xref: /linux/mm/vmscan.c (revision ec8c17e5ecb4a5a74069687ccb6d2cfe1851302e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)274 static void set_task_reclaim_state(struct task_struct *task,
275 				   struct reclaim_state *rs)
276 {
277 	/* Check for an overwrite */
278 	WARN_ON_ONCE(rs && task->reclaim_state);
279 
280 	/* Check for the nulling of an already-nulled member */
281 	WARN_ON_ONCE(!rs && !task->reclaim_state);
282 
283 	task->reclaim_state = rs;
284 }
285 
286 /*
287  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
288  * scan_control->nr_reclaimed.
289  */
flush_reclaim_state(struct scan_control * sc)290 static void flush_reclaim_state(struct scan_control *sc)
291 {
292 	/*
293 	 * Currently, reclaim_state->reclaimed includes three types of pages
294 	 * freed outside of vmscan:
295 	 * (1) Slab pages.
296 	 * (2) Clean file pages from pruned inodes (on highmem systems).
297 	 * (3) XFS freed buffer pages.
298 	 *
299 	 * For all of these cases, we cannot universally link the pages to a
300 	 * single memcg. For example, a memcg-aware shrinker can free one object
301 	 * charged to the target memcg, causing an entire page to be freed.
302 	 * If we count the entire page as reclaimed from the memcg, we end up
303 	 * overestimating the reclaimed amount (potentially under-reclaiming).
304 	 *
305 	 * Only count such pages for global reclaim to prevent under-reclaiming
306 	 * from the target memcg; preventing unnecessary retries during memcg
307 	 * charging and false positives from proactive reclaim.
308 	 *
309 	 * For uncommon cases where the freed pages were actually mostly
310 	 * charged to the target memcg, we end up underestimating the reclaimed
311 	 * amount. This should be fine. The freed pages will be uncharged
312 	 * anyway, even if they are not counted here properly, and we will be
313 	 * able to make forward progress in charging (which is usually in a
314 	 * retry loop).
315 	 *
316 	 * We can go one step further, and report the uncharged objcg pages in
317 	 * memcg reclaim, to make reporting more accurate and reduce
318 	 * underestimation, but it's probably not worth the complexity for now.
319 	 */
320 	if (current->reclaim_state && root_reclaim(sc)) {
321 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
322 		current->reclaim_state->reclaimed = 0;
323 	}
324 }
325 
can_demote(int nid,struct scan_control * sc)326 static bool can_demote(int nid, struct scan_control *sc)
327 {
328 	if (!numa_demotion_enabled)
329 		return false;
330 	if (sc && sc->no_demotion)
331 		return false;
332 	if (next_demotion_node(nid) == NUMA_NO_NODE)
333 		return false;
334 
335 	return true;
336 }
337 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
339 					  int nid,
340 					  struct scan_control *sc)
341 {
342 	if (memcg == NULL) {
343 		/*
344 		 * For non-memcg reclaim, is there
345 		 * space in any swap device?
346 		 */
347 		if (get_nr_swap_pages() > 0)
348 			return true;
349 	} else {
350 		/* Is the memcg below its swap limit? */
351 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
352 			return true;
353 	}
354 
355 	/*
356 	 * The page can not be swapped.
357 	 *
358 	 * Can it be reclaimed from this node via demotion?
359 	 */
360 	return can_demote(nid, sc);
361 }
362 
363 /*
364  * This misses isolated folios which are not accounted for to save counters.
365  * As the data only determines if reclaim or compaction continues, it is
366  * not expected that isolated folios will be a dominating factor.
367  */
zone_reclaimable_pages(struct zone * zone)368 unsigned long zone_reclaimable_pages(struct zone *zone)
369 {
370 	unsigned long nr;
371 
372 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
373 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
374 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
375 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
376 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
377 
378 	return nr;
379 }
380 
381 /**
382  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
383  * @lruvec: lru vector
384  * @lru: lru to use
385  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
386  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)387 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
388 				     int zone_idx)
389 {
390 	unsigned long size = 0;
391 	int zid;
392 
393 	for (zid = 0; zid <= zone_idx; zid++) {
394 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
395 
396 		if (!managed_zone(zone))
397 			continue;
398 
399 		if (!mem_cgroup_disabled())
400 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
401 		else
402 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
403 	}
404 	return size;
405 }
406 
drop_slab_node(int nid)407 static unsigned long drop_slab_node(int nid)
408 {
409 	unsigned long freed = 0;
410 	struct mem_cgroup *memcg = NULL;
411 
412 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
413 	do {
414 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
415 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
416 
417 	return freed;
418 }
419 
drop_slab(void)420 void drop_slab(void)
421 {
422 	int nid;
423 	int shift = 0;
424 	unsigned long freed;
425 
426 	do {
427 		freed = 0;
428 		for_each_online_node(nid) {
429 			if (fatal_signal_pending(current))
430 				return;
431 
432 			freed += drop_slab_node(nid);
433 		}
434 	} while ((freed >> shift++) > 1);
435 }
436 
reclaimer_offset(void)437 static int reclaimer_offset(void)
438 {
439 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
440 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
441 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
442 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
443 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
444 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
445 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
446 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
447 
448 	if (current_is_kswapd())
449 		return 0;
450 	if (current_is_khugepaged())
451 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
452 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
453 }
454 
is_page_cache_freeable(struct folio * folio)455 static inline int is_page_cache_freeable(struct folio *folio)
456 {
457 	/*
458 	 * A freeable page cache folio is referenced only by the caller
459 	 * that isolated the folio, the page cache and optional filesystem
460 	 * private data at folio->private.
461 	 */
462 	return folio_ref_count(folio) - folio_test_private(folio) ==
463 		1 + folio_nr_pages(folio);
464 }
465 
466 /*
467  * We detected a synchronous write error writing a folio out.  Probably
468  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
469  * fsync(), msync() or close().
470  *
471  * The tricky part is that after writepage we cannot touch the mapping: nothing
472  * prevents it from being freed up.  But we have a ref on the folio and once
473  * that folio is locked, the mapping is pinned.
474  *
475  * We're allowed to run sleeping folio_lock() here because we know the caller has
476  * __GFP_FS.
477  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)478 static void handle_write_error(struct address_space *mapping,
479 				struct folio *folio, int error)
480 {
481 	folio_lock(folio);
482 	if (folio_mapping(folio) == mapping)
483 		mapping_set_error(mapping, error);
484 	folio_unlock(folio);
485 }
486 
skip_throttle_noprogress(pg_data_t * pgdat)487 static bool skip_throttle_noprogress(pg_data_t *pgdat)
488 {
489 	int reclaimable = 0, write_pending = 0;
490 	int i;
491 
492 	/*
493 	 * If kswapd is disabled, reschedule if necessary but do not
494 	 * throttle as the system is likely near OOM.
495 	 */
496 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
497 		return true;
498 
499 	/*
500 	 * If there are a lot of dirty/writeback folios then do not
501 	 * throttle as throttling will occur when the folios cycle
502 	 * towards the end of the LRU if still under writeback.
503 	 */
504 	for (i = 0; i < MAX_NR_ZONES; i++) {
505 		struct zone *zone = pgdat->node_zones + i;
506 
507 		if (!managed_zone(zone))
508 			continue;
509 
510 		reclaimable += zone_reclaimable_pages(zone);
511 		write_pending += zone_page_state_snapshot(zone,
512 						  NR_ZONE_WRITE_PENDING);
513 	}
514 	if (2 * write_pending <= reclaimable)
515 		return true;
516 
517 	return false;
518 }
519 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)520 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
521 {
522 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
523 	long timeout, ret;
524 	DEFINE_WAIT(wait);
525 
526 	/*
527 	 * Do not throttle user workers, kthreads other than kswapd or
528 	 * workqueues. They may be required for reclaim to make
529 	 * forward progress (e.g. journalling workqueues or kthreads).
530 	 */
531 	if (!current_is_kswapd() &&
532 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
533 		cond_resched();
534 		return;
535 	}
536 
537 	/*
538 	 * These figures are pulled out of thin air.
539 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
540 	 * parallel reclaimers which is a short-lived event so the timeout is
541 	 * short. Failing to make progress or waiting on writeback are
542 	 * potentially long-lived events so use a longer timeout. This is shaky
543 	 * logic as a failure to make progress could be due to anything from
544 	 * writeback to a slow device to excessive referenced folios at the tail
545 	 * of the inactive LRU.
546 	 */
547 	switch(reason) {
548 	case VMSCAN_THROTTLE_WRITEBACK:
549 		timeout = HZ/10;
550 
551 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
552 			WRITE_ONCE(pgdat->nr_reclaim_start,
553 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
554 		}
555 
556 		break;
557 	case VMSCAN_THROTTLE_CONGESTED:
558 		fallthrough;
559 	case VMSCAN_THROTTLE_NOPROGRESS:
560 		if (skip_throttle_noprogress(pgdat)) {
561 			cond_resched();
562 			return;
563 		}
564 
565 		timeout = 1;
566 
567 		break;
568 	case VMSCAN_THROTTLE_ISOLATED:
569 		timeout = HZ/50;
570 		break;
571 	default:
572 		WARN_ON_ONCE(1);
573 		timeout = HZ;
574 		break;
575 	}
576 
577 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
578 	ret = schedule_timeout(timeout);
579 	finish_wait(wqh, &wait);
580 
581 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
582 		atomic_dec(&pgdat->nr_writeback_throttled);
583 
584 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
585 				jiffies_to_usecs(timeout - ret),
586 				reason);
587 }
588 
589 /*
590  * Account for folios written if tasks are throttled waiting on dirty
591  * folios to clean. If enough folios have been cleaned since throttling
592  * started then wakeup the throttled tasks.
593  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)594 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
595 							int nr_throttled)
596 {
597 	unsigned long nr_written;
598 
599 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
600 
601 	/*
602 	 * This is an inaccurate read as the per-cpu deltas may not
603 	 * be synchronised. However, given that the system is
604 	 * writeback throttled, it is not worth taking the penalty
605 	 * of getting an accurate count. At worst, the throttle
606 	 * timeout guarantees forward progress.
607 	 */
608 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
609 		READ_ONCE(pgdat->nr_reclaim_start);
610 
611 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
612 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
613 }
614 
615 /* possible outcome of pageout() */
616 typedef enum {
617 	/* failed to write folio out, folio is locked */
618 	PAGE_KEEP,
619 	/* move folio to the active list, folio is locked */
620 	PAGE_ACTIVATE,
621 	/* folio has been sent to the disk successfully, folio is unlocked */
622 	PAGE_SUCCESS,
623 	/* folio is clean and locked */
624 	PAGE_CLEAN,
625 } pageout_t;
626 
627 /*
628  * pageout is called by shrink_folio_list() for each dirty folio.
629  * Calls ->writepage().
630  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)631 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
632 			 struct swap_iocb **plug, struct list_head *folio_list)
633 {
634 	/*
635 	 * If the folio is dirty, only perform writeback if that write
636 	 * will be non-blocking.  To prevent this allocation from being
637 	 * stalled by pagecache activity.  But note that there may be
638 	 * stalls if we need to run get_block().  We could test
639 	 * PagePrivate for that.
640 	 *
641 	 * If this process is currently in __generic_file_write_iter() against
642 	 * this folio's queue, we can perform writeback even if that
643 	 * will block.
644 	 *
645 	 * If the folio is swapcache, write it back even if that would
646 	 * block, for some throttling. This happens by accident, because
647 	 * swap_backing_dev_info is bust: it doesn't reflect the
648 	 * congestion state of the swapdevs.  Easy to fix, if needed.
649 	 */
650 	if (!is_page_cache_freeable(folio))
651 		return PAGE_KEEP;
652 	if (!mapping) {
653 		/*
654 		 * Some data journaling orphaned folios can have
655 		 * folio->mapping == NULL while being dirty with clean buffers.
656 		 */
657 		if (folio_test_private(folio)) {
658 			if (try_to_free_buffers(folio)) {
659 				folio_clear_dirty(folio);
660 				pr_info("%s: orphaned folio\n", __func__);
661 				return PAGE_CLEAN;
662 			}
663 		}
664 		return PAGE_KEEP;
665 	}
666 	if (mapping->a_ops->writepage == NULL)
667 		return PAGE_ACTIVATE;
668 
669 	if (folio_clear_dirty_for_io(folio)) {
670 		int res;
671 		struct writeback_control wbc = {
672 			.sync_mode = WB_SYNC_NONE,
673 			.nr_to_write = SWAP_CLUSTER_MAX,
674 			.range_start = 0,
675 			.range_end = LLONG_MAX,
676 			.for_reclaim = 1,
677 			.swap_plug = plug,
678 		};
679 
680 		/*
681 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
682 		 * not enabled or contiguous swap entries are failed to
683 		 * allocate.
684 		 */
685 		if (shmem_mapping(mapping) && folio_test_large(folio))
686 			wbc.list = folio_list;
687 
688 		folio_set_reclaim(folio);
689 		res = mapping->a_ops->writepage(&folio->page, &wbc);
690 		if (res < 0)
691 			handle_write_error(mapping, folio, res);
692 		if (res == AOP_WRITEPAGE_ACTIVATE) {
693 			folio_clear_reclaim(folio);
694 			return PAGE_ACTIVATE;
695 		}
696 
697 		if (!folio_test_writeback(folio)) {
698 			/* synchronous write or broken a_ops? */
699 			folio_clear_reclaim(folio);
700 		}
701 		trace_mm_vmscan_write_folio(folio);
702 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
703 		return PAGE_SUCCESS;
704 	}
705 
706 	return PAGE_CLEAN;
707 }
708 
709 /*
710  * Same as remove_mapping, but if the folio is removed from the mapping, it
711  * gets returned with a refcount of 0.
712  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)713 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
714 			    bool reclaimed, struct mem_cgroup *target_memcg)
715 {
716 	int refcount;
717 	void *shadow = NULL;
718 
719 	BUG_ON(!folio_test_locked(folio));
720 	BUG_ON(mapping != folio_mapping(folio));
721 
722 	if (!folio_test_swapcache(folio))
723 		spin_lock(&mapping->host->i_lock);
724 	xa_lock_irq(&mapping->i_pages);
725 	/*
726 	 * The non racy check for a busy folio.
727 	 *
728 	 * Must be careful with the order of the tests. When someone has
729 	 * a ref to the folio, it may be possible that they dirty it then
730 	 * drop the reference. So if the dirty flag is tested before the
731 	 * refcount here, then the following race may occur:
732 	 *
733 	 * get_user_pages(&page);
734 	 * [user mapping goes away]
735 	 * write_to(page);
736 	 *				!folio_test_dirty(folio)    [good]
737 	 * folio_set_dirty(folio);
738 	 * folio_put(folio);
739 	 *				!refcount(folio)   [good, discard it]
740 	 *
741 	 * [oops, our write_to data is lost]
742 	 *
743 	 * Reversing the order of the tests ensures such a situation cannot
744 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
745 	 * load is not satisfied before that of folio->_refcount.
746 	 *
747 	 * Note that if the dirty flag is always set via folio_mark_dirty,
748 	 * and thus under the i_pages lock, then this ordering is not required.
749 	 */
750 	refcount = 1 + folio_nr_pages(folio);
751 	if (!folio_ref_freeze(folio, refcount))
752 		goto cannot_free;
753 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
754 	if (unlikely(folio_test_dirty(folio))) {
755 		folio_ref_unfreeze(folio, refcount);
756 		goto cannot_free;
757 	}
758 
759 	if (folio_test_swapcache(folio)) {
760 		swp_entry_t swap = folio->swap;
761 
762 		if (reclaimed && !mapping_exiting(mapping))
763 			shadow = workingset_eviction(folio, target_memcg);
764 		__delete_from_swap_cache(folio, swap, shadow);
765 		mem_cgroup_swapout(folio, swap);
766 		xa_unlock_irq(&mapping->i_pages);
767 		put_swap_folio(folio, swap);
768 	} else {
769 		void (*free_folio)(struct folio *);
770 
771 		free_folio = mapping->a_ops->free_folio;
772 		/*
773 		 * Remember a shadow entry for reclaimed file cache in
774 		 * order to detect refaults, thus thrashing, later on.
775 		 *
776 		 * But don't store shadows in an address space that is
777 		 * already exiting.  This is not just an optimization,
778 		 * inode reclaim needs to empty out the radix tree or
779 		 * the nodes are lost.  Don't plant shadows behind its
780 		 * back.
781 		 *
782 		 * We also don't store shadows for DAX mappings because the
783 		 * only page cache folios found in these are zero pages
784 		 * covering holes, and because we don't want to mix DAX
785 		 * exceptional entries and shadow exceptional entries in the
786 		 * same address_space.
787 		 */
788 		if (reclaimed && folio_is_file_lru(folio) &&
789 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
790 			shadow = workingset_eviction(folio, target_memcg);
791 		__filemap_remove_folio(folio, shadow);
792 		xa_unlock_irq(&mapping->i_pages);
793 		if (mapping_shrinkable(mapping))
794 			inode_add_lru(mapping->host);
795 		spin_unlock(&mapping->host->i_lock);
796 
797 		if (free_folio)
798 			free_folio(folio);
799 	}
800 
801 	return 1;
802 
803 cannot_free:
804 	xa_unlock_irq(&mapping->i_pages);
805 	if (!folio_test_swapcache(folio))
806 		spin_unlock(&mapping->host->i_lock);
807 	return 0;
808 }
809 
810 /**
811  * remove_mapping() - Attempt to remove a folio from its mapping.
812  * @mapping: The address space.
813  * @folio: The folio to remove.
814  *
815  * If the folio is dirty, under writeback or if someone else has a ref
816  * on it, removal will fail.
817  * Return: The number of pages removed from the mapping.  0 if the folio
818  * could not be removed.
819  * Context: The caller should have a single refcount on the folio and
820  * hold its lock.
821  */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 	if (__remove_mapping(mapping, folio, false, NULL)) {
825 		/*
826 		 * Unfreezing the refcount with 1 effectively
827 		 * drops the pagecache ref for us without requiring another
828 		 * atomic operation.
829 		 */
830 		folio_ref_unfreeze(folio, 1);
831 		return folio_nr_pages(folio);
832 	}
833 	return 0;
834 }
835 
836 /**
837  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838  * @folio: Folio to be returned to an LRU list.
839  *
840  * Add previously isolated @folio to appropriate LRU list.
841  * The folio may still be unevictable for other reasons.
842  *
843  * Context: lru_lock must not be held, interrupts must be enabled.
844  */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 	folio_add_lru(folio);
848 	folio_put(folio);		/* drop ref from isolate */
849 }
850 
851 enum folio_references {
852 	FOLIOREF_RECLAIM,
853 	FOLIOREF_RECLAIM_CLEAN,
854 	FOLIOREF_KEEP,
855 	FOLIOREF_ACTIVATE,
856 };
857 
folio_check_references(struct folio * folio,struct scan_control * sc)858 static enum folio_references folio_check_references(struct folio *folio,
859 						  struct scan_control *sc)
860 {
861 	int referenced_ptes, referenced_folio;
862 	unsigned long vm_flags;
863 
864 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
865 					   &vm_flags);
866 	referenced_folio = folio_test_clear_referenced(folio);
867 
868 	/*
869 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
870 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
871 	 */
872 	if (vm_flags & VM_LOCKED)
873 		return FOLIOREF_ACTIVATE;
874 
875 	/*
876 	 * There are two cases to consider.
877 	 * 1) Rmap lock contention: rotate.
878 	 * 2) Skip the non-shared swapbacked folio mapped solely by
879 	 *    the exiting or OOM-reaped process.
880 	 */
881 	if (referenced_ptes == -1)
882 		return FOLIOREF_KEEP;
883 
884 	if (referenced_ptes) {
885 		/*
886 		 * All mapped folios start out with page table
887 		 * references from the instantiating fault, so we need
888 		 * to look twice if a mapped file/anon folio is used more
889 		 * than once.
890 		 *
891 		 * Mark it and spare it for another trip around the
892 		 * inactive list.  Another page table reference will
893 		 * lead to its activation.
894 		 *
895 		 * Note: the mark is set for activated folios as well
896 		 * so that recently deactivated but used folios are
897 		 * quickly recovered.
898 		 */
899 		folio_set_referenced(folio);
900 
901 		if (referenced_folio || referenced_ptes > 1)
902 			return FOLIOREF_ACTIVATE;
903 
904 		/*
905 		 * Activate file-backed executable folios after first usage.
906 		 */
907 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
908 			return FOLIOREF_ACTIVATE;
909 
910 		return FOLIOREF_KEEP;
911 	}
912 
913 	/* Reclaim if clean, defer dirty folios to writeback */
914 	if (referenced_folio && folio_is_file_lru(folio))
915 		return FOLIOREF_RECLAIM_CLEAN;
916 
917 	return FOLIOREF_RECLAIM;
918 }
919 
920 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)921 static void folio_check_dirty_writeback(struct folio *folio,
922 				       bool *dirty, bool *writeback)
923 {
924 	struct address_space *mapping;
925 
926 	/*
927 	 * Anonymous folios are not handled by flushers and must be written
928 	 * from reclaim context. Do not stall reclaim based on them.
929 	 * MADV_FREE anonymous folios are put into inactive file list too.
930 	 * They could be mistakenly treated as file lru. So further anon
931 	 * test is needed.
932 	 */
933 	if (!folio_is_file_lru(folio) ||
934 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
935 		*dirty = false;
936 		*writeback = false;
937 		return;
938 	}
939 
940 	/* By default assume that the folio flags are accurate */
941 	*dirty = folio_test_dirty(folio);
942 	*writeback = folio_test_writeback(folio);
943 
944 	/* Verify dirty/writeback state if the filesystem supports it */
945 	if (!folio_test_private(folio))
946 		return;
947 
948 	mapping = folio_mapping(folio);
949 	if (mapping && mapping->a_ops->is_dirty_writeback)
950 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
951 }
952 
alloc_migrate_folio(struct folio * src,unsigned long private)953 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
954 {
955 	struct folio *dst;
956 	nodemask_t *allowed_mask;
957 	struct migration_target_control *mtc;
958 
959 	mtc = (struct migration_target_control *)private;
960 
961 	allowed_mask = mtc->nmask;
962 	/*
963 	 * make sure we allocate from the target node first also trying to
964 	 * demote or reclaim pages from the target node via kswapd if we are
965 	 * low on free memory on target node. If we don't do this and if
966 	 * we have free memory on the slower(lower) memtier, we would start
967 	 * allocating pages from slower(lower) memory tiers without even forcing
968 	 * a demotion of cold pages from the target memtier. This can result
969 	 * in the kernel placing hot pages in slower(lower) memory tiers.
970 	 */
971 	mtc->nmask = NULL;
972 	mtc->gfp_mask |= __GFP_THISNODE;
973 	dst = alloc_migration_target(src, (unsigned long)mtc);
974 	if (dst)
975 		return dst;
976 
977 	mtc->gfp_mask &= ~__GFP_THISNODE;
978 	mtc->nmask = allowed_mask;
979 
980 	return alloc_migration_target(src, (unsigned long)mtc);
981 }
982 
983 /*
984  * Take folios on @demote_folios and attempt to demote them to another node.
985  * Folios which are not demoted are left on @demote_folios.
986  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)987 static unsigned int demote_folio_list(struct list_head *demote_folios,
988 				     struct pglist_data *pgdat)
989 {
990 	int target_nid = next_demotion_node(pgdat->node_id);
991 	unsigned int nr_succeeded;
992 	nodemask_t allowed_mask;
993 
994 	struct migration_target_control mtc = {
995 		/*
996 		 * Allocate from 'node', or fail quickly and quietly.
997 		 * When this happens, 'page' will likely just be discarded
998 		 * instead of migrated.
999 		 */
1000 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1001 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1002 		.nid = target_nid,
1003 		.nmask = &allowed_mask,
1004 		.reason = MR_DEMOTION,
1005 	};
1006 
1007 	if (list_empty(demote_folios))
1008 		return 0;
1009 
1010 	if (target_nid == NUMA_NO_NODE)
1011 		return 0;
1012 
1013 	node_get_allowed_targets(pgdat, &allowed_mask);
1014 
1015 	/* Demotion ignores all cpuset and mempolicy settings */
1016 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1017 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1018 		      &nr_succeeded);
1019 
1020 	return nr_succeeded;
1021 }
1022 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1023 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1024 {
1025 	if (gfp_mask & __GFP_FS)
1026 		return true;
1027 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1028 		return false;
1029 	/*
1030 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1031 	 * providing this isn't SWP_FS_OPS.
1032 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1033 	 * but that will never affect SWP_FS_OPS, so the data_race
1034 	 * is safe.
1035 	 */
1036 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1037 }
1038 
1039 /*
1040  * shrink_folio_list() returns the number of reclaimed pages
1041  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1042 static unsigned int shrink_folio_list(struct list_head *folio_list,
1043 		struct pglist_data *pgdat, struct scan_control *sc,
1044 		struct reclaim_stat *stat, bool ignore_references)
1045 {
1046 	struct folio_batch free_folios;
1047 	LIST_HEAD(ret_folios);
1048 	LIST_HEAD(demote_folios);
1049 	unsigned int nr_reclaimed = 0;
1050 	unsigned int pgactivate = 0;
1051 	bool do_demote_pass;
1052 	struct swap_iocb *plug = NULL;
1053 
1054 	folio_batch_init(&free_folios);
1055 	memset(stat, 0, sizeof(*stat));
1056 	cond_resched();
1057 	do_demote_pass = can_demote(pgdat->node_id, sc);
1058 
1059 retry:
1060 	while (!list_empty(folio_list)) {
1061 		struct address_space *mapping;
1062 		struct folio *folio;
1063 		enum folio_references references = FOLIOREF_RECLAIM;
1064 		bool dirty, writeback;
1065 		unsigned int nr_pages;
1066 
1067 		cond_resched();
1068 
1069 		folio = lru_to_folio(folio_list);
1070 		list_del(&folio->lru);
1071 
1072 		if (!folio_trylock(folio))
1073 			goto keep;
1074 
1075 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1076 
1077 		nr_pages = folio_nr_pages(folio);
1078 
1079 		/* Account the number of base pages */
1080 		sc->nr_scanned += nr_pages;
1081 
1082 		if (unlikely(!folio_evictable(folio)))
1083 			goto activate_locked;
1084 
1085 		if (!sc->may_unmap && folio_mapped(folio))
1086 			goto keep_locked;
1087 
1088 		/* folio_update_gen() tried to promote this page? */
1089 		if (lru_gen_enabled() && !ignore_references &&
1090 		    folio_mapped(folio) && folio_test_referenced(folio))
1091 			goto keep_locked;
1092 
1093 		/*
1094 		 * The number of dirty pages determines if a node is marked
1095 		 * reclaim_congested. kswapd will stall and start writing
1096 		 * folios if the tail of the LRU is all dirty unqueued folios.
1097 		 */
1098 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1099 		if (dirty || writeback)
1100 			stat->nr_dirty += nr_pages;
1101 
1102 		if (dirty && !writeback)
1103 			stat->nr_unqueued_dirty += nr_pages;
1104 
1105 		/*
1106 		 * Treat this folio as congested if folios are cycling
1107 		 * through the LRU so quickly that the folios marked
1108 		 * for immediate reclaim are making it to the end of
1109 		 * the LRU a second time.
1110 		 */
1111 		if (writeback && folio_test_reclaim(folio))
1112 			stat->nr_congested += nr_pages;
1113 
1114 		/*
1115 		 * If a folio at the tail of the LRU is under writeback, there
1116 		 * are three cases to consider.
