1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48
49 /*
50 * Maximum number of blkcg policies allowed to be registered concurrently.
51 * Defined here to simplify include dependency.
52 */
53 #define BLKCG_MAX_POLS 6
54
55 #define DISK_MAX_PARTS 256
56 #define DISK_NAME_LEN 32
57
58 #define PARTITION_META_INFO_VOLNAMELTH 64
59 /*
60 * Enough for the string representation of any kind of UUID plus NULL.
61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62 */
63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
64
65 struct partition_meta_info {
66 char uuid[PARTITION_META_INFO_UUIDLTH];
67 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69
70 /**
71 * DOC: genhd capability flags
72 *
73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74 * removable media. When set, the device remains present even when media is not
75 * inserted. Shall not be set for devices which are removed entirely when the
76 * media is removed.
77 *
78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79 * doesn't appear in sysfs, and can't be opened from userspace or using
80 * blkdev_get*. Used for the underlying components of multipath devices.
81 *
82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
83 * scan for partitions from add_disk, and users can't add partitions manually.
84 *
85 */
86 enum {
87 GENHD_FL_REMOVABLE = 1 << 0,
88 GENHD_FL_HIDDEN = 1 << 1,
89 GENHD_FL_NO_PART = 1 << 2,
90 };
91
92 enum {
93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
95 };
96
97 enum {
98 /* Poll even if events_poll_msecs is unset */
99 DISK_EVENT_FLAG_POLL = 1 << 0,
100 /* Forward events to udev */
101 DISK_EVENT_FLAG_UEVENT = 1 << 1,
102 /* Block event polling when open for exclusive write */
103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
104 };
105
106 struct disk_events;
107 struct badblocks;
108
109 enum blk_integrity_checksum {
110 BLK_INTEGRITY_CSUM_NONE = 0,
111 BLK_INTEGRITY_CSUM_IP = 1,
112 BLK_INTEGRITY_CSUM_CRC = 2,
113 BLK_INTEGRITY_CSUM_CRC64 = 3,
114 } __packed ;
115
116 struct blk_integrity {
117 unsigned char flags;
118 enum blk_integrity_checksum csum_type;
119 unsigned char metadata_size;
120 unsigned char pi_offset;
121 unsigned char interval_exp;
122 unsigned char tag_size;
123 unsigned char pi_tuple_size;
124 };
125
126 typedef unsigned int __bitwise blk_mode_t;
127
128 /* open for reading */
129 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
130 /* open for writing */
131 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
132 /* open exclusively (vs other exclusive openers */
133 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
134 /* opened with O_NDELAY */
135 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
136 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
137 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
138 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
139 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
140 /* return partition scanning errors */
141 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
142
143 struct gendisk {
144 /*
145 * major/first_minor/minors should not be set by any new driver, the
146 * block core will take care of allocating them automatically.
147 */
148 int major;
149 int first_minor;
150 int minors;
151
152 char disk_name[DISK_NAME_LEN]; /* name of major driver */
153
154 unsigned short events; /* supported events */
155 unsigned short event_flags; /* flags related to event processing */
156
157 struct xarray part_tbl;
158 struct block_device *part0;
159
160 const struct block_device_operations *fops;
161 struct request_queue *queue;
162 void *private_data;
163
164 struct bio_set bio_split;
165
166 int flags;
167 unsigned long state;
168 #define GD_NEED_PART_SCAN 0
169 #define GD_READ_ONLY 1
170 #define GD_DEAD 2
171 #define GD_NATIVE_CAPACITY 3
172 #define GD_ADDED 4
173 #define GD_SUPPRESS_PART_SCAN 5
174 #define GD_OWNS_QUEUE 6
175
176 struct mutex open_mutex; /* open/close mutex */
177 unsigned open_partitions; /* number of open partitions */
178
179 struct backing_dev_info *bdi;
180 struct kobject queue_kobj; /* the queue/ directory */
181 struct kobject *slave_dir;
182 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
183 struct list_head slave_bdevs;
184 #endif
185 struct timer_rand_state *random;
186 struct disk_events *ev;
187
188 #ifdef CONFIG_BLK_DEV_ZONED
189 /*
190 * Zoned block device information. Reads of this information must be
191 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 * information is only allowed while no requests are being processed.
193 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 */
195 unsigned int nr_zones;
196 unsigned int zone_capacity;
197 unsigned int last_zone_capacity;
198 unsigned long __rcu *conv_zones_bitmap;
199 unsigned int zone_wplugs_hash_bits;
200 atomic_t nr_zone_wplugs;
201 spinlock_t zone_wplugs_lock;
202 struct mempool_s *zone_wplugs_pool;
203 struct hlist_head *zone_wplugs_hash;
204 struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206
207 #if IS_ENABLED(CONFIG_CDROM)
208 struct cdrom_device_info *cdi;
209 #endif
210 int node_id;
211 struct badblocks *bb;
212 struct lockdep_map lockdep_map;
213 u64 diskseq;
214 blk_mode_t open_mode;
215
216 /*
217 * Independent sector access ranges. This is always NULL for
218 * devices that do not have multiple independent access ranges.
219 */
220 struct blk_independent_access_ranges *ia_ranges;
221
222 struct mutex rqos_state_mutex; /* rqos state change mutex */
223 };
224
225 /**
226 * disk_openers - returns how many openers are there for a disk
227 * @disk: disk to check
228 *
229 * This returns the number of openers for a disk. Note that this value is only
230 * stable if disk->open_mutex is held.
231 *
232 * Note: Due to a quirk in the block layer open code, each open partition is
233 * only counted once even if there are multiple openers.
234 */
disk_openers(struct gendisk * disk)235 static inline unsigned int disk_openers(struct gendisk *disk)
236 {
237 return atomic_read(&disk->part0->bd_openers);
238 }
239
240 /**
241 * disk_has_partscan - return %true if partition scanning is enabled on a disk
242 * @disk: disk to check
243 *
244 * Returns %true if partitions scanning is enabled for @disk, or %false if
245 * partition scanning is disabled either permanently or temporarily.
246 */
disk_has_partscan(struct gendisk * disk)247 static inline bool disk_has_partscan(struct gendisk *disk)
248 {
249 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
250 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
251 }
252
253 /*
254 * The gendisk is refcounted by the part0 block_device, and the bd_device
255 * therein is also used for device model presentation in sysfs.
256 */
257 #define dev_to_disk(device) \
258 (dev_to_bdev(device)->bd_disk)
259 #define disk_to_dev(disk) \
260 (&((disk)->part0->bd_device))
261
262 #if IS_REACHABLE(CONFIG_CDROM)
263 #define disk_to_cdi(disk) ((disk)->cdi)
264 #else
265 #define disk_to_cdi(disk) NULL
266 #endif
267
disk_devt(struct gendisk * disk)268 static inline dev_t disk_devt(struct gendisk *disk)
269 {
270 return MKDEV(disk->major, disk->first_minor);
271 }
272
273 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
274 /*
275 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
276 * however we constrain this to what we can validate and test.
