1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc_submit.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14
15 #include <drm/drm_managed.h>
16
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_slpc_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "regs/xe_lrc_layout.h"
21 #include "xe_assert.h"
22 #include "xe_devcoredump.h"
23 #include "xe_device.h"
24 #include "xe_exec_queue.h"
25 #include "xe_force_wake.h"
26 #include "xe_gpu_scheduler.h"
27 #include "xe_gt.h"
28 #include "xe_gt_clock.h"
29 #include "xe_gt_printk.h"
30 #include "xe_guc.h"
31 #include "xe_guc_capture.h"
32 #include "xe_guc_ct.h"
33 #include "xe_guc_exec_queue_types.h"
34 #include "xe_guc_id_mgr.h"
35 #include "xe_guc_submit_types.h"
36 #include "xe_hw_engine.h"
37 #include "xe_hw_fence.h"
38 #include "xe_lrc.h"
39 #include "xe_macros.h"
40 #include "xe_map.h"
41 #include "xe_mocs.h"
42 #include "xe_pm.h"
43 #include "xe_ring_ops_types.h"
44 #include "xe_sched_job.h"
45 #include "xe_trace.h"
46 #include "xe_vm.h"
47
48 static struct xe_guc *
exec_queue_to_guc(struct xe_exec_queue * q)49 exec_queue_to_guc(struct xe_exec_queue *q)
50 {
51 return &q->gt->uc.guc;
52 }
53
54 /*
55 * Helpers for engine state, using an atomic as some of the bits can transition
56 * as the same time (e.g. a suspend can be happning at the same time as schedule
57 * engine done being processed).
58 */
59 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0)
60 #define EXEC_QUEUE_STATE_ENABLED (1 << 1)
61 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2)
62 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3)
63 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4)
64 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5)
65 #define EXEC_QUEUE_STATE_RESET (1 << 6)
66 #define EXEC_QUEUE_STATE_KILLED (1 << 7)
67 #define EXEC_QUEUE_STATE_WEDGED (1 << 8)
68 #define EXEC_QUEUE_STATE_BANNED (1 << 9)
69 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10)
70 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11)
71
exec_queue_registered(struct xe_exec_queue * q)72 static bool exec_queue_registered(struct xe_exec_queue *q)
73 {
74 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
75 }
76
set_exec_queue_registered(struct xe_exec_queue * q)77 static void set_exec_queue_registered(struct xe_exec_queue *q)
78 {
79 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
80 }
81
clear_exec_queue_registered(struct xe_exec_queue * q)82 static void clear_exec_queue_registered(struct xe_exec_queue *q)
83 {
84 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
85 }
86
exec_queue_enabled(struct xe_exec_queue * q)87 static bool exec_queue_enabled(struct xe_exec_queue *q)
88 {
89 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
90 }
91
set_exec_queue_enabled(struct xe_exec_queue * q)92 static void set_exec_queue_enabled(struct xe_exec_queue *q)
93 {
94 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
95 }
96
clear_exec_queue_enabled(struct xe_exec_queue * q)97 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
98 {
99 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
100 }
101
exec_queue_pending_enable(struct xe_exec_queue * q)102 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
103 {
104 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
105 }
106
set_exec_queue_pending_enable(struct xe_exec_queue * q)107 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
108 {
109 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
110 }
111
clear_exec_queue_pending_enable(struct xe_exec_queue * q)112 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
113 {
114 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
115 }
116
exec_queue_pending_disable(struct xe_exec_queue * q)117 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
118 {
119 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
120 }
121
set_exec_queue_pending_disable(struct xe_exec_queue * q)122 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
123 {
124 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
125 }
126
clear_exec_queue_pending_disable(struct xe_exec_queue * q)127 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
128 {
129 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
130 }
131
exec_queue_destroyed(struct xe_exec_queue * q)132 static bool exec_queue_destroyed(struct xe_exec_queue *q)
133 {
134 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
135 }
136
set_exec_queue_destroyed(struct xe_exec_queue * q)137 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
138 {
139 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
140 }
141
exec_queue_banned(struct xe_exec_queue * q)142 static bool exec_queue_banned(struct xe_exec_queue *q)
143 {
144 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
145 }
146
set_exec_queue_banned(struct xe_exec_queue * q)147 static void set_exec_queue_banned(struct xe_exec_queue *q)
148 {
149 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
150 }
151
exec_queue_suspended(struct xe_exec_queue * q)152 static bool exec_queue_suspended(struct xe_exec_queue *q)
153 {
154 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
155 }
156
set_exec_queue_suspended(struct xe_exec_queue * q)157 static void set_exec_queue_suspended(struct xe_exec_queue *q)
158 {
159 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
160 }
161
clear_exec_queue_suspended(struct xe_exec_queue * q)162 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
163 {
164 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
165 }
166
exec_queue_reset(struct xe_exec_queue * q)167 static bool exec_queue_reset(struct xe_exec_queue *q)
168 {
169 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
170 }
171
set_exec_queue_reset(struct xe_exec_queue * q)172 static void set_exec_queue_reset(struct xe_exec_queue *q)
173 {
174 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
175 }
176
exec_queue_killed(struct xe_exec_queue * q)177 static bool exec_queue_killed(struct xe_exec_queue *q)
178 {
179 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
180 }
181
set_exec_queue_killed(struct xe_exec_queue * q)182 static void set_exec_queue_killed(struct xe_exec_queue *q)
183 {
184 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
185 }
186
exec_queue_wedged(struct xe_exec_queue * q)187 static bool exec_queue_wedged(struct xe_exec_queue *q)
188 {
189 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
190 }
191
set_exec_queue_wedged(struct xe_exec_queue * q)192 static void set_exec_queue_wedged(struct xe_exec_queue *q)
193 {
194 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
195 }
196
exec_queue_check_timeout(struct xe_exec_queue * q)197 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
198 {
199 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
200 }
201
set_exec_queue_check_timeout(struct xe_exec_queue * q)202 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
203 {
204 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
205 }
206
clear_exec_queue_check_timeout(struct xe_exec_queue * q)207 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
208 {
209 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
210 }
211
exec_queue_extra_ref(struct xe_exec_queue * q)212 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
213 {
214 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
215 }
216
set_exec_queue_extra_ref(struct xe_exec_queue * q)217 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
218 {
219 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
220 }
221
exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue * q)222 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
223 {
224 return (atomic_read(&q->guc->state) &
225 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
226 EXEC_QUEUE_STATE_BANNED));
227 }
228
guc_submit_fini(struct drm_device * drm,void * arg)229 static void guc_submit_fini(struct drm_device *drm, void *arg)
230 {
231 struct xe_guc *guc = arg;
232 struct xe_device *xe = guc_to_xe(guc);
233 struct xe_gt *gt = guc_to_gt(guc);
234 int ret;
235
236 ret = wait_event_timeout(guc->submission_state.fini_wq,
237 xa_empty(&guc->submission_state.exec_queue_lookup),
238 HZ * 5);
239
240 drain_workqueue(xe->destroy_wq);
241
242 xe_gt_assert(gt, ret);
243
244 xa_destroy(&guc->submission_state.exec_queue_lookup);
245 }
246
guc_submit_wedged_fini(void * arg)247 static void guc_submit_wedged_fini(void *arg)
248 {
249 struct xe_guc *guc = arg;
250 struct xe_exec_queue *q;
251 unsigned long index;
252
253 mutex_lock(&guc->submission_state.lock);
254 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
255 if (exec_queue_wedged(q)) {
256 mutex_unlock(&guc->submission_state.lock);
257 xe_exec_queue_put(q);
258 mutex_lock(&guc->submission_state.lock);
259 }
260 }
261 mutex_unlock(&guc->submission_state.lock);
262 }
263
264 static const struct xe_exec_queue_ops guc_exec_queue_ops;
265
primelockdep(struct xe_guc * guc)266 static void primelockdep(struct xe_guc *guc)
267 {
268 if (!IS_ENABLED(CONFIG_LOCKDEP))
269 return;
270
271 fs_reclaim_acquire(GFP_KERNEL);
272
273 mutex_lock(&guc->submission_state.lock);
274 mutex_unlock(&guc->submission_state.lock);
275
276 fs_reclaim_release(GFP_KERNEL);
277 }
278
279 /**
280 * xe_guc_submit_init() - Initialize GuC submission.
281 * @guc: the &xe_guc to initialize
282 * @num_ids: number of GuC context IDs to use
283 *
284 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
285 * GuC context IDs supported by the GuC firmware should be used for submission.
286 *
287 * Only VF drivers will have to provide explicit number of GuC context IDs
288 * that they can use for submission.
289 *
290 * Return: 0 on success or a negative error code on failure.
