1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/parser.h>
50 #include <linux/vmalloc.h>
51 #include <linux/lsm_hooks.h>
52 #include <net/netlabel.h>
53
54 #include "flask.h"
55 #include "avc.h"
56 #include "avc_ss.h"
57 #include "security.h"
58 #include "context.h"
59 #include "policydb.h"
60 #include "sidtab.h"
61 #include "services.h"
62 #include "conditional.h"
63 #include "mls.h"
64 #include "objsec.h"
65 #include "netlabel.h"
66 #include "xfrm.h"
67 #include "ebitmap.h"
68 #include "audit.h"
69 #include "policycap_names.h"
70 #include "ima.h"
71
72 struct selinux_policy_convert_data {
73 struct convert_context_args args;
74 struct sidtab_convert_params sidtab_params;
75 };
76
77 /* Forward declaration. */
78 static int context_struct_to_string(struct policydb *policydb,
79 struct context *context,
80 char **scontext,
81 u32 *scontext_len);
82
83 static int sidtab_entry_to_string(struct policydb *policydb,
84 struct sidtab *sidtab,
85 struct sidtab_entry *entry,
86 char **scontext,
87 u32 *scontext_len);
88
89 static void context_struct_compute_av(struct policydb *policydb,
90 struct context *scontext,
91 struct context *tcontext,
92 u16 tclass,
93 struct av_decision *avd,
94 struct extended_perms *xperms);
95
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)96 static int selinux_set_mapping(struct policydb *pol,
97 const struct security_class_mapping *map,
98 struct selinux_map *out_map)
99 {
100 u16 i, j;
101 bool print_unknown_handle = false;
102
103 /* Find number of classes in the input mapping */
104 if (!map)
105 return -EINVAL;
106 i = 0;
107 while (map[i].name)
108 i++;
109
110 /* Allocate space for the class records, plus one for class zero */
111 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112 if (!out_map->mapping)
113 return -ENOMEM;
114
115 /* Store the raw class and permission values */
116 j = 0;
117 while (map[j].name) {
118 const struct security_class_mapping *p_in = map + (j++);
119 struct selinux_mapping *p_out = out_map->mapping + j;
120 u16 k;
121
122 /* An empty class string skips ahead */
123 if (!strcmp(p_in->name, "")) {
124 p_out->num_perms = 0;
125 continue;
126 }
127
128 p_out->value = string_to_security_class(pol, p_in->name);
129 if (!p_out->value) {
130 pr_info("SELinux: Class %s not defined in policy.\n",
131 p_in->name);
132 if (pol->reject_unknown)
133 goto err;
134 p_out->num_perms = 0;
135 print_unknown_handle = true;
136 continue;
137 }
138
139 k = 0;
140 while (p_in->perms[k]) {
141 /* An empty permission string skips ahead */
142 if (!*p_in->perms[k]) {
143 k++;
144 continue;
145 }
146 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
147 p_in->perms[k]);
148 if (!p_out->perms[k]) {
149 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
150 p_in->perms[k], p_in->name);
151 if (pol->reject_unknown)
152 goto err;
153 print_unknown_handle = true;
154 }
155
156 k++;
157 }
158 p_out->num_perms = k;
159 }
160
161 if (print_unknown_handle)
162 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
163 pol->allow_unknown ? "allowed" : "denied");
164
165 out_map->size = i;
166 return 0;
167 err:
168 kfree(out_map->mapping);
169 out_map->mapping = NULL;
170 return -EINVAL;
171 }
172
173 /*
174 * Get real, policy values from mapped values
175 */
176
unmap_class(struct selinux_map * map,u16 tclass)177 static u16 unmap_class(struct selinux_map *map, u16 tclass)
178 {
179 if (tclass < map->size)
180 return map->mapping[tclass].value;
181
182 return tclass;
183 }
184
185 /*
186 * Get kernel value for class from its policy value
187 */
map_class(struct selinux_map * map,u16 pol_value)188 static u16 map_class(struct selinux_map *map, u16 pol_value)
189 {
190 u16 i;
191
192 for (i = 1; i < map->size; i++) {
193 if (map->mapping[i].value == pol_value)
194 return i;
195 }
196
197 return SECCLASS_NULL;
198 }
199
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)200 static void map_decision(struct selinux_map *map,
201 u16 tclass, struct av_decision *avd,
202 int allow_unknown)
203 {
204 if (tclass < map->size) {
205 struct selinux_mapping *mapping = &map->mapping[tclass];
206 unsigned int i, n = mapping->num_perms;
207 u32 result;
208
209 for (i = 0, result = 0; i < n; i++) {
210 if (avd->allowed & mapping->perms[i])
211 result |= (u32)1<<i;
212 if (allow_unknown && !mapping->perms[i])
213 result |= (u32)1<<i;
214 }
215 avd->allowed = result;
216
217 for (i = 0, result = 0; i < n; i++)
218 if (avd->auditallow & mapping->perms[i])
219 result |= (u32)1<<i;
220 avd->auditallow = result;
221
222 for (i = 0, result = 0; i < n; i++) {
223 if (avd->auditdeny & mapping->perms[i])
224 result |= (u32)1<<i;
225 if (!allow_unknown && !mapping->perms[i])
226 result |= (u32)1<<i;
227 }
228 /*
229 * In case the kernel has a bug and requests a permission
230 * between num_perms and the maximum permission number, we
231 * should audit that denial
232 */
233 for (; i < (sizeof(u32)*8); i++)
234 result |= (u32)1<<i;
235 avd->auditdeny = result;
236 }
237 }
238
security_mls_enabled(void)239 int security_mls_enabled(void)
240 {
241 int mls_enabled;
242 struct selinux_policy *policy;
243
244 if (!selinux_initialized())
245 return 0;
246
247 rcu_read_lock();
248 policy = rcu_dereference(selinux_state.policy);
249 mls_enabled = policy->policydb.mls_enabled;
250 rcu_read_unlock();
251 return mls_enabled;
252 }
253
254 /*
255 * Return the boolean value of a constraint expression
256 * when it is applied to the specified source and target
257 * security contexts.
258 *
259 * xcontext is a special beast... It is used by the validatetrans rules
260 * only. For these rules, scontext is the context before the transition,
261 * tcontext is the context after the transition, and xcontext is the context
262 * of the process performing the transition. All other callers of
263 * constraint_expr_eval should pass in NULL for xcontext.
264 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)265 static int constraint_expr_eval(struct policydb *policydb,
266 struct context *scontext,
267 struct context *tcontext,
268 struct context *xcontext,
269 struct constraint_expr *cexpr)
270 {
271 u32 val1, val2;
272 struct context *c;
273 struct role_datum *r1, *r2;
274 struct mls_level *l1, *l2;
275 struct constraint_expr *e;
276 int s[CEXPR_MAXDEPTH];
277 int sp = -1;
278
279 for (e = cexpr; e; e = e->next) {
280 switch (e->expr_type) {
281 case CEXPR_NOT:
282 BUG_ON(sp < 0);
283 s[sp] = !s[sp];
284 break;
285 case CEXPR_AND:
286 BUG_ON(sp < 1);
287 sp--;
288 s[sp] &= s[sp + 1];
289 break;
290 case CEXPR_OR:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] |= s[sp + 1];
294 break;
295 case CEXPR_ATTR:
296 if (sp == (CEXPR_MAXDEPTH - 1))
297 return 0;
298 switch (e->attr) {
299 case CEXPR_USER:
300 val1 = scontext->user;
301 val2 = tcontext->user;
302 break;
303 case CEXPR_TYPE:
304 val1 = scontext->type;
305 val2 = tcontext->type;
306 break;
307 case CEXPR_ROLE:
308 val1 = scontext->role;
309 val2 = tcontext->role;
310 r1 = policydb->role_val_to_struct[val1 - 1];
311 r2 = policydb->role_val_to_struct[val2 - 1];
312 switch (e->op) {
313 case CEXPR_DOM:
314 s[++sp] = ebitmap_get_bit(&r1->dominates,
315 val2 - 1);
316 continue;
317 case CEXPR_DOMBY:
318 s[++sp] = ebitmap_get_bit(&r2->dominates,
319 val1 - 1);
320 continue;
321 case CEXPR_INCOMP:
322 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 val2 - 1) &&
324 !ebitmap_get_bit(&r2->dominates,
325 val1 - 1));
326 continue;
327 default:
328 break;
329 }
330 break;
331 case CEXPR_L1L2:
332 l1 = &(scontext->range.level[0]);
333 l2 = &(tcontext->range.level[0]);
334 goto mls_ops;
335 case CEXPR_L1H2:
336 l1 = &(scontext->range.level[0]);
337 l2 = &(tcontext->range.level[1]);
338 goto mls_ops;
339 case CEXPR_H1L2:
340 l1 = &(scontext->range.level[1]);
341 l2 = &(tcontext->range.level[0]);
342 goto mls_ops;
343 case CEXPR_H1H2:
344 l1 = &(scontext->range.level[1]);
345 l2 = &(tcontext->range.level[1]);
346 goto mls_ops;
347 case CEXPR_L1H1:
348 l1 = &(scontext->range.level[0]);
349 l2 = &(scontext->range.level[1]);
350 goto mls_ops;
351 case CEXPR_L2H2:
352 l1 = &(tcontext->range.level[0]);
353 l2 = &(tcontext->range.level[1]);
354 goto mls_ops;
355 mls_ops:
356 switch (e->op) {
357 case CEXPR_EQ:
358 s[++sp] = mls_level_eq(l1, l2);
359 continue;
360 case CEXPR_NEQ:
361 s[++sp] = !mls_level_eq(l1, l2);
362 continue;
363 case CEXPR_DOM:
364 s[++sp] = mls_level_dom(l1, l2);
365 continue;
366 case CEXPR_DOMBY:
367 s[++sp] = mls_level_dom(l2, l1);
368 continue;
369 case CEXPR_INCOMP:
370 s[++sp] = mls_level_incomp(l2, l1);
371 continue;
372 default:
373 BUG();
374 return 0;
375 }
376 break;
377 default:
378 BUG();
379 return 0;
380 }
381
382 switch (e->op) {
383 case CEXPR_EQ:
384 s[++sp] = (val1 == val2);
385 break;
386 case CEXPR_NEQ:
387 s[++sp] = (val1 != val2);
388 break;
389 default:
390 BUG();
391 return 0;
392 }
393 break;
394 case CEXPR_NAMES:
395 if (sp == (CEXPR_MAXDEPTH-1))
396 return 0;
397 c = scontext;
398 if (e->attr & CEXPR_TARGET)
399 c = tcontext;
400 else if (e->attr & CEXPR_XTARGET) {
401 c = xcontext;
402 if (!c) {
403 BUG();
404 return 0;
405 }
406 }
407 if (e->attr & CEXPR_USER)
408 val1 = c->user;
409 else if (e->attr & CEXPR_ROLE)
410 val1 = c->role;
411 else if (e->attr & CEXPR_TYPE)
412 val1 = c->type;
413 else {
414 BUG();
415 return 0;
416 }
417
418 switch (e->op) {
419 case CEXPR_EQ:
420 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421 break;
422 case CEXPR_NEQ:
423 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424 break;
425 default:
426 BUG();
427 return 0;
428 }
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 }
435
436 BUG_ON(sp != 0);
437 return s[0];
438 }
439
440 /*
441 * security_dump_masked_av - dumps masked permissions during
442 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443 */
dump_masked_av_helper(void * k,void * d,void * args)444 static int dump_masked_av_helper(void *k, void *d, void *args)
445 {
446 struct perm_datum *pdatum = d;
447 char **permission_names = args;
448
449 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450
451 permission_names[pdatum->value - 1] = (char *)k;
452
453 return 0;
454 }
455
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)456 static void security_dump_masked_av(struct policydb *policydb,
457 struct context *scontext,
458 struct context *tcontext,
459 u16 tclass,
460 u32 permissions,
461 const char *reason)
462 {
463 struct common_datum *common_dat;
464 struct class_datum *tclass_dat;
465 struct audit_buffer *ab;
466 char *tclass_name;
467 char *scontext_name = NULL;
468 char *tcontext_name = NULL;
469 char *permission_names[32];
470 int index;
471 u32 length;
472 bool need_comma = false;
473
474 if (!permissions)
475 return;
476
477 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478 tclass_dat = policydb->class_val_to_struct[tclass - 1];
479 common_dat = tclass_dat->comdatum;
480
481 /* init permission_names */
482 if (common_dat &&
483 hashtab_map(&common_dat->permissions.table,
484 dump_masked_av_helper, permission_names) < 0)
485 goto out;
486
487 if (hashtab_map(&tclass_dat->permissions.table,
488 dump_masked_av_helper, permission_names) < 0)
489 goto out;
490
491 /* get scontext/tcontext in text form */
492 if (context_struct_to_string(policydb, scontext,
493 &scontext_name, &length) < 0)
494 goto out;
495
496 if (context_struct_to_string(policydb, tcontext,
497 &tcontext_name, &length) < 0)
498 goto out;
499
500 /* audit a message */
501 ab = audit_log_start(audit_context(),
502 GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 if (!ab)
504 goto out;
505
506 audit_log_format(ab, "op=security_compute_av reason=%s "
507 "scontext=%s tcontext=%s tclass=%s perms=",
508 reason, scontext_name, tcontext_name, tclass_name);
509
510 for (index = 0; index < 32; index++) {
511 u32 mask = (1 << index);
512
513 if ((mask & permissions) == 0)
514 continue;
515
516 audit_log_format(ab, "%s%s",
517 need_comma ? "," : "",
518 permission_names[index]
519 ? permission_names[index] : "????");
520 need_comma = true;
521 }
522 audit_log_end(ab);
523 out:
524 /* release scontext/tcontext */
525 kfree(tcontext_name);
526 kfree(scontext_name);
527 }
528
529 /*
530 * security_boundary_permission - drops violated permissions
531 * on boundary constraint.
532 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)533 static void type_attribute_bounds_av(struct policydb *policydb,
534 struct context *scontext,
535 struct context *tcontext,
536 u16 tclass,
537 struct av_decision *avd)
538 {
539 struct context lo_scontext;
540 struct context lo_tcontext, *tcontextp = tcontext;
541 struct av_decision lo_avd;
542 struct type_datum *source;
543 struct type_datum *target;
544 u32 masked = 0;
545
546 source = policydb->type_val_to_struct[scontext->type - 1];
547 BUG_ON(!source);
548
549 if (!source->bounds)
550 return;
551
552 target = policydb->type_val_to_struct[tcontext->type - 1];
553 BUG_ON(!target);
554
555 memset(&lo_avd, 0, sizeof(lo_avd));
556
557 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
558 lo_scontext.type = source->bounds;
559
560 if (target->bounds) {
561 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
562 lo_tcontext.type = target->bounds;
563 tcontextp = &lo_tcontext;
564 }
565
566 context_struct_compute_av(policydb, &lo_scontext,
567 tcontextp,
568 tclass,
569 &lo_avd,
570 NULL);
571
572 masked = ~lo_avd.allowed & avd->allowed;
573
574 if (likely(!masked))
575 return; /* no masked permission */
576
577 /* mask violated permissions */
578 avd->allowed &= ~masked;
579
580 /* audit masked permissions */
581 security_dump_masked_av(policydb, scontext, tcontext,
582 tclass, masked, "bounds");
583 }
584
585 /*
586 * Flag which drivers have permissions and which base permissions are covered.
