xref: /linux/drivers/md/raid5.c (revision 6e11664f148454a127dd89e8698c3e3e80e5f62f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 #define RAID5_MAX_REQ_STRIPES 256
65 
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71 
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
73 
stripe_hash(struct r5conf * conf,sector_t sect)74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 {
82 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83 }
84 
lock_device_hash_lock(struct r5conf * conf,int hash)85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 	__acquires(&conf->device_lock)
87 {
88 	spin_lock_irq(conf->hash_locks + hash);
89 	spin_lock(&conf->device_lock);
90 }
91 
unlock_device_hash_lock(struct r5conf * conf,int hash)92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 	__releases(&conf->device_lock)
94 {
95 	spin_unlock(&conf->device_lock);
96 	spin_unlock_irq(conf->hash_locks + hash);
97 }
98 
lock_all_device_hash_locks_irq(struct r5conf * conf)99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 	__acquires(&conf->device_lock)
101 {
102 	int i;
103 	spin_lock_irq(conf->hash_locks);
104 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 	spin_lock(&conf->device_lock);
107 }
108 
unlock_all_device_hash_locks_irq(struct r5conf * conf)109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 	__releases(&conf->device_lock)
111 {
112 	int i;
113 	spin_unlock(&conf->device_lock);
114 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 		spin_unlock(conf->hash_locks + i);
116 	spin_unlock_irq(conf->hash_locks);
117 }
118 
119 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 	if (sh->ddf_layout)
123 		/* ddf always start from first device */
124 		return 0;
125 	/* md starts just after Q block */
126 	if (sh->qd_idx == sh->disks - 1)
127 		return 0;
128 	else
129 		return sh->qd_idx + 1;
130 }
raid6_next_disk(int disk,int raid_disks)131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 	disk++;
134 	return (disk < raid_disks) ? disk : 0;
135 }
136 
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138  * We need to map each disk to a 'slot', where the data disks are slot
139  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140  * is raid_disks-1.  This help does that mapping.
141  */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 			     int *count, int syndrome_disks)
144 {
145 	int slot = *count;
146 
147 	if (sh->ddf_layout)
148 		(*count)++;
149 	if (idx == sh->pd_idx)
150 		return syndrome_disks;
151 	if (idx == sh->qd_idx)
152 		return syndrome_disks + 1;
153 	if (!sh->ddf_layout)
154 		(*count)++;
155 	return slot;
156 }
157 
158 static void print_raid5_conf(struct r5conf *conf);
159 
stripe_operations_active(struct stripe_head * sh)160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 	return sh->check_state || sh->reconstruct_state ||
163 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166 
stripe_is_lowprio(struct stripe_head * sh)167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173 
raid5_wakeup_stripe_thread(struct stripe_head * sh)174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 	__must_hold(&sh->raid_conf->device_lock)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 	__must_hold(&conf->device_lock)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * In the following cases, the stripe cannot be released to cached
237 	 * lists. Therefore, we make the stripe write out and set
238 	 * STRIPE_HANDLE:
239 	 *   1. when quiesce in r5c write back;
240 	 *   2. when resync is requested fot the stripe.
241 	 */
242 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 			r5c_make_stripe_write_out(sh);
247 		set_bit(STRIPE_HANDLE, &sh->state);
248 	}
249 
250 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 			list_add_tail(&sh->lru, &conf->delayed_list);
254 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 			   sh->bm_seq - conf->seq_write > 0)
256 			list_add_tail(&sh->lru, &conf->bitmap_list);
257 		else {
258 			clear_bit(STRIPE_DELAYED, &sh->state);
259 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 			if (conf->worker_cnt_per_group == 0) {
261 				if (stripe_is_lowprio(sh))
262 					list_add_tail(&sh->lru,
263 							&conf->loprio_list);
264 				else
265 					list_add_tail(&sh->lru,
266 							&conf->handle_list);
267 			} else {
268 				raid5_wakeup_stripe_thread(sh);
269 				return;
270 			}
271 		}
272 		md_wakeup_thread(conf->mddev->thread);
273 	} else {
274 		BUG_ON(stripe_operations_active(sh));
275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 			if (atomic_dec_return(&conf->preread_active_stripes)
277 			    < IO_THRESHOLD)
278 				md_wakeup_thread(conf->mddev->thread);
279 		atomic_dec(&conf->active_stripes);
280 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 			if (!r5c_is_writeback(conf->log))
282 				list_add_tail(&sh->lru, temp_inactive_list);
283 			else {
284 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 				if (injournal == 0)
286 					list_add_tail(&sh->lru, temp_inactive_list);
287 				else if (injournal == conf->raid_disks - conf->max_degraded) {
288 					/* full stripe */
289 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 						atomic_inc(&conf->r5c_cached_full_stripes);
291 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 						atomic_dec(&conf->r5c_cached_partial_stripes);
293 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 					r5c_check_cached_full_stripe(conf);
295 				} else
296 					/*
297 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 					 * r5c_try_caching_write(). No need to
299 					 * set it again.
300 					 */
301 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 			}
303 		}
304 	}
305 }
306 
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 			     struct list_head *temp_inactive_list)
309 	__must_hold(&conf->device_lock)
310 {
311 	if (atomic_dec_and_test(&sh->count))
312 		do_release_stripe(conf, sh, temp_inactive_list);
313 }
314 
315 /*
316  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317  *
318  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319  * given time. Adding stripes only takes device lock, while deleting stripes
320  * only takes hash lock.
321  */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)322 static void release_inactive_stripe_list(struct r5conf *conf,
323 					 struct list_head *temp_inactive_list,
324 					 int hash)
325 {
326 	int size;
327 	bool do_wakeup = false;
328 	unsigned long flags;
329 
330 	if (hash == NR_STRIPE_HASH_LOCKS) {
331 		size = NR_STRIPE_HASH_LOCKS;
332 		hash = NR_STRIPE_HASH_LOCKS - 1;
333 	} else
334 		size = 1;
335 	while (size) {
336 		struct list_head *list = &temp_inactive_list[size - 1];
337 
338 		/*
339 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 		 * remove stripes from the list
341 		 */
342 		if (!list_empty_careful(list)) {
343 			spin_lock_irqsave(conf->hash_locks + hash, flags);
344 			if (list_empty(conf->inactive_list + hash) &&
345 			    !list_empty(list))
346 				atomic_dec(&conf->empty_inactive_list_nr);
347 			list_splice_tail_init(list, conf->inactive_list + hash);
348 			do_wakeup = true;
349 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 		}
351 		size--;
352 		hash--;
353 	}
354 
355 	if (do_wakeup) {
356 		wake_up(&conf->wait_for_stripe);
357 		if (atomic_read(&conf->active_stripes) == 0)
358 			wake_up(&conf->wait_for_quiescent);
359 		if (conf->retry_read_aligned)
360 			md_wakeup_thread(conf->mddev->thread);
361 	}
362 }
363 
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)364 static int release_stripe_list(struct r5conf *conf,
365 			       struct list_head *temp_inactive_list)
366 	__must_hold(&conf->device_lock)
367 {
368 	struct stripe_head *sh, *t;
369 	int count = 0;
370 	struct llist_node *head;
371 
372 	head = llist_del_all(&conf->released_stripes);
373 	head = llist_reverse_order(head);
374 	llist_for_each_entry_safe(sh, t, head, release_list) {
375 		int hash;
376 
377 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 		smp_mb();
379 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 		/*
381 		 * Don't worry the bit is set here, because if the bit is set
382 		 * again, the count is always > 1. This is true for
383 		 * STRIPE_ON_UNPLUG_LIST bit too.
384 		 */
385 		hash = sh->hash_lock_index;
386 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
387 		count++;
388 	}
389 
390 	return count;
391 }
392 
raid5_release_stripe(struct stripe_head * sh)393 void raid5_release_stripe(struct stripe_head *sh)
394 {
395 	struct r5conf *conf = sh->raid_conf;
396 	unsigned long flags;
397 	struct list_head list;
398 	int hash;
399 	bool wakeup;
400 
401 	/* Avoid release_list until the last reference.
402 	 */
403 	if (atomic_add_unless(&sh->count, -1, 1))
404 		return;
405 
406 	if (unlikely(!conf->mddev->thread) ||
407 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 		goto slow_path;
409 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 	if (wakeup)
411 		md_wakeup_thread(conf->mddev->thread);
412 	return;
413 slow_path:
414 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 		INIT_LIST_HEAD(&list);
417 		hash = sh->hash_lock_index;
418 		do_release_stripe(conf, sh, &list);
419 		spin_unlock_irqrestore(&conf->device_lock, flags);
420 		release_inactive_stripe_list(conf, &list, hash);
421 	}
422 }
423 
remove_hash(struct stripe_head * sh)424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
insert_hash(struct r5conf * conf,struct stripe_head * sh)432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)463 static void free_stripe_pages(struct stripe_head *sh)
464 {
465 	int i;
466 	struct page *p;
467 
468 	/* Have not allocate page pool */
469 	if (!sh->pages)
470 		return;
471 
472 	for (i = 0; i < sh->nr_pages; i++) {
473 		p = sh->pages[i];
474 		if (p)
475 			put_page(p);
476 		sh->pages[i] = NULL;
477 	}
478 }
479 
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481 {
482 	int i;
483 	struct page *p;
484 
485 	for (i = 0; i < sh->nr_pages; i++) {
486 		/* The page have allocated. */
487 		if (sh->pages[i])
488 			continue;
489 
490 		p = alloc_page(gfp);
491 		if (!p) {
492 			free_stripe_pages(sh);
493 			return -ENOMEM;
494 		}
495 		sh->pages[i] = p;
496 	}
497 	return 0;
498 }
499 
500 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502 {
503 	int nr_pages, cnt;
504 
505 	if (sh->pages)
506 		return 0;
507 
508 	/* Each of the sh->dev[i] need one conf->stripe_size */
509 	cnt = PAGE_SIZE / conf->stripe_size;
510 	nr_pages = (disks + cnt - 1) / cnt;
511 
512 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 	if (!sh->pages)
514 		return -ENOMEM;
515 	sh->nr_pages = nr_pages;
516 	sh->stripes_per_page = cnt;
517 	return 0;
518 }
519 #endif
520 
shrink_buffers(struct stripe_head * sh)521 static void shrink_buffers(struct stripe_head *sh)
522 {
523 	int i;
524 	int num = sh->raid_conf->pool_size;
525 
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 	for (i = 0; i < num ; i++) {
528 		struct page *p;
529 
530 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 		p = sh->dev[i].page;
532 		if (!p)
533 			continue;
534 		sh->dev[i].page = NULL;
535 		put_page(p);
536 	}
537 #else
538 	for (i = 0; i < num; i++)
539 		sh->dev[i].page = NULL;
540 	free_stripe_pages(sh); /* Free pages */
541 #endif
542 }
543 
grow_buffers(struct stripe_head * sh,gfp_t gfp)544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545 {
546 	int i;
547 	int num = sh->raid_conf->pool_size;
548 
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 	for (i = 0; i < num; i++) {
551 		struct page *page;
552 
553 		if (!(page = alloc_page(gfp))) {
554 			return 1;
555 		}
556 		sh->dev[i].page = page;
557 		sh->dev[i].orig_page = page;
558 		sh->dev[i].offset = 0;
559 	}
560 #else
561 	if (alloc_stripe_pages(sh, gfp))
562 		return -ENOMEM;
563 
564 	for (i = 0; i < num; i++) {
565 		sh->dev[i].page = raid5_get_dev_page(sh, i);
566 		sh->dev[i].orig_page = sh->dev[i].page;
567 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 	}
569 #endif
570 	return 0;
571 }
572 
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 			    struct stripe_head *sh);
575 
init_stripe(struct stripe_head * sh,sector_t sector,int previous)576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 {
578 	struct r5conf *conf = sh->raid_conf;
579 	int i, seq;
580 
581 	BUG_ON(atomic_read(&sh->count) != 0);
582 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 	BUG_ON(stripe_operations_active(sh));
584 	BUG_ON(sh->batch_head);
585 
586 	pr_debug("init_stripe called, stripe %llu\n",
587 		(unsigned long long)sector);
588 retry:
589 	seq = read_seqcount_begin(&conf->gen_lock);
590 	sh->generation = conf->generation - previous;
591 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 	sh->sector = sector;
593 	stripe_set_idx(sector, conf, previous, sh);
594 	sh->state = 0;
595 
596 	for (i = sh->disks; i--; ) {
597 		struct r5dev *dev = &sh->dev[i];
598 
599 		if (dev->toread || dev->read || dev->towrite || dev->written ||
600 		    test_bit(R5_LOCKED, &dev->flags)) {
601 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 			       (unsigned long long)sh->sector, i, dev->toread,
603 			       dev->read, dev->towrite, dev->written,
604 			       test_bit(R5_LOCKED, &dev->flags));
605 			WARN_ON(1);
606 		}
607 		dev->flags = 0;
608 		dev->sector = raid5_compute_blocknr(sh, i, previous);
609 	}
610 	if (read_seqcount_retry(&conf->gen_lock, seq))
611 		goto retry;
612 	sh->overwrite_disks = 0;
613 	insert_hash(conf, sh);
614 	sh->cpu = smp_processor_id();
615 	set_bit(STRIPE_BATCH_READY, &sh->state);
616 }
617 
__find_stripe(struct r5conf * conf,sector_t sector,short generation)618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 					 short generation)
620 {
621 	struct stripe_head *sh;
622 
623 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 		if (sh->sector == sector && sh->generation == generation)
626 			return sh;
627 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 	return NULL;
629 }
630 
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 		sector_t sector, short generation, int hash)
633 {
634 	int inc_empty_inactive_list_flag;
635 	struct stripe_head *sh;
636 
637 	sh = __find_stripe(conf, sector, generation);
638 	if (!sh)
639 		return NULL;
640 
641 	if (atomic_inc_not_zero(&sh->count))
642 		return sh;
643 
644 	/*
645 	 * Slow path. The reference count is zero which means the stripe must
646 	 * be on a list (sh->lru). Must remove the stripe from the list that
647 	 * references it with the device_lock held.
648 	 */
649 
650 	spin_lock(&conf->device_lock);
651 	if (!atomic_read(&sh->count)) {
652 		if (!test_bit(STRIPE_HANDLE, &sh->state))
653 			atomic_inc(&conf->active_stripes);
654 		BUG_ON(list_empty(&sh->lru) &&
655 		       !test_bit(STRIPE_EXPANDING, &sh->state));
656 		inc_empty_inactive_list_flag = 0;
657 		if (!list_empty(conf->inactive_list + hash))
658 			inc_empty_inactive_list_flag = 1;
659 		list_del_init(&sh->lru);
660 		if (list_empty(conf->inactive_list + hash) &&
661 		    inc_empty_inactive_list_flag)
662 			atomic_inc(&conf->empty_inactive_list_nr);
663 		if (sh->group) {
664 			sh->group->stripes_cnt--;
665 			sh->group = NULL;
666 		}
667 	}
668 	atomic_inc(&sh->count);
669 	spin_unlock(&conf->device_lock);
670 
671 	return sh;
672 }
673 
674 /*
675  * Need to check if array has failed when deciding whether to:
676  *  - start an array
677  *  - remove non-faulty devices
678  *  - add a spare
679  *  - allow a reshape
680  * This determination is simple when no reshape is happening.
681  * However if there is a reshape, we need to carefully check
682  * both the before and after sections.
683  * This is because some failed devices may only affect one
684  * of the two sections, and some non-in_sync devices may
685  * be insync in the section most affected by failed devices.
686  *
687  * Most calls to this function hold &conf->device_lock. Calls
688  * in raid5_run() do not require the lock as no other threads
689  * have been started yet.
690  */
raid5_calc_degraded(struct r5conf * conf)691 int raid5_calc_degraded(struct r5conf *conf)
692 {
693 	int degraded, degraded2;
694 	int i;
695 
696 	degraded = 0;
697 	for (i = 0; i < conf->previous_raid_disks; i++) {
698 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699 
700 		if (rdev && test_bit(Faulty, &rdev->flags))
701 			rdev = READ_ONCE(conf->disks[i].replacement);
702 		if (!rdev || test_bit(Faulty, &rdev->flags))
703 			degraded++;
704 		else if (test_bit(In_sync, &rdev->flags))
705 			;
706 		else
707 			/* not in-sync or faulty.
708 			 * If the reshape increases the number of devices,
709 			 * this is being recovered by the reshape, so
710 			 * this 'previous' section is not in_sync.
711 			 * If the number of devices is being reduced however,
712 			 * the device can only be part of the array if
713 			 * we are reverting a reshape, so this section will
714 			 * be in-sync.
715 			 */
716 			if (conf->raid_disks >= conf->previous_raid_disks)
717 				degraded++;
718 	}
719 	if (conf->raid_disks == conf->previous_raid_disks)
720 		return degraded;
721 	degraded2 = 0;
722 	for (i = 0; i < conf->raid_disks; i++) {
723 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724 
725 		if (rdev && test_bit(Faulty, &rdev->flags))
726 			rdev = READ_ONCE(conf->disks[i].replacement);
727 		if (!rdev || test_bit(Faulty, &rdev->flags))
728 			degraded2++;
729 		else if (test_bit(In_sync, &rdev->flags))
730 			;
731 		else
732 			/* not in-sync or faulty.
733 			 * If reshape increases the number of devices, this
734 			 * section has already been recovered, else it
735 			 * almost certainly hasn't.
736 			 */
737 			if (conf->raid_disks <= conf->previous_raid_disks)
738 				degraded2++;
739 	}
740 	if (degraded2 > degraded)
741 		return degraded2;
742 	return degraded;
743 }
744 
has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf)
746 {
747 	int degraded = conf->mddev->degraded;
748 
749 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 		return true;
751 
752 	if (conf->mddev->reshape_position != MaxSector)
753 		degraded = raid5_calc_degraded(conf);
754 
755 	return degraded > conf->max_degraded;
756 }
757 
758 enum stripe_result {
759 	STRIPE_SUCCESS = 0,
760 	STRIPE_RETRY,
761 	STRIPE_SCHEDULE_AND_RETRY,
762 	STRIPE_FAIL,
763 	STRIPE_WAIT_RESHAPE,
764 };
765 
766 struct stripe_request_ctx {
767 	/* a reference to the last stripe_head for batching */
768 	struct stripe_head *batch_last;
769 
770 	/* first sector in the request */
771 	sector_t first_sector;
772 
773 	/* last sector in the request */
774 	sector_t last_sector;
775 
776 	/*
777 	 * bitmap to track stripe sectors that have been added to stripes
778 	 * add one to account for unaligned requests
779 	 */
780 	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781 
782 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 	bool do_flush;
784 };
785 
786 /*
787  * Block until another thread clears R5_INACTIVE_BLOCKED or
788  * there are fewer than 3/4 the maximum number of active stripes
789  * and there is an inactive stripe available.
790  */
is_inactive_blocked(struct r5conf * conf,int hash)791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
792 {
793 	if (list_empty(conf->inactive_list + hash))
794 		return false;
795 
796 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 		return true;
798 
799 	return (atomic_read(&conf->active_stripes) <
800 		(conf->max_nr_stripes * 3 / 4));
801 }
802 
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 		struct stripe_request_ctx *ctx, sector_t sector,
805 		unsigned int flags)
806 {
807 	struct stripe_head *sh;
808 	int hash = stripe_hash_locks_hash(conf, sector);
809 	int previous = !!(flags & R5_GAS_PREVIOUS);
810 
811 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812 
813 	spin_lock_irq(conf->hash_locks + hash);
814 
815 	for (;;) {
816 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 			/*
818 			 * Must release the reference to batch_last before
819 			 * waiting, on quiesce, otherwise the batch_last will
820 			 * hold a reference to a stripe and raid5_quiesce()
821 			 * will deadlock waiting for active_stripes to go to
822 			 * zero.
823 			 */
824 			if (ctx && ctx->batch_last) {
825 				raid5_release_stripe(ctx->batch_last);
826 				ctx->batch_last = NULL;
827 			}
828 
829 			wait_event_lock_irq(conf->wait_for_quiescent,
830 					    !conf->quiesce,
831 					    *(conf->hash_locks + hash));
832 		}
833 
834 		sh = find_get_stripe(conf, sector, conf->generation - previous,
835 				     hash);
836 		if (sh)
837 			break;
838 
839 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 			sh = get_free_stripe(conf, hash);
841 			if (sh) {
842 				r5c_check_stripe_cache_usage(conf);
843 				init_stripe(sh, sector, previous);
844 				atomic_inc(&sh->count);
845 				break;
846 			}
847 
848 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 		}
851 
852 		if (flags & R5_GAS_NOBLOCK)
853 			break;
854 
855 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 		r5l_wake_reclaim(conf->log, 0);
857 
858 		/* release batch_last before wait to avoid risk of deadlock */
859 		if (ctx && ctx->batch_last) {
860 			raid5_release_stripe(ctx->batch_last);
861 			ctx->batch_last = NULL;
862 		}
863 
864 		wait_event_lock_irq(conf->wait_for_stripe,
865 				    is_inactive_blocked(conf, hash),
866 				    *(conf->hash_locks + hash));
867 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 	}
869 
870 	spin_unlock_irq(conf->hash_locks + hash);
871 	return sh;
872 }
873 
is_full_stripe_write(struct stripe_head * sh)874 static bool is_full_stripe_write(struct stripe_head *sh)
875 {
876 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878 }
879 
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 		__acquires(&sh1->stripe_lock)
882 		__acquires(&sh2->stripe_lock)
883 {
884 	if (sh1 > sh2) {
885 		spin_lock_irq(&sh2->stripe_lock);
886 		spin_lock_nested(&sh1->stripe_lock, 1);
887 	} else {
888 		spin_lock_irq(&sh1->stripe_lock);
889 		spin_lock_nested(&sh2->stripe_lock, 1);
890 	}
891 }
892 
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 		__releases(&sh1->stripe_lock)
895 		__releases(&sh2->stripe_lock)
896 {
897 	spin_unlock(&sh1->stripe_lock);
898 	spin_unlock_irq(&sh2->stripe_lock);
899 }
900 
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)902 static bool stripe_can_batch(struct stripe_head *sh)
903 {
904 	struct r5conf *conf = sh->raid_conf;
905 
906 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 		return false;
908 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 	       is_full_stripe_write(sh);
910 }
911 
912 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 		struct stripe_head *sh, struct stripe_head *last_sh)
915 {
916 	struct stripe_head *head;
917 	sector_t head_sector, tmp_sec;
918 	int hash;
919 	int dd_idx;
920 
921 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 	tmp_sec = sh->sector;
923 	if (!sector_div(tmp_sec, conf->chunk_sectors))
924 		return;
925 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926 
927 	if (last_sh && head_sector == last_sh->sector) {
928 		head = last_sh;
929 		atomic_inc(&head->count);
930 	} else {
931 		hash = stripe_hash_locks_hash(conf, head_sector);
932 		spin_lock_irq(conf->hash_locks + hash);
933 		head = find_get_stripe(conf, head_sector, conf->generation,
934 				       hash);
935 		spin_unlock_irq(conf->hash_locks + hash);
936 		if (!head)
937 			return;
938 		if (!stripe_can_batch(head))
939 			goto out;
940 	}
941 
942 	lock_two_stripes(head, sh);
943 	/* clear_batch_ready clear the flag */
944 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 		goto unlock_out;
946 
947 	if (sh->batch_head)
948 		goto unlock_out;
949 
950 	dd_idx = 0;
951 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 		dd_idx++;
953 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 		goto unlock_out;
956 
957 	if (head->batch_head) {
958 		spin_lock(&head->batch_head->batch_lock);
959 		/* This batch list is already running */
960 		if (!stripe_can_batch(head)) {
961 			spin_unlock(&head->batch_head->batch_lock);
962 			goto unlock_out;
963 		}
964 		/*
965 		 * We must assign batch_head of this stripe within the
966 		 * batch_lock, otherwise clear_batch_ready of batch head
967 		 * stripe could clear BATCH_READY bit of this stripe and
968 		 * this stripe->batch_head doesn't get assigned, which
969 		 * could confuse clear_batch_ready for this stripe
970 		 */
971 		sh->batch_head = head->batch_head;
972 
973 		/*
974 		 * at this point, head's BATCH_READY could be cleared, but we
975 		 * can still add the stripe to batch list
976 		 */
977 		list_add(&sh->batch_list, &head->batch_list);
978 		spin_unlock(&head->batch_head->batch_lock);
979 	} else {
980 		head->batch_head = head;
981 		sh->batch_head = head->batch_head;
982 		spin_lock(&head->batch_lock);
983 		list_add_tail(&sh->batch_list, &head->batch_list);
984 		spin_unlock(&head->batch_lock);
985 	}
986 
987 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 		if (atomic_dec_return(&conf->preread_active_stripes)
989 		    < IO_THRESHOLD)
990 			md_wakeup_thread(conf->mddev->thread);
991 
992 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 		int seq = sh->bm_seq;
994 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 		    sh->batch_head->bm_seq > seq)
996 			seq = sh->batch_head->bm_seq;
997 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 		sh->batch_head->bm_seq = seq;
999 	}
1000 
1001 	atomic_inc(&sh->count);
1002 unlock_out:
1003 	unlock_two_stripes(head, sh);
1004 out:
1005 	raid5_release_stripe(head);
1006 }
1007 
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009  * in this stripe_head.
1010  */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012 {
1013 	sector_t progress = conf->reshape_progress;
1014 	/* Need a memory barrier to make sure we see the value
1015 	 * of conf->generation, or ->data_offset that was set before
1016 	 * reshape_progress was updated.
1017 	 */
1018 	smp_rmb();
1019 	if (progress == MaxSector)
1020 		return 0;
1021 	if (sh->generation == conf->generation - 1)
1022 		return 0;
1023 	/* We are in a reshape, and this is a new-generation stripe,
1024 	 * so use new_data_offset.
1025 	 */
1026 	return 1;
1027 }
1028 
dispatch_bio_list(struct bio_list * tmp)1029 static void dispatch_bio_list(struct bio_list *tmp)
1030 {
1031 	struct bio *bio;
1032 
1033 	while ((bio = bio_list_pop(tmp)))
1034 		submit_bio_noacct(bio);
1035 }
1036 
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 		      const struct list_head *b)
1039 {
1040 	const struct r5pending_data *da = list_entry(a,
1041 				struct r5pending_data, sibling);
1042 	const struct r5pending_data *db = list_entry(b,
1043 				struct r5pending_data, sibling);
1044 	if (da->sector > db->sector)
1045 		return 1;
1046 	if (da->sector < db->sector)
1047 		return -1;
1048 	return 0;
1049 }
1050 
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 				struct bio_list *list)
1053 {
1054 	struct r5pending_data *data;
1055 	struct list_head *first, *next = NULL;
1056 	int cnt = 0;
1057 
1058 	if (conf->pending_data_cnt == 0)
1059 		return;
1060 
1061 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1062 
1063 	first = conf->pending_list.next;
1064 
1065 	/* temporarily move the head */
1066 	if (conf->next_pending_data)
1067 		list_move_tail(&conf->pending_list,
1068 				&conf->next_pending_data->sibling);
1069 
1070 	while (!list_empty(&conf->pending_list)) {
1071 		data = list_first_entry(&conf->pending_list,
1072 			struct r5pending_data, sibling);
1073 		if (&data->sibling == first)
1074 			first = data->sibling.next;
1075 		next = data->sibling.next;
1076 
1077 		bio_list_merge(list, &data->bios);
1078 		list_move(&data->sibling, &conf->free_list);
1079 		cnt++;
1080 		if (cnt >= target)
1081 			break;
1082 	}
1083 	conf->pending_data_cnt -= cnt;
1084 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085 
1086 	if (next != &conf->pending_list)
1087 		conf->next_pending_data = list_entry(next,
1088 				struct r5pending_data, sibling);
1089 	else
1090 		conf->next_pending_data = NULL;
1091 	/* list isn't empty */
1092 	if (first != &conf->pending_list)
1093 		list_move_tail(&conf->pending_list, first);
1094 }
1095 
flush_deferred_bios(struct r5conf * conf)1096 static void flush_deferred_bios(struct r5conf *conf)
1097 {
1098 	struct bio_list tmp = BIO_EMPTY_LIST;
1099 
1100 	if (conf->pending_data_cnt == 0)
1101 		return;
1102 
1103 	spin_lock(&conf->pending_bios_lock);
1104 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 	BUG_ON(conf->pending_data_cnt != 0);
1106 	spin_unlock(&conf->pending_bios_lock);
1107 
1108 	dispatch_bio_list(&tmp);
1109 }
1110 
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 				struct bio_list *bios)
1113 {
1114 	struct bio_list tmp = BIO_EMPTY_LIST;
1115 	struct r5pending_data *ent;
1116 
1117 	spin_lock(&conf->pending_bios_lock);
1118 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 							sibling);
1120 	list_move_tail(&ent->sibling, &conf->pending_list);
1121 	ent->sector = sector;
1122 	bio_list_init(&ent->bios);
1123 	bio_list_merge(&ent->bios, bios);
1124 	conf->pending_data_cnt++;
1125 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127 
1128 	spin_unlock(&conf->pending_bios_lock);
1129 
1130 	dispatch_bio_list(&tmp);
1131 }
1132 
1133 static void
1134 raid5_end_read_request(struct bio *bi);
1135 static void
1136 raid5_end_write_request(struct bio *bi);
1137 
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139 {
1140 	struct r5conf *conf = sh->raid_conf;
1141 	int i, disks = sh->disks;
1142 	struct stripe_head *head_sh = sh;
1143 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 	struct r5dev *dev;
1145 	bool should_defer;
1146 
1147 	might_sleep();
1148 
1149 	if (log_stripe(sh, s) == 0)
1150 		return;
1151 
1152 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153 
1154 	for (i = disks; i--; ) {
1155 		enum req_op op;
1156 		blk_opf_t op_flags = 0;
1157 		int replace_only = 0;
1158 		struct bio *bi, *rbi;
1159 		struct md_rdev *rdev, *rrdev = NULL;
1160 
1161 		sh = head_sh;
1162 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 			op = REQ_OP_WRITE;
1164 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 				op_flags = REQ_FUA;
1166 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 				op = REQ_OP_DISCARD;
1168 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 			op = REQ_OP_READ;
1170 		else if (test_and_clear_bit(R5_WantReplace,
1171 					    &sh->dev[i].flags)) {
1172 			op = REQ_OP_WRITE;
1173 			replace_only = 1;
1174 		} else
1175 			continue;
1176 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 			op_flags |= REQ_SYNC;
1178 
1179 again:
1180 		dev = &sh->dev[i];
1181 		bi = &dev->req;
1182 		rbi = &dev->rreq; /* For writing to replacement */
1183 
1184 		rdev = conf->disks[i].rdev;
1185 		rrdev = conf->disks[i].replacement;
1186 		if (op_is_write(op)) {
1187 			if (replace_only)
1188 				rdev = NULL;
1189 			if (rdev == rrdev)
1190 				/* We raced and saw duplicates */
1191 				rrdev = NULL;
1192 		} else {
1193 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 				rdev = rrdev;
1195 			rrdev = NULL;
1196 		}
1197 
1198 		if (rdev && test_bit(Faulty, &rdev->flags))
1199 			rdev = NULL;
1200 		if (rdev)
1201 			atomic_inc(&rdev->nr_pending);
1202 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 			rrdev = NULL;
1204 		if (rrdev)
1205 			atomic_inc(&rrdev->nr_pending);
1206 
1207 		/* We have already checked bad blocks for reads.  Now
1208 		 * need to check for writes.  We never accept write errors
1209 		 * on the replacement, so we don't to check rrdev.
1210 		 */
1211 		while (op_is_write(op) && rdev &&
1212 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1213 			int bad = rdev_has_badblock(rdev, sh->sector,
1214 						    RAID5_STRIPE_SECTORS(conf));
1215 			if (!bad)
1216 				break;
1217 
1218 			if (bad < 0) {
1219 				set_bit(BlockedBadBlocks, &rdev->flags);
1220 				if (!conf->mddev->external &&
1221 				    conf->mddev->sb_flags) {
1222 					/* It is very unlikely, but we might
1223 					 * still need to write out the
1224 					 * bad block log - better give it
1225 					 * a chance*/
1226 					md_check_recovery(conf->mddev);
1227 				}
1228 				/*
1229 				 * Because md_wait_for_blocked_rdev
1230 				 * will dec nr_pending, we must
1231 				 * increment it first.
