xref: /linux/block/blk-settings.c (revision 3e93d5bbcbfc3808f83712c0701f9d4c148cc8ed)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/t10-pi.h>
18 #include <linux/crc64.h>
19 
20 #include "blk.h"
21 #include "blk-rq-qos.h"
22 #include "blk-wbt.h"
23 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
25 {
26 	WRITE_ONCE(q->rq_timeout, timeout);
27 }
28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29 
30 /**
31  * blk_set_stacking_limits - set default limits for stacking devices
32  * @lim:  the queue_limits structure to reset
33  *
34  * Prepare queue limits for applying limits from underlying devices using
35  * blk_stack_limits().
36  */
blk_set_stacking_limits(struct queue_limits * lim)37 void blk_set_stacking_limits(struct queue_limits *lim)
38 {
39 	memset(lim, 0, sizeof(*lim));
40 	lim->logical_block_size = SECTOR_SIZE;
41 	lim->physical_block_size = SECTOR_SIZE;
42 	lim->io_min = SECTOR_SIZE;
43 	lim->discard_granularity = SECTOR_SIZE;
44 	lim->dma_alignment = SECTOR_SIZE - 1;
45 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
46 
47 	/* Inherit limits from component devices */
48 	lim->max_segments = USHRT_MAX;
49 	lim->max_discard_segments = USHRT_MAX;
50 	lim->max_hw_sectors = UINT_MAX;
51 	lim->max_segment_size = UINT_MAX;
52 	lim->max_sectors = UINT_MAX;
53 	lim->max_dev_sectors = UINT_MAX;
54 	lim->max_write_zeroes_sectors = UINT_MAX;
55 	lim->max_hw_wzeroes_unmap_sectors = UINT_MAX;
56 	lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
57 	lim->max_hw_zone_append_sectors = UINT_MAX;
58 	lim->max_user_discard_sectors = UINT_MAX;
59 }
60 EXPORT_SYMBOL(blk_set_stacking_limits);
61 
blk_apply_bdi_limits(struct backing_dev_info * bdi,struct queue_limits * lim)62 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
63 		struct queue_limits *lim)
64 {
65 	u64 io_opt = lim->io_opt;
66 
67 	/*
68 	 * For read-ahead of large files to be effective, we need to read ahead
69 	 * at least twice the optimal I/O size. For rotational devices that do
70 	 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O
71 	 * size to avoid falling back to the (rather inefficient) small default
72 	 * read-ahead size.
73 	 *
74 	 * There is no hardware limitation for the read-ahead size and the user
75 	 * might have increased the read-ahead size through sysfs, so don't ever
76 	 * decrease it.
77 	 */
78 	if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL))
79 		io_opt = (u64)lim->max_sectors << SECTOR_SHIFT;
80 
81 	bdi->ra_pages = max3(bdi->ra_pages,
82 				io_opt * 2 >> PAGE_SHIFT,
83 				VM_READAHEAD_PAGES);
84 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
85 }
86 
blk_validate_zoned_limits(struct queue_limits * lim)87 static int blk_validate_zoned_limits(struct queue_limits *lim)
88 {
89 	if (!(lim->features & BLK_FEAT_ZONED)) {
90 		if (WARN_ON_ONCE(lim->max_open_zones) ||
91 		    WARN_ON_ONCE(lim->max_active_zones) ||
92 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
93 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
94 			return -EINVAL;
95 		return 0;
96 	}
97 
98 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
99 		return -EINVAL;
100 
101 	/*
102 	 * Given that active zones include open zones, the maximum number of
103 	 * open zones cannot be larger than the maximum number of active zones.
104 	 */
105 	if (lim->max_active_zones &&
106 	    lim->max_open_zones > lim->max_active_zones)
107 		return -EINVAL;
108 
109 	if (lim->zone_write_granularity < lim->logical_block_size)
110 		lim->zone_write_granularity = lim->logical_block_size;
111 
112 	/*
113 	 * The Zone Append size is limited by the maximum I/O size and the zone
114 	 * size given that it can't span zones.
115 	 *
116 	 * If no max_hw_zone_append_sectors limit is provided, the block layer
117 	 * will emulated it, else we're also bound by the hardware limit.
