	/*
2187  	 * Check if current thread can handle the signal without
2188  	 * switching context to another thread.
2189  	 */
2190  	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2191  	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2192  		return (curthread);
2193  
2194  	/* Find a non-stopped thread that does not mask the signal. */
2195  	signal_td = NULL;
2196  	FOREACH_THREAD_IN_PROC(p, td) {
2197  		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2198  		    td != curthread || td->td_sigblock_val == 0) &&
2199  		    (td->td_flags & TDF_BOUNDARY) == 0) {
2200  			signal_td = td;
2201  			break;
2202  		}
2203  	}
2204  	/* Select random (first) thread if no better match was found. */
2205  	if (signal_td == NULL)
2206  		signal_td = FIRST_THREAD_IN_PROC(p);
2207  	return (signal_td);
2208  }
2209  
2210  /*
2211   * Send the signal to the process.  If the signal has an action, the action
2212   * is usually performed by the target process rather than the caller; we add
2213   * the signal to the set of pending signals for the process.
2214   *
2215   * Exceptions:
2216   *   o When a stop signal is sent to a sleeping process that takes the
2217   *     default action, the process is stopped without awakening it.
2218   *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2219   *     regardless of the signal action (eg, blocked or ignored).
2220   *
2221   * Other ignored signals are discarded immediately.
2222   *
2223   * NB: This function may be entered from the debugger via the "kill" DDB
2224   * command.  There is little that can be done to mitigate the possibly messy
2225   * side effects of this unwise possibility.
2226   */
2227  void
kern_psignal(struct proc * p,int sig)2228  kern_psignal(struct proc *p, int sig)
2229  {
2230  	ksiginfo_t ksi;
2231  
2232  	ksiginfo_init(&ksi);
2233  	ksi.ksi_signo = sig;
2234  	ksi.ksi_code = SI_KERNEL;
2235  	(void) tdsendsignal(p, NULL, sig, &ksi);
2236  }
2237  
2238  int
pksignal(struct proc * p,int sig,ksiginfo_t * ksi)2239  pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2240  {
2241  
2242  	return (tdsendsignal(p, NULL, sig, ksi));
2243  }
2244  
2245  /* Utility function for finding a thread to send signal event to. */
2246  int
sigev_findtd(struct proc * p,struct sigevent * sigev,struct thread ** ttd)2247  sigev_findtd(struct proc *p, struct sigevent *sigev, struct thread **ttd)
2248  {
2249  	struct thread *td;
2250  
2251  	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2252  		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2253  		if (td == NULL)
2254  			return (ESRCH);
2255  		*ttd = td;
2256  	} else {
2257  		*ttd = NULL;
2258  		PROC_LOCK(p);
2259  	}
2260  	return (0);
2261  }
2262  
2263  void
tdsignal(struct thread * td,int sig)2264  tdsignal(struct thread *td, int sig)
2265  {
2266  	ksiginfo_t ksi;
2267  
2268  	ksiginfo_init(&ksi);
2269  	ksi.ksi_signo = sig;
2270  	ksi.ksi_code = SI_KERNEL;
2271  	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2272  }
2273  
2274  void
tdksignal(struct thread * td,int sig,ksiginfo_t * ksi)2275  tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2276  {
2277  
2278  	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2279  }
2280  
2281  static void
sig_sleepq_abort(struct thread * td,int intrval)2282  sig_sleepq_abort(struct thread *td, int intrval)
2283  {
2284  	THREAD_LOCK_ASSERT(td, MA_OWNED);
2285  
2286  	if (intrval == 0 && (td->td_flags & TDF_SIGWAIT) == 0)
2287  		thread_unlock(td);
2288  	else
2289  		sleepq_abort(td, intrval);
2290  }
2291  
2292  int
tdsendsignal(struct proc * p,struct thread * td,int sig,ksiginfo_t * ksi)2293  tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2294  {
2295  	sig_t action;
2296  	sigqueue_t *sigqueue;
2297  	struct sigacts *ps;
2298  	int intrval, prop, ret;
2299  
2300  	MPASS(td == NULL || p == td->td_proc);
2301  	PROC_LOCK_ASSERT(p, MA_OWNED);
2302  
2303  	if (!_SIG_VALID(sig))
2304  		panic("%s(): invalid signal %d", __func__, sig);
2305  
2306  	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2307  
2308  	/*
2309  	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2310  	 */
2311  	if (p->p_state == PRS_ZOMBIE) {
2312  		if (ksi != NULL && (ksi->ksi_flags & KSI_INS) != 0)
2313  			ksiginfo_tryfree(ksi);
2314  		return (0);
2315  	}
2316  
2317  	ps = p->p_sigacts;
2318  	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2319  	prop = sigprop(sig);
2320  
2321  	if (td == NULL) {
2322  		td = sigtd(p, sig, false);
2323  		sigqueue = &p->p_sigqueue;
2324  	} else
2325  		sigqueue = &td->td_sigqueue;
2326  
2327  	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2328  
2329  	/*
2330  	 * If the signal is being ignored, then we forget about it
2331  	 * immediately, except when the target process executes
2332  	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2333  	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2334  	 */
2335  	mtx_lock(&ps->ps_mtx);
2336  	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2337  		if (kern_sig_discard_ign &&
2338  		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2339  			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2340  
2341  			mtx_unlock(&ps->ps_mtx);
2342  			if (ksi != NULL && (ksi->ksi_flags & KSI_INS) != 0)
2343  				ksiginfo_tryfree(ksi);
2344  			return (0);
2345  		} else {
2346  			action = SIG_CATCH;
2347  			intrval = 0;
2348  		}
2349  	} else {
2350  		if (SIGISMEMBER(td->td_sigmask, sig))
2351  			action = SIG_HOLD;
2352  		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2353  			action = SIG_CATCH;
2354  		else
2355  			action = SIG_DFL;
2356  		if (SIGISMEMBER(ps->ps_sigintr, sig))
2357  			intrval = EINTR;
2358  		else
2359  			intrval = ERESTART;
2360  	}
2361  	mtx_unlock(&ps->ps_mtx);
2362  
2363  	if (prop & SIGPROP_CONT)
2364  		sigqueue_delete_stopmask_proc(p);
2365  	else if (prop & SIGPROP_STOP) {
2366  		/*
2367  		 * If sending a tty stop signal to a member of an orphaned
2368  		 * process group, discard the signal here if the action
2369  		 * is default; don't stop the process below if sleeping,
2370  		 * and don't clear any pending SIGCONT.
2371  		 */
2372  		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2373  		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2374  		    action == SIG_DFL) {
2375  			if (ksi != NULL && (ksi->ksi_flags & KSI_INS) != 0)
2376  				ksiginfo_tryfree(ksi);
2377  			return (0);
2378  		}
2379  		sigqueue_delete_proc(p, SIGCONT);
2380  		if (p->p_flag & P_CONTINUED) {
2381  			p->p_flag &= ~P_CONTINUED;
2382  			PROC_LOCK(p->p_pptr);
2383  			sigqueue_take(p->p_ksi);
2384  			PROC_UNLOCK(p->p_pptr);
2385  		}
2386  	}
2387  
2388  	ret = sigqueue_add(sigqueue, sig, ksi);
2389  	if (ret != 0)
2390  		return (ret);
2391  	signotify(td);
2392  	/*
2393  	 * Defer further processing for signals which are held,
2394  	 * except that stopped processes must be continued by SIGCONT.
2395  	 */
2396  	if (action == SIG_HOLD &&
2397  	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2398  		return (0);
2399  
2400  	/*
2401  	 * Some signals have a process-wide effect and a per-thread
2402  	 * component.  Most processing occurs when the process next
2403  	 * tries to cross the user boundary, however there are some
2404  	 * times when processing needs to be done immediately, such as
2405  	 * waking up threads so that they can cross the user boundary.
2406  	 * We try to do the per-process part here.
2407  	 */
2408  	if (P_SHOULDSTOP(p)) {
2409  		KASSERT(!(p->p_flag & P_WEXIT),
2410  		    ("signal to stopped but exiting process"));
2411  		if (sig == SIGKILL) {
2412  			/*
2413  			 * If traced process is already stopped,
2414  			 * then no further action is necessary.
2415  			 */
2416  			if (p->p_flag & P_TRACED)
2417  				return (0);
2418  			/*
2419  			 * SIGKILL sets process running.
2420  			 * It will die elsewhere.
2421  			 * All threads must be restarted.
2422  			 */
2423  			p->p_flag &= ~P_STOPPED_SIG;
2424  			goto runfast;
2425  		}
2426  
2427  		if (prop & SIGPROP_CONT) {
2428  			/*
2429  			 * If traced process is already stopped,
2430  			 * then no further action is necessary.
2431  			 */
2432  			if (p->p_flag & P_TRACED)
2433  				return (0);
2434  			/*
2435  			 * If SIGCONT is default (or ignored), we continue the
2436  			 * process but don't leave the signal in sigqueue as
2437  			 * it has no further action.  If SIGCONT is held, we
2438  			 * continue the process and leave the signal in
2439  			 * sigqueue.  If the process catches SIGCONT, let it
2440  			 * handle the signal itself.  If it isn't waiting on
2441  			 * an event, it goes back to run state.
2442  			 * Otherwise, process goes back to sleep state.
2443  			 */
2444  			p->p_flag &= ~P_STOPPED_SIG;
2445  			PROC_SLOCK(p);
2446  			if (p->p_numthreads == p->p_suspcount) {
2447  				PROC_SUNLOCK(p);
2448  				p->p_flag |= P_CONTINUED;
2449  				p->p_xsig = SIGCONT;
2450  				PROC_LOCK(p->p_pptr);
2451  				childproc_continued(p);
2452  				PROC_UNLOCK(p->p_pptr);
2453  				PROC_SLOCK(p);
2454  			}
2455  			if (action == SIG_DFL) {
2456  				thread_unsuspend(p);
2457  				PROC_SUNLOCK(p);
2458  				sigqueue_delete(sigqueue, sig);
2459  				goto out_cont;
2460  			}
2461  			if (action == SIG_CATCH) {
2462  				/*
2463  				 * The process wants to catch it so it needs
2464  				 * to run at least one thread, but which one?
2465  				 */
2466  				PROC_SUNLOCK(p);
2467  				goto runfast;
2468  			}
2469  			/*
2470  			 * The signal is not ignored or caught.
2471  			 */
2472  			thread_unsuspend(p);
2473  			PROC_SUNLOCK(p);
2474  			goto out_cont;
2475  		}
2476  
2477  		if (prop & SIGPROP_STOP) {
2478  			/*
2479  			 * If traced process is already stopped,
2480  			 * then no further action is necessary.
2481  			 */
2482  			if (p->p_flag & P_TRACED)
2483  				return (0);
2484  			/*
2485  			 * Already stopped, don't need to stop again
2486  			 * (If we did the shell could get confused).
2487  			 * Just make sure the signal STOP bit set.