277 */
278 #define BLK_MAX_BLOCK_SIZE SZ_64K
279 #else
280 #define BLK_MAX_BLOCK_SIZE PAGE_SIZE
281 #endif
282
283
284 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)285 static inline int blk_validate_block_size(unsigned long bsize)
286 {
287 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
288 return -EINVAL;
289
290 return 0;
291 }
292
blk_op_is_passthrough(blk_opf_t op)293 static inline bool blk_op_is_passthrough(blk_opf_t op)
294 {
295 op &= REQ_OP_MASK;
296 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
297 }
298
299 /* flags set by the driver in queue_limits.features */
300 typedef unsigned int __bitwise blk_features_t;
301
302 /* supports a volatile write cache */
303 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
304
305 /* supports passing on the FUA bit */
306 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
307
308 /* rotational device (hard drive or floppy) */
309 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
310
311 /* contributes to the random number pool */
312 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
313
314 /* do disk/partitions IO accounting */
315 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
316
317 /* don't modify data until writeback is done */
318 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
319
320 /* always completes in submit context */
321 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
322
323 /* supports REQ_NOWAIT */
324 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
325
326 /* supports DAX */
327 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
328
329 /* supports I/O polling */
330 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
331
332 /* is a zoned device */
333 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
334
335 /* supports PCI(e) p2p requests */
336 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
337
338 /* skip this queue in blk_mq_(un)quiesce_tagset */
339 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
340
341 /* undocumented magic for bcache */
342 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
343 ((__force blk_features_t)(1u << 15))
344
345 /* atomic writes enabled */
346 #define BLK_FEAT_ATOMIC_WRITES \
347 ((__force blk_features_t)(1u << 16))
348
349 /*
350 * Flags automatically inherited when stacking limits.
351 */
352 #define BLK_FEAT_INHERIT_MASK \
353 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
354 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \
355 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
356
357 /* internal flags in queue_limits.flags */
358 typedef unsigned int __bitwise blk_flags_t;
359
360 /* do not send FLUSH/FUA commands despite advertising a write cache */
361 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
362
363 /* I/O topology is misaligned */
364 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
365
366 /* passthrough command IO accounting */
367 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2))
368
369 struct queue_limits {
370 blk_features_t features;
371 blk_flags_t flags;
372 unsigned long seg_boundary_mask;
373 unsigned long virt_boundary_mask;
374
375 unsigned int max_hw_sectors;
376 unsigned int max_dev_sectors;
377 unsigned int chunk_sectors;
378 unsigned int max_sectors;
379 unsigned int max_user_sectors;
380 unsigned int max_segment_size;
381 unsigned int min_segment_size;
382 unsigned int physical_block_size;
383 unsigned int logical_block_size;
384 unsigned int alignment_offset;
385 unsigned int io_min;
386 unsigned int io_opt;
387 unsigned int max_discard_sectors;
388 unsigned int max_hw_discard_sectors;
389 unsigned int max_user_discard_sectors;
390 unsigned int max_secure_erase_sectors;
391 unsigned int max_write_zeroes_sectors;
392 unsigned int max_wzeroes_unmap_sectors;
393 unsigned int max_hw_wzeroes_unmap_sectors;
394 unsigned int max_user_wzeroes_unmap_sectors;
395 unsigned int max_hw_zone_append_sectors;
396 unsigned int max_zone_append_sectors;
397 unsigned int discard_granularity;
398 unsigned int discard_alignment;
399 unsigned int zone_write_granularity;
400
401 /* atomic write limits */
402 unsigned int atomic_write_hw_max;
403 unsigned int atomic_write_max_sectors;
404 unsigned int atomic_write_hw_boundary;
405 unsigned int atomic_write_boundary_sectors;
406 unsigned int atomic_write_hw_unit_min;
407 unsigned int atomic_write_unit_min;
408 unsigned int atomic_write_hw_unit_max;
409 unsigned int atomic_write_unit_max;
410
411 unsigned short max_segments;
412 unsigned short max_integrity_segments;
413 unsigned short max_discard_segments;
414
415 unsigned short max_write_streams;
416 unsigned int write_stream_granularity;
417
418 unsigned int max_open_zones;
419 unsigned int max_active_zones;
420
421 /*
422 * Drivers that set dma_alignment to less than 511 must be prepared to
423 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
424 * due to possible offsets.
425 */
426 unsigned int dma_alignment;
427 unsigned int dma_pad_mask;
428
429 struct blk_integrity integrity;
430 };
431
432 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
433 void *data);
434
435 #define BLK_ALL_ZONES ((unsigned int)-1)
436 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
437 unsigned int nr_zones, report_zones_cb cb, void *data);
438 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
439 sector_t sectors, sector_t nr_sectors);
440 int blk_revalidate_disk_zones(struct gendisk *disk);
441
442 /*
443 * Independent access ranges: struct blk_independent_access_range describes
444 * a range of contiguous sectors that can be accessed using device command
445 * execution resources that are independent from the resources used for
446 * other access ranges. This is typically found with single-LUN multi-actuator
447 * HDDs where each access range is served by a different set of heads.
448 * The set of independent ranges supported by the device is defined using
449 * struct blk_independent_access_ranges. The independent ranges must not overlap
450 * and must include all sectors within the disk capacity (no sector holes
451 * allowed).
452 * For a device with multiple ranges, requests targeting sectors in different
453 * ranges can be executed in parallel. A request can straddle an access range
454 * boundary.
455 */
456 struct blk_independent_access_range {
457 struct kobject kobj;
458 sector_t sector;
459 sector_t nr_sectors;
460 };
461
462 struct blk_independent_access_ranges {
463 struct kobject kobj;
464 bool sysfs_registered;
465 unsigned int nr_ia_ranges;
466 struct blk_independent_access_range ia_range[];
467 };
468
469 struct request_queue {
470 /*
471 * The queue owner gets to use this for whatever they like.
472 * ll_rw_blk doesn't touch it.
473 */
474 void *queuedata;
475
476 struct elevator_queue *elevator;
477
478 const struct blk_mq_ops *mq_ops;
479
480 /* sw queues */
481 struct blk_mq_ctx __percpu *queue_ctx;
482
483 /*
484 * various queue flags, see QUEUE_* below
485 */
486 unsigned long queue_flags;
487
488 unsigned int rq_timeout;
489
490 unsigned int queue_depth;
491
492 refcount_t refs;
493
494 /* hw dispatch queues */
495 unsigned int nr_hw_queues;
496 struct xarray hctx_table;
497
498 struct percpu_ref q_usage_counter;
499 struct lock_class_key io_lock_cls_key;
500 struct lockdep_map io_lockdep_map;
501
502 struct lock_class_key q_lock_cls_key;
503 struct lockdep_map q_lockdep_map;
504
505 struct request *last_merge;
506
507 spinlock_t queue_lock;
508
509 int quiesce_depth;
510
511 struct gendisk *disk;
512
513 /*
514 * mq queue kobject
515 */
516 struct kobject *mq_kobj;
517
518 struct queue_limits limits;
519
520 #ifdef CONFIG_PM
521 struct device *dev;
522 enum rpm_status rpm_status;
523 #endif
524
525 /*
526 * Number of contexts that have called blk_set_pm_only(). If this
527 * counter is above zero then only RQF_PM requests are processed.