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 switch (node->datum.u.xperms->specified) {
595 case AVTAB_XPERMS_IOCTLDRIVER:
596 xperms->base_perms |= AVC_EXT_IOCTL;
597 /* if one or more driver has all permissions allowed */
598 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600 break;
601 case AVTAB_XPERMS_IOCTLFUNCTION:
602 xperms->base_perms |= AVC_EXT_IOCTL;
603 /* if allowing permissions within a driver */
604 security_xperm_set(xperms->drivers.p,
605 node->datum.u.xperms->driver);
606 break;
607 case AVTAB_XPERMS_NLMSG:
608 xperms->base_perms |= AVC_EXT_NLMSG;
609 /* if allowing permissions within a driver */
610 security_xperm_set(xperms->drivers.p,
611 node->datum.u.xperms->driver);
612 break;
613 }
614
615 xperms->len = 1;
616 }
617
618 /*
619 * Compute access vectors and extended permissions based on a context
620 * structure pair for the permissions in a particular class.
621 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)622 static void context_struct_compute_av(struct policydb *policydb,
623 struct context *scontext,
624 struct context *tcontext,
625 u16 tclass,
626 struct av_decision *avd,
627 struct extended_perms *xperms)
628 {
629 struct constraint_node *constraint;
630 struct role_allow *ra;
631 struct avtab_key avkey;
632 struct avtab_node *node;
633 struct class_datum *tclass_datum;
634 struct ebitmap *sattr, *tattr;
635 struct ebitmap_node *snode, *tnode;
636 unsigned int i, j;
637
638 avd->allowed = 0;
639 avd->auditallow = 0;
640 avd->auditdeny = 0xffffffff;
641 if (xperms) {
642 memset(xperms, 0, sizeof(*xperms));
643 }
644
645 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 pr_warn_ratelimited("SELinux: Invalid class %u\n", tclass);
647 return;
648 }
649
650 tclass_datum = policydb->class_val_to_struct[tclass - 1];
651
652 /*
653 * If a specific type enforcement rule was defined for
654 * this permission check, then use it.
655 */
656 avkey.target_class = tclass;
657 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
658 sattr = &policydb->type_attr_map_array[scontext->type - 1];
659 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
660 ebitmap_for_each_positive_bit(sattr, snode, i) {
661 ebitmap_for_each_positive_bit(tattr, tnode, j) {
662 avkey.source_type = i + 1;
663 avkey.target_type = j + 1;
664 for (node = avtab_search_node(&policydb->te_avtab,
665 &avkey);
666 node;
667 node = avtab_search_node_next(node, avkey.specified)) {
668 if (node->key.specified == AVTAB_ALLOWED)
669 avd->allowed |= node->datum.u.data;
670 else if (node->key.specified == AVTAB_AUDITALLOW)
671 avd->auditallow |= node->datum.u.data;
672 else if (node->key.specified == AVTAB_AUDITDENY)
673 avd->auditdeny &= node->datum.u.data;
674 else if (xperms && (node->key.specified & AVTAB_XPERMS))
675 services_compute_xperms_drivers(xperms, node);
676 }
677
678 /* Check conditional av table for additional permissions */
679 cond_compute_av(&policydb->te_cond_avtab, &avkey,
680 avd, xperms);
681
682 }
683 }
684
685 /*
686 * Remove any permissions prohibited by a constraint (this includes
687 * the MLS policy).
688 */
689 constraint = tclass_datum->constraints;
690 while (constraint) {
691 if ((constraint->permissions & (avd->allowed)) &&
692 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
693 constraint->expr)) {
694 avd->allowed &= ~(constraint->permissions);
695 }
696 constraint = constraint->next;
697 }
698
699 /*
700 * If checking process transition permission and the
701 * role is changing, then check the (current_role, new_role)
702 * pair.
703 */
704 if (tclass == policydb->process_class &&
705 (avd->allowed & policydb->process_trans_perms) &&
706 scontext->role != tcontext->role) {
707 for (ra = policydb->role_allow; ra; ra = ra->next) {
708 if (scontext->role == ra->role &&
709 tcontext->role == ra->new_role)
710 break;
711 }
712 if (!ra)
713 avd->allowed &= ~policydb->process_trans_perms;
714 }
715
716 /*
717 * If the given source and target types have boundary
718 * constraint, lazy checks have to mask any violated
719 * permission and notice it to userspace via audit.
720 */
721 type_attribute_bounds_av(policydb, scontext, tcontext,
722 tclass, avd);
723 }
724
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)725 static int security_validtrans_handle_fail(struct selinux_policy *policy,
726 struct sidtab_entry *oentry,
727 struct sidtab_entry *nentry,
728 struct sidtab_entry *tentry,
729 u16 tclass)
730 {
731 struct policydb *p = &policy->policydb;
732 struct sidtab *sidtab = policy->sidtab;
733 char *o = NULL, *n = NULL, *t = NULL;
734 u32 olen, nlen, tlen;
735
736 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 goto out;
738 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 goto out;
740 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 goto out;
742 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 "op=security_validate_transition seresult=denied"
744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 kfree(o);
748 kfree(n);
749 kfree(t);
750
751 if (!enforcing_enabled())
752 return 0;
753 return -EPERM;
754 }
755
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
757 u16 orig_tclass, bool user)
758 {
759 struct selinux_policy *policy;
760 struct policydb *policydb;
761 struct sidtab *sidtab;
762 struct sidtab_entry *oentry;
763 struct sidtab_entry *nentry;
764 struct sidtab_entry *tentry;
765 struct class_datum *tclass_datum;
766 struct constraint_node *constraint;
767 u16 tclass;
768 int rc = 0;
769
770
771 if (!selinux_initialized())
772 return 0;
773
774 rcu_read_lock();
775
776 policy = rcu_dereference(selinux_state.policy);
777 policydb = &policy->policydb;
778 sidtab = policy->sidtab;
779
780 if (!user)
781 tclass = unmap_class(&policy->map, orig_tclass);
782 else
783 tclass = orig_tclass;
784
785 if (!tclass || tclass > policydb->p_classes.nprim) {
786 rc = -EINVAL;
787 goto out;
788 }
789 tclass_datum = policydb->class_val_to_struct[tclass - 1];
790
791 oentry = sidtab_search_entry(sidtab, oldsid);
792 if (!oentry) {
793 pr_err("SELinux: %s: unrecognized SID %d\n",
794 __func__, oldsid);
795 rc = -EINVAL;
796 goto out;
797 }
798
799 nentry = sidtab_search_entry(sidtab, newsid);
800 if (!nentry) {
801 pr_err("SELinux: %s: unrecognized SID %d\n",
802 __func__, newsid);
803 rc = -EINVAL;
804 goto out;
805 }
806
807 tentry = sidtab_search_entry(sidtab, tasksid);
808 if (!tentry) {
809 pr_err("SELinux: %s: unrecognized SID %d\n",
810 __func__, tasksid);
811 rc = -EINVAL;
812 goto out;
813 }
814
815 constraint = tclass_datum->validatetrans;
816 while (constraint) {
817 if (!constraint_expr_eval(policydb, &oentry->context,
818 &nentry->context, &tentry->context,
819 constraint->expr)) {
820 if (user)
821 rc = -EPERM;
822 else
823 rc = security_validtrans_handle_fail(policy,
824 oentry,
825 nentry,
826 tentry,
827 tclass);
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833 out:
834 rcu_read_unlock();
835 return rc;
836 }
837
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839 u16 tclass)
840 {
841 return security_compute_validatetrans(oldsid, newsid, tasksid,
842 tclass, true);
843 }
844
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)845 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846 u16 orig_tclass)
847 {
848 return security_compute_validatetrans(oldsid, newsid, tasksid,
849 orig_tclass, false);
850 }
851
852 /*
853 * security_bounded_transition - check whether the given
854 * transition is directed to bounded, or not.
855 * It returns 0, if @newsid is bounded by @oldsid.
856 * Otherwise, it returns error code.
857 *
858 * @oldsid : current security identifier
859 * @newsid : destinated security identifier
860 */
security_bounded_transition(u32 old_sid,u32 new_sid)861 int security_bounded_transition(u32 old_sid, u32 new_sid)
862 {
863 struct selinux_policy *policy;
864 struct policydb *policydb;
865 struct sidtab *sidtab;
866 struct sidtab_entry *old_entry, *new_entry;
867 struct type_datum *type;
868 u32 index;
869 int rc;
870
871 if (!selinux_initialized())
872 return 0;
873
874 rcu_read_lock();
875 policy = rcu_dereference(selinux_state.policy);
876 policydb = &policy->policydb;
877 sidtab = policy->sidtab;
878
879 rc = -EINVAL;
880 old_entry = sidtab_search_entry(sidtab, old_sid);
881 if (!old_entry) {
882 pr_err("SELinux: %s: unrecognized SID %u\n",
883 __func__, old_sid);
884 goto out;
885 }
886
887 rc = -EINVAL;
888 new_entry = sidtab_search_entry(sidtab, new_sid);
889 if (!new_entry) {
890 pr_err("SELinux: %s: unrecognized SID %u\n",
891 __func__, new_sid);
892 goto out;
893 }
894
895 rc = 0;
896 /* type/domain unchanged */
897 if (old_entry->context.type == new_entry->context.type)
898 goto out;
899
900 index = new_entry->context.type;
901 while (true) {
902 type = policydb->type_val_to_struct[index - 1];
903 BUG_ON(!type);
904
905 /* not bounded anymore */
906 rc = -EPERM;
907 if (!type->bounds)
908 break;
909
910 /* @newsid is bounded by @oldsid */
911 rc = 0;
912 if (type->bounds == old_entry->context.type)
913 break;
914
915 index = type->bounds;
916 }
917
918 if (rc) {
919 char *old_name = NULL;
920 char *new_name = NULL;
921 u32 length;
922
923 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
924 &old_name, &length) &&
925 !sidtab_entry_to_string(policydb, sidtab, new_entry,
926 &new_name, &length)) {
927 audit_log(audit_context(),
928 GFP_ATOMIC, AUDIT_SELINUX_ERR,
929 "op=security_bounded_transition "
930 "seresult=denied "
931 "oldcontext=%s newcontext=%s",
932 old_name, new_name);
933 }
934 kfree(new_name);
935 kfree(old_name);
936 }
937 out:
938 rcu_read_unlock();
939
940 return rc;
941 }
942
avd_init(struct selinux_policy * policy,struct av_decision * avd)943 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
944 {
945 avd->allowed = 0;
946 avd->auditallow = 0;
947 avd->auditdeny = 0xffffffff;
948 if (policy)
949 avd->seqno = policy->latest_granting;
950 else
951 avd->seqno = 0;
952 avd->flags = 0;
953 }
954
update_xperms_extended_data(u8 specified,const struct extended_perms_data * from,struct extended_perms_data * xp_data)955 static void update_xperms_extended_data(u8 specified,
956 const struct extended_perms_data *from,
957 struct extended_perms_data *xp_data)
958 {
959 unsigned int i;
960
961 switch (specified) {
962 case AVTAB_XPERMS_IOCTLDRIVER:
963 memset(xp_data->p, 0xff, sizeof(xp_data->p));
964 break;
965 case AVTAB_XPERMS_IOCTLFUNCTION:
966 case AVTAB_XPERMS_NLMSG:
967 for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
968 xp_data->p[i] |= from->p[i];
969 break;
970 }
971
972 }
973
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)974 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
975 struct avtab_node *node)
976 {
977 u16 specified;
978
979 switch (node->datum.u.xperms->specified) {
980 case AVTAB_XPERMS_IOCTLFUNCTION:
981 if (xpermd->base_perm != AVC_EXT_IOCTL ||
982 xpermd->driver != node->datum.u.xperms->driver)
983 return;
984 break;
985 case AVTAB_XPERMS_IOCTLDRIVER:
986 if (xpermd->base_perm != AVC_EXT_IOCTL ||
987 !security_xperm_test(node->datum.u.xperms->perms.p,
988 xpermd->driver))
989 return;
990 break;
991 case AVTAB_XPERMS_NLMSG:
992 if (xpermd->base_perm != AVC_EXT_NLMSG ||
993 xpermd->driver != node->datum.u.xperms->driver)
994 return;
995 break;
996 default:
997 pr_warn_once(
998 "SELinux: unknown extended permission (%u) will be ignored\n",
999 node->datum.u.xperms->specified);
1000 return;
1001 }
1002
1003 specified = node->key.specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD);
1004
1005 if (specified == AVTAB_XPERMS_ALLOWED) {
1006 xpermd->used |= XPERMS_ALLOWED;
1007 update_xperms_extended_data(node->datum.u.xperms->specified,
1008 &node->datum.u.xperms->perms,
1009 xpermd->allowed);
1010 } else if (specified == AVTAB_XPERMS_AUDITALLOW) {
1011 xpermd->used |= XPERMS_AUDITALLOW;
1012 update_xperms_extended_data(node->datum.u.xperms->specified,
1013 &node->datum.u.xperms->perms,
1014 xpermd->auditallow);
1015 } else if (specified == AVTAB_XPERMS_DONTAUDIT) {
1016 xpermd->used |= XPERMS_DONTAUDIT;
1017 update_xperms_extended_data(node->datum.u.xperms->specified,
1018 &node->datum.u.xperms->perms,
1019 xpermd->dontaudit);
1020 } else {
1021 pr_warn_once("SELinux: unknown specified key (%u)\n",
1022 node->key.specified);
1023 }
1024 }
1025
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,u8 base_perm,struct extended_perms_decision * xpermd)1026 void security_compute_xperms_decision(u32 ssid,
1027 u32 tsid,
1028 u16 orig_tclass,
1029 u8 driver,
1030 u8 base_perm,
1031 struct extended_perms_decision *xpermd)
1032 {
1033 struct selinux_policy *policy;
1034 struct policydb *policydb;
1035 struct sidtab *sidtab;
1036 u16 tclass;
1037 struct context *scontext, *tcontext;