118 	 */
119 	lim->max_zone_append_sectors =
120 		min_not_zero(lim->max_hw_zone_append_sectors,
121 			min(lim->chunk_sectors, lim->max_hw_sectors));
122 	return 0;
123 }
124 
blk_validate_integrity_limits(struct queue_limits * lim)125 static int blk_validate_integrity_limits(struct queue_limits *lim)
126 {
127 	struct blk_integrity *bi = &lim->integrity;
128 
129 	if (!bi->metadata_size) {
130 		if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
131 		    bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
132 			pr_warn("invalid PI settings.\n");
133 			return -EINVAL;
134 		}
135 		bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
136 		return 0;
137 	}
138 
139 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
140 		pr_warn("integrity support disabled.\n");
141 		return -EINVAL;
142 	}
143 
144 	if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
145 	    (bi->flags & BLK_INTEGRITY_REF_TAG)) {
146 		pr_warn("ref tag not support without checksum.\n");
147 		return -EINVAL;
148 	}
149 
150 	if (bi->pi_tuple_size > bi->metadata_size) {
151 		pr_warn("pi_tuple_size (%u) exceeds metadata_size (%u)\n",
152 			 bi->pi_tuple_size,
153 			 bi->metadata_size);
154 		return -EINVAL;
155 	}
156 
157 	switch (bi->csum_type) {
158 	case BLK_INTEGRITY_CSUM_NONE:
159 		if (bi->pi_tuple_size) {
160 			pr_warn("pi_tuple_size must be 0 when checksum type is none\n");
161 			return -EINVAL;
162 		}
163 		break;
164 	case BLK_INTEGRITY_CSUM_CRC:
165 	case BLK_INTEGRITY_CSUM_IP:
166 		if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) {
167 			pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n",
168 				 sizeof(struct t10_pi_tuple),
169 				 bi->pi_tuple_size);
170 			return -EINVAL;
171 		}
172 		break;
173 	case BLK_INTEGRITY_CSUM_CRC64:
174 		if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) {
175 			pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n",
176 				 sizeof(struct crc64_pi_tuple),
177 				 bi->pi_tuple_size);
178 			return -EINVAL;
179 		}
180 		break;
181 	}
182 
183 	if (!bi->interval_exp)
184 		bi->interval_exp = ilog2(lim->logical_block_size);
185 
186 	return 0;
187 }
188 
189 /*
190  * Returns max guaranteed bytes which we can fit in a bio.
191  *
192  * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
193  * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
194  * the first and last segments.
195  */
blk_queue_max_guaranteed_bio(struct queue_limits * lim)196 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
197 {
198 	unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
199 	unsigned int length;
200 
201 	length = min(max_segments, 2) * lim->logical_block_size;
202 	if (max_segments > 2)
203 		length += (max_segments - 2) * PAGE_SIZE;
204 
205 	return length;
206 }
207 
blk_atomic_writes_update_limits(struct queue_limits * lim)208 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
209 {
210 	unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
211 					blk_queue_max_guaranteed_bio(lim));
212 
213 	unit_limit = rounddown_pow_of_two(unit_limit);
214 
215 	lim->atomic_write_max_sectors =
216 		min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
217 			lim->max_hw_sectors);
218 	lim->atomic_write_unit_min =
219 		min(lim->atomic_write_hw_unit_min, unit_limit);
220 	lim->atomic_write_unit_max =
221 		min(lim->atomic_write_hw_unit_max, unit_limit);
222 	lim->atomic_write_boundary_sectors =
223 		lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
224 }
225 
blk_validate_atomic_write_limits(struct queue_limits * lim)226 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
227 {
228 	unsigned int boundary_sectors;
229 	unsigned int atomic_write_hw_max_sectors =
230 			lim->atomic_write_hw_max >> SECTOR_SHIFT;
231 
232 	if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
233 		goto unsupported;
234 
235 	if (!lim->atomic_write_hw_max)
236 		goto unsupported;
237 
238 	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
239 		goto unsupported;
240 
241 	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
242 		goto unsupported;
243 
244 	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
245 			 lim->atomic_write_hw_unit_max))
246 		goto unsupported;
247 
248 	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
249 			 lim->atomic_write_hw_max))
250 		goto unsupported;
251 
252 	if (WARN_ON_ONCE(lim->chunk_sectors &&
253 			atomic_write_hw_max_sectors > lim->chunk_sectors))
254 		goto unsupported;
255 
256 	boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
257 
258 	if (boundary_sectors) {
259 		if (WARN_ON_ONCE(lim->atomic_write_hw_max >
260 				 lim->atomic_write_hw_boundary))
261 			goto unsupported;
262 		/*
263 		 * A feature of boundary support is that it disallows bios to
264 		 * be merged which would result in a merged request which
265 		 * crosses either a chunk sector or atomic write HW boundary,
266 		 * even though chunk sectors may be just set for performance.
