1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64
65 #include "dc_dmub_srv.h"
66
67 #include "dsc.h"
68
69 #include "vm_helper.h"
70
71 #include "dce/dce_i2c.h"
72
73 #include "dmub/dmub_srv.h"
74
75 #include "dce/dmub_psr.h"
76
77 #include "dce/dmub_hw_lock_mgr.h"
78
79 #include "dc_trace.h"
80
81 #include "hw_sequencer_private.h"
82
83 #if defined(CONFIG_DRM_AMD_DC_FP)
84 #include "dml2/dml2_internal_types.h"
85 #endif
86
87 #include "dce/dmub_outbox.h"
88
89 #define CTX \
90 dc->ctx
91
92 #define DC_LOGGER \
93 dc->ctx->logger
94
95 static const char DC_BUILD_ID[] = "production-build";
96
97 /**
98 * DOC: Overview
99 *
100 * DC is the OS-agnostic component of the amdgpu DC driver.
101 *
102 * DC maintains and validates a set of structs representing the state of the
103 * driver and writes that state to AMD hardware
104 *
105 * Main DC HW structs:
106 *
107 * struct dc - The central struct. One per driver. Created on driver load,
108 * destroyed on driver unload.
109 *
110 * struct dc_context - One per driver.
111 * Used as a backpointer by most other structs in dc.
112 *
113 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114 * plugpoints). Created on driver load, destroyed on driver unload.
115 *
116 * struct dc_sink - One per display. Created on boot or hotplug.
117 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
118 * (the display directly attached). It may also have one or more remote
119 * sinks (in the Multi-Stream Transport case)
120 *
121 * struct resource_pool - One per driver. Represents the hw blocks not in the
122 * main pipeline. Not directly accessible by dm.
123 *
124 * Main dc state structs:
125 *
126 * These structs can be created and destroyed as needed. There is a full set of
127 * these structs in dc->current_state representing the currently programmed state.
128 *
129 * struct dc_state - The global DC state to track global state information,
130 * such as bandwidth values.
131 *
132 * struct dc_stream_state - Represents the hw configuration for the pipeline from
133 * a framebuffer to a display. Maps one-to-one with dc_sink.
134 *
135 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
136 * and may have more in the Multi-Plane Overlay case.
137 *
138 * struct resource_context - Represents the programmable state of everything in
139 * the resource_pool. Not directly accessible by dm.
140 *
141 * struct pipe_ctx - A member of struct resource_context. Represents the
142 * internal hardware pipeline components. Each dc_plane_state has either
143 * one or two (in the pipe-split case).
144 */
145
146 /* Private functions */
147
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149 {
150 if (new > *original)
151 *original = new;
152 }
153
destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc)
155 {
156 uint32_t i;
157
158 for (i = 0; i < dc->link_count; i++) {
159 if (NULL != dc->links[i])
160 dc->link_srv->destroy_link(&dc->links[i]);
161 }
162 }
163
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165 {
166 int i;
167 uint32_t count = 0;
168
169 for (i = 0; i < num_links; i++) {
170 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171 links[i]->is_internal_display)
172 count++;
173 }
174
175 return count;
176 }
177
get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx)
179 {
180 uint8_t i;
181 uint8_t seamless_boot_stream_count = 0;
182
183 for (i = 0; i < ctx->stream_count; i++)
184 if (ctx->streams[i]->apply_seamless_boot_optimization)
185 seamless_boot_stream_count++;
186
187 return seamless_boot_stream_count;
188 }
189
create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links(
191 struct dc *dc,
192 uint32_t num_virtual_links)
193 {
194 int i;
195 int connectors_num;
196 struct dc_bios *bios = dc->ctx->dc_bios;
197
198 dc->link_count = 0;
199
200 connectors_num = bios->funcs->get_connectors_number(bios);
201
202 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203
204 if (connectors_num > ENUM_ID_COUNT) {
205 dm_error(
206 "DC: Number of connectors %d exceeds maximum of %d!\n",
207 connectors_num,
208 ENUM_ID_COUNT);
209 return false;
210 }
211
212 dm_output_to_console(
213 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
214 __func__,
215 connectors_num,
216 num_virtual_links);
217
218 // condition loop on link_count to allow skipping invalid indices
219 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
220 struct link_init_data link_init_params = {0};
221 struct dc_link *link;
222
223 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
224
225 link_init_params.ctx = dc->ctx;
226 /* next BIOS object table connector */
227 link_init_params.connector_index = i;
228 link_init_params.link_index = dc->link_count;
229 link_init_params.dc = dc;
230 link = dc->link_srv->create_link(&link_init_params);
231
232 if (link) {
233 dc->links[dc->link_count] = link;
234 link->dc = dc;
235 ++dc->link_count;
236 }
237 }
238
239 DC_LOG_DC("BIOS object table - end");
240
241 /* Create a link for each usb4 dpia port */
242 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
243 struct link_init_data link_init_params = {0};
244 struct dc_link *link;
245
246 link_init_params.ctx = dc->ctx;
247 link_init_params.connector_index = i;
248 link_init_params.link_index = dc->link_count;
249 link_init_params.dc = dc;
250 link_init_params.is_dpia_link = true;
251
252 link = dc->link_srv->create_link(&link_init_params);
253 if (link) {
254 dc->links[dc->link_count] = link;
255 link->dc = dc;
256 ++dc->link_count;
257 }
258 }
259
260 for (i = 0; i < num_virtual_links; i++) {
261 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
262 struct encoder_init_data enc_init = {0};
263
264 if (link == NULL) {
265 BREAK_TO_DEBUGGER();
266 goto failed_alloc;
267 }
268
269 link->link_index = dc->link_count;
270 dc->links[dc->link_count] = link;
271 dc->link_count++;
272
273 link->ctx = dc->ctx;
274 link->dc = dc;
275 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
276 link->link_id.type = OBJECT_TYPE_CONNECTOR;
277 link->link_id.id = CONNECTOR_ID_VIRTUAL;
278 link->link_id.enum_id = ENUM_ID_1;
279 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
280
281 if (!link->link_enc) {
282 BREAK_TO_DEBUGGER();
283 goto failed_alloc;
284 }
285
286 link->link_status.dpcd_caps = &link->dpcd_caps;
287
288 enc_init.ctx = dc->ctx;
289 enc_init.channel = CHANNEL_ID_UNKNOWN;
290 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
291 enc_init.transmitter = TRANSMITTER_UNKNOWN;
292 enc_init.connector = link->link_id;
293 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
294 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
295 enc_init.encoder.enum_id = ENUM_ID_1;
296 virtual_link_encoder_construct(link->link_enc, &enc_init);
297 }
298
299 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
300
301 return true;
302
303 failed_alloc:
304 return false;
305 }
306
307 /* Create additional DIG link encoder objects if fewer than the platform
308 * supports were created during link construction. This can happen if the
309 * number of physical connectors is less than the number of DIGs.
310 */
create_link_encoders(struct dc * dc)311 static bool create_link_encoders(struct dc *dc)
312 {
313 bool res = true;
314 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
315 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
316 int i;
317
318 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
319 * link encoders and physical display endpoints and does not require
320 * additional link encoder objects.
321 */
322 if (num_usb4_dpia == 0)
323 return res;
324
325 /* Create as many link encoder objects as the platform supports. DPIA
326 * endpoints can be programmably mapped to any DIG.
327 */
328 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
329 for (i = 0; i < num_dig_link_enc; i++) {
330 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
331
332 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
333 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
334 (enum engine_id)(ENGINE_ID_DIGA + i));
335 if (link_enc) {
336 dc->res_pool->link_encoders[i] = link_enc;
337 dc->res_pool->dig_link_enc_count++;
338 } else {
339 res = false;
340 }
341 }
342 }
343 }
344
345 return res;
346 }
347
348 /* Destroy any additional DIG link encoder objects created by
349 * create_link_encoders().
350 * NB: Must only be called after destroy_links().
351 */
destroy_link_encoders(struct dc * dc)352 static void destroy_link_encoders(struct dc *dc)
353 {
354 unsigned int num_usb4_dpia;
355 unsigned int num_dig_link_enc;
356 int i;
357
358 if (!dc->res_pool)
359 return;
360
361 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
362 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
363
364 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
365 * link encoders and physical display endpoints and does not require
366 * additional link encoder objects.
367 */
368 if (num_usb4_dpia == 0)
369 return;
370
371 for (i = 0; i < num_dig_link_enc; i++) {
372 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
373
374 if (link_enc) {
375 link_enc->funcs->destroy(&link_enc);
376 dc->res_pool->link_encoders[i] = NULL;
377 dc->res_pool->dig_link_enc_count--;
378 }
379 }
380 }
381
dc_perf_trace_create(void)382 static struct dc_perf_trace *dc_perf_trace_create(void)
383 {
384 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
385 }
386
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)387 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
388 {
389 kfree(*perf_trace);
390 *perf_trace = NULL;
391 }
392
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)393 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
394 {
395 if (!dc || !stream || !adjust)
396 return false;
397
398 if (!dc->current_state)
399 return false;
400
401 int i;
402
403 for (i = 0; i < MAX_PIPES; i++) {
404 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
405
406 if (pipe->stream == stream && pipe->stream_res.tg) {
407 if (dc->hwss.set_long_vtotal)
408 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
409
410 return true;
411 }
412 }
413
414 return false;
415 }
416
417 /**
418 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
419 * @dc: dc reference
420 * @stream: Initial dc stream state
421 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
422 *
423 * Looks up the pipe context of dc_stream_state and updates the
424 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
425 * Rate, which is a power-saving feature that targets reducing panel
426 * refresh rate while the screen is static
427 *
428 * Return: %true if the pipe context is found and adjusted;
429 * %false if the pipe context is not found.
430 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)431 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
432 struct dc_stream_state *stream,
433 struct dc_crtc_timing_adjust *adjust)
434 {
435 int i;
436
437 /*
438 * Don't adjust DRR while there's bandwidth optimizations pending to
439 * avoid conflicting with firmware updates.
440 */
441 if (dc->ctx->dce_version > DCE_VERSION_MAX)
442 if (dc->optimized_required || dc->wm_optimized_required)
443 return false;
444
445 dc_exit_ips_for_hw_access(dc);
446
447 stream->adjust.v_total_max = adjust->v_total_max;
448 stream->adjust.v_total_mid = adjust->v_total_mid;
449 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
450 stream->adjust.v_total_min = adjust->v_total_min;
451 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
452
453 if (dc->caps.max_v_total != 0 &&
454 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
455 if (adjust->allow_otg_v_count_halt)
456 return set_long_vtotal(dc, stream, adjust);
457 else
458 return false;
459 }
460
461 for (i = 0; i < MAX_PIPES; i++) {
462 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463
464 if (pipe->stream == stream && pipe->stream_res.tg) {
465 dc->hwss.set_drr(&pipe,
466 1,
467 *adjust);
468
469 return true;
470 }
471 }
472 return false;
473 }
474
475 /**
476 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
477 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
478 *
479 * @dc: [in] dc reference
480 * @stream: [in] Initial dc stream state
481 * @refresh_rate: [in] new refresh_rate
482 *
483 * Return: %true if the pipe context is found and there is an associated
484 * timing_generator for the DC;
485 * %false if the pipe context is not found or there is no
486 * timing_generator for the DC.
487 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)488 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
489 struct dc_stream_state *stream,
490 uint32_t *refresh_rate)
491 {
492 bool status = false;
493
494 int i = 0;
495
496 dc_exit_ips_for_hw_access(dc);
497
498 for (i = 0; i < MAX_PIPES; i++) {
499 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
500
501 if (pipe->stream == stream && pipe->stream_res.tg) {
502 /* Only execute if a function pointer has been defined for
503 * the DC version in question
504 */
505 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
506 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
507
508 status = true;
509
510 break;
511 }
512 }
513 }
514
515 return status;
516 }
517
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)518 bool dc_stream_get_crtc_position(struct dc *dc,
519 struct dc_stream_state **streams, int num_streams,
520 unsigned int *v_pos, unsigned int *nom_v_pos)
521 {
522 /* TODO: Support multiple streams */
523 const struct dc_stream_state *stream = streams[0];
524 int i;
525 bool ret = false;
526 struct crtc_position position;
527
528 dc_exit_ips_for_hw_access(dc);
529
530 for (i = 0; i < MAX_PIPES; i++) {
531 struct pipe_ctx *pipe =
532 &dc->current_state->res_ctx.pipe_ctx[i];
533
534 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
535 dc->hwss.get_position(&pipe, 1, &position);
536
537 *v_pos = position.vertical_count;
538 *nom_v_pos = position.nominal_vcount;
539 ret = true;
540 }
541 }
542 return ret;
543 }
544
545 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
546 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)547 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
548 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
549 {
550 union dmub_rb_cmd cmd = {0};
551
552 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
553 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
554
555 if (is_stop) {
556 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
557 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
558 } else {
559 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
560 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
561 cmd.secure_display.roi_info.x_start = rect->x;
562 cmd.secure_display.roi_info.y_start = rect->y;
563 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
564 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
565 }
566
567 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
568 }
569
570 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)571 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
572 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
573 {
574 if (is_stop)
575 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
576 else
577 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
578 }
579
580 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)581 dc_stream_forward_crc_window(struct dc_stream_state *stream,
582 struct rect *rect, uint8_t phy_id, bool is_stop)
583 {
584 struct dmcu *dmcu;
585 struct dc_dmub_srv *dmub_srv;
586 struct otg_phy_mux mux_mapping;
587 struct pipe_ctx *pipe;
588 int i;
589 struct dc *dc = stream->ctx->dc;
590
591 for (i = 0; i < MAX_PIPES; i++) {
592 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
593 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
594 break;
595 }
596
597 /* Stream not found */
598 if (i == MAX_PIPES)
599 return false;
600
601 mux_mapping.phy_output_num = phy_id;
602 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
603
604 dmcu = dc->res_pool->dmcu;
605 dmub_srv = dc->ctx->dmub_srv;
606
607 /* forward to dmub */
608 if (dmub_srv)
609 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
610 /* forward to dmcu */
611 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
612 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
613 else
614 return false;
615
616 return true;
617 }
618
619 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)620 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
621 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
622 {
623 int i;
624 union dmub_rb_cmd cmd = {0};
625
626 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
627 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
628
629 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
630
631 if (stop) {
632 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
633 } else {
634 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
635 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
636 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
637 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
638 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
639 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
640 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
641 }
642 }
643
644 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
645 }
646
647 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)648 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
649 struct crc_window *window, uint8_t phy_id, bool stop)
650 {
651 struct dc_dmub_srv *dmub_srv;
652 struct otg_phy_mux mux_mapping;
653 struct pipe_ctx *pipe;
654 int i;
655 struct dc *dc = stream->ctx->dc;
656
657 for (i = 0; i < MAX_PIPES; i++) {
658 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
659 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
660 break;
661 }
662
663 /* Stream not found */
664 if (i == MAX_PIPES)
665 return false;
666
667 mux_mapping.phy_output_num = phy_id;
668 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
669
670 dmub_srv = dc->ctx->dmub_srv;
671
672 /* forward to dmub only. no dmcu support*/
673 if (dmub_srv)
674 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
675 else
676 return false;
677
678 return true;
679 }
680 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
681
682 /**
683 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
684 * @dc: DC Object
685 * @stream: The stream to configure CRC on.
686 * @crc_window: CRC window (x/y start/end) information
687 * @enable: Enable CRC if true, disable otherwise.
688 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
689 * once.
690 * @idx: Capture CRC on which CRC engine instance
691 * @reset: Reset CRC engine before the configuration
692 *
693 * By default, the entire frame is used to calculate the CRC.
694 *
695 * Return: %false if the stream is not found or CRC capture is not supported;
696 * %true if the stream has been configured.
697 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)698 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
699 struct crc_params *crc_window, bool enable, bool continuous,
700 uint8_t idx, bool reset)
701 {
702 struct pipe_ctx *pipe;
703 struct crc_params param;
704 struct timing_generator *tg;
705
706 pipe = resource_get_otg_master_for_stream(
707 &dc->current_state->res_ctx, stream);
708
709 /* Stream not found */
710 if (pipe == NULL)
711 return false;
712
713 dc_exit_ips_for_hw_access(dc);
714
715 /* By default, capture the full frame */
716 param.windowa_x_start = 0;
717 param.windowa_y_start = 0;
718 param.windowa_x_end = pipe->stream->timing.h_addressable;
719 param.windowa_y_end = pipe->stream->timing.v_addressable;
720 param.windowb_x_start = 0;
721 param.windowb_y_start = 0;
722 param.windowb_x_end = pipe->stream->timing.h_addressable;
723 param.windowb_y_end = pipe->stream->timing.v_addressable;
724
725 if (crc_window) {
726 param.windowa_x_start = crc_window->windowa_x_start;
727 param.windowa_y_start = crc_window->windowa_y_start;
728 param.windowa_x_end = crc_window->windowa_x_end;
729 param.windowa_y_end = crc_window->windowa_y_end;
730 param.windowb_x_start = crc_window->windowb_x_start;
731 param.windowb_y_start = crc_window->windowb_y_start;
732 param.windowb_x_end = crc_window->windowb_x_end;
733 param.windowb_y_end = crc_window->windowb_y_end;
734 }
735
736 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
737 param.odm_mode = pipe->next_odm_pipe ? 1:0;
738
739 /* Default to the union of both windows */
740 param.selection = UNION_WINDOW_A_B;
741 param.continuous_mode = continuous;
742 param.enable = enable;
743
744 param.crc_eng_inst = idx;
745 param.reset = reset;
746
747 tg = pipe->stream_res.tg;
748
749 /* Only call if supported */
750 if (tg->funcs->configure_crc)
751 return tg->funcs->configure_crc(tg, ¶m);
752 DC_LOG_WARNING("CRC capture not supported.");
753 return false;
754 }
755
756 /**
757 * dc_stream_get_crc() - Get CRC values for the given stream.
758 *
759 * @dc: DC object.
760 * @stream: The DC stream state of the stream to get CRCs from.
761 * @idx: index of crc engine to get CRC from
762 * @r_cr: CRC value for the red component.
763 * @g_y: CRC value for the green component.
764 * @b_cb: CRC value for the blue component.
765 *
766 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
767 *
768 * Return:
769 * %false if stream is not found, or if CRCs are not enabled.
