xref: /linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision 442bc81bd344dc52c37d8f80b854cc6da062b2d0)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "amdgpu.h"
28 
29 #include "dc.h"
30 
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35 
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40 
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45 
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56 
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60 
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64 
65 #include "dc_dmub_srv.h"
66 
67 #include "dsc.h"
68 
69 #include "vm_helper.h"
70 
71 #include "dce/dce_i2c.h"
72 
73 #include "dmub/dmub_srv.h"
74 
75 #include "dce/dmub_psr.h"
76 
77 #include "dce/dmub_hw_lock_mgr.h"
78 
79 #include "dc_trace.h"
80 
81 #include "hw_sequencer_private.h"
82 
83 #if defined(CONFIG_DRM_AMD_DC_FP)
84 #include "dml2/dml2_internal_types.h"
85 #endif
86 
87 #include "dce/dmub_outbox.h"
88 
89 #define CTX \
90 	dc->ctx
91 
92 #define DC_LOGGER \
93 	dc->ctx->logger
94 
95 static const char DC_BUILD_ID[] = "production-build";
96 
97 /**
98  * DOC: Overview
99  *
100  * DC is the OS-agnostic component of the amdgpu DC driver.
101  *
102  * DC maintains and validates a set of structs representing the state of the
103  * driver and writes that state to AMD hardware
104  *
105  * Main DC HW structs:
106  *
107  * struct dc - The central struct.  One per driver.  Created on driver load,
108  * destroyed on driver unload.
109  *
110  * struct dc_context - One per driver.
111  * Used as a backpointer by most other structs in dc.
112  *
113  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114  * plugpoints).  Created on driver load, destroyed on driver unload.
115  *
116  * struct dc_sink - One per display.  Created on boot or hotplug.
117  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
118  * (the display directly attached).  It may also have one or more remote
119  * sinks (in the Multi-Stream Transport case)
120  *
121  * struct resource_pool - One per driver.  Represents the hw blocks not in the
122  * main pipeline.  Not directly accessible by dm.
123  *
124  * Main dc state structs:
125  *
126  * These structs can be created and destroyed as needed.  There is a full set of
127  * these structs in dc->current_state representing the currently programmed state.
128  *
129  * struct dc_state - The global DC state to track global state information,
130  * such as bandwidth values.
131  *
132  * struct dc_stream_state - Represents the hw configuration for the pipeline from
133  * a framebuffer to a display.  Maps one-to-one with dc_sink.
134  *
135  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
136  * and may have more in the Multi-Plane Overlay case.
137  *
138  * struct resource_context - Represents the programmable state of everything in
139  * the resource_pool.  Not directly accessible by dm.
140  *
141  * struct pipe_ctx - A member of struct resource_context.  Represents the
142  * internal hardware pipeline components.  Each dc_plane_state has either
143  * one or two (in the pipe-split case).
144  */
145 
146 /* Private functions */
147 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149 {
150 	if (new > *original)
151 		*original = new;
152 }
153 
destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc)
155 {
156 	uint32_t i;
157 
158 	for (i = 0; i < dc->link_count; i++) {
159 		if (NULL != dc->links[i])
160 			dc->link_srv->destroy_link(&dc->links[i]);
161 	}
162 }
163 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165 {
166 	int i;
167 	uint32_t count = 0;
168 
169 	for (i = 0; i < num_links; i++) {
170 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171 				links[i]->is_internal_display)
172 			count++;
173 	}
174 
175 	return count;
176 }
177 
get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx)
179 {
180 	uint8_t i;
181 	uint8_t seamless_boot_stream_count = 0;
182 
183 	for (i = 0; i < ctx->stream_count; i++)
184 		if (ctx->streams[i]->apply_seamless_boot_optimization)
185 			seamless_boot_stream_count++;
186 
187 	return seamless_boot_stream_count;
188 }
189 
create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links(
191 		struct dc *dc,
192 		uint32_t num_virtual_links)
193 {
194 	int i;
195 	int connectors_num;
196 	struct dc_bios *bios = dc->ctx->dc_bios;
197 
198 	dc->link_count = 0;
199 
200 	connectors_num = bios->funcs->get_connectors_number(bios);
201 
202 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203 
204 	if (connectors_num > ENUM_ID_COUNT) {
205 		dm_error(
206 			"DC: Number of connectors %d exceeds maximum of %d!\n",
207 			connectors_num,
208 			ENUM_ID_COUNT);
209 		return false;
210 	}
211 
212 	dm_output_to_console(
213 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
214 		__func__,
215 		connectors_num,
216 		num_virtual_links);
217 
218 	// condition loop on link_count to allow skipping invalid indices
219 	for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
220 		struct link_init_data link_init_params = {0};
221 		struct dc_link *link;
222 
223 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
224 
225 		link_init_params.ctx = dc->ctx;
226 		/* next BIOS object table connector */
227 		link_init_params.connector_index = i;
228 		link_init_params.link_index = dc->link_count;
229 		link_init_params.dc = dc;
230 		link = dc->link_srv->create_link(&link_init_params);
231 
232 		if (link) {
233 			dc->links[dc->link_count] = link;
234 			link->dc = dc;
235 			++dc->link_count;
236 		}
237 	}
238 
239 	DC_LOG_DC("BIOS object table - end");
240 
241 	/* Create a link for each usb4 dpia port */
242 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
243 		struct link_init_data link_init_params = {0};
244 		struct dc_link *link;
245 
246 		link_init_params.ctx = dc->ctx;
247 		link_init_params.connector_index = i;
248 		link_init_params.link_index = dc->link_count;
249 		link_init_params.dc = dc;
250 		link_init_params.is_dpia_link = true;
251 
252 		link = dc->link_srv->create_link(&link_init_params);
253 		if (link) {
254 			dc->links[dc->link_count] = link;
255 			link->dc = dc;
256 			++dc->link_count;
257 		}
258 	}
259 
260 	for (i = 0; i < num_virtual_links; i++) {
261 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
262 		struct encoder_init_data enc_init = {0};
263 
264 		if (link == NULL) {
265 			BREAK_TO_DEBUGGER();
266 			goto failed_alloc;
267 		}
268 
269 		link->link_index = dc->link_count;
270 		dc->links[dc->link_count] = link;
271 		dc->link_count++;
272 
273 		link->ctx = dc->ctx;
274 		link->dc = dc;
275 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
276 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
277 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
278 		link->link_id.enum_id = ENUM_ID_1;
279 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
280 
281 		if (!link->link_enc) {
282 			BREAK_TO_DEBUGGER();
283 			goto failed_alloc;
284 		}
285 
286 		link->link_status.dpcd_caps = &link->dpcd_caps;
287 
288 		enc_init.ctx = dc->ctx;
289 		enc_init.channel = CHANNEL_ID_UNKNOWN;
290 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
291 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
292 		enc_init.connector = link->link_id;
293 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
294 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
295 		enc_init.encoder.enum_id = ENUM_ID_1;
296 		virtual_link_encoder_construct(link->link_enc, &enc_init);
297 	}
298 
299 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
300 
301 	return true;
302 
303 failed_alloc:
304 	return false;
305 }
306 
307 /* Create additional DIG link encoder objects if fewer than the platform
308  * supports were created during link construction. This can happen if the
309  * number of physical connectors is less than the number of DIGs.
310  */
create_link_encoders(struct dc * dc)311 static bool create_link_encoders(struct dc *dc)
312 {
313 	bool res = true;
314 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
315 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
316 	int i;
317 
318 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
319 	 * link encoders and physical display endpoints and does not require
320 	 * additional link encoder objects.
321 	 */
322 	if (num_usb4_dpia == 0)
323 		return res;
324 
325 	/* Create as many link encoder objects as the platform supports. DPIA
326 	 * endpoints can be programmably mapped to any DIG.
327 	 */
328 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
329 		for (i = 0; i < num_dig_link_enc; i++) {
330 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
331 
332 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
333 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
334 						(enum engine_id)(ENGINE_ID_DIGA + i));
335 				if (link_enc) {
336 					dc->res_pool->link_encoders[i] = link_enc;
337 					dc->res_pool->dig_link_enc_count++;
338 				} else {
339 					res = false;
340 				}
341 			}
342 		}
343 	}
344 
345 	return res;
346 }
347 
348 /* Destroy any additional DIG link encoder objects created by
349  * create_link_encoders().
350  * NB: Must only be called after destroy_links().
351  */
destroy_link_encoders(struct dc * dc)352 static void destroy_link_encoders(struct dc *dc)
353 {
354 	unsigned int num_usb4_dpia;
355 	unsigned int num_dig_link_enc;
356 	int i;
357 
358 	if (!dc->res_pool)
359 		return;
360 
361 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
362 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
363 
364 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
365 	 * link encoders and physical display endpoints and does not require
366 	 * additional link encoder objects.
367 	 */
368 	if (num_usb4_dpia == 0)
369 		return;
370 
371 	for (i = 0; i < num_dig_link_enc; i++) {
372 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
373 
374 		if (link_enc) {
375 			link_enc->funcs->destroy(&link_enc);
376 			dc->res_pool->link_encoders[i] = NULL;
377 			dc->res_pool->dig_link_enc_count--;
378 		}
379 	}
380 }
381 
dc_perf_trace_create(void)382 static struct dc_perf_trace *dc_perf_trace_create(void)
383 {
384 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
385 }
386 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)387 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
388 {
389 	kfree(*perf_trace);
390 	*perf_trace = NULL;
391 }
392 
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)393 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
394 {
395 	if (!dc || !stream || !adjust)
396 		return false;
397 
398 	if (!dc->current_state)
399 		return false;
400 
401 	int i;
402 
403 	for (i = 0; i < MAX_PIPES; i++) {
404 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
405 
406 		if (pipe->stream == stream && pipe->stream_res.tg) {
407 			if (dc->hwss.set_long_vtotal)
408 				dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
409 
410 			return true;
411 		}
412 	}
413 
414 	return false;
415 }
416 
417 /**
418  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
419  *  @dc:     dc reference
420  *  @stream: Initial dc stream state
421  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
422  *
423  *  Looks up the pipe context of dc_stream_state and updates the
424  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
425  *  Rate, which is a power-saving feature that targets reducing panel
426  *  refresh rate while the screen is static
427  *
428  *  Return: %true if the pipe context is found and adjusted;
429  *          %false if the pipe context is not found.
430  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)431 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
432 		struct dc_stream_state *stream,
433 		struct dc_crtc_timing_adjust *adjust)
434 {
435 	int i;
436 
437 	/*
438 	 * Don't adjust DRR while there's bandwidth optimizations pending to
439 	 * avoid conflicting with firmware updates.
440 	 */
441 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
442 		if (dc->optimized_required || dc->wm_optimized_required)
443 			return false;
444 
445 	dc_exit_ips_for_hw_access(dc);
446 
447 	stream->adjust.v_total_max = adjust->v_total_max;
448 	stream->adjust.v_total_mid = adjust->v_total_mid;
449 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
450 	stream->adjust.v_total_min = adjust->v_total_min;
451 	stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
452 
453 	if (dc->caps.max_v_total != 0 &&
454 		(adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
455 		if (adjust->allow_otg_v_count_halt)
456 			return set_long_vtotal(dc, stream, adjust);
457 		else
458 			return false;
459 	}
460 
461 	for (i = 0; i < MAX_PIPES; i++) {
462 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463 
464 		if (pipe->stream == stream && pipe->stream_res.tg) {
465 			dc->hwss.set_drr(&pipe,
466 					1,
467 					*adjust);
468 
469 			return true;
470 		}
471 	}
472 	return false;
473 }
474 
475 /**
476  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
477  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
478  *
479  * @dc: [in] dc reference
480  * @stream: [in] Initial dc stream state
481  * @refresh_rate: [in] new refresh_rate
482  *
483  * Return: %true if the pipe context is found and there is an associated
484  *         timing_generator for the DC;
485  *         %false if the pipe context is not found or there is no
486  *         timing_generator for the DC.
487  */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)488 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
489 		struct dc_stream_state *stream,
490 		uint32_t *refresh_rate)
491 {
492 	bool status = false;
493 
494 	int i = 0;
495 
496 	dc_exit_ips_for_hw_access(dc);
497 
498 	for (i = 0; i < MAX_PIPES; i++) {
499 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
500 
501 		if (pipe->stream == stream && pipe->stream_res.tg) {
502 			/* Only execute if a function pointer has been defined for
503 			 * the DC version in question
504 			 */
505 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
506 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
507 
508 				status = true;
509 
510 				break;
511 			}
512 		}
513 	}
514 
515 	return status;
516 }
517 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)518 bool dc_stream_get_crtc_position(struct dc *dc,
519 		struct dc_stream_state **streams, int num_streams,
520 		unsigned int *v_pos, unsigned int *nom_v_pos)
521 {
522 	/* TODO: Support multiple streams */
523 	const struct dc_stream_state *stream = streams[0];
524 	int i;
525 	bool ret = false;
526 	struct crtc_position position;
527 
528 	dc_exit_ips_for_hw_access(dc);
529 
530 	for (i = 0; i < MAX_PIPES; i++) {
531 		struct pipe_ctx *pipe =
532 				&dc->current_state->res_ctx.pipe_ctx[i];
533 
534 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
535 			dc->hwss.get_position(&pipe, 1, &position);
536 
537 			*v_pos = position.vertical_count;
538 			*nom_v_pos = position.nominal_vcount;
539 			ret = true;
540 		}
541 	}
542 	return ret;
543 }
544 
545 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
546 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)547 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
548 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
549 {
550 	union dmub_rb_cmd cmd = {0};
551 
552 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
553 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
554 
555 	if (is_stop) {
556 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
557 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
558 	} else {
559 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
560 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
561 		cmd.secure_display.roi_info.x_start = rect->x;
562 		cmd.secure_display.roi_info.y_start = rect->y;
563 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
564 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
565 	}
566 
567 	dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
568 }
569 
570 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)571 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
572 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
573 {
574 	if (is_stop)
575 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
576 	else
577 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
578 }
579 
580 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)581 dc_stream_forward_crc_window(struct dc_stream_state *stream,
582 		struct rect *rect, uint8_t phy_id, bool is_stop)
583 {
584 	struct dmcu *dmcu;
585 	struct dc_dmub_srv *dmub_srv;
586 	struct otg_phy_mux mux_mapping;
587 	struct pipe_ctx *pipe;
588 	int i;
589 	struct dc *dc = stream->ctx->dc;
590 
591 	for (i = 0; i < MAX_PIPES; i++) {
592 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
593 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
594 			break;
595 	}
596 
597 	/* Stream not found */
598 	if (i == MAX_PIPES)
599 		return false;
600 
601 	mux_mapping.phy_output_num = phy_id;
602 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
603 
604 	dmcu = dc->res_pool->dmcu;
605 	dmub_srv = dc->ctx->dmub_srv;
606 
607 	/* forward to dmub */
608 	if (dmub_srv)
609 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
610 	/* forward to dmcu */
611 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
612 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
613 	else
614 		return false;
615 
616 	return true;
617 }
618 
619 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)620 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
621 		struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
622 {
623 	int i;
624 	union dmub_rb_cmd cmd = {0};
625 
626 	cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
627 	cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
628 
629 	cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
630 
631 	if (stop) {
632 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
633 	} else {
634 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
635 		for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
636 			cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
637 			cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
638 			cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
639 			cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
640 			cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
641 		}
642 	}
643 
644 	dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
645 }
646 
647 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)648 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
649 		struct crc_window *window, uint8_t phy_id, bool stop)
650 {
651 	struct dc_dmub_srv *dmub_srv;
652 	struct otg_phy_mux mux_mapping;
653 	struct pipe_ctx *pipe;
654 	int i;
655 	struct dc *dc = stream->ctx->dc;
656 
657 	for (i = 0; i < MAX_PIPES; i++) {
658 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
659 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
660 			break;
661 	}
662 
663 	/* Stream not found */
664 	if (i == MAX_PIPES)
665 		return false;
666 
667 	mux_mapping.phy_output_num = phy_id;
668 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
669 
670 	dmub_srv = dc->ctx->dmub_srv;
671 
672 	/* forward to dmub only. no dmcu support*/
673 	if (dmub_srv)
674 		dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
675 	else
676 		return false;
677 
678 	return true;
679 }
680 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
681 
682 /**
683  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
684  * @dc: DC Object
685  * @stream: The stream to configure CRC on.
686  * @crc_window: CRC window (x/y start/end) information
687  * @enable: Enable CRC if true, disable otherwise.
688  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
689  *              once.
690  * @idx: Capture CRC on which CRC engine instance
691  * @reset: Reset CRC engine before the configuration
692  *
693  * By default, the entire frame is used to calculate the CRC.
694  *
695  * Return: %false if the stream is not found or CRC capture is not supported;
696  *         %true if the stream has been configured.
697  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)698 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
699 			     struct crc_params *crc_window, bool enable, bool continuous,
700 			     uint8_t idx, bool reset)
701 {
702 	struct pipe_ctx *pipe;
703 	struct crc_params param;
704 	struct timing_generator *tg;
705 
706 	pipe = resource_get_otg_master_for_stream(
707 			&dc->current_state->res_ctx, stream);
708 
709 	/* Stream not found */
710 	if (pipe == NULL)
711 		return false;
712 
713 	dc_exit_ips_for_hw_access(dc);
714 
715 	/* By default, capture the full frame */
716 	param.windowa_x_start = 0;
717 	param.windowa_y_start = 0;
718 	param.windowa_x_end = pipe->stream->timing.h_addressable;
719 	param.windowa_y_end = pipe->stream->timing.v_addressable;
720 	param.windowb_x_start = 0;
721 	param.windowb_y_start = 0;
722 	param.windowb_x_end = pipe->stream->timing.h_addressable;
723 	param.windowb_y_end = pipe->stream->timing.v_addressable;
724 
725 	if (crc_window) {
726 		param.windowa_x_start = crc_window->windowa_x_start;
727 		param.windowa_y_start = crc_window->windowa_y_start;
728 		param.windowa_x_end = crc_window->windowa_x_end;
729 		param.windowa_y_end = crc_window->windowa_y_end;
730 		param.windowb_x_start = crc_window->windowb_x_start;
731 		param.windowb_y_start = crc_window->windowb_y_start;
732 		param.windowb_x_end = crc_window->windowb_x_end;
733 		param.windowb_y_end = crc_window->windowb_y_end;
734 	}
735 
736 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
737 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
738 
739 	/* Default to the union of both windows */
740 	param.selection = UNION_WINDOW_A_B;
741 	param.continuous_mode = continuous;
742 	param.enable = enable;
743 
744 	param.crc_eng_inst = idx;
745 	param.reset = reset;
746 
747 	tg = pipe->stream_res.tg;
748 
749 	/* Only call if supported */
750 	if (tg->funcs->configure_crc)
751 		return tg->funcs->configure_crc(tg, &param);
752 	DC_LOG_WARNING("CRC capture not supported.");
753 	return false;
754 }
755 
756 /**
757  * dc_stream_get_crc() - Get CRC values for the given stream.
758  *
759  * @dc: DC object.
760  * @stream: The DC stream state of the stream to get CRCs from.
761  * @idx: index of crc engine to get CRC from
762  * @r_cr: CRC value for the red component.
763  * @g_y:  CRC value for the green component.
764  * @b_cb: CRC value for the blue component.
765  *
766  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
767  *
768  * Return:
769  * %false if stream is not found, or if CRCs are not enabled.