1038 struct avtab_key avkey;
1039 struct avtab_node *node;
1040 struct ebitmap *sattr, *tattr;
1041 struct ebitmap_node *snode, *tnode;
1042 unsigned int i, j;
1043
1044 xpermd->base_perm = base_perm;
1045 xpermd->driver = driver;
1046 xpermd->used = 0;
1047 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1048 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1049 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1050
1051 rcu_read_lock();
1052 if (!selinux_initialized())
1053 goto allow;
1054
1055 policy = rcu_dereference(selinux_state.policy);
1056 policydb = &policy->policydb;
1057 sidtab = policy->sidtab;
1058
1059 scontext = sidtab_search(sidtab, ssid);
1060 if (!scontext) {
1061 pr_err("SELinux: %s: unrecognized SID %d\n",
1062 __func__, ssid);
1063 goto out;
1064 }
1065
1066 tcontext = sidtab_search(sidtab, tsid);
1067 if (!tcontext) {
1068 pr_err("SELinux: %s: unrecognized SID %d\n",
1069 __func__, tsid);
1070 goto out;
1071 }
1072
1073 tclass = unmap_class(&policy->map, orig_tclass);
1074 if (unlikely(orig_tclass && !tclass)) {
1075 if (policydb->allow_unknown)
1076 goto allow;
1077 goto out;
1078 }
1079
1080
1081 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1082 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1083 goto out;
1084 }
1085
1086 avkey.target_class = tclass;
1087 avkey.specified = AVTAB_XPERMS;
1088 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1089 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1090 ebitmap_for_each_positive_bit(sattr, snode, i) {
1091 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1092 avkey.source_type = i + 1;
1093 avkey.target_type = j + 1;
1094 for (node = avtab_search_node(&policydb->te_avtab,
1095 &avkey);
1096 node;
1097 node = avtab_search_node_next(node, avkey.specified))
1098 services_compute_xperms_decision(xpermd, node);
1099
1100 cond_compute_xperms(&policydb->te_cond_avtab,
1101 &avkey, xpermd);
1102 }
1103 }
1104 out:
1105 rcu_read_unlock();
1106 return;
1107 allow:
1108 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1109 goto out;
1110 }
1111
1112 /**
1113 * security_compute_av - Compute access vector decisions.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @orig_tclass: target security class
1117 * @avd: access vector decisions
1118 * @xperms: extended permissions
1119 *
1120 * Compute a set of access vector decisions based on the
1121 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1122 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1123 void security_compute_av(u32 ssid,
1124 u32 tsid,
1125 u16 orig_tclass,
1126 struct av_decision *avd,
1127 struct extended_perms *xperms)
1128 {
1129 struct selinux_policy *policy;
1130 struct policydb *policydb;
1131 struct sidtab *sidtab;
1132 u16 tclass;
1133 struct context *scontext = NULL, *tcontext = NULL;
1134
1135 rcu_read_lock();
1136 policy = rcu_dereference(selinux_state.policy);
1137 avd_init(policy, avd);
1138 xperms->len = 0;
1139 if (!selinux_initialized())
1140 goto allow;
1141
1142 policydb = &policy->policydb;
1143 sidtab = policy->sidtab;
1144
1145 scontext = sidtab_search(sidtab, ssid);
1146 if (!scontext) {
1147 pr_err("SELinux: %s: unrecognized SID %d\n",
1148 __func__, ssid);
1149 goto out;
1150 }
1151
1152 /* permissive domain? */
1153 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1154 avd->flags |= AVD_FLAGS_PERMISSIVE;
1155
1156 /* neveraudit domain? */
1157 if (ebitmap_get_bit(&policydb->neveraudit_map, scontext->type))
1158 avd->flags |= AVD_FLAGS_NEVERAUDIT;
1159
1160 /* both permissive and neveraudit => allow */
1161 if (avd->flags == (AVD_FLAGS_PERMISSIVE|AVD_FLAGS_NEVERAUDIT))
1162 goto allow;
1163
1164 tcontext = sidtab_search(sidtab, tsid);
1165 if (!tcontext) {
1166 pr_err("SELinux: %s: unrecognized SID %d\n",
1167 __func__, tsid);
1168 goto out;
1169 }
1170
1171 tclass = unmap_class(&policy->map, orig_tclass);
1172 if (unlikely(orig_tclass && !tclass)) {
1173 if (policydb->allow_unknown)
1174 goto allow;
1175 goto out;
1176 }
1177 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1178 xperms);
1179 map_decision(&policy->map, orig_tclass, avd,
1180 policydb->allow_unknown);
1181 out:
1182 rcu_read_unlock();
1183 if (avd->flags & AVD_FLAGS_NEVERAUDIT)
1184 avd->auditallow = avd->auditdeny = 0;
1185 return;
1186 allow:
1187 avd->allowed = 0xffffffff;
1188 goto out;
1189 }
1190
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1191 void security_compute_av_user(u32 ssid,
1192 u32 tsid,
1193 u16 tclass,
1194 struct av_decision *avd)
1195 {
1196 struct selinux_policy *policy;
1197 struct policydb *policydb;
1198 struct sidtab *sidtab;
1199 struct context *scontext = NULL, *tcontext = NULL;
1200
1201 rcu_read_lock();
1202 policy = rcu_dereference(selinux_state.policy);
1203 avd_init(policy, avd);
1204 if (!selinux_initialized())
1205 goto allow;
1206
1207 policydb = &policy->policydb;
1208 sidtab = policy->sidtab;
1209
1210 scontext = sidtab_search(sidtab, ssid);
1211 if (!scontext) {
1212 pr_err("SELinux: %s: unrecognized SID %d\n",
1213 __func__, ssid);
1214 goto out;
1215 }
1216
1217 /* permissive domain? */
1218 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1219 avd->flags |= AVD_FLAGS_PERMISSIVE;
1220
1221 /* neveraudit domain? */
1222 if (ebitmap_get_bit(&policydb->neveraudit_map, scontext->type))
1223 avd->flags |= AVD_FLAGS_NEVERAUDIT;
1224
1225 /* both permissive and neveraudit => allow */
1226 if (avd->flags == (AVD_FLAGS_PERMISSIVE|AVD_FLAGS_NEVERAUDIT))
1227 goto allow;
1228
1229 tcontext = sidtab_search(sidtab, tsid);
1230 if (!tcontext) {
1231 pr_err("SELinux: %s: unrecognized SID %d\n",
1232 __func__, tsid);
1233 goto out;
1234 }
1235
1236 if (unlikely(!tclass)) {
1237 if (policydb->allow_unknown)
1238 goto allow;
1239 goto out;
1240 }
1241
1242 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1243 NULL);
1244 out:
1245 rcu_read_unlock();
1246 if (avd->flags & AVD_FLAGS_NEVERAUDIT)
1247 avd->auditallow = avd->auditdeny = 0;
1248 return;
1249 allow:
1250 avd->allowed = 0xffffffff;
1251 goto out;
1252 }
1253
1254 /*
1255 * Write the security context string representation of
1256 * the context structure `context' into a dynamically
1257 * allocated string of the correct size. Set `*scontext'
1258 * to point to this string and set `*scontext_len' to
1259 * the length of the string.
1260 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1261 static int context_struct_to_string(struct policydb *p,
1262 struct context *context,
1263 char **scontext, u32 *scontext_len)
1264 {
1265 char *scontextp;
1266
1267 if (scontext)
1268 *scontext = NULL;
1269 *scontext_len = 0;
1270
1271 if (context->len) {
1272 *scontext_len = context->len;
1273 if (scontext) {
1274 *scontext = kstrdup(context->str, GFP_ATOMIC);
1275 if (!(*scontext))
1276 return -ENOMEM;
1277 }
1278 return 0;
1279 }
1280
1281 /* Compute the size of the context. */
1282 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1283 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1284 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1285 *scontext_len += mls_compute_context_len(p, context);
1286
1287 if (!scontext)
1288 return 0;
1289
1290 /* Allocate space for the context; caller must free this space. */
1291 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1292 if (!scontextp)
1293 return -ENOMEM;
1294 *scontext = scontextp;
1295
1296 /*
1297 * Copy the user name, role name and type name into the context.
1298 */
1299 scontextp += sprintf(scontextp, "%s:%s:%s",
1300 sym_name(p, SYM_USERS, context->user - 1),
1301 sym_name(p, SYM_ROLES, context->role - 1),
1302 sym_name(p, SYM_TYPES, context->type - 1));
1303
1304 mls_sid_to_context(p, context, &scontextp);
1305
1306 *scontextp = 0;
1307
1308 return 0;
1309 }
1310
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1311 static int sidtab_entry_to_string(struct policydb *p,
1312 struct sidtab *sidtab,
1313 struct sidtab_entry *entry,
1314 char **scontext, u32 *scontext_len)
1315 {
1316 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1317
1318 if (rc != -ENOENT)
1319 return rc;
1320
1321 rc = context_struct_to_string(p, &entry->context, scontext,
1322 scontext_len);
1323 if (!rc && scontext)
1324 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1325 return rc;
1326 }
1327
1328 #include "initial_sid_to_string.h"
1329
security_sidtab_hash_stats(char * page)1330 int security_sidtab_hash_stats(char *page)
1331 {
1332 struct selinux_policy *policy;
1333 int rc;
1334
1335 if (!selinux_initialized()) {
1336 pr_err("SELinux: %s: called before initial load_policy\n",
1337 __func__);
1338 return -EINVAL;
1339 }
1340
1341 rcu_read_lock();
1342 policy = rcu_dereference(selinux_state.policy);
1343 rc = sidtab_hash_stats(policy->sidtab, page);
1344 rcu_read_unlock();
1345
1346 return rc;
1347 }
1348
security_get_initial_sid_context(u32 sid)1349 const char *security_get_initial_sid_context(u32 sid)
1350 {
1351 if (unlikely(sid > SECINITSID_NUM))
1352 return NULL;
1353 return initial_sid_to_string[sid];
1354 }
1355
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1356 static int security_sid_to_context_core(u32 sid, char **scontext,
1357 u32 *scontext_len, int force,
1358 int only_invalid)
1359 {
1360 struct selinux_policy *policy;
1361 struct policydb *policydb;
1362 struct sidtab *sidtab;
1363 struct sidtab_entry *entry;
1364 int rc = 0;
1365
1366 if (scontext)
1367 *scontext = NULL;
1368 *scontext_len = 0;
1369
1370 if (!selinux_initialized()) {
1371 if (sid <= SECINITSID_NUM) {
1372 char *scontextp;
1373 const char *s;
1374
1375 /*
1376 * Before the policy is loaded, translate
1377 * SECINITSID_INIT to "kernel", because systemd and
1378 * libselinux < 2.6 take a getcon_raw() result that is
1379 * both non-null and not "kernel" to mean that a policy
1380 * is already loaded.
1381 */
1382 if (sid == SECINITSID_INIT)
1383 sid = SECINITSID_KERNEL;
1384
1385 s = initial_sid_to_string[sid];
1386 if (!s)
1387 return -EINVAL;
1388 *scontext_len = strlen(s) + 1;
1389 if (!scontext)
1390 return 0;
1391 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1392 if (!scontextp)
1393 return -ENOMEM;
1394 *scontext = scontextp;
1395 return 0;
1396 }
1397 pr_err("SELinux: %s: called before initial "
1398 "load_policy on unknown SID %d\n", __func__, sid);
1399 return -EINVAL;
1400 }
1401 rcu_read_lock();
1402 policy = rcu_dereference(selinux_state.policy);
1403 policydb = &policy->policydb;
1404 sidtab = policy->sidtab;
1405
1406 if (force)
1407 entry = sidtab_search_entry_force(sidtab, sid);
1408 else
1409 entry = sidtab_search_entry(sidtab, sid);
1410 if (!entry) {
1411 pr_err("SELinux: %s: unrecognized SID %d\n",
1412 __func__, sid);
1413 rc = -EINVAL;
1414 goto out_unlock;
1415 }
1416 if (only_invalid && !entry->context.len)
1417 goto out_unlock;
1418
1419 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1420 scontext_len);
1421
1422 out_unlock:
1423 rcu_read_unlock();
1424 return rc;
1425
1426 }
1427
1428 /**
1429 * security_sid_to_context - Obtain a context for a given SID.
1430 * @sid: security identifier, SID
1431 * @scontext: security context
1432 * @scontext_len: length in bytes
1433 *
1434 * Write the string representation of the context associated with @sid
1435 * into a dynamically allocated string of the correct size. Set @scontext
1436 * to point to this string and set @scontext_len to the length of the string.
1437 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1438 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1439 {
1440 return security_sid_to_context_core(sid, scontext,
1441 scontext_len, 0, 0);
1442 }
1443
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1444 int security_sid_to_context_force(u32 sid,
1445 char **scontext, u32 *scontext_len)
1446 {
1447 return security_sid_to_context_core(sid, scontext,
1448 scontext_len, 1, 0);
1449 }
1450
1451 /**
1452 * security_sid_to_context_inval - Obtain a context for a given SID if it
1453 * is invalid.
1454 * @sid: security identifier, SID
1455 * @scontext: security context
1456 * @scontext_len: length in bytes
1457 *
1458 * Write the string representation of the context associated with @sid
1459 * into a dynamically allocated string of the correct size, but only if the
1460 * context is invalid in the current policy. Set @scontext to point to
1461 * this string (or NULL if the context is valid) and set @scontext_len to
1462 * the length of the string (or 0 if the context is valid).
1463 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1464 int security_sid_to_context_inval(u32 sid,
1465 char **scontext, u32 *scontext_len)
1466 {
1467 return security_sid_to_context_core(sid, scontext,
1468 scontext_len, 1, 1);
1469 }
1470
1471 /*
1472 * Caveat: Mutates scontext.