291 */
xe_guc_submit_init(struct xe_guc * guc,unsigned int num_ids)292 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
293 {
294 struct xe_device *xe = guc_to_xe(guc);
295 struct xe_gt *gt = guc_to_gt(guc);
296 int err;
297
298 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
299 if (err)
300 return err;
301
302 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
303 if (err)
304 return err;
305
306 gt->exec_queue_ops = &guc_exec_queue_ops;
307
308 xa_init(&guc->submission_state.exec_queue_lookup);
309
310 init_waitqueue_head(&guc->submission_state.fini_wq);
311
312 primelockdep(guc);
313
314 guc->submission_state.initialized = true;
315
316 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
317 }
318
__release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q,u32 xa_count)319 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
320 {
321 int i;
322
323 lockdep_assert_held(&guc->submission_state.lock);
324
325 for (i = 0; i < xa_count; ++i)
326 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
327
328 xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
329 q->guc->id, q->width);
330
331 if (xa_empty(&guc->submission_state.exec_queue_lookup))
332 wake_up(&guc->submission_state.fini_wq);
333 }
334
alloc_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)335 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
336 {
337 int ret;
338 int i;
339
340 /*
341 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
342 * worse case user gets -ENOMEM on engine create and has to try again.
343 *
344 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
345 * failure.
346 */
347 lockdep_assert_held(&guc->submission_state.lock);
348
349 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
350 q->width);
351 if (ret < 0)
352 return ret;
353
354 q->guc->id = ret;
355
356 for (i = 0; i < q->width; ++i) {
357 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
358 q->guc->id + i, q, GFP_NOWAIT));
359 if (ret)
360 goto err_release;
361 }
362
363 return 0;
364
365 err_release:
366 __release_guc_id(guc, q, i);
367
368 return ret;
369 }
370
release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)371 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
372 {
373 mutex_lock(&guc->submission_state.lock);
374 __release_guc_id(guc, q, q->width);
375 mutex_unlock(&guc->submission_state.lock);
376 }
377
378 struct exec_queue_policy {
379 u32 count;
380 struct guc_update_exec_queue_policy h2g;
381 };
382
__guc_exec_queue_policy_action_size(struct exec_queue_policy * policy)383 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
384 {
385 size_t bytes = sizeof(policy->h2g.header) +
386 (sizeof(policy->h2g.klv[0]) * policy->count);
387
388 return bytes / sizeof(u32);
389 }
390
__guc_exec_queue_policy_start_klv(struct exec_queue_policy * policy,u16 guc_id)391 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
392 u16 guc_id)
393 {
394 policy->h2g.header.action =
395 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
396 policy->h2g.header.guc_id = guc_id;
397 policy->count = 0;
398 }
399
400 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
401 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
402 u32 data) \
403 { \
404 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
405 \
406 policy->h2g.klv[policy->count].kl = \
407 FIELD_PREP(GUC_KLV_0_KEY, \
408 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
409 FIELD_PREP(GUC_KLV_0_LEN, 1); \
410 policy->h2g.klv[policy->count].value = data; \
411 policy->count++; \
412 }
413
414 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
415 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
416 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
417 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY)
418 #undef MAKE_EXEC_QUEUE_POLICY_ADD
419
420 static const int xe_exec_queue_prio_to_guc[] = {
421 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
422 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
423 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
424 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
425 };
426
init_policies(struct xe_guc * guc,struct xe_exec_queue * q)427 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
428 {
429 struct exec_queue_policy policy;
430 enum xe_exec_queue_priority prio = q->sched_props.priority;
431 u32 timeslice_us = q->sched_props.timeslice_us;
432 u32 slpc_exec_queue_freq_req = 0;
433 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
434
435 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
436
437 if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY)
438 slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
439
440 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
441 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
442 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
443 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
444 __guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy,
445 slpc_exec_queue_freq_req);
446
447 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
448 __guc_exec_queue_policy_action_size(&policy), 0, 0);
449 }
450
set_min_preemption_timeout(struct xe_guc * guc,struct xe_exec_queue * q)451 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
452 {
453 struct exec_queue_policy policy;
454
455 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
456 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
457
458 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
459 __guc_exec_queue_policy_action_size(&policy), 0, 0);
460 }
461
462 #define parallel_read(xe_, map_, field_) \
463 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
464 field_)
465 #define parallel_write(xe_, map_, field_, val_) \
466 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
467 field_, val_)
468
__register_mlrc_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q,struct guc_ctxt_registration_info * info)469 static void __register_mlrc_exec_queue(struct xe_guc *guc,
470 struct xe_exec_queue *q,
471 struct guc_ctxt_registration_info *info)
472 {
473 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
474 u32 action[MAX_MLRC_REG_SIZE];
475 int len = 0;
476 int i;
477
478 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q));
479
480 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
481 action[len++] = info->flags;
482 action[len++] = info->context_idx;
483 action[len++] = info->engine_class;
484 action[len++] = info->engine_submit_mask;
485 action[len++] = info->wq_desc_lo;
486 action[len++] = info->wq_desc_hi;
487 action[len++] = info->wq_base_lo;
488 action[len++] = info->wq_base_hi;
489 action[len++] = info->wq_size;
490 action[len++] = q->width;
491 action[len++] = info->hwlrca_lo;
492 action[len++] = info->hwlrca_hi;
493
494 for (i = 1; i < q->width; ++i) {
495 struct xe_lrc *lrc = q->lrc[i];
496
497 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
498 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
499 }
500
501 /* explicitly checks some fields that we might fixup later */
502 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo ==
503 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER]);
504 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo ==
505 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER]);
506 xe_gt_assert(guc_to_gt(guc), q->width ==
507 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS]);
508 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo ==
509 action[XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR]);
510 xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE);
511 #undef MAX_MLRC_REG_SIZE
512
513 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
514 }
515
__register_exec_queue(struct xe_guc * guc,struct guc_ctxt_registration_info * info)516 static void __register_exec_queue(struct xe_guc *guc,
517 struct guc_ctxt_registration_info *info)
518 {
519 u32 action[] = {
520 XE_GUC_ACTION_REGISTER_CONTEXT,
521 info->flags,
522 info->context_idx,
523 info->engine_class,
524 info->engine_submit_mask,
525 info->wq_desc_lo,
526 info->wq_desc_hi,
527 info->wq_base_lo,
528 info->wq_base_hi,
529 info->wq_size,
530 info->hwlrca_lo,
531 info->hwlrca_hi,
532 };
533
534 /* explicitly checks some fields that we might fixup later */
535 xe_gt_assert(guc_to_gt(guc), info->wq_desc_lo ==
536 action[XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER]);
537 xe_gt_assert(guc_to_gt(guc), info->wq_base_lo ==
538 action[XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER]);
539 xe_gt_assert(guc_to_gt(guc), info->hwlrca_lo ==
540 action[XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR]);
541
542 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
543 }
544
register_exec_queue(struct xe_exec_queue * q)545 static void register_exec_queue(struct xe_exec_queue *q)
546 {
547 struct xe_guc *guc = exec_queue_to_guc(q);
548 struct xe_device *xe = guc_to_xe(guc);
549 struct xe_lrc *lrc = q->lrc[0];
550 struct guc_ctxt_registration_info info;
551
552 xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q));
553
554 memset(&info, 0, sizeof(info));
555 info.context_idx = q->guc->id;
556 info.engine_class = xe_engine_class_to_guc_class(q->class);
557 info.engine_submit_mask = q->logical_mask;
558 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
559 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
560 info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
561
562 if (xe_exec_queue_is_parallel(q)) {
563 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
564 struct iosys_map map = xe_lrc_parallel_map(lrc);
565
566 info.wq_desc_lo = lower_32_bits(ggtt_addr +
567 offsetof(struct guc_submit_parallel_scratch, wq_desc));
568 info.wq_desc_hi = upper_32_bits(ggtt_addr +
569 offsetof(struct guc_submit_parallel_scratch, wq_desc));
570 info.wq_base_lo = lower_32_bits(ggtt_addr +
571 offsetof(struct guc_submit_parallel_scratch, wq[0]));
572 info.wq_base_hi = upper_32_bits(ggtt_addr +
573 offsetof(struct guc_submit_parallel_scratch, wq[0]));
574 info.wq_size = WQ_SIZE;
575
576 q->guc->wqi_head = 0;
577 q->guc->wqi_tail = 0;
578 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
579 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
580 }
581
582 /*
583 * We must keep a reference for LR engines if engine is registered with
584 * the GuC as jobs signal immediately and can't destroy an engine if the
585 * GuC has a reference to it.