528 */
529 atomic_t pm_only;
530
531 struct blk_queue_stats *stats;
532 struct rq_qos *rq_qos;
533 struct mutex rq_qos_mutex;
534
535 /*
536 * ida allocated id for this queue. Used to index queues from
537 * ioctx.
538 */
539 int id;
540
541 /*
542 * queue settings
543 */
544 unsigned long nr_requests; /* Max # of requests */
545
546 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
547 struct blk_crypto_profile *crypto_profile;
548 struct kobject *crypto_kobject;
549 #endif
550
551 struct timer_list timeout;
552 struct work_struct timeout_work;
553
554 atomic_t nr_active_requests_shared_tags;
555
556 struct blk_mq_tags *sched_shared_tags;
557
558 struct list_head icq_list;
559 #ifdef CONFIG_BLK_CGROUP
560 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
561 struct blkcg_gq *root_blkg;
562 struct list_head blkg_list;
563 struct mutex blkcg_mutex;
564 #endif
565
566 int node;
567
568 spinlock_t requeue_lock;
569 struct list_head requeue_list;
570 struct delayed_work requeue_work;
571
572 #ifdef CONFIG_BLK_DEV_IO_TRACE
573 struct blk_trace __rcu *blk_trace;
574 #endif
575 /*
576 * for flush operations
577 */
578 struct blk_flush_queue *fq;
579 struct list_head flush_list;
580
581 /*
582 * Protects against I/O scheduler switching, particularly when updating
583 * q->elevator. Since the elevator update code path may also modify q->
584 * nr_requests and wbt latency, this lock also protects the sysfs attrs
585 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update
586 * may modify hctx tags, reserved-tags and cpumask, so this lock also
587 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking
588 * order during an elevator or nr_hw_queue update, first freeze the
589 * queue, then acquire ->elevator_lock.
590 */
591 struct mutex elevator_lock;
592
593 struct mutex sysfs_lock;
594 /*
595 * Protects queue limits and also sysfs attribute read_ahead_kb.
596 */
597 struct mutex limits_lock;
598
599 /*
600 * for reusing dead hctx instance in case of updating
601 * nr_hw_queues
602 */
603 struct list_head unused_hctx_list;
604 spinlock_t unused_hctx_lock;
605
606 int mq_freeze_depth;
607
608 #ifdef CONFIG_BLK_DEV_THROTTLING
609 /* Throttle data */
610 struct throtl_data *td;
611 #endif
612 struct rcu_head rcu_head;
613 #ifdef CONFIG_LOCKDEP
614 struct task_struct *mq_freeze_owner;
615 int mq_freeze_owner_depth;
616 /*
617 * Records disk & queue state in current context, used in unfreeze
618 * queue
619 */
620 bool mq_freeze_disk_dead;
621 bool mq_freeze_queue_dying;
622 #endif
623 wait_queue_head_t mq_freeze_wq;
624 /*
625 * Protect concurrent access to q_usage_counter by
626 * percpu_ref_kill() and percpu_ref_reinit().
627 */
628 struct mutex mq_freeze_lock;
629
630 struct blk_mq_tag_set *tag_set;
631 struct list_head tag_set_list;
632
633 struct dentry *debugfs_dir;
634 struct dentry *sched_debugfs_dir;
635 struct dentry *rqos_debugfs_dir;
636 /*
637 * Serializes all debugfs metadata operations using the above dentries.
638 */
639 struct mutex debugfs_mutex;
640 };
641
642 /* Keep blk_queue_flag_name[] in sync with the definitions below */
643 enum {
644 QUEUE_FLAG_DYING, /* queue being torn down */
645 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
646 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
647 QUEUE_FLAG_FAIL_IO, /* fake timeout */
648 QUEUE_FLAG_NOXMERGES, /* No extended merges */
649 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
650 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
651 QUEUE_FLAG_STATS, /* track IO start and completion times */
652 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
653 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
654 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
655 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
656 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
657 QUEUE_FLAG_DISABLE_WBT_DEF, /* for sched to disable/enable wbt */
658 QUEUE_FLAG_NO_ELV_SWITCH, /* can't switch elevator any more */
659 QUEUE_FLAG_MAX
660 };
661
662 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
663
664 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
665 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
666
667 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
668 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
669 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
670 #define blk_queue_noxmerges(q) \
671 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
672 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
673 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
674 #define blk_queue_passthrough_stat(q) \
675 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
676 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
677 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
678 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
679 #define blk_queue_rq_alloc_time(q) \
680 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
681 #else
682 #define blk_queue_rq_alloc_time(q) false
683 #endif
684
685 #define blk_noretry_request(rq) \
686 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
687 REQ_FAILFAST_DRIVER))
688 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
689 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
690 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
691 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
692 #define blk_queue_skip_tagset_quiesce(q) \
693 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
694 #define blk_queue_disable_wbt(q) \
695 test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags)
696 #define blk_queue_no_elv_switch(q) \
697 test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags)
698
699 extern void blk_set_pm_only(struct request_queue *q);
700 extern void blk_clear_pm_only(struct request_queue *q);
701
702 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
703
704 #define dma_map_bvec(dev, bv, dir, attrs) \
705 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
706 (dir), (attrs))
707
queue_is_mq(struct request_queue * q)708 static inline bool queue_is_mq(struct request_queue *q)
709 {
710 return q->mq_ops;
711 }
712
713 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)714 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
715 {
716 return q->rpm_status;
717 }
718 #else
queue_rpm_status(struct request_queue * q)719 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
720 {
721 return RPM_ACTIVE;
722 }
723 #endif
724
blk_queue_is_zoned(struct request_queue * q)725 static inline bool blk_queue_is_zoned(struct request_queue *q)
726 {
727 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
728 (q->limits.features & BLK_FEAT_ZONED);
729 }
730
disk_zone_no(struct gendisk * disk,sector_t sector)731 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
732 {
733 if (!blk_queue_is_zoned(disk->queue))
734 return 0;
735 return sector >> ilog2(disk->queue->limits.chunk_sectors);
736 }
737
bdev_max_open_zones(struct block_device * bdev)738 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
739 {
740 return bdev->bd_disk->queue->limits.max_open_zones;
741 }
742
bdev_max_active_zones(struct block_device * bdev)743 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