1473 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1474 static int string_to_context_struct(struct policydb *pol,
1475 struct sidtab *sidtabp,
1476 char *scontext,
1477 struct context *ctx,
1478 u32 def_sid)
1479 {
1480 struct role_datum *role;
1481 struct type_datum *typdatum;
1482 struct user_datum *usrdatum;
1483 char *scontextp, *p, oldc;
1484 int rc = 0;
1485
1486 context_init(ctx);
1487
1488 /* Parse the security context. */
1489
1490 rc = -EINVAL;
1491 scontextp = scontext;
1492
1493 /* Extract the user. */
1494 p = scontextp;
1495 while (*p && *p != ':')
1496 p++;
1497
1498 if (*p == 0)
1499 goto out;
1500
1501 *p++ = 0;
1502
1503 usrdatum = symtab_search(&pol->p_users, scontextp);
1504 if (!usrdatum)
1505 goto out;
1506
1507 ctx->user = usrdatum->value;
1508
1509 /* Extract role. */
1510 scontextp = p;
1511 while (*p && *p != ':')
1512 p++;
1513
1514 if (*p == 0)
1515 goto out;
1516
1517 *p++ = 0;
1518
1519 role = symtab_search(&pol->p_roles, scontextp);
1520 if (!role)
1521 goto out;
1522 ctx->role = role->value;
1523
1524 /* Extract type. */
1525 scontextp = p;
1526 while (*p && *p != ':')
1527 p++;
1528 oldc = *p;
1529 *p++ = 0;
1530
1531 typdatum = symtab_search(&pol->p_types, scontextp);
1532 if (!typdatum || typdatum->attribute)
1533 goto out;
1534
1535 ctx->type = typdatum->value;
1536
1537 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1538 if (rc)
1539 goto out;
1540
1541 /* Check the validity of the new context. */
1542 rc = -EINVAL;
1543 if (!policydb_context_isvalid(pol, ctx))
1544 goto out;
1545 rc = 0;
1546 out:
1547 if (rc)
1548 context_destroy(ctx);
1549 return rc;
1550 }
1551
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1552 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1553 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1554 int force)
1555 {
1556 struct selinux_policy *policy;
1557 struct policydb *policydb;
1558 struct sidtab *sidtab;
1559 char *scontext2, *str = NULL;
1560 struct context context;
1561 int rc = 0;
1562
1563 /* An empty security context is never valid. */
1564 if (!scontext_len)
1565 return -EINVAL;
1566
1567 /* Copy the string to allow changes and ensure a NUL terminator */
1568 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1569 if (!scontext2)
1570 return -ENOMEM;
1571
1572 if (!selinux_initialized()) {
1573 u32 i;
1574
1575 for (i = 1; i < SECINITSID_NUM; i++) {
1576 const char *s = initial_sid_to_string[i];
1577
1578 if (s && !strcmp(s, scontext2)) {
1579 *sid = i;
1580 goto out;
1581 }
1582 }
1583 *sid = SECINITSID_KERNEL;
1584 goto out;
1585 }
1586 *sid = SECSID_NULL;
1587
1588 if (force) {
1589 /* Save another copy for storing in uninterpreted form */
1590 rc = -ENOMEM;
1591 str = kstrdup(scontext2, gfp_flags);
1592 if (!str)
1593 goto out;
1594 }
1595 retry:
1596 rcu_read_lock();
1597 policy = rcu_dereference(selinux_state.policy);
1598 policydb = &policy->policydb;
1599 sidtab = policy->sidtab;
1600 rc = string_to_context_struct(policydb, sidtab, scontext2,
1601 &context, def_sid);
1602 if (rc == -EINVAL && force) {
1603 context.str = str;
1604 context.len = strlen(str) + 1;
1605 str = NULL;
1606 } else if (rc)
1607 goto out_unlock;
1608 rc = sidtab_context_to_sid(sidtab, &context, sid);
1609 if (rc == -ESTALE) {
1610 rcu_read_unlock();
1611 if (context.str) {
1612 str = context.str;
1613 context.str = NULL;
1614 }
1615 context_destroy(&context);
1616 goto retry;
1617 }
1618 context_destroy(&context);
1619 out_unlock:
1620 rcu_read_unlock();
1621 out:
1622 kfree(scontext2);
1623 kfree(str);
1624 return rc;
1625 }
1626
1627 /**
1628 * security_context_to_sid - Obtain a SID for a given security context.
1629 * @scontext: security context
1630 * @scontext_len: length in bytes
1631 * @sid: security identifier, SID
1632 * @gfp: context for the allocation
1633 *
1634 * Obtains a SID associated with the security context that
1635 * has the string representation specified by @scontext.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1639 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1640 gfp_t gfp)
1641 {
1642 return security_context_to_sid_core(scontext, scontext_len,
1643 sid, SECSID_NULL, gfp, 0);
1644 }
1645
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1646 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1647 {
1648 return security_context_to_sid(scontext, strlen(scontext),
1649 sid, gfp);
1650 }
1651
1652 /**
1653 * security_context_to_sid_default - Obtain a SID for a given security context,
1654 * falling back to specified default if needed.
1655 *
1656 * @scontext: security context
1657 * @scontext_len: length in bytes
1658 * @sid: security identifier, SID
1659 * @def_sid: default SID to assign on error
1660 * @gfp_flags: the allocator get-free-page (GFP) flags
1661 *
1662 * Obtains a SID associated with the security context that
1663 * has the string representation specified by @scontext.
1664 * The default SID is passed to the MLS layer to be used to allow
1665 * kernel labeling of the MLS field if the MLS field is not present
1666 * (for upgrading to MLS without full relabel).
1667 * Implicitly forces adding of the context even if it cannot be mapped yet.
1668 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1669 * memory is available, or 0 on success.
1670 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1671 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1672 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1673 {
1674 return security_context_to_sid_core(scontext, scontext_len,
1675 sid, def_sid, gfp_flags, 1);
1676 }
1677
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1678 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1679 u32 *sid)
1680 {
1681 return security_context_to_sid_core(scontext, scontext_len,
1682 sid, SECSID_NULL, GFP_KERNEL, 1);
1683 }
1684
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1685 static int compute_sid_handle_invalid_context(
1686 struct selinux_policy *policy,
1687 struct sidtab_entry *sentry,
1688 struct sidtab_entry *tentry,
1689 u16 tclass,
1690 struct context *newcontext)
1691 {
1692 struct policydb *policydb = &policy->policydb;
1693 struct sidtab *sidtab = policy->sidtab;
1694 char *s = NULL, *t = NULL, *n = NULL;
1695 u32 slen, tlen, nlen;
1696 struct audit_buffer *ab;
1697
1698 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1699 goto out;
1700 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1701 goto out;
1702 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1703 goto out;
1704 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1705 if (!ab)
1706 goto out;
1707 audit_log_format(ab,
1708 "op=security_compute_sid invalid_context=");
1709 /* no need to record the NUL with untrusted strings */
1710 audit_log_n_untrustedstring(ab, n, nlen - 1);
1711 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1712 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1713 audit_log_end(ab);
1714 out:
1715 kfree(s);
1716 kfree(t);
1717 kfree(n);
1718 if (!enforcing_enabled())
1719 return 0;
1720 return -EACCES;
1721 }
1722
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1723 static void filename_compute_type(struct policydb *policydb,
1724 struct context *newcontext,
1725 u32 stype, u32 ttype, u16 tclass,
1726 const char *objname)
1727 {
1728 struct filename_trans_key ft;
1729 struct filename_trans_datum *datum;
1730
1731 /*
1732 * Most filename trans rules are going to live in specific directories
1733 * like /dev or /var/run. This bitmap will quickly skip rule searches
1734 * if the ttype does not contain any rules.
1735 */
1736 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1737 return;
1738
1739 ft.ttype = ttype;
1740 ft.tclass = tclass;
1741 ft.name = objname;
1742
1743 datum = policydb_filenametr_search(policydb, &ft);
1744 while (datum) {
1745 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1746 newcontext->type = datum->otype;
1747 return;
1748 }
1749 datum = datum->next;
1750 }
1751 }
1752
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1753 static int security_compute_sid(u32 ssid,
1754 u32 tsid,
1755 u16 orig_tclass,
1756 u16 specified,
1757 const char *objname,
1758 u32 *out_sid,
1759 bool kern)
1760 {
1761 struct selinux_policy *policy;
1762 struct policydb *policydb;
1763 struct sidtab *sidtab;
1764 struct class_datum *cladatum;
1765 struct context *scontext, *tcontext, newcontext;
1766 struct sidtab_entry *sentry, *tentry;
1767 struct avtab_key avkey;
1768 struct avtab_node *avnode, *node;
1769 u16 tclass;
1770 int rc = 0;
1771 bool sock;
1772
1773 if (!selinux_initialized()) {
1774 switch (orig_tclass) {
1775 case SECCLASS_PROCESS: /* kernel value */
1776 *out_sid = ssid;
1777 break;
1778 default:
1779 *out_sid = tsid;
1780 break;
1781 }
1782 goto out;
1783 }
1784
1785 retry:
1786 cladatum = NULL;
1787 context_init(&newcontext);
1788
1789 rcu_read_lock();
1790
1791 policy = rcu_dereference(selinux_state.policy);
1792
1793 if (kern) {
1794 tclass = unmap_class(&policy->map, orig_tclass);
1795 sock = security_is_socket_class(orig_tclass);
1796 } else {
1797 tclass = orig_tclass;
1798 sock = security_is_socket_class(map_class(&policy->map,
1799 tclass));
1800 }
1801
1802 policydb = &policy->policydb;
1803 sidtab = policy->sidtab;
1804
1805 sentry = sidtab_search_entry(sidtab, ssid);
1806 if (!sentry) {
1807 pr_err("SELinux: %s: unrecognized SID %d\n",
1808 __func__, ssid);
1809 rc = -EINVAL;
1810 goto out_unlock;
1811 }
1812 tentry = sidtab_search_entry(sidtab, tsid);
1813 if (!tentry) {
1814 pr_err("SELinux: %s: unrecognized SID %d\n",
1815 __func__, tsid);
1816 rc = -EINVAL;
1817 goto out_unlock;
1818 }
1819
1820 scontext = &sentry->context;
1821 tcontext = &tentry->context;
1822
1823 if (tclass && tclass <= policydb->p_classes.nprim)
1824 cladatum = policydb->class_val_to_struct[tclass - 1];
1825
1826 /* Set the user identity. */
1827 switch (specified) {
1828 case AVTAB_TRANSITION:
1829 case AVTAB_CHANGE:
1830 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1831 newcontext.user = tcontext->user;
1832 } else {
1833 /* notice this gets both DEFAULT_SOURCE and unset */
1834 /* Use the process user identity. */
1835 newcontext.user = scontext->user;
1836 }
1837 break;
1838 case AVTAB_MEMBER:
1839 /* Use the related object owner. */
1840 newcontext.user = tcontext->user;
1841 break;
1842 }
1843
1844 /* Set the role to default values. */
1845 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1846 newcontext.role = scontext->role;
1847 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1848 newcontext.role = tcontext->role;
1849 } else {
1850 if ((tclass == policydb->process_class) || sock)
1851 newcontext.role = scontext->role;
1852 else
1853 newcontext.role = OBJECT_R_VAL;
1854 }
1855
1856 /* Set the type.
1857 * Look for a type transition/member/change rule.
1858 */
1859 avkey.source_type = scontext->type;
1860 avkey.target_type = tcontext->type;
1861 avkey.target_class = tclass;
1862 avkey.specified = specified;
1863 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1864
1865 /* If no permanent rule, also check for enabled conditional rules */
1866 if (!avnode) {
1867 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1868 for (; node; node = avtab_search_node_next(node, specified)) {
1869 if (node->key.specified & AVTAB_ENABLED) {
1870 avnode = node;
1871 break;
1872 }
1873 }
1874 }
1875
1876 /* If a permanent rule is found, use the type from
1877 * the type transition/member/change rule. Otherwise,
1878 * set the type to its default values.
1879 */
1880 if (avnode) {
1881 newcontext.type = avnode->datum.u.data;
1882 } else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1883 newcontext.type = scontext->type;
1884 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1885 newcontext.type = tcontext->type;
1886 } else {
1887 if ((tclass == policydb->process_class) || sock) {
1888 /* Use the type of process. */
1889 newcontext.type = scontext->type;
1890 } else {
1891 /* Use the type of the related object. */
1892 newcontext.type = tcontext->type;
1893 }
1894 }
1895
1896 /* if we have a objname this is a file trans check so check those rules */
1897 if (objname)
1898 filename_compute_type(policydb, &newcontext, scontext->type,
1899 tcontext->type, tclass, objname);
1900
1901 /* Check for class-specific changes. */
1902 if (specified & AVTAB_TRANSITION) {
1903 /* Look for a role transition rule. */
1904 struct role_trans_datum *rtd;
1905 struct role_trans_key rtk = {
1906 .role = scontext->role,
1907 .type = tcontext->type,
1908 .tclass = tclass,
1909 };
1910
1911 rtd = policydb_roletr_search(policydb, &rtk);
1912 if (rtd)
1913 newcontext.role = rtd->new_role;
1914 }
1915
1916 /* Set the MLS attributes.
1917 This is done last because it may allocate memory. */
1918 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1919 &newcontext, sock);
1920 if (rc)
1921 goto out_unlock;
1922
1923 /* Check the validity of the context. */
1924 if (!policydb_context_isvalid(policydb, &newcontext)) {
1925 rc = compute_sid_handle_invalid_context(policy, sentry,
1926 tentry, tclass,
1927 &newcontext);
1928 if (rc)
1929 goto out_unlock;
1930 }
1931 /* Obtain the sid for the context. */
1932 if (context_equal(scontext, &newcontext))
1933 *out_sid = ssid;
1934 else if (context_equal(tcontext, &newcontext))
1935 *out_sid = tsid;
1936 else {
1937 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1938 if (rc == -ESTALE) {
1939 rcu_read_unlock();
1940 context_destroy(&newcontext);
1941 goto retry;
1942 }
1943 }
1944 out_unlock:
1945 rcu_read_unlock();
1946 context_destroy(&newcontext);
1947 out:
1948 return rc;
1949 }
1950
1951 /**
1952 * security_transition_sid - Compute the SID for a new subject/object.
1953 * @ssid: source security identifier
1954 * @tsid: target security identifier
1955 * @tclass: target security class
1956 * @qstr: object name
1957 * @out_sid: security identifier for new subject/object
1958 *
1959 * Compute a SID to use for labeling a new subject or object in the
1960 * class @tclass based on a SID pair (@ssid, @tsid).
1961 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1962 * if insufficient memory is available, or %0 if the new SID was
1963 * computed successfully.
1964 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1965 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1966 const struct qstr *qstr, u32 *out_sid)
1967 {
1968 return security_compute_sid(ssid, tsid, tclass,
1969 AVTAB_TRANSITION,
1970 qstr ? qstr->name : NULL, out_sid, true);
1971 }
1972
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1973 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1974 const char *objname, u32 *out_sid)
1975 {
1976 return security_compute_sid(ssid, tsid, tclass,
1977 AVTAB_TRANSITION,
1978 objname, out_sid, false);
1979 }
1980
1981 /**
1982 * security_member_sid - Compute the SID for member selection.
1983 * @ssid: source security identifier
1984 * @tsid: target security identifier
1985 * @tclass: target security class
1986 * @out_sid: security identifier for selected member
1987 *
1988 * Compute a SID to use when selecting a member of a polyinstantiated
1989 * object of class @tclass based on a SID pair (@ssid, @tsid).
1990 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1991 * if insufficient memory is available, or %0 if the SID was
1992 * computed successfully.
1993 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1994 int security_member_sid(u32 ssid,
1995 u32 tsid,
1996 u16 tclass,
1997 u32 *out_sid)
1998 {
1999 return security_compute_sid(ssid, tsid, tclass,
2000 AVTAB_MEMBER, NULL,
2001 out_sid, false);
2002 }
2003
2004 /**
2005 * security_change_sid - Compute the SID for object relabeling.
2006 * @ssid: source security identifier
2007 * @tsid: target security identifier
2008 * @tclass: target security class
2009 * @out_sid: security identifier for selected member
2010 *
2011 * Compute a SID to use for relabeling an object of class @tclass
2012 * based on a SID pair (@ssid, @tsid).
2013 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
2014 * if insufficient memory is available, or %0 if the SID was
2015 * computed successfully.
2016 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)2017 int security_change_sid(u32 ssid,
2018 u32 tsid,
2019 u16 tclass,
2020 u32 *out_sid)
2021 {
2022 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
2023 out_sid, false);
2024 }
2025
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)2026 static inline int convert_context_handle_invalid_context(
2027 struct policydb *policydb,
2028 struct context *context)
2029 {
2030 char *s;
2031 u32 len;
2032
2033 if (enforcing_enabled())
2034 return -EINVAL;
2035
2036 if (!context_struct_to_string(policydb, context, &s, &len)) {
2037 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2038 s);
2039 kfree(s);
2040 }
2041 return 0;
2042 }
2043
2044 /**
2045 * services_convert_context - Convert a security context across policies.
