1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/crc32c.h>
11 #include <linux/err.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <trace/events/sock.h>
22
23 #include "nvmet.h"
24
25 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
26 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */
27 #define NVMET_TCP_BACKLOG 128
28
param_store_val(const char * str,int * val,int min,int max)29 static int param_store_val(const char *str, int *val, int min, int max)
30 {
31 int ret, new_val;
32
33 ret = kstrtoint(str, 10, &new_val);
34 if (ret)
35 return -EINVAL;
36
37 if (new_val < min || new_val > max)
38 return -EINVAL;
39
40 *val = new_val;
41 return 0;
42 }
43
set_params(const char * str,const struct kernel_param * kp)44 static int set_params(const char *str, const struct kernel_param *kp)
45 {
46 return param_store_val(str, kp->arg, 0, INT_MAX);
47 }
48
49 static const struct kernel_param_ops set_param_ops = {
50 .set = set_params,
51 .get = param_get_int,
52 };
53
54 /* Define the socket priority to use for connections were it is desirable
55 * that the NIC consider performing optimized packet processing or filtering.
56 * A non-zero value being sufficient to indicate general consideration of any
57 * possible optimization. Making it a module param allows for alternative
58 * values that may be unique for some NIC implementations.
59 */
60 static int so_priority;
61 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
62 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
63
64 /* Define a time period (in usecs) that io_work() shall sample an activated
65 * queue before determining it to be idle. This optional module behavior
66 * can enable NIC solutions that support socket optimized packet processing
67 * using advanced interrupt moderation techniques.
68 */
69 static int idle_poll_period_usecs;
70 device_param_cb(idle_poll_period_usecs, &set_param_ops,
71 &idle_poll_period_usecs, 0644);
72 MODULE_PARM_DESC(idle_poll_period_usecs,
73 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
74
75 #ifdef CONFIG_NVME_TARGET_TCP_TLS
76 /*
77 * TLS handshake timeout
78 */
79 static int tls_handshake_timeout = 10;
80 module_param(tls_handshake_timeout, int, 0644);
81 MODULE_PARM_DESC(tls_handshake_timeout,
82 "nvme TLS handshake timeout in seconds (default 10)");
83 #endif
84
85 #define NVMET_TCP_RECV_BUDGET 8
86 #define NVMET_TCP_SEND_BUDGET 8
87 #define NVMET_TCP_IO_WORK_BUDGET 64
88
89 enum nvmet_tcp_send_state {
90 NVMET_TCP_SEND_DATA_PDU,
91 NVMET_TCP_SEND_DATA,
92 NVMET_TCP_SEND_R2T,
93 NVMET_TCP_SEND_DDGST,
94 NVMET_TCP_SEND_RESPONSE
95 };
96
97 enum nvmet_tcp_recv_state {
98 NVMET_TCP_RECV_PDU,
99 NVMET_TCP_RECV_DATA,
100 NVMET_TCP_RECV_DDGST,
101 NVMET_TCP_RECV_ERR,
102 };
103
104 enum {
105 NVMET_TCP_F_INIT_FAILED = (1 << 0),
106 };
107
108 struct nvmet_tcp_cmd {
109 struct nvmet_tcp_queue *queue;
110 struct nvmet_req req;
111
112 struct nvme_tcp_cmd_pdu *cmd_pdu;
113 struct nvme_tcp_rsp_pdu *rsp_pdu;
114 struct nvme_tcp_data_pdu *data_pdu;
115 struct nvme_tcp_r2t_pdu *r2t_pdu;
116
117 u32 rbytes_done;
118 u32 wbytes_done;
119
120 u32 pdu_len;
121 u32 pdu_recv;
122 int sg_idx;
123 char recv_cbuf[CMSG_LEN(sizeof(char))];
124 struct msghdr recv_msg;
125 struct bio_vec *iov;
126 u32 flags;
127
128 struct list_head entry;
129 struct llist_node lentry;
130
131 /* send state */
132 u32 offset;
133 struct scatterlist *cur_sg;
134 enum nvmet_tcp_send_state state;
135
136 __le32 exp_ddgst;
137 __le32 recv_ddgst;
138 };
139
140 enum nvmet_tcp_queue_state {
141 NVMET_TCP_Q_CONNECTING,
142 NVMET_TCP_Q_TLS_HANDSHAKE,
143 NVMET_TCP_Q_LIVE,
144 NVMET_TCP_Q_DISCONNECTING,
145 NVMET_TCP_Q_FAILED,
146 };
147
148 struct nvmet_tcp_queue {
149 struct socket *sock;
150 struct nvmet_tcp_port *port;
151 struct work_struct io_work;
152 struct nvmet_cq nvme_cq;
153 struct nvmet_sq nvme_sq;
154 struct kref kref;
155
156 /* send state */
157 struct nvmet_tcp_cmd *cmds;
158 unsigned int nr_cmds;
159 struct list_head free_list;
160 struct llist_head resp_list;
161 struct list_head resp_send_list;
162 int send_list_len;
163 struct nvmet_tcp_cmd *snd_cmd;
164
165 /* recv state */
166 int offset;