586 */
587 if (xe_exec_queue_is_lr(q))
588 xe_exec_queue_get(q);
589
590 set_exec_queue_registered(q);
591 trace_xe_exec_queue_register(q);
592 if (xe_exec_queue_is_parallel(q))
593 __register_mlrc_exec_queue(guc, q, &info);
594 else
595 __register_exec_queue(guc, &info);
596 init_policies(guc, q);
597 }
598
wq_space_until_wrap(struct xe_exec_queue * q)599 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
600 {
601 return (WQ_SIZE - q->guc->wqi_tail);
602 }
603
wq_wait_for_space(struct xe_exec_queue * q,u32 wqi_size)604 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
605 {
606 struct xe_guc *guc = exec_queue_to_guc(q);
607 struct xe_device *xe = guc_to_xe(guc);
608 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
609 unsigned int sleep_period_ms = 1;
610
611 #define AVAILABLE_SPACE \
612 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
613 if (wqi_size > AVAILABLE_SPACE) {
614 try_again:
615 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
616 if (wqi_size > AVAILABLE_SPACE) {
617 if (sleep_period_ms == 1024) {
618 xe_gt_reset_async(q->gt);
619 return -ENODEV;
620 }
621
622 msleep(sleep_period_ms);
623 sleep_period_ms <<= 1;
624 goto try_again;
625 }
626 }
627 #undef AVAILABLE_SPACE
628
629 return 0;
630 }
631
wq_noop_append(struct xe_exec_queue * q)632 static int wq_noop_append(struct xe_exec_queue *q)
633 {
634 struct xe_guc *guc = exec_queue_to_guc(q);
635 struct xe_device *xe = guc_to_xe(guc);
636 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
637 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
638
639 if (wq_wait_for_space(q, wq_space_until_wrap(q)))
640 return -ENODEV;
641
642 xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw));
643
644 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
645 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
646 FIELD_PREP(WQ_LEN_MASK, len_dw));
647 q->guc->wqi_tail = 0;
648
649 return 0;
650 }
651
wq_item_append(struct xe_exec_queue * q)652 static void wq_item_append(struct xe_exec_queue *q)
653 {
654 struct xe_guc *guc = exec_queue_to_guc(q);
655 struct xe_device *xe = guc_to_xe(guc);
656 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
657 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */
658 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
659 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
660 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
661 int i = 0, j;
662
663 if (wqi_size > wq_space_until_wrap(q)) {
664 if (wq_noop_append(q))
665 return;
666 }
667 if (wq_wait_for_space(q, wqi_size))
668 return;
669
670 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
671 FIELD_PREP(WQ_LEN_MASK, len_dw);
672 wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
673 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
674 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
675 wqi[i++] = 0;
676 for (j = 1; j < q->width; ++j) {
677 struct xe_lrc *lrc = q->lrc[j];
678
679 wqi[i++] = lrc->ring.tail / sizeof(u64);
680 }
681
682 xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32));
683
684 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
685 wq[q->guc->wqi_tail / sizeof(u32)]));
686 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
687 q->guc->wqi_tail += wqi_size;
688 xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE);
689
690 xe_device_wmb(xe);
691
692 map = xe_lrc_parallel_map(q->lrc[0]);
693 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
694 }
695
696 #define RESUME_PENDING ~0x0ull
submit_exec_queue(struct xe_exec_queue * q)697 static void submit_exec_queue(struct xe_exec_queue *q)
698 {
699 struct xe_guc *guc = exec_queue_to_guc(q);
700 struct xe_lrc *lrc = q->lrc[0];
701 u32 action[3];
702 u32 g2h_len = 0;
703 u32 num_g2h = 0;
704 int len = 0;
705 bool extra_submit = false;
706
707 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
708
709 if (xe_exec_queue_is_parallel(q))
710 wq_item_append(q);
711 else
712 xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
713
714 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
715 return;
716
717 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
718 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
719 action[len++] = q->guc->id;
720 action[len++] = GUC_CONTEXT_ENABLE;
721 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
722 num_g2h = 1;
723 if (xe_exec_queue_is_parallel(q))
724 extra_submit = true;
725
726 q->guc->resume_time = RESUME_PENDING;
727 set_exec_queue_pending_enable(q);
728 set_exec_queue_enabled(q);
729 trace_xe_exec_queue_scheduling_enable(q);
730 } else {
731 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
732 action[len++] = q->guc->id;
733 trace_xe_exec_queue_submit(q);
734 }
735
736 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
737
738 if (extra_submit) {
739 len = 0;
740 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
741 action[len++] = q->guc->id;
742 trace_xe_exec_queue_submit(q);
743
744 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
745 }
746 }
747
748 static struct dma_fence *
guc_exec_queue_run_job(struct drm_sched_job * drm_job)749 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
750 {
751 struct xe_sched_job *job = to_xe_sched_job(drm_job);
752 struct xe_exec_queue *q = job->q;
753 struct xe_guc *guc = exec_queue_to_guc(q);
754 struct dma_fence *fence = NULL;
755 bool lr = xe_exec_queue_is_lr(q);
756
757 xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
758 exec_queue_banned(q) || exec_queue_suspended(q));
759
760 trace_xe_sched_job_run(job);
761
762 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
763 if (!exec_queue_registered(q))
764 register_exec_queue(q);
765 if (!lr) /* LR jobs are emitted in the exec IOCTL */
766 q->ring_ops->emit_job(job);
767 submit_exec_queue(q);
768 }
769
770 if (lr) {
771 xe_sched_job_set_error(job, -EOPNOTSUPP);
772 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */
773 } else {
774 fence = job->fence;
775 }
776
777 return fence;
778 }
779
guc_exec_queue_free_job(struct drm_sched_job * drm_job)780 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
781 {
782 struct xe_sched_job *job = to_xe_sched_job(drm_job);
783
784 trace_xe_sched_job_free(job);
785 xe_sched_job_put(job);
786 }
787
xe_guc_read_stopped(struct xe_guc * guc)788 int xe_guc_read_stopped(struct xe_guc *guc)
789 {
790 return atomic_read(&guc->submission_state.stopped);
791 }
792
793 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \
794 u32 action[] = { \
795 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \
796 q->guc->id, \
797 GUC_CONTEXT_##enable_disable, \
798 }
799
disable_scheduling_deregister(struct xe_guc * guc,struct xe_exec_queue * q)800 static void disable_scheduling_deregister(struct xe_guc *guc,
801 struct xe_exec_queue *q)
802 {
803 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
804 int ret;
805
806 set_min_preemption_timeout(guc, q);
807 smp_rmb();
808 ret = wait_event_timeout(guc->ct.wq,
809 (!exec_queue_pending_enable(q) &&
810 !exec_queue_pending_disable(q)) ||
811 xe_guc_read_stopped(guc),
812 HZ * 5);
813 if (!ret) {
814 struct xe_gpu_scheduler *sched = &q->guc->sched;
815
816 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
817 xe_sched_submission_start(sched);
818 xe_gt_reset_async(q->gt);
819 xe_sched_tdr_queue_imm(sched);
820 return;
821 }
822
823 clear_exec_queue_enabled(q);
824 set_exec_queue_pending_disable(q);
825 set_exec_queue_destroyed(q);
826 trace_xe_exec_queue_scheduling_disable(q);
827
828 /*
829 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
830 * handler and we are not allowed to reserved G2H space in handlers.
831 */
832 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
833 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
834 G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
835 }
836
xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue * q)837 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
838 {
839 struct xe_guc *guc = exec_queue_to_guc(q);
840 struct xe_device *xe = guc_to_xe(guc);
841
842 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
843 wake_up_all(&xe->ufence_wq);
844
845 if (xe_exec_queue_is_lr(q))
846 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
847 else
848 xe_sched_tdr_queue_imm(&q->guc->sched);
849 }
850
851 /**
852 * xe_guc_submit_wedge() - Wedge GuC submission
853 * @guc: the GuC object
854 *
855 * Save exec queue's registered with GuC state by taking a ref to each queue.
856 * Register a DRMM handler to drop refs upon driver unload.
857 */
xe_guc_submit_wedge(struct xe_guc * guc)858 void xe_guc_submit_wedge(struct xe_guc *guc)
859 {
860 struct xe_gt *gt = guc_to_gt(guc);
861 struct xe_exec_queue *q;
862 unsigned long index;
863 int err;
864
865 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
866
867 /*
868 * If device is being wedged even before submission_state is
869 * initialized, there's nothing to do here.
870 */
871 if (!guc->submission_state.initialized)
872 return;
873
874 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
875 guc_submit_wedged_fini, guc);
876 if (err) {
877 xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; "
878 "Although device is wedged.\n");
879 return;
880 }
881
882 mutex_lock(&guc->submission_state.lock);
883 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
884 if (xe_exec_queue_get_unless_zero(q))
885 set_exec_queue_wedged(q);
886 mutex_unlock(&guc->submission_state.lock);
887 }
888
guc_submit_hint_wedged(struct xe_guc * guc)889 static bool guc_submit_hint_wedged(struct xe_guc *guc)
890 {
891 struct xe_device *xe = guc_to_xe(guc);
892
893 if (xe->wedged.mode != 2)
894 return false;
895
896 if (xe_device_wedged(xe))
897 return true;
898
899 xe_device_declare_wedged(xe);
900
901 return true;
902 }
903
xe_guc_exec_queue_lr_cleanup(struct work_struct * w)904 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
905 {
906 struct xe_guc_exec_queue *ge =
907 container_of(w, struct xe_guc_exec_queue, lr_tdr);
908 struct xe_exec_queue *q = ge->q;
909 struct xe_guc *guc = exec_queue_to_guc(q);
910 struct xe_gpu_scheduler *sched = &ge->sched;
911 bool wedged = false;
912
913 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q));
914 trace_xe_exec_queue_lr_cleanup(q);
915
916 if (!exec_queue_killed(q))
917 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
918
919 /* Kill the run_job / process_msg entry points */
920 xe_sched_submission_stop(sched);
921
922 /*
923 * Engine state now mostly stable, disable scheduling / deregister if
924 * needed. This cleanup routine might be called multiple times, where
925 * the actual async engine deregister drops the final engine ref.
926 * Calling disable_scheduling_deregister will mark the engine as
927 * destroyed and fire off the CT requests to disable scheduling /
928 * deregister, which we only want to do once. We also don't want to mark
929 * the engine as pending_disable again as this may race with the
930 * xe_guc_deregister_done_handler() which treats it as an unexpected
931 * state.