770  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)771 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
772 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
773 {
774 	int i;
775 	struct pipe_ctx *pipe;
776 	struct timing_generator *tg;
777 
778 	dc_exit_ips_for_hw_access(dc);
779 
780 	for (i = 0; i < MAX_PIPES; i++) {
781 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
782 		if (pipe->stream == stream)
783 			break;
784 	}
785 	/* Stream not found */
786 	if (i == MAX_PIPES)
787 		return false;
788 
789 	tg = pipe->stream_res.tg;
790 
791 	if (tg->funcs->get_crc)
792 		return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
793 	DC_LOG_WARNING("CRC capture not supported.");
794 	return false;
795 }
796 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)797 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
798 		enum dc_dynamic_expansion option)
799 {
800 	/* OPP FMT dyn expansion updates*/
801 	int i;
802 	struct pipe_ctx *pipe_ctx;
803 
804 	dc_exit_ips_for_hw_access(dc);
805 
806 	for (i = 0; i < MAX_PIPES; i++) {
807 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
808 				== stream) {
809 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
810 			pipe_ctx->stream_res.opp->dyn_expansion = option;
811 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
812 					pipe_ctx->stream_res.opp,
813 					COLOR_SPACE_YCBCR601,
814 					stream->timing.display_color_depth,
815 					stream->signal);
816 		}
817 	}
818 }
819 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)820 void dc_stream_set_dither_option(struct dc_stream_state *stream,
821 		enum dc_dither_option option)
822 {
823 	struct bit_depth_reduction_params params;
824 	struct dc_link *link = stream->link;
825 	struct pipe_ctx *pipes = NULL;
826 	int i;
827 
828 	for (i = 0; i < MAX_PIPES; i++) {
829 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
830 				stream) {
831 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
832 			break;
833 		}
834 	}
835 
836 	if (!pipes)
837 		return;
838 	if (option > DITHER_OPTION_MAX)
839 		return;
840 
841 	dc_exit_ips_for_hw_access(stream->ctx->dc);
842 
843 	stream->dither_option = option;
844 
845 	memset(&params, 0, sizeof(params));
846 	resource_build_bit_depth_reduction_params(stream, &params);
847 	stream->bit_depth_params = params;
848 
849 	if (pipes->plane_res.xfm &&
850 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
851 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
852 			pipes->plane_res.xfm,
853 			pipes->plane_res.scl_data.lb_params.depth,
854 			&stream->bit_depth_params);
855 	}
856 
857 	pipes->stream_res.opp->funcs->
858 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
859 }
860 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)861 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
862 {
863 	int i;
864 	bool ret = false;
865 	struct pipe_ctx *pipes;
866 
867 	dc_exit_ips_for_hw_access(dc);
868 
869 	for (i = 0; i < MAX_PIPES; i++) {
870 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
871 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
872 			dc->hwss.program_gamut_remap(pipes);
873 			ret = true;
874 		}
875 	}
876 
877 	return ret;
878 }
879 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)880 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
881 {
882 	int i;
883 	bool ret = false;
884 	struct pipe_ctx *pipes;
885 
886 	dc_exit_ips_for_hw_access(dc);
887 
888 	for (i = 0; i < MAX_PIPES; i++) {
889 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
890 				== stream) {
891 
892 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
893 			dc->hwss.program_output_csc(dc,
894 					pipes,
895 					stream->output_color_space,
896 					stream->csc_color_matrix.matrix,
897 					pipes->stream_res.opp->inst);
898 			ret = true;
899 		}
900 	}
901 
902 	return ret;
903 }
904 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)905 void dc_stream_set_static_screen_params(struct dc *dc,
906 		struct dc_stream_state **streams,
907 		int num_streams,
908 		const struct dc_static_screen_params *params)
909 {
910 	int i, j;
911 	struct pipe_ctx *pipes_affected[MAX_PIPES];
912 	int num_pipes_affected = 0;
913 
914 	dc_exit_ips_for_hw_access(dc);
915 
916 	for (i = 0; i < num_streams; i++) {
917 		struct dc_stream_state *stream = streams[i];
918 
919 		for (j = 0; j < MAX_PIPES; j++) {
920 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
921 					== stream) {
922 				pipes_affected[num_pipes_affected++] =
923 						&dc->current_state->res_ctx.pipe_ctx[j];
924 			}
925 		}
926 	}
927 
928 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
929 }
930 
dc_destruct(struct dc * dc)931 static void dc_destruct(struct dc *dc)
932 {
933 	// reset link encoder assignment table on destruct
934 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
935 		link_enc_cfg_init(dc, dc->current_state);
936 
937 	if (dc->current_state) {
938 		dc_state_release(dc->current_state);
939 		dc->current_state = NULL;
940 	}
941 
942 	destroy_links(dc);
943 
944 	destroy_link_encoders(dc);
945 
946 	if (dc->clk_mgr) {
947 		dc_destroy_clk_mgr(dc->clk_mgr);
948 		dc->clk_mgr = NULL;
949 	}
950 
951 	dc_destroy_resource_pool(dc);
952 
953 	if (dc->link_srv)
954 		link_destroy_link_service(&dc->link_srv);
955 
956 	if (dc->ctx->gpio_service)
957 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
958 
959 	if (dc->ctx->created_bios)
960 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
961 
962 	kfree(dc->ctx->logger);
963 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
964 
965 	kfree(dc->ctx);
966 	dc->ctx = NULL;
967 
968 	kfree(dc->bw_vbios);
969 	dc->bw_vbios = NULL;
970 
971 	kfree(dc->bw_dceip);
972 	dc->bw_dceip = NULL;
973 
974 	kfree(dc->dcn_soc);
975 	dc->dcn_soc = NULL;
976 
977 	kfree(dc->dcn_ip);
978 	dc->dcn_ip = NULL;
979 
980 	kfree(dc->vm_helper);
981 	dc->vm_helper = NULL;
982 
983 }
984 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)985 static bool dc_construct_ctx(struct dc *dc,
986 		const struct dc_init_data *init_params)
987 {
988 	struct dc_context *dc_ctx;
989 
990 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
991 	if (!dc_ctx)
992 		return false;
993 
994 	dc_ctx->cgs_device = init_params->cgs_device;
995 	dc_ctx->driver_context = init_params->driver;
996 	dc_ctx->dc = dc;
997 	dc_ctx->asic_id = init_params->asic_id;
998 	dc_ctx->dc_sink_id_count = 0;
999 	dc_ctx->dc_stream_id_count = 0;
1000 	dc_ctx->dce_environment = init_params->dce_environment;
1001 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
1002 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
1003 	dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
1004 
1005 	/* Create logger */
1006 	dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
1007 
1008 	if (!dc_ctx->logger) {
1009 		kfree(dc_ctx);
1010 		return false;
1011 	}
1012 
1013 	dc_ctx->logger->dev = adev_to_drm(init_params->driver);
1014 	dc->dml.logger = dc_ctx->logger;
1015 
1016 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1017 
1018 	dc_ctx->perf_trace = dc_perf_trace_create();
1019 	if (!dc_ctx->perf_trace) {
1020 		kfree(dc_ctx);
1021 		ASSERT_CRITICAL(false);
1022 		return false;
1023 	}
1024 
1025 	dc->ctx = dc_ctx;
1026 
1027 	dc->link_srv = link_create_link_service();
1028 	if (!dc->link_srv)
1029 		return false;
1030 
1031 	return true;
1032 }
1033 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1034 static bool dc_construct(struct dc *dc,
1035 		const struct dc_init_data *init_params)
1036 {
1037 	struct dc_context *dc_ctx;
1038 	struct bw_calcs_dceip *dc_dceip;
1039 	struct bw_calcs_vbios *dc_vbios;
1040 	struct dcn_soc_bounding_box *dcn_soc;
1041 	struct dcn_ip_params *dcn_ip;
1042 
1043 	dc->config = init_params->flags;
1044 
1045 	// Allocate memory for the vm_helper
1046 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1047 	if (!dc->vm_helper) {
1048 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
1049 		goto fail;
1050 	}
1051 
1052 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1053 
1054 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1055 	if (!dc_dceip) {
1056 		dm_error("%s: failed to create dceip\n", __func__);
1057 		goto fail;
1058 	}
1059 
1060 	dc->bw_dceip = dc_dceip;
1061 
1062 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1063 	if (!dc_vbios) {
1064 		dm_error("%s: failed to create vbios\n", __func__);
1065 		goto fail;
1066 	}
1067 
1068 	dc->bw_vbios = dc_vbios;
1069 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1070 	if (!dcn_soc) {
1071 		dm_error("%s: failed to create dcn_soc\n", __func__);
1072 		goto fail;
1073 	}
1074 
1075 	dc->dcn_soc = dcn_soc;
1076 
1077 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1078 	if (!dcn_ip) {
1079 		dm_error("%s: failed to create dcn_ip\n", __func__);
1080 		goto fail;
1081 	}
1082 
1083 	dc->dcn_ip = dcn_ip;
1084 
1085 	if (init_params->bb_from_dmub)
1086 		dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1087 	else
1088 		dc->dml2_options.bb_from_dmub = NULL;
1089 
1090 	if (!dc_construct_ctx(dc, init_params)) {
1091 		dm_error("%s: failed to create ctx\n", __func__);
1092 		goto fail;
1093 	}
1094 
1095 	dc_ctx = dc->ctx;
1096 
1097 	/* Resource should construct all asic specific resources.
1098 	 * This should be the only place where we need to parse the asic id
1099 	 */
1100 	if (init_params->vbios_override)
1101 		dc_ctx->dc_bios = init_params->vbios_override;
1102 	else {
1103 		/* Create BIOS parser */
1104 		struct bp_init_data bp_init_data;
1105 
1106 		bp_init_data.ctx = dc_ctx;
1107 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
1108 
1109 		dc_ctx->dc_bios = dal_bios_parser_create(
1110 				&bp_init_data, dc_ctx->dce_version);
1111 
1112 		if (!dc_ctx->dc_bios) {
1113 			ASSERT_CRITICAL(false);
1114 			goto fail;
1115 		}
1116 
1117 		dc_ctx->created_bios = true;
1118 	}
1119 
1120 	dc->vendor_signature = init_params->vendor_signature;
1121 
1122 	/* Create GPIO service */
1123 	dc_ctx->gpio_service = dal_gpio_service_create(
1124 			dc_ctx->dce_version,
1125 			dc_ctx->dce_environment,
1126 			dc_ctx);
1127 
1128 	if (!dc_ctx->gpio_service) {
1129 		ASSERT_CRITICAL(false);
1130 		goto fail;
1131 	}
1132 
1133 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1134 	if (!dc->res_pool)
1135 		goto fail;
1136 
1137 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
1138 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1139 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1140 	if (dc->caps.max_optimizable_video_width == 0)
1141 		dc->caps.max_optimizable_video_width = 5120;
1142 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1143 	if (!dc->clk_mgr)
1144 		goto fail;
1145 #ifdef CONFIG_DRM_AMD_DC_FP
1146 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1147 
1148 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1149 		DC_FP_START();
1150 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1151 		DC_FP_END();
1152 	}
1153 #endif
1154 
1155 	if (!create_links(dc, init_params->num_virtual_links))
1156 		goto fail;
1157 
1158 	/* Create additional DIG link encoder objects if fewer than the platform
1159 	 * supports were created during link construction.
1160 	 */
1161 	if (!create_link_encoders(dc))
1162 		goto fail;
1163 
1164 	/* Creation of current_state must occur after dc->dml
1165 	 * is initialized in dc_create_resource_pool because
1166 	 * on creation it copies the contents of dc->dml
1167 	 */
1168 	dc->current_state = dc_state_create(dc, NULL);
1169 
1170 	if (!dc->current_state) {
1171 		dm_error("%s: failed to create validate ctx\n", __func__);
1172 		goto fail;
1173 	}
1174 
1175 	return true;
1176 
1177 fail:
1178 	return false;
1179 }
1180 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1181 static void disable_all_writeback_pipes_for_stream(
1182 		const struct dc *dc,
1183 		struct dc_stream_state *stream,
1184 		struct dc_state *context)
1185 {
1186 	int i;
1187 
1188 	for (i = 0; i < stream->num_wb_info; i++)
1189 		stream->writeback_info[i].wb_enabled = false;
1190 }
1191 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1192 static void apply_ctx_interdependent_lock(struct dc *dc,
1193 					  struct dc_state *context,
1194 					  struct dc_stream_state *stream,
1195 					  bool lock)
1196 {
1197 	int i;
1198 
1199 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1200 	if (dc->hwss.interdependent_update_lock)
1201 		dc->hwss.interdependent_update_lock(dc, context, lock);
1202 	else {
1203 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1204 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1205 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1206 
1207 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1208 			if (stream == pipe_ctx->stream) {
1209 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1210 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1211 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1212 			}
1213 		}
1214 	}
1215 }
1216 
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1217 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1218 {
1219 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1220 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1221 
1222 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1223 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1224 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1225 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1226 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1227 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1228 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1229 			get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1230 		else {
1231 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1232 				color_space_to_black_color(
1233 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1234 		}
1235 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1236 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1237 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1238 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1239 				get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1240 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1241 				get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1242 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1243 				get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1244 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1245 				get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1246 		}
1247 	}
1248 }
1249 
disable_dangling_plane(struct dc * dc,struct dc_state * context)1250 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1251 {
1252 	int i, j;
1253 	struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1254 	struct dc_state *current_ctx;
1255 	struct pipe_ctx *pipe;
1256 	struct timing_generator *tg;
1257 
1258 	if (dangling_context == NULL)
1259 		return;
1260 
1261 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1262 		struct dc_stream_state *old_stream =
1263 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1264 		bool should_disable = true;
1265 		bool pipe_split_change = false;
1266 
1267 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1268 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1269 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1270 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1271 		else
1272 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1273 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1274 
1275 		for (j = 0; j < context->stream_count; j++) {
1276 			if (old_stream == context->streams[j]) {
1277 				should_disable = false;
1278 				break;
1279 			}
1280 		}
1281 		if (!should_disable && pipe_split_change &&
1282 				dc->current_state->stream_count != context->stream_count)
1283 			should_disable = true;
1284 
1285 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1286 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1287 			struct pipe_ctx *old_pipe, *new_pipe;
1288 
1289 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1290 			new_pipe = &context->res_ctx.pipe_ctx[i];
1291 
1292 			if (old_pipe->plane_state && !new_pipe->plane_state)
1293 				should_disable = true;
1294 		}
1295 
1296 		if (should_disable && old_stream) {
1297 			bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1298 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1299 			tg = pipe->stream_res.tg;
1300 			/* When disabling plane for a phantom pipe, we must turn on the
1301 			 * phantom OTG so the disable programming gets the double buffer
1302 			 * update. Otherwise the pipe will be left in a partially disabled
1303 			 * state that can result in underflow or hang when enabling it
1304 			 * again for different use.
1305 			 */
1306 			if (is_phantom) {
1307 				if (tg->funcs->enable_crtc) {
1308 					if (dc->hwseq->funcs.blank_pixel_data)
1309 						dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1310 					tg->funcs->enable_crtc(tg);
1311 				}
1312 			}
1313 
1314 			if (is_phantom)
1315 				dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1316 			else
1317 				dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1318 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1319 
1320 			if (pipe->stream && pipe->plane_state) {
1321 				if (!dc->debug.using_dml2)
1322 					set_p_state_switch_method(dc, context, pipe);
1323 				dc_update_visual_confirm_color(dc, context, pipe);
1324 			}
1325 
1326 			if (dc->hwss.apply_ctx_for_surface) {
1327 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1328 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1329 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1330 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1331 			}
1332 
1333 			if (dc->res_pool->funcs->prepare_mcache_programming)
1334 				dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1335 			if (dc->hwss.program_front_end_for_ctx) {
1336 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1337 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1338 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1339 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1340 			}
1341 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1342 			 * can get corruption when transition from one SubVP config to a different one.
1343 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1344 			 * will still get it's double buffer update.
1345 			 */
1346 			if (is_phantom) {
1347 				if (tg->funcs->disable_phantom_crtc)
1348 					tg->funcs->disable_phantom_crtc(tg);
1349 			}
1350 		}
1351 	}
1352 
1353 	current_ctx = dc->current_state;
1354 	dc->current_state = dangling_context;
1355 	dc_state_release(current_ctx);
1356 }
1357 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1358 static void disable_vbios_mode_if_required(
1359 		struct dc *dc,
1360 		struct dc_state *context)
1361 {
1362 	unsigned int i, j;
1363 
1364 	/* check if timing_changed, disable stream*/
1365 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1366 		struct dc_stream_state *stream = NULL;
1367 		struct dc_link *link = NULL;
1368 		struct pipe_ctx *pipe = NULL;
1369 
1370 		pipe = &context->res_ctx.pipe_ctx[i];
1371 		stream = pipe->stream;
1372 		if (stream == NULL)
1373 			continue;
1374 
1375 		if (stream->apply_seamless_boot_optimization)
1376 			continue;
1377 
1378 		// only looking for first odm pipe
1379 		if (pipe->prev_odm_pipe)
1380 			continue;
1381 
1382 		if (stream->link->local_sink &&
1383 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1384 			link = stream->link;
1385 		}
1386 
1387 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1388 			unsigned int enc_inst, tg_inst = 0;
1389 			unsigned int pix_clk_100hz = 0;
1390 
1391 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1392 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1393 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1394 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1395 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1396 							dc->res_pool->stream_enc[j]);
1397 						break;
1398 					}
1399 				}
1400 
1401 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1402 					dc->res_pool->dp_clock_source,
1403 					tg_inst, &pix_clk_100hz);
1404 
1405 				if (link->link_status.link_active) {
1406 					uint32_t requested_pix_clk_100hz =
1407 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1408 
1409 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1410 						dc->link_srv->set_dpms_off(pipe);
1411 						pipe->stream->dpms_off = false;
1412 					}
1413 				}
1414 			}
1415 		}
1416 	}
1417 }
1418 
1419 /* Public functions */
1420 
dc_create(const struct dc_init_data * init_params)1421 struct dc *dc_create(const struct dc_init_data *init_params)
1422 {
1423 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1424 	unsigned int full_pipe_count;
1425 
1426 	if (!dc)
1427 		return NULL;
1428 
1429 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1430 		dc->caps.linear_pitch_alignment = 64;
1431 		if (!dc_construct_ctx(dc, init_params))
1432 			goto destruct_dc;
1433 	} else {
1434 		if (!dc_construct(dc, init_params))
1435 			goto destruct_dc;
1436 
1437 		full_pipe_count = dc->res_pool->pipe_count;
1438 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1439 			full_pipe_count--;
1440 		dc->caps.max_streams = min(
1441 				full_pipe_count,
1442 				dc->res_pool->stream_enc_count);
1443 
1444 		dc->caps.max_links = dc->link_count;
1445 		dc->caps.max_audios = dc->res_pool->audio_count;
1446 		dc->caps.linear_pitch_alignment = 64;
1447 
1448 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1449 
1450 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1451 
1452 		if (dc->res_pool->dmcu != NULL)
1453 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1454 	}
1455 
1456 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1457 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1458 	dc->clk_reg_offsets = init_params->clk_reg_offsets;
1459 
1460 	/* Populate versioning information */
1461 	dc->versions.dc_ver = DC_VER;
1462 
1463 	dc->build_id = DC_BUILD_ID;
1464 
1465 	DC_LOG_DC("Display Core initialized\n");
1466 
1467 	return dc;
1468 
1469 destruct_dc:
1470 	dc_destruct(dc);
1471 	kfree(dc);
1472 	return NULL;
1473 }
1474 
detect_edp_presence(struct dc * dc)1475 static void detect_edp_presence(struct dc *dc)
1476 {
1477 	struct dc_link *edp_links[MAX_NUM_EDP];
1478 	struct dc_link *edp_link = NULL;
1479 	enum dc_connection_type type;
1480 	int i;
1481 	int edp_num;
1482 
1483 	dc_get_edp_links(dc, edp_links, &edp_num);
1484 	if (!edp_num)
1485 		return;
1486 
1487 	for (i = 0; i < edp_num; i++) {
1488 		edp_link = edp_links[i];
1489 		if (dc->config.edp_not_connected) {
1490 			edp_link->edp_sink_present = false;
1491 		} else {
1492 			dc_link_detect_connection_type(edp_link, &type);
1493 			edp_link->edp_sink_present = (type != dc_connection_none);
1494 		}
1495 	}
1496 }
1497 
dc_hardware_init(struct dc * dc)1498 void dc_hardware_init(struct dc *dc)
1499 {
1500 
1501 	detect_edp_presence(dc);
1502 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1503 		dc->hwss.init_hw(dc);
1504 	dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1505 }
1506 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1507 void dc_init_callbacks(struct dc *dc,
1508 		const struct dc_callback_init *init_params)
1509 {
1510 	dc->ctx->cp_psp = init_params->cp_psp;
1511 }
1512 
dc_deinit_callbacks(struct dc * dc)1513 void dc_deinit_callbacks(struct dc *dc)
1514 {
1515 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1516 }
1517 
dc_destroy(struct dc ** dc)1518 void dc_destroy(struct dc **dc)
1519 {
1520 	dc_destruct(*dc);
1521 	kfree(*dc);
1522 	*dc = NULL;
1523 }
1524 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1525 static void enable_timing_multisync(
1526 		struct dc *dc,
1527 		struct dc_state *ctx)
1528 {
1529 	int i, multisync_count = 0;
1530 	int pipe_count = dc->res_pool->pipe_count;
1531 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1532 
1533 	for (i = 0; i < pipe_count; i++) {
1534 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1535 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1536 			continue;
1537 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1538 			continue;
1539 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1540 		multisync_count++;
1541 	}
1542 
1543 	if (multisync_count > 0) {
1544 		dc->hwss.enable_per_frame_crtc_position_reset(
1545 			dc, multisync_count, multisync_pipes);
1546 	}
1547 }
1548 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1549 static void program_timing_sync(
1550 		struct dc *dc,
1551 		struct dc_state *ctx)
1552 {
1553 	int i, j, k;
1554 	int group_index = 0;
1555 	int num_group = 0;
1556 	int pipe_count = dc->res_pool->pipe_count;
1557 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1558 
1559 	for (i = 0; i < pipe_count; i++) {
1560 		if (!ctx->res_ctx.pipe_ctx[i].stream
1561 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1562 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1563 			continue;
1564 
1565 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1566 	}
1567 
1568 	for (i = 0; i < pipe_count; i++) {
1569 		int group_size = 1;
1570 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1571 		struct pipe_ctx *pipe_set[MAX_PIPES];
1572 
1573 		if (!unsynced_pipes[i])
1574 			continue;
1575 
1576 		pipe_set[0] = unsynced_pipes[i];
1577 		unsynced_pipes[i] = NULL;
1578 
1579 		/* Add tg to the set, search rest of the tg's for ones with
1580 		 * same timing, add all tgs with same timing to the group
1581 		 */
1582 		for (j = i + 1; j < pipe_count; j++) {
1583 			if (!unsynced_pipes[j])
1584 				continue;
1585 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1586 				dc->hwss.enable_vblanks_synchronization &&
1587 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1588 				resource_are_vblanks_synchronizable(
1589 					unsynced_pipes[j]->stream,
1590 					pipe_set[0]->stream)) {
1591 				sync_type = VBLANK_SYNCHRONIZABLE;
1592 				pipe_set[group_size] = unsynced_pipes[j];
1593 				unsynced_pipes[j] = NULL;
1594 				group_size++;
1595 			} else
1596 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1597 				resource_are_streams_timing_synchronizable(
1598 					unsynced_pipes[j]->stream,
1599 					pipe_set[0]->stream)) {
1600 				sync_type = TIMING_SYNCHRONIZABLE;
1601 				pipe_set[group_size] = unsynced_pipes[j];
1602 				unsynced_pipes[j] = NULL;
1603 				group_size++;
1604 			}
1605 		}
1606 
1607 		/* set first unblanked pipe as master */
1608 		for (j = 0; j < group_size; j++) {
1609 			bool is_blanked;
1610 
1611 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1612 				is_blanked =
1613 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1614 			else
1615 				is_blanked =
1616 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1617 			if (!is_blanked) {
1618 				if (j == 0)
1619 					break;
1620 
1621 				swap(pipe_set[0], pipe_set[j]);
1622 				break;
1623 			}
1624 		}
1625 
1626 		for (k = 0; k < group_size; k++) {
1627 			struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1628 
1629 			if (!status)
1630 				continue;
1631 
1632 			status->timing_sync_info.group_id = num_group;
1633 			status->timing_sync_info.group_size = group_size;
1634 			if (k == 0)
1635 				status->timing_sync_info.master = true;
1636 			else
1637 				status->timing_sync_info.master = false;
1638 
1639 		}
1640 
1641 		/* remove any other unblanked pipes as they have already been synced */
1642 		if (dc->config.use_pipe_ctx_sync_logic) {
1643 			/* check pipe's syncd to decide which pipe to be removed */
1644 			for (j = 1; j < group_size; j++) {
1645 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1646 					group_size--;
1647 					pipe_set[j] = pipe_set[group_size];
1648 					j--;
1649 				} else
1650 					/* link slave pipe's syncd with master pipe */
1651 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1652 			}
1653 		} else {
1654 			/* remove any other pipes by checking valid plane */
1655 			for (j = j + 1; j < group_size; j++) {
1656 				bool is_blanked;
1657 
1658 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1659 					is_blanked =
1660 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1661 				else
1662 					is_blanked =
1663 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1664 				if (!is_blanked) {
1665 					group_size--;
1666 					pipe_set[j] = pipe_set[group_size];
1667 					j--;
1668 				}
1669 			}
1670 		}
1671 
1672 		if (group_size > 1) {
1673 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1674 				dc->hwss.enable_timing_synchronization(
1675 					dc, ctx, group_index, group_size, pipe_set);
1676 			} else
1677 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1678 				dc->hwss.enable_vblanks_synchronization(
1679 					dc, group_index, group_size, pipe_set);
1680 				}
1681 			group_index++;
1682 		}
1683 		num_group++;
1684 	}
1685 }
1686 
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1687 static bool streams_changed(struct dc *dc,
1688 			    struct dc_stream_state *streams[],
1689 			    uint8_t stream_count)
1690 {
1691 	uint8_t i;
1692 
1693 	if (stream_count != dc->current_state->stream_count)
1694 		return true;
1695 
1696 	for (i = 0; i < dc->current_state->stream_count; i++) {
1697 		if (dc->current_state->streams[i] != streams[i])
1698 			return true;
1699 		if (!streams[i]->link->link_state_valid)
1700 			return true;
1701 	}
1702 
1703 	return false;
1704 }
1705 
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1706 bool dc_validate_boot_timing(const struct dc *dc,
1707 				const struct dc_sink *sink,
1708 				struct dc_crtc_timing *crtc_timing)
1709 {
1710 	struct timing_generator *tg;
1711 	struct stream_encoder *se = NULL;
1712 
1713 	struct dc_crtc_timing hw_crtc_timing = {0};
1714 
1715 	struct dc_link *link = sink->link;
1716 	unsigned int i, enc_inst, tg_inst = 0;
1717 
1718 	/* Support seamless boot on EDP displays only */
1719 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1720 		return false;
1721 	}
1722 
1723 	if (dc->debug.force_odm_combine)
1724 		return false;
1725 
1726 	/* Check for enabled DIG to identify enabled display */
1727 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1728 		return false;
1729 
1730 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1731 
1732 	if (enc_inst == ENGINE_ID_UNKNOWN)
1733 		return false;
1734 
1735 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1736 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1737 
1738 			se = dc->res_pool->stream_enc[i];
1739 
1740 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1741 				dc->res_pool->stream_enc[i]);
1742 			break;
1743 		}
1744 	}
1745 
1746 	// tg_inst not found
1747 	if (i == dc->res_pool->stream_enc_count)
1748 		return false;
1749 
1750 	if (tg_inst >= dc->res_pool->timing_generator_count)
1751 		return false;
1752 
1753 	if (tg_inst != link->link_enc->preferred_engine)
1754 		return false;
1755 
1756 	tg = dc->res_pool->timing_generators[tg_inst];
1757 
1758 	if (!tg->funcs->get_hw_timing)
1759 		return false;
1760 
1761 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1762 		return false;
1763 
1764 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1765 		return false;
1766 
1767 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1768 		return false;
1769 
1770 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1771 		return false;
1772 
1773 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1774 		return false;
1775 
1776 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1777 		return false;
1778 
1779 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1780 		return false;
1781 
1782 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1783 		return false;
1784 
1785 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1786 		return false;
1787 
1788 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1789 		return false;
1790 
1791 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1792 		return false;
1793 
1794 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1795 		return false;
1796 
1797 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1798 		return false;
1799 
1800 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1801 	if (crtc_timing->flags.DSC)
1802 		return false;
1803 
1804 	if (dc_is_dp_signal(link->connector_signal)) {
1805 		unsigned int pix_clk_100hz = 0;
1806 		uint32_t numOdmPipes = 1;
1807 		uint32_t id_src[4] = {0};
1808 
1809 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1810 			dc->res_pool->dp_clock_source,
1811 			tg_inst, &pix_clk_100hz);
1812 
1813 		if (tg->funcs->get_optc_source)
1814 			tg->funcs->get_optc_source(tg,
1815 						&numOdmPipes, &id_src[0], &id_src[1]);
1816 
1817 		if (numOdmPipes == 2) {
1818 			pix_clk_100hz *= 2;
1819 		} else if (numOdmPipes == 4) {
1820 			pix_clk_100hz *= 4;
1821 		} else if (se && se->funcs->get_pixels_per_cycle) {
1822 			uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1823 
1824 			if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy)
1825 				return false;
1826 
1827 			pix_clk_100hz *= pixels_per_cycle;
1828 		}
1829 
1830 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1831 		// slightly due to rounding issues in 10 kHz units.