1117 		 *
1118 		 * 1) If reclaim is encountering an excessive number
1119 		 *    of folios under writeback and this folio has both
1120 		 *    the writeback and reclaim flags set, then it
1121 		 *    indicates that folios are being queued for I/O but
1122 		 *    are being recycled through the LRU before the I/O
1123 		 *    can complete. Waiting on the folio itself risks an
1124 		 *    indefinite stall if it is impossible to writeback
1125 		 *    the folio due to I/O error or disconnected storage
1126 		 *    so instead note that the LRU is being scanned too
1127 		 *    quickly and the caller can stall after the folio
1128 		 *    list has been processed.
1129 		 *
1130 		 * 2) Global or new memcg reclaim encounters a folio that is
1131 		 *    not marked for immediate reclaim, or the caller does not
1132 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1133 		 *    not to fs). In this case mark the folio for immediate
1134 		 *    reclaim and continue scanning.
1135 		 *
1136 		 *    Require may_enter_fs() because we would wait on fs, which
1137 		 *    may not have submitted I/O yet. And the loop driver might
1138 		 *    enter reclaim, and deadlock if it waits on a folio for
1139 		 *    which it is needed to do the write (loop masks off
1140 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1141 		 *    would probably show more reasons.
1142 		 *
1143 		 * 3) Legacy memcg encounters a folio that already has the
1144 		 *    reclaim flag set. memcg does not have any dirty folio
1145 		 *    throttling so we could easily OOM just because too many
1146 		 *    folios are in writeback and there is nothing else to
1147 		 *    reclaim. Wait for the writeback to complete.
1148 		 *
1149 		 * In cases 1) and 2) we activate the folios to get them out of
1150 		 * the way while we continue scanning for clean folios on the
1151 		 * inactive list and refilling from the active list. The
1152 		 * observation here is that waiting for disk writes is more
1153 		 * expensive than potentially causing reloads down the line.
1154 		 * Since they're marked for immediate reclaim, they won't put
1155 		 * memory pressure on the cache working set any longer than it
1156 		 * takes to write them to disk.
1157 		 */
1158 		if (folio_test_writeback(folio)) {
1159 			/* Case 1 above */
1160 			if (current_is_kswapd() &&
1161 			    folio_test_reclaim(folio) &&
1162 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1163 				stat->nr_immediate += nr_pages;
1164 				goto activate_locked;
1165 
1166 			/* Case 2 above */
1167 			} else if (writeback_throttling_sane(sc) ||
1168 			    !folio_test_reclaim(folio) ||
1169 			    !may_enter_fs(folio, sc->gfp_mask)) {
1170 				/*
1171 				 * This is slightly racy -
1172 				 * folio_end_writeback() might have
1173 				 * just cleared the reclaim flag, then
1174 				 * setting the reclaim flag here ends up
1175 				 * interpreted as the readahead flag - but
1176 				 * that does not matter enough to care.
1177 				 * What we do want is for this folio to
1178 				 * have the reclaim flag set next time
1179 				 * memcg reclaim reaches the tests above,
1180 				 * so it will then wait for writeback to
1181 				 * avoid OOM; and it's also appropriate
1182 				 * in global reclaim.
1183 				 */
1184 				folio_set_reclaim(folio);
1185 				stat->nr_writeback += nr_pages;
1186 				goto activate_locked;
1187 
1188 			/* Case 3 above */
1189 			} else {
1190 				folio_unlock(folio);
1191 				folio_wait_writeback(folio);
1192 				/* then go back and try same folio again */
1193 				list_add_tail(&folio->lru, folio_list);
1194 				continue;
1195 			}
1196 		}
1197 
1198 		if (!ignore_references)
1199 			references = folio_check_references(folio, sc);
1200 
1201 		switch (references) {
1202 		case FOLIOREF_ACTIVATE:
1203 			goto activate_locked;
1204 		case FOLIOREF_KEEP:
1205 			stat->nr_ref_keep += nr_pages;
1206 			goto keep_locked;
1207 		case FOLIOREF_RECLAIM:
1208 		case FOLIOREF_RECLAIM_CLEAN:
1209 			; /* try to reclaim the folio below */
1210 		}
1211 
1212 		/*
1213 		 * Before reclaiming the folio, try to relocate
1214 		 * its contents to another node.
1215 		 */
1216 		if (do_demote_pass &&
1217 		    (thp_migration_supported() || !folio_test_large(folio))) {
1218 			list_add(&folio->lru, &demote_folios);
1219 			folio_unlock(folio);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Anonymous process memory has backing store?
1225 		 * Try to allocate it some swap space here.
1226 		 * Lazyfree folio could be freed directly
1227 		 */
1228 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1229 			if (!folio_test_swapcache(folio)) {
1230 				if (!(sc->gfp_mask & __GFP_IO))
1231 					goto keep_locked;
1232 				if (folio_maybe_dma_pinned(folio))
1233 					goto keep_locked;
1234 				if (folio_test_large(folio)) {
1235 					/* cannot split folio, skip it */
1236 					if (!can_split_folio(folio, 1, NULL))
1237 						goto activate_locked;
1238 					/*
1239 					 * Split partially mapped folios right away.
1240 					 * We can free the unmapped pages without IO.
1241 					 */
1242 					if (data_race(!list_empty(&folio->_deferred_list) &&
1243 					    folio_test_partially_mapped(folio)) &&
1244 					    split_folio_to_list(folio, folio_list))
1245 						goto activate_locked;
1246 				}
1247 				if (!add_to_swap(folio)) {
1248 					int __maybe_unused order = folio_order(folio);
1249 
1250 					if (!folio_test_large(folio))
1251 						goto activate_locked_split;
1252 					/* Fallback to swap normal pages */
1253 					if (split_folio_to_list(folio, folio_list))
1254 						goto activate_locked;
1255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 					if (nr_pages >= HPAGE_PMD_NR) {
1257 						count_memcg_folio_events(folio,
1258 							THP_SWPOUT_FALLBACK, 1);
1259 						count_vm_event(THP_SWPOUT_FALLBACK);
1260 					}
1261 #endif
1262 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1263 					if (!add_to_swap(folio))
1264 						goto activate_locked_split;
1265 				}
1266 			}
1267 		}
1268 
1269 		/*
1270 		 * If the folio was split above, the tail pages will make
1271 		 * their own pass through this function and be accounted
1272 		 * then.
1273 		 */
1274 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1275 			sc->nr_scanned -= (nr_pages - 1);
1276 			nr_pages = 1;
1277 		}
1278 
1279 		/*
1280 		 * The folio is mapped into the page tables of one or more
1281 		 * processes. Try to unmap it here.
1282 		 */
1283 		if (folio_mapped(folio)) {
1284 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1285 			bool was_swapbacked = folio_test_swapbacked(folio);
1286 
1287 			if (folio_test_pmd_mappable(folio))
1288 				flags |= TTU_SPLIT_HUGE_PMD;
1289 			/*
1290 			 * Without TTU_SYNC, try_to_unmap will only begin to
1291 			 * hold PTL from the first present PTE within a large
1292 			 * folio. Some initial PTEs might be skipped due to
1293 			 * races with parallel PTE writes in which PTEs can be
1294 			 * cleared temporarily before being written new present
1295 			 * values. This will lead to a large folio is still
1296 			 * mapped while some subpages have been partially
1297 			 * unmapped after try_to_unmap; TTU_SYNC helps
1298 			 * try_to_unmap acquire PTL from the first PTE,
1299 			 * eliminating the influence of temporary PTE values.
1300 			 */
1301 			if (folio_test_large(folio))
1302 				flags |= TTU_SYNC;
1303 
1304 			try_to_unmap(folio, flags);
1305 			if (folio_mapped(folio)) {
1306 				stat->nr_unmap_fail += nr_pages;
1307 				if (!was_swapbacked &&
1308 				    folio_test_swapbacked(folio))
1309 					stat->nr_lazyfree_fail += nr_pages;
1310 				goto activate_locked;
1311 			}
1312 		}
1313 
1314 		/*
1315 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1316 		 * No point in trying to reclaim folio if it is pinned.
1317 		 * Furthermore we don't want to reclaim underlying fs metadata
1318 		 * if the folio is pinned and thus potentially modified by the
1319 		 * pinning process as that may upset the filesystem.
1320 		 */
1321 		if (folio_maybe_dma_pinned(folio))
1322 			goto activate_locked;
1323 
1324 		mapping = folio_mapping(folio);
1325 		if (folio_test_dirty(folio)) {
1326 			/*
1327 			 * Only kswapd can writeback filesystem folios
1328 			 * to avoid risk of stack overflow. But avoid
1329 			 * injecting inefficient single-folio I/O into
1330 			 * flusher writeback as much as possible: only
1331 			 * write folios when we've encountered many
1332 			 * dirty folios, and when we've already scanned
1333 			 * the rest of the LRU for clean folios and see
1334 			 * the same dirty folios again (with the reclaim
1335 			 * flag set).
1336 			 */
1337 			if (folio_is_file_lru(folio) &&
1338 			    (!current_is_kswapd() ||
1339 			     !folio_test_reclaim(folio) ||
1340 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341 				/*
1342 				 * Immediately reclaim when written back.
1343 				 * Similar in principle to folio_deactivate()
1344 				 * except we already have the folio isolated
1345 				 * and know it's dirty
1346 				 */
1347 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1348 						nr_pages);
1349 				folio_set_reclaim(folio);
1350 
1351 				goto activate_locked;
1352 			}
1353 
1354 			if (references == FOLIOREF_RECLAIM_CLEAN)
1355 				goto keep_locked;
1356 			if (!may_enter_fs(folio, sc->gfp_mask))
1357 				goto keep_locked;
1358 			if (!sc->may_writepage)
1359 				goto keep_locked;
1360 
1361 			/*
1362 			 * Folio is dirty. Flush the TLB if a writable entry
1363 			 * potentially exists to avoid CPU writes after I/O
1364 			 * starts and then write it out here.
1365 			 */
1366 			try_to_unmap_flush_dirty();
1367 			switch (pageout(folio, mapping, &plug, folio_list)) {
1368 			case PAGE_KEEP:
1369 				goto keep_locked;
1370 			case PAGE_ACTIVATE:
1371 				/*
1372 				 * If shmem folio is split when writeback to swap,
1373 				 * the tail pages will make their own pass through
1374 				 * this function and be accounted then.
1375 				 */
1376 				if (nr_pages > 1 && !folio_test_large(folio)) {
1377 					sc->nr_scanned -= (nr_pages - 1);
1378 					nr_pages = 1;
1379 				}
1380 				goto activate_locked;
1381 			case PAGE_SUCCESS:
1382 				if (nr_pages > 1 && !folio_test_large(folio)) {
1383 					sc->nr_scanned -= (nr_pages - 1);
1384 					nr_pages = 1;
1385 				}
1386 				stat->nr_pageout += nr_pages;
1387 
1388 				if (folio_test_writeback(folio))
1389 					goto keep;
1390 				if (folio_test_dirty(folio))
1391 					goto keep;
1392 
1393 				/*
1394 				 * A synchronous write - probably a ramdisk.  Go
1395 				 * ahead and try to reclaim the folio.
1396 				 */
1397 				if (!folio_trylock(folio))
1398 					goto keep;
1399 				if (folio_test_dirty(folio) ||
1400 				    folio_test_writeback(folio))
1401 					goto keep_locked;
1402 				mapping = folio_mapping(folio);
1403 				fallthrough;
1404 			case PAGE_CLEAN:
1405 				; /* try to free the folio below */
1406 			}
1407 		}
1408 
1409 		/*
1410 		 * If the folio has buffers, try to free the buffer
1411 		 * mappings associated with this folio. If we succeed
1412 		 * we try to free the folio as well.
1413 		 *
1414 		 * We do this even if the folio is dirty.
1415 		 * filemap_release_folio() does not perform I/O, but it
1416 		 * is possible for a folio to have the dirty flag set,
1417 		 * but it is actually clean (all its buffers are clean).
1418 		 * This happens if the buffers were written out directly,
1419 		 * with submit_bh(). ext3 will do this, as well as
1420 		 * the blockdev mapping.  filemap_release_folio() will
1421 		 * discover that cleanness and will drop the buffers
1422 		 * and mark the folio clean - it can be freed.
1423 		 *
1424 		 * Rarely, folios can have buffers and no ->mapping.
1425 		 * These are the folios which were not successfully
1426 		 * invalidated in truncate_cleanup_folio().  We try to
1427 		 * drop those buffers here and if that worked, and the
1428 		 * folio is no longer mapped into process address space
1429 		 * (refcount == 1) it can be freed.  Otherwise, leave
1430 		 * the folio on the LRU so it is swappable.
1431 		 */
1432 		if (folio_needs_release(folio)) {
1433 			if (!filemap_release_folio(folio, sc->gfp_mask))
1434 				goto activate_locked;
1435 			if (!mapping && folio_ref_count(folio) == 1) {
1436 				folio_unlock(folio);
1437 				if (folio_put_testzero(folio))
1438 					goto free_it;
1439 				else {
1440 					/*
1441 					 * rare race with speculative reference.
1442 					 * the speculative reference will free
1443 					 * this folio shortly, so we may
1444 					 * increment nr_reclaimed here (and
1445 					 * leave it off the LRU).
1446 					 */
1447 					nr_reclaimed += nr_pages;
1448 					continue;
1449 				}
1450 			}
1451 		}
1452 
1453 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1454 			/* follow __remove_mapping for reference */
1455 			if (!folio_ref_freeze(folio, 1))
1456 				goto keep_locked;
1457 			/*
1458 			 * The folio has only one reference left, which is
1459 			 * from the isolation. After the caller puts the
1460 			 * folio back on the lru and drops the reference, the
1461 			 * folio will be freed anyway. It doesn't matter
1462 			 * which lru it goes on. So we don't bother checking
1463 			 * the dirty flag here.
1464 			 */
1465 			count_vm_events(PGLAZYFREED, nr_pages);
1466 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1467 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1468 							 sc->target_mem_cgroup))
1469 			goto keep_locked;
1470 
1471 		folio_unlock(folio);
1472 free_it:
1473 		/*
1474 		 * Folio may get swapped out as a whole, need to account
1475 		 * all pages in it.
1476 		 */
1477 		nr_reclaimed += nr_pages;
1478 
1479 		folio_unqueue_deferred_split(folio);
1480 		if (folio_batch_add(&free_folios, folio) == 0) {
1481 			mem_cgroup_uncharge_folios(&free_folios);
1482 			try_to_unmap_flush();
1483 			free_unref_folios(&free_folios);
1484 		}
1485 		continue;
1486 
1487 activate_locked_split:
1488 		/*
1489 		 * The tail pages that are failed to add into swap cache
1490 		 * reach here.  Fixup nr_scanned and nr_pages.
1491 		 */
1492 		if (nr_pages > 1) {
1493 			sc->nr_scanned -= (nr_pages - 1);
1494 			nr_pages = 1;
1495 		}
1496 activate_locked:
1497 		/* Not a candidate for swapping, so reclaim swap space. */
1498 		if (folio_test_swapcache(folio) &&
1499 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1500 			folio_free_swap(folio);
1501 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1502 		if (!folio_test_mlocked(folio)) {
1503 			int type = folio_is_file_lru(folio);
1504 			folio_set_active(folio);
1505 			stat->nr_activate[type] += nr_pages;
1506 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1507 		}
1508 keep_locked:
1509 		folio_unlock(folio);
1510 keep:
1511 		list_add(&folio->lru, &ret_folios);
1512 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1513 				folio_test_unevictable(folio), folio);
1514 	}
1515 	/* 'folio_list' is always empty here */
1516 
1517 	/* Migrate folios selected for demotion */
1518 	stat->nr_demoted = demote_folio_list(&demote_folios, pgdat);
1519 	nr_reclaimed += stat->nr_demoted;
1520 	/* Folios that could not be demoted are still in @demote_folios */
1521 	if (!list_empty(&demote_folios)) {
1522 		/* Folios which weren't demoted go back on @folio_list */
1523 		list_splice_init(&demote_folios, folio_list);
1524 
1525 		/*
1526 		 * goto retry to reclaim the undemoted folios in folio_list if
1527 		 * desired.
1528 		 *
1529 		 * Reclaiming directly from top tier nodes is not often desired
1530 		 * due to it breaking the LRU ordering: in general memory
1531 		 * should be reclaimed from lower tier nodes and demoted from
1532 		 * top tier nodes.
1533 		 *
1534 		 * However, disabling reclaim from top tier nodes entirely
1535 		 * would cause ooms in edge scenarios where lower tier memory
1536 		 * is unreclaimable for whatever reason, eg memory being
1537 		 * mlocked or too hot to reclaim. We can disable reclaim
1538 		 * from top tier nodes in proactive reclaim though as that is
1539 		 * not real memory pressure.
1540 		 */
1541 		if (!sc->proactive) {
1542 			do_demote_pass = false;
1543 			goto retry;
1544 		}
1545 	}
1546 
1547 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1548 
1549 	mem_cgroup_uncharge_folios(&free_folios);
1550 	try_to_unmap_flush();
1551 	free_unref_folios(&free_folios);
1552 
1553 	list_splice(&ret_folios, folio_list);
1554 	count_vm_events(PGACTIVATE, pgactivate);
1555 
1556 	if (plug)
1557 		swap_write_unplug(plug);
1558 	return nr_reclaimed;
1559 }
1560 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1561 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1562 					   struct list_head *folio_list)
1563 {
1564 	struct scan_control sc = {
1565 		.gfp_mask = GFP_KERNEL,
1566 		.may_unmap = 1,
1567 	};
1568 	struct reclaim_stat stat;
1569 	unsigned int nr_reclaimed;
1570 	struct folio *folio, *next;
1571 	LIST_HEAD(clean_folios);
1572 	unsigned int noreclaim_flag;
1573 
1574 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1575 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1576 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1577 		    !folio_test_unevictable(folio)) {
1578 			folio_clear_active(folio);
1579 			list_move(&folio->lru, &clean_folios);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * We should be safe here since we are only dealing with file pages and
1585 	 * we are not kswapd and therefore cannot write dirty file pages. But
1586 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1587 	 * change in the future.
1588 	 */
1589 	noreclaim_flag = memalloc_noreclaim_save();
1590 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1591 					&stat, true);
1592 	memalloc_noreclaim_restore(noreclaim_flag);
1593 
1594 	list_splice(&clean_folios, folio_list);
1595 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1596 			    -(long)nr_reclaimed);
1597 	/*
1598 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1599 	 * they will rotate back to anonymous LRU in the end if it failed to
1600 	 * discard so isolated count will be mismatched.
1601 	 * Compensate the isolated count for both LRU lists.
1602 	 */
1603 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1604 			    stat.nr_lazyfree_fail);
1605 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1606 			    -(long)stat.nr_lazyfree_fail);
1607 	return nr_reclaimed;
1608 }
1609 
1610 /*
1611  * Update LRU sizes after isolating pages. The LRU size updates must
1612  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1613  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1614 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1615 			enum lru_list lru, unsigned long *nr_zone_taken)
1616 {
1617 	int zid;
1618 
1619 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1620 		if (!nr_zone_taken[zid])
1621 			continue;
1622 
1623 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1624 	}
1625 
1626 }
1627 
1628 /*
1629  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1630  *
1631  * lruvec->lru_lock is heavily contended.  Some of the functions that
1632  * shrink the lists perform better by taking out a batch of pages
1633  * and working on them outside the LRU lock.
1634  *
1635  * For pagecache intensive workloads, this function is the hottest
1636  * spot in the kernel (apart from copy_*_user functions).
1637  *
1638  * Lru_lock must be held before calling this function.
1639  *
1640  * @nr_to_scan:	The number of eligible pages to look through on the list.
1641  * @lruvec:	The LRU vector to pull pages from.
1642  * @dst:	The temp list to put pages on to.
1643  * @nr_scanned:	The number of pages that were scanned.
1644  * @sc:		The scan_control struct for this reclaim session
1645  * @lru:	LRU list id for isolating
1646  *
1647  * returns how many pages were moved onto *@dst.
1648  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1649 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1650 		struct lruvec *lruvec, struct list_head *dst,
1651 		unsigned long *nr_scanned, struct scan_control *sc,
1652 		enum lru_list lru)
1653 {
1654 	struct list_head *src = &lruvec->lists[lru];
1655 	unsigned long nr_taken = 0;
1656 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1657 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1658 	unsigned long skipped = 0;
1659 	unsigned long scan, total_scan, nr_pages;
1660 	LIST_HEAD(folios_skipped);
1661 
1662 	total_scan = 0;
1663 	scan = 0;
1664 	while (scan < nr_to_scan && !list_empty(src)) {
1665 		struct list_head *move_to = src;
1666 		struct folio *folio;
1667 
1668 		folio = lru_to_folio(src);
1669 		prefetchw_prev_lru_folio(folio, src, flags);
1670 
1671 		nr_pages = folio_nr_pages(folio);
1672 		total_scan += nr_pages;
1673 
1674 		if (folio_zonenum(folio) > sc->reclaim_idx) {
1675 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1676 			move_to = &folios_skipped;
1677 			goto move;
1678 		}
1679 
1680 		/*
1681 		 * Do not count skipped folios because that makes the function
1682 		 * return with no isolated folios if the LRU mostly contains
1683 		 * ineligible folios.  This causes the VM to not reclaim any
1684 		 * folios, triggering a premature OOM.
1685 		 * Account all pages in a folio.
1686 		 */
1687 		scan += nr_pages;
1688 
1689 		if (!folio_test_lru(folio))
1690 			goto move;
1691 		if (!sc->may_unmap && folio_mapped(folio))
1692 			goto move;
1693 
1694 		/*
1695 		 * Be careful not to clear the lru flag until after we're
1696 		 * sure the folio is not being freed elsewhere -- the
1697 		 * folio release code relies on it.
1698 		 */
1699 		if (unlikely(!folio_try_get(folio)))
1700 			goto move;
1701 
1702 		if (!folio_test_clear_lru(folio)) {
1703 			/* Another thread is already isolating this folio */
1704 			folio_put(folio);
1705 			goto move;
1706 		}
1707 
1708 		nr_taken += nr_pages;
1709 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1710 		move_to = dst;
1711 move:
1712 		list_move(&folio->lru, move_to);
1713 	}
1714 
1715 	/*
1716 	 * Splice any skipped folios to the start of the LRU list. Note that
1717 	 * this disrupts the LRU order when reclaiming for lower zones but
1718 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1719 	 * scanning would soon rescan the same folios to skip and waste lots
1720 	 * of cpu cycles.
1721 	 */
1722 	if (!list_empty(&folios_skipped)) {
1723 		int zid;
1724 
1725 		list_splice(&folios_skipped, src);
1726 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1727 			if (!nr_skipped[zid])
1728 				continue;
1729 
1730 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1731 			skipped += nr_skipped[zid];
1732 		}
1733 	}
1734 	*nr_scanned = total_scan;
1735 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1736 				    total_scan, skipped, nr_taken, lru);
1737 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1738 	return nr_taken;
1739 }
1740 
1741 /**
1742  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1743  * @folio: Folio to isolate from its LRU list.
1744  *
1745  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1746  * corresponding to whatever LRU list the folio was on.
1747  *
1748  * The folio will have its LRU flag cleared.  If it was found on the
1749  * active list, it will have the Active flag set.  If it was found on the
1750  * unevictable list, it will have the Unevictable flag set.  These flags
1751  * may need to be cleared by the caller before letting the page go.
1752  *
1753  * Context:
1754  *
1755  * (1) Must be called with an elevated refcount on the folio. This is a
1756  *     fundamental difference from isolate_lru_folios() (which is called
1757  *     without a stable reference).
1758  * (2) The lru_lock must not be held.
1759  * (3) Interrupts must be enabled.
1760  *
1761  * Return: true if the folio was removed from an LRU list.
1762  * false if the folio was not on an LRU list.
1763  */
folio_isolate_lru(struct folio * folio)1764 bool folio_isolate_lru(struct folio *folio)
1765 {
1766 	bool ret = false;
1767 
1768 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1769 
1770 	if (folio_test_clear_lru(folio)) {
1771 		struct lruvec *lruvec;
1772 
1773 		folio_get(folio);
1774 		lruvec = folio_lruvec_lock_irq(folio);
1775 		lruvec_del_folio(lruvec, folio);
1776 		unlock_page_lruvec_irq(lruvec);
1777 		ret = true;
1778 	}
1779 
1780 	return ret;
1781 }
1782 
1783 /*
1784  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1785  * then get rescheduled. When there are massive number of tasks doing page
1786  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1787  * the LRU list will go small and be scanned faster than necessary, leading to
1788  * unnecessary swapping, thrashing and OOM.
1789  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1790 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1791 		struct scan_control *sc)
1792 {
1793 	unsigned long inactive, isolated;
1794 	bool too_many;
1795 
1796 	if (current_is_kswapd())
1797 		return false;
1798 
1799 	if (!writeback_throttling_sane(sc))
1800 		return false;
1801 
1802 	if (file) {
1803 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 	} else {
1806 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 	}
1809 
1810 	/*
1811 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 	 * won't get blocked by normal direct-reclaimers, forming a circular
1813 	 * deadlock.
1814 	 */
1815 	if (gfp_has_io_fs(sc->gfp_mask))
1816 		inactive >>= 3;
1817 
1818 	too_many = isolated > inactive;
1819 
1820 	/* Wake up tasks throttled due to too_many_isolated. */
1821 	if (!too_many)
1822 		wake_throttle_isolated(pgdat);
1823 
1824 	return too_many;
1825 }
1826 
1827 /*
1828  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1829  *
1830  * Returns the number of pages moved to the given lruvec.
1831  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1832 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1833 		struct list_head *list)
1834 {
1835 	int nr_pages, nr_moved = 0;
1836 	struct folio_batch free_folios;
1837 
1838 	folio_batch_init(&free_folios);
1839 	while (!list_empty(list)) {
1840 		struct folio *folio = lru_to_folio(list);
1841 
1842 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1843 		list_del(&folio->lru);
1844 		if (unlikely(!folio_evictable(folio))) {
1845 			spin_unlock_irq(&lruvec->lru_lock);
1846 			folio_putback_lru(folio);
1847 			spin_lock_irq(&lruvec->lru_lock);
1848 			continue;
1849 		}
1850 
1851 		/*
1852 		 * The folio_set_lru needs to be kept here for list integrity.
1853 		 * Otherwise:
1854 		 *   #0 move_folios_to_lru             #1 release_pages
1855 		 *   if (!folio_put_testzero())
1856 		 *				      if (folio_put_testzero())
1857 		 *				        !lru //skip lru_lock
1858 		 *     folio_set_lru()
1859 		 *     list_add(&folio->lru,)
1860 		 *                                        list_add(&folio->lru,)
1861 		 */
1862 		folio_set_lru(folio);
1863 
1864 		if (unlikely(folio_put_testzero(folio))) {
1865 			__folio_clear_lru_flags(folio);
1866 
1867 			folio_unqueue_deferred_split(folio);
1868 			if (folio_batch_add(&free_folios, folio) == 0) {
1869 				spin_unlock_irq(&lruvec->lru_lock);
1870 				mem_cgroup_uncharge_folios(&free_folios);
1871 				free_unref_folios(&free_folios);
1872 				spin_lock_irq(&lruvec->lru_lock);
1873 			}
1874 
1875 			continue;
1876 		}
1877 
1878 		/*
1879 		 * All pages were isolated from the same lruvec (and isolation
1880 		 * inhibits memcg migration).
1881 		 */
1882 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1883 		lruvec_add_folio(lruvec, folio);
1884 		nr_pages = folio_nr_pages(folio);
1885 		nr_moved += nr_pages;
1886 		if (folio_test_active(folio))
1887 			workingset_age_nonresident(lruvec, nr_pages);
1888 	}
1889 
1890 	if (free_folios.nr) {
1891 		spin_unlock_irq(&lruvec->lru_lock);
1892 		mem_cgroup_uncharge_folios(&free_folios);
1893 		free_unref_folios(&free_folios);
1894 		spin_lock_irq(&lruvec->lru_lock);
1895 	}
1896 
1897 	return nr_moved;
1898 }
1899 
1900 /*
1901  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1902  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1903  * we should not throttle.  Otherwise it is safe to do so.