932 */
933 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
934 struct xe_guc *guc = exec_queue_to_guc(q);
935 int ret;
936
937 set_exec_queue_banned(q);
938 disable_scheduling_deregister(guc, q);
939
940 /*
941 * Must wait for scheduling to be disabled before signalling
942 * any fences, if GT broken the GT reset code should signal us.
943 */
944 ret = wait_event_timeout(guc->ct.wq,
945 !exec_queue_pending_disable(q) ||
946 xe_guc_read_stopped(guc), HZ * 5);
947 if (!ret) {
948 xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n",
949 q->guc->id);
950 xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n",
951 q->guc->id);
952 xe_sched_submission_start(sched);
953 xe_gt_reset_async(q->gt);
954 return;
955 }
956 }
957
958 if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0]))
959 xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id);
960
961 xe_sched_submission_start(sched);
962 }
963
964 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100)
965
check_timeout(struct xe_exec_queue * q,struct xe_sched_job * job)966 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
967 {
968 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
969 u32 ctx_timestamp, ctx_job_timestamp;
970 u32 timeout_ms = q->sched_props.job_timeout_ms;
971 u32 diff;
972 u64 running_time_ms;
973
974 if (!xe_sched_job_started(job)) {
975 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
976 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
977 q->guc->id);
978
979 return xe_sched_invalidate_job(job, 2);
980 }
981
982 ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0]));
983 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
984
985 /*
986 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
987 * possible overflows with a high timeout.
988 */
989 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
990
991 diff = ctx_timestamp - ctx_job_timestamp;
992
993 /*
994 * Ensure timeout is within 5% to account for an GuC scheduling latency
995 */
996 running_time_ms =
997 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
998
999 xe_gt_dbg(gt,
1000 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
1001 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1002 q->guc->id, running_time_ms, timeout_ms, diff);
1003
1004 return running_time_ms >= timeout_ms;
1005 }
1006
enable_scheduling(struct xe_exec_queue * q)1007 static void enable_scheduling(struct xe_exec_queue *q)
1008 {
1009 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
1010 struct xe_guc *guc = exec_queue_to_guc(q);
1011 int ret;
1012
1013 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1014 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1015 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1016 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1017
1018 set_exec_queue_pending_enable(q);
1019 set_exec_queue_enabled(q);
1020 trace_xe_exec_queue_scheduling_enable(q);
1021
1022 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1023 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1024
1025 ret = wait_event_timeout(guc->ct.wq,
1026 !exec_queue_pending_enable(q) ||
1027 xe_guc_read_stopped(guc), HZ * 5);
1028 if (!ret || xe_guc_read_stopped(guc)) {
1029 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
1030 set_exec_queue_banned(q);
1031 xe_gt_reset_async(q->gt);
1032 xe_sched_tdr_queue_imm(&q->guc->sched);
1033 }
1034 }
1035
disable_scheduling(struct xe_exec_queue * q,bool immediate)1036 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
1037 {
1038 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1039 struct xe_guc *guc = exec_queue_to_guc(q);
1040
1041 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1042 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1043 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1044
1045 if (immediate)
1046 set_min_preemption_timeout(guc, q);
1047 clear_exec_queue_enabled(q);
1048 set_exec_queue_pending_disable(q);
1049 trace_xe_exec_queue_scheduling_disable(q);
1050
1051 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1052 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1053 }
1054
__deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1055 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1056 {
1057 u32 action[] = {
1058 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1059 q->guc->id,
1060 };
1061
1062 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1063 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1064 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1065 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1066
1067 set_exec_queue_destroyed(q);
1068 trace_xe_exec_queue_deregister(q);
1069
1070 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1071 G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1072 }
1073
1074 static enum drm_gpu_sched_stat
guc_exec_queue_timedout_job(struct drm_sched_job * drm_job)1075 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1076 {
1077 struct xe_sched_job *job = to_xe_sched_job(drm_job);
1078 struct xe_sched_job *tmp_job;
1079 struct xe_exec_queue *q = job->q;
1080 struct xe_gpu_scheduler *sched = &q->guc->sched;
1081 struct xe_guc *guc = exec_queue_to_guc(q);
1082 const char *process_name = "no process";
1083 struct xe_device *xe = guc_to_xe(guc);
1084 unsigned int fw_ref;
1085 int err = -ETIME;
1086 pid_t pid = -1;
1087 int i = 0;
1088 bool wedged = false, skip_timeout_check;
1089
1090 /*
1091 * TDR has fired before free job worker. Common if exec queue
1092 * immediately closed after last fence signaled. Add back to pending
1093 * list so job can be freed and kick scheduler ensuring free job is not
1094 * lost.
1095 */
1096 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags))
1097 return DRM_GPU_SCHED_STAT_NO_HANG;
1098
1099 /* Kill the run_job entry point */
1100 xe_sched_submission_stop(sched);
1101
1102 /* Must check all state after stopping scheduler */
1103 skip_timeout_check = exec_queue_reset(q) ||
1104 exec_queue_killed_or_banned_or_wedged(q) ||
1105 exec_queue_destroyed(q);
1106
1107 /*
1108 * If devcoredump not captured and GuC capture for the job is not ready
1109 * do manual capture first and decide later if we need to use it
1110 */
1111 if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1112 !xe_guc_capture_get_matching_and_lock(q)) {
1113 /* take force wake before engine register manual capture */
1114 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1115 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1116 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1117
1118 xe_engine_snapshot_capture_for_queue(q);
1119
1120 xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1121 }
1122
1123 /*
1124 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1125 * modify scheduling state to read timestamp. We could read the
1126 * timestamp from a register to accumulate current running time but this
1127 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1128 * genuine timeouts.
1129 */
1130 if (!exec_queue_killed(q))
1131 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1132
1133 /* Engine state now stable, disable scheduling to check timestamp */
1134 if (!wedged && exec_queue_registered(q)) {
1135 int ret;
1136
1137 if (exec_queue_reset(q))
1138 err = -EIO;
1139
1140 if (!exec_queue_destroyed(q)) {
1141 /*
1142 * Wait for any pending G2H to flush out before
1143 * modifying state
1144 */
1145 ret = wait_event_timeout(guc->ct.wq,
1146 (!exec_queue_pending_enable(q) &&
1147 !exec_queue_pending_disable(q)) ||
1148 xe_guc_read_stopped(guc), HZ * 5);
1149 if (!ret || xe_guc_read_stopped(guc))
1150 goto trigger_reset;
1151
1152 /*
1153 * Flag communicates to G2H handler that schedule
1154 * disable originated from a timeout check. The G2H then
1155 * avoid triggering cleanup or deregistering the exec
1156 * queue.
1157 */
1158 set_exec_queue_check_timeout(q);
1159 disable_scheduling(q, skip_timeout_check);
1160 }
1161
1162 /*
1163 * Must wait for scheduling to be disabled before signalling
1164 * any fences, if GT broken the GT reset code should signal us.
1165 *
1166 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1167 * error) messages which can cause the schedule disable to get
1168 * lost. If this occurs, trigger a GT reset to recover.
1169 */
1170 smp_rmb();
1171 ret = wait_event_timeout(guc->ct.wq,
1172 !exec_queue_pending_disable(q) ||
1173 xe_guc_read_stopped(guc), HZ * 5);
1174 if (!ret || xe_guc_read_stopped(guc)) {
1175 trigger_reset:
1176 if (!ret)
1177 xe_gt_warn(guc_to_gt(guc),
1178 "Schedule disable failed to respond, guc_id=%d",
1179 q->guc->id);
1180 xe_devcoredump(q, job,
1181 "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d",
1182 q->guc->id, ret, xe_guc_read_stopped(guc));
1183 set_exec_queue_extra_ref(q);
1184 xe_exec_queue_get(q); /* GT reset owns this */
1185 set_exec_queue_banned(q);
1186 xe_gt_reset_async(q->gt);
1187 xe_sched_tdr_queue_imm(sched);
1188 goto rearm;
1189 }
1190 }
1191
1192 /*
1193 * Check if job is actually timed out, if so restart job execution and TDR
1194 */
1195 if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1196 !exec_queue_reset(q) && exec_queue_registered(q)) {
1197 clear_exec_queue_check_timeout(q);
1198 goto sched_enable;
1199 }
1200
1201 if (q->vm && q->vm->xef) {
1202 process_name = q->vm->xef->process_name;
1203 pid = q->vm->xef->pid;
1204 }
1205
1206 if (!exec_queue_killed(q))
1207 xe_gt_notice(guc_to_gt(guc),
1208 "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1209 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1210 q->guc->id, q->flags, process_name, pid);
1211
1212 trace_xe_sched_job_timedout(job);
1213
1214 if (!exec_queue_killed(q))
1215 xe_devcoredump(q, job,
1216 "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx",
1217 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1218 q->guc->id, q->flags);
1219
1220 /*
1221 * Kernel jobs should never fail, nor should VM jobs if they do
1222 * somethings has gone wrong and the GT needs a reset
1223 */
1224 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1225 "Kernel-submitted job timed out\n");
1226 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1227 "VM job timed out on non-killed execqueue\n");
1228 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1229 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1230 if (!xe_sched_invalidate_job(job, 2)) {
1231 clear_exec_queue_check_timeout(q);
1232 xe_gt_reset_async(q->gt);
1233 goto rearm;
1234 }
1235 }
1236
1237 /* Finish cleaning up exec queue via deregister */
1238 set_exec_queue_banned(q);
1239 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1240 set_exec_queue_extra_ref(q);
1241 xe_exec_queue_get(q);
1242 __deregister_exec_queue(guc, q);
1243 }
1244
1245 /* Stop fence signaling */
1246 xe_hw_fence_irq_stop(q->fence_irq);
1247
1248 /*
1249 * Fence state now stable, stop / start scheduler which cleans up any
1250 * fences that are complete
1251 */
1252 xe_sched_add_pending_job(sched, job);
1253 xe_sched_submission_start(sched);
1254
1255 xe_guc_exec_queue_trigger_cleanup(q);
1256
1257 /* Mark all outstanding jobs as bad, thus completing them */
1258 spin_lock(&sched->base.job_list_lock);
1259 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1260 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1261 spin_unlock(&sched->base.job_list_lock);
1262
1263 /* Start fence signaling */
1264 xe_hw_fence_irq_start(q->fence_irq);
1265
1266 return DRM_GPU_SCHED_STAT_RESET;
1267
1268 sched_enable:
1269 enable_scheduling(q);
1270 rearm:
1271 /*
1272 * XXX: Ideally want to adjust timeout based on current execution time
1273 * but there is not currently an easy way to do in DRM scheduler. With
1274 * some thought, do this in a follow up.