1832 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1833 			return false;
1834 
1835 		if (!se || !se->funcs->dp_get_pixel_format)
1836 			return false;
1837 
1838 		if (!se->funcs->dp_get_pixel_format(
1839 			se,
1840 			&hw_crtc_timing.pixel_encoding,
1841 			&hw_crtc_timing.display_color_depth))
1842 			return false;
1843 
1844 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1845 			return false;
1846 
1847 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1848 			return false;
1849 	}
1850 
1851 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1852 		return false;
1853 	}
1854 
1855 	if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1856 		return false;
1857 
1858 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1859 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1860 		return false;
1861 	}
1862 
1863 	return true;
1864 }
1865 
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1866 static inline bool should_update_pipe_for_stream(
1867 		struct dc_state *context,
1868 		struct pipe_ctx *pipe_ctx,
1869 		struct dc_stream_state *stream)
1870 {
1871 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1872 }
1873 
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1874 static inline bool should_update_pipe_for_plane(
1875 		struct dc_state *context,
1876 		struct pipe_ctx *pipe_ctx,
1877 		struct dc_plane_state *plane_state)
1878 {
1879 	return (pipe_ctx->plane_state == plane_state);
1880 }
1881 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1882 void dc_enable_stereo(
1883 	struct dc *dc,
1884 	struct dc_state *context,
1885 	struct dc_stream_state *streams[],
1886 	uint8_t stream_count)
1887 {
1888 	int i, j;
1889 	struct pipe_ctx *pipe;
1890 
1891 	dc_exit_ips_for_hw_access(dc);
1892 
1893 	for (i = 0; i < MAX_PIPES; i++) {
1894 		if (context != NULL) {
1895 			pipe = &context->res_ctx.pipe_ctx[i];
1896 		} else {
1897 			context = dc->current_state;
1898 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1899 		}
1900 
1901 		for (j = 0; pipe && j < stream_count; j++)  {
1902 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1903 				dc->hwss.setup_stereo)
1904 				dc->hwss.setup_stereo(pipe, dc);
1905 		}
1906 	}
1907 }
1908 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1909 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1910 {
1911 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1912 		dc_exit_ips_for_hw_access(dc);
1913 
1914 		enable_timing_multisync(dc, context);
1915 		program_timing_sync(dc, context);
1916 	}
1917 }
1918 
get_stream_mask(struct dc * dc,struct dc_state * context)1919 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1920 {
1921 	int i;
1922 	unsigned int stream_mask = 0;
1923 
1924 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1925 		if (context->res_ctx.pipe_ctx[i].stream)
1926 			stream_mask |= 1 << i;
1927 	}
1928 
1929 	return stream_mask;
1930 }
1931 
dc_z10_restore(const struct dc * dc)1932 void dc_z10_restore(const struct dc *dc)
1933 {
1934 	if (dc->hwss.z10_restore)
1935 		dc->hwss.z10_restore(dc);
1936 }
1937 
dc_z10_save_init(struct dc * dc)1938 void dc_z10_save_init(struct dc *dc)
1939 {
1940 	if (dc->hwss.z10_save_init)
1941 		dc->hwss.z10_save_init(dc);
1942 }
1943 
1944 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
1945  * Prevents over allocation of DET during unlock process
1946  * e.g. 2 pipe config with different streams with a max of 20 DET segments
1947  *	Before:								After:
1948  *		- Pipe0: 10 DET segments			- Pipe0: 12 DET segments
1949  *		- Pipe1: 10 DET segments			- Pipe1: 8 DET segments
1950  * If Pipe0 gets updated first, 22 DET segments will be allocated
1951  */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)1952 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
1953 {
1954 	unsigned int i = 0;
1955 	struct pipe_ctx *pipe = NULL;
1956 	struct timing_generator *tg = NULL;
1957 
1958 	if (!dc->config.set_pipe_unlock_order)
1959 		return;
1960 
1961 	memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
1962 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1963 		pipe = &context->res_ctx.pipe_ctx[i];
1964 		tg = pipe->stream_res.tg;
1965 
1966 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
1967 				!tg->funcs->is_tg_enabled(tg) ||
1968 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1969 			continue;
1970 		}
1971 
1972 		if (resource_calculate_det_for_stream(context, pipe) <
1973 				resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
1974 			dc->scratch.pipes_to_unlock_first[i] = true;
1975 		}
1976 	}
1977 }
1978 
1979 /**
1980  * dc_commit_state_no_check - Apply context to the hardware
1981  *
1982  * @dc: DC object with the current status to be updated
1983  * @context: New state that will become the current status at the end of this function
1984  *
1985  * Applies given context to the hardware and copy it into current context.
1986  * It's up to the user to release the src context afterwards.
1987  *
1988  * Return: an enum dc_status result code for the operation
1989  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1990 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1991 {
1992 	struct dc_bios *dcb = dc->ctx->dc_bios;
1993 	enum dc_status result = DC_ERROR_UNEXPECTED;
1994 	struct pipe_ctx *pipe;
1995 	int i, k, l;
1996 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1997 	struct dc_state *old_state;
1998 	bool subvp_prev_use = false;
1999 
2000 	dc_z10_restore(dc);
2001 	dc_allow_idle_optimizations(dc, false);
2002 
2003 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2004 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2005 
2006 		/* Check old context for SubVP */
2007 		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2008 		if (subvp_prev_use)
2009 			break;
2010 	}
2011 
2012 	for (i = 0; i < context->stream_count; i++)
2013 		dc_streams[i] =  context->streams[i];
2014 
2015 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
2016 		disable_vbios_mode_if_required(dc, context);
2017 		dc->hwss.enable_accelerated_mode(dc, context);
2018 	}
2019 
2020 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
2021 		context->stream_count == 0)
2022 		dc->hwss.prepare_bandwidth(dc, context);
2023 
2024 	/* When SubVP is active, all HW programming must be done while
2025 	 * SubVP lock is acquired
2026 	 */
2027 	if (dc->hwss.subvp_pipe_control_lock)
2028 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2029 	if (dc->hwss.fams2_global_control_lock)
2030 		dc->hwss.fams2_global_control_lock(dc, context, true);
2031 
2032 	if (dc->hwss.update_dsc_pg)
2033 		dc->hwss.update_dsc_pg(dc, context, false);
2034 
2035 	disable_dangling_plane(dc, context);
2036 	/* re-program planes for existing stream, in case we need to
2037 	 * free up plane resource for later use
2038 	 */
2039 	if (dc->hwss.apply_ctx_for_surface) {
2040 		for (i = 0; i < context->stream_count; i++) {
2041 			if (context->streams[i]->mode_changed)
2042 				continue;
2043 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2044 			dc->hwss.apply_ctx_for_surface(
2045 				dc, context->streams[i],
2046 				context->stream_status[i].plane_count,
2047 				context); /* use new pipe config in new context */
2048 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2049 			dc->hwss.post_unlock_program_front_end(dc, context);
2050 		}
2051 	}
2052 
2053 	/* Program hardware */
2054 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2055 		pipe = &context->res_ctx.pipe_ctx[i];
2056 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2057 	}
2058 
2059 	result = dc->hwss.apply_ctx_to_hw(dc, context);
2060 
2061 	if (result != DC_OK) {
2062 		/* Application of dc_state to hardware stopped. */
2063 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2064 		return result;
2065 	}
2066 
2067 	dc_trigger_sync(dc, context);
2068 
2069 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2070 	for (i = 0; i < context->stream_count; i++) {
2071 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2072 
2073 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2074 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2075 	}
2076 
2077 	determine_pipe_unlock_order(dc, context);
2078 	/* Program all planes within new context*/
2079 	if (dc->res_pool->funcs->prepare_mcache_programming)
2080 		dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2081 	if (dc->hwss.program_front_end_for_ctx) {
2082 		dc->hwss.interdependent_update_lock(dc, context, true);
2083 		dc->hwss.program_front_end_for_ctx(dc, context);
2084 		dc->hwss.interdependent_update_lock(dc, context, false);
2085 		dc->hwss.post_unlock_program_front_end(dc, context);
2086 	}
2087 
2088 	if (dc->hwss.commit_subvp_config)
2089 		dc->hwss.commit_subvp_config(dc, context);
2090 	if (dc->hwss.subvp_pipe_control_lock)
2091 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2092 	if (dc->hwss.fams2_global_control_lock)
2093 		dc->hwss.fams2_global_control_lock(dc, context, false);
2094 
2095 	for (i = 0; i < context->stream_count; i++) {
2096 		const struct dc_link *link = context->streams[i]->link;
2097 
2098 		if (!context->streams[i]->mode_changed)
2099 			continue;
2100 
2101 		if (dc->hwss.apply_ctx_for_surface) {
2102 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2103 			dc->hwss.apply_ctx_for_surface(
2104 					dc, context->streams[i],
2105 					context->stream_status[i].plane_count,
2106 					context);
2107 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2108 			dc->hwss.post_unlock_program_front_end(dc, context);
2109 		}
2110 
2111 		/*
2112 		 * enable stereo
2113 		 * TODO rework dc_enable_stereo call to work with validation sets?
2114 		 */
2115 		for (k = 0; k < MAX_PIPES; k++) {
2116 			pipe = &context->res_ctx.pipe_ctx[k];
2117 
2118 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
2119 				if (context->streams[l] &&
2120 					context->streams[l] == pipe->stream &&
2121 					dc->hwss.setup_stereo)
2122 					dc->hwss.setup_stereo(pipe, dc);
2123 			}
2124 		}
2125 
2126 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2127 				context->streams[i]->timing.h_addressable,
2128 				context->streams[i]->timing.v_addressable,
2129 				context->streams[i]->timing.h_total,
2130 				context->streams[i]->timing.v_total,
2131 				context->streams[i]->timing.pix_clk_100hz / 10);
2132 	}
2133 
2134 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2135 
2136 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
2137 		context->stream_count == 0) {
2138 		/* Must wait for no flips to be pending before doing optimize bw */
2139 		hwss_wait_for_no_pipes_pending(dc, context);
2140 		/*
2141 		 * optimized dispclk depends on ODM setup. Need to wait for ODM
2142 		 * update pending complete before optimizing bandwidth.
2143 		 */
2144 		hwss_wait_for_odm_update_pending_complete(dc, context);
2145 		/* pplib is notified if disp_num changed */
2146 		dc->hwss.optimize_bandwidth(dc, context);
2147 		/* Need to do otg sync again as otg could be out of sync due to otg
2148 		 * workaround applied during clock update
2149 		 */
2150 		dc_trigger_sync(dc, context);
2151 	}
2152 
2153 	if (dc->hwss.update_dsc_pg)
2154 		dc->hwss.update_dsc_pg(dc, context, true);
2155 
2156 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2157 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2158 	else
2159 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2160 
2161 	context->stream_mask = get_stream_mask(dc, context);
2162 
2163 	if (context->stream_mask != dc->current_state->stream_mask)
2164 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2165 
2166 	for (i = 0; i < context->stream_count; i++)
2167 		context->streams[i]->mode_changed = false;
2168 
2169 	/* Clear update flags that were set earlier to avoid redundant programming */
2170 	for (i = 0; i < context->stream_count; i++) {
2171 		context->streams[i]->update_flags.raw = 0x0;
2172 	}
2173 
2174 	old_state = dc->current_state;
2175 	dc->current_state = context;
2176 
2177 	dc_state_release(old_state);
2178 
2179 	dc_state_retain(dc->current_state);
2180 
2181 	return result;
2182 }
2183 
2184 static bool commit_minimal_transition_state(struct dc *dc,
2185 		struct dc_state *transition_base_context);
2186 
2187 /**
2188  * dc_commit_streams - Commit current stream state
2189  *
2190  * @dc: DC object with the commit state to be configured in the hardware
2191  * @params: Parameters for the commit, including the streams to be committed
2192  *
2193  * Function responsible for commit streams change to the hardware.
2194  *
2195  * Return:
2196  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2197  * code.
2198  */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2199 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2200 {
2201 	int i, j;
2202 	struct dc_state *context;
2203 	enum dc_status res = DC_OK;
2204 	struct dc_validation_set set[MAX_STREAMS] = {0};
2205 	struct pipe_ctx *pipe;
2206 	bool handle_exit_odm2to1 = false;
2207 
2208 	if (!params)
2209 		return DC_ERROR_UNEXPECTED;
2210 
2211 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2212 		return res;
2213 
2214 	if (!streams_changed(dc, params->streams, params->stream_count) &&
2215 			dc->current_state->power_source == params->power_source)
2216 		return res;
2217 
2218 	dc_exit_ips_for_hw_access(dc);
2219 
2220 	DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2221 
2222 	for (i = 0; i < params->stream_count; i++) {
2223 		struct dc_stream_state *stream = params->streams[i];
2224 		struct dc_stream_status *status = dc_stream_get_status(stream);
2225 
2226 		/* revalidate streams */
2227 		res = dc_validate_stream(dc, stream);
2228 		if (res != DC_OK)
2229 			return res;
2230 
2231 		dc_stream_log(dc, stream);
2232 
2233 		set[i].stream = stream;
2234 
2235 		if (status) {
2236 			set[i].plane_count = status->plane_count;
2237 			for (j = 0; j < status->plane_count; j++)
2238 				set[i].plane_states[j] = status->plane_states[j];
2239 		}
2240 	}
2241 
2242 	/* ODM Combine 2:1 power optimization is only applied for single stream
2243 	 * scenario, it uses extra pipes than needed to reduce power consumption
2244 	 * We need to switch off this feature to make room for new streams.
2245 	 */
2246 	if (params->stream_count > dc->current_state->stream_count &&
2247 			dc->current_state->stream_count == 1) {
2248 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2249 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2250 			if (pipe->next_odm_pipe)
2251 				handle_exit_odm2to1 = true;
2252 		}
2253 	}
2254 
2255 	if (handle_exit_odm2to1)
2256 		res = commit_minimal_transition_state(dc, dc->current_state);
2257 
2258 	context = dc_state_create_current_copy(dc);
2259 	if (!context)
2260 		goto context_alloc_fail;
2261 
2262 	context->power_source = params->power_source;
2263 
2264 	res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2265 
2266 	/*
2267 	 * Only update link encoder to stream assignment after bandwidth validation passed.
2268 	 */
2269 	if (res == DC_OK && dc->res_pool->funcs->link_encs_assign)
2270 		dc->res_pool->funcs->link_encs_assign(
2271 			dc, context, context->streams, context->stream_count);
2272 
2273 	if (res != DC_OK) {
2274 		BREAK_TO_DEBUGGER();
2275 		goto fail;
2276 	}
2277 
2278 	res = dc_commit_state_no_check(dc, context);
2279 
2280 	for (i = 0; i < params->stream_count; i++) {
2281 		for (j = 0; j < context->stream_count; j++) {
2282 			if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2283 				params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2284 
2285 			if (dc_is_embedded_signal(params->streams[i]->signal)) {
2286 				struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2287 
2288 				if (!status)
2289 					continue;
2290 
2291 				if (dc->hwss.is_abm_supported)
2292 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2293 				else
2294 					status->is_abm_supported = true;
2295 			}
2296 		}
2297 	}
2298 
2299 fail:
2300 	dc_state_release(context);
2301 
2302 context_alloc_fail:
2303 
2304 	DC_LOG_DC("%s Finished.\n", __func__);
2305 
2306 	return res;
2307 }
2308 
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2309 bool dc_acquire_release_mpc_3dlut(
2310 		struct dc *dc, bool acquire,
2311 		struct dc_stream_state *stream,
2312 		struct dc_3dlut **lut,
2313 		struct dc_transfer_func **shaper)
2314 {
2315 	int pipe_idx;
2316 	bool ret = false;
2317 	bool found_pipe_idx = false;
2318 	const struct resource_pool *pool = dc->res_pool;
2319 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2320 	int mpcc_id = 0;
2321 
2322 	if (pool && res_ctx) {
2323 		if (acquire) {
2324 			/*find pipe idx for the given stream*/
2325 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2326 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2327 					found_pipe_idx = true;
2328 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2329 					break;
2330 				}
2331 			}
2332 		} else
2333 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2334 
2335 		if (found_pipe_idx) {
2336 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2337 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2338 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2339 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2340 		}
2341 	}
2342 	return ret;
2343 }
2344 
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2345 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2346 {
2347 	int i;
2348 	struct pipe_ctx *pipe;
2349 
2350 	for (i = 0; i < MAX_PIPES; i++) {
2351 		pipe = &context->res_ctx.pipe_ctx[i];
2352 
2353 		// Don't check flip pending on phantom pipes
2354 		if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2355 			continue;
2356 
2357 		/* Must set to false to start with, due to OR in update function */
2358 		pipe->plane_state->status.is_flip_pending = false;
2359 		dc->hwss.update_pending_status(pipe);
2360 		if (pipe->plane_state->status.is_flip_pending)
2361 			return true;
2362 	}
2363 	return false;
2364 }
2365 
2366 /* Perform updates here which need to be deferred until next vupdate
2367  *
2368  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2369  * but forcing lut memory to shutdown state is immediate. This causes
2370  * single frame corruption as lut gets disabled mid-frame unless shutdown
2371  * is deferred until after entering bypass.
2372  */
process_deferred_updates(struct dc * dc)2373 static void process_deferred_updates(struct dc *dc)
2374 {
2375 	int i = 0;
2376 
2377 	if (dc->debug.enable_mem_low_power.bits.cm) {
2378 		ASSERT(dc->dcn_ip->max_num_dpp);
2379 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2380 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2381 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2382 	}
2383 }
2384 
dc_post_update_surfaces_to_stream(struct dc * dc)2385 void dc_post_update_surfaces_to_stream(struct dc *dc)
2386 {
2387 	int i;
2388 	struct dc_state *context = dc->current_state;
2389 
2390 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2391 		return;
2392 
2393 	post_surface_trace(dc);
2394 
2395 	/*
2396 	 * Only relevant for DCN behavior where we can guarantee the optimization
2397 	 * is safe to apply - retain the legacy behavior for DCE.
2398 	 */
2399 
2400 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2401 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2402 	else {
2403 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2404 
2405 		if (is_flip_pending_in_pipes(dc, context))
2406 			return;
2407 
2408 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2409 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2410 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2411 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2412 				dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2413 			}
2414 
2415 		process_deferred_updates(dc);
2416 
2417 		dc->hwss.optimize_bandwidth(dc, context);
2418 
2419 		if (dc->hwss.update_dsc_pg)
2420 			dc->hwss.update_dsc_pg(dc, context, true);
2421 	}
2422 
2423 	dc->optimized_required = false;
2424 	dc->wm_optimized_required = false;
2425 }
2426 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2427 bool dc_set_generic_gpio_for_stereo(bool enable,
2428 		struct gpio_service *gpio_service)
2429 {
2430 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2431 	struct gpio_pin_info pin_info;
2432 	struct gpio *generic;
2433 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2434 			   GFP_KERNEL);
2435 
2436 	if (!config)
2437 		return false;
2438 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2439 
2440 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2441 		kfree(config);
2442 		return false;
2443 	} else {
2444 		generic = dal_gpio_service_create_generic_mux(
2445 			gpio_service,
2446 			pin_info.offset,
2447 			pin_info.mask);
2448 	}
2449 
2450 	if (!generic) {
2451 		kfree(config);
2452 		return false;
2453 	}
2454 
2455 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2456 
2457 	config->enable_output_from_mux = enable;
2458 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2459 
2460 	if (gpio_result == GPIO_RESULT_OK)
2461 		gpio_result = dal_mux_setup_config(generic, config);
2462 
2463 	if (gpio_result == GPIO_RESULT_OK) {
2464 		dal_gpio_close(generic);
2465 		dal_gpio_destroy_generic_mux(&generic);
2466 		kfree(config);
2467 		return true;
2468 	} else {
2469 		dal_gpio_close(generic);
2470 		dal_gpio_destroy_generic_mux(&generic);
2471 		kfree(config);
2472 		return false;
2473 	}
2474 }
2475 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2476 static bool is_surface_in_context(
2477 		const struct dc_state *context,
2478 		const struct dc_plane_state *plane_state)
2479 {
2480 	int j;
2481 
2482 	for (j = 0; j < MAX_PIPES; j++) {
2483 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2484 
2485 		if (plane_state == pipe_ctx->plane_state) {
2486 			return true;
2487 		}
2488 	}
2489 
2490 	return false;
2491 }
2492 
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2493 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2494 {
2495 	union surface_update_flags *update_flags = &u->surface->update_flags;
2496 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2497 
2498 	if (!u->plane_info)
2499 		return UPDATE_TYPE_FAST;
2500 
2501 	if (u->plane_info->color_space != u->surface->color_space) {
2502 		update_flags->bits.color_space_change = 1;
2503 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2504 	}
2505 
2506 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2507 		update_flags->bits.horizontal_mirror_change = 1;
2508 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2509 	}
2510 
2511 	if (u->plane_info->rotation != u->surface->rotation) {
2512 		update_flags->bits.rotation_change = 1;
2513 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2514 	}
2515 
2516 	if (u->plane_info->format != u->surface->format) {
2517 		update_flags->bits.pixel_format_change = 1;
2518 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2519 	}
2520 
2521 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2522 		update_flags->bits.stereo_format_change = 1;
2523 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2524 	}
2525 
2526 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2527 		update_flags->bits.per_pixel_alpha_change = 1;
2528 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2529 	}
2530 
2531 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2532 		update_flags->bits.global_alpha_change = 1;
2533 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2534 	}
2535 
2536 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2537 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2538 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2539 		/* During DCC on/off, stutter period is calculated before
2540 		 * DCC has fully transitioned. This results in incorrect
2541 		 * stutter period calculation. Triggering a full update will
2542 		 * recalculate stutter period.