1904  */
current_may_throttle(void)1905 static int current_may_throttle(void)
1906 {
1907 	return !(current->flags & PF_LOCAL_THROTTLE);
1908 }
1909 
1910 /*
1911  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1912  * of reclaimed pages
1913  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1914 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1915 		struct lruvec *lruvec, struct scan_control *sc,
1916 		enum lru_list lru)
1917 {
1918 	LIST_HEAD(folio_list);
1919 	unsigned long nr_scanned;
1920 	unsigned int nr_reclaimed = 0;
1921 	unsigned long nr_taken;
1922 	struct reclaim_stat stat;
1923 	bool file = is_file_lru(lru);
1924 	enum vm_event_item item;
1925 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926 	bool stalled = false;
1927 
1928 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1929 		if (stalled)
1930 			return 0;
1931 
1932 		/* wait a bit for the reclaimer. */
1933 		stalled = true;
1934 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1935 
1936 		/* We are about to die and free our memory. Return now. */
1937 		if (fatal_signal_pending(current))
1938 			return SWAP_CLUSTER_MAX;
1939 	}
1940 
1941 	lru_add_drain();
1942 
1943 	spin_lock_irq(&lruvec->lru_lock);
1944 
1945 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1946 				     &nr_scanned, sc, lru);
1947 
1948 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949 	item = PGSCAN_KSWAPD + reclaimer_offset();
1950 	if (!cgroup_reclaim(sc))
1951 		__count_vm_events(item, nr_scanned);
1952 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1953 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1954 
1955 	spin_unlock_irq(&lruvec->lru_lock);
1956 
1957 	if (nr_taken == 0)
1958 		return 0;
1959 
1960 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1961 
1962 	spin_lock_irq(&lruvec->lru_lock);
1963 	move_folios_to_lru(lruvec, &folio_list);
1964 
1965 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1966 					stat.nr_demoted);
1967 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1968 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1969 	if (!cgroup_reclaim(sc))
1970 		__count_vm_events(item, nr_reclaimed);
1971 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1972 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1973 	spin_unlock_irq(&lruvec->lru_lock);
1974 
1975 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1976 
1977 	/*
1978 	 * If dirty folios are scanned that are not queued for IO, it
1979 	 * implies that flushers are not doing their job. This can
1980 	 * happen when memory pressure pushes dirty folios to the end of
1981 	 * the LRU before the dirty limits are breached and the dirty
1982 	 * data has expired. It can also happen when the proportion of
1983 	 * dirty folios grows not through writes but through memory
1984 	 * pressure reclaiming all the clean cache. And in some cases,
1985 	 * the flushers simply cannot keep up with the allocation
1986 	 * rate. Nudge the flusher threads in case they are asleep.
1987 	 */
1988 	if (stat.nr_unqueued_dirty == nr_taken) {
1989 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1990 		/*
1991 		 * For cgroupv1 dirty throttling is achieved by waking up
1992 		 * the kernel flusher here and later waiting on folios
1993 		 * which are in writeback to finish (see shrink_folio_list()).
1994 		 *
1995 		 * Flusher may not be able to issue writeback quickly
1996 		 * enough for cgroupv1 writeback throttling to work
1997 		 * on a large system.
1998 		 */
1999 		if (!writeback_throttling_sane(sc))
2000 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2001 	}
2002 
2003 	sc->nr.dirty += stat.nr_dirty;
2004 	sc->nr.congested += stat.nr_congested;
2005 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2006 	sc->nr.writeback += stat.nr_writeback;
2007 	sc->nr.immediate += stat.nr_immediate;
2008 	sc->nr.taken += nr_taken;
2009 	if (file)
2010 		sc->nr.file_taken += nr_taken;
2011 
2012 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2013 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2014 	return nr_reclaimed;
2015 }
2016 
2017 /*
2018  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2019  *
2020  * We move them the other way if the folio is referenced by one or more
2021  * processes.
2022  *
2023  * If the folios are mostly unmapped, the processing is fast and it is
2024  * appropriate to hold lru_lock across the whole operation.  But if
2025  * the folios are mapped, the processing is slow (folio_referenced()), so
2026  * we should drop lru_lock around each folio.  It's impossible to balance
2027  * this, so instead we remove the folios from the LRU while processing them.
2028  * It is safe to rely on the active flag against the non-LRU folios in here
2029  * because nobody will play with that bit on a non-LRU folio.
2030  *
2031  * The downside is that we have to touch folio->_refcount against each folio.
2032  * But we had to alter folio->flags anyway.
2033  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2034 static void shrink_active_list(unsigned long nr_to_scan,
2035 			       struct lruvec *lruvec,
2036 			       struct scan_control *sc,
2037 			       enum lru_list lru)
2038 {
2039 	unsigned long nr_taken;
2040 	unsigned long nr_scanned;
2041 	unsigned long vm_flags;
2042 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2043 	LIST_HEAD(l_active);
2044 	LIST_HEAD(l_inactive);
2045 	unsigned nr_deactivate, nr_activate;
2046 	unsigned nr_rotated = 0;
2047 	bool file = is_file_lru(lru);
2048 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2049 
2050 	lru_add_drain();
2051 
2052 	spin_lock_irq(&lruvec->lru_lock);
2053 
2054 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2055 				     &nr_scanned, sc, lru);
2056 
2057 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2058 
2059 	if (!cgroup_reclaim(sc))
2060 		__count_vm_events(PGREFILL, nr_scanned);
2061 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2062 
2063 	spin_unlock_irq(&lruvec->lru_lock);
2064 
2065 	while (!list_empty(&l_hold)) {
2066 		struct folio *folio;
2067 
2068 		cond_resched();
2069 		folio = lru_to_folio(&l_hold);
2070 		list_del(&folio->lru);
2071 
2072 		if (unlikely(!folio_evictable(folio))) {
2073 			folio_putback_lru(folio);
2074 			continue;
2075 		}
2076 
2077 		if (unlikely(buffer_heads_over_limit)) {
2078 			if (folio_needs_release(folio) &&
2079 			    folio_trylock(folio)) {
2080 				filemap_release_folio(folio, 0);
2081 				folio_unlock(folio);
2082 			}
2083 		}
2084 
2085 		/* Referenced or rmap lock contention: rotate */
2086 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2087 				     &vm_flags) != 0) {
2088 			/*
2089 			 * Identify referenced, file-backed active folios and
2090 			 * give them one more trip around the active list. So
2091 			 * that executable code get better chances to stay in
2092 			 * memory under moderate memory pressure.  Anon folios
2093 			 * are not likely to be evicted by use-once streaming
2094 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2095 			 * so we ignore them here.
2096 			 */
2097 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2098 				nr_rotated += folio_nr_pages(folio);
2099 				list_add(&folio->lru, &l_active);
2100 				continue;
2101 			}
2102 		}
2103 
2104 		folio_clear_active(folio);	/* we are de-activating */
2105 		folio_set_workingset(folio);
2106 		list_add(&folio->lru, &l_inactive);
2107 	}
2108 
2109 	/*
2110 	 * Move folios back to the lru list.
2111 	 */
2112 	spin_lock_irq(&lruvec->lru_lock);
2113 
2114 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2115 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2116 
2117 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2118 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2119 
2120 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2121 	spin_unlock_irq(&lruvec->lru_lock);
2122 
2123 	if (nr_rotated)
2124 		lru_note_cost(lruvec, file, 0, nr_rotated);
2125 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2126 			nr_deactivate, nr_rotated, sc->priority, file);
2127 }
2128 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2129 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2130 				      struct pglist_data *pgdat)
2131 {
2132 	struct reclaim_stat stat;
2133 	unsigned int nr_reclaimed;
2134 	struct folio *folio;
2135 	struct scan_control sc = {
2136 		.gfp_mask = GFP_KERNEL,
2137 		.may_writepage = 1,
2138 		.may_unmap = 1,
2139 		.may_swap = 1,
2140 		.no_demotion = 1,
2141 	};
2142 
2143 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2144 	while (!list_empty(folio_list)) {
2145 		folio = lru_to_folio(folio_list);
2146 		list_del(&folio->lru);
2147 		folio_putback_lru(folio);
2148 	}
2149 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2150 
2151 	return nr_reclaimed;
2152 }
2153 
reclaim_pages(struct list_head * folio_list)2154 unsigned long reclaim_pages(struct list_head *folio_list)
2155 {
2156 	int nid;
2157 	unsigned int nr_reclaimed = 0;
2158 	LIST_HEAD(node_folio_list);
2159 	unsigned int noreclaim_flag;
2160 
2161 	if (list_empty(folio_list))
2162 		return nr_reclaimed;
2163 
2164 	noreclaim_flag = memalloc_noreclaim_save();
2165 
2166 	nid = folio_nid(lru_to_folio(folio_list));
2167 	do {
2168 		struct folio *folio = lru_to_folio(folio_list);
2169 
2170 		if (nid == folio_nid(folio)) {
2171 			folio_clear_active(folio);
2172 			list_move(&folio->lru, &node_folio_list);
2173 			continue;
2174 		}
2175 
2176 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2177 		nid = folio_nid(lru_to_folio(folio_list));
2178 	} while (!list_empty(folio_list));
2179 
2180 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2181 
2182 	memalloc_noreclaim_restore(noreclaim_flag);
2183 
2184 	return nr_reclaimed;
2185 }
2186 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2187 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2188 				 struct lruvec *lruvec, struct scan_control *sc)
2189 {
2190 	if (is_active_lru(lru)) {
2191 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2192 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2193 		else
2194 			sc->skipped_deactivate = 1;
2195 		return 0;
2196 	}
2197 
2198 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2199 }
2200 
2201 /*
2202  * The inactive anon list should be small enough that the VM never has
2203  * to do too much work.
2204  *
2205  * The inactive file list should be small enough to leave most memory
2206  * to the established workingset on the scan-resistant active list,
2207  * but large enough to avoid thrashing the aggregate readahead window.
2208  *
2209  * Both inactive lists should also be large enough that each inactive
2210  * folio has a chance to be referenced again before it is reclaimed.
2211  *
2212  * If that fails and refaulting is observed, the inactive list grows.
2213  *
2214  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2215  * on this LRU, maintained by the pageout code. An inactive_ratio
2216  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2217  *
2218  * total     target    max
2219  * memory    ratio     inactive
2220  * -------------------------------------
2221  *   10MB       1         5MB
2222  *  100MB       1        50MB
2223  *    1GB       3       250MB
2224  *   10GB      10       0.9GB
2225  *  100GB      31         3GB
2226  *    1TB     101        10GB
2227  *   10TB     320        32GB
2228  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2229 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2230 {
2231 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2232 	unsigned long inactive, active;
2233 	unsigned long inactive_ratio;
2234 	unsigned long gb;
2235 
2236 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2237 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2238 
2239 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2240 	if (gb)
2241 		inactive_ratio = int_sqrt(10 * gb);
2242 	else
2243 		inactive_ratio = 1;
2244 
2245 	return inactive * inactive_ratio < active;
2246 }
2247 
2248 enum scan_balance {
2249 	SCAN_EQUAL,
2250 	SCAN_FRACT,
2251 	SCAN_ANON,
2252 	SCAN_FILE,
2253 };
2254 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2255 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2256 {
2257 	unsigned long file;
2258 	struct lruvec *target_lruvec;
2259 
2260 	if (lru_gen_enabled())
2261 		return;
2262 
2263 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2264 
2265 	/*
2266 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2267 	 * most accurate stats here. We may switch to regular stats flushing
2268 	 * in the future once it is cheap enough.
2269 	 */
2270 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2271 
2272 	/*
2273 	 * Determine the scan balance between anon and file LRUs.
2274 	 */
2275 	spin_lock_irq(&target_lruvec->lru_lock);
2276 	sc->anon_cost = target_lruvec->anon_cost;
2277 	sc->file_cost = target_lruvec->file_cost;
2278 	spin_unlock_irq(&target_lruvec->lru_lock);
2279 
2280 	/*
2281 	 * Target desirable inactive:active list ratios for the anon
2282 	 * and file LRU lists.
2283 	 */
2284 	if (!sc->force_deactivate) {
2285 		unsigned long refaults;
2286 
2287 		/*
2288 		 * When refaults are being observed, it means a new
2289 		 * workingset is being established. Deactivate to get
2290 		 * rid of any stale active pages quickly.
2291 		 */
2292 		refaults = lruvec_page_state(target_lruvec,
2293 				WORKINGSET_ACTIVATE_ANON);
2294 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2295 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2296 			sc->may_deactivate |= DEACTIVATE_ANON;
2297 		else
2298 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2299 
2300 		refaults = lruvec_page_state(target_lruvec,
2301 				WORKINGSET_ACTIVATE_FILE);
2302 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2303 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2304 			sc->may_deactivate |= DEACTIVATE_FILE;
2305 		else
2306 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2307 	} else
2308 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2309 
2310 	/*
2311 	 * If we have plenty of inactive file pages that aren't
2312 	 * thrashing, try to reclaim those first before touching
2313 	 * anonymous pages.
2314 	 */
2315 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2316 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2317 	    !sc->no_cache_trim_mode)
2318 		sc->cache_trim_mode = 1;
2319 	else
2320 		sc->cache_trim_mode = 0;
2321 
2322 	/*
2323 	 * Prevent the reclaimer from falling into the cache trap: as
2324 	 * cache pages start out inactive, every cache fault will tip
2325 	 * the scan balance towards the file LRU.  And as the file LRU
2326 	 * shrinks, so does the window for rotation from references.
2327 	 * This means we have a runaway feedback loop where a tiny
2328 	 * thrashing file LRU becomes infinitely more attractive than
2329 	 * anon pages.  Try to detect this based on file LRU size.
2330 	 */
2331 	if (!cgroup_reclaim(sc)) {
2332 		unsigned long total_high_wmark = 0;
2333 		unsigned long free, anon;
2334 		int z;
2335 
2336 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2337 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2338 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2339 
2340 		for (z = 0; z < MAX_NR_ZONES; z++) {
2341 			struct zone *zone = &pgdat->node_zones[z];
2342 
2343 			if (!managed_zone(zone))
2344 				continue;
2345 
2346 			total_high_wmark += high_wmark_pages(zone);
2347 		}
2348 
2349 		/*
2350 		 * Consider anon: if that's low too, this isn't a
2351 		 * runaway file reclaim problem, but rather just
2352 		 * extreme pressure. Reclaim as per usual then.
2353 		 */
2354 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2355 
2356 		sc->file_is_tiny =
2357 			file + free <= total_high_wmark &&
2358 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2359 			anon >> sc->priority;
2360 	}
2361 }
2362 
2363 /*
2364  * Determine how aggressively the anon and file LRU lists should be
2365  * scanned.
2366  *
2367  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2368  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2369  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2370 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2371 			   unsigned long *nr)
2372 {
2373 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2374 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2375 	unsigned long anon_cost, file_cost, total_cost;
2376 	int swappiness = sc_swappiness(sc, memcg);
2377 	u64 fraction[ANON_AND_FILE];
2378 	u64 denominator = 0;	/* gcc */
2379 	enum scan_balance scan_balance;
2380 	unsigned long ap, fp;
2381 	enum lru_list lru;
2382 
2383 	/* If we have no swap space, do not bother scanning anon folios. */
2384 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2385 		scan_balance = SCAN_FILE;
2386 		goto out;
2387 	}
2388 
2389 	/*
2390 	 * Global reclaim will swap to prevent OOM even with no
2391 	 * swappiness, but memcg users want to use this knob to
2392 	 * disable swapping for individual groups completely when
2393 	 * using the memory controller's swap limit feature would be
2394 	 * too expensive.
2395 	 */
2396 	if (cgroup_reclaim(sc) && !swappiness) {
2397 		scan_balance = SCAN_FILE;
2398 		goto out;
2399 	}
2400 
2401 	/*
2402 	 * Do not apply any pressure balancing cleverness when the
2403 	 * system is close to OOM, scan both anon and file equally
2404 	 * (unless the swappiness setting disagrees with swapping).
2405 	 */
2406 	if (!sc->priority && swappiness) {
2407 		scan_balance = SCAN_EQUAL;
2408 		goto out;
2409 	}
2410 
2411 	/*
2412 	 * If the system is almost out of file pages, force-scan anon.
2413 	 */
2414 	if (sc->file_is_tiny) {
2415 		scan_balance = SCAN_ANON;
2416 		goto out;
2417 	}
2418 
2419 	/*
2420 	 * If there is enough inactive page cache, we do not reclaim
2421 	 * anything from the anonymous working right now.
2422 	 */
2423 	if (sc->cache_trim_mode) {
2424 		scan_balance = SCAN_FILE;
2425 		goto out;
2426 	}
2427 
2428 	scan_balance = SCAN_FRACT;
2429 	/*
2430 	 * Calculate the pressure balance between anon and file pages.
2431 	 *
2432 	 * The amount of pressure we put on each LRU is inversely
2433 	 * proportional to the cost of reclaiming each list, as
2434 	 * determined by the share of pages that are refaulting, times
2435 	 * the relative IO cost of bringing back a swapped out
2436 	 * anonymous page vs reloading a filesystem page (swappiness).
2437 	 *
2438 	 * Although we limit that influence to ensure no list gets
2439 	 * left behind completely: at least a third of the pressure is
2440 	 * applied, before swappiness.
2441 	 *
2442 	 * With swappiness at 100, anon and file have equal IO cost.
2443 	 */
2444 	total_cost = sc->anon_cost + sc->file_cost;
2445 	anon_cost = total_cost + sc->anon_cost;
2446 	file_cost = total_cost + sc->file_cost;
2447 	total_cost = anon_cost + file_cost;
2448 
2449 	ap = swappiness * (total_cost + 1);
2450 	ap /= anon_cost + 1;
2451 
2452 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2453 	fp /= file_cost + 1;
2454 
2455 	fraction[0] = ap;
2456 	fraction[1] = fp;
2457 	denominator = ap + fp;
2458 out:
2459 	for_each_evictable_lru(lru) {
2460 		bool file = is_file_lru(lru);
2461 		unsigned long lruvec_size;
2462 		unsigned long low, min;
2463 		unsigned long scan;
2464 
2465 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2466 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2467 				      &min, &low);
2468 
2469 		if (min || low) {
2470 			/*
2471 			 * Scale a cgroup's reclaim pressure by proportioning
2472 			 * its current usage to its memory.low or memory.min
2473 			 * setting.
2474 			 *
2475 			 * This is important, as otherwise scanning aggression
2476 			 * becomes extremely binary -- from nothing as we
2477 			 * approach the memory protection threshold, to totally
2478 			 * nominal as we exceed it.  This results in requiring
2479 			 * setting extremely liberal protection thresholds. It
2480 			 * also means we simply get no protection at all if we
2481 			 * set it too low, which is not ideal.
2482 			 *
2483 			 * If there is any protection in place, we reduce scan
2484 			 * pressure by how much of the total memory used is
2485 			 * within protection thresholds.
2486 			 *
2487 			 * There is one special case: in the first reclaim pass,
2488 			 * we skip over all groups that are within their low
2489 			 * protection. If that fails to reclaim enough pages to
2490 			 * satisfy the reclaim goal, we come back and override
2491 			 * the best-effort low protection. However, we still
2492 			 * ideally want to honor how well-behaved groups are in
2493 			 * that case instead of simply punishing them all
2494 			 * equally. As such, we reclaim them based on how much
2495 			 * memory they are using, reducing the scan pressure
2496 			 * again by how much of the total memory used is under
2497 			 * hard protection.
2498 			 */
2499 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2500 			unsigned long protection;
2501 
2502 			/* memory.low scaling, make sure we retry before OOM */
2503 			if (!sc->memcg_low_reclaim && low > min) {
2504 				protection = low;
2505 				sc->memcg_low_skipped = 1;
2506 			} else {
2507 				protection = min;
2508 			}
2509 
2510 			/* Avoid TOCTOU with earlier protection check */
2511 			cgroup_size = max(cgroup_size, protection);
2512 
2513 			scan = lruvec_size - lruvec_size * protection /
2514 				(cgroup_size + 1);
2515 
2516 			/*
2517 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2518 			 * reclaim moving forwards, avoiding decrementing
2519 			 * sc->priority further than desirable.
2520 			 */
2521 			scan = max(scan, SWAP_CLUSTER_MAX);
2522 		} else {
2523 			scan = lruvec_size;
2524 		}
2525 
2526 		scan >>= sc->priority;
2527 
2528 		/*
2529 		 * If the cgroup's already been deleted, make sure to
2530 		 * scrape out the remaining cache.
2531 		 */
2532 		if (!scan && !mem_cgroup_online(memcg))
2533 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2534 
2535 		switch (scan_balance) {
2536 		case SCAN_EQUAL:
2537 			/* Scan lists relative to size */
2538 			break;
2539 		case SCAN_FRACT:
2540 			/*
2541 			 * Scan types proportional to swappiness and
2542 			 * their relative recent reclaim efficiency.
2543 			 * Make sure we don't miss the last page on
2544 			 * the offlined memory cgroups because of a
2545 			 * round-off error.
2546 			 */
2547 			scan = mem_cgroup_online(memcg) ?
2548 			       div64_u64(scan * fraction[file], denominator) :
2549 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2550 						  denominator);
2551 			break;
2552 		case SCAN_FILE:
2553 		case SCAN_ANON:
2554 			/* Scan one type exclusively */
2555 			if ((scan_balance == SCAN_FILE) != file)
2556 				scan = 0;
2557 			break;
2558 		default:
2559 			/* Look ma, no brain */
2560 			BUG();
2561 		}
2562 
2563 		nr[lru] = scan;
2564 	}
2565 }
2566 
2567 /*
2568  * Anonymous LRU management is a waste if there is
2569  * ultimately no way to reclaim the memory.
2570  */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2571 static bool can_age_anon_pages(struct pglist_data *pgdat,
2572 			       struct scan_control *sc)
2573 {
2574 	/* Aging the anon LRU is valuable if swap is present: */
2575 	if (total_swap_pages > 0)
2576 		return true;
2577 
2578 	/* Also valuable if anon pages can be demoted: */
2579 	return can_demote(pgdat->node_id, sc);
2580 }
2581 
2582 #ifdef CONFIG_LRU_GEN
2583 
2584 #ifdef CONFIG_LRU_GEN_ENABLED
2585 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2586 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2587 #else
2588 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2589 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2590 #endif
2591 
should_walk_mmu(void)2592 static bool should_walk_mmu(void)
2593 {
2594 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2595 }
2596 
should_clear_pmd_young(void)2597 static bool should_clear_pmd_young(void)
2598 {
2599 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2600 }
2601 
2602 /******************************************************************************
2603  *                          shorthand helpers
2604  ******************************************************************************/
2605 
2606 #define DEFINE_MAX_SEQ(lruvec)						\
2607 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2608 
2609 #define DEFINE_MIN_SEQ(lruvec)						\
2610 	unsigned long min_seq[ANON_AND_FILE] = {			\
2611 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2612 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2613 	}
2614 
2615 #define for_each_gen_type_zone(gen, type, zone)				\
2616 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2617 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2618 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2619 
2620 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2621 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2622 
get_lruvec(struct mem_cgroup * memcg,int nid)2623 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2624 {
2625 	struct pglist_data *pgdat = NODE_DATA(nid);
2626 
2627 #ifdef CONFIG_MEMCG
2628 	if (memcg) {
2629 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2630 
2631 		/* see the comment in mem_cgroup_lruvec() */
2632 		if (!lruvec->pgdat)
2633 			lruvec->pgdat = pgdat;
2634 
2635 		return lruvec;
2636 	}
2637 #endif
2638 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2639 
2640 	return &pgdat->__lruvec;
2641 }
2642 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2643 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2644 {
2645 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2646 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2647 
2648 	if (!sc->may_swap)
2649 		return 0;
2650 
2651 	if (!can_demote(pgdat->node_id, sc) &&
2652 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2653 		return 0;
2654 
2655 	return sc_swappiness(sc, memcg);
2656 }
2657 
get_nr_gens(struct lruvec * lruvec,int type)2658 static int get_nr_gens(struct lruvec *lruvec, int type)
2659 {
2660 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2661 }
2662 
seq_is_valid(struct lruvec * lruvec)2663 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2664 {
2665 	/* see the comment on lru_gen_folio */
2666 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2667 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2668 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2669 }
2670 
2671 /******************************************************************************
2672  *                          Bloom filters
2673  ******************************************************************************/
2674 
2675 /*
2676  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2677  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2678  * bits in a bitmap, k is the number of hash functions and n is the number of
2679  * inserted items.
2680  *
2681  * Page table walkers use one of the two filters to reduce their search space.
2682  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2683  * aging uses the double-buffering technique to flip to the other filter each
2684  * time it produces a new generation. For non-leaf entries that have enough
2685  * leaf entries, the aging carries them over to the next generation in
2686  * walk_pmd_range(); the eviction also report them when walking the rmap
2687  * in lru_gen_look_around().
2688  *
2689  * For future optimizations:
2690  * 1. It's not necessary to keep both filters all the time. The spare one can be
2691  *    freed after the RCU grace period and reallocated if needed again.
2692  * 2. And when reallocating, it's worth scaling its size according to the number
2693  *    of inserted entries in the other filter, to reduce the memory overhead on
2694  *    small systems and false positives on large systems.
2695  * 3. Jenkins' hash function is an alternative to Knuth's.