167 int left;
168 enum nvmet_tcp_recv_state rcv_state;
169 struct nvmet_tcp_cmd *cmd;
170 union nvme_tcp_pdu pdu;
171
172 /* digest state */
173 bool hdr_digest;
174 bool data_digest;
175
176 /* TLS state */
177 key_serial_t tls_pskid;
178 struct delayed_work tls_handshake_tmo_work;
179
180 unsigned long poll_end;
181
182 spinlock_t state_lock;
183 enum nvmet_tcp_queue_state state;
184
185 struct sockaddr_storage sockaddr;
186 struct sockaddr_storage sockaddr_peer;
187 struct work_struct release_work;
188
189 int idx;
190 struct list_head queue_list;
191
192 struct nvmet_tcp_cmd connect;
193
194 struct page_frag_cache pf_cache;
195
196 void (*data_ready)(struct sock *);
197 void (*state_change)(struct sock *);
198 void (*write_space)(struct sock *);
199 };
200
201 struct nvmet_tcp_port {
202 struct socket *sock;
203 struct work_struct accept_work;
204 struct nvmet_port *nport;
205 struct sockaddr_storage addr;
206 void (*data_ready)(struct sock *);
207 };
208
209 static DEFINE_IDA(nvmet_tcp_queue_ida);
210 static LIST_HEAD(nvmet_tcp_queue_list);
211 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
212
213 static struct workqueue_struct *nvmet_tcp_wq;
214 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
215 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
216 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
217
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)218 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
219 struct nvmet_tcp_cmd *cmd)
220 {
221 if (unlikely(!queue->nr_cmds)) {
222 /* We didn't allocate cmds yet, send 0xffff */
223 return USHRT_MAX;
224 }
225
226 return cmd - queue->cmds;
227 }
228
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)229 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
230 {
231 return nvme_is_write(cmd->req.cmd) &&
232 cmd->rbytes_done < cmd->req.transfer_len;
233 }
234
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)235 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
236 {
237 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
238 }
239
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)240 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
241 {
242 return !nvme_is_write(cmd->req.cmd) &&
243 cmd->req.transfer_len > 0 &&
244 !cmd->req.cqe->status;
245 }
246
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)247 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
248 {
249 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
250 !cmd->rbytes_done;
251 }
252
253 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)254 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
255 {
256 struct nvmet_tcp_cmd *cmd;
257
258 cmd = list_first_entry_or_null(&queue->free_list,
259 struct nvmet_tcp_cmd, entry);
260 if (!cmd)
261 return NULL;
262 list_del_init(&cmd->entry);
263
264 cmd->rbytes_done = cmd->wbytes_done = 0;
265 cmd->pdu_len = 0;
266 cmd->pdu_recv = 0;
267 cmd->iov = NULL;
268 cmd->flags = 0;
269 return cmd;
270 }
271
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)272 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
273 {
274 if (unlikely(cmd == &cmd->queue->connect))
275 return;
276
277 list_add_tail(&cmd->entry, &cmd->queue->free_list);
278 }
279
queue_cpu(struct nvmet_tcp_queue * queue)280 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
281 {
282 return queue->sock->sk->sk_incoming_cpu;
283 }
284
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)285 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
286 {
287 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
288 }
289
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)290 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
291 {
292 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
293 }
294
nvmet_tcp_hdgst(void * pdu,size_t len)295 static inline void nvmet_tcp_hdgst(void *pdu, size_t len)
296 {
297 put_unaligned_le32(~crc32c(~0, pdu, len), pdu + len);
298 }
299
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)300 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
301 void *pdu, size_t len)
302 {
303 struct nvme_tcp_hdr *hdr = pdu;
304 __le32 recv_digest;
305 __le32 exp_digest;
306