770 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)771 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
772 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
773 {
774 int i;
775 struct pipe_ctx *pipe;
776 struct timing_generator *tg;
777
778 dc_exit_ips_for_hw_access(dc);
779
780 for (i = 0; i < MAX_PIPES; i++) {
781 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
782 if (pipe->stream == stream)
783 break;
784 }
785 /* Stream not found */
786 if (i == MAX_PIPES)
787 return false;
788
789 tg = pipe->stream_res.tg;
790
791 if (tg->funcs->get_crc)
792 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
793 DC_LOG_WARNING("CRC capture not supported.");
794 return false;
795 }
796
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)797 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
798 enum dc_dynamic_expansion option)
799 {
800 /* OPP FMT dyn expansion updates*/
801 int i;
802 struct pipe_ctx *pipe_ctx;
803
804 dc_exit_ips_for_hw_access(dc);
805
806 for (i = 0; i < MAX_PIPES; i++) {
807 if (dc->current_state->res_ctx.pipe_ctx[i].stream
808 == stream) {
809 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
810 pipe_ctx->stream_res.opp->dyn_expansion = option;
811 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
812 pipe_ctx->stream_res.opp,
813 COLOR_SPACE_YCBCR601,
814 stream->timing.display_color_depth,
815 stream->signal);
816 }
817 }
818 }
819
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)820 void dc_stream_set_dither_option(struct dc_stream_state *stream,
821 enum dc_dither_option option)
822 {
823 struct bit_depth_reduction_params params;
824 struct dc_link *link = stream->link;
825 struct pipe_ctx *pipes = NULL;
826 int i;
827
828 for (i = 0; i < MAX_PIPES; i++) {
829 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
830 stream) {
831 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
832 break;
833 }
834 }
835
836 if (!pipes)
837 return;
838 if (option > DITHER_OPTION_MAX)
839 return;
840
841 dc_exit_ips_for_hw_access(stream->ctx->dc);
842
843 stream->dither_option = option;
844
845 memset(¶ms, 0, sizeof(params));
846 resource_build_bit_depth_reduction_params(stream, ¶ms);
847 stream->bit_depth_params = params;
848
849 if (pipes->plane_res.xfm &&
850 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
851 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
852 pipes->plane_res.xfm,
853 pipes->plane_res.scl_data.lb_params.depth,
854 &stream->bit_depth_params);
855 }
856
857 pipes->stream_res.opp->funcs->
858 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
859 }
860
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)861 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
862 {
863 int i;
864 bool ret = false;
865 struct pipe_ctx *pipes;
866
867 dc_exit_ips_for_hw_access(dc);
868
869 for (i = 0; i < MAX_PIPES; i++) {
870 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
871 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
872 dc->hwss.program_gamut_remap(pipes);
873 ret = true;
874 }
875 }
876
877 return ret;
878 }
879
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)880 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
881 {
882 int i;
883 bool ret = false;
884 struct pipe_ctx *pipes;
885
886 dc_exit_ips_for_hw_access(dc);
887
888 for (i = 0; i < MAX_PIPES; i++) {
889 if (dc->current_state->res_ctx.pipe_ctx[i].stream
890 == stream) {
891
892 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
893 dc->hwss.program_output_csc(dc,
894 pipes,
895 stream->output_color_space,
896 stream->csc_color_matrix.matrix,
897 pipes->stream_res.opp->inst);
898 ret = true;
899 }
900 }
901
902 return ret;
903 }
904
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)905 void dc_stream_set_static_screen_params(struct dc *dc,
906 struct dc_stream_state **streams,
907 int num_streams,
908 const struct dc_static_screen_params *params)
909 {
910 int i, j;
911 struct pipe_ctx *pipes_affected[MAX_PIPES];
912 int num_pipes_affected = 0;
913
914 dc_exit_ips_for_hw_access(dc);
915
916 for (i = 0; i < num_streams; i++) {
917 struct dc_stream_state *stream = streams[i];
918
919 for (j = 0; j < MAX_PIPES; j++) {
920 if (dc->current_state->res_ctx.pipe_ctx[j].stream
921 == stream) {
922 pipes_affected[num_pipes_affected++] =
923 &dc->current_state->res_ctx.pipe_ctx[j];
924 }
925 }
926 }
927
928 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
929 }
930
dc_destruct(struct dc * dc)931 static void dc_destruct(struct dc *dc)
932 {
933 // reset link encoder assignment table on destruct
934 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
935 link_enc_cfg_init(dc, dc->current_state);
936
937 if (dc->current_state) {
938 dc_state_release(dc->current_state);
939 dc->current_state = NULL;
940 }
941
942 destroy_links(dc);
943
944 destroy_link_encoders(dc);
945
946 if (dc->clk_mgr) {
947 dc_destroy_clk_mgr(dc->clk_mgr);
948 dc->clk_mgr = NULL;
949 }
950
951 dc_destroy_resource_pool(dc);
952
953 if (dc->link_srv)
954 link_destroy_link_service(&dc->link_srv);
955
956 if (dc->ctx->gpio_service)
957 dal_gpio_service_destroy(&dc->ctx->gpio_service);
958
959 if (dc->ctx->created_bios)
960 dal_bios_parser_destroy(&dc->ctx->dc_bios);
961
962 kfree(dc->ctx->logger);
963 dc_perf_trace_destroy(&dc->ctx->perf_trace);
964
965 kfree(dc->ctx);
966 dc->ctx = NULL;
967
968 kfree(dc->bw_vbios);
969 dc->bw_vbios = NULL;
970
971 kfree(dc->bw_dceip);
972 dc->bw_dceip = NULL;
973
974 kfree(dc->dcn_soc);
975 dc->dcn_soc = NULL;
976
977 kfree(dc->dcn_ip);
978 dc->dcn_ip = NULL;
979
980 kfree(dc->vm_helper);
981 dc->vm_helper = NULL;
982
983 }
984
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)985 static bool dc_construct_ctx(struct dc *dc,
986 const struct dc_init_data *init_params)
987 {
988 struct dc_context *dc_ctx;
989
990 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
991 if (!dc_ctx)
992 return false;
993
994 dc_ctx->cgs_device = init_params->cgs_device;
995 dc_ctx->driver_context = init_params->driver;
996 dc_ctx->dc = dc;
997 dc_ctx->asic_id = init_params->asic_id;
998 dc_ctx->dc_sink_id_count = 0;
999 dc_ctx->dc_stream_id_count = 0;
1000 dc_ctx->dce_environment = init_params->dce_environment;
1001 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
1002 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
1003 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
1004
1005 /* Create logger */
1006 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
1007
1008 if (!dc_ctx->logger) {
1009 kfree(dc_ctx);
1010 return false;
1011 }
1012
1013 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
1014 dc->dml.logger = dc_ctx->logger;
1015
1016 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1017
1018 dc_ctx->perf_trace = dc_perf_trace_create();
1019 if (!dc_ctx->perf_trace) {
1020 kfree(dc_ctx);
1021 ASSERT_CRITICAL(false);
1022 return false;
1023 }
1024
1025 dc->ctx = dc_ctx;
1026
1027 dc->link_srv = link_create_link_service();
1028 if (!dc->link_srv)
1029 return false;
1030
1031 return true;
1032 }
1033
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1034 static bool dc_construct(struct dc *dc,
1035 const struct dc_init_data *init_params)
1036 {
1037 struct dc_context *dc_ctx;
1038 struct bw_calcs_dceip *dc_dceip;
1039 struct bw_calcs_vbios *dc_vbios;
1040 struct dcn_soc_bounding_box *dcn_soc;
1041 struct dcn_ip_params *dcn_ip;
1042
1043 dc->config = init_params->flags;
1044
1045 // Allocate memory for the vm_helper
1046 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1047 if (!dc->vm_helper) {
1048 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1049 goto fail;
1050 }
1051
1052 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1053
1054 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1055 if (!dc_dceip) {
1056 dm_error("%s: failed to create dceip\n", __func__);
1057 goto fail;
1058 }
1059
1060 dc->bw_dceip = dc_dceip;
1061
1062 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1063 if (!dc_vbios) {
1064 dm_error("%s: failed to create vbios\n", __func__);
1065 goto fail;
1066 }
1067
1068 dc->bw_vbios = dc_vbios;
1069 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1070 if (!dcn_soc) {
1071 dm_error("%s: failed to create dcn_soc\n", __func__);
1072 goto fail;
1073 }
1074
1075 dc->dcn_soc = dcn_soc;
1076
1077 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1078 if (!dcn_ip) {
1079 dm_error("%s: failed to create dcn_ip\n", __func__);
1080 goto fail;
1081 }
1082
1083 dc->dcn_ip = dcn_ip;
1084
1085 if (init_params->bb_from_dmub)
1086 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1087 else
1088 dc->dml2_options.bb_from_dmub = NULL;
1089
1090 if (!dc_construct_ctx(dc, init_params)) {
1091 dm_error("%s: failed to create ctx\n", __func__);
1092 goto fail;
1093 }
1094
1095 dc_ctx = dc->ctx;
1096
1097 /* Resource should construct all asic specific resources.
1098 * This should be the only place where we need to parse the asic id
1099 */
1100 if (init_params->vbios_override)
1101 dc_ctx->dc_bios = init_params->vbios_override;
1102 else {
1103 /* Create BIOS parser */
1104 struct bp_init_data bp_init_data;
1105
1106 bp_init_data.ctx = dc_ctx;
1107 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1108
1109 dc_ctx->dc_bios = dal_bios_parser_create(
1110 &bp_init_data, dc_ctx->dce_version);
1111
1112 if (!dc_ctx->dc_bios) {
1113 ASSERT_CRITICAL(false);
1114 goto fail;
1115 }
1116
1117 dc_ctx->created_bios = true;
1118 }
1119
1120 dc->vendor_signature = init_params->vendor_signature;
1121
1122 /* Create GPIO service */
1123 dc_ctx->gpio_service = dal_gpio_service_create(
1124 dc_ctx->dce_version,
1125 dc_ctx->dce_environment,
1126 dc_ctx);
1127
1128 if (!dc_ctx->gpio_service) {
1129 ASSERT_CRITICAL(false);
1130 goto fail;
1131 }
1132
1133 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1134 if (!dc->res_pool)
1135 goto fail;
1136
1137 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1138 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1139 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1140 if (dc->caps.max_optimizable_video_width == 0)
1141 dc->caps.max_optimizable_video_width = 5120;
1142 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1143 if (!dc->clk_mgr)
1144 goto fail;
1145 #ifdef CONFIG_DRM_AMD_DC_FP
1146 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1147
1148 if (dc->res_pool->funcs->update_bw_bounding_box) {
1149 DC_FP_START();
1150 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1151 DC_FP_END();
1152 }
1153 #endif
1154
1155 if (!create_links(dc, init_params->num_virtual_links))
1156 goto fail;
1157
1158 /* Create additional DIG link encoder objects if fewer than the platform
1159 * supports were created during link construction.
1160 */
1161 if (!create_link_encoders(dc))
1162 goto fail;
1163
1164 /* Creation of current_state must occur after dc->dml
1165 * is initialized in dc_create_resource_pool because
1166 * on creation it copies the contents of dc->dml
1167 */
1168 dc->current_state = dc_state_create(dc, NULL);
1169
1170 if (!dc->current_state) {
1171 dm_error("%s: failed to create validate ctx\n", __func__);
1172 goto fail;
1173 }
1174
1175 return true;
1176
1177 fail:
1178 return false;
1179 }
1180
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1181 static void disable_all_writeback_pipes_for_stream(
1182 const struct dc *dc,
1183 struct dc_stream_state *stream,
1184 struct dc_state *context)
1185 {
1186 int i;
1187
1188 for (i = 0; i < stream->num_wb_info; i++)
1189 stream->writeback_info[i].wb_enabled = false;
1190 }
1191
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1192 static void apply_ctx_interdependent_lock(struct dc *dc,
1193 struct dc_state *context,
1194 struct dc_stream_state *stream,
1195 bool lock)
1196 {
1197 int i;
1198
1199 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1200 if (dc->hwss.interdependent_update_lock)
1201 dc->hwss.interdependent_update_lock(dc, context, lock);
1202 else {
1203 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1204 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1205 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1206
1207 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1208 if (stream == pipe_ctx->stream) {
1209 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1210 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1211 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1212 }
1213 }
1214 }
1215 }
1216
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1217 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1218 {
1219 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1220 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1221
1222 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1223 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1224 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1225 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1226 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1227 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1228 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1229 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1230 else {
1231 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1232 color_space_to_black_color(
1233 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1234 }
1235 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1236 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1237 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1238 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1239 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1240 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1241 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1242 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1243 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1244 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1245 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1246 }
1247 }
1248 }
1249
disable_dangling_plane(struct dc * dc,struct dc_state * context)1250 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1251 {
1252 int i, j;
1253 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1254 struct dc_state *current_ctx;
1255 struct pipe_ctx *pipe;
1256 struct timing_generator *tg;
1257
1258 if (dangling_context == NULL)
1259 return;
1260
1261 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1262 struct dc_stream_state *old_stream =
1263 dc->current_state->res_ctx.pipe_ctx[i].stream;
1264 bool should_disable = true;
1265 bool pipe_split_change = false;
1266
1267 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1268 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1269 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1270 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1271 else
1272 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1273 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1274
1275 for (j = 0; j < context->stream_count; j++) {
1276 if (old_stream == context->streams[j]) {
1277 should_disable = false;
1278 break;
1279 }
1280 }
1281 if (!should_disable && pipe_split_change &&
1282 dc->current_state->stream_count != context->stream_count)
1283 should_disable = true;
1284
1285 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1286 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1287 struct pipe_ctx *old_pipe, *new_pipe;
1288
1289 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1290 new_pipe = &context->res_ctx.pipe_ctx[i];
1291
1292 if (old_pipe->plane_state && !new_pipe->plane_state)
1293 should_disable = true;
1294 }
1295
1296 if (should_disable && old_stream) {
1297 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1298 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1299 tg = pipe->stream_res.tg;
1300 /* When disabling plane for a phantom pipe, we must turn on the
1301 * phantom OTG so the disable programming gets the double buffer
1302 * update. Otherwise the pipe will be left in a partially disabled
1303 * state that can result in underflow or hang when enabling it
1304 * again for different use.
1305 */
1306 if (is_phantom) {
1307 if (tg->funcs->enable_crtc) {
1308 if (dc->hwseq->funcs.blank_pixel_data)
1309 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1310 tg->funcs->enable_crtc(tg);
1311 }
1312 }
1313
1314 if (is_phantom)
1315 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1316 else
1317 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1318 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1319
1320 if (pipe->stream && pipe->plane_state) {
1321 if (!dc->debug.using_dml2)
1322 set_p_state_switch_method(dc, context, pipe);
1323 dc_update_visual_confirm_color(dc, context, pipe);
1324 }
1325
1326 if (dc->hwss.apply_ctx_for_surface) {
1327 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1328 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1329 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1330 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1331 }
1332
1333 if (dc->res_pool->funcs->prepare_mcache_programming)
1334 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1335 if (dc->hwss.program_front_end_for_ctx) {
1336 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1337 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1338 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1339 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1340 }
1341 /* We need to put the phantom OTG back into it's default (disabled) state or we
1342 * can get corruption when transition from one SubVP config to a different one.
1343 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1344 * will still get it's double buffer update.
1345 */
1346 if (is_phantom) {
1347 if (tg->funcs->disable_phantom_crtc)
1348 tg->funcs->disable_phantom_crtc(tg);
1349 }
1350 }
1351 }
1352
1353 current_ctx = dc->current_state;
1354 dc->current_state = dangling_context;
1355 dc_state_release(current_ctx);
1356 }
1357
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1358 static void disable_vbios_mode_if_required(
1359 struct dc *dc,
1360 struct dc_state *context)
1361 {
1362 unsigned int i, j;
1363
1364 /* check if timing_changed, disable stream*/
1365 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1366 struct dc_stream_state *stream = NULL;
1367 struct dc_link *link = NULL;
1368 struct pipe_ctx *pipe = NULL;
1369
1370 pipe = &context->res_ctx.pipe_ctx[i];
1371 stream = pipe->stream;
1372 if (stream == NULL)
1373 continue;
1374
1375 if (stream->apply_seamless_boot_optimization)
1376 continue;
1377
1378 // only looking for first odm pipe
1379 if (pipe->prev_odm_pipe)
1380 continue;
1381
1382 if (stream->link->local_sink &&
1383 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1384 link = stream->link;
1385 }
1386
1387 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1388 unsigned int enc_inst, tg_inst = 0;
1389 unsigned int pix_clk_100hz = 0;
1390
1391 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1392 if (enc_inst != ENGINE_ID_UNKNOWN) {
1393 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1394 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1395 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1396 dc->res_pool->stream_enc[j]);
1397 break;
1398 }
1399 }
1400
1401 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1402 dc->res_pool->dp_clock_source,
1403 tg_inst, &pix_clk_100hz);
1404
1405 if (link->link_status.link_active) {
1406 uint32_t requested_pix_clk_100hz =
1407 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1408
1409 if (pix_clk_100hz != requested_pix_clk_100hz) {
1410 dc->link_srv->set_dpms_off(pipe);
1411 pipe->stream->dpms_off = false;
1412 }
1413 }
1414 }
1415 }
1416 }
1417 }
1418
1419 /* Public functions */
1420
dc_create(const struct dc_init_data * init_params)1421 struct dc *dc_create(const struct dc_init_data *init_params)
1422 {
1423 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1424 unsigned int full_pipe_count;
1425
1426 if (!dc)
1427 return NULL;
1428
1429 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1430 dc->caps.linear_pitch_alignment = 64;
1431 if (!dc_construct_ctx(dc, init_params))
1432 goto destruct_dc;
1433 } else {
1434 if (!dc_construct(dc, init_params))
1435 goto destruct_dc;
1436
1437 full_pipe_count = dc->res_pool->pipe_count;
1438 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1439 full_pipe_count--;
1440 dc->caps.max_streams = min(
1441 full_pipe_count,
1442 dc->res_pool->stream_enc_count);
1443
1444 dc->caps.max_links = dc->link_count;
1445 dc->caps.max_audios = dc->res_pool->audio_count;
1446 dc->caps.linear_pitch_alignment = 64;
1447
1448 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1449
1450 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1451
1452 if (dc->res_pool->dmcu != NULL)
1453 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1454 }
1455
1456 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1457 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1458 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1459
1460 /* Populate versioning information */
1461 dc->versions.dc_ver = DC_VER;
1462
1463 dc->build_id = DC_BUILD_ID;
1464
1465 DC_LOG_DC("Display Core initialized\n");
1466
1467 return dc;
1468
1469 destruct_dc:
1470 dc_destruct(dc);
1471 kfree(dc);
1472 return NULL;
1473 }
1474
detect_edp_presence(struct dc * dc)1475 static void detect_edp_presence(struct dc *dc)
1476 {
1477 struct dc_link *edp_links[MAX_NUM_EDP];
1478 struct dc_link *edp_link = NULL;
1479 enum dc_connection_type type;
1480 int i;
1481 int edp_num;
1482
1483 dc_get_edp_links(dc, edp_links, &edp_num);
1484 if (!edp_num)
1485 return;
1486
1487 for (i = 0; i < edp_num; i++) {
1488 edp_link = edp_links[i];
1489 if (dc->config.edp_not_connected) {
1490 edp_link->edp_sink_present = false;
1491 } else {
1492 dc_link_detect_connection_type(edp_link, &type);
1493 edp_link->edp_sink_present = (type != dc_connection_none);
1494 }
1495 }
1496 }
1497
dc_hardware_init(struct dc * dc)1498 void dc_hardware_init(struct dc *dc)
1499 {
1500
1501 detect_edp_presence(dc);
1502 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1503 dc->hwss.init_hw(dc);
1504 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1505 }
1506
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1507 void dc_init_callbacks(struct dc *dc,
1508 const struct dc_callback_init *init_params)
1509 {
1510 dc->ctx->cp_psp = init_params->cp_psp;
1511 }
1512
dc_deinit_callbacks(struct dc * dc)1513 void dc_deinit_callbacks(struct dc *dc)
1514 {
1515 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1516 }
1517
dc_destroy(struct dc ** dc)1518 void dc_destroy(struct dc **dc)
1519 {
1520 dc_destruct(*dc);
1521 kfree(*dc);
1522 *dc = NULL;
1523 }
1524
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1525 static void enable_timing_multisync(
1526 struct dc *dc,
1527 struct dc_state *ctx)
1528 {
1529 int i, multisync_count = 0;
1530 int pipe_count = dc->res_pool->pipe_count;
1531 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1532
1533 for (i = 0; i < pipe_count; i++) {
1534 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1535 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1536 continue;
1537 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1538 continue;
1539 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1540 multisync_count++;
1541 }
1542
1543 if (multisync_count > 0) {
1544 dc->hwss.enable_per_frame_crtc_position_reset(
1545 dc, multisync_count, multisync_pipes);
1546 }
1547 }
1548
program_timing_sync(struct dc * dc,struct dc_state * ctx)1549 static void program_timing_sync(
1550 struct dc *dc,
1551 struct dc_state *ctx)
1552 {
1553 int i, j, k;
1554 int group_index = 0;
1555 int num_group = 0;
1556 int pipe_count = dc->res_pool->pipe_count;
1557 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1558
1559 for (i = 0; i < pipe_count; i++) {
1560 if (!ctx->res_ctx.pipe_ctx[i].stream
1561 || ctx->res_ctx.pipe_ctx[i].top_pipe
1562 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1563 continue;
1564
1565 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1566 }
1567
1568 for (i = 0; i < pipe_count; i++) {
1569 int group_size = 1;
1570 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1571 struct pipe_ctx *pipe_set[MAX_PIPES];
1572
1573 if (!unsynced_pipes[i])
1574 continue;
1575
1576 pipe_set[0] = unsynced_pipes[i];
1577 unsynced_pipes[i] = NULL;
1578
1579 /* Add tg to the set, search rest of the tg's for ones with
1580 * same timing, add all tgs with same timing to the group
1581 */
1582 for (j = i + 1; j < pipe_count; j++) {
1583 if (!unsynced_pipes[j])
1584 continue;
1585 if (sync_type != TIMING_SYNCHRONIZABLE &&
1586 dc->hwss.enable_vblanks_synchronization &&
1587 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1588 resource_are_vblanks_synchronizable(
1589 unsynced_pipes[j]->stream,
1590 pipe_set[0]->stream)) {
1591 sync_type = VBLANK_SYNCHRONIZABLE;
1592 pipe_set[group_size] = unsynced_pipes[j];
1593 unsynced_pipes[j] = NULL;
1594 group_size++;
1595 } else
1596 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1597 resource_are_streams_timing_synchronizable(
1598 unsynced_pipes[j]->stream,
1599 pipe_set[0]->stream)) {
1600 sync_type = TIMING_SYNCHRONIZABLE;
1601 pipe_set[group_size] = unsynced_pipes[j];
1602 unsynced_pipes[j] = NULL;
1603 group_size++;
1604 }
1605 }
1606
1607 /* set first unblanked pipe as master */
1608 for (j = 0; j < group_size; j++) {
1609 bool is_blanked;
1610
1611 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1612 is_blanked =
1613 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1614 else
1615 is_blanked =
1616 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1617 if (!is_blanked) {
1618 if (j == 0)
1619 break;
1620
1621 swap(pipe_set[0], pipe_set[j]);
1622 break;
1623 }
1624 }
1625
1626 for (k = 0; k < group_size; k++) {
1627 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1628
1629 if (!status)
1630 continue;
1631
1632 status->timing_sync_info.group_id = num_group;
1633 status->timing_sync_info.group_size = group_size;
1634 if (k == 0)
1635 status->timing_sync_info.master = true;
1636 else
1637 status->timing_sync_info.master = false;
1638
1639 }
1640
1641 /* remove any other unblanked pipes as they have already been synced */
1642 if (dc->config.use_pipe_ctx_sync_logic) {
1643 /* check pipe's syncd to decide which pipe to be removed */
1644 for (j = 1; j < group_size; j++) {
1645 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1646 group_size--;
1647 pipe_set[j] = pipe_set[group_size];
1648 j--;
1649 } else
1650 /* link slave pipe's syncd with master pipe */
1651 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1652 }
1653 } else {
1654 /* remove any other pipes by checking valid plane */
1655 for (j = j + 1; j < group_size; j++) {
1656 bool is_blanked;
1657
1658 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1659 is_blanked =
1660 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1661 else
1662 is_blanked =
1663 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1664 if (!is_blanked) {
1665 group_size--;
1666 pipe_set[j] = pipe_set[group_size];
1667 j--;
1668 }
1669 }
1670 }
1671
1672 if (group_size > 1) {
1673 if (sync_type == TIMING_SYNCHRONIZABLE) {
1674 dc->hwss.enable_timing_synchronization(
1675 dc, ctx, group_index, group_size, pipe_set);
1676 } else
1677 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1678 dc->hwss.enable_vblanks_synchronization(
1679 dc, group_index, group_size, pipe_set);
1680 }
1681 group_index++;
1682 }
1683 num_group++;
1684 }
1685 }
1686
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1687 static bool streams_changed(struct dc *dc,
1688 struct dc_stream_state *streams[],
1689 uint8_t stream_count)
1690 {
1691 uint8_t i;
1692
1693 if (stream_count != dc->current_state->stream_count)
1694 return true;
1695
1696 for (i = 0; i < dc->current_state->stream_count; i++) {
1697 if (dc->current_state->streams[i] != streams[i])
1698 return true;
1699 if (!streams[i]->link->link_state_valid)
1700 return true;
1701 }
1702
1703 return false;
1704 }
1705
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1706 bool dc_validate_boot_timing(const struct dc *dc,
1707 const struct dc_sink *sink,
1708 struct dc_crtc_timing *crtc_timing)
1709 {
1710 struct timing_generator *tg;
1711 struct stream_encoder *se = NULL;
1712
1713 struct dc_crtc_timing hw_crtc_timing = {0};
1714
1715 struct dc_link *link = sink->link;
1716 unsigned int i, enc_inst, tg_inst = 0;
1717
1718 /* Support seamless boot on EDP displays only */
1719 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1720 return false;
1721 }
1722
1723 if (dc->debug.force_odm_combine)
1724 return false;
1725
1726 /* Check for enabled DIG to identify enabled display */
1727 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1728 return false;
1729
1730 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1731
1732 if (enc_inst == ENGINE_ID_UNKNOWN)
1733 return false;
1734
1735 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1736 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1737
1738 se = dc->res_pool->stream_enc[i];
1739
1740 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1741 dc->res_pool->stream_enc[i]);
1742 break;
1743 }
1744 }
1745
1746 // tg_inst not found
1747 if (i == dc->res_pool->stream_enc_count)
1748 return false;
1749
1750 if (tg_inst >= dc->res_pool->timing_generator_count)
1751 return false;
1752
1753 if (tg_inst != link->link_enc->preferred_engine)
1754 return false;
1755
1756 tg = dc->res_pool->timing_generators[tg_inst];
1757
1758 if (!tg->funcs->get_hw_timing)
1759 return false;
1760
1761 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1762 return false;
1763
1764 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1765 return false;
1766
1767 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1768 return false;
1769
1770 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1771 return false;
1772
1773 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1774 return false;
1775
1776 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1777 return false;
1778
1779 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1780 return false;
1781
1782 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1783 return false;
1784
1785 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1786 return false;
1787
1788 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1789 return false;
1790
1791 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1792 return false;
1793
1794 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1795 return false;
1796
1797 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1798 return false;
1799
1800 /* block DSC for now, as VBIOS does not currently support DSC timings */
1801 if (crtc_timing->flags.DSC)
1802 return false;
1803
1804 if (dc_is_dp_signal(link->connector_signal)) {
1805 unsigned int pix_clk_100hz = 0;
1806 uint32_t numOdmPipes = 1;
1807 uint32_t id_src[4] = {0};
1808
1809 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1810 dc->res_pool->dp_clock_source,
1811 tg_inst, &pix_clk_100hz);
1812
1813 if (tg->funcs->get_optc_source)
1814 tg->funcs->get_optc_source(tg,
1815 &numOdmPipes, &id_src[0], &id_src[1]);
1816
1817 if (numOdmPipes == 2) {
1818 pix_clk_100hz *= 2;
1819 } else if (numOdmPipes == 4) {
1820 pix_clk_100hz *= 4;
1821 } else if (se && se->funcs->get_pixels_per_cycle) {
1822 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1823
1824 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy)
1825 return false;
1826
1827 pix_clk_100hz *= pixels_per_cycle;
1828 }
1829
1830 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1831 // slightly due to rounding issues in 10 kHz units.