2696  */
2697 #define BLOOM_FILTER_SHIFT	15
2698 
filter_gen_from_seq(unsigned long seq)2699 static inline int filter_gen_from_seq(unsigned long seq)
2700 {
2701 	return seq % NR_BLOOM_FILTERS;
2702 }
2703 
get_item_key(void * item,int * key)2704 static void get_item_key(void *item, int *key)
2705 {
2706 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2707 
2708 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2709 
2710 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2711 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2712 }
2713 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2714 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2715 			      void *item)
2716 {
2717 	int key[2];
2718 	unsigned long *filter;
2719 	int gen = filter_gen_from_seq(seq);
2720 
2721 	filter = READ_ONCE(mm_state->filters[gen]);
2722 	if (!filter)
2723 		return true;
2724 
2725 	get_item_key(item, key);
2726 
2727 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2728 }
2729 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2730 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2731 				void *item)
2732 {
2733 	int key[2];
2734 	unsigned long *filter;
2735 	int gen = filter_gen_from_seq(seq);
2736 
2737 	filter = READ_ONCE(mm_state->filters[gen]);
2738 	if (!filter)
2739 		return;
2740 
2741 	get_item_key(item, key);
2742 
2743 	if (!test_bit(key[0], filter))
2744 		set_bit(key[0], filter);
2745 	if (!test_bit(key[1], filter))
2746 		set_bit(key[1], filter);
2747 }
2748 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2749 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2750 {
2751 	unsigned long *filter;
2752 	int gen = filter_gen_from_seq(seq);
2753 
2754 	filter = mm_state->filters[gen];
2755 	if (filter) {
2756 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2757 		return;
2758 	}
2759 
2760 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2761 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2762 	WRITE_ONCE(mm_state->filters[gen], filter);
2763 }
2764 
2765 /******************************************************************************
2766  *                          mm_struct list
2767  ******************************************************************************/
2768 
2769 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2770 
get_mm_list(struct mem_cgroup * memcg)2771 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2772 {
2773 	static struct lru_gen_mm_list mm_list = {
2774 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2775 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2776 	};
2777 
2778 #ifdef CONFIG_MEMCG
2779 	if (memcg)
2780 		return &memcg->mm_list;
2781 #endif
2782 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2783 
2784 	return &mm_list;
2785 }
2786 
get_mm_state(struct lruvec * lruvec)2787 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2788 {
2789 	return &lruvec->mm_state;
2790 }
2791 
get_next_mm(struct lru_gen_mm_walk * walk)2792 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2793 {
2794 	int key;
2795 	struct mm_struct *mm;
2796 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2797 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2798 
2799 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2800 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2801 
2802 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2803 		return NULL;
2804 
2805 	clear_bit(key, &mm->lru_gen.bitmap);
2806 
2807 	return mmget_not_zero(mm) ? mm : NULL;
2808 }
2809 
lru_gen_add_mm(struct mm_struct * mm)2810 void lru_gen_add_mm(struct mm_struct *mm)
2811 {
2812 	int nid;
2813 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2814 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2815 
2816 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2817 #ifdef CONFIG_MEMCG
2818 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2819 	mm->lru_gen.memcg = memcg;
2820 #endif
2821 	spin_lock(&mm_list->lock);
2822 
2823 	for_each_node_state(nid, N_MEMORY) {
2824 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2825 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2826 
2827 		/* the first addition since the last iteration */
2828 		if (mm_state->tail == &mm_list->fifo)
2829 			mm_state->tail = &mm->lru_gen.list;
2830 	}
2831 
2832 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2833 
2834 	spin_unlock(&mm_list->lock);
2835 }
2836 
lru_gen_del_mm(struct mm_struct * mm)2837 void lru_gen_del_mm(struct mm_struct *mm)
2838 {
2839 	int nid;
2840 	struct lru_gen_mm_list *mm_list;
2841 	struct mem_cgroup *memcg = NULL;
2842 
2843 	if (list_empty(&mm->lru_gen.list))
2844 		return;
2845 
2846 #ifdef CONFIG_MEMCG
2847 	memcg = mm->lru_gen.memcg;
2848 #endif
2849 	mm_list = get_mm_list(memcg);
2850 
2851 	spin_lock(&mm_list->lock);
2852 
2853 	for_each_node(nid) {
2854 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2855 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2856 
2857 		/* where the current iteration continues after */
2858 		if (mm_state->head == &mm->lru_gen.list)
2859 			mm_state->head = mm_state->head->prev;
2860 
2861 		/* where the last iteration ended before */
2862 		if (mm_state->tail == &mm->lru_gen.list)
2863 			mm_state->tail = mm_state->tail->next;
2864 	}
2865 
2866 	list_del_init(&mm->lru_gen.list);
2867 
2868 	spin_unlock(&mm_list->lock);
2869 
2870 #ifdef CONFIG_MEMCG
2871 	mem_cgroup_put(mm->lru_gen.memcg);
2872 	mm->lru_gen.memcg = NULL;
2873 #endif
2874 }
2875 
2876 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2877 void lru_gen_migrate_mm(struct mm_struct *mm)
2878 {
2879 	struct mem_cgroup *memcg;
2880 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2881 
2882 	VM_WARN_ON_ONCE(task->mm != mm);
2883 	lockdep_assert_held(&task->alloc_lock);
2884 
2885 	/* for mm_update_next_owner() */
2886 	if (mem_cgroup_disabled())
2887 		return;
2888 
2889 	/* migration can happen before addition */
2890 	if (!mm->lru_gen.memcg)
2891 		return;
2892 
2893 	rcu_read_lock();
2894 	memcg = mem_cgroup_from_task(task);
2895 	rcu_read_unlock();
2896 	if (memcg == mm->lru_gen.memcg)
2897 		return;
2898 
2899 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2900 
2901 	lru_gen_del_mm(mm);
2902 	lru_gen_add_mm(mm);
2903 }
2904 #endif
2905 
2906 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2907 
get_mm_list(struct mem_cgroup * memcg)2908 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2909 {
2910 	return NULL;
2911 }
2912 
get_mm_state(struct lruvec * lruvec)2913 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2914 {
2915 	return NULL;
2916 }
2917 
get_next_mm(struct lru_gen_mm_walk * walk)2918 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2919 {
2920 	return NULL;
2921 }
2922 
2923 #endif
2924 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)2925 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2926 {
2927 	int i;
2928 	int hist;
2929 	struct lruvec *lruvec = walk->lruvec;
2930 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2931 
2932 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2933 
2934 	hist = lru_hist_from_seq(walk->seq);
2935 
2936 	for (i = 0; i < NR_MM_STATS; i++) {
2937 		WRITE_ONCE(mm_state->stats[hist][i],
2938 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2939 		walk->mm_stats[i] = 0;
2940 	}
2941 
2942 	if (NR_HIST_GENS > 1 && last) {
2943 		hist = lru_hist_from_seq(walk->seq + 1);
2944 
2945 		for (i = 0; i < NR_MM_STATS; i++)
2946 			WRITE_ONCE(mm_state->stats[hist][i], 0);
2947 	}
2948 }
2949 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)2950 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2951 {
2952 	bool first = false;
2953 	bool last = false;
2954 	struct mm_struct *mm = NULL;
2955 	struct lruvec *lruvec = walk->lruvec;
2956 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2957 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2958 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2959 
2960 	/*
2961 	 * mm_state->seq is incremented after each iteration of mm_list. There
2962 	 * are three interesting cases for this page table walker:
2963 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2964 	 *    nothing left to do.
2965 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2966 	 *    so that a fresh set of PTE tables can be recorded.
2967 	 * 3. It ended the current iteration: it needs to reset the mm stats
2968 	 *    counters and tell its caller to increment max_seq.
2969 	 */
2970 	spin_lock(&mm_list->lock);
2971 
2972 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2973 
2974 	if (walk->seq <= mm_state->seq)
2975 		goto done;
2976 
2977 	if (!mm_state->head)
2978 		mm_state->head = &mm_list->fifo;
2979 
2980 	if (mm_state->head == &mm_list->fifo)
2981 		first = true;
2982 
2983 	do {
2984 		mm_state->head = mm_state->head->next;
2985 		if (mm_state->head == &mm_list->fifo) {
2986 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2987 			last = true;
2988 			break;
2989 		}
2990 
2991 		/* force scan for those added after the last iteration */
2992 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2993 			mm_state->tail = mm_state->head->next;
2994 			walk->force_scan = true;
2995 		}
2996 	} while (!(mm = get_next_mm(walk)));
2997 done:
2998 	if (*iter || last)
2999 		reset_mm_stats(walk, last);
3000 
3001 	spin_unlock(&mm_list->lock);
3002 
3003 	if (mm && first)
3004 		reset_bloom_filter(mm_state, walk->seq + 1);
3005 
3006 	if (*iter)
3007 		mmput_async(*iter);
3008 
3009 	*iter = mm;
3010 
3011 	return last;
3012 }
3013 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3014 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3015 {
3016 	bool success = false;
3017 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3018 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3019 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3020 
3021 	spin_lock(&mm_list->lock);
3022 
3023 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3024 
3025 	if (seq > mm_state->seq) {
3026 		mm_state->head = NULL;
3027 		mm_state->tail = NULL;
3028 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3029 		success = true;
3030 	}
3031 
3032 	spin_unlock(&mm_list->lock);
3033 
3034 	return success;
3035 }
3036 
3037 /******************************************************************************
3038  *                          PID controller
3039  ******************************************************************************/
3040 
3041 /*
3042  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3043  *
3044  * The P term is refaulted/(evicted+protected) from a tier in the generation
3045  * currently being evicted; the I term is the exponential moving average of the
3046  * P term over the generations previously evicted, using the smoothing factor
3047  * 1/2; the D term isn't supported.
3048  *
3049  * The setpoint (SP) is always the first tier of one type; the process variable
3050  * (PV) is either any tier of the other type or any other tier of the same
3051  * type.
3052  *
3053  * The error is the difference between the SP and the PV; the correction is to
3054  * turn off protection when SP>PV or turn on protection when SP<PV.
3055  *
3056  * For future optimizations:
3057  * 1. The D term may discount the other two terms over time so that long-lived
3058  *    generations can resist stale information.
3059  */
3060 struct ctrl_pos {
3061 	unsigned long refaulted;
3062 	unsigned long total;
3063 	int gain;
3064 };
3065 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3066 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3067 			  struct ctrl_pos *pos)
3068 {
3069 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3070 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3071 
3072 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3073 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3074 	pos->total = lrugen->avg_total[type][tier] +
3075 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3076 	if (tier)
3077 		pos->total += lrugen->protected[hist][type][tier - 1];
3078 	pos->gain = gain;
3079 }
3080 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3081 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3082 {
3083 	int hist, tier;
3084 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3085 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3086 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3087 
3088 	lockdep_assert_held(&lruvec->lru_lock);
3089 
3090 	if (!carryover && !clear)
3091 		return;
3092 
3093 	hist = lru_hist_from_seq(seq);
3094 
3095 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3096 		if (carryover) {
3097 			unsigned long sum;
3098 
3099 			sum = lrugen->avg_refaulted[type][tier] +
3100 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3101 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3102 
3103 			sum = lrugen->avg_total[type][tier] +
3104 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3105 			if (tier)
3106 				sum += lrugen->protected[hist][type][tier - 1];
3107 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3108 		}
3109 
3110 		if (clear) {
3111 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3112 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3113 			if (tier)
3114 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3115 		}
3116 	}
3117 }
3118 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3119 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3120 {
3121 	/*
3122 	 * Return true if the PV has a limited number of refaults or a lower
3123 	 * refaulted/total than the SP.
3124 	 */
3125 	return pv->refaulted < MIN_LRU_BATCH ||
3126 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3127 	       (sp->refaulted + 1) * pv->total * pv->gain;
3128 }
3129 
3130 /******************************************************************************
3131  *                          the aging
3132  ******************************************************************************/
3133 
3134 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3135 static int folio_update_gen(struct folio *folio, int gen)
3136 {
3137 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3138 
3139 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3140 
3141 	do {
3142 		/* lru_gen_del_folio() has isolated this page? */
3143 		if (!(old_flags & LRU_GEN_MASK)) {
3144 			/* for shrink_folio_list() */
3145 			new_flags = old_flags | BIT(PG_referenced);
3146 			continue;
3147 		}
3148 
3149 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3150 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3151 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3152 
3153 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3154 }
3155 
3156 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3157 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3158 {
3159 	int type = folio_is_file_lru(folio);
3160 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3161 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3162 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3163 
3164 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3165 
3166 	do {
3167 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3168 		/* folio_update_gen() has promoted this page? */
3169 		if (new_gen >= 0 && new_gen != old_gen)
3170 			return new_gen;
3171 
3172 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3173 
3174 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3175 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3176 		/* for folio_end_writeback() */
3177 		if (reclaiming)
3178 			new_flags |= BIT(PG_reclaim);
3179 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3180 
3181 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3182 
3183 	return new_gen;
3184 }
3185 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3186 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3187 			      int old_gen, int new_gen)
3188 {
3189 	int type = folio_is_file_lru(folio);
3190 	int zone = folio_zonenum(folio);
3191 	int delta = folio_nr_pages(folio);
3192 
3193 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3194 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3195 
3196 	walk->batched++;
3197 
3198 	walk->nr_pages[old_gen][type][zone] -= delta;
3199 	walk->nr_pages[new_gen][type][zone] += delta;
3200 }
3201 
reset_batch_size(struct lru_gen_mm_walk * walk)3202 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3203 {
3204 	int gen, type, zone;
3205 	struct lruvec *lruvec = walk->lruvec;
3206 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3207 
3208 	walk->batched = 0;
3209 
3210 	for_each_gen_type_zone(gen, type, zone) {
3211 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3212 		int delta = walk->nr_pages[gen][type][zone];
3213 
3214 		if (!delta)
3215 			continue;
3216 
3217 		walk->nr_pages[gen][type][zone] = 0;
3218 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3219 			   lrugen->nr_pages[gen][type][zone] + delta);
3220 
3221 		if (lru_gen_is_active(lruvec, gen))
3222 			lru += LRU_ACTIVE;
3223 		__update_lru_size(lruvec, lru, zone, delta);
3224 	}
3225 }
3226 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3227 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3228 {
3229 	struct address_space *mapping;
3230 	struct vm_area_struct *vma = args->vma;
3231 	struct lru_gen_mm_walk *walk = args->private;
3232 
3233 	if (!vma_is_accessible(vma))
3234 		return true;
3235 
3236 	if (is_vm_hugetlb_page(vma))
3237 		return true;
3238 
3239 	if (!vma_has_recency(vma))
3240 		return true;
3241 
3242 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3243 		return true;
3244 
3245 	if (vma == get_gate_vma(vma->vm_mm))
3246 		return true;
3247 
3248 	if (vma_is_anonymous(vma))
3249 		return !walk->can_swap;
3250 
3251 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3252 		return true;
3253 
3254 	mapping = vma->vm_file->f_mapping;
3255 	if (mapping_unevictable(mapping))
3256 		return true;
3257 
3258 	if (shmem_mapping(mapping))
3259 		return !walk->can_swap;
3260 
3261 	/* to exclude special mappings like dax, etc. */
3262 	return !mapping->a_ops->read_folio;
3263 }
3264 
3265 /*
3266  * Some userspace memory allocators map many single-page VMAs. Instead of
3267  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3268  * table to reduce zigzags and improve cache performance.
3269  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3270 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3271 			 unsigned long *vm_start, unsigned long *vm_end)
3272 {
3273 	unsigned long start = round_up(*vm_end, size);
3274 	unsigned long end = (start | ~mask) + 1;
3275 	VMA_ITERATOR(vmi, args->mm, start);
3276 
3277 	VM_WARN_ON_ONCE(mask & size);
3278 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3279 
3280 	for_each_vma(vmi, args->vma) {
3281 		if (end && end <= args->vma->vm_start)
3282 			return false;
3283 
3284 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3285 			continue;
3286 
3287 		*vm_start = max(start, args->vma->vm_start);
3288 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3289 
3290 		return true;
3291 	}
3292 
3293 	return false;
3294 }
3295 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3296 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3297 				 struct pglist_data *pgdat)
3298 {
3299 	unsigned long pfn = pte_pfn(pte);
3300 
3301 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3302 
3303 	if (!pte_present(pte) || is_zero_pfn(pfn))
3304 		return -1;
3305 
3306 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3307 		return -1;
3308 
3309 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3310 		return -1;
3311 
3312 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3313 		return -1;
3314 
3315 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3316 		return -1;
3317 
3318 	return pfn;
3319 }
3320 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3321 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3322 				 struct pglist_data *pgdat)
3323 {
3324 	unsigned long pfn = pmd_pfn(pmd);
3325 
3326 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3327 
3328 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3329 		return -1;
3330 
3331 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3332 		return -1;
3333 
3334 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3335 		return -1;
3336 
3337 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3338 		return -1;
3339 
3340 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3341 		return -1;
3342 
3343 	return pfn;
3344 }
3345 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3346 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3347 				   struct pglist_data *pgdat, bool can_swap)
3348 {
3349 	struct folio *folio;
3350 
3351 	folio = pfn_folio(pfn);
3352 	if (folio_nid(folio) != pgdat->node_id)
3353 		return NULL;
3354 
3355 	if (folio_memcg(folio) != memcg)
3356 		return NULL;
3357 
3358 	/* file VMAs can contain anon pages from COW */
3359 	if (!folio_is_file_lru(folio) && !can_swap)
3360 		return NULL;
3361 
3362 	return folio;
3363 }
3364 
suitable_to_scan(int total,int young)3365 static bool suitable_to_scan(int total, int young)
3366 {
3367 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3368 
3369 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3370 	return young * n >= total;
3371 }
3372 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3373 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3374 			   struct mm_walk *args)
3375 {
3376 	int i;
3377 	pte_t *pte;
3378 	spinlock_t *ptl;
3379 	unsigned long addr;
3380 	int total = 0;
3381 	int young = 0;
3382 	struct lru_gen_mm_walk *walk = args->private;
3383 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3384 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3385 	DEFINE_MAX_SEQ(walk->lruvec);
3386 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3387 	pmd_t pmdval;
3388 
3389 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3390 				       &ptl);
3391 	if (!pte)
3392 		return false;
3393 	if (!spin_trylock(ptl)) {
3394 		pte_unmap(pte);
3395 		return false;
3396 	}
3397 
3398 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3399 		pte_unmap_unlock(pte, ptl);
3400 		return false;
3401 	}
3402 
3403 	arch_enter_lazy_mmu_mode();
3404 restart:
3405 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3406 		unsigned long pfn;
3407 		struct folio *folio;
3408 		pte_t ptent = ptep_get(pte + i);
3409 
3410 		total++;
3411 		walk->mm_stats[MM_LEAF_TOTAL]++;
3412 
3413 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3414 		if (pfn == -1)
3415 			continue;
3416 
3417 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3418 		if (!folio)
3419 			continue;
3420 
3421 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3422 			continue;
3423 
3424 		young++;
3425 		walk->mm_stats[MM_LEAF_YOUNG]++;
3426 
3427 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3428 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3429 		      !folio_test_swapcache(folio)))
3430 			folio_mark_dirty(folio);
3431 
3432 		old_gen = folio_update_gen(folio, new_gen);
3433 		if (old_gen >= 0 && old_gen != new_gen)
3434 			update_batch_size(walk, folio, old_gen, new_gen);
3435 	}
3436 
3437 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3438 		goto restart;
3439 
3440 	arch_leave_lazy_mmu_mode();
3441 	pte_unmap_unlock(pte, ptl);
3442 
3443 	return suitable_to_scan(total, young);
3444 }
3445 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3446 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3447 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3448 {
3449 	int i;
3450 	pmd_t *pmd;
3451 	spinlock_t *ptl;
3452 	struct lru_gen_mm_walk *walk = args->private;
3453 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3454 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3455 	DEFINE_MAX_SEQ(walk->lruvec);
3456 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3457 
3458 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3459 
3460 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3461 	if (*first == -1) {
3462 		*first = addr;
3463 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3464 		return;
3465 	}
3466 
3467 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3468 	if (i && i <= MIN_LRU_BATCH) {
3469 		__set_bit(i - 1, bitmap);
3470 		return;
3471 	}
3472 
3473 	pmd = pmd_offset(pud, *first);
3474 
3475 	ptl = pmd_lockptr(args->mm, pmd);
3476 	if (!spin_trylock(ptl))
3477 		goto done;
3478 
3479 	arch_enter_lazy_mmu_mode();
3480 
3481 	do {
3482 		unsigned long pfn;
3483 		struct folio *folio;
3484 
3485 		/* don't round down the first address */
3486 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3487 
3488 		if (!pmd_present(pmd[i]))
3489 			goto next;
3490 
3491 		if (!pmd_trans_huge(pmd[i])) {
3492 			if (!walk->force_scan && should_clear_pmd_young() &&
3493 			    !mm_has_notifiers(args->mm))
3494 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3495 			goto next;
3496 		}
3497 
3498 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3499 		if (pfn == -1)
3500 			goto next;
3501 
3502 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3503 		if (!folio)
3504 			goto next;
3505 
3506 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3507 			goto next;
3508 
3509 		walk->mm_stats[MM_LEAF_YOUNG]++;
3510 
3511 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3512 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3513 		      !folio_test_swapcache(folio)))
3514 			folio_mark_dirty(folio);
3515 
3516 		old_gen = folio_update_gen(folio, new_gen);
3517 		if (old_gen >= 0 && old_gen != new_gen)
3518 			update_batch_size(walk, folio, old_gen, new_gen);
3519 next:
3520 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3521 	} while (i <= MIN_LRU_BATCH);
3522 
3523 	arch_leave_lazy_mmu_mode();
3524 	spin_unlock(ptl);
3525 done:
3526 	*first = -1;
3527 }
3528 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3529 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3530 			   struct mm_walk *args)
3531 {
3532 	int i;
3533 	pmd_t *pmd;
3534 	unsigned long next;
3535 	unsigned long addr;
3536 	struct vm_area_struct *vma;
3537 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3538 	unsigned long first = -1;
3539 	struct lru_gen_mm_walk *walk = args->private;
3540 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3541 
3542 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3543 
3544 	/*
3545 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3546 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3547 	 * the PMD lock to clear the accessed bit in PMD entries.
3548 	 */
3549 	pmd = pmd_offset(pud, start & PUD_MASK);
3550 restart:
3551 	/* walk_pte_range() may call get_next_vma() */
3552 	vma = args->vma;
3553 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3554 		pmd_t val = pmdp_get_lockless(pmd + i);
3555 
3556 		next = pmd_addr_end(addr, end);
3557 
3558 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3559 			walk->mm_stats[MM_LEAF_TOTAL]++;
3560 			continue;
3561 		}
3562 
3563 		if (pmd_trans_huge(val)) {
3564 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3565 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3566 
3567 			walk->mm_stats[MM_LEAF_TOTAL]++;
3568 
3569 			if (pfn != -1)
3570 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3571 			continue;
3572 		}
3573 
3574 		if (!walk->force_scan && should_clear_pmd_young() &&
3575 		    !mm_has_notifiers(args->mm)) {
3576 			if (!pmd_young(val))
3577 				continue;
3578 
3579 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3580 		}
3581 
3582 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3583 			continue;
3584 
3585 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3586 
3587 		if (!walk_pte_range(&val, addr, next, args))
3588 			continue;
3589 
3590 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3591 
3592 		/* carry over to the next generation */
3593 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3594 	}
3595 
3596 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3597 
3598 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3599 		goto restart;
3600 }
3601 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3602 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3603 			  struct mm_walk *args)
3604 {
3605 	int i;
3606 	pud_t *pud;
3607 	unsigned long addr;
3608 	unsigned long next;
3609 	struct lru_gen_mm_walk *walk = args->private;
3610 
3611 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3612 
3613 	pud = pud_offset(p4d, start & P4D_MASK);
3614 restart:
3615 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3616 		pud_t val = READ_ONCE(pud[i]);
3617 
3618 		next = pud_addr_end(addr, end);
3619 
3620 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3621 			continue;
3622 
3623 		walk_pmd_range(&val, addr, next, args);
3624 
3625 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3626 			end = (addr | ~PUD_MASK) + 1;
3627 			goto done;
3628 		}
3629 	}
3630 
3631 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3632 		goto restart;
3633 
3634 	end = round_up(end, P4D_SIZE);
3635 done:
3636 	if (!end || !args->vma)
3637 		return 1;
3638 
3639 	walk->next_addr = max(end, args->vma->vm_start);
3640 
3641 	return -EAGAIN;
3642 }
3643 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3644 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3645 {
3646 	static const struct mm_walk_ops mm_walk_ops = {
3647 		.test_walk = should_skip_vma,
3648 		.p4d_entry = walk_pud_range,
3649 		.walk_lock = PGWALK_RDLOCK,
3650 	};
3651 	int err;
3652 	struct lruvec *lruvec = walk->lruvec;
3653 
3654 	walk->next_addr = FIRST_USER_ADDRESS;
3655 
3656 	do {
3657 		DEFINE_MAX_SEQ(lruvec);
3658 
3659 		err = -EBUSY;
3660 
3661 		/* another thread might have called inc_max_seq() */
3662 		if (walk->seq != max_seq)
3663 			break;
3664 
3665 		/* the caller might be holding the lock for write */
3666 		if (mmap_read_trylock(mm)) {
3667 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3668 
3669 			mmap_read_unlock(mm);
3670 		}
3671 
3672 		if (walk->batched) {
3673 			spin_lock_irq(&lruvec->lru_lock);
3674 			reset_batch_size(walk);
3675 			spin_unlock_irq(&lruvec->lru_lock);
3676 		}
3677 
3678 		cond_resched();
3679 	} while (err == -EAGAIN);
3680 }
3681 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3682 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3683 {
3684 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3685 
3686 	if (pgdat && current_is_kswapd()) {
3687 		VM_WARN_ON_ONCE(walk);
3688 
3689 		walk = &pgdat->mm_walk;
3690 	} else if (!walk && force_alloc) {
3691 		VM_WARN_ON_ONCE(current_is_kswapd());
3692 
3693 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3694 	}
3695 
3696 	current->reclaim_state->mm_walk = walk;
3697 
3698 	return walk;
3699 }
3700 
clear_mm_walk(void)3701 static void clear_mm_walk(void)
3702 {
3703 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3704 
3705 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3706 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3707 
3708 	current->reclaim_state->mm_walk = NULL;
3709 
3710 	if (!current_is_kswapd())
3711 		kfree(walk);
3712 }
3713 
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)3714 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3715 {
3716 	int zone;
3717 	int remaining = MAX_LRU_BATCH;
3718 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3719 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3720 
3721 	if (type == LRU_GEN_ANON && !can_swap)
3722 		goto done;
3723 
3724 	/* prevent cold/hot inversion if force_scan is true */
3725 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3726 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3727 
3728 		while (!list_empty(head)) {
3729 			struct folio *folio = lru_to_folio(head);
3730 
3731 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3732 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3733 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3734 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3735 
3736 			new_gen = folio_inc_gen(lruvec, folio, false);
3737 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3738 
3739 			if (!--remaining)
3740 				return false;
3741 		}
3742 	}
3743 done:
3744 	reset_ctrl_pos(lruvec, type, true);
3745 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3746 
3747 	return true;
3748 }
3749 
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)3750 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3751 {
3752 	int gen, type, zone;
3753 	bool success = false;
3754 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3755 	DEFINE_MIN_SEQ(lruvec);
3756 
3757 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3758 
3759 	/* find the oldest populated generation */
3760 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3761 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3762 			gen = lru_gen_from_seq(min_seq[type]);
3763 
3764 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3765 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3766 					goto next;
3767 			}
3768 
3769 			min_seq[type]++;
3770 		}
3771 next:
3772 		;
3773 	}
3774 
3775 	/* see the comment on lru_gen_folio */
3776 	if (can_swap) {
3777 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3778 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3779 	}
3780 
3781 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3782 		if (min_seq[type] == lrugen->min_seq[type])
3783 			continue;
3784 
3785 		reset_ctrl_pos(lruvec, type, true);
3786 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3787 		success = true;
3788 	}
3789 
3790 	return success;
3791 }
3792 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)3793 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3794 			bool can_swap, bool force_scan)
3795 {
3796 	bool success;
3797 	int prev, next;
3798 	int type, zone;
3799 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3800 restart:
3801 	if (seq < READ_ONCE(lrugen->max_seq))
3802 		return false;
3803 
3804 	spin_lock_irq(&lruvec->lru_lock);
3805 
3806 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3807 
3808 	success = seq == lrugen->max_seq;
3809 	if (!success)
3810 		goto unlock;
3811 
3812 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3813 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3814 			continue;
3815 
3816 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3817 
3818 		if (inc_min_seq(lruvec, type, can_swap))
3819 			continue;
3820 
3821 		spin_unlock_irq(&lruvec->lru_lock);
3822 		cond_resched();
3823 		goto restart;
3824 	}
3825 
3826 	/*
3827 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3828 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3829 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3830 	 * overlap, cold/hot inversion happens.
3831 	 */
3832 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3833 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3834 
3835 	for (type = 0; type < ANON_AND_FILE; type++) {
3836 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3837 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3838 			long delta = lrugen->nr_pages[prev][type][zone] -
3839 				     lrugen->nr_pages[next][type][zone];
3840 
3841 			if (!delta)
3842 				continue;
3843 
3844 			__update_lru_size(lruvec, lru, zone, delta);
3845 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3846 		}
3847 	}
3848 
3849 	for (type = 0; type < ANON_AND_FILE; type++)
3850 		reset_ctrl_pos(lruvec, type, false);
3851 
3852 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3853 	/* make sure preceding modifications appear */
3854 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3855 unlock:
3856 	spin_unlock_irq(&lruvec->lru_lock);
3857 
3858 	return success;
3859 }
3860 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)3861 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3862 			       bool can_swap, bool force_scan)
3863 {
3864 	bool success;
3865 	struct lru_gen_mm_walk *walk;
3866 	struct mm_struct *mm = NULL;
3867 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3868 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3869 
3870 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3871 
3872 	if (!mm_state)
3873 		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3874 
3875 	/* see the comment in iterate_mm_list() */
3876 	if (seq <= READ_ONCE(mm_state->seq))
3877 		return false;
3878 
3879 	/*
3880 	 * If the hardware doesn't automatically set the accessed bit, fallback
3881 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3882 	 * handful of PTEs. Spreading the work out over a period of time usually
3883 	 * is less efficient, but it avoids bursty page faults.