307 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
308 pr_err("queue %d: header digest enabled but no header digest\n",
309 queue->idx);
310 return -EPROTO;
311 }
312
313 recv_digest = *(__le32 *)(pdu + hdr->hlen);
314 nvmet_tcp_hdgst(pdu, len);
315 exp_digest = *(__le32 *)(pdu + hdr->hlen);
316 if (recv_digest != exp_digest) {
317 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
318 queue->idx, le32_to_cpu(recv_digest),
319 le32_to_cpu(exp_digest));
320 return -EPROTO;
321 }
322
323 return 0;
324 }
325
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)326 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
327 {
328 struct nvme_tcp_hdr *hdr = pdu;
329 u8 digest_len = nvmet_tcp_hdgst_len(queue);
330 u32 len;
331
332 len = le32_to_cpu(hdr->plen) - hdr->hlen -
333 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
334
335 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
336 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
337 return -EPROTO;
338 }
339
340 return 0;
341 }
342
343 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)344 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
345 {
346 kfree(cmd->iov);
347 sgl_free(cmd->req.sg);
348 cmd->iov = NULL;
349 cmd->req.sg = NULL;
350 }
351
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)352 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
353 {
354 struct bio_vec *iov = cmd->iov;
355 struct scatterlist *sg;
356 u32 length, offset, sg_offset;
357 int nr_pages;
358
359 length = cmd->pdu_len;
360 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
361 offset = cmd->rbytes_done;
362 cmd->sg_idx = offset / PAGE_SIZE;
363 sg_offset = offset % PAGE_SIZE;
364 sg = &cmd->req.sg[cmd->sg_idx];
365
366 while (length) {
367 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
368
369 bvec_set_page(iov, sg_page(sg), iov_len,
370 sg->offset + sg_offset);
371
372 length -= iov_len;
373 sg = sg_next(sg);
374 iov++;
375 sg_offset = 0;
376 }
377
378 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
379 nr_pages, cmd->pdu_len);
380 }
381
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)382 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
383 {
384 queue->rcv_state = NVMET_TCP_RECV_ERR;
385 if (queue->nvme_sq.ctrl)
386 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
387 else
388 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
389 }
390
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)391 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
392 {
393 queue->rcv_state = NVMET_TCP_RECV_ERR;
394 if (status == -EPIPE || status == -ECONNRESET)
395 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
396 else
397 nvmet_tcp_fatal_error(queue);
398 }
399
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)400 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
401 {
402 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
403 u32 len = le32_to_cpu(sgl->length);
404
405 if (!len)
406 return 0;
407
408 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
409 NVME_SGL_FMT_OFFSET)) {
410 if (!nvme_is_write(cmd->req.cmd))
411 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
412
413 if (len > cmd->req.port->inline_data_size)
414 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
415 cmd->pdu_len = len;
416 }
417 cmd->req.transfer_len += len;
418
419 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
420 if (!cmd->req.sg)
421 return NVME_SC_INTERNAL;
422 cmd->cur_sg = cmd->req.sg;
423
424 if (nvmet_tcp_has_data_in(cmd)) {
425 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
426 sizeof(*cmd->iov), GFP_KERNEL);
427 if (!cmd->iov)
428 goto err;
429 }
430
431 return 0;
432 err:
433 nvmet_tcp_free_cmd_buffers(cmd);
434 return NVME_SC_INTERNAL;
435 }
436
nvmet_tcp_calc_ddgst(struct nvmet_tcp_cmd * cmd)437 static void nvmet_tcp_calc_ddgst(struct nvmet_tcp_cmd *cmd)
438 {
439 size_t total_len = cmd->req.transfer_len;
440 struct scatterlist *sg = cmd->req.sg;
441 u32 crc = ~0;
442
443 while (total_len) {
444 size_t len = min_t(size_t, total_len, sg->length);
445
446 /*
447 * Note that the scatterlist does not contain any highmem pages,
448 * as it was allocated by sgl_alloc() with GFP_KERNEL.