1275 */
1276 xe_sched_submission_start(sched);
1277 return DRM_GPU_SCHED_STAT_NO_HANG;
1278 }
1279
__guc_exec_queue_fini_async(struct work_struct * w)1280 static void __guc_exec_queue_fini_async(struct work_struct *w)
1281 {
1282 struct xe_guc_exec_queue *ge =
1283 container_of(w, struct xe_guc_exec_queue, fini_async);
1284 struct xe_exec_queue *q = ge->q;
1285 struct xe_guc *guc = exec_queue_to_guc(q);
1286
1287 xe_pm_runtime_get(guc_to_xe(guc));
1288 trace_xe_exec_queue_destroy(q);
1289
1290 release_guc_id(guc, q);
1291 if (xe_exec_queue_is_lr(q))
1292 cancel_work_sync(&ge->lr_tdr);
1293 /* Confirm no work left behind accessing device structures */
1294 cancel_delayed_work_sync(&ge->sched.base.work_tdr);
1295 xe_sched_entity_fini(&ge->entity);
1296 xe_sched_fini(&ge->sched);
1297
1298 /*
1299 * RCU free due sched being exported via DRM scheduler fences
1300 * (timeline name).
1301 */
1302 kfree_rcu(ge, rcu);
1303 xe_exec_queue_fini(q);
1304 xe_pm_runtime_put(guc_to_xe(guc));
1305 }
1306
guc_exec_queue_fini_async(struct xe_exec_queue * q)1307 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1308 {
1309 struct xe_guc *guc = exec_queue_to_guc(q);
1310 struct xe_device *xe = guc_to_xe(guc);
1311
1312 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1313
1314 /* We must block on kernel engines so slabs are empty on driver unload */
1315 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1316 __guc_exec_queue_fini_async(&q->guc->fini_async);
1317 else
1318 queue_work(xe->destroy_wq, &q->guc->fini_async);
1319 }
1320
__guc_exec_queue_fini(struct xe_guc * guc,struct xe_exec_queue * q)1321 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1322 {
1323 /*
1324 * Might be done from within the GPU scheduler, need to do async as we
1325 * fini the scheduler when the engine is fini'd, the scheduler can't
1326 * complete fini within itself (circular dependency). Async resolves
1327 * this we and don't really care when everything is fini'd, just that it
1328 * is.
1329 */
1330 guc_exec_queue_fini_async(q);
1331 }
1332
__guc_exec_queue_process_msg_cleanup(struct xe_sched_msg * msg)1333 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1334 {
1335 struct xe_exec_queue *q = msg->private_data;
1336 struct xe_guc *guc = exec_queue_to_guc(q);
1337
1338 xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1339 trace_xe_exec_queue_cleanup_entity(q);
1340
1341 if (exec_queue_registered(q))
1342 disable_scheduling_deregister(guc, q);
1343 else
1344 __guc_exec_queue_fini(guc, q);
1345 }
1346
guc_exec_queue_allowed_to_change_state(struct xe_exec_queue * q)1347 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1348 {
1349 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1350 }
1351
__guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg * msg)1352 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1353 {
1354 struct xe_exec_queue *q = msg->private_data;
1355 struct xe_guc *guc = exec_queue_to_guc(q);
1356
1357 if (guc_exec_queue_allowed_to_change_state(q))
1358 init_policies(guc, q);
1359 kfree(msg);
1360 }
1361
__suspend_fence_signal(struct xe_exec_queue * q)1362 static void __suspend_fence_signal(struct xe_exec_queue *q)
1363 {
1364 if (!q->guc->suspend_pending)
1365 return;
1366
1367 WRITE_ONCE(q->guc->suspend_pending, false);
1368 wake_up(&q->guc->suspend_wait);
1369 }
1370
suspend_fence_signal(struct xe_exec_queue * q)1371 static void suspend_fence_signal(struct xe_exec_queue *q)
1372 {
1373 struct xe_guc *guc = exec_queue_to_guc(q);
1374
1375 xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) ||
1376 xe_guc_read_stopped(guc));
1377 xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending);
1378
1379 __suspend_fence_signal(q);
1380 }
1381
__guc_exec_queue_process_msg_suspend(struct xe_sched_msg * msg)1382 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1383 {
1384 struct xe_exec_queue *q = msg->private_data;
1385 struct xe_guc *guc = exec_queue_to_guc(q);
1386
1387 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1388 exec_queue_enabled(q)) {
1389 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING ||
1390 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q));
1391
1392 if (!xe_guc_read_stopped(guc)) {
1393 s64 since_resume_ms =
1394 ktime_ms_delta(ktime_get(),
1395 q->guc->resume_time);
1396 s64 wait_ms = q->vm->preempt.min_run_period_ms -
1397 since_resume_ms;
1398
1399 if (wait_ms > 0 && q->guc->resume_time)
1400 msleep(wait_ms);
1401
1402 set_exec_queue_suspended(q);
1403 disable_scheduling(q, false);
1404 }
1405 } else if (q->guc->suspend_pending) {
1406 set_exec_queue_suspended(q);
1407 suspend_fence_signal(q);
1408 }
1409 }
1410
__guc_exec_queue_process_msg_resume(struct xe_sched_msg * msg)1411 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1412 {
1413 struct xe_exec_queue *q = msg->private_data;
1414
1415 if (guc_exec_queue_allowed_to_change_state(q)) {
1416 clear_exec_queue_suspended(q);
1417 if (!exec_queue_enabled(q)) {
1418 q->guc->resume_time = RESUME_PENDING;
1419 enable_scheduling(q);
1420 }
1421 } else {
1422 clear_exec_queue_suspended(q);
1423 }
1424 }
1425
1426 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */
1427 #define SET_SCHED_PROPS 2
1428 #define SUSPEND 3
1429 #define RESUME 4
1430 #define OPCODE_MASK 0xf
1431 #define MSG_LOCKED BIT(8)
1432
guc_exec_queue_process_msg(struct xe_sched_msg * msg)1433 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1434 {
1435 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1436
1437 trace_xe_sched_msg_recv(msg);
1438
1439 switch (msg->opcode) {
1440 case CLEANUP:
1441 __guc_exec_queue_process_msg_cleanup(msg);
1442 break;
1443 case SET_SCHED_PROPS:
1444 __guc_exec_queue_process_msg_set_sched_props(msg);
1445 break;
1446 case SUSPEND:
1447 __guc_exec_queue_process_msg_suspend(msg);
1448 break;
1449 case RESUME:
1450 __guc_exec_queue_process_msg_resume(msg);
1451 break;
1452 default:
1453 XE_WARN_ON("Unknown message type");
1454 }
1455
1456 xe_pm_runtime_put(xe);
1457 }
1458
1459 static const struct drm_sched_backend_ops drm_sched_ops = {
1460 .run_job = guc_exec_queue_run_job,
1461 .free_job = guc_exec_queue_free_job,
1462 .timedout_job = guc_exec_queue_timedout_job,
1463 };
1464
1465 static const struct xe_sched_backend_ops xe_sched_ops = {
1466 .process_msg = guc_exec_queue_process_msg,
1467 };
1468
guc_exec_queue_init(struct xe_exec_queue * q)1469 static int guc_exec_queue_init(struct xe_exec_queue *q)
1470 {
1471 struct xe_gpu_scheduler *sched;
1472 struct xe_guc *guc = exec_queue_to_guc(q);
1473 struct xe_guc_exec_queue *ge;
1474 long timeout;
1475 int err, i;
1476
1477 xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc)));
1478
1479 ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1480 if (!ge)
1481 return -ENOMEM;
1482
1483 q->guc = ge;
1484 ge->q = q;
1485 init_rcu_head(&ge->rcu);
1486 init_waitqueue_head(&ge->suspend_wait);
1487
1488 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1489 INIT_LIST_HEAD(&ge->static_msgs[i].link);
1490
1491 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1492 msecs_to_jiffies(q->sched_props.job_timeout_ms);
1493 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1494 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1495 timeout, guc_to_gt(guc)->ordered_wq, NULL,
1496 q->name, gt_to_xe(q->gt)->drm.dev);
1497 if (err)
1498 goto err_free;
1499
1500 sched = &ge->sched;
1501 err = xe_sched_entity_init(&ge->entity, sched);
1502 if (err)
1503 goto err_sched;
1504
1505 if (xe_exec_queue_is_lr(q))
1506 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1507
1508 mutex_lock(&guc->submission_state.lock);
1509
1510 err = alloc_guc_id(guc, q);
1511 if (err)
1512 goto err_entity;
1513
1514 q->entity = &ge->entity;
1515
1516 if (xe_guc_read_stopped(guc))
1517 xe_sched_stop(sched);
1518
1519 mutex_unlock(&guc->submission_state.lock);
1520
1521 xe_exec_queue_assign_name(q, q->guc->id);
1522
1523 trace_xe_exec_queue_create(q);
1524
1525 return 0;
1526
1527 err_entity:
1528 mutex_unlock(&guc->submission_state.lock);
1529 xe_sched_entity_fini(&ge->entity);
1530 err_sched:
1531 xe_sched_fini(&ge->sched);
1532 err_free:
1533 kfree(ge);
1534
1535 return err;
1536 }
1537