1232 				 */
1233 				atomic_inc(&rdev->nr_pending);
1234 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1235 			} else {
1236 				/* Acknowledged bad block - skip the write */
1237 				rdev_dec_pending(rdev, conf->mddev);
1238 				rdev = NULL;
1239 			}
1240 		}
1241 
1242 		if (rdev) {
1243 			set_bit(STRIPE_IO_STARTED, &sh->state);
1244 
1245 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1246 			bi->bi_end_io = op_is_write(op)
1247 				? raid5_end_write_request
1248 				: raid5_end_read_request;
1249 			bi->bi_private = sh;
1250 
1251 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1252 				__func__, (unsigned long long)sh->sector,
1253 				bi->bi_opf, i);
1254 			atomic_inc(&sh->count);
1255 			if (sh != head_sh)
1256 				atomic_inc(&head_sh->count);
1257 			if (use_new_offset(conf, sh))
1258 				bi->bi_iter.bi_sector = (sh->sector
1259 						 + rdev->new_data_offset);
1260 			else
1261 				bi->bi_iter.bi_sector = (sh->sector
1262 						 + rdev->data_offset);
1263 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1264 				bi->bi_opf |= REQ_NOMERGE;
1265 
1266 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1267 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1268 
1269 			if (!op_is_write(op) &&
1270 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1271 				/*
1272 				 * issuing read for a page in journal, this
1273 				 * must be preparing for prexor in rmw; read
1274 				 * the data into orig_page
1275 				 */
1276 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1277 			else
1278 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1279 			bi->bi_vcnt = 1;
1280 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1281 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1282 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1283 			/*
1284 			 * If this is discard request, set bi_vcnt 0. We don't
1285 			 * want to confuse SCSI because SCSI will replace payload
1286 			 */
1287 			if (op == REQ_OP_DISCARD)
1288 				bi->bi_vcnt = 0;
1289 			if (rrdev)
1290 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1291 
1292 			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1293 			if (should_defer && op_is_write(op))
1294 				bio_list_add(&pending_bios, bi);
1295 			else
1296 				submit_bio_noacct(bi);
1297 		}
1298 		if (rrdev) {
1299 			set_bit(STRIPE_IO_STARTED, &sh->state);
1300 
1301 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1302 			BUG_ON(!op_is_write(op));
1303 			rbi->bi_end_io = raid5_end_write_request;
1304 			rbi->bi_private = sh;
1305 
1306 			pr_debug("%s: for %llu schedule op %d on "
1307 				 "replacement disc %d\n",
1308 				__func__, (unsigned long long)sh->sector,
1309 				rbi->bi_opf, i);
1310 			atomic_inc(&sh->count);
1311 			if (sh != head_sh)
1312 				atomic_inc(&head_sh->count);
1313 			if (use_new_offset(conf, sh))
1314 				rbi->bi_iter.bi_sector = (sh->sector
1315 						  + rrdev->new_data_offset);
1316 			else
1317 				rbi->bi_iter.bi_sector = (sh->sector
1318 						  + rrdev->data_offset);
1319 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1320 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1321 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1322 			rbi->bi_vcnt = 1;
1323 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1324 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1325 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1326 			/*
1327 			 * If this is discard request, set bi_vcnt 0. We don't
1328 			 * want to confuse SCSI because SCSI will replace payload
1329 			 */
1330 			if (op == REQ_OP_DISCARD)
1331 				rbi->bi_vcnt = 0;
1332 			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1333 			if (should_defer && op_is_write(op))
1334 				bio_list_add(&pending_bios, rbi);
1335 			else
1336 				submit_bio_noacct(rbi);
1337 		}
1338 		if (!rdev && !rrdev) {
1339 			pr_debug("skip op %d on disc %d for sector %llu\n",
1340 				bi->bi_opf, i, (unsigned long long)sh->sector);
1341 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1342 			set_bit(STRIPE_HANDLE, &sh->state);
1343 		}
1344 
1345 		if (!head_sh->batch_head)
1346 			continue;
1347 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1348 				      batch_list);
1349 		if (sh != head_sh)
1350 			goto again;
1351 	}
1352 
1353 	if (should_defer && !bio_list_empty(&pending_bios))
1354 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1355 }
1356 
1357 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1358 async_copy_data(int frombio, struct bio *bio, struct page **page,
1359 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1360 	struct stripe_head *sh, int no_skipcopy)
1361 {
1362 	struct bio_vec bvl;
1363 	struct bvec_iter iter;
1364 	struct page *bio_page;
1365 	int page_offset;
1366 	struct async_submit_ctl submit;
1367 	enum async_tx_flags flags = 0;
1368 	struct r5conf *conf = sh->raid_conf;
1369 
1370 	if (bio->bi_iter.bi_sector >= sector)
1371 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1372 	else
1373 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1374 
1375 	if (frombio)
1376 		flags |= ASYNC_TX_FENCE;
1377 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1378 
1379 	bio_for_each_segment(bvl, bio, iter) {
1380 		int len = bvl.bv_len;
1381 		int clen;
1382 		int b_offset = 0;
1383 
1384 		if (page_offset < 0) {
1385 			b_offset = -page_offset;
1386 			page_offset += b_offset;
1387 			len -= b_offset;
1388 		}
1389 
1390 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1391 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1392 		else
1393 			clen = len;
1394 
1395 		if (clen > 0) {
1396 			b_offset += bvl.bv_offset;
1397 			bio_page = bvl.bv_page;
1398 			if (frombio) {
1399 				if (conf->skip_copy &&
1400 				    b_offset == 0 && page_offset == 0 &&
1401 				    clen == RAID5_STRIPE_SIZE(conf) &&
1402 				    !no_skipcopy)
1403 					*page = bio_page;
1404 				else
1405 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1406 						  b_offset, clen, &submit);
1407 			} else
1408 				tx = async_memcpy(bio_page, *page, b_offset,
1409 						  page_offset + poff, clen, &submit);
1410 		}
1411 		/* chain the operations */
1412 		submit.depend_tx = tx;
1413 
1414 		if (clen < len) /* hit end of page */
1415 			break;
1416 		page_offset +=  len;
1417 	}
1418 
1419 	return tx;
1420 }
1421 
ops_complete_biofill(void * stripe_head_ref)1422 static void ops_complete_biofill(void *stripe_head_ref)
1423 {
1424 	struct stripe_head *sh = stripe_head_ref;
1425 	int i;
1426 	struct r5conf *conf = sh->raid_conf;
1427 
1428 	pr_debug("%s: stripe %llu\n", __func__,
1429 		(unsigned long long)sh->sector);
1430 
1431 	/* clear completed biofills */
1432 	for (i = sh->disks; i--; ) {
1433 		struct r5dev *dev = &sh->dev[i];
1434 
1435 		/* acknowledge completion of a biofill operation */
1436 		/* and check if we need to reply to a read request,
1437 		 * new R5_Wantfill requests are held off until
1438 		 * !STRIPE_BIOFILL_RUN
1439 		 */
1440 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1441 			struct bio *rbi, *rbi2;
1442 
1443 			BUG_ON(!dev->read);
1444 			rbi = dev->read;
1445 			dev->read = NULL;
1446 			while (rbi && rbi->bi_iter.bi_sector <
1447 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1448 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1449 				bio_endio(rbi);
1450 				rbi = rbi2;
1451 			}
1452 		}
1453 	}
1454 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1455 
1456 	set_bit(STRIPE_HANDLE, &sh->state);
1457 	raid5_release_stripe(sh);
1458 }
1459 
ops_run_biofill(struct stripe_head * sh)1460 static void ops_run_biofill(struct stripe_head *sh)
1461 {
1462 	struct dma_async_tx_descriptor *tx = NULL;
1463 	struct async_submit_ctl submit;
1464 	int i;
1465 	struct r5conf *conf = sh->raid_conf;
1466 
1467 	BUG_ON(sh->batch_head);
1468 	pr_debug("%s: stripe %llu\n", __func__,
1469 		(unsigned long long)sh->sector);
1470 
1471 	for (i = sh->disks; i--; ) {
1472 		struct r5dev *dev = &sh->dev[i];
1473 		if (test_bit(R5_Wantfill, &dev->flags)) {
1474 			struct bio *rbi;
1475 			spin_lock_irq(&sh->stripe_lock);
1476 			dev->read = rbi = dev->toread;
1477 			dev->toread = NULL;
1478 			spin_unlock_irq(&sh->stripe_lock);
1479 			while (rbi && rbi->bi_iter.bi_sector <
1480 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1481 				tx = async_copy_data(0, rbi, &dev->page,
1482 						     dev->offset,
1483 						     dev->sector, tx, sh, 0);
1484 				rbi = r5_next_bio(conf, rbi, dev->sector);
1485 			}
1486 		}
1487 	}
1488 
1489 	atomic_inc(&sh->count);
1490 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1491 	async_trigger_callback(&submit);
1492 }
1493 
mark_target_uptodate(struct stripe_head * sh,int target)1494 static void mark_target_uptodate(struct stripe_head *sh, int target)
1495 {
1496 	struct r5dev *tgt;
1497 
1498 	if (target < 0)
1499 		return;
1500 
1501 	tgt = &sh->dev[target];
1502 	set_bit(R5_UPTODATE, &tgt->flags);
1503 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1504 	clear_bit(R5_Wantcompute, &tgt->flags);
1505 }
1506 
ops_complete_compute(void * stripe_head_ref)1507 static void ops_complete_compute(void *stripe_head_ref)
1508 {
1509 	struct stripe_head *sh = stripe_head_ref;
1510 
1511 	pr_debug("%s: stripe %llu\n", __func__,
1512 		(unsigned long long)sh->sector);
1513 
1514 	/* mark the computed target(s) as uptodate */
1515 	mark_target_uptodate(sh, sh->ops.target);
1516 	mark_target_uptodate(sh, sh->ops.target2);
1517 
1518 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1519 	if (sh->check_state == check_state_compute_run)
1520 		sh->check_state = check_state_compute_result;
1521 	set_bit(STRIPE_HANDLE, &sh->state);
1522 	raid5_release_stripe(sh);
1523 }
1524 
1525 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1526 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1527 {
1528 	return percpu->scribble + i * percpu->scribble_obj_size;
1529 }
1530 
1531 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1532 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1533 				 struct raid5_percpu *percpu, int i)
1534 {
1535 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1536 }
1537 
1538 /*
1539  * Return a pointer to record offset address.
1540  */
1541 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1542 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1543 {
1544 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1545 }
1546 
1547 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1548 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1549 {
1550 	int disks = sh->disks;
1551 	struct page **xor_srcs = to_addr_page(percpu, 0);
1552 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1553 	int target = sh->ops.target;
1554 	struct r5dev *tgt = &sh->dev[target];
1555 	struct page *xor_dest = tgt->page;
1556 	unsigned int off_dest = tgt->offset;
1557 	int count = 0;
1558 	struct dma_async_tx_descriptor *tx;
1559 	struct async_submit_ctl submit;
1560 	int i;
1561 
1562 	BUG_ON(sh->batch_head);
1563 
1564 	pr_debug("%s: stripe %llu block: %d\n",
1565 		__func__, (unsigned long long)sh->sector, target);
1566 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1567 
1568 	for (i = disks; i--; ) {
1569 		if (i != target) {
1570 			off_srcs[count] = sh->dev[i].offset;
1571 			xor_srcs[count++] = sh->dev[i].page;
1572 		}
1573 	}
1574 
1575 	atomic_inc(&sh->count);
1576 
1577 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1578 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1579 	if (unlikely(count == 1))
1580 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1581 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1582 	else
1583 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1584 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1585 
1586 	return tx;
1587 }
1588 
1589 /* set_syndrome_sources - populate source buffers for gen_syndrome
1590  * @srcs - (struct page *) array of size sh->disks
1591  * @offs - (unsigned int) array of offset for each page
1592  * @sh - stripe_head to parse
1593  *
1594  * Populates srcs in proper layout order for the stripe and returns the
1595  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1596  * destination buffer is recorded in srcs[count] and the Q destination
1597  * is recorded in srcs[count+1]].
1598  */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1599 static int set_syndrome_sources(struct page **srcs,
1600 				unsigned int *offs,
1601 				struct stripe_head *sh,
1602 				int srctype)
1603 {
1604 	int disks = sh->disks;
1605 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1606 	int d0_idx = raid6_d0(sh);
1607 	int count;
1608 	int i;
1609 
1610 	for (i = 0; i < disks; i++)
1611 		srcs[i] = NULL;
1612 
1613 	count = 0;
1614 	i = d0_idx;
1615 	do {
1616 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1617 		struct r5dev *dev = &sh->dev[i];
1618 
1619 		if (i == sh->qd_idx || i == sh->pd_idx ||
1620 		    (srctype == SYNDROME_SRC_ALL) ||
1621 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1622 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1623 		      test_bit(R5_InJournal, &dev->flags))) ||
1624 		    (srctype == SYNDROME_SRC_WRITTEN &&
1625 		     (dev->written ||
1626 		      test_bit(R5_InJournal, &dev->flags)))) {
1627 			if (test_bit(R5_InJournal, &dev->flags))
1628 				srcs[slot] = sh->dev[i].orig_page;
1629 			else
1630 				srcs[slot] = sh->dev[i].page;
1631 			/*
1632 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1633 			 * not shared page. In that case, dev[i].offset
1634 			 * is 0.
1635 			 */
1636 			offs[slot] = sh->dev[i].offset;
1637 		}
1638 		i = raid6_next_disk(i, disks);
1639 	} while (i != d0_idx);
1640 
1641 	return syndrome_disks;
1642 }
1643 
1644 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1645 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1646 {
1647 	int disks = sh->disks;
1648 	struct page **blocks = to_addr_page(percpu, 0);
1649 	unsigned int *offs = to_addr_offs(sh, percpu);
1650 	int target;
1651 	int qd_idx = sh->qd_idx;
1652 	struct dma_async_tx_descriptor *tx;
1653 	struct async_submit_ctl submit;
1654 	struct r5dev *tgt;
1655 	struct page *dest;
1656 	unsigned int dest_off;
1657 	int i;
1658 	int count;
1659 
1660 	BUG_ON(sh->batch_head);
1661 	if (sh->ops.target < 0)
1662 		target = sh->ops.target2;
1663 	else if (sh->ops.target2 < 0)
1664 		target = sh->ops.target;
1665 	else
1666 		/* we should only have one valid target */
1667 		BUG();
1668 	BUG_ON(target < 0);
1669 	pr_debug("%s: stripe %llu block: %d\n",
1670 		__func__, (unsigned long long)sh->sector, target);
1671 
1672 	tgt = &sh->dev[target];
1673 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1674 	dest = tgt->page;
1675 	dest_off = tgt->offset;
1676 
1677 	atomic_inc(&sh->count);
1678 
1679 	if (target == qd_idx) {
1680 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1681 		blocks[count] = NULL; /* regenerating p is not necessary */
1682 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1683 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1684 				  ops_complete_compute, sh,
1685 				  to_addr_conv(sh, percpu, 0));
1686 		tx = async_gen_syndrome(blocks, offs, count+2,
1687 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1688 	} else {
1689 		/* Compute any data- or p-drive using XOR */
1690 		count = 0;
1691 		for (i = disks; i-- ; ) {
1692 			if (i == target || i == qd_idx)
1693 				continue;
1694 			offs[count] = sh->dev[i].offset;
1695 			blocks[count++] = sh->dev[i].page;
1696 		}
1697 
1698 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1699 				  NULL, ops_complete_compute, sh,
1700 				  to_addr_conv(sh, percpu, 0));
1701 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1702 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1703 	}
1704 
1705 	return tx;
1706 }
1707 
1708 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1709 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1710 {
1711 	int i, count, disks = sh->disks;
1712 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1713 	int d0_idx = raid6_d0(sh);
1714 	int faila = -1, failb = -1;
1715 	int target = sh->ops.target;
1716 	int target2 = sh->ops.target2;
1717 	struct r5dev *tgt = &sh->dev[target];
1718 	struct r5dev *tgt2 = &sh->dev[target2];
1719 	struct dma_async_tx_descriptor *tx;
1720 	struct page **blocks = to_addr_page(percpu, 0);
1721 	unsigned int *offs = to_addr_offs(sh, percpu);
1722 	struct async_submit_ctl submit;
1723 
1724 	BUG_ON(sh->batch_head);
1725 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1726 		 __func__, (unsigned long long)sh->sector, target, target2);
1727 	BUG_ON(target < 0 || target2 < 0);
1728 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1729 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1730 
1731 	/* we need to open-code set_syndrome_sources to handle the
1732 	 * slot number conversion for 'faila' and 'failb'
1733 	 */
1734 	for (i = 0; i < disks ; i++) {
1735 		offs[i] = 0;
1736 		blocks[i] = NULL;
1737 	}
1738 	count = 0;
1739 	i = d0_idx;
1740 	do {
1741 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1742 
1743 		offs[slot] = sh->dev[i].offset;
1744 		blocks[slot] = sh->dev[i].page;
1745 
1746 		if (i == target)
1747 			faila = slot;
1748 		if (i == target2)
1749 			failb = slot;
1750 		i = raid6_next_disk(i, disks);
1751 	} while (i != d0_idx);
1752 
1753 	BUG_ON(faila == failb);
1754 	if (failb < faila)
1755 		swap(faila, failb);
1756 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1757 		 __func__, (unsigned long long)sh->sector, faila, failb);
1758 
1759 	atomic_inc(&sh->count);
1760 
1761 	if (failb == syndrome_disks+1) {
1762 		/* Q disk is one of the missing disks */
1763 		if (faila == syndrome_disks) {
1764 			/* Missing P+Q, just recompute */
1765 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1766 					  ops_complete_compute, sh,
1767 					  to_addr_conv(sh, percpu, 0));
1768 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1769 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1770 						  &submit);
1771 		} else {
1772 			struct page *dest;
1773 			unsigned int dest_off;
1774 			int data_target;
1775 			int qd_idx = sh->qd_idx;
1776 
1777 			/* Missing D+Q: recompute D from P, then recompute Q */
1778 			if (target == qd_idx)
1779 				data_target = target2;
1780 			else
1781 				data_target = target;
1782 
1783 			count = 0;
1784 			for (i = disks; i-- ; ) {
1785 				if (i == data_target || i == qd_idx)
1786 					continue;
1787 				offs[count] = sh->dev[i].offset;
1788 				blocks[count++] = sh->dev[i].page;
1789 			}
1790 			dest = sh->dev[data_target].page;
1791 			dest_off = sh->dev[data_target].offset;
1792 			init_async_submit(&submit,
1793 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1794 					  NULL, NULL, NULL,
1795 					  to_addr_conv(sh, percpu, 0));
1796 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1797 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1798 				       &submit);
1799 
1800 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1801 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1802 					  ops_complete_compute, sh,
1803 					  to_addr_conv(sh, percpu, 0));
1804 			return async_gen_syndrome(blocks, offs, count+2,
1805 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1806 						  &submit);
1807 		}
1808 	} else {
1809 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1810 				  ops_complete_compute, sh,
1811 				  to_addr_conv(sh, percpu, 0));
1812 		if (failb == syndrome_disks) {
1813 			/* We're missing D+P. */
1814 			return async_raid6_datap_recov(syndrome_disks+2,
1815 						RAID5_STRIPE_SIZE(sh->raid_conf),
1816 						faila,
1817 						blocks, offs, &submit);
1818 		} else {
1819 			/* We're missing D+D. */
1820 			return async_raid6_2data_recov(syndrome_disks+2,
1821 						RAID5_STRIPE_SIZE(sh->raid_conf),
1822 						faila, failb,
1823 						blocks, offs, &submit);
1824 		}
1825 	}
1826 }
1827 
ops_complete_prexor(void * stripe_head_ref)1828 static void ops_complete_prexor(void *stripe_head_ref)
1829 {
1830 	struct stripe_head *sh = stripe_head_ref;
1831 
1832 	pr_debug("%s: stripe %llu\n", __func__,
1833 		(unsigned long long)sh->sector);
1834 
1835 	if (r5c_is_writeback(sh->raid_conf->log))
1836 		/*
1837 		 * raid5-cache write back uses orig_page during prexor.
1838 		 * After prexor, it is time to free orig_page
1839 		 */
1840 		r5c_release_extra_page(sh);
1841 }
1842 
1843 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1844 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1845 		struct dma_async_tx_descriptor *tx)
1846 {
1847 	int disks = sh->disks;
1848 	struct page **xor_srcs = to_addr_page(percpu, 0);
1849 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1850 	int count = 0, pd_idx = sh->pd_idx, i;
1851 	struct async_submit_ctl submit;
1852 
1853 	/* existing parity data subtracted */
1854 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1855 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1856 
1857 	BUG_ON(sh->batch_head);
1858 	pr_debug("%s: stripe %llu\n", __func__,
1859 		(unsigned long long)sh->sector);
1860 
1861 	for (i = disks; i--; ) {
1862 		struct r5dev *dev = &sh->dev[i];
1863 		/* Only process blocks that are known to be uptodate */
1864 		if (test_bit(R5_InJournal, &dev->flags)) {
1865 			/*
1866 			 * For this case, PAGE_SIZE must be equal to 4KB and
1867 			 * page offset is zero.
1868 			 */
1869 			off_srcs[count] = dev->offset;
1870 			xor_srcs[count++] = dev->orig_page;
1871 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1872 			off_srcs[count] = dev->offset;
1873 			xor_srcs[count++] = dev->page;
1874 		}
1875 	}
1876 
1877 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1878 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1879 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1880 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1881 
1882 	return tx;
1883 }
1884 
1885 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1886 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1887 		struct dma_async_tx_descriptor *tx)
1888 {
1889 	struct page **blocks = to_addr_page(percpu, 0);
1890 	unsigned int *offs = to_addr_offs(sh, percpu);
1891 	int count;
1892 	struct async_submit_ctl submit;
1893 
1894 	pr_debug("%s: stripe %llu\n", __func__,
1895 		(unsigned long long)sh->sector);
1896 
1897 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1898 
1899 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1900 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1901 	tx = async_gen_syndrome(blocks, offs, count+2,
1902 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1903 
1904 	return tx;
1905 }
1906 
1907 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1908 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1909 {
1910 	struct r5conf *conf = sh->raid_conf;
1911 	int disks = sh->disks;
1912 	int i;
1913 	struct stripe_head *head_sh = sh;
1914 
1915 	pr_debug("%s: stripe %llu\n", __func__,
1916 		(unsigned long long)sh->sector);
1917 
1918 	for (i = disks; i--; ) {
1919 		struct r5dev *dev;
1920 		struct bio *chosen;
1921 
1922 		sh = head_sh;
1923 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1924 			struct bio *wbi;
1925 
1926 again:
1927 			dev = &sh->dev[i];
1928 			/*
1929 			 * clear R5_InJournal, so when rewriting a page in
1930 			 * journal, it is not skipped by r5l_log_stripe()
1931 			 */
1932 			clear_bit(R5_InJournal, &dev->flags);
1933 			spin_lock_irq(&sh->stripe_lock);
1934 			chosen = dev->towrite;
1935 			dev->towrite = NULL;
1936 			sh->overwrite_disks = 0;
1937 			BUG_ON(dev->written);
1938 			wbi = dev->written = chosen;
1939 			spin_unlock_irq(&sh->stripe_lock);
1940 			WARN_ON(dev->page != dev->orig_page);
1941 
1942 			while (wbi && wbi->bi_iter.bi_sector <
1943 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1944 				if (wbi->bi_opf & REQ_FUA)
1945 					set_bit(R5_WantFUA, &dev->flags);
1946 				if (wbi->bi_opf & REQ_SYNC)
1947 					set_bit(R5_SyncIO, &dev->flags);
1948 				if (bio_op(wbi) == REQ_OP_DISCARD)
1949 					set_bit(R5_Discard, &dev->flags);
1950 				else {
1951 					tx = async_copy_data(1, wbi, &dev->page,
1952 							     dev->offset,
1953 							     dev->sector, tx, sh,
1954 							     r5c_is_writeback(conf->log));
1955 					if (dev->page != dev->orig_page &&
1956 					    !r5c_is_writeback(conf->log)) {
1957 						set_bit(R5_SkipCopy, &dev->flags);
1958 						clear_bit(R5_UPTODATE, &dev->flags);
1959 						clear_bit(R5_OVERWRITE, &dev->flags);
1960 					}
1961 				}
1962 				wbi = r5_next_bio(conf, wbi, dev->sector);
1963 			}
1964 
1965 			if (head_sh->batch_head) {
1966 				sh = list_first_entry(&sh->batch_list,
1967 						      struct stripe_head,
1968 						      batch_list);
1969 				if (sh == head_sh)
1970 					continue;
1971 				goto again;
1972 			}
1973 		}
1974 	}
1975 
1976 	return tx;
1977 }
1978 
ops_complete_reconstruct(void * stripe_head_ref)1979 static void ops_complete_reconstruct(void *stripe_head_ref)
1980 {
1981 	struct stripe_head *sh = stripe_head_ref;
1982 	int disks = sh->disks;
1983 	int pd_idx = sh->pd_idx;
1984 	int qd_idx = sh->qd_idx;
1985 	int i;
1986 	bool fua = false, sync = false, discard = false;
1987 
1988 	pr_debug("%s: stripe %llu\n", __func__,
1989 		(unsigned long long)sh->sector);
1990 
1991 	for (i = disks; i--; ) {
1992 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1993 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1994 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1995 	}
1996 
1997 	for (i = disks; i--; ) {
1998 		struct r5dev *dev = &sh->dev[i];
1999 
2000 		if (dev->written || i == pd_idx || i == qd_idx) {
2001 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2002 				set_bit(R5_UPTODATE, &dev->flags);
2003 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2004 					set_bit(R5_Expanded, &dev->flags);
2005 			}
2006 			if (fua)
2007 				set_bit(R5_WantFUA, &dev->flags);
2008 			if (sync)
2009 				set_bit(R5_SyncIO, &dev->flags);
2010 		}
2011 	}
2012 
2013 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2014 		sh->reconstruct_state = reconstruct_state_drain_result;
2015 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2016 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2017 	else {
2018 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2019 		sh->reconstruct_state = reconstruct_state_result;
2020 	}
2021 
2022 	set_bit(STRIPE_HANDLE, &sh->state);
2023 	raid5_release_stripe(sh);
2024 }
2025 
2026 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2027 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2028 		     struct dma_async_tx_descriptor *tx)
2029 {
2030 	int disks = sh->disks;
2031 	struct page **xor_srcs;
2032 	unsigned int *off_srcs;
2033 	struct async_submit_ctl submit;
2034 	int count, pd_idx = sh->pd_idx, i;
2035 	struct page *xor_dest;
2036 	unsigned int off_dest;
2037 	int prexor = 0;
2038 	unsigned long flags;
2039 	int j = 0;
2040 	struct stripe_head *head_sh = sh;
2041 	int last_stripe;
2042 
2043 	pr_debug("%s: stripe %llu\n", __func__,
2044 		(unsigned long long)sh->sector);
2045 
2046 	for (i = 0; i < sh->disks; i++) {
2047 		if (pd_idx == i)
2048 			continue;
2049 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2050 			break;
2051 	}
2052 	if (i >= sh->disks) {
2053 		atomic_inc(&sh->count);
2054 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2055 		ops_complete_reconstruct(sh);
2056 		return;
2057 	}
2058 again:
2059 	count = 0;
2060 	xor_srcs = to_addr_page(percpu, j);
2061 	off_srcs = to_addr_offs(sh, percpu);
2062 	/* check if prexor is active which means only process blocks
2063 	 * that are part of a read-modify-write (written)
2064 	 */
2065 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2066 		prexor = 1;
2067 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2068 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2069 		for (i = disks; i--; ) {
2070 			struct r5dev *dev = &sh->dev[i];
2071 			if (head_sh->dev[i].written ||
2072 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2073 				off_srcs[count] = dev->offset;
2074 				xor_srcs[count++] = dev->page;
2075 			}
2076 		}
2077 	} else {
2078 		xor_dest = sh->dev[pd_idx].page;
2079 		off_dest = sh->dev[pd_idx].offset;
2080 		for (i = disks; i--; ) {
2081 			struct r5dev *dev = &sh->dev[i];
2082 			if (i != pd_idx) {
2083 				off_srcs[count] = dev->offset;
2084 				xor_srcs[count++] = dev->page;
2085 			}
2086 		}
2087 	}
2088 
2089 	/* 1/ if we prexor'd then the dest is reused as a source
2090 	 * 2/ if we did not prexor then we are redoing the parity
2091 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2092 	 * for the synchronous xor case
2093 	 */
2094 	last_stripe = !head_sh->batch_head ||
2095 		list_first_entry(&sh->batch_list,
2096 				 struct stripe_head, batch_list) == head_sh;
2097 	if (last_stripe) {
2098 		flags = ASYNC_TX_ACK |
2099 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2100 
2101 		atomic_inc(&head_sh->count);
2102 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2103 				  to_addr_conv(sh, percpu, j));
2104 	} else {
2105 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2106 		init_async_submit(&submit, flags, tx, NULL, NULL,
2107 				  to_addr_conv(sh, percpu, j));
2108 	}
2109 
2110 	if (unlikely(count == 1))
2111 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2112 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2113 	else
2114 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2115 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2116 	if (!last_stripe) {
2117 		j++;
2118 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2119 				      batch_list);
2120 		goto again;
2121 	}
2122 }
2123 
2124 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2125 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2126 		     struct dma_async_tx_descriptor *tx)
2127 {
2128 	struct async_submit_ctl submit;
2129 	struct page **blocks;
2130 	unsigned int *offs;
2131 	int count, i, j = 0;
2132 	struct stripe_head *head_sh = sh;
2133 	int last_stripe;
2134 	int synflags;
2135 	unsigned long txflags;
2136 
2137 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2138 
2139 	for (i = 0; i < sh->disks; i++) {
2140 		if (sh->pd_idx == i || sh->qd_idx == i)
2141 			continue;
2142 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2143 			break;
2144 	}
2145 	if (i >= sh->disks) {
2146 		atomic_inc(&sh->count);
2147 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2148 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2149 		ops_complete_reconstruct(sh);
2150 		return;
2151 	}
2152 
2153 again:
2154 	blocks = to_addr_page(percpu, j);
2155 	offs = to_addr_offs(sh, percpu);
2156 
2157 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2158 		synflags = SYNDROME_SRC_WRITTEN;
2159 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2160 	} else {
2161 		synflags = SYNDROME_SRC_ALL;
2162 		txflags = ASYNC_TX_ACK;
2163 	}
2164 
2165 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2166 	last_stripe = !head_sh->batch_head ||
2167 		list_first_entry(&sh->batch_list,
2168 				 struct stripe_head, batch_list) == head_sh;
2169 
2170 	if (last_stripe) {
2171 		atomic_inc(&head_sh->count);
2172 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2173 				  head_sh, to_addr_conv(sh, percpu, j));
2174 	} else
2175 		init_async_submit(&submit, 0, tx, NULL, NULL,
2176 				  to_addr_conv(sh, percpu, j));
2177 	tx = async_gen_syndrome(blocks, offs, count+2,
2178 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2179 	if (!last_stripe) {
2180 		j++;
2181 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2182 				      batch_list);
2183 		goto again;
2184 	}
2185 }
2186 
ops_complete_check(void * stripe_head_ref)2187 static void ops_complete_check(void *stripe_head_ref)
2188 {
2189 	struct stripe_head *sh = stripe_head_ref;
2190 
2191 	pr_debug("%s: stripe %llu\n", __func__,
2192 		(unsigned long long)sh->sector);
2193 
2194 	sh->check_state = check_state_check_result;
2195 	set_bit(STRIPE_HANDLE, &sh->state);
2196 	raid5_release_stripe(sh);
2197 }
2198 
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2199 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2200 {
2201 	int disks = sh->disks;
2202 	int pd_idx = sh->pd_idx;
2203 	int qd_idx = sh->qd_idx;
2204 	struct page *xor_dest;
2205 	unsigned int off_dest;
2206 	struct page **xor_srcs = to_addr_page(percpu, 0);
2207 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2208 	struct dma_async_tx_descriptor *tx;
2209 	struct async_submit_ctl submit;
2210 	int count;
2211 	int i;
2212 
2213 	pr_debug("%s: stripe %llu\n", __func__,
2214 		(unsigned long long)sh->sector);
2215 
2216 	BUG_ON(sh->batch_head);
2217 	count = 0;
2218 	xor_dest = sh->dev[pd_idx].page;
2219 	off_dest = sh->dev[pd_idx].offset;
2220 	off_srcs[count] = off_dest;
2221 	xor_srcs[count++] = xor_dest;
2222 	for (i = disks; i--; ) {
2223 		if (i == pd_idx || i == qd_idx)
2224 			continue;
2225 		off_srcs[count] = sh->dev[i].offset;
2226 		xor_srcs[count++] = sh->dev[i].page;
2227 	}
2228 
2229 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2230 			  to_addr_conv(sh, percpu, 0));
2231 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2232 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2233 			   &sh->ops.zero_sum_result, &submit);
2234 
2235 	atomic_inc(&sh->count);
2236 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2237 	tx = async_trigger_callback(&submit);
2238 }
2239 
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2240 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2241 {
2242 	struct page **srcs = to_addr_page(percpu, 0);
2243 	unsigned int *offs = to_addr_offs(sh, percpu);
2244 	struct async_submit_ctl submit;
2245 	int count;
2246 
2247 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2248 		(unsigned long long)sh->sector, checkp);
2249 
2250 	BUG_ON(sh->batch_head);
2251 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2252 	if (!checkp)
2253 		srcs[count] = NULL;
2254 
2255 	atomic_inc(&sh->count);
2256 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2257 			  sh, to_addr_conv(sh, percpu, 0));
2258 	async_syndrome_val(srcs, offs, count+2,
2259 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2260 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2261 }
2262 
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2263 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2264 {
2265 	int overlap_clear = 0, i, disks = sh->disks;
2266 	struct dma_async_tx_descriptor *tx = NULL;
2267 	struct r5conf *conf = sh->raid_conf;
2268 	int level = conf->level;
2269 	struct raid5_percpu *percpu;
2270 
2271 	local_lock(&conf->percpu->lock);
2272 	percpu = this_cpu_ptr(conf->percpu);
2273 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2274 		ops_run_biofill(sh);
2275 		overlap_clear++;
2276 	}
2277 
2278 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2279 		if (level < 6)
2280 			tx = ops_run_compute5(sh, percpu);
2281 		else {
2282 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2283 				tx = ops_run_compute6_1(sh, percpu);
2284 			else
2285 				tx = ops_run_compute6_2(sh, percpu);
2286 		}
2287 		/* terminate the chain if reconstruct is not set to be run */
2288 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2289 			async_tx_ack(tx);
2290 	}
2291 
2292 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2293 		if (level < 6)
2294 			tx = ops_run_prexor5(sh, percpu, tx);
2295 		else
2296 			tx = ops_run_prexor6(sh, percpu, tx);
2297 	}
2298 
2299 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2300 		tx = ops_run_partial_parity(sh, percpu, tx);
2301 
2302 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2303 		tx = ops_run_biodrain(sh, tx);
2304 		overlap_clear++;
2305 	}
2306 
2307 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2308 		if (level < 6)
2309 			ops_run_reconstruct5(sh, percpu, tx);
2310 		else
2311 			ops_run_reconstruct6(sh, percpu, tx);
2312 	}
2313 
2314 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2315 		if (sh->check_state == check_state_run)
2316 			ops_run_check_p(sh, percpu);
2317 		else if (sh->check_state == check_state_run_q)
2318 			ops_run_check_pq(sh, percpu, 0);
2319 		else if (sh->check_state == check_state_run_pq)
2320 			ops_run_check_pq(sh, percpu, 1);
2321 		else
2322 			BUG();
2323 	}
2324 
2325 	if (overlap_clear && !sh->batch_head) {
2326 		for (i = disks; i--; ) {
2327 			struct r5dev *dev = &sh->dev[i];
2328 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2329 				wake_up_bit(&dev->flags, R5_Overlap);
2330 		}
2331 	}
2332 	local_unlock(&conf->percpu->lock);
2333 }
2334 
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2335 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2336 {
2337 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2338 	kfree(sh->pages);
2339 #endif
2340 	if (sh->ppl_page)
2341 		__free_page(sh->ppl_page);
2342 	kmem_cache_free(sc, sh);
2343 }
2344 
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2345 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2346 	int disks, struct r5conf *conf)
2347 {
2348 	struct stripe_head *sh;
2349 
2350 	sh = kmem_cache_zalloc(sc, gfp);
2351 	if (sh) {
2352 		spin_lock_init(&sh->stripe_lock);
2353 		spin_lock_init(&sh->batch_lock);
2354 		INIT_LIST_HEAD(&sh->batch_list);
2355 		INIT_LIST_HEAD(&sh->lru);
2356 		INIT_LIST_HEAD(&sh->r5c);
2357 		INIT_LIST_HEAD(&sh->log_list);
2358 		atomic_set(&sh->count, 1);
2359 		sh->raid_conf = conf;
2360 		sh->log_start = MaxSector;
2361 
2362 		if (raid5_has_ppl(conf)) {
2363 			sh->ppl_page = alloc_page(gfp);
2364 			if (!sh->ppl_page) {
2365 				free_stripe(sc, sh);
2366 				return NULL;
2367 			}
2368 		}
2369 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2370 		if (init_stripe_shared_pages(sh, conf, disks)) {
2371 			free_stripe(sc, sh);
2372 			return NULL;
2373 		}
2374 #endif
2375 	}
2376 	return sh;
2377 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2378 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2379 {
2380 	struct stripe_head *sh;
2381 
2382 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2383 	if (!sh)
2384 		return 0;
2385 
2386 	if (grow_buffers(sh, gfp)) {
2387 		shrink_buffers(sh);
2388 		free_stripe(conf->slab_cache, sh);
2389 		return 0;
2390 	}
2391 	sh->hash_lock_index =
2392 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2393 	/* we just created an active stripe so... */
2394 	atomic_inc(&conf->active_stripes);
2395 
2396 	raid5_release_stripe(sh);
2397 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2398 	return 1;
2399 }
2400 
grow_stripes(struct r5conf * conf,int num)2401 static int grow_stripes(struct r5conf *conf, int num)
2402 {
2403 	struct kmem_cache *sc;
2404 	size_t namelen = sizeof(conf->cache_name[0]);
2405 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2406 
2407 	if (mddev_is_dm(conf->mddev))
2408 		snprintf(conf->cache_name[0], namelen,
2409 			"raid%d-%p", conf->level, conf->mddev);
2410 	else
2411 		snprintf(conf->cache_name[0], namelen,
2412 			"raid%d-%s", conf->level, mdname(conf->mddev));
2413 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2414 
2415 	conf->active_name = 0;
2416 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2417 			       struct_size_t(struct stripe_head, dev, devs),
2418 			       0, 0, NULL);
2419 	if (!sc)
2420 		return 1;
2421 	conf->slab_cache = sc;
2422 	conf->pool_size = devs;
2423 	while (num--)
2424 		if (!grow_one_stripe(conf, GFP_KERNEL))
2425 			return 1;
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  * scribble_alloc - allocate percpu scribble buffer for required size
2432  *		    of the scribble region
2433  * @percpu: from for_each_present_cpu() of the caller
2434  * @num: total number of disks in the array
2435  * @cnt: scribble objs count for required size of the scribble region
2436  *
2437  * The scribble buffer size must be enough to contain:
2438  * 1/ a struct page pointer for each device in the array +2
2439  * 2/ room to convert each entry in (1) to its corresponding dma
2440  *    (dma_map_page()) or page (page_address()) address.
2441  *
2442  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2443  * calculate over all devices (not just the data blocks), using zeros in place
2444  * of the P and Q blocks.
2445  */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2446 static int scribble_alloc(struct raid5_percpu *percpu,
2447 			  int num, int cnt)
2448 {
2449 	size_t obj_size =
2450 		sizeof(struct page *) * (num + 2) +
2451 		sizeof(addr_conv_t) * (num + 2) +
2452 		sizeof(unsigned int) * (num + 2);
2453 	void *scribble;
2454 
2455 	/*
2456 	 * If here is in raid array suspend context, it is in memalloc noio
2457 	 * context as well, there is no potential recursive memory reclaim
2458 	 * I/Os with the GFP_KERNEL flag.
2459 	 */
2460 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2461 	if (!scribble)
2462 		return -ENOMEM;
2463 
2464 	kvfree(percpu->scribble);
2465 
2466 	percpu->scribble = scribble;
2467 	percpu->scribble_obj_size = obj_size;
2468 	return 0;
2469 }
2470 
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2471 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2472 {
2473 	unsigned long cpu;
2474 	int err = 0;
2475 
2476 	/* Never shrink. */
2477 	if (conf->scribble_disks >= new_disks &&
2478 	    conf->scribble_sectors >= new_sectors)
2479 		return 0;
2480 
2481 	raid5_quiesce(conf->mddev, true);
2482 	cpus_read_lock();
2483 
2484 	for_each_present_cpu(cpu) {
2485 		struct raid5_percpu *percpu;
2486 
2487 		percpu = per_cpu_ptr(conf->percpu, cpu);
2488 		err = scribble_alloc(percpu, new_disks,
2489 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2490 		if (err)
2491 			break;
2492 	}
2493 
2494 	cpus_read_unlock();
2495 	raid5_quiesce(conf->mddev, false);
2496 
2497 	if (!err) {
2498 		conf->scribble_disks = new_disks;
2499 		conf->scribble_sectors = new_sectors;
2500 	}
2501 	return err;
2502 }
2503 
resize_stripes(struct r5conf * conf,int newsize)2504 static int resize_stripes(struct r5conf *conf, int newsize)
2505 {
2506 	/* Make all the stripes able to hold 'newsize' devices.
2507 	 * New slots in each stripe get 'page' set to a new page.
2508 	 *
2509 	 * This happens in stages:
2510 	 * 1/ create a new kmem_cache and allocate the required number of
2511 	 *    stripe_heads.
2512 	 * 2/ gather all the old stripe_heads and transfer the pages across
2513 	 *    to the new stripe_heads.  This will have the side effect of
2514 	 *    freezing the array as once all stripe_heads have been collected,
2515 	 *    no IO will be possible.  Old stripe heads are freed once their
2516 	 *    pages have been transferred over, and the old kmem_cache is
2517 	 *    freed when all stripes are done.