2488  			 */
2489  			p->p_flag |= P_STOPPED_SIG;
2490  			sigqueue_delete(sigqueue, sig);
2491  			return (0);
2492  		}
2493  
2494  		/*
2495  		 * All other kinds of signals:
2496  		 * If a thread is sleeping interruptibly, simulate a
2497  		 * wakeup so that when it is continued it will be made
2498  		 * runnable and can look at the signal.  However, don't make
2499  		 * the PROCESS runnable, leave it stopped.
2500  		 * It may run a bit until it hits a thread_suspend_check().
2501  		 */
2502  		PROC_SLOCK(p);
2503  		thread_lock(td);
2504  		if (TD_CAN_ABORT(td))
2505  			sig_sleepq_abort(td, intrval);
2506  		else
2507  			thread_unlock(td);
2508  		PROC_SUNLOCK(p);
2509  		return (0);
2510  		/*
2511  		 * Mutexes are short lived. Threads waiting on them will
2512  		 * hit thread_suspend_check() soon.
2513  		 */
2514  	} else if (p->p_state == PRS_NORMAL) {
2515  		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2516  			tdsigwakeup(td, sig, action, intrval);
2517  			return (0);
2518  		}
2519  
2520  		MPASS(action == SIG_DFL);
2521  
2522  		if (prop & SIGPROP_STOP) {
2523  			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2524  				return (0);
2525  			p->p_flag |= P_STOPPED_SIG;
2526  			p->p_xsig = sig;
2527  			PROC_SLOCK(p);
2528  			sig_suspend_threads(td, p);
2529  			if (p->p_numthreads == p->p_suspcount) {
2530  				/*
2531  				 * only thread sending signal to another
2532  				 * process can reach here, if thread is sending
2533  				 * signal to its process, because thread does
2534  				 * not suspend itself here, p_numthreads
2535  				 * should never be equal to p_suspcount.
2536  				 */
2537  				thread_stopped(p);
2538  				PROC_SUNLOCK(p);
2539  				sigqueue_delete_proc(p, p->p_xsig);
2540  			} else
2541  				PROC_SUNLOCK(p);
2542  			return (0);
2543  		}
2544  	} else {
2545  		/* Not in "NORMAL" state. discard the signal. */
2546  		sigqueue_delete(sigqueue, sig);
2547  		return (0);
2548  	}
2549  
2550  	/*
2551  	 * The process is not stopped so we need to apply the signal to all the
2552  	 * running threads.
2553  	 */
2554  runfast:
2555  	tdsigwakeup(td, sig, action, intrval);
2556  	PROC_SLOCK(p);
2557  	thread_unsuspend(p);
2558  	PROC_SUNLOCK(p);
2559  out_cont:
2560  	itimer_proc_continue(p);
2561  	kqtimer_proc_continue(p);
2562  
2563  	return (0);
2564  }
2565  
2566  /*
2567   * The force of a signal has been directed against a single
2568   * thread.  We need to see what we can do about knocking it
2569   * out of any sleep it may be in etc.
2570   */
2571  static void
tdsigwakeup(struct thread * td,int sig,sig_t action,int intrval)2572  tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2573  {
2574  	struct proc *p = td->td_proc;
2575  	int prop;
2576  
2577  	PROC_LOCK_ASSERT(p, MA_OWNED);
2578  	prop = sigprop(sig);
2579  
2580  	PROC_SLOCK(p);
2581  	thread_lock(td);
2582  	/*
2583  	 * Bring the priority of a thread up if we want it to get
2584  	 * killed in this lifetime.  Be careful to avoid bumping the
2585  	 * priority of the idle thread, since we still allow to signal
2586  	 * kernel processes.
2587  	 */
2588  	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2589  	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2590  		sched_prio(td, PUSER);
2591  	if (TD_ON_SLEEPQ(td)) {
2592  		/*
2593  		 * If thread is sleeping uninterruptibly
2594  		 * we can't interrupt the sleep... the signal will
2595  		 * be noticed when the process returns through
2596  		 * trap() or syscall().
2597  		 */
2598  		if ((td->td_flags & TDF_SINTR) == 0)
2599  			goto out;
2600  		/*
2601  		 * If SIGCONT is default (or ignored) and process is
2602  		 * asleep, we are finished; the process should not
2603  		 * be awakened.
2604  		 */
2605  		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2606  			thread_unlock(td);
2607  			PROC_SUNLOCK(p);
2608  			sigqueue_delete(&p->p_sigqueue, sig);
2609  			/*
2610  			 * It may be on either list in this state.
2611  			 * Remove from both for now.
2612  			 */
2613  			sigqueue_delete(&td->td_sigqueue, sig);
2614  			return;
2615  		}
2616  
2617  		/*
2618  		 * Don't awaken a sleeping thread for SIGSTOP if the
2619  		 * STOP signal is deferred.
2620  		 */
2621  		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2622  		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2623  			goto out;
2624  
2625  		/*
2626  		 * Give low priority threads a better chance to run.
2627  		 */
2628  		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2629  			sched_prio(td, PUSER);
2630  
2631  		sig_sleepq_abort(td, intrval);
2632  		PROC_SUNLOCK(p);
2633  		return;
2634  	}
2635  
2636  	/*
2637  	 * Other states do nothing with the signal immediately,
2638  	 * other than kicking ourselves if we are running.
2639  	 * It will either never be noticed, or noticed very soon.
2640  	 */
2641  #ifdef SMP
2642  	if (TD_IS_RUNNING(td) && td != curthread)
2643  		forward_signal(td);
2644  #endif
2645  
2646  out:
2647  	PROC_SUNLOCK(p);
2648  	thread_unlock(td);
2649  }
2650  
2651  static void
ptrace_coredumpreq(struct thread * td,struct proc * p,struct thr_coredump_req * tcq)2652  ptrace_coredumpreq(struct thread *td, struct proc *p,
2653      struct thr_coredump_req *tcq)
2654  {
2655  	void *rl_cookie;
2656  
2657  	if (p->p_sysent->sv_coredump == NULL) {
2658  		tcq->tc_error = ENOSYS;
2659  		return;
2660  	}
2661  
2662  	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2663  	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2664  	    tcq->tc_limit, tcq->tc_flags);
2665  	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2666  }
2667  
2668  static void
ptrace_syscallreq(struct thread * td,struct proc * p,struct thr_syscall_req * tsr)2669  ptrace_syscallreq(struct thread *td, struct proc *p,
2670      struct thr_syscall_req *tsr)
2671  {
2672  	struct sysentvec *sv;
2673  	struct sysent *se;
2674  	register_t rv_saved[2];
2675  	int error, nerror;
2676  	int sc;
2677  	bool audited, sy_thr_static;
2678  
2679  	sv = p->p_sysent;
2680  	if (sv->sv_table == NULL || sv->sv_size < tsr->ts_sa.code) {
2681  		tsr->ts_ret.sr_error = ENOSYS;
2682  		return;
2683  	}
2684  
2685  	sc = tsr->ts_sa.code;
2686  	if (sc == SYS_syscall || sc == SYS___syscall) {
2687  		sc = tsr->ts_sa.args[0];
2688  		memmove(&tsr->ts_sa.args[0], &tsr->ts_sa.args[1],
2689  		    sizeof(register_t) * (tsr->ts_nargs - 1));
2690  	}
2691  
2692  	tsr->ts_sa.callp = se = &sv->sv_table[sc];
2693  
2694  	VM_CNT_INC(v_syscall);
2695  	td->td_pticks = 0;
2696  	if (__predict_false(td->td_cowgen != atomic_load_int(
2697  	    &td->td_proc->p_cowgen)))
2698  		thread_cow_update(td);
2699  
2700  	td->td_sa = tsr->ts_sa;
2701  
2702  #ifdef CAPABILITY_MODE
2703  	if ((se->sy_flags & SYF_CAPENABLED) == 0) {
2704  		if (CAP_TRACING(td))
2705  			ktrcapfail(CAPFAIL_SYSCALL, NULL);
2706  		if (IN_CAPABILITY_MODE(td)) {
2707  			tsr->ts_ret.sr_error = ECAPMODE;
2708  			return;
2709  		}
2710  	}
2711  #endif
2712  
2713  	sy_thr_static = (se->sy_thrcnt & SY_THR_STATIC) != 0;
2714  	audited = AUDIT_SYSCALL_ENTER(sc, td) != 0;
2715  
2716  	if (!sy_thr_static) {
2717  		error = syscall_thread_enter(td, &se);
2718  		sy_thr_static = (se->sy_thrcnt & SY_THR_STATIC) != 0;
2719  		if (error != 0) {
2720  			tsr->ts_ret.sr_error = error;
2721  			return;
2722  		}
2723  	}
2724  
2725  	rv_saved[0] = td->td_retval[0];
2726  	rv_saved[1] = td->td_retval[1];
2727  	nerror = td->td_errno;
2728  	td->td_retval[0] = 0;
2729  	td->td_retval[1] = 0;
2730  
2731  #ifdef KDTRACE_HOOKS
2732  	if (se->sy_entry != 0)
2733  		(*systrace_probe_func)(&tsr->ts_sa, SYSTRACE_ENTRY, 0);
2734  #endif
2735  	tsr->ts_ret.sr_error = se->sy_call(td, tsr->ts_sa.args);
2736  #ifdef KDTRACE_HOOKS
2737  	if (se->sy_return != 0)
2738  		(*systrace_probe_func)(&tsr->ts_sa, SYSTRACE_RETURN,
2739  		    tsr->ts_ret.sr_error != 0 ? -1 : td->td_retval[0]);
2740  #endif
2741  
2742  	tsr->ts_ret.sr_retval[0] = td->td_retval[0];
2743  	tsr->ts_ret.sr_retval[1] = td->td_retval[1];
2744  	td->td_retval[0] = rv_saved[0];
2745  	td->td_retval[1] = rv_saved[1];
2746  	td->td_errno = nerror;
2747  
2748  	if (audited)
2749  		AUDIT_SYSCALL_EXIT(error, td);
2750  	if (!sy_thr_static)
2751  		syscall_thread_exit(td, se);
2752  }
2753  
2754  static void
ptrace_remotereq(struct thread * td,int flag)2755  ptrace_remotereq(struct thread *td, int flag)
2756  {
2757  	struct proc *p;
2758  
2759  	MPASS(td == curthread);
2760  	p = td->td_proc;
2761  	PROC_LOCK_ASSERT(p, MA_OWNED);
2762  	if ((td->td_dbgflags & flag) == 0)
2763  		return;
2764  	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2765  	KASSERT(td->td_remotereq != NULL, ("td_remotereq is NULL"));
2766  
2767  	PROC_UNLOCK(p);
2768  	switch (flag) {
2769  	case TDB_COREDUMPREQ:
2770  		ptrace_coredumpreq(td, p, td->td_remotereq);
2771  		break;
2772  	case TDB_SCREMOTEREQ:
2773  		ptrace_syscallreq(td, p, td->td_remotereq);
2774  		break;
2775  	default:
2776  		__unreachable();
2777  	}
2778  	PROC_LOCK(p);
2779  
2780  	MPASS((td->td_dbgflags & flag) != 0);
2781  	td->td_dbgflags &= ~flag;
2782  	td->td_remotereq = NULL;
2783  	wakeup(p);
2784  }
2785  
2786  static void
sig_suspend_threads(struct thread * td,struct proc * p)2787  sig_suspend_threads(struct thread *td, struct proc *p)
2788  {
2789  	struct thread *td2;
2790  
2791  	PROC_LOCK_ASSERT(p, MA_OWNED);
2792  	PROC_SLOCK_ASSERT(p, MA_OWNED);
2793  
2794  	FOREACH_THREAD_IN_PROC(p, td2) {
2795  		thread_lock(td2);
2796  		ast_sched_locked(td2, TDA_SUSPEND);
2797  		if (TD_IS_SLEEPING(td2) && (td2->td_flags & TDF_SINTR) != 0) {
2798  			if (td2->td_flags & TDF_SBDRY) {
2799  				/*
2800  				 * Once a thread is asleep with
2801  				 * TDF_SBDRY and without TDF_SERESTART
2802  				 * or TDF_SEINTR set, it should never
2803  				 * become suspended due to this check.