1832 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1833 return false;
1834
1835 if (!se || !se->funcs->dp_get_pixel_format)
1836 return false;
1837
1838 if (!se->funcs->dp_get_pixel_format(
1839 se,
1840 &hw_crtc_timing.pixel_encoding,
1841 &hw_crtc_timing.display_color_depth))
1842 return false;
1843
1844 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1845 return false;
1846
1847 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1848 return false;
1849 }
1850
1851 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1852 return false;
1853 }
1854
1855 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1856 return false;
1857
1858 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1859 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1860 return false;
1861 }
1862
1863 return true;
1864 }
1865
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1866 static inline bool should_update_pipe_for_stream(
1867 struct dc_state *context,
1868 struct pipe_ctx *pipe_ctx,
1869 struct dc_stream_state *stream)
1870 {
1871 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1872 }
1873
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1874 static inline bool should_update_pipe_for_plane(
1875 struct dc_state *context,
1876 struct pipe_ctx *pipe_ctx,
1877 struct dc_plane_state *plane_state)
1878 {
1879 return (pipe_ctx->plane_state == plane_state);
1880 }
1881
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1882 void dc_enable_stereo(
1883 struct dc *dc,
1884 struct dc_state *context,
1885 struct dc_stream_state *streams[],
1886 uint8_t stream_count)
1887 {
1888 int i, j;
1889 struct pipe_ctx *pipe;
1890
1891 dc_exit_ips_for_hw_access(dc);
1892
1893 for (i = 0; i < MAX_PIPES; i++) {
1894 if (context != NULL) {
1895 pipe = &context->res_ctx.pipe_ctx[i];
1896 } else {
1897 context = dc->current_state;
1898 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1899 }
1900
1901 for (j = 0; pipe && j < stream_count; j++) {
1902 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1903 dc->hwss.setup_stereo)
1904 dc->hwss.setup_stereo(pipe, dc);
1905 }
1906 }
1907 }
1908
dc_trigger_sync(struct dc * dc,struct dc_state * context)1909 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1910 {
1911 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1912 dc_exit_ips_for_hw_access(dc);
1913
1914 enable_timing_multisync(dc, context);
1915 program_timing_sync(dc, context);
1916 }
1917 }
1918
get_stream_mask(struct dc * dc,struct dc_state * context)1919 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1920 {
1921 int i;
1922 unsigned int stream_mask = 0;
1923
1924 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1925 if (context->res_ctx.pipe_ctx[i].stream)
1926 stream_mask |= 1 << i;
1927 }
1928
1929 return stream_mask;
1930 }
1931
dc_z10_restore(const struct dc * dc)1932 void dc_z10_restore(const struct dc *dc)
1933 {
1934 if (dc->hwss.z10_restore)
1935 dc->hwss.z10_restore(dc);
1936 }
1937
dc_z10_save_init(struct dc * dc)1938 void dc_z10_save_init(struct dc *dc)
1939 {
1940 if (dc->hwss.z10_save_init)
1941 dc->hwss.z10_save_init(dc);
1942 }
1943
1944 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
1945 * Prevents over allocation of DET during unlock process
1946 * e.g. 2 pipe config with different streams with a max of 20 DET segments
1947 * Before: After:
1948 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
1949 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
1950 * If Pipe0 gets updated first, 22 DET segments will be allocated
1951 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)1952 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
1953 {
1954 unsigned int i = 0;
1955 struct pipe_ctx *pipe = NULL;
1956 struct timing_generator *tg = NULL;
1957
1958 if (!dc->config.set_pipe_unlock_order)
1959 return;
1960
1961 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
1962 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1963 pipe = &context->res_ctx.pipe_ctx[i];
1964 tg = pipe->stream_res.tg;
1965
1966 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
1967 !tg->funcs->is_tg_enabled(tg) ||
1968 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1969 continue;
1970 }
1971
1972 if (resource_calculate_det_for_stream(context, pipe) <
1973 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
1974 dc->scratch.pipes_to_unlock_first[i] = true;
1975 }
1976 }
1977 }
1978
1979 /**
1980 * dc_commit_state_no_check - Apply context to the hardware
1981 *
1982 * @dc: DC object with the current status to be updated
1983 * @context: New state that will become the current status at the end of this function
1984 *
1985 * Applies given context to the hardware and copy it into current context.
1986 * It's up to the user to release the src context afterwards.
1987 *
1988 * Return: an enum dc_status result code for the operation
1989 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1990 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1991 {
1992 struct dc_bios *dcb = dc->ctx->dc_bios;
1993 enum dc_status result = DC_ERROR_UNEXPECTED;
1994 struct pipe_ctx *pipe;
1995 int i, k, l;
1996 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1997 struct dc_state *old_state;
1998 bool subvp_prev_use = false;
1999
2000 dc_z10_restore(dc);
2001 dc_allow_idle_optimizations(dc, false);
2002
2003 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2004 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2005
2006 /* Check old context for SubVP */
2007 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2008 if (subvp_prev_use)
2009 break;
2010 }
2011
2012 for (i = 0; i < context->stream_count; i++)
2013 dc_streams[i] = context->streams[i];
2014
2015 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2016 disable_vbios_mode_if_required(dc, context);
2017 dc->hwss.enable_accelerated_mode(dc, context);
2018 }
2019
2020 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2021 context->stream_count == 0)
2022 dc->hwss.prepare_bandwidth(dc, context);
2023
2024 /* When SubVP is active, all HW programming must be done while
2025 * SubVP lock is acquired
2026 */
2027 if (dc->hwss.subvp_pipe_control_lock)
2028 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2029 if (dc->hwss.fams2_global_control_lock)
2030 dc->hwss.fams2_global_control_lock(dc, context, true);
2031
2032 if (dc->hwss.update_dsc_pg)
2033 dc->hwss.update_dsc_pg(dc, context, false);
2034
2035 disable_dangling_plane(dc, context);
2036 /* re-program planes for existing stream, in case we need to
2037 * free up plane resource for later use
2038 */
2039 if (dc->hwss.apply_ctx_for_surface) {
2040 for (i = 0; i < context->stream_count; i++) {
2041 if (context->streams[i]->mode_changed)
2042 continue;
2043 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2044 dc->hwss.apply_ctx_for_surface(
2045 dc, context->streams[i],
2046 context->stream_status[i].plane_count,
2047 context); /* use new pipe config in new context */
2048 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2049 dc->hwss.post_unlock_program_front_end(dc, context);
2050 }
2051 }
2052
2053 /* Program hardware */
2054 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2055 pipe = &context->res_ctx.pipe_ctx[i];
2056 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2057 }
2058
2059 result = dc->hwss.apply_ctx_to_hw(dc, context);
2060
2061 if (result != DC_OK) {
2062 /* Application of dc_state to hardware stopped. */
2063 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2064 return result;
2065 }
2066
2067 dc_trigger_sync(dc, context);
2068
2069 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2070 for (i = 0; i < context->stream_count; i++) {
2071 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2072
2073 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2074 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2075 }
2076
2077 determine_pipe_unlock_order(dc, context);
2078 /* Program all planes within new context*/
2079 if (dc->res_pool->funcs->prepare_mcache_programming)
2080 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2081 if (dc->hwss.program_front_end_for_ctx) {
2082 dc->hwss.interdependent_update_lock(dc, context, true);
2083 dc->hwss.program_front_end_for_ctx(dc, context);
2084 dc->hwss.interdependent_update_lock(dc, context, false);
2085 dc->hwss.post_unlock_program_front_end(dc, context);
2086 }
2087
2088 if (dc->hwss.commit_subvp_config)
2089 dc->hwss.commit_subvp_config(dc, context);
2090 if (dc->hwss.subvp_pipe_control_lock)
2091 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2092 if (dc->hwss.fams2_global_control_lock)
2093 dc->hwss.fams2_global_control_lock(dc, context, false);
2094
2095 for (i = 0; i < context->stream_count; i++) {
2096 const struct dc_link *link = context->streams[i]->link;
2097
2098 if (!context->streams[i]->mode_changed)
2099 continue;
2100
2101 if (dc->hwss.apply_ctx_for_surface) {
2102 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2103 dc->hwss.apply_ctx_for_surface(
2104 dc, context->streams[i],
2105 context->stream_status[i].plane_count,
2106 context);
2107 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2108 dc->hwss.post_unlock_program_front_end(dc, context);
2109 }
2110
2111 /*
2112 * enable stereo
2113 * TODO rework dc_enable_stereo call to work with validation sets?
2114 */
2115 for (k = 0; k < MAX_PIPES; k++) {
2116 pipe = &context->res_ctx.pipe_ctx[k];
2117
2118 for (l = 0 ; pipe && l < context->stream_count; l++) {
2119 if (context->streams[l] &&
2120 context->streams[l] == pipe->stream &&
2121 dc->hwss.setup_stereo)
2122 dc->hwss.setup_stereo(pipe, dc);
2123 }
2124 }
2125
2126 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2127 context->streams[i]->timing.h_addressable,
2128 context->streams[i]->timing.v_addressable,
2129 context->streams[i]->timing.h_total,
2130 context->streams[i]->timing.v_total,
2131 context->streams[i]->timing.pix_clk_100hz / 10);
2132 }
2133
2134 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2135
2136 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2137 context->stream_count == 0) {
2138 /* Must wait for no flips to be pending before doing optimize bw */
2139 hwss_wait_for_no_pipes_pending(dc, context);
2140 /*
2141 * optimized dispclk depends on ODM setup. Need to wait for ODM
2142 * update pending complete before optimizing bandwidth.
2143 */
2144 hwss_wait_for_odm_update_pending_complete(dc, context);
2145 /* pplib is notified if disp_num changed */
2146 dc->hwss.optimize_bandwidth(dc, context);
2147 /* Need to do otg sync again as otg could be out of sync due to otg
2148 * workaround applied during clock update
2149 */
2150 dc_trigger_sync(dc, context);
2151 }
2152
2153 if (dc->hwss.update_dsc_pg)
2154 dc->hwss.update_dsc_pg(dc, context, true);
2155
2156 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2157 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2158 else
2159 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2160
2161 context->stream_mask = get_stream_mask(dc, context);
2162
2163 if (context->stream_mask != dc->current_state->stream_mask)
2164 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2165
2166 for (i = 0; i < context->stream_count; i++)
2167 context->streams[i]->mode_changed = false;
2168
2169 /* Clear update flags that were set earlier to avoid redundant programming */
2170 for (i = 0; i < context->stream_count; i++) {
2171 context->streams[i]->update_flags.raw = 0x0;
2172 }
2173
2174 old_state = dc->current_state;
2175 dc->current_state = context;
2176
2177 dc_state_release(old_state);
2178
2179 dc_state_retain(dc->current_state);
2180
2181 return result;
2182 }
2183
2184 static bool commit_minimal_transition_state(struct dc *dc,
2185 struct dc_state *transition_base_context);
2186
2187 /**
2188 * dc_commit_streams - Commit current stream state
2189 *
2190 * @dc: DC object with the commit state to be configured in the hardware
2191 * @params: Parameters for the commit, including the streams to be committed
2192 *
2193 * Function responsible for commit streams change to the hardware.
2194 *
2195 * Return:
2196 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2197 * code.
2198 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2199 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2200 {
2201 int i, j;
2202 struct dc_state *context;
2203 enum dc_status res = DC_OK;
2204 struct dc_validation_set set[MAX_STREAMS] = {0};
2205 struct pipe_ctx *pipe;
2206 bool handle_exit_odm2to1 = false;
2207
2208 if (!params)
2209 return DC_ERROR_UNEXPECTED;
2210
2211 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2212 return res;
2213
2214 if (!streams_changed(dc, params->streams, params->stream_count) &&
2215 dc->current_state->power_source == params->power_source)
2216 return res;
2217
2218 dc_exit_ips_for_hw_access(dc);
2219
2220 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2221
2222 for (i = 0; i < params->stream_count; i++) {
2223 struct dc_stream_state *stream = params->streams[i];
2224 struct dc_stream_status *status = dc_stream_get_status(stream);
2225
2226 /* revalidate streams */
2227 res = dc_validate_stream(dc, stream);
2228 if (res != DC_OK)
2229 return res;
2230
2231 dc_stream_log(dc, stream);
2232
2233 set[i].stream = stream;
2234
2235 if (status) {
2236 set[i].plane_count = status->plane_count;
2237 for (j = 0; j < status->plane_count; j++)
2238 set[i].plane_states[j] = status->plane_states[j];
2239 }
2240 }
2241
2242 /* ODM Combine 2:1 power optimization is only applied for single stream
2243 * scenario, it uses extra pipes than needed to reduce power consumption
2244 * We need to switch off this feature to make room for new streams.
2245 */
2246 if (params->stream_count > dc->current_state->stream_count &&
2247 dc->current_state->stream_count == 1) {
2248 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2249 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2250 if (pipe->next_odm_pipe)
2251 handle_exit_odm2to1 = true;
2252 }
2253 }
2254
2255 if (handle_exit_odm2to1)
2256 res = commit_minimal_transition_state(dc, dc->current_state);
2257
2258 context = dc_state_create_current_copy(dc);
2259 if (!context)
2260 goto context_alloc_fail;
2261
2262 context->power_source = params->power_source;
2263
2264 res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2265
2266 /*
2267 * Only update link encoder to stream assignment after bandwidth validation passed.
2268 */
2269 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign)
2270 dc->res_pool->funcs->link_encs_assign(
2271 dc, context, context->streams, context->stream_count);
2272
2273 if (res != DC_OK) {
2274 BREAK_TO_DEBUGGER();
2275 goto fail;
2276 }
2277
2278 res = dc_commit_state_no_check(dc, context);
2279
2280 for (i = 0; i < params->stream_count; i++) {
2281 for (j = 0; j < context->stream_count; j++) {
2282 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2283 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2284
2285 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2286 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2287
2288 if (!status)
2289 continue;
2290
2291 if (dc->hwss.is_abm_supported)
2292 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2293 else
2294 status->is_abm_supported = true;
2295 }
2296 }
2297 }
2298
2299 fail:
2300 dc_state_release(context);
2301
2302 context_alloc_fail:
2303
2304 DC_LOG_DC("%s Finished.\n", __func__);
2305
2306 return res;
2307 }
2308
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2309 bool dc_acquire_release_mpc_3dlut(
2310 struct dc *dc, bool acquire,
2311 struct dc_stream_state *stream,
2312 struct dc_3dlut **lut,
2313 struct dc_transfer_func **shaper)
2314 {
2315 int pipe_idx;
2316 bool ret = false;
2317 bool found_pipe_idx = false;
2318 const struct resource_pool *pool = dc->res_pool;
2319 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2320 int mpcc_id = 0;
2321
2322 if (pool && res_ctx) {
2323 if (acquire) {
2324 /*find pipe idx for the given stream*/
2325 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2326 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2327 found_pipe_idx = true;
2328 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2329 break;
2330 }
2331 }
2332 } else
2333 found_pipe_idx = true;/*for release pipe_idx is not required*/
2334
2335 if (found_pipe_idx) {
2336 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2337 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2338 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2339 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2340 }
2341 }
2342 return ret;
2343 }
2344
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2345 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2346 {
2347 int i;
2348 struct pipe_ctx *pipe;
2349
2350 for (i = 0; i < MAX_PIPES; i++) {
2351 pipe = &context->res_ctx.pipe_ctx[i];
2352
2353 // Don't check flip pending on phantom pipes
2354 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2355 continue;
2356
2357 /* Must set to false to start with, due to OR in update function */
2358 pipe->plane_state->status.is_flip_pending = false;
2359 dc->hwss.update_pending_status(pipe);
2360 if (pipe->plane_state->status.is_flip_pending)
2361 return true;
2362 }
2363 return false;
2364 }
2365
2366 /* Perform updates here which need to be deferred until next vupdate
2367 *
2368 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2369 * but forcing lut memory to shutdown state is immediate. This causes
2370 * single frame corruption as lut gets disabled mid-frame unless shutdown
2371 * is deferred until after entering bypass.
2372 */
process_deferred_updates(struct dc * dc)2373 static void process_deferred_updates(struct dc *dc)
2374 {
2375 int i = 0;
2376
2377 if (dc->debug.enable_mem_low_power.bits.cm) {
2378 ASSERT(dc->dcn_ip->max_num_dpp);
2379 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2380 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2381 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2382 }
2383 }
2384
dc_post_update_surfaces_to_stream(struct dc * dc)2385 void dc_post_update_surfaces_to_stream(struct dc *dc)
2386 {
2387 int i;
2388 struct dc_state *context = dc->current_state;
2389
2390 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2391 return;
2392
2393 post_surface_trace(dc);
2394
2395 /*
2396 * Only relevant for DCN behavior where we can guarantee the optimization
2397 * is safe to apply - retain the legacy behavior for DCE.
2398 */
2399
2400 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2401 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2402 else {
2403 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2404
2405 if (is_flip_pending_in_pipes(dc, context))
2406 return;
2407
2408 for (i = 0; i < dc->res_pool->pipe_count; i++)
2409 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2410 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2411 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2412 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2413 }
2414
2415 process_deferred_updates(dc);
2416
2417 dc->hwss.optimize_bandwidth(dc, context);
2418
2419 if (dc->hwss.update_dsc_pg)
2420 dc->hwss.update_dsc_pg(dc, context, true);
2421 }
2422
2423 dc->optimized_required = false;
2424 dc->wm_optimized_required = false;
2425 }
2426
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2427 bool dc_set_generic_gpio_for_stereo(bool enable,
2428 struct gpio_service *gpio_service)
2429 {
2430 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2431 struct gpio_pin_info pin_info;
2432 struct gpio *generic;
2433 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2434 GFP_KERNEL);
2435
2436 if (!config)
2437 return false;
2438 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2439
2440 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2441 kfree(config);
2442 return false;
2443 } else {
2444 generic = dal_gpio_service_create_generic_mux(
2445 gpio_service,
2446 pin_info.offset,
2447 pin_info.mask);
2448 }
2449
2450 if (!generic) {
2451 kfree(config);
2452 return false;
2453 }
2454
2455 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2456
2457 config->enable_output_from_mux = enable;
2458 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2459
2460 if (gpio_result == GPIO_RESULT_OK)
2461 gpio_result = dal_mux_setup_config(generic, config);
2462
2463 if (gpio_result == GPIO_RESULT_OK) {
2464 dal_gpio_close(generic);
2465 dal_gpio_destroy_generic_mux(&generic);
2466 kfree(config);
2467 return true;
2468 } else {
2469 dal_gpio_close(generic);
2470 dal_gpio_destroy_generic_mux(&generic);
2471 kfree(config);
2472 return false;
2473 }
2474 }
2475
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2476 static bool is_surface_in_context(
2477 const struct dc_state *context,
2478 const struct dc_plane_state *plane_state)
2479 {
2480 int j;
2481
2482 for (j = 0; j < MAX_PIPES; j++) {
2483 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2484
2485 if (plane_state == pipe_ctx->plane_state) {
2486 return true;
2487 }
2488 }
2489
2490 return false;
2491 }
2492
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2493 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2494 {
2495 union surface_update_flags *update_flags = &u->surface->update_flags;
2496 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2497
2498 if (!u->plane_info)
2499 return UPDATE_TYPE_FAST;
2500
2501 if (u->plane_info->color_space != u->surface->color_space) {
2502 update_flags->bits.color_space_change = 1;
2503 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2504 }
2505
2506 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2507 update_flags->bits.horizontal_mirror_change = 1;
2508 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2509 }
2510
2511 if (u->plane_info->rotation != u->surface->rotation) {
2512 update_flags->bits.rotation_change = 1;
2513 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2514 }
2515
2516 if (u->plane_info->format != u->surface->format) {
2517 update_flags->bits.pixel_format_change = 1;
2518 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2519 }
2520
2521 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2522 update_flags->bits.stereo_format_change = 1;
2523 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2524 }
2525
2526 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2527 update_flags->bits.per_pixel_alpha_change = 1;
2528 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2529 }
2530
2531 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2532 update_flags->bits.global_alpha_change = 1;
2533 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2534 }
2535
2536 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2537 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2538 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2539 /* During DCC on/off, stutter period is calculated before
2540 * DCC has fully transitioned. This results in incorrect
2541 * stutter period calculation. Triggering a full update will
2542 * recalculate stutter period.