449 */
450 crc = crc32c(crc, sg_virt(sg), len);
451 total_len -= len;
452 sg = sg_next(sg);
453 }
454 cmd->exp_ddgst = cpu_to_le32(~crc);
455 }
456
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)457 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
458 {
459 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
460 struct nvmet_tcp_queue *queue = cmd->queue;
461 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
462 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
463
464 cmd->offset = 0;
465 cmd->state = NVMET_TCP_SEND_DATA_PDU;
466
467 pdu->hdr.type = nvme_tcp_c2h_data;
468 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
469 NVME_TCP_F_DATA_SUCCESS : 0);
470 pdu->hdr.hlen = sizeof(*pdu);
471 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
472 pdu->hdr.plen =
473 cpu_to_le32(pdu->hdr.hlen + hdgst +
474 cmd->req.transfer_len + ddgst);
475 pdu->command_id = cmd->req.cqe->command_id;
476 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
477 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
478
479 if (queue->data_digest) {
480 pdu->hdr.flags |= NVME_TCP_F_DDGST;
481 nvmet_tcp_calc_ddgst(cmd);
482 }
483
484 if (cmd->queue->hdr_digest) {
485 pdu->hdr.flags |= NVME_TCP_F_HDGST;
486 nvmet_tcp_hdgst(pdu, sizeof(*pdu));
487 }
488 }
489
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)490 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
491 {
492 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
493 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
494
495 cmd->offset = 0;
496 cmd->state = NVMET_TCP_SEND_R2T;
497
498 pdu->hdr.type = nvme_tcp_r2t;
499 pdu->hdr.flags = 0;
500 pdu->hdr.hlen = sizeof(*pdu);
501 pdu->hdr.pdo = 0;
502 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
503
504 pdu->command_id = cmd->req.cmd->common.command_id;
505 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
506 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
507 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
508 if (cmd->queue->hdr_digest) {
509 pdu->hdr.flags |= NVME_TCP_F_HDGST;
510 nvmet_tcp_hdgst(pdu, sizeof(*pdu));
511 }
512 }
513
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)514 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
515 {
516 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
517 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
518
519 cmd->offset = 0;
520 cmd->state = NVMET_TCP_SEND_RESPONSE;
521
522 pdu->hdr.type = nvme_tcp_rsp;
523 pdu->hdr.flags = 0;
524 pdu->hdr.hlen = sizeof(*pdu);
525 pdu->hdr.pdo = 0;
526 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
527 if (cmd->queue->hdr_digest) {
528 pdu->hdr.flags |= NVME_TCP_F_HDGST;
529 nvmet_tcp_hdgst(pdu, sizeof(*pdu));
530 }
531 }
532
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)533 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
534 {
535 struct llist_node *node;
536 struct nvmet_tcp_cmd *cmd;
537
538 for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
539 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
540 list_add(&cmd->entry, &queue->resp_send_list);
541 queue->send_list_len++;
542 }
543 }
544
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)545 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
546 {
547 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
548 struct nvmet_tcp_cmd, entry);
549 if (!queue->snd_cmd) {
550 nvmet_tcp_process_resp_list(queue);
551 queue->snd_cmd =
552 list_first_entry_or_null(&queue->resp_send_list,
553 struct nvmet_tcp_cmd, entry);
554 if (unlikely(!queue->snd_cmd))
555 return NULL;
556 }
557
558 list_del_init(&queue->snd_cmd->entry);
559 queue->send_list_len--;
560
561 if (nvmet_tcp_need_data_out(queue->snd_cmd))
562 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
563 else if (nvmet_tcp_need_data_in(queue->snd_cmd))
564 nvmet_setup_r2t_pdu(queue->snd_cmd);
565 else
566 nvmet_setup_response_pdu(queue->snd_cmd);
567
568 return queue->snd_cmd;
569 }
570
nvmet_tcp_queue_response(struct nvmet_req * req)571 static void nvmet_tcp_queue_response(struct nvmet_req *req)
572 {
573 struct nvmet_tcp_cmd *cmd =
574 container_of(req, struct nvmet_tcp_cmd, req);
575 struct nvmet_tcp_queue *queue = cmd->queue;
576 enum nvmet_tcp_recv_state queue_state;
577 struct nvmet_tcp_cmd *queue_cmd;
578 struct nvme_sgl_desc *sgl;
579 u32 len;
580
581 /* Pairs with store_release in nvmet_prepare_receive_pdu() */
582 queue_state = smp_load_acquire(&queue->rcv_state);
583 queue_cmd = READ_ONCE(queue->cmd);
584
585 if (unlikely(cmd == queue_cmd)) {
586 sgl = &cmd->req.cmd->common.dptr.sgl;
587 len = le32_to_cpu(sgl->length);
588
589 /*
590 * Wait for inline data before processing the response.