3884 	 */
3885 	if (!should_walk_mmu()) {
3886 		success = iterate_mm_list_nowalk(lruvec, seq);
3887 		goto done;
3888 	}
3889 
3890 	walk = set_mm_walk(NULL, true);
3891 	if (!walk) {
3892 		success = iterate_mm_list_nowalk(lruvec, seq);
3893 		goto done;
3894 	}
3895 
3896 	walk->lruvec = lruvec;
3897 	walk->seq = seq;
3898 	walk->can_swap = can_swap;
3899 	walk->force_scan = force_scan;
3900 
3901 	do {
3902 		success = iterate_mm_list(walk, &mm);
3903 		if (mm)
3904 			walk_mm(mm, walk);
3905 	} while (mm);
3906 done:
3907 	if (success) {
3908 		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3909 		WARN_ON_ONCE(!success);
3910 	}
3911 
3912 	return success;
3913 }
3914 
3915 /******************************************************************************
3916  *                          working set protection
3917  ******************************************************************************/
3918 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)3919 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3920 {
3921 	int priority;
3922 	unsigned long reclaimable;
3923 
3924 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3925 		return;
3926 	/*
3927 	 * Determine the initial priority based on
3928 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3929 	 * where reclaimed_to_scanned_ratio = inactive / total.
3930 	 */
3931 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3932 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3933 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3934 
3935 	/* round down reclaimable and round up sc->nr_to_reclaim */
3936 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3937 
3938 	/*
3939 	 * The estimation is based on LRU pages only, so cap it to prevent
3940 	 * overshoots of shrinker objects by large margins.
3941 	 */
3942 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3943 }
3944 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)3945 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3946 {
3947 	int gen, type, zone;
3948 	unsigned long total = 0;
3949 	bool can_swap = get_swappiness(lruvec, sc);
3950 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3951 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3952 	DEFINE_MAX_SEQ(lruvec);
3953 	DEFINE_MIN_SEQ(lruvec);
3954 
3955 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3956 		unsigned long seq;
3957 
3958 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3959 			gen = lru_gen_from_seq(seq);
3960 
3961 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3962 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3963 		}
3964 	}
3965 
3966 	/* whether the size is big enough to be helpful */
3967 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3968 }
3969 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)3970 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3971 				  unsigned long min_ttl)
3972 {
3973 	int gen;
3974 	unsigned long birth;
3975 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3976 	DEFINE_MIN_SEQ(lruvec);
3977 
3978 	if (mem_cgroup_below_min(NULL, memcg))
3979 		return false;
3980 
3981 	if (!lruvec_is_sizable(lruvec, sc))
3982 		return false;
3983 
3984 	/* see the comment on lru_gen_folio */
3985 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3986 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3987 
3988 	return time_is_before_jiffies(birth + min_ttl);
3989 }
3990 
3991 /* to protect the working set of the last N jiffies */
3992 static unsigned long lru_gen_min_ttl __read_mostly;
3993 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)3994 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3995 {
3996 	struct mem_cgroup *memcg;
3997 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3998 	bool reclaimable = !min_ttl;
3999 
4000 	VM_WARN_ON_ONCE(!current_is_kswapd());
4001 
4002 	set_initial_priority(pgdat, sc);
4003 
4004 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4005 	do {
4006 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4007 
4008 		mem_cgroup_calculate_protection(NULL, memcg);
4009 
4010 		if (!reclaimable)
4011 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4012 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4013 
4014 	/*
4015 	 * The main goal is to OOM kill if every generation from all memcgs is
4016 	 * younger than min_ttl. However, another possibility is all memcgs are
4017 	 * either too small or below min.
4018 	 */
4019 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4020 		struct oom_control oc = {
4021 			.gfp_mask = sc->gfp_mask,
4022 		};
4023 
4024 		out_of_memory(&oc);
4025 
4026 		mutex_unlock(&oom_lock);
4027 	}
4028 }
4029 
4030 /******************************************************************************
4031  *                          rmap/PT walk feedback
4032  ******************************************************************************/
4033 
4034 /*
4035  * This function exploits spatial locality when shrink_folio_list() walks the
4036  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4037  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4038  * the PTE table to the Bloom filter. This forms a feedback loop between the
4039  * eviction and the aging.
4040  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4041 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4042 {
4043 	int i;
4044 	unsigned long start;
4045 	unsigned long end;
4046 	struct lru_gen_mm_walk *walk;
4047 	int young = 1;
4048 	pte_t *pte = pvmw->pte;
4049 	unsigned long addr = pvmw->address;
4050 	struct vm_area_struct *vma = pvmw->vma;
4051 	struct folio *folio = pfn_folio(pvmw->pfn);
4052 	bool can_swap = !folio_is_file_lru(folio);
4053 	struct mem_cgroup *memcg = folio_memcg(folio);
4054 	struct pglist_data *pgdat = folio_pgdat(folio);
4055 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4056 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4057 	DEFINE_MAX_SEQ(lruvec);
4058 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4059 
4060 	lockdep_assert_held(pvmw->ptl);
4061 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4062 
4063 	if (!ptep_clear_young_notify(vma, addr, pte))
4064 		return false;
4065 
4066 	if (spin_is_contended(pvmw->ptl))
4067 		return true;
4068 
4069 	/* exclude special VMAs containing anon pages from COW */
4070 	if (vma->vm_flags & VM_SPECIAL)
4071 		return true;
4072 
4073 	/* avoid taking the LRU lock under the PTL when possible */
4074 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4075 
4076 	start = max(addr & PMD_MASK, vma->vm_start);
4077 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4078 
4079 	if (end - start == PAGE_SIZE)
4080 		return true;
4081 
4082 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4083 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4084 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4085 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4086 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4087 		else {
4088 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4089 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4090 		}
4091 	}
4092 
4093 	arch_enter_lazy_mmu_mode();
4094 
4095 	pte -= (addr - start) / PAGE_SIZE;
4096 
4097 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4098 		unsigned long pfn;
4099 		pte_t ptent = ptep_get(pte + i);
4100 
4101 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4102 		if (pfn == -1)
4103 			continue;
4104 
4105 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4106 		if (!folio)
4107 			continue;
4108 
4109 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4110 			continue;
4111 
4112 		young++;
4113 
4114 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4115 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4116 		      !folio_test_swapcache(folio)))
4117 			folio_mark_dirty(folio);
4118 
4119 		if (walk) {
4120 			old_gen = folio_update_gen(folio, new_gen);
4121 			if (old_gen >= 0 && old_gen != new_gen)
4122 				update_batch_size(walk, folio, old_gen, new_gen);
4123 
4124 			continue;
4125 		}
4126 
4127 		old_gen = folio_lru_gen(folio);
4128 		if (old_gen < 0)
4129 			folio_set_referenced(folio);
4130 		else if (old_gen != new_gen) {
4131 			folio_clear_lru_refs(folio);
4132 			folio_activate(folio);
4133 		}
4134 	}
4135 
4136 	arch_leave_lazy_mmu_mode();
4137 
4138 	/* feedback from rmap walkers to page table walkers */
4139 	if (mm_state && suitable_to_scan(i, young))
4140 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4141 
4142 	return true;
4143 }
4144 
4145 /******************************************************************************
4146  *                          memcg LRU
4147  ******************************************************************************/
4148 
4149 /* see the comment on MEMCG_NR_GENS */
4150 enum {
4151 	MEMCG_LRU_NOP,
4152 	MEMCG_LRU_HEAD,
4153 	MEMCG_LRU_TAIL,
4154 	MEMCG_LRU_OLD,
4155 	MEMCG_LRU_YOUNG,
4156 };
4157 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4158 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4159 {
4160 	int seg;
4161 	int old, new;
4162 	unsigned long flags;
4163 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4164 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4165 
4166 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4167 
4168 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4169 
4170 	seg = 0;
4171 	new = old = lruvec->lrugen.gen;
4172 
4173 	/* see the comment on MEMCG_NR_GENS */
4174 	if (op == MEMCG_LRU_HEAD)
4175 		seg = MEMCG_LRU_HEAD;
4176 	else if (op == MEMCG_LRU_TAIL)
4177 		seg = MEMCG_LRU_TAIL;
4178 	else if (op == MEMCG_LRU_OLD)
4179 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4180 	else if (op == MEMCG_LRU_YOUNG)
4181 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4182 	else
4183 		VM_WARN_ON_ONCE(true);
4184 
4185 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4186 	WRITE_ONCE(lruvec->lrugen.gen, new);
4187 
4188 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4189 
4190 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4191 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4192 	else
4193 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4194 
4195 	pgdat->memcg_lru.nr_memcgs[old]--;
4196 	pgdat->memcg_lru.nr_memcgs[new]++;
4197 
4198 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4199 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4200 
4201 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4202 }
4203 
4204 #ifdef CONFIG_MEMCG
4205 
lru_gen_online_memcg(struct mem_cgroup * memcg)4206 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4207 {
4208 	int gen;
4209 	int nid;
4210 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4211 
4212 	for_each_node(nid) {
4213 		struct pglist_data *pgdat = NODE_DATA(nid);
4214 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4215 
4216 		spin_lock_irq(&pgdat->memcg_lru.lock);
4217 
4218 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4219 
4220 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4221 
4222 		lruvec->lrugen.gen = gen;
4223 
4224 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4225 		pgdat->memcg_lru.nr_memcgs[gen]++;
4226 
4227 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4228 	}
4229 }
4230 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4231 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4232 {
4233 	int nid;
4234 
4235 	for_each_node(nid) {
4236 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4237 
4238 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4239 	}
4240 }
4241 
lru_gen_release_memcg(struct mem_cgroup * memcg)4242 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4243 {
4244 	int gen;
4245 	int nid;
4246 
4247 	for_each_node(nid) {
4248 		struct pglist_data *pgdat = NODE_DATA(nid);
4249 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4250 
4251 		spin_lock_irq(&pgdat->memcg_lru.lock);
4252 
4253 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4254 			goto unlock;
4255 
4256 		gen = lruvec->lrugen.gen;
4257 
4258 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4259 		pgdat->memcg_lru.nr_memcgs[gen]--;
4260 
4261 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4262 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4263 unlock:
4264 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4265 	}
4266 }
4267 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4268 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4269 {
4270 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4271 
4272 	/* see the comment on MEMCG_NR_GENS */
4273 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4274 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4275 }
4276 
4277 #endif /* CONFIG_MEMCG */
4278 
4279 /******************************************************************************
4280  *                          the eviction
4281  ******************************************************************************/
4282 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4283 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4284 		       int tier_idx)
4285 {
4286 	bool success;
4287 	bool dirty, writeback;
4288 	int gen = folio_lru_gen(folio);
4289 	int type = folio_is_file_lru(folio);
4290 	int zone = folio_zonenum(folio);
4291 	int delta = folio_nr_pages(folio);
4292 	int refs = folio_lru_refs(folio);
4293 	int tier = lru_tier_from_refs(refs);
4294 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4295 
4296 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4297 
4298 	/* unevictable */
4299 	if (!folio_evictable(folio)) {
4300 		success = lru_gen_del_folio(lruvec, folio, true);
4301 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4302 		folio_set_unevictable(folio);
4303 		lruvec_add_folio(lruvec, folio);
4304 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4305 		return true;
4306 	}
4307 
4308 	/* promoted */
4309 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4310 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4311 		return true;
4312 	}
4313 
4314 	/* protected */
4315 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4316 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4317 
4318 		gen = folio_inc_gen(lruvec, folio, false);
4319 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4320 
4321 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4322 			   lrugen->protected[hist][type][tier - 1] + delta);
4323 		return true;
4324 	}
4325 
4326 	/* ineligible */
4327 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4328 		gen = folio_inc_gen(lruvec, folio, false);
4329 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4330 		return true;
4331 	}
4332 
4333 	dirty = folio_test_dirty(folio);
4334 	writeback = folio_test_writeback(folio);
4335 	if (type == LRU_GEN_FILE && dirty) {
4336 		sc->nr.file_taken += delta;
4337 		if (!writeback)
4338 			sc->nr.unqueued_dirty += delta;
4339 	}
4340 
4341 	/* waiting for writeback */
4342 	if (folio_test_locked(folio) || writeback ||
4343 	    (type == LRU_GEN_FILE && dirty)) {
4344 		gen = folio_inc_gen(lruvec, folio, true);
4345 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4346 		return true;
4347 	}
4348 
4349 	return false;
4350 }
4351 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4352 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4353 {
4354 	bool success;
4355 
4356 	/* swap constrained */
4357 	if (!(sc->gfp_mask & __GFP_IO) &&
4358 	    (folio_test_dirty(folio) ||
4359 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4360 		return false;
4361 
4362 	/* raced with release_pages() */
4363 	if (!folio_try_get(folio))
4364 		return false;
4365 
4366 	/* raced with another isolation */
4367 	if (!folio_test_clear_lru(folio)) {
4368 		folio_put(folio);
4369 		return false;
4370 	}
4371 
4372 	/* see the comment on MAX_NR_TIERS */
4373 	if (!folio_test_referenced(folio))
4374 		folio_clear_lru_refs(folio);
4375 
4376 	/* for shrink_folio_list() */
4377 	folio_clear_reclaim(folio);
4378 	folio_clear_referenced(folio);
4379 
4380 	success = lru_gen_del_folio(lruvec, folio, true);
4381 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4382 
4383 	return true;
4384 }
4385 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4386 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4387 		       int type, int tier, struct list_head *list)
4388 {
4389 	int i;
4390 	int gen;
4391 	enum vm_event_item item;
4392 	int sorted = 0;
4393 	int scanned = 0;
4394 	int isolated = 0;
4395 	int skipped = 0;
4396 	int remaining = MAX_LRU_BATCH;
4397 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4398 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4399 
4400 	VM_WARN_ON_ONCE(!list_empty(list));
4401 
4402 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4403 		return 0;
4404 
4405 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4406 
4407 	for (i = MAX_NR_ZONES; i > 0; i--) {
4408 		LIST_HEAD(moved);
4409 		int skipped_zone = 0;
4410 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4411 		struct list_head *head = &lrugen->folios[gen][type][zone];
4412 
4413 		while (!list_empty(head)) {
4414 			struct folio *folio = lru_to_folio(head);
4415 			int delta = folio_nr_pages(folio);
4416 
4417 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4418 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4419 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4420 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4421 
4422 			scanned += delta;
4423 
4424 			if (sort_folio(lruvec, folio, sc, tier))
4425 				sorted += delta;
4426 			else if (isolate_folio(lruvec, folio, sc)) {
4427 				list_add(&folio->lru, list);
4428 				isolated += delta;
4429 			} else {
4430 				list_move(&folio->lru, &moved);
4431 				skipped_zone += delta;
4432 			}
4433 
4434 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4435 				break;
4436 		}
4437 
4438 		if (skipped_zone) {
4439 			list_splice(&moved, head);
4440 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4441 			skipped += skipped_zone;
4442 		}
4443 
4444 		if (!remaining || isolated >= MIN_LRU_BATCH)
4445 			break;
4446 	}
4447 
4448 	item = PGSCAN_KSWAPD + reclaimer_offset();
4449 	if (!cgroup_reclaim(sc)) {
4450 		__count_vm_events(item, isolated);
4451 		__count_vm_events(PGREFILL, sorted);
4452 	}
4453 	__count_memcg_events(memcg, item, isolated);
4454 	__count_memcg_events(memcg, PGREFILL, sorted);
4455 	__count_vm_events(PGSCAN_ANON + type, isolated);
4456 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4457 				scanned, skipped, isolated,
4458 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4459 	if (type == LRU_GEN_FILE)
4460 		sc->nr.file_taken += isolated;
4461 	/*
4462 	 * There might not be eligible folios due to reclaim_idx. Check the
4463 	 * remaining to prevent livelock if it's not making progress.
4464 	 */
4465 	return isolated || !remaining ? scanned : 0;
4466 }
4467 
get_tier_idx(struct lruvec * lruvec,int type)4468 static int get_tier_idx(struct lruvec *lruvec, int type)
4469 {
4470 	int tier;
4471 	struct ctrl_pos sp, pv;
4472 
4473 	/*
4474 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4475 	 * This value is chosen because any other tier would have at least twice
4476 	 * as many refaults as the first tier.
4477 	 */
4478 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4479 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4480 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4481 		if (!positive_ctrl_err(&sp, &pv))
4482 			break;
4483 	}
4484 
4485 	return tier - 1;
4486 }
4487 
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)4488 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4489 {
4490 	int type, tier;
4491 	struct ctrl_pos sp, pv;
4492 	int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4493 
4494 	/*
4495 	 * Compare the first tier of anon with that of file to determine which
4496 	 * type to scan. Also need to compare other tiers of the selected type
4497 	 * with the first tier of the other type to determine the last tier (of
4498 	 * the selected type) to evict.
4499 	 */
4500 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4501 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4502 	type = positive_ctrl_err(&sp, &pv);
4503 
4504 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4505 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4506 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4507 		if (!positive_ctrl_err(&sp, &pv))
4508 			break;
4509 	}
4510 
4511 	*tier_idx = tier - 1;
4512 
4513 	return type;
4514 }
4515 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4516 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4517 			  int *type_scanned, struct list_head *list)
4518 {
4519 	int i;
4520 	int type;
4521 	int scanned;
4522 	int tier = -1;
4523 	DEFINE_MIN_SEQ(lruvec);
4524 
4525 	/*
4526 	 * Try to make the obvious choice first, and if anon and file are both
4527 	 * available from the same generation,
4528 	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4529 	 *    first.
4530 	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4531 	 *    exist than clean swapcache.
4532 	 */
4533 	if (!swappiness)
4534 		type = LRU_GEN_FILE;
4535 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4536 		type = LRU_GEN_ANON;
4537 	else if (swappiness == 1)
4538 		type = LRU_GEN_FILE;
4539 	else if (swappiness == MAX_SWAPPINESS)
4540 		type = LRU_GEN_ANON;
4541 	else if (!(sc->gfp_mask & __GFP_IO))
4542 		type = LRU_GEN_FILE;
4543 	else
4544 		type = get_type_to_scan(lruvec, swappiness, &tier);
4545 
4546 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4547 		if (tier < 0)
4548 			tier = get_tier_idx(lruvec, type);
4549 
4550 		scanned = scan_folios(lruvec, sc, type, tier, list);
4551 		if (scanned)
4552 			break;
4553 
4554 		type = !type;
4555 		tier = -1;
4556 	}
4557 
4558 	*type_scanned = type;
4559 
4560 	return scanned;
4561 }
4562 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4563 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4564 {
4565 	int type;
4566 	int scanned;
4567 	int reclaimed;
4568 	LIST_HEAD(list);
4569 	LIST_HEAD(clean);
4570 	struct folio *folio;
4571 	struct folio *next;
4572 	enum vm_event_item item;
4573 	struct reclaim_stat stat;
4574 	struct lru_gen_mm_walk *walk;
4575 	bool skip_retry = false;
4576 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4577 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4578 
4579 	spin_lock_irq(&lruvec->lru_lock);
4580 
4581 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4582 
4583 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4584 
4585 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4586 		scanned = 0;
4587 
4588 	spin_unlock_irq(&lruvec->lru_lock);
4589 
4590 	if (list_empty(&list))
4591 		return scanned;
4592 retry:
4593 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4594 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4595 	sc->nr_reclaimed += reclaimed;
4596 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4597 			scanned, reclaimed, &stat, sc->priority,
4598 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4599 
4600 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4601 		if (!folio_evictable(folio)) {
4602 			list_del(&folio->lru);
4603 			folio_putback_lru(folio);
4604 			continue;
4605 		}
4606 
4607 		if (folio_test_reclaim(folio) &&
4608 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4609 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4610 			if (folio_test_workingset(folio))
4611 				folio_set_referenced(folio);
4612 			continue;
4613 		}
4614 
4615 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4616 		    folio_mapped(folio) || folio_test_locked(folio) ||
4617 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4618 			/* don't add rejected folios to the oldest generation */
4619 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4620 				      BIT(PG_active));
4621 			continue;
4622 		}
4623 
4624 		/* retry folios that may have missed folio_rotate_reclaimable() */
4625 		list_move(&folio->lru, &clean);
4626 	}
4627 
4628 	spin_lock_irq(&lruvec->lru_lock);
4629 
4630 	move_folios_to_lru(lruvec, &list);
4631 
4632 	walk = current->reclaim_state->mm_walk;
4633 	if (walk && walk->batched) {
4634 		walk->lruvec = lruvec;
4635 		reset_batch_size(walk);
4636 	}
4637 
4638 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4639 	if (!cgroup_reclaim(sc))
4640 		__count_vm_events(item, reclaimed);
4641 	__count_memcg_events(memcg, item, reclaimed);
4642 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4643 
4644 	spin_unlock_irq(&lruvec->lru_lock);
4645 
4646 	list_splice_init(&clean, &list);
4647 
4648 	if (!list_empty(&list)) {
4649 		skip_retry = true;
4650 		goto retry;
4651 	}
4652 
4653 	return scanned;
4654 }
4655 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,bool can_swap,unsigned long * nr_to_scan)4656 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4657 			     bool can_swap, unsigned long *nr_to_scan)
4658 {
4659 	int gen, type, zone;
4660 	unsigned long old = 0;
4661 	unsigned long young = 0;
4662 	unsigned long total = 0;
4663 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4664 	DEFINE_MIN_SEQ(lruvec);
4665 
4666 	/* whether this lruvec is completely out of cold folios */
4667 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4668 		*nr_to_scan = 0;
4669 		return true;
4670 	}
4671 
4672 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4673 		unsigned long seq;
4674 
4675 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4676 			unsigned long size = 0;
4677 
4678 			gen = lru_gen_from_seq(seq);
4679 
4680 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4681 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4682 
4683 			total += size;
4684 			if (seq == max_seq)
4685 				young += size;
4686 			else if (seq + MIN_NR_GENS == max_seq)
4687 				old += size;
4688 		}
4689 	}
4690 
4691 	*nr_to_scan = total;
4692 
4693 	/*
4694 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4695 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4696 	 * ideal number of generations is MIN_NR_GENS+1.
4697 	 */
4698 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4699 		return false;
4700 
4701 	/*
4702 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4703 	 * of the total number of pages for each generation. A reasonable range
4704 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4705 	 * aging cares about the upper bound of hot pages, while the eviction
4706 	 * cares about the lower bound of cold pages.
4707 	 */
4708 	if (young * MIN_NR_GENS > total)
4709 		return true;
4710 	if (old * (MIN_NR_GENS + 2) < total)
4711 		return true;
4712 
4713 	return false;
4714 }
4715 
4716 /*
4717  * For future optimizations:
4718  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4719  *    reclaim.
4720  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)4721 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4722 {
4723 	bool success;
4724 	unsigned long nr_to_scan;
4725 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4726 	DEFINE_MAX_SEQ(lruvec);
4727 
4728 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4729 		return -1;
4730 
4731 	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4732 
4733 	/* try to scrape all its memory if this memcg was deleted */
4734 	if (nr_to_scan && !mem_cgroup_online(memcg))
4735 		return nr_to_scan;
4736 
4737 	/* try to get away with not aging at the default priority */
4738 	if (!success || sc->priority == DEF_PRIORITY)
4739 		return nr_to_scan >> sc->priority;
4740 
4741 	/* stop scanning this lruvec as it's low on cold folios */
4742 	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4743 }
4744 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4745 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4746 {
4747 	int i;
4748 	enum zone_watermarks mark;
4749 
4750 	/* don't abort memcg reclaim to ensure fairness */
4751 	if (!root_reclaim(sc))
4752 		return false;
4753 
4754 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4755 		return true;
4756 
4757 	/* check the order to exclude compaction-induced reclaim */
4758 	if (!current_is_kswapd() || sc->order)
4759 		return false;
4760 
4761 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4762 	       WMARK_PROMO : WMARK_HIGH;
4763 
4764 	for (i = 0; i <= sc->reclaim_idx; i++) {
4765 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4766 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4767 
4768 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4769 			return false;
4770 	}
4771 
4772 	/* kswapd should abort if all eligible zones are safe */
4773 	return true;
4774 }
4775 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4776 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4777 {
4778 	long nr_to_scan;
4779 	unsigned long scanned = 0;
4780 	int swappiness = get_swappiness(lruvec, sc);
4781 
4782 	while (true) {
4783 		int delta;
4784 
4785 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4786 		if (nr_to_scan <= 0)
4787 			break;
4788 
4789 		delta = evict_folios(lruvec, sc, swappiness);
4790 		if (!delta)
4791 			break;
4792 
4793 		scanned += delta;
4794 		if (scanned >= nr_to_scan)
4795 			break;
4796 
4797 		if (should_abort_scan(lruvec, sc))
4798 			break;
4799 
4800 		cond_resched();
4801 	}
4802 
4803 	/*
4804 	 * If too many file cache in the coldest generation can't be evicted
4805 	 * due to being dirty, wake up the flusher.
4806 	 */
4807 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4808 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4809 
4810 	/* whether this lruvec should be rotated */
4811 	return nr_to_scan < 0;
4812 }
4813 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4814 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4815 {
4816 	bool success;
4817 	unsigned long scanned = sc->nr_scanned;
4818 	unsigned long reclaimed = sc->nr_reclaimed;
4819 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4820 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4821 
4822 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4823 	if (mem_cgroup_below_min(NULL, memcg))
4824 		return MEMCG_LRU_YOUNG;
4825 
4826 	if (mem_cgroup_below_low(NULL, memcg)) {
4827 		/* see the comment on MEMCG_NR_GENS */
4828 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4829 			return MEMCG_LRU_TAIL;
4830 
4831 		memcg_memory_event(memcg, MEMCG_LOW);
4832 	}
4833 
4834 	success = try_to_shrink_lruvec(lruvec, sc);
4835 
4836 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4837 
4838 	if (!sc->proactive)
4839 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4840 			   sc->nr_reclaimed - reclaimed);
4841 
4842 	flush_reclaim_state(sc);
4843 
4844 	if (success && mem_cgroup_online(memcg))
4845 		return MEMCG_LRU_YOUNG;
4846 
4847 	if (!success && lruvec_is_sizable(lruvec, sc))
4848 		return 0;
4849 
4850 	/* one retry if offlined or too small */
4851 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4852 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4853 }
4854 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4855 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4856 {
4857 	int op;
4858 	int gen;
4859 	int bin;
4860 	int first_bin;
4861 	struct lruvec *lruvec;
4862 	struct lru_gen_folio *lrugen;
4863 	struct mem_cgroup *memcg;
4864 	struct hlist_nulls_node *pos;
4865 
4866 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4867 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4868 restart:
4869 	op = 0;
4870 	memcg = NULL;
4871 
4872 	rcu_read_lock();
4873 
4874 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4875 		if (op) {
4876 			lru_gen_rotate_memcg(lruvec, op);
4877 			op = 0;
4878 		}
4879 
4880 		mem_cgroup_put(memcg);
4881 		memcg = NULL;
4882 
4883 		if (gen != READ_ONCE(lrugen->gen))
4884 			continue;
4885 
4886 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4887 		memcg = lruvec_memcg(lruvec);
4888 
4889 		if (!mem_cgroup_tryget(memcg)) {
4890 			lru_gen_release_memcg(memcg);
4891 			memcg = NULL;
4892 			continue;
4893 		}
4894 
4895 		rcu_read_unlock();
4896 
4897 		op = shrink_one(lruvec, sc);
4898 
4899 		rcu_read_lock();
4900 
4901 		if (should_abort_scan(lruvec, sc))
4902 			break;
4903 	}
4904 
4905 	rcu_read_unlock();
4906 
4907 	if (op)
4908 		lru_gen_rotate_memcg(lruvec, op);
4909 
4910 	mem_cgroup_put(memcg);
4911 
4912 	if (!is_a_nulls(pos))
4913 		return;
4914 
4915 	/* restart if raced with lru_gen_rotate_memcg() */
4916 	if (gen != get_nulls_value(pos))
4917 		goto restart;
4918 
4919 	/* try the rest of the bins of the current generation */
4920 	bin = get_memcg_bin(bin + 1);
4921 	if (bin != first_bin)
4922 		goto restart;
4923 }
4924 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4925 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4926 {
4927 	struct blk_plug plug;
4928 
4929 	VM_WARN_ON_ONCE(root_reclaim(sc));
4930 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4931 
4932 	lru_add_drain();
4933 
4934 	blk_start_plug(&plug);
4935 
4936 	set_mm_walk(NULL, sc->proactive);
4937 
4938 	if (try_to_shrink_lruvec(lruvec, sc))
4939 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4940 
4941 	clear_mm_walk();
4942 
4943 	blk_finish_plug(&plug);
4944 }
4945 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)4946 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4947 {
4948 	struct blk_plug plug;
4949 	unsigned long reclaimed = sc->nr_reclaimed;
4950 
4951 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4952 
4953 	/*
4954 	 * Unmapped clean folios are already prioritized. Scanning for more of
4955 	 * them is likely futile and can cause high reclaim latency when there
4956 	 * is a large number of memcgs.