2543 		 */
2544 		update_flags->bits.dcc_change = 1;
2545 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2546 	}
2547 
2548 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2549 			resource_pixel_format_to_bpp(u->surface->format)) {
2550 		/* different bytes per element will require full bandwidth
2551 		 * and DML calculation
2552 		 */
2553 		update_flags->bits.bpp_change = 1;
2554 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2555 	}
2556 
2557 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2558 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2559 		update_flags->bits.plane_size_change = 1;
2560 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2561 	}
2562 
2563 
2564 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2565 			sizeof(struct dc_tiling_info)) != 0) {
2566 		update_flags->bits.swizzle_change = 1;
2567 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2568 
2569 		/* todo: below are HW dependent, we should add a hook to
2570 		 * DCE/N resource and validated there.
2571 		 */
2572 		if (!dc->debug.skip_full_updated_if_possible) {
2573 			/* swizzled mode requires RQ to be setup properly,
2574 			 * thus need to run DML to calculate RQ settings
2575 			 */
2576 			update_flags->bits.bandwidth_change = 1;
2577 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2578 		}
2579 	}
2580 
2581 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2582 	return update_type;
2583 }
2584 
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2585 static enum surface_update_type get_scaling_info_update_type(
2586 		const struct dc *dc,
2587 		const struct dc_surface_update *u)
2588 {
2589 	union surface_update_flags *update_flags = &u->surface->update_flags;
2590 
2591 	if (!u->scaling_info)
2592 		return UPDATE_TYPE_FAST;
2593 
2594 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2595 			|| u->scaling_info->src_rect.height != u->surface->src_rect.height
2596 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2597 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2598 			|| u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2599 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2600 			|| u->scaling_info->scaling_quality.integer_scaling !=
2601 					u->surface->scaling_quality.integer_scaling) {
2602 		update_flags->bits.scaling_change = 1;
2603 
2604 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2605 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2606 			/* Making src rect bigger requires a bandwidth change */
2607 			update_flags->bits.clock_change = 1;
2608 
2609 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2610 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2611 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2612 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2613 			/* Making dst rect smaller requires a bandwidth change */
2614 			update_flags->bits.bandwidth_change = 1;
2615 
2616 		if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2617 			(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2618 			 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2619 			 /* Changing clip size of a large surface may result in MPC slice count change */
2620 			update_flags->bits.bandwidth_change = 1;
2621 	}
2622 
2623 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2624 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2625 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2626 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2627 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2628 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2629 		update_flags->bits.position_change = 1;
2630 
2631 	/* process every update flag before returning */
2632 	if (update_flags->bits.clock_change
2633 			|| update_flags->bits.bandwidth_change
2634 			|| update_flags->bits.scaling_change)
2635 		return UPDATE_TYPE_FULL;
2636 
2637 	if (update_flags->bits.position_change)
2638 		return UPDATE_TYPE_MED;
2639 
2640 	return UPDATE_TYPE_FAST;
2641 }
2642 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2643 static enum surface_update_type det_surface_update(const struct dc *dc,
2644 		const struct dc_surface_update *u)
2645 {
2646 	const struct dc_state *context = dc->current_state;
2647 	enum surface_update_type type;
2648 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2649 	union surface_update_flags *update_flags = &u->surface->update_flags;
2650 
2651 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2652 		update_flags->raw = 0xFFFFFFFF;
2653 		return UPDATE_TYPE_FULL;
2654 	}
2655 
2656 	update_flags->raw = 0; // Reset all flags
2657 
2658 	type = get_plane_info_update_type(dc, u);
2659 	elevate_update_type(&overall_type, type);
2660 
2661 	type = get_scaling_info_update_type(dc, u);
2662 	elevate_update_type(&overall_type, type);
2663 
2664 	if (u->flip_addr) {
2665 		update_flags->bits.addr_update = 1;
2666 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2667 			update_flags->bits.tmz_changed = 1;
2668 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2669 		}
2670 	}
2671 	if (u->in_transfer_func)
2672 		update_flags->bits.in_transfer_func_change = 1;
2673 
2674 	if (u->input_csc_color_matrix)
2675 		update_flags->bits.input_csc_change = 1;
2676 
2677 	if (u->coeff_reduction_factor)
2678 		update_flags->bits.coeff_reduction_change = 1;
2679 
2680 	if (u->gamut_remap_matrix)
2681 		update_flags->bits.gamut_remap_change = 1;
2682 
2683 	if (u->blend_tf)
2684 		update_flags->bits.gamma_change = 1;
2685 
2686 	if (u->gamma) {
2687 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2688 
2689 		if (u->plane_info)
2690 			format = u->plane_info->format;
2691 		else
2692 			format = u->surface->format;
2693 
2694 		if (dce_use_lut(format))
2695 			update_flags->bits.gamma_change = 1;
2696 	}
2697 
2698 	if (u->lut3d_func || u->func_shaper)
2699 		update_flags->bits.lut_3d = 1;
2700 
2701 	if (u->hdr_mult.value)
2702 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2703 			update_flags->bits.hdr_mult = 1;
2704 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2705 		}
2706 
2707 	if (u->sdr_white_level_nits)
2708 		if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2709 			update_flags->bits.sdr_white_level_nits = 1;
2710 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2711 		}
2712 
2713 	if (u->cm2_params) {
2714 		if ((u->cm2_params->component_settings.shaper_3dlut_setting
2715 					!= u->surface->mcm_shaper_3dlut_setting)
2716 				|| (u->cm2_params->component_settings.lut1d_enable
2717 					!= u->surface->mcm_lut1d_enable))
2718 			update_flags->bits.mcm_transfer_function_enable_change = 1;
2719 		if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2720 				!= u->surface->mcm_luts.lut3d_data.lut3d_src)
2721 			update_flags->bits.mcm_transfer_function_enable_change = 1;
2722 	}
2723 	if (update_flags->bits.in_transfer_func_change) {
2724 		type = UPDATE_TYPE_MED;
2725 		elevate_update_type(&overall_type, type);
2726 	}
2727 
2728 	if (update_flags->bits.lut_3d &&
2729 			u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2730 		type = UPDATE_TYPE_FULL;
2731 		elevate_update_type(&overall_type, type);
2732 	}
2733 	if (update_flags->bits.mcm_transfer_function_enable_change) {
2734 		type = UPDATE_TYPE_FULL;
2735 		elevate_update_type(&overall_type, type);
2736 	}
2737 
2738 	if (dc->debug.enable_legacy_fast_update &&
2739 			(update_flags->bits.gamma_change ||
2740 			update_flags->bits.gamut_remap_change ||
2741 			update_flags->bits.input_csc_change ||
2742 			update_flags->bits.coeff_reduction_change)) {
2743 		type = UPDATE_TYPE_FULL;
2744 		elevate_update_type(&overall_type, type);
2745 	}
2746 	return overall_type;
2747 }
2748 
2749 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2750  * while both planes are flip_immediate
2751  */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2752 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2753 {
2754 	bool has_flip_immediate_plane = false;
2755 	int i;
2756 
2757 	for (i = 0; i < surface_count; i++) {
2758 		if (updates[i].surface->flip_immediate) {
2759 			has_flip_immediate_plane = true;
2760 			break;
2761 		}
2762 	}
2763 
2764 	if (has_flip_immediate_plane && surface_count > 1) {
2765 		for (i = 0; i < surface_count; i++) {
2766 			if (updates[i].surface->flip_immediate)
2767 				updates[i].surface->update_flags.bits.addr_update = 1;
2768 		}
2769 	}
2770 }
2771 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2772 static enum surface_update_type check_update_surfaces_for_stream(
2773 		struct dc *dc,
2774 		struct dc_surface_update *updates,
2775 		int surface_count,
2776 		struct dc_stream_update *stream_update,
2777 		const struct dc_stream_status *stream_status)
2778 {
2779 	int i;
2780 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2781 
2782 	if (dc->idle_optimizations_allowed)
2783 		overall_type = UPDATE_TYPE_FULL;
2784 
2785 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2786 		overall_type = UPDATE_TYPE_FULL;
2787 
2788 	if (stream_update && stream_update->pending_test_pattern) {
2789 		overall_type = UPDATE_TYPE_FULL;
2790 	}
2791 
2792 	if (stream_update && stream_update->hw_cursor_req) {
2793 		overall_type = UPDATE_TYPE_FULL;
2794 	}
2795 
2796 	/* some stream updates require passive update */
2797 	if (stream_update) {
2798 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2799 
2800 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2801 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2802 			stream_update->integer_scaling_update)
2803 			su_flags->bits.scaling = 1;
2804 
2805 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2806 			su_flags->bits.out_tf = 1;
2807 
2808 		if (stream_update->abm_level)
2809 			su_flags->bits.abm_level = 1;
2810 
2811 		if (stream_update->dpms_off)
2812 			su_flags->bits.dpms_off = 1;
2813 
2814 		if (stream_update->gamut_remap)
2815 			su_flags->bits.gamut_remap = 1;
2816 
2817 		if (stream_update->wb_update)
2818 			su_flags->bits.wb_update = 1;
2819 
2820 		if (stream_update->dsc_config)
2821 			su_flags->bits.dsc_changed = 1;
2822 
2823 		if (stream_update->mst_bw_update)
2824 			su_flags->bits.mst_bw = 1;
2825 
2826 		if (stream_update->stream->freesync_on_desktop &&
2827 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2828 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2829 			su_flags->bits.fams_changed = 1;
2830 
2831 		if (stream_update->scaler_sharpener_update)
2832 			su_flags->bits.scaler_sharpener = 1;
2833 
2834 		if (stream_update->sharpening_required)
2835 			su_flags->bits.sharpening_required = 1;
2836 
2837 		if (su_flags->raw != 0)
2838 			overall_type = UPDATE_TYPE_FULL;
2839 
2840 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2841 			su_flags->bits.out_csc = 1;
2842 
2843 		/* Output transfer function changes do not require bandwidth recalculation,
2844 		 * so don't trigger a full update
2845 		 */
2846 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2847 			su_flags->bits.out_tf = 1;
2848 	}
2849 
2850 	for (i = 0 ; i < surface_count; i++) {
2851 		enum surface_update_type type =
2852 				det_surface_update(dc, &updates[i]);
2853 
2854 		elevate_update_type(&overall_type, type);
2855 	}
2856 
2857 	return overall_type;
2858 }
2859 
2860 /*
2861  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2862  *
2863  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2864  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2865 enum surface_update_type dc_check_update_surfaces_for_stream(
2866 		struct dc *dc,
2867 		struct dc_surface_update *updates,
2868 		int surface_count,
2869 		struct dc_stream_update *stream_update,
2870 		const struct dc_stream_status *stream_status)
2871 {
2872 	int i;
2873 	enum surface_update_type type;
2874 
2875 	if (stream_update)
2876 		stream_update->stream->update_flags.raw = 0;
2877 	for (i = 0; i < surface_count; i++)
2878 		updates[i].surface->update_flags.raw = 0;
2879 
2880 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2881 	if (type == UPDATE_TYPE_FULL) {
2882 		if (stream_update) {
2883 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2884 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2885 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2886 		}
2887 		for (i = 0; i < surface_count; i++)
2888 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2889 	}
2890 
2891 	if (type == UPDATE_TYPE_FAST) {
2892 		// If there's an available clock comparator, we use that.
2893 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2894 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2895 				dc->optimized_required = true;
2896 		// Else we fallback to mem compare.
2897 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2898 			dc->optimized_required = true;
2899 		}
2900 
2901 		dc->optimized_required |= dc->wm_optimized_required;
2902 	}
2903 
2904 	return type;
2905 }
2906 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2907 static struct dc_stream_status *stream_get_status(
2908 	struct dc_state *ctx,
2909 	struct dc_stream_state *stream)
2910 {
2911 	uint8_t i;
2912 
2913 	for (i = 0; i < ctx->stream_count; i++) {
2914 		if (stream == ctx->streams[i]) {
2915 			return &ctx->stream_status[i];
2916 		}
2917 	}
2918 
2919 	return NULL;
2920 }
2921 
2922 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2923 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2924 static void copy_surface_update_to_plane(
2925 		struct dc_plane_state *surface,
2926 		struct dc_surface_update *srf_update)
2927 {
2928 	if (srf_update->flip_addr) {
2929 		surface->address = srf_update->flip_addr->address;
2930 		surface->flip_immediate =
2931 			srf_update->flip_addr->flip_immediate;
2932 		surface->time.time_elapsed_in_us[surface->time.index] =
2933 			srf_update->flip_addr->flip_timestamp_in_us -
2934 				surface->time.prev_update_time_in_us;
2935 		surface->time.prev_update_time_in_us =
2936 			srf_update->flip_addr->flip_timestamp_in_us;
2937 		surface->time.index++;
2938 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2939 			surface->time.index = 0;
2940 
2941 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2942 	}
2943 
2944 	if (srf_update->scaling_info) {
2945 		surface->scaling_quality =
2946 				srf_update->scaling_info->scaling_quality;
2947 		surface->dst_rect =
2948 				srf_update->scaling_info->dst_rect;
2949 		surface->src_rect =
2950 				srf_update->scaling_info->src_rect;
2951 		surface->clip_rect =
2952 				srf_update->scaling_info->clip_rect;
2953 	}
2954 
2955 	if (srf_update->plane_info) {
2956 		surface->color_space =
2957 				srf_update->plane_info->color_space;
2958 		surface->format =
2959 				srf_update->plane_info->format;
2960 		surface->plane_size =
2961 				srf_update->plane_info->plane_size;
2962 		surface->rotation =
2963 				srf_update->plane_info->rotation;
2964 		surface->horizontal_mirror =
2965 				srf_update->plane_info->horizontal_mirror;
2966 		surface->stereo_format =
2967 				srf_update->plane_info->stereo_format;
2968 		surface->tiling_info =
2969 				srf_update->plane_info->tiling_info;
2970 		surface->visible =
2971 				srf_update->plane_info->visible;
2972 		surface->per_pixel_alpha =
2973 				srf_update->plane_info->per_pixel_alpha;
2974 		surface->global_alpha =
2975 				srf_update->plane_info->global_alpha;
2976 		surface->global_alpha_value =
2977 				srf_update->plane_info->global_alpha_value;
2978 		surface->dcc =
2979 				srf_update->plane_info->dcc;
2980 		surface->layer_index =
2981 				srf_update->plane_info->layer_index;
2982 	}
2983 
2984 	if (srf_update->gamma) {
2985 		memcpy(&surface->gamma_correction.entries,
2986 			&srf_update->gamma->entries,
2987 			sizeof(struct dc_gamma_entries));
2988 		surface->gamma_correction.is_identity =
2989 			srf_update->gamma->is_identity;
2990 		surface->gamma_correction.num_entries =
2991 			srf_update->gamma->num_entries;
2992 		surface->gamma_correction.type =
2993 			srf_update->gamma->type;
2994 	}
2995 
2996 	if (srf_update->in_transfer_func) {
2997 		surface->in_transfer_func.sdr_ref_white_level =
2998 			srf_update->in_transfer_func->sdr_ref_white_level;
2999 		surface->in_transfer_func.tf =
3000 			srf_update->in_transfer_func->tf;
3001 		surface->in_transfer_func.type =
3002 			srf_update->in_transfer_func->type;
3003 		memcpy(&surface->in_transfer_func.tf_pts,
3004 			&srf_update->in_transfer_func->tf_pts,
3005 			sizeof(struct dc_transfer_func_distributed_points));
3006 	}
3007 
3008 	if (srf_update->cm2_params) {
3009 		surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3010 		surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3011 		surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3012 	}
3013 
3014 	if (srf_update->func_shaper) {
3015 		memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3016 		sizeof(surface->in_shaper_func));
3017 
3018 		if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3019 			surface->mcm_luts.shaper = &surface->in_shaper_func;
3020 	}
3021 
3022 	if (srf_update->lut3d_func)
3023 		memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3024 		sizeof(surface->lut3d_func));
3025 
3026 	if (srf_update->hdr_mult.value)
3027 		surface->hdr_mult =
3028 				srf_update->hdr_mult;
3029 
3030 	if (srf_update->sdr_white_level_nits)
3031 		surface->sdr_white_level_nits =
3032 				srf_update->sdr_white_level_nits;
3033 
3034 	if (srf_update->blend_tf) {
3035 		memcpy(&surface->blend_tf, srf_update->blend_tf,
3036 		sizeof(surface->blend_tf));
3037 
3038 		if (surface->mcm_lut1d_enable)
3039 			surface->mcm_luts.lut1d_func = &surface->blend_tf;
3040 	}
3041 
3042 	if (srf_update->cm2_params || srf_update->blend_tf)
3043 		surface->lut_bank_a = !surface->lut_bank_a;
3044 
3045 	if (srf_update->input_csc_color_matrix)
3046 		surface->input_csc_color_matrix =
3047 			*srf_update->input_csc_color_matrix;
3048 
3049 	if (srf_update->coeff_reduction_factor)
3050 		surface->coeff_reduction_factor =
3051 			*srf_update->coeff_reduction_factor;
3052 
3053 	if (srf_update->gamut_remap_matrix)
3054 		surface->gamut_remap_matrix =
3055 			*srf_update->gamut_remap_matrix;
3056 
3057 	if (srf_update->cursor_csc_color_matrix)
3058 		surface->cursor_csc_color_matrix =
3059 			*srf_update->cursor_csc_color_matrix;
3060 
3061 	if (srf_update->bias_and_scale.bias_and_scale_valid)
3062 			surface->bias_and_scale =
3063 					srf_update->bias_and_scale;
3064 }
3065 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3066 static void copy_stream_update_to_stream(struct dc *dc,
3067 					 struct dc_state *context,
3068 					 struct dc_stream_state *stream,
3069 					 struct dc_stream_update *update)
3070 {
3071 	struct dc_context *dc_ctx = dc->ctx;
3072 
3073 	if (update == NULL || stream == NULL)
3074 		return;
3075 
3076 	if (update->src.height && update->src.width)
3077 		stream->src = update->src;
3078 
3079 	if (update->dst.height && update->dst.width)
3080 		stream->dst = update->dst;
3081 
3082 	if (update->out_transfer_func) {
3083 		stream->out_transfer_func.sdr_ref_white_level =
3084 			update->out_transfer_func->sdr_ref_white_level;
3085 		stream->out_transfer_func.tf = update->out_transfer_func->tf;
3086 		stream->out_transfer_func.type =
3087 			update->out_transfer_func->type;
3088 		memcpy(&stream->out_transfer_func.tf_pts,
3089 		       &update->out_transfer_func->tf_pts,
3090 		       sizeof(struct dc_transfer_func_distributed_points));
3091 	}
3092 
3093 	if (update->hdr_static_metadata)
3094 		stream->hdr_static_metadata = *update->hdr_static_metadata;
3095 
3096 	if (update->abm_level)
3097 		stream->abm_level = *update->abm_level;
3098 
3099 	if (update->periodic_interrupt)
3100 		stream->periodic_interrupt = *update->periodic_interrupt;
3101 
3102 	if (update->gamut_remap)
3103 		stream->gamut_remap_matrix = *update->gamut_remap;
3104 
3105 	/* Note: this being updated after mode set is currently not a use case
3106 	 * however if it arises OCSC would need to be reprogrammed at the
3107 	 * minimum
3108 	 */
3109 	if (update->output_color_space)
3110 		stream->output_color_space = *update->output_color_space;
3111 
3112 	if (update->output_csc_transform)
3113 		stream->csc_color_matrix = *update->output_csc_transform;
3114 
3115 	if (update->vrr_infopacket)
3116 		stream->vrr_infopacket = *update->vrr_infopacket;
3117 
3118 	if (update->hw_cursor_req)
3119 		stream->hw_cursor_req = *update->hw_cursor_req;
3120 
3121 	if (update->allow_freesync)
3122 		stream->allow_freesync = *update->allow_freesync;
3123 
3124 	if (update->vrr_active_variable)
3125 		stream->vrr_active_variable = *update->vrr_active_variable;
3126 
3127 	if (update->vrr_active_fixed)
3128 		stream->vrr_active_fixed = *update->vrr_active_fixed;
3129 
3130 	if (update->crtc_timing_adjust)
3131 		stream->adjust = *update->crtc_timing_adjust;
3132 
3133 	if (update->dpms_off)
3134 		stream->dpms_off = *update->dpms_off;
3135 
3136 	if (update->hfvsif_infopacket)
3137 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3138 
3139 	if (update->vtem_infopacket)
3140 		stream->vtem_infopacket = *update->vtem_infopacket;
3141 
3142 	if (update->vsc_infopacket)
3143 		stream->vsc_infopacket = *update->vsc_infopacket;
3144 
3145 	if (update->vsp_infopacket)
3146 		stream->vsp_infopacket = *update->vsp_infopacket;
3147 
3148 	if (update->adaptive_sync_infopacket)
3149 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3150 
3151 	if (update->dither_option)
3152 		stream->dither_option = *update->dither_option;
3153 
3154 	if (update->pending_test_pattern)
3155 		stream->test_pattern = *update->pending_test_pattern;
3156 	/* update current stream with writeback info */
3157 	if (update->wb_update) {
3158 		int i;
3159 
3160 		stream->num_wb_info = update->wb_update->num_wb_info;
3161 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3162 		for (i = 0; i < stream->num_wb_info; i++)
3163 			stream->writeback_info[i] =
3164 				update->wb_update->writeback_info[i];
3165 	}
3166 	if (update->dsc_config) {
3167 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3168 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3169 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3170 				       update->dsc_config->num_slices_v != 0);
3171 
3172 		/* Use temporarry context for validating new DSC config */
3173 		struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3174 
3175 		if (dsc_validate_context) {
3176 			stream->timing.dsc_cfg = *update->dsc_config;
3177 			stream->timing.flags.DSC = enable_dsc;
3178 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3179 				stream->timing.dsc_cfg = old_dsc_cfg;
3180 				stream->timing.flags.DSC = old_dsc_enabled;
3181 				update->dsc_config = NULL;
3182 			}
3183 
3184 			dc_state_release(dsc_validate_context);
3185 		} else {
3186 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
3187 			update->dsc_config = NULL;
3188 		}
3189 	}
3190 	if (update->scaler_sharpener_update)
3191 		stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3192 	if (update->sharpening_required)
3193 		stream->sharpening_required = *update->sharpening_required;
3194 }
3195 
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3196 static void backup_planes_and_stream_state(
3197 		struct dc_scratch_space *scratch,
3198 		struct dc_stream_state *stream)
3199 {
3200 	int i;
3201 	struct dc_stream_status *status = dc_stream_get_status(stream);
3202 
3203 	if (!status)
3204 		return;
3205 
3206 	for (i = 0; i < status->plane_count; i++) {
3207 		scratch->plane_states[i] = *status->plane_states[i];
3208 	}
3209 	scratch->stream_state = *stream;
3210 }
3211 
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3212 static void restore_planes_and_stream_state(
3213 		struct dc_scratch_space *scratch,
3214 		struct dc_stream_state *stream)
3215 {
3216 	int i;
3217 	struct dc_stream_status *status = dc_stream_get_status(stream);
3218 
3219 	if (!status)
3220 		return;
3221 
3222 	for (i = 0; i < status->plane_count; i++) {
3223 		/* refcount will always be valid, restore everything else */
3224 		struct kref refcount = status->plane_states[i]->refcount;
3225 		*status->plane_states[i] = scratch->plane_states[i];
3226 		status->plane_states[i]->refcount = refcount;
3227 	}
3228 	*stream = scratch->stream_state;
3229 }
3230 
3231 /**
3232  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3233  *
3234  * @dc: Current DC state
3235  * @context: New DC state to be programmed
3236  * @surface_count: Number of surfaces that have an updated
3237  * @stream: Corresponding stream to be updated in the current flip
3238  *
3239  * Updating seamless boot flags do not need to be part of the commit sequence. This
3240  * helper function will update the seamless boot flags on each flip (if required)
3241  * outside of the HW commit sequence (fast or slow).