2518 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2519 	 *    we simple return a failure status - no need to clean anything up.
2520 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2521 	 *    If this fails, we don't bother trying the shrink the
2522 	 *    stripe_heads down again, we just leave them as they are.
2523 	 *    As each stripe_head is processed the new one is released into
2524 	 *    active service.
2525 	 *
2526 	 * Once step2 is started, we cannot afford to wait for a write,
2527 	 * so we use GFP_NOIO allocations.
2528 	 */
2529 	struct stripe_head *osh, *nsh;
2530 	LIST_HEAD(newstripes);
2531 	struct disk_info *ndisks;
2532 	int err = 0;
2533 	struct kmem_cache *sc;
2534 	int i;
2535 	int hash, cnt;
2536 
2537 	md_allow_write(conf->mddev);
2538 
2539 	/* Step 1 */
2540 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2541 			       struct_size_t(struct stripe_head, dev, newsize),
2542 			       0, 0, NULL);
2543 	if (!sc)
2544 		return -ENOMEM;
2545 
2546 	/* Need to ensure auto-resizing doesn't interfere */
2547 	mutex_lock(&conf->cache_size_mutex);
2548 
2549 	for (i = conf->max_nr_stripes; i; i--) {
2550 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2551 		if (!nsh)
2552 			break;
2553 
2554 		list_add(&nsh->lru, &newstripes);
2555 	}
2556 	if (i) {
2557 		/* didn't get enough, give up */
2558 		while (!list_empty(&newstripes)) {
2559 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2560 			list_del(&nsh->lru);
2561 			free_stripe(sc, nsh);
2562 		}
2563 		kmem_cache_destroy(sc);
2564 		mutex_unlock(&conf->cache_size_mutex);
2565 		return -ENOMEM;
2566 	}
2567 	/* Step 2 - Must use GFP_NOIO now.
2568 	 * OK, we have enough stripes, start collecting inactive
2569 	 * stripes and copying them over
2570 	 */
2571 	hash = 0;
2572 	cnt = 0;
2573 	list_for_each_entry(nsh, &newstripes, lru) {
2574 		lock_device_hash_lock(conf, hash);
2575 		wait_event_cmd(conf->wait_for_stripe,
2576 				    !list_empty(conf->inactive_list + hash),
2577 				    unlock_device_hash_lock(conf, hash),
2578 				    lock_device_hash_lock(conf, hash));
2579 		osh = get_free_stripe(conf, hash);
2580 		unlock_device_hash_lock(conf, hash);
2581 
2582 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2583 	for (i = 0; i < osh->nr_pages; i++) {
2584 		nsh->pages[i] = osh->pages[i];
2585 		osh->pages[i] = NULL;
2586 	}
2587 #endif
2588 		for(i=0; i<conf->pool_size; i++) {
2589 			nsh->dev[i].page = osh->dev[i].page;
2590 			nsh->dev[i].orig_page = osh->dev[i].page;
2591 			nsh->dev[i].offset = osh->dev[i].offset;
2592 		}
2593 		nsh->hash_lock_index = hash;
2594 		free_stripe(conf->slab_cache, osh);
2595 		cnt++;
2596 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2597 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2598 			hash++;
2599 			cnt = 0;
2600 		}
2601 	}
2602 	kmem_cache_destroy(conf->slab_cache);
2603 
2604 	/* Step 3.
2605 	 * At this point, we are holding all the stripes so the array
2606 	 * is completely stalled, so now is a good time to resize
2607 	 * conf->disks and the scribble region
2608 	 */
2609 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2610 	if (ndisks) {
2611 		for (i = 0; i < conf->pool_size; i++)
2612 			ndisks[i] = conf->disks[i];
2613 
2614 		for (i = conf->pool_size; i < newsize; i++) {
2615 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2616 			if (!ndisks[i].extra_page)
2617 				err = -ENOMEM;
2618 		}
2619 
2620 		if (err) {
2621 			for (i = conf->pool_size; i < newsize; i++)
2622 				if (ndisks[i].extra_page)
2623 					put_page(ndisks[i].extra_page);
2624 			kfree(ndisks);
2625 		} else {
2626 			kfree(conf->disks);
2627 			conf->disks = ndisks;
2628 		}
2629 	} else
2630 		err = -ENOMEM;
2631 
2632 	conf->slab_cache = sc;
2633 	conf->active_name = 1-conf->active_name;
2634 
2635 	/* Step 4, return new stripes to service */
2636 	while(!list_empty(&newstripes)) {
2637 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2638 		list_del_init(&nsh->lru);
2639 
2640 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2641 		for (i = 0; i < nsh->nr_pages; i++) {
2642 			if (nsh->pages[i])
2643 				continue;
2644 			nsh->pages[i] = alloc_page(GFP_NOIO);
2645 			if (!nsh->pages[i])
2646 				err = -ENOMEM;
2647 		}
2648 
2649 		for (i = conf->raid_disks; i < newsize; i++) {
2650 			if (nsh->dev[i].page)
2651 				continue;
2652 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2653 			nsh->dev[i].orig_page = nsh->dev[i].page;
2654 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2655 		}
2656 #else
2657 		for (i=conf->raid_disks; i < newsize; i++)
2658 			if (nsh->dev[i].page == NULL) {
2659 				struct page *p = alloc_page(GFP_NOIO);
2660 				nsh->dev[i].page = p;
2661 				nsh->dev[i].orig_page = p;
2662 				nsh->dev[i].offset = 0;
2663 				if (!p)
2664 					err = -ENOMEM;
2665 			}
2666 #endif
2667 		raid5_release_stripe(nsh);
2668 	}
2669 	/* critical section pass, GFP_NOIO no longer needed */
2670 
2671 	if (!err)
2672 		conf->pool_size = newsize;
2673 	mutex_unlock(&conf->cache_size_mutex);
2674 
2675 	return err;
2676 }
2677 
drop_one_stripe(struct r5conf * conf)2678 static int drop_one_stripe(struct r5conf *conf)
2679 {
2680 	struct stripe_head *sh;
2681 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2682 
2683 	spin_lock_irq(conf->hash_locks + hash);
2684 	sh = get_free_stripe(conf, hash);
2685 	spin_unlock_irq(conf->hash_locks + hash);
2686 	if (!sh)
2687 		return 0;
2688 	BUG_ON(atomic_read(&sh->count));
2689 	shrink_buffers(sh);
2690 	free_stripe(conf->slab_cache, sh);
2691 	atomic_dec(&conf->active_stripes);
2692 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2693 	return 1;
2694 }
2695 
shrink_stripes(struct r5conf * conf)2696 static void shrink_stripes(struct r5conf *conf)
2697 {
2698 	while (conf->max_nr_stripes &&
2699 	       drop_one_stripe(conf))
2700 		;
2701 
2702 	kmem_cache_destroy(conf->slab_cache);
2703 	conf->slab_cache = NULL;
2704 }
2705 
raid5_end_read_request(struct bio * bi)2706 static void raid5_end_read_request(struct bio * bi)
2707 {
2708 	struct stripe_head *sh = bi->bi_private;
2709 	struct r5conf *conf = sh->raid_conf;
2710 	int disks = sh->disks, i;
2711 	struct md_rdev *rdev = NULL;
2712 	sector_t s;
2713 
2714 	for (i=0 ; i<disks; i++)
2715 		if (bi == &sh->dev[i].req)
2716 			break;
2717 
2718 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2719 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2720 		bi->bi_status);
2721 	if (i == disks) {
2722 		BUG();
2723 		return;
2724 	}
2725 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2726 		/* If replacement finished while this request was outstanding,
2727 		 * 'replacement' might be NULL already.
2728 		 * In that case it moved down to 'rdev'.
2729 		 * rdev is not removed until all requests are finished.
2730 		 */
2731 		rdev = conf->disks[i].replacement;
2732 	if (!rdev)
2733 		rdev = conf->disks[i].rdev;
2734 
2735 	if (use_new_offset(conf, sh))
2736 		s = sh->sector + rdev->new_data_offset;
2737 	else
2738 		s = sh->sector + rdev->data_offset;
2739 	if (!bi->bi_status) {
2740 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2741 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2742 			/* Note that this cannot happen on a
2743 			 * replacement device.  We just fail those on
2744 			 * any error
2745 			 */
2746 			pr_info_ratelimited(
2747 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2748 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2749 				(unsigned long long)s,
2750 				rdev->bdev);
2751 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2752 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2753 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2754 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2755 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2756 
2757 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2758 			/*
2759 			 * end read for a page in journal, this
2760 			 * must be preparing for prexor in rmw
2761 			 */
2762 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2763 
2764 		if (atomic_read(&rdev->read_errors))
2765 			atomic_set(&rdev->read_errors, 0);
2766 	} else {
2767 		int retry = 0;
2768 		int set_bad = 0;
2769 
2770 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2771 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2772 			atomic_inc(&rdev->read_errors);
2773 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2774 			pr_warn_ratelimited(
2775 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2776 				mdname(conf->mddev),
2777 				(unsigned long long)s,
2778 				rdev->bdev);
2779 		else if (conf->mddev->degraded >= conf->max_degraded) {
2780 			set_bad = 1;
2781 			pr_warn_ratelimited(
2782 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2783 				mdname(conf->mddev),
2784 				(unsigned long long)s,
2785 				rdev->bdev);
2786 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2787 			/* Oh, no!!! */
2788 			set_bad = 1;
2789 			pr_warn_ratelimited(
2790 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2791 				mdname(conf->mddev),
2792 				(unsigned long long)s,
2793 				rdev->bdev);
2794 		} else if (atomic_read(&rdev->read_errors)
2795 			 > conf->max_nr_stripes) {
2796 			if (!test_bit(Faulty, &rdev->flags)) {
2797 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2798 				    mdname(conf->mddev),
2799 				    atomic_read(&rdev->read_errors),
2800 				    conf->max_nr_stripes);
2801 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2802 				    mdname(conf->mddev), rdev->bdev);
2803 			}
2804 		} else
2805 			retry = 1;
2806 		if (set_bad && test_bit(In_sync, &rdev->flags)
2807 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2808 			retry = 1;
2809 		if (retry)
2810 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2811 				set_bit(R5_ReadError, &sh->dev[i].flags);
2812 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2813 				set_bit(R5_ReadError, &sh->dev[i].flags);
2814 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2815 			} else
2816 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2817 		else {
2818 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2819 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2820 			if (!(set_bad
2821 			      && test_bit(In_sync, &rdev->flags)
2822 			      && rdev_set_badblocks(
2823 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2824 				md_error(conf->mddev, rdev);
2825 		}
2826 	}
2827 	rdev_dec_pending(rdev, conf->mddev);
2828 	bio_uninit(bi);
2829 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830 	set_bit(STRIPE_HANDLE, &sh->state);
2831 	raid5_release_stripe(sh);
2832 }
2833 
raid5_end_write_request(struct bio * bi)2834 static void raid5_end_write_request(struct bio *bi)
2835 {
2836 	struct stripe_head *sh = bi->bi_private;
2837 	struct r5conf *conf = sh->raid_conf;
2838 	int disks = sh->disks, i;
2839 	struct md_rdev *rdev;
2840 	int replacement = 0;
2841 
2842 	for (i = 0 ; i < disks; i++) {
2843 		if (bi == &sh->dev[i].req) {
2844 			rdev = conf->disks[i].rdev;
2845 			break;
2846 		}
2847 		if (bi == &sh->dev[i].rreq) {
2848 			rdev = conf->disks[i].replacement;
2849 			if (rdev)
2850 				replacement = 1;
2851 			else
2852 				/* rdev was removed and 'replacement'
2853 				 * replaced it.  rdev is not removed
2854 				 * until all requests are finished.
2855 				 */
2856 				rdev = conf->disks[i].rdev;
2857 			break;
2858 		}
2859 	}
2860 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2861 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2862 		bi->bi_status);
2863 	if (i == disks) {
2864 		BUG();
2865 		return;
2866 	}
2867 
2868 	if (replacement) {
2869 		if (bi->bi_status)
2870 			md_error(conf->mddev, rdev);
2871 		else if (rdev_has_badblock(rdev, sh->sector,
2872 					   RAID5_STRIPE_SECTORS(conf)))
2873 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2874 	} else {
2875 		if (bi->bi_status) {
2876 			set_bit(WriteErrorSeen, &rdev->flags);
2877 			set_bit(R5_WriteError, &sh->dev[i].flags);
2878 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2879 				set_bit(MD_RECOVERY_NEEDED,
2880 					&rdev->mddev->recovery);
2881 		} else if (rdev_has_badblock(rdev, sh->sector,
2882 					     RAID5_STRIPE_SECTORS(conf))) {
2883 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2884 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2885 				/* That was a successful write so make
2886 				 * sure it looks like we already did
2887 				 * a re-write.
2888 				 */
2889 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2890 		}
2891 	}
2892 	rdev_dec_pending(rdev, conf->mddev);
2893 
2894 	if (sh->batch_head && bi->bi_status && !replacement)
2895 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2896 
2897 	bio_uninit(bi);
2898 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2899 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2900 	set_bit(STRIPE_HANDLE, &sh->state);
2901 
2902 	if (sh->batch_head && sh != sh->batch_head)
2903 		raid5_release_stripe(sh->batch_head);
2904 	raid5_release_stripe(sh);
2905 }
2906 
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2907 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2908 {
2909 	struct r5conf *conf = mddev->private;
2910 	unsigned long flags;
2911 	pr_debug("raid456: error called\n");
2912 
2913 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2914 		mdname(mddev), rdev->bdev);
2915 
2916 	spin_lock_irqsave(&conf->device_lock, flags);
2917 	set_bit(Faulty, &rdev->flags);
2918 	clear_bit(In_sync, &rdev->flags);
2919 	mddev->degraded = raid5_calc_degraded(conf);
2920 
2921 	if (has_failed(conf)) {
2922 		set_bit(MD_BROKEN, &conf->mddev->flags);
2923 		conf->recovery_disabled = mddev->recovery_disabled;
2924 
2925 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2926 			mdname(mddev), mddev->degraded, conf->raid_disks);
2927 	} else {
2928 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2929 			mdname(mddev), conf->raid_disks - mddev->degraded);
2930 	}
2931 
2932 	spin_unlock_irqrestore(&conf->device_lock, flags);
2933 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2934 
2935 	set_bit(Blocked, &rdev->flags);
2936 	set_mask_bits(&mddev->sb_flags, 0,
2937 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2938 	r5c_update_on_rdev_error(mddev, rdev);
2939 }
2940 
2941 /*
2942  * Input: a 'big' sector number,
2943  * Output: index of the data and parity disk, and the sector # in them.
2944  */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2945 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2946 			      int previous, int *dd_idx,
2947 			      struct stripe_head *sh)
2948 {
2949 	sector_t stripe, stripe2;
2950 	sector_t chunk_number;
2951 	unsigned int chunk_offset;
2952 	int pd_idx, qd_idx;
2953 	int ddf_layout = 0;
2954 	sector_t new_sector;
2955 	int algorithm = previous ? conf->prev_algo
2956 				 : conf->algorithm;
2957 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2958 					 : conf->chunk_sectors;
2959 	int raid_disks = previous ? conf->previous_raid_disks
2960 				  : conf->raid_disks;
2961 	int data_disks = raid_disks - conf->max_degraded;
2962 
2963 	/* First compute the information on this sector */
2964 
2965 	/*
2966 	 * Compute the chunk number and the sector offset inside the chunk
2967 	 */
2968 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2969 	chunk_number = r_sector;
2970 
2971 	/*
2972 	 * Compute the stripe number
2973 	 */
2974 	stripe = chunk_number;
2975 	*dd_idx = sector_div(stripe, data_disks);
2976 	stripe2 = stripe;
2977 	/*
2978 	 * Select the parity disk based on the user selected algorithm.
2979 	 */
2980 	pd_idx = qd_idx = -1;
2981 	switch(conf->level) {
2982 	case 4:
2983 		pd_idx = data_disks;
2984 		break;
2985 	case 5:
2986 		switch (algorithm) {
2987 		case ALGORITHM_LEFT_ASYMMETRIC:
2988 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2989 			if (*dd_idx >= pd_idx)
2990 				(*dd_idx)++;
2991 			break;
2992 		case ALGORITHM_RIGHT_ASYMMETRIC:
2993 			pd_idx = sector_div(stripe2, raid_disks);
2994 			if (*dd_idx >= pd_idx)
2995 				(*dd_idx)++;
2996 			break;
2997 		case ALGORITHM_LEFT_SYMMETRIC:
2998 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2999 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3000 			break;
3001 		case ALGORITHM_RIGHT_SYMMETRIC:
3002 			pd_idx = sector_div(stripe2, raid_disks);
3003 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3004 			break;
3005 		case ALGORITHM_PARITY_0:
3006 			pd_idx = 0;
3007 			(*dd_idx)++;
3008 			break;
3009 		case ALGORITHM_PARITY_N:
3010 			pd_idx = data_disks;
3011 			break;
3012 		default:
3013 			BUG();
3014 		}
3015 		break;
3016 	case 6:
3017 
3018 		switch (algorithm) {
3019 		case ALGORITHM_LEFT_ASYMMETRIC:
3020 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3021 			qd_idx = pd_idx + 1;
3022 			if (pd_idx == raid_disks-1) {
3023 				(*dd_idx)++;	/* Q D D D P */
3024 				qd_idx = 0;
3025 			} else if (*dd_idx >= pd_idx)
3026 				(*dd_idx) += 2; /* D D P Q D */
3027 			break;
3028 		case ALGORITHM_RIGHT_ASYMMETRIC:
3029 			pd_idx = sector_div(stripe2, raid_disks);
3030 			qd_idx = pd_idx + 1;
3031 			if (pd_idx == raid_disks-1) {
3032 				(*dd_idx)++;	/* Q D D D P */
3033 				qd_idx = 0;
3034 			} else if (*dd_idx >= pd_idx)
3035 				(*dd_idx) += 2; /* D D P Q D */
3036 			break;
3037 		case ALGORITHM_LEFT_SYMMETRIC:
3038 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3039 			qd_idx = (pd_idx + 1) % raid_disks;
3040 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3041 			break;
3042 		case ALGORITHM_RIGHT_SYMMETRIC:
3043 			pd_idx = sector_div(stripe2, raid_disks);
3044 			qd_idx = (pd_idx + 1) % raid_disks;
3045 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3046 			break;
3047 
3048 		case ALGORITHM_PARITY_0:
3049 			pd_idx = 0;
3050 			qd_idx = 1;
3051 			(*dd_idx) += 2;
3052 			break;
3053 		case ALGORITHM_PARITY_N:
3054 			pd_idx = data_disks;
3055 			qd_idx = data_disks + 1;
3056 			break;
3057 
3058 		case ALGORITHM_ROTATING_ZERO_RESTART:
3059 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3060 			 * of blocks for computing Q is different.
3061 			 */
3062 			pd_idx = sector_div(stripe2, raid_disks);
3063 			qd_idx = pd_idx + 1;
3064 			if (pd_idx == raid_disks-1) {
3065 				(*dd_idx)++;	/* Q D D D P */
3066 				qd_idx = 0;
3067 			} else if (*dd_idx >= pd_idx)
3068 				(*dd_idx) += 2; /* D D P Q D */
3069 			ddf_layout = 1;
3070 			break;
3071 
3072 		case ALGORITHM_ROTATING_N_RESTART:
3073 			/* Same a left_asymmetric, by first stripe is
3074 			 * D D D P Q  rather than
3075 			 * Q D D D P
3076 			 */
3077 			stripe2 += 1;
3078 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3079 			qd_idx = pd_idx + 1;
3080 			if (pd_idx == raid_disks-1) {
3081 				(*dd_idx)++;	/* Q D D D P */
3082 				qd_idx = 0;
3083 			} else if (*dd_idx >= pd_idx)
3084 				(*dd_idx) += 2; /* D D P Q D */
3085 			ddf_layout = 1;
3086 			break;
3087 
3088 		case ALGORITHM_ROTATING_N_CONTINUE:
3089 			/* Same as left_symmetric but Q is before P */
3090 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3091 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3092 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3093 			ddf_layout = 1;
3094 			break;
3095 
3096 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3097 			/* RAID5 left_asymmetric, with Q on last device */
3098 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3099 			if (*dd_idx >= pd_idx)
3100 				(*dd_idx)++;
3101 			qd_idx = raid_disks - 1;
3102 			break;
3103 
3104 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3105 			pd_idx = sector_div(stripe2, raid_disks-1);
3106 			if (*dd_idx >= pd_idx)
3107 				(*dd_idx)++;
3108 			qd_idx = raid_disks - 1;
3109 			break;
3110 
3111 		case ALGORITHM_LEFT_SYMMETRIC_6:
3112 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3113 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3114 			qd_idx = raid_disks - 1;
3115 			break;
3116 
3117 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3118 			pd_idx = sector_div(stripe2, raid_disks-1);
3119 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3120 			qd_idx = raid_disks - 1;
3121 			break;
3122 
3123 		case ALGORITHM_PARITY_0_6:
3124 			pd_idx = 0;
3125 			(*dd_idx)++;
3126 			qd_idx = raid_disks - 1;
3127 			break;
3128 
3129 		default:
3130 			BUG();
3131 		}
3132 		break;
3133 	}
3134 
3135 	if (sh) {
3136 		sh->pd_idx = pd_idx;
3137 		sh->qd_idx = qd_idx;
3138 		sh->ddf_layout = ddf_layout;
3139 	}
3140 	/*
3141 	 * Finally, compute the new sector number
3142 	 */
3143 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3144 	return new_sector;
3145 }
3146 
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3147 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3148 {
3149 	struct r5conf *conf = sh->raid_conf;
3150 	int raid_disks = sh->disks;
3151 	int data_disks = raid_disks - conf->max_degraded;
3152 	sector_t new_sector = sh->sector, check;
3153 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3154 					 : conf->chunk_sectors;
3155 	int algorithm = previous ? conf->prev_algo
3156 				 : conf->algorithm;
3157 	sector_t stripe;
3158 	int chunk_offset;
3159 	sector_t chunk_number;
3160 	int dummy1, dd_idx = i;
3161 	sector_t r_sector;
3162 	struct stripe_head sh2;
3163 
3164 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3165 	stripe = new_sector;
3166 
3167 	if (i == sh->pd_idx)
3168 		return 0;
3169 	switch(conf->level) {
3170 	case 4: break;
3171 	case 5:
3172 		switch (algorithm) {
3173 		case ALGORITHM_LEFT_ASYMMETRIC:
3174 		case ALGORITHM_RIGHT_ASYMMETRIC:
3175 			if (i > sh->pd_idx)
3176 				i--;
3177 			break;
3178 		case ALGORITHM_LEFT_SYMMETRIC:
3179 		case ALGORITHM_RIGHT_SYMMETRIC:
3180 			if (i < sh->pd_idx)
3181 				i += raid_disks;
3182 			i -= (sh->pd_idx + 1);
3183 			break;
3184 		case ALGORITHM_PARITY_0:
3185 			i -= 1;
3186 			break;
3187 		case ALGORITHM_PARITY_N:
3188 			break;
3189 		default:
3190 			BUG();
3191 		}
3192 		break;
3193 	case 6:
3194 		if (i == sh->qd_idx)
3195 			return 0; /* It is the Q disk */
3196 		switch (algorithm) {
3197 		case ALGORITHM_LEFT_ASYMMETRIC:
3198 		case ALGORITHM_RIGHT_ASYMMETRIC:
3199 		case ALGORITHM_ROTATING_ZERO_RESTART:
3200 		case ALGORITHM_ROTATING_N_RESTART:
3201 			if (sh->pd_idx == raid_disks-1)
3202 				i--;	/* Q D D D P */
3203 			else if (i > sh->pd_idx)
3204 				i -= 2; /* D D P Q D */
3205 			break;
3206 		case ALGORITHM_LEFT_SYMMETRIC:
3207 		case ALGORITHM_RIGHT_SYMMETRIC:
3208 			if (sh->pd_idx == raid_disks-1)
3209 				i--; /* Q D D D P */
3210 			else {
3211 				/* D D P Q D */
3212 				if (i < sh->pd_idx)
3213 					i += raid_disks;
3214 				i -= (sh->pd_idx + 2);
3215 			}
3216 			break;
3217 		case ALGORITHM_PARITY_0:
3218 			i -= 2;
3219 			break;
3220 		case ALGORITHM_PARITY_N:
3221 			break;
3222 		case ALGORITHM_ROTATING_N_CONTINUE:
3223 			/* Like left_symmetric, but P is before Q */
3224 			if (sh->pd_idx == 0)
3225 				i--;	/* P D D D Q */
3226 			else {
3227 				/* D D Q P D */
3228 				if (i < sh->pd_idx)
3229 					i += raid_disks;
3230 				i -= (sh->pd_idx + 1);
3231 			}
3232 			break;
3233 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3234 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3235 			if (i > sh->pd_idx)
3236 				i--;
3237 			break;
3238 		case ALGORITHM_LEFT_SYMMETRIC_6:
3239 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3240 			if (i < sh->pd_idx)
3241 				i += data_disks + 1;
3242 			i -= (sh->pd_idx + 1);
3243 			break;
3244 		case ALGORITHM_PARITY_0_6:
3245 			i -= 1;
3246 			break;
3247 		default:
3248 			BUG();
3249 		}
3250 		break;
3251 	}
3252 
3253 	chunk_number = stripe * data_disks + i;
3254 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3255 
3256 	check = raid5_compute_sector(conf, r_sector,
3257 				     previous, &dummy1, &sh2);
3258 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3259 		|| sh2.qd_idx != sh->qd_idx) {
3260 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3261 			mdname(conf->mddev));
3262 		return 0;
3263 	}
3264 	return r_sector;
3265 }
3266 
3267 /*
3268  * There are cases where we want handle_stripe_dirtying() and
3269  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3270  *
3271  * This function checks whether we want to delay the towrite. Specifically,
3272  * we delay the towrite when:
3273  *
3274  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3275  *      stripe has data in journal (for other devices).
3276  *
3277  *      In this case, when reading data for the non-overwrite dev, it is
3278  *      necessary to handle complex rmw of write back cache (prexor with
3279  *      orig_page, and xor with page). To keep read path simple, we would
3280  *      like to flush data in journal to RAID disks first, so complex rmw
3281  *      is handled in the write patch (handle_stripe_dirtying).
3282  *
3283  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3284  *
3285  *      It is important to be able to flush all stripes in raid5-cache.
3286  *      Therefore, we need reserve some space on the journal device for
3287  *      these flushes. If flush operation includes pending writes to the
3288  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3289  *      for the flush out. If we exclude these pending writes from flush
3290  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3291  *      Therefore, excluding pending writes in these cases enables more
3292  *      efficient use of the journal device.
3293  *
3294  *      Note: To make sure the stripe makes progress, we only delay
3295  *      towrite for stripes with data already in journal (injournal > 0).
3296  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3297  *      no_space_stripes list.
3298  *
3299  *   3. during journal failure
3300  *      In journal failure, we try to flush all cached data to raid disks
3301  *      based on data in stripe cache. The array is read-only to upper
3302  *      layers, so we would skip all pending writes.
3303  *
3304  */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3305 static inline bool delay_towrite(struct r5conf *conf,
3306 				 struct r5dev *dev,
3307 				 struct stripe_head_state *s)
3308 {
3309 	/* case 1 above */
3310 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3311 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3312 		return true;
3313 	/* case 2 above */
3314 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3315 	    s->injournal > 0)
3316 		return true;
3317 	/* case 3 above */
3318 	if (s->log_failed && s->injournal)
3319 		return true;
3320 	return false;
3321 }
3322 
3323 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3324 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3325 			 int rcw, int expand)
3326 {
3327 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3328 	struct r5conf *conf = sh->raid_conf;
3329 	int level = conf->level;
3330 
3331 	if (rcw) {
3332 		/*
3333 		 * In some cases, handle_stripe_dirtying initially decided to
3334 		 * run rmw and allocates extra page for prexor. However, rcw is
3335 		 * cheaper later on. We need to free the extra page now,
3336 		 * because we won't be able to do that in ops_complete_prexor().
3337 		 */
3338 		r5c_release_extra_page(sh);
3339 
3340 		for (i = disks; i--; ) {
3341 			struct r5dev *dev = &sh->dev[i];
3342 
3343 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3344 				set_bit(R5_LOCKED, &dev->flags);
3345 				set_bit(R5_Wantdrain, &dev->flags);
3346 				if (!expand)
3347 					clear_bit(R5_UPTODATE, &dev->flags);
3348 				s->locked++;
3349 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3350 				set_bit(R5_LOCKED, &dev->flags);
3351 				s->locked++;
3352 			}
3353 		}
3354 		/* if we are not expanding this is a proper write request, and
3355 		 * there will be bios with new data to be drained into the
3356 		 * stripe cache
3357 		 */
3358 		if (!expand) {
3359 			if (!s->locked)
3360 				/* False alarm, nothing to do */
3361 				return;
3362 			sh->reconstruct_state = reconstruct_state_drain_run;
3363 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3364 		} else
3365 			sh->reconstruct_state = reconstruct_state_run;
3366 
3367 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3368 
3369 		if (s->locked + conf->max_degraded == disks)
3370 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3371 				atomic_inc(&conf->pending_full_writes);
3372 	} else {
3373 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3374 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3375 		BUG_ON(level == 6 &&
3376 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3377 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3378 
3379 		for (i = disks; i--; ) {
3380 			struct r5dev *dev = &sh->dev[i];
3381 			if (i == pd_idx || i == qd_idx)
3382 				continue;
3383 
3384 			if (dev->towrite &&
3385 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3386 			     test_bit(R5_Wantcompute, &dev->flags))) {
3387 				set_bit(R5_Wantdrain, &dev->flags);
3388 				set_bit(R5_LOCKED, &dev->flags);
3389 				clear_bit(R5_UPTODATE, &dev->flags);
3390 				s->locked++;
3391 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3392 				set_bit(R5_LOCKED, &dev->flags);
3393 				s->locked++;
3394 			}
3395 		}
3396 		if (!s->locked)
3397 			/* False alarm - nothing to do */
3398 			return;
3399 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3400 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3401 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3402 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3403 	}
3404 
3405 	/* keep the parity disk(s) locked while asynchronous operations
3406 	 * are in flight
3407 	 */
3408 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3409 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3410 	s->locked++;
3411 
3412 	if (level == 6) {
3413 		int qd_idx = sh->qd_idx;
3414 		struct r5dev *dev = &sh->dev[qd_idx];
3415 
3416 		set_bit(R5_LOCKED, &dev->flags);
3417 		clear_bit(R5_UPTODATE, &dev->flags);
3418 		s->locked++;
3419 	}
3420 
3421 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3422 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3423 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3424 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3425 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3426 
3427 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3428 		__func__, (unsigned long long)sh->sector,
3429 		s->locked, s->ops_request);
3430 }
3431 
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3432 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3433 				int dd_idx, int forwrite)
3434 {
3435 	struct r5conf *conf = sh->raid_conf;
3436 	struct bio **bip;
3437 
3438 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3439 		 bi->bi_iter.bi_sector, sh->sector);
3440 
3441 	/* Don't allow new IO added to stripes in batch list */
3442 	if (sh->batch_head)
3443 		return true;
3444 
3445 	if (forwrite)
3446 		bip = &sh->dev[dd_idx].towrite;
3447 	else
3448 		bip = &sh->dev[dd_idx].toread;
3449 
3450 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3451 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3452 			return true;
3453 		bip = &(*bip)->bi_next;
3454 	}
3455 
3456 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3457 		return true;
3458 
3459 	if (forwrite && raid5_has_ppl(conf)) {
3460 		/*
3461 		 * With PPL only writes to consecutive data chunks within a
3462 		 * stripe are allowed because for a single stripe_head we can
3463 		 * only have one PPL entry at a time, which describes one data
3464 		 * range. Not really an overlap, but R5_Overlap can be
3465 		 * used to handle this.
3466 		 */
3467 		sector_t sector;
3468 		sector_t first = 0;
3469 		sector_t last = 0;
3470 		int count = 0;
3471 		int i;
3472 
3473 		for (i = 0; i < sh->disks; i++) {
3474 			if (i != sh->pd_idx &&
3475 			    (i == dd_idx || sh->dev[i].towrite)) {
3476 				sector = sh->dev[i].sector;
3477 				if (count == 0 || sector < first)
3478 					first = sector;
3479 				if (sector > last)
3480 					last = sector;
3481 				count++;
3482 			}
3483 		}
3484 
3485 		if (first + conf->chunk_sectors * (count - 1) != last)
3486 			return true;
3487 	}
3488 
3489 	return false;
3490 }
3491 
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3492 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3493 			     int dd_idx, int forwrite, int previous)
3494 {
3495 	struct r5conf *conf = sh->raid_conf;
3496 	struct bio **bip;
3497 	int firstwrite = 0;
3498 
3499 	if (forwrite) {
3500 		bip = &sh->dev[dd_idx].towrite;
3501 		if (!*bip)
3502 			firstwrite = 1;
3503 	} else {
3504 		bip = &sh->dev[dd_idx].toread;
3505 	}
3506 
3507 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3508 		bip = &(*bip)->bi_next;
3509 
3510 	if (!forwrite || previous)
3511 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3512 
3513 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3514 	if (*bip)
3515 		bi->bi_next = *bip;
3516 	*bip = bi;
3517 	bio_inc_remaining(bi);
3518 	md_write_inc(conf->mddev, bi);
3519 
3520 	if (forwrite) {
3521 		/* check if page is covered */
3522 		sector_t sector = sh->dev[dd_idx].sector;
3523 		for (bi=sh->dev[dd_idx].towrite;
3524 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3525 			     bi && bi->bi_iter.bi_sector <= sector;
3526 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3527 			if (bio_end_sector(bi) >= sector)
3528 				sector = bio_end_sector(bi);
3529 		}
3530 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3531 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3532 				sh->overwrite_disks++;
3533 	}
3534 
3535 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3536 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3537 		 sh->dev[dd_idx].sector);
3538 
3539 	if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3540 		sh->bm_seq = conf->seq_flush+1;
3541 		set_bit(STRIPE_BIT_DELAY, &sh->state);
3542 	}
3543 }
3544 
3545 /*
3546  * Each stripe/dev can have one or more bios attached.
3547  * toread/towrite point to the first in a chain.
3548  * The bi_next chain must be in order.
3549  */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3550 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3551 			   int dd_idx, int forwrite, int previous)
3552 {
3553 	spin_lock_irq(&sh->stripe_lock);
3554 
3555 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3556 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3557 		spin_unlock_irq(&sh->stripe_lock);
3558 		return false;
3559 	}
3560 
3561 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3562 	spin_unlock_irq(&sh->stripe_lock);
3563 	return true;
3564 }
3565 
3566 static void end_reshape(struct r5conf *conf);
3567 
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3568 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3569 			    struct stripe_head *sh)
3570 {
3571 	int sectors_per_chunk =
3572 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3573 	int dd_idx;
3574 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3575 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3576 
3577 	raid5_compute_sector(conf,
3578 			     stripe * (disks - conf->max_degraded)
3579 			     *sectors_per_chunk + chunk_offset,
3580 			     previous,
3581 			     &dd_idx, sh);
3582 }
3583 
3584 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3585 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3586 		     struct stripe_head_state *s, int disks)
3587 {
3588 	int i;
3589 	BUG_ON(sh->batch_head);
3590 	for (i = disks; i--; ) {
3591 		struct bio *bi;
3592 
3593 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3594 			struct md_rdev *rdev = conf->disks[i].rdev;
3595 
3596 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3597 			    !test_bit(Faulty, &rdev->flags))
3598 				atomic_inc(&rdev->nr_pending);
3599 			else
3600 				rdev = NULL;
3601 			if (rdev) {
3602 				if (!rdev_set_badblocks(
3603 					    rdev,
3604 					    sh->sector,
3605 					    RAID5_STRIPE_SECTORS(conf), 0))
3606 					md_error(conf->mddev, rdev);
3607 				rdev_dec_pending(rdev, conf->mddev);
3608 			}
3609 		}
3610 		spin_lock_irq(&sh->stripe_lock);
3611 		/* fail all writes first */
3612 		bi = sh->dev[i].towrite;
3613 		sh->dev[i].towrite = NULL;
3614 		sh->overwrite_disks = 0;
3615 		spin_unlock_irq(&sh->stripe_lock);
3616 
3617 		log_stripe_write_finished(sh);
3618 
3619 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3620 			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3621 
3622 		while (bi && bi->bi_iter.bi_sector <
3623 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3624 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3625 
3626 			md_write_end(conf->mddev);
3627 			bio_io_error(bi);
3628 			bi = nextbi;
3629 		}
3630 		/* and fail all 'written' */
3631 		bi = sh->dev[i].written;
3632 		sh->dev[i].written = NULL;
3633 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3634 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3635 			sh->dev[i].page = sh->dev[i].orig_page;
3636 		}
3637 
3638 		while (bi && bi->bi_iter.bi_sector <
3639 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3641 
3642 			md_write_end(conf->mddev);
3643 			bio_io_error(bi);
3644 			bi = bi2;
3645 		}
3646 
3647 		/* fail any reads if this device is non-operational and
3648 		 * the data has not reached the cache yet.