591 * Avoid using helpers, this might happen before
592 * nvmet_req_init is completed.
593 */
594 if (queue_state == NVMET_TCP_RECV_PDU &&
595 len && len <= cmd->req.port->inline_data_size &&
596 nvme_is_write(cmd->req.cmd))
597 return;
598 }
599
600 llist_add(&cmd->lentry, &queue->resp_list);
601 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
602 }
603
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)604 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
605 {
606 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
607 nvmet_tcp_queue_response(&cmd->req);
608 else
609 cmd->req.execute(&cmd->req);
610 }
611
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)612 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
613 {
614 struct msghdr msg = {
615 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
616 };
617 struct bio_vec bvec;
618 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
619 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
620 int ret;
621
622 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
623 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
624 ret = sock_sendmsg(cmd->queue->sock, &msg);
625 if (ret <= 0)
626 return ret;
627
628 cmd->offset += ret;
629 left -= ret;
630
631 if (left)
632 return -EAGAIN;
633
634 cmd->state = NVMET_TCP_SEND_DATA;
635 cmd->offset = 0;
636 return 1;
637 }
638
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)639 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
640 {
641 struct nvmet_tcp_queue *queue = cmd->queue;
642 int ret;
643
644 while (cmd->cur_sg) {
645 struct msghdr msg = {
646 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
647 };
648 struct page *page = sg_page(cmd->cur_sg);
649 struct bio_vec bvec;
650 u32 left = cmd->cur_sg->length - cmd->offset;
651
652 if ((!last_in_batch && cmd->queue->send_list_len) ||
653 cmd->wbytes_done + left < cmd->req.transfer_len ||
654 queue->data_digest || !queue->nvme_sq.sqhd_disabled)
655 msg.msg_flags |= MSG_MORE;
656
657 bvec_set_page(&bvec, page, left, cmd->offset);
658 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
659 ret = sock_sendmsg(cmd->queue->sock, &msg);
660 if (ret <= 0)
661 return ret;
662
663 cmd->offset += ret;
664 cmd->wbytes_done += ret;
665
666 /* Done with sg?*/
667 if (cmd->offset == cmd->cur_sg->length) {
668 cmd->cur_sg = sg_next(cmd->cur_sg);
669 cmd->offset = 0;
670 }
671 }
672
673 if (queue->data_digest) {
674 cmd->state = NVMET_TCP_SEND_DDGST;
675 cmd->offset = 0;
676 } else {
677 if (queue->nvme_sq.sqhd_disabled) {
678 cmd->queue->snd_cmd = NULL;
679 nvmet_tcp_put_cmd(cmd);
680 } else {
681 nvmet_setup_response_pdu(cmd);
682 }
683 }
684
685 if (queue->nvme_sq.sqhd_disabled)
686 nvmet_tcp_free_cmd_buffers(cmd);
687
688 return 1;
689
690 }
691
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)692 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
693 bool last_in_batch)
694 {
695 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
696 struct bio_vec bvec;
697 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
698 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
699 int ret;
700
701 if (!last_in_batch && cmd->queue->send_list_len)
702 msg.msg_flags |= MSG_MORE;
703 else
704 msg.msg_flags |= MSG_EOR;
705
706 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
707 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
708 ret = sock_sendmsg(cmd->queue->sock, &msg);
709 if (ret <= 0)
710 return ret;
711 cmd->offset += ret;
712 left -= ret;
713
714 if (left)
715 return -EAGAIN;
716
717 nvmet_tcp_free_cmd_buffers(cmd);
718 cmd->queue->snd_cmd = NULL;
719 nvmet_tcp_put_cmd(cmd);
720 return 1;
721 }
722
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)723 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
724 {
725 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
726 struct bio_vec bvec;
727 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
728 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
729 int ret;
730