2046 * @args: populated convert_context_args struct
2047 * @oldc: original context
2048 * @newc: converted context
2049 * @gfp_flags: allocation flags
2050 *
2051 * Convert the values in the security context structure @oldc from the values
2052 * specified in the policy @args->oldp to the values specified in the policy
2053 * @args->newp, storing the new context in @newc, and verifying that the
2054 * context is valid under the new policy.
2055 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2056 int services_convert_context(struct convert_context_args *args,
2057 struct context *oldc, struct context *newc,
2058 gfp_t gfp_flags)
2059 {
2060 struct ocontext *oc;
2061 struct role_datum *role;
2062 struct type_datum *typdatum;
2063 struct user_datum *usrdatum;
2064 char *s;
2065 u32 len;
2066 int rc;
2067
2068 if (oldc->str) {
2069 s = kstrdup(oldc->str, gfp_flags);
2070 if (!s)
2071 return -ENOMEM;
2072
2073 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2074 if (rc == -EINVAL) {
2075 /*
2076 * Retain string representation for later mapping.
2077 *
2078 * IMPORTANT: We need to copy the contents of oldc->str
2079 * back into s again because string_to_context_struct()
2080 * may have garbled it.
2081 */
2082 memcpy(s, oldc->str, oldc->len);
2083 context_init(newc);
2084 newc->str = s;
2085 newc->len = oldc->len;
2086 return 0;
2087 }
2088 kfree(s);
2089 if (rc) {
2090 /* Other error condition, e.g. ENOMEM. */
2091 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2092 oldc->str, -rc);
2093 return rc;
2094 }
2095 pr_info("SELinux: Context %s became valid (mapped).\n",
2096 oldc->str);
2097 return 0;
2098 }
2099
2100 context_init(newc);
2101
2102 /* Convert the user. */
2103 usrdatum = symtab_search(&args->newp->p_users,
2104 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2105 if (!usrdatum)
2106 goto bad;
2107 newc->user = usrdatum->value;
2108
2109 /* Convert the role. */
2110 role = symtab_search(&args->newp->p_roles,
2111 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2112 if (!role)
2113 goto bad;
2114 newc->role = role->value;
2115
2116 /* Convert the type. */
2117 typdatum = symtab_search(&args->newp->p_types,
2118 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2119 if (!typdatum)
2120 goto bad;
2121 newc->type = typdatum->value;
2122
2123 /* Convert the MLS fields if dealing with MLS policies */
2124 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2125 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2126 if (rc)
2127 goto bad;
2128 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2129 /*
2130 * Switching between non-MLS and MLS policy:
2131 * ensure that the MLS fields of the context for all
2132 * existing entries in the sidtab are filled in with a
2133 * suitable default value, likely taken from one of the
2134 * initial SIDs.
2135 */
2136 oc = args->newp->ocontexts[OCON_ISID];
2137 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2138 oc = oc->next;
2139 if (!oc) {
2140 pr_err("SELinux: unable to look up"
2141 " the initial SIDs list\n");
2142 goto bad;
2143 }
2144 rc = mls_range_set(newc, &oc->context[0].range);
2145 if (rc)
2146 goto bad;
2147 }
2148
2149 /* Check the validity of the new context. */
2150 if (!policydb_context_isvalid(args->newp, newc)) {
2151 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2152 if (rc)
2153 goto bad;
2154 }
2155
2156 return 0;
2157 bad:
2158 /* Map old representation to string and save it. */
2159 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2160 if (rc)
2161 return rc;
2162 context_destroy(newc);
2163 newc->str = s;
2164 newc->len = len;
2165 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2166 newc->str);
2167 return 0;
2168 }
2169
security_load_policycaps(struct selinux_policy * policy)2170 static void security_load_policycaps(struct selinux_policy *policy)
2171 {
2172 struct policydb *p;
2173 unsigned int i;
2174 struct ebitmap_node *node;
2175
2176 p = &policy->policydb;
2177
2178 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2179 WRITE_ONCE(selinux_state.policycap[i],
2180 ebitmap_get_bit(&p->policycaps, i));
2181
2182 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2183 pr_info("SELinux: policy capability %s=%d\n",
2184 selinux_policycap_names[i],
2185 ebitmap_get_bit(&p->policycaps, i));
2186
2187 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2188 if (i >= ARRAY_SIZE(selinux_policycap_names))
2189 pr_info("SELinux: unknown policy capability %u\n",
2190 i);
2191 }
2192 }
2193
2194 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2195 struct selinux_policy *newpolicy);
2196
selinux_policy_free(struct selinux_policy * policy)2197 static void selinux_policy_free(struct selinux_policy *policy)
2198 {
2199 if (!policy)
2200 return;
2201
2202 sidtab_destroy(policy->sidtab);
2203 kfree(policy->map.mapping);
2204 policydb_destroy(&policy->policydb);
2205 kfree(policy->sidtab);
2206 kfree(policy);
2207 }
2208
selinux_policy_cond_free(struct selinux_policy * policy)2209 static void selinux_policy_cond_free(struct selinux_policy *policy)
2210 {
2211 cond_policydb_destroy_dup(&policy->policydb);
2212 kfree(policy);
2213 }
2214
selinux_policy_cancel(struct selinux_load_state * load_state)2215 void selinux_policy_cancel(struct selinux_load_state *load_state)
2216 {
2217 struct selinux_state *state = &selinux_state;
2218 struct selinux_policy *oldpolicy;
2219
2220 oldpolicy = rcu_dereference_protected(state->policy,
2221 lockdep_is_held(&state->policy_mutex));
2222
2223 sidtab_cancel_convert(oldpolicy->sidtab);
2224 selinux_policy_free(load_state->policy);
2225 kfree(load_state->convert_data);
2226 }
2227
selinux_notify_policy_change(u32 seqno)2228 static void selinux_notify_policy_change(u32 seqno)
2229 {
2230 /* Flush external caches and notify userspace of policy load */
2231 avc_ss_reset(seqno);
2232 selnl_notify_policyload(seqno);
2233 selinux_status_update_policyload(seqno);
2234 selinux_netlbl_cache_invalidate();
2235 selinux_xfrm_notify_policyload();
2236 selinux_ima_measure_state_locked();
2237 }
2238
selinux_policy_commit(struct selinux_load_state * load_state)2239 void selinux_policy_commit(struct selinux_load_state *load_state)
2240 {
2241 struct selinux_state *state = &selinux_state;
2242 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2243 unsigned long flags;
2244 u32 seqno;
2245
2246 oldpolicy = rcu_dereference_protected(state->policy,
2247 lockdep_is_held(&state->policy_mutex));
2248
2249 /* If switching between different policy types, log MLS status */
2250 if (oldpolicy) {
2251 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2252 pr_info("SELinux: Disabling MLS support...\n");
2253 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2254 pr_info("SELinux: Enabling MLS support...\n");
2255 }
2256
2257 /* Set latest granting seqno for new policy. */
2258 if (oldpolicy)
2259 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2260 else
2261 newpolicy->latest_granting = 1;
2262 seqno = newpolicy->latest_granting;
2263
2264 /* Install the new policy. */
2265 if (oldpolicy) {
2266 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2267 rcu_assign_pointer(state->policy, newpolicy);
2268 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2269 } else {
2270 rcu_assign_pointer(state->policy, newpolicy);
2271 }
2272
2273 /* Load the policycaps from the new policy */
2274 security_load_policycaps(newpolicy);
2275
2276 if (!selinux_initialized()) {
2277 /*
2278 * After first policy load, the security server is
2279 * marked as initialized and ready to handle requests and
2280 * any objects created prior to policy load are then labeled.
2281 */
2282 selinux_mark_initialized();
2283 selinux_complete_init();
2284 }
2285
2286 /* Free the old policy */
2287 synchronize_rcu();
2288 selinux_policy_free(oldpolicy);
2289 kfree(load_state->convert_data);
2290
2291 /* Notify others of the policy change */
2292 selinux_notify_policy_change(seqno);
2293 }
2294
2295 /**
2296 * security_load_policy - Load a security policy configuration.
2297 * @data: binary policy data
2298 * @len: length of data in bytes
2299 * @load_state: policy load state
2300 *
2301 * Load a new set of security policy configuration data,
2302 * validate it and convert the SID table as necessary.
2303 * This function will flush the access vector cache after
2304 * loading the new policy.
2305 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2306 int security_load_policy(void *data, size_t len,
2307 struct selinux_load_state *load_state)
2308 {
2309 struct selinux_state *state = &selinux_state;
2310 struct selinux_policy *newpolicy, *oldpolicy;
2311 struct selinux_policy_convert_data *convert_data;
2312 int rc = 0;
2313 struct policy_file file = { data, len }, *fp = &file;
2314
2315 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2316 if (!newpolicy)
2317 return -ENOMEM;
2318
2319 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2320 if (!newpolicy->sidtab) {
2321 rc = -ENOMEM;
2322 goto err_policy;
2323 }
2324
2325 rc = policydb_read(&newpolicy->policydb, fp);
2326 if (rc)
2327 goto err_sidtab;
2328
2329 newpolicy->policydb.len = len;
2330 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2331 &newpolicy->map);
2332 if (rc)
2333 goto err_policydb;
2334
2335 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2336 if (rc) {
2337 pr_err("SELinux: unable to load the initial SIDs\n");
2338 goto err_mapping;
2339 }
2340
2341 if (!selinux_initialized()) {
2342 /* First policy load, so no need to preserve state from old policy */
2343 load_state->policy = newpolicy;
2344 load_state->convert_data = NULL;
2345 return 0;
2346 }
2347
2348 oldpolicy = rcu_dereference_protected(state->policy,
2349 lockdep_is_held(&state->policy_mutex));
2350
2351 /* Preserve active boolean values from the old policy */
2352 rc = security_preserve_bools(oldpolicy, newpolicy);
2353 if (rc) {
2354 pr_err("SELinux: unable to preserve booleans\n");
2355 goto err_free_isids;
2356 }
2357
2358 /*
2359 * Convert the internal representations of contexts
2360 * in the new SID table.
2361 */
2362
2363 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2364 if (!convert_data) {
2365 rc = -ENOMEM;
2366 goto err_free_isids;
2367 }
2368
2369 convert_data->args.oldp = &oldpolicy->policydb;
2370 convert_data->args.newp = &newpolicy->policydb;
2371
2372 convert_data->sidtab_params.args = &convert_data->args;
2373 convert_data->sidtab_params.target = newpolicy->sidtab;
2374
2375 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2376 if (rc) {
2377 pr_err("SELinux: unable to convert the internal"
2378 " representation of contexts in the new SID"
2379 " table\n");
2380 goto err_free_convert_data;
2381 }
2382
2383 load_state->policy = newpolicy;
2384 load_state->convert_data = convert_data;
2385 return 0;
2386
2387 err_free_convert_data:
2388 kfree(convert_data);
2389 err_free_isids:
2390 sidtab_destroy(newpolicy->sidtab);
2391 err_mapping:
2392 kfree(newpolicy->map.mapping);
2393 err_policydb:
2394 policydb_destroy(&newpolicy->policydb);
2395 err_sidtab:
2396 kfree(newpolicy->sidtab);
2397 err_policy:
2398 kfree(newpolicy);
2399
2400 return rc;
2401 }
2402
2403 /**
2404 * ocontext_to_sid - Helper to safely get sid for an ocontext
2405 * @sidtab: SID table
2406 * @c: ocontext structure
2407 * @index: index of the context entry (0 or 1)
2408 * @out_sid: pointer to the resulting SID value
2409 *
2410 * For all ocontexts except OCON_ISID the SID fields are populated
2411 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2412 * operation, this helper must be used to do that safely.
2413 *
2414 * WARNING: This function may return -ESTALE, indicating that the caller
2415 * must retry the operation after re-acquiring the policy pointer!
2416 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2417 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2418 size_t index, u32 *out_sid)
2419 {
2420 int rc;
2421 u32 sid;
2422
2423 /* Ensure the associated sidtab entry is visible to this thread. */
2424 sid = smp_load_acquire(&c->sid[index]);
2425 if (!sid) {
2426 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2427 if (rc)
2428 return rc;
2429
2430 /*
2431 * Ensure the new sidtab entry is visible to other threads
2432 * when they see the SID.
2433 */
2434 smp_store_release(&c->sid[index], sid);
2435 }
2436 *out_sid = sid;
2437 return 0;
2438 }
2439
2440 /**
2441 * security_port_sid - Obtain the SID for a port.
2442 * @protocol: protocol number
2443 * @port: port number
2444 * @out_sid: security identifier
2445 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2446 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2447 {
2448 struct selinux_policy *policy;
2449 struct policydb *policydb;
2450 struct sidtab *sidtab;
2451 struct ocontext *c;
2452 int rc;
2453
2454 if (!selinux_initialized()) {
2455 *out_sid = SECINITSID_PORT;
2456 return 0;
2457 }
2458
2459 retry:
2460 rc = 0;
2461 rcu_read_lock();
2462 policy = rcu_dereference(selinux_state.policy);
2463 policydb = &policy->policydb;
2464 sidtab = policy->sidtab;
2465
2466 c = policydb->ocontexts[OCON_PORT];
2467 while (c) {
2468 if (c->u.port.protocol == protocol &&
2469 c->u.port.low_port <= port &&
2470 c->u.port.high_port >= port)
2471 break;
2472 c = c->next;
2473 }
2474
2475 if (c) {
2476 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2477 if (rc == -ESTALE) {
2478 rcu_read_unlock();
2479 goto retry;
2480 }
2481 if (rc)
2482 goto out;
2483 } else {
2484 *out_sid = SECINITSID_PORT;
2485 }
2486
2487 out:
2488 rcu_read_unlock();
2489 return rc;
2490 }
2491
2492 /**
2493 * security_ib_pkey_sid - Obtain the SID for a pkey.