267 		 * For simplicity, disallow atomic writes for a chunk sector
268 		 * which is non-zero and smaller than atomic write HW boundary.
269 		 * Furthermore, chunk sectors must be a multiple of atomic
270 		 * write HW boundary. Otherwise boundary support becomes
271 		 * complicated.
272 		 * Devices which do not conform to these rules can be dealt
273 		 * with if and when they show up.
274 		 */
275 		if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
276 			goto unsupported;
277 
278 		/*
279 		 * The boundary size just needs to be a multiple of unit_max
280 		 * (and not necessarily a power-of-2), so this following check
281 		 * could be relaxed in future.
282 		 * Furthermore, if needed, unit_max could even be reduced so
283 		 * that it is compliant with a !power-of-2 boundary.
284 		 */
285 		if (!is_power_of_2(boundary_sectors))
286 			goto unsupported;
287 	}
288 
289 	blk_atomic_writes_update_limits(lim);
290 	return;
291 
292 unsupported:
293 	lim->atomic_write_max_sectors = 0;
294 	lim->atomic_write_boundary_sectors = 0;
295 	lim->atomic_write_unit_min = 0;
296 	lim->atomic_write_unit_max = 0;
297 }
298 
299 /*
300  * Check that the limits in lim are valid, initialize defaults for unset
301  * values, and cap values based on others where needed.
302  */
blk_validate_limits(struct queue_limits * lim)303 int blk_validate_limits(struct queue_limits *lim)
304 {
305 	unsigned int max_hw_sectors;
306 	unsigned int logical_block_sectors;
307 	unsigned long seg_size;
308 	int err;
309 
310 	/*
311 	 * Unless otherwise specified, default to 512 byte logical blocks and a
312 	 * physical block size equal to the logical block size.
313 	 */
314 	if (!lim->logical_block_size)
315 		lim->logical_block_size = SECTOR_SIZE;
316 	else if (blk_validate_block_size(lim->logical_block_size)) {
317 		pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
318 		return -EINVAL;
319 	}
320 	if (lim->physical_block_size < lim->logical_block_size) {
321 		lim->physical_block_size = lim->logical_block_size;
322 	} else if (!is_power_of_2(lim->physical_block_size)) {
323 		pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size);
324 		return -EINVAL;
325 	}
326 
327 	/*
328 	 * The minimum I/O size defaults to the physical block size unless
329 	 * explicitly overridden.
330 	 */
331 	if (lim->io_min < lim->physical_block_size)
332 		lim->io_min = lim->physical_block_size;
333 
334 	/*
335 	 * The optimal I/O size may not be aligned to physical block size
336 	 * (because it may be limited by dma engines which have no clue about
337 	 * block size of the disks attached to them), so we round it down here.
338 	 */
339 	lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
340 
341 	/*
342 	 * max_hw_sectors has a somewhat weird default for historical reason,
343 	 * but driver really should set their own instead of relying on this
344 	 * value.
345 	 *
346 	 * The block layer relies on the fact that every driver can
347 	 * handle at lest a page worth of data per I/O, and needs the value
348 	 * aligned to the logical block size.
349 	 */
350 	if (!lim->max_hw_sectors)
351 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
352 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
353 		return -EINVAL;
354 	logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
355 	if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
356 		return -EINVAL;
357 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
358 			logical_block_sectors);
359 
360 	/*
361 	 * The actual max_sectors value is a complex beast and also takes the
362 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
363 	 * value into account.  The ->max_sectors value is always calculated
364 	 * from these, so directly setting it won't have any effect.
365 	 */
366 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
367 				lim->max_dev_sectors);
368 	if (lim->max_user_sectors) {
369 		if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
370 			return -EINVAL;
371 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
372 	} else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
373 		lim->max_sectors =
374 			min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
375 	} else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
376 		lim->max_sectors =
377 			min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
378 	} else {
379 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
380 	}
381 	lim->max_sectors = round_down(lim->max_sectors,
382 			logical_block_sectors);
383 
384 	/*
385 	 * Random default for the maximum number of segments.  Driver should not
386 	 * rely on this and set their own.
387 	 */
388 	if (!lim->max_segments)
389 		lim->max_segments = BLK_MAX_SEGMENTS;
390 
391 	if (lim->max_hw_wzeroes_unmap_sectors &&
392 	    lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors)
393 		return -EINVAL;
394 	lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors,
395 			lim->max_user_wzeroes_unmap_sectors);
396 
397 	lim->max_discard_sectors =
398 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
399 
400 	/*
401 	 * When discard is not supported, discard_granularity should be reported
402 	 * as 0 to userspace.