3649 		 */
3650 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3651 		    s->failed > conf->max_degraded &&
3652 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3653 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3654 			spin_lock_irq(&sh->stripe_lock);
3655 			bi = sh->dev[i].toread;
3656 			sh->dev[i].toread = NULL;
3657 			spin_unlock_irq(&sh->stripe_lock);
3658 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3659 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3660 			if (bi)
3661 				s->to_read--;
3662 			while (bi && bi->bi_iter.bi_sector <
3663 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3664 				struct bio *nextbi =
3665 					r5_next_bio(conf, bi, sh->dev[i].sector);
3666 
3667 				bio_io_error(bi);
3668 				bi = nextbi;
3669 			}
3670 		}
3671 		/* If we were in the middle of a write the parity block might
3672 		 * still be locked - so just clear all R5_LOCKED flags
3673 		 */
3674 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3675 	}
3676 	s->to_write = 0;
3677 	s->written = 0;
3678 
3679 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3680 		if (atomic_dec_and_test(&conf->pending_full_writes))
3681 			md_wakeup_thread(conf->mddev->thread);
3682 }
3683 
3684 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3685 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3686 		   struct stripe_head_state *s)
3687 {
3688 	int abort = 0;
3689 	int i;
3690 
3691 	BUG_ON(sh->batch_head);
3692 	clear_bit(STRIPE_SYNCING, &sh->state);
3693 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3694 		wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3695 	s->syncing = 0;
3696 	s->replacing = 0;
3697 	/* There is nothing more to do for sync/check/repair.
3698 	 * Don't even need to abort as that is handled elsewhere
3699 	 * if needed, and not always wanted e.g. if there is a known
3700 	 * bad block here.
3701 	 * For recover/replace we need to record a bad block on all
3702 	 * non-sync devices, or abort the recovery
3703 	 */
3704 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3705 		/* During recovery devices cannot be removed, so
3706 		 * locking and refcounting of rdevs is not needed
3707 		 */
3708 		for (i = 0; i < conf->raid_disks; i++) {
3709 			struct md_rdev *rdev = conf->disks[i].rdev;
3710 
3711 			if (rdev
3712 			    && !test_bit(Faulty, &rdev->flags)
3713 			    && !test_bit(In_sync, &rdev->flags)
3714 			    && !rdev_set_badblocks(rdev, sh->sector,
3715 						   RAID5_STRIPE_SECTORS(conf), 0))
3716 				abort = 1;
3717 			rdev = conf->disks[i].replacement;
3718 
3719 			if (rdev
3720 			    && !test_bit(Faulty, &rdev->flags)
3721 			    && !test_bit(In_sync, &rdev->flags)
3722 			    && !rdev_set_badblocks(rdev, sh->sector,
3723 						   RAID5_STRIPE_SECTORS(conf), 0))
3724 				abort = 1;
3725 		}
3726 		if (abort)
3727 			conf->recovery_disabled =
3728 				conf->mddev->recovery_disabled;
3729 	}
3730 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3731 }
3732 
want_replace(struct stripe_head * sh,int disk_idx)3733 static int want_replace(struct stripe_head *sh, int disk_idx)
3734 {
3735 	struct md_rdev *rdev;
3736 	int rv = 0;
3737 
3738 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3739 	if (rdev
3740 	    && !test_bit(Faulty, &rdev->flags)
3741 	    && !test_bit(In_sync, &rdev->flags)
3742 	    && (rdev->recovery_offset <= sh->sector
3743 		|| rdev->mddev->recovery_cp <= sh->sector))
3744 		rv = 1;
3745 	return rv;
3746 }
3747 
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3748 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3749 			   int disk_idx, int disks)
3750 {
3751 	struct r5dev *dev = &sh->dev[disk_idx];
3752 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3753 				  &sh->dev[s->failed_num[1]] };
3754 	int i;
3755 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3756 
3757 
3758 	if (test_bit(R5_LOCKED, &dev->flags) ||
3759 	    test_bit(R5_UPTODATE, &dev->flags))
3760 		/* No point reading this as we already have it or have
3761 		 * decided to get it.
3762 		 */
3763 		return 0;
3764 
3765 	if (dev->toread ||
3766 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3767 		/* We need this block to directly satisfy a request */
3768 		return 1;
3769 
3770 	if (s->syncing || s->expanding ||
3771 	    (s->replacing && want_replace(sh, disk_idx)))
3772 		/* When syncing, or expanding we read everything.
3773 		 * When replacing, we need the replaced block.
3774 		 */
3775 		return 1;
3776 
3777 	if ((s->failed >= 1 && fdev[0]->toread) ||
3778 	    (s->failed >= 2 && fdev[1]->toread))
3779 		/* If we want to read from a failed device, then
3780 		 * we need to actually read every other device.
3781 		 */
3782 		return 1;
3783 
3784 	/* Sometimes neither read-modify-write nor reconstruct-write
3785 	 * cycles can work.  In those cases we read every block we
3786 	 * can.  Then the parity-update is certain to have enough to
3787 	 * work with.
3788 	 * This can only be a problem when we need to write something,
3789 	 * and some device has failed.  If either of those tests
3790 	 * fail we need look no further.
3791 	 */
3792 	if (!s->failed || !s->to_write)
3793 		return 0;
3794 
3795 	if (test_bit(R5_Insync, &dev->flags) &&
3796 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3797 		/* Pre-reads at not permitted until after short delay
3798 		 * to gather multiple requests.  However if this
3799 		 * device is no Insync, the block could only be computed
3800 		 * and there is no need to delay that.
3801 		 */
3802 		return 0;
3803 
3804 	for (i = 0; i < s->failed && i < 2; i++) {
3805 		if (fdev[i]->towrite &&
3806 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3807 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3808 			/* If we have a partial write to a failed
3809 			 * device, then we will need to reconstruct
3810 			 * the content of that device, so all other
3811 			 * devices must be read.
3812 			 */
3813 			return 1;
3814 
3815 		if (s->failed >= 2 &&
3816 		    (fdev[i]->towrite ||
3817 		     s->failed_num[i] == sh->pd_idx ||
3818 		     s->failed_num[i] == sh->qd_idx) &&
3819 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3820 			/* In max degraded raid6, If the failed disk is P, Q,
3821 			 * or we want to read the failed disk, we need to do
3822 			 * reconstruct-write.
3823 			 */
3824 			force_rcw = true;
3825 	}
3826 
3827 	/* If we are forced to do a reconstruct-write, because parity
3828 	 * cannot be trusted and we are currently recovering it, there
3829 	 * is extra need to be careful.
3830 	 * If one of the devices that we would need to read, because
3831 	 * it is not being overwritten (and maybe not written at all)
3832 	 * is missing/faulty, then we need to read everything we can.
3833 	 */
3834 	if (!force_rcw &&
3835 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3836 		/* reconstruct-write isn't being forced */
3837 		return 0;
3838 	for (i = 0; i < s->failed && i < 2; i++) {
3839 		if (s->failed_num[i] != sh->pd_idx &&
3840 		    s->failed_num[i] != sh->qd_idx &&
3841 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3842 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3843 			return 1;
3844 	}
3845 
3846 	return 0;
3847 }
3848 
3849 /* fetch_block - checks the given member device to see if its data needs
3850  * to be read or computed to satisfy a request.
3851  *
3852  * Returns 1 when no more member devices need to be checked, otherwise returns
3853  * 0 to tell the loop in handle_stripe_fill to continue
3854  */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3855 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3856 		       int disk_idx, int disks)
3857 {
3858 	struct r5dev *dev = &sh->dev[disk_idx];
3859 
3860 	/* is the data in this block needed, and can we get it? */
3861 	if (need_this_block(sh, s, disk_idx, disks)) {
3862 		/* we would like to get this block, possibly by computing it,
3863 		 * otherwise read it if the backing disk is insync
3864 		 */
3865 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3866 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3867 		BUG_ON(sh->batch_head);
3868 
3869 		/*
3870 		 * In the raid6 case if the only non-uptodate disk is P
3871 		 * then we already trusted P to compute the other failed
3872 		 * drives. It is safe to compute rather than re-read P.
3873 		 * In other cases we only compute blocks from failed
3874 		 * devices, otherwise check/repair might fail to detect
3875 		 * a real inconsistency.
3876 		 */
3877 
3878 		if ((s->uptodate == disks - 1) &&
3879 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3880 		    (s->failed && (disk_idx == s->failed_num[0] ||
3881 				   disk_idx == s->failed_num[1])))) {
3882 			/* have disk failed, and we're requested to fetch it;
3883 			 * do compute it
3884 			 */
3885 			pr_debug("Computing stripe %llu block %d\n",
3886 			       (unsigned long long)sh->sector, disk_idx);
3887 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3888 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3889 			set_bit(R5_Wantcompute, &dev->flags);
3890 			sh->ops.target = disk_idx;
3891 			sh->ops.target2 = -1; /* no 2nd target */
3892 			s->req_compute = 1;
3893 			/* Careful: from this point on 'uptodate' is in the eye
3894 			 * of raid_run_ops which services 'compute' operations
3895 			 * before writes. R5_Wantcompute flags a block that will
3896 			 * be R5_UPTODATE by the time it is needed for a
3897 			 * subsequent operation.
3898 			 */
3899 			s->uptodate++;
3900 			return 1;
3901 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3902 			/* Computing 2-failure is *very* expensive; only
3903 			 * do it if failed >= 2
3904 			 */
3905 			int other;
3906 			for (other = disks; other--; ) {
3907 				if (other == disk_idx)
3908 					continue;
3909 				if (!test_bit(R5_UPTODATE,
3910 				      &sh->dev[other].flags))
3911 					break;
3912 			}
3913 			BUG_ON(other < 0);
3914 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3915 			       (unsigned long long)sh->sector,
3916 			       disk_idx, other);
3917 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3918 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3919 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3920 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3921 			sh->ops.target = disk_idx;
3922 			sh->ops.target2 = other;
3923 			s->uptodate += 2;
3924 			s->req_compute = 1;
3925 			return 1;
3926 		} else if (test_bit(R5_Insync, &dev->flags)) {
3927 			set_bit(R5_LOCKED, &dev->flags);
3928 			set_bit(R5_Wantread, &dev->flags);
3929 			s->locked++;
3930 			pr_debug("Reading block %d (sync=%d)\n",
3931 				disk_idx, s->syncing);
3932 		}
3933 	}
3934 
3935 	return 0;
3936 }
3937 
3938 /*
3939  * handle_stripe_fill - read or compute data to satisfy pending requests.
3940  */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3941 static void handle_stripe_fill(struct stripe_head *sh,
3942 			       struct stripe_head_state *s,
3943 			       int disks)
3944 {
3945 	int i;
3946 
3947 	/* look for blocks to read/compute, skip this if a compute
3948 	 * is already in flight, or if the stripe contents are in the
3949 	 * midst of changing due to a write
3950 	 */
3951 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3952 	    !sh->reconstruct_state) {
3953 
3954 		/*
3955 		 * For degraded stripe with data in journal, do not handle
3956 		 * read requests yet, instead, flush the stripe to raid
3957 		 * disks first, this avoids handling complex rmw of write
3958 		 * back cache (prexor with orig_page, and then xor with
3959 		 * page) in the read path
3960 		 */
3961 		if (s->to_read && s->injournal && s->failed) {
3962 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3963 				r5c_make_stripe_write_out(sh);
3964 			goto out;
3965 		}
3966 
3967 		for (i = disks; i--; )
3968 			if (fetch_block(sh, s, i, disks))
3969 				break;
3970 	}
3971 out:
3972 	set_bit(STRIPE_HANDLE, &sh->state);
3973 }
3974 
3975 static void break_stripe_batch_list(struct stripe_head *head_sh,
3976 				    unsigned long handle_flags);
3977 /* handle_stripe_clean_event
3978  * any written block on an uptodate or failed drive can be returned.
3979  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3980  * never LOCKED, so we don't need to test 'failed' directly.
3981  */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3982 static void handle_stripe_clean_event(struct r5conf *conf,
3983 	struct stripe_head *sh, int disks)
3984 {
3985 	int i;
3986 	struct r5dev *dev;
3987 	int discard_pending = 0;
3988 	struct stripe_head *head_sh = sh;
3989 	bool do_endio = false;
3990 
3991 	for (i = disks; i--; )
3992 		if (sh->dev[i].written) {
3993 			dev = &sh->dev[i];
3994 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3995 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3996 			     test_bit(R5_Discard, &dev->flags) ||
3997 			     test_bit(R5_SkipCopy, &dev->flags))) {
3998 				/* We can return any write requests */
3999 				struct bio *wbi, *wbi2;
4000 				pr_debug("Return write for disc %d\n", i);
4001 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4002 					clear_bit(R5_UPTODATE, &dev->flags);
4003 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4004 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4005 				}
4006 				do_endio = true;
4007 
4008 returnbi:
4009 				dev->page = dev->orig_page;
4010 				wbi = dev->written;
4011 				dev->written = NULL;
4012 				while (wbi && wbi->bi_iter.bi_sector <
4013 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4014 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4015 					md_write_end(conf->mddev);
4016 					bio_endio(wbi);
4017 					wbi = wbi2;
4018 				}
4019 
4020 				if (head_sh->batch_head) {
4021 					sh = list_first_entry(&sh->batch_list,
4022 							      struct stripe_head,
4023 							      batch_list);
4024 					if (sh != head_sh) {
4025 						dev = &sh->dev[i];
4026 						goto returnbi;
4027 					}
4028 				}
4029 				sh = head_sh;
4030 				dev = &sh->dev[i];
4031 			} else if (test_bit(R5_Discard, &dev->flags))
4032 				discard_pending = 1;
4033 		}
4034 
4035 	log_stripe_write_finished(sh);
4036 
4037 	if (!discard_pending &&
4038 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4039 		int hash;
4040 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4041 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4042 		if (sh->qd_idx >= 0) {
4043 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4044 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4045 		}
4046 		/* now that discard is done we can proceed with any sync */
4047 		clear_bit(STRIPE_DISCARD, &sh->state);
4048 		/*
4049 		 * SCSI discard will change some bio fields and the stripe has
4050 		 * no updated data, so remove it from hash list and the stripe
4051 		 * will be reinitialized
4052 		 */
4053 unhash:
4054 		hash = sh->hash_lock_index;
4055 		spin_lock_irq(conf->hash_locks + hash);
4056 		remove_hash(sh);
4057 		spin_unlock_irq(conf->hash_locks + hash);
4058 		if (head_sh->batch_head) {
4059 			sh = list_first_entry(&sh->batch_list,
4060 					      struct stripe_head, batch_list);
4061 			if (sh != head_sh)
4062 					goto unhash;
4063 		}
4064 		sh = head_sh;
4065 
4066 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4067 			set_bit(STRIPE_HANDLE, &sh->state);
4068 
4069 	}
4070 
4071 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4072 		if (atomic_dec_and_test(&conf->pending_full_writes))
4073 			md_wakeup_thread(conf->mddev->thread);
4074 
4075 	if (head_sh->batch_head && do_endio)
4076 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4077 }
4078 
4079 /*
4080  * For RMW in write back cache, we need extra page in prexor to store the
4081  * old data. This page is stored in dev->orig_page.
4082  *
4083  * This function checks whether we have data for prexor. The exact logic
4084  * is:
4085  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4086  */
uptodate_for_rmw(struct r5dev * dev)4087 static inline bool uptodate_for_rmw(struct r5dev *dev)
4088 {
4089 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4090 		(!test_bit(R5_InJournal, &dev->flags) ||
4091 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4092 }
4093 
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4094 static int handle_stripe_dirtying(struct r5conf *conf,
4095 				  struct stripe_head *sh,
4096 				  struct stripe_head_state *s,
4097 				  int disks)
4098 {
4099 	int rmw = 0, rcw = 0, i;
4100 	sector_t recovery_cp = conf->mddev->recovery_cp;
4101 
4102 	/* Check whether resync is now happening or should start.
4103 	 * If yes, then the array is dirty (after unclean shutdown or
4104 	 * initial creation), so parity in some stripes might be inconsistent.
4105 	 * In this case, we need to always do reconstruct-write, to ensure
4106 	 * that in case of drive failure or read-error correction, we
4107 	 * generate correct data from the parity.
4108 	 */
4109 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4110 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4111 	     s->failed == 0)) {
4112 		/* Calculate the real rcw later - for now make it
4113 		 * look like rcw is cheaper
4114 		 */
4115 		rcw = 1; rmw = 2;
4116 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4117 			 conf->rmw_level, (unsigned long long)recovery_cp,
4118 			 (unsigned long long)sh->sector);
4119 	} else for (i = disks; i--; ) {
4120 		/* would I have to read this buffer for read_modify_write */
4121 		struct r5dev *dev = &sh->dev[i];
4122 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4123 		     i == sh->pd_idx || i == sh->qd_idx ||
4124 		     test_bit(R5_InJournal, &dev->flags)) &&
4125 		    !test_bit(R5_LOCKED, &dev->flags) &&
4126 		    !(uptodate_for_rmw(dev) ||
4127 		      test_bit(R5_Wantcompute, &dev->flags))) {
4128 			if (test_bit(R5_Insync, &dev->flags))
4129 				rmw++;
4130 			else
4131 				rmw += 2*disks;  /* cannot read it */
4132 		}
4133 		/* Would I have to read this buffer for reconstruct_write */
4134 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4135 		    i != sh->pd_idx && i != sh->qd_idx &&
4136 		    !test_bit(R5_LOCKED, &dev->flags) &&
4137 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4138 		      test_bit(R5_Wantcompute, &dev->flags))) {
4139 			if (test_bit(R5_Insync, &dev->flags))
4140 				rcw++;
4141 			else
4142 				rcw += 2*disks;
4143 		}
4144 	}
4145 
4146 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4147 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4148 	set_bit(STRIPE_HANDLE, &sh->state);
4149 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4150 		/* prefer read-modify-write, but need to get some data */
4151 		mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4152 				sh->sector, rmw);
4153 
4154 		for (i = disks; i--; ) {
4155 			struct r5dev *dev = &sh->dev[i];
4156 			if (test_bit(R5_InJournal, &dev->flags) &&
4157 			    dev->page == dev->orig_page &&
4158 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4159 				/* alloc page for prexor */
4160 				struct page *p = alloc_page(GFP_NOIO);
4161 
4162 				if (p) {
4163 					dev->orig_page = p;
4164 					continue;
4165 				}
4166 
4167 				/*
4168 				 * alloc_page() failed, try use
4169 				 * disk_info->extra_page
4170 				 */
4171 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4172 						      &conf->cache_state)) {
4173 					r5c_use_extra_page(sh);
4174 					break;
4175 				}
4176 
4177 				/* extra_page in use, add to delayed_list */
4178 				set_bit(STRIPE_DELAYED, &sh->state);
4179 				s->waiting_extra_page = 1;
4180 				return -EAGAIN;
4181 			}
4182 		}
4183 
4184 		for (i = disks; i--; ) {
4185 			struct r5dev *dev = &sh->dev[i];
4186 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4187 			     i == sh->pd_idx || i == sh->qd_idx ||
4188 			     test_bit(R5_InJournal, &dev->flags)) &&
4189 			    !test_bit(R5_LOCKED, &dev->flags) &&
4190 			    !(uptodate_for_rmw(dev) ||
4191 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4192 			    test_bit(R5_Insync, &dev->flags)) {
4193 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4194 					     &sh->state)) {
4195 					pr_debug("Read_old block %d for r-m-w\n",
4196 						 i);
4197 					set_bit(R5_LOCKED, &dev->flags);
4198 					set_bit(R5_Wantread, &dev->flags);
4199 					s->locked++;
4200 				} else
4201 					set_bit(STRIPE_DELAYED, &sh->state);
4202 			}
4203 		}
4204 	}
4205 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4206 		/* want reconstruct write, but need to get some data */
4207 		int qread =0;
4208 		rcw = 0;
4209 		for (i = disks; i--; ) {
4210 			struct r5dev *dev = &sh->dev[i];
4211 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4212 			    i != sh->pd_idx && i != sh->qd_idx &&
4213 			    !test_bit(R5_LOCKED, &dev->flags) &&
4214 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4215 			      test_bit(R5_Wantcompute, &dev->flags))) {
4216 				rcw++;
4217 				if (test_bit(R5_Insync, &dev->flags) &&
4218 				    test_bit(STRIPE_PREREAD_ACTIVE,
4219 					     &sh->state)) {
4220 					pr_debug("Read_old block "
4221 						"%d for Reconstruct\n", i);
4222 					set_bit(R5_LOCKED, &dev->flags);
4223 					set_bit(R5_Wantread, &dev->flags);
4224 					s->locked++;
4225 					qread++;
4226 				} else
4227 					set_bit(STRIPE_DELAYED, &sh->state);
4228 			}
4229 		}
4230 		if (rcw && !mddev_is_dm(conf->mddev))
4231 			blk_add_trace_msg(conf->mddev->gendisk->queue,
4232 				"raid5 rcw %llu %d %d %d",
4233 				(unsigned long long)sh->sector, rcw, qread,
4234 				test_bit(STRIPE_DELAYED, &sh->state));
4235 	}
4236 
4237 	if (rcw > disks && rmw > disks &&
4238 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4239 		set_bit(STRIPE_DELAYED, &sh->state);
4240 
4241 	/* now if nothing is locked, and if we have enough data,
4242 	 * we can start a write request
4243 	 */
4244 	/* since handle_stripe can be called at any time we need to handle the
4245 	 * case where a compute block operation has been submitted and then a
4246 	 * subsequent call wants to start a write request.  raid_run_ops only
4247 	 * handles the case where compute block and reconstruct are requested
4248 	 * simultaneously.  If this is not the case then new writes need to be
4249 	 * held off until the compute completes.
4250 	 */
4251 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4252 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4253 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4254 		schedule_reconstruction(sh, s, rcw == 0, 0);
4255 	return 0;
4256 }
4257 
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4258 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4259 				struct stripe_head_state *s, int disks)
4260 {
4261 	struct r5dev *dev = NULL;
4262 
4263 	BUG_ON(sh->batch_head);
4264 	set_bit(STRIPE_HANDLE, &sh->state);
4265 
4266 	switch (sh->check_state) {
4267 	case check_state_idle:
4268 		/* start a new check operation if there are no failures */
4269 		if (s->failed == 0) {
4270 			BUG_ON(s->uptodate != disks);
4271 			sh->check_state = check_state_run;
4272 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4273 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4274 			s->uptodate--;
4275 			break;
4276 		}
4277 		dev = &sh->dev[s->failed_num[0]];
4278 		fallthrough;
4279 	case check_state_compute_result:
4280 		sh->check_state = check_state_idle;
4281 		if (!dev)
4282 			dev = &sh->dev[sh->pd_idx];
4283 
4284 		/* check that a write has not made the stripe insync */
4285 		if (test_bit(STRIPE_INSYNC, &sh->state))
4286 			break;
4287 
4288 		/* either failed parity check, or recovery is happening */
4289 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4290 		BUG_ON(s->uptodate != disks);
4291 
4292 		set_bit(R5_LOCKED, &dev->flags);
4293 		s->locked++;
4294 		set_bit(R5_Wantwrite, &dev->flags);
4295 
4296 		set_bit(STRIPE_INSYNC, &sh->state);
4297 		break;
4298 	case check_state_run:
4299 		break; /* we will be called again upon completion */
4300 	case check_state_check_result:
4301 		sh->check_state = check_state_idle;
4302 
4303 		/* if a failure occurred during the check operation, leave
4304 		 * STRIPE_INSYNC not set and let the stripe be handled again
4305 		 */
4306 		if (s->failed)
4307 			break;
4308 
4309 		/* handle a successful check operation, if parity is correct
4310 		 * we are done.  Otherwise update the mismatch count and repair
4311 		 * parity if !MD_RECOVERY_CHECK
4312 		 */
4313 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4314 			/* parity is correct (on disc,
4315 			 * not in buffer any more)
4316 			 */
4317 			set_bit(STRIPE_INSYNC, &sh->state);
4318 		else {
4319 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4320 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4321 				/* don't try to repair!! */
4322 				set_bit(STRIPE_INSYNC, &sh->state);
4323 				pr_warn_ratelimited("%s: mismatch sector in range "
4324 						    "%llu-%llu\n", mdname(conf->mddev),
4325 						    (unsigned long long) sh->sector,
4326 						    (unsigned long long) sh->sector +
4327 						    RAID5_STRIPE_SECTORS(conf));
4328 			} else {
4329 				sh->check_state = check_state_compute_run;
4330 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4331 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4332 				set_bit(R5_Wantcompute,
4333 					&sh->dev[sh->pd_idx].flags);
4334 				sh->ops.target = sh->pd_idx;
4335 				sh->ops.target2 = -1;
4336 				s->uptodate++;
4337 			}
4338 		}
4339 		break;
4340 	case check_state_compute_run:
4341 		break;
4342 	default:
4343 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4344 		       __func__, sh->check_state,
4345 		       (unsigned long long) sh->sector);
4346 		BUG();
4347 	}
4348 }
4349 
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4350 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4351 				  struct stripe_head_state *s,
4352 				  int disks)
4353 {
4354 	int pd_idx = sh->pd_idx;
4355 	int qd_idx = sh->qd_idx;
4356 	struct r5dev *dev;
4357 
4358 	BUG_ON(sh->batch_head);
4359 	set_bit(STRIPE_HANDLE, &sh->state);
4360 
4361 	BUG_ON(s->failed > 2);
4362 
4363 	/* Want to check and possibly repair P and Q.
4364 	 * However there could be one 'failed' device, in which
4365 	 * case we can only check one of them, possibly using the
4366 	 * other to generate missing data
4367 	 */
4368 
4369 	switch (sh->check_state) {
4370 	case check_state_idle:
4371 		/* start a new check operation if there are < 2 failures */
4372 		if (s->failed == s->q_failed) {
4373 			/* The only possible failed device holds Q, so it
4374 			 * makes sense to check P (If anything else were failed,
4375 			 * we would have used P to recreate it).
4376 			 */
4377 			sh->check_state = check_state_run;
4378 		}
4379 		if (!s->q_failed && s->failed < 2) {
4380 			/* Q is not failed, and we didn't use it to generate
4381 			 * anything, so it makes sense to check it
4382 			 */
4383 			if (sh->check_state == check_state_run)
4384 				sh->check_state = check_state_run_pq;
4385 			else
4386 				sh->check_state = check_state_run_q;
4387 		}
4388 
4389 		/* discard potentially stale zero_sum_result */
4390 		sh->ops.zero_sum_result = 0;
4391 
4392 		if (sh->check_state == check_state_run) {
4393 			/* async_xor_zero_sum destroys the contents of P */
4394 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4395 			s->uptodate--;
4396 		}
4397 		if (sh->check_state >= check_state_run &&
4398 		    sh->check_state <= check_state_run_pq) {
4399 			/* async_syndrome_zero_sum preserves P and Q, so
4400 			 * no need to mark them !uptodate here
4401 			 */
4402 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4403 			break;
4404 		}
4405 
4406 		/* we have 2-disk failure */
4407 		BUG_ON(s->failed != 2);
4408 		fallthrough;
4409 	case check_state_compute_result:
4410 		sh->check_state = check_state_idle;
4411 
4412 		/* check that a write has not made the stripe insync */
4413 		if (test_bit(STRIPE_INSYNC, &sh->state))
4414 			break;
4415 
4416 		/* now write out any block on a failed drive,
4417 		 * or P or Q if they were recomputed
4418 		 */
4419 		dev = NULL;
4420 		if (s->failed == 2) {
4421 			dev = &sh->dev[s->failed_num[1]];
4422 			s->locked++;
4423 			set_bit(R5_LOCKED, &dev->flags);
4424 			set_bit(R5_Wantwrite, &dev->flags);
4425 		}
4426 		if (s->failed >= 1) {
4427 			dev = &sh->dev[s->failed_num[0]];
4428 			s->locked++;
4429 			set_bit(R5_LOCKED, &dev->flags);
4430 			set_bit(R5_Wantwrite, &dev->flags);
4431 		}
4432 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4433 			dev = &sh->dev[pd_idx];
4434 			s->locked++;
4435 			set_bit(R5_LOCKED, &dev->flags);
4436 			set_bit(R5_Wantwrite, &dev->flags);
4437 		}
4438 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4439 			dev = &sh->dev[qd_idx];
4440 			s->locked++;
4441 			set_bit(R5_LOCKED, &dev->flags);
4442 			set_bit(R5_Wantwrite, &dev->flags);
4443 		}
4444 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4445 			      "%s: disk%td not up to date\n",
4446 			      mdname(conf->mddev),
4447 			      dev - (struct r5dev *) &sh->dev)) {
4448 			clear_bit(R5_LOCKED, &dev->flags);
4449 			clear_bit(R5_Wantwrite, &dev->flags);
4450 			s->locked--;
4451 		}
4452 
4453 		set_bit(STRIPE_INSYNC, &sh->state);
4454 		break;
4455 	case check_state_run:
4456 	case check_state_run_q:
4457 	case check_state_run_pq:
4458 		break; /* we will be called again upon completion */
4459 	case check_state_check_result:
4460 		sh->check_state = check_state_idle;
4461 
4462 		/* handle a successful check operation, if parity is correct
4463 		 * we are done.  Otherwise update the mismatch count and repair
4464 		 * parity if !MD_RECOVERY_CHECK
4465 		 */
4466 		if (sh->ops.zero_sum_result == 0) {
4467 			/* both parities are correct */
4468 			if (!s->failed)
4469 				set_bit(STRIPE_INSYNC, &sh->state);
4470 			else {
4471 				/* in contrast to the raid5 case we can validate
4472 				 * parity, but still have a failure to write
4473 				 * back
4474 				 */
4475 				sh->check_state = check_state_compute_result;
4476 				/* Returning at this point means that we may go
4477 				 * off and bring p and/or q uptodate again so
4478 				 * we make sure to check zero_sum_result again
4479 				 * to verify if p or q need writeback
4480 				 */
4481 			}
4482 		} else {
4483 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4484 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4485 				/* don't try to repair!! */
4486 				set_bit(STRIPE_INSYNC, &sh->state);
4487 				pr_warn_ratelimited("%s: mismatch sector in range "
4488 						    "%llu-%llu\n", mdname(conf->mddev),
4489 						    (unsigned long long) sh->sector,
4490 						    (unsigned long long) sh->sector +
4491 						    RAID5_STRIPE_SECTORS(conf));
4492 			} else {
4493 				int *target = &sh->ops.target;
4494 
4495 				sh->ops.target = -1;
4496 				sh->ops.target2 = -1;
4497 				sh->check_state = check_state_compute_run;
4498 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4499 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4500 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4501 					set_bit(R5_Wantcompute,
4502 						&sh->dev[pd_idx].flags);
4503 					*target = pd_idx;
4504 					target = &sh->ops.target2;
4505 					s->uptodate++;
4506 				}
4507 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4508 					set_bit(R5_Wantcompute,
4509 						&sh->dev[qd_idx].flags);
4510 					*target = qd_idx;
4511 					s->uptodate++;
4512 				}
4513 			}
4514 		}
4515 		break;
4516 	case check_state_compute_run:
4517 		break;
4518 	default:
4519 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4520 			__func__, sh->check_state,
4521 			(unsigned long long) sh->sector);
4522 		BUG();
4523 	}
4524 }
4525 
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4526 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4527 {
4528 	int i;
4529 
4530 	/* We have read all the blocks in this stripe and now we need to
4531 	 * copy some of them into a target stripe for expand.
4532 	 */
4533 	struct dma_async_tx_descriptor *tx = NULL;
4534 	BUG_ON(sh->batch_head);
4535 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4536 	for (i = 0; i < sh->disks; i++)
4537 		if (i != sh->pd_idx && i != sh->qd_idx) {
4538 			int dd_idx, j;
4539 			struct stripe_head *sh2;
4540 			struct async_submit_ctl submit;
4541 
4542 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4543 			sector_t s = raid5_compute_sector(conf, bn, 0,
4544 							  &dd_idx, NULL);
4545 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4546 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4547 			if (sh2 == NULL)
4548 				/* so far only the early blocks of this stripe
4549 				 * have been requested.  When later blocks
4550 				 * get requested, we will try again
4551 				 */
4552 				continue;
4553 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4554 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4555 				/* must have already done this block */
4556 				raid5_release_stripe(sh2);
4557 				continue;
4558 			}
4559 
4560 			/* place all the copies on one channel */
4561 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4562 			tx = async_memcpy(sh2->dev[dd_idx].page,
4563 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4564 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4565 					  &submit);
4566 
4567 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4568 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4569 			for (j = 0; j < conf->raid_disks; j++)
4570 				if (j != sh2->pd_idx &&
4571 				    j != sh2->qd_idx &&
4572 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4573 					break;
4574 			if (j == conf->raid_disks) {
4575 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4576 				set_bit(STRIPE_HANDLE, &sh2->state);
4577 			}
4578 			raid5_release_stripe(sh2);
4579 
4580 		}
4581 	/* done submitting copies, wait for them to complete */
4582 	async_tx_quiesce(&tx);
4583 }
4584 
4585 /*
4586  * handle_stripe - do things to a stripe.
4587  *
4588  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4589  * state of various bits to see what needs to be done.
4590  * Possible results:
4591  *    return some read requests which now have data
4592  *    return some write requests which are safely on storage
4593  *    schedule a read on some buffers
4594  *    schedule a write of some buffers
4595  *    return confirmation of parity correctness
4596  *
4597  */
4598 
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4599 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4600 {
4601 	struct r5conf *conf = sh->raid_conf;
4602 	int disks = sh->disks;
4603 	struct r5dev *dev;
4604 	int i;
4605 	int do_recovery = 0;
4606 
4607 	memset(s, 0, sizeof(*s));
4608 
4609 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4610 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4611 	s->failed_num[0] = -1;
4612 	s->failed_num[1] = -1;
4613 	s->log_failed = r5l_log_disk_error(conf);
4614 
4615 	/* Now to look around and see what can be done */
4616 	for (i=disks; i--; ) {
4617 		struct md_rdev *rdev;
4618 		int is_bad = 0;
4619 
4620 		dev = &sh->dev[i];
4621 
4622 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4623 			 i, dev->flags,
4624 			 dev->toread, dev->towrite, dev->written);
4625 		/* maybe we can reply to a read
4626 		 *
4627 		 * new wantfill requests are only permitted while
4628 		 * ops_complete_biofill is guaranteed to be inactive
4629 		 */
4630 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4631 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4632 			set_bit(R5_Wantfill, &dev->flags);
4633 
4634 		/* now count some things */
4635 		if (test_bit(R5_LOCKED, &dev->flags))
4636 			s->locked++;
4637 		if (test_bit(R5_UPTODATE, &dev->flags))
4638 			s->uptodate++;
4639 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4640 			s->compute++;
4641 			BUG_ON(s->compute > 2);
4642 		}
4643 
4644 		if (test_bit(R5_Wantfill, &dev->flags))
4645 			s->to_fill++;
4646 		else if (dev->toread)
4647 			s->to_read++;
4648 		if (dev->towrite) {
4649 			s->to_write++;
4650 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4651 				s->non_overwrite++;
4652 		}
4653 		if (dev->written)
4654 			s->written++;
4655 		/* Prefer to use the replacement for reads, but only
4656 		 * if it is recovered enough and has no bad blocks.
4657 		 */
4658 		rdev = conf->disks[i].replacement;
4659 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4660 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4661 		    !rdev_has_badblock(rdev, sh->sector,
4662 				       RAID5_STRIPE_SECTORS(conf)))
4663 			set_bit(R5_ReadRepl, &dev->flags);
4664 		else {
4665 			if (rdev && !test_bit(Faulty, &rdev->flags))
4666 				set_bit(R5_NeedReplace, &dev->flags);
4667 			else
4668 				clear_bit(R5_NeedReplace, &dev->flags);
4669 			rdev = conf->disks[i].rdev;
4670 			clear_bit(R5_ReadRepl, &dev->flags);
4671 		}
4672 		if (rdev && test_bit(Faulty, &rdev->flags))
4673 			rdev = NULL;
4674 		if (rdev) {
4675 			is_bad = rdev_has_badblock(rdev, sh->sector,
4676 						   RAID5_STRIPE_SECTORS(conf));
4677 			if (s->blocked_rdev == NULL) {
4678 				if (is_bad < 0)
4679 					set_bit(BlockedBadBlocks, &rdev->flags);
4680 				if (rdev_blocked(rdev)) {
4681 					s->blocked_rdev = rdev;
4682 					atomic_inc(&rdev->nr_pending);
4683 				}
4684 			}
4685 		}
4686 		clear_bit(R5_Insync, &dev->flags);
4687 		if (!rdev)
4688 			/* Not in-sync */;
4689 		else if (is_bad) {
4690 			/* also not in-sync */
4691 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4692 			    test_bit(R5_UPTODATE, &dev->flags)) {
4693 				/* treat as in-sync, but with a read error
4694 				 * which we can now try to correct
4695 				 */
4696 				set_bit(R5_Insync, &dev->flags);
4697 				set_bit(R5_ReadError, &dev->flags);
4698 			}
4699 		} else if (test_bit(In_sync, &rdev->flags))
4700 			set_bit(R5_Insync, &dev->flags);
4701 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4702 			/* in sync if before recovery_offset */
4703 			set_bit(R5_Insync, &dev->flags);
4704 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4705 			 test_bit(R5_Expanded, &dev->flags))
4706 			/* If we've reshaped into here, we assume it is Insync.