2494 * @subnet_prefix: Subnet Prefix
2495 * @pkey_num: pkey number
2496 * @out_sid: security identifier
2497 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2498 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2499 {
2500 struct selinux_policy *policy;
2501 struct policydb *policydb;
2502 struct sidtab *sidtab;
2503 struct ocontext *c;
2504 int rc;
2505
2506 if (!selinux_initialized()) {
2507 *out_sid = SECINITSID_UNLABELED;
2508 return 0;
2509 }
2510
2511 retry:
2512 rc = 0;
2513 rcu_read_lock();
2514 policy = rcu_dereference(selinux_state.policy);
2515 policydb = &policy->policydb;
2516 sidtab = policy->sidtab;
2517
2518 c = policydb->ocontexts[OCON_IBPKEY];
2519 while (c) {
2520 if (c->u.ibpkey.low_pkey <= pkey_num &&
2521 c->u.ibpkey.high_pkey >= pkey_num &&
2522 c->u.ibpkey.subnet_prefix == subnet_prefix)
2523 break;
2524
2525 c = c->next;
2526 }
2527
2528 if (c) {
2529 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2530 if (rc == -ESTALE) {
2531 rcu_read_unlock();
2532 goto retry;
2533 }
2534 if (rc)
2535 goto out;
2536 } else
2537 *out_sid = SECINITSID_UNLABELED;
2538
2539 out:
2540 rcu_read_unlock();
2541 return rc;
2542 }
2543
2544 /**
2545 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2546 * @dev_name: device name
2547 * @port_num: port number
2548 * @out_sid: security identifier
2549 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2550 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2551 {
2552 struct selinux_policy *policy;
2553 struct policydb *policydb;
2554 struct sidtab *sidtab;
2555 struct ocontext *c;
2556 int rc;
2557
2558 if (!selinux_initialized()) {
2559 *out_sid = SECINITSID_UNLABELED;
2560 return 0;
2561 }
2562
2563 retry:
2564 rc = 0;
2565 rcu_read_lock();
2566 policy = rcu_dereference(selinux_state.policy);
2567 policydb = &policy->policydb;
2568 sidtab = policy->sidtab;
2569
2570 c = policydb->ocontexts[OCON_IBENDPORT];
2571 while (c) {
2572 if (c->u.ibendport.port == port_num &&
2573 !strncmp(c->u.ibendport.dev_name,
2574 dev_name,
2575 IB_DEVICE_NAME_MAX))
2576 break;
2577
2578 c = c->next;
2579 }
2580
2581 if (c) {
2582 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2583 if (rc == -ESTALE) {
2584 rcu_read_unlock();
2585 goto retry;
2586 }
2587 if (rc)
2588 goto out;
2589 } else
2590 *out_sid = SECINITSID_UNLABELED;
2591
2592 out:
2593 rcu_read_unlock();
2594 return rc;
2595 }
2596
2597 /**
2598 * security_netif_sid - Obtain the SID for a network interface.
2599 * @name: interface name
2600 * @if_sid: interface SID
2601 */
security_netif_sid(const char * name,u32 * if_sid)2602 int security_netif_sid(const char *name, u32 *if_sid)
2603 {
2604 struct selinux_policy *policy;
2605 struct policydb *policydb;
2606 struct sidtab *sidtab;
2607 int rc;
2608 struct ocontext *c;
2609 bool wildcard_support;
2610
2611 if (!selinux_initialized()) {
2612 *if_sid = SECINITSID_NETIF;
2613 return 0;
2614 }
2615
2616 retry:
2617 rc = 0;
2618 rcu_read_lock();
2619 policy = rcu_dereference(selinux_state.policy);
2620 policydb = &policy->policydb;
2621 sidtab = policy->sidtab;
2622 wildcard_support = ebitmap_get_bit(&policydb->policycaps, POLICYDB_CAP_NETIF_WILDCARD);
2623
2624 c = policydb->ocontexts[OCON_NETIF];
2625 while (c) {
2626 if (wildcard_support) {
2627 if (match_wildcard(c->u.name, name))
2628 break;
2629 } else {
2630 if (strcmp(c->u.name, name) == 0)
2631 break;
2632 }
2633
2634 c = c->next;
2635 }
2636
2637 if (c) {
2638 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2639 if (rc == -ESTALE) {
2640 rcu_read_unlock();
2641 goto retry;
2642 }
2643 if (rc)
2644 goto out;
2645 } else
2646 *if_sid = SECINITSID_NETIF;
2647
2648 out:
2649 rcu_read_unlock();
2650 return rc;
2651 }
2652
match_ipv6_addrmask(const u32 input[4],const u32 addr[4],const u32 mask[4])2653 static bool match_ipv6_addrmask(const u32 input[4], const u32 addr[4], const u32 mask[4])
2654 {
2655 int i;
2656
2657 for (i = 0; i < 4; i++)
2658 if (addr[i] != (input[i] & mask[i]))
2659 return false;
2660
2661 return true;
2662 }
2663
2664 /**
2665 * security_node_sid - Obtain the SID for a node (host).
2666 * @domain: communication domain aka address family
2667 * @addrp: address
2668 * @addrlen: address length in bytes
2669 * @out_sid: security identifier
2670 */
security_node_sid(u16 domain,const void * addrp,u32 addrlen,u32 * out_sid)2671 int security_node_sid(u16 domain,
2672 const void *addrp,
2673 u32 addrlen,
2674 u32 *out_sid)
2675 {
2676 struct selinux_policy *policy;
2677 struct policydb *policydb;
2678 struct sidtab *sidtab;
2679 int rc;
2680 struct ocontext *c;
2681
2682 if (!selinux_initialized()) {
2683 *out_sid = SECINITSID_NODE;
2684 return 0;
2685 }
2686
2687 retry:
2688 rcu_read_lock();
2689 policy = rcu_dereference(selinux_state.policy);
2690 policydb = &policy->policydb;
2691 sidtab = policy->sidtab;
2692
2693 switch (domain) {
2694 case AF_INET: {
2695 u32 addr;
2696
2697 rc = -EINVAL;
2698 if (addrlen != sizeof(u32))
2699 goto out;
2700
2701 addr = *((const u32 *)addrp);
2702
2703 c = policydb->ocontexts[OCON_NODE];
2704 while (c) {
2705 if (c->u.node.addr == (addr & c->u.node.mask))
2706 break;
2707 c = c->next;
2708 }
2709 break;
2710 }
2711
2712 case AF_INET6:
2713 rc = -EINVAL;
2714 if (addrlen != sizeof(u64) * 2)
2715 goto out;
2716 c = policydb->ocontexts[OCON_NODE6];
2717 while (c) {
2718 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2719 c->u.node6.mask))
2720 break;
2721 c = c->next;
2722 }
2723 break;
2724
2725 default:
2726 rc = 0;
2727 *out_sid = SECINITSID_NODE;
2728 goto out;
2729 }
2730
2731 if (c) {
2732 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2733 if (rc == -ESTALE) {
2734 rcu_read_unlock();
2735 goto retry;
2736 }
2737 if (rc)
2738 goto out;
2739 } else {
2740 *out_sid = SECINITSID_NODE;
2741 }
2742
2743 rc = 0;
2744 out:
2745 rcu_read_unlock();
2746 return rc;
2747 }
2748
2749 #define SIDS_NEL 25
2750
2751 /**
2752 * security_get_user_sids - Obtain reachable SIDs for a user.
2753 * @fromsid: starting SID
2754 * @username: username
2755 * @sids: array of reachable SIDs for user
2756 * @nel: number of elements in @sids
2757 *
2758 * Generate the set of SIDs for legal security contexts
2759 * for a given user that can be reached by @fromsid.
2760 * Set *@sids to point to a dynamically allocated
2761 * array containing the set of SIDs. Set *@nel to the
2762 * number of elements in the array.
2763 */
2764
security_get_user_sids(u32 fromsid,const char * username,u32 ** sids,u32 * nel)2765 int security_get_user_sids(u32 fromsid,
2766 const char *username,
2767 u32 **sids,
2768 u32 *nel)
2769 {
2770 struct selinux_policy *policy;
2771 struct policydb *policydb;
2772 struct sidtab *sidtab;
2773 struct context *fromcon, usercon;
2774 u32 *mysids = NULL, *mysids2, sid;
2775 u32 i, j, mynel, maxnel = SIDS_NEL;
2776 struct user_datum *user;
2777 struct role_datum *role;
2778 struct ebitmap_node *rnode, *tnode;
2779 int rc;
2780
2781 *sids = NULL;
2782 *nel = 0;
2783
2784 if (!selinux_initialized())
2785 return 0;
2786
2787 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2788 if (!mysids)
2789 return -ENOMEM;
2790
2791 retry:
2792 mynel = 0;
2793 rcu_read_lock();
2794 policy = rcu_dereference(selinux_state.policy);
2795 policydb = &policy->policydb;
2796 sidtab = policy->sidtab;
2797
2798 context_init(&usercon);
2799
2800 rc = -EINVAL;
2801 fromcon = sidtab_search(sidtab, fromsid);
2802 if (!fromcon)
2803 goto out_unlock;
2804
2805 rc = -EINVAL;
2806 user = symtab_search(&policydb->p_users, username);
2807 if (!user)
2808 goto out_unlock;
2809
2810 usercon.user = user->value;
2811
2812 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2813 role = policydb->role_val_to_struct[i];
2814 usercon.role = i + 1;
2815 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2816 usercon.type = j + 1;
2817
2818 if (mls_setup_user_range(policydb, fromcon, user,
2819 &usercon))
2820 continue;
2821
2822 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2823 if (rc == -ESTALE) {
2824 rcu_read_unlock();
2825 goto retry;
2826 }
2827 if (rc)
2828 goto out_unlock;
2829 if (mynel < maxnel) {
2830 mysids[mynel++] = sid;
2831 } else {
2832 rc = -ENOMEM;
2833 maxnel += SIDS_NEL;
2834 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2835 if (!mysids2)
2836 goto out_unlock;
2837 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2838 kfree(mysids);
2839 mysids = mysids2;
2840 mysids[mynel++] = sid;
2841 }
2842 }
2843 }
2844 rc = 0;
2845 out_unlock:
2846 rcu_read_unlock();
2847 if (rc || !mynel) {
2848 kfree(mysids);
2849 return rc;
2850 }
2851
2852 rc = -ENOMEM;
2853 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2854 if (!mysids2) {
2855 kfree(mysids);
2856 return rc;
2857 }
2858 for (i = 0, j = 0; i < mynel; i++) {
2859 struct av_decision dummy_avd;
2860 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2861 SECCLASS_PROCESS, /* kernel value */
2862 PROCESS__TRANSITION, AVC_STRICT,
2863 &dummy_avd);
2864 if (!rc)
2865 mysids2[j++] = mysids[i];
2866 cond_resched();
2867 }
2868 kfree(mysids);
2869 *sids = mysids2;
2870 *nel = j;
2871 return 0;
2872 }
2873
2874 /**
2875 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2876 * @policy: policy
2877 * @fstype: filesystem type
2878 * @path: path from root of mount
2879 * @orig_sclass: file security class
2880 * @sid: SID for path
2881 *
2882 * Obtain a SID to use for a file in a filesystem that
2883 * cannot support xattr or use a fixed labeling behavior like
2884 * transition SIDs or task SIDs.
2885 *
2886 * WARNING: This function may return -ESTALE, indicating that the caller
2887 * must retry the operation after re-acquiring the policy pointer!
2888 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2889 static inline int __security_genfs_sid(struct selinux_policy *policy,
2890 const char *fstype,
2891 const char *path,
2892 u16 orig_sclass,
2893 u32 *sid)
2894 {
2895 struct policydb *policydb = &policy->policydb;
2896 struct sidtab *sidtab = policy->sidtab;
2897 u16 sclass;
2898 struct genfs *genfs;
2899 struct ocontext *c;
2900 int cmp = 0;
2901 bool wildcard;
2902
2903 while (path[0] == '/' && path[1] == '/')
2904 path++;
2905
2906 sclass = unmap_class(&policy->map, orig_sclass);
2907 *sid = SECINITSID_UNLABELED;
2908
2909 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2910 cmp = strcmp(fstype, genfs->fstype);
2911 if (cmp <= 0)
2912 break;
2913 }
2914
2915 if (!genfs || cmp)
2916 return -ENOENT;
2917
2918 wildcard = ebitmap_get_bit(&policy->policydb.policycaps,
2919 POLICYDB_CAP_GENFS_SECLABEL_WILDCARD);
2920 for (c = genfs->head; c; c = c->next) {
2921 if (!c->v.sclass || sclass == c->v.sclass) {
2922 if (wildcard) {
2923 if (match_wildcard(c->u.name, path))
2924 break;
2925 } else {
2926 size_t len = strlen(c->u.name);
2927
2928 if ((strncmp(c->u.name, path, len)) == 0)
2929 break;
2930 }
2931 }
2932 }
2933
2934 if (!c)
2935 return -ENOENT;
2936
2937 return ocontext_to_sid(sidtab, c, 0, sid);
2938 }
2939
2940 /**
2941 * security_genfs_sid - Obtain a SID for a file in a filesystem
2942 * @fstype: filesystem type
2943 * @path: path from root of mount
2944 * @orig_sclass: file security class
2945 * @sid: SID for path
2946 *
2947 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2948 * it afterward.
2949 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2950 int security_genfs_sid(const char *fstype,
2951 const char *path,
2952 u16 orig_sclass,
2953 u32 *sid)
2954 {
2955 struct selinux_policy *policy;
2956 int retval;
2957
2958 if (!selinux_initialized()) {
2959 *sid = SECINITSID_UNLABELED;
2960 return 0;
2961 }
2962
2963 do {
2964 rcu_read_lock();
2965 policy = rcu_dereference(selinux_state.policy);
2966 retval = __security_genfs_sid(policy, fstype, path,
2967 orig_sclass, sid);
2968 rcu_read_unlock();
2969 } while (retval == -ESTALE);
2970 return retval;
2971 }
2972
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2973 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2974 const char *fstype,
2975 const char *path,
2976 u16 orig_sclass,
2977 u32 *sid)
2978 {
2979 /* no lock required, policy is not yet accessible by other threads */
2980 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2981 }
2982
2983 /**
2984 * security_fs_use - Determine how to handle labeling for a filesystem.
2985 * @sb: superblock in question
2986 */
security_fs_use(struct super_block * sb)2987 int security_fs_use(struct super_block *sb)
2988 {
2989 struct selinux_policy *policy;
2990 struct policydb *policydb;
2991 struct sidtab *sidtab;
2992 int rc;
2993 struct ocontext *c;
2994 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2995 const char *fstype = sb->s_type->name;
2996
2997 if (!selinux_initialized()) {
2998 sbsec->behavior = SECURITY_FS_USE_NONE;
2999 sbsec->sid = SECINITSID_UNLABELED;
3000 return 0;
3001 }
3002
3003 retry:
3004 rcu_read_lock();
3005 policy = rcu_dereference(selinux_state.policy);
3006 policydb = &policy->policydb;
3007 sidtab = policy->sidtab;
3008
3009 c = policydb->ocontexts[OCON_FSUSE];
3010 while (c) {
3011 if (strcmp(fstype, c->u.name) == 0)
3012 break;
3013 c = c->next;
3014 }
3015
3016 if (c) {
3017 sbsec->behavior = c->v.behavior;
3018 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3019 if (rc == -ESTALE) {
3020 rcu_read_unlock();
3021 goto retry;
3022 }
3023 if (rc)
3024 goto out;
3025 } else {
3026 rc = __security_genfs_sid(policy, fstype, "/",
3027 SECCLASS_DIR, &sbsec->sid);
3028 if (rc == -ESTALE) {
3029 rcu_read_unlock();
3030 goto retry;
3031 }
3032 if (rc) {
3033 sbsec->behavior = SECURITY_FS_USE_NONE;
3034 rc = 0;
3035 } else {
3036 sbsec->behavior = SECURITY_FS_USE_GENFS;
3037 }
3038 }
3039
3040 out:
3041 rcu_read_unlock();
3042 return rc;
3043 }
3044
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3045 int security_get_bools(struct selinux_policy *policy,
3046 u32 *len, char ***names, int **values)
3047 {
3048 struct policydb *policydb;
3049 u32 i;
3050 int rc;
3051
3052 policydb = &policy->policydb;
3053
3054 *names = NULL;
3055 *values = NULL;
3056
3057 rc = 0;
3058 *len = policydb->p_bools.nprim;
3059 if (!*len)
3060 goto out;
3061
3062 rc = -ENOMEM;
3063 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3064 if (!*names)
3065 goto err;
3066
3067 rc = -ENOMEM;
3068 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3069 if (!*values)
3070 goto err;
3071
3072 for (i = 0; i < *len; i++) {
3073 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3074
3075 rc = -ENOMEM;
3076 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3077 GFP_ATOMIC);
3078 if (!(*names)[i])
3079 goto err;
3080 }
3081 rc = 0;
3082 out:
3083 return rc;
3084 err:
3085 if (*names) {
3086 for (i = 0; i < *len; i++)
3087 kfree((*names)[i]);
3088 kfree(*names);
3089 }
3090 kfree(*values);
3091 *len = 0;
3092 *names = NULL;
3093 *values = NULL;
3094 goto out;
3095 }
3096
3097
security_set_bools(u32 len,const int * values)3098 int security_set_bools(u32 len, const int *values)
3099 {
3100 struct selinux_state *state = &selinux_state;
3101 struct selinux_policy *newpolicy, *oldpolicy;
3102 int rc;
3103 u32 i, seqno = 0;
3104
3105 if (!selinux_initialized())
3106 return -EINVAL;
3107
3108 oldpolicy = rcu_dereference_protected(state->policy,
3109 lockdep_is_held(&state->policy_mutex));
3110
3111 /* Consistency check on number of booleans, should never fail */
3112 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3113 return -EINVAL;
3114
3115 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3116 if (!newpolicy)
3117 return -ENOMEM;
3118
3119 /*
3120 * Deep copy only the parts of the policydb that might be
3121 * modified as a result of changing booleans.