2804  				 */
2805  				KASSERT(!TD_IS_SUSPENDED(td2),
2806  				    ("thread with deferred stops suspended"));
2807  				if (TD_SBDRY_INTR(td2)) {
2808  					sleepq_abort(td2, TD_SBDRY_ERRNO(td2));
2809  					continue;
2810  				}
2811  			} else if (!TD_IS_SUSPENDED(td2))
2812  				thread_suspend_one(td2);
2813  		} else if (!TD_IS_SUSPENDED(td2)) {
2814  #ifdef SMP
2815  			if (TD_IS_RUNNING(td2) && td2 != td)
2816  				forward_signal(td2);
2817  #endif
2818  		}
2819  		thread_unlock(td2);
2820  	}
2821  }
2822  
2823  /*
2824   * Stop the process for an event deemed interesting to the debugger. If si is
2825   * non-NULL, this is a signal exchange; the new signal requested by the
2826   * debugger will be returned for handling. If si is NULL, this is some other
2827   * type of interesting event. The debugger may request a signal be delivered in
2828   * that case as well, however it will be deferred until it can be handled.
2829   */
2830  int
ptracestop(struct thread * td,int sig,ksiginfo_t * si)2831  ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2832  {
2833  	struct proc *p = td->td_proc;
2834  	struct thread *td2;
2835  	ksiginfo_t ksi;
2836  
2837  	PROC_LOCK_ASSERT(p, MA_OWNED);
2838  	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2839  	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2840  	    &p->p_mtx.lock_object, "Stopping for traced signal");
2841  
2842  	td->td_xsig = sig;
2843  
2844  	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2845  		td->td_dbgflags |= TDB_XSIG;
2846  		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2847  		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2848  		PROC_SLOCK(p);
2849  		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2850  			if (P_KILLED(p)) {
2851  				/*
2852  				 * Ensure that, if we've been PT_KILLed, the
2853  				 * exit status reflects that. Another thread
2854  				 * may also be in ptracestop(), having just
2855  				 * received the SIGKILL, but this thread was
2856  				 * unsuspended first.
2857  				 */
2858  				td->td_dbgflags &= ~TDB_XSIG;
2859  				td->td_xsig = SIGKILL;
2860  				p->p_ptevents = 0;
2861  				break;
2862  			}
2863  			if (p->p_flag & P_SINGLE_EXIT &&
2864  			    !(td->td_dbgflags & TDB_EXIT)) {
2865  				/*
2866  				 * Ignore ptrace stops except for thread exit
2867  				 * events when the process exits.
2868  				 */
2869  				td->td_dbgflags &= ~TDB_XSIG;
2870  				PROC_SUNLOCK(p);
2871  				return (0);
2872  			}
2873  
2874  			/*
2875  			 * Make wait(2) work.  Ensure that right after the
2876  			 * attach, the thread which was decided to become the
2877  			 * leader of attach gets reported to the waiter.
2878  			 * Otherwise, just avoid overwriting another thread's
2879  			 * assignment to p_xthread.  If another thread has
2880  			 * already set p_xthread, the current thread will get
2881  			 * a chance to report itself upon the next iteration.
2882  			 */
2883  			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2884  			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2885  			    p->p_xthread == NULL)) {
2886  				p->p_xsig = sig;
2887  				p->p_xthread = td;
2888  
2889  				/*
2890  				 * If we are on sleepqueue already,
2891  				 * let sleepqueue code decide if it
2892  				 * needs to go sleep after attach.
2893  				 */
2894  				if (td->td_wchan == NULL)
2895  					td->td_dbgflags &= ~TDB_FSTP;
2896  
2897  				p->p_flag2 &= ~P2_PTRACE_FSTP;
2898  				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2899  				sig_suspend_threads(td, p);
2900  			}
2901  			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2902  				td->td_dbgflags &= ~TDB_STOPATFORK;
2903  			}
2904  stopme:
2905  			td->td_dbgflags |= TDB_SSWITCH;
2906  			thread_suspend_switch(td, p);
2907  			td->td_dbgflags &= ~TDB_SSWITCH;
2908  			if ((td->td_dbgflags & (TDB_COREDUMPREQ |
2909  			    TDB_SCREMOTEREQ)) != 0) {
2910  				MPASS((td->td_dbgflags & (TDB_COREDUMPREQ |
2911  				    TDB_SCREMOTEREQ)) !=
2912  				    (TDB_COREDUMPREQ | TDB_SCREMOTEREQ));
2913  				PROC_SUNLOCK(p);
2914  				ptrace_remotereq(td, td->td_dbgflags &
2915  				    (TDB_COREDUMPREQ | TDB_SCREMOTEREQ));
2916  				PROC_SLOCK(p);
2917  				goto stopme;
2918  			}
2919  			if (p->p_xthread == td)
2920  				p->p_xthread = NULL;
2921  			if (!(p->p_flag & P_TRACED))
2922  				break;
2923  			if (td->td_dbgflags & TDB_SUSPEND) {
2924  				if (p->p_flag & P_SINGLE_EXIT)
2925  					break;
2926  				goto stopme;
2927  			}
2928  		}
2929  		PROC_SUNLOCK(p);
2930  	}
2931  
2932  	if (si != NULL && sig == td->td_xsig) {
2933  		/* Parent wants us to take the original signal unchanged. */
2934  		si->ksi_flags |= KSI_HEAD;
2935  		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2936  			si->ksi_signo = 0;
2937  	} else if (td->td_xsig != 0) {
2938  		/*
2939  		 * If parent wants us to take a new signal, then it will leave
2940  		 * it in td->td_xsig; otherwise we just look for signals again.
2941  		 */
2942  		ksiginfo_init(&ksi);
2943  		ksi.ksi_signo = td->td_xsig;
2944  		ksi.ksi_flags |= KSI_PTRACE;
2945  		td2 = sigtd(p, td->td_xsig, false);
2946  		tdsendsignal(p, td2, td->td_xsig, &ksi);
2947  		if (td != td2)
2948  			return (0);
2949  	}
2950  
2951  	return (td->td_xsig);
2952  }
2953  
2954  static void
reschedule_signals(struct proc * p,sigset_t block,int flags)2955  reschedule_signals(struct proc *p, sigset_t block, int flags)
2956  {
2957  	struct sigacts *ps;
2958  	struct thread *td;
2959  	int sig;
2960  	bool fastblk, pslocked;
2961  
2962  	PROC_LOCK_ASSERT(p, MA_OWNED);
2963  	ps = p->p_sigacts;
2964  	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2965  	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2966  	if (SIGISEMPTY(p->p_siglist))
2967  		return;
2968  	SIGSETAND(block, p->p_siglist);
2969  	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2970  	SIG_FOREACH(sig, &block) {
2971  		td = sigtd(p, sig, fastblk);
2972  
2973  		/*
2974  		 * If sigtd() selected us despite sigfastblock is
2975  		 * blocking, do not activate AST or wake us, to avoid
2976  		 * loop in AST handler.
2977  		 */
2978  		if (fastblk && td == curthread)
2979  			continue;
2980  
2981  		signotify(td);
2982  		if (!pslocked)
2983  			mtx_lock(&ps->ps_mtx);
2984  		if (p->p_flag & P_TRACED ||
2985  		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2986  		    !SIGISMEMBER(td->td_sigmask, sig))) {
2987  			tdsigwakeup(td, sig, SIG_CATCH,
2988  			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2989  			    ERESTART));
2990  		}
2991  		if (!pslocked)
2992  			mtx_unlock(&ps->ps_mtx);
2993  	}
2994  }
2995  
2996  void
tdsigcleanup(struct thread * td)2997  tdsigcleanup(struct thread *td)
2998  {
2999  	struct proc *p;
3000  	sigset_t unblocked;
3001  
3002  	p = td->td_proc;
3003  	PROC_LOCK_ASSERT(p, MA_OWNED);
3004  
3005  	sigqueue_flush(&td->td_sigqueue);
3006  	if (p->p_numthreads == 1)
3007  		return;
3008  
3009  	/*
3010  	 * Since we cannot handle signals, notify signal post code
3011  	 * about this by filling the sigmask.
3012  	 *
3013  	 * Also, if needed, wake up thread(s) that do not block the
3014  	 * same signals as the exiting thread, since the thread might
3015  	 * have been selected for delivery and woken up.
3016  	 */
3017  	SIGFILLSET(unblocked);
3018  	SIGSETNAND(unblocked, td->td_sigmask);
3019  	SIGFILLSET(td->td_sigmask);
3020  	reschedule_signals(p, unblocked, 0);
3021  
3022  }
3023  
3024  static int
sigdeferstop_curr_flags(int cflags)3025  sigdeferstop_curr_flags(int cflags)
3026  {
3027  
3028  	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
3029  	    (cflags & TDF_SBDRY) != 0);
3030  	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
3031  }
3032  
3033  /*
3034   * Defer the delivery of SIGSTOP for the current thread, according to
3035   * the requested mode.  Returns previous flags, which must be restored
3036   * by sigallowstop().
3037   *
3038   * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
3039   * cleared by the current thread, which allow the lock-less read-only
3040   * accesses below.