744 {
745 return bdev->bd_disk->queue->limits.max_active_zones;
746 }
747
blk_queue_depth(struct request_queue * q)748 static inline unsigned int blk_queue_depth(struct request_queue *q)
749 {
750 if (q->queue_depth)
751 return q->queue_depth;
752
753 return q->nr_requests;
754 }
755
756 /*
757 * default timeout for SG_IO if none specified
758 */
759 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
760 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
761
762 /* This should not be used directly - use rq_for_each_segment */
763 #define for_each_bio(_bio) \
764 for (; _bio; _bio = _bio->bi_next)
765
766 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
767 const struct attribute_group **groups,
768 struct fwnode_handle *fwnode);
769 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
770 const struct attribute_group **groups);
add_disk(struct gendisk * disk)771 static inline int __must_check add_disk(struct gendisk *disk)
772 {
773 return device_add_disk(NULL, disk, NULL);
774 }
775 void del_gendisk(struct gendisk *gp);
776 void invalidate_disk(struct gendisk *disk);
777 void set_disk_ro(struct gendisk *disk, bool read_only);
778 void disk_uevent(struct gendisk *disk, enum kobject_action action);
779
bdev_partno(const struct block_device * bdev)780 static inline u8 bdev_partno(const struct block_device *bdev)
781 {
782 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
783 }
784
bdev_test_flag(const struct block_device * bdev,unsigned flag)785 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
786 {
787 return atomic_read(&bdev->__bd_flags) & flag;
788 }
789
bdev_set_flag(struct block_device * bdev,unsigned flag)790 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
791 {
792 atomic_or(flag, &bdev->__bd_flags);
793 }
794
bdev_clear_flag(struct block_device * bdev,unsigned flag)795 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
796 {
797 atomic_andnot(flag, &bdev->__bd_flags);
798 }
799
get_disk_ro(struct gendisk * disk)800 static inline bool get_disk_ro(struct gendisk *disk)
801 {
802 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
803 test_bit(GD_READ_ONLY, &disk->state);
804 }
805
bdev_read_only(struct block_device * bdev)806 static inline bool bdev_read_only(struct block_device *bdev)
807 {
808 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
809 }
810
811 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
812 void disk_force_media_change(struct gendisk *disk);
813 void bdev_mark_dead(struct block_device *bdev, bool surprise);
814
815 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
816 void rand_initialize_disk(struct gendisk *disk);
817
get_start_sect(struct block_device * bdev)818 static inline sector_t get_start_sect(struct block_device *bdev)
819 {
820 return bdev->bd_start_sect;
821 }
822
bdev_nr_sectors(struct block_device * bdev)823 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
824 {
825 return bdev->bd_nr_sectors;
826 }
827
bdev_nr_bytes(struct block_device * bdev)828 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
829 {
830 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
831 }
832
get_capacity(struct gendisk * disk)833 static inline sector_t get_capacity(struct gendisk *disk)
834 {
835 return bdev_nr_sectors(disk->part0);
836 }
837
sb_bdev_nr_blocks(struct super_block * sb)838 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
839 {
840 return bdev_nr_sectors(sb->s_bdev) >>
841 (sb->s_blocksize_bits - SECTOR_SHIFT);
842 }
843
844 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)845 static inline unsigned int disk_nr_zones(struct gendisk *disk)
846 {
847 return disk->nr_zones;
848 }
849
850 /**
851 * bio_needs_zone_write_plugging - Check if a BIO needs to be handled with zone
852 * write plugging
853 * @bio: The BIO being submitted
854 *
855 * Return true whenever @bio execution needs to be handled through zone
856 * write plugging (using blk_zone_plug_bio()). Return false otherwise.
857 */
bio_needs_zone_write_plugging(struct bio * bio)858 static inline bool bio_needs_zone_write_plugging(struct bio *bio)
859 {
860 enum req_op op = bio_op(bio);
861
862 /*
863 * Only zoned block devices have a zone write plug hash table. But not
864 * all of them have one (e.g. DM devices may not need one).
865 */
866 if (!bio->bi_bdev->bd_disk->zone_wplugs_hash)
867 return false;
868
869 /* Only write operations need zone write plugging. */
870 if (!op_is_write(op))
871 return false;
872
873 /* Ignore empty flush */
874 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
875 return false;
876
877 /* Ignore BIOs that already have been handled by zone write plugging. */
878 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
879 return false;
880
881 /*
882 * All zone write operations must be handled through zone write plugging
883 * using blk_zone_plug_bio().
884 */
885 switch (op) {
886 case REQ_OP_ZONE_APPEND:
887 case REQ_OP_WRITE:
888 case REQ_OP_WRITE_ZEROES:
889 case REQ_OP_ZONE_FINISH:
890 case REQ_OP_ZONE_RESET:
891 case REQ_OP_ZONE_RESET_ALL:
892 return true;
893 default:
894 return false;
895 }
896 }
897
898 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
899
900 /**
901 * disk_zone_capacity - returns the zone capacity of zone containing @sector
902 * @disk: disk to work with
903 * @sector: sector number within the querying zone
904 *
905 * Returns the zone capacity of a zone containing @sector. @sector can be any
906 * sector in the zone.
907 */
disk_zone_capacity(struct gendisk * disk,sector_t sector)908 static inline unsigned int disk_zone_capacity(struct gendisk *disk,
909 sector_t sector)
910 {
911 sector_t zone_sectors = disk->queue->limits.chunk_sectors;
912
913 if (sector + zone_sectors >= get_capacity(disk))
914 return disk->last_zone_capacity;
915 return disk->zone_capacity;
916 }
bdev_zone_capacity(struct block_device * bdev,sector_t pos)917 static inline unsigned int bdev_zone_capacity(struct block_device *bdev,
918 sector_t pos)
919 {
920 return disk_zone_capacity(bdev->bd_disk, pos);
921 }
922 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)923 static inline unsigned int disk_nr_zones(struct gendisk *disk)
924 {
925 return 0;
926 }
927
bio_needs_zone_write_plugging(struct bio * bio)928 static inline bool bio_needs_zone_write_plugging(struct bio *bio)
929 {
930 return false;
931 }
932
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)933 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
934 {
935 return false;
936 }
937 #endif /* CONFIG_BLK_DEV_ZONED */
938
bdev_nr_zones(struct block_device * bdev)939 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
940 {
941 return disk_nr_zones(bdev->bd_disk);
942 }
943
944 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
945
946 void put_disk(struct gendisk *disk);
947 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
948 struct lock_class_key *lkclass);
949
950 /**
951 * blk_alloc_disk - allocate a gendisk structure
952 * @lim: queue limits to be used for this disk.
953 * @node_id: numa node to allocate on
954 *
955 * Allocate and pre-initialize a gendisk structure for use with BIO based
956 * drivers.
957 *
958 * Returns an ERR_PTR on error, else the allocated disk.