2543 */
2544 update_flags->bits.dcc_change = 1;
2545 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2546 }
2547
2548 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2549 resource_pixel_format_to_bpp(u->surface->format)) {
2550 /* different bytes per element will require full bandwidth
2551 * and DML calculation
2552 */
2553 update_flags->bits.bpp_change = 1;
2554 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2555 }
2556
2557 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2558 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2559 update_flags->bits.plane_size_change = 1;
2560 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2561 }
2562
2563
2564 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2565 sizeof(struct dc_tiling_info)) != 0) {
2566 update_flags->bits.swizzle_change = 1;
2567 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2568
2569 /* todo: below are HW dependent, we should add a hook to
2570 * DCE/N resource and validated there.
2571 */
2572 if (!dc->debug.skip_full_updated_if_possible) {
2573 /* swizzled mode requires RQ to be setup properly,
2574 * thus need to run DML to calculate RQ settings
2575 */
2576 update_flags->bits.bandwidth_change = 1;
2577 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2578 }
2579 }
2580
2581 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2582 return update_type;
2583 }
2584
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2585 static enum surface_update_type get_scaling_info_update_type(
2586 const struct dc *dc,
2587 const struct dc_surface_update *u)
2588 {
2589 union surface_update_flags *update_flags = &u->surface->update_flags;
2590
2591 if (!u->scaling_info)
2592 return UPDATE_TYPE_FAST;
2593
2594 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2595 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2596 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2597 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2598 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2599 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2600 || u->scaling_info->scaling_quality.integer_scaling !=
2601 u->surface->scaling_quality.integer_scaling) {
2602 update_flags->bits.scaling_change = 1;
2603
2604 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2605 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2606 /* Making src rect bigger requires a bandwidth change */
2607 update_flags->bits.clock_change = 1;
2608
2609 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2610 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2611 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2612 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2613 /* Making dst rect smaller requires a bandwidth change */
2614 update_flags->bits.bandwidth_change = 1;
2615
2616 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2617 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2618 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2619 /* Changing clip size of a large surface may result in MPC slice count change */
2620 update_flags->bits.bandwidth_change = 1;
2621 }
2622
2623 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2624 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2625 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2626 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2627 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2628 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2629 update_flags->bits.position_change = 1;
2630
2631 /* process every update flag before returning */
2632 if (update_flags->bits.clock_change
2633 || update_flags->bits.bandwidth_change
2634 || update_flags->bits.scaling_change)
2635 return UPDATE_TYPE_FULL;
2636
2637 if (update_flags->bits.position_change)
2638 return UPDATE_TYPE_MED;
2639
2640 return UPDATE_TYPE_FAST;
2641 }
2642
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2643 static enum surface_update_type det_surface_update(const struct dc *dc,
2644 const struct dc_surface_update *u)
2645 {
2646 const struct dc_state *context = dc->current_state;
2647 enum surface_update_type type;
2648 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2649 union surface_update_flags *update_flags = &u->surface->update_flags;
2650
2651 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2652 update_flags->raw = 0xFFFFFFFF;
2653 return UPDATE_TYPE_FULL;
2654 }
2655
2656 update_flags->raw = 0; // Reset all flags
2657
2658 type = get_plane_info_update_type(dc, u);
2659 elevate_update_type(&overall_type, type);
2660
2661 type = get_scaling_info_update_type(dc, u);
2662 elevate_update_type(&overall_type, type);
2663
2664 if (u->flip_addr) {
2665 update_flags->bits.addr_update = 1;
2666 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2667 update_flags->bits.tmz_changed = 1;
2668 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2669 }
2670 }
2671 if (u->in_transfer_func)
2672 update_flags->bits.in_transfer_func_change = 1;
2673
2674 if (u->input_csc_color_matrix)
2675 update_flags->bits.input_csc_change = 1;
2676
2677 if (u->coeff_reduction_factor)
2678 update_flags->bits.coeff_reduction_change = 1;
2679
2680 if (u->gamut_remap_matrix)
2681 update_flags->bits.gamut_remap_change = 1;
2682
2683 if (u->blend_tf)
2684 update_flags->bits.gamma_change = 1;
2685
2686 if (u->gamma) {
2687 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2688
2689 if (u->plane_info)
2690 format = u->plane_info->format;
2691 else
2692 format = u->surface->format;
2693
2694 if (dce_use_lut(format))
2695 update_flags->bits.gamma_change = 1;
2696 }
2697
2698 if (u->lut3d_func || u->func_shaper)
2699 update_flags->bits.lut_3d = 1;
2700
2701 if (u->hdr_mult.value)
2702 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2703 update_flags->bits.hdr_mult = 1;
2704 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2705 }
2706
2707 if (u->sdr_white_level_nits)
2708 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2709 update_flags->bits.sdr_white_level_nits = 1;
2710 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2711 }
2712
2713 if (u->cm2_params) {
2714 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2715 != u->surface->mcm_shaper_3dlut_setting)
2716 || (u->cm2_params->component_settings.lut1d_enable
2717 != u->surface->mcm_lut1d_enable))
2718 update_flags->bits.mcm_transfer_function_enable_change = 1;
2719 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2720 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2721 update_flags->bits.mcm_transfer_function_enable_change = 1;
2722 }
2723 if (update_flags->bits.in_transfer_func_change) {
2724 type = UPDATE_TYPE_MED;
2725 elevate_update_type(&overall_type, type);
2726 }
2727
2728 if (update_flags->bits.lut_3d &&
2729 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2730 type = UPDATE_TYPE_FULL;
2731 elevate_update_type(&overall_type, type);
2732 }
2733 if (update_flags->bits.mcm_transfer_function_enable_change) {
2734 type = UPDATE_TYPE_FULL;
2735 elevate_update_type(&overall_type, type);
2736 }
2737
2738 if (dc->debug.enable_legacy_fast_update &&
2739 (update_flags->bits.gamma_change ||
2740 update_flags->bits.gamut_remap_change ||
2741 update_flags->bits.input_csc_change ||
2742 update_flags->bits.coeff_reduction_change)) {
2743 type = UPDATE_TYPE_FULL;
2744 elevate_update_type(&overall_type, type);
2745 }
2746 return overall_type;
2747 }
2748
2749 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2750 * while both planes are flip_immediate
2751 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2752 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2753 {
2754 bool has_flip_immediate_plane = false;
2755 int i;
2756
2757 for (i = 0; i < surface_count; i++) {
2758 if (updates[i].surface->flip_immediate) {
2759 has_flip_immediate_plane = true;
2760 break;
2761 }
2762 }
2763
2764 if (has_flip_immediate_plane && surface_count > 1) {
2765 for (i = 0; i < surface_count; i++) {
2766 if (updates[i].surface->flip_immediate)
2767 updates[i].surface->update_flags.bits.addr_update = 1;
2768 }
2769 }
2770 }
2771
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2772 static enum surface_update_type check_update_surfaces_for_stream(
2773 struct dc *dc,
2774 struct dc_surface_update *updates,
2775 int surface_count,
2776 struct dc_stream_update *stream_update,
2777 const struct dc_stream_status *stream_status)
2778 {
2779 int i;
2780 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2781
2782 if (dc->idle_optimizations_allowed)
2783 overall_type = UPDATE_TYPE_FULL;
2784
2785 if (stream_status == NULL || stream_status->plane_count != surface_count)
2786 overall_type = UPDATE_TYPE_FULL;
2787
2788 if (stream_update && stream_update->pending_test_pattern) {
2789 overall_type = UPDATE_TYPE_FULL;
2790 }
2791
2792 if (stream_update && stream_update->hw_cursor_req) {
2793 overall_type = UPDATE_TYPE_FULL;
2794 }
2795
2796 /* some stream updates require passive update */
2797 if (stream_update) {
2798 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2799
2800 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2801 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2802 stream_update->integer_scaling_update)
2803 su_flags->bits.scaling = 1;
2804
2805 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2806 su_flags->bits.out_tf = 1;
2807
2808 if (stream_update->abm_level)
2809 su_flags->bits.abm_level = 1;
2810
2811 if (stream_update->dpms_off)
2812 su_flags->bits.dpms_off = 1;
2813
2814 if (stream_update->gamut_remap)
2815 su_flags->bits.gamut_remap = 1;
2816
2817 if (stream_update->wb_update)
2818 su_flags->bits.wb_update = 1;
2819
2820 if (stream_update->dsc_config)
2821 su_flags->bits.dsc_changed = 1;
2822
2823 if (stream_update->mst_bw_update)
2824 su_flags->bits.mst_bw = 1;
2825
2826 if (stream_update->stream->freesync_on_desktop &&
2827 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2828 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2829 su_flags->bits.fams_changed = 1;
2830
2831 if (stream_update->scaler_sharpener_update)
2832 su_flags->bits.scaler_sharpener = 1;
2833
2834 if (stream_update->sharpening_required)
2835 su_flags->bits.sharpening_required = 1;
2836
2837 if (su_flags->raw != 0)
2838 overall_type = UPDATE_TYPE_FULL;
2839
2840 if (stream_update->output_csc_transform || stream_update->output_color_space)
2841 su_flags->bits.out_csc = 1;
2842
2843 /* Output transfer function changes do not require bandwidth recalculation,
2844 * so don't trigger a full update
2845 */
2846 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2847 su_flags->bits.out_tf = 1;
2848 }
2849
2850 for (i = 0 ; i < surface_count; i++) {
2851 enum surface_update_type type =
2852 det_surface_update(dc, &updates[i]);
2853
2854 elevate_update_type(&overall_type, type);
2855 }
2856
2857 return overall_type;
2858 }
2859
2860 /*
2861 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2862 *
2863 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2864 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2865 enum surface_update_type dc_check_update_surfaces_for_stream(
2866 struct dc *dc,
2867 struct dc_surface_update *updates,
2868 int surface_count,
2869 struct dc_stream_update *stream_update,
2870 const struct dc_stream_status *stream_status)
2871 {
2872 int i;
2873 enum surface_update_type type;
2874
2875 if (stream_update)
2876 stream_update->stream->update_flags.raw = 0;
2877 for (i = 0; i < surface_count; i++)
2878 updates[i].surface->update_flags.raw = 0;
2879
2880 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2881 if (type == UPDATE_TYPE_FULL) {
2882 if (stream_update) {
2883 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2884 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2885 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2886 }
2887 for (i = 0; i < surface_count; i++)
2888 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2889 }
2890
2891 if (type == UPDATE_TYPE_FAST) {
2892 // If there's an available clock comparator, we use that.
2893 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2894 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2895 dc->optimized_required = true;
2896 // Else we fallback to mem compare.
2897 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2898 dc->optimized_required = true;
2899 }
2900
2901 dc->optimized_required |= dc->wm_optimized_required;
2902 }
2903
2904 return type;
2905 }
2906
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2907 static struct dc_stream_status *stream_get_status(
2908 struct dc_state *ctx,
2909 struct dc_stream_state *stream)
2910 {
2911 uint8_t i;
2912
2913 for (i = 0; i < ctx->stream_count; i++) {
2914 if (stream == ctx->streams[i]) {
2915 return &ctx->stream_status[i];
2916 }
2917 }
2918
2919 return NULL;
2920 }
2921
2922 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2923
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2924 static void copy_surface_update_to_plane(
2925 struct dc_plane_state *surface,
2926 struct dc_surface_update *srf_update)
2927 {
2928 if (srf_update->flip_addr) {
2929 surface->address = srf_update->flip_addr->address;
2930 surface->flip_immediate =
2931 srf_update->flip_addr->flip_immediate;
2932 surface->time.time_elapsed_in_us[surface->time.index] =
2933 srf_update->flip_addr->flip_timestamp_in_us -
2934 surface->time.prev_update_time_in_us;
2935 surface->time.prev_update_time_in_us =
2936 srf_update->flip_addr->flip_timestamp_in_us;
2937 surface->time.index++;
2938 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2939 surface->time.index = 0;
2940
2941 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2942 }
2943
2944 if (srf_update->scaling_info) {
2945 surface->scaling_quality =
2946 srf_update->scaling_info->scaling_quality;
2947 surface->dst_rect =
2948 srf_update->scaling_info->dst_rect;
2949 surface->src_rect =
2950 srf_update->scaling_info->src_rect;
2951 surface->clip_rect =
2952 srf_update->scaling_info->clip_rect;
2953 }
2954
2955 if (srf_update->plane_info) {
2956 surface->color_space =
2957 srf_update->plane_info->color_space;
2958 surface->format =
2959 srf_update->plane_info->format;
2960 surface->plane_size =
2961 srf_update->plane_info->plane_size;
2962 surface->rotation =
2963 srf_update->plane_info->rotation;
2964 surface->horizontal_mirror =
2965 srf_update->plane_info->horizontal_mirror;
2966 surface->stereo_format =
2967 srf_update->plane_info->stereo_format;
2968 surface->tiling_info =
2969 srf_update->plane_info->tiling_info;
2970 surface->visible =
2971 srf_update->plane_info->visible;
2972 surface->per_pixel_alpha =
2973 srf_update->plane_info->per_pixel_alpha;
2974 surface->global_alpha =
2975 srf_update->plane_info->global_alpha;
2976 surface->global_alpha_value =
2977 srf_update->plane_info->global_alpha_value;
2978 surface->dcc =
2979 srf_update->plane_info->dcc;
2980 surface->layer_index =
2981 srf_update->plane_info->layer_index;
2982 }
2983
2984 if (srf_update->gamma) {
2985 memcpy(&surface->gamma_correction.entries,
2986 &srf_update->gamma->entries,
2987 sizeof(struct dc_gamma_entries));
2988 surface->gamma_correction.is_identity =
2989 srf_update->gamma->is_identity;
2990 surface->gamma_correction.num_entries =
2991 srf_update->gamma->num_entries;
2992 surface->gamma_correction.type =
2993 srf_update->gamma->type;
2994 }
2995
2996 if (srf_update->in_transfer_func) {
2997 surface->in_transfer_func.sdr_ref_white_level =
2998 srf_update->in_transfer_func->sdr_ref_white_level;
2999 surface->in_transfer_func.tf =
3000 srf_update->in_transfer_func->tf;
3001 surface->in_transfer_func.type =
3002 srf_update->in_transfer_func->type;
3003 memcpy(&surface->in_transfer_func.tf_pts,
3004 &srf_update->in_transfer_func->tf_pts,
3005 sizeof(struct dc_transfer_func_distributed_points));
3006 }
3007
3008 if (srf_update->cm2_params) {
3009 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3010 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3011 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3012 }
3013
3014 if (srf_update->func_shaper) {
3015 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3016 sizeof(surface->in_shaper_func));
3017
3018 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3019 surface->mcm_luts.shaper = &surface->in_shaper_func;
3020 }
3021
3022 if (srf_update->lut3d_func)
3023 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3024 sizeof(surface->lut3d_func));
3025
3026 if (srf_update->hdr_mult.value)
3027 surface->hdr_mult =
3028 srf_update->hdr_mult;
3029
3030 if (srf_update->sdr_white_level_nits)
3031 surface->sdr_white_level_nits =
3032 srf_update->sdr_white_level_nits;
3033
3034 if (srf_update->blend_tf) {
3035 memcpy(&surface->blend_tf, srf_update->blend_tf,
3036 sizeof(surface->blend_tf));
3037
3038 if (surface->mcm_lut1d_enable)
3039 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3040 }
3041
3042 if (srf_update->cm2_params || srf_update->blend_tf)
3043 surface->lut_bank_a = !surface->lut_bank_a;
3044
3045 if (srf_update->input_csc_color_matrix)
3046 surface->input_csc_color_matrix =
3047 *srf_update->input_csc_color_matrix;
3048
3049 if (srf_update->coeff_reduction_factor)
3050 surface->coeff_reduction_factor =
3051 *srf_update->coeff_reduction_factor;
3052
3053 if (srf_update->gamut_remap_matrix)
3054 surface->gamut_remap_matrix =
3055 *srf_update->gamut_remap_matrix;
3056
3057 if (srf_update->cursor_csc_color_matrix)
3058 surface->cursor_csc_color_matrix =
3059 *srf_update->cursor_csc_color_matrix;
3060
3061 if (srf_update->bias_and_scale.bias_and_scale_valid)
3062 surface->bias_and_scale =
3063 srf_update->bias_and_scale;
3064 }
3065
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3066 static void copy_stream_update_to_stream(struct dc *dc,
3067 struct dc_state *context,
3068 struct dc_stream_state *stream,
3069 struct dc_stream_update *update)
3070 {
3071 struct dc_context *dc_ctx = dc->ctx;
3072
3073 if (update == NULL || stream == NULL)
3074 return;
3075
3076 if (update->src.height && update->src.width)
3077 stream->src = update->src;
3078
3079 if (update->dst.height && update->dst.width)
3080 stream->dst = update->dst;
3081
3082 if (update->out_transfer_func) {
3083 stream->out_transfer_func.sdr_ref_white_level =
3084 update->out_transfer_func->sdr_ref_white_level;
3085 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3086 stream->out_transfer_func.type =
3087 update->out_transfer_func->type;
3088 memcpy(&stream->out_transfer_func.tf_pts,
3089 &update->out_transfer_func->tf_pts,
3090 sizeof(struct dc_transfer_func_distributed_points));
3091 }
3092
3093 if (update->hdr_static_metadata)
3094 stream->hdr_static_metadata = *update->hdr_static_metadata;
3095
3096 if (update->abm_level)
3097 stream->abm_level = *update->abm_level;
3098
3099 if (update->periodic_interrupt)
3100 stream->periodic_interrupt = *update->periodic_interrupt;
3101
3102 if (update->gamut_remap)
3103 stream->gamut_remap_matrix = *update->gamut_remap;
3104
3105 /* Note: this being updated after mode set is currently not a use case
3106 * however if it arises OCSC would need to be reprogrammed at the
3107 * minimum
3108 */
3109 if (update->output_color_space)
3110 stream->output_color_space = *update->output_color_space;
3111
3112 if (update->output_csc_transform)
3113 stream->csc_color_matrix = *update->output_csc_transform;
3114
3115 if (update->vrr_infopacket)
3116 stream->vrr_infopacket = *update->vrr_infopacket;
3117
3118 if (update->hw_cursor_req)
3119 stream->hw_cursor_req = *update->hw_cursor_req;
3120
3121 if (update->allow_freesync)
3122 stream->allow_freesync = *update->allow_freesync;
3123
3124 if (update->vrr_active_variable)
3125 stream->vrr_active_variable = *update->vrr_active_variable;
3126
3127 if (update->vrr_active_fixed)
3128 stream->vrr_active_fixed = *update->vrr_active_fixed;
3129
3130 if (update->crtc_timing_adjust)
3131 stream->adjust = *update->crtc_timing_adjust;
3132
3133 if (update->dpms_off)
3134 stream->dpms_off = *update->dpms_off;
3135
3136 if (update->hfvsif_infopacket)
3137 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3138
3139 if (update->vtem_infopacket)
3140 stream->vtem_infopacket = *update->vtem_infopacket;
3141
3142 if (update->vsc_infopacket)
3143 stream->vsc_infopacket = *update->vsc_infopacket;
3144
3145 if (update->vsp_infopacket)
3146 stream->vsp_infopacket = *update->vsp_infopacket;
3147
3148 if (update->adaptive_sync_infopacket)
3149 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3150
3151 if (update->dither_option)
3152 stream->dither_option = *update->dither_option;
3153
3154 if (update->pending_test_pattern)
3155 stream->test_pattern = *update->pending_test_pattern;
3156 /* update current stream with writeback info */
3157 if (update->wb_update) {
3158 int i;
3159
3160 stream->num_wb_info = update->wb_update->num_wb_info;
3161 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3162 for (i = 0; i < stream->num_wb_info; i++)
3163 stream->writeback_info[i] =
3164 update->wb_update->writeback_info[i];
3165 }
3166 if (update->dsc_config) {
3167 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3168 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3169 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3170 update->dsc_config->num_slices_v != 0);
3171
3172 /* Use temporarry context for validating new DSC config */
3173 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3174
3175 if (dsc_validate_context) {
3176 stream->timing.dsc_cfg = *update->dsc_config;
3177 stream->timing.flags.DSC = enable_dsc;
3178 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3179 stream->timing.dsc_cfg = old_dsc_cfg;
3180 stream->timing.flags.DSC = old_dsc_enabled;
3181 update->dsc_config = NULL;
3182 }
3183
3184 dc_state_release(dsc_validate_context);
3185 } else {
3186 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3187 update->dsc_config = NULL;
3188 }
3189 }
3190 if (update->scaler_sharpener_update)
3191 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3192 if (update->sharpening_required)
3193 stream->sharpening_required = *update->sharpening_required;
3194 }
3195
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3196 static void backup_planes_and_stream_state(
3197 struct dc_scratch_space *scratch,
3198 struct dc_stream_state *stream)
3199 {
3200 int i;
3201 struct dc_stream_status *status = dc_stream_get_status(stream);
3202
3203 if (!status)
3204 return;
3205
3206 for (i = 0; i < status->plane_count; i++) {
3207 scratch->plane_states[i] = *status->plane_states[i];
3208 }
3209 scratch->stream_state = *stream;
3210 }
3211
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3212 static void restore_planes_and_stream_state(
3213 struct dc_scratch_space *scratch,
3214 struct dc_stream_state *stream)
3215 {
3216 int i;
3217 struct dc_stream_status *status = dc_stream_get_status(stream);
3218
3219 if (!status)
3220 return;
3221
3222 for (i = 0; i < status->plane_count; i++) {
3223 /* refcount will always be valid, restore everything else */
3224 struct kref refcount = status->plane_states[i]->refcount;
3225 *status->plane_states[i] = scratch->plane_states[i];
3226 status->plane_states[i]->refcount = refcount;
3227 }
3228 *stream = scratch->stream_state;
3229 }
3230
3231 /**
3232 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3233 *
3234 * @dc: Current DC state
3235 * @context: New DC state to be programmed
3236 * @surface_count: Number of surfaces that have an updated
3237 * @stream: Corresponding stream to be updated in the current flip
3238 *
3239 * Updating seamless boot flags do not need to be part of the commit sequence. This
3240 * helper function will update the seamless boot flags on each flip (if required)
3241 * outside of the HW commit sequence (fast or slow).