3041   */
3042  int
sigdeferstop_impl(int mode)3043  sigdeferstop_impl(int mode)
3044  {
3045  	struct thread *td;
3046  	int cflags, nflags;
3047  
3048  	td = curthread;
3049  	cflags = sigdeferstop_curr_flags(td->td_flags);
3050  	switch (mode) {
3051  	case SIGDEFERSTOP_NOP:
3052  		nflags = cflags;
3053  		break;
3054  	case SIGDEFERSTOP_OFF:
3055  		nflags = 0;
3056  		break;
3057  	case SIGDEFERSTOP_SILENT:
3058  		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
3059  		break;
3060  	case SIGDEFERSTOP_EINTR:
3061  		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
3062  		break;
3063  	case SIGDEFERSTOP_ERESTART:
3064  		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
3065  		break;
3066  	default:
3067  		panic("sigdeferstop: invalid mode %x", mode);
3068  		break;
3069  	}
3070  	if (cflags == nflags)
3071  		return (SIGDEFERSTOP_VAL_NCHG);
3072  	thread_lock(td);
3073  	td->td_flags = (td->td_flags & ~cflags) | nflags;
3074  	thread_unlock(td);
3075  	return (cflags);
3076  }
3077  
3078  /*
3079   * Restores the STOP handling mode, typically permitting the delivery
3080   * of SIGSTOP for the current thread.  This does not immediately
3081   * suspend if a stop was posted.  Instead, the thread will suspend
3082   * either via ast() or a subsequent interruptible sleep.
3083   */
3084  void
sigallowstop_impl(int prev)3085  sigallowstop_impl(int prev)
3086  {
3087  	struct thread *td;
3088  	int cflags;
3089  
3090  	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
3091  	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
3092  	    ("sigallowstop: incorrect previous mode %x", prev));
3093  	td = curthread;
3094  	cflags = sigdeferstop_curr_flags(td->td_flags);
3095  	if (cflags != prev) {
3096  		thread_lock(td);
3097  		td->td_flags = (td->td_flags & ~cflags) | prev;
3098  		thread_unlock(td);
3099  	}
3100  }
3101  
3102  enum sigstatus {
3103  	SIGSTATUS_HANDLE,
3104  	SIGSTATUS_HANDLED,
3105  	SIGSTATUS_IGNORE,
3106  	SIGSTATUS_SBDRY_STOP,
3107  };
3108  
3109  /*
3110   * The thread has signal "sig" pending.  Figure out what to do with it:
3111   *
3112   * _HANDLE     -> the caller should handle the signal
3113   * _HANDLED    -> handled internally, reload pending signal set
3114   * _IGNORE     -> ignored, remove from the set of pending signals and try the
3115   *                next pending signal
3116   * _SBDRY_STOP -> the signal should stop the thread but this is not
3117   *                permitted in the current context
3118   */
3119  static enum sigstatus
sigprocess(struct thread * td,int sig)3120  sigprocess(struct thread *td, int sig)
3121  {
3122  	struct proc *p;
3123  	struct sigacts *ps;
3124  	struct sigqueue *queue;
3125  	ksiginfo_t ksi;
3126  	int prop;
3127  
3128  	KASSERT(_SIG_VALID(sig), ("%s: invalid signal %d", __func__, sig));
3129  
3130  	p = td->td_proc;
3131  	ps = p->p_sigacts;
3132  	mtx_assert(&ps->ps_mtx, MA_OWNED);
3133  	PROC_LOCK_ASSERT(p, MA_OWNED);
3134  
3135  	/*
3136  	 * We should allow pending but ignored signals below
3137  	 * if there is sigwait() active, or P_TRACED was
3138  	 * on when they were posted.
3139  	 */
3140  	if (SIGISMEMBER(ps->ps_sigignore, sig) &&
3141  	    (p->p_flag & P_TRACED) == 0 &&
3142  	    (td->td_flags & TDF_SIGWAIT) == 0) {
3143  		return (SIGSTATUS_IGNORE);
3144  	}
3145  
3146  	/*
3147  	 * If the process is going to single-thread mode to prepare
3148  	 * for exit, there is no sense in delivering any signal
3149  	 * to usermode.  Another important consequence is that
3150  	 * msleep(..., PCATCH, ...) now is only interruptible by a
3151  	 * suspend request.
3152  	 */
3153  	if ((p->p_flag2 & P2_WEXIT) != 0)
3154  		return (SIGSTATUS_IGNORE);
3155  
3156  	if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
3157  		/*
3158  		 * If traced, always stop.
3159  		 * Remove old signal from queue before the stop.
3160  		 * XXX shrug off debugger, it causes siginfo to
3161  		 * be thrown away.
3162  		 */
3163  		queue = &td->td_sigqueue;
3164  		ksiginfo_init(&ksi);
3165  		if (sigqueue_get(queue, sig, &ksi) == 0) {
3166  			queue = &p->p_sigqueue;
3167  			sigqueue_get(queue, sig, &ksi);
3168  		}
3169  		td->td_si = ksi.ksi_info;
3170  
3171  		mtx_unlock(&ps->ps_mtx);
3172  		sig = ptracestop(td, sig, &ksi);
3173  		mtx_lock(&ps->ps_mtx);
3174  
3175  		td->td_si.si_signo = 0;
3176  
3177  		/*
3178  		 * Keep looking if the debugger discarded or
3179  		 * replaced the signal.
3180  		 */
3181  		if (sig == 0)
3182  			return (SIGSTATUS_HANDLED);
3183  
3184  		/*
3185  		 * If the signal became masked, re-queue it.
3186  		 */
3187  		if (SIGISMEMBER(td->td_sigmask, sig)) {
3188  			ksi.ksi_flags |= KSI_HEAD;
3189  			sigqueue_add(&p->p_sigqueue, sig, &ksi);
3190  			return (SIGSTATUS_HANDLED);
3191  		}
3192  
3193  		/*
3194  		 * If the traced bit got turned off, requeue the signal and
3195  		 * reload the set of pending signals.  This ensures that p_sig*
3196  		 * and p_sigact are consistent.
3197  		 */
3198  		if ((p->p_flag & P_TRACED) == 0) {
3199  			if ((ksi.ksi_flags & KSI_PTRACE) == 0) {
3200  				ksi.ksi_flags |= KSI_HEAD;
3201  				sigqueue_add(queue, sig, &ksi);
3202  			}
3203  			return (SIGSTATUS_HANDLED);
3204  		}
3205  	}
3206  
3207  	/*
3208  	 * Decide whether the signal should be returned.
3209  	 * Return the signal's number, or fall through
3210  	 * to clear it from the pending mask.
3211  	 */
3212  	switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
3213  	case (intptr_t)SIG_DFL:
3214  		/*
3215  		 * Don't take default actions on system processes.
3216  		 */
3217  		if (p->p_pid <= 1) {
3218  #ifdef DIAGNOSTIC
3219  			/*
3220  			 * Are you sure you want to ignore SIGSEGV
3221  			 * in init? XXX
3222  			 */
3223  			printf("Process (pid %lu) got signal %d\n",
3224  				(u_long)p->p_pid, sig);
3225  #endif
3226  			return (SIGSTATUS_IGNORE);
3227  		}
3228  
3229  		/*
3230  		 * If there is a pending stop signal to process with
3231  		 * default action, stop here, then clear the signal.
3232  		 * Traced or exiting processes should ignore stops.
3233  		 * Additionally, a member of an orphaned process group
3234  		 * should ignore tty stops.
3235  		 */
3236  		prop = sigprop(sig);
3237  		if (prop & SIGPROP_STOP) {
3238  			mtx_unlock(&ps->ps_mtx);
3239  			if ((p->p_flag & (P_TRACED | P_WEXIT |
3240  			    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3241  			    pg_flags & PGRP_ORPHANED) != 0 &&
3242  			    (prop & SIGPROP_TTYSTOP) != 0)) {
3243  				mtx_lock(&ps->ps_mtx);
3244  				return (SIGSTATUS_IGNORE);
3245  			}
3246  			if (TD_SBDRY_INTR(td)) {
3247  				KASSERT((td->td_flags & TDF_SBDRY) != 0,
3248  				    ("lost TDF_SBDRY"));
3249  				mtx_lock(&ps->ps_mtx);
3250  				return (SIGSTATUS_SBDRY_STOP);
3251  			}
3252  			WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3253  			    &p->p_mtx.lock_object, "Catching SIGSTOP");
3254  			sigqueue_delete(&td->td_sigqueue, sig);
3255  			sigqueue_delete(&p->p_sigqueue, sig);
3256  			p->p_flag |= P_STOPPED_SIG;
3257  			p->p_xsig = sig;
3258  			PROC_SLOCK(p);
3259  			sig_suspend_threads(td, p);
3260  			thread_suspend_switch(td, p);
3261  			PROC_SUNLOCK(p);
3262  			mtx_lock(&ps->ps_mtx);
3263  			return (SIGSTATUS_HANDLED);
3264  		} else if ((prop & SIGPROP_IGNORE) != 0 &&
3265  		    (td->td_flags & TDF_SIGWAIT) == 0) {
3266  			/*
3267  			 * Default action is to ignore; drop it if
3268  			 * not in kern_sigtimedwait().
3269  			 */
3270  			return (SIGSTATUS_IGNORE);
3271  		} else {
3272  			return (SIGSTATUS_HANDLE);
3273  		}
3274  
3275  	case (intptr_t)SIG_IGN:
3276  		if ((td->td_flags & TDF_SIGWAIT) == 0)
3277  			return (SIGSTATUS_IGNORE);
3278  		else
3279  			return (SIGSTATUS_HANDLE);
3280  
3281  	default:
3282  		/*
3283  		 * This signal has an action, let postsig() process it.
3284  		 */
3285  		return (SIGSTATUS_HANDLE);
3286  	}
3287  }
3288  
3289  /*
3290   * If the current process has received a signal (should be caught or cause
3291   * termination, should interrupt current syscall), return the signal number.
3292   * Stop signals with default action are processed immediately, then cleared;
3293   * they aren't returned.  This is checked after each entry to the system for
3294   * a syscall or trap (though this can usually be done without calling
3295   * issignal by checking the pending signal masks in cursig.) The normal call
3296   * sequence is
3297   *
3298   *	while (sig = cursig(curthread))
3299   *		postsig(sig);
3300   */
3301  static int
issignal(struct thread * td)3302  issignal(struct thread *td)
3303  {
3304  	struct proc *p;
3305  	sigset_t sigpending;
3306  	int sig;
3307  
3308  	p = td->td_proc;
3309  	PROC_LOCK_ASSERT(p, MA_OWNED);
3310  
3311  	for (;;) {
3312  		sigpending = td->td_sigqueue.sq_signals;
3313  		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
3314  		SIGSETNAND(sigpending, td->td_sigmask);
3315  
3316  		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
3317  		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
3318  			SIG_STOPSIGMASK(sigpending);
3319  		if (SIGISEMPTY(sigpending))	/* no signal to send */
3320  			return (0);
3321  
3322  		/*
3323  		 * Do fast sigblock if requested by usermode.  Since
3324  		 * we do know that there was a signal pending at this
3325  		 * point, set the FAST_SIGBLOCK_PEND as indicator for
3326  		 * usermode to perform a dummy call to
3327  		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
3328  		 * delivery of postponed pending signal.