959 *
960 * Context: can sleep
961 */
962 #define blk_alloc_disk(lim, node_id) \
963 ({ \
964 static struct lock_class_key __key; \
965 \
966 __blk_alloc_disk(lim, node_id, &__key); \
967 })
968
969 int __register_blkdev(unsigned int major, const char *name,
970 void (*probe)(dev_t devt));
971 #define register_blkdev(major, name) \
972 __register_blkdev(major, name, NULL)
973 void unregister_blkdev(unsigned int major, const char *name);
974
975 bool disk_check_media_change(struct gendisk *disk);
976 void set_capacity(struct gendisk *disk, sector_t size);
977
978 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
979 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
980 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
981 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)982 static inline int bd_link_disk_holder(struct block_device *bdev,
983 struct gendisk *disk)
984 {
985 return 0;
986 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)987 static inline void bd_unlink_disk_holder(struct block_device *bdev,
988 struct gendisk *disk)
989 {
990 }
991 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
992
993 dev_t part_devt(struct gendisk *disk, u8 partno);
994 void inc_diskseq(struct gendisk *disk);
995 void blk_request_module(dev_t devt);
996
997 extern int blk_register_queue(struct gendisk *disk);
998 extern void blk_unregister_queue(struct gendisk *disk);
999 void submit_bio_noacct(struct bio *bio);
1000 struct bio *bio_split_to_limits(struct bio *bio);
1001
1002 extern int blk_lld_busy(struct request_queue *q);
1003 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
1004 extern void blk_queue_exit(struct request_queue *q);
1005 extern void blk_sync_queue(struct request_queue *q);
1006
1007 /* Helper to convert REQ_OP_XXX to its string format XXX */
1008 extern const char *blk_op_str(enum req_op op);
1009
1010 int blk_status_to_errno(blk_status_t status);
1011 blk_status_t errno_to_blk_status(int errno);
1012 const char *blk_status_to_str(blk_status_t status);
1013
1014 /* only poll the hardware once, don't continue until a completion was found */
1015 #define BLK_POLL_ONESHOT (1 << 0)
1016 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
1017 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1018 unsigned int flags);
1019
bdev_get_queue(struct block_device * bdev)1020 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1021 {
1022 return bdev->bd_queue; /* this is never NULL */
1023 }
1024
1025 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1026 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1027
bio_zone_no(struct bio * bio)1028 static inline unsigned int bio_zone_no(struct bio *bio)
1029 {
1030 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
1031 }
1032
bio_straddles_zones(struct bio * bio)1033 static inline bool bio_straddles_zones(struct bio *bio)
1034 {
1035 return bio_sectors(bio) &&
1036 bio_zone_no(bio) !=
1037 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
1038 }
1039
1040 /*
1041 * Return how much within the boundary is left to be used for I/O at a given
1042 * offset.
1043 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)1044 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
1045 unsigned int boundary_sectors)
1046 {
1047 if (unlikely(!is_power_of_2(boundary_sectors)))
1048 return boundary_sectors - sector_div(offset, boundary_sectors);
1049 return boundary_sectors - (offset & (boundary_sectors - 1));
1050 }
1051
1052 /**
1053 * queue_limits_start_update - start an atomic update of queue limits
1054 * @q: queue to update
1055 *
1056 * This functions starts an atomic update of the queue limits. It takes a lock
1057 * to prevent other updates and returns a snapshot of the current limits that
1058 * the caller can modify. The caller must call queue_limits_commit_update()
1059 * to finish the update.
1060 *
1061 * Context: process context.
1062 */
1063 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)1064 queue_limits_start_update(struct request_queue *q)
1065 {
1066 mutex_lock(&q->limits_lock);
1067 return q->limits;
1068 }
1069 int queue_limits_commit_update_frozen(struct request_queue *q,
1070 struct queue_limits *lim);
1071 int queue_limits_commit_update(struct request_queue *q,
1072 struct queue_limits *lim);
1073 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1074 int blk_validate_limits(struct queue_limits *lim);
1075
1076 /**
1077 * queue_limits_cancel_update - cancel an atomic update of queue limits
1078 * @q: queue to update
1079 *
1080 * This functions cancels an atomic update of the queue limits started by
1081 * queue_limits_start_update() and should be used when an error occurs after
1082 * starting update.
1083 */
queue_limits_cancel_update(struct request_queue * q)1084 static inline void queue_limits_cancel_update(struct request_queue *q)
1085 {
1086 mutex_unlock(&q->limits_lock);
1087 }
1088
1089 /*
1090 * These helpers are for drivers that have sloppy feature negotiation and might
1091 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1092 * completion handler when the device returned an indicator that the respective
1093 * feature is not actually supported. They are racy and the driver needs to
1094 * cope with that. Try to avoid this scheme if you can.
1095 */
blk_queue_disable_discard(struct request_queue * q)1096 static inline void blk_queue_disable_discard(struct request_queue *q)
1097 {
1098 q->limits.max_discard_sectors = 0;
1099 }
1100
blk_queue_disable_secure_erase(struct request_queue * q)1101 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1102 {
1103 q->limits.max_secure_erase_sectors = 0;
1104 }
1105
blk_queue_disable_write_zeroes(struct request_queue * q)1106 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1107 {
1108 q->limits.max_write_zeroes_sectors = 0;
1109 q->limits.max_wzeroes_unmap_sectors = 0;
1110 }
1111
1112 /*
1113 * Access functions for manipulating queue properties
1114 */
1115 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1116 extern void blk_set_stacking_limits(struct queue_limits *lim);
1117 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1118 sector_t offset);
1119 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1120 sector_t offset, const char *pfx);
1121 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1122
1123 struct blk_independent_access_ranges *
1124 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1125 void disk_set_independent_access_ranges(struct gendisk *disk,
1126 struct blk_independent_access_ranges *iars);
1127
1128 bool __must_check blk_get_queue(struct request_queue *);
1129 extern void blk_put_queue(struct request_queue *);
1130
1131 void blk_mark_disk_dead(struct gendisk *disk);
1132
1133 struct rq_list {
1134 struct request *head;
1135 struct request *tail;
1136 };
1137
1138 #ifdef CONFIG_BLOCK
1139 /*
1140 * blk_plug permits building a queue of related requests by holding the I/O
1141 * fragments for a short period. This allows merging of sequential requests
1142 * into single larger request. As the requests are moved from a per-task list to
1143 * the device's request_queue in a batch, this results in improved scalability
1144 * as the lock contention for request_queue lock is reduced.
1145 *
1146 * It is ok not to disable preemption when adding the request to the plug list
1147 * or when attempting a merge. For details, please see schedule() where
1148 * blk_flush_plug() is called.