guc_exec_queue_kill(struct xe_exec_queue * q)1538 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1539 {
1540 trace_xe_exec_queue_kill(q);
1541 set_exec_queue_killed(q);
1542 __suspend_fence_signal(q);
1543 xe_guc_exec_queue_trigger_cleanup(q);
1544 }
1545
guc_exec_queue_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1546 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1547 u32 opcode)
1548 {
1549 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1550
1551 INIT_LIST_HEAD(&msg->link);
1552 msg->opcode = opcode & OPCODE_MASK;
1553 msg->private_data = q;
1554
1555 trace_xe_sched_msg_add(msg);
1556 if (opcode & MSG_LOCKED)
1557 xe_sched_add_msg_locked(&q->guc->sched, msg);
1558 else
1559 xe_sched_add_msg(&q->guc->sched, msg);
1560 }
1561
guc_exec_queue_try_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1562 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1563 struct xe_sched_msg *msg,
1564 u32 opcode)
1565 {
1566 if (!list_empty(&msg->link))
1567 return false;
1568
1569 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1570
1571 return true;
1572 }
1573
1574 #define STATIC_MSG_CLEANUP 0
1575 #define STATIC_MSG_SUSPEND 1
1576 #define STATIC_MSG_RESUME 2
guc_exec_queue_fini(struct xe_exec_queue * q)1577 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1578 {
1579 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1580
1581 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1582 guc_exec_queue_add_msg(q, msg, CLEANUP);
1583 else
1584 __guc_exec_queue_fini(exec_queue_to_guc(q), q);
1585 }
1586
guc_exec_queue_set_priority(struct xe_exec_queue * q,enum xe_exec_queue_priority priority)1587 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1588 enum xe_exec_queue_priority priority)
1589 {
1590 struct xe_sched_msg *msg;
1591
1592 if (q->sched_props.priority == priority ||
1593 exec_queue_killed_or_banned_or_wedged(q))
1594 return 0;
1595
1596 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1597 if (!msg)
1598 return -ENOMEM;
1599
1600 q->sched_props.priority = priority;
1601 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1602
1603 return 0;
1604 }
1605
guc_exec_queue_set_timeslice(struct xe_exec_queue * q,u32 timeslice_us)1606 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1607 {
1608 struct xe_sched_msg *msg;
1609
1610 if (q->sched_props.timeslice_us == timeslice_us ||
1611 exec_queue_killed_or_banned_or_wedged(q))
1612 return 0;
1613
1614 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1615 if (!msg)
1616 return -ENOMEM;
1617
1618 q->sched_props.timeslice_us = timeslice_us;
1619 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1620
1621 return 0;
1622 }
1623
guc_exec_queue_set_preempt_timeout(struct xe_exec_queue * q,u32 preempt_timeout_us)1624 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1625 u32 preempt_timeout_us)
1626 {
1627 struct xe_sched_msg *msg;
1628
1629 if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1630 exec_queue_killed_or_banned_or_wedged(q))
1631 return 0;
1632
1633 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1634 if (!msg)
1635 return -ENOMEM;
1636
1637 q->sched_props.preempt_timeout_us = preempt_timeout_us;
1638 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1639
1640 return 0;
1641 }
1642
guc_exec_queue_suspend(struct xe_exec_queue * q)1643 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1644 {
1645 struct xe_gpu_scheduler *sched = &q->guc->sched;
1646 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1647
1648 if (exec_queue_killed_or_banned_or_wedged(q))
1649 return -EINVAL;
1650
1651 xe_sched_msg_lock(sched);
1652 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1653 q->guc->suspend_pending = true;
1654 xe_sched_msg_unlock(sched);
1655
1656 return 0;
1657 }
1658
guc_exec_queue_suspend_wait(struct xe_exec_queue * q)1659 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1660 {
1661 struct xe_guc *guc = exec_queue_to_guc(q);
1662 int ret;
1663
1664 /*
1665 * Likely don't need to check exec_queue_killed() as we clear
1666 * suspend_pending upon kill but to be paranoid but races in which
1667 * suspend_pending is set after kill also check kill here.
1668 */
1669 ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1670 !READ_ONCE(q->guc->suspend_pending) ||
1671 exec_queue_killed(q) ||
1672 xe_guc_read_stopped(guc),
1673 HZ * 5);
1674
1675 if (!ret) {
1676 xe_gt_warn(guc_to_gt(guc),
1677 "Suspend fence, guc_id=%d, failed to respond",
1678 q->guc->id);
1679 /* XXX: Trigger GT reset? */
1680 return -ETIME;
1681 }
1682
1683 return ret < 0 ? ret : 0;
1684 }
1685
guc_exec_queue_resume(struct xe_exec_queue * q)1686 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1687 {
1688 struct xe_gpu_scheduler *sched = &q->guc->sched;
1689 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1690 struct xe_guc *guc = exec_queue_to_guc(q);
1691
1692 xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending);
1693
1694 xe_sched_msg_lock(sched);
1695 guc_exec_queue_try_add_msg(q, msg, RESUME);
1696 xe_sched_msg_unlock(sched);
1697 }
1698
guc_exec_queue_reset_status(struct xe_exec_queue * q)1699 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1700 {
1701 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1702 }
1703
1704 /*
1705 * All of these functions are an abstraction layer which other parts of XE can
1706 * use to trap into the GuC backend. All of these functions, aside from init,
1707 * really shouldn't do much other than trap into the DRM scheduler which
1708 * synchronizes these operations.
1709 */
1710 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1711 .init = guc_exec_queue_init,
1712 .kill = guc_exec_queue_kill,
1713 .fini = guc_exec_queue_fini,
1714 .set_priority = guc_exec_queue_set_priority,
1715 .set_timeslice = guc_exec_queue_set_timeslice,
1716 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1717 .suspend = guc_exec_queue_suspend,
1718 .suspend_wait = guc_exec_queue_suspend_wait,
1719 .resume = guc_exec_queue_resume,
1720 .reset_status = guc_exec_queue_reset_status,
1721 };
1722
guc_exec_queue_stop(struct xe_guc * guc,struct xe_exec_queue * q)1723 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1724 {
1725 struct xe_gpu_scheduler *sched = &q->guc->sched;
1726
1727 /* Stop scheduling + flush any DRM scheduler operations */
1728 xe_sched_submission_stop(sched);
1729
1730 /* Clean up lost G2H + reset engine state */
1731 if (exec_queue_registered(q)) {
1732 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1733 xe_exec_queue_put(q);
1734 else if (exec_queue_destroyed(q))
1735 __guc_exec_queue_fini(guc, q);
1736 }
1737 if (q->guc->suspend_pending) {
1738 set_exec_queue_suspended(q);
1739 suspend_fence_signal(q);
1740 }
1741 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1742 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1743 EXEC_QUEUE_STATE_SUSPENDED,
1744 &q->guc->state);
1745 q->guc->resume_time = 0;
1746 trace_xe_exec_queue_stop(q);
1747
1748 /*
1749 * Ban any engine (aside from kernel and engines used for VM ops) with a
1750 * started but not complete job or if a job has gone through a GT reset
1751 * more than twice.
1752 */
1753 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1754 struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1755 bool ban = false;
1756
1757 if (job) {
1758 if ((xe_sched_job_started(job) &&
1759 !xe_sched_job_completed(job)) ||
1760 xe_sched_invalidate_job(job, 2)) {
1761 trace_xe_sched_job_ban(job);
1762 ban = true;
1763 }
1764 } else if (xe_exec_queue_is_lr(q) &&
1765 !xe_lrc_ring_is_idle(q->lrc[0])) {
1766 ban = true;
1767 }
1768
1769 if (ban) {
1770 set_exec_queue_banned(q);
1771 xe_guc_exec_queue_trigger_cleanup(q);
1772 }
1773 }
1774 }
1775
xe_guc_submit_reset_prepare(struct xe_guc * guc)1776 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1777 {
1778 int ret;
1779
1780 if (!guc->submission_state.initialized)
1781 return 0;
1782
1783 /*
1784 * Using an atomic here rather than submission_state.lock as this
1785 * function can be called while holding the CT lock (engine reset
1786 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1787 * Atomic is not ideal, but it works to prevent against concurrent reset
1788 * and releasing any TDRs waiting on guc->submission_state.stopped.