3329  		 */
3330  		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
3331  			if (td->td_sigblock_val != 0)
3332  				SIGSETNAND(sigpending, fastblock_mask);
3333  			if (SIGISEMPTY(sigpending)) {
3334  				td->td_pflags |= TDP_SIGFASTPENDING;
3335  				return (0);
3336  			}
3337  		}
3338  
3339  		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
3340  		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
3341  		    SIGISMEMBER(sigpending, SIGSTOP)) {
3342  			/*
3343  			 * If debugger just attached, always consume
3344  			 * SIGSTOP from ptrace(PT_ATTACH) first, to
3345  			 * execute the debugger attach ritual in
3346  			 * order.
3347  			 */
3348  			td->td_dbgflags |= TDB_FSTP;
3349  			SIGEMPTYSET(sigpending);
3350  			SIGADDSET(sigpending, SIGSTOP);
3351  		}
3352  
3353  		SIG_FOREACH(sig, &sigpending) {
3354  			switch (sigprocess(td, sig)) {
3355  			case SIGSTATUS_HANDLE:
3356  				return (sig);
3357  			case SIGSTATUS_HANDLED:
3358  				goto next;
3359  			case SIGSTATUS_IGNORE:
3360  				sigqueue_delete(&td->td_sigqueue, sig);
3361  				sigqueue_delete(&p->p_sigqueue, sig);
3362  				break;
3363  			case SIGSTATUS_SBDRY_STOP:
3364  				return (-1);
3365  			}
3366  		}
3367  next:;
3368  	}
3369  }
3370  
3371  void
thread_stopped(struct proc * p)3372  thread_stopped(struct proc *p)
3373  {
3374  	int n;
3375  
3376  	PROC_LOCK_ASSERT(p, MA_OWNED);
3377  	PROC_SLOCK_ASSERT(p, MA_OWNED);
3378  	n = p->p_suspcount;
3379  	if (p == curproc)
3380  		n++;
3381  	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3382  		PROC_SUNLOCK(p);
3383  		p->p_flag &= ~P_WAITED;
3384  		PROC_LOCK(p->p_pptr);
3385  		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3386  			CLD_TRAPPED : CLD_STOPPED);
3387  		PROC_UNLOCK(p->p_pptr);
3388  		PROC_SLOCK(p);
3389  	}
3390  }
3391  
3392  /*
3393   * Take the action for the specified signal
3394   * from the current set of pending signals.
3395   */
3396  int
postsig(int sig)3397  postsig(int sig)
3398  {
3399  	struct thread *td;
3400  	struct proc *p;
3401  	struct sigacts *ps;
3402  	sig_t action;
3403  	ksiginfo_t ksi;
3404  	sigset_t returnmask;
3405  
3406  	KASSERT(sig != 0, ("postsig"));
3407  
3408  	td = curthread;
3409  	p = td->td_proc;
3410  	PROC_LOCK_ASSERT(p, MA_OWNED);
3411  	ps = p->p_sigacts;
3412  	mtx_assert(&ps->ps_mtx, MA_OWNED);
3413  	ksiginfo_init(&ksi);
3414  	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3415  	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3416  		return (0);
3417  	ksi.ksi_signo = sig;
3418  	if (ksi.ksi_code == SI_TIMER)
3419  		itimer_accept(p, ksi.ksi_timerid, &ksi);
3420  	action = ps->ps_sigact[_SIG_IDX(sig)];
3421  #ifdef KTRACE
3422  	if (KTRPOINT(td, KTR_PSIG))
3423  		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3424  		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3425  #endif
3426  
3427  	if (action == SIG_DFL) {
3428  		/*
3429  		 * Default action, where the default is to kill
3430  		 * the process.  (Other cases were ignored above.)
3431  		 */
3432  		mtx_unlock(&ps->ps_mtx);
3433  		proc_td_siginfo_capture(td, &ksi.ksi_info);
3434  		sigexit(td, sig);
3435  		/* NOTREACHED */
3436  	} else {
3437  		/*
3438  		 * If we get here, the signal must be caught.
3439  		 */
3440  		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3441  		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3442  		    ("postsig action: blocked sig %d", sig));
3443  
3444  		/*
3445  		 * Set the new mask value and also defer further
3446  		 * occurrences of this signal.
3447  		 *
3448  		 * Special case: user has done a sigsuspend.  Here the
3449  		 * current mask is not of interest, but rather the
3450  		 * mask from before the sigsuspend is what we want
3451  		 * restored after the signal processing is completed.
3452  		 */
3453  		if (td->td_pflags & TDP_OLDMASK) {
3454  			returnmask = td->td_oldsigmask;
3455  			td->td_pflags &= ~TDP_OLDMASK;
3456  		} else
3457  			returnmask = td->td_sigmask;
3458  
3459  		if (p->p_sig == sig) {
3460  			p->p_sig = 0;
3461  		}
3462  		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3463  		postsig_done(sig, td, ps);
3464  	}
3465  	return (1);
3466  }
3467  
3468  int
sig_ast_checksusp(struct thread * td)3469  sig_ast_checksusp(struct thread *td)
3470  {
3471  	struct proc *p __diagused;
3472  	int ret;
3473  
3474  	p = td->td_proc;
3475  	PROC_LOCK_ASSERT(p, MA_OWNED);
3476  
3477  	if (!td_ast_pending(td, TDA_SUSPEND))
3478  		return (0);
3479  
3480  	ret = thread_suspend_check(1);
3481  	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3482  	return (ret);
3483  }
3484  
3485  int
sig_ast_needsigchk(struct thread * td)3486  sig_ast_needsigchk(struct thread *td)
3487  {
3488  	struct proc *p;
3489  	struct sigacts *ps;
3490  	int ret, sig;
3491  
3492  	p = td->td_proc;
3493  	PROC_LOCK_ASSERT(p, MA_OWNED);
3494  
3495  	if (!td_ast_pending(td, TDA_SIG))
3496  		return (0);
3497  
3498  	ps = p->p_sigacts;
3499  	mtx_lock(&ps->ps_mtx);
3500  	sig = cursig(td);
3501  	if (sig == -1) {
3502  		mtx_unlock(&ps->ps_mtx);
3503  		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3504  		KASSERT(TD_SBDRY_INTR(td),
3505  		    ("lost TDF_SERESTART of TDF_SEINTR"));
3506  		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3507  		    (TDF_SEINTR | TDF_SERESTART),
3508  		    ("both TDF_SEINTR and TDF_SERESTART"));
3509  		ret = TD_SBDRY_ERRNO(td);
3510  	} else if (sig != 0) {
3511  		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3512  		mtx_unlock(&ps->ps_mtx);
3513  	} else {
3514  		mtx_unlock(&ps->ps_mtx);
3515  		ret = 0;
3516  	}
3517  
3518  	/*
3519  	 * Do not go into sleep if this thread was the ptrace(2)
3520  	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3521  	 * but we usually act on the signal by interrupting sleep, and
3522  	 * should do that here as well.
3523  	 */
3524  	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3525  		if (ret == 0)
3526  			ret = EINTR;
3527  		td->td_dbgflags &= ~TDB_FSTP;
3528  	}
3529  
3530  	return (ret);
3531  }
3532  
3533  int
sig_intr(void)3534  sig_intr(void)
3535  {
3536  	struct thread *td;
3537  	struct proc *p;
3538  	int ret;
3539  
3540  	td = curthread;
3541  	if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND))
3542  		return (0);
3543  
3544  	p = td->td_proc;
3545  
3546  	PROC_LOCK(p);
3547  	ret = sig_ast_checksusp(td);
3548  	if (ret == 0)
3549  		ret = sig_ast_needsigchk(td);
3550  	PROC_UNLOCK(p);
3551  	return (ret);
3552  }
3553  
3554  bool
curproc_sigkilled(void)3555  curproc_sigkilled(void)
3556  {
3557  	struct thread *td;
3558  	struct proc *p;
3559  	struct sigacts *ps;
3560  	bool res;
3561  
3562  	td = curthread;
3563  	if (!td_ast_pending(td, TDA_SIG))
3564  		return (false);
3565  
3566  	p = td->td_proc;
3567  	PROC_LOCK(p);
3568  	ps = p->p_sigacts;
3569  	mtx_lock(&ps->ps_mtx);
3570  	res = SIGISMEMBER(td->td_sigqueue.sq_signals, SIGKILL) ||
3571  	    SIGISMEMBER(p->p_sigqueue.sq_signals, SIGKILL);
3572  	mtx_unlock(&ps->ps_mtx);
3573  	PROC_UNLOCK(p);
3574  	return (res);
3575  }
3576  
3577  void
proc_wkilled(struct proc * p)3578  proc_wkilled(struct proc *p)
3579  {
3580  
3581  	PROC_LOCK_ASSERT(p, MA_OWNED);
3582  	if ((p->p_flag & P_WKILLED) == 0)
3583  		p->p_flag |= P_WKILLED;
3584  }
3585  
3586  /*
3587   * Kill the current process for stated reason.
3588   */
3589  void
killproc(struct proc * p,const char * why)3590  killproc(struct proc *p, const char *why)
3591  {
3592  
3593  	PROC_LOCK_ASSERT(p, MA_OWNED);
3594  	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3595  	    p->p_comm);
3596  	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3597  	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3598  	    p->p_ucred->cr_uid, why);
3599  	proc_wkilled(p);
3600  	kern_psignal(p, SIGKILL);
3601  }
3602  
3603  /*
3604   * Force the current process to exit with the specified signal, dumping core
3605   * if appropriate.  We bypass the normal tests for masked and caught signals,
3606   * allowing unrecoverable failures to terminate the process without changing
3607   * signal state.  Mark the accounting record with the signal termination.
3608   * If dumping core, save the signal number for the debugger.  Calls exit and
3609   * does not return.
3610   */
3611  void
sigexit(struct thread * td,int sig)3612  sigexit(struct thread *td, int sig)
3613  {
3614  	struct proc *p = td->td_proc;
3615  	const char *coreinfo;
3616  	int rv;
3617  	bool logexit;
3618  
3619  	PROC_LOCK_ASSERT(p, MA_OWNED);
3620  	proc_set_p2_wexit(p);
3621  
3622  	p->p_acflag |= AXSIG;
3623  	if ((p->p_flag2 & P2_LOGSIGEXIT_CTL) == 0)
3624  		logexit = kern_logsigexit != 0;
3625  	else
3626  		logexit = (p->p_flag2 & P2_LOGSIGEXIT_ENABLE) != 0;
3627  
3628  	/*
3629  	 * We must be single-threading to generate a core dump.  This
3630  	 * ensures that the registers in the core file are up-to-date.
3631  	 * Also, the ELF dump handler assumes that the thread list doesn't
3632  	 * change out from under it.
3633  	 *
3634  	 * XXX If another thread attempts to single-thread before us
3635  	 *     (e.g. via fork()), we won't get a dump at all.