731 if (!last_in_batch && cmd->queue->send_list_len)
732 msg.msg_flags |= MSG_MORE;
733 else
734 msg.msg_flags |= MSG_EOR;
735
736 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
737 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
738 ret = sock_sendmsg(cmd->queue->sock, &msg);
739 if (ret <= 0)
740 return ret;
741 cmd->offset += ret;
742 left -= ret;
743
744 if (left)
745 return -EAGAIN;
746
747 cmd->queue->snd_cmd = NULL;
748 return 1;
749 }
750
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)751 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
752 {
753 struct nvmet_tcp_queue *queue = cmd->queue;
754 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
755 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
756 struct kvec iov = {
757 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
758 .iov_len = left
759 };
760 int ret;
761
762 if (!last_in_batch && cmd->queue->send_list_len)
763 msg.msg_flags |= MSG_MORE;
764 else
765 msg.msg_flags |= MSG_EOR;
766
767 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
768 if (unlikely(ret <= 0))
769 return ret;
770
771 cmd->offset += ret;
772 left -= ret;
773
774 if (left)
775 return -EAGAIN;
776
777 if (queue->nvme_sq.sqhd_disabled) {
778 cmd->queue->snd_cmd = NULL;
779 nvmet_tcp_put_cmd(cmd);
780 } else {
781 nvmet_setup_response_pdu(cmd);
782 }
783 return 1;
784 }
785
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)786 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
787 bool last_in_batch)
788 {
789 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
790 int ret = 0;
791
792 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
793 cmd = nvmet_tcp_fetch_cmd(queue);
794 if (unlikely(!cmd))
795 return 0;
796 }
797
798 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
799 ret = nvmet_try_send_data_pdu(cmd);
800 if (ret <= 0)
801 goto done_send;
802 }
803
804 if (cmd->state == NVMET_TCP_SEND_DATA) {
805 ret = nvmet_try_send_data(cmd, last_in_batch);
806 if (ret <= 0)
807 goto done_send;
808 }
809
810 if (cmd->state == NVMET_TCP_SEND_DDGST) {
811 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
812 if (ret <= 0)
813 goto done_send;
814 }
815
816 if (cmd->state == NVMET_TCP_SEND_R2T) {
817 ret = nvmet_try_send_r2t(cmd, last_in_batch);
818 if (ret <= 0)
819 goto done_send;
820 }
821
822 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
823 ret = nvmet_try_send_response(cmd, last_in_batch);
824
825 done_send:
826 if (ret < 0) {
827 if (ret == -EAGAIN)
828 return 0;
829 return ret;
830 }
831
832 return 1;
833 }
834
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)835 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
836 int budget, int *sends)
837 {
838 int i, ret = 0;
839
840 for (i = 0; i < budget; i++) {
841 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
842 if (unlikely(ret < 0)) {
843 nvmet_tcp_socket_error(queue, ret);
844 goto done;
845 } else if (ret == 0) {
846 break;
847 }
848 (*sends)++;
849 }
850 done:
851 return ret;
852 }
853
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)854 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
855 {
856 queue->offset = 0;
857 queue->left = sizeof(struct nvme_tcp_hdr);
858 WRITE_ONCE(queue->cmd, NULL);
859 /* Ensure rcv_state is visible only after queue->cmd is set */
860 smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU);
861 }
862
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)863 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
864 {
865 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
866 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
867 struct msghdr msg = {};
868 struct kvec iov;
869 int ret;
870
871 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
872 pr_err("bad nvme-tcp pdu length (%d)\n",
873 le32_to_cpu(icreq->hdr.plen));
874 nvmet_tcp_fatal_error(queue);
875 return -EPROTO;
876 }
877
878 if (icreq->pfv != NVME_TCP_PFV_1_0) {
879 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
880 return -EPROTO;
881 }