403 	 */
404 	if (lim->max_discard_sectors)
405 		lim->discard_granularity =
406 			max(lim->discard_granularity, lim->physical_block_size);
407 	else
408 		lim->discard_granularity = 0;
409 
410 	if (!lim->max_discard_segments)
411 		lim->max_discard_segments = 1;
412 
413 	/*
414 	 * By default there is no limit on the segment boundary alignment,
415 	 * but if there is one it can't be smaller than the page size as
416 	 * that would break all the normal I/O patterns.
417 	 */
418 	if (!lim->seg_boundary_mask)
419 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
420 	if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
421 		return -EINVAL;
422 
423 	/*
424 	 * Stacking device may have both virtual boundary and max segment
425 	 * size limit, so allow this setting now, and long-term the two
426 	 * might need to move out of stacking limits since we have immutable
427 	 * bvec and lower layer bio splitting is supposed to handle the two
428 	 * correctly.
429 	 */
430 	if (lim->virt_boundary_mask) {
431 		if (!lim->max_segment_size)
432 			lim->max_segment_size = UINT_MAX;
433 	} else {
434 		/*
435 		 * The maximum segment size has an odd historic 64k default that
436 		 * drivers probably should override.  Just like the I/O size we
437 		 * require drivers to at least handle a full page per segment.
438 		 */
439 		if (!lim->max_segment_size)
440 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
441 		if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
442 			return -EINVAL;
443 	}
444 
445 	/* setup min segment size for building new segment in fast path */
446 	if (lim->seg_boundary_mask > lim->max_segment_size - 1)
447 		seg_size = lim->max_segment_size;
448 	else
449 		seg_size = lim->seg_boundary_mask + 1;
450 	lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
451 
452 	/*
453 	 * We require drivers to at least do logical block aligned I/O, but
454 	 * historically could not check for that due to the separate calls
455 	 * to set the limits.  Once the transition is finished the check
456 	 * below should be narrowed down to check the logical block size.
457 	 */
458 	if (!lim->dma_alignment)
459 		lim->dma_alignment = SECTOR_SIZE - 1;
460 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
461 		return -EINVAL;
462 
463 	if (lim->alignment_offset) {
464 		lim->alignment_offset &= (lim->physical_block_size - 1);
465 		lim->flags &= ~BLK_FLAG_MISALIGNED;
466 	}
467 
468 	if (!(lim->features & BLK_FEAT_WRITE_CACHE))
469 		lim->features &= ~BLK_FEAT_FUA;
470 
471 	blk_validate_atomic_write_limits(lim);
472 
473 	err = blk_validate_integrity_limits(lim);
474 	if (err)
475 		return err;
476 	return blk_validate_zoned_limits(lim);
477 }
478 EXPORT_SYMBOL_GPL(blk_validate_limits);
479 
480 /*
481  * Set the default limits for a newly allocated queue.  @lim contains the
482  * initial limits set by the driver, which could be no limit in which case
483  * all fields are cleared to zero.
484  */
blk_set_default_limits(struct queue_limits * lim)485 int blk_set_default_limits(struct queue_limits *lim)
486 {
487 	/*
488 	 * Most defaults are set by capping the bounds in blk_validate_limits,
489 	 * but these limits are special and need an explicit initialization to
490 	 * the max value here.
491 	 */
492 	lim->max_user_discard_sectors = UINT_MAX;
493 	lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
494 	return blk_validate_limits(lim);
495 }
496 
497 /**
498  * queue_limits_commit_update - commit an atomic update of queue limits
499  * @q:		queue to update
500  * @lim:	limits to apply
501  *
502  * Apply the limits in @lim that were obtained from queue_limits_start_update()
503  * and updated by the caller to @q.  The caller must have frozen the queue or
504  * ensure that there are no outstanding I/Os by other means.
505  *
506  * Returns 0 if successful, else a negative error code.