4957 	 */
4958 	if (!sc->may_writepage || !sc->may_unmap)
4959 		goto done;
4960 
4961 	lru_add_drain();
4962 
4963 	blk_start_plug(&plug);
4964 
4965 	set_mm_walk(pgdat, sc->proactive);
4966 
4967 	set_initial_priority(pgdat, sc);
4968 
4969 	if (current_is_kswapd())
4970 		sc->nr_reclaimed = 0;
4971 
4972 	if (mem_cgroup_disabled())
4973 		shrink_one(&pgdat->__lruvec, sc);
4974 	else
4975 		shrink_many(pgdat, sc);
4976 
4977 	if (current_is_kswapd())
4978 		sc->nr_reclaimed += reclaimed;
4979 
4980 	clear_mm_walk();
4981 
4982 	blk_finish_plug(&plug);
4983 done:
4984 	if (sc->nr_reclaimed > reclaimed)
4985 		pgdat->kswapd_failures = 0;
4986 }
4987 
4988 /******************************************************************************
4989  *                          state change
4990  ******************************************************************************/
4991 
state_is_valid(struct lruvec * lruvec)4992 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4993 {
4994 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4995 
4996 	if (lrugen->enabled) {
4997 		enum lru_list lru;
4998 
4999 		for_each_evictable_lru(lru) {
5000 			if (!list_empty(&lruvec->lists[lru]))
5001 				return false;
5002 		}
5003 	} else {
5004 		int gen, type, zone;
5005 
5006 		for_each_gen_type_zone(gen, type, zone) {
5007 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5008 				return false;
5009 		}
5010 	}
5011 
5012 	return true;
5013 }
5014 
fill_evictable(struct lruvec * lruvec)5015 static bool fill_evictable(struct lruvec *lruvec)
5016 {
5017 	enum lru_list lru;
5018 	int remaining = MAX_LRU_BATCH;
5019 
5020 	for_each_evictable_lru(lru) {
5021 		int type = is_file_lru(lru);
5022 		bool active = is_active_lru(lru);
5023 		struct list_head *head = &lruvec->lists[lru];
5024 
5025 		while (!list_empty(head)) {
5026 			bool success;
5027 			struct folio *folio = lru_to_folio(head);
5028 
5029 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5030 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5031 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5032 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5033 
5034 			lruvec_del_folio(lruvec, folio);
5035 			success = lru_gen_add_folio(lruvec, folio, false);
5036 			VM_WARN_ON_ONCE(!success);
5037 
5038 			if (!--remaining)
5039 				return false;
5040 		}
5041 	}
5042 
5043 	return true;
5044 }
5045 
drain_evictable(struct lruvec * lruvec)5046 static bool drain_evictable(struct lruvec *lruvec)
5047 {
5048 	int gen, type, zone;
5049 	int remaining = MAX_LRU_BATCH;
5050 
5051 	for_each_gen_type_zone(gen, type, zone) {
5052 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5053 
5054 		while (!list_empty(head)) {
5055 			bool success;
5056 			struct folio *folio = lru_to_folio(head);
5057 
5058 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5059 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5060 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5061 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5062 
5063 			success = lru_gen_del_folio(lruvec, folio, false);
5064 			VM_WARN_ON_ONCE(!success);
5065 			lruvec_add_folio(lruvec, folio);
5066 
5067 			if (!--remaining)
5068 				return false;
5069 		}
5070 	}
5071 
5072 	return true;
5073 }
5074 
lru_gen_change_state(bool enabled)5075 static void lru_gen_change_state(bool enabled)
5076 {
5077 	static DEFINE_MUTEX(state_mutex);
5078 
5079 	struct mem_cgroup *memcg;
5080 
5081 	cgroup_lock();
5082 	cpus_read_lock();
5083 	get_online_mems();
5084 	mutex_lock(&state_mutex);
5085 
5086 	if (enabled == lru_gen_enabled())
5087 		goto unlock;
5088 
5089 	if (enabled)
5090 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5091 	else
5092 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5093 
5094 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5095 	do {
5096 		int nid;
5097 
5098 		for_each_node(nid) {
5099 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5100 
5101 			spin_lock_irq(&lruvec->lru_lock);
5102 
5103 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5104 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5105 
5106 			lruvec->lrugen.enabled = enabled;
5107 
5108 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5109 				spin_unlock_irq(&lruvec->lru_lock);
5110 				cond_resched();
5111 				spin_lock_irq(&lruvec->lru_lock);
5112 			}
5113 
5114 			spin_unlock_irq(&lruvec->lru_lock);
5115 		}
5116 
5117 		cond_resched();
5118 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5119 unlock:
5120 	mutex_unlock(&state_mutex);
5121 	put_online_mems();
5122 	cpus_read_unlock();
5123 	cgroup_unlock();
5124 }
5125 
5126 /******************************************************************************
5127  *                          sysfs interface
5128  ******************************************************************************/
5129 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5130 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5131 {
5132 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5133 }
5134 
5135 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5136 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5137 				const char *buf, size_t len)
5138 {
5139 	unsigned int msecs;
5140 
5141 	if (kstrtouint(buf, 0, &msecs))
5142 		return -EINVAL;
5143 
5144 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5145 
5146 	return len;
5147 }
5148 
5149 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5150 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5151 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5152 {
5153 	unsigned int caps = 0;
5154 
5155 	if (get_cap(LRU_GEN_CORE))
5156 		caps |= BIT(LRU_GEN_CORE);
5157 
5158 	if (should_walk_mmu())
5159 		caps |= BIT(LRU_GEN_MM_WALK);
5160 
5161 	if (should_clear_pmd_young())
5162 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5163 
5164 	return sysfs_emit(buf, "0x%04x\n", caps);
5165 }
5166 
5167 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5168 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5169 			     const char *buf, size_t len)
5170 {
5171 	int i;
5172 	unsigned int caps;
5173 
5174 	if (tolower(*buf) == 'n')
5175 		caps = 0;
5176 	else if (tolower(*buf) == 'y')
5177 		caps = -1;
5178 	else if (kstrtouint(buf, 0, &caps))
5179 		return -EINVAL;
5180 
5181 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5182 		bool enabled = caps & BIT(i);
5183 
5184 		if (i == LRU_GEN_CORE)
5185 			lru_gen_change_state(enabled);
5186 		else if (enabled)
5187 			static_branch_enable(&lru_gen_caps[i]);
5188 		else
5189 			static_branch_disable(&lru_gen_caps[i]);
5190 	}
5191 
5192 	return len;
5193 }
5194 
5195 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5196 
5197 static struct attribute *lru_gen_attrs[] = {
5198 	&lru_gen_min_ttl_attr.attr,
5199 	&lru_gen_enabled_attr.attr,
5200 	NULL
5201 };
5202 
5203 static const struct attribute_group lru_gen_attr_group = {
5204 	.name = "lru_gen",
5205 	.attrs = lru_gen_attrs,
5206 };
5207 
5208 /******************************************************************************
5209  *                          debugfs interface
5210  ******************************************************************************/
5211 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5212 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5213 {
5214 	struct mem_cgroup *memcg;
5215 	loff_t nr_to_skip = *pos;
5216 
5217 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5218 	if (!m->private)
5219 		return ERR_PTR(-ENOMEM);
5220 
5221 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5222 	do {
5223 		int nid;
5224 
5225 		for_each_node_state(nid, N_MEMORY) {
5226 			if (!nr_to_skip--)
5227 				return get_lruvec(memcg, nid);
5228 		}
5229 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5230 
5231 	return NULL;
5232 }
5233 
lru_gen_seq_stop(struct seq_file * m,void * v)5234 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5235 {
5236 	if (!IS_ERR_OR_NULL(v))
5237 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5238 
5239 	kvfree(m->private);
5240 	m->private = NULL;
5241 }
5242 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5243 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5244 {
5245 	int nid = lruvec_pgdat(v)->node_id;
5246 	struct mem_cgroup *memcg = lruvec_memcg(v);
5247 
5248 	++*pos;
5249 
5250 	nid = next_memory_node(nid);
5251 	if (nid == MAX_NUMNODES) {
5252 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5253 		if (!memcg)
5254 			return NULL;
5255 
5256 		nid = first_memory_node;
5257 	}
5258 
5259 	return get_lruvec(memcg, nid);
5260 }
5261 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5262 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5263 				  unsigned long max_seq, unsigned long *min_seq,
5264 				  unsigned long seq)
5265 {
5266 	int i;
5267 	int type, tier;
5268 	int hist = lru_hist_from_seq(seq);
5269 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5270 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5271 
5272 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5273 		seq_printf(m, "            %10d", tier);
5274 		for (type = 0; type < ANON_AND_FILE; type++) {
5275 			const char *s = "xxx";
5276 			unsigned long n[3] = {};
5277 
5278 			if (seq == max_seq) {
5279 				s = "RTx";
5280 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5281 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5282 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5283 				s = "rep";
5284 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5285 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5286 				if (tier)
5287 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5288 			}
5289 
5290 			for (i = 0; i < 3; i++)
5291 				seq_printf(m, " %10lu%c", n[i], s[i]);
5292 		}
5293 		seq_putc(m, '\n');
5294 	}
5295 
5296 	if (!mm_state)
5297 		return;
5298 
5299 	seq_puts(m, "                      ");
5300 	for (i = 0; i < NR_MM_STATS; i++) {
5301 		const char *s = "xxxx";
5302 		unsigned long n = 0;
5303 
5304 		if (seq == max_seq && NR_HIST_GENS == 1) {
5305 			s = "TYFA";
5306 			n = READ_ONCE(mm_state->stats[hist][i]);
5307 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5308 			s = "tyfa";
5309 			n = READ_ONCE(mm_state->stats[hist][i]);
5310 		}
5311 
5312 		seq_printf(m, " %10lu%c", n, s[i]);
5313 	}
5314 	seq_putc(m, '\n');
5315 }
5316 
5317 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5318 static int lru_gen_seq_show(struct seq_file *m, void *v)
5319 {
5320 	unsigned long seq;
5321 	bool full = !debugfs_real_fops(m->file)->write;
5322 	struct lruvec *lruvec = v;
5323 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5324 	int nid = lruvec_pgdat(lruvec)->node_id;
5325 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5326 	DEFINE_MAX_SEQ(lruvec);
5327 	DEFINE_MIN_SEQ(lruvec);
5328 
5329 	if (nid == first_memory_node) {
5330 		const char *path = memcg ? m->private : "";
5331 
5332 #ifdef CONFIG_MEMCG
5333 		if (memcg)
5334 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5335 #endif
5336 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5337 	}
5338 
5339 	seq_printf(m, " node %5d\n", nid);
5340 
5341 	if (!full)
5342 		seq = min_seq[LRU_GEN_ANON];
5343 	else if (max_seq >= MAX_NR_GENS)
5344 		seq = max_seq - MAX_NR_GENS + 1;
5345 	else
5346 		seq = 0;
5347 
5348 	for (; seq <= max_seq; seq++) {
5349 		int type, zone;
5350 		int gen = lru_gen_from_seq(seq);
5351 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5352 
5353 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5354 
5355 		for (type = 0; type < ANON_AND_FILE; type++) {
5356 			unsigned long size = 0;
5357 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5358 
5359 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5360 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5361 
5362 			seq_printf(m, " %10lu%c", size, mark);
5363 		}
5364 
5365 		seq_putc(m, '\n');
5366 
5367 		if (full)
5368 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5369 	}
5370 
5371 	return 0;
5372 }
5373 
5374 static const struct seq_operations lru_gen_seq_ops = {
5375 	.start = lru_gen_seq_start,
5376 	.stop = lru_gen_seq_stop,
5377 	.next = lru_gen_seq_next,
5378 	.show = lru_gen_seq_show,
5379 };
5380 
run_aging(struct lruvec * lruvec,unsigned long seq,bool can_swap,bool force_scan)5381 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5382 		     bool can_swap, bool force_scan)
5383 {
5384 	DEFINE_MAX_SEQ(lruvec);
5385 	DEFINE_MIN_SEQ(lruvec);
5386 
5387 	if (seq < max_seq)
5388 		return 0;
5389 
5390 	if (seq > max_seq)
5391 		return -EINVAL;
5392 
5393 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5394 		return -ERANGE;
5395 
5396 	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5397 
5398 	return 0;
5399 }
5400 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5401 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5402 			int swappiness, unsigned long nr_to_reclaim)
5403 {
5404 	DEFINE_MAX_SEQ(lruvec);
5405 
5406 	if (seq + MIN_NR_GENS > max_seq)
5407 		return -EINVAL;
5408 
5409 	sc->nr_reclaimed = 0;
5410 
5411 	while (!signal_pending(current)) {
5412 		DEFINE_MIN_SEQ(lruvec);
5413 
5414 		if (seq < min_seq[!swappiness])
5415 			return 0;
5416 
5417 		if (sc->nr_reclaimed >= nr_to_reclaim)
5418 			return 0;
5419 
5420 		if (!evict_folios(lruvec, sc, swappiness))
5421 			return 0;
5422 
5423 		cond_resched();
5424 	}
5425 
5426 	return -EINTR;
5427 }
5428 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5429 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5430 		   struct scan_control *sc, int swappiness, unsigned long opt)
5431 {
5432 	struct lruvec *lruvec;
5433 	int err = -EINVAL;
5434 	struct mem_cgroup *memcg = NULL;
5435 
5436 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5437 		return -EINVAL;
5438 
5439 	if (!mem_cgroup_disabled()) {
5440 		rcu_read_lock();
5441 
5442 		memcg = mem_cgroup_from_id(memcg_id);
5443 		if (!mem_cgroup_tryget(memcg))
5444 			memcg = NULL;
5445 
5446 		rcu_read_unlock();
5447 
5448 		if (!memcg)
5449 			return -EINVAL;
5450 	}
5451 
5452 	if (memcg_id != mem_cgroup_id(memcg))
5453 		goto done;
5454 
5455 	lruvec = get_lruvec(memcg, nid);
5456 
5457 	if (swappiness < MIN_SWAPPINESS)
5458 		swappiness = get_swappiness(lruvec, sc);
5459 	else if (swappiness > MAX_SWAPPINESS)
5460 		goto done;
5461 
5462 	switch (cmd) {
5463 	case '+':
5464 		err = run_aging(lruvec, seq, swappiness, opt);
5465 		break;
5466 	case '-':
5467 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5468 		break;
5469 	}
5470 done:
5471 	mem_cgroup_put(memcg);
5472 
5473 	return err;
5474 }
5475 
5476 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5477 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5478 				 size_t len, loff_t *pos)
5479 {
5480 	void *buf;
5481 	char *cur, *next;
5482 	unsigned int flags;
5483 	struct blk_plug plug;
5484 	int err = -EINVAL;
5485 	struct scan_control sc = {
5486 		.may_writepage = true,
5487 		.may_unmap = true,
5488 		.may_swap = true,
5489 		.reclaim_idx = MAX_NR_ZONES - 1,
5490 		.gfp_mask = GFP_KERNEL,
5491 	};
5492 
5493 	buf = kvmalloc(len + 1, GFP_KERNEL);
5494 	if (!buf)
5495 		return -ENOMEM;
5496 
5497 	if (copy_from_user(buf, src, len)) {
5498 		kvfree(buf);
5499 		return -EFAULT;
5500 	}
5501 
5502 	set_task_reclaim_state(current, &sc.reclaim_state);
5503 	flags = memalloc_noreclaim_save();
5504 	blk_start_plug(&plug);
5505 	if (!set_mm_walk(NULL, true)) {
5506 		err = -ENOMEM;
5507 		goto done;
5508 	}
5509 
5510 	next = buf;
5511 	next[len] = '\0';
5512 
5513 	while ((cur = strsep(&next, ",;\n"))) {
5514 		int n;
5515 		int end;
5516 		char cmd;
5517 		unsigned int memcg_id;
5518 		unsigned int nid;
5519 		unsigned long seq;
5520 		unsigned int swappiness = -1;
5521 		unsigned long opt = -1;
5522 
5523 		cur = skip_spaces(cur);
5524 		if (!*cur)
5525 			continue;
5526 
5527 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5528 			   &seq, &end, &swappiness, &end, &opt, &end);
5529 		if (n < 4 || cur[end]) {
5530 			err = -EINVAL;
5531 			break;
5532 		}
5533 
5534 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5535 		if (err)
5536 			break;
5537 	}
5538 done:
5539 	clear_mm_walk();
5540 	blk_finish_plug(&plug);
5541 	memalloc_noreclaim_restore(flags);
5542 	set_task_reclaim_state(current, NULL);
5543 
5544 	kvfree(buf);
5545 
5546 	return err ? : len;
5547 }
5548 
lru_gen_seq_open(struct inode * inode,struct file * file)5549 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5550 {
5551 	return seq_open(file, &lru_gen_seq_ops);
5552 }
5553 
5554 static const struct file_operations lru_gen_rw_fops = {
5555 	.open = lru_gen_seq_open,
5556 	.read = seq_read,
5557 	.write = lru_gen_seq_write,
5558 	.llseek = seq_lseek,
5559 	.release = seq_release,
5560 };
5561 
5562 static const struct file_operations lru_gen_ro_fops = {
5563 	.open = lru_gen_seq_open,
5564 	.read = seq_read,
5565 	.llseek = seq_lseek,
5566 	.release = seq_release,
5567 };
5568 
5569 /******************************************************************************
5570  *                          initialization
5571  ******************************************************************************/
5572 
lru_gen_init_pgdat(struct pglist_data * pgdat)5573 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5574 {
5575 	int i, j;
5576 
5577 	spin_lock_init(&pgdat->memcg_lru.lock);
5578 
5579 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5580 		for (j = 0; j < MEMCG_NR_BINS; j++)
5581 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5582 	}
5583 }
5584 
lru_gen_init_lruvec(struct lruvec * lruvec)5585 void lru_gen_init_lruvec(struct lruvec *lruvec)
5586 {
5587 	int i;
5588 	int gen, type, zone;
5589 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5590 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5591 
5592 	lrugen->max_seq = MIN_NR_GENS + 1;
5593 	lrugen->enabled = lru_gen_enabled();
5594 
5595 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5596 		lrugen->timestamps[i] = jiffies;
5597 
5598 	for_each_gen_type_zone(gen, type, zone)
5599 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5600 
5601 	if (mm_state)
5602 		mm_state->seq = MIN_NR_GENS;
5603 }
5604 
5605 #ifdef CONFIG_MEMCG
5606 
lru_gen_init_memcg(struct mem_cgroup * memcg)5607 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5608 {
5609 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5610 
5611 	if (!mm_list)
5612 		return;
5613 
5614 	INIT_LIST_HEAD(&mm_list->fifo);
5615 	spin_lock_init(&mm_list->lock);
5616 }
5617 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5618 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5619 {
5620 	int i;
5621 	int nid;
5622 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5623 
5624 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5625 
5626 	for_each_node(nid) {
5627 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5628 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5629 
5630 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5631 					   sizeof(lruvec->lrugen.nr_pages)));
5632 
5633 		lruvec->lrugen.list.next = LIST_POISON1;
5634 
5635 		if (!mm_state)
5636 			continue;
5637 
5638 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5639 			bitmap_free(mm_state->filters[i]);
5640 			mm_state->filters[i] = NULL;
5641 		}
5642 	}
5643 }
5644 
5645 #endif /* CONFIG_MEMCG */
5646 
init_lru_gen(void)5647 static int __init init_lru_gen(void)
5648 {
5649 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5650 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5651 
5652 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5653 		pr_err("lru_gen: failed to create sysfs group\n");
5654 
5655 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5656 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5657 
5658 	return 0;
5659 };
5660 late_initcall(init_lru_gen);
5661 
5662 #else /* !CONFIG_LRU_GEN */
5663 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5664 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5665 {
5666 	BUILD_BUG();
5667 }
5668 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5669 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5670 {
5671 	BUILD_BUG();
5672 }
5673 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5674 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5675 {
5676 	BUILD_BUG();
5677 }
5678 
5679 #endif /* CONFIG_LRU_GEN */
5680 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5681 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5682 {
5683 	unsigned long nr[NR_LRU_LISTS];
5684 	unsigned long targets[NR_LRU_LISTS];
5685 	unsigned long nr_to_scan;
5686 	enum lru_list lru;
5687 	unsigned long nr_reclaimed = 0;
5688 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5689 	bool proportional_reclaim;
5690 	struct blk_plug plug;
5691 
5692 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5693 		lru_gen_shrink_lruvec(lruvec, sc);
5694 		return;
5695 	}
5696 
5697 	get_scan_count(lruvec, sc, nr);
5698 
5699 	/* Record the original scan target for proportional adjustments later */
5700 	memcpy(targets, nr, sizeof(nr));
5701 
5702 	/*
5703 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5704 	 * event that can occur when there is little memory pressure e.g.
5705 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5706 	 * when the requested number of pages are reclaimed when scanning at
5707 	 * DEF_PRIORITY on the assumption that the fact we are direct
5708 	 * reclaiming implies that kswapd is not keeping up and it is best to
5709 	 * do a batch of work at once. For memcg reclaim one check is made to
5710 	 * abort proportional reclaim if either the file or anon lru has already
5711 	 * dropped to zero at the first pass.
5712 	 */
5713 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5714 				sc->priority == DEF_PRIORITY);
5715 
5716 	blk_start_plug(&plug);
5717 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5718 					nr[LRU_INACTIVE_FILE]) {
5719 		unsigned long nr_anon, nr_file, percentage;
5720 		unsigned long nr_scanned;
5721 
5722 		for_each_evictable_lru(lru) {
5723 			if (nr[lru]) {
5724 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5725 				nr[lru] -= nr_to_scan;
5726 
5727 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5728 							    lruvec, sc);
5729 			}
5730 		}
5731 
5732 		cond_resched();
5733 
5734 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5735 			continue;
5736 
5737 		/*
5738 		 * For kswapd and memcg, reclaim at least the number of pages
5739 		 * requested. Ensure that the anon and file LRUs are scanned
5740 		 * proportionally what was requested by get_scan_count(). We
5741 		 * stop reclaiming one LRU and reduce the amount scanning
5742 		 * proportional to the original scan target.
5743 		 */
5744 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5745 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5746 
5747 		/*
5748 		 * It's just vindictive to attack the larger once the smaller
5749 		 * has gone to zero.  And given the way we stop scanning the
5750 		 * smaller below, this makes sure that we only make one nudge
5751 		 * towards proportionality once we've got nr_to_reclaim.
5752 		 */
5753 		if (!nr_file || !nr_anon)
5754 			break;
5755 
5756 		if (nr_file > nr_anon) {
5757 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5758 						targets[LRU_ACTIVE_ANON] + 1;
5759 			lru = LRU_BASE;
5760 			percentage = nr_anon * 100 / scan_target;
5761 		} else {
5762 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5763 						targets[LRU_ACTIVE_FILE] + 1;
5764 			lru = LRU_FILE;
5765 			percentage = nr_file * 100 / scan_target;
5766 		}
5767 
5768 		/* Stop scanning the smaller of the LRU */
5769 		nr[lru] = 0;
5770 		nr[lru + LRU_ACTIVE] = 0;
5771 
5772 		/*
5773 		 * Recalculate the other LRU scan count based on its original
5774 		 * scan target and the percentage scanning already complete
5775 		 */
5776 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5777 		nr_scanned = targets[lru] - nr[lru];
5778 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5779 		nr[lru] -= min(nr[lru], nr_scanned);
5780 
5781 		lru += LRU_ACTIVE;
5782 		nr_scanned = targets[lru] - nr[lru];
5783 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5784 		nr[lru] -= min(nr[lru], nr_scanned);
5785 	}
5786 	blk_finish_plug(&plug);
5787 	sc->nr_reclaimed += nr_reclaimed;
5788 
5789 	/*
5790 	 * Even if we did not try to evict anon pages at all, we want to
5791 	 * rebalance the anon lru active/inactive ratio.
5792 	 */
5793 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5794 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5795 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5796 				   sc, LRU_ACTIVE_ANON);
5797 }
5798 
5799 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5800 static bool in_reclaim_compaction(struct scan_control *sc)
5801 {
5802 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5803 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5804 			 sc->priority < DEF_PRIORITY - 2))
5805 		return true;
5806 
5807 	return false;
5808 }
5809 
5810 /*
5811  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5812  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5813  * true if more pages should be reclaimed such that when the page allocator
5814  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5815  * It will give up earlier than that if there is difficulty reclaiming pages.
5816  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5817 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5818 					unsigned long nr_reclaimed,
5819 					struct scan_control *sc)
5820 {
5821 	unsigned long pages_for_compaction;
5822 	unsigned long inactive_lru_pages;
5823 	int z;
5824 
5825 	/* If not in reclaim/compaction mode, stop */
5826 	if (!in_reclaim_compaction(sc))
5827 		return false;
5828 
5829 	/*
5830 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5831 	 * number of pages that were scanned. This will return to the caller
5832 	 * with the risk reclaim/compaction and the resulting allocation attempt
5833 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5834 	 * allocations through requiring that the full LRU list has been scanned
5835 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5836 	 * scan, but that approximation was wrong, and there were corner cases
5837 	 * where always a non-zero amount of pages were scanned.