3242 *
3243 * Return: void
3244 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3245 static void update_seamless_boot_flags(struct dc *dc,
3246 struct dc_state *context,
3247 int surface_count,
3248 struct dc_stream_state *stream)
3249 {
3250 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3251 /* Optimize seamless boot flag keeps clocks and watermarks high until
3252 * first flip. After first flip, optimization is required to lower
3253 * bandwidth. Important to note that it is expected UEFI will
3254 * only light up a single display on POST, therefore we only expect
3255 * one stream with seamless boot flag set.
3256 */
3257 if (stream->apply_seamless_boot_optimization) {
3258 stream->apply_seamless_boot_optimization = false;
3259
3260 if (get_seamless_boot_stream_count(context) == 0)
3261 dc->optimized_required = true;
3262 }
3263 }
3264 }
3265
3266 /**
3267 * update_planes_and_stream_state() - The function takes planes and stream
3268 * updates as inputs and determines the appropriate update type. If update type
3269 * is FULL, the function allocates a new context, populates and validates it.
3270 * Otherwise, it updates current dc context. The function will return both
3271 * new_context and new_update_type back to the caller. The function also backs
3272 * up both current and new contexts into corresponding dc state scratch memory.
3273 * TODO: The function does too many things, and even conditionally allocates dc
3274 * context memory implicitly. We should consider to break it down.
3275 *
3276 * @dc: Current DC state
3277 * @srf_updates: an array of surface updates
3278 * @surface_count: surface update count
3279 * @stream: Corresponding stream to be updated
3280 * @stream_update: stream update
3281 * @new_update_type: [out] determined update type by the function
3282 * @new_context: [out] new context allocated and validated if update type is
3283 * FULL, reference to current context if update type is less than FULL.
3284 *
3285 * Return: true if a valid update is populated into new_context, false
3286 * otherwise.
3287 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3288 static bool update_planes_and_stream_state(struct dc *dc,
3289 struct dc_surface_update *srf_updates, int surface_count,
3290 struct dc_stream_state *stream,
3291 struct dc_stream_update *stream_update,
3292 enum surface_update_type *new_update_type,
3293 struct dc_state **new_context)
3294 {
3295 struct dc_state *context;
3296 int i, j;
3297 enum surface_update_type update_type;
3298 const struct dc_stream_status *stream_status;
3299 struct dc_context *dc_ctx = dc->ctx;
3300
3301 stream_status = dc_stream_get_status(stream);
3302
3303 if (!stream_status) {
3304 if (surface_count) /* Only an error condition if surf_count non-zero*/
3305 ASSERT(false);
3306
3307 return false; /* Cannot commit surface to stream that is not committed */
3308 }
3309
3310 context = dc->current_state;
3311 update_type = dc_check_update_surfaces_for_stream(
3312 dc, srf_updates, surface_count, stream_update, stream_status);
3313 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3314 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3315 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3316 */
3317 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3318 if (update_type == UPDATE_TYPE_FULL)
3319 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3320
3321 /* update current stream with the new updates */
3322 copy_stream_update_to_stream(dc, context, stream, stream_update);
3323
3324 /* do not perform surface update if surface has invalid dimensions
3325 * (all zero) and no scaling_info is provided
3326 */
3327 if (surface_count > 0) {
3328 for (i = 0; i < surface_count; i++) {
3329 if ((srf_updates[i].surface->src_rect.width == 0 ||
3330 srf_updates[i].surface->src_rect.height == 0 ||
3331 srf_updates[i].surface->dst_rect.width == 0 ||
3332 srf_updates[i].surface->dst_rect.height == 0) &&
3333 (!srf_updates[i].scaling_info ||
3334 srf_updates[i].scaling_info->src_rect.width == 0 ||
3335 srf_updates[i].scaling_info->src_rect.height == 0 ||
3336 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3337 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3338 DC_ERROR("Invalid src/dst rects in surface update!\n");
3339 return false;
3340 }
3341 }
3342 }
3343
3344 if (update_type >= update_surface_trace_level)
3345 update_surface_trace(dc, srf_updates, surface_count);
3346
3347 for (i = 0; i < surface_count; i++)
3348 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3349
3350 if (update_type >= UPDATE_TYPE_FULL) {
3351 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3352
3353 for (i = 0; i < surface_count; i++)
3354 new_planes[i] = srf_updates[i].surface;
3355
3356 /* initialize scratch memory for building context */
3357 context = dc_state_create_copy(dc->current_state);
3358 if (context == NULL) {
3359 DC_ERROR("Failed to allocate new validate context!\n");
3360 return false;
3361 }
3362
3363 /* For each full update, remove all existing phantom pipes first.
3364 * Ensures that we have enough pipes for newly added MPO planes
3365 */
3366 dc_state_remove_phantom_streams_and_planes(dc, context);
3367 dc_state_release_phantom_streams_and_planes(dc, context);
3368
3369 /*remove old surfaces from context */
3370 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3371
3372 BREAK_TO_DEBUGGER();
3373 goto fail;
3374 }
3375
3376 /* add surface to context */
3377 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3378
3379 BREAK_TO_DEBUGGER();
3380 goto fail;
3381 }
3382 }
3383
3384 /* save update parameters into surface */
3385 for (i = 0; i < surface_count; i++) {
3386 struct dc_plane_state *surface = srf_updates[i].surface;
3387
3388 if (update_type != UPDATE_TYPE_MED)
3389 continue;
3390 if (surface->update_flags.bits.position_change) {
3391 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3392 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3393
3394 if (pipe_ctx->plane_state != surface)
3395 continue;
3396
3397 resource_build_scaling_params(pipe_ctx);
3398 }
3399 }
3400 }
3401
3402 if (update_type == UPDATE_TYPE_FULL) {
3403 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3404 BREAK_TO_DEBUGGER();
3405 goto fail;
3406 }
3407 }
3408 update_seamless_boot_flags(dc, context, surface_count, stream);
3409
3410 *new_context = context;
3411 *new_update_type = update_type;
3412 if (update_type == UPDATE_TYPE_FULL)
3413 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3414
3415 return true;
3416
3417 fail:
3418 dc_state_release(context);
3419
3420 return false;
3421
3422 }
3423
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3424 static void commit_planes_do_stream_update(struct dc *dc,
3425 struct dc_stream_state *stream,
3426 struct dc_stream_update *stream_update,
3427 enum surface_update_type update_type,
3428 struct dc_state *context)
3429 {
3430 int j;
3431
3432 // Stream updates
3433 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3434 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3435
3436 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3437
3438 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3439 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3440
3441 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3442 stream_update->vrr_infopacket ||
3443 stream_update->vsc_infopacket ||
3444 stream_update->vsp_infopacket ||
3445 stream_update->hfvsif_infopacket ||
3446 stream_update->adaptive_sync_infopacket ||
3447 stream_update->vtem_infopacket) {
3448 resource_build_info_frame(pipe_ctx);
3449 dc->hwss.update_info_frame(pipe_ctx);
3450
3451 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3452 dc->link_srv->dp_trace_source_sequence(
3453 pipe_ctx->stream->link,
3454 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3455 }
3456
3457 if (stream_update->hdr_static_metadata &&
3458 stream->use_dynamic_meta &&
3459 dc->hwss.set_dmdata_attributes &&
3460 pipe_ctx->stream->dmdata_address.quad_part != 0)
3461 dc->hwss.set_dmdata_attributes(pipe_ctx);
3462
3463 if (stream_update->gamut_remap)
3464 dc_stream_set_gamut_remap(dc, stream);
3465
3466 if (stream_update->output_csc_transform)
3467 dc_stream_program_csc_matrix(dc, stream);
3468
3469 if (stream_update->dither_option) {
3470 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3471 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3472 &pipe_ctx->stream->bit_depth_params);
3473 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3474 &stream->bit_depth_params,
3475 &stream->clamping);
3476 while (odm_pipe) {
3477 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3478 &stream->bit_depth_params,
3479 &stream->clamping);
3480 odm_pipe = odm_pipe->next_odm_pipe;
3481 }
3482 }
3483
3484 if (stream_update->cursor_attributes)
3485 program_cursor_attributes(dc, stream);
3486
3487 if (stream_update->cursor_position)
3488 program_cursor_position(dc, stream);
3489
3490 /* Full fe update*/
3491 if (update_type == UPDATE_TYPE_FAST)
3492 continue;
3493
3494 if (stream_update->dsc_config)
3495 dc->link_srv->update_dsc_config(pipe_ctx);
3496
3497 if (stream_update->mst_bw_update) {
3498 if (stream_update->mst_bw_update->is_increase)
3499 dc->link_srv->increase_mst_payload(pipe_ctx,
3500 stream_update->mst_bw_update->mst_stream_bw);
3501 else
3502 dc->link_srv->reduce_mst_payload(pipe_ctx,
3503 stream_update->mst_bw_update->mst_stream_bw);
3504 }
3505
3506 if (stream_update->pending_test_pattern) {
3507 /*
3508 * test pattern params depends on ODM topology
3509 * changes that we could be applying to front
3510 * end. Since at the current stage front end
3511 * changes are not yet applied. We can only
3512 * apply test pattern in hw based on current
3513 * state and populate the final test pattern
3514 * params in new state. If current and new test
3515 * pattern params are different as result of
3516 * different ODM topology being used, it will be
3517 * detected and handle during front end
3518 * programming update.
3519 */
3520 dc->link_srv->dp_set_test_pattern(stream->link,
3521 stream->test_pattern.type,
3522 stream->test_pattern.color_space,
3523 stream->test_pattern.p_link_settings,
3524 stream->test_pattern.p_custom_pattern,
3525 stream->test_pattern.cust_pattern_size);
3526 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3527 }
3528
3529 if (stream_update->dpms_off) {
3530 if (*stream_update->dpms_off) {
3531 dc->link_srv->set_dpms_off(pipe_ctx);
3532 /* for dpms, keep acquired resources*/
3533 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3534 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3535
3536 dc->optimized_required = true;
3537
3538 } else {
3539 if (get_seamless_boot_stream_count(context) == 0)
3540 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3541 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3542 }
3543 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3544 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3545 /*
3546 * Workaround for firmware issue in some receivers where they don't pick up
3547 * correct output color space unless DP link is disabled/re-enabled
3548 */
3549 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3550 }
3551
3552 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3553 bool should_program_abm = true;
3554
3555 // if otg funcs defined check if blanked before programming
3556 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3557 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3558 should_program_abm = false;
3559
3560 if (should_program_abm) {
3561 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3562 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3563 } else {
3564 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3565 pipe_ctx->stream_res.abm, stream->abm_level);
3566 }
3567 }
3568 }
3569 }
3570 }
3571 }
3572
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3573 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3574 {
3575 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3576 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3577 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3578 return true;
3579
3580 if (stream->link->replay_settings.config.replay_supported)
3581 return true;
3582
3583 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3584 return true;
3585
3586 return false;
3587 }
3588
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3589 void dc_dmub_update_dirty_rect(struct dc *dc,
3590 int surface_count,
3591 struct dc_stream_state *stream,
3592 struct dc_surface_update *srf_updates,
3593 struct dc_state *context)
3594 {
3595 union dmub_rb_cmd cmd;
3596 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3597 unsigned int i, j;
3598 unsigned int panel_inst = 0;
3599
3600 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3601 return;
3602
3603 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3604 return;
3605
3606 memset(&cmd, 0x0, sizeof(cmd));
3607 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3608 cmd.update_dirty_rect.header.sub_type = 0;
3609 cmd.update_dirty_rect.header.payload_bytes =
3610 sizeof(cmd.update_dirty_rect) -
3611 sizeof(cmd.update_dirty_rect.header);
3612 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3613 for (i = 0; i < surface_count; i++) {
3614 struct dc_plane_state *plane_state = srf_updates[i].surface;
3615 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3616
3617 if (!srf_updates[i].surface || !flip_addr)
3618 continue;
3619 /* Do not send in immediate flip mode */
3620 if (srf_updates[i].surface->flip_immediate)
3621 continue;
3622
3623 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3624 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3625 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3626 sizeof(flip_addr->dirty_rects));
3627 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3628 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3629
3630 if (pipe_ctx->stream != stream)
3631 continue;
3632 if (pipe_ctx->plane_state != plane_state)
3633 continue;
3634
3635 update_dirty_rect->panel_inst = panel_inst;
3636 update_dirty_rect->pipe_idx = j;
3637 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3638 }
3639 }
3640 }
3641
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3642 static void build_dmub_update_dirty_rect(
3643 struct dc *dc,
3644 int surface_count,
3645 struct dc_stream_state *stream,
3646 struct dc_surface_update *srf_updates,
3647 struct dc_state *context,
3648 struct dc_dmub_cmd dc_dmub_cmd[],
3649 unsigned int *dmub_cmd_count)
3650 {
3651 union dmub_rb_cmd cmd;
3652 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3653 unsigned int i, j;
3654 unsigned int panel_inst = 0;
3655
3656 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3657 return;
3658
3659 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3660 return;
3661
3662 memset(&cmd, 0x0, sizeof(cmd));
3663 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3664 cmd.update_dirty_rect.header.sub_type = 0;
3665 cmd.update_dirty_rect.header.payload_bytes =
3666 sizeof(cmd.update_dirty_rect) -
3667 sizeof(cmd.update_dirty_rect.header);
3668 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3669 for (i = 0; i < surface_count; i++) {
3670 struct dc_plane_state *plane_state = srf_updates[i].surface;
3671 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3672
3673 if (!srf_updates[i].surface || !flip_addr)
3674 continue;
3675 /* Do not send in immediate flip mode */
3676 if (srf_updates[i].surface->flip_immediate)
3677 continue;
3678 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3679 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3680 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3681 sizeof(flip_addr->dirty_rects));
3682 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3683 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3684
3685 if (pipe_ctx->stream != stream)
3686 continue;
3687 if (pipe_ctx->plane_state != plane_state)
3688 continue;
3689 update_dirty_rect->panel_inst = panel_inst;
3690 update_dirty_rect->pipe_idx = j;
3691 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3692 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3693 (*dmub_cmd_count)++;
3694 }
3695 }
3696 }
3697
check_address_only_update(union surface_update_flags update_flags)3698 static bool check_address_only_update(union surface_update_flags update_flags)
3699 {
3700 union surface_update_flags addr_only_update_flags;
3701 addr_only_update_flags.raw = 0;
3702 addr_only_update_flags.bits.addr_update = 1;
3703
3704 return update_flags.bits.addr_update &&
3705 !(update_flags.raw & ~addr_only_update_flags.raw);
3706 }
3707
3708 /**
3709 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3710 *
3711 * @dc: Current DC state
3712 * @srf_updates: Array of surface updates
3713 * @surface_count: Number of surfaces that have an updated
3714 * @stream: Corresponding stream to be updated in the current flip
3715 * @context: New DC state to be programmed
3716 *
3717 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3718 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3719 *
3720 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3721 * to build an array of commands and have them sent while the OTG lock is acquired.
3722 *
3723 * Return: void
3724 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3725 static void build_dmub_cmd_list(struct dc *dc,
3726 struct dc_surface_update *srf_updates,
3727 int surface_count,
3728 struct dc_stream_state *stream,
3729 struct dc_state *context,
3730 struct dc_dmub_cmd dc_dmub_cmd[],
3731 unsigned int *dmub_cmd_count)
3732 {
3733 // Initialize cmd count to 0
3734 *dmub_cmd_count = 0;
3735 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3736 }
3737
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3738 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3739 struct dc_surface_update *srf_updates,
3740 int surface_count,
3741 struct dc_stream_state *stream,
3742 struct dc_state *context)
3743 {
3744 int i, j;
3745
3746 /* update dirty rect for PSR */
3747 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3748 srf_updates, context);
3749
3750 /* Perform requested Updates */
3751 for (i = 0; i < surface_count; i++) {
3752 struct dc_plane_state *plane_state = srf_updates[i].surface;
3753
3754 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3755 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3756
3757 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3758 continue;
3759
3760 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3761 continue;
3762
3763 /* update pipe context for plane */
3764 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3765 dc->hwss.update_plane_addr(dc, pipe_ctx);
3766 }
3767 }
3768
3769 /* Send commands to DMCUB */
3770 dc_dmub_srv_fams2_passthrough_flip(dc,
3771 context,
3772 stream,
3773 srf_updates,
3774 surface_count);
3775 }
3776
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3777 static void commit_planes_for_stream_fast(struct dc *dc,
3778 struct dc_surface_update *srf_updates,
3779 int surface_count,
3780 struct dc_stream_state *stream,
3781 struct dc_stream_update *stream_update,
3782 enum surface_update_type update_type,
3783 struct dc_state *context)
3784 {
3785 int i, j;
3786 struct pipe_ctx *top_pipe_to_program = NULL;
3787 struct dc_stream_status *stream_status = NULL;
3788 bool should_offload_fams2_flip = false;
3789 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3790
3791 if (should_lock_all_pipes)
3792 determine_pipe_unlock_order(dc, context);
3793
3794 if (dc->debug.fams2_config.bits.enable &&
3795 dc->debug.fams2_config.bits.enable_offload_flip &&
3796 dc_state_is_fams2_in_use(dc, context)) {
3797 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3798 should_offload_fams2_flip = true;
3799 for (i = 0; i < surface_count; i++) {
3800 if (srf_updates[i].surface &&
3801 srf_updates[i].surface->update_flags.raw &&
3802 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3803 /* more than address update, need to acquire FAMS2 lock */
3804 should_offload_fams2_flip = false;
3805 break;
3806 }
3807 }
3808 if (stream_update) {
3809 /* more than address update, need to acquire FAMS2 lock */
3810 should_offload_fams2_flip = false;
3811 }
3812 }
3813
3814 dc_exit_ips_for_hw_access(dc);
3815
3816 dc_z10_restore(dc);
3817
3818 top_pipe_to_program = resource_get_otg_master_for_stream(
3819 &context->res_ctx,
3820 stream);
3821
3822 if (!top_pipe_to_program)
3823 return;
3824
3825 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3826 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3827
3828 if (pipe->stream && pipe->plane_state) {
3829 if (!dc->debug.using_dml2)
3830 set_p_state_switch_method(dc, context, pipe);
3831
3832 if (dc->debug.visual_confirm)
3833 dc_update_visual_confirm_color(dc, context, pipe);
3834 }
3835 }
3836
3837 for (i = 0; i < surface_count; i++) {
3838 struct dc_plane_state *plane_state = srf_updates[i].surface;
3839 /*set logical flag for lock/unlock use*/
3840 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3841 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3842
3843 if (!pipe_ctx->plane_state)
3844 continue;
3845 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3846 continue;
3847
3848 pipe_ctx->plane_state->triplebuffer_flips = false;
3849 if (update_type == UPDATE_TYPE_FAST &&
3850 dc->hwss.program_triplebuffer != NULL &&
3851 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3852 /*triple buffer for VUpdate only*/
3853 pipe_ctx->plane_state->triplebuffer_flips = true;
3854 }
3855 }
3856 }
3857
3858 stream_status = dc_state_get_stream_status(context, stream);
3859
3860 if (should_offload_fams2_flip) {
3861 commit_plane_for_stream_offload_fams2_flip(dc,
3862 srf_updates,
3863 surface_count,
3864 stream,
3865 context);
3866 } else if (stream_status) {
3867 build_dmub_cmd_list(dc,
3868 srf_updates,
3869 surface_count,
3870 stream,
3871 context,
3872 context->dc_dmub_cmd,
3873 &(context->dmub_cmd_count));
3874 hwss_build_fast_sequence(dc,
3875 context->dc_dmub_cmd,
3876 context->dmub_cmd_count,
3877 context->block_sequence,
3878 &(context->block_sequence_steps),
3879 top_pipe_to_program,
3880 stream_status,
3881 context);
3882 hwss_execute_sequence(dc,
3883 context->block_sequence,
3884 context->block_sequence_steps);
3885 }
3886
3887 /* Clear update flags so next flip doesn't have redundant programming
3888 * (if there's no stream update, the update flags are not cleared).
3889 * Surface updates are cleared unconditionally at the beginning of each flip,
3890 * so no need to clear here.