3242  *
3243  * Return: void
3244  */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3245 static void update_seamless_boot_flags(struct dc *dc,
3246 		struct dc_state *context,
3247 		int surface_count,
3248 		struct dc_stream_state *stream)
3249 {
3250 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3251 		/* Optimize seamless boot flag keeps clocks and watermarks high until
3252 		 * first flip. After first flip, optimization is required to lower
3253 		 * bandwidth. Important to note that it is expected UEFI will
3254 		 * only light up a single display on POST, therefore we only expect
3255 		 * one stream with seamless boot flag set.
3256 		 */
3257 		if (stream->apply_seamless_boot_optimization) {
3258 			stream->apply_seamless_boot_optimization = false;
3259 
3260 			if (get_seamless_boot_stream_count(context) == 0)
3261 				dc->optimized_required = true;
3262 		}
3263 	}
3264 }
3265 
3266 /**
3267  * update_planes_and_stream_state() - The function takes planes and stream
3268  * updates as inputs and determines the appropriate update type. If update type
3269  * is FULL, the function allocates a new context, populates and validates it.
3270  * Otherwise, it updates current dc context. The function will return both
3271  * new_context and new_update_type back to the caller. The function also backs
3272  * up both current and new contexts into corresponding dc state scratch memory.
3273  * TODO: The function does too many things, and even conditionally allocates dc
3274  * context memory implicitly. We should consider to break it down.
3275  *
3276  * @dc: Current DC state
3277  * @srf_updates: an array of surface updates
3278  * @surface_count: surface update count
3279  * @stream: Corresponding stream to be updated
3280  * @stream_update: stream update
3281  * @new_update_type: [out] determined update type by the function
3282  * @new_context: [out] new context allocated and validated if update type is
3283  * FULL, reference to current context if update type is less than FULL.
3284  *
3285  * Return: true if a valid update is populated into new_context, false
3286  * otherwise.
3287  */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3288 static bool update_planes_and_stream_state(struct dc *dc,
3289 		struct dc_surface_update *srf_updates, int surface_count,
3290 		struct dc_stream_state *stream,
3291 		struct dc_stream_update *stream_update,
3292 		enum surface_update_type *new_update_type,
3293 		struct dc_state **new_context)
3294 {
3295 	struct dc_state *context;
3296 	int i, j;
3297 	enum surface_update_type update_type;
3298 	const struct dc_stream_status *stream_status;
3299 	struct dc_context *dc_ctx = dc->ctx;
3300 
3301 	stream_status = dc_stream_get_status(stream);
3302 
3303 	if (!stream_status) {
3304 		if (surface_count) /* Only an error condition if surf_count non-zero*/
3305 			ASSERT(false);
3306 
3307 		return false; /* Cannot commit surface to stream that is not committed */
3308 	}
3309 
3310 	context = dc->current_state;
3311 	update_type = dc_check_update_surfaces_for_stream(
3312 			dc, srf_updates, surface_count, stream_update, stream_status);
3313 	/* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3314 	 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3315 	 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3316 	 */
3317 	force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3318 	if (update_type == UPDATE_TYPE_FULL)
3319 		backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3320 
3321 	/* update current stream with the new updates */
3322 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3323 
3324 	/* do not perform surface update if surface has invalid dimensions
3325 	 * (all zero) and no scaling_info is provided
3326 	 */
3327 	if (surface_count > 0) {
3328 		for (i = 0; i < surface_count; i++) {
3329 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3330 				 srf_updates[i].surface->src_rect.height == 0 ||
3331 				 srf_updates[i].surface->dst_rect.width == 0 ||
3332 				 srf_updates[i].surface->dst_rect.height == 0) &&
3333 				(!srf_updates[i].scaling_info ||
3334 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3335 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3336 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3337 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3338 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3339 				return false;
3340 			}
3341 		}
3342 	}
3343 
3344 	if (update_type >= update_surface_trace_level)
3345 		update_surface_trace(dc, srf_updates, surface_count);
3346 
3347 	for (i = 0; i < surface_count; i++)
3348 		copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3349 
3350 	if (update_type >= UPDATE_TYPE_FULL) {
3351 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3352 
3353 		for (i = 0; i < surface_count; i++)
3354 			new_planes[i] = srf_updates[i].surface;
3355 
3356 		/* initialize scratch memory for building context */
3357 		context = dc_state_create_copy(dc->current_state);
3358 		if (context == NULL) {
3359 			DC_ERROR("Failed to allocate new validate context!\n");
3360 			return false;
3361 		}
3362 
3363 		/* For each full update, remove all existing phantom pipes first.
3364 		 * Ensures that we have enough pipes for newly added MPO planes
3365 		 */
3366 		dc_state_remove_phantom_streams_and_planes(dc, context);
3367 		dc_state_release_phantom_streams_and_planes(dc, context);
3368 
3369 		/*remove old surfaces from context */
3370 		if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3371 
3372 			BREAK_TO_DEBUGGER();
3373 			goto fail;
3374 		}
3375 
3376 		/* add surface to context */
3377 		if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3378 
3379 			BREAK_TO_DEBUGGER();
3380 			goto fail;
3381 		}
3382 	}
3383 
3384 	/* save update parameters into surface */
3385 	for (i = 0; i < surface_count; i++) {
3386 		struct dc_plane_state *surface = srf_updates[i].surface;
3387 
3388 		if (update_type != UPDATE_TYPE_MED)
3389 			continue;
3390 		if (surface->update_flags.bits.position_change) {
3391 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3392 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3393 
3394 				if (pipe_ctx->plane_state != surface)
3395 					continue;
3396 
3397 				resource_build_scaling_params(pipe_ctx);
3398 			}
3399 		}
3400 	}
3401 
3402 	if (update_type == UPDATE_TYPE_FULL) {
3403 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3404 			BREAK_TO_DEBUGGER();
3405 			goto fail;
3406 		}
3407 	}
3408 	update_seamless_boot_flags(dc, context, surface_count, stream);
3409 
3410 	*new_context = context;
3411 	*new_update_type = update_type;
3412 	if (update_type == UPDATE_TYPE_FULL)
3413 		backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3414 
3415 	return true;
3416 
3417 fail:
3418 	dc_state_release(context);
3419 
3420 	return false;
3421 
3422 }
3423 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3424 static void commit_planes_do_stream_update(struct dc *dc,
3425 		struct dc_stream_state *stream,
3426 		struct dc_stream_update *stream_update,
3427 		enum surface_update_type update_type,
3428 		struct dc_state *context)
3429 {
3430 	int j;
3431 
3432 	// Stream updates
3433 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3434 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3435 
3436 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3437 
3438 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3439 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3440 
3441 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3442 					stream_update->vrr_infopacket ||
3443 					stream_update->vsc_infopacket ||
3444 					stream_update->vsp_infopacket ||
3445 					stream_update->hfvsif_infopacket ||
3446 					stream_update->adaptive_sync_infopacket ||
3447 					stream_update->vtem_infopacket) {
3448 				resource_build_info_frame(pipe_ctx);
3449 				dc->hwss.update_info_frame(pipe_ctx);
3450 
3451 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3452 					dc->link_srv->dp_trace_source_sequence(
3453 							pipe_ctx->stream->link,
3454 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3455 			}
3456 
3457 			if (stream_update->hdr_static_metadata &&
3458 					stream->use_dynamic_meta &&
3459 					dc->hwss.set_dmdata_attributes &&
3460 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3461 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3462 
3463 			if (stream_update->gamut_remap)
3464 				dc_stream_set_gamut_remap(dc, stream);
3465 
3466 			if (stream_update->output_csc_transform)
3467 				dc_stream_program_csc_matrix(dc, stream);
3468 
3469 			if (stream_update->dither_option) {
3470 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3471 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3472 									&pipe_ctx->stream->bit_depth_params);
3473 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3474 						&stream->bit_depth_params,
3475 						&stream->clamping);
3476 				while (odm_pipe) {
3477 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3478 							&stream->bit_depth_params,
3479 							&stream->clamping);
3480 					odm_pipe = odm_pipe->next_odm_pipe;
3481 				}
3482 			}
3483 
3484 			if (stream_update->cursor_attributes)
3485 				program_cursor_attributes(dc, stream);
3486 
3487 			if (stream_update->cursor_position)
3488 				program_cursor_position(dc, stream);
3489 
3490 			/* Full fe update*/
3491 			if (update_type == UPDATE_TYPE_FAST)
3492 				continue;
3493 
3494 			if (stream_update->dsc_config)
3495 				dc->link_srv->update_dsc_config(pipe_ctx);
3496 
3497 			if (stream_update->mst_bw_update) {
3498 				if (stream_update->mst_bw_update->is_increase)
3499 					dc->link_srv->increase_mst_payload(pipe_ctx,
3500 							stream_update->mst_bw_update->mst_stream_bw);
3501 				else
3502 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3503 							stream_update->mst_bw_update->mst_stream_bw);
3504 			}
3505 
3506 			if (stream_update->pending_test_pattern) {
3507 				/*
3508 				 * test pattern params depends on ODM topology
3509 				 * changes that we could be applying to front
3510 				 * end. Since at the current stage front end
3511 				 * changes are not yet applied. We can only
3512 				 * apply test pattern in hw based on current
3513 				 * state and populate the final test pattern
3514 				 * params in new state. If current and new test
3515 				 * pattern params are different as result of
3516 				 * different ODM topology being used, it will be
3517 				 * detected and handle during front end
3518 				 * programming update.
3519 				 */
3520 				dc->link_srv->dp_set_test_pattern(stream->link,
3521 					stream->test_pattern.type,
3522 					stream->test_pattern.color_space,
3523 					stream->test_pattern.p_link_settings,
3524 					stream->test_pattern.p_custom_pattern,
3525 					stream->test_pattern.cust_pattern_size);
3526 				resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3527 			}
3528 
3529 			if (stream_update->dpms_off) {
3530 				if (*stream_update->dpms_off) {
3531 					dc->link_srv->set_dpms_off(pipe_ctx);
3532 					/* for dpms, keep acquired resources*/
3533 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3534 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3535 
3536 					dc->optimized_required = true;
3537 
3538 				} else {
3539 					if (get_seamless_boot_stream_count(context) == 0)
3540 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3541 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3542 				}
3543 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3544 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3545 				/*
3546 				 * Workaround for firmware issue in some receivers where they don't pick up
3547 				 * correct output color space unless DP link is disabled/re-enabled
3548 				 */
3549 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3550 			}
3551 
3552 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3553 				bool should_program_abm = true;
3554 
3555 				// if otg funcs defined check if blanked before programming
3556 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3557 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3558 						should_program_abm = false;
3559 
3560 				if (should_program_abm) {
3561 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3562 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3563 					} else {
3564 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3565 							pipe_ctx->stream_res.abm, stream->abm_level);
3566 					}
3567 				}
3568 			}
3569 		}
3570 	}
3571 }
3572 
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3573 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3574 {
3575 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3576 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3577 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3578 		return true;
3579 
3580 	if (stream->link->replay_settings.config.replay_supported)
3581 		return true;
3582 
3583 	if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3584 		return true;
3585 
3586 	return false;
3587 }
3588 
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3589 void dc_dmub_update_dirty_rect(struct dc *dc,
3590 			       int surface_count,
3591 			       struct dc_stream_state *stream,
3592 			       struct dc_surface_update *srf_updates,
3593 			       struct dc_state *context)
3594 {
3595 	union dmub_rb_cmd cmd;
3596 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3597 	unsigned int i, j;
3598 	unsigned int panel_inst = 0;
3599 
3600 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3601 		return;
3602 
3603 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3604 		return;
3605 
3606 	memset(&cmd, 0x0, sizeof(cmd));
3607 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3608 	cmd.update_dirty_rect.header.sub_type = 0;
3609 	cmd.update_dirty_rect.header.payload_bytes =
3610 		sizeof(cmd.update_dirty_rect) -
3611 		sizeof(cmd.update_dirty_rect.header);
3612 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3613 	for (i = 0; i < surface_count; i++) {
3614 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3615 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3616 
3617 		if (!srf_updates[i].surface || !flip_addr)
3618 			continue;
3619 		/* Do not send in immediate flip mode */
3620 		if (srf_updates[i].surface->flip_immediate)
3621 			continue;
3622 
3623 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3624 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3625 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3626 				sizeof(flip_addr->dirty_rects));
3627 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3628 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3629 
3630 			if (pipe_ctx->stream != stream)
3631 				continue;
3632 			if (pipe_ctx->plane_state != plane_state)
3633 				continue;
3634 
3635 			update_dirty_rect->panel_inst = panel_inst;
3636 			update_dirty_rect->pipe_idx = j;
3637 			dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3638 		}
3639 	}
3640 }
3641 
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3642 static void build_dmub_update_dirty_rect(
3643 		struct dc *dc,
3644 		int surface_count,
3645 		struct dc_stream_state *stream,
3646 		struct dc_surface_update *srf_updates,
3647 		struct dc_state *context,
3648 		struct dc_dmub_cmd dc_dmub_cmd[],
3649 		unsigned int *dmub_cmd_count)
3650 {
3651 	union dmub_rb_cmd cmd;
3652 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3653 	unsigned int i, j;
3654 	unsigned int panel_inst = 0;
3655 
3656 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3657 		return;
3658 
3659 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3660 		return;
3661 
3662 	memset(&cmd, 0x0, sizeof(cmd));
3663 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3664 	cmd.update_dirty_rect.header.sub_type = 0;
3665 	cmd.update_dirty_rect.header.payload_bytes =
3666 		sizeof(cmd.update_dirty_rect) -
3667 		sizeof(cmd.update_dirty_rect.header);
3668 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3669 	for (i = 0; i < surface_count; i++) {
3670 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3671 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3672 
3673 		if (!srf_updates[i].surface || !flip_addr)
3674 			continue;
3675 		/* Do not send in immediate flip mode */
3676 		if (srf_updates[i].surface->flip_immediate)
3677 			continue;
3678 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3679 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3680 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3681 				sizeof(flip_addr->dirty_rects));
3682 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3683 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3684 
3685 			if (pipe_ctx->stream != stream)
3686 				continue;
3687 			if (pipe_ctx->plane_state != plane_state)
3688 				continue;
3689 			update_dirty_rect->panel_inst = panel_inst;
3690 			update_dirty_rect->pipe_idx = j;
3691 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3692 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3693 			(*dmub_cmd_count)++;
3694 		}
3695 	}
3696 }
3697 
check_address_only_update(union surface_update_flags update_flags)3698 static bool check_address_only_update(union surface_update_flags update_flags)
3699 {
3700 	union surface_update_flags addr_only_update_flags;
3701 	addr_only_update_flags.raw = 0;
3702 	addr_only_update_flags.bits.addr_update = 1;
3703 
3704 	return update_flags.bits.addr_update &&
3705 			!(update_flags.raw & ~addr_only_update_flags.raw);
3706 }
3707 
3708 /**
3709  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3710  *
3711  * @dc: Current DC state
3712  * @srf_updates: Array of surface updates
3713  * @surface_count: Number of surfaces that have an updated
3714  * @stream: Corresponding stream to be updated in the current flip
3715  * @context: New DC state to be programmed
3716  *
3717  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3718  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3719  *
3720  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3721  * to build an array of commands and have them sent while the OTG lock is acquired.
3722  *
3723  * Return: void
3724  */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3725 static void build_dmub_cmd_list(struct dc *dc,
3726 		struct dc_surface_update *srf_updates,
3727 		int surface_count,
3728 		struct dc_stream_state *stream,
3729 		struct dc_state *context,
3730 		struct dc_dmub_cmd dc_dmub_cmd[],
3731 		unsigned int *dmub_cmd_count)
3732 {
3733 	// Initialize cmd count to 0
3734 	*dmub_cmd_count = 0;
3735 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3736 }
3737 
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3738 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3739 		struct dc_surface_update *srf_updates,
3740 		int surface_count,
3741 		struct dc_stream_state *stream,
3742 		struct dc_state *context)
3743 {
3744 	int i, j;
3745 
3746 	/* update dirty rect for PSR */
3747 	dc_dmub_update_dirty_rect(dc, surface_count, stream,
3748 			srf_updates, context);
3749 
3750 	/* Perform requested Updates */
3751 	for (i = 0; i < surface_count; i++) {
3752 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3753 
3754 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3755 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3756 
3757 			if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3758 				continue;
3759 
3760 			if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3761 				continue;
3762 
3763 			/* update pipe context for plane */
3764 			if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3765 				dc->hwss.update_plane_addr(dc, pipe_ctx);
3766 		}
3767 	}
3768 
3769 	/* Send commands to DMCUB */
3770 	dc_dmub_srv_fams2_passthrough_flip(dc,
3771 				context,
3772 				stream,
3773 				srf_updates,
3774 				surface_count);
3775 }
3776 
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3777 static void commit_planes_for_stream_fast(struct dc *dc,
3778 		struct dc_surface_update *srf_updates,
3779 		int surface_count,
3780 		struct dc_stream_state *stream,
3781 		struct dc_stream_update *stream_update,
3782 		enum surface_update_type update_type,
3783 		struct dc_state *context)
3784 {
3785 	int i, j;
3786 	struct pipe_ctx *top_pipe_to_program = NULL;
3787 	struct dc_stream_status *stream_status = NULL;
3788 	bool should_offload_fams2_flip = false;
3789 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3790 
3791 	if (should_lock_all_pipes)
3792 		determine_pipe_unlock_order(dc, context);
3793 
3794 	if (dc->debug.fams2_config.bits.enable &&
3795 			dc->debug.fams2_config.bits.enable_offload_flip &&
3796 			dc_state_is_fams2_in_use(dc, context)) {
3797 		/* if not offloading to HWFQ, offload to FAMS2 if needed */
3798 		should_offload_fams2_flip = true;
3799 		for (i = 0; i < surface_count; i++) {
3800 			if (srf_updates[i].surface &&
3801 					srf_updates[i].surface->update_flags.raw &&
3802 					!check_address_only_update(srf_updates[i].surface->update_flags)) {
3803 				/* more than address update, need to acquire FAMS2 lock */
3804 				should_offload_fams2_flip = false;
3805 				break;
3806 			}
3807 		}
3808 		if (stream_update) {
3809 			/* more than address update, need to acquire FAMS2 lock */
3810 			should_offload_fams2_flip = false;
3811 		}
3812 	}
3813 
3814 	dc_exit_ips_for_hw_access(dc);
3815 
3816 	dc_z10_restore(dc);
3817 
3818 	top_pipe_to_program = resource_get_otg_master_for_stream(
3819 			&context->res_ctx,
3820 			stream);
3821 
3822 	if (!top_pipe_to_program)
3823 		return;
3824 
3825 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3826 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3827 
3828 		if (pipe->stream && pipe->plane_state) {
3829 			if (!dc->debug.using_dml2)
3830 				set_p_state_switch_method(dc, context, pipe);
3831 
3832 			if (dc->debug.visual_confirm)
3833 				dc_update_visual_confirm_color(dc, context, pipe);
3834 		}
3835 	}
3836 
3837 	for (i = 0; i < surface_count; i++) {
3838 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3839 		/*set logical flag for lock/unlock use*/
3840 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3841 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3842 
3843 			if (!pipe_ctx->plane_state)
3844 				continue;
3845 			if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3846 				continue;
3847 
3848 			pipe_ctx->plane_state->triplebuffer_flips = false;
3849 			if (update_type == UPDATE_TYPE_FAST &&
3850 					dc->hwss.program_triplebuffer != NULL &&
3851 					!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3852 				/*triple buffer for VUpdate only*/
3853 				pipe_ctx->plane_state->triplebuffer_flips = true;
3854 			}
3855 		}
3856 	}
3857 
3858 	stream_status = dc_state_get_stream_status(context, stream);
3859 
3860 	if (should_offload_fams2_flip) {
3861 		commit_plane_for_stream_offload_fams2_flip(dc,
3862 				srf_updates,
3863 				surface_count,
3864 				stream,
3865 				context);
3866 	} else if (stream_status) {
3867 		build_dmub_cmd_list(dc,
3868 				srf_updates,
3869 				surface_count,
3870 				stream,
3871 				context,
3872 				context->dc_dmub_cmd,
3873 				&(context->dmub_cmd_count));
3874 		hwss_build_fast_sequence(dc,
3875 				context->dc_dmub_cmd,
3876 				context->dmub_cmd_count,
3877 				context->block_sequence,
3878 				&(context->block_sequence_steps),
3879 				top_pipe_to_program,
3880 				stream_status,
3881 				context);
3882 		hwss_execute_sequence(dc,
3883 				context->block_sequence,
3884 				context->block_sequence_steps);
3885 	}
3886 
3887 	/* Clear update flags so next flip doesn't have redundant programming
3888 	 * (if there's no stream update, the update flags are not cleared).
3889 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3890 	 * so no need to clear here.