1789 */
1790 ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1791 smp_wmb();
1792 wake_up_all(&guc->ct.wq);
1793
1794 return ret;
1795 }
1796
xe_guc_submit_reset_wait(struct xe_guc * guc)1797 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1798 {
1799 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1800 !xe_guc_read_stopped(guc));
1801 }
1802
xe_guc_submit_stop(struct xe_guc * guc)1803 void xe_guc_submit_stop(struct xe_guc *guc)
1804 {
1805 struct xe_exec_queue *q;
1806 unsigned long index;
1807
1808 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1809
1810 mutex_lock(&guc->submission_state.lock);
1811
1812 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1813 /* Prevent redundant attempts to stop parallel queues */
1814 if (q->guc->id != index)
1815 continue;
1816
1817 guc_exec_queue_stop(guc, q);
1818 }
1819
1820 mutex_unlock(&guc->submission_state.lock);
1821
1822 /*
1823 * No one can enter the backend at this point, aside from new engine
1824 * creation which is protected by guc->submission_state.lock.
1825 */
1826
1827 }
1828
guc_exec_queue_start(struct xe_exec_queue * q)1829 static void guc_exec_queue_start(struct xe_exec_queue *q)
1830 {
1831 struct xe_gpu_scheduler *sched = &q->guc->sched;
1832
1833 if (!exec_queue_killed_or_banned_or_wedged(q)) {
1834 int i;
1835
1836 trace_xe_exec_queue_resubmit(q);
1837 for (i = 0; i < q->width; ++i)
1838 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1839 xe_sched_resubmit_jobs(sched);
1840 }
1841
1842 xe_sched_submission_start(sched);
1843 xe_sched_submission_resume_tdr(sched);
1844 }
1845
xe_guc_submit_start(struct xe_guc * guc)1846 int xe_guc_submit_start(struct xe_guc *guc)
1847 {
1848 struct xe_exec_queue *q;
1849 unsigned long index;
1850
1851 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1852
1853 mutex_lock(&guc->submission_state.lock);
1854 atomic_dec(&guc->submission_state.stopped);
1855 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1856 /* Prevent redundant attempts to start parallel queues */
1857 if (q->guc->id != index)
1858 continue;
1859
1860 guc_exec_queue_start(q);
1861 }
1862 mutex_unlock(&guc->submission_state.lock);
1863
1864 wake_up_all(&guc->ct.wq);
1865
1866 return 0;
1867 }
1868
1869 static struct xe_exec_queue *
g2h_exec_queue_lookup(struct xe_guc * guc,u32 guc_id)1870 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1871 {
1872 struct xe_gt *gt = guc_to_gt(guc);
1873 struct xe_exec_queue *q;
1874
1875 if (unlikely(guc_id >= GUC_ID_MAX)) {
1876 xe_gt_err(gt, "Invalid guc_id %u\n", guc_id);
1877 return NULL;
1878 }
1879
1880 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1881 if (unlikely(!q)) {
1882 xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id);
1883 return NULL;
1884 }
1885
1886 xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id);
1887 xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width));
1888
1889 return q;
1890 }
1891
deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1892 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1893 {
1894 u32 action[] = {
1895 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1896 q->guc->id,
1897 };
1898
1899 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1900 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1901 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1902 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1903
1904 trace_xe_exec_queue_deregister(q);
1905
1906 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1907 }
1908
handle_sched_done(struct xe_guc * guc,struct xe_exec_queue * q,u32 runnable_state)1909 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1910 u32 runnable_state)
1911 {
1912 trace_xe_exec_queue_scheduling_done(q);
1913
1914 if (runnable_state == 1) {
1915 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1916
1917 q->guc->resume_time = ktime_get();
1918 clear_exec_queue_pending_enable(q);
1919 smp_wmb();
1920 wake_up_all(&guc->ct.wq);
1921 } else {
1922 bool check_timeout = exec_queue_check_timeout(q);
1923
1924 xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1925 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1926
1927 if (q->guc->suspend_pending) {
1928 suspend_fence_signal(q);
1929 clear_exec_queue_pending_disable(q);
1930 } else {
1931 if (exec_queue_banned(q) || check_timeout) {
1932 smp_wmb();
1933 wake_up_all(&guc->ct.wq);
1934 }
1935 if (!check_timeout && exec_queue_destroyed(q)) {
1936 /*
1937 * Make sure to clear the pending_disable only
1938 * after sampling the destroyed state. We want
1939 * to ensure we don't trigger the unregister too
1940 * early with something intending to only
1941 * disable scheduling. The caller doing the
1942 * destroy must wait for an ongoing
1943 * pending_disable before marking as destroyed.
1944 */
1945 clear_exec_queue_pending_disable(q);
1946 deregister_exec_queue(guc, q);
1947 } else {
1948 clear_exec_queue_pending_disable(q);
1949 }
1950 }
1951 }
1952 }
1953
xe_guc_sched_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1954 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1955 {
1956 struct xe_exec_queue *q;
1957 u32 guc_id, runnable_state;
1958
1959 if (unlikely(len < 2))
1960 return -EPROTO;
1961
1962 guc_id = msg[0];
1963 runnable_state = msg[1];
1964
1965 q = g2h_exec_queue_lookup(guc, guc_id);
1966 if (unlikely(!q))
1967 return -EPROTO;
1968
1969 if (unlikely(!exec_queue_pending_enable(q) &&
1970 !exec_queue_pending_disable(q))) {
1971 xe_gt_err(guc_to_gt(guc),
1972 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1973 atomic_read(&q->guc->state), q->guc->id,
1974 runnable_state);
1975 return -EPROTO;
1976 }
1977
1978 handle_sched_done(guc, q, runnable_state);
1979
1980 return 0;
1981 }
1982
handle_deregister_done(struct xe_guc * guc,struct xe_exec_queue * q)1983 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1984 {
1985 trace_xe_exec_queue_deregister_done(q);
1986
1987 clear_exec_queue_registered(q);
1988
1989 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1990 xe_exec_queue_put(q);
1991 else
1992 __guc_exec_queue_fini(guc, q);
1993 }
1994
xe_guc_deregister_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1995 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1996 {
1997 struct xe_exec_queue *q;
1998 u32 guc_id;
1999
2000 if (unlikely(len < 1))
2001 return -EPROTO;
2002
2003 guc_id = msg[0];
2004
2005 q = g2h_exec_queue_lookup(guc, guc_id);
2006 if (unlikely(!q))
2007 return -EPROTO;
2008
2009 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
2010 exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
2011 xe_gt_err(guc_to_gt(guc),
2012 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
2013 atomic_read(&q->guc->state), q->guc->id);
2014 return -EPROTO;
2015 }
2016
2017 handle_deregister_done(guc, q);
2018
2019 return 0;
2020 }
2021
xe_guc_exec_queue_reset_handler(struct xe_guc * guc,u32 * msg,u32 len)2022 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
2023 {
2024 struct xe_gt *gt = guc_to_gt(guc);
2025 struct xe_exec_queue *q;
2026 u32 guc_id;
2027
2028 if (unlikely(len < 1))
2029 return -EPROTO;
2030
2031 guc_id = msg[0];
2032
2033 q = g2h_exec_queue_lookup(guc, guc_id);
2034 if (unlikely(!q))
2035 return -EPROTO;
2036
2037 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2038 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2039
2040 trace_xe_exec_queue_reset(q);
2041
2042 /*
2043 * A banned engine is a NOP at this point (came from
2044 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
2045 * jobs by setting timeout of the job to the minimum value kicking
2046 * guc_exec_queue_timedout_job.
2047 */
2048 set_exec_queue_reset(q);
2049 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2050 xe_guc_exec_queue_trigger_cleanup(q);
2051
2052 return 0;
2053 }
2054
2055 /*
2056 * xe_guc_error_capture_handler - Handler of GuC captured message
2057 * @guc: The GuC object
2058 * @msg: Point to the message
2059 * @len: The message length
2060 *
2061 * When GuC captured data is ready, GuC will send message
2062 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2063 * called 1st to check status before process the data comes with the message.
2064 *
2065 * Returns: error code. 0 if success
2066 */
xe_guc_error_capture_handler(struct xe_guc * guc,u32 * msg,u32 len)2067 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2068 {
2069 u32 status;
2070
2071 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN))
2072 return -EPROTO;
2073
2074 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2075 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2076 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2077
2078 xe_guc_capture_process(guc);
2079
2080 return 0;
2081 }
2082
xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc * guc,u32 * msg,u32 len)2083 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2084 u32 len)
2085 {
2086 struct xe_gt *gt = guc_to_gt(guc);
2087 struct xe_exec_queue *q;
2088 u32 guc_id;
2089 u32 type = XE_GUC_CAT_ERR_TYPE_INVALID;
2090
2091 if (unlikely(!len || len > 2))
2092 return -EPROTO;
2093
2094 guc_id = msg[0];
2095
2096 if (len == 2)
2097 type = msg[1];
2098
2099 if (guc_id == GUC_ID_UNKNOWN) {
2100 /*
2101 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF
2102 * context. In such case only PF will be notified about that fault.