3891 */
3892 if (top_pipe_to_program->stream)
3893 top_pipe_to_program->stream->update_flags.raw = 0;
3894 }
3895
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3896 static void commit_planes_for_stream(struct dc *dc,
3897 struct dc_surface_update *srf_updates,
3898 int surface_count,
3899 struct dc_stream_state *stream,
3900 struct dc_stream_update *stream_update,
3901 enum surface_update_type update_type,
3902 struct dc_state *context)
3903 {
3904 int i, j;
3905 struct pipe_ctx *top_pipe_to_program = NULL;
3906 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3907 bool subvp_prev_use = false;
3908 bool subvp_curr_use = false;
3909 uint8_t current_stream_mask = 0;
3910
3911 if (should_lock_all_pipes)
3912 determine_pipe_unlock_order(dc, context);
3913 // Once we apply the new subvp context to hardware it won't be in the
3914 // dc->current_state anymore, so we have to cache it before we apply
3915 // the new SubVP context
3916 subvp_prev_use = false;
3917 dc_exit_ips_for_hw_access(dc);
3918
3919 dc_z10_restore(dc);
3920 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
3921 hwss_process_outstanding_hw_updates(dc, dc->current_state);
3922
3923 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3924 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3925
3926 if (pipe->stream && pipe->plane_state) {
3927 if (!dc->debug.using_dml2)
3928 set_p_state_switch_method(dc, context, pipe);
3929
3930 if (dc->debug.visual_confirm)
3931 dc_update_visual_confirm_color(dc, context, pipe);
3932 }
3933 }
3934
3935 if (update_type == UPDATE_TYPE_FULL) {
3936 dc_allow_idle_optimizations(dc, false);
3937
3938 if (get_seamless_boot_stream_count(context) == 0)
3939 dc->hwss.prepare_bandwidth(dc, context);
3940
3941 if (dc->hwss.update_dsc_pg)
3942 dc->hwss.update_dsc_pg(dc, context, false);
3943
3944 context_clock_trace(dc, context);
3945 }
3946
3947 if (update_type == UPDATE_TYPE_FULL)
3948 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
3949
3950 top_pipe_to_program = resource_get_otg_master_for_stream(
3951 &context->res_ctx,
3952 stream);
3953 ASSERT(top_pipe_to_program != NULL);
3954 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3955 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3956
3957 // Check old context for SubVP
3958 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3959 if (subvp_prev_use)
3960 break;
3961 }
3962
3963 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3964 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3965
3966 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3967 subvp_curr_use = true;
3968 break;
3969 }
3970 }
3971
3972 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3973 struct pipe_ctx *mpcc_pipe;
3974 struct pipe_ctx *odm_pipe;
3975
3976 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3977 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3978 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3979 }
3980
3981 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3982 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3983
3984 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3985 if (top_pipe_to_program &&
3986 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3987 if (should_use_dmub_lock(stream->link)) {
3988 union dmub_hw_lock_flags hw_locks = { 0 };
3989 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3990
3991 hw_locks.bits.lock_dig = 1;
3992 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3993
3994 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3995 true,
3996 &hw_locks,
3997 &inst_flags);
3998 } else
3999 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4000 top_pipe_to_program->stream_res.tg);
4001 }
4002
4003 if (dc->hwss.wait_for_dcc_meta_propagation) {
4004 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4005 }
4006
4007 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4008 if (dc->hwss.subvp_pipe_control_lock)
4009 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4010
4011 if (dc->hwss.fams2_global_control_lock)
4012 dc->hwss.fams2_global_control_lock(dc, context, true);
4013
4014 dc->hwss.interdependent_update_lock(dc, context, true);
4015 } else {
4016 if (dc->hwss.subvp_pipe_control_lock)
4017 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4018
4019 if (dc->hwss.fams2_global_control_lock)
4020 dc->hwss.fams2_global_control_lock(dc, context, true);
4021
4022 /* Lock the top pipe while updating plane addrs, since freesync requires
4023 * plane addr update event triggers to be synchronized.
4024 * top_pipe_to_program is expected to never be NULL
4025 */
4026 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4027 }
4028
4029 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4030
4031 // Stream updates
4032 if (stream_update)
4033 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4034
4035 if (surface_count == 0) {
4036 /*
4037 * In case of turning off screen, no need to program front end a second time.
4038 * just return after program blank.
4039 */
4040 if (dc->hwss.apply_ctx_for_surface)
4041 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4042 if (dc->hwss.program_front_end_for_ctx)
4043 dc->hwss.program_front_end_for_ctx(dc, context);
4044
4045 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4046 dc->hwss.interdependent_update_lock(dc, context, false);
4047 } else {
4048 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4049 }
4050 dc->hwss.post_unlock_program_front_end(dc, context);
4051
4052 if (update_type != UPDATE_TYPE_FAST)
4053 if (dc->hwss.commit_subvp_config)
4054 dc->hwss.commit_subvp_config(dc, context);
4055
4056 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4057 * move the SubVP lock to after the phantom pipes have been setup
4058 */
4059 if (dc->hwss.subvp_pipe_control_lock)
4060 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4061 NULL, subvp_prev_use);
4062
4063 if (dc->hwss.fams2_global_control_lock)
4064 dc->hwss.fams2_global_control_lock(dc, context, false);
4065
4066 return;
4067 }
4068
4069 if (update_type != UPDATE_TYPE_FAST) {
4070 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4071 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4072
4073 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4074 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4075 pipe_ctx->stream && pipe_ctx->plane_state) {
4076 /* Only update visual confirm for SUBVP and Mclk switching here.
4077 * The bar appears on all pipes, so we need to update the bar on all displays,
4078 * so the information doesn't get stale.
4079 */
4080 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4081 pipe_ctx->plane_res.hubp->inst);
4082 }
4083 }
4084 }
4085
4086 for (i = 0; i < surface_count; i++) {
4087 struct dc_plane_state *plane_state = srf_updates[i].surface;
4088
4089 /*set logical flag for lock/unlock use*/
4090 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4091 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4092 if (!pipe_ctx->plane_state)
4093 continue;
4094 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4095 continue;
4096 pipe_ctx->plane_state->triplebuffer_flips = false;
4097 if (update_type == UPDATE_TYPE_FAST &&
4098 dc->hwss.program_triplebuffer != NULL &&
4099 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4100 /*triple buffer for VUpdate only*/
4101 pipe_ctx->plane_state->triplebuffer_flips = true;
4102 }
4103 }
4104 if (update_type == UPDATE_TYPE_FULL) {
4105 /* force vsync flip when reconfiguring pipes to prevent underflow */
4106 plane_state->flip_immediate = false;
4107 plane_state->triplebuffer_flips = false;
4108 }
4109 }
4110
4111 // Update Type FULL, Surface updates
4112 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4113 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4114
4115 if (!pipe_ctx->top_pipe &&
4116 !pipe_ctx->prev_odm_pipe &&
4117 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4118 struct dc_stream_status *stream_status = NULL;
4119
4120 if (!pipe_ctx->plane_state)
4121 continue;
4122
4123 /* Full fe update*/
4124 if (update_type == UPDATE_TYPE_FAST)
4125 continue;
4126
4127 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4128 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4129 /*turn off triple buffer for full update*/
4130 dc->hwss.program_triplebuffer(
4131 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4132 }
4133 stream_status =
4134 stream_get_status(context, pipe_ctx->stream);
4135
4136 if (dc->hwss.apply_ctx_for_surface && stream_status)
4137 dc->hwss.apply_ctx_for_surface(
4138 dc, pipe_ctx->stream, stream_status->plane_count, context);
4139 }
4140 }
4141 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4142 dc->hwss.program_front_end_for_ctx(dc, context);
4143 if (dc->debug.validate_dml_output) {
4144 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4145 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4146 if (cur_pipe->stream == NULL)
4147 continue;
4148
4149 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4150 cur_pipe->plane_res.hubp, dc->ctx,
4151 &context->res_ctx.pipe_ctx[i].rq_regs,
4152 &context->res_ctx.pipe_ctx[i].dlg_regs,
4153 &context->res_ctx.pipe_ctx[i].ttu_regs);
4154 }
4155 }
4156 }
4157
4158 // Update Type FAST, Surface updates
4159 if (update_type == UPDATE_TYPE_FAST) {
4160 if (dc->hwss.set_flip_control_gsl)
4161 for (i = 0; i < surface_count; i++) {
4162 struct dc_plane_state *plane_state = srf_updates[i].surface;
4163
4164 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4165 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4166
4167 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4168 continue;
4169
4170 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4171 continue;
4172
4173 // GSL has to be used for flip immediate
4174 dc->hwss.set_flip_control_gsl(pipe_ctx,
4175 pipe_ctx->plane_state->flip_immediate);
4176 }
4177 }
4178
4179 /* Perform requested Updates */
4180 for (i = 0; i < surface_count; i++) {
4181 struct dc_plane_state *plane_state = srf_updates[i].surface;
4182
4183 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4184 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4185
4186 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4187 continue;
4188
4189 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4190 continue;
4191
4192 if (srf_updates[i].cm2_params &&
4193 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4194 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4195 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4196 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4197 dc->hwss.trigger_3dlut_dma_load)
4198 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4199
4200 /*program triple buffer after lock based on flip type*/
4201 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4202 /*only enable triplebuffer for fast_update*/
4203 dc->hwss.program_triplebuffer(
4204 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4205 }
4206 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4207 dc->hwss.update_plane_addr(dc, pipe_ctx);
4208 }
4209 }
4210 }
4211
4212 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4213 dc->hwss.interdependent_update_lock(dc, context, false);
4214 } else {
4215 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4216 }
4217
4218 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4219 if (top_pipe_to_program &&
4220 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4221 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4222 top_pipe_to_program->stream_res.tg,
4223 CRTC_STATE_VACTIVE);
4224 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4225 top_pipe_to_program->stream_res.tg,
4226 CRTC_STATE_VBLANK);
4227 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4228 top_pipe_to_program->stream_res.tg,
4229 CRTC_STATE_VACTIVE);
4230
4231 if (should_use_dmub_lock(stream->link)) {
4232 union dmub_hw_lock_flags hw_locks = { 0 };
4233 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4234
4235 hw_locks.bits.lock_dig = 1;
4236 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4237
4238 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4239 false,
4240 &hw_locks,
4241 &inst_flags);
4242 } else
4243 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4244 top_pipe_to_program->stream_res.tg);
4245 }
4246
4247 if (subvp_curr_use) {
4248 /* If enabling subvp or transitioning from subvp->subvp, enable the
4249 * phantom streams before we program front end for the phantom pipes.
4250 */
4251 if (update_type != UPDATE_TYPE_FAST) {
4252 if (dc->hwss.enable_phantom_streams)
4253 dc->hwss.enable_phantom_streams(dc, context);
4254 }
4255 }
4256
4257 if (update_type != UPDATE_TYPE_FAST)
4258 dc->hwss.post_unlock_program_front_end(dc, context);
4259
4260 if (subvp_prev_use && !subvp_curr_use) {
4261 /* If disabling subvp, disable phantom streams after front end
4262 * programming has completed (we turn on phantom OTG in order
4263 * to complete the plane disable for phantom pipes).
4264 */
4265
4266 if (dc->hwss.disable_phantom_streams)
4267 dc->hwss.disable_phantom_streams(dc, context);
4268 }
4269
4270 if (update_type != UPDATE_TYPE_FAST)
4271 if (dc->hwss.commit_subvp_config)
4272 dc->hwss.commit_subvp_config(dc, context);
4273 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4274 * move the SubVP lock to after the phantom pipes have been setup
4275 */
4276 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4277 if (dc->hwss.subvp_pipe_control_lock)
4278 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4279 if (dc->hwss.fams2_global_control_lock)
4280 dc->hwss.fams2_global_control_lock(dc, context, false);
4281 } else {
4282 if (dc->hwss.subvp_pipe_control_lock)
4283 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4284 if (dc->hwss.fams2_global_control_lock)
4285 dc->hwss.fams2_global_control_lock(dc, context, false);
4286 }
4287
4288 // Fire manual trigger only when bottom plane is flipped
4289 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4290 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4291
4292 if (!pipe_ctx->plane_state)
4293 continue;
4294
4295 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4296 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4297 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4298 pipe_ctx->plane_state->skip_manual_trigger)
4299 continue;
4300
4301 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4302 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4303 }
4304
4305 current_stream_mask = get_stream_mask(dc, context);
4306 if (current_stream_mask != context->stream_mask) {
4307 context->stream_mask = current_stream_mask;
4308 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4309 }
4310 }
4311
4312 /**
4313 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4314 *
4315 * @dc: Used to get the current state status
4316 * @stream: Target stream, which we want to remove the attached planes
4317 * @srf_updates: Array of surface updates
4318 * @surface_count: Number of surface update
4319 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4320 *
4321 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4322 * the MPO if used simultaneously in some specific configurations (e.g.,
4323 * 4k@144). This function checks if the incoming context requires applying a
4324 * transition state with unnecessary pipe splitting and ODM disabled to
4325 * circumvent our hardware limitations to prevent this edge case. If the OPP
4326 * associated with an MPCC might change due to plane additions, this function
4327 * returns true.
4328 *
4329 * Return:
4330 * Return true if OPP and MPCC might change, otherwise, return false.
4331 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4332 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4333 struct dc_stream_state *stream,
4334 struct dc_surface_update *srf_updates,
4335 int surface_count,
4336 bool *is_plane_addition)
4337 {
4338
4339 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4340 bool force_minimal_pipe_splitting = false;
4341 bool subvp_active = false;
4342 uint32_t i;
4343
4344 *is_plane_addition = false;
4345
4346 if (cur_stream_status &&
4347 dc->current_state->stream_count > 0 &&
4348 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4349 /* determine if minimal transition is required due to MPC*/
4350 if (surface_count > 0) {
4351 if (cur_stream_status->plane_count > surface_count) {
4352 force_minimal_pipe_splitting = true;
4353 } else if (cur_stream_status->plane_count < surface_count) {
4354 force_minimal_pipe_splitting = true;
4355 *is_plane_addition = true;
4356 }
4357 }
4358 }
4359
4360 if (cur_stream_status &&
4361 dc->current_state->stream_count == 1 &&
4362 dc->debug.enable_single_display_2to1_odm_policy) {
4363 /* determine if minimal transition is required due to dynamic ODM*/
4364 if (surface_count > 0) {
4365 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4366 force_minimal_pipe_splitting = true;
4367 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4368 force_minimal_pipe_splitting = true;
4369 *is_plane_addition = true;
4370 }
4371 }
4372 }
4373
4374 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4375 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4376
4377 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4378 subvp_active = true;
4379 break;
4380 }
4381 }
4382
4383 /* For SubVP when adding or removing planes we need to add a minimal transition
4384 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4385 * must use the minimal transition path to disable the pipe correctly.
4386 *
4387 * We want to use the minimal transition whenever subvp is active, not only if
4388 * a plane is being added / removed from a subvp stream (MPO plane can be added
4389 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4390 * a min transition to disable subvp.
4391 */
4392 if (cur_stream_status && subvp_active) {
4393 /* determine if minimal transition is required due to SubVP*/
4394 if (cur_stream_status->plane_count > surface_count) {
4395 force_minimal_pipe_splitting = true;
4396 } else if (cur_stream_status->plane_count < surface_count) {
4397 force_minimal_pipe_splitting = true;
4398 *is_plane_addition = true;
4399 }
4400 }
4401
4402 return force_minimal_pipe_splitting;
4403 }
4404
4405 struct pipe_split_policy_backup {
4406 bool dynamic_odm_policy;
4407 bool subvp_policy;
4408 enum pipe_split_policy mpc_policy;
4409 char force_odm[MAX_PIPES];
4410 };
4411
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4412 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4413 struct dc_state *context,
4414 struct pipe_split_policy_backup *policy)
4415 {
4416 int i;
4417
4418 if (!dc->config.is_vmin_only_asic) {
4419 policy->mpc_policy = dc->debug.pipe_split_policy;
4420 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4421 }
4422 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4423 dc->debug.enable_single_display_2to1_odm_policy = false;
4424 policy->subvp_policy = dc->debug.force_disable_subvp;
4425 dc->debug.force_disable_subvp = true;
4426 for (i = 0; i < context->stream_count; i++) {
4427 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4428 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4429 context->streams[i]->debug.force_odm_combine_segments = 0;
4430 }
4431 }
4432
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4433 static void restore_minimal_pipe_split_policy(struct dc *dc,
4434 struct dc_state *context,
4435 struct pipe_split_policy_backup *policy)
4436 {
4437 uint8_t i;
4438
4439 if (!dc->config.is_vmin_only_asic)
4440 dc->debug.pipe_split_policy = policy->mpc_policy;
4441 dc->debug.enable_single_display_2to1_odm_policy =
4442 policy->dynamic_odm_policy;
4443 dc->debug.force_disable_subvp = policy->subvp_policy;
4444 for (i = 0; i < context->stream_count; i++)
4445 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4446 }
4447
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4448 static void release_minimal_transition_state(struct dc *dc,
4449 struct dc_state *minimal_transition_context,
4450 struct dc_state *base_context,
4451 struct pipe_split_policy_backup *policy)
4452 {
4453 restore_minimal_pipe_split_policy(dc, base_context, policy);
4454 dc_state_release(minimal_transition_context);
4455 }
4456
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4457 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4458 {
4459 uint8_t i;
4460 int j;
4461 struct dc_stream_status *stream_status;
4462
4463 for (i = 0; i < context->stream_count; i++) {
4464 stream_status = &context->stream_status[i];
4465
4466 for (j = 0; j < stream_status->plane_count; j++)
4467 stream_status->plane_states[j]->flip_immediate = false;
4468 }
4469 }
4470
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4471 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4472 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4473 {
4474 struct dc_state *minimal_transition_context = NULL;
4475
4476 minimal_transition_context = dc_state_create_copy(base_context);
4477 if (!minimal_transition_context)
4478 return NULL;
4479
4480 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4481 /* commit minimal state */
4482 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4483 /* prevent underflow and corruption when reconfiguring pipes */
4484 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4485 } else {
4486 /*
4487 * This should never happen, minimal transition state should
4488 * always be validated first before adding pipe split features.
4489 */
4490 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4491 BREAK_TO_DEBUGGER();
4492 minimal_transition_context = NULL;
4493 }
4494 return minimal_transition_context;
4495 }
4496
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4497 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4498 struct dc *dc,
4499 struct dc_state *initial_state,
4500 struct dc_state *intermediate_state,
4501 struct dc_state *final_state)
4502 {
4503 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4504 intermediate_state) &&
4505 dc->hwss.is_pipe_topology_transition_seamless(dc,
4506 intermediate_state, final_state);
4507 }
4508
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4509 static void swap_and_release_current_context(struct dc *dc,
4510 struct dc_state *new_context, struct dc_stream_state *stream)
4511 {
4512
4513 int i;
4514 struct dc_state *old = dc->current_state;
4515 struct pipe_ctx *pipe_ctx;
4516
4517 /* Since memory free requires elevated IRQ, an interrupt
4518 * request is generated by mem free. If this happens
4519 * between freeing and reassigning the context, our vsync
4520 * interrupt will call into dc and cause a memory
4521 * corruption. Hence, we first reassign the context,
4522 * then free the old context.
4523 */
4524 dc->current_state = new_context;
4525 dc_state_release(old);
4526
4527 // clear any forced full updates
4528 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4529 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4530
4531 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4532 pipe_ctx->plane_state->force_full_update = false;
4533 }
4534 }
4535
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4536 static int initialize_empty_surface_updates(
4537 struct dc_stream_state *stream,
4538 struct dc_surface_update *srf_updates)
4539 {
4540 struct dc_stream_status *status = dc_stream_get_status(stream);
4541 int i;
4542
4543 if (!status)
4544 return 0;
4545
4546 for (i = 0; i < status->plane_count; i++)
4547 srf_updates[i].surface = status->plane_states[i];
4548
4549 return status->plane_count;
4550 }
4551
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4552 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4553 struct dc_state *new_context,
4554 struct dc_stream_state *stream,
4555 struct dc_surface_update *srf_updates,
4556 int surface_count)
4557 {
4558 bool success = false;
4559 struct pipe_split_policy_backup policy;
4560 struct dc_state *intermediate_context =
4561 create_minimal_transition_state(dc, new_context,
4562 &policy);
4563
4564 if (intermediate_context) {
4565 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4566 dc,
4567 dc->current_state,
4568 intermediate_context,
4569 new_context)) {
4570 DC_LOG_DC("commit minimal transition state: base = new state\n");
4571 commit_planes_for_stream(dc, srf_updates,
4572 surface_count, stream, NULL,
4573 UPDATE_TYPE_FULL, intermediate_context);
4574 swap_and_release_current_context(
4575 dc, intermediate_context, stream);
4576 dc_state_retain(dc->current_state);
4577 success = true;
4578 }
4579 release_minimal_transition_state(
4580 dc, intermediate_context, new_context, &policy);
4581 }
4582 return success;
4583 }
4584
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4585 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4586 struct dc_state *new_context, struct dc_stream_state *stream)
4587 {
4588 bool success = false;
4589 struct pipe_split_policy_backup policy;
4590 struct dc_state *intermediate_context;
4591 struct dc_state *old_current_state = dc->current_state;
4592 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4593 int surface_count;
4594
4595 /*
4596 * Both current and new contexts share the same stream and plane state
4597 * pointers. When new context is validated, stream and planes get
4598 * populated with new updates such as new plane addresses. This makes
4599 * the current context no longer valid because stream and planes are
4600 * modified from the original. We backup current stream and plane states
4601 * into scratch space whenever we are populating new context. So we can
4602 * restore the original values back by calling the restore function now.
4603 * This restores back the original stream and plane states associated
4604 * with the current state.