3891 	 */
3892 	if (top_pipe_to_program->stream)
3893 		top_pipe_to_program->stream->update_flags.raw = 0;
3894 }
3895 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3896 static void commit_planes_for_stream(struct dc *dc,
3897 		struct dc_surface_update *srf_updates,
3898 		int surface_count,
3899 		struct dc_stream_state *stream,
3900 		struct dc_stream_update *stream_update,
3901 		enum surface_update_type update_type,
3902 		struct dc_state *context)
3903 {
3904 	int i, j;
3905 	struct pipe_ctx *top_pipe_to_program = NULL;
3906 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3907 	bool subvp_prev_use = false;
3908 	bool subvp_curr_use = false;
3909 	uint8_t current_stream_mask = 0;
3910 
3911 	if (should_lock_all_pipes)
3912 		determine_pipe_unlock_order(dc, context);
3913 	// Once we apply the new subvp context to hardware it won't be in the
3914 	// dc->current_state anymore, so we have to cache it before we apply
3915 	// the new SubVP context
3916 	subvp_prev_use = false;
3917 	dc_exit_ips_for_hw_access(dc);
3918 
3919 	dc_z10_restore(dc);
3920 	if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
3921 		hwss_process_outstanding_hw_updates(dc, dc->current_state);
3922 
3923 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3924 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3925 
3926 		if (pipe->stream && pipe->plane_state) {
3927 			if (!dc->debug.using_dml2)
3928 				set_p_state_switch_method(dc, context, pipe);
3929 
3930 			if (dc->debug.visual_confirm)
3931 				dc_update_visual_confirm_color(dc, context, pipe);
3932 		}
3933 	}
3934 
3935 	if (update_type == UPDATE_TYPE_FULL) {
3936 		dc_allow_idle_optimizations(dc, false);
3937 
3938 		if (get_seamless_boot_stream_count(context) == 0)
3939 			dc->hwss.prepare_bandwidth(dc, context);
3940 
3941 		if (dc->hwss.update_dsc_pg)
3942 			dc->hwss.update_dsc_pg(dc, context, false);
3943 
3944 		context_clock_trace(dc, context);
3945 	}
3946 
3947 	if (update_type == UPDATE_TYPE_FULL)
3948 		hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
3949 
3950 	top_pipe_to_program = resource_get_otg_master_for_stream(
3951 				&context->res_ctx,
3952 				stream);
3953 	ASSERT(top_pipe_to_program != NULL);
3954 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3955 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3956 
3957 		// Check old context for SubVP
3958 		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3959 		if (subvp_prev_use)
3960 			break;
3961 	}
3962 
3963 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3964 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3965 
3966 		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3967 			subvp_curr_use = true;
3968 			break;
3969 		}
3970 	}
3971 
3972 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3973 		struct pipe_ctx *mpcc_pipe;
3974 		struct pipe_ctx *odm_pipe;
3975 
3976 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3977 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3978 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3979 	}
3980 
3981 	if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3982 		dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3983 
3984 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3985 		if (top_pipe_to_program &&
3986 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3987 			if (should_use_dmub_lock(stream->link)) {
3988 				union dmub_hw_lock_flags hw_locks = { 0 };
3989 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3990 
3991 				hw_locks.bits.lock_dig = 1;
3992 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3993 
3994 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3995 							true,
3996 							&hw_locks,
3997 							&inst_flags);
3998 			} else
3999 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4000 						top_pipe_to_program->stream_res.tg);
4001 		}
4002 
4003 	if (dc->hwss.wait_for_dcc_meta_propagation) {
4004 		dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4005 	}
4006 
4007 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4008 		if (dc->hwss.subvp_pipe_control_lock)
4009 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4010 
4011 		if (dc->hwss.fams2_global_control_lock)
4012 			dc->hwss.fams2_global_control_lock(dc, context, true);
4013 
4014 		dc->hwss.interdependent_update_lock(dc, context, true);
4015 	} else {
4016 		if (dc->hwss.subvp_pipe_control_lock)
4017 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4018 
4019 		if (dc->hwss.fams2_global_control_lock)
4020 			dc->hwss.fams2_global_control_lock(dc, context, true);
4021 
4022 		/* Lock the top pipe while updating plane addrs, since freesync requires
4023 		 *  plane addr update event triggers to be synchronized.
4024 		 *  top_pipe_to_program is expected to never be NULL
4025 		 */
4026 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4027 	}
4028 
4029 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4030 
4031 	// Stream updates
4032 	if (stream_update)
4033 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4034 
4035 	if (surface_count == 0) {
4036 		/*
4037 		 * In case of turning off screen, no need to program front end a second time.
4038 		 * just return after program blank.
4039 		 */
4040 		if (dc->hwss.apply_ctx_for_surface)
4041 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4042 		if (dc->hwss.program_front_end_for_ctx)
4043 			dc->hwss.program_front_end_for_ctx(dc, context);
4044 
4045 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4046 			dc->hwss.interdependent_update_lock(dc, context, false);
4047 		} else {
4048 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4049 		}
4050 		dc->hwss.post_unlock_program_front_end(dc, context);
4051 
4052 		if (update_type != UPDATE_TYPE_FAST)
4053 			if (dc->hwss.commit_subvp_config)
4054 				dc->hwss.commit_subvp_config(dc, context);
4055 
4056 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
4057 		 * move the SubVP lock to after the phantom pipes have been setup
4058 		 */
4059 		if (dc->hwss.subvp_pipe_control_lock)
4060 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4061 							 NULL, subvp_prev_use);
4062 
4063 		if (dc->hwss.fams2_global_control_lock)
4064 			dc->hwss.fams2_global_control_lock(dc, context, false);
4065 
4066 		return;
4067 	}
4068 
4069 	if (update_type != UPDATE_TYPE_FAST) {
4070 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
4071 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4072 
4073 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4074 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4075 				pipe_ctx->stream && pipe_ctx->plane_state) {
4076 				/* Only update visual confirm for SUBVP and Mclk switching here.
4077 				 * The bar appears on all pipes, so we need to update the bar on all displays,
4078 				 * so the information doesn't get stale.
4079 				 */
4080 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4081 						pipe_ctx->plane_res.hubp->inst);
4082 			}
4083 		}
4084 	}
4085 
4086 	for (i = 0; i < surface_count; i++) {
4087 		struct dc_plane_state *plane_state = srf_updates[i].surface;
4088 
4089 		/*set logical flag for lock/unlock use*/
4090 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
4091 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4092 			if (!pipe_ctx->plane_state)
4093 				continue;
4094 			if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4095 				continue;
4096 			pipe_ctx->plane_state->triplebuffer_flips = false;
4097 			if (update_type == UPDATE_TYPE_FAST &&
4098 					dc->hwss.program_triplebuffer != NULL &&
4099 					!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4100 				/*triple buffer for VUpdate only*/
4101 				pipe_ctx->plane_state->triplebuffer_flips = true;
4102 			}
4103 		}
4104 		if (update_type == UPDATE_TYPE_FULL) {
4105 			/* force vsync flip when reconfiguring pipes to prevent underflow */
4106 			plane_state->flip_immediate = false;
4107 			plane_state->triplebuffer_flips = false;
4108 		}
4109 	}
4110 
4111 	// Update Type FULL, Surface updates
4112 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
4113 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4114 
4115 		if (!pipe_ctx->top_pipe &&
4116 			!pipe_ctx->prev_odm_pipe &&
4117 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4118 			struct dc_stream_status *stream_status = NULL;
4119 
4120 			if (!pipe_ctx->plane_state)
4121 				continue;
4122 
4123 			/* Full fe update*/
4124 			if (update_type == UPDATE_TYPE_FAST)
4125 				continue;
4126 
4127 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4128 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4129 				/*turn off triple buffer for full update*/
4130 				dc->hwss.program_triplebuffer(
4131 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4132 			}
4133 			stream_status =
4134 				stream_get_status(context, pipe_ctx->stream);
4135 
4136 			if (dc->hwss.apply_ctx_for_surface && stream_status)
4137 				dc->hwss.apply_ctx_for_surface(
4138 					dc, pipe_ctx->stream, stream_status->plane_count, context);
4139 		}
4140 	}
4141 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4142 		dc->hwss.program_front_end_for_ctx(dc, context);
4143 		if (dc->debug.validate_dml_output) {
4144 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
4145 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4146 				if (cur_pipe->stream == NULL)
4147 					continue;
4148 
4149 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4150 						cur_pipe->plane_res.hubp, dc->ctx,
4151 						&context->res_ctx.pipe_ctx[i].rq_regs,
4152 						&context->res_ctx.pipe_ctx[i].dlg_regs,
4153 						&context->res_ctx.pipe_ctx[i].ttu_regs);
4154 			}
4155 		}
4156 	}
4157 
4158 	// Update Type FAST, Surface updates
4159 	if (update_type == UPDATE_TYPE_FAST) {
4160 		if (dc->hwss.set_flip_control_gsl)
4161 			for (i = 0; i < surface_count; i++) {
4162 				struct dc_plane_state *plane_state = srf_updates[i].surface;
4163 
4164 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
4165 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4166 
4167 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4168 						continue;
4169 
4170 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4171 						continue;
4172 
4173 					// GSL has to be used for flip immediate
4174 					dc->hwss.set_flip_control_gsl(pipe_ctx,
4175 							pipe_ctx->plane_state->flip_immediate);
4176 				}
4177 			}
4178 
4179 		/* Perform requested Updates */
4180 		for (i = 0; i < surface_count; i++) {
4181 			struct dc_plane_state *plane_state = srf_updates[i].surface;
4182 
4183 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4184 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4185 
4186 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4187 					continue;
4188 
4189 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4190 					continue;
4191 
4192 				if (srf_updates[i].cm2_params &&
4193 						srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4194 								DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4195 						srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4196 								DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4197 						dc->hwss.trigger_3dlut_dma_load)
4198 					dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4199 
4200 				/*program triple buffer after lock based on flip type*/
4201 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4202 					/*only enable triplebuffer for fast_update*/
4203 					dc->hwss.program_triplebuffer(
4204 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4205 				}
4206 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4207 					dc->hwss.update_plane_addr(dc, pipe_ctx);
4208 			}
4209 		}
4210 	}
4211 
4212 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4213 		dc->hwss.interdependent_update_lock(dc, context, false);
4214 	} else {
4215 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4216 	}
4217 
4218 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4219 		if (top_pipe_to_program &&
4220 		    top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4221 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4222 				top_pipe_to_program->stream_res.tg,
4223 				CRTC_STATE_VACTIVE);
4224 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4225 				top_pipe_to_program->stream_res.tg,
4226 				CRTC_STATE_VBLANK);
4227 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4228 				top_pipe_to_program->stream_res.tg,
4229 				CRTC_STATE_VACTIVE);
4230 
4231 			if (should_use_dmub_lock(stream->link)) {
4232 				union dmub_hw_lock_flags hw_locks = { 0 };
4233 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4234 
4235 				hw_locks.bits.lock_dig = 1;
4236 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4237 
4238 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4239 							false,
4240 							&hw_locks,
4241 							&inst_flags);
4242 			} else
4243 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4244 					top_pipe_to_program->stream_res.tg);
4245 		}
4246 
4247 	if (subvp_curr_use) {
4248 		/* If enabling subvp or transitioning from subvp->subvp, enable the
4249 		 * phantom streams before we program front end for the phantom pipes.
4250 		 */
4251 		if (update_type != UPDATE_TYPE_FAST) {
4252 			if (dc->hwss.enable_phantom_streams)
4253 				dc->hwss.enable_phantom_streams(dc, context);
4254 		}
4255 	}
4256 
4257 	if (update_type != UPDATE_TYPE_FAST)
4258 		dc->hwss.post_unlock_program_front_end(dc, context);
4259 
4260 	if (subvp_prev_use && !subvp_curr_use) {
4261 		/* If disabling subvp, disable phantom streams after front end
4262 		 * programming has completed (we turn on phantom OTG in order
4263 		 * to complete the plane disable for phantom pipes).
4264 		 */
4265 
4266 		if (dc->hwss.disable_phantom_streams)
4267 			dc->hwss.disable_phantom_streams(dc, context);
4268 	}
4269 
4270 	if (update_type != UPDATE_TYPE_FAST)
4271 		if (dc->hwss.commit_subvp_config)
4272 			dc->hwss.commit_subvp_config(dc, context);
4273 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
4274 	 * move the SubVP lock to after the phantom pipes have been setup
4275 	 */
4276 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4277 		if (dc->hwss.subvp_pipe_control_lock)
4278 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4279 		if (dc->hwss.fams2_global_control_lock)
4280 			dc->hwss.fams2_global_control_lock(dc, context, false);
4281 	} else {
4282 		if (dc->hwss.subvp_pipe_control_lock)
4283 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4284 		if (dc->hwss.fams2_global_control_lock)
4285 			dc->hwss.fams2_global_control_lock(dc, context, false);
4286 	}
4287 
4288 	// Fire manual trigger only when bottom plane is flipped
4289 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
4290 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4291 
4292 		if (!pipe_ctx->plane_state)
4293 			continue;
4294 
4295 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4296 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4297 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
4298 				pipe_ctx->plane_state->skip_manual_trigger)
4299 			continue;
4300 
4301 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4302 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4303 	}
4304 
4305 	current_stream_mask = get_stream_mask(dc, context);
4306 	if (current_stream_mask != context->stream_mask) {
4307 		context->stream_mask = current_stream_mask;
4308 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4309 	}
4310 }
4311 
4312 /**
4313  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4314  *
4315  * @dc: Used to get the current state status
4316  * @stream: Target stream, which we want to remove the attached planes
4317  * @srf_updates: Array of surface updates
4318  * @surface_count: Number of surface update
4319  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4320  *
4321  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4322  * the MPO if used simultaneously in some specific configurations (e.g.,
4323  * 4k@144). This function checks if the incoming context requires applying a
4324  * transition state with unnecessary pipe splitting and ODM disabled to
4325  * circumvent our hardware limitations to prevent this edge case. If the OPP
4326  * associated with an MPCC might change due to plane additions, this function
4327  * returns true.
4328  *
4329  * Return:
4330  * Return true if OPP and MPCC might change, otherwise, return false.
4331  */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4332 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4333 		struct dc_stream_state *stream,
4334 		struct dc_surface_update *srf_updates,
4335 		int surface_count,
4336 		bool *is_plane_addition)
4337 {
4338 
4339 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4340 	bool force_minimal_pipe_splitting = false;
4341 	bool subvp_active = false;
4342 	uint32_t i;
4343 
4344 	*is_plane_addition = false;
4345 
4346 	if (cur_stream_status &&
4347 			dc->current_state->stream_count > 0 &&
4348 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4349 		/* determine if minimal transition is required due to MPC*/
4350 		if (surface_count > 0) {
4351 			if (cur_stream_status->plane_count > surface_count) {
4352 				force_minimal_pipe_splitting = true;
4353 			} else if (cur_stream_status->plane_count < surface_count) {
4354 				force_minimal_pipe_splitting = true;
4355 				*is_plane_addition = true;
4356 			}
4357 		}
4358 	}
4359 
4360 	if (cur_stream_status &&
4361 			dc->current_state->stream_count == 1 &&
4362 			dc->debug.enable_single_display_2to1_odm_policy) {
4363 		/* determine if minimal transition is required due to dynamic ODM*/
4364 		if (surface_count > 0) {
4365 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4366 				force_minimal_pipe_splitting = true;
4367 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4368 				force_minimal_pipe_splitting = true;
4369 				*is_plane_addition = true;
4370 			}
4371 		}
4372 	}
4373 
4374 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4375 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4376 
4377 		if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4378 			subvp_active = true;
4379 			break;
4380 		}
4381 	}
4382 
4383 	/* For SubVP when adding or removing planes we need to add a minimal transition
4384 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4385 	 * must use the minimal transition path to disable the pipe correctly.
4386 	 *
4387 	 * We want to use the minimal transition whenever subvp is active, not only if
4388 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
4389 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4390 	 * a min transition to disable subvp.
4391 	 */
4392 	if (cur_stream_status && subvp_active) {
4393 		/* determine if minimal transition is required due to SubVP*/
4394 		if (cur_stream_status->plane_count > surface_count) {
4395 			force_minimal_pipe_splitting = true;
4396 		} else if (cur_stream_status->plane_count < surface_count) {
4397 			force_minimal_pipe_splitting = true;
4398 			*is_plane_addition = true;
4399 		}
4400 	}
4401 
4402 	return force_minimal_pipe_splitting;
4403 }
4404 
4405 struct pipe_split_policy_backup {
4406 	bool dynamic_odm_policy;
4407 	bool subvp_policy;
4408 	enum pipe_split_policy mpc_policy;
4409 	char force_odm[MAX_PIPES];
4410 };
4411 
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4412 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4413 		struct dc_state *context,
4414 		struct pipe_split_policy_backup *policy)
4415 {
4416 	int i;
4417 
4418 	if (!dc->config.is_vmin_only_asic) {
4419 		policy->mpc_policy = dc->debug.pipe_split_policy;
4420 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4421 	}
4422 	policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4423 	dc->debug.enable_single_display_2to1_odm_policy = false;
4424 	policy->subvp_policy = dc->debug.force_disable_subvp;
4425 	dc->debug.force_disable_subvp = true;
4426 	for (i = 0; i < context->stream_count; i++) {
4427 		policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4428 		if (context->streams[i]->debug.allow_transition_for_forced_odm)
4429 			context->streams[i]->debug.force_odm_combine_segments = 0;
4430 	}
4431 }
4432 
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4433 static void restore_minimal_pipe_split_policy(struct dc *dc,
4434 		struct dc_state *context,
4435 		struct pipe_split_policy_backup *policy)
4436 {
4437 	uint8_t i;
4438 
4439 	if (!dc->config.is_vmin_only_asic)
4440 		dc->debug.pipe_split_policy = policy->mpc_policy;
4441 	dc->debug.enable_single_display_2to1_odm_policy =
4442 			policy->dynamic_odm_policy;
4443 	dc->debug.force_disable_subvp = policy->subvp_policy;
4444 	for (i = 0; i < context->stream_count; i++)
4445 		context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4446 }
4447 
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4448 static void release_minimal_transition_state(struct dc *dc,
4449 		struct dc_state *minimal_transition_context,
4450 		struct dc_state *base_context,
4451 		struct pipe_split_policy_backup *policy)
4452 {
4453 	restore_minimal_pipe_split_policy(dc, base_context, policy);
4454 	dc_state_release(minimal_transition_context);
4455 }
4456 
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4457 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4458 {
4459 	uint8_t i;
4460 	int j;
4461 	struct dc_stream_status *stream_status;
4462 
4463 	for (i = 0; i < context->stream_count; i++) {
4464 		stream_status = &context->stream_status[i];
4465 
4466 		for (j = 0; j < stream_status->plane_count; j++)
4467 			stream_status->plane_states[j]->flip_immediate = false;
4468 	}
4469 }
4470 
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4471 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4472 		struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4473 {
4474 	struct dc_state *minimal_transition_context = NULL;
4475 
4476 	minimal_transition_context = dc_state_create_copy(base_context);
4477 	if (!minimal_transition_context)
4478 		return NULL;
4479 
4480 	backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4481 	/* commit minimal state */
4482 	if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4483 		/* prevent underflow and corruption when reconfiguring pipes */
4484 		force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4485 	} else {
4486 		/*
4487 		 * This should never happen, minimal transition state should
4488 		 * always be validated first before adding pipe split features.
4489 		 */
4490 		release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4491 		BREAK_TO_DEBUGGER();
4492 		minimal_transition_context = NULL;
4493 	}
4494 	return minimal_transition_context;
4495 }
4496 
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4497 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4498 		struct dc *dc,
4499 		struct dc_state *initial_state,
4500 		struct dc_state *intermediate_state,
4501 		struct dc_state *final_state)
4502 {
4503 	return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4504 			intermediate_state) &&
4505 			dc->hwss.is_pipe_topology_transition_seamless(dc,
4506 					intermediate_state, final_state);
4507 }
4508 
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4509 static void swap_and_release_current_context(struct dc *dc,
4510 		struct dc_state *new_context, struct dc_stream_state *stream)
4511 {
4512 
4513 	int i;
4514 	struct dc_state *old = dc->current_state;
4515 	struct pipe_ctx *pipe_ctx;
4516 
4517 	/* Since memory free requires elevated IRQ, an interrupt
4518 	 * request is generated by mem free. If this happens
4519 	 * between freeing and reassigning the context, our vsync
4520 	 * interrupt will call into dc and cause a memory
4521 	 * corruption. Hence, we first reassign the context,
4522 	 * then free the old context.
4523 	 */
4524 	dc->current_state = new_context;
4525 	dc_state_release(old);
4526 
4527 	// clear any forced full updates
4528 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4529 		pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4530 
4531 		if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4532 			pipe_ctx->plane_state->force_full_update = false;
4533 	}
4534 }
4535 
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4536 static int initialize_empty_surface_updates(
4537 		struct dc_stream_state *stream,
4538 		struct dc_surface_update *srf_updates)
4539 {
4540 	struct dc_stream_status *status = dc_stream_get_status(stream);
4541 	int i;
4542 
4543 	if (!status)
4544 		return 0;
4545 
4546 	for (i = 0; i < status->plane_count; i++)
4547 		srf_updates[i].surface = status->plane_states[i];
4548 
4549 	return status->plane_count;
4550 }
4551 
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4552 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4553 		struct dc_state *new_context,
4554 		struct dc_stream_state *stream,
4555 		struct dc_surface_update *srf_updates,
4556 		int surface_count)
4557 {
4558 	bool success = false;
4559 	struct pipe_split_policy_backup policy;
4560 	struct dc_state *intermediate_context =
4561 			create_minimal_transition_state(dc, new_context,
4562 					&policy);
4563 
4564 	if (intermediate_context) {
4565 		if (is_pipe_topology_transition_seamless_with_intermediate_step(
4566 				dc,
4567 				dc->current_state,
4568 				intermediate_context,
4569 				new_context)) {
4570 			DC_LOG_DC("commit minimal transition state: base = new state\n");
4571 			commit_planes_for_stream(dc, srf_updates,
4572 					surface_count, stream, NULL,
4573 					UPDATE_TYPE_FULL, intermediate_context);
4574 			swap_and_release_current_context(
4575 					dc, intermediate_context, stream);
4576 			dc_state_retain(dc->current_state);
4577 			success = true;
4578 		}
4579 		release_minimal_transition_state(
4580 				dc, intermediate_context, new_context, &policy);
4581 	}
4582 	return success;
4583 }
4584 
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4585 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4586 		struct dc_state *new_context, struct dc_stream_state *stream)
4587 {
4588 	bool success = false;
4589 	struct pipe_split_policy_backup policy;
4590 	struct dc_state *intermediate_context;
4591 	struct dc_state *old_current_state = dc->current_state;
4592 	struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4593 	int surface_count;
4594 
4595 	/*
4596 	 * Both current and new contexts share the same stream and plane state
4597 	 * pointers. When new context is validated, stream and planes get
4598 	 * populated with new updates such as new plane addresses. This makes
4599 	 * the current context no longer valid because stream and planes are
4600 	 * modified from the original. We backup current stream and plane states
4601 	 * into scratch space whenever we are populating new context. So we can
4602 	 * restore the original values back by calling the restore function now.
4603 	 * This restores back the original stream and plane states associated
4604 	 * with the current state.
4605 	 */
4606 	restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4607 	dc_state_retain(old_current_state);
4608 	intermediate_context = create_minimal_transition_state(dc,
4609 			old_current_state, &policy);
4610 
4611 	if (intermediate_context) {
4612 		if (is_pipe_topology_transition_seamless_with_intermediate_step(
4613 				dc,
4614 				dc->current_state,
4615 				intermediate_context,
4616 				new_context)) {
4617 			DC_LOG_DC("commit minimal transition state: base = current state\n");
4618 			surface_count = initialize_empty_surface_updates(
4619 					stream, srf_updates);
4620 			commit_planes_for_stream(dc, srf_updates,
4621 					surface_count, stream, NULL,
4622 					UPDATE_TYPE_FULL, intermediate_context);
4623 			swap_and_release_current_context(
4624 					dc, intermediate_context, stream);
4625 			dc_state_retain(dc->current_state);
4626 			success = true;
4627 		}
4628 		release_minimal_transition_state(dc, intermediate_context,
4629 				old_current_state, &policy);
4630 	}
4631 	dc_state_release(old_current_state);
4632 	/*
4633 	 * Restore stream and plane states back to the values associated with
4634 	 * new context.