2103 */
2104 xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n");
2105 return 0;
2106 }
2107
2108 q = g2h_exec_queue_lookup(guc, guc_id);
2109 if (unlikely(!q))
2110 return -EPROTO;
2111
2112 /*
2113 * The type is HW-defined and changes based on platform, so we don't
2114 * decode it in the kernel and only check if it is valid.
2115 * See bspec 54047 and 72187 for details.
2116 */
2117 if (type != XE_GUC_CAT_ERR_TYPE_INVALID)
2118 xe_gt_dbg(gt,
2119 "Engine memory CAT error [%u]: class=%s, logical_mask: 0x%x, guc_id=%d",
2120 type, xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2121 else
2122 xe_gt_dbg(gt,
2123 "Engine memory CAT error: class=%s, logical_mask: 0x%x, guc_id=%d",
2124 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2125
2126 trace_xe_exec_queue_memory_cat_error(q);
2127
2128 /* Treat the same as engine reset */
2129 set_exec_queue_reset(q);
2130 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2131 xe_guc_exec_queue_trigger_cleanup(q);
2132
2133 return 0;
2134 }
2135
xe_guc_exec_queue_reset_failure_handler(struct xe_guc * guc,u32 * msg,u32 len)2136 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2137 {
2138 struct xe_gt *gt = guc_to_gt(guc);
2139 u8 guc_class, instance;
2140 u32 reason;
2141
2142 if (unlikely(len != 3))
2143 return -EPROTO;
2144
2145 guc_class = msg[0];
2146 instance = msg[1];
2147 reason = msg[2];
2148
2149 /* Unexpected failure of a hardware feature, log an actual error */
2150 xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X",
2151 guc_class, instance, reason);
2152
2153 xe_gt_reset_async(gt);
2154
2155 return 0;
2156 }
2157
2158 static void
guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue * q,struct xe_guc_submit_exec_queue_snapshot * snapshot)2159 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2160 struct xe_guc_submit_exec_queue_snapshot *snapshot)
2161 {
2162 struct xe_guc *guc = exec_queue_to_guc(q);
2163 struct xe_device *xe = guc_to_xe(guc);
2164 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2165 int i;
2166
2167 snapshot->guc.wqi_head = q->guc->wqi_head;
2168 snapshot->guc.wqi_tail = q->guc->wqi_tail;
2169 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2170 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2171 snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2172 wq_desc.wq_status);
2173
2174 if (snapshot->parallel.wq_desc.head !=
2175 snapshot->parallel.wq_desc.tail) {
2176 for (i = snapshot->parallel.wq_desc.head;
2177 i != snapshot->parallel.wq_desc.tail;
2178 i = (i + sizeof(u32)) % WQ_SIZE)
2179 snapshot->parallel.wq[i / sizeof(u32)] =
2180 parallel_read(xe, map, wq[i / sizeof(u32)]);
2181 }
2182 }
2183
2184 static void
guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2185 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2186 struct drm_printer *p)
2187 {
2188 int i;
2189
2190 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2191 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2192 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2193 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2194 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2195
2196 if (snapshot->parallel.wq_desc.head !=
2197 snapshot->parallel.wq_desc.tail) {
2198 for (i = snapshot->parallel.wq_desc.head;
2199 i != snapshot->parallel.wq_desc.tail;
2200 i = (i + sizeof(u32)) % WQ_SIZE)
2201 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2202 snapshot->parallel.wq[i / sizeof(u32)]);
2203 }
2204 }
2205
2206 /**
2207 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2208 * @q: faulty exec queue
2209 *
2210 * This can be printed out in a later stage like during dev_coredump
2211 * analysis.
2212 *
2213 * Returns: a GuC Submit Engine snapshot object that must be freed by the
2214 * caller, using `xe_guc_exec_queue_snapshot_free`.
2215 */
2216 struct xe_guc_submit_exec_queue_snapshot *
xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue * q)2217 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2218 {
2219 struct xe_gpu_scheduler *sched = &q->guc->sched;
2220 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2221 int i;
2222
2223 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2224
2225 if (!snapshot)
2226 return NULL;
2227
2228 snapshot->guc.id = q->guc->id;
2229 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2230 snapshot->class = q->class;
2231 snapshot->logical_mask = q->logical_mask;
2232 snapshot->width = q->width;
2233 snapshot->refcount = kref_read(&q->refcount);
2234 snapshot->sched_timeout = sched->base.timeout;
2235 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2236 snapshot->sched_props.preempt_timeout_us =
2237 q->sched_props.preempt_timeout_us;
2238
2239 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2240 GFP_ATOMIC);
2241
2242 if (snapshot->lrc) {
2243 for (i = 0; i < q->width; ++i) {
2244 struct xe_lrc *lrc = q->lrc[i];
2245
2246 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2247 }
2248 }
2249
2250 snapshot->schedule_state = atomic_read(&q->guc->state);
2251 snapshot->exec_queue_flags = q->flags;
2252
2253 snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2254 if (snapshot->parallel_execution)
2255 guc_exec_queue_wq_snapshot_capture(q, snapshot);
2256
2257 spin_lock(&sched->base.job_list_lock);
2258 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2259 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2260 sizeof(struct pending_list_snapshot),
2261 GFP_ATOMIC);
2262
2263 if (snapshot->pending_list) {
2264 struct xe_sched_job *job_iter;
2265
2266 i = 0;
2267 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2268 snapshot->pending_list[i].seqno =
2269 xe_sched_job_seqno(job_iter);
2270 snapshot->pending_list[i].fence =
2271 dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2272 snapshot->pending_list[i].finished =
2273 dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2274 ? 1 : 0;
2275 i++;
2276 }
2277 }
2278
2279 spin_unlock(&sched->base.job_list_lock);
2280
2281 return snapshot;
2282 }
2283
2284 /**
2285 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2286 * @snapshot: Previously captured snapshot of job.
2287 *
2288 * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2289 */
2290 void
xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot * snapshot)2291 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2292 {
2293 int i;
2294
2295 if (!snapshot || !snapshot->lrc)
2296 return;
2297
2298 for (i = 0; i < snapshot->width; ++i)
2299 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2300 }
2301
2302 /**
2303 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2304 * @snapshot: GuC Submit Engine snapshot object.
2305 * @p: drm_printer where it will be printed out.
2306 *
2307 * This function prints out a given GuC Submit Engine snapshot object.
2308 */
2309 void
xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2310 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2311 struct drm_printer *p)
2312 {
2313 int i;
2314
2315 if (!snapshot)
2316 return;
2317
2318 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2319 drm_printf(p, "\tName: %s\n", snapshot->name);
2320 drm_printf(p, "\tClass: %d\n", snapshot->class);
2321 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2322 drm_printf(p, "\tWidth: %d\n", snapshot->width);
2323 drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2324 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2325 drm_printf(p, "\tTimeslice: %u (us)\n",
2326 snapshot->sched_props.timeslice_us);
2327 drm_printf(p, "\tPreempt timeout: %u (us)\n",
2328 snapshot->sched_props.preempt_timeout_us);
2329
2330 for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2331 xe_lrc_snapshot_print(snapshot->lrc[i], p);
2332
2333 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2334 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2335
2336 if (snapshot->parallel_execution)
2337 guc_exec_queue_wq_snapshot_print(snapshot, p);
2338
2339 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2340 i++)
2341 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2342 snapshot->pending_list[i].seqno,
2343 snapshot->pending_list[i].fence,
2344 snapshot->pending_list[i].finished);
2345 }
2346
2347 /**
2348 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2349 * snapshot.
2350 * @snapshot: GuC Submit Engine snapshot object.
2351 *
2352 * This function free all the memory that needed to be allocated at capture
2353 * time.
2354 */
xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot * snapshot)2355 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2356 {
2357 int i;
2358
2359 if (!snapshot)
2360 return;
2361
2362 if (snapshot->lrc) {
2363 for (i = 0; i < snapshot->width; i++)
2364 xe_lrc_snapshot_free(snapshot->lrc[i]);
2365 kfree(snapshot->lrc);
2366 }
2367 kfree(snapshot->pending_list);
2368 kfree(snapshot);
2369 }
2370
guc_exec_queue_print(struct xe_exec_queue * q,struct drm_printer * p)2371 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2372 {
2373 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2374
2375 snapshot = xe_guc_exec_queue_snapshot_capture(q);
2376 xe_guc_exec_queue_snapshot_print(snapshot, p);
2377 xe_guc_exec_queue_snapshot_free(snapshot);
2378 }
2379
2380 /**
2381 * xe_guc_submit_print - GuC Submit Print.
2382 * @guc: GuC.
2383 * @p: drm_printer where it will be printed out.
2384 *
2385 * This function capture and prints snapshots of **all** GuC Engines.
2386 */
xe_guc_submit_print(struct xe_guc * guc,struct drm_printer * p)2387 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2388 {
2389 struct xe_exec_queue *q;
2390 unsigned long index;
2391
2392 if (!xe_device_uc_enabled(guc_to_xe(guc)))
2393 return;
2394
2395 mutex_lock(&guc->submission_state.lock);
2396 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2397 guc_exec_queue_print(q, p);
2398 mutex_unlock(&guc->submission_state.lock);
2399 }
2400