3636  	 */
3637  	if ((sigprop(sig) & SIGPROP_CORE) &&
3638  	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3639  		p->p_sig = sig;
3640  		/*
3641  		 * Log signals which would cause core dumps
3642  		 * (Log as LOG_INFO to appease those who don't want
3643  		 * these messages.)
3644  		 * XXX : Todo, as well as euid, write out ruid too
3645  		 * Note that coredump() drops proc lock.
3646  		 */
3647  		rv = coredump(td);
3648  		switch (rv) {
3649  		case 0:
3650  			sig |= WCOREFLAG;
3651  			coreinfo = " (core dumped)";
3652  			break;
3653  		case EFAULT:
3654  			coreinfo = " (no core dump - bad address)";
3655  			break;
3656  		case EINVAL:
3657  			coreinfo = " (no core dump - invalid argument)";
3658  			break;
3659  		case EFBIG:
3660  			coreinfo = " (no core dump - too large)";
3661  			break;
3662  		default:
3663  			coreinfo = " (no core dump - other error)";
3664  			break;
3665  		}
3666  		if (logexit)
3667  			log(LOG_INFO,
3668  			    "pid %d (%s), jid %d, uid %d: exited on "
3669  			    "signal %d%s\n", p->p_pid, p->p_comm,
3670  			    p->p_ucred->cr_prison->pr_id,
3671  			    td->td_ucred->cr_uid,
3672  			    sig &~ WCOREFLAG, coreinfo);
3673  	} else
3674  		PROC_UNLOCK(p);
3675  	exit1(td, 0, sig);
3676  	/* NOTREACHED */
3677  }
3678  
3679  /*
3680   * Send queued SIGCHLD to parent when child process's state
3681   * is changed.
3682   */
3683  static void
sigparent(struct proc * p,int reason,int status)3684  sigparent(struct proc *p, int reason, int status)
3685  {
3686  	PROC_LOCK_ASSERT(p, MA_OWNED);
3687  	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3688  
3689  	if (p->p_ksi != NULL) {
3690  		p->p_ksi->ksi_signo  = SIGCHLD;
3691  		p->p_ksi->ksi_code   = reason;
3692  		p->p_ksi->ksi_status = status;
3693  		p->p_ksi->ksi_pid    = p->p_pid;
3694  		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3695  		if (KSI_ONQ(p->p_ksi))
3696  			return;
3697  	}
3698  	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3699  }
3700  
3701  static void
childproc_jobstate(struct proc * p,int reason,int sig)3702  childproc_jobstate(struct proc *p, int reason, int sig)
3703  {
3704  	struct sigacts *ps;
3705  
3706  	PROC_LOCK_ASSERT(p, MA_OWNED);
3707  	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3708  
3709  	/*
3710  	 * Wake up parent sleeping in kern_wait(), also send
3711  	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3712  	 * that parent will awake, because parent may masked
3713  	 * the signal.
3714  	 */
3715  	p->p_pptr->p_flag |= P_STATCHILD;
3716  	wakeup(p->p_pptr);
3717  
3718  	ps = p->p_pptr->p_sigacts;
3719  	mtx_lock(&ps->ps_mtx);
3720  	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3721  		mtx_unlock(&ps->ps_mtx);
3722  		sigparent(p, reason, sig);
3723  	} else
3724  		mtx_unlock(&ps->ps_mtx);
3725  }
3726  
3727  void
childproc_stopped(struct proc * p,int reason)3728  childproc_stopped(struct proc *p, int reason)
3729  {
3730  
3731  	childproc_jobstate(p, reason, p->p_xsig);
3732  }
3733  
3734  void
childproc_continued(struct proc * p)3735  childproc_continued(struct proc *p)
3736  {
3737  	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3738  }
3739  
3740  void
childproc_exited(struct proc * p)3741  childproc_exited(struct proc *p)
3742  {
3743  	int reason, status;
3744  
3745  	if (WCOREDUMP(p->p_xsig)) {
3746  		reason = CLD_DUMPED;
3747  		status = WTERMSIG(p->p_xsig);
3748  	} else if (WIFSIGNALED(p->p_xsig)) {
3749  		reason = CLD_KILLED;
3750  		status = WTERMSIG(p->p_xsig);
3751  	} else {
3752  		reason = CLD_EXITED;
3753  		status = p->p_xexit;
3754  	}
3755  	/*
3756  	 * XXX avoid calling wakeup(p->p_pptr), the work is
3757  	 * done in exit1().
3758  	 */
3759  	sigparent(p, reason, status);
3760  }
3761  
3762  #define	MAX_NUM_CORE_FILES 100000
3763  #ifndef NUM_CORE_FILES
3764  #define	NUM_CORE_FILES 5
3765  #endif
3766  CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3767  static int num_cores = NUM_CORE_FILES;
3768  
3769  static int
sysctl_debug_num_cores_check(SYSCTL_HANDLER_ARGS)3770  sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3771  {
3772  	int error;
3773  	int new_val;
3774  
3775  	new_val = num_cores;
3776  	error = sysctl_handle_int(oidp, &new_val, 0, req);
3777  	if (error != 0 || req->newptr == NULL)
3778  		return (error);
3779  	if (new_val > MAX_NUM_CORE_FILES)
3780  		new_val = MAX_NUM_CORE_FILES;
3781  	if (new_val < 0)
3782  		new_val = 0;
3783  	num_cores = new_val;
3784  	return (0);
3785  }
3786  SYSCTL_PROC(_debug, OID_AUTO, ncores,
3787      CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
3788      sysctl_debug_num_cores_check, "I",
3789      "Maximum number of generated process corefiles while using index format");
3790  
3791  #define	GZIP_SUFFIX	".gz"
3792  #define	ZSTD_SUFFIX	".zst"
3793  
3794  int compress_user_cores = 0;
3795  
3796  static int
sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)3797  sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3798  {
3799  	int error, val;
3800  
3801  	val = compress_user_cores;
3802  	error = sysctl_handle_int(oidp, &val, 0, req);
3803  	if (error != 0 || req->newptr == NULL)
3804  		return (error);
3805  	if (val != 0 && !compressor_avail(val))
3806  		return (EINVAL);
3807  	compress_user_cores = val;
3808  	return (error);
3809  }
3810  SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3811      CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3812      sysctl_compress_user_cores, "I",
3813      "Enable compression of user corefiles ("
3814      __XSTRING(COMPRESS_GZIP) " = gzip, "
3815      __XSTRING(COMPRESS_ZSTD) " = zstd)");
3816  
3817  int compress_user_cores_level = 6;
3818  SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3819      &compress_user_cores_level, 0,
3820      "Corefile compression level");
3821  
3822  /*
3823   * Protect the access to corefilename[] by allproc_lock.
3824   */
3825  #define	corefilename_lock	allproc_lock
3826  
3827  static char corefilename[MAXPATHLEN] = {"%N.core"};
3828  TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3829  
3830  static int
sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)3831  sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3832  {
3833  	int error;
3834  
3835  	sx_xlock(&corefilename_lock);
3836  	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3837  	    req);
3838  	sx_xunlock(&corefilename_lock);
3839  
3840  	return (error);
3841  }
3842  SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3843      CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3844      "Process corefile name format string");
3845  
3846  static void
vnode_close_locked(struct thread * td,struct vnode * vp)3847  vnode_close_locked(struct thread *td, struct vnode *vp)
3848  {
3849  
3850  	VOP_UNLOCK(vp);
3851  	vn_close(vp, FWRITE, td->td_ucred, td);
3852  }
3853  
3854  /*
3855   * If the core format has a %I in it, then we need to check
3856   * for existing corefiles before defining a name.
3857   * To do this we iterate over 0..ncores to find a
3858   * non-existing core file name to use. If all core files are
3859   * already used we choose the oldest one.
3860   */
3861  static int
corefile_open_last(struct thread * td,char * name,int indexpos,int indexlen,int ncores,struct vnode ** vpp)3862  corefile_open_last(struct thread *td, char *name, int indexpos,
3863      int indexlen, int ncores, struct vnode **vpp)
3864  {
3865  	struct vnode *oldvp, *nextvp, *vp;
3866  	struct vattr vattr;
3867  	struct nameidata nd;
3868  	int error, i, flags, oflags, cmode;
3869  	char ch;
3870  	struct timespec lasttime;
3871  
3872  	nextvp = oldvp = NULL;
3873  	cmode = S_IRUSR | S_IWUSR;
3874  	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3875  	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3876  
3877  	for (i = 0; i < ncores; i++) {
3878  		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3879  
3880  		ch = name[indexpos + indexlen];
3881  		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3882  		    i);
3883  		name[indexpos + indexlen] = ch;
3884  
3885  		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
3886  		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3887  		    NULL);
3888  		if (error != 0)
3889  			break;
3890  
3891  		vp = nd.ni_vp;
3892  		NDFREE_PNBUF(&nd);
3893  		if ((flags & O_CREAT) == O_CREAT) {
3894  			nextvp = vp;
3895  			break;
3896  		}
3897  
3898  		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3899  		if (error != 0) {
3900  			vnode_close_locked(td, vp);
3901  			break;
3902  		}
3903  
3904  		if (oldvp == NULL ||
3905  		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3906  		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3907  		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3908  			if (oldvp != NULL)
3909  				vn_close(oldvp, FWRITE, td->td_ucred, td);
3910  			oldvp = vp;
3911  			VOP_UNLOCK(oldvp);
3912  			lasttime = vattr.va_mtime;
3913  		} else {
3914  			vnode_close_locked(td, vp);
3915  		}
3916  	}
3917  
3918  	if (oldvp != NULL) {
3919  		if (nextvp == NULL) {
3920  			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3921  				error = EFAULT;
3922  				vn_close(oldvp, FWRITE, td->td_ucred, td);
3923  			} else {
3924  				nextvp = oldvp;
3925  				error = vn_lock(nextvp, LK_EXCLUSIVE);
3926  				if (error != 0) {
3927  					vn_close(nextvp, FWRITE, td->td_ucred,
3928  					    td);
3929  					nextvp = NULL;
3930  				}
3931  			}
3932  		} else {
3933  			vn_close(oldvp, FWRITE, td->td_ucred, td);
3934  		}
3935  	}
3936  	if (error != 0) {
3937  		if (nextvp != NULL)
3938  			vnode_close_locked(td, oldvp);
3939  	} else {
3940  		*vpp = nextvp;
3941  	}
3942  
3943  	return (error);
3944  }
3945  
3946  /*
3947   * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3948   * Expand the name described in corefilename, using name, uid, and pid
3949   * and open/create core file.
3950   * corefilename is a printf-like string, with three format specifiers:
3951   *	%N	name of process ("name")
3952   *	%P	process id (pid)
3953   *	%U	user id (uid)
3954   * For example, "%N.core" is the default; they can be disabled completely
3955   * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3956   * This is controlled by the sysctl variable kern.corefile (see above).