4635 	 */
4636 	restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4637 	return success;
4638 }
4639 
4640 /**
4641  * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4642  * on current or new context
4643  *
4644  * @dc: DC structure, used to get the current state
4645  * @new_context: New context
4646  * @stream: Stream getting the update for the flip
4647  * @srf_updates: Surface updates
4648  * @surface_count: Number of surfaces
4649  *
4650  * The function takes in current state and new state and determine a minimal
4651  * transition state as the intermediate step which could make the transition
4652  * between current and new states seamless. If found, it will commit the minimal
4653  * transition state and update current state to this minimal transition state
4654  * and return true, if not, it will return false.
4655  *
4656  * Return:
4657  * Return True if the minimal transition succeeded, false otherwise
4658  */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4659 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4660 		struct dc_state *new_context,
4661 		struct dc_stream_state *stream,
4662 		struct dc_surface_update *srf_updates,
4663 		int surface_count)
4664 {
4665 	bool success = commit_minimal_transition_based_on_new_context(
4666 				dc, new_context, stream, srf_updates,
4667 				surface_count);
4668 	if (!success)
4669 		success = commit_minimal_transition_based_on_current_context(dc,
4670 				new_context, stream);
4671 	if (!success)
4672 		DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4673 	return success;
4674 }
4675 
4676 /**
4677  * commit_minimal_transition_state - Create a transition pipe split state
4678  *
4679  * @dc: Used to get the current state status
4680  * @transition_base_context: New transition state
4681  *
4682  * In some specific configurations, such as pipe split on multi-display with
4683  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4684  * programming when moving to new planes. To mitigate those types of problems,
4685  * this function adds a transition state that minimizes pipe usage before
4686  * programming the new configuration. When adding a new plane, the current
4687  * state requires the least pipes, so it is applied without splitting. When
4688  * removing a plane, the new state requires the least pipes, so it is applied
4689  * without splitting.
4690  *
4691  * Return:
4692  * Return false if something is wrong in the transition state.
4693  */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4694 static bool commit_minimal_transition_state(struct dc *dc,
4695 		struct dc_state *transition_base_context)
4696 {
4697 	struct dc_state *transition_context;
4698 	struct pipe_split_policy_backup policy;
4699 	enum dc_status ret = DC_ERROR_UNEXPECTED;
4700 	unsigned int i, j;
4701 	unsigned int pipe_in_use = 0;
4702 	bool subvp_in_use = false;
4703 	bool odm_in_use = false;
4704 
4705 	/* check current pipes in use*/
4706 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4707 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4708 
4709 		if (pipe->plane_state)
4710 			pipe_in_use++;
4711 	}
4712 
4713 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4714 	 * pipe, we must use the minimal transition.
4715 	 */
4716 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4717 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4718 
4719 		if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4720 			subvp_in_use = true;
4721 			break;
4722 		}
4723 	}
4724 
4725 	/* If ODM is enabled and we are adding or removing planes from any ODM
4726 	 * pipe, we must use the minimal transition.
4727 	 */
4728 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4729 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4730 
4731 		if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4732 			odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4733 			break;
4734 		}
4735 	}
4736 
4737 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4738 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4739 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4740 	 * call it again. Otherwise return true to skip.
4741 	 *
4742 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4743 	 * enter/exit MPO when DCN still have enough resources.
4744 	 */
4745 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4746 		return true;
4747 
4748 	DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4749 			dc->current_state == transition_base_context ? "current" : "new",
4750 			subvp_in_use ? "Subvp In Use" :
4751 			odm_in_use ? "ODM in Use" :
4752 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4753 			"Unknown");
4754 
4755 	dc_state_retain(transition_base_context);
4756 	transition_context = create_minimal_transition_state(dc,
4757 			transition_base_context, &policy);
4758 	if (transition_context) {
4759 		ret = dc_commit_state_no_check(dc, transition_context);
4760 		release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4761 	}
4762 	dc_state_release(transition_base_context);
4763 
4764 	if (ret != DC_OK) {
4765 		/* this should never happen */
4766 		BREAK_TO_DEBUGGER();
4767 		return false;
4768 	}
4769 
4770 	/* force full surface update */
4771 	for (i = 0; i < dc->current_state->stream_count; i++) {
4772 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4773 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4774 		}
4775 	}
4776 
4777 	return true;
4778 }
4779 
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4780 void populate_fast_updates(struct dc_fast_update *fast_update,
4781 		struct dc_surface_update *srf_updates,
4782 		int surface_count,
4783 		struct dc_stream_update *stream_update)
4784 {
4785 	int i = 0;
4786 
4787 	if (stream_update) {
4788 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4789 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4790 	} else {
4791 		fast_update[0].out_transfer_func = NULL;
4792 		fast_update[0].output_csc_transform = NULL;
4793 	}
4794 
4795 	for (i = 0; i < surface_count; i++) {
4796 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4797 		fast_update[i].gamma = srf_updates[i].gamma;
4798 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4799 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4800 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4801 		fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4802 	}
4803 }
4804 
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4805 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4806 {
4807 	int i;
4808 
4809 	if (fast_update[0].out_transfer_func ||
4810 		fast_update[0].output_csc_transform)
4811 		return true;
4812 
4813 	for (i = 0; i < surface_count; i++) {
4814 		if (fast_update[i].flip_addr ||
4815 				fast_update[i].gamma ||
4816 				fast_update[i].gamut_remap_matrix ||
4817 				fast_update[i].input_csc_color_matrix ||
4818 				fast_update[i].cursor_csc_color_matrix ||
4819 				fast_update[i].coeff_reduction_factor)
4820 			return true;
4821 	}
4822 
4823 	return false;
4824 }
4825 
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4826 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4827 {
4828 	int i;
4829 
4830 	if (fast_update[0].out_transfer_func ||
4831 		fast_update[0].output_csc_transform)
4832 		return true;
4833 
4834 	for (i = 0; i < surface_count; i++) {
4835 		if (fast_update[i].input_csc_color_matrix ||
4836 				fast_update[i].gamma ||
4837 				fast_update[i].gamut_remap_matrix ||
4838 				fast_update[i].coeff_reduction_factor ||
4839 				fast_update[i].cursor_csc_color_matrix)
4840 			return true;
4841 	}
4842 
4843 	return false;
4844 }
4845 
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4846 static bool full_update_required(struct dc *dc,
4847 		struct dc_surface_update *srf_updates,
4848 		int surface_count,
4849 		struct dc_stream_update *stream_update,
4850 		struct dc_stream_state *stream)
4851 {
4852 
4853 	int i;
4854 	struct dc_stream_status *stream_status;
4855 	const struct dc_state *context = dc->current_state;
4856 
4857 	for (i = 0; i < surface_count; i++) {
4858 		if (srf_updates &&
4859 				(srf_updates[i].plane_info ||
4860 				srf_updates[i].scaling_info ||
4861 				(srf_updates[i].hdr_mult.value &&
4862 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4863 				(srf_updates[i].sdr_white_level_nits &&
4864 				srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4865 				srf_updates[i].in_transfer_func ||
4866 				srf_updates[i].func_shaper ||
4867 				srf_updates[i].lut3d_func ||
4868 				srf_updates[i].surface->force_full_update ||
4869 				(srf_updates[i].flip_addr &&
4870 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4871 				(srf_updates[i].cm2_params &&
4872 				 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4873 				  srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4874 				!is_surface_in_context(context, srf_updates[i].surface)))
4875 			return true;
4876 	}
4877 
4878 	if (stream_update &&
4879 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4880 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4881 			stream_update->integer_scaling_update) ||
4882 			stream_update->hdr_static_metadata ||
4883 			stream_update->abm_level ||
4884 			stream_update->periodic_interrupt ||
4885 			stream_update->vrr_infopacket ||
4886 			stream_update->vsc_infopacket ||
4887 			stream_update->vsp_infopacket ||
4888 			stream_update->hfvsif_infopacket ||
4889 			stream_update->vtem_infopacket ||
4890 			stream_update->adaptive_sync_infopacket ||
4891 			stream_update->dpms_off ||
4892 			stream_update->allow_freesync ||
4893 			stream_update->vrr_active_variable ||
4894 			stream_update->vrr_active_fixed ||
4895 			stream_update->gamut_remap ||
4896 			stream_update->output_color_space ||
4897 			stream_update->dither_option ||
4898 			stream_update->wb_update ||
4899 			stream_update->dsc_config ||
4900 			stream_update->mst_bw_update ||
4901 			stream_update->func_shaper ||
4902 			stream_update->lut3d_func ||
4903 			stream_update->pending_test_pattern ||
4904 			stream_update->crtc_timing_adjust ||
4905 			stream_update->scaler_sharpener_update))
4906 		return true;
4907 
4908 	if (stream) {
4909 		stream_status = dc_stream_get_status(stream);
4910 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4911 			return true;
4912 	}
4913 	if (dc->idle_optimizations_allowed)
4914 		return true;
4915 
4916 	return false;
4917 }
4918 
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4919 static bool fast_update_only(struct dc *dc,
4920 		struct dc_fast_update *fast_update,
4921 		struct dc_surface_update *srf_updates,
4922 		int surface_count,
4923 		struct dc_stream_update *stream_update,
4924 		struct dc_stream_state *stream)
4925 {
4926 	return fast_updates_exist(fast_update, surface_count)
4927 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4928 }
4929 
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4930 static bool update_planes_and_stream_v1(struct dc *dc,
4931 		struct dc_surface_update *srf_updates, int surface_count,
4932 		struct dc_stream_state *stream,
4933 		struct dc_stream_update *stream_update,
4934 		struct dc_state *state)
4935 {
4936 	const struct dc_stream_status *stream_status;
4937 	enum surface_update_type update_type;
4938 	struct dc_state *context;
4939 	struct dc_context *dc_ctx = dc->ctx;
4940 	int i, j;
4941 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4942 
4943 	dc_exit_ips_for_hw_access(dc);
4944 
4945 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4946 	stream_status = dc_stream_get_status(stream);
4947 	context = dc->current_state;
4948 
4949 	update_type = dc_check_update_surfaces_for_stream(
4950 				dc, srf_updates, surface_count, stream_update, stream_status);
4951 	/* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
4952 	 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
4953 	 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
4954 	 */
4955 	force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
4956 
4957 	if (update_type >= UPDATE_TYPE_FULL) {
4958 
4959 		/* initialize scratch memory for building context */
4960 		context = dc_state_create_copy(state);
4961 		if (context == NULL) {
4962 			DC_ERROR("Failed to allocate new validate context!\n");
4963 			return false;
4964 		}
4965 
4966 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4967 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4968 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4969 
4970 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4971 				new_pipe->plane_state->force_full_update = true;
4972 		}
4973 	} else if (update_type == UPDATE_TYPE_FAST) {
4974 		/*
4975 		 * Previous frame finished and HW is ready for optimization.
4976 		 */
4977 		dc_post_update_surfaces_to_stream(dc);
4978 	}
4979 
4980 	for (i = 0; i < surface_count; i++) {
4981 		struct dc_plane_state *surface = srf_updates[i].surface;
4982 
4983 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4984 
4985 		if (update_type >= UPDATE_TYPE_MED) {
4986 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4987 				struct pipe_ctx *pipe_ctx =
4988 					&context->res_ctx.pipe_ctx[j];
4989 
4990 				if (pipe_ctx->plane_state != surface)
4991 					continue;
4992 
4993 				resource_build_scaling_params(pipe_ctx);
4994 			}
4995 		}
4996 	}
4997 
4998 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4999 
5000 	if (update_type >= UPDATE_TYPE_FULL) {
5001 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
5002 			DC_ERROR("Mode validation failed for stream update!\n");
5003 			dc_state_release(context);
5004 			return false;
5005 		}
5006 	}
5007 
5008 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5009 
5010 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5011 			!dc->debug.enable_legacy_fast_update) {
5012 		commit_planes_for_stream_fast(dc,
5013 				srf_updates,
5014 				surface_count,
5015 				stream,
5016 				stream_update,
5017 				update_type,
5018 				context);
5019 	} else {
5020 		commit_planes_for_stream(
5021 				dc,
5022 				srf_updates,
5023 				surface_count,
5024 				stream,
5025 				stream_update,
5026 				update_type,
5027 				context);
5028 	}
5029 	/*update current_State*/
5030 	if (dc->current_state != context) {
5031 
5032 		struct dc_state *old = dc->current_state;
5033 
5034 		dc->current_state = context;
5035 		dc_state_release(old);
5036 
5037 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
5038 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5039 
5040 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5041 				pipe_ctx->plane_state->force_full_update = false;
5042 		}
5043 	}
5044 
5045 	/* Legacy optimization path for DCE. */
5046 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5047 		dc_post_update_surfaces_to_stream(dc);
5048 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5049 	}
5050 	return true;
5051 }
5052 
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5053 static bool update_planes_and_stream_v2(struct dc *dc,
5054 		struct dc_surface_update *srf_updates, int surface_count,
5055 		struct dc_stream_state *stream,
5056 		struct dc_stream_update *stream_update)
5057 {
5058 	struct dc_state *context;
5059 	enum surface_update_type update_type;
5060 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5061 
5062 	/* In cases where MPO and split or ODM are used transitions can
5063 	 * cause underflow. Apply stream configuration with minimal pipe
5064 	 * split first to avoid unsupported transitions for active pipes.
5065 	 */
5066 	bool force_minimal_pipe_splitting = 0;
5067 	bool is_plane_addition = 0;
5068 	bool is_fast_update_only;
5069 
5070 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5071 	is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5072 			surface_count, stream_update, stream);
5073 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5074 			dc,
5075 			stream,
5076 			srf_updates,
5077 			surface_count,
5078 			&is_plane_addition);
5079 
5080 	/* on plane addition, minimal state is the current one */
5081 	if (force_minimal_pipe_splitting && is_plane_addition &&
5082 		!commit_minimal_transition_state(dc, dc->current_state))
5083 		return false;
5084 
5085 	if (!update_planes_and_stream_state(
5086 			dc,
5087 			srf_updates,
5088 			surface_count,
5089 			stream,
5090 			stream_update,
5091 			&update_type,
5092 			&context))
5093 		return false;
5094 
5095 	/* on plane removal, minimal state is the new one */
5096 	if (force_minimal_pipe_splitting && !is_plane_addition) {
5097 		if (!commit_minimal_transition_state(dc, context)) {
5098 			dc_state_release(context);
5099 			return false;
5100 		}
5101 		update_type = UPDATE_TYPE_FULL;
5102 	}
5103 
5104 	if (dc->hwss.is_pipe_topology_transition_seamless &&
5105 			!dc->hwss.is_pipe_topology_transition_seamless(
5106 					dc, dc->current_state, context))
5107 		commit_minimal_transition_state_in_dc_update(dc, context, stream,
5108 				srf_updates, surface_count);
5109 
5110 	if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5111 		commit_planes_for_stream_fast(dc,
5112 				srf_updates,
5113 				surface_count,
5114 				stream,
5115 				stream_update,
5116 				update_type,
5117 				context);
5118 	} else {
5119 		if (!stream_update &&
5120 				dc->hwss.is_pipe_topology_transition_seamless &&
5121 				!dc->hwss.is_pipe_topology_transition_seamless(
5122 						dc, dc->current_state, context)) {
5123 			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5124 			BREAK_TO_DEBUGGER();
5125 		}
5126 		commit_planes_for_stream(
5127 				dc,
5128 				srf_updates,
5129 				surface_count,
5130 				stream,
5131 				stream_update,
5132 				update_type,
5133 				context);
5134 	}
5135 	if (dc->current_state != context)
5136 		swap_and_release_current_context(dc, context, stream);
5137 	return true;
5138 }
5139 
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5140 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5141 		struct dc_surface_update *srf_updates, int surface_count,
5142 		struct dc_stream_state *stream,
5143 		struct dc_stream_update *stream_update,
5144 		enum surface_update_type update_type)
5145 {
5146 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5147 
5148 	ASSERT(update_type < UPDATE_TYPE_FULL);
5149 	populate_fast_updates(fast_update, srf_updates, surface_count,
5150 			stream_update);
5151 	if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5152 			stream_update, stream) &&
5153 			!dc->debug.enable_legacy_fast_update)
5154 		commit_planes_for_stream_fast(dc,
5155 				srf_updates,
5156 				surface_count,
5157 				stream,
5158 				stream_update,
5159 				update_type,
5160 				dc->current_state);
5161 	else
5162 		commit_planes_for_stream(
5163 				dc,
5164 				srf_updates,
5165 				surface_count,
5166 				stream,
5167 				stream_update,
5168 				update_type,
5169 				dc->current_state);
5170 }
5171 
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5172 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5173 		struct dc_surface_update *srf_updates, int surface_count,
5174 		struct dc_stream_state *stream,
5175 		struct dc_stream_update *stream_update,
5176 		enum surface_update_type update_type,
5177 		struct dc_state *new_context)
5178 {
5179 	ASSERT(update_type >= UPDATE_TYPE_FULL);
5180 	if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5181 			dc->current_state, new_context))
5182 		/*
5183 		 * It is required by the feature design that all pipe topologies
5184 		 * using extra free pipes for power saving purposes such as
5185 		 * dynamic ODM or SubVp shall only be enabled when it can be
5186 		 * transitioned seamlessly to AND from its minimal transition
5187 		 * state. A minimal transition state is defined as the same dc
5188 		 * state but with all power saving features disabled. So it uses
5189 		 * the minimum pipe topology. When we can't seamlessly
5190 		 * transition from state A to state B, we will insert the
5191 		 * minimal transition state A' or B' in between so seamless
5192 		 * transition between A and B can be made possible.
5193 		 */
5194 		commit_minimal_transition_state_in_dc_update(dc, new_context,
5195 				stream, srf_updates, surface_count);
5196 
5197 	commit_planes_for_stream(
5198 			dc,
5199 			srf_updates,
5200 			surface_count,
5201 			stream,
5202 			stream_update,
5203 			update_type,
5204 			new_context);
5205 }
5206 
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5207 static bool update_planes_and_stream_v3(struct dc *dc,
5208 		struct dc_surface_update *srf_updates, int surface_count,
5209 		struct dc_stream_state *stream,
5210 		struct dc_stream_update *stream_update)
5211 {
5212 	struct dc_state *new_context;
5213 	enum surface_update_type update_type;
5214 
5215 	/*
5216 	 * When this function returns true and new_context is not equal to
5217 	 * current state, the function allocates and validates a new dc state
5218 	 * and assigns it to new_context. The function expects that the caller
5219 	 * is responsible to free this memory when new_context is no longer
5220 	 * used. We swap current with new context and free current instead. So
5221 	 * new_context's memory will live until the next full update after it is
5222 	 * replaced by a newer context. Refer to the use of
5223 	 * swap_and_free_current_context below.
5224 	 */
5225 	if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5226 				stream, stream_update, &update_type,
5227 				&new_context))
5228 		return false;
5229 
5230 	if (new_context == dc->current_state) {
5231 		commit_planes_and_stream_update_on_current_context(dc,
5232 				srf_updates, surface_count, stream,
5233 				stream_update, update_type);
5234 	} else {
5235 		commit_planes_and_stream_update_with_new_context(dc,
5236 				srf_updates, surface_count, stream,
5237 				stream_update, update_type, new_context);
5238 		swap_and_release_current_context(dc, new_context, stream);
5239 	}
5240 
5241 	return true;
5242 }
5243 
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5244 static void clear_update_flags(struct dc_surface_update *srf_updates,
5245 	int surface_count, struct dc_stream_state *stream)
5246 {
5247 	int i;
5248 
5249 	if (stream)
5250 		stream->update_flags.raw = 0;
5251 
5252 	for (i = 0; i < surface_count; i++)
5253 		if (srf_updates[i].surface)
5254 			srf_updates[i].surface->update_flags.raw = 0;
5255 }
5256 
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5257 bool dc_update_planes_and_stream(struct dc *dc,
5258 		struct dc_surface_update *srf_updates, int surface_count,
5259 		struct dc_stream_state *stream,
5260 		struct dc_stream_update *stream_update)
5261 {
5262 	bool ret = false;
5263 
5264 	dc_exit_ips_for_hw_access(dc);
5265 	/*
5266 	 * update planes and stream version 3 separates FULL and FAST updates
5267 	 * to their own sequences. It aims to clean up frequent checks for
5268 	 * update type resulting unnecessary branching in logic flow. It also
5269 	 * adds a new commit minimal transition sequence, which detects the need
5270 	 * for minimal transition based on the actual comparison of current and
5271 	 * new states instead of "predicting" it based on per feature software
5272 	 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5273 	 * minimal transition sequence is made universal to any power saving
5274 	 * features that would use extra free pipes such as Dynamic ODM/MPC
5275 	 * Combine, MPO or SubVp. Therefore there is no longer a need to
5276 	 * specially handle compatibility problems with transitions among those
5277 	 * features as they are now transparent to the new sequence.
5278 	 */
5279 	if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5280 		ret = update_planes_and_stream_v3(dc, srf_updates,
5281 				surface_count, stream, stream_update);
5282 	else
5283 		ret = update_planes_and_stream_v2(dc, srf_updates,
5284 			surface_count, stream, stream_update);
5285 
5286 	if (ret)
5287 		clear_update_flags(srf_updates, surface_count, stream);
5288 
5289 	return ret;
5290 }
5291 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5292 void dc_commit_updates_for_stream(struct dc *dc,
5293 		struct dc_surface_update *srf_updates,
5294 		int surface_count,
5295 		struct dc_stream_state *stream,
5296 		struct dc_stream_update *stream_update,
5297 		struct dc_state *state)
5298 {
5299 	bool ret = false;
5300 
5301 	dc_exit_ips_for_hw_access(dc);
5302 	/* TODO: Since change commit sequence can have a huge impact,
5303 	 * we decided to only enable it for DCN3x. However, as soon as
5304 	 * we get more confident about this change we'll need to enable
5305 	 * the new sequence for all ASICs.