1149 */
1150 struct blk_plug {
1151 struct rq_list mq_list; /* blk-mq requests */
1152
1153 /* if ios_left is > 1, we can batch tag/rq allocations */
1154 struct rq_list cached_rqs;
1155 u64 cur_ktime;
1156 unsigned short nr_ios;
1157
1158 unsigned short rq_count;
1159
1160 bool multiple_queues;
1161 bool has_elevator;
1162
1163 struct list_head cb_list; /* md requires an unplug callback */
1164 };
1165
1166 struct blk_plug_cb;
1167 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1168 struct blk_plug_cb {
1169 struct list_head list;
1170 blk_plug_cb_fn callback;
1171 void *data;
1172 };
1173 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1174 void *data, int size);
1175 extern void blk_start_plug(struct blk_plug *);
1176 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1177 extern void blk_finish_plug(struct blk_plug *);
1178
1179 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1180 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1181 {
1182 if (plug)
1183 __blk_flush_plug(plug, async);
1184 }
1185
1186 /*
1187 * tsk == current here
1188 */
blk_plug_invalidate_ts(struct task_struct * tsk)1189 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1190 {
1191 struct blk_plug *plug = tsk->plug;
1192
1193 if (plug)
1194 plug->cur_ktime = 0;
1195 current->flags &= ~PF_BLOCK_TS;
1196 }
1197
1198 int blkdev_issue_flush(struct block_device *bdev);
1199 long nr_blockdev_pages(void);
1200 #else /* CONFIG_BLOCK */
1201 struct blk_plug {
1202 };
1203
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1204 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1205 unsigned short nr_ios)
1206 {
1207 }
1208
blk_start_plug(struct blk_plug * plug)1209 static inline void blk_start_plug(struct blk_plug *plug)
1210 {
1211 }
1212
blk_finish_plug(struct blk_plug * plug)1213 static inline void blk_finish_plug(struct blk_plug *plug)
1214 {
1215 }
1216
blk_flush_plug(struct blk_plug * plug,bool async)1217 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1218 {
1219 }
1220
blk_plug_invalidate_ts(struct task_struct * tsk)1221 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1222 {
1223 }
1224
blkdev_issue_flush(struct block_device * bdev)1225 static inline int blkdev_issue_flush(struct block_device *bdev)
1226 {
1227 return 0;
1228 }
1229
nr_blockdev_pages(void)1230 static inline long nr_blockdev_pages(void)
1231 {
1232 return 0;
1233 }
1234 #endif /* CONFIG_BLOCK */
1235
1236 extern void blk_io_schedule(void);
1237
1238 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1239 sector_t nr_sects, gfp_t gfp_mask);
1240 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1241 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1242 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1243 sector_t nr_sects, gfp_t gfp);
1244
1245 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1246 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1247 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1248
1249 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1250 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1251 unsigned flags);
1252 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1253 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1254
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1255 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1256 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1257 {
1258 return blkdev_issue_discard(sb->s_bdev,
1259 block << (sb->s_blocksize_bits -
1260 SECTOR_SHIFT),
1261 nr_blocks << (sb->s_blocksize_bits -
1262 SECTOR_SHIFT),
1263 gfp_mask);
1264 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1265 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1266 sector_t nr_blocks, gfp_t gfp_mask)
1267 {
1268 return blkdev_issue_zeroout(sb->s_bdev,
1269 block << (sb->s_blocksize_bits -
1270 SECTOR_SHIFT),
1271 nr_blocks << (sb->s_blocksize_bits -
1272 SECTOR_SHIFT),
1273 gfp_mask, 0);
1274 }
1275
bdev_is_partition(struct block_device * bdev)1276 static inline bool bdev_is_partition(struct block_device *bdev)
1277 {
1278 return bdev_partno(bdev) != 0;
1279 }
1280
1281 enum blk_default_limits {
1282 BLK_MAX_SEGMENTS = 128,
1283 BLK_SAFE_MAX_SECTORS = 255,
1284 BLK_MAX_SEGMENT_SIZE = 65536,
1285 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1286 };
1287
bdev_limits(struct block_device * bdev)1288 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1289 {
1290 return &bdev_get_queue(bdev)->limits;
1291 }
1292
queue_segment_boundary(const struct request_queue * q)1293 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1294 {
1295 return q->limits.seg_boundary_mask;
1296 }
1297
queue_virt_boundary(const struct request_queue * q)1298 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1299 {
1300 return q->limits.virt_boundary_mask;
1301 }
1302
queue_max_sectors(const struct request_queue * q)1303 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1304 {
1305 return q->limits.max_sectors;
1306 }
1307
queue_max_bytes(struct request_queue * q)1308 static inline unsigned int queue_max_bytes(struct request_queue *q)
1309 {
1310 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1311 }
1312
queue_max_hw_sectors(const struct request_queue * q)1313 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1314 {
1315 return q->limits.max_hw_sectors;
1316 }
1317
queue_max_segments(const struct request_queue * q)1318 static inline unsigned short queue_max_segments(const struct request_queue *q)
1319 {
1320 return q->limits.max_segments;
1321 }
1322
queue_max_discard_segments(const struct request_queue * q)1323 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1324 {
1325 return q->limits.max_discard_segments;
1326 }
1327
queue_max_segment_size(const struct request_queue * q)1328 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1329 {
1330 return q->limits.max_segment_size;
1331 }
1332
queue_emulates_zone_append(struct request_queue * q)1333 static inline bool queue_emulates_zone_append(struct request_queue *q)
1334 {
1335 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1336 }
1337
bdev_emulates_zone_append(struct block_device * bdev)1338 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1339 {
1340 return queue_emulates_zone_append(bdev_get_queue(bdev));
1341 }
1342
1343 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1344 bdev_max_zone_append_sectors(struct block_device *bdev)
1345 {
1346 return bdev_limits(bdev)->max_zone_append_sectors;
1347 }
1348
bdev_max_segments(struct block_device * bdev)1349 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1350 {
1351 return queue_max_segments(bdev_get_queue(bdev));
1352 }
1353
bdev_max_write_streams(struct block_device * bdev)1354 static inline unsigned short bdev_max_write_streams(struct block_device *bdev)
1355 {
1356 if (bdev_is_partition(bdev))
1357 return 0;
1358 return bdev_limits(bdev)->max_write_streams;
1359 }
1360
queue_logical_block_size(const struct request_queue * q)1361 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1362 {
1363 return q->limits.logical_block_size;
1364 }
1365
bdev_logical_block_size(struct block_device * bdev)1366 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1367 {
1368 return queue_logical_block_size(bdev_get_queue(bdev));
1369 }
1370
queue_physical_block_size(const struct request_queue * q)1371 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1372 {
1373 return q->limits.physical_block_size;
1374 }
1375
bdev_physical_block_size(struct block_device * bdev)1376 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1377 {
1378 return queue_physical_block_size(bdev_get_queue(bdev));
1379 }
1380
queue_io_min(const struct request_queue * q)1381 static inline unsigned int queue_io_min(const struct request_queue *q)
1382 {
1383 return q->limits.io_min;
1384 }
1385
bdev_io_min(struct block_device * bdev)1386 static inline unsigned int bdev_io_min(struct block_device *bdev)
1387 {
1388 return queue_io_min(bdev_get_queue(bdev));
1389 }
1390
queue_io_opt(const struct request_queue * q)1391 static inline unsigned int queue_io_opt(const struct request_queue *q)
1392 {
1393 return q->limits.io_opt;
1394 }
1395
bdev_io_opt(struct block_device * bdev)1396 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1397 {
1398 return queue_io_opt(bdev_get_queue(bdev));
1399 }
1400
1401 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1402 queue_zone_write_granularity(const struct request_queue *q)
1403 {
1404 return q->limits.zone_write_granularity;
1405 }
1406
1407 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1408 bdev_zone_write_granularity(struct block_device *bdev)
1409 {
1410 return queue_zone_write_granularity(bdev_get_queue(bdev));
1411 }
1412
1413 int bdev_alignment_offset(struct block_device *bdev);
1414 unsigned int bdev_discard_alignment(struct block_device *bdev);
1415
bdev_max_discard_sectors(struct block_device * bdev)1416 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1417 {
1418 return bdev_limits(bdev)->max_discard_sectors;
1419 }
1420
bdev_discard_granularity(struct block_device * bdev)1421 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1422 {