507  */
queue_limits_commit_update(struct request_queue * q,struct queue_limits * lim)508 int queue_limits_commit_update(struct request_queue *q,
509 		struct queue_limits *lim)
510 {
511 	int error;
512 
513 	error = blk_validate_limits(lim);
514 	if (error)
515 		goto out_unlock;
516 
517 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
518 	if (q->crypto_profile && lim->integrity.tag_size) {
519 		pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
520 		error = -EINVAL;
521 		goto out_unlock;
522 	}
523 #endif
524 
525 	q->limits = *lim;
526 	if (q->disk)
527 		blk_apply_bdi_limits(q->disk->bdi, lim);
528 out_unlock:
529 	mutex_unlock(&q->limits_lock);
530 	return error;
531 }
532 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
533 
534 /**
535  * queue_limits_commit_update_frozen - commit an atomic update of queue limits
536  * @q:		queue to update
537  * @lim:	limits to apply
538  *
539  * Apply the limits in @lim that were obtained from queue_limits_start_update()
540  * and updated with the new values by the caller to @q.  Freezes the queue
541  * before the update and unfreezes it after.
542  *
543  * Returns 0 if successful, else a negative error code.
544  */
queue_limits_commit_update_frozen(struct request_queue * q,struct queue_limits * lim)545 int queue_limits_commit_update_frozen(struct request_queue *q,
546 		struct queue_limits *lim)
547 {
548 	unsigned int memflags;
549 	int ret;
550 
551 	memflags = blk_mq_freeze_queue(q);
552 	ret = queue_limits_commit_update(q, lim);
553 	blk_mq_unfreeze_queue(q, memflags);
554 
555 	return ret;
556 }
557 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
558 
559 /**
560  * queue_limits_set - apply queue limits to queue
561  * @q:		queue to update
562  * @lim:	limits to apply
563  *
564  * Apply the limits in @lim that were freshly initialized to @q.
565  * To update existing limits use queue_limits_start_update() and
566  * queue_limits_commit_update() instead.
567  *
568  * Returns 0 if successful, else a negative error code.
569  */
queue_limits_set(struct request_queue * q,struct queue_limits * lim)570 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
571 {
572 	mutex_lock(&q->limits_lock);
573 	return queue_limits_commit_update(q, lim);
574 }
575 EXPORT_SYMBOL_GPL(queue_limits_set);
576 
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)577 static int queue_limit_alignment_offset(const struct queue_limits *lim,
578 		sector_t sector)
579 {
580 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
581 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
582 		<< SECTOR_SHIFT;
583 
584 	return (granularity + lim->alignment_offset - alignment) % granularity;
585 }
586 
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)587 static unsigned int queue_limit_discard_alignment(
588 		const struct queue_limits *lim, sector_t sector)
589 {
590 	unsigned int alignment, granularity, offset;
591 
592 	if (!lim->max_discard_sectors)
593 		return 0;
594 
595 	/* Why are these in bytes, not sectors? */
596 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
597 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
598 
599 	/* Offset of the partition start in 'granularity' sectors */
600 	offset = sector_div(sector, granularity);
601 
602 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
603 	offset = (granularity + alignment - offset) % granularity;
604 
605 	/* Turn it back into bytes, gaah */
606 	return offset << SECTOR_SHIFT;
607 }
608 
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)609 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
610 {
611 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
612 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
613 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
614 	return sectors;
615 }
616 
617 /* Check if second and later bottom devices are compliant */
blk_stack_atomic_writes_tail(struct queue_limits * t,struct queue_limits * b)618 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
619 				struct queue_limits *b)
620 {
621 	/* We're not going to support different boundary sizes.. yet */
622 	if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
623 		return false;
624 
625 	/* Can't support this */
626 	if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
627 		return false;
628 
629 	/* Or this */
630 	if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
631 		return false;
632 
633 	t->atomic_write_hw_max = min(t->atomic_write_hw_max,
634 				b->atomic_write_hw_max);
635 	t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
636 				b->atomic_write_hw_unit_min);
637 	t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
638 				b->atomic_write_hw_unit_max);
639 	return true;
640 }
641 
642 /* Check for valid boundary of first bottom device */
blk_stack_atomic_writes_boundary_head(struct queue_limits * t,struct queue_limits * b)643 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
644 				struct queue_limits *b)
645 {
646 	/*
647 	 * Ensure atomic write boundary is aligned with chunk sectors. Stacked
648 	 * devices store chunk sectors in t->io_min.
649 	 */
650 	if (b->atomic_write_hw_boundary > t->io_min &&
651 	    b->atomic_write_hw_boundary % t->io_min)
652 		return false;
653 	if (t->io_min > b->atomic_write_hw_boundary &&
654 	    t->io_min % b->atomic_write_hw_boundary)
655 		return false;
656 
657 	t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
658 	return true;
659 }
660 
blk_stack_atomic_writes_chunk_sectors(struct queue_limits * t)661 static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t)
662 {
663 	unsigned int chunk_bytes;
664 
665 	if (!t->chunk_sectors)
666 		return;
667 
668 	/*
669 	 * If chunk sectors is so large that its value in bytes overflows
670 	 * UINT_MAX, then just shift it down so it definitely will fit.