5306 	 */
5307 	if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5308 		ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5309 				stream, stream_update);
5310 	} else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5311 		ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5312 				stream, stream_update);
5313 	} else
5314 		ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5315 				stream_update, state);
5316 
5317 	if (ret)
5318 		clear_update_flags(srf_updates, surface_count, stream);
5319 }
5320 
dc_get_current_stream_count(struct dc * dc)5321 uint8_t dc_get_current_stream_count(struct dc *dc)
5322 {
5323 	return dc->current_state->stream_count;
5324 }
5325 
dc_get_stream_at_index(struct dc * dc,uint8_t i)5326 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5327 {
5328 	if (i < dc->current_state->stream_count)
5329 		return dc->current_state->streams[i];
5330 	return NULL;
5331 }
5332 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5333 enum dc_irq_source dc_interrupt_to_irq_source(
5334 		struct dc *dc,
5335 		uint32_t src_id,
5336 		uint32_t ext_id)
5337 {
5338 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5339 }
5340 
5341 /*
5342  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5343  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5344 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5345 {
5346 
5347 	if (dc == NULL)
5348 		return false;
5349 
5350 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5351 }
5352 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5353 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5354 {
5355 	dal_irq_service_ack(dc->res_pool->irqs, src);
5356 }
5357 
dc_power_down_on_boot(struct dc * dc)5358 void dc_power_down_on_boot(struct dc *dc)
5359 {
5360 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5361 	    dc->hwss.power_down_on_boot) {
5362 		if (dc->caps.ips_support)
5363 			dc_exit_ips_for_hw_access(dc);
5364 		dc->hwss.power_down_on_boot(dc);
5365 	}
5366 }
5367 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5368 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5369 {
5370 	if (!dc->current_state)
5371 		return;
5372 
5373 	switch (power_state) {
5374 	case DC_ACPI_CM_POWER_STATE_D0:
5375 		dc_state_construct(dc, dc->current_state);
5376 
5377 		dc_exit_ips_for_hw_access(dc);
5378 
5379 		dc_z10_restore(dc);
5380 
5381 		dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5382 
5383 		dc->hwss.init_hw(dc);
5384 
5385 		if (dc->hwss.init_sys_ctx != NULL &&
5386 			dc->vm_pa_config.valid) {
5387 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5388 		}
5389 		break;
5390 	default:
5391 		ASSERT(dc->current_state->stream_count == 0);
5392 		dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5393 
5394 		dc_state_destruct(dc->current_state);
5395 
5396 		break;
5397 	}
5398 }
5399 
dc_resume(struct dc * dc)5400 void dc_resume(struct dc *dc)
5401 {
5402 	uint32_t i;
5403 
5404 	for (i = 0; i < dc->link_count; i++)
5405 		dc->link_srv->resume(dc->links[i]);
5406 }
5407 
dc_is_dmcu_initialized(struct dc * dc)5408 bool dc_is_dmcu_initialized(struct dc *dc)
5409 {
5410 	struct dmcu *dmcu = dc->res_pool->dmcu;
5411 
5412 	if (dmcu)
5413 		return dmcu->funcs->is_dmcu_initialized(dmcu);
5414 	return false;
5415 }
5416 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5417 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5418 {
5419 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5420 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5421 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5422 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5423 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5424 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5425 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5426 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5427 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5428 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5429 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5430 {
5431 	if (dc->hwss.set_clock)
5432 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5433 	return DC_ERROR_UNEXPECTED;
5434 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5435 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5436 {
5437 	if (dc->hwss.get_clock)
5438 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
5439 }
5440 
5441 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5442 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5443 {
5444 	int i;
5445 	bool allow_active;
5446 
5447 	for (i = 0; i < dc->current_state->stream_count ; i++) {
5448 		struct dc_link *link;
5449 		struct dc_stream_state *stream = dc->current_state->streams[i];
5450 
5451 		link = stream->link;
5452 		if (!link)
5453 			continue;
5454 
5455 		if (link->psr_settings.psr_feature_enabled) {
5456 			if (enable && !link->psr_settings.psr_allow_active) {
5457 				allow_active = true;
5458 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5459 					return false;
5460 			} else if (!enable && link->psr_settings.psr_allow_active) {
5461 				allow_active = false;
5462 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5463 					return false;
5464 			}
5465 		}
5466 	}
5467 
5468 	return true;
5469 }
5470 
5471 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5472 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5473 {
5474 	int i;
5475 	bool allow_active;
5476 
5477 	for (i = 0; i < dc->current_state->stream_count; i++) {
5478 		struct dc_link *link;
5479 		struct dc_stream_state *stream = dc->current_state->streams[i];
5480 
5481 		link = stream->link;
5482 		if (!link)
5483 			continue;
5484 
5485 		if (link->replay_settings.replay_feature_enabled) {
5486 			if (active && !link->replay_settings.replay_allow_active) {
5487 				allow_active = true;
5488 				if (!dc_link_set_replay_allow_active(link, &allow_active,
5489 					false, false, NULL))
5490 					return false;
5491 			} else if (!active && link->replay_settings.replay_allow_active) {
5492 				allow_active = false;
5493 				if (!dc_link_set_replay_allow_active(link, &allow_active,
5494 					true, false, NULL))
5495 					return false;
5496 			}
5497 		}
5498 	}
5499 
5500 	return true;
5501 }
5502 
5503 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5504 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5505 {
5506 	dc_exit_ips_for_hw_access(dc);
5507 
5508 	dc->config.disable_ips = disable_ips;
5509 
5510 	return true;
5511 }
5512 
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5513 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5514 {
5515 	int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5516 	enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5517 	struct pipe_ctx *pipe = NULL;
5518 	struct dc_state *context = dc->current_state;
5519 
5520 	if (dc->debug.disable_idle_power_optimizations) {
5521 		DC_LOG_DEBUG("%s: disabled\n", __func__);
5522 		return;
5523 	}
5524 
5525 	if (allow != dc->idle_optimizations_allowed)
5526 		DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5527 			   dc->idle_optimizations_allowed, allow, caller_name);
5528 
5529 	if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5530 		return;
5531 
5532 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5533 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5534 			return;
5535 
5536 	if (allow == dc->idle_optimizations_allowed)
5537 		return;
5538 
5539 	if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5540 	    dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5541 		dc->idle_optimizations_allowed = allow;
5542 		DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5543 	}
5544 
5545 	// log idle clocks and sub vp pipe types at idle optimization time
5546 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5547 		idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5548 
5549 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5550 		idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5551 
5552 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5553 		pipe = &context->res_ctx.pipe_ctx[i];
5554 		subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5555 	}
5556 
5557 	DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5558 			__func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5559 			subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5560 
5561 }
5562 
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5563 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5564 {
5565 	if (dc->caps.ips_support)
5566 		dc_allow_idle_optimizations_internal(dc, false, caller_name);
5567 }
5568 
dc_dmub_is_ips_idle_state(struct dc * dc)5569 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5570 {
5571 	if (dc->debug.disable_idle_power_optimizations)
5572 		return false;
5573 
5574 	if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5575 		return false;
5576 
5577 	if (!dc->ctx->dmub_srv)
5578 		return false;
5579 
5580 	return dc->ctx->dmub_srv->idle_allowed;
5581 }
5582 
5583 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5584 void dc_unlock_memory_clock_frequency(struct dc *dc)
5585 {
5586 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
5587 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5588 
5589 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
5590 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5591 }
5592 
5593 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5594 void dc_lock_memory_clock_frequency(struct dc *dc)
5595 {
5596 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5597 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5598 
5599 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
5600 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5601 
5602 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
5603 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5604 }
5605 
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5606 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5607 {
5608 	struct dc_state *context = dc->current_state;
5609 	struct hubp *hubp;
5610 	struct pipe_ctx *pipe;
5611 	int i;
5612 
5613 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5614 		pipe = &context->res_ctx.pipe_ctx[i];
5615 
5616 		if (pipe->stream != NULL) {
5617 			dc->hwss.disable_pixel_data(dc, pipe, true);
5618 
5619 			// wait for double buffer
5620 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5621 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5622 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5623 
5624 			hubp = pipe->plane_res.hubp;
5625 			hubp->funcs->set_blank_regs(hubp, true);
5626 		}
5627 	}
5628 	if (dc->clk_mgr->funcs->set_max_memclk)
5629 		dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5630 	if (dc->clk_mgr->funcs->set_min_memclk)
5631 		dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5632 
5633 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5634 		pipe = &context->res_ctx.pipe_ctx[i];
5635 
5636 		if (pipe->stream != NULL) {
5637 			dc->hwss.disable_pixel_data(dc, pipe, false);
5638 
5639 			hubp = pipe->plane_res.hubp;
5640 			hubp->funcs->set_blank_regs(hubp, false);
5641 		}
5642 	}
5643 }
5644 
5645 
5646 /**
5647  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5648  * @dc: pointer to dc of the dm calling this
5649  * @enable: True = transition to DC mode, false = transition back to AC mode
5650  *
5651  * Some SoCs define additional clock limits when in DC mode, DM should
5652  * invoke this function when the platform undergoes a power source transition
5653  * so DC can apply/unapply the limit. This interface may be disruptive to
5654  * the onscreen content.
5655  *
5656  * Context: Triggered by OS through DM interface, or manually by escape calls.
5657  * Need to hold a dclock when doing so.
5658  *
5659  * Return: none (void function)
5660  *
5661  */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5662 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5663 {
5664 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5665 	bool p_state_change_support;
5666 
5667 	if (!dc->config.dc_mode_clk_limit_support)
5668 		return;
5669 
5670 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5671 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5672 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5673 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5674 	}
5675 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5676 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5677 
5678 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5679 		if (p_state_change_support) {
5680 			if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5681 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5682 			// else: No-Op
5683 		} else {
5684 			if (funcMin <= softMax)
5685 				blank_and_force_memclk(dc, true, softMax);
5686 			// else: No-Op
5687 		}
5688 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5689 		if (p_state_change_support) {
5690 			if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5691 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5692 			// else: No-Op
5693 		} else {
5694 			if (funcMin <= softMax)
5695 				blank_and_force_memclk(dc, true, maxDPM);
5696 			// else: No-Op
5697 		}
5698 	}
5699 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
5700 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5701 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5702 		unsigned int pitch,
5703 		unsigned int height,
5704 		enum surface_pixel_format format,
5705 		struct dc_cursor_attributes *cursor_attr)
5706 {
5707 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5708 		return true;
5709 	return false;
5710 }
5711 
5712 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5713 void dc_hardware_release(struct dc *dc)
5714 {
5715 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5716 
5717 	if (dc->hwss.hardware_release)
5718 		dc->hwss.hardware_release(dc);
5719 }
5720 
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5721 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5722 {
5723 	if (dc->current_state)
5724 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5725 }
5726 
5727 /**
5728  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5729  *
5730  * @dc: [in] dc structure
5731  *
5732  * Checks whether DMUB FW supports outbox notifications, if supported DM
5733  * should register outbox interrupt prior to actually enabling interrupts
5734  * via dc_enable_dmub_outbox
5735  *
5736  * Return:
5737  * True if DMUB FW supports outbox notifications, False otherwise
5738  */
dc_is_dmub_outbox_supported(struct dc * dc)5739 bool dc_is_dmub_outbox_supported(struct dc *dc)
5740 {
5741 	if (!dc->caps.dmcub_support)
5742 		return false;
5743 
5744 	switch (dc->ctx->asic_id.chip_family) {
5745 
5746 	case FAMILY_YELLOW_CARP:
5747 		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5748 		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5749 		    !dc->debug.dpia_debug.bits.disable_dpia)
5750 			return true;
5751 	break;
5752 
5753 	case AMDGPU_FAMILY_GC_11_0_1:
5754 	case AMDGPU_FAMILY_GC_11_5_0:
5755 		if (!dc->debug.dpia_debug.bits.disable_dpia)
5756 			return true;
5757 	break;
5758 
5759 	default:
5760 		break;
5761 	}
5762 
5763 	/* dmub aux needs dmub notifications to be enabled */
5764 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
5765 
5766 }
5767 
5768 /**
5769  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5770  *
5771  * @dc: [in] dc structure
5772  *
5773  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5774  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
5775  * API shall be removed after switching.
5776  *
5777  * Return:
5778  * True if DMUB FW supports outbox notifications, False otherwise
5779  */
dc_enable_dmub_notifications(struct dc * dc)5780 bool dc_enable_dmub_notifications(struct dc *dc)
5781 {
5782 	return dc_is_dmub_outbox_supported(dc);
5783 }
5784 
5785 /**
5786  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5787  *
5788  * @dc: [in] dc structure
5789  *
5790  * Enables DMUB unsolicited notifications to x86 via outbox.
5791  */
dc_enable_dmub_outbox(struct dc * dc)5792 void dc_enable_dmub_outbox(struct dc *dc)
5793 {
5794 	struct dc_context *dc_ctx = dc->ctx;
5795 
5796 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5797 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5798 }
5799 
5800 /**
5801  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5802  *                                      Sets port index appropriately for legacy DDC
5803  * @dc: dc structure
5804  * @link_index: link index
5805  * @payload: aux payload
5806  *
5807  * Returns: True if successful, False if failure
5808  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5809 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5810 				uint32_t link_index,
5811 				struct aux_payload *payload)
5812 {
5813 	uint8_t action;
5814 	union dmub_rb_cmd cmd = {0};
5815 
5816 	ASSERT(payload->length <= 16);
5817 
5818 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5819 	cmd.dp_aux_access.header.payload_bytes = 0;
5820 	/* For dpia, ddc_pin is set to NULL */
5821 	if (!dc->links[link_index]->ddc->ddc_pin)
5822 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5823 	else
5824 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5825 
5826 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5827 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5828 	cmd.dp_aux_access.aux_control.timeout = 0;
5829 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5830 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5831 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5832 
5833 	/* set aux action */
5834 	if (payload->i2c_over_aux) {
5835 		if (payload->write) {
5836 			if (payload->mot)
5837 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5838 			else
5839 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
5840 		} else {
5841 			if (payload->mot)
5842 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5843 			else
5844 				action = DP_AUX_REQ_ACTION_I2C_READ;
5845 			}
5846 	} else {
5847 		if (payload->write)
5848 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5849 		else
5850 			action = DP_AUX_REQ_ACTION_DPCD_READ;
5851 	}
5852 
5853 	cmd.dp_aux_access.aux_control.dpaux.action = action;
5854 
5855 	if (payload->length && payload->write) {
5856 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5857 			payload->data,
5858 			payload->length
5859 			);
5860 	}
5861 
5862 	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5863 
5864 	return true;
5865 }
5866 
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5867 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5868 					    uint8_t dpia_port_index)
5869 {
5870 	uint8_t index, link_index = 0xFF;
5871 
5872 	for (index = 0; index < dc->link_count; index++) {
5873 		/* ddc_hw_inst has dpia port index for dpia links
5874 		 * and ddc instance for legacy links
5875 		 */
5876 		if (!dc->links[index]->ddc->ddc_pin) {
5877 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5878 				link_index = index;
5879 				break;
5880 			}
5881 		}
5882 	}
5883 	ASSERT(link_index != 0xFF);
5884 	return link_index;
5885 }
5886 
5887 /**
5888  * dc_process_dmub_set_config_async - Submits set_config command
5889  *
5890  * @dc: [in] dc structure
5891  * @link_index: [in] link_index: link index
5892  * @payload: [in] aux payload
5893  * @notify: [out] set_config immediate reply
5894  *
5895  * Submits set_config command to dmub via inbox message.
5896  *
5897  * Return:
5898  * True if successful, False if failure
5899  */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5900 bool dc_process_dmub_set_config_async(struct dc *dc,
5901 				uint32_t link_index,
5902 				struct set_config_cmd_payload *payload,
5903 				struct dmub_notification *notify)
5904 {
5905 	union dmub_rb_cmd cmd = {0};
5906 	bool is_cmd_complete = true;
5907 
5908 	/* prepare SET_CONFIG command */
5909 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5910 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5911 
5912 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5913 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5914 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5915 
5916 	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5917 		/* command is not processed by dmub */
5918 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5919 		return is_cmd_complete;
5920 	}
5921 
5922 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5923 	if (cmd.set_config_access.header.ret_status == 1)
5924 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5925 	else
5926 		/* cmd pending, will receive notification via outbox */
5927 		is_cmd_complete = false;
5928 
5929 	return is_cmd_complete;
5930 }
5931 
5932 /**
5933  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5934  *
5935  * @dc: [in] dc structure
5936  * @link_index: [in] link index
5937  * @mst_alloc_slots: [in] mst slots to be allotted
5938  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5939  *
5940  * Submits mst slot allocation command to dmub via inbox message
5941  *
5942  * Return:
5943  * DC_OK if successful, DC_ERROR if failure
5944  */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5945 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5946 				uint32_t link_index,
5947 				uint8_t mst_alloc_slots,
5948 				uint8_t *mst_slots_in_use)
5949 {
5950 	union dmub_rb_cmd cmd = {0};
5951 
5952 	/* prepare MST_ALLOC_SLOTS command */
5953 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5954 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5955 
5956 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5957 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5958 
5959 	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5960 		/* command is not processed by dmub */
5961 		return DC_ERROR_UNEXPECTED;
5962 
5963 	/* command processed by dmub, if ret_status is 1 */
5964 	if (cmd.set_config_access.header.ret_status != 1)
5965 		/* command processing error */
5966 		return DC_ERROR_UNEXPECTED;
5967 
5968 	/* command processed and we have a status of 2, mst not enabled in dpia */
5969 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5970 		return DC_FAIL_UNSUPPORTED_1;
5971 
5972 	/* previously configured mst alloc and used slots did not match */
5973 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5974 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5975 		return DC_NOT_SUPPORTED;
5976 	}
5977 
5978 	return DC_OK;
5979 }
5980 
5981 /**
5982  * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
5983  *
5984  * @dc: [in] dc structure
5985  * @link_index: [in] link index
5986  * @tps: [in] request tps
5987  *
5988  * Submits set_tps_notification command to dmub via inbox message
5989  */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5990 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
5991 {
5992 	union dmub_rb_cmd cmd = {0};
5993 
5994 	cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
5995 	cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
5996 	cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
5997 	cmd.set_tps_notification.tps_notification.tps = tps;
5998 
5999 	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6000 }
6001 
6002 /**
6003  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6004  *
6005  * @dc: [in] dc structure
6006  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6007  *
6008  * Submits dpia hpd int enable command to dmub via inbox message
6009  */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6010 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6011 				uint32_t hpd_int_enable)
6012 {
6013 	union dmub_rb_cmd cmd = {0};
6014 
6015 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6016 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6017 
6018 	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6019 
6020 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6021 }
6022 
6023 /**
6024  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6025  *
6026  * @dc: [in] dc structure
6027  *
6028  *
6029  */
dc_print_dmub_diagnostic_data(const struct dc * dc)6030 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6031 {
6032 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6033 }
6034 
6035 /**
6036  * dc_disable_accelerated_mode - disable accelerated mode
6037  * @dc: dc structure
6038  */
dc_disable_accelerated_mode(struct dc * dc)6039 void dc_disable_accelerated_mode(struct dc *dc)
6040 {
6041 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6042 }
6043 
6044 
6045 /**
6046  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
6047  *  @dc: dc structure
6048  *  @stream: stream where vsync int state changed
6049  *  @enable: whether vsync is enabled or disabled
6050  *
6051  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6052  *  interrupts after steady state is reached.
6053  */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6054 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6055 {
6056 	int i;
6057 	int edp_num;
6058 	struct pipe_ctx *pipe = NULL;
6059 	struct dc_link *link = stream->sink->link;
6060 	struct dc_link *edp_links[MAX_NUM_EDP];
6061 
6062 
6063 	if (link->psr_settings.psr_feature_enabled)
6064 		return;
6065 
6066 	if (link->replay_settings.replay_feature_enabled)
6067 		return;
6068 
6069 	/*find primary pipe associated with stream*/
6070 	for (i = 0; i < MAX_PIPES; i++) {
6071 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6072 
6073 		if (pipe->stream == stream && pipe->stream_res.tg)
6074 			break;
6075 	}
6076 
6077 	if (i == MAX_PIPES) {
6078 		ASSERT(0);
6079 		return;
6080 	}
6081 
6082 	dc_get_edp_links(dc, edp_links, &edp_num);
6083 
6084 	/* Determine panel inst */
6085 	for (i = 0; i < edp_num; i++) {
6086 		if (edp_links[i] == link)
6087 			break;
6088 	}
6089 
6090 	if (i == edp_num) {
6091 		return;
6092 	}
6093 
6094 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6095 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6096 }
6097 
6098 /*****************************************************************************
6099  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6100  *                          ABM
6101  *  @dc: dc structure
6102  *	@stream: stream where vsync int state changed
6103  *  @pData: abm hw states
6104  *
6105  ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6106 bool dc_abm_save_restore(
6107 		struct dc *dc,
6108 		struct dc_stream_state *stream,
6109 		struct abm_save_restore *pData)
6110 {
6111 	int i;
6112 	int edp_num;
6113 	struct pipe_ctx *pipe = NULL;
6114 	struct dc_link *link = stream->sink->link;
6115 	struct dc_link *edp_links[MAX_NUM_EDP];
6116 
6117 	if (link->replay_settings.replay_feature_enabled)
6118 		return false;
6119 
6120 	/*find primary pipe associated with stream*/
6121 	for (i = 0; i < MAX_PIPES; i++) {
6122 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6123 
6124 		if (pipe->stream == stream && pipe->stream_res.tg)
6125 			break;
6126 	}
6127 
6128 	if (i == MAX_PIPES) {
6129 		ASSERT(0);
6130 		return false;
6131 	}
6132 
6133 	dc_get_edp_links(dc, edp_links, &edp_num);
6134 
6135 	/* Determine panel inst */
6136 	for (i = 0; i < edp_num; i++)
6137 		if (edp_links[i] == link)
6138 			break;
6139 
6140 	if (i == edp_num)
6141 		return false;
6142 
6143 	if (pipe->stream_res.abm &&
6144 		pipe->stream_res.abm->funcs->save_restore)
6145 		return pipe->stream_res.abm->funcs->save_restore(
6146 				pipe->stream_res.abm,
6147 				i,
6148 				pData);
6149 	return false;
6150 }
6151 
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6152 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6153 {
6154 	unsigned int i;
6155 	bool subvp_sw_cursor_req = false;
6156 
6157 	for (i = 0; i < dc->current_state->stream_count; i++) {
6158 		if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i]) && !dc->current_state->streams[i]->hw_cursor_req) {
6159 			subvp_sw_cursor_req = true;
6160 			break;
6161 		}
6162 	}
6163 	properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
6164 }
6165 
6166 /**
6167  * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6168  *
6169  * Called when DM wants to power on/off eDP.
6170  *     Only work on links with flag skip_implict_edp_power_control is set.
6171  *
6172  * @dc: Current DC state
6173  * @edp_link: a link with eDP connector signal type
6174  * @powerOn: power on/off eDP
6175  *
6176  * Return: void
6177  */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6178 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6179 				 bool powerOn)
6180 {
6181 	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6182 		return;
6183 
6184 	if (edp_link->skip_implict_edp_power_control == false)
6185 		return;
6186 
6187 	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6188 }
6189 
6190 /*
6191  *****************************************************************************
6192  * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6193  *
6194  * Called when DM wants to make power policy decisions based on dc_state
6195  *
6196  *****************************************************************************
6197  */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6198 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6199 {
6200 	struct dc_power_profile profile = { 0 };
6201 
6202 	profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6203 	if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6204 		return profile;
6205 	struct dc *dc = context->clk_mgr->ctx->dc;
6206 
6207 	if (dc->res_pool->funcs->get_power_profile)
6208 		profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6209 	return profile;
6210 }
6211 
6212 /*
6213  **********************************************************************************
6214  * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6215  *
6216  * Called when DM wants to log detile buffer size from dc_state
6217  *
6218  **********************************************************************************
6219  */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6220 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6221 {
6222 	struct dc *dc = context->clk_mgr->ctx->dc;
6223 
6224 	if (dc->res_pool->funcs->get_det_buffer_size)
6225 		return dc->res_pool->funcs->get_det_buffer_size(context);
6226 	else
6227 		return 0;
6228 }
6229