3957   */
3958  static int
corefile_open(const char * comm,uid_t uid,pid_t pid,struct thread * td,int compress,int signum,struct vnode ** vpp,char ** namep)3959  corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3960      int compress, int signum, struct vnode **vpp, char **namep)
3961  {
3962  	struct sbuf sb;
3963  	struct nameidata nd;
3964  	const char *format;
3965  	char *hostname, *name;
3966  	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3967  
3968  	hostname = NULL;
3969  	format = corefilename;
3970  	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3971  	indexlen = 0;
3972  	indexpos = -1;
3973  	ncores = num_cores;
3974  	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3975  	sx_slock(&corefilename_lock);
3976  	for (i = 0; format[i] != '\0'; i++) {
3977  		switch (format[i]) {
3978  		case '%':	/* Format character */
3979  			i++;
3980  			switch (format[i]) {
3981  			case '%':
3982  				sbuf_putc(&sb, '%');
3983  				break;
3984  			case 'H':	/* hostname */
3985  				if (hostname == NULL) {
3986  					hostname = malloc(MAXHOSTNAMELEN,
3987  					    M_TEMP, M_WAITOK);
3988  				}
3989  				getcredhostname(td->td_ucred, hostname,
3990  				    MAXHOSTNAMELEN);
3991  				sbuf_cat(&sb, hostname);
3992  				break;
3993  			case 'I':	/* autoincrementing index */
3994  				if (indexpos != -1) {
3995  					sbuf_printf(&sb, "%%I");
3996  					break;
3997  				}
3998  
3999  				indexpos = sbuf_len(&sb);
4000  				sbuf_printf(&sb, "%u", ncores - 1);
4001  				indexlen = sbuf_len(&sb) - indexpos;
4002  				break;
4003  			case 'N':	/* process name */
4004  				sbuf_printf(&sb, "%s", comm);
4005  				break;
4006  			case 'P':	/* process id */
4007  				sbuf_printf(&sb, "%u", pid);
4008  				break;
4009  			case 'S':	/* signal number */
4010  				sbuf_printf(&sb, "%i", signum);
4011  				break;
4012  			case 'U':	/* user id */
4013  				sbuf_printf(&sb, "%u", uid);
4014  				break;
4015  			default:
4016  				log(LOG_ERR,
4017  				    "Unknown format character %c in "
4018  				    "corename `%s'\n", format[i], format);
4019  				break;
4020  			}
4021  			break;
4022  		default:
4023  			sbuf_putc(&sb, format[i]);
4024  			break;
4025  		}
4026  	}
4027  	sx_sunlock(&corefilename_lock);
4028  	free(hostname, M_TEMP);
4029  	if (compress == COMPRESS_GZIP)
4030  		sbuf_cat(&sb, GZIP_SUFFIX);
4031  	else if (compress == COMPRESS_ZSTD)
4032  		sbuf_cat(&sb, ZSTD_SUFFIX);
4033  	if (sbuf_error(&sb) != 0) {
4034  		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
4035  		    "long\n", (long)pid, comm, (u_long)uid);
4036  		sbuf_delete(&sb);
4037  		free(name, M_TEMP);
4038  		return (ENOMEM);
4039  	}
4040  	sbuf_finish(&sb);
4041  	sbuf_delete(&sb);
4042  
4043  	if (indexpos != -1) {
4044  		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
4045  		    vpp);
4046  		if (error != 0) {
4047  			log(LOG_ERR,
4048  			    "pid %d (%s), uid (%u):  Path `%s' failed "
4049  			    "on initial open test, error = %d\n",
4050  			    pid, comm, uid, name, error);
4051  		}
4052  	} else {
4053  		cmode = S_IRUSR | S_IWUSR;
4054  		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
4055  		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
4056  		flags = O_CREAT | FWRITE | O_NOFOLLOW;
4057  		if ((td->td_proc->p_flag & P_SUGID) != 0)
4058  			flags |= O_EXCL;
4059  
4060  		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
4061  		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
4062  		    NULL);
4063  		if (error == 0) {
4064  			*vpp = nd.ni_vp;
4065  			NDFREE_PNBUF(&nd);
4066  		}
4067  	}
4068  
4069  	if (error != 0) {
4070  #ifdef AUDIT
4071  		audit_proc_coredump(td, name, error);
4072  #endif
4073  		free(name, M_TEMP);
4074  		return (error);
4075  	}
4076  	*namep = name;
4077  	return (0);
4078  }
4079  
4080  /*
4081   * Dump a process' core.  The main routine does some
4082   * policy checking, and creates the name of the coredump;
4083   * then it passes on a vnode and a size limit to the process-specific
4084   * coredump routine if there is one; if there _is not_ one, it returns
4085   * ENOSYS; otherwise it returns the error from the process-specific routine.
4086   */
4087  
4088  static int
coredump(struct thread * td)4089  coredump(struct thread *td)
4090  {
4091  	struct proc *p = td->td_proc;
4092  	struct ucred *cred = td->td_ucred;
4093  	struct vnode *vp;
4094  	struct flock lf;
4095  	struct vattr vattr;
4096  	size_t fullpathsize;
4097  	int error, error1, locked;
4098  	char *name;			/* name of corefile */
4099  	void *rl_cookie;
4100  	off_t limit;
4101  	char *fullpath, *freepath = NULL;
4102  	struct sbuf *sb;
4103  
4104  	PROC_LOCK_ASSERT(p, MA_OWNED);
4105  	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
4106  
4107  	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
4108  	    (p->p_flag2 & P2_NOTRACE) != 0) {
4109  		PROC_UNLOCK(p);
4110  		return (EFAULT);
4111  	}
4112  
4113  	/*
4114  	 * Note that the bulk of limit checking is done after
4115  	 * the corefile is created.  The exception is if the limit
4116  	 * for corefiles is 0, in which case we don't bother
4117  	 * creating the corefile at all.  This layout means that
4118  	 * a corefile is truncated instead of not being created,
4119  	 * if it is larger than the limit.
4120  	 */
4121  	limit = (off_t)lim_cur(td, RLIMIT_CORE);
4122  	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
4123  		PROC_UNLOCK(p);
4124  		return (EFBIG);
4125  	}
4126  	PROC_UNLOCK(p);
4127  
4128  	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
4129  	    compress_user_cores, p->p_sig, &vp, &name);
4130  	if (error != 0)
4131  		return (error);
4132  
4133  	/*
4134  	 * Don't dump to non-regular files or files with links.
4135  	 * Do not dump into system files. Effective user must own the corefile.
4136  	 */
4137  	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
4138  	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
4139  	    vattr.va_uid != cred->cr_uid) {
4140  		VOP_UNLOCK(vp);
4141  		error = EFAULT;
4142  		goto out;
4143  	}
4144  
4145  	VOP_UNLOCK(vp);
4146  
4147  	/* Postpone other writers, including core dumps of other processes. */
4148  	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
4149  
4150  	lf.l_whence = SEEK_SET;
4151  	lf.l_start = 0;
4152  	lf.l_len = 0;
4153  	lf.l_type = F_WRLCK;
4154  	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
4155  
4156  	VATTR_NULL(&vattr);
4157  	vattr.va_size = 0;
4158  	if (set_core_nodump_flag)
4159  		vattr.va_flags = UF_NODUMP;
4160  	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4161  	VOP_SETATTR(vp, &vattr, cred);
4162  	VOP_UNLOCK(vp);
4163  	PROC_LOCK(p);
4164  	p->p_acflag |= ACORE;
4165  	PROC_UNLOCK(p);
4166  
4167  	if (p->p_sysent->sv_coredump != NULL) {
4168  		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
4169  	} else {
4170  		error = ENOSYS;
4171  	}
4172  
4173  	if (locked) {
4174  		lf.l_type = F_UNLCK;
4175  		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
4176  	}
4177  	vn_rangelock_unlock(vp, rl_cookie);
4178  
4179  	/*
4180  	 * Notify the userland helper that a process triggered a core dump.
4181  	 * This allows the helper to run an automated debugging session.
4182  	 */
4183  	if (error != 0 || coredump_devctl == 0)
4184  		goto out;
4185  	sb = sbuf_new_auto();
4186  	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
4187  		goto out2;
4188  	sbuf_cat(sb, "comm=\"");
4189  	devctl_safe_quote_sb(sb, fullpath);
4190  	free(freepath, M_TEMP);
4191  	sbuf_cat(sb, "\" core=\"");
4192  
4193  	/*
4194  	 * We can't lookup core file vp directly. When we're replacing a core, and
4195  	 * other random times, we flush the name cache, so it will fail. Instead,
4196  	 * if the path of the core is relative, add the current dir in front if it.
4197  	 */
4198  	if (name[0] != '/') {
4199  		fullpathsize = MAXPATHLEN;
4200  		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
4201  		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
4202  			free(freepath, M_TEMP);
4203  			goto out2;
4204  		}
4205  		devctl_safe_quote_sb(sb, fullpath);
4206  		free(freepath, M_TEMP);
4207  		sbuf_putc(sb, '/');
4208  	}
4209  	devctl_safe_quote_sb(sb, name);
4210  	sbuf_putc(sb, '"');
4211  	if (sbuf_finish(sb) == 0)
4212  		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
4213  out2:
4214  	sbuf_delete(sb);
4215  out:
4216  	error1 = vn_close(vp, FWRITE, cred, td);
4217  	if (error == 0)
4218  		error = error1;
4219  #ifdef AUDIT
4220  	audit_proc_coredump(td, name, error);
4221  #endif
4222  	free(name, M_TEMP);
4223  	return (error);
4224  }
4225  
4226  /*
4227   * Nonexistent system call-- signal process (may want to handle it).  Flag
4228   * error in case process won't see signal immediately (blocked or ignored).
4229   */
4230  #ifndef _SYS_SYSPROTO_H_
4231  struct nosys_args {
4232  	int	dummy;
4233  };
4234  #endif
4235  /* ARGSUSED */
4236  int
nosys(struct thread * td,struct nosys_args * args)4237  nosys(struct thread *td, struct nosys_args *args)
4238  {
4239  	struct proc *p;
4240  
4241  	p = td->td_proc;
4242  
4243  	if (SV_PROC_FLAG(p, SV_SIGSYS) != 0 && kern_signosys) {
4244  		PROC_LOCK(p);
4245  		tdsignal(td, SIGSYS);
4246  		PROC_UNLOCK(p);
4247  	}
4248  	if (kern_lognosys == 1 || kern_lognosys == 3) {
4249  		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
4250  		    td->td_sa.code);
4251  	}
4252  	if (kern_lognosys == 2 || kern_lognosys == 3 ||
4253  	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
4254  		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
4255  		    td->td_sa.code);
4256  	}
4257  	return (ENOSYS);
4258  }
4259  
4260  /*
4261   * Send a SIGIO or SIGURG signal to a process or process group using stored
4262   * credentials rather than those of the current process.