4707 			 * We will shortly update recovery_offset to make
4708 			 * it official.
4709 			 */
4710 			set_bit(R5_Insync, &dev->flags);
4711 
4712 		if (test_bit(R5_WriteError, &dev->flags)) {
4713 			/* This flag does not apply to '.replacement'
4714 			 * only to .rdev, so make sure to check that*/
4715 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4716 
4717 			if (rdev2 == rdev)
4718 				clear_bit(R5_Insync, &dev->flags);
4719 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720 				s->handle_bad_blocks = 1;
4721 				atomic_inc(&rdev2->nr_pending);
4722 			} else
4723 				clear_bit(R5_WriteError, &dev->flags);
4724 		}
4725 		if (test_bit(R5_MadeGood, &dev->flags)) {
4726 			/* This flag does not apply to '.replacement'
4727 			 * only to .rdev, so make sure to check that*/
4728 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4729 
4730 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4731 				s->handle_bad_blocks = 1;
4732 				atomic_inc(&rdev2->nr_pending);
4733 			} else
4734 				clear_bit(R5_MadeGood, &dev->flags);
4735 		}
4736 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4737 			struct md_rdev *rdev2 = conf->disks[i].replacement;
4738 
4739 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4740 				s->handle_bad_blocks = 1;
4741 				atomic_inc(&rdev2->nr_pending);
4742 			} else
4743 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4744 		}
4745 		if (!test_bit(R5_Insync, &dev->flags)) {
4746 			/* The ReadError flag will just be confusing now */
4747 			clear_bit(R5_ReadError, &dev->flags);
4748 			clear_bit(R5_ReWrite, &dev->flags);
4749 		}
4750 		if (test_bit(R5_ReadError, &dev->flags))
4751 			clear_bit(R5_Insync, &dev->flags);
4752 		if (!test_bit(R5_Insync, &dev->flags)) {
4753 			if (s->failed < 2)
4754 				s->failed_num[s->failed] = i;
4755 			s->failed++;
4756 			if (rdev && !test_bit(Faulty, &rdev->flags))
4757 				do_recovery = 1;
4758 			else if (!rdev) {
4759 				rdev = conf->disks[i].replacement;
4760 				if (rdev && !test_bit(Faulty, &rdev->flags))
4761 					do_recovery = 1;
4762 			}
4763 		}
4764 
4765 		if (test_bit(R5_InJournal, &dev->flags))
4766 			s->injournal++;
4767 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4768 			s->just_cached++;
4769 	}
4770 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4771 		/* If there is a failed device being replaced,
4772 		 *     we must be recovering.
4773 		 * else if we are after recovery_cp, we must be syncing
4774 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4775 		 * else we can only be replacing
4776 		 * sync and recovery both need to read all devices, and so
4777 		 * use the same flag.
4778 		 */
4779 		if (do_recovery ||
4780 		    sh->sector >= conf->mddev->recovery_cp ||
4781 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4782 			s->syncing = 1;
4783 		else
4784 			s->replacing = 1;
4785 	}
4786 }
4787 
4788 /*
4789  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4790  * a head which can now be handled.
4791  */
clear_batch_ready(struct stripe_head * sh)4792 static int clear_batch_ready(struct stripe_head *sh)
4793 {
4794 	struct stripe_head *tmp;
4795 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4796 		return (sh->batch_head && sh->batch_head != sh);
4797 	spin_lock(&sh->stripe_lock);
4798 	if (!sh->batch_head) {
4799 		spin_unlock(&sh->stripe_lock);
4800 		return 0;
4801 	}
4802 
4803 	/*
4804 	 * this stripe could be added to a batch list before we check
4805 	 * BATCH_READY, skips it
4806 	 */
4807 	if (sh->batch_head != sh) {
4808 		spin_unlock(&sh->stripe_lock);
4809 		return 1;
4810 	}
4811 	spin_lock(&sh->batch_lock);
4812 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4813 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4814 	spin_unlock(&sh->batch_lock);
4815 	spin_unlock(&sh->stripe_lock);
4816 
4817 	/*
4818 	 * BATCH_READY is cleared, no new stripes can be added.
4819 	 * batch_list can be accessed without lock
4820 	 */
4821 	return 0;
4822 }
4823 
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4824 static void break_stripe_batch_list(struct stripe_head *head_sh,
4825 				    unsigned long handle_flags)
4826 {
4827 	struct stripe_head *sh, *next;
4828 	int i;
4829 
4830 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4831 
4832 		list_del_init(&sh->batch_list);
4833 
4834 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4835 					  (1 << STRIPE_SYNCING) |
4836 					  (1 << STRIPE_REPLACED) |
4837 					  (1 << STRIPE_DELAYED) |
4838 					  (1 << STRIPE_BIT_DELAY) |
4839 					  (1 << STRIPE_FULL_WRITE) |
4840 					  (1 << STRIPE_BIOFILL_RUN) |
4841 					  (1 << STRIPE_COMPUTE_RUN)  |
4842 					  (1 << STRIPE_DISCARD) |
4843 					  (1 << STRIPE_BATCH_READY) |
4844 					  (1 << STRIPE_BATCH_ERR)),
4845 			"stripe state: %lx\n", sh->state);
4846 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4847 					      (1 << STRIPE_REPLACED)),
4848 			"head stripe state: %lx\n", head_sh->state);
4849 
4850 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4851 					    (1 << STRIPE_PREREAD_ACTIVE) |
4852 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4853 			      head_sh->state & (1 << STRIPE_INSYNC));
4854 
4855 		sh->check_state = head_sh->check_state;
4856 		sh->reconstruct_state = head_sh->reconstruct_state;
4857 		spin_lock_irq(&sh->stripe_lock);
4858 		sh->batch_head = NULL;
4859 		spin_unlock_irq(&sh->stripe_lock);
4860 		for (i = 0; i < sh->disks; i++) {
4861 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4862 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4863 			sh->dev[i].flags = head_sh->dev[i].flags &
4864 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4865 		}
4866 		if (handle_flags == 0 ||
4867 		    sh->state & handle_flags)
4868 			set_bit(STRIPE_HANDLE, &sh->state);
4869 		raid5_release_stripe(sh);
4870 	}
4871 	spin_lock_irq(&head_sh->stripe_lock);
4872 	head_sh->batch_head = NULL;
4873 	spin_unlock_irq(&head_sh->stripe_lock);
4874 	for (i = 0; i < head_sh->disks; i++)
4875 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4876 			wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4877 	if (head_sh->state & handle_flags)
4878 		set_bit(STRIPE_HANDLE, &head_sh->state);
4879 }
4880 
handle_stripe(struct stripe_head * sh)4881 static void handle_stripe(struct stripe_head *sh)
4882 {
4883 	struct stripe_head_state s;
4884 	struct r5conf *conf = sh->raid_conf;
4885 	int i;
4886 	int prexor;
4887 	int disks = sh->disks;
4888 	struct r5dev *pdev, *qdev;
4889 
4890 	clear_bit(STRIPE_HANDLE, &sh->state);
4891 
4892 	/*
4893 	 * handle_stripe should not continue handle the batched stripe, only
4894 	 * the head of batch list or lone stripe can continue. Otherwise we
4895 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4896 	 * is set for the batched stripe.
4897 	 */
4898 	if (clear_batch_ready(sh))
4899 		return;
4900 
4901 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4902 		/* already being handled, ensure it gets handled
4903 		 * again when current action finishes */
4904 		set_bit(STRIPE_HANDLE, &sh->state);
4905 		return;
4906 	}
4907 
4908 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4909 		break_stripe_batch_list(sh, 0);
4910 
4911 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4912 		spin_lock(&sh->stripe_lock);
4913 		/*
4914 		 * Cannot process 'sync' concurrently with 'discard'.
4915 		 * Flush data in r5cache before 'sync'.
4916 		 */
4917 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4918 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4919 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4920 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4921 			set_bit(STRIPE_SYNCING, &sh->state);
4922 			clear_bit(STRIPE_INSYNC, &sh->state);
4923 			clear_bit(STRIPE_REPLACED, &sh->state);
4924 		}
4925 		spin_unlock(&sh->stripe_lock);
4926 	}
4927 	clear_bit(STRIPE_DELAYED, &sh->state);
4928 
4929 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4930 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4931 	       (unsigned long long)sh->sector, sh->state,
4932 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4933 	       sh->check_state, sh->reconstruct_state);
4934 
4935 	analyse_stripe(sh, &s);
4936 
4937 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4938 		goto finish;
4939 
4940 	if (s.handle_bad_blocks ||
4941 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4942 		set_bit(STRIPE_HANDLE, &sh->state);
4943 		goto finish;
4944 	}
4945 
4946 	if (unlikely(s.blocked_rdev)) {
4947 		if (s.syncing || s.expanding || s.expanded ||
4948 		    s.replacing || s.to_write || s.written) {
4949 			set_bit(STRIPE_HANDLE, &sh->state);
4950 			goto finish;
4951 		}
4952 		/* There is nothing for the blocked_rdev to block */
4953 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4954 		s.blocked_rdev = NULL;
4955 	}
4956 
4957 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4958 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4959 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4960 	}
4961 
4962 	pr_debug("locked=%d uptodate=%d to_read=%d"
4963 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4964 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4965 	       s.failed_num[0], s.failed_num[1]);
4966 	/*
4967 	 * check if the array has lost more than max_degraded devices and,
4968 	 * if so, some requests might need to be failed.
4969 	 *
4970 	 * When journal device failed (log_failed), we will only process
4971 	 * the stripe if there is data need write to raid disks
4972 	 */
4973 	if (s.failed > conf->max_degraded ||
4974 	    (s.log_failed && s.injournal == 0)) {
4975 		sh->check_state = 0;
4976 		sh->reconstruct_state = 0;
4977 		break_stripe_batch_list(sh, 0);
4978 		if (s.to_read+s.to_write+s.written)
4979 			handle_failed_stripe(conf, sh, &s, disks);
4980 		if (s.syncing + s.replacing)
4981 			handle_failed_sync(conf, sh, &s);
4982 	}
4983 
4984 	/* Now we check to see if any write operations have recently
4985 	 * completed
4986 	 */
4987 	prexor = 0;
4988 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4989 		prexor = 1;
4990 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4991 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4992 		sh->reconstruct_state = reconstruct_state_idle;
4993 
4994 		/* All the 'written' buffers and the parity block are ready to
4995 		 * be written back to disk
4996 		 */
4997 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4998 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4999 		BUG_ON(sh->qd_idx >= 0 &&
5000 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5001 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5002 		for (i = disks; i--; ) {
5003 			struct r5dev *dev = &sh->dev[i];
5004 			if (test_bit(R5_LOCKED, &dev->flags) &&
5005 				(i == sh->pd_idx || i == sh->qd_idx ||
5006 				 dev->written || test_bit(R5_InJournal,
5007 							  &dev->flags))) {
5008 				pr_debug("Writing block %d\n", i);
5009 				set_bit(R5_Wantwrite, &dev->flags);
5010 				if (prexor)
5011 					continue;
5012 				if (s.failed > 1)
5013 					continue;
5014 				if (!test_bit(R5_Insync, &dev->flags) ||
5015 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5016 				     s.failed == 0))
5017 					set_bit(STRIPE_INSYNC, &sh->state);
5018 			}
5019 		}
5020 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5021 			s.dec_preread_active = 1;
5022 	}
5023 
5024 	/*
5025 	 * might be able to return some write requests if the parity blocks
5026 	 * are safe, or on a failed drive
5027 	 */
5028 	pdev = &sh->dev[sh->pd_idx];
5029 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5030 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5031 	qdev = &sh->dev[sh->qd_idx];
5032 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5033 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5034 		|| conf->level < 6;
5035 
5036 	if (s.written &&
5037 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5038 			     && !test_bit(R5_LOCKED, &pdev->flags)
5039 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5040 				 test_bit(R5_Discard, &pdev->flags))))) &&
5041 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5042 			     && !test_bit(R5_LOCKED, &qdev->flags)
5043 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5044 				 test_bit(R5_Discard, &qdev->flags))))))
5045 		handle_stripe_clean_event(conf, sh, disks);
5046 
5047 	if (s.just_cached)
5048 		r5c_handle_cached_data_endio(conf, sh, disks);
5049 	log_stripe_write_finished(sh);
5050 
5051 	/* Now we might consider reading some blocks, either to check/generate
5052 	 * parity, or to satisfy requests
5053 	 * or to load a block that is being partially written.
5054 	 */
5055 	if (s.to_read || s.non_overwrite
5056 	    || (s.to_write && s.failed)
5057 	    || (s.syncing && (s.uptodate + s.compute < disks))
5058 	    || s.replacing
5059 	    || s.expanding)
5060 		handle_stripe_fill(sh, &s, disks);
5061 
5062 	/*
5063 	 * When the stripe finishes full journal write cycle (write to journal
5064 	 * and raid disk), this is the clean up procedure so it is ready for
5065 	 * next operation.
5066 	 */
5067 	r5c_finish_stripe_write_out(conf, sh, &s);
5068 
5069 	/*
5070 	 * Now to consider new write requests, cache write back and what else,
5071 	 * if anything should be read.  We do not handle new writes when:
5072 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5073 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5074 	 *    block.
5075 	 * 3/ A r5c cache log write is in flight.
5076 	 */
5077 
5078 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5079 		if (!r5c_is_writeback(conf->log)) {
5080 			if (s.to_write)
5081 				handle_stripe_dirtying(conf, sh, &s, disks);
5082 		} else { /* write back cache */
5083 			int ret = 0;
5084 
5085 			/* First, try handle writes in caching phase */
5086 			if (s.to_write)
5087 				ret = r5c_try_caching_write(conf, sh, &s,
5088 							    disks);
5089 			/*
5090 			 * If caching phase failed: ret == -EAGAIN
5091 			 *    OR
5092 			 * stripe under reclaim: !caching && injournal
5093 			 *
5094 			 * fall back to handle_stripe_dirtying()
5095 			 */
5096 			if (ret == -EAGAIN ||
5097 			    /* stripe under reclaim: !caching && injournal */
5098 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5099 			     s.injournal > 0)) {
5100 				ret = handle_stripe_dirtying(conf, sh, &s,
5101 							     disks);
5102 				if (ret == -EAGAIN)
5103 					goto finish;
5104 			}
5105 		}
5106 	}
5107 
5108 	/* maybe we need to check and possibly fix the parity for this stripe
5109 	 * Any reads will already have been scheduled, so we just see if enough
5110 	 * data is available.  The parity check is held off while parity
5111 	 * dependent operations are in flight.
5112 	 */
5113 	if (sh->check_state ||
5114 	    (s.syncing && s.locked == 0 &&
5115 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5116 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5117 		if (conf->level == 6)
5118 			handle_parity_checks6(conf, sh, &s, disks);
5119 		else
5120 			handle_parity_checks5(conf, sh, &s, disks);
5121 	}
5122 
5123 	if ((s.replacing || s.syncing) && s.locked == 0
5124 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5125 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5126 		/* Write out to replacement devices where possible */
5127 		for (i = 0; i < conf->raid_disks; i++)
5128 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5129 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5130 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5131 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5132 				s.locked++;
5133 			}
5134 		if (s.replacing)
5135 			set_bit(STRIPE_INSYNC, &sh->state);
5136 		set_bit(STRIPE_REPLACED, &sh->state);
5137 	}
5138 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5139 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5140 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5141 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5142 		clear_bit(STRIPE_SYNCING, &sh->state);
5143 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5144 			wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5145 	}
5146 
5147 	/* If the failed drives are just a ReadError, then we might need
5148 	 * to progress the repair/check process
5149 	 */
5150 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5151 		for (i = 0; i < s.failed; i++) {
5152 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5153 			if (test_bit(R5_ReadError, &dev->flags)
5154 			    && !test_bit(R5_LOCKED, &dev->flags)
5155 			    && test_bit(R5_UPTODATE, &dev->flags)
5156 				) {
5157 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5158 					set_bit(R5_Wantwrite, &dev->flags);
5159 					set_bit(R5_ReWrite, &dev->flags);
5160 				} else
5161 					/* let's read it back */
5162 					set_bit(R5_Wantread, &dev->flags);
5163 				set_bit(R5_LOCKED, &dev->flags);
5164 				s.locked++;
5165 			}
5166 		}
5167 
5168 	/* Finish reconstruct operations initiated by the expansion process */
5169 	if (sh->reconstruct_state == reconstruct_state_result) {
5170 		struct stripe_head *sh_src
5171 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5172 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5173 					R5_GAS_NOQUIESCE);
5174 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5175 			/* sh cannot be written until sh_src has been read.
5176 			 * so arrange for sh to be delayed a little
5177 			 */
5178 			set_bit(STRIPE_DELAYED, &sh->state);
5179 			set_bit(STRIPE_HANDLE, &sh->state);
5180 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5181 					      &sh_src->state))
5182 				atomic_inc(&conf->preread_active_stripes);
5183 			raid5_release_stripe(sh_src);
5184 			goto finish;
5185 		}
5186 		if (sh_src)
5187 			raid5_release_stripe(sh_src);
5188 
5189 		sh->reconstruct_state = reconstruct_state_idle;
5190 		clear_bit(STRIPE_EXPANDING, &sh->state);
5191 		for (i = conf->raid_disks; i--; ) {
5192 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5193 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5194 			s.locked++;
5195 		}
5196 	}
5197 
5198 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5199 	    !sh->reconstruct_state) {
5200 		/* Need to write out all blocks after computing parity */
5201 		sh->disks = conf->raid_disks;
5202 		stripe_set_idx(sh->sector, conf, 0, sh);
5203 		schedule_reconstruction(sh, &s, 1, 1);
5204 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5205 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5206 		atomic_dec(&conf->reshape_stripes);
5207 		wake_up(&conf->wait_for_reshape);
5208 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5209 	}
5210 
5211 	if (s.expanding && s.locked == 0 &&
5212 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5213 		handle_stripe_expansion(conf, sh);
5214 
5215 finish:
5216 	/* wait for this device to become unblocked */
5217 	if (unlikely(s.blocked_rdev)) {
5218 		if (conf->mddev->external)
5219 			md_wait_for_blocked_rdev(s.blocked_rdev,
5220 						 conf->mddev);
5221 		else
5222 			/* Internal metadata will immediately
5223 			 * be written by raid5d, so we don't
5224 			 * need to wait here.
5225 			 */
5226 			rdev_dec_pending(s.blocked_rdev,
5227 					 conf->mddev);
5228 	}
5229 
5230 	if (s.handle_bad_blocks)
5231 		for (i = disks; i--; ) {
5232 			struct md_rdev *rdev;
5233 			struct r5dev *dev = &sh->dev[i];
5234 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5235 				/* We own a safe reference to the rdev */
5236 				rdev = conf->disks[i].rdev;
5237 				if (!rdev_set_badblocks(rdev, sh->sector,
5238 							RAID5_STRIPE_SECTORS(conf), 0))
5239 					md_error(conf->mddev, rdev);
5240 				rdev_dec_pending(rdev, conf->mddev);
5241 			}
5242 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5243 				rdev = conf->disks[i].rdev;
5244 				rdev_clear_badblocks(rdev, sh->sector,
5245 						     RAID5_STRIPE_SECTORS(conf), 0);
5246 				rdev_dec_pending(rdev, conf->mddev);
5247 			}
5248 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5249 				rdev = conf->disks[i].replacement;
5250 				if (!rdev)
5251 					/* rdev have been moved down */
5252 					rdev = conf->disks[i].rdev;
5253 				rdev_clear_badblocks(rdev, sh->sector,
5254 						     RAID5_STRIPE_SECTORS(conf), 0);
5255 				rdev_dec_pending(rdev, conf->mddev);
5256 			}
5257 		}
5258 
5259 	if (s.ops_request)
5260 		raid_run_ops(sh, s.ops_request);
5261 
5262 	ops_run_io(sh, &s);
5263 
5264 	if (s.dec_preread_active) {
5265 		/* We delay this until after ops_run_io so that if make_request
5266 		 * is waiting on a flush, it won't continue until the writes
5267 		 * have actually been submitted.
5268 		 */
5269 		atomic_dec(&conf->preread_active_stripes);
5270 		if (atomic_read(&conf->preread_active_stripes) <
5271 		    IO_THRESHOLD)
5272 			md_wakeup_thread(conf->mddev->thread);
5273 	}
5274 
5275 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5276 }
5277 
raid5_activate_delayed(struct r5conf * conf)5278 static void raid5_activate_delayed(struct r5conf *conf)
5279 	__must_hold(&conf->device_lock)
5280 {
5281 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5282 		while (!list_empty(&conf->delayed_list)) {
5283 			struct list_head *l = conf->delayed_list.next;
5284 			struct stripe_head *sh;
5285 			sh = list_entry(l, struct stripe_head, lru);
5286 			list_del_init(l);
5287 			clear_bit(STRIPE_DELAYED, &sh->state);
5288 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5289 				atomic_inc(&conf->preread_active_stripes);
5290 			list_add_tail(&sh->lru, &conf->hold_list);
5291 			raid5_wakeup_stripe_thread(sh);
5292 		}
5293 	}
5294 }
5295 
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5296 static void activate_bit_delay(struct r5conf *conf,
5297 		struct list_head *temp_inactive_list)
5298 	__must_hold(&conf->device_lock)
5299 {
5300 	struct list_head head;
5301 	list_add(&head, &conf->bitmap_list);
5302 	list_del_init(&conf->bitmap_list);
5303 	while (!list_empty(&head)) {
5304 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5305 		int hash;
5306 		list_del_init(&sh->lru);
5307 		atomic_inc(&sh->count);
5308 		hash = sh->hash_lock_index;
5309 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5310 	}
5311 }
5312 
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5313 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5314 {
5315 	struct r5conf *conf = mddev->private;
5316 	sector_t sector = bio->bi_iter.bi_sector;
5317 	unsigned int chunk_sectors;
5318 	unsigned int bio_sectors = bio_sectors(bio);
5319 
5320 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5321 	return  chunk_sectors >=
5322 		((sector & (chunk_sectors - 1)) + bio_sectors);
5323 }
5324 
5325 /*
5326  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5327  *  later sampled by raid5d.
5328  */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5329 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5330 {
5331 	unsigned long flags;
5332 
5333 	spin_lock_irqsave(&conf->device_lock, flags);
5334 
5335 	bi->bi_next = conf->retry_read_aligned_list;
5336 	conf->retry_read_aligned_list = bi;
5337 
5338 	spin_unlock_irqrestore(&conf->device_lock, flags);
5339 	md_wakeup_thread(conf->mddev->thread);
5340 }
5341 
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5342 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5343 					 unsigned int *offset)
5344 {
5345 	struct bio *bi;
5346 
5347 	bi = conf->retry_read_aligned;
5348 	if (bi) {
5349 		*offset = conf->retry_read_offset;
5350 		conf->retry_read_aligned = NULL;
5351 		return bi;
5352 	}
5353 	bi = conf->retry_read_aligned_list;
5354 	if(bi) {
5355 		conf->retry_read_aligned_list = bi->bi_next;
5356 		bi->bi_next = NULL;
5357 		*offset = 0;
5358 	}
5359 
5360 	return bi;
5361 }
5362 
5363 /*
5364  *  The "raid5_align_endio" should check if the read succeeded and if it
5365  *  did, call bio_endio on the original bio (having bio_put the new bio
5366  *  first).
5367  *  If the read failed..
5368  */
raid5_align_endio(struct bio * bi)5369 static void raid5_align_endio(struct bio *bi)
5370 {
5371 	struct bio *raid_bi = bi->bi_private;
5372 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5373 	struct mddev *mddev = rdev->mddev;
5374 	struct r5conf *conf = mddev->private;
5375 	blk_status_t error = bi->bi_status;
5376 
5377 	bio_put(bi);
5378 	raid_bi->bi_next = NULL;
5379 	rdev_dec_pending(rdev, conf->mddev);
5380 
5381 	if (!error) {
5382 		bio_endio(raid_bi);
5383 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5384 			wake_up(&conf->wait_for_quiescent);
5385 		return;
5386 	}
5387 
5388 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5389 
5390 	add_bio_to_retry(raid_bi, conf);
5391 }
5392 
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5393 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5394 {
5395 	struct r5conf *conf = mddev->private;
5396 	struct bio *align_bio;
5397 	struct md_rdev *rdev;
5398 	sector_t sector, end_sector;
5399 	int dd_idx;
5400 	bool did_inc;
5401 
5402 	if (!in_chunk_boundary(mddev, raid_bio)) {
5403 		pr_debug("%s: non aligned\n", __func__);
5404 		return 0;
5405 	}
5406 
5407 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5408 				      &dd_idx, NULL);
5409 	end_sector = sector + bio_sectors(raid_bio);
5410 
5411 	if (r5c_big_stripe_cached(conf, sector))
5412 		return 0;
5413 
5414 	rdev = conf->disks[dd_idx].replacement;
5415 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5416 	    rdev->recovery_offset < end_sector) {
5417 		rdev = conf->disks[dd_idx].rdev;
5418 		if (!rdev)
5419 			return 0;
5420 		if (test_bit(Faulty, &rdev->flags) ||
5421 		    !(test_bit(In_sync, &rdev->flags) ||
5422 		      rdev->recovery_offset >= end_sector))
5423 			return 0;
5424 	}
5425 
5426 	atomic_inc(&rdev->nr_pending);
5427 
5428 	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5429 		rdev_dec_pending(rdev, mddev);
5430 		return 0;
5431 	}
5432 
5433 	md_account_bio(mddev, &raid_bio);
5434 	raid_bio->bi_next = (void *)rdev;
5435 
5436 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5437 				    &mddev->bio_set);
5438 	align_bio->bi_end_io = raid5_align_endio;
5439 	align_bio->bi_private = raid_bio;
5440 	align_bio->bi_iter.bi_sector = sector;
5441 
5442 	/* No reshape active, so we can trust rdev->data_offset */
5443 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5444 
5445 	did_inc = false;
5446 	if (conf->quiesce == 0) {
5447 		atomic_inc(&conf->active_aligned_reads);
5448 		did_inc = true;
5449 	}
5450 	/* need a memory barrier to detect the race with raid5_quiesce() */
5451 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5452 		/* quiesce is in progress, so we need to undo io activation and wait
5453 		 * for it to finish
5454 		 */
5455 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5456 			wake_up(&conf->wait_for_quiescent);
5457 		spin_lock_irq(&conf->device_lock);
5458 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5459 				    conf->device_lock);
5460 		atomic_inc(&conf->active_aligned_reads);
5461 		spin_unlock_irq(&conf->device_lock);
5462 	}
5463 
5464 	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5465 	submit_bio_noacct(align_bio);
5466 	return 1;
5467 }
5468 
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5469 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5470 {
5471 	struct bio *split;
5472 	sector_t sector = raid_bio->bi_iter.bi_sector;
5473 	unsigned chunk_sects = mddev->chunk_sectors;
5474 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5475 
5476 	if (sectors < bio_sectors(raid_bio)) {
5477 		struct r5conf *conf = mddev->private;
5478 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5479 		bio_chain(split, raid_bio);
5480 		submit_bio_noacct(raid_bio);
5481 		raid_bio = split;
5482 	}
5483 
5484 	if (!raid5_read_one_chunk(mddev, raid_bio))
5485 		return raid_bio;
5486 
5487 	return NULL;
5488 }
5489 
5490 /* __get_priority_stripe - get the next stripe to process
5491  *
5492  * Full stripe writes are allowed to pass preread active stripes up until
5493  * the bypass_threshold is exceeded.  In general the bypass_count
5494  * increments when the handle_list is handled before the hold_list; however, it
5495  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5496  * stripe with in flight i/o.  The bypass_count will be reset when the
5497  * head of the hold_list has changed, i.e. the head was promoted to the
5498  * handle_list.
5499  */
__get_priority_stripe(struct r5conf * conf,int group)5500 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5501 	__must_hold(&conf->device_lock)
5502 {
5503 	struct stripe_head *sh, *tmp;
5504 	struct list_head *handle_list = NULL;
5505 	struct r5worker_group *wg;
5506 	bool second_try = !r5c_is_writeback(conf->log) &&
5507 		!r5l_log_disk_error(conf);
5508 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5509 		r5l_log_disk_error(conf);
5510 
5511 again:
5512 	wg = NULL;
5513 	sh = NULL;
5514 	if (conf->worker_cnt_per_group == 0) {
5515 		handle_list = try_loprio ? &conf->loprio_list :
5516 					&conf->handle_list;
5517 	} else if (group != ANY_GROUP) {
5518 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5519 				&conf->worker_groups[group].handle_list;
5520 		wg = &conf->worker_groups[group];
5521 	} else {
5522 		int i;
5523 		for (i = 0; i < conf->group_cnt; i++) {
5524 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5525 				&conf->worker_groups[i].handle_list;
5526 			wg = &conf->worker_groups[i];
5527 			if (!list_empty(handle_list))
5528 				break;
5529 		}
5530 	}
5531 
5532 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5533 		  __func__,
5534 		  list_empty(handle_list) ? "empty" : "busy",
5535 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5536 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5537 
5538 	if (!list_empty(handle_list)) {
5539 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5540 
5541 		if (list_empty(&conf->hold_list))
5542 			conf->bypass_count = 0;
5543 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5544 			if (conf->hold_list.next == conf->last_hold)
5545 				conf->bypass_count++;
5546 			else {
5547 				conf->last_hold = conf->hold_list.next;
5548 				conf->bypass_count -= conf->bypass_threshold;
5549 				if (conf->bypass_count < 0)
5550 					conf->bypass_count = 0;
5551 			}
5552 		}
5553 	} else if (!list_empty(&conf->hold_list) &&
5554 		   ((conf->bypass_threshold &&
5555 		     conf->bypass_count > conf->bypass_threshold) ||
5556 		    atomic_read(&conf->pending_full_writes) == 0)) {
5557 
5558 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5559 			if (conf->worker_cnt_per_group == 0 ||
5560 			    group == ANY_GROUP ||
5561 			    !cpu_online(tmp->cpu) ||
5562 			    cpu_to_group(tmp->cpu) == group) {
5563 				sh = tmp;
5564 				break;
5565 			}
5566 		}
5567 
5568 		if (sh) {
5569 			conf->bypass_count -= conf->bypass_threshold;
5570 			if (conf->bypass_count < 0)
5571 				conf->bypass_count = 0;
5572 		}
5573 		wg = NULL;
5574 	}
5575 
5576 	if (!sh) {
5577 		if (second_try)
5578 			return NULL;
5579 		second_try = true;
5580 		try_loprio = !try_loprio;
5581 		goto again;
5582 	}
5583 
5584 	if (wg) {
5585 		wg->stripes_cnt--;
5586 		sh->group = NULL;
5587 	}
5588 	list_del_init(&sh->lru);
5589 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5590 	return sh;
5591 }
5592 
5593 struct raid5_plug_cb {
5594 	struct blk_plug_cb	cb;
5595 	struct list_head	list;
5596 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5597 };
5598 
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5599 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5600 {
5601 	struct raid5_plug_cb *cb = container_of(
5602 		blk_cb, struct raid5_plug_cb, cb);
5603 	struct stripe_head *sh;
5604 	struct mddev *mddev = cb->cb.data;
5605 	struct r5conf *conf = mddev->private;
5606 	int cnt = 0;
5607 	int hash;
5608 
5609 	if (cb->list.next && !list_empty(&cb->list)) {
5610 		spin_lock_irq(&conf->device_lock);
5611 		while (!list_empty(&cb->list)) {
5612 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5613 			list_del_init(&sh->lru);
5614 			/*
5615 			 * avoid race release_stripe_plug() sees
5616 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5617 			 * is still in our list
5618 			 */
5619 			smp_mb__before_atomic();
5620 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5621 			/*
5622 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5623 			 * case, the count is always > 1 here
5624 			 */
5625 			hash = sh->hash_lock_index;
5626 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5627 			cnt++;
5628 		}
5629 		spin_unlock_irq(&conf->device_lock);
5630 	}
5631 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5632 				     NR_STRIPE_HASH_LOCKS);
5633 	if (!mddev_is_dm(mddev))
5634 		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5635 	kfree(cb);
5636 }
5637 
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5638 static void release_stripe_plug(struct mddev *mddev,
5639 				struct stripe_head *sh)
5640 {
5641 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5642 		raid5_unplug, mddev,
5643 		sizeof(struct raid5_plug_cb));
5644 	struct raid5_plug_cb *cb;
5645 
5646 	if (!blk_cb) {
5647 		raid5_release_stripe(sh);
5648 		return;
5649 	}
5650 
5651 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5652 
5653 	if (cb->list.next == NULL) {
5654 		int i;
5655 		INIT_LIST_HEAD(&cb->list);
5656 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5657 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5658 	}
5659 
5660 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5661 		list_add_tail(&sh->lru, &cb->list);
5662 	else
5663 		raid5_release_stripe(sh);
5664 }
5665 
make_discard_request(struct mddev * mddev,struct bio * bi)5666 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5667 {
5668 	struct r5conf *conf = mddev->private;
5669 	sector_t logical_sector, last_sector;
5670 	struct stripe_head *sh;
5671 	int stripe_sectors;
5672 
5673 	/* We need to handle this when io_uring supports discard/trim */
5674 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5675 		return;
5676 
5677 	if (mddev->reshape_position != MaxSector)
5678 		/* Skip discard while reshape is happening */
5679 		return;
5680 
5681 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5682 	last_sector = bio_end_sector(bi);
5683 
5684 	bi->bi_next = NULL;
5685 
5686 	stripe_sectors = conf->chunk_sectors *
5687 		(conf->raid_disks - conf->max_degraded);
5688 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5689 					       stripe_sectors);
5690 	sector_div(last_sector, stripe_sectors);
5691 
5692 	logical_sector *= conf->chunk_sectors;
5693 	last_sector *= conf->chunk_sectors;
5694 
5695 	for (; logical_sector < last_sector;
5696 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5697 		DEFINE_WAIT(w);
5698 		int d;
5699 	again:
5700 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5701 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5702 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5703 			raid5_release_stripe(sh);
5704 			wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5705 				    TASK_UNINTERRUPTIBLE);
5706 			goto again;
5707 		}
5708 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5709 		spin_lock_irq(&sh->stripe_lock);
5710 		for (d = 0; d < conf->raid_disks; d++) {
5711 			if (d == sh->pd_idx || d == sh->qd_idx)
5712 				continue;
5713 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5714 				set_bit(R5_Overlap, &sh->dev[d].flags);
5715 				spin_unlock_irq(&sh->stripe_lock);
5716 				raid5_release_stripe(sh);
5717 				wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5718 					    TASK_UNINTERRUPTIBLE);
5719 				goto again;
5720 			}
5721 		}
5722 		set_bit(STRIPE_DISCARD, &sh->state);
5723 		sh->overwrite_disks = 0;
5724 		for (d = 0; d < conf->raid_disks; d++) {
5725 			if (d == sh->pd_idx || d == sh->qd_idx)
5726 				continue;
5727 			sh->dev[d].towrite = bi;
5728 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5729 			bio_inc_remaining(bi);
5730 			md_write_inc(mddev, bi);
5731 			sh->overwrite_disks++;
5732 		}
5733 		spin_unlock_irq(&sh->stripe_lock);
5734 		if (conf->mddev->bitmap) {
5735 			sh->bm_seq = conf->seq_flush + 1;
5736 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5737 		}
5738 
5739 		set_bit(STRIPE_HANDLE, &sh->state);
5740 		clear_bit(STRIPE_DELAYED, &sh->state);
5741 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5742 			atomic_inc(&conf->preread_active_stripes);
5743 		release_stripe_plug(mddev, sh);
5744 	}
5745 
5746 	bio_endio(bi);
5747 }
5748 
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5749 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5750 			     sector_t reshape_sector)
5751 {
5752 	return mddev->reshape_backwards ? sector < reshape_sector :
5753 					  sector >= reshape_sector;
5754 }
5755 
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5756 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5757 				   sector_t max, sector_t reshape_sector)
5758 {
5759 	return mddev->reshape_backwards ? max < reshape_sector :
5760 					  min >= reshape_sector;
5761 }
5762 
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5763 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5764 				    struct stripe_head *sh)
5765 {
5766 	sector_t max_sector = 0, min_sector = MaxSector;
5767 	bool ret = false;
5768 	int dd_idx;
5769 
5770 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5771 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5772 			continue;
5773 
5774 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5775 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5776 	}
5777 
5778 	spin_lock_irq(&conf->device_lock);
5779 
5780 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5781 				     conf->reshape_progress))
5782 		/* mismatch, need to try again */
5783 		ret = true;
5784 
5785 	spin_unlock_irq(&conf->device_lock);
5786 
5787 	return ret;
5788 }
5789 
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5790 static int add_all_stripe_bios(struct r5conf *conf,
5791 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5792 		struct bio *bi, int forwrite, int previous)
5793 {
5794 	int dd_idx;
5795 
5796 	spin_lock_irq(&sh->stripe_lock);
5797 
5798 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5799 		struct r5dev *dev = &sh->dev[dd_idx];
5800 
5801 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5802 			continue;
5803 
5804 		if (dev->sector < ctx->first_sector ||
5805 		    dev->sector >= ctx->last_sector)
5806 			continue;
5807 
5808 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5809 			set_bit(R5_Overlap, &dev->flags);
5810 			spin_unlock_irq(&sh->stripe_lock);
5811 			raid5_release_stripe(sh);
5812 			/* release batch_last before wait to avoid risk of deadlock */
5813 			if (ctx->batch_last) {
5814 				raid5_release_stripe(ctx->batch_last);
5815 				ctx->batch_last = NULL;
5816 			}
5817 			md_wakeup_thread(conf->mddev->thread);
5818 			wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5819 			return 0;
5820 		}
5821 	}
5822 
5823 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5824 		struct r5dev *dev = &sh->dev[dd_idx];
5825 
5826 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5827 			continue;
5828 
5829 		if (dev->sector < ctx->first_sector ||
5830 		    dev->sector >= ctx->last_sector)
5831 			continue;
5832 
5833 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5834 		clear_bit((dev->sector - ctx->first_sector) >>
5835 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5836 	}
5837 
5838 	spin_unlock_irq(&sh->stripe_lock);
5839 	return 1;
5840 }
5841 
5842 enum reshape_loc {
5843 	LOC_NO_RESHAPE,
5844 	LOC_AHEAD_OF_RESHAPE,
5845 	LOC_INSIDE_RESHAPE,
5846 	LOC_BEHIND_RESHAPE,
5847 };
5848 
get_reshape_loc(struct mddev * mddev,struct r5conf * conf,sector_t logical_sector)5849 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5850 		struct r5conf *conf, sector_t logical_sector)
5851 {
5852 	sector_t reshape_progress, reshape_safe;
5853 
5854 	if (likely(conf->reshape_progress == MaxSector))
5855 		return LOC_NO_RESHAPE;
5856 	/*
5857 	 * Spinlock is needed as reshape_progress may be
5858 	 * 64bit on a 32bit platform, and so it might be
5859 	 * possible to see a half-updated value
5860 	 * Of course reshape_progress could change after
5861 	 * the lock is dropped, so once we get a reference
5862 	 * to the stripe that we think it is, we will have
5863 	 * to check again.