671 	 * We don't support atomic writes of such a large size anyway.
672 	 */
673 	if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes))
674 		chunk_bytes = t->chunk_sectors;
675 
676 	/*
677 	 * Find values for limits which work for chunk size.
678 	 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
679 	 * size, as the chunk size is not restricted to a power-of-2.
680 	 * So we need to find highest power-of-2 which works for the chunk
681 	 * size.
682 	 * As an example scenario, we could have t->unit_max = 16K and
683 	 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a
684 	 * value aligned with both limits, i.e. 8K in this example.
685 	 */
686 	t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
687 					max_pow_of_two_factor(chunk_bytes));
688 
689 	t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min,
690 					  t->atomic_write_hw_unit_max);
691 	t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes);
692 }
693 
694 /* Check stacking of first bottom device */
blk_stack_atomic_writes_head(struct queue_limits * t,struct queue_limits * b)695 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
696 				struct queue_limits *b)
697 {
698 	if (b->atomic_write_hw_boundary &&
699 	    !blk_stack_atomic_writes_boundary_head(t, b))
700 		return false;
701 
702 	t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
703 	t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
704 	t->atomic_write_hw_max = b->atomic_write_hw_max;
705 	return true;
706 }
707 
blk_stack_atomic_writes_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)708 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
709 				struct queue_limits *b, sector_t start)
710 {
711 	if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
712 		goto unsupported;
713 
714 	if (!b->atomic_write_hw_unit_min)
715 		goto unsupported;
716 
717 	if (!blk_atomic_write_start_sect_aligned(start, b))
718 		goto unsupported;
719 
720 	/*
721 	 * If atomic_write_hw_max is set, we have already stacked 1x bottom
722 	 * device, so check for compliance.
723 	 */
724 	if (t->atomic_write_hw_max) {
725 		if (!blk_stack_atomic_writes_tail(t, b))
726 			goto unsupported;
727 		return;
728 	}
729 
730 	if (!blk_stack_atomic_writes_head(t, b))
731 		goto unsupported;
732 	blk_stack_atomic_writes_chunk_sectors(t);
733 	return;
734 
735 unsupported:
736 	t->atomic_write_hw_max = 0;
737 	t->atomic_write_hw_unit_max = 0;
738 	t->atomic_write_hw_unit_min = 0;
739 	t->atomic_write_hw_boundary = 0;
740 }
741 
742 /**
743  * blk_stack_limits - adjust queue_limits for stacked devices
744  * @t:	the stacking driver limits (top device)
745  * @b:  the underlying queue limits (bottom, component device)
746  * @start:  first data sector within component device
747  *
748  * Description:
749  *    This function is used by stacking drivers like MD and DM to ensure
750  *    that all component devices have compatible block sizes and
751  *    alignments.  The stacking driver must provide a queue_limits
752  *    struct (top) and then iteratively call the stacking function for
753  *    all component (bottom) devices.  The stacking function will
754  *    attempt to combine the values and ensure proper alignment.
755  *
756  *    Returns 0 if the top and bottom queue_limits are compatible.  The
757  *    top device's block sizes and alignment offsets may be adjusted to
758  *    ensure alignment with the bottom device. If no compatible sizes
759  *    and alignments exist, -1 is returned and the resulting top
760  *    queue_limits will have the misaligned flag set to indicate that
761  *    the alignment_offset is undefined.
762  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)763 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
764 		     sector_t start)
765 {
766 	unsigned int top, bottom, alignment, ret = 0;
767 
768 	t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
769 
770 	/*
771 	 * Some feaures need to be supported both by the stacking driver and all
772 	 * underlying devices.  The stacking driver sets these flags before
773 	 * stacking the limits, and this will clear the flags if any of the
774 	 * underlying devices does not support it.