1423 return bdev_limits(bdev)->discard_granularity;
1424 }
1425
1426 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1427 bdev_max_secure_erase_sectors(struct block_device *bdev)
1428 {
1429 return bdev_limits(bdev)->max_secure_erase_sectors;
1430 }
1431
bdev_write_zeroes_sectors(struct block_device * bdev)1432 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1433 {
1434 return bdev_limits(bdev)->max_write_zeroes_sectors;
1435 }
1436
1437 static inline unsigned int
bdev_write_zeroes_unmap_sectors(struct block_device * bdev)1438 bdev_write_zeroes_unmap_sectors(struct block_device *bdev)
1439 {
1440 return bdev_limits(bdev)->max_wzeroes_unmap_sectors;
1441 }
1442
bdev_nonrot(struct block_device * bdev)1443 static inline bool bdev_nonrot(struct block_device *bdev)
1444 {
1445 return blk_queue_nonrot(bdev_get_queue(bdev));
1446 }
1447
bdev_synchronous(struct block_device * bdev)1448 static inline bool bdev_synchronous(struct block_device *bdev)
1449 {
1450 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1451 }
1452
bdev_stable_writes(struct block_device * bdev)1453 static inline bool bdev_stable_writes(struct block_device *bdev)
1454 {
1455 struct request_queue *q = bdev_get_queue(bdev);
1456
1457 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1458 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1459 return true;
1460 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1461 }
1462
blk_queue_write_cache(struct request_queue * q)1463 static inline bool blk_queue_write_cache(struct request_queue *q)
1464 {
1465 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1466 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1467 }
1468
bdev_write_cache(struct block_device * bdev)1469 static inline bool bdev_write_cache(struct block_device *bdev)
1470 {
1471 return blk_queue_write_cache(bdev_get_queue(bdev));
1472 }
1473
bdev_fua(struct block_device * bdev)1474 static inline bool bdev_fua(struct block_device *bdev)
1475 {
1476 return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1477 }
1478
bdev_nowait(struct block_device * bdev)1479 static inline bool bdev_nowait(struct block_device *bdev)
1480 {
1481 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1482 }
1483
bdev_is_zoned(struct block_device * bdev)1484 static inline bool bdev_is_zoned(struct block_device *bdev)
1485 {
1486 return blk_queue_is_zoned(bdev_get_queue(bdev));
1487 }
1488
bdev_zone_no(struct block_device * bdev,sector_t sec)1489 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1490 {
1491 return disk_zone_no(bdev->bd_disk, sec);
1492 }
1493
bdev_zone_sectors(struct block_device * bdev)1494 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1495 {
1496 struct request_queue *q = bdev_get_queue(bdev);
1497
1498 if (!blk_queue_is_zoned(q))
1499 return 0;
1500 return q->limits.chunk_sectors;
1501 }
1502
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1503 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1504 sector_t sector)
1505 {
1506 return sector & (bdev_zone_sectors(bdev) - 1);
1507 }
1508
bio_offset_from_zone_start(struct bio * bio)1509 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1510 {
1511 return bdev_offset_from_zone_start(bio->bi_bdev,
1512 bio->bi_iter.bi_sector);
1513 }
1514
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1515 static inline bool bdev_is_zone_start(struct block_device *bdev,
1516 sector_t sector)
1517 {
1518 return bdev_offset_from_zone_start(bdev, sector) == 0;
1519 }
1520
1521 /* Check whether @sector is a multiple of the zone size. */
bdev_is_zone_aligned(struct block_device * bdev,sector_t sector)1522 static inline bool bdev_is_zone_aligned(struct block_device *bdev,
1523 sector_t sector)
1524 {
1525 return bdev_is_zone_start(bdev, sector);
1526 }
1527
1528 /**
1529 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1530 * @bdev: block device to check
1531 * @sector: sector number
1532 *
1533 * Check if @sector on @bdev is contained in a sequential write required zone.
1534 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1535 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1536 {
1537 bool is_seq = false;
1538
1539 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1540 if (bdev_is_zoned(bdev)) {
1541 struct gendisk *disk = bdev->bd_disk;
1542 unsigned long *bitmap;
1543
1544 rcu_read_lock();
1545 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1546 is_seq = !bitmap ||
1547 !test_bit(disk_zone_no(disk, sector), bitmap);
1548 rcu_read_unlock();
1549 }
1550 #endif
1551
1552 return is_seq;
1553 }
1554
1555 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1556 sector_t nr_sects, gfp_t gfp_mask);
1557
queue_dma_alignment(const struct request_queue * q)1558 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1559 {
1560 return q->limits.dma_alignment;
1561 }
1562
1563 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1564 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1565 {
1566 return q->limits.atomic_write_unit_max;
1567 }
1568
1569 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1570 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1571 {
1572 return q->limits.atomic_write_unit_min;
1573 }
1574
1575 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1576 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1577 {
1578 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1579 }
1580
1581 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1582 queue_atomic_write_max_bytes(const struct request_queue *q)
1583 {
1584 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1585 }
1586
bdev_dma_alignment(struct block_device * bdev)1587 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1588 {
1589 return queue_dma_alignment(bdev_get_queue(bdev));
1590 }
1591
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1592 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1593 struct iov_iter *iter)
1594 {
1595 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1596 bdev_logical_block_size(bdev) - 1);
1597 }
1598
1599 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1600 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1601 {
1602 return lim->dma_alignment | lim->dma_pad_mask;
1603 }
1604
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1605 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1606 unsigned int len)
1607 {
1608 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1609
1610 return !(addr & alignment) && !(len & alignment);
1611 }
1612
1613 /* assumes size > 256 */
blksize_bits(unsigned int size)1614 static inline unsigned int blksize_bits(unsigned int size)
1615 {
1616 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1617 }
1618
1619 int kblockd_schedule_work(struct work_struct *work);
1620 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1621
1622 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1623 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1624 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1625 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1626
1627 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1628
1629 bool blk_crypto_register(struct blk_crypto_profile *profile,
1630 struct request_queue *q);
1631
1632 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1633
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1634 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1635 struct request_queue *q)
1636 {
1637 return true;
1638 }
1639
1640 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1641
1642 enum blk_unique_id {
1643 /* these match the Designator Types specified in SPC */
1644 BLK_UID_T10 = 1,
1645 BLK_UID_EUI64 = 2,
1646 BLK_UID_NAA = 3,
1647 };
1648
1649 struct block_device_operations {
1650 void (*submit_bio)(struct bio *bio);
1651 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1652 unsigned int flags);
1653 int (*open)(struct gendisk *disk, blk_mode_t mode);
1654 void (*release)(struct gendisk *disk);
1655 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1656 unsigned cmd, unsigned long arg);
1657 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1658 unsigned cmd, unsigned long arg);
1659 unsigned int (*check_events) (struct gendisk *disk,
1660 unsigned int clearing);
1661 void (*unlock_native_capacity) (struct gendisk *);
1662 int (*getgeo)(struct block_device *, struct hd_geometry *);
1663 int (*set_read_only)(struct block_device *bdev, bool ro);
1664 void (*free_disk)(struct gendisk *disk);
1665 /* this callback is with swap_lock and sometimes page table lock held */
1666 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1667 int (*report_zones)(struct gendisk *, sector_t sector,
1668 unsigned int nr_zones, report_zones_cb cb, void *data);
1669 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1670 /* returns the length of the identifier or a negative errno: */
1671 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1672 enum blk_unique_id id_type);
1673 struct module *owner;
1674 const struct pr_ops *pr_ops;
1675
1676 /*
1677 * Special callback for probing GPT entry at a given sector.