4263   */
4264  void
pgsigio(struct sigio ** sigiop,int sig,int checkctty)4265  pgsigio(struct sigio **sigiop, int sig, int checkctty)
4266  {
4267  	ksiginfo_t ksi;
4268  	struct sigio *sigio;
4269  
4270  	ksiginfo_init(&ksi);
4271  	ksi.ksi_signo = sig;
4272  	ksi.ksi_code = SI_KERNEL;
4273  
4274  	SIGIO_LOCK();
4275  	sigio = *sigiop;
4276  	if (sigio == NULL) {
4277  		SIGIO_UNLOCK();
4278  		return;
4279  	}
4280  	if (sigio->sio_pgid > 0) {
4281  		PROC_LOCK(sigio->sio_proc);
4282  		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
4283  			kern_psignal(sigio->sio_proc, sig);
4284  		PROC_UNLOCK(sigio->sio_proc);
4285  	} else if (sigio->sio_pgid < 0) {
4286  		struct proc *p;
4287  
4288  		PGRP_LOCK(sigio->sio_pgrp);
4289  		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
4290  			PROC_LOCK(p);
4291  			if (p->p_state == PRS_NORMAL &&
4292  			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
4293  			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
4294  				kern_psignal(p, sig);
4295  			PROC_UNLOCK(p);
4296  		}
4297  		PGRP_UNLOCK(sigio->sio_pgrp);
4298  	}
4299  	SIGIO_UNLOCK();
4300  }
4301  
4302  static int
filt_sigattach(struct knote * kn)4303  filt_sigattach(struct knote *kn)
4304  {
4305  	struct proc *p = curproc;
4306  
4307  	kn->kn_ptr.p_proc = p;
4308  	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4309  
4310  	knlist_add(p->p_klist, kn, 0);
4311  
4312  	return (0);
4313  }
4314  
4315  static void
filt_sigdetach(struct knote * kn)4316  filt_sigdetach(struct knote *kn)
4317  {
4318  	knlist_remove(kn->kn_knlist, kn, 0);
4319  }
4320  
4321  /*
4322   * signal knotes are shared with proc knotes, so we apply a mask to
4323   * the hint in order to differentiate them from process hints.  This
4324   * could be avoided by using a signal-specific knote list, but probably
4325   * isn't worth the trouble.
4326   */
4327  static int
filt_signal(struct knote * kn,long hint)4328  filt_signal(struct knote *kn, long hint)
4329  {
4330  
4331  	if (hint & NOTE_SIGNAL) {
4332  		hint &= ~NOTE_SIGNAL;
4333  
4334  		if (kn->kn_id == hint)
4335  			kn->kn_data++;
4336  	}
4337  	return (kn->kn_data != 0);
4338  }
4339  
4340  struct sigacts *
sigacts_alloc(void)4341  sigacts_alloc(void)
4342  {
4343  	struct sigacts *ps;
4344  
4345  	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4346  	refcount_init(&ps->ps_refcnt, 1);
4347  	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4348  	return (ps);
4349  }
4350  
4351  void
sigacts_free(struct sigacts * ps)4352  sigacts_free(struct sigacts *ps)
4353  {
4354  
4355  	if (refcount_release(&ps->ps_refcnt) == 0)
4356  		return;
4357  	mtx_destroy(&ps->ps_mtx);
4358  	free(ps, M_SUBPROC);
4359  }
4360  
4361  struct sigacts *
sigacts_hold(struct sigacts * ps)4362  sigacts_hold(struct sigacts *ps)
4363  {
4364  
4365  	refcount_acquire(&ps->ps_refcnt);
4366  	return (ps);
4367  }
4368  
4369  void
sigacts_copy(struct sigacts * dest,struct sigacts * src)4370  sigacts_copy(struct sigacts *dest, struct sigacts *src)
4371  {
4372  
4373  	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4374  	mtx_lock(&src->ps_mtx);
4375  	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4376  	mtx_unlock(&src->ps_mtx);
4377  }
4378  
4379  int
sigacts_shared(struct sigacts * ps)4380  sigacts_shared(struct sigacts *ps)
4381  {
4382  
4383  	return (ps->ps_refcnt > 1);
4384  }
4385  
4386  void
sig_drop_caught(struct proc * p)4387  sig_drop_caught(struct proc *p)
4388  {
4389  	int sig;
4390  	struct sigacts *ps;
4391  
4392  	ps = p->p_sigacts;
4393  	PROC_LOCK_ASSERT(p, MA_OWNED);
4394  	mtx_assert(&ps->ps_mtx, MA_OWNED);
4395  	SIG_FOREACH(sig, &ps->ps_sigcatch) {
4396  		sigdflt(ps, sig);
4397  		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4398  			sigqueue_delete_proc(p, sig);
4399  	}
4400  }
4401  
4402  static void
sigfastblock_failed(struct thread * td,bool sendsig,bool write)4403  sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4404  {
4405  	ksiginfo_t ksi;
4406  
4407  	/*
4408  	 * Prevent further fetches and SIGSEGVs, allowing thread to
4409  	 * issue syscalls despite corruption.
4410  	 */
4411  	sigfastblock_clear(td);
4412  
4413  	if (!sendsig)
4414  		return;
4415  	ksiginfo_init_trap(&ksi);
4416  	ksi.ksi_signo = SIGSEGV;
4417  	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4418  	ksi.ksi_addr = td->td_sigblock_ptr;
4419  	trapsignal(td, &ksi);
4420  }
4421  
4422  static bool
sigfastblock_fetch_sig(struct thread * td,bool sendsig,uint32_t * valp)4423  sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4424  {
4425  	uint32_t res;
4426  
4427  	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4428  		return (true);
4429  	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4430  		sigfastblock_failed(td, sendsig, false);
4431  		return (false);
4432  	}
4433  	*valp = res;
4434  	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4435  	return (true);
4436  }
4437  
4438  static void
sigfastblock_resched(struct thread * td,bool resched)4439  sigfastblock_resched(struct thread *td, bool resched)
4440  {
4441  	struct proc *p;
4442  
4443  	if (resched) {
4444  		p = td->td_proc;
4445  		PROC_LOCK(p);
4446  		reschedule_signals(p, td->td_sigmask, 0);
4447  		PROC_UNLOCK(p);
4448  	}
4449  	ast_sched(td, TDA_SIG);
4450  }
4451  
4452  int
sys_sigfastblock(struct thread * td,struct sigfastblock_args * uap)4453  sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4454  {
4455  	struct proc *p;
4456  	int error, res;
4457  	uint32_t oldval;
4458  
4459  	error = 0;
4460  	p = td->td_proc;
4461  	switch (uap->cmd) {
4462  	case SIGFASTBLOCK_SETPTR:
4463  		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4464  			error = EBUSY;
4465  			break;
4466  		}
4467  		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4468  			error = EINVAL;
4469  			break;
4470  		}
4471  		td->td_pflags |= TDP_SIGFASTBLOCK;
4472  		td->td_sigblock_ptr = uap->ptr;
4473  		break;
4474  
4475  	case SIGFASTBLOCK_UNBLOCK:
4476  		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4477  			error = EINVAL;
4478  			break;
4479  		}
4480  
4481  		for (;;) {
4482  			res = casueword32(td->td_sigblock_ptr,
4483  			    SIGFASTBLOCK_PEND, &oldval, 0);
4484  			if (res == -1) {
4485  				error = EFAULT;
4486  				sigfastblock_failed(td, false, true);
4487  				break;
4488  			}
4489  			if (res == 0)
4490  				break;
4491  			MPASS(res == 1);
4492  			if (oldval != SIGFASTBLOCK_PEND) {
4493  				error = EBUSY;
4494  				break;
4495  			}
4496  			error = thread_check_susp(td, false);
4497  			if (error != 0)
4498  				break;
4499  		}
4500  		if (error != 0)
4501  			break;
4502  
4503  		/*
4504  		 * td_sigblock_val is cleared there, but not on a
4505  		 * syscall exit.  The end effect is that a single
4506  		 * interruptible sleep, while user sigblock word is
4507  		 * set, might return EINTR or ERESTART to usermode
4508  		 * without delivering signal.  All further sleeps,
4509  		 * until userspace clears the word and does
4510  		 * sigfastblock(UNBLOCK), observe current word and no
4511  		 * longer get interrupted.  It is slight
4512  		 * non-conformance, with alternative to have read the
4513  		 * sigblock word on each syscall entry.
4514  		 */
4515  		td->td_sigblock_val = 0;
4516  
4517  		/*
4518  		 * Rely on normal ast mechanism to deliver pending
4519  		 * signals to current thread.  But notify others about
4520  		 * fake unblock.
4521  		 */
4522  		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4523  
4524  		break;
4525  
4526  	case SIGFASTBLOCK_UNSETPTR:
4527  		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4528  			error = EINVAL;
4529  			break;
4530  		}
4531  		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4532  			error = EFAULT;
4533  			break;
4534  		}
4535  		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4536  			error = EBUSY;
4537  			break;
4538  		}
4539  		sigfastblock_clear(td);
4540  		break;
4541  
4542  	default:
4543  		error = EINVAL;
4544  		break;
4545  	}
4546  	return (error);
4547  }
4548  
4549  void
sigfastblock_clear(struct thread * td)4550  sigfastblock_clear(struct thread *td)
4551  {
4552  	bool resched;
4553  
4554  	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4555  		return;
4556  	td->td_sigblock_val = 0;
4557  	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4558  	    SIGPENDING(td);
4559  	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4560  	sigfastblock_resched(td, resched);
4561  }
4562  
4563  void
sigfastblock_fetch(struct thread * td)4564  sigfastblock_fetch(struct thread *td)
4565  {
4566  	uint32_t val;
4567  
4568  	(void)sigfastblock_fetch_sig(td, true, &val);
4569  }
4570  
4571  static void
sigfastblock_setpend1(struct thread * td)4572  sigfastblock_setpend1(struct thread *td)
4573  {
4574  	int res;
4575  	uint32_t oldval;
4576  
4577  	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4578  		return;
4579  	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4580  	if (res == -1) {
4581  		sigfastblock_failed(td, true, false);
4582  		return;
4583  	}
4584  	for (;;) {
4585  		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4586  		    oldval | SIGFASTBLOCK_PEND);
4587  		if (res == -1) {
4588  			sigfastblock_failed(td, true, true);
4589  			return;
4590  		}
4591  		if (res == 0) {
4592  			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4593  			td->td_pflags &= ~TDP_SIGFASTPENDING;
4594  			break;
4595  		}
4596  		MPASS(res == 1);
4597  		if (thread_check_susp(td, false) != 0)
4598  			break;
4599  	}
4600  }
4601  
4602  static void
sigfastblock_setpend(struct thread * td,bool resched)4603  sigfastblock_setpend(struct thread *td, bool resched)
4604  {
4605  	struct proc *p;
4606  
4607  	sigfastblock_setpend1(td);
4608  	if (resched) {
4609  		p = td->td_proc;
4610  		PROC_LOCK(p);
4611  		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4612  		PROC_UNLOCK(p);
4613  	}
4614  }
4615