5838 	 */
5839 	if (!nr_reclaimed)
5840 		return false;
5841 
5842 	/* If compaction would go ahead or the allocation would succeed, stop */
5843 	for (z = 0; z <= sc->reclaim_idx; z++) {
5844 		struct zone *zone = &pgdat->node_zones[z];
5845 		if (!managed_zone(zone))
5846 			continue;
5847 
5848 		/* Allocation can already succeed, nothing to do */
5849 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5850 				      sc->reclaim_idx, 0))
5851 			return false;
5852 
5853 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5854 			return false;
5855 	}
5856 
5857 	/*
5858 	 * If we have not reclaimed enough pages for compaction and the
5859 	 * inactive lists are large enough, continue reclaiming
5860 	 */
5861 	pages_for_compaction = compact_gap(sc->order);
5862 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5863 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5864 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5865 
5866 	return inactive_lru_pages > pages_for_compaction;
5867 }
5868 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5869 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5870 {
5871 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5872 	struct mem_cgroup_reclaim_cookie reclaim = {
5873 		.pgdat = pgdat,
5874 	};
5875 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5876 	struct mem_cgroup *memcg;
5877 
5878 	/*
5879 	 * In most cases, direct reclaimers can do partial walks
5880 	 * through the cgroup tree, using an iterator state that
5881 	 * persists across invocations. This strikes a balance between
5882 	 * fairness and allocation latency.
5883 	 *
5884 	 * For kswapd, reliable forward progress is more important
5885 	 * than a quick return to idle. Always do full walks.
5886 	 */
5887 	if (current_is_kswapd() || sc->memcg_full_walk)
5888 		partial = NULL;
5889 
5890 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5891 	do {
5892 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5893 		unsigned long reclaimed;
5894 		unsigned long scanned;
5895 
5896 		/*
5897 		 * This loop can become CPU-bound when target memcgs
5898 		 * aren't eligible for reclaim - either because they
5899 		 * don't have any reclaimable pages, or because their
5900 		 * memory is explicitly protected. Avoid soft lockups.
5901 		 */
5902 		cond_resched();
5903 
5904 		mem_cgroup_calculate_protection(target_memcg, memcg);
5905 
5906 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5907 			/*
5908 			 * Hard protection.
5909 			 * If there is no reclaimable memory, OOM.
5910 			 */
5911 			continue;
5912 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5913 			/*
5914 			 * Soft protection.
5915 			 * Respect the protection only as long as
5916 			 * there is an unprotected supply
5917 			 * of reclaimable memory from other cgroups.
5918 			 */
5919 			if (!sc->memcg_low_reclaim) {
5920 				sc->memcg_low_skipped = 1;
5921 				continue;
5922 			}
5923 			memcg_memory_event(memcg, MEMCG_LOW);
5924 		}
5925 
5926 		reclaimed = sc->nr_reclaimed;
5927 		scanned = sc->nr_scanned;
5928 
5929 		shrink_lruvec(lruvec, sc);
5930 
5931 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5932 			    sc->priority);
5933 
5934 		/* Record the group's reclaim efficiency */
5935 		if (!sc->proactive)
5936 			vmpressure(sc->gfp_mask, memcg, false,
5937 				   sc->nr_scanned - scanned,
5938 				   sc->nr_reclaimed - reclaimed);
5939 
5940 		/* If partial walks are allowed, bail once goal is reached */
5941 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5942 			mem_cgroup_iter_break(target_memcg, memcg);
5943 			break;
5944 		}
5945 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5946 }
5947 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)5948 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5949 {
5950 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5951 	struct lruvec *target_lruvec;
5952 	bool reclaimable = false;
5953 
5954 	if (lru_gen_enabled() && root_reclaim(sc)) {
5955 		memset(&sc->nr, 0, sizeof(sc->nr));
5956 		lru_gen_shrink_node(pgdat, sc);
5957 		return;
5958 	}
5959 
5960 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5961 
5962 again:
5963 	memset(&sc->nr, 0, sizeof(sc->nr));
5964 
5965 	nr_reclaimed = sc->nr_reclaimed;
5966 	nr_scanned = sc->nr_scanned;
5967 
5968 	prepare_scan_control(pgdat, sc);
5969 
5970 	shrink_node_memcgs(pgdat, sc);
5971 
5972 	flush_reclaim_state(sc);
5973 
5974 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5975 
5976 	/* Record the subtree's reclaim efficiency */
5977 	if (!sc->proactive)
5978 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5979 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5980 
5981 	if (nr_node_reclaimed)
5982 		reclaimable = true;
5983 
5984 	if (current_is_kswapd()) {
5985 		/*
5986 		 * If reclaim is isolating dirty pages under writeback,
5987 		 * it implies that the long-lived page allocation rate
5988 		 * is exceeding the page laundering rate. Either the
5989 		 * global limits are not being effective at throttling
5990 		 * processes due to the page distribution throughout
5991 		 * zones or there is heavy usage of a slow backing
5992 		 * device. The only option is to throttle from reclaim
5993 		 * context which is not ideal as there is no guarantee
5994 		 * the dirtying process is throttled in the same way
5995 		 * balance_dirty_pages() manages.
5996 		 *
5997 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5998 		 * count the number of pages under pages flagged for
5999 		 * immediate reclaim and stall if any are encountered
6000 		 * in the nr_immediate check below.
6001 		 */
6002 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6003 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6004 
6005 		/* Allow kswapd to start writing pages during reclaim.*/
6006 		if (sc->nr.unqueued_dirty &&
6007 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6008 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6009 
6010 		/*
6011 		 * If kswapd scans pages marked for immediate
6012 		 * reclaim and under writeback (nr_immediate), it
6013 		 * implies that pages are cycling through the LRU
6014 		 * faster than they are written so forcibly stall
6015 		 * until some pages complete writeback.
6016 		 */
6017 		if (sc->nr.immediate)
6018 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6019 	}
6020 
6021 	/*
6022 	 * Tag a node/memcg as congested if all the dirty pages were marked
6023 	 * for writeback and immediate reclaim (counted in nr.congested).
6024 	 *
6025 	 * Legacy memcg will stall in page writeback so avoid forcibly
6026 	 * stalling in reclaim_throttle().
6027 	 */
6028 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6029 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6030 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6031 
6032 		if (current_is_kswapd())
6033 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6034 	}
6035 
6036 	/*
6037 	 * Stall direct reclaim for IO completions if the lruvec is
6038 	 * node is congested. Allow kswapd to continue until it
6039 	 * starts encountering unqueued dirty pages or cycling through
6040 	 * the LRU too quickly.
6041 	 */
6042 	if (!current_is_kswapd() && current_may_throttle() &&
6043 	    !sc->hibernation_mode &&
6044 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6045 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6046 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6047 
6048 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6049 		goto again;
6050 
6051 	/*
6052 	 * Kswapd gives up on balancing particular nodes after too
6053 	 * many failures to reclaim anything from them and goes to
6054 	 * sleep. On reclaim progress, reset the failure counter. A
6055 	 * successful direct reclaim run will revive a dormant kswapd.
6056 	 */
6057 	if (reclaimable)
6058 		pgdat->kswapd_failures = 0;
6059 	else if (sc->cache_trim_mode)
6060 		sc->cache_trim_mode_failed = 1;
6061 }
6062 
6063 /*
6064  * Returns true if compaction should go ahead for a costly-order request, or
6065  * the allocation would already succeed without compaction. Return false if we
6066  * should reclaim first.
6067  */
compaction_ready(struct zone * zone,struct scan_control * sc)6068 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6069 {
6070 	unsigned long watermark;
6071 
6072 	if (!gfp_compaction_allowed(sc->gfp_mask))
6073 		return false;
6074 
6075 	/* Allocation can already succeed, nothing to do */
6076 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6077 			      sc->reclaim_idx, 0))
6078 		return true;
6079 
6080 	/* Compaction cannot yet proceed. Do reclaim. */
6081 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6082 		return false;
6083 
6084 	/*
6085 	 * Compaction is already possible, but it takes time to run and there
6086 	 * are potentially other callers using the pages just freed. So proceed
6087 	 * with reclaim to make a buffer of free pages available to give
6088 	 * compaction a reasonable chance of completing and allocating the page.
6089 	 * Note that we won't actually reclaim the whole buffer in one attempt
6090 	 * as the target watermark in should_continue_reclaim() is lower. But if
6091 	 * we are already above the high+gap watermark, don't reclaim at all.
6092 	 */
6093 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6094 
6095 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6096 }
6097 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6098 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6099 {
6100 	/*
6101 	 * If reclaim is making progress greater than 12% efficiency then
6102 	 * wake all the NOPROGRESS throttled tasks.
6103 	 */
6104 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6105 		wait_queue_head_t *wqh;
6106 
6107 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6108 		if (waitqueue_active(wqh))
6109 			wake_up(wqh);
6110 
6111 		return;
6112 	}
6113 
6114 	/*
6115 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6116 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6117 	 * under writeback and marked for immediate reclaim at the tail of the
6118 	 * LRU.
6119 	 */
6120 	if (current_is_kswapd() || cgroup_reclaim(sc))
6121 		return;
6122 
6123 	/* Throttle if making no progress at high prioities. */
6124 	if (sc->priority == 1 && !sc->nr_reclaimed)
6125 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6126 }
6127 
6128 /*
6129  * This is the direct reclaim path, for page-allocating processes.  We only
6130  * try to reclaim pages from zones which will satisfy the caller's allocation
6131  * request.
6132  *
6133  * If a zone is deemed to be full of pinned pages then just give it a light
6134  * scan then give up on it.
6135  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6136 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6137 {
6138 	struct zoneref *z;
6139 	struct zone *zone;
6140 	unsigned long nr_soft_reclaimed;
6141 	unsigned long nr_soft_scanned;
6142 	gfp_t orig_mask;
6143 	pg_data_t *last_pgdat = NULL;
6144 	pg_data_t *first_pgdat = NULL;
6145 
6146 	/*
6147 	 * If the number of buffer_heads in the machine exceeds the maximum
6148 	 * allowed level, force direct reclaim to scan the highmem zone as
6149 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6150 	 */
6151 	orig_mask = sc->gfp_mask;
6152 	if (buffer_heads_over_limit) {
6153 		sc->gfp_mask |= __GFP_HIGHMEM;
6154 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6155 	}
6156 
6157 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6158 					sc->reclaim_idx, sc->nodemask) {
6159 		/*
6160 		 * Take care memory controller reclaiming has small influence
6161 		 * to global LRU.
6162 		 */
6163 		if (!cgroup_reclaim(sc)) {
6164 			if (!cpuset_zone_allowed(zone,
6165 						 GFP_KERNEL | __GFP_HARDWALL))
6166 				continue;
6167 
6168 			/*
6169 			 * If we already have plenty of memory free for
6170 			 * compaction in this zone, don't free any more.
6171 			 * Even though compaction is invoked for any
6172 			 * non-zero order, only frequent costly order
6173 			 * reclamation is disruptive enough to become a
6174 			 * noticeable problem, like transparent huge
6175 			 * page allocations.
6176 			 */
6177 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6178 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6179 			    compaction_ready(zone, sc)) {
6180 				sc->compaction_ready = true;
6181 				continue;
6182 			}
6183 
6184 			/*
6185 			 * Shrink each node in the zonelist once. If the
6186 			 * zonelist is ordered by zone (not the default) then a
6187 			 * node may be shrunk multiple times but in that case
6188 			 * the user prefers lower zones being preserved.
6189 			 */
6190 			if (zone->zone_pgdat == last_pgdat)
6191 				continue;
6192 
6193 			/*
6194 			 * This steals pages from memory cgroups over softlimit
6195 			 * and returns the number of reclaimed pages and
6196 			 * scanned pages. This works for global memory pressure
6197 			 * and balancing, not for a memcg's limit.
6198 			 */
6199 			nr_soft_scanned = 0;
6200 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6201 								      sc->order, sc->gfp_mask,
6202 								      &nr_soft_scanned);
6203 			sc->nr_reclaimed += nr_soft_reclaimed;
6204 			sc->nr_scanned += nr_soft_scanned;
6205 			/* need some check for avoid more shrink_zone() */
6206 		}
6207 
6208 		if (!first_pgdat)
6209 			first_pgdat = zone->zone_pgdat;
6210 
6211 		/* See comment about same check for global reclaim above */
6212 		if (zone->zone_pgdat == last_pgdat)
6213 			continue;
6214 		last_pgdat = zone->zone_pgdat;
6215 		shrink_node(zone->zone_pgdat, sc);
6216 	}
6217 
6218 	if (first_pgdat)
6219 		consider_reclaim_throttle(first_pgdat, sc);
6220 
6221 	/*
6222 	 * Restore to original mask to avoid the impact on the caller if we
6223 	 * promoted it to __GFP_HIGHMEM.
6224 	 */
6225 	sc->gfp_mask = orig_mask;
6226 }
6227 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6228 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6229 {
6230 	struct lruvec *target_lruvec;
6231 	unsigned long refaults;
6232 
6233 	if (lru_gen_enabled())
6234 		return;
6235 
6236 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6237 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6238 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6239 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6240 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6241 }
6242 
6243 /*
6244  * This is the main entry point to direct page reclaim.
6245  *
6246  * If a full scan of the inactive list fails to free enough memory then we
6247  * are "out of memory" and something needs to be killed.
6248  *
6249  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6250  * high - the zone may be full of dirty or under-writeback pages, which this
6251  * caller can't do much about.  We kick the writeback threads and take explicit
6252  * naps in the hope that some of these pages can be written.  But if the
6253  * allocating task holds filesystem locks which prevent writeout this might not
6254  * work, and the allocation attempt will fail.
6255  *
6256  * returns:	0, if no pages reclaimed
6257  * 		else, the number of pages reclaimed
6258  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6259 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6260 					  struct scan_control *sc)
6261 {
6262 	int initial_priority = sc->priority;
6263 	pg_data_t *last_pgdat;
6264 	struct zoneref *z;
6265 	struct zone *zone;
6266 retry:
6267 	delayacct_freepages_start();
6268 
6269 	if (!cgroup_reclaim(sc))
6270 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6271 
6272 	do {
6273 		if (!sc->proactive)
6274 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6275 					sc->priority);
6276 		sc->nr_scanned = 0;
6277 		shrink_zones(zonelist, sc);
6278 
6279 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6280 			break;
6281 
6282 		if (sc->compaction_ready)
6283 			break;
6284 
6285 		/*
6286 		 * If we're getting trouble reclaiming, start doing
6287 		 * writepage even in laptop mode.
6288 		 */
6289 		if (sc->priority < DEF_PRIORITY - 2)
6290 			sc->may_writepage = 1;
6291 	} while (--sc->priority >= 0);
6292 
6293 	last_pgdat = NULL;
6294 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6295 					sc->nodemask) {
6296 		if (zone->zone_pgdat == last_pgdat)
6297 			continue;
6298 		last_pgdat = zone->zone_pgdat;
6299 
6300 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6301 
6302 		if (cgroup_reclaim(sc)) {
6303 			struct lruvec *lruvec;
6304 
6305 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6306 						   zone->zone_pgdat);
6307 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6308 		}
6309 	}
6310 
6311 	delayacct_freepages_end();
6312 
6313 	if (sc->nr_reclaimed)
6314 		return sc->nr_reclaimed;
6315 
6316 	/* Aborted reclaim to try compaction? don't OOM, then */
6317 	if (sc->compaction_ready)
6318 		return 1;
6319 
6320 	/*
6321 	 * In most cases, direct reclaimers can do partial walks
6322 	 * through the cgroup tree to meet the reclaim goal while
6323 	 * keeping latency low. Since the iterator state is shared
6324 	 * among all direct reclaim invocations (to retain fairness
6325 	 * among cgroups), though, high concurrency can result in
6326 	 * individual threads not seeing enough cgroups to make
6327 	 * meaningful forward progress. Avoid false OOMs in this case.
6328 	 */
6329 	if (!sc->memcg_full_walk) {
6330 		sc->priority = initial_priority;
6331 		sc->memcg_full_walk = 1;
6332 		goto retry;
6333 	}
6334 
6335 	/*
6336 	 * We make inactive:active ratio decisions based on the node's
6337 	 * composition of memory, but a restrictive reclaim_idx or a
6338 	 * memory.low cgroup setting can exempt large amounts of
6339 	 * memory from reclaim. Neither of which are very common, so
6340 	 * instead of doing costly eligibility calculations of the
6341 	 * entire cgroup subtree up front, we assume the estimates are
6342 	 * good, and retry with forcible deactivation if that fails.
6343 	 */
6344 	if (sc->skipped_deactivate) {
6345 		sc->priority = initial_priority;
6346 		sc->force_deactivate = 1;
6347 		sc->skipped_deactivate = 0;
6348 		goto retry;
6349 	}
6350 
6351 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6352 	if (sc->memcg_low_skipped) {
6353 		sc->priority = initial_priority;
6354 		sc->force_deactivate = 0;
6355 		sc->memcg_low_reclaim = 1;
6356 		sc->memcg_low_skipped = 0;
6357 		goto retry;
6358 	}
6359 
6360 	return 0;
6361 }
6362 
allow_direct_reclaim(pg_data_t * pgdat)6363 static bool allow_direct_reclaim(pg_data_t *pgdat)
6364 {
6365 	struct zone *zone;
6366 	unsigned long pfmemalloc_reserve = 0;
6367 	unsigned long free_pages = 0;
6368 	int i;
6369 	bool wmark_ok;
6370 
6371 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6372 		return true;
6373 
6374 	for (i = 0; i <= ZONE_NORMAL; i++) {
6375 		zone = &pgdat->node_zones[i];
6376 		if (!managed_zone(zone))
6377 			continue;
6378 
6379 		if (!zone_reclaimable_pages(zone))
6380 			continue;
6381 
6382 		pfmemalloc_reserve += min_wmark_pages(zone);
6383 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6384 	}
6385 
6386 	/* If there are no reserves (unexpected config) then do not throttle */
6387 	if (!pfmemalloc_reserve)
6388 		return true;
6389 
6390 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6391 
6392 	/* kswapd must be awake if processes are being throttled */
6393 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6394 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6395 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6396 
6397 		wake_up_interruptible(&pgdat->kswapd_wait);
6398 	}
6399 
6400 	return wmark_ok;
6401 }
6402 
6403 /*
6404  * Throttle direct reclaimers if backing storage is backed by the network
6405  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6406  * depleted. kswapd will continue to make progress and wake the processes
6407  * when the low watermark is reached.
6408  *
6409  * Returns true if a fatal signal was delivered during throttling. If this
6410  * happens, the page allocator should not consider triggering the OOM killer.
6411  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6412 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6413 					nodemask_t *nodemask)
6414 {
6415 	struct zoneref *z;
6416 	struct zone *zone;
6417 	pg_data_t *pgdat = NULL;
6418 
6419 	/*
6420 	 * Kernel threads should not be throttled as they may be indirectly
6421 	 * responsible for cleaning pages necessary for reclaim to make forward
6422 	 * progress. kjournald for example may enter direct reclaim while
6423 	 * committing a transaction where throttling it could forcing other
6424 	 * processes to block on log_wait_commit().
6425 	 */
6426 	if (current->flags & PF_KTHREAD)
6427 		goto out;
6428 
6429 	/*
6430 	 * If a fatal signal is pending, this process should not throttle.
6431 	 * It should return quickly so it can exit and free its memory
6432 	 */
6433 	if (fatal_signal_pending(current))
6434 		goto out;
6435 
6436 	/*
6437 	 * Check if the pfmemalloc reserves are ok by finding the first node
6438 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6439 	 * GFP_KERNEL will be required for allocating network buffers when
6440 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6441 	 *
6442 	 * Throttling is based on the first usable node and throttled processes
6443 	 * wait on a queue until kswapd makes progress and wakes them. There
6444 	 * is an affinity then between processes waking up and where reclaim
6445 	 * progress has been made assuming the process wakes on the same node.
6446 	 * More importantly, processes running on remote nodes will not compete
6447 	 * for remote pfmemalloc reserves and processes on different nodes
6448 	 * should make reasonable progress.
6449 	 */
6450 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6451 					gfp_zone(gfp_mask), nodemask) {
6452 		if (zone_idx(zone) > ZONE_NORMAL)
6453 			continue;
6454 
6455 		/* Throttle based on the first usable node */
6456 		pgdat = zone->zone_pgdat;
6457 		if (allow_direct_reclaim(pgdat))
6458 			goto out;
6459 		break;
6460 	}
6461 
6462 	/* If no zone was usable by the allocation flags then do not throttle */
6463 	if (!pgdat)
6464 		goto out;
6465 
6466 	/* Account for the throttling */
6467 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6468 
6469 	/*
6470 	 * If the caller cannot enter the filesystem, it's possible that it
6471 	 * is due to the caller holding an FS lock or performing a journal
6472 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6473 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6474 	 * blocked waiting on the same lock. Instead, throttle for up to a
6475 	 * second before continuing.
6476 	 */
6477 	if (!(gfp_mask & __GFP_FS))
6478 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6479 			allow_direct_reclaim(pgdat), HZ);
6480 	else
6481 		/* Throttle until kswapd wakes the process */
6482 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6483 			allow_direct_reclaim(pgdat));
6484 
6485 	if (fatal_signal_pending(current))
6486 		return true;
6487 
6488 out:
6489 	return false;
6490 }
6491 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6492 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6493 				gfp_t gfp_mask, nodemask_t *nodemask)
6494 {
6495 	unsigned long nr_reclaimed;
6496 	struct scan_control sc = {
6497 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6498 		.gfp_mask = current_gfp_context(gfp_mask),
6499 		.reclaim_idx = gfp_zone(gfp_mask),
6500 		.order = order,
6501 		.nodemask = nodemask,
6502 		.priority = DEF_PRIORITY,
6503 		.may_writepage = !laptop_mode,
6504 		.may_unmap = 1,
6505 		.may_swap = 1,
6506 	};
6507 
6508 	/*
6509 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6510 	 * Confirm they are large enough for max values.
6511 	 */
6512 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6513 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6514 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6515 
6516 	/*
6517 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6518 	 * 1 is returned so that the page allocator does not OOM kill at this
6519 	 * point.
6520 	 */
6521 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6522 		return 1;
6523 
6524 	set_task_reclaim_state(current, &sc.reclaim_state);
6525 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6526 
6527 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6528 
6529 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6530 	set_task_reclaim_state(current, NULL);
6531 
6532 	return nr_reclaimed;
6533 }
6534 
6535 #ifdef CONFIG_MEMCG
6536 
6537 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6538 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6539 						gfp_t gfp_mask, bool noswap,
6540 						pg_data_t *pgdat,
6541 						unsigned long *nr_scanned)
6542 {
6543 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6544 	struct scan_control sc = {
6545 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6546 		.target_mem_cgroup = memcg,
6547 		.may_writepage = !laptop_mode,
6548 		.may_unmap = 1,
6549 		.reclaim_idx = MAX_NR_ZONES - 1,
6550 		.may_swap = !noswap,
6551 	};
6552 
6553 	WARN_ON_ONCE(!current->reclaim_state);
6554 
6555 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6556 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6557 
6558 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6559 						      sc.gfp_mask);
6560 
6561 	/*
6562 	 * NOTE: Although we can get the priority field, using it
6563 	 * here is not a good idea, since it limits the pages we can scan.
6564 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6565 	 * will pick up pages from other mem cgroup's as well. We hack
6566 	 * the priority and make it zero.
6567 	 */
6568 	shrink_lruvec(lruvec, &sc);
6569 
6570 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6571 
6572 	*nr_scanned = sc.nr_scanned;
6573 
6574 	return sc.nr_reclaimed;
6575 }
6576 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6577 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6578 					   unsigned long nr_pages,
6579 					   gfp_t gfp_mask,
6580 					   unsigned int reclaim_options,
6581 					   int *swappiness)
6582 {
6583 	unsigned long nr_reclaimed;
6584 	unsigned int noreclaim_flag;
6585 	struct scan_control sc = {
6586 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6587 		.proactive_swappiness = swappiness,
6588 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6589 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6590 		.reclaim_idx = MAX_NR_ZONES - 1,
6591 		.target_mem_cgroup = memcg,
6592 		.priority = DEF_PRIORITY,
6593 		.may_writepage = !laptop_mode,
6594 		.may_unmap = 1,
6595 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6596 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6597 	};
6598 	/*
6599 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6600 	 * equal pressure on all the nodes. This is based on the assumption that
6601 	 * the reclaim does not bail out early.
6602 	 */
6603 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6604 
6605 	set_task_reclaim_state(current, &sc.reclaim_state);
6606 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6607 	noreclaim_flag = memalloc_noreclaim_save();
6608 
6609 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6610 
6611 	memalloc_noreclaim_restore(noreclaim_flag);
6612 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6613 	set_task_reclaim_state(current, NULL);
6614 
6615 	return nr_reclaimed;
6616 }
6617 #endif
6618 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6619 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6620 {
6621 	struct mem_cgroup *memcg;
6622 	struct lruvec *lruvec;
6623 
6624 	if (lru_gen_enabled()) {
6625 		lru_gen_age_node(pgdat, sc);
6626 		return;
6627 	}
6628 
6629 	if (!can_age_anon_pages(pgdat, sc))
6630 		return;
6631 
6632 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6633 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6634 		return;
6635 
6636 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6637 	do {
6638 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6639 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6640 				   sc, LRU_ACTIVE_ANON);
6641 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6642 	} while (memcg);
6643 }
6644 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6645 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6646 {
6647 	int i;
6648 	struct zone *zone;
6649 
6650 	/*
6651 	 * Check for watermark boosts top-down as the higher zones
6652 	 * are more likely to be boosted. Both watermarks and boosts
6653 	 * should not be checked at the same time as reclaim would
6654 	 * start prematurely when there is no boosting and a lower
6655 	 * zone is balanced.
6656 	 */
6657 	for (i = highest_zoneidx; i >= 0; i--) {
6658 		zone = pgdat->node_zones + i;
6659 		if (!managed_zone(zone))
6660 			continue;
6661 
6662 		if (zone->watermark_boost)
6663 			return true;
6664 	}
6665 
6666 	return false;
6667 }
6668 
6669 /*
6670  * Returns true if there is an eligible zone balanced for the request order
6671  * and highest_zoneidx
6672  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6673 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6674 {
6675 	int i;
6676 	unsigned long mark = -1;
6677 	struct zone *zone;
6678 
6679 	/*
6680 	 * Check watermarks bottom-up as lower zones are more likely to
6681 	 * meet watermarks.
6682 	 */
6683 	for (i = 0; i <= highest_zoneidx; i++) {
6684 		zone = pgdat->node_zones + i;
6685 
6686 		if (!managed_zone(zone))
6687 			continue;
6688 
6689 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6690 			mark = promo_wmark_pages(zone);
6691 		else
6692 			mark = high_wmark_pages(zone);
6693 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6694 			return true;
6695 	}
6696 
6697 	/*
6698 	 * If a node has no managed zone within highest_zoneidx, it does not
6699 	 * need balancing by definition. This can happen if a zone-restricted
6700 	 * allocation tries to wake a remote kswapd.
6701 	 */
6702 	if (mark == -1)
6703 		return true;
6704 
6705 	return false;
6706 }
6707 
6708 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6709 static void clear_pgdat_congested(pg_data_t *pgdat)
6710 {
6711 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6712 
6713 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6714 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6715 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6716 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6717 }
6718 
6719 /*
6720  * Prepare kswapd for sleeping. This verifies that there are no processes
6721  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6722  *
6723  * Returns true if kswapd is ready to sleep
6724  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6725 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6726 				int highest_zoneidx)
6727 {
6728 	/*
6729 	 * The throttled processes are normally woken up in balance_pgdat() as
6730 	 * soon as allow_direct_reclaim() is true. But there is a potential
6731 	 * race between when kswapd checks the watermarks and a process gets
6732 	 * throttled. There is also a potential race if processes get
6733 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6734 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6735 	 * the wake up checks. If kswapd is going to sleep, no process should
6736 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6737 	 * the wake up is premature, processes will wake kswapd and get
6738 	 * throttled again. The difference from wake ups in balance_pgdat() is
6739 	 * that here we are under prepare_to_wait().