775 	 */
776 	if (!(b->features & BLK_FEAT_NOWAIT))
777 		t->features &= ~BLK_FEAT_NOWAIT;
778 	if (!(b->features & BLK_FEAT_POLL))
779 		t->features &= ~BLK_FEAT_POLL;
780 
781 	t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
782 
783 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
784 	t->max_user_sectors = min_not_zero(t->max_user_sectors,
785 			b->max_user_sectors);
786 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
787 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
788 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
789 					b->max_write_zeroes_sectors);
790 	t->max_user_wzeroes_unmap_sectors =
791 			min(t->max_user_wzeroes_unmap_sectors,
792 			    b->max_user_wzeroes_unmap_sectors);
793 	t->max_hw_wzeroes_unmap_sectors =
794 			min(t->max_hw_wzeroes_unmap_sectors,
795 			    b->max_hw_wzeroes_unmap_sectors);
796 
797 	t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
798 					b->max_hw_zone_append_sectors);
799 
800 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
801 					    b->seg_boundary_mask);
802 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
803 					    b->virt_boundary_mask);
804 
805 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
806 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
807 					       b->max_discard_segments);
808 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
809 						 b->max_integrity_segments);
810 
811 	t->max_segment_size = min_not_zero(t->max_segment_size,
812 					   b->max_segment_size);
813 
814 	alignment = queue_limit_alignment_offset(b, start);
815 
816 	/* Bottom device has different alignment.  Check that it is
817 	 * compatible with the current top alignment.
818 	 */
819 	if (t->alignment_offset != alignment) {
820 
821 		top = max(t->physical_block_size, t->io_min)
822 			+ t->alignment_offset;
823 		bottom = max(b->physical_block_size, b->io_min) + alignment;
824 
825 		/* Verify that top and bottom intervals line up */
826 		if (max(top, bottom) % min(top, bottom)) {
827 			t->flags |= BLK_FLAG_MISALIGNED;
828 			ret = -1;
829 		}
830 	}
831 
832 	t->logical_block_size = max(t->logical_block_size,
833 				    b->logical_block_size);
834 
835 	t->physical_block_size = max(t->physical_block_size,
836 				     b->physical_block_size);
837 
838 	t->io_min = max(t->io_min, b->io_min);
839 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
840 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
841 
842 	/* Set non-power-of-2 compatible chunk_sectors boundary */
843 	if (b->chunk_sectors)
844 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
845 
846 	/* Physical block size a multiple of the logical block size? */
847 	if (t->physical_block_size & (t->logical_block_size - 1)) {
848 		t->physical_block_size = t->logical_block_size;
849 		t->flags |= BLK_FLAG_MISALIGNED;
850 		ret = -1;
851 	}
852 
853 	/* Minimum I/O a multiple of the physical block size? */
854 	if (t->io_min & (t->physical_block_size - 1)) {
855 		t->io_min = t->physical_block_size;
856 		t->flags |= BLK_FLAG_MISALIGNED;
857 		ret = -1;
858 	}
859 
860 	/* Optimal I/O a multiple of the physical block size? */
861 	if (t->io_opt & (t->physical_block_size - 1)) {
862 		t->io_opt = 0;
863 		t->flags |= BLK_FLAG_MISALIGNED;
864 		ret = -1;
865 	}
866 
867 	/* chunk_sectors a multiple of the physical block size? */
868 	if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) {
869 		t->chunk_sectors = 0;
870 		t->flags |= BLK_FLAG_MISALIGNED;
871 		ret = -1;
872 	}
873 
874 	/* Find lowest common alignment_offset */
875 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
876 		% max(t->physical_block_size, t->io_min);
877 
878 	/* Verify that new alignment_offset is on a logical block boundary */
879 	if (t->alignment_offset & (t->logical_block_size - 1)) {
880 		t->flags |= BLK_FLAG_MISALIGNED;
881 		ret = -1;
882 	}
883 
884 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
885 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
886 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
887 
888 	/* Discard alignment and granularity */
889 	if (b->discard_granularity) {
890 		alignment = queue_limit_discard_alignment(b, start);
891 
892 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
893 						      b->max_discard_sectors);
894 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
895 							 b->max_hw_discard_sectors);
896 		t->discard_granularity = max(t->discard_granularity,
897 					     b->discard_granularity);
898 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
899 			t->discard_granularity;
900 	}
901 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
902 						   b->max_secure_erase_sectors);
903 	t->zone_write_granularity = max(t->zone_write_granularity,
904 					b->zone_write_granularity);
905 	if (!(t->features & BLK_FEAT_ZONED)) {
906 		t->zone_write_granularity = 0;
907 		t->max_zone_append_sectors = 0;
908 	}
909 	blk_stack_atomic_writes_limits(t, b, start);
910 
911 	return ret;
912 }
913 EXPORT_SYMBOL(blk_stack_limits);
914 
915 /**
916  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
917  * @t:	the stacking driver limits (top device)
918  * @bdev:  the underlying block device (bottom)
919  * @offset:  offset to beginning of data within component device
920  * @pfx: prefix to use for warnings logged
921  *
922  * Description:
923  *    This function is used by stacking drivers like MD and DM to ensure
924  *    that all component devices have compatible block sizes and
925  *    alignments.  The stacking driver must provide a queue_limits
926  *    struct (top) and then iteratively call the stacking function for
927  *    all component (bottom) devices.  The stacking function will
928  *    attempt to combine the values and ensure proper alignment.