4605 */
4606 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4607 dc_state_retain(old_current_state);
4608 intermediate_context = create_minimal_transition_state(dc,
4609 old_current_state, &policy);
4610
4611 if (intermediate_context) {
4612 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4613 dc,
4614 dc->current_state,
4615 intermediate_context,
4616 new_context)) {
4617 DC_LOG_DC("commit minimal transition state: base = current state\n");
4618 surface_count = initialize_empty_surface_updates(
4619 stream, srf_updates);
4620 commit_planes_for_stream(dc, srf_updates,
4621 surface_count, stream, NULL,
4622 UPDATE_TYPE_FULL, intermediate_context);
4623 swap_and_release_current_context(
4624 dc, intermediate_context, stream);
4625 dc_state_retain(dc->current_state);
4626 success = true;
4627 }
4628 release_minimal_transition_state(dc, intermediate_context,
4629 old_current_state, &policy);
4630 }
4631 dc_state_release(old_current_state);
4632 /*
4633 * Restore stream and plane states back to the values associated with
4634 * new context.
4635 */
4636 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4637 return success;
4638 }
4639
4640 /**
4641 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4642 * on current or new context
4643 *
4644 * @dc: DC structure, used to get the current state
4645 * @new_context: New context
4646 * @stream: Stream getting the update for the flip
4647 * @srf_updates: Surface updates
4648 * @surface_count: Number of surfaces
4649 *
4650 * The function takes in current state and new state and determine a minimal
4651 * transition state as the intermediate step which could make the transition
4652 * between current and new states seamless. If found, it will commit the minimal
4653 * transition state and update current state to this minimal transition state
4654 * and return true, if not, it will return false.
4655 *
4656 * Return:
4657 * Return True if the minimal transition succeeded, false otherwise
4658 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4659 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4660 struct dc_state *new_context,
4661 struct dc_stream_state *stream,
4662 struct dc_surface_update *srf_updates,
4663 int surface_count)
4664 {
4665 bool success = commit_minimal_transition_based_on_new_context(
4666 dc, new_context, stream, srf_updates,
4667 surface_count);
4668 if (!success)
4669 success = commit_minimal_transition_based_on_current_context(dc,
4670 new_context, stream);
4671 if (!success)
4672 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4673 return success;
4674 }
4675
4676 /**
4677 * commit_minimal_transition_state - Create a transition pipe split state
4678 *
4679 * @dc: Used to get the current state status
4680 * @transition_base_context: New transition state
4681 *
4682 * In some specific configurations, such as pipe split on multi-display with
4683 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4684 * programming when moving to new planes. To mitigate those types of problems,
4685 * this function adds a transition state that minimizes pipe usage before
4686 * programming the new configuration. When adding a new plane, the current
4687 * state requires the least pipes, so it is applied without splitting. When
4688 * removing a plane, the new state requires the least pipes, so it is applied
4689 * without splitting.
4690 *
4691 * Return:
4692 * Return false if something is wrong in the transition state.
4693 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4694 static bool commit_minimal_transition_state(struct dc *dc,
4695 struct dc_state *transition_base_context)
4696 {
4697 struct dc_state *transition_context;
4698 struct pipe_split_policy_backup policy;
4699 enum dc_status ret = DC_ERROR_UNEXPECTED;
4700 unsigned int i, j;
4701 unsigned int pipe_in_use = 0;
4702 bool subvp_in_use = false;
4703 bool odm_in_use = false;
4704
4705 /* check current pipes in use*/
4706 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4707 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4708
4709 if (pipe->plane_state)
4710 pipe_in_use++;
4711 }
4712
4713 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4714 * pipe, we must use the minimal transition.
4715 */
4716 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4717 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4718
4719 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4720 subvp_in_use = true;
4721 break;
4722 }
4723 }
4724
4725 /* If ODM is enabled and we are adding or removing planes from any ODM
4726 * pipe, we must use the minimal transition.
4727 */
4728 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4729 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4730
4731 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4732 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4733 break;
4734 }
4735 }
4736
4737 /* When the OS add a new surface if we have been used all of pipes with odm combine
4738 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4739 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4740 * call it again. Otherwise return true to skip.
4741 *
4742 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4743 * enter/exit MPO when DCN still have enough resources.
4744 */
4745 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4746 return true;
4747
4748 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4749 dc->current_state == transition_base_context ? "current" : "new",
4750 subvp_in_use ? "Subvp In Use" :
4751 odm_in_use ? "ODM in Use" :
4752 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4753 "Unknown");
4754
4755 dc_state_retain(transition_base_context);
4756 transition_context = create_minimal_transition_state(dc,
4757 transition_base_context, &policy);
4758 if (transition_context) {
4759 ret = dc_commit_state_no_check(dc, transition_context);
4760 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4761 }
4762 dc_state_release(transition_base_context);
4763
4764 if (ret != DC_OK) {
4765 /* this should never happen */
4766 BREAK_TO_DEBUGGER();
4767 return false;
4768 }
4769
4770 /* force full surface update */
4771 for (i = 0; i < dc->current_state->stream_count; i++) {
4772 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4773 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4774 }
4775 }
4776
4777 return true;
4778 }
4779
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4780 void populate_fast_updates(struct dc_fast_update *fast_update,
4781 struct dc_surface_update *srf_updates,
4782 int surface_count,
4783 struct dc_stream_update *stream_update)
4784 {
4785 int i = 0;
4786
4787 if (stream_update) {
4788 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4789 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4790 } else {
4791 fast_update[0].out_transfer_func = NULL;
4792 fast_update[0].output_csc_transform = NULL;
4793 }
4794
4795 for (i = 0; i < surface_count; i++) {
4796 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4797 fast_update[i].gamma = srf_updates[i].gamma;
4798 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4799 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4800 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4801 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4802 }
4803 }
4804
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4805 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4806 {
4807 int i;
4808
4809 if (fast_update[0].out_transfer_func ||
4810 fast_update[0].output_csc_transform)
4811 return true;
4812
4813 for (i = 0; i < surface_count; i++) {
4814 if (fast_update[i].flip_addr ||
4815 fast_update[i].gamma ||
4816 fast_update[i].gamut_remap_matrix ||
4817 fast_update[i].input_csc_color_matrix ||
4818 fast_update[i].cursor_csc_color_matrix ||
4819 fast_update[i].coeff_reduction_factor)
4820 return true;
4821 }
4822
4823 return false;
4824 }
4825
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4826 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4827 {
4828 int i;
4829
4830 if (fast_update[0].out_transfer_func ||
4831 fast_update[0].output_csc_transform)
4832 return true;
4833
4834 for (i = 0; i < surface_count; i++) {
4835 if (fast_update[i].input_csc_color_matrix ||
4836 fast_update[i].gamma ||
4837 fast_update[i].gamut_remap_matrix ||
4838 fast_update[i].coeff_reduction_factor ||
4839 fast_update[i].cursor_csc_color_matrix)
4840 return true;
4841 }
4842
4843 return false;
4844 }
4845
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4846 static bool full_update_required(struct dc *dc,
4847 struct dc_surface_update *srf_updates,
4848 int surface_count,
4849 struct dc_stream_update *stream_update,
4850 struct dc_stream_state *stream)
4851 {
4852
4853 int i;
4854 struct dc_stream_status *stream_status;
4855 const struct dc_state *context = dc->current_state;
4856
4857 for (i = 0; i < surface_count; i++) {
4858 if (srf_updates &&
4859 (srf_updates[i].plane_info ||
4860 srf_updates[i].scaling_info ||
4861 (srf_updates[i].hdr_mult.value &&
4862 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4863 (srf_updates[i].sdr_white_level_nits &&
4864 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4865 srf_updates[i].in_transfer_func ||
4866 srf_updates[i].func_shaper ||
4867 srf_updates[i].lut3d_func ||
4868 srf_updates[i].surface->force_full_update ||
4869 (srf_updates[i].flip_addr &&
4870 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4871 (srf_updates[i].cm2_params &&
4872 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4873 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4874 !is_surface_in_context(context, srf_updates[i].surface)))
4875 return true;
4876 }
4877
4878 if (stream_update &&
4879 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4880 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4881 stream_update->integer_scaling_update) ||
4882 stream_update->hdr_static_metadata ||
4883 stream_update->abm_level ||
4884 stream_update->periodic_interrupt ||
4885 stream_update->vrr_infopacket ||
4886 stream_update->vsc_infopacket ||
4887 stream_update->vsp_infopacket ||
4888 stream_update->hfvsif_infopacket ||
4889 stream_update->vtem_infopacket ||
4890 stream_update->adaptive_sync_infopacket ||
4891 stream_update->dpms_off ||
4892 stream_update->allow_freesync ||
4893 stream_update->vrr_active_variable ||
4894 stream_update->vrr_active_fixed ||
4895 stream_update->gamut_remap ||
4896 stream_update->output_color_space ||
4897 stream_update->dither_option ||
4898 stream_update->wb_update ||
4899 stream_update->dsc_config ||
4900 stream_update->mst_bw_update ||
4901 stream_update->func_shaper ||
4902 stream_update->lut3d_func ||
4903 stream_update->pending_test_pattern ||
4904 stream_update->crtc_timing_adjust ||
4905 stream_update->scaler_sharpener_update))
4906 return true;
4907
4908 if (stream) {
4909 stream_status = dc_stream_get_status(stream);
4910 if (stream_status == NULL || stream_status->plane_count != surface_count)
4911 return true;
4912 }
4913 if (dc->idle_optimizations_allowed)
4914 return true;
4915
4916 return false;
4917 }
4918
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4919 static bool fast_update_only(struct dc *dc,
4920 struct dc_fast_update *fast_update,
4921 struct dc_surface_update *srf_updates,
4922 int surface_count,
4923 struct dc_stream_update *stream_update,
4924 struct dc_stream_state *stream)
4925 {
4926 return fast_updates_exist(fast_update, surface_count)
4927 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4928 }
4929
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4930 static bool update_planes_and_stream_v1(struct dc *dc,
4931 struct dc_surface_update *srf_updates, int surface_count,
4932 struct dc_stream_state *stream,
4933 struct dc_stream_update *stream_update,
4934 struct dc_state *state)
4935 {
4936 const struct dc_stream_status *stream_status;
4937 enum surface_update_type update_type;
4938 struct dc_state *context;
4939 struct dc_context *dc_ctx = dc->ctx;
4940 int i, j;
4941 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4942
4943 dc_exit_ips_for_hw_access(dc);
4944
4945 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4946 stream_status = dc_stream_get_status(stream);
4947 context = dc->current_state;
4948
4949 update_type = dc_check_update_surfaces_for_stream(
4950 dc, srf_updates, surface_count, stream_update, stream_status);
4951 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
4952 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
4953 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
4954 */
4955 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
4956
4957 if (update_type >= UPDATE_TYPE_FULL) {
4958
4959 /* initialize scratch memory for building context */
4960 context = dc_state_create_copy(state);
4961 if (context == NULL) {
4962 DC_ERROR("Failed to allocate new validate context!\n");
4963 return false;
4964 }
4965
4966 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4967 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4968 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4969
4970 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4971 new_pipe->plane_state->force_full_update = true;
4972 }
4973 } else if (update_type == UPDATE_TYPE_FAST) {
4974 /*
4975 * Previous frame finished and HW is ready for optimization.
4976 */
4977 dc_post_update_surfaces_to_stream(dc);
4978 }
4979
4980 for (i = 0; i < surface_count; i++) {
4981 struct dc_plane_state *surface = srf_updates[i].surface;
4982
4983 copy_surface_update_to_plane(surface, &srf_updates[i]);
4984
4985 if (update_type >= UPDATE_TYPE_MED) {
4986 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4987 struct pipe_ctx *pipe_ctx =
4988 &context->res_ctx.pipe_ctx[j];
4989
4990 if (pipe_ctx->plane_state != surface)
4991 continue;
4992
4993 resource_build_scaling_params(pipe_ctx);
4994 }
4995 }
4996 }
4997
4998 copy_stream_update_to_stream(dc, context, stream, stream_update);
4999
5000 if (update_type >= UPDATE_TYPE_FULL) {
5001 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
5002 DC_ERROR("Mode validation failed for stream update!\n");
5003 dc_state_release(context);
5004 return false;
5005 }
5006 }
5007
5008 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5009
5010 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5011 !dc->debug.enable_legacy_fast_update) {
5012 commit_planes_for_stream_fast(dc,
5013 srf_updates,
5014 surface_count,
5015 stream,
5016 stream_update,
5017 update_type,
5018 context);
5019 } else {
5020 commit_planes_for_stream(
5021 dc,
5022 srf_updates,
5023 surface_count,
5024 stream,
5025 stream_update,
5026 update_type,
5027 context);
5028 }
5029 /*update current_State*/
5030 if (dc->current_state != context) {
5031
5032 struct dc_state *old = dc->current_state;
5033
5034 dc->current_state = context;
5035 dc_state_release(old);
5036
5037 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5038 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5039
5040 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5041 pipe_ctx->plane_state->force_full_update = false;
5042 }
5043 }
5044
5045 /* Legacy optimization path for DCE. */
5046 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5047 dc_post_update_surfaces_to_stream(dc);
5048 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5049 }
5050 return true;
5051 }
5052
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5053 static bool update_planes_and_stream_v2(struct dc *dc,
5054 struct dc_surface_update *srf_updates, int surface_count,
5055 struct dc_stream_state *stream,
5056 struct dc_stream_update *stream_update)
5057 {
5058 struct dc_state *context;
5059 enum surface_update_type update_type;
5060 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5061
5062 /* In cases where MPO and split or ODM are used transitions can
5063 * cause underflow. Apply stream configuration with minimal pipe
5064 * split first to avoid unsupported transitions for active pipes.
5065 */
5066 bool force_minimal_pipe_splitting = 0;
5067 bool is_plane_addition = 0;
5068 bool is_fast_update_only;
5069
5070 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5071 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5072 surface_count, stream_update, stream);
5073 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5074 dc,
5075 stream,
5076 srf_updates,
5077 surface_count,
5078 &is_plane_addition);
5079
5080 /* on plane addition, minimal state is the current one */
5081 if (force_minimal_pipe_splitting && is_plane_addition &&
5082 !commit_minimal_transition_state(dc, dc->current_state))
5083 return false;
5084
5085 if (!update_planes_and_stream_state(
5086 dc,
5087 srf_updates,
5088 surface_count,
5089 stream,
5090 stream_update,
5091 &update_type,
5092 &context))
5093 return false;
5094
5095 /* on plane removal, minimal state is the new one */
5096 if (force_minimal_pipe_splitting && !is_plane_addition) {
5097 if (!commit_minimal_transition_state(dc, context)) {
5098 dc_state_release(context);
5099 return false;
5100 }
5101 update_type = UPDATE_TYPE_FULL;
5102 }
5103
5104 if (dc->hwss.is_pipe_topology_transition_seamless &&
5105 !dc->hwss.is_pipe_topology_transition_seamless(
5106 dc, dc->current_state, context))
5107 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5108 srf_updates, surface_count);
5109
5110 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5111 commit_planes_for_stream_fast(dc,
5112 srf_updates,
5113 surface_count,
5114 stream,
5115 stream_update,
5116 update_type,
5117 context);
5118 } else {
5119 if (!stream_update &&
5120 dc->hwss.is_pipe_topology_transition_seamless &&
5121 !dc->hwss.is_pipe_topology_transition_seamless(
5122 dc, dc->current_state, context)) {
5123 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5124 BREAK_TO_DEBUGGER();
5125 }
5126 commit_planes_for_stream(
5127 dc,
5128 srf_updates,
5129 surface_count,
5130 stream,
5131 stream_update,
5132 update_type,
5133 context);
5134 }
5135 if (dc->current_state != context)
5136 swap_and_release_current_context(dc, context, stream);
5137 return true;
5138 }
5139
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5140 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5141 struct dc_surface_update *srf_updates, int surface_count,
5142 struct dc_stream_state *stream,
5143 struct dc_stream_update *stream_update,
5144 enum surface_update_type update_type)
5145 {
5146 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5147
5148 ASSERT(update_type < UPDATE_TYPE_FULL);
5149 populate_fast_updates(fast_update, srf_updates, surface_count,
5150 stream_update);
5151 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5152 stream_update, stream) &&
5153 !dc->debug.enable_legacy_fast_update)
5154 commit_planes_for_stream_fast(dc,
5155 srf_updates,
5156 surface_count,
5157 stream,
5158 stream_update,
5159 update_type,
5160 dc->current_state);
5161 else
5162 commit_planes_for_stream(
5163 dc,
5164 srf_updates,
5165 surface_count,
5166 stream,
5167 stream_update,
5168 update_type,
5169 dc->current_state);
5170 }
5171
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5172 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5173 struct dc_surface_update *srf_updates, int surface_count,
5174 struct dc_stream_state *stream,
5175 struct dc_stream_update *stream_update,
5176 enum surface_update_type update_type,
5177 struct dc_state *new_context)
5178 {
5179 ASSERT(update_type >= UPDATE_TYPE_FULL);
5180 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5181 dc->current_state, new_context))
5182 /*
5183 * It is required by the feature design that all pipe topologies
5184 * using extra free pipes for power saving purposes such as
5185 * dynamic ODM or SubVp shall only be enabled when it can be
5186 * transitioned seamlessly to AND from its minimal transition
5187 * state. A minimal transition state is defined as the same dc
5188 * state but with all power saving features disabled. So it uses
5189 * the minimum pipe topology. When we can't seamlessly
5190 * transition from state A to state B, we will insert the
5191 * minimal transition state A' or B' in between so seamless
5192 * transition between A and B can be made possible.
5193 */
5194 commit_minimal_transition_state_in_dc_update(dc, new_context,
5195 stream, srf_updates, surface_count);
5196
5197 commit_planes_for_stream(
5198 dc,
5199 srf_updates,
5200 surface_count,
5201 stream,
5202 stream_update,
5203 update_type,
5204 new_context);
5205 }
5206
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5207 static bool update_planes_and_stream_v3(struct dc *dc,
5208 struct dc_surface_update *srf_updates, int surface_count,
5209 struct dc_stream_state *stream,
5210 struct dc_stream_update *stream_update)
5211 {
5212 struct dc_state *new_context;
5213 enum surface_update_type update_type;
5214
5215 /*
5216 * When this function returns true and new_context is not equal to
5217 * current state, the function allocates and validates a new dc state
5218 * and assigns it to new_context. The function expects that the caller
5219 * is responsible to free this memory when new_context is no longer
5220 * used. We swap current with new context and free current instead. So
5221 * new_context's memory will live until the next full update after it is
5222 * replaced by a newer context. Refer to the use of
5223 * swap_and_free_current_context below.
5224 */
5225 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5226 stream, stream_update, &update_type,
5227 &new_context))
5228 return false;
5229
5230 if (new_context == dc->current_state) {
5231 commit_planes_and_stream_update_on_current_context(dc,
5232 srf_updates, surface_count, stream,
5233 stream_update, update_type);
5234 } else {
5235 commit_planes_and_stream_update_with_new_context(dc,
5236 srf_updates, surface_count, stream,
5237 stream_update, update_type, new_context);
5238 swap_and_release_current_context(dc, new_context, stream);
5239 }
5240
5241 return true;
5242 }
5243
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5244 static void clear_update_flags(struct dc_surface_update *srf_updates,
5245 int surface_count, struct dc_stream_state *stream)
5246 {
5247 int i;
5248
5249 if (stream)
5250 stream->update_flags.raw = 0;
5251
5252 for (i = 0; i < surface_count; i++)
5253 if (srf_updates[i].surface)
5254 srf_updates[i].surface->update_flags.raw = 0;
5255 }
5256
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5257 bool dc_update_planes_and_stream(struct dc *dc,
5258 struct dc_surface_update *srf_updates, int surface_count,
5259 struct dc_stream_state *stream,
5260 struct dc_stream_update *stream_update)
5261 {
5262 bool ret = false;
5263
5264 dc_exit_ips_for_hw_access(dc);
5265 /*
5266 * update planes and stream version 3 separates FULL and FAST updates
5267 * to their own sequences. It aims to clean up frequent checks for
5268 * update type resulting unnecessary branching in logic flow. It also
5269 * adds a new commit minimal transition sequence, which detects the need
5270 * for minimal transition based on the actual comparison of current and
5271 * new states instead of "predicting" it based on per feature software
5272 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5273 * minimal transition sequence is made universal to any power saving
5274 * features that would use extra free pipes such as Dynamic ODM/MPC
5275 * Combine, MPO or SubVp. Therefore there is no longer a need to
5276 * specially handle compatibility problems with transitions among those
5277 * features as they are now transparent to the new sequence.
5278 */
5279 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5280 ret = update_planes_and_stream_v3(dc, srf_updates,
5281 surface_count, stream, stream_update);
5282 else
5283 ret = update_planes_and_stream_v2(dc, srf_updates,
5284 surface_count, stream, stream_update);
5285
5286 if (ret)
5287 clear_update_flags(srf_updates, surface_count, stream);
5288
5289 return ret;
5290 }
5291
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5292 void dc_commit_updates_for_stream(struct dc *dc,
5293 struct dc_surface_update *srf_updates,
5294 int surface_count,
5295 struct dc_stream_state *stream,
5296 struct dc_stream_update *stream_update,
5297 struct dc_state *state)
5298 {
5299 bool ret = false;
5300
5301 dc_exit_ips_for_hw_access(dc);
5302 /* TODO: Since change commit sequence can have a huge impact,
5303 * we decided to only enable it for DCN3x. However, as soon as
5304 * we get more confident about this change we'll need to enable
5305 * the new sequence for all ASICs.