6740 	 */
6741 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6742 		wake_up_all(&pgdat->pfmemalloc_wait);
6743 
6744 	/* Hopeless node, leave it to direct reclaim */
6745 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6746 		return true;
6747 
6748 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6749 		clear_pgdat_congested(pgdat);
6750 		return true;
6751 	}
6752 
6753 	return false;
6754 }
6755 
6756 /*
6757  * kswapd shrinks a node of pages that are at or below the highest usable
6758  * zone that is currently unbalanced.
6759  *
6760  * Returns true if kswapd scanned at least the requested number of pages to
6761  * reclaim or if the lack of progress was due to pages under writeback.
6762  * This is used to determine if the scanning priority needs to be raised.
6763  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6764 static bool kswapd_shrink_node(pg_data_t *pgdat,
6765 			       struct scan_control *sc)
6766 {
6767 	struct zone *zone;
6768 	int z;
6769 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6770 
6771 	/* Reclaim a number of pages proportional to the number of zones */
6772 	sc->nr_to_reclaim = 0;
6773 	for (z = 0; z <= sc->reclaim_idx; z++) {
6774 		zone = pgdat->node_zones + z;
6775 		if (!managed_zone(zone))
6776 			continue;
6777 
6778 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6779 	}
6780 
6781 	/*
6782 	 * Historically care was taken to put equal pressure on all zones but
6783 	 * now pressure is applied based on node LRU order.
6784 	 */
6785 	shrink_node(pgdat, sc);
6786 
6787 	/*
6788 	 * Fragmentation may mean that the system cannot be rebalanced for
6789 	 * high-order allocations. If twice the allocation size has been
6790 	 * reclaimed then recheck watermarks only at order-0 to prevent
6791 	 * excessive reclaim. Assume that a process requested a high-order
6792 	 * can direct reclaim/compact.
6793 	 */
6794 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6795 		sc->order = 0;
6796 
6797 	/* account for progress from mm_account_reclaimed_pages() */
6798 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6799 }
6800 
6801 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6802 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6803 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6804 {
6805 	int i;
6806 	struct zone *zone;
6807 
6808 	for (i = 0; i <= highest_zoneidx; i++) {
6809 		zone = pgdat->node_zones + i;
6810 
6811 		if (!managed_zone(zone))
6812 			continue;
6813 
6814 		if (active)
6815 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6816 		else
6817 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6818 	}
6819 }
6820 
6821 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6822 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6823 {
6824 	update_reclaim_active(pgdat, highest_zoneidx, true);
6825 }
6826 
6827 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6828 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6829 {
6830 	update_reclaim_active(pgdat, highest_zoneidx, false);
6831 }
6832 
6833 /*
6834  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6835  * that are eligible for use by the caller until at least one zone is
6836  * balanced.
6837  *
6838  * Returns the order kswapd finished reclaiming at.
6839  *
6840  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6841  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6842  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6843  * or lower is eligible for reclaim until at least one usable zone is
6844  * balanced.
6845  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6846 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6847 {
6848 	int i;
6849 	unsigned long nr_soft_reclaimed;
6850 	unsigned long nr_soft_scanned;
6851 	unsigned long pflags;
6852 	unsigned long nr_boost_reclaim;
6853 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6854 	bool boosted;
6855 	struct zone *zone;
6856 	struct scan_control sc = {
6857 		.gfp_mask = GFP_KERNEL,
6858 		.order = order,
6859 		.may_unmap = 1,
6860 	};
6861 
6862 	set_task_reclaim_state(current, &sc.reclaim_state);
6863 	psi_memstall_enter(&pflags);
6864 	__fs_reclaim_acquire(_THIS_IP_);
6865 
6866 	count_vm_event(PAGEOUTRUN);
6867 
6868 	/*
6869 	 * Account for the reclaim boost. Note that the zone boost is left in
6870 	 * place so that parallel allocations that are near the watermark will
6871 	 * stall or direct reclaim until kswapd is finished.
6872 	 */
6873 	nr_boost_reclaim = 0;
6874 	for (i = 0; i <= highest_zoneidx; i++) {
6875 		zone = pgdat->node_zones + i;
6876 		if (!managed_zone(zone))
6877 			continue;
6878 
6879 		nr_boost_reclaim += zone->watermark_boost;
6880 		zone_boosts[i] = zone->watermark_boost;
6881 	}
6882 	boosted = nr_boost_reclaim;
6883 
6884 restart:
6885 	set_reclaim_active(pgdat, highest_zoneidx);
6886 	sc.priority = DEF_PRIORITY;
6887 	do {
6888 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6889 		bool raise_priority = true;
6890 		bool balanced;
6891 		bool ret;
6892 		bool was_frozen;
6893 
6894 		sc.reclaim_idx = highest_zoneidx;
6895 
6896 		/*
6897 		 * If the number of buffer_heads exceeds the maximum allowed
6898 		 * then consider reclaiming from all zones. This has a dual
6899 		 * purpose -- on 64-bit systems it is expected that
6900 		 * buffer_heads are stripped during active rotation. On 32-bit
6901 		 * systems, highmem pages can pin lowmem memory and shrinking
6902 		 * buffers can relieve lowmem pressure. Reclaim may still not
6903 		 * go ahead if all eligible zones for the original allocation
6904 		 * request are balanced to avoid excessive reclaim from kswapd.
6905 		 */
6906 		if (buffer_heads_over_limit) {
6907 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6908 				zone = pgdat->node_zones + i;
6909 				if (!managed_zone(zone))
6910 					continue;
6911 
6912 				sc.reclaim_idx = i;
6913 				break;
6914 			}
6915 		}
6916 
6917 		/*
6918 		 * If the pgdat is imbalanced then ignore boosting and preserve
6919 		 * the watermarks for a later time and restart. Note that the
6920 		 * zone watermarks will be still reset at the end of balancing
6921 		 * on the grounds that the normal reclaim should be enough to
6922 		 * re-evaluate if boosting is required when kswapd next wakes.
6923 		 */
6924 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6925 		if (!balanced && nr_boost_reclaim) {
6926 			nr_boost_reclaim = 0;
6927 			goto restart;
6928 		}
6929 
6930 		/*
6931 		 * If boosting is not active then only reclaim if there are no
6932 		 * eligible zones. Note that sc.reclaim_idx is not used as
6933 		 * buffer_heads_over_limit may have adjusted it.
6934 		 */
6935 		if (!nr_boost_reclaim && balanced)
6936 			goto out;
6937 
6938 		/* Limit the priority of boosting to avoid reclaim writeback */
6939 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6940 			raise_priority = false;
6941 
6942 		/*
6943 		 * Do not writeback or swap pages for boosted reclaim. The
6944 		 * intent is to relieve pressure not issue sub-optimal IO
6945 		 * from reclaim context. If no pages are reclaimed, the
6946 		 * reclaim will be aborted.
6947 		 */
6948 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6949 		sc.may_swap = !nr_boost_reclaim;
6950 
6951 		/*
6952 		 * Do some background aging, to give pages a chance to be
6953 		 * referenced before reclaiming. All pages are rotated
6954 		 * regardless of classzone as this is about consistent aging.
6955 		 */
6956 		kswapd_age_node(pgdat, &sc);
6957 
6958 		/*
6959 		 * If we're getting trouble reclaiming, start doing writepage
6960 		 * even in laptop mode.
6961 		 */
6962 		if (sc.priority < DEF_PRIORITY - 2)
6963 			sc.may_writepage = 1;
6964 
6965 		/* Call soft limit reclaim before calling shrink_node. */
6966 		sc.nr_scanned = 0;
6967 		nr_soft_scanned = 0;
6968 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6969 							      sc.gfp_mask, &nr_soft_scanned);
6970 		sc.nr_reclaimed += nr_soft_reclaimed;
6971 
6972 		/*
6973 		 * There should be no need to raise the scanning priority if
6974 		 * enough pages are already being scanned that that high
6975 		 * watermark would be met at 100% efficiency.
6976 		 */
6977 		if (kswapd_shrink_node(pgdat, &sc))
6978 			raise_priority = false;
6979 
6980 		/*
6981 		 * If the low watermark is met there is no need for processes
6982 		 * to be throttled on pfmemalloc_wait as they should not be
6983 		 * able to safely make forward progress. Wake them
6984 		 */
6985 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6986 				allow_direct_reclaim(pgdat))
6987 			wake_up_all(&pgdat->pfmemalloc_wait);
6988 
6989 		/* Check if kswapd should be suspending */
6990 		__fs_reclaim_release(_THIS_IP_);
6991 		ret = kthread_freezable_should_stop(&was_frozen);
6992 		__fs_reclaim_acquire(_THIS_IP_);
6993 		if (was_frozen || ret)
6994 			break;
6995 
6996 		/*
6997 		 * Raise priority if scanning rate is too low or there was no
6998 		 * progress in reclaiming pages
6999 		 */
7000 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7001 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7002 
7003 		/*
7004 		 * If reclaim made no progress for a boost, stop reclaim as
7005 		 * IO cannot be queued and it could be an infinite loop in
7006 		 * extreme circumstances.
7007 		 */
7008 		if (nr_boost_reclaim && !nr_reclaimed)
7009 			break;
7010 
7011 		if (raise_priority || !nr_reclaimed)
7012 			sc.priority--;
7013 	} while (sc.priority >= 1);
7014 
7015 	/*
7016 	 * Restart only if it went through the priority loop all the way,
7017 	 * but cache_trim_mode didn't work.
7018 	 */
7019 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7020 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7021 		sc.no_cache_trim_mode = 1;
7022 		goto restart;
7023 	}
7024 
7025 	if (!sc.nr_reclaimed)
7026 		pgdat->kswapd_failures++;
7027 
7028 out:
7029 	clear_reclaim_active(pgdat, highest_zoneidx);
7030 
7031 	/* If reclaim was boosted, account for the reclaim done in this pass */
7032 	if (boosted) {
7033 		unsigned long flags;
7034 
7035 		for (i = 0; i <= highest_zoneidx; i++) {
7036 			if (!zone_boosts[i])
7037 				continue;
7038 
7039 			/* Increments are under the zone lock */
7040 			zone = pgdat->node_zones + i;
7041 			spin_lock_irqsave(&zone->lock, flags);
7042 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7043 			spin_unlock_irqrestore(&zone->lock, flags);
7044 		}
7045 
7046 		/*
7047 		 * As there is now likely space, wakeup kcompact to defragment
7048 		 * pageblocks.
7049 		 */
7050 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7051 	}
7052 
7053 	snapshot_refaults(NULL, pgdat);
7054 	__fs_reclaim_release(_THIS_IP_);
7055 	psi_memstall_leave(&pflags);
7056 	set_task_reclaim_state(current, NULL);
7057 
7058 	/*
7059 	 * Return the order kswapd stopped reclaiming at as
7060 	 * prepare_kswapd_sleep() takes it into account. If another caller
7061 	 * entered the allocator slow path while kswapd was awake, order will
7062 	 * remain at the higher level.
7063 	 */
7064 	return sc.order;
7065 }
7066 
7067 /*
7068  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7069  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7070  * not a valid index then either kswapd runs for first time or kswapd couldn't
7071  * sleep after previous reclaim attempt (node is still unbalanced). In that
7072  * case return the zone index of the previous kswapd reclaim cycle.
7073  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7074 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7075 					   enum zone_type prev_highest_zoneidx)
7076 {
7077 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7078 
7079 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7080 }
7081 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7082 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7083 				unsigned int highest_zoneidx)
7084 {
7085 	long remaining = 0;
7086 	DEFINE_WAIT(wait);
7087 
7088 	if (freezing(current) || kthread_should_stop())
7089 		return;
7090 
7091 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7092 
7093 	/*
7094 	 * Try to sleep for a short interval. Note that kcompactd will only be
7095 	 * woken if it is possible to sleep for a short interval. This is
7096 	 * deliberate on the assumption that if reclaim cannot keep an
7097 	 * eligible zone balanced that it's also unlikely that compaction will
7098 	 * succeed.
7099 	 */
7100 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7101 		/*
7102 		 * Compaction records what page blocks it recently failed to
7103 		 * isolate pages from and skips them in the future scanning.
7104 		 * When kswapd is going to sleep, it is reasonable to assume
7105 		 * that pages and compaction may succeed so reset the cache.
7106 		 */
7107 		reset_isolation_suitable(pgdat);
7108 
7109 		/*
7110 		 * We have freed the memory, now we should compact it to make
7111 		 * allocation of the requested order possible.
7112 		 */
7113 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7114 
7115 		remaining = schedule_timeout(HZ/10);
7116 
7117 		/*
7118 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7119 		 * order. The values will either be from a wakeup request or
7120 		 * the previous request that slept prematurely.
7121 		 */
7122 		if (remaining) {
7123 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7124 					kswapd_highest_zoneidx(pgdat,
7125 							highest_zoneidx));
7126 
7127 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7128 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7129 		}
7130 
7131 		finish_wait(&pgdat->kswapd_wait, &wait);
7132 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7133 	}
7134 
7135 	/*
7136 	 * After a short sleep, check if it was a premature sleep. If not, then
7137 	 * go fully to sleep until explicitly woken up.
7138 	 */
7139 	if (!remaining &&
7140 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7141 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7142 
7143 		/*
7144 		 * vmstat counters are not perfectly accurate and the estimated
7145 		 * value for counters such as NR_FREE_PAGES can deviate from the
7146 		 * true value by nr_online_cpus * threshold. To avoid the zone
7147 		 * watermarks being breached while under pressure, we reduce the
7148 		 * per-cpu vmstat threshold while kswapd is awake and restore
7149 		 * them before going back to sleep.
7150 		 */
7151 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7152 
7153 		if (!kthread_should_stop())
7154 			schedule();
7155 
7156 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7157 	} else {
7158 		if (remaining)
7159 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7160 		else
7161 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7162 	}
7163 	finish_wait(&pgdat->kswapd_wait, &wait);
7164 }
7165 
7166 /*
7167  * The background pageout daemon, started as a kernel thread
7168  * from the init process.
7169  *
7170  * This basically trickles out pages so that we have _some_
7171  * free memory available even if there is no other activity
7172  * that frees anything up. This is needed for things like routing
7173  * etc, where we otherwise might have all activity going on in
7174  * asynchronous contexts that cannot page things out.
7175  *
7176  * If there are applications that are active memory-allocators
7177  * (most normal use), this basically shouldn't matter.
7178  */
kswapd(void * p)7179 static int kswapd(void *p)
7180 {
7181 	unsigned int alloc_order, reclaim_order;
7182 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7183 	pg_data_t *pgdat = (pg_data_t *)p;
7184 	struct task_struct *tsk = current;
7185 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7186 
7187 	if (!cpumask_empty(cpumask))
7188 		set_cpus_allowed_ptr(tsk, cpumask);
7189 
7190 	/*
7191 	 * Tell the memory management that we're a "memory allocator",
7192 	 * and that if we need more memory we should get access to it
7193 	 * regardless (see "__alloc_pages()"). "kswapd" should
7194 	 * never get caught in the normal page freeing logic.
7195 	 *
7196 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7197 	 * you need a small amount of memory in order to be able to
7198 	 * page out something else, and this flag essentially protects
7199 	 * us from recursively trying to free more memory as we're
7200 	 * trying to free the first piece of memory in the first place).
7201 	 */
7202 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7203 	set_freezable();
7204 
7205 	WRITE_ONCE(pgdat->kswapd_order, 0);
7206 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7207 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7208 	for ( ; ; ) {
7209 		bool was_frozen;
7210 
7211 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7212 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7213 							highest_zoneidx);
7214 
7215 kswapd_try_sleep:
7216 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7217 					highest_zoneidx);
7218 
7219 		/* Read the new order and highest_zoneidx */
7220 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7221 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7222 							highest_zoneidx);
7223 		WRITE_ONCE(pgdat->kswapd_order, 0);
7224 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7225 
7226 		if (kthread_freezable_should_stop(&was_frozen))
7227 			break;
7228 
7229 		/*
7230 		 * We can speed up thawing tasks if we don't call balance_pgdat
7231 		 * after returning from the refrigerator
7232 		 */
7233 		if (was_frozen)
7234 			continue;
7235 
7236 		/*
7237 		 * Reclaim begins at the requested order but if a high-order
7238 		 * reclaim fails then kswapd falls back to reclaiming for
7239 		 * order-0. If that happens, kswapd will consider sleeping
7240 		 * for the order it finished reclaiming at (reclaim_order)
7241 		 * but kcompactd is woken to compact for the original
7242 		 * request (alloc_order).
7243 		 */
7244 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7245 						alloc_order);
7246 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7247 						highest_zoneidx);
7248 		if (reclaim_order < alloc_order)
7249 			goto kswapd_try_sleep;
7250 	}
7251 
7252 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7253 
7254 	return 0;
7255 }
7256 
7257 /*
7258  * A zone is low on free memory or too fragmented for high-order memory.  If
7259  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7260  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7261  * has failed or is not needed, still wake up kcompactd if only compaction is
7262  * needed.
7263  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7264 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7265 		   enum zone_type highest_zoneidx)
7266 {
7267 	pg_data_t *pgdat;
7268 	enum zone_type curr_idx;
7269 
7270 	if (!managed_zone(zone))
7271 		return;
7272 
7273 	if (!cpuset_zone_allowed(zone, gfp_flags))
7274 		return;
7275 
7276 	pgdat = zone->zone_pgdat;
7277 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7278 
7279 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7280 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7281 
7282 	if (READ_ONCE(pgdat->kswapd_order) < order)
7283 		WRITE_ONCE(pgdat->kswapd_order, order);
7284 
7285 	if (!waitqueue_active(&pgdat->kswapd_wait))
7286 		return;
7287 
7288 	/* Hopeless node, leave it to direct reclaim if possible */
7289 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7290 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7291 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7292 		/*
7293 		 * There may be plenty of free memory available, but it's too
7294 		 * fragmented for high-order allocations.  Wake up kcompactd
7295 		 * and rely on compaction_suitable() to determine if it's
7296 		 * needed.  If it fails, it will defer subsequent attempts to
7297 		 * ratelimit its work.
7298 		 */
7299 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7300 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7301 		return;
7302 	}
7303 
7304 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7305 				      gfp_flags);
7306 	wake_up_interruptible(&pgdat->kswapd_wait);
7307 }
7308 
7309 #ifdef CONFIG_HIBERNATION
7310 /*
7311  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7312  * freed pages.
7313  *
7314  * Rather than trying to age LRUs the aim is to preserve the overall
7315  * LRU order by reclaiming preferentially
7316  * inactive > active > active referenced > active mapped
7317  */
shrink_all_memory(unsigned long nr_to_reclaim)7318 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7319 {
7320 	struct scan_control sc = {
7321 		.nr_to_reclaim = nr_to_reclaim,
7322 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7323 		.reclaim_idx = MAX_NR_ZONES - 1,
7324 		.priority = DEF_PRIORITY,
7325 		.may_writepage = 1,
7326 		.may_unmap = 1,
7327 		.may_swap = 1,
7328 		.hibernation_mode = 1,
7329 	};
7330 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7331 	unsigned long nr_reclaimed;
7332 	unsigned int noreclaim_flag;
7333 
7334 	fs_reclaim_acquire(sc.gfp_mask);
7335 	noreclaim_flag = memalloc_noreclaim_save();
7336 	set_task_reclaim_state(current, &sc.reclaim_state);
7337 
7338 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7339 
7340 	set_task_reclaim_state(current, NULL);
7341 	memalloc_noreclaim_restore(noreclaim_flag);
7342 	fs_reclaim_release(sc.gfp_mask);
7343 
7344 	return nr_reclaimed;
7345 }
7346 #endif /* CONFIG_HIBERNATION */
7347 
7348 /*
7349  * This kswapd start function will be called by init and node-hot-add.
7350  */
kswapd_run(int nid)7351 void __meminit kswapd_run(int nid)
7352 {
7353 	pg_data_t *pgdat = NODE_DATA(nid);
7354 
7355 	pgdat_kswapd_lock(pgdat);
7356 	if (!pgdat->kswapd) {
7357 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7358 		if (IS_ERR(pgdat->kswapd)) {
7359 			/* failure at boot is fatal */
7360 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7361 				   nid, PTR_ERR(pgdat->kswapd));
7362 			BUG_ON(system_state < SYSTEM_RUNNING);
7363 			pgdat->kswapd = NULL;
7364 		}
7365 	}
7366 	pgdat_kswapd_unlock(pgdat);
7367 }
7368 
7369 /*
7370  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7371  * be holding mem_hotplug_begin/done().
7372  */
kswapd_stop(int nid)7373 void __meminit kswapd_stop(int nid)
7374 {
7375 	pg_data_t *pgdat = NODE_DATA(nid);
7376 	struct task_struct *kswapd;
7377 
7378 	pgdat_kswapd_lock(pgdat);
7379 	kswapd = pgdat->kswapd;
7380 	if (kswapd) {
7381 		kthread_stop(kswapd);
7382 		pgdat->kswapd = NULL;
7383 	}
7384 	pgdat_kswapd_unlock(pgdat);
7385 }
7386 
kswapd_init(void)7387 static int __init kswapd_init(void)
7388 {
7389 	int nid;
7390 
7391 	swap_setup();
7392 	for_each_node_state(nid, N_MEMORY)
7393  		kswapd_run(nid);
7394 	return 0;
7395 }
7396 
7397 module_init(kswapd_init)
7398 
7399 #ifdef CONFIG_NUMA
7400 /*
7401  * Node reclaim mode
7402  *
7403  * If non-zero call node_reclaim when the number of free pages falls below
7404  * the watermarks.
7405  */
7406 int node_reclaim_mode __read_mostly;
7407 
7408 /*
7409  * Priority for NODE_RECLAIM. This determines the fraction of pages
7410  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7411  * a zone.
7412  */
7413 #define NODE_RECLAIM_PRIORITY 4
7414 
7415 /*
7416  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7417  * occur.
7418  */
7419 int sysctl_min_unmapped_ratio = 1;
7420 
7421 /*
7422  * If the number of slab pages in a zone grows beyond this percentage then
7423  * slab reclaim needs to occur.
7424  */
7425 int sysctl_min_slab_ratio = 5;
7426 
node_unmapped_file_pages(struct pglist_data * pgdat)7427 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7428 {
7429 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7430 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7431 		node_page_state(pgdat, NR_ACTIVE_FILE);
7432 
7433 	/*
7434 	 * It's possible for there to be more file mapped pages than
7435 	 * accounted for by the pages on the file LRU lists because
7436 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7437 	 */
7438 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7439 }
7440 
7441 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7442 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7443 {
7444 	unsigned long nr_pagecache_reclaimable;
7445 	unsigned long delta = 0;
7446 
7447 	/*
7448 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7449 	 * potentially reclaimable. Otherwise, we have to worry about
7450 	 * pages like swapcache and node_unmapped_file_pages() provides
7451 	 * a better estimate
7452 	 */
7453 	if (node_reclaim_mode & RECLAIM_UNMAP)
7454 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7455 	else
7456 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7457 
7458 	/* If we can't clean pages, remove dirty pages from consideration */
7459 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7460 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7461 
7462 	/* Watch for any possible underflows due to delta */
7463 	if (unlikely(delta > nr_pagecache_reclaimable))
7464 		delta = nr_pagecache_reclaimable;
7465 
7466 	return nr_pagecache_reclaimable - delta;
7467 }
7468 
7469 /*
7470  * Try to free up some pages from this node through reclaim.
7471  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7472 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7473 {
7474 	/* Minimum pages needed in order to stay on node */
7475 	const unsigned long nr_pages = 1 << order;
7476 	struct task_struct *p = current;
7477 	unsigned int noreclaim_flag;
7478 	struct scan_control sc = {
7479 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7480 		.gfp_mask = current_gfp_context(gfp_mask),
7481 		.order = order,
7482 		.priority = NODE_RECLAIM_PRIORITY,
7483 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7484 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7485 		.may_swap = 1,
7486 		.reclaim_idx = gfp_zone(gfp_mask),
7487 	};
7488 	unsigned long pflags;
7489 
7490 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7491 					   sc.gfp_mask);
7492 
7493 	cond_resched();
7494 	psi_memstall_enter(&pflags);
7495 	delayacct_freepages_start();
7496 	fs_reclaim_acquire(sc.gfp_mask);
7497 	/*
7498 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7499 	 */
7500 	noreclaim_flag = memalloc_noreclaim_save();
7501 	set_task_reclaim_state(p, &sc.reclaim_state);
7502 
7503 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7504 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7505 		/*
7506 		 * Free memory by calling shrink node with increasing
7507 		 * priorities until we have enough memory freed.
7508 		 */
7509 		do {
7510 			shrink_node(pgdat, &sc);
7511 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7512 	}
7513 
7514 	set_task_reclaim_state(p, NULL);
7515 	memalloc_noreclaim_restore(noreclaim_flag);
7516 	fs_reclaim_release(sc.gfp_mask);
7517 	psi_memstall_leave(&pflags);
7518 	delayacct_freepages_end();
7519 
7520 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7521 
7522 	return sc.nr_reclaimed >= nr_pages;
7523 }
7524 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7525 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7526 {
7527 	int ret;
7528 
7529 	/*
7530 	 * Node reclaim reclaims unmapped file backed pages and
7531 	 * slab pages if we are over the defined limits.
7532 	 *
7533 	 * A small portion of unmapped file backed pages is needed for
7534 	 * file I/O otherwise pages read by file I/O will be immediately
7535 	 * thrown out if the node is overallocated. So we do not reclaim
7536 	 * if less than a specified percentage of the node is used by
7537 	 * unmapped file backed pages.
7538 	 */
7539 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7540 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7541 	    pgdat->min_slab_pages)
7542 		return NODE_RECLAIM_FULL;
7543 
7544 	/*
7545 	 * Do not scan if the allocation should not be delayed.
7546 	 */
7547 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7548 		return NODE_RECLAIM_NOSCAN;
7549 
7550 	/*
7551 	 * Only run node reclaim on the local node or on nodes that do not
7552 	 * have associated processors. This will favor the local processor
7553 	 * over remote processors and spread off node memory allocations
7554 	 * as wide as possible.
7555 	 */
7556 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7557 		return NODE_RECLAIM_NOSCAN;
7558 
7559 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7560 		return NODE_RECLAIM_NOSCAN;
7561 
7562 	ret = __node_reclaim(pgdat, gfp_mask, order);
7563 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7564 
7565 	if (ret)
7566 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7567 	else
7568 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7569 
7570 	return ret;
7571 }
7572 #endif
7573 
7574 /**
7575  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7576  * lru list
7577  * @fbatch: Batch of lru folios to check.
7578  *
7579  * Checks folios for evictability, if an evictable folio is in the unevictable
7580  * lru list, moves it to the appropriate evictable lru list. This function
7581  * should be only used for lru folios.
7582  */
check_move_unevictable_folios(struct folio_batch * fbatch)7583 void check_move_unevictable_folios(struct folio_batch *fbatch)
7584 {
7585 	struct lruvec *lruvec = NULL;
7586 	int pgscanned = 0;
7587 	int pgrescued = 0;
7588 	int i;
7589 
7590 	for (i = 0; i < fbatch->nr; i++) {
7591 		struct folio *folio = fbatch->folios[i];
7592 		int nr_pages = folio_nr_pages(folio);
7593 
7594 		pgscanned += nr_pages;
7595 
7596 		/* block memcg migration while the folio moves between lrus */
7597 		if (!folio_test_clear_lru(folio))
7598 			continue;
7599 
7600 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7601 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7602 			lruvec_del_folio(lruvec, folio);
7603 			folio_clear_unevictable(folio);
7604 			lruvec_add_folio(lruvec, folio);
7605 			pgrescued += nr_pages;
7606 		}
7607 		folio_set_lru(folio);
7608 	}
7609 
7610 	if (lruvec) {
7611 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7612 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7613 		unlock_page_lruvec_irq(lruvec);
7614 	} else if (pgscanned) {
7615 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7616 	}
7617 }
7618 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7619