5864 	 */
5865 	spin_lock_irq(&conf->device_lock);
5866 	reshape_progress = conf->reshape_progress;
5867 	reshape_safe = conf->reshape_safe;
5868 	spin_unlock_irq(&conf->device_lock);
5869 	if (reshape_progress == MaxSector)
5870 		return LOC_NO_RESHAPE;
5871 	if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5872 		return LOC_AHEAD_OF_RESHAPE;
5873 	if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5874 		return LOC_INSIDE_RESHAPE;
5875 	return LOC_BEHIND_RESHAPE;
5876 }
5877 
raid5_bitmap_sector(struct mddev * mddev,sector_t * offset,unsigned long * sectors)5878 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5879 				unsigned long *sectors)
5880 {
5881 	struct r5conf *conf = mddev->private;
5882 	sector_t start = *offset;
5883 	sector_t end = start + *sectors;
5884 	sector_t prev_start = start;
5885 	sector_t prev_end = end;
5886 	int sectors_per_chunk;
5887 	enum reshape_loc loc;
5888 	int dd_idx;
5889 
5890 	sectors_per_chunk = conf->chunk_sectors *
5891 		(conf->raid_disks - conf->max_degraded);
5892 	start = round_down(start, sectors_per_chunk);
5893 	end = round_up(end, sectors_per_chunk);
5894 
5895 	start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5896 	end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5897 
5898 	/*
5899 	 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5900 	 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5901 	 */
5902 	loc = get_reshape_loc(mddev, conf, prev_start);
5903 	if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5904 		*offset = start;
5905 		*sectors = end - start;
5906 		return;
5907 	}
5908 
5909 	sectors_per_chunk = conf->prev_chunk_sectors *
5910 		(conf->previous_raid_disks - conf->max_degraded);
5911 	prev_start = round_down(prev_start, sectors_per_chunk);
5912 	prev_end = round_down(prev_end, sectors_per_chunk);
5913 
5914 	prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5915 	prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5916 
5917 	/*
5918 	 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5919 	 * is handled in make_stripe_request(), we can't know this here hence
5920 	 * we set bits for both.
5921 	 */
5922 	*offset = min(start, prev_start);
5923 	*sectors = max(end, prev_end) - *offset;
5924 }
5925 
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5926 static enum stripe_result make_stripe_request(struct mddev *mddev,
5927 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5928 		sector_t logical_sector, struct bio *bi)
5929 {
5930 	const int rw = bio_data_dir(bi);
5931 	enum stripe_result ret;
5932 	struct stripe_head *sh;
5933 	enum reshape_loc loc;
5934 	sector_t new_sector;
5935 	int previous = 0, flags = 0;
5936 	int seq, dd_idx;
5937 
5938 	seq = read_seqcount_begin(&conf->gen_lock);
5939 	loc = get_reshape_loc(mddev, conf, logical_sector);
5940 	if (loc == LOC_INSIDE_RESHAPE) {
5941 		ret = STRIPE_SCHEDULE_AND_RETRY;
5942 		goto out;
5943 	}
5944 	if (loc == LOC_AHEAD_OF_RESHAPE)
5945 		previous = 1;
5946 
5947 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5948 					  &dd_idx, NULL);
5949 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5950 		 new_sector, logical_sector);
5951 
5952 	if (previous)
5953 		flags |= R5_GAS_PREVIOUS;
5954 	if (bi->bi_opf & REQ_RAHEAD)
5955 		flags |= R5_GAS_NOBLOCK;
5956 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5957 	if (unlikely(!sh)) {
5958 		/* cannot get stripe, just give-up */
5959 		bi->bi_status = BLK_STS_IOERR;
5960 		return STRIPE_FAIL;
5961 	}
5962 
5963 	if (unlikely(previous) &&
5964 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5965 		/*
5966 		 * Expansion moved on while waiting for a stripe.
5967 		 * Expansion could still move past after this
5968 		 * test, but as we are holding a reference to
5969 		 * 'sh', we know that if that happens,
5970 		 *  STRIPE_EXPANDING will get set and the expansion
5971 		 * won't proceed until we finish with the stripe.
5972 		 */
5973 		ret = STRIPE_SCHEDULE_AND_RETRY;
5974 		goto out_release;
5975 	}
5976 
5977 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5978 		/* Might have got the wrong stripe_head by accident */
5979 		ret = STRIPE_RETRY;
5980 		goto out_release;
5981 	}
5982 
5983 	if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5984 		md_wakeup_thread(mddev->thread);
5985 		ret = STRIPE_SCHEDULE_AND_RETRY;
5986 		goto out_release;
5987 	}
5988 
5989 	if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5990 		ret = STRIPE_RETRY;
5991 		goto out;
5992 	}
5993 
5994 	if (stripe_can_batch(sh)) {
5995 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
5996 		if (ctx->batch_last)
5997 			raid5_release_stripe(ctx->batch_last);
5998 		atomic_inc(&sh->count);
5999 		ctx->batch_last = sh;
6000 	}
6001 
6002 	if (ctx->do_flush) {
6003 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6004 		/* we only need flush for one stripe */
6005 		ctx->do_flush = false;
6006 	}
6007 
6008 	set_bit(STRIPE_HANDLE, &sh->state);
6009 	clear_bit(STRIPE_DELAYED, &sh->state);
6010 	if ((!sh->batch_head || sh == sh->batch_head) &&
6011 	    (bi->bi_opf & REQ_SYNC) &&
6012 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6013 		atomic_inc(&conf->preread_active_stripes);
6014 
6015 	release_stripe_plug(mddev, sh);
6016 	return STRIPE_SUCCESS;
6017 
6018 out_release:
6019 	raid5_release_stripe(sh);
6020 out:
6021 	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6022 		bi->bi_status = BLK_STS_RESOURCE;
6023 		ret = STRIPE_WAIT_RESHAPE;
6024 		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6025 	}
6026 	return ret;
6027 }
6028 
6029 /*
6030  * If the bio covers multiple data disks, find sector within the bio that has
6031  * the lowest chunk offset in the first chunk.
6032  */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6033 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6034 					      struct bio *bi)
6035 {
6036 	int sectors_per_chunk = conf->chunk_sectors;
6037 	int raid_disks = conf->raid_disks;
6038 	int dd_idx;
6039 	struct stripe_head sh;
6040 	unsigned int chunk_offset;
6041 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6042 	sector_t sector;
6043 
6044 	/* We pass in fake stripe_head to get back parity disk numbers */
6045 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6046 	chunk_offset = sector_div(sector, sectors_per_chunk);
6047 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6048 		return r_sector;
6049 	/*
6050 	 * Bio crosses to the next data disk. Check whether it's in the same
6051 	 * chunk.
6052 	 */
6053 	dd_idx++;
6054 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6055 		dd_idx++;
6056 	if (dd_idx >= raid_disks)
6057 		return r_sector;
6058 	return r_sector + sectors_per_chunk - chunk_offset;
6059 }
6060 
raid5_make_request(struct mddev * mddev,struct bio * bi)6061 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6062 {
6063 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6064 	bool on_wq;
6065 	struct r5conf *conf = mddev->private;
6066 	sector_t logical_sector;
6067 	struct stripe_request_ctx ctx = {};
6068 	const int rw = bio_data_dir(bi);
6069 	enum stripe_result res;
6070 	int s, stripe_cnt;
6071 
6072 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6073 		int ret = log_handle_flush_request(conf, bi);
6074 
6075 		if (ret == 0)
6076 			return true;
6077 		if (ret == -ENODEV) {
6078 			if (md_flush_request(mddev, bi))
6079 				return true;
6080 		}
6081 		/* ret == -EAGAIN, fallback */
6082 		/*
6083 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6084 		 * we need to flush journal device
6085 		 */
6086 		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6087 	}
6088 
6089 	md_write_start(mddev, bi);
6090 	/*
6091 	 * If array is degraded, better not do chunk aligned read because
6092 	 * later we might have to read it again in order to reconstruct
6093 	 * data on failed drives.
6094 	 */
6095 	if (rw == READ && mddev->degraded == 0 &&
6096 	    mddev->reshape_position == MaxSector) {
6097 		bi = chunk_aligned_read(mddev, bi);
6098 		if (!bi)
6099 			return true;
6100 	}
6101 
6102 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6103 		make_discard_request(mddev, bi);
6104 		md_write_end(mddev);
6105 		return true;
6106 	}
6107 
6108 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6109 	ctx.first_sector = logical_sector;
6110 	ctx.last_sector = bio_end_sector(bi);
6111 	bi->bi_next = NULL;
6112 
6113 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6114 					   RAID5_STRIPE_SECTORS(conf));
6115 	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6116 
6117 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6118 		 bi->bi_iter.bi_sector, ctx.last_sector);
6119 
6120 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6121 	if ((bi->bi_opf & REQ_NOWAIT) &&
6122 	    get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6123 		bio_wouldblock_error(bi);
6124 		if (rw == WRITE)
6125 			md_write_end(mddev);
6126 		return true;
6127 	}
6128 	md_account_bio(mddev, &bi);
6129 
6130 	/*
6131 	 * Lets start with the stripe with the lowest chunk offset in the first
6132 	 * chunk. That has the best chances of creating IOs adjacent to
6133 	 * previous IOs in case of sequential IO and thus creates the most
6134 	 * sequential IO pattern. We don't bother with the optimization when
6135 	 * reshaping as the performance benefit is not worth the complexity.
6136 	 */
6137 	if (likely(conf->reshape_progress == MaxSector)) {
6138 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6139 		on_wq = false;
6140 	} else {
6141 		add_wait_queue(&conf->wait_for_reshape, &wait);
6142 		on_wq = true;
6143 	}
6144 	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6145 
6146 	while (1) {
6147 		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6148 					  bi);
6149 		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6150 			break;
6151 
6152 		if (res == STRIPE_RETRY)
6153 			continue;
6154 
6155 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6156 			WARN_ON_ONCE(!on_wq);
6157 			/*
6158 			 * Must release the reference to batch_last before
6159 			 * scheduling and waiting for work to be done,
6160 			 * otherwise the batch_last stripe head could prevent
6161 			 * raid5_activate_delayed() from making progress
6162 			 * and thus deadlocking.
6163 			 */
6164 			if (ctx.batch_last) {
6165 				raid5_release_stripe(ctx.batch_last);
6166 				ctx.batch_last = NULL;
6167 			}
6168 
6169 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6170 				   MAX_SCHEDULE_TIMEOUT);
6171 			continue;
6172 		}
6173 
6174 		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6175 		if (s == stripe_cnt)
6176 			break;
6177 
6178 		logical_sector = ctx.first_sector +
6179 			(s << RAID5_STRIPE_SHIFT(conf));
6180 	}
6181 	if (unlikely(on_wq))
6182 		remove_wait_queue(&conf->wait_for_reshape, &wait);
6183 
6184 	if (ctx.batch_last)
6185 		raid5_release_stripe(ctx.batch_last);
6186 
6187 	if (rw == WRITE)
6188 		md_write_end(mddev);
6189 	if (res == STRIPE_WAIT_RESHAPE) {
6190 		md_free_cloned_bio(bi);
6191 		return false;
6192 	}
6193 
6194 	bio_endio(bi);
6195 	return true;
6196 }
6197 
6198 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6199 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6200 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6201 {
6202 	/* reshaping is quite different to recovery/resync so it is
6203 	 * handled quite separately ... here.
6204 	 *
6205 	 * On each call to sync_request, we gather one chunk worth of
6206 	 * destination stripes and flag them as expanding.
6207 	 * Then we find all the source stripes and request reads.
6208 	 * As the reads complete, handle_stripe will copy the data
6209 	 * into the destination stripe and release that stripe.
6210 	 */
6211 	struct r5conf *conf = mddev->private;
6212 	struct stripe_head *sh;
6213 	struct md_rdev *rdev;
6214 	sector_t first_sector, last_sector;
6215 	int raid_disks = conf->previous_raid_disks;
6216 	int data_disks = raid_disks - conf->max_degraded;
6217 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6218 	int i;
6219 	int dd_idx;
6220 	sector_t writepos, readpos, safepos;
6221 	sector_t stripe_addr;
6222 	int reshape_sectors;
6223 	struct list_head stripes;
6224 	sector_t retn;
6225 
6226 	if (sector_nr == 0) {
6227 		/* If restarting in the middle, skip the initial sectors */
6228 		if (mddev->reshape_backwards &&
6229 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6230 			sector_nr = raid5_size(mddev, 0, 0)
6231 				- conf->reshape_progress;
6232 		} else if (mddev->reshape_backwards &&
6233 			   conf->reshape_progress == MaxSector) {
6234 			/* shouldn't happen, but just in case, finish up.*/
6235 			sector_nr = MaxSector;
6236 		} else if (!mddev->reshape_backwards &&
6237 			   conf->reshape_progress > 0)
6238 			sector_nr = conf->reshape_progress;
6239 		sector_div(sector_nr, new_data_disks);
6240 		if (sector_nr) {
6241 			mddev->curr_resync_completed = sector_nr;
6242 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6243 			*skipped = 1;
6244 			retn = sector_nr;
6245 			goto finish;
6246 		}
6247 	}
6248 
6249 	/* We need to process a full chunk at a time.
6250 	 * If old and new chunk sizes differ, we need to process the
6251 	 * largest of these
6252 	 */
6253 
6254 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6255 
6256 	/* We update the metadata at least every 10 seconds, or when
6257 	 * the data about to be copied would over-write the source of
6258 	 * the data at the front of the range.  i.e. one new_stripe
6259 	 * along from reshape_progress new_maps to after where
6260 	 * reshape_safe old_maps to
6261 	 */
6262 	writepos = conf->reshape_progress;
6263 	sector_div(writepos, new_data_disks);
6264 	readpos = conf->reshape_progress;
6265 	sector_div(readpos, data_disks);
6266 	safepos = conf->reshape_safe;
6267 	sector_div(safepos, data_disks);
6268 	if (mddev->reshape_backwards) {
6269 		if (WARN_ON(writepos < reshape_sectors))
6270 			return MaxSector;
6271 
6272 		writepos -= reshape_sectors;
6273 		readpos += reshape_sectors;
6274 		safepos += reshape_sectors;
6275 	} else {
6276 		writepos += reshape_sectors;
6277 		/* readpos and safepos are worst-case calculations.
6278 		 * A negative number is overly pessimistic, and causes
6279 		 * obvious problems for unsigned storage.  So clip to 0.
6280 		 */
6281 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6282 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6283 	}
6284 
6285 	/* Having calculated the 'writepos' possibly use it
6286 	 * to set 'stripe_addr' which is where we will write to.
6287 	 */
6288 	if (mddev->reshape_backwards) {
6289 		if (WARN_ON(conf->reshape_progress == 0))
6290 			return MaxSector;
6291 
6292 		stripe_addr = writepos;
6293 		if (WARN_ON((mddev->dev_sectors &
6294 		    ~((sector_t)reshape_sectors - 1)) -
6295 		    reshape_sectors - stripe_addr != sector_nr))
6296 			return MaxSector;
6297 	} else {
6298 		if (WARN_ON(writepos != sector_nr + reshape_sectors))
6299 			return MaxSector;
6300 
6301 		stripe_addr = sector_nr;
6302 	}
6303 
6304 	/* 'writepos' is the most advanced device address we might write.
6305 	 * 'readpos' is the least advanced device address we might read.
6306 	 * 'safepos' is the least address recorded in the metadata as having
6307 	 *     been reshaped.
6308 	 * If there is a min_offset_diff, these are adjusted either by
6309 	 * increasing the safepos/readpos if diff is negative, or
6310 	 * increasing writepos if diff is positive.
6311 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6312 	 * ensure safety in the face of a crash - that must be done by userspace
6313 	 * making a backup of the data.  So in that case there is no particular
6314 	 * rush to update metadata.
6315 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6316 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6317 	 * we can be safe in the event of a crash.
6318 	 * So we insist on updating metadata if safepos is behind writepos and
6319 	 * readpos is beyond writepos.
6320 	 * In any case, update the metadata every 10 seconds.
6321 	 * Maybe that number should be configurable, but I'm not sure it is
6322 	 * worth it.... maybe it could be a multiple of safemode_delay???
6323 	 */
6324 	if (conf->min_offset_diff < 0) {
6325 		safepos += -conf->min_offset_diff;
6326 		readpos += -conf->min_offset_diff;
6327 	} else
6328 		writepos += conf->min_offset_diff;
6329 
6330 	if ((mddev->reshape_backwards
6331 	     ? (safepos > writepos && readpos < writepos)
6332 	     : (safepos < writepos && readpos > writepos)) ||
6333 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6334 		/* Cannot proceed until we've updated the superblock... */
6335 		wait_event(conf->wait_for_reshape,
6336 			   atomic_read(&conf->reshape_stripes)==0
6337 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6338 		if (atomic_read(&conf->reshape_stripes) != 0)
6339 			return 0;
6340 		mddev->reshape_position = conf->reshape_progress;
6341 		mddev->curr_resync_completed = sector_nr;
6342 		if (!mddev->reshape_backwards)
6343 			/* Can update recovery_offset */
6344 			rdev_for_each(rdev, mddev)
6345 				if (rdev->raid_disk >= 0 &&
6346 				    !test_bit(Journal, &rdev->flags) &&
6347 				    !test_bit(In_sync, &rdev->flags) &&
6348 				    rdev->recovery_offset < sector_nr)
6349 					rdev->recovery_offset = sector_nr;
6350 
6351 		conf->reshape_checkpoint = jiffies;
6352 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6353 		md_wakeup_thread(mddev->thread);
6354 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6355 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6356 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6357 			return 0;
6358 		spin_lock_irq(&conf->device_lock);
6359 		conf->reshape_safe = mddev->reshape_position;
6360 		spin_unlock_irq(&conf->device_lock);
6361 		wake_up(&conf->wait_for_reshape);
6362 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6363 	}
6364 
6365 	INIT_LIST_HEAD(&stripes);
6366 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6367 		int j;
6368 		int skipped_disk = 0;
6369 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6370 					     R5_GAS_NOQUIESCE);
6371 		set_bit(STRIPE_EXPANDING, &sh->state);
6372 		atomic_inc(&conf->reshape_stripes);
6373 		/* If any of this stripe is beyond the end of the old
6374 		 * array, then we need to zero those blocks
6375 		 */
6376 		for (j=sh->disks; j--;) {
6377 			sector_t s;
6378 			if (j == sh->pd_idx)
6379 				continue;
6380 			if (conf->level == 6 &&
6381 			    j == sh->qd_idx)
6382 				continue;
6383 			s = raid5_compute_blocknr(sh, j, 0);
6384 			if (s < raid5_size(mddev, 0, 0)) {
6385 				skipped_disk = 1;
6386 				continue;
6387 			}
6388 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6389 			set_bit(R5_Expanded, &sh->dev[j].flags);
6390 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6391 		}
6392 		if (!skipped_disk) {
6393 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6394 			set_bit(STRIPE_HANDLE, &sh->state);
6395 		}
6396 		list_add(&sh->lru, &stripes);
6397 	}
6398 	spin_lock_irq(&conf->device_lock);
6399 	if (mddev->reshape_backwards)
6400 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6401 	else
6402 		conf->reshape_progress += reshape_sectors * new_data_disks;
6403 	spin_unlock_irq(&conf->device_lock);
6404 	/* Ok, those stripe are ready. We can start scheduling
6405 	 * reads on the source stripes.
6406 	 * The source stripes are determined by mapping the first and last
6407 	 * block on the destination stripes.
6408 	 */
6409 	first_sector =
6410 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6411 				     1, &dd_idx, NULL);
6412 	last_sector =
6413 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6414 					    * new_data_disks - 1),
6415 				     1, &dd_idx, NULL);
6416 	if (last_sector >= mddev->dev_sectors)
6417 		last_sector = mddev->dev_sectors - 1;
6418 	while (first_sector <= last_sector) {
6419 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6420 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6421 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6422 		set_bit(STRIPE_HANDLE, &sh->state);
6423 		raid5_release_stripe(sh);
6424 		first_sector += RAID5_STRIPE_SECTORS(conf);
6425 	}
6426 	/* Now that the sources are clearly marked, we can release
6427 	 * the destination stripes
6428 	 */
6429 	while (!list_empty(&stripes)) {
6430 		sh = list_entry(stripes.next, struct stripe_head, lru);
6431 		list_del_init(&sh->lru);
6432 		raid5_release_stripe(sh);
6433 	}
6434 	/* If this takes us to the resync_max point where we have to pause,
6435 	 * then we need to write out the superblock.
6436 	 */
6437 	sector_nr += reshape_sectors;
6438 	retn = reshape_sectors;
6439 finish:
6440 	if (mddev->curr_resync_completed > mddev->resync_max ||
6441 	    (sector_nr - mddev->curr_resync_completed) * 2
6442 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6443 		/* Cannot proceed until we've updated the superblock... */
6444 		wait_event(conf->wait_for_reshape,
6445 			   atomic_read(&conf->reshape_stripes) == 0
6446 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6447 		if (atomic_read(&conf->reshape_stripes) != 0)
6448 			goto ret;
6449 		mddev->reshape_position = conf->reshape_progress;
6450 		mddev->curr_resync_completed = sector_nr;
6451 		if (!mddev->reshape_backwards)
6452 			/* Can update recovery_offset */
6453 			rdev_for_each(rdev, mddev)
6454 				if (rdev->raid_disk >= 0 &&
6455 				    !test_bit(Journal, &rdev->flags) &&
6456 				    !test_bit(In_sync, &rdev->flags) &&
6457 				    rdev->recovery_offset < sector_nr)
6458 					rdev->recovery_offset = sector_nr;
6459 		conf->reshape_checkpoint = jiffies;
6460 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6461 		md_wakeup_thread(mddev->thread);
6462 		wait_event(mddev->sb_wait,
6463 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6464 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6465 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6466 			goto ret;
6467 		spin_lock_irq(&conf->device_lock);
6468 		conf->reshape_safe = mddev->reshape_position;
6469 		spin_unlock_irq(&conf->device_lock);
6470 		wake_up(&conf->wait_for_reshape);
6471 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6472 	}
6473 ret:
6474 	return retn;
6475 }
6476 
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)6477 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6478 					  sector_t max_sector, int *skipped)
6479 {
6480 	struct r5conf *conf = mddev->private;
6481 	struct stripe_head *sh;
6482 	sector_t sync_blocks;
6483 	bool still_degraded = false;
6484 	int i;
6485 
6486 	if (sector_nr >= max_sector) {
6487 		/* just being told to finish up .. nothing much to do */
6488 
6489 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6490 			end_reshape(conf);
6491 			return 0;
6492 		}
6493 
6494 		if (mddev->curr_resync < max_sector) /* aborted */
6495 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6496 						    &sync_blocks);
6497 		else /* completed sync */
6498 			conf->fullsync = 0;
6499 		mddev->bitmap_ops->close_sync(mddev);
6500 
6501 		return 0;
6502 	}
6503 
6504 	/* Allow raid5_quiesce to complete */
6505 	wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6506 
6507 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6508 		return reshape_request(mddev, sector_nr, skipped);
6509 
6510 	/* No need to check resync_max as we never do more than one
6511 	 * stripe, and as resync_max will always be on a chunk boundary,
6512 	 * if the check in md_do_sync didn't fire, there is no chance
6513 	 * of overstepping resync_max here
6514 	 */
6515 
6516 	/* if there is too many failed drives and we are trying
6517 	 * to resync, then assert that we are finished, because there is
6518 	 * nothing we can do.
6519 	 */
6520 	if (mddev->degraded >= conf->max_degraded &&
6521 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6522 		sector_t rv = mddev->dev_sectors - sector_nr;
6523 		*skipped = 1;
6524 		return rv;
6525 	}
6526 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6527 	    !conf->fullsync &&
6528 	    !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6529 					   true) &&
6530 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6531 		/* we can skip this block, and probably more */
6532 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6533 		*skipped = 1;
6534 		/* keep things rounded to whole stripes */
6535 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6536 	}
6537 
6538 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6539 
6540 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6541 				     R5_GAS_NOBLOCK);
6542 	if (sh == NULL) {
6543 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6544 		/* make sure we don't swamp the stripe cache if someone else
6545 		 * is trying to get access
6546 		 */
6547 		schedule_timeout_uninterruptible(1);
6548 	}
6549 	/* Need to check if array will still be degraded after recovery/resync
6550 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6551 	 * one drive while leaving another faulty drive in array.
6552 	 */
6553 	for (i = 0; i < conf->raid_disks; i++) {
6554 		struct md_rdev *rdev = conf->disks[i].rdev;
6555 
6556 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6557 			still_degraded = true;
6558 	}
6559 
6560 	mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6561 				      still_degraded);
6562 
6563 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6564 	set_bit(STRIPE_HANDLE, &sh->state);
6565 
6566 	raid5_release_stripe(sh);
6567 
6568 	return RAID5_STRIPE_SECTORS(conf);
6569 }
6570 
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6571 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6572 			       unsigned int offset)
6573 {
6574 	/* We may not be able to submit a whole bio at once as there
6575 	 * may not be enough stripe_heads available.
6576 	 * We cannot pre-allocate enough stripe_heads as we may need
6577 	 * more than exist in the cache (if we allow ever large chunks).
6578 	 * So we do one stripe head at a time and record in
6579 	 * ->bi_hw_segments how many have been done.
6580 	 *
6581 	 * We *know* that this entire raid_bio is in one chunk, so
6582 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6583 	 */
6584 	struct stripe_head *sh;
6585 	int dd_idx;
6586 	sector_t sector, logical_sector, last_sector;
6587 	int scnt = 0;
6588 	int handled = 0;
6589 
6590 	logical_sector = raid_bio->bi_iter.bi_sector &
6591 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6592 	sector = raid5_compute_sector(conf, logical_sector,
6593 				      0, &dd_idx, NULL);
6594 	last_sector = bio_end_sector(raid_bio);
6595 
6596 	for (; logical_sector < last_sector;
6597 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6598 		     sector += RAID5_STRIPE_SECTORS(conf),
6599 		     scnt++) {
6600 
6601 		if (scnt < offset)
6602 			/* already done this stripe */
6603 			continue;
6604 
6605 		sh = raid5_get_active_stripe(conf, NULL, sector,
6606 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6607 		if (!sh) {
6608 			/* failed to get a stripe - must wait */
6609 			conf->retry_read_aligned = raid_bio;
6610 			conf->retry_read_offset = scnt;
6611 			return handled;
6612 		}
6613 
6614 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6615 			raid5_release_stripe(sh);
6616 			conf->retry_read_aligned = raid_bio;
6617 			conf->retry_read_offset = scnt;
6618 			return handled;
6619 		}
6620 
6621 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6622 		handle_stripe(sh);
6623 		raid5_release_stripe(sh);
6624 		handled++;
6625 	}
6626 
6627 	bio_endio(raid_bio);
6628 
6629 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6630 		wake_up(&conf->wait_for_quiescent);
6631 	return handled;
6632 }
6633 
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6634 static int handle_active_stripes(struct r5conf *conf, int group,
6635 				 struct r5worker *worker,
6636 				 struct list_head *temp_inactive_list)
6637 		__must_hold(&conf->device_lock)
6638 {
6639 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6640 	int i, batch_size = 0, hash;
6641 	bool release_inactive = false;
6642 
6643 	while (batch_size < MAX_STRIPE_BATCH &&
6644 			(sh = __get_priority_stripe(conf, group)) != NULL)
6645 		batch[batch_size++] = sh;
6646 
6647 	if (batch_size == 0) {
6648 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6649 			if (!list_empty(temp_inactive_list + i))
6650 				break;
6651 		if (i == NR_STRIPE_HASH_LOCKS) {
6652 			spin_unlock_irq(&conf->device_lock);
6653 			log_flush_stripe_to_raid(conf);
6654 			spin_lock_irq(&conf->device_lock);
6655 			return batch_size;
6656 		}
6657 		release_inactive = true;
6658 	}
6659 	spin_unlock_irq(&conf->device_lock);
6660 
6661 	release_inactive_stripe_list(conf, temp_inactive_list,
6662 				     NR_STRIPE_HASH_LOCKS);
6663 
6664 	r5l_flush_stripe_to_raid(conf->log);
6665 	if (release_inactive) {
6666 		spin_lock_irq(&conf->device_lock);
6667 		return 0;
6668 	}
6669 
6670 	for (i = 0; i < batch_size; i++)
6671 		handle_stripe(batch[i]);
6672 	log_write_stripe_run(conf);
6673 
6674 	cond_resched();
6675 
6676 	spin_lock_irq(&conf->device_lock);
6677 	for (i = 0; i < batch_size; i++) {
6678 		hash = batch[i]->hash_lock_index;
6679 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6680 	}
6681 	return batch_size;
6682 }
6683 
raid5_do_work(struct work_struct * work)6684 static void raid5_do_work(struct work_struct *work)
6685 {
6686 	struct r5worker *worker = container_of(work, struct r5worker, work);
6687 	struct r5worker_group *group = worker->group;
6688 	struct r5conf *conf = group->conf;
6689 	struct mddev *mddev = conf->mddev;
6690 	int group_id = group - conf->worker_groups;
6691 	int handled;
6692 	struct blk_plug plug;
6693 
6694 	pr_debug("+++ raid5worker active\n");
6695 
6696 	blk_start_plug(&plug);
6697 	handled = 0;
6698 	spin_lock_irq(&conf->device_lock);
6699 	while (1) {
6700 		int batch_size, released;
6701 
6702 		released = release_stripe_list(conf, worker->temp_inactive_list);
6703 
6704 		batch_size = handle_active_stripes(conf, group_id, worker,
6705 						   worker->temp_inactive_list);
6706 		worker->working = false;
6707 		if (!batch_size && !released)
6708 			break;
6709 		handled += batch_size;
6710 		wait_event_lock_irq(mddev->sb_wait,
6711 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6712 			conf->device_lock);
6713 	}
6714 	pr_debug("%d stripes handled\n", handled);
6715 
6716 	spin_unlock_irq(&conf->device_lock);
6717 
6718 	flush_deferred_bios(conf);
6719 
6720 	r5l_flush_stripe_to_raid(conf->log);
6721 
6722 	async_tx_issue_pending_all();
6723 	blk_finish_plug(&plug);
6724 
6725 	pr_debug("--- raid5worker inactive\n");
6726 }
6727 
6728 /*
6729  * This is our raid5 kernel thread.
6730  *
6731  * We scan the hash table for stripes which can be handled now.
6732  * During the scan, completed stripes are saved for us by the interrupt
6733  * handler, so that they will not have to wait for our next wakeup.
6734  */
raid5d(struct md_thread * thread)6735 static void raid5d(struct md_thread *thread)
6736 {
6737 	struct mddev *mddev = thread->mddev;
6738 	struct r5conf *conf = mddev->private;
6739 	int handled;
6740 	struct blk_plug plug;
6741 
6742 	pr_debug("+++ raid5d active\n");
6743 
6744 	md_check_recovery(mddev);
6745 
6746 	blk_start_plug(&plug);
6747 	handled = 0;
6748 	spin_lock_irq(&conf->device_lock);
6749 	while (1) {
6750 		struct bio *bio;
6751 		int batch_size, released;
6752 		unsigned int offset;
6753 
6754 		if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6755 			break;
6756 
6757 		released = release_stripe_list(conf, conf->temp_inactive_list);
6758 		if (released)
6759 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6760 
6761 		if (
6762 		    !list_empty(&conf->bitmap_list)) {
6763 			/* Now is a good time to flush some bitmap updates */
6764 			conf->seq_flush++;
6765 			spin_unlock_irq(&conf->device_lock);
6766 			mddev->bitmap_ops->unplug(mddev, true);
6767 			spin_lock_irq(&conf->device_lock);
6768 			conf->seq_write = conf->seq_flush;
6769 			activate_bit_delay(conf, conf->temp_inactive_list);
6770 		}
6771 		raid5_activate_delayed(conf);
6772 
6773 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6774 			int ok;
6775 			spin_unlock_irq(&conf->device_lock);
6776 			ok = retry_aligned_read(conf, bio, offset);
6777 			spin_lock_irq(&conf->device_lock);
6778 			if (!ok)
6779 				break;
6780 			handled++;
6781 		}
6782 
6783 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6784 						   conf->temp_inactive_list);
6785 		if (!batch_size && !released)
6786 			break;
6787 		handled += batch_size;
6788 
6789 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6790 			spin_unlock_irq(&conf->device_lock);
6791 			md_check_recovery(mddev);
6792 			spin_lock_irq(&conf->device_lock);
6793 		}
6794 	}
6795 	pr_debug("%d stripes handled\n", handled);
6796 
6797 	spin_unlock_irq(&conf->device_lock);
6798 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6799 	    mutex_trylock(&conf->cache_size_mutex)) {
6800 		grow_one_stripe(conf, __GFP_NOWARN);
6801 		/* Set flag even if allocation failed.  This helps
6802 		 * slow down allocation requests when mem is short
6803 		 */
6804 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6805 		mutex_unlock(&conf->cache_size_mutex);
6806 	}
6807 
6808 	flush_deferred_bios(conf);
6809 
6810 	r5l_flush_stripe_to_raid(conf->log);
6811 
6812 	async_tx_issue_pending_all();
6813 	blk_finish_plug(&plug);
6814 
6815 	pr_debug("--- raid5d inactive\n");
6816 }
6817 
6818 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6819 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6820 {
6821 	struct r5conf *conf;
6822 	int ret = 0;
6823 	spin_lock(&mddev->lock);
6824 	conf = mddev->private;
6825 	if (conf)
6826 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6827 	spin_unlock(&mddev->lock);
6828 	return ret;
6829 }
6830 
6831 int
raid5_set_cache_size(struct mddev * mddev,int size)6832 raid5_set_cache_size(struct mddev *mddev, int size)
6833 {
6834 	int result = 0;
6835 	struct r5conf *conf = mddev->private;
6836 
6837 	if (size <= 16 || size > 32768)
6838 		return -EINVAL;
6839 
6840 	WRITE_ONCE(conf->min_nr_stripes, size);
6841 	mutex_lock(&conf->cache_size_mutex);
6842 	while (size < conf->max_nr_stripes &&
6843 	       drop_one_stripe(conf))
6844 		;
6845 	mutex_unlock(&conf->cache_size_mutex);
6846 
6847 	md_allow_write(mddev);
6848 
6849 	mutex_lock(&conf->cache_size_mutex);
6850 	while (size > conf->max_nr_stripes)
6851 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6852 			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6853 			result = -ENOMEM;
6854 			break;
6855 		}
6856 	mutex_unlock(&conf->cache_size_mutex);
6857 
6858 	return result;
6859 }
6860 EXPORT_SYMBOL(raid5_set_cache_size);
6861 
6862 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6863 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6864 {
6865 	struct r5conf *conf;
6866 	unsigned long new;
6867 	int err;
6868 
6869 	if (len >= PAGE_SIZE)
6870 		return -EINVAL;
6871 	if (kstrtoul(page, 10, &new))
6872 		return -EINVAL;
6873 	err = mddev_lock(mddev);
6874 	if (err)
6875 		return err;
6876 	conf = mddev->private;
6877 	if (!conf)
6878 		err = -ENODEV;
6879 	else
6880 		err = raid5_set_cache_size(mddev, new);
6881 	mddev_unlock(mddev);
6882 
6883 	return err ?: len;
6884 }
6885 
6886 static struct md_sysfs_entry
6887 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6888 				raid5_show_stripe_cache_size,
6889 				raid5_store_stripe_cache_size);
6890 
6891 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6892 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6893 {
6894 	struct r5conf *conf = mddev->private;
6895 	if (conf)
6896 		return sprintf(page, "%d\n", conf->rmw_level);
6897 	else
6898 		return 0;
6899 }
6900 
6901 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6902 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6903 {
6904 	struct r5conf *conf = mddev->private;
6905 	unsigned long new;
6906 
6907 	if (!conf)
6908 		return -ENODEV;
6909 
6910 	if (len >= PAGE_SIZE)
6911 		return -EINVAL;
6912 
6913 	if (kstrtoul(page, 10, &new))
6914 		return -EINVAL;
6915 
6916 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6917 		return -EINVAL;
6918 
6919 	if (new != PARITY_DISABLE_RMW &&
6920 	    new != PARITY_ENABLE_RMW &&
6921 	    new != PARITY_PREFER_RMW)
6922 		return -EINVAL;
6923 
6924 	conf->rmw_level = new;
6925 	return len;
6926 }
6927 
6928 static struct md_sysfs_entry
6929 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6930 			 raid5_show_rmw_level,
6931 			 raid5_store_rmw_level);
6932 
6933 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6934 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6935 {
6936 	struct r5conf *conf;
6937 	int ret = 0;
6938 
6939 	spin_lock(&mddev->lock);
6940 	conf = mddev->private;
6941 	if (conf)
6942 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6943 	spin_unlock(&mddev->lock);
6944 	return ret;
6945 }
6946 
6947 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6948 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6949 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6950 {
6951 	struct r5conf *conf;
6952 	unsigned long new;
6953 	int err;
6954 	int size;
6955 
6956 	if (len >= PAGE_SIZE)
6957 		return -EINVAL;
6958 	if (kstrtoul(page, 10, &new))
6959 		return -EINVAL;
6960 
6961 	/*
6962 	 * The value should not be bigger than PAGE_SIZE. It requires to
6963 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6964 	 * of two.