3122 */
3123 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3124 if (rc) {
3125 kfree(newpolicy);
3126 return -ENOMEM;
3127 }
3128
3129 /* Update the boolean states in the copy */
3130 for (i = 0; i < len; i++) {
3131 int new_state = !!values[i];
3132 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3133
3134 if (new_state != old_state) {
3135 audit_log(audit_context(), GFP_ATOMIC,
3136 AUDIT_MAC_CONFIG_CHANGE,
3137 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3138 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3139 new_state,
3140 old_state,
3141 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3142 audit_get_sessionid(current));
3143 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3144 }
3145 }
3146
3147 /* Re-evaluate the conditional rules in the copy */
3148 evaluate_cond_nodes(&newpolicy->policydb);
3149
3150 /* Set latest granting seqno for new policy */
3151 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3152 seqno = newpolicy->latest_granting;
3153
3154 /* Install the new policy */
3155 rcu_assign_pointer(state->policy, newpolicy);
3156
3157 /*
3158 * Free the conditional portions of the old policydb
3159 * that were copied for the new policy, and the oldpolicy
3160 * structure itself but not what it references.
3161 */
3162 synchronize_rcu();
3163 selinux_policy_cond_free(oldpolicy);
3164
3165 /* Notify others of the policy change */
3166 selinux_notify_policy_change(seqno);
3167 return 0;
3168 }
3169
security_get_bool_value(u32 index)3170 int security_get_bool_value(u32 index)
3171 {
3172 struct selinux_policy *policy;
3173 struct policydb *policydb;
3174 int rc;
3175 u32 len;
3176
3177 if (!selinux_initialized())
3178 return 0;
3179
3180 rcu_read_lock();
3181 policy = rcu_dereference(selinux_state.policy);
3182 policydb = &policy->policydb;
3183
3184 rc = -EFAULT;
3185 len = policydb->p_bools.nprim;
3186 if (index >= len)
3187 goto out;
3188
3189 rc = policydb->bool_val_to_struct[index]->state;
3190 out:
3191 rcu_read_unlock();
3192 return rc;
3193 }
3194
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3195 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3196 struct selinux_policy *newpolicy)
3197 {
3198 int rc, *bvalues = NULL;
3199 char **bnames = NULL;
3200 struct cond_bool_datum *booldatum;
3201 u32 i, nbools = 0;
3202
3203 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3204 if (rc)
3205 goto out;
3206 for (i = 0; i < nbools; i++) {
3207 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3208 bnames[i]);
3209 if (booldatum)
3210 booldatum->state = bvalues[i];
3211 }
3212 evaluate_cond_nodes(&newpolicy->policydb);
3213
3214 out:
3215 if (bnames) {
3216 for (i = 0; i < nbools; i++)
3217 kfree(bnames[i]);
3218 }
3219 kfree(bnames);
3220 kfree(bvalues);
3221 return rc;
3222 }
3223
3224 /*
3225 * security_sid_mls_copy() - computes a new sid based on the given
3226 * sid and the mls portion of mls_sid.
3227 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3228 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3229 {
3230 struct selinux_policy *policy;
3231 struct policydb *policydb;
3232 struct sidtab *sidtab;
3233 struct context *context1;
3234 struct context *context2;
3235 struct context newcon;
3236 char *s;
3237 u32 len;
3238 int rc;
3239
3240 if (!selinux_initialized()) {
3241 *new_sid = sid;
3242 return 0;
3243 }
3244
3245 retry:
3246 rc = 0;
3247 context_init(&newcon);
3248
3249 rcu_read_lock();
3250 policy = rcu_dereference(selinux_state.policy);
3251 policydb = &policy->policydb;
3252 sidtab = policy->sidtab;
3253
3254 if (!policydb->mls_enabled) {
3255 *new_sid = sid;
3256 goto out_unlock;
3257 }
3258
3259 rc = -EINVAL;
3260 context1 = sidtab_search(sidtab, sid);
3261 if (!context1) {
3262 pr_err("SELinux: %s: unrecognized SID %d\n",
3263 __func__, sid);
3264 goto out_unlock;
3265 }
3266
3267 rc = -EINVAL;
3268 context2 = sidtab_search(sidtab, mls_sid);
3269 if (!context2) {
3270 pr_err("SELinux: %s: unrecognized SID %d\n",
3271 __func__, mls_sid);
3272 goto out_unlock;
3273 }
3274
3275 newcon.user = context1->user;
3276 newcon.role = context1->role;
3277 newcon.type = context1->type;
3278 rc = mls_context_cpy(&newcon, context2);
3279 if (rc)
3280 goto out_unlock;
3281
3282 /* Check the validity of the new context. */
3283 if (!policydb_context_isvalid(policydb, &newcon)) {
3284 rc = convert_context_handle_invalid_context(policydb,
3285 &newcon);
3286 if (rc) {
3287 if (!context_struct_to_string(policydb, &newcon, &s,
3288 &len)) {
3289 struct audit_buffer *ab;
3290
3291 ab = audit_log_start(audit_context(),
3292 GFP_ATOMIC,
3293 AUDIT_SELINUX_ERR);
3294 audit_log_format(ab,
3295 "op=security_sid_mls_copy invalid_context=");
3296 /* don't record NUL with untrusted strings */
3297 audit_log_n_untrustedstring(ab, s, len - 1);
3298 audit_log_end(ab);
3299 kfree(s);
3300 }
3301 goto out_unlock;
3302 }
3303 }
3304 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3305 if (rc == -ESTALE) {
3306 rcu_read_unlock();
3307 context_destroy(&newcon);
3308 goto retry;
3309 }
3310 out_unlock:
3311 rcu_read_unlock();
3312 context_destroy(&newcon);
3313 return rc;
3314 }
3315
3316 /**
3317 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3318 * @nlbl_sid: NetLabel SID
3319 * @nlbl_type: NetLabel labeling protocol type
3320 * @xfrm_sid: XFRM SID
3321 * @peer_sid: network peer sid
3322 *
3323 * Description:
3324 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3325 * resolved into a single SID it is returned via @peer_sid and the function
3326 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3327 * returns a negative value. A table summarizing the behavior is below:
3328 *
3329 * | function return | @sid
3330 * ------------------------------+-----------------+-----------------
3331 * no peer labels | 0 | SECSID_NULL
3332 * single peer label | 0 | <peer_label>
3333 * multiple, consistent labels | 0 | <peer_label>
3334 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3335 *
3336 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3337 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3338 u32 xfrm_sid,
3339 u32 *peer_sid)
3340 {
3341 struct selinux_policy *policy;
3342 struct policydb *policydb;
3343 struct sidtab *sidtab;
3344 int rc;
3345 struct context *nlbl_ctx;
3346 struct context *xfrm_ctx;
3347
3348 *peer_sid = SECSID_NULL;
3349
3350 /* handle the common (which also happens to be the set of easy) cases
3351 * right away, these two if statements catch everything involving a
3352 * single or absent peer SID/label */
3353 if (xfrm_sid == SECSID_NULL) {
3354 *peer_sid = nlbl_sid;
3355 return 0;
3356 }
3357 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3358 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3359 * is present */
3360 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3361 *peer_sid = xfrm_sid;
3362 return 0;
3363 }
3364
3365 if (!selinux_initialized())
3366 return 0;
3367
3368 rcu_read_lock();
3369 policy = rcu_dereference(selinux_state.policy);
3370 policydb = &policy->policydb;
3371 sidtab = policy->sidtab;
3372
3373 /*
3374 * We don't need to check initialized here since the only way both
3375 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3376 * security server was initialized and state->initialized was true.
3377 */
3378 if (!policydb->mls_enabled) {
3379 rc = 0;
3380 goto out;
3381 }
3382
3383 rc = -EINVAL;
3384 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3385 if (!nlbl_ctx) {
3386 pr_err("SELinux: %s: unrecognized SID %d\n",
3387 __func__, nlbl_sid);
3388 goto out;
3389 }
3390 rc = -EINVAL;
3391 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3392 if (!xfrm_ctx) {
3393 pr_err("SELinux: %s: unrecognized SID %d\n",
3394 __func__, xfrm_sid);
3395 goto out;
3396 }
3397 rc = (mls_context_equal(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3398 if (rc)
3399 goto out;
3400
3401 /* at present NetLabel SIDs/labels really only carry MLS
3402 * information so if the MLS portion of the NetLabel SID
3403 * matches the MLS portion of the labeled XFRM SID/label
3404 * then pass along the XFRM SID as it is the most
3405 * expressive */
3406 *peer_sid = xfrm_sid;
3407 out:
3408 rcu_read_unlock();
3409 return rc;
3410 }
3411
get_classes_callback(void * k,void * d,void * args)3412 static int get_classes_callback(void *k, void *d, void *args)
3413 {
3414 struct class_datum *datum = d;
3415 char *name = k, **classes = args;
3416 u32 value = datum->value - 1;
3417
3418 classes[value] = kstrdup(name, GFP_ATOMIC);
3419 if (!classes[value])
3420 return -ENOMEM;
3421
3422 return 0;
3423 }
3424
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3425 int security_get_classes(struct selinux_policy *policy,
3426 char ***classes, u32 *nclasses)
3427 {
3428 struct policydb *policydb;
3429 int rc;
3430
3431 policydb = &policy->policydb;
3432
3433 rc = -ENOMEM;
3434 *nclasses = policydb->p_classes.nprim;
3435 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3436 if (!*classes)
3437 goto out;
3438
3439 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3440 *classes);
3441 if (rc) {
3442 u32 i;
3443
3444 for (i = 0; i < *nclasses; i++)
3445 kfree((*classes)[i]);
3446 kfree(*classes);
3447 }
3448
3449 out:
3450 return rc;
3451 }
3452
get_permissions_callback(void * k,void * d,void * args)3453 static int get_permissions_callback(void *k, void *d, void *args)
3454 {
3455 struct perm_datum *datum = d;
3456 char *name = k, **perms = args;
3457 u32 value = datum->value - 1;
3458
3459 perms[value] = kstrdup(name, GFP_ATOMIC);
3460 if (!perms[value])
3461 return -ENOMEM;
3462
3463 return 0;
3464 }
3465
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3466 int security_get_permissions(struct selinux_policy *policy,
3467 const char *class, char ***perms, u32 *nperms)
3468 {
3469 struct policydb *policydb;
3470 u32 i;
3471 int rc;
3472 struct class_datum *match;
3473
3474 policydb = &policy->policydb;
3475
3476 rc = -EINVAL;
3477 match = symtab_search(&policydb->p_classes, class);
3478 if (!match) {
3479 pr_err("SELinux: %s: unrecognized class %s\n",
3480 __func__, class);
3481 goto out;
3482 }
3483
3484 rc = -ENOMEM;
3485 *nperms = match->permissions.nprim;
3486 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3487 if (!*perms)
3488 goto out;
3489
3490 if (match->comdatum) {
3491 rc = hashtab_map(&match->comdatum->permissions.table,
3492 get_permissions_callback, *perms);
3493 if (rc)
3494 goto err;
3495 }
3496
3497 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3498 *perms);
3499 if (rc)
3500 goto err;
3501
3502 out:
3503 return rc;
3504
3505 err:
3506 for (i = 0; i < *nperms; i++)
3507 kfree((*perms)[i]);
3508 kfree(*perms);
3509 return rc;
3510 }
3511
security_get_reject_unknown(void)3512 int security_get_reject_unknown(void)
3513 {
3514 struct selinux_policy *policy;
3515 int value;
3516
3517 if (!selinux_initialized())
3518 return 0;
3519
3520 rcu_read_lock();
3521 policy = rcu_dereference(selinux_state.policy);
3522 value = policy->policydb.reject_unknown;
3523 rcu_read_unlock();
3524 return value;
3525 }
3526
security_get_allow_unknown(void)3527 int security_get_allow_unknown(void)
3528 {
3529 struct selinux_policy *policy;
3530 int value;
3531
3532 if (!selinux_initialized())
3533 return 0;
3534
3535 rcu_read_lock();
3536 policy = rcu_dereference(selinux_state.policy);
3537 value = policy->policydb.allow_unknown;
3538 rcu_read_unlock();
3539 return value;
3540 }
3541
3542 /**
3543 * security_policycap_supported - Check for a specific policy capability
3544 * @req_cap: capability
3545 *
3546 * Description:
3547 * This function queries the currently loaded policy to see if it supports the
3548 * capability specified by @req_cap. Returns true (1) if the capability is
3549 * supported, false (0) if it isn't supported.