1678 * Needed by Android devices, used by GPT scanner and MMC blk
1679 * driver.
1680 */
1681 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1682 };
1683
1684 #ifdef CONFIG_COMPAT
1685 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1686 unsigned int, unsigned long);
1687 #else
1688 #define blkdev_compat_ptr_ioctl NULL
1689 #endif
1690
blk_wake_io_task(struct task_struct * waiter)1691 static inline void blk_wake_io_task(struct task_struct *waiter)
1692 {
1693 /*
1694 * If we're polling, the task itself is doing the completions. For
1695 * that case, we don't need to signal a wakeup, it's enough to just
1696 * mark us as RUNNING.
1697 */
1698 if (waiter == current)
1699 __set_current_state(TASK_RUNNING);
1700 else
1701 wake_up_process(waiter);
1702 }
1703
1704 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1705 unsigned long start_time);
1706 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1707 unsigned int sectors, unsigned long start_time);
1708
1709 unsigned long bio_start_io_acct(struct bio *bio);
1710 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1711 struct block_device *orig_bdev);
1712
1713 /**
1714 * bio_end_io_acct - end I/O accounting for bio based drivers
1715 * @bio: bio to end account for
1716 * @start_time: start time returned by bio_start_io_acct()
1717 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1718 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1719 {
1720 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1721 }
1722
1723 int bdev_validate_blocksize(struct block_device *bdev, int block_size);
1724 int set_blocksize(struct file *file, int size);
1725
1726 int lookup_bdev(const char *pathname, dev_t *dev);
1727
1728 void blkdev_show(struct seq_file *seqf, off_t offset);
1729
1730 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1731 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1732 #ifdef CONFIG_BLOCK
1733 #define BLKDEV_MAJOR_MAX 512
1734 #else
1735 #define BLKDEV_MAJOR_MAX 0
1736 #endif
1737
1738 struct blk_holder_ops {
1739 void (*mark_dead)(struct block_device *bdev, bool surprise);
1740
1741 /*
1742 * Sync the file system mounted on the block device.
1743 */
1744 void (*sync)(struct block_device *bdev);
1745
1746 /*
1747 * Freeze the file system mounted on the block device.
1748 */
1749 int (*freeze)(struct block_device *bdev);
1750
1751 /*
1752 * Thaw the file system mounted on the block device.
1753 */
1754 int (*thaw)(struct block_device *bdev);
1755 };
1756
1757 /*
1758 * For filesystems using @fs_holder_ops, the @holder argument passed to
1759 * helpers used to open and claim block devices via
1760 * bd_prepare_to_claim() must point to a superblock.
1761 */
1762 extern const struct blk_holder_ops fs_holder_ops;
1763
1764 /*
1765 * Return the correct open flags for blkdev_get_by_* for super block flags
1766 * as stored in sb->s_flags.
1767 */
1768 #define sb_open_mode(flags) \
1769 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1770 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1771
1772 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1773 const struct blk_holder_ops *hops);
1774 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1775 void *holder, const struct blk_holder_ops *hops);
1776 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1777 const struct blk_holder_ops *hops);
1778 void bd_abort_claiming(struct block_device *bdev, void *holder);
1779
1780 struct block_device *I_BDEV(struct inode *inode);
1781 struct block_device *file_bdev(struct file *bdev_file);
1782 bool disk_live(struct gendisk *disk);
1783 unsigned int block_size(struct block_device *bdev);
1784
1785 #ifdef CONFIG_BLOCK
1786 void invalidate_bdev(struct block_device *bdev);
1787 int sync_blockdev(struct block_device *bdev);
1788 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1789 int sync_blockdev_nowait(struct block_device *bdev);
1790 void sync_bdevs(bool wait);
1791 void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask);
1792 void printk_all_partitions(void);
1793 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1794 #else
invalidate_bdev(struct block_device * bdev)1795 static inline void invalidate_bdev(struct block_device *bdev)
1796 {
1797 }
sync_blockdev(struct block_device * bdev)1798 static inline int sync_blockdev(struct block_device *bdev)
1799 {
1800 return 0;
1801 }
sync_blockdev_nowait(struct block_device * bdev)1802 static inline int sync_blockdev_nowait(struct block_device *bdev)
1803 {
1804 return 0;
1805 }
sync_bdevs(bool wait)1806 static inline void sync_bdevs(bool wait)
1807 {
1808 }
bdev_statx(const struct path * path,struct kstat * stat,u32 request_mask)1809 static inline void bdev_statx(const struct path *path, struct kstat *stat,
1810 u32 request_mask)
1811 {
1812 }
printk_all_partitions(void)1813 static inline void printk_all_partitions(void)
1814 {
1815 }
early_lookup_bdev(const char * pathname,dev_t * dev)1816 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1817 {
1818 return -EINVAL;
1819 }
1820 #endif /* CONFIG_BLOCK */
1821
1822 int bdev_freeze(struct block_device *bdev);
1823 int bdev_thaw(struct block_device *bdev);
1824 void bdev_fput(struct file *bdev_file);
1825
1826 struct io_comp_batch {
1827 struct rq_list req_list;
1828 bool need_ts;
1829 void (*complete)(struct io_comp_batch *);
1830 };
1831
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1832 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1833 struct queue_limits *limits)
1834 {
1835 unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1836 limits->atomic_write_hw_boundary);
1837
1838 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1839 }
1840
bdev_can_atomic_write(struct block_device * bdev)1841 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1842 {
1843 struct request_queue *bd_queue = bdev->bd_queue;
1844 struct queue_limits *limits = &bd_queue->limits;
1845
1846 if (!limits->atomic_write_unit_min)
1847 return false;
1848
1849 if (bdev_is_partition(bdev))
1850 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1851 limits);
1852
1853 return true;
1854 }
1855
1856 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1857 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1858 {
1859 if (!bdev_can_atomic_write(bdev))
1860 return 0;
1861 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1862 }
1863
1864 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1865 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1866 {
1867 if (!bdev_can_atomic_write(bdev))
1868 return 0;
1869 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1870 }
1871
1872 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1873
1874 #endif /* _LINUX_BLKDEV_H */
1875