6965 	 */
6966 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6967 			new > PAGE_SIZE || new == 0 ||
6968 			new != roundup_pow_of_two(new))
6969 		return -EINVAL;
6970 
6971 	err = mddev_suspend_and_lock(mddev);
6972 	if (err)
6973 		return err;
6974 
6975 	conf = mddev->private;
6976 	if (!conf) {
6977 		err = -ENODEV;
6978 		goto out_unlock;
6979 	}
6980 
6981 	if (new == conf->stripe_size)
6982 		goto out_unlock;
6983 
6984 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6985 			conf->stripe_size, new);
6986 
6987 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6988 	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6989 		err = -EBUSY;
6990 		goto out_unlock;
6991 	}
6992 
6993 	mutex_lock(&conf->cache_size_mutex);
6994 	size = conf->max_nr_stripes;
6995 
6996 	shrink_stripes(conf);
6997 
6998 	conf->stripe_size = new;
6999 	conf->stripe_shift = ilog2(new) - 9;
7000 	conf->stripe_sectors = new >> 9;
7001 	if (grow_stripes(conf, size)) {
7002 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
7003 				mdname(mddev));
7004 		err = -ENOMEM;
7005 	}
7006 	mutex_unlock(&conf->cache_size_mutex);
7007 
7008 out_unlock:
7009 	mddev_unlock_and_resume(mddev);
7010 	return err ?: len;
7011 }
7012 
7013 static struct md_sysfs_entry
7014 raid5_stripe_size = __ATTR(stripe_size, 0644,
7015 			 raid5_show_stripe_size,
7016 			 raid5_store_stripe_size);
7017 #else
7018 static struct md_sysfs_entry
7019 raid5_stripe_size = __ATTR(stripe_size, 0444,
7020 			 raid5_show_stripe_size,
7021 			 NULL);
7022 #endif
7023 
7024 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7025 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7026 {
7027 	struct r5conf *conf;
7028 	int ret = 0;
7029 	spin_lock(&mddev->lock);
7030 	conf = mddev->private;
7031 	if (conf)
7032 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7033 	spin_unlock(&mddev->lock);
7034 	return ret;
7035 }
7036 
7037 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7038 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7039 {
7040 	struct r5conf *conf;
7041 	unsigned long new;
7042 	int err;
7043 
7044 	if (len >= PAGE_SIZE)
7045 		return -EINVAL;
7046 	if (kstrtoul(page, 10, &new))
7047 		return -EINVAL;
7048 
7049 	err = mddev_lock(mddev);
7050 	if (err)
7051 		return err;
7052 	conf = mddev->private;
7053 	if (!conf)
7054 		err = -ENODEV;
7055 	else if (new > conf->min_nr_stripes)
7056 		err = -EINVAL;
7057 	else
7058 		conf->bypass_threshold = new;
7059 	mddev_unlock(mddev);
7060 	return err ?: len;
7061 }
7062 
7063 static struct md_sysfs_entry
7064 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7065 					S_IRUGO | S_IWUSR,
7066 					raid5_show_preread_threshold,
7067 					raid5_store_preread_threshold);
7068 
7069 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7070 raid5_show_skip_copy(struct mddev *mddev, char *page)
7071 {
7072 	struct r5conf *conf;
7073 	int ret = 0;
7074 	spin_lock(&mddev->lock);
7075 	conf = mddev->private;
7076 	if (conf)
7077 		ret = sprintf(page, "%d\n", conf->skip_copy);
7078 	spin_unlock(&mddev->lock);
7079 	return ret;
7080 }
7081 
7082 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7083 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7084 {
7085 	struct r5conf *conf;
7086 	unsigned long new;
7087 	int err;
7088 
7089 	if (len >= PAGE_SIZE)
7090 		return -EINVAL;
7091 	if (kstrtoul(page, 10, &new))
7092 		return -EINVAL;
7093 	new = !!new;
7094 
7095 	err = mddev_suspend_and_lock(mddev);
7096 	if (err)
7097 		return err;
7098 	conf = mddev->private;
7099 	if (!conf)
7100 		err = -ENODEV;
7101 	else if (new != conf->skip_copy) {
7102 		struct request_queue *q = mddev->gendisk->queue;
7103 		struct queue_limits lim = queue_limits_start_update(q);
7104 
7105 		conf->skip_copy = new;
7106 		if (new)
7107 			lim.features |= BLK_FEAT_STABLE_WRITES;
7108 		else
7109 			lim.features &= ~BLK_FEAT_STABLE_WRITES;
7110 		err = queue_limits_commit_update(q, &lim);
7111 	}
7112 	mddev_unlock_and_resume(mddev);
7113 	return err ?: len;
7114 }
7115 
7116 static struct md_sysfs_entry
7117 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7118 					raid5_show_skip_copy,
7119 					raid5_store_skip_copy);
7120 
7121 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7122 stripe_cache_active_show(struct mddev *mddev, char *page)
7123 {
7124 	struct r5conf *conf = mddev->private;
7125 	if (conf)
7126 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7127 	else
7128 		return 0;
7129 }
7130 
7131 static struct md_sysfs_entry
7132 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7133 
7134 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7135 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7136 {
7137 	struct r5conf *conf;
7138 	int ret = 0;
7139 	spin_lock(&mddev->lock);
7140 	conf = mddev->private;
7141 	if (conf)
7142 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7143 	spin_unlock(&mddev->lock);
7144 	return ret;
7145 }
7146 
7147 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7148 			       int *group_cnt,
7149 			       struct r5worker_group **worker_groups);
7150 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7151 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7152 {
7153 	struct r5conf *conf;
7154 	unsigned int new;
7155 	int err;
7156 	struct r5worker_group *new_groups, *old_groups;
7157 	int group_cnt;
7158 
7159 	if (len >= PAGE_SIZE)
7160 		return -EINVAL;
7161 	if (kstrtouint(page, 10, &new))
7162 		return -EINVAL;
7163 	/* 8192 should be big enough */
7164 	if (new > 8192)
7165 		return -EINVAL;
7166 
7167 	err = mddev_suspend_and_lock(mddev);
7168 	if (err)
7169 		return err;
7170 	raid5_quiesce(mddev, true);
7171 
7172 	conf = mddev->private;
7173 	if (!conf)
7174 		err = -ENODEV;
7175 	else if (new != conf->worker_cnt_per_group) {
7176 		old_groups = conf->worker_groups;
7177 		if (old_groups)
7178 			flush_workqueue(raid5_wq);
7179 
7180 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7181 		if (!err) {
7182 			spin_lock_irq(&conf->device_lock);
7183 			conf->group_cnt = group_cnt;
7184 			conf->worker_cnt_per_group = new;
7185 			conf->worker_groups = new_groups;
7186 			spin_unlock_irq(&conf->device_lock);
7187 
7188 			if (old_groups)
7189 				kfree(old_groups[0].workers);
7190 			kfree(old_groups);
7191 		}
7192 	}
7193 
7194 	raid5_quiesce(mddev, false);
7195 	mddev_unlock_and_resume(mddev);
7196 
7197 	return err ?: len;
7198 }
7199 
7200 static struct md_sysfs_entry
7201 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7202 				raid5_show_group_thread_cnt,
7203 				raid5_store_group_thread_cnt);
7204 
7205 static struct attribute *raid5_attrs[] =  {
7206 	&raid5_stripecache_size.attr,
7207 	&raid5_stripecache_active.attr,
7208 	&raid5_preread_bypass_threshold.attr,
7209 	&raid5_group_thread_cnt.attr,
7210 	&raid5_skip_copy.attr,
7211 	&raid5_rmw_level.attr,
7212 	&raid5_stripe_size.attr,
7213 	&r5c_journal_mode.attr,
7214 	&ppl_write_hint.attr,
7215 	NULL,
7216 };
7217 static const struct attribute_group raid5_attrs_group = {
7218 	.name = NULL,
7219 	.attrs = raid5_attrs,
7220 };
7221 
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7222 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7223 			       struct r5worker_group **worker_groups)
7224 {
7225 	int i, j, k;
7226 	ssize_t size;
7227 	struct r5worker *workers;
7228 
7229 	if (cnt == 0) {
7230 		*group_cnt = 0;
7231 		*worker_groups = NULL;
7232 		return 0;
7233 	}
7234 	*group_cnt = num_possible_nodes();
7235 	size = sizeof(struct r5worker) * cnt;
7236 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7237 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7238 				 GFP_NOIO);
7239 	if (!*worker_groups || !workers) {
7240 		kfree(workers);
7241 		kfree(*worker_groups);
7242 		return -ENOMEM;
7243 	}
7244 
7245 	for (i = 0; i < *group_cnt; i++) {
7246 		struct r5worker_group *group;
7247 
7248 		group = &(*worker_groups)[i];
7249 		INIT_LIST_HEAD(&group->handle_list);
7250 		INIT_LIST_HEAD(&group->loprio_list);
7251 		group->conf = conf;
7252 		group->workers = workers + i * cnt;
7253 
7254 		for (j = 0; j < cnt; j++) {
7255 			struct r5worker *worker = group->workers + j;
7256 			worker->group = group;
7257 			INIT_WORK(&worker->work, raid5_do_work);
7258 
7259 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7260 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7261 		}
7262 	}
7263 
7264 	return 0;
7265 }
7266 
free_thread_groups(struct r5conf * conf)7267 static void free_thread_groups(struct r5conf *conf)
7268 {
7269 	if (conf->worker_groups)
7270 		kfree(conf->worker_groups[0].workers);
7271 	kfree(conf->worker_groups);
7272 	conf->worker_groups = NULL;
7273 }
7274 
7275 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7276 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7277 {
7278 	struct r5conf *conf = mddev->private;
7279 
7280 	if (!sectors)
7281 		sectors = mddev->dev_sectors;
7282 	if (!raid_disks)
7283 		/* size is defined by the smallest of previous and new size */
7284 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7285 
7286 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7287 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7288 	return sectors * (raid_disks - conf->max_degraded);
7289 }
7290 
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7291 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7292 {
7293 	safe_put_page(percpu->spare_page);
7294 	percpu->spare_page = NULL;
7295 	kvfree(percpu->scribble);
7296 	percpu->scribble = NULL;
7297 }
7298 
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7299 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7300 {
7301 	if (conf->level == 6 && !percpu->spare_page) {
7302 		percpu->spare_page = alloc_page(GFP_KERNEL);
7303 		if (!percpu->spare_page)
7304 			return -ENOMEM;
7305 	}
7306 
7307 	if (scribble_alloc(percpu,
7308 			   max(conf->raid_disks,
7309 			       conf->previous_raid_disks),
7310 			   max(conf->chunk_sectors,
7311 			       conf->prev_chunk_sectors)
7312 			   / RAID5_STRIPE_SECTORS(conf))) {
7313 		free_scratch_buffer(conf, percpu);
7314 		return -ENOMEM;
7315 	}
7316 
7317 	local_lock_init(&percpu->lock);
7318 	return 0;
7319 }
7320 
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7321 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7322 {
7323 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7324 
7325 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7326 	return 0;
7327 }
7328 
raid5_free_percpu(struct r5conf * conf)7329 static void raid5_free_percpu(struct r5conf *conf)
7330 {
7331 	if (!conf->percpu)
7332 		return;
7333 
7334 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7335 	free_percpu(conf->percpu);
7336 }
7337 
free_conf(struct r5conf * conf)7338 static void free_conf(struct r5conf *conf)
7339 {
7340 	int i;
7341 
7342 	log_exit(conf);
7343 
7344 	shrinker_free(conf->shrinker);
7345 	free_thread_groups(conf);
7346 	shrink_stripes(conf);
7347 	raid5_free_percpu(conf);
7348 	for (i = 0; i < conf->pool_size; i++)
7349 		if (conf->disks[i].extra_page)
7350 			put_page(conf->disks[i].extra_page);
7351 	kfree(conf->disks);
7352 	bioset_exit(&conf->bio_split);
7353 	kfree(conf->stripe_hashtbl);
7354 	kfree(conf->pending_data);
7355 	kfree(conf);
7356 }
7357 
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7358 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7359 {
7360 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7361 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7362 
7363 	if (alloc_scratch_buffer(conf, percpu)) {
7364 		pr_warn("%s: failed memory allocation for cpu%u\n",
7365 			__func__, cpu);
7366 		return -ENOMEM;
7367 	}
7368 	return 0;
7369 }
7370 
raid5_alloc_percpu(struct r5conf * conf)7371 static int raid5_alloc_percpu(struct r5conf *conf)
7372 {
7373 	int err = 0;
7374 
7375 	conf->percpu = alloc_percpu(struct raid5_percpu);
7376 	if (!conf->percpu)
7377 		return -ENOMEM;
7378 
7379 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7380 	if (!err) {
7381 		conf->scribble_disks = max(conf->raid_disks,
7382 			conf->previous_raid_disks);
7383 		conf->scribble_sectors = max(conf->chunk_sectors,
7384 			conf->prev_chunk_sectors);
7385 	}
7386 	return err;
7387 }
7388 
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7389 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7390 				      struct shrink_control *sc)
7391 {
7392 	struct r5conf *conf = shrink->private_data;
7393 	unsigned long ret = SHRINK_STOP;
7394 
7395 	if (mutex_trylock(&conf->cache_size_mutex)) {
7396 		ret= 0;
7397 		while (ret < sc->nr_to_scan &&
7398 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7399 			if (drop_one_stripe(conf) == 0) {
7400 				ret = SHRINK_STOP;
7401 				break;
7402 			}
7403 			ret++;
7404 		}
7405 		mutex_unlock(&conf->cache_size_mutex);
7406 	}
7407 	return ret;
7408 }
7409 
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7410 static unsigned long raid5_cache_count(struct shrinker *shrink,
7411 				       struct shrink_control *sc)
7412 {
7413 	struct r5conf *conf = shrink->private_data;
7414 	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7415 	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7416 
7417 	if (max_stripes < min_stripes)
7418 		/* unlikely, but not impossible */
7419 		return 0;
7420 	return max_stripes - min_stripes;
7421 }
7422 
setup_conf(struct mddev * mddev)7423 static struct r5conf *setup_conf(struct mddev *mddev)
7424 {
7425 	struct r5conf *conf;
7426 	int raid_disk, memory, max_disks;
7427 	struct md_rdev *rdev;
7428 	struct disk_info *disk;
7429 	char pers_name[6];
7430 	int i;
7431 	int group_cnt;
7432 	struct r5worker_group *new_group;
7433 	int ret = -ENOMEM;
7434 
7435 	if (mddev->new_level != 5
7436 	    && mddev->new_level != 4
7437 	    && mddev->new_level != 6) {
7438 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7439 			mdname(mddev), mddev->new_level);
7440 		return ERR_PTR(-EIO);
7441 	}
7442 	if ((mddev->new_level == 5
7443 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7444 	    (mddev->new_level == 6
7445 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7446 		pr_warn("md/raid:%s: layout %d not supported\n",
7447 			mdname(mddev), mddev->new_layout);
7448 		return ERR_PTR(-EIO);
7449 	}
7450 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7451 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7452 			mdname(mddev), mddev->raid_disks);
7453 		return ERR_PTR(-EINVAL);
7454 	}
7455 
7456 	if (!mddev->new_chunk_sectors ||
7457 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7458 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7459 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7460 			mdname(mddev), mddev->new_chunk_sectors << 9);
7461 		return ERR_PTR(-EINVAL);
7462 	}
7463 
7464 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7465 	if (conf == NULL)
7466 		goto abort;
7467 
7468 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7469 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7470 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7471 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7472 #endif
7473 	INIT_LIST_HEAD(&conf->free_list);
7474 	INIT_LIST_HEAD(&conf->pending_list);
7475 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7476 				     sizeof(struct r5pending_data),
7477 				     GFP_KERNEL);
7478 	if (!conf->pending_data)
7479 		goto abort;
7480 	for (i = 0; i < PENDING_IO_MAX; i++)
7481 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7482 	/* Don't enable multi-threading by default*/
7483 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7484 		conf->group_cnt = group_cnt;
7485 		conf->worker_cnt_per_group = 0;
7486 		conf->worker_groups = new_group;
7487 	} else
7488 		goto abort;
7489 	spin_lock_init(&conf->device_lock);
7490 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7491 	mutex_init(&conf->cache_size_mutex);
7492 
7493 	init_waitqueue_head(&conf->wait_for_quiescent);
7494 	init_waitqueue_head(&conf->wait_for_stripe);
7495 	init_waitqueue_head(&conf->wait_for_reshape);
7496 	INIT_LIST_HEAD(&conf->handle_list);
7497 	INIT_LIST_HEAD(&conf->loprio_list);
7498 	INIT_LIST_HEAD(&conf->hold_list);
7499 	INIT_LIST_HEAD(&conf->delayed_list);
7500 	INIT_LIST_HEAD(&conf->bitmap_list);
7501 	init_llist_head(&conf->released_stripes);
7502 	atomic_set(&conf->active_stripes, 0);
7503 	atomic_set(&conf->preread_active_stripes, 0);
7504 	atomic_set(&conf->active_aligned_reads, 0);
7505 	spin_lock_init(&conf->pending_bios_lock);
7506 	conf->batch_bio_dispatch = true;
7507 	rdev_for_each(rdev, mddev) {
7508 		if (test_bit(Journal, &rdev->flags))
7509 			continue;
7510 		if (bdev_nonrot(rdev->bdev)) {
7511 			conf->batch_bio_dispatch = false;
7512 			break;
7513 		}
7514 	}
7515 
7516 	conf->bypass_threshold = BYPASS_THRESHOLD;
7517 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7518 
7519 	conf->raid_disks = mddev->raid_disks;
7520 	if (mddev->reshape_position == MaxSector)
7521 		conf->previous_raid_disks = mddev->raid_disks;
7522 	else
7523 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7524 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7525 
7526 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7527 			      GFP_KERNEL);
7528 
7529 	if (!conf->disks)
7530 		goto abort;
7531 
7532 	for (i = 0; i < max_disks; i++) {
7533 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7534 		if (!conf->disks[i].extra_page)
7535 			goto abort;
7536 	}
7537 
7538 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7539 	if (ret)
7540 		goto abort;
7541 	conf->mddev = mddev;
7542 
7543 	ret = -ENOMEM;
7544 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7545 	if (!conf->stripe_hashtbl)
7546 		goto abort;
7547 
7548 	/* We init hash_locks[0] separately to that it can be used
7549 	 * as the reference lock in the spin_lock_nest_lock() call
7550 	 * in lock_all_device_hash_locks_irq in order to convince
7551 	 * lockdep that we know what we are doing.
7552 	 */
7553 	spin_lock_init(conf->hash_locks);
7554 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7555 		spin_lock_init(conf->hash_locks + i);
7556 
7557 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7558 		INIT_LIST_HEAD(conf->inactive_list + i);
7559 
7560 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7561 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7562 
7563 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7564 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7565 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7566 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7567 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7568 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7569 
7570 	conf->level = mddev->new_level;
7571 	conf->chunk_sectors = mddev->new_chunk_sectors;
7572 	ret = raid5_alloc_percpu(conf);
7573 	if (ret)
7574 		goto abort;
7575 
7576 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7577 
7578 	ret = -EIO;
7579 	rdev_for_each(rdev, mddev) {
7580 		raid_disk = rdev->raid_disk;
7581 		if (raid_disk >= max_disks
7582 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7583 			continue;
7584 		disk = conf->disks + raid_disk;
7585 
7586 		if (test_bit(Replacement, &rdev->flags)) {
7587 			if (disk->replacement)
7588 				goto abort;
7589 			disk->replacement = rdev;
7590 		} else {
7591 			if (disk->rdev)
7592 				goto abort;
7593 			disk->rdev = rdev;
7594 		}
7595 
7596 		if (test_bit(In_sync, &rdev->flags)) {
7597 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7598 				mdname(mddev), rdev->bdev, raid_disk);
7599 		} else if (rdev->saved_raid_disk != raid_disk)
7600 			/* Cannot rely on bitmap to complete recovery */
7601 			conf->fullsync = 1;
7602 	}
7603 
7604 	conf->level = mddev->new_level;
7605 	if (conf->level == 6) {
7606 		conf->max_degraded = 2;
7607 		if (raid6_call.xor_syndrome)
7608 			conf->rmw_level = PARITY_ENABLE_RMW;
7609 		else
7610 			conf->rmw_level = PARITY_DISABLE_RMW;
7611 	} else {
7612 		conf->max_degraded = 1;
7613 		conf->rmw_level = PARITY_ENABLE_RMW;
7614 	}
7615 	conf->algorithm = mddev->new_layout;
7616 	conf->reshape_progress = mddev->reshape_position;
7617 	if (conf->reshape_progress != MaxSector) {
7618 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7619 		conf->prev_algo = mddev->layout;
7620 	} else {
7621 		conf->prev_chunk_sectors = conf->chunk_sectors;
7622 		conf->prev_algo = conf->algorithm;
7623 	}
7624 
7625 	conf->min_nr_stripes = NR_STRIPES;
7626 	if (mddev->reshape_position != MaxSector) {
7627 		int stripes = max_t(int,
7628 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7629 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7630 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7631 		if (conf->min_nr_stripes != NR_STRIPES)
7632 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7633 				mdname(mddev), conf->min_nr_stripes);
7634 	}
7635 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7636 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7637 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7638 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7639 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7640 			mdname(mddev), memory);
7641 		ret = -ENOMEM;
7642 		goto abort;
7643 	} else
7644 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7645 	/*
7646 	 * Losing a stripe head costs more than the time to refill it,
7647 	 * it reduces the queue depth and so can hurt throughput.
7648 	 * So set it rather large, scaled by number of devices.
7649 	 */
7650 	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7651 	if (!conf->shrinker) {
7652 		ret = -ENOMEM;
7653 		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7654 			mdname(mddev));
7655 		goto abort;
7656 	}
7657 
7658 	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7659 	conf->shrinker->scan_objects = raid5_cache_scan;
7660 	conf->shrinker->count_objects = raid5_cache_count;
7661 	conf->shrinker->batch = 128;
7662 	conf->shrinker->private_data = conf;
7663 
7664 	shrinker_register(conf->shrinker);
7665 
7666 	sprintf(pers_name, "raid%d", mddev->new_level);
7667 	rcu_assign_pointer(conf->thread,
7668 			   md_register_thread(raid5d, mddev, pers_name));
7669 	if (!conf->thread) {
7670 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7671 			mdname(mddev));
7672 		ret = -ENOMEM;
7673 		goto abort;
7674 	}
7675 
7676 	return conf;
7677 
7678  abort:
7679 	if (conf)
7680 		free_conf(conf);
7681 	return ERR_PTR(ret);
7682 }
7683 
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7684 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7685 {
7686 	switch (algo) {
7687 	case ALGORITHM_PARITY_0:
7688 		if (raid_disk < max_degraded)
7689 			return 1;
7690 		break;
7691 	case ALGORITHM_PARITY_N:
7692 		if (raid_disk >= raid_disks - max_degraded)
7693 			return 1;
7694 		break;
7695 	case ALGORITHM_PARITY_0_6:
7696 		if (raid_disk == 0 ||
7697 		    raid_disk == raid_disks - 1)
7698 			return 1;
7699 		break;
7700 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 	case ALGORITHM_LEFT_SYMMETRIC_6:
7703 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 		if (raid_disk == raid_disks - 1)
7705 			return 1;
7706 	}
7707 	return 0;
7708 }
7709 
raid5_set_limits(struct mddev * mddev)7710 static int raid5_set_limits(struct mddev *mddev)
7711 {
7712 	struct r5conf *conf = mddev->private;
7713 	struct queue_limits lim;
7714 	int data_disks, stripe;
7715 	struct md_rdev *rdev;
7716 
7717 	/*
7718 	 * The read-ahead size must cover two whole stripes, which is
7719 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7720 	 */
7721 	data_disks = conf->previous_raid_disks - conf->max_degraded;
7722 
7723 	/*
7724 	 * We can only discard a whole stripe. It doesn't make sense to
7725 	 * discard data disk but write parity disk
7726 	 */
7727 	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7728 
7729 	md_init_stacking_limits(&lim);
7730 	lim.io_min = mddev->chunk_sectors << 9;
7731 	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7732 	lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7733 	lim.discard_granularity = stripe;
7734 	lim.max_write_zeroes_sectors = 0;
7735 	mddev_stack_rdev_limits(mddev, &lim, 0);
7736 	rdev_for_each(rdev, mddev)
7737 		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7738 				mddev->gendisk->disk_name);
7739 
7740 	/*
7741 	 * Zeroing is required for discard, otherwise data could be lost.
7742 	 *
7743 	 * Consider a scenario: discard a stripe (the stripe could be
7744 	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7745 	 * stripe (the stripe could be inconsistent again depending on which
7746 	 * disks are used to calculate parity); the disk is broken; The stripe
7747 	 * data of this disk is lost.
7748 	 *
7749 	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7750 	 * devices are in use by setting a module parameter.  A better idea
7751 	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7752 	 * required to be safe.
7753 	 */
7754 	if (!devices_handle_discard_safely ||
7755 	    lim.max_discard_sectors < (stripe >> 9) ||
7756 	    lim.discard_granularity < stripe)
7757 		lim.max_hw_discard_sectors = 0;
7758 
7759 	/*
7760 	 * Requests require having a bitmap for each stripe.
7761 	 * Limit the max sectors based on this.
7762 	 */
7763 	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7764 
7765 	/* No restrictions on the number of segments in the request */
7766 	lim.max_segments = USHRT_MAX;
7767 
7768 	return queue_limits_set(mddev->gendisk->queue, &lim);
7769 }
7770 
raid5_run(struct mddev * mddev)7771 static int raid5_run(struct mddev *mddev)
7772 {
7773 	struct r5conf *conf;
7774 	int dirty_parity_disks = 0;
7775 	struct md_rdev *rdev;
7776 	struct md_rdev *journal_dev = NULL;
7777 	sector_t reshape_offset = 0;
7778 	int i;
7779 	long long min_offset_diff = 0;
7780 	int first = 1;
7781 	int ret = -EIO;
7782 
7783 	if (mddev->recovery_cp != MaxSector)
7784 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7785 			  mdname(mddev));
7786 
7787 	rdev_for_each(rdev, mddev) {
7788 		long long diff;
7789 
7790 		if (test_bit(Journal, &rdev->flags)) {
7791 			journal_dev = rdev;
7792 			continue;
7793 		}
7794 		if (rdev->raid_disk < 0)
7795 			continue;
7796 		diff = (rdev->new_data_offset - rdev->data_offset);
7797 		if (first) {
7798 			min_offset_diff = diff;
7799 			first = 0;
7800 		} else if (mddev->reshape_backwards &&
7801 			 diff < min_offset_diff)
7802 			min_offset_diff = diff;
7803 		else if (!mddev->reshape_backwards &&
7804 			 diff > min_offset_diff)
7805 			min_offset_diff = diff;
7806 	}
7807 
7808 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7809 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7810 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7811 			  mdname(mddev));
7812 		return -EINVAL;
7813 	}
7814 
7815 	if (mddev->reshape_position != MaxSector) {
7816 		/* Check that we can continue the reshape.
7817 		 * Difficulties arise if the stripe we would write to
7818 		 * next is at or after the stripe we would read from next.
7819 		 * For a reshape that changes the number of devices, this
7820 		 * is only possible for a very short time, and mdadm makes
7821 		 * sure that time appears to have past before assembling
7822 		 * the array.  So we fail if that time hasn't passed.
7823 		 * For a reshape that keeps the number of devices the same
7824 		 * mdadm must be monitoring the reshape can keeping the
7825 		 * critical areas read-only and backed up.  It will start
7826 		 * the array in read-only mode, so we check for that.
7827 		 */
7828 		sector_t here_new, here_old;
7829 		int old_disks;
7830 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7831 		int chunk_sectors;
7832 		int new_data_disks;
7833 
7834 		if (journal_dev) {
7835 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7836 				mdname(mddev));
7837 			return -EINVAL;
7838 		}
7839 
7840 		if (mddev->new_level != mddev->level) {
7841 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7842 				mdname(mddev));
7843 			return -EINVAL;
7844 		}
7845 		old_disks = mddev->raid_disks - mddev->delta_disks;
7846 		/* reshape_position must be on a new-stripe boundary, and one
7847 		 * further up in new geometry must map after here in old
7848 		 * geometry.
7849 		 * If the chunk sizes are different, then as we perform reshape
7850 		 * in units of the largest of the two, reshape_position needs
7851 		 * be a multiple of the largest chunk size times new data disks.
7852 		 */
7853 		here_new = mddev->reshape_position;
7854 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7855 		new_data_disks = mddev->raid_disks - max_degraded;
7856 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7857 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7858 				mdname(mddev));
7859 			return -EINVAL;
7860 		}
7861 		reshape_offset = here_new * chunk_sectors;
7862 		/* here_new is the stripe we will write to */
7863 		here_old = mddev->reshape_position;
7864 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7865 		/* here_old is the first stripe that we might need to read
7866 		 * from */
7867 		if (mddev->delta_disks == 0) {
7868 			/* We cannot be sure it is safe to start an in-place
7869 			 * reshape.  It is only safe if user-space is monitoring
7870 			 * and taking constant backups.
7871 			 * mdadm always starts a situation like this in
7872 			 * readonly mode so it can take control before
7873 			 * allowing any writes.  So just check for that.
7874 			 */
7875 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7876 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7877 				/* not really in-place - so OK */;
7878 			else if (mddev->ro == 0) {
7879 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7880 					mdname(mddev));
7881 				return -EINVAL;
7882 			}
7883 		} else if (mddev->reshape_backwards
7884 		    ? (here_new * chunk_sectors + min_offset_diff <=
7885 		       here_old * chunk_sectors)
7886 		    : (here_new * chunk_sectors >=
7887 		       here_old * chunk_sectors + (-min_offset_diff))) {
7888 			/* Reading from the same stripe as writing to - bad */
7889 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7890 				mdname(mddev));
7891 			return -EINVAL;
7892 		}
7893 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7894 		/* OK, we should be able to continue; */
7895 	} else {
7896 		BUG_ON(mddev->level != mddev->new_level);
7897 		BUG_ON(mddev->layout != mddev->new_layout);
7898 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7899 		BUG_ON(mddev->delta_disks != 0);
7900 	}
7901 
7902 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7903 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7904 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7905 			mdname(mddev));
7906 		clear_bit(MD_HAS_PPL, &mddev->flags);
7907 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7908 	}
7909 
7910 	if (mddev->private == NULL)
7911 		conf = setup_conf(mddev);
7912 	else
7913 		conf = mddev->private;
7914 
7915 	if (IS_ERR(conf))
7916 		return PTR_ERR(conf);
7917 
7918 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7919 		if (!journal_dev) {
7920 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7921 				mdname(mddev));
7922 			mddev->ro = 1;
7923 			set_disk_ro(mddev->gendisk, 1);
7924 		} else if (mddev->recovery_cp == MaxSector)
7925 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7926 	}
7927 
7928 	conf->min_offset_diff = min_offset_diff;
7929 	rcu_assign_pointer(mddev->thread, conf->thread);
7930 	rcu_assign_pointer(conf->thread, NULL);
7931 	mddev->private = conf;
7932 
7933 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7934 	     i++) {
7935 		rdev = conf->disks[i].rdev;
7936 		if (!rdev)
7937 			continue;
7938 		if (conf->disks[i].replacement &&
7939 		    conf->reshape_progress != MaxSector) {
7940 			/* replacements and reshape simply do not mix. */
7941 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7942 			goto abort;
7943 		}
7944 		if (test_bit(In_sync, &rdev->flags))
7945 			continue;
7946 		/* This disc is not fully in-sync.  However if it
7947 		 * just stored parity (beyond the recovery_offset),
7948 		 * when we don't need to be concerned about the
7949 		 * array being dirty.
7950 		 * When reshape goes 'backwards', we never have
7951 		 * partially completed devices, so we only need
7952 		 * to worry about reshape going forwards.
7953 		 */
7954 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7955 		if (mddev->major_version == 0 &&
7956 		    mddev->minor_version > 90)
7957 			rdev->recovery_offset = reshape_offset;
7958 
7959 		if (rdev->recovery_offset < reshape_offset) {
7960 			/* We need to check old and new layout */
7961 			if (!only_parity(rdev->raid_disk,
7962 					 conf->algorithm,
7963 					 conf->raid_disks,
7964 					 conf->max_degraded))
7965 				continue;
7966 		}
7967 		if (!only_parity(rdev->raid_disk,
7968 				 conf->prev_algo,
7969 				 conf->previous_raid_disks,
7970 				 conf->max_degraded))
7971 			continue;
7972 		dirty_parity_disks++;
7973 	}
7974 
7975 	/*
7976 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7977 	 */
7978 	mddev->degraded = raid5_calc_degraded(conf);
7979 
7980 	if (has_failed(conf)) {
7981 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7982 			mdname(mddev), mddev->degraded, conf->raid_disks);
7983 		goto abort;
7984 	}
7985 
7986 	/* device size must be a multiple of chunk size */
7987 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7988 	mddev->resync_max_sectors = mddev->dev_sectors;
7989 
7990 	if (mddev->degraded > dirty_parity_disks &&
7991 	    mddev->recovery_cp != MaxSector) {
7992 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7993 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7994 				mdname(mddev));
7995 		else if (mddev->ok_start_degraded)
7996 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7997 				mdname(mddev));
7998 		else {
7999 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8000 				mdname(mddev));
8001 			goto abort;
8002 		}
8003 	}
8004 
8005 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8006 		mdname(mddev), conf->level,
8007 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8008 		mddev->new_layout);
8009 
8010 	print_raid5_conf(conf);
8011 
8012 	if (conf->reshape_progress != MaxSector) {
8013 		conf->reshape_safe = conf->reshape_progress;
8014 		atomic_set(&conf->reshape_stripes, 0);
8015 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8016 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8017 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8018 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8019 	}
8020 
8021 	/* Ok, everything is just fine now */
8022 	if (mddev->to_remove == &raid5_attrs_group)
8023 		mddev->to_remove = NULL;
8024 	else if (mddev->kobj.sd &&
8025 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8026 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8027 			mdname(mddev));
8028 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8029 
8030 	if (!mddev_is_dm(mddev)) {
8031 		ret = raid5_set_limits(mddev);
8032 		if (ret)
8033 			goto abort;
8034 	}
8035 
8036 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8037 		goto abort;
8038 
8039 	return 0;
8040 abort:
8041 	md_unregister_thread(mddev, &mddev->thread);
8042 	print_raid5_conf(conf);
8043 	free_conf(conf);
8044 	mddev->private = NULL;
8045 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8046 	return ret;
8047 }
8048 
raid5_free(struct mddev * mddev,void * priv)8049 static void raid5_free(struct mddev *mddev, void *priv)
8050 {
8051 	struct r5conf *conf = priv;
8052 
8053 	free_conf(conf);
8054 	mddev->to_remove = &raid5_attrs_group;
8055 }
8056 
raid5_status(struct seq_file * seq,struct mddev * mddev)8057 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8058 {
8059 	struct r5conf *conf = mddev->private;
8060 	int i;
8061 
8062 	lockdep_assert_held(&mddev->lock);
8063 
8064 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8065 		conf->chunk_sectors / 2, mddev->layout);
8066 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8067 	for (i = 0; i < conf->raid_disks; i++) {
8068 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8069 
8070 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8071 	}
8072 	seq_printf (seq, "]");
8073 }
8074 
print_raid5_conf(struct r5conf * conf)8075 static void print_raid5_conf(struct r5conf *conf)
8076 {
8077 	struct md_rdev *rdev;
8078 	int i;
8079 
8080 	pr_debug("RAID conf printout:\n");
8081 	if (!conf) {
8082 		pr_debug("(conf==NULL)\n");
8083 		return;
8084 	}
8085 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8086 	       conf->raid_disks,
8087 	       conf->raid_disks - conf->mddev->degraded);
8088 
8089 	for (i = 0; i < conf->raid_disks; i++) {
8090 		rdev = conf->disks[i].rdev;
8091 		if (rdev)
8092 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8093 			       i, !test_bit(Faulty, &rdev->flags),
8094 			       rdev->bdev);
8095 	}
8096 }
8097 
raid5_spare_active(struct mddev * mddev)8098 static int raid5_spare_active(struct mddev *mddev)
8099 {
8100 	int i;
8101 	struct r5conf *conf = mddev->private;
8102 	struct md_rdev *rdev, *replacement;
8103 	int count = 0;
8104 	unsigned long flags;
8105 
8106 	for (i = 0; i < conf->raid_disks; i++) {
8107 		rdev = conf->disks[i].rdev;
8108 		replacement = conf->disks[i].replacement;
8109 		if (replacement
8110 		    && replacement->recovery_offset == MaxSector
8111 		    && !test_bit(Faulty, &replacement->flags)
8112 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8113 			/* Replacement has just become active. */
8114 			if (!rdev
8115 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8116 				count++;
8117 			if (rdev) {
8118 				/* Replaced device not technically faulty,
8119 				 * but we need to be sure it gets removed
8120 				 * and never re-added.
8121 				 */
8122 				set_bit(Faulty, &rdev->flags);
8123 				sysfs_notify_dirent_safe(
8124 					rdev->sysfs_state);
8125 			}
8126 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8127 		} else if (rdev
8128 		    && rdev->recovery_offset == MaxSector
8129 		    && !test_bit(Faulty, &rdev->flags)
8130 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8131 			count++;
8132 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8133 		}
8134 	}
8135 	spin_lock_irqsave(&conf->device_lock, flags);
8136 	mddev->degraded = raid5_calc_degraded(conf);
8137 	spin_unlock_irqrestore(&conf->device_lock, flags);
8138 	print_raid5_conf(conf);
8139 	return count;
8140 }
8141 
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8142 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8143 {
8144 	struct r5conf *conf = mddev->private;
8145 	int err = 0;
8146 	int number = rdev->raid_disk;
8147 	struct md_rdev **rdevp;
8148 	struct disk_info *p;
8149 	struct md_rdev *tmp;
8150 
8151 	print_raid5_conf(conf);
8152 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8153 		/*
8154 		 * we can't wait pending write here, as this is called in
8155 		 * raid5d, wait will deadlock.
8156 		 * neilb: there is no locking about new writes here,
8157 		 * so this cannot be safe.
8158 		 */
8159 		if (atomic_read(&conf->active_stripes) ||
8160 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8161 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8162 			return -EBUSY;
8163 		}
8164 		log_exit(conf);
8165 		return 0;
8166 	}
8167 	if (unlikely(number >= conf->pool_size))
8168 		return 0;
8169 	p = conf->disks + number;
8170 	if (rdev == p->rdev)
8171 		rdevp = &p->rdev;
8172 	else if (rdev == p->replacement)
8173 		rdevp = &p->replacement;
8174 	else
8175 		return 0;
8176 
8177 	if (number >= conf->raid_disks &&
8178 	    conf->reshape_progress == MaxSector)
8179 		clear_bit(In_sync, &rdev->flags);
8180 
8181 	if (test_bit(In_sync, &rdev->flags) ||
8182 	    atomic_read(&rdev->nr_pending)) {
8183 		err = -EBUSY;
8184 		goto abort;
8185 	}
8186 	/* Only remove non-faulty devices if recovery
8187 	 * isn't possible.
8188 	 */
8189 	if (!test_bit(Faulty, &rdev->flags) &&
8190 	    mddev->recovery_disabled != conf->recovery_disabled &&
8191 	    !has_failed(conf) &&
8192 	    (!p->replacement || p->replacement == rdev) &&
8193 	    number < conf->raid_disks) {
8194 		err = -EBUSY;
8195 		goto abort;
8196 	}
8197 	WRITE_ONCE(*rdevp, NULL);
8198 	if (!err) {
8199 		err = log_modify(conf, rdev, false);
8200 		if (err)
8201 			goto abort;
8202 	}
8203 
8204 	tmp = p->replacement;
8205 	if (tmp) {
8206 		/* We must have just cleared 'rdev' */
8207 		WRITE_ONCE(p->rdev, tmp);
8208 		clear_bit(Replacement, &tmp->flags);
8209 		WRITE_ONCE(p->replacement, NULL);
8210 
8211 		if (!err)
8212 			err = log_modify(conf, tmp, true);
8213 	}
8214 
8215 	clear_bit(WantReplacement, &rdev->flags);
8216 abort:
8217 
8218 	print_raid5_conf(conf);
8219 	return err;
8220 }
8221 
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8222 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8223 {
8224 	struct r5conf *conf = mddev->private;
8225 	int ret, err = -EEXIST;
8226 	int disk;
8227 	struct disk_info *p;
8228 	struct md_rdev *tmp;
8229 	int first = 0;
8230 	int last = conf->raid_disks - 1;
8231 
8232 	if (test_bit(Journal, &rdev->flags)) {
8233 		if (conf->log)
8234 			return -EBUSY;
8235 
8236 		rdev->raid_disk = 0;
8237 		/*
8238 		 * The array is in readonly mode if journal is missing, so no
8239 		 * write requests running. We should be safe
8240 		 */
8241 		ret = log_init(conf, rdev, false);
8242 		if (ret)
8243 			return ret;
8244 
8245 		ret = r5l_start(conf->log);
8246 		if (ret)
8247 			return ret;
8248 
8249 		return 0;
8250 	}
8251 	if (mddev->recovery_disabled == conf->recovery_disabled)
8252 		return -EBUSY;
8253 
8254 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8255 		/* no point adding a device */
8256 		return -EINVAL;
8257 
8258 	if (rdev->raid_disk >= 0)
8259 		first = last = rdev->raid_disk;
8260 
8261 	/*
8262 	 * find the disk ... but prefer rdev->saved_raid_disk
8263 	 * if possible.
8264 	 */
8265 	if (rdev->saved_raid_disk >= first &&
8266 	    rdev->saved_raid_disk <= last &&
8267 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8268 		first = rdev->saved_raid_disk;
8269 
8270 	for (disk = first; disk <= last; disk++) {
8271 		p = conf->disks + disk;
8272 		if (p->rdev == NULL) {
8273 			clear_bit(In_sync, &rdev->flags);
8274 			rdev->raid_disk = disk;
8275 			if (rdev->saved_raid_disk != disk)
8276 				conf->fullsync = 1;
8277 			WRITE_ONCE(p->rdev, rdev);
8278 
8279 			err = log_modify(conf, rdev, true);
8280 
8281 			goto out;
8282 		}
8283 	}
8284 	for (disk = first; disk <= last; disk++) {
8285 		p = conf->disks + disk;
8286 		tmp = p->rdev;
8287 		if (test_bit(WantReplacement, &tmp->flags) &&
8288 		    mddev->reshape_position == MaxSector &&
8289 		    p->replacement == NULL) {
8290 			clear_bit(In_sync, &rdev->flags);
8291 			set_bit(Replacement, &rdev->flags);
8292 			rdev->raid_disk = disk;
8293 			err = 0;
8294 			conf->fullsync = 1;
8295 			WRITE_ONCE(p->replacement, rdev);
8296 			break;
8297 		}
8298 	}
8299 out:
8300 	print_raid5_conf(conf);
8301 	return err;
8302 }
8303 
raid5_resize(struct mddev * mddev,sector_t sectors)8304 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8305 {
8306 	/* no resync is happening, and there is enough space
8307 	 * on all devices, so we can resize.
8308 	 * We need to make sure resync covers any new space.
8309 	 * If the array is shrinking we should possibly wait until
8310 	 * any io in the removed space completes, but it hardly seems
8311 	 * worth it.
8312 	 */
8313 	sector_t newsize;
8314 	struct r5conf *conf = mddev->private;
8315 	int ret;
8316 
8317 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8318 		return -EINVAL;
8319 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8320 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8321 	if (mddev->external_size &&
8322 	    mddev->array_sectors > newsize)
8323 		return -EINVAL;
8324 
8325 	ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8326 	if (ret)
8327 		return ret;
8328 
8329 	md_set_array_sectors(mddev, newsize);
8330 	if (sectors > mddev->dev_sectors &&
8331 	    mddev->recovery_cp > mddev->dev_sectors) {
8332 		mddev->recovery_cp = mddev->dev_sectors;
8333 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8334 	}
8335 	mddev->dev_sectors = sectors;
8336 	mddev->resync_max_sectors = sectors;
8337 	return 0;
8338 }
8339 
check_stripe_cache(struct mddev * mddev)8340 static int check_stripe_cache(struct mddev *mddev)
8341 {
8342 	/* Can only proceed if there are plenty of stripe_heads.
8343 	 * We need a minimum of one full stripe,, and for sensible progress
8344 	 * it is best to have about 4 times that.
8345 	 * If we require 4 times, then the default 256 4K stripe_heads will
8346 	 * allow for chunk sizes up to 256K, which is probably OK.
8347 	 * If the chunk size is greater, user-space should request more
8348 	 * stripe_heads first.
8349 	 */
8350 	struct r5conf *conf = mddev->private;
8351 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8352 	    > conf->min_nr_stripes ||
8353 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8354 	    > conf->min_nr_stripes) {
8355 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8356 			mdname(mddev),
8357 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8358 			 / RAID5_STRIPE_SIZE(conf))*4);
8359 		return 0;
8360 	}
8361 	return 1;
8362 }
8363 
check_reshape(struct mddev * mddev)8364 static int check_reshape(struct mddev *mddev)
8365 {
8366 	struct r5conf *conf = mddev->private;
8367 
8368 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8369 		return -EINVAL;
8370 	if (mddev->delta_disks == 0 &&
8371 	    mddev->new_layout == mddev->layout &&
8372 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8373 		return 0; /* nothing to do */
8374 	if (has_failed(conf))
8375 		return -EINVAL;
8376 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8377 		/* We might be able to shrink, but the devices must
8378 		 * be made bigger first.
8379 		 * For raid6, 4 is the minimum size.
8380 		 * Otherwise 2 is the minimum
8381 		 */
8382 		int min = 2;
8383 		if (mddev->level == 6)
8384 			min = 4;
8385 		if (mddev->raid_disks + mddev->delta_disks < min)
8386 			return -EINVAL;
8387 	}
8388 
8389 	if (!check_stripe_cache(mddev))
8390 		return -ENOSPC;
8391 
8392 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8393 	    mddev->delta_disks > 0)
8394 		if (resize_chunks(conf,
8395 				  conf->previous_raid_disks
8396 				  + max(0, mddev->delta_disks),
8397 				  max(mddev->new_chunk_sectors,
8398 				      mddev->chunk_sectors)
8399 			    ) < 0)
8400 			return -ENOMEM;
8401 
8402 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8403 		return 0; /* never bother to shrink */
8404 	return resize_stripes(conf, (conf->previous_raid_disks
8405 				     + mddev->delta_disks));
8406 }
8407 
raid5_start_reshape(struct mddev * mddev)8408 static int raid5_start_reshape(struct mddev *mddev)
8409 {
8410 	struct r5conf *conf = mddev->private;
8411 	struct md_rdev *rdev;
8412 	int spares = 0;
8413 	int i;
8414 	unsigned long flags;
8415 
8416 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8417 		return -EBUSY;
8418 
8419 	if (!check_stripe_cache(mddev))
8420 		return -ENOSPC;
8421 
8422 	if (has_failed(conf))
8423 		return -EINVAL;
8424 
8425 	/* raid5 can't handle concurrent reshape and recovery */
8426 	if (mddev->recovery_cp < MaxSector)
8427 		return -EBUSY;
8428 	for (i = 0; i < conf->raid_disks; i++)
8429 		if (conf->disks[i].replacement)
8430 			return -EBUSY;
8431 
8432 	rdev_for_each(rdev, mddev) {
8433 		if (!test_bit(In_sync, &rdev->flags)
8434 		    && !test_bit(Faulty, &rdev->flags))
8435 			spares++;
8436 	}
8437 
8438 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8439 		/* Not enough devices even to make a degraded array
8440 		 * of that size
8441 		 */
8442 		return -EINVAL;
8443 
8444 	/* Refuse to reduce size of the array.  Any reductions in
8445 	 * array size must be through explicit setting of array_size
8446 	 * attribute.
8447 	 */
8448 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8449 	    < mddev->array_sectors) {
8450 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8451 			mdname(mddev));
8452 		return -EINVAL;
8453 	}
8454 
8455 	atomic_set(&conf->reshape_stripes, 0);
8456 	spin_lock_irq(&conf->device_lock);
8457 	write_seqcount_begin(&conf->gen_lock);
8458 	conf->previous_raid_disks = conf->raid_disks;
8459 	conf->raid_disks += mddev->delta_disks;
8460 	conf->prev_chunk_sectors = conf->chunk_sectors;
8461 	conf->chunk_sectors = mddev->new_chunk_sectors;
8462 	conf->prev_algo = conf->algorithm;
8463 	conf->algorithm = mddev->new_layout;
8464 	conf->generation++;
8465 	/* Code that selects data_offset needs to see the generation update
8466 	 * if reshape_progress has been set - so a memory barrier needed.
8467 	 */
8468 	smp_mb();
8469 	if (mddev->reshape_backwards)
8470 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8471 	else
8472 		conf->reshape_progress = 0;
8473 	conf->reshape_safe = conf->reshape_progress;
8474 	write_seqcount_end(&conf->gen_lock);
8475 	spin_unlock_irq(&conf->device_lock);
8476 
8477 	/* Now make sure any requests that proceeded on the assumption
8478 	 * the reshape wasn't running - like Discard or Read - have
8479 	 * completed.
8480 	 */
8481 	raid5_quiesce(mddev, true);
8482 	raid5_quiesce(mddev, false);
8483 
8484 	/* Add some new drives, as many as will fit.
8485 	 * We know there are enough to make the newly sized array work.
8486 	 * Don't add devices if we are reducing the number of
8487 	 * devices in the array.  This is because it is not possible
8488 	 * to correctly record the "partially reconstructed" state of
8489 	 * such devices during the reshape and confusion could result.
8490 	 */
8491 	if (mddev->delta_disks >= 0) {
8492 		rdev_for_each(rdev, mddev)
8493 			if (rdev->raid_disk < 0 &&
8494 			    !test_bit(Faulty, &rdev->flags)) {
8495 				if (raid5_add_disk(mddev, rdev) == 0) {
8496 					if (rdev->raid_disk
8497 					    >= conf->previous_raid_disks)
8498 						set_bit(In_sync, &rdev->flags);
8499 					else
8500 						rdev->recovery_offset = 0;
8501 
8502 					/* Failure here is OK */
8503 					sysfs_link_rdev(mddev, rdev);
8504 				}
8505 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8506 				   && !test_bit(Faulty, &rdev->flags)) {
8507 				/* This is a spare that was manually added */
8508 				set_bit(In_sync, &rdev->flags);
8509 			}
8510 
8511 		/* When a reshape changes the number of devices,
8512 		 * ->degraded is measured against the larger of the
8513 		 * pre and post number of devices.
8514 		 */
8515 		spin_lock_irqsave(&conf->device_lock, flags);
8516 		mddev->degraded = raid5_calc_degraded(conf);
8517 		spin_unlock_irqrestore(&conf->device_lock, flags);
8518 	}
8519 	mddev->raid_disks = conf->raid_disks;
8520 	mddev->reshape_position = conf->reshape_progress;
8521 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8522 
8523 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8524 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8525 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8526 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8527 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8528 	conf->reshape_checkpoint = jiffies;
8529 	md_new_event();
8530 	return 0;
8531 }
8532 
8533 /* This is called from the reshape thread and should make any
8534  * changes needed in 'conf'
8535  */
end_reshape(struct r5conf * conf)8536 static void end_reshape(struct r5conf *conf)
8537 {
8538 
8539 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8540 		struct md_rdev *rdev;
8541 
8542 		spin_lock_irq(&conf->device_lock);
8543 		conf->previous_raid_disks = conf->raid_disks;
8544 		md_finish_reshape(conf->mddev);
8545 		smp_wmb();
8546 		conf->reshape_progress = MaxSector;
8547 		conf->mddev->reshape_position = MaxSector;
8548 		rdev_for_each(rdev, conf->mddev)
8549 			if (rdev->raid_disk >= 0 &&
8550 			    !test_bit(Journal, &rdev->flags) &&
8551 			    !test_bit(In_sync, &rdev->flags))
8552 				rdev->recovery_offset = MaxSector;
8553 		spin_unlock_irq(&conf->device_lock);
8554 		wake_up(&conf->wait_for_reshape);
8555 
8556 		mddev_update_io_opt(conf->mddev,
8557 			conf->raid_disks - conf->max_degraded);
8558 	}
8559 }
8560 
8561 /* This is called from the raid5d thread with mddev_lock held.
8562  * It makes config changes to the device.
8563  */
raid5_finish_reshape(struct mddev * mddev)8564 static void raid5_finish_reshape(struct mddev *mddev)
8565 {
8566 	struct r5conf *conf = mddev->private;
8567 	struct md_rdev *rdev;
8568 
8569 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8570 
8571 		if (mddev->delta_disks <= 0) {
8572 			int d;
8573 			spin_lock_irq(&conf->device_lock);
8574 			mddev->degraded = raid5_calc_degraded(conf);
8575 			spin_unlock_irq(&conf->device_lock);
8576 			for (d = conf->raid_disks ;
8577 			     d < conf->raid_disks - mddev->delta_disks;
8578 			     d++) {
8579 				rdev = conf->disks[d].rdev;
8580 				if (rdev)
8581 					clear_bit(In_sync, &rdev->flags);
8582 				rdev = conf->disks[d].replacement;
8583 				if (rdev)
8584 					clear_bit(In_sync, &rdev->flags);
8585 			}
8586 		}
8587 		mddev->layout = conf->algorithm;
8588 		mddev->chunk_sectors = conf->chunk_sectors;
8589 		mddev->reshape_position = MaxSector;
8590 		mddev->delta_disks = 0;
8591 		mddev->reshape_backwards = 0;
8592 	}
8593 }
8594 
raid5_quiesce(struct mddev * mddev,int quiesce)8595 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8596 {
8597 	struct r5conf *conf = mddev->private;
8598 
8599 	if (quiesce) {
8600 		/* stop all writes */
8601 		lock_all_device_hash_locks_irq(conf);
8602 		/* '2' tells resync/reshape to pause so that all
8603 		 * active stripes can drain
8604 		 */
8605 		r5c_flush_cache(conf, INT_MAX);
8606 		/* need a memory barrier to make sure read_one_chunk() sees
8607 		 * quiesce started and reverts to slow (locked) path.
8608 		 */
8609 		smp_store_release(&conf->quiesce, 2);
8610 		wait_event_cmd(conf->wait_for_quiescent,
8611 				    atomic_read(&conf->active_stripes) == 0 &&
8612 				    atomic_read(&conf->active_aligned_reads) == 0,
8613 				    unlock_all_device_hash_locks_irq(conf),
8614 				    lock_all_device_hash_locks_irq(conf));
8615 		conf->quiesce = 1;
8616 		unlock_all_device_hash_locks_irq(conf);
8617 		/* allow reshape to continue */
8618 		wake_up(&conf->wait_for_reshape);
8619 	} else {
8620 		/* re-enable writes */
8621 		lock_all_device_hash_locks_irq(conf);
8622 		conf->quiesce = 0;
8623 		wake_up(&conf->wait_for_quiescent);
8624 		wake_up(&conf->wait_for_reshape);
8625 		unlock_all_device_hash_locks_irq(conf);
8626 	}
8627 	log_quiesce(conf, quiesce);
8628 }
8629 
raid45_takeover_raid0(struct mddev * mddev,int level)8630 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8631 {
8632 	struct r0conf *raid0_conf = mddev->private;
8633 	sector_t sectors;
8634 
8635 	/* for raid0 takeover only one zone is supported */
8636 	if (raid0_conf->nr_strip_zones > 1) {
8637 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8638 			mdname(mddev));
8639 		return ERR_PTR(-EINVAL);
8640 	}
8641 
8642 	sectors = raid0_conf->strip_zone[0].zone_end;
8643 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8644 	mddev->dev_sectors = sectors;
8645 	mddev->new_level = level;
8646 	mddev->new_layout = ALGORITHM_PARITY_N;
8647 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8648 	mddev->raid_disks += 1;
8649 	mddev->delta_disks = 1;
8650 	/* make sure it will be not marked as dirty */
8651 	mddev->recovery_cp = MaxSector;
8652 
8653 	return setup_conf(mddev);
8654 }
8655 
raid5_takeover_raid1(struct mddev * mddev)8656 static void *raid5_takeover_raid1(struct mddev *mddev)
8657 {
8658 	int chunksect;
8659 	void *ret;
8660 
8661 	if (mddev->raid_disks != 2 ||
8662 	    mddev->degraded > 1)
8663 		return ERR_PTR(-EINVAL);
8664 
8665 	/* Should check if there are write-behind devices? */
8666 
8667 	chunksect = 64*2; /* 64K by default */
8668 
8669 	/* The array must be an exact multiple of chunksize */
8670 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8671 		chunksect >>= 1;
8672 
8673 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8674 		/* array size does not allow a suitable chunk size */
8675 		return ERR_PTR(-EINVAL);
8676 
8677 	mddev->new_level = 5;
8678 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8679 	mddev->new_chunk_sectors = chunksect;
8680 
8681 	ret = setup_conf(mddev);
8682 	if (!IS_ERR(ret))
8683 		mddev_clear_unsupported_flags(mddev,
8684 			UNSUPPORTED_MDDEV_FLAGS);
8685 	return ret;
8686 }
8687 
raid5_takeover_raid6(struct mddev * mddev)8688 static void *raid5_takeover_raid6(struct mddev *mddev)
8689 {
8690 	int new_layout;
8691 
8692 	switch (mddev->layout) {
8693 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8694 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8695 		break;
8696 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8697 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8698 		break;
8699 	case ALGORITHM_LEFT_SYMMETRIC_6:
8700 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8701 		break;
8702 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8703 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8704 		break;
8705 	case ALGORITHM_PARITY_0_6:
8706 		new_layout = ALGORITHM_PARITY_0;
8707 		break;
8708 	case ALGORITHM_PARITY_N:
8709 		new_layout = ALGORITHM_PARITY_N;
8710 		break;
8711 	default:
8712 		return ERR_PTR(-EINVAL);
8713 	}
8714 	mddev->new_level = 5;
8715 	mddev->new_layout = new_layout;
8716 	mddev->delta_disks = -1;
8717 	mddev->raid_disks -= 1;
8718 	return setup_conf(mddev);
8719 }
8720 
raid5_check_reshape(struct mddev * mddev)8721 static int raid5_check_reshape(struct mddev *mddev)
8722 {
8723 	/* For a 2-drive array, the layout and chunk size can be changed
8724 	 * immediately as not restriping is needed.
8725 	 * For larger arrays we record the new value - after validation
8726 	 * to be used by a reshape pass.
8727 	 */
8728 	struct r5conf *conf = mddev->private;
8729 	int new_chunk = mddev->new_chunk_sectors;
8730 
8731 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8732 		return -EINVAL;
8733 	if (new_chunk > 0) {
8734 		if (!is_power_of_2(new_chunk))
8735 			return -EINVAL;
8736 		if (new_chunk < (PAGE_SIZE>>9))
8737 			return -EINVAL;
8738 		if (mddev->array_sectors & (new_chunk-1))
8739 			/* not factor of array size */
8740 			return -EINVAL;
8741 	}
8742 
8743 	/* They look valid */
8744 
8745 	if (mddev->raid_disks == 2) {
8746 		/* can make the change immediately */
8747 		if (mddev->new_layout >= 0) {
8748 			conf->algorithm = mddev->new_layout;
8749 			mddev->layout = mddev->new_layout;
8750 		}
8751 		if (new_chunk > 0) {
8752 			conf->chunk_sectors = new_chunk ;
8753 			mddev->chunk_sectors = new_chunk;
8754 		}
8755 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8756 		md_wakeup_thread(mddev->thread);
8757 	}
8758 	return check_reshape(mddev);
8759 }
8760 
raid6_check_reshape(struct mddev * mddev)8761 static int raid6_check_reshape(struct mddev *mddev)
8762 {
8763 	int new_chunk = mddev->new_chunk_sectors;
8764 
8765 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8766 		return -EINVAL;
8767 	if (new_chunk > 0) {
8768 		if (!is_power_of_2(new_chunk))
8769 			return -EINVAL;
8770 		if (new_chunk < (PAGE_SIZE >> 9))
8771 			return -EINVAL;
8772 		if (mddev->array_sectors & (new_chunk-1))
8773 			/* not factor of array size */
8774 			return -EINVAL;
8775 	}
8776 
8777 	/* They look valid */
8778 	return check_reshape(mddev);
8779 }
8780 
raid5_takeover(struct mddev * mddev)8781 static void *raid5_takeover(struct mddev *mddev)
8782 {
8783 	/* raid5 can take over:
8784 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8785 	 *  raid1 - if there are two drives.  We need to know the chunk size
8786 	 *  raid4 - trivial - just use a raid4 layout.
8787 	 *  raid6 - Providing it is a *_6 layout
8788 	 */
8789 	if (mddev->level == 0)
8790 		return raid45_takeover_raid0(mddev, 5);
8791 	if (mddev->level == 1)
8792 		return raid5_takeover_raid1(mddev);
8793 	if (mddev->level == 4) {
8794 		mddev->new_layout = ALGORITHM_PARITY_N;
8795 		mddev->new_level = 5;
8796 		return setup_conf(mddev);
8797 	}
8798 	if (mddev->level == 6)
8799 		return raid5_takeover_raid6(mddev);
8800 
8801 	return ERR_PTR(-EINVAL);
8802 }
8803 
raid4_takeover(struct mddev * mddev)8804 static void *raid4_takeover(struct mddev *mddev)
8805 {
8806 	/* raid4 can take over:
8807 	 *  raid0 - if there is only one strip zone
8808 	 *  raid5 - if layout is right
8809 	 */
8810 	if (mddev->level == 0)
8811 		return raid45_takeover_raid0(mddev, 4);
8812 	if (mddev->level == 5 &&
8813 	    mddev->layout == ALGORITHM_PARITY_N) {
8814 		mddev->new_layout = 0;
8815 		mddev->new_level = 4;
8816 		return setup_conf(mddev);
8817 	}
8818 	return ERR_PTR(-EINVAL);
8819 }
8820 
8821 static struct md_personality raid5_personality;
8822 
raid6_takeover(struct mddev * mddev)8823 static void *raid6_takeover(struct mddev *mddev)
8824 {
8825 	/* Currently can only take over a raid5.  We map the
8826 	 * personality to an equivalent raid6 personality
8827 	 * with the Q block at the end.
8828 	 */
8829 	int new_layout;
8830 
8831 	if (mddev->pers != &raid5_personality)
8832 		return ERR_PTR(-EINVAL);
8833 	if (mddev->degraded > 1)
8834 		return ERR_PTR(-EINVAL);
8835 	if (mddev->raid_disks > 253)
8836 		return ERR_PTR(-EINVAL);
8837 	if (mddev->raid_disks < 3)
8838 		return ERR_PTR(-EINVAL);
8839 
8840 	switch (mddev->layout) {
8841 	case ALGORITHM_LEFT_ASYMMETRIC:
8842 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8843 		break;
8844 	case ALGORITHM_RIGHT_ASYMMETRIC:
8845 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8846 		break;
8847 	case ALGORITHM_LEFT_SYMMETRIC:
8848 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8849 		break;
8850 	case ALGORITHM_RIGHT_SYMMETRIC:
8851 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8852 		break;
8853 	case ALGORITHM_PARITY_0:
8854 		new_layout = ALGORITHM_PARITY_0_6;
8855 		break;
8856 	case ALGORITHM_PARITY_N:
8857 		new_layout = ALGORITHM_PARITY_N;
8858 		break;
8859 	default:
8860 		return ERR_PTR(-EINVAL);
8861 	}
8862 	mddev->new_level = 6;
8863 	mddev->new_layout = new_layout;
8864 	mddev->delta_disks = 1;
8865 	mddev->raid_disks += 1;
8866 	return setup_conf(mddev);
8867 }
8868 
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8869 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8870 {
8871 	struct r5conf *conf;
8872 	int err;
8873 
8874 	err = mddev_suspend_and_lock(mddev);
8875 	if (err)
8876 		return err;
8877 	conf = mddev->private;
8878 	if (!conf) {
8879 		mddev_unlock_and_resume(mddev);
8880 		return -ENODEV;
8881 	}
8882 
8883 	if (strncmp(buf, "ppl", 3) == 0) {
8884 		/* ppl only works with RAID 5 */
8885 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8886 			err = log_init(conf, NULL, true);
8887 			if (!err) {
8888 				err = resize_stripes(conf, conf->pool_size);
8889 				if (err)
8890 					log_exit(conf);
8891 			}
8892 		} else
8893 			err = -EINVAL;
8894 	} else if (strncmp(buf, "resync", 6) == 0) {
8895 		if (raid5_has_ppl(conf)) {
8896 			log_exit(conf);
8897 			err = resize_stripes(conf, conf->pool_size);
8898 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8899 			   r5l_log_disk_error(conf)) {
8900 			bool journal_dev_exists = false;
8901 			struct md_rdev *rdev;
8902 
8903 			rdev_for_each(rdev, mddev)
8904 				if (test_bit(Journal, &rdev->flags)) {
8905 					journal_dev_exists = true;
8906 					break;
8907 				}
8908 
8909 			if (!journal_dev_exists)
8910 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8911 			else  /* need remove journal device first */
8912 				err = -EBUSY;
8913 		} else
8914 			err = -EINVAL;
8915 	} else {
8916 		err = -EINVAL;
8917 	}
8918 
8919 	if (!err)
8920 		md_update_sb(mddev, 1);
8921 
8922 	mddev_unlock_and_resume(mddev);
8923 
8924 	return err;
8925 }
8926 
raid5_start(struct mddev * mddev)8927 static int raid5_start(struct mddev *mddev)
8928 {
8929 	struct r5conf *conf = mddev->private;
8930 
8931 	return r5l_start(conf->log);
8932 }
8933 
8934 /*
8935  * This is only used for dm-raid456, caller already frozen sync_thread, hence
8936  * if rehsape is still in progress, io that is waiting for reshape can never be
8937  * done now, hence wake up and handle those IO.
8938  */
raid5_prepare_suspend(struct mddev * mddev)8939 static void raid5_prepare_suspend(struct mddev *mddev)
8940 {
8941 	struct r5conf *conf = mddev->private;
8942 
8943 	wake_up(&conf->wait_for_reshape);
8944 }
8945 
8946 static struct md_personality raid6_personality =
8947 {
8948 	.head = {
8949 		.type	= MD_PERSONALITY,
8950 		.id	= ID_RAID6,
8951 		.name	= "raid6",
8952 		.owner	= THIS_MODULE,
8953 	},
8954 
8955 	.make_request	= raid5_make_request,
8956 	.run		= raid5_run,
8957 	.start		= raid5_start,
8958 	.free		= raid5_free,
8959 	.status		= raid5_status,
8960 	.error_handler	= raid5_error,
8961 	.hot_add_disk	= raid5_add_disk,
8962 	.hot_remove_disk= raid5_remove_disk,
8963 	.spare_active	= raid5_spare_active,
8964 	.sync_request	= raid5_sync_request,
8965 	.resize		= raid5_resize,
8966 	.size		= raid5_size,
8967 	.check_reshape	= raid6_check_reshape,
8968 	.start_reshape  = raid5_start_reshape,
8969 	.finish_reshape = raid5_finish_reshape,
8970 	.quiesce	= raid5_quiesce,
8971 	.takeover	= raid6_takeover,
8972 	.change_consistency_policy = raid5_change_consistency_policy,
8973 	.prepare_suspend = raid5_prepare_suspend,
8974 	.bitmap_sector	= raid5_bitmap_sector,
8975 };
8976 static struct md_personality raid5_personality =
8977 {
8978 	.head = {
8979 		.type	= MD_PERSONALITY,
8980 		.id	= ID_RAID5,
8981 		.name	= "raid5",
8982 		.owner	= THIS_MODULE,
8983 	},
8984 
8985 	.make_request	= raid5_make_request,
8986 	.run		= raid5_run,
8987 	.start		= raid5_start,
8988 	.free		= raid5_free,
8989 	.status		= raid5_status,
8990 	.error_handler	= raid5_error,
8991 	.hot_add_disk	= raid5_add_disk,
8992 	.hot_remove_disk= raid5_remove_disk,
8993 	.spare_active	= raid5_spare_active,
8994 	.sync_request	= raid5_sync_request,
8995 	.resize		= raid5_resize,
8996 	.size		= raid5_size,
8997 	.check_reshape	= raid5_check_reshape,
8998 	.start_reshape  = raid5_start_reshape,
8999 	.finish_reshape = raid5_finish_reshape,
9000 	.quiesce	= raid5_quiesce,
9001 	.takeover	= raid5_takeover,
9002 	.change_consistency_policy = raid5_change_consistency_policy,
9003 	.prepare_suspend = raid5_prepare_suspend,
9004 	.bitmap_sector	= raid5_bitmap_sector,
9005 };
9006 
9007 static struct md_personality raid4_personality =
9008 {
9009 	.head = {
9010 		.type	= MD_PERSONALITY,
9011 		.id	= ID_RAID4,
9012 		.name	= "raid4",
9013 		.owner	= THIS_MODULE,
9014 	},
9015 
9016 	.make_request	= raid5_make_request,
9017 	.run		= raid5_run,
9018 	.start		= raid5_start,
9019 	.free		= raid5_free,
9020 	.status		= raid5_status,
9021 	.error_handler	= raid5_error,
9022 	.hot_add_disk	= raid5_add_disk,
9023 	.hot_remove_disk= raid5_remove_disk,
9024 	.spare_active	= raid5_spare_active,
9025 	.sync_request	= raid5_sync_request,
9026 	.resize		= raid5_resize,
9027 	.size		= raid5_size,
9028 	.check_reshape	= raid5_check_reshape,
9029 	.start_reshape  = raid5_start_reshape,
9030 	.finish_reshape = raid5_finish_reshape,
9031 	.quiesce	= raid5_quiesce,
9032 	.takeover	= raid4_takeover,
9033 	.change_consistency_policy = raid5_change_consistency_policy,
9034 	.prepare_suspend = raid5_prepare_suspend,
9035 	.bitmap_sector	= raid5_bitmap_sector,
9036 };
9037 
raid5_init(void)9038 static int __init raid5_init(void)
9039 {
9040 	int ret;
9041 
9042 	raid5_wq = alloc_workqueue("raid5wq",
9043 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_SYSFS, 0);
9044 	if (!raid5_wq)
9045 		return -ENOMEM;
9046 
9047 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9048 				      "md/raid5:prepare",
9049 				      raid456_cpu_up_prepare,
9050 				      raid456_cpu_dead);
9051 	if (ret)
9052 		goto err_destroy_wq;
9053 
9054 	ret = register_md_submodule(&raid6_personality.head);
9055 	if (ret)
9056 		goto err_cpuhp_remove;
9057 
9058 	ret = register_md_submodule(&raid5_personality.head);
9059 	if (ret)
9060 		goto err_unregister_raid6;
9061 
9062 	ret = register_md_submodule(&raid4_personality.head);
9063 	if (ret)
9064 		goto err_unregister_raid5;
9065 
9066 	return 0;
9067 
9068 err_unregister_raid5:
9069 	unregister_md_submodule(&raid5_personality.head);
9070 err_unregister_raid6:
9071 	unregister_md_submodule(&raid6_personality.head);
9072 err_cpuhp_remove:
9073 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9074 err_destroy_wq:
9075 	destroy_workqueue(raid5_wq);
9076 	return ret;
9077 }
9078 
raid5_exit(void)9079 static void __exit raid5_exit(void)
9080 {
9081 	unregister_md_submodule(&raid6_personality.head);
9082 	unregister_md_submodule(&raid5_personality.head);
9083 	unregister_md_submodule(&raid4_personality.head);
9084 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9085 	destroy_workqueue(raid5_wq);
9086 }
9087 
9088 module_init(raid5_init);
9089 module_exit(raid5_exit);
9090 MODULE_LICENSE("GPL");
9091 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9092 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9093 MODULE_ALIAS("md-raid5");
9094 MODULE_ALIAS("md-raid4");
9095 MODULE_ALIAS("md-level-5");
9096 MODULE_ALIAS("md-level-4");
9097 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9098 MODULE_ALIAS("md-raid6");
9099 MODULE_ALIAS("md-level-6");
9100 
9101 /* This used to be two separate modules, they were: */
9102 MODULE_ALIAS("raid5");
9103 MODULE_ALIAS("raid6");
9104