5306 */
5307 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5308 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5309 stream, stream_update);
5310 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5311 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5312 stream, stream_update);
5313 } else
5314 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5315 stream_update, state);
5316
5317 if (ret)
5318 clear_update_flags(srf_updates, surface_count, stream);
5319 }
5320
dc_get_current_stream_count(struct dc * dc)5321 uint8_t dc_get_current_stream_count(struct dc *dc)
5322 {
5323 return dc->current_state->stream_count;
5324 }
5325
dc_get_stream_at_index(struct dc * dc,uint8_t i)5326 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5327 {
5328 if (i < dc->current_state->stream_count)
5329 return dc->current_state->streams[i];
5330 return NULL;
5331 }
5332
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5333 enum dc_irq_source dc_interrupt_to_irq_source(
5334 struct dc *dc,
5335 uint32_t src_id,
5336 uint32_t ext_id)
5337 {
5338 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5339 }
5340
5341 /*
5342 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5343 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5344 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5345 {
5346
5347 if (dc == NULL)
5348 return false;
5349
5350 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5351 }
5352
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5353 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5354 {
5355 dal_irq_service_ack(dc->res_pool->irqs, src);
5356 }
5357
dc_power_down_on_boot(struct dc * dc)5358 void dc_power_down_on_boot(struct dc *dc)
5359 {
5360 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5361 dc->hwss.power_down_on_boot) {
5362 if (dc->caps.ips_support)
5363 dc_exit_ips_for_hw_access(dc);
5364 dc->hwss.power_down_on_boot(dc);
5365 }
5366 }
5367
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5368 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5369 {
5370 if (!dc->current_state)
5371 return;
5372
5373 switch (power_state) {
5374 case DC_ACPI_CM_POWER_STATE_D0:
5375 dc_state_construct(dc, dc->current_state);
5376
5377 dc_exit_ips_for_hw_access(dc);
5378
5379 dc_z10_restore(dc);
5380
5381 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5382
5383 dc->hwss.init_hw(dc);
5384
5385 if (dc->hwss.init_sys_ctx != NULL &&
5386 dc->vm_pa_config.valid) {
5387 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5388 }
5389 break;
5390 default:
5391 ASSERT(dc->current_state->stream_count == 0);
5392 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5393
5394 dc_state_destruct(dc->current_state);
5395
5396 break;
5397 }
5398 }
5399
dc_resume(struct dc * dc)5400 void dc_resume(struct dc *dc)
5401 {
5402 uint32_t i;
5403
5404 for (i = 0; i < dc->link_count; i++)
5405 dc->link_srv->resume(dc->links[i]);
5406 }
5407
dc_is_dmcu_initialized(struct dc * dc)5408 bool dc_is_dmcu_initialized(struct dc *dc)
5409 {
5410 struct dmcu *dmcu = dc->res_pool->dmcu;
5411
5412 if (dmcu)
5413 return dmcu->funcs->is_dmcu_initialized(dmcu);
5414 return false;
5415 }
5416
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5417 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5418 {
5419 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5420 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5421 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5422 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5423 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5424 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5425 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5426 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5427 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5428 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5429 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5430 {
5431 if (dc->hwss.set_clock)
5432 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5433 return DC_ERROR_UNEXPECTED;
5434 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5435 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5436 {
5437 if (dc->hwss.get_clock)
5438 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5439 }
5440
5441 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5442 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5443 {
5444 int i;
5445 bool allow_active;
5446
5447 for (i = 0; i < dc->current_state->stream_count ; i++) {
5448 struct dc_link *link;
5449 struct dc_stream_state *stream = dc->current_state->streams[i];
5450
5451 link = stream->link;
5452 if (!link)
5453 continue;
5454
5455 if (link->psr_settings.psr_feature_enabled) {
5456 if (enable && !link->psr_settings.psr_allow_active) {
5457 allow_active = true;
5458 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5459 return false;
5460 } else if (!enable && link->psr_settings.psr_allow_active) {
5461 allow_active = false;
5462 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5463 return false;
5464 }
5465 }
5466 }
5467
5468 return true;
5469 }
5470
5471 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5472 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5473 {
5474 int i;
5475 bool allow_active;
5476
5477 for (i = 0; i < dc->current_state->stream_count; i++) {
5478 struct dc_link *link;
5479 struct dc_stream_state *stream = dc->current_state->streams[i];
5480
5481 link = stream->link;
5482 if (!link)
5483 continue;
5484
5485 if (link->replay_settings.replay_feature_enabled) {
5486 if (active && !link->replay_settings.replay_allow_active) {
5487 allow_active = true;
5488 if (!dc_link_set_replay_allow_active(link, &allow_active,
5489 false, false, NULL))
5490 return false;
5491 } else if (!active && link->replay_settings.replay_allow_active) {
5492 allow_active = false;
5493 if (!dc_link_set_replay_allow_active(link, &allow_active,
5494 true, false, NULL))
5495 return false;
5496 }
5497 }
5498 }
5499
5500 return true;
5501 }
5502
5503 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5504 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5505 {
5506 dc_exit_ips_for_hw_access(dc);
5507
5508 dc->config.disable_ips = disable_ips;
5509
5510 return true;
5511 }
5512
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5513 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5514 {
5515 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5516 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5517 struct pipe_ctx *pipe = NULL;
5518 struct dc_state *context = dc->current_state;
5519
5520 if (dc->debug.disable_idle_power_optimizations) {
5521 DC_LOG_DEBUG("%s: disabled\n", __func__);
5522 return;
5523 }
5524
5525 if (allow != dc->idle_optimizations_allowed)
5526 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5527 dc->idle_optimizations_allowed, allow, caller_name);
5528
5529 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5530 return;
5531
5532 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5533 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5534 return;
5535
5536 if (allow == dc->idle_optimizations_allowed)
5537 return;
5538
5539 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5540 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5541 dc->idle_optimizations_allowed = allow;
5542 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5543 }
5544
5545 // log idle clocks and sub vp pipe types at idle optimization time
5546 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5547 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5548
5549 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5550 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5551
5552 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5553 pipe = &context->res_ctx.pipe_ctx[i];
5554 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5555 }
5556
5557 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5558 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5559 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5560
5561 }
5562
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5563 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5564 {
5565 if (dc->caps.ips_support)
5566 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5567 }
5568
dc_dmub_is_ips_idle_state(struct dc * dc)5569 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5570 {
5571 if (dc->debug.disable_idle_power_optimizations)
5572 return false;
5573
5574 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5575 return false;
5576
5577 if (!dc->ctx->dmub_srv)
5578 return false;
5579
5580 return dc->ctx->dmub_srv->idle_allowed;
5581 }
5582
5583 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5584 void dc_unlock_memory_clock_frequency(struct dc *dc)
5585 {
5586 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5587 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5588
5589 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5590 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5591 }
5592
5593 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5594 void dc_lock_memory_clock_frequency(struct dc *dc)
5595 {
5596 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5597 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5598
5599 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5600 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5601
5602 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5603 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5604 }
5605
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5606 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5607 {
5608 struct dc_state *context = dc->current_state;
5609 struct hubp *hubp;
5610 struct pipe_ctx *pipe;
5611 int i;
5612
5613 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5614 pipe = &context->res_ctx.pipe_ctx[i];
5615
5616 if (pipe->stream != NULL) {
5617 dc->hwss.disable_pixel_data(dc, pipe, true);
5618
5619 // wait for double buffer
5620 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5621 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5622 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5623
5624 hubp = pipe->plane_res.hubp;
5625 hubp->funcs->set_blank_regs(hubp, true);
5626 }
5627 }
5628 if (dc->clk_mgr->funcs->set_max_memclk)
5629 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5630 if (dc->clk_mgr->funcs->set_min_memclk)
5631 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5632
5633 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5634 pipe = &context->res_ctx.pipe_ctx[i];
5635
5636 if (pipe->stream != NULL) {
5637 dc->hwss.disable_pixel_data(dc, pipe, false);
5638
5639 hubp = pipe->plane_res.hubp;
5640 hubp->funcs->set_blank_regs(hubp, false);
5641 }
5642 }
5643 }
5644
5645
5646 /**
5647 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5648 * @dc: pointer to dc of the dm calling this
5649 * @enable: True = transition to DC mode, false = transition back to AC mode
5650 *
5651 * Some SoCs define additional clock limits when in DC mode, DM should
5652 * invoke this function when the platform undergoes a power source transition
5653 * so DC can apply/unapply the limit. This interface may be disruptive to
5654 * the onscreen content.
5655 *
5656 * Context: Triggered by OS through DM interface, or manually by escape calls.
5657 * Need to hold a dclock when doing so.
5658 *
5659 * Return: none (void function)
5660 *
5661 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5662 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5663 {
5664 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5665 bool p_state_change_support;
5666
5667 if (!dc->config.dc_mode_clk_limit_support)
5668 return;
5669
5670 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5671 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5672 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5673 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5674 }
5675 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5676 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5677
5678 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5679 if (p_state_change_support) {
5680 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5681 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5682 // else: No-Op
5683 } else {
5684 if (funcMin <= softMax)
5685 blank_and_force_memclk(dc, true, softMax);
5686 // else: No-Op
5687 }
5688 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5689 if (p_state_change_support) {
5690 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5691 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5692 // else: No-Op
5693 } else {
5694 if (funcMin <= softMax)
5695 blank_and_force_memclk(dc, true, maxDPM);
5696 // else: No-Op
5697 }
5698 }
5699 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5700 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5701 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5702 unsigned int pitch,
5703 unsigned int height,
5704 enum surface_pixel_format format,
5705 struct dc_cursor_attributes *cursor_attr)
5706 {
5707 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5708 return true;
5709 return false;
5710 }
5711
5712 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5713 void dc_hardware_release(struct dc *dc)
5714 {
5715 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5716
5717 if (dc->hwss.hardware_release)
5718 dc->hwss.hardware_release(dc);
5719 }
5720
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5721 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5722 {
5723 if (dc->current_state)
5724 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5725 }
5726
5727 /**
5728 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5729 *
5730 * @dc: [in] dc structure
5731 *
5732 * Checks whether DMUB FW supports outbox notifications, if supported DM
5733 * should register outbox interrupt prior to actually enabling interrupts
5734 * via dc_enable_dmub_outbox
5735 *
5736 * Return:
5737 * True if DMUB FW supports outbox notifications, False otherwise
5738 */
dc_is_dmub_outbox_supported(struct dc * dc)5739 bool dc_is_dmub_outbox_supported(struct dc *dc)
5740 {
5741 if (!dc->caps.dmcub_support)
5742 return false;
5743
5744 switch (dc->ctx->asic_id.chip_family) {
5745
5746 case FAMILY_YELLOW_CARP:
5747 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5748 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5749 !dc->debug.dpia_debug.bits.disable_dpia)
5750 return true;
5751 break;
5752
5753 case AMDGPU_FAMILY_GC_11_0_1:
5754 case AMDGPU_FAMILY_GC_11_5_0:
5755 if (!dc->debug.dpia_debug.bits.disable_dpia)
5756 return true;
5757 break;
5758
5759 default:
5760 break;
5761 }
5762
5763 /* dmub aux needs dmub notifications to be enabled */
5764 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5765
5766 }
5767
5768 /**
5769 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5770 *
5771 * @dc: [in] dc structure
5772 *
5773 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5774 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5775 * API shall be removed after switching.
5776 *
5777 * Return:
5778 * True if DMUB FW supports outbox notifications, False otherwise
5779 */
dc_enable_dmub_notifications(struct dc * dc)5780 bool dc_enable_dmub_notifications(struct dc *dc)
5781 {
5782 return dc_is_dmub_outbox_supported(dc);
5783 }
5784
5785 /**
5786 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5787 *
5788 * @dc: [in] dc structure
5789 *
5790 * Enables DMUB unsolicited notifications to x86 via outbox.
5791 */
dc_enable_dmub_outbox(struct dc * dc)5792 void dc_enable_dmub_outbox(struct dc *dc)
5793 {
5794 struct dc_context *dc_ctx = dc->ctx;
5795
5796 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5797 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5798 }
5799
5800 /**
5801 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5802 * Sets port index appropriately for legacy DDC
5803 * @dc: dc structure
5804 * @link_index: link index
5805 * @payload: aux payload
5806 *
5807 * Returns: True if successful, False if failure
5808 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5809 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5810 uint32_t link_index,
5811 struct aux_payload *payload)
5812 {
5813 uint8_t action;
5814 union dmub_rb_cmd cmd = {0};
5815
5816 ASSERT(payload->length <= 16);
5817
5818 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5819 cmd.dp_aux_access.header.payload_bytes = 0;
5820 /* For dpia, ddc_pin is set to NULL */
5821 if (!dc->links[link_index]->ddc->ddc_pin)
5822 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5823 else
5824 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5825
5826 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5827 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5828 cmd.dp_aux_access.aux_control.timeout = 0;
5829 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5830 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5831 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5832
5833 /* set aux action */
5834 if (payload->i2c_over_aux) {
5835 if (payload->write) {
5836 if (payload->mot)
5837 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5838 else
5839 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5840 } else {
5841 if (payload->mot)
5842 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5843 else
5844 action = DP_AUX_REQ_ACTION_I2C_READ;
5845 }
5846 } else {
5847 if (payload->write)
5848 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5849 else
5850 action = DP_AUX_REQ_ACTION_DPCD_READ;
5851 }
5852
5853 cmd.dp_aux_access.aux_control.dpaux.action = action;
5854
5855 if (payload->length && payload->write) {
5856 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5857 payload->data,
5858 payload->length
5859 );
5860 }
5861
5862 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5863
5864 return true;
5865 }
5866
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5867 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5868 uint8_t dpia_port_index)
5869 {
5870 uint8_t index, link_index = 0xFF;
5871
5872 for (index = 0; index < dc->link_count; index++) {
5873 /* ddc_hw_inst has dpia port index for dpia links
5874 * and ddc instance for legacy links
5875 */
5876 if (!dc->links[index]->ddc->ddc_pin) {
5877 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5878 link_index = index;
5879 break;
5880 }
5881 }
5882 }
5883 ASSERT(link_index != 0xFF);
5884 return link_index;
5885 }
5886
5887 /**
5888 * dc_process_dmub_set_config_async - Submits set_config command
5889 *
5890 * @dc: [in] dc structure
5891 * @link_index: [in] link_index: link index
5892 * @payload: [in] aux payload
5893 * @notify: [out] set_config immediate reply
5894 *
5895 * Submits set_config command to dmub via inbox message.
5896 *
5897 * Return:
5898 * True if successful, False if failure
5899 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5900 bool dc_process_dmub_set_config_async(struct dc *dc,
5901 uint32_t link_index,
5902 struct set_config_cmd_payload *payload,
5903 struct dmub_notification *notify)
5904 {
5905 union dmub_rb_cmd cmd = {0};
5906 bool is_cmd_complete = true;
5907
5908 /* prepare SET_CONFIG command */
5909 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5910 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5911
5912 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5913 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5914 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5915
5916 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5917 /* command is not processed by dmub */
5918 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5919 return is_cmd_complete;
5920 }
5921
5922 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5923 if (cmd.set_config_access.header.ret_status == 1)
5924 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5925 else
5926 /* cmd pending, will receive notification via outbox */
5927 is_cmd_complete = false;
5928
5929 return is_cmd_complete;
5930 }
5931
5932 /**
5933 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5934 *
5935 * @dc: [in] dc structure
5936 * @link_index: [in] link index
5937 * @mst_alloc_slots: [in] mst slots to be allotted
5938 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5939 *
5940 * Submits mst slot allocation command to dmub via inbox message
5941 *
5942 * Return:
5943 * DC_OK if successful, DC_ERROR if failure
5944 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5945 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5946 uint32_t link_index,
5947 uint8_t mst_alloc_slots,
5948 uint8_t *mst_slots_in_use)
5949 {
5950 union dmub_rb_cmd cmd = {0};
5951
5952 /* prepare MST_ALLOC_SLOTS command */
5953 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5954 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5955
5956 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5957 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5958
5959 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5960 /* command is not processed by dmub */
5961 return DC_ERROR_UNEXPECTED;
5962
5963 /* command processed by dmub, if ret_status is 1 */
5964 if (cmd.set_config_access.header.ret_status != 1)
5965 /* command processing error */
5966 return DC_ERROR_UNEXPECTED;
5967
5968 /* command processed and we have a status of 2, mst not enabled in dpia */
5969 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5970 return DC_FAIL_UNSUPPORTED_1;
5971
5972 /* previously configured mst alloc and used slots did not match */
5973 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5974 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5975 return DC_NOT_SUPPORTED;
5976 }
5977
5978 return DC_OK;
5979 }
5980
5981 /**
5982 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
5983 *
5984 * @dc: [in] dc structure
5985 * @link_index: [in] link index
5986 * @tps: [in] request tps
5987 *
5988 * Submits set_tps_notification command to dmub via inbox message
5989 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5990 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
5991 {
5992 union dmub_rb_cmd cmd = {0};
5993
5994 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
5995 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
5996 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
5997 cmd.set_tps_notification.tps_notification.tps = tps;
5998
5999 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6000 }
6001
6002 /**
6003 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6004 *
6005 * @dc: [in] dc structure
6006 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6007 *
6008 * Submits dpia hpd int enable command to dmub via inbox message
6009 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6010 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6011 uint32_t hpd_int_enable)
6012 {
6013 union dmub_rb_cmd cmd = {0};
6014
6015 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6016 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6017
6018 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6019
6020 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6021 }
6022
6023 /**
6024 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6025 *
6026 * @dc: [in] dc structure
6027 *
6028 *
6029 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6030 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6031 {
6032 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6033 }
6034
6035 /**
6036 * dc_disable_accelerated_mode - disable accelerated mode
6037 * @dc: dc structure
6038 */
dc_disable_accelerated_mode(struct dc * dc)6039 void dc_disable_accelerated_mode(struct dc *dc)
6040 {
6041 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6042 }
6043
6044
6045 /**
6046 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6047 * @dc: dc structure
6048 * @stream: stream where vsync int state changed
6049 * @enable: whether vsync is enabled or disabled
6050 *
6051 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6052 * interrupts after steady state is reached.
6053 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6054 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6055 {
6056 int i;
6057 int edp_num;
6058 struct pipe_ctx *pipe = NULL;
6059 struct dc_link *link = stream->sink->link;
6060 struct dc_link *edp_links[MAX_NUM_EDP];
6061
6062
6063 if (link->psr_settings.psr_feature_enabled)
6064 return;
6065
6066 if (link->replay_settings.replay_feature_enabled)
6067 return;
6068
6069 /*find primary pipe associated with stream*/
6070 for (i = 0; i < MAX_PIPES; i++) {
6071 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6072
6073 if (pipe->stream == stream && pipe->stream_res.tg)
6074 break;
6075 }
6076
6077 if (i == MAX_PIPES) {
6078 ASSERT(0);
6079 return;
6080 }
6081
6082 dc_get_edp_links(dc, edp_links, &edp_num);
6083
6084 /* Determine panel inst */
6085 for (i = 0; i < edp_num; i++) {
6086 if (edp_links[i] == link)
6087 break;
6088 }
6089
6090 if (i == edp_num) {
6091 return;
6092 }
6093
6094 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6095 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6096 }
6097
6098 /*****************************************************************************
6099 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6100 * ABM
6101 * @dc: dc structure
6102 * @stream: stream where vsync int state changed
6103 * @pData: abm hw states
6104 *
6105 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6106 bool dc_abm_save_restore(
6107 struct dc *dc,
6108 struct dc_stream_state *stream,
6109 struct abm_save_restore *pData)
6110 {
6111 int i;
6112 int edp_num;
6113 struct pipe_ctx *pipe = NULL;
6114 struct dc_link *link = stream->sink->link;
6115 struct dc_link *edp_links[MAX_NUM_EDP];
6116
6117 if (link->replay_settings.replay_feature_enabled)
6118 return false;
6119
6120 /*find primary pipe associated with stream*/
6121 for (i = 0; i < MAX_PIPES; i++) {
6122 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6123
6124 if (pipe->stream == stream && pipe->stream_res.tg)
6125 break;
6126 }
6127
6128 if (i == MAX_PIPES) {
6129 ASSERT(0);
6130 return false;
6131 }
6132
6133 dc_get_edp_links(dc, edp_links, &edp_num);
6134
6135 /* Determine panel inst */
6136 for (i = 0; i < edp_num; i++)
6137 if (edp_links[i] == link)
6138 break;
6139
6140 if (i == edp_num)
6141 return false;
6142
6143 if (pipe->stream_res.abm &&
6144 pipe->stream_res.abm->funcs->save_restore)
6145 return pipe->stream_res.abm->funcs->save_restore(
6146 pipe->stream_res.abm,
6147 i,
6148 pData);
6149 return false;
6150 }
6151
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6152 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6153 {
6154 unsigned int i;
6155 bool subvp_sw_cursor_req = false;
6156
6157 for (i = 0; i < dc->current_state->stream_count; i++) {
6158 if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i]) && !dc->current_state->streams[i]->hw_cursor_req) {
6159 subvp_sw_cursor_req = true;
6160 break;
6161 }
6162 }
6163 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
6164 }
6165
6166 /**
6167 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6168 *
6169 * Called when DM wants to power on/off eDP.
6170 * Only work on links with flag skip_implict_edp_power_control is set.
6171 *
6172 * @dc: Current DC state
6173 * @edp_link: a link with eDP connector signal type
6174 * @powerOn: power on/off eDP
6175 *
6176 * Return: void
6177 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6178 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6179 bool powerOn)
6180 {
6181 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6182 return;
6183
6184 if (edp_link->skip_implict_edp_power_control == false)
6185 return;
6186
6187 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6188 }
6189
6190 /*
6191 *****************************************************************************
6192 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6193 *
6194 * Called when DM wants to make power policy decisions based on dc_state
6195 *
6196 *****************************************************************************
6197 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6198 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6199 {
6200 struct dc_power_profile profile = { 0 };
6201
6202 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6203 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6204 return profile;
6205 struct dc *dc = context->clk_mgr->ctx->dc;
6206
6207 if (dc->res_pool->funcs->get_power_profile)
6208 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6209 return profile;
6210 }
6211
6212 /*
6213 **********************************************************************************
6214 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6215 *
6216 * Called when DM wants to log detile buffer size from dc_state
6217 *
6218 **********************************************************************************
6219 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6220 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6221 {
6222 struct dc *dc = context->clk_mgr->ctx->dc;
6223
6224 if (dc->res_pool->funcs->get_det_buffer_size)
6225 return dc->res_pool->funcs->get_det_buffer_size(context);
6226 else
6227 return 0;
6228 }
6229