3550 *
3551 */
security_policycap_supported(unsigned int req_cap)3552 int security_policycap_supported(unsigned int req_cap)
3553 {
3554 struct selinux_policy *policy;
3555 int rc;
3556
3557 if (!selinux_initialized())
3558 return 0;
3559
3560 rcu_read_lock();
3561 policy = rcu_dereference(selinux_state.policy);
3562 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3563 rcu_read_unlock();
3564
3565 return rc;
3566 }
3567
3568 struct selinux_audit_rule {
3569 u32 au_seqno;
3570 struct context au_ctxt;
3571 };
3572
selinux_audit_rule_free(void * vrule)3573 void selinux_audit_rule_free(void *vrule)
3574 {
3575 struct selinux_audit_rule *rule = vrule;
3576
3577 if (rule) {
3578 context_destroy(&rule->au_ctxt);
3579 kfree(rule);
3580 }
3581 }
3582
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3583 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3584 gfp_t gfp)
3585 {
3586 struct selinux_state *state = &selinux_state;
3587 struct selinux_policy *policy;
3588 struct policydb *policydb;
3589 struct selinux_audit_rule *tmprule;
3590 struct role_datum *roledatum;
3591 struct type_datum *typedatum;
3592 struct user_datum *userdatum;
3593 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3594 int rc = 0;
3595
3596 *rule = NULL;
3597
3598 if (!selinux_initialized())
3599 return -EOPNOTSUPP;
3600
3601 switch (field) {
3602 case AUDIT_SUBJ_USER:
3603 case AUDIT_SUBJ_ROLE:
3604 case AUDIT_SUBJ_TYPE:
3605 case AUDIT_OBJ_USER:
3606 case AUDIT_OBJ_ROLE:
3607 case AUDIT_OBJ_TYPE:
3608 /* only 'equals' and 'not equals' fit user, role, and type */
3609 if (op != Audit_equal && op != Audit_not_equal)
3610 return -EINVAL;
3611 break;
3612 case AUDIT_SUBJ_SEN:
3613 case AUDIT_SUBJ_CLR:
3614 case AUDIT_OBJ_LEV_LOW:
3615 case AUDIT_OBJ_LEV_HIGH:
3616 /* we do not allow a range, indicated by the presence of '-' */
3617 if (strchr(rulestr, '-'))
3618 return -EINVAL;
3619 break;
3620 default:
3621 /* only the above fields are valid */
3622 return -EINVAL;
3623 }
3624
3625 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3626 if (!tmprule)
3627 return -ENOMEM;
3628 context_init(&tmprule->au_ctxt);
3629
3630 rcu_read_lock();
3631 policy = rcu_dereference(state->policy);
3632 policydb = &policy->policydb;
3633 tmprule->au_seqno = policy->latest_granting;
3634 switch (field) {
3635 case AUDIT_SUBJ_USER:
3636 case AUDIT_OBJ_USER:
3637 userdatum = symtab_search(&policydb->p_users, rulestr);
3638 if (!userdatum) {
3639 rc = -EINVAL;
3640 goto err;
3641 }
3642 tmprule->au_ctxt.user = userdatum->value;
3643 break;
3644 case AUDIT_SUBJ_ROLE:
3645 case AUDIT_OBJ_ROLE:
3646 roledatum = symtab_search(&policydb->p_roles, rulestr);
3647 if (!roledatum) {
3648 rc = -EINVAL;
3649 goto err;
3650 }
3651 tmprule->au_ctxt.role = roledatum->value;
3652 break;
3653 case AUDIT_SUBJ_TYPE:
3654 case AUDIT_OBJ_TYPE:
3655 typedatum = symtab_search(&policydb->p_types, rulestr);
3656 if (!typedatum) {
3657 rc = -EINVAL;
3658 goto err;
3659 }
3660 tmprule->au_ctxt.type = typedatum->value;
3661 break;
3662 case AUDIT_SUBJ_SEN:
3663 case AUDIT_SUBJ_CLR:
3664 case AUDIT_OBJ_LEV_LOW:
3665 case AUDIT_OBJ_LEV_HIGH:
3666 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3667 GFP_ATOMIC);
3668 if (rc)
3669 goto err;
3670 break;
3671 }
3672 rcu_read_unlock();
3673
3674 *rule = tmprule;
3675 return 0;
3676
3677 err:
3678 rcu_read_unlock();
3679 selinux_audit_rule_free(tmprule);
3680 *rule = NULL;
3681 return rc;
3682 }
3683
3684 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3685 int selinux_audit_rule_known(struct audit_krule *rule)
3686 {
3687 u32 i;
3688
3689 for (i = 0; i < rule->field_count; i++) {
3690 struct audit_field *f = &rule->fields[i];
3691 switch (f->type) {
3692 case AUDIT_SUBJ_USER:
3693 case AUDIT_SUBJ_ROLE:
3694 case AUDIT_SUBJ_TYPE:
3695 case AUDIT_SUBJ_SEN:
3696 case AUDIT_SUBJ_CLR:
3697 case AUDIT_OBJ_USER:
3698 case AUDIT_OBJ_ROLE:
3699 case AUDIT_OBJ_TYPE:
3700 case AUDIT_OBJ_LEV_LOW:
3701 case AUDIT_OBJ_LEV_HIGH:
3702 return 1;
3703 }
3704 }
3705
3706 return 0;
3707 }
3708
selinux_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * vrule)3709 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3710 {
3711 struct selinux_state *state = &selinux_state;
3712 struct selinux_policy *policy;
3713 struct context *ctxt;
3714 struct mls_level *level;
3715 struct selinux_audit_rule *rule = vrule;
3716 int match = 0;
3717
3718 if (unlikely(!rule)) {
3719 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3720 return -ENOENT;
3721 }
3722
3723 if (!selinux_initialized())
3724 return 0;
3725
3726 rcu_read_lock();
3727
3728 policy = rcu_dereference(state->policy);
3729
3730 if (rule->au_seqno < policy->latest_granting) {
3731 match = -ESTALE;
3732 goto out;
3733 }
3734
3735 ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3736 if (unlikely(!ctxt)) {
3737 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3738 prop->selinux.secid);
3739 match = -ENOENT;
3740 goto out;
3741 }
3742
3743 /* a field/op pair that is not caught here will simply fall through
3744 without a match */
3745 switch (field) {
3746 case AUDIT_SUBJ_USER:
3747 case AUDIT_OBJ_USER:
3748 switch (op) {
3749 case Audit_equal:
3750 match = (ctxt->user == rule->au_ctxt.user);
3751 break;
3752 case Audit_not_equal:
3753 match = (ctxt->user != rule->au_ctxt.user);
3754 break;
3755 }
3756 break;
3757 case AUDIT_SUBJ_ROLE:
3758 case AUDIT_OBJ_ROLE:
3759 switch (op) {
3760 case Audit_equal:
3761 match = (ctxt->role == rule->au_ctxt.role);
3762 break;
3763 case Audit_not_equal:
3764 match = (ctxt->role != rule->au_ctxt.role);
3765 break;
3766 }
3767 break;
3768 case AUDIT_SUBJ_TYPE:
3769 case AUDIT_OBJ_TYPE:
3770 switch (op) {
3771 case Audit_equal:
3772 match = (ctxt->type == rule->au_ctxt.type);
3773 break;
3774 case Audit_not_equal:
3775 match = (ctxt->type != rule->au_ctxt.type);
3776 break;
3777 }
3778 break;
3779 case AUDIT_SUBJ_SEN:
3780 case AUDIT_SUBJ_CLR:
3781 case AUDIT_OBJ_LEV_LOW:
3782 case AUDIT_OBJ_LEV_HIGH:
3783 level = ((field == AUDIT_SUBJ_SEN ||
3784 field == AUDIT_OBJ_LEV_LOW) ?
3785 &ctxt->range.level[0] : &ctxt->range.level[1]);
3786 switch (op) {
3787 case Audit_equal:
3788 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3789 level);
3790 break;
3791 case Audit_not_equal:
3792 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3793 level);
3794 break;
3795 case Audit_lt:
3796 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3797 level) &&
3798 !mls_level_eq(&rule->au_ctxt.range.level[0],
3799 level));
3800 break;
3801 case Audit_le:
3802 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3803 level);
3804 break;
3805 case Audit_gt:
3806 match = (mls_level_dom(level,
3807 &rule->au_ctxt.range.level[0]) &&
3808 !mls_level_eq(level,
3809 &rule->au_ctxt.range.level[0]));
3810 break;
3811 case Audit_ge:
3812 match = mls_level_dom(level,
3813 &rule->au_ctxt.range.level[0]);
3814 break;
3815 }
3816 }
3817
3818 out:
3819 rcu_read_unlock();
3820 return match;
3821 }
3822
aurule_avc_callback(u32 event)3823 static int aurule_avc_callback(u32 event)
3824 {
3825 if (event == AVC_CALLBACK_RESET)
3826 return audit_update_lsm_rules();
3827 return 0;
3828 }
3829
aurule_init(void)3830 static int __init aurule_init(void)
3831 {
3832 int err;
3833
3834 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3835 if (err)
3836 panic("avc_add_callback() failed, error %d\n", err);
3837
3838 return err;
3839 }
3840 __initcall(aurule_init);
3841
3842 #ifdef CONFIG_NETLABEL
3843 /**
3844 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3845 * @secattr: the NetLabel packet security attributes
3846 * @sid: the SELinux SID
3847 *
3848 * Description:
3849 * Attempt to cache the context in @ctx, which was derived from the packet in
3850 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3851 * already been initialized.
3852 *
3853 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3854 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3855 u32 sid)
3856 {
3857 u32 *sid_cache;
3858
3859 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3860 if (sid_cache == NULL)
3861 return;
3862 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3863 if (secattr->cache == NULL) {
3864 kfree(sid_cache);
3865 return;
3866 }
3867
3868 *sid_cache = sid;
3869 secattr->cache->free = kfree;
3870 secattr->cache->data = sid_cache;
3871 secattr->flags |= NETLBL_SECATTR_CACHE;
3872 }
3873
3874 /**
3875 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3876 * @secattr: the NetLabel packet security attributes
3877 * @sid: the SELinux SID
3878 *
3879 * Description:
3880 * Convert the given NetLabel security attributes in @secattr into a
3881 * SELinux SID. If the @secattr field does not contain a full SELinux
3882 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3883 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3884 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3885 * conversion for future lookups. Returns zero on success, negative values on
3886 * failure.
3887 *
3888 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3889 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3890 u32 *sid)
3891 {
3892 struct selinux_policy *policy;
3893 struct policydb *policydb;
3894 struct sidtab *sidtab;
3895 int rc;
3896 struct context *ctx;
3897 struct context ctx_new;
3898
3899 if (!selinux_initialized()) {
3900 *sid = SECSID_NULL;
3901 return 0;
3902 }
3903
3904 retry:
3905 rc = 0;
3906 rcu_read_lock();
3907 policy = rcu_dereference(selinux_state.policy);
3908 policydb = &policy->policydb;
3909 sidtab = policy->sidtab;
3910
3911 if (secattr->flags & NETLBL_SECATTR_CACHE)
3912 *sid = *(u32 *)secattr->cache->data;
3913 else if (secattr->flags & NETLBL_SECATTR_SECID)
3914 *sid = secattr->attr.secid;
3915 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3916 rc = -EIDRM;
3917 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3918 if (ctx == NULL)
3919 goto out;
3920
3921 context_init(&ctx_new);
3922 ctx_new.user = ctx->user;
3923 ctx_new.role = ctx->role;
3924 ctx_new.type = ctx->type;
3925 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3926 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3927 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3928 if (rc)
3929 goto out;
3930 }
3931 rc = -EIDRM;
3932 if (!mls_context_isvalid(policydb, &ctx_new)) {
3933 ebitmap_destroy(&ctx_new.range.level[0].cat);
3934 goto out;
3935 }
3936
3937 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3938 ebitmap_destroy(&ctx_new.range.level[0].cat);
3939 if (rc == -ESTALE) {
3940 rcu_read_unlock();
3941 goto retry;
3942 }
3943 if (rc)
3944 goto out;
3945
3946 security_netlbl_cache_add(secattr, *sid);
3947 } else
3948 *sid = SECSID_NULL;
3949
3950 out:
3951 rcu_read_unlock();
3952 return rc;
3953 }
3954
3955 /**
3956 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3957 * @sid: the SELinux SID
3958 * @secattr: the NetLabel packet security attributes
3959 *
3960 * Description:
3961 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3962 * Returns zero on success, negative values on failure.
3963 *
3964 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3965 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3966 {
3967 struct selinux_policy *policy;
3968 struct policydb *policydb;
3969 int rc;
3970 struct context *ctx;
3971
3972 if (!selinux_initialized())
3973 return 0;
3974
3975 rcu_read_lock();
3976 policy = rcu_dereference(selinux_state.policy);
3977 policydb = &policy->policydb;
3978
3979 rc = -ENOENT;
3980 ctx = sidtab_search(policy->sidtab, sid);
3981 if (ctx == NULL)
3982 goto out;
3983
3984 rc = -ENOMEM;
3985 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3986 GFP_ATOMIC);
3987 if (secattr->domain == NULL)
3988 goto out;
3989
3990 secattr->attr.secid = sid;
3991 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3992 mls_export_netlbl_lvl(policydb, ctx, secattr);
3993 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3994 out:
3995 rcu_read_unlock();
3996 return rc;
3997 }
3998 #endif /* CONFIG_NETLABEL */
3999
4000 /**
4001 * __security_read_policy - read the policy.
4002 * @policy: SELinux policy
4003 * @data: binary policy data
4004 * @len: length of data in bytes
4005 *
4006 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)4007 static int __security_read_policy(struct selinux_policy *policy,
4008 void *data, size_t *len)
4009 {
4010 int rc;
4011 struct policy_file fp;
4012
4013 fp.data = data;
4014 fp.len = *len;
4015
4016 rc = policydb_write(&policy->policydb, &fp);
4017 if (rc)
4018 return rc;
4019
4020 *len = (unsigned long)fp.data - (unsigned long)data;
4021 return 0;
4022 }
4023
4024 /**
4025 * security_read_policy - read the policy.
4026 * @data: binary policy data
4027 * @len: length of data in bytes
4028 *
4029 */
security_read_policy(void ** data,size_t * len)4030 int security_read_policy(void **data, size_t *len)
4031 {
4032 struct selinux_state *state = &selinux_state;
4033 struct selinux_policy *policy;
4034
4035 policy = rcu_dereference_protected(
4036 state->policy, lockdep_is_held(&state->policy_mutex));
4037 if (!policy)
4038 return -EINVAL;
4039
4040 *len = policy->policydb.len;
4041 *data = vmalloc_user(*len);
4042 if (!*data)
4043 return -ENOMEM;
4044
4045 return __security_read_policy(policy, *data, len);
4046 }
4047
4048 /**
4049 * security_read_state_kernel - read the policy.
4050 * @data: binary policy data
4051 * @len: length of data in bytes
4052 *
4053 * Allocates kernel memory for reading SELinux policy.
4054 * This function is for internal use only and should not
4055 * be used for returning data to user space.
4056 *
4057 * This function must be called with policy_mutex held.
4058 */
security_read_state_kernel(void ** data,size_t * len)4059 int security_read_state_kernel(void **data, size_t *len)
4060 {
4061 int err;
4062 struct selinux_state *state = &selinux_state;
4063 struct selinux_policy *policy;
4064
4065 policy = rcu_dereference_protected(
4066 state->policy, lockdep_is_held(&state->policy_mutex));
4067 if (!policy)
4068 return -EINVAL;
4069
4070 *len = policy->policydb.len;
4071 *data = vmalloc(*len);
4072 if (!*data)
4073 return -ENOMEM;
4074
4075 err = __security_read_policy(policy, *data, len);
4076 if (err) {
4077 vfree(*data);
4078 *data = NULL;
4079 *len = 0;
4080 }
4081 return err;
4082 }
4083