929  */
queue_limits_stack_bdev(struct queue_limits * t,struct block_device * bdev,sector_t offset,const char * pfx)930 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
931 		sector_t offset, const char *pfx)
932 {
933 	if (blk_stack_limits(t, bdev_limits(bdev),
934 			get_start_sect(bdev) + offset))
935 		pr_notice("%s: Warning: Device %pg is misaligned\n",
936 			pfx, bdev);
937 }
938 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
939 
940 /**
941  * queue_limits_stack_integrity - stack integrity profile
942  * @t: target queue limits
943  * @b: base queue limits
944  *
945  * Check if the integrity profile in the @b can be stacked into the
946  * target @t.  Stacking is possible if either:
947  *
948  *   a) does not have any integrity information stacked into it yet
949  *   b) the integrity profile in @b is identical to the one in @t
950  *
951  * If @b can be stacked into @t, return %true.  Else return %false and clear the
952  * integrity information in @t.
953  */
queue_limits_stack_integrity(struct queue_limits * t,struct queue_limits * b)954 bool queue_limits_stack_integrity(struct queue_limits *t,
955 		struct queue_limits *b)
956 {
957 	struct blk_integrity *ti = &t->integrity;
958 	struct blk_integrity *bi = &b->integrity;
959 
960 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
961 		return true;
962 
963 	if (ti->flags & BLK_INTEGRITY_STACKED) {
964 		if (ti->metadata_size != bi->metadata_size)
965 			goto incompatible;
966 		if (ti->interval_exp != bi->interval_exp)
967 			goto incompatible;
968 		if (ti->tag_size != bi->tag_size)
969 			goto incompatible;
970 		if (ti->csum_type != bi->csum_type)
971 			goto incompatible;
972 		if (ti->pi_tuple_size != bi->pi_tuple_size)
973 			goto incompatible;
974 		if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
975 		    (bi->flags & BLK_INTEGRITY_REF_TAG))
976 			goto incompatible;
977 	} else {
978 		ti->flags = BLK_INTEGRITY_STACKED;
979 		ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
980 			     (bi->flags & BLK_INTEGRITY_REF_TAG);
981 		ti->csum_type = bi->csum_type;
982 		ti->pi_tuple_size = bi->pi_tuple_size;
983 		ti->metadata_size = bi->metadata_size;
984 		ti->pi_offset = bi->pi_offset;
985 		ti->interval_exp = bi->interval_exp;
986 		ti->tag_size = bi->tag_size;
987 	}
988 	return true;
989 
990 incompatible:
991 	memset(ti, 0, sizeof(*ti));
992 	return false;
993 }
994 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
995 
996 /**
997  * blk_set_queue_depth - tell the block layer about the device queue depth
998  * @q:		the request queue for the device
999  * @depth:		queue depth
1000  *
1001  */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)1002 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1003 {
1004 	q->queue_depth = depth;
1005 	rq_qos_queue_depth_changed(q);
1006 }
1007 EXPORT_SYMBOL(blk_set_queue_depth);
1008 
bdev_alignment_offset(struct block_device * bdev)1009 int bdev_alignment_offset(struct block_device *bdev)
1010 {
1011 	struct request_queue *q = bdev_get_queue(bdev);
1012 
1013 	if (q->limits.flags & BLK_FLAG_MISALIGNED)
1014 		return -1;
1015 	if (bdev_is_partition(bdev))
1016 		return queue_limit_alignment_offset(&q->limits,
1017 				bdev->bd_start_sect);
1018 	return q->limits.alignment_offset;
1019 }
1020 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1021 
bdev_discard_alignment(struct block_device * bdev)1022 unsigned int bdev_discard_alignment(struct block_device *bdev)
1023 {
1024 	struct request_queue *q = bdev_get_queue(bdev);
1025 
1026 	if (bdev_is_partition(bdev))
1027 		return queue_limit_discard_alignment(&q->limits,
1028 				bdev->bd_start_sect);
1029 	return q->limits.discard_alignment;
1030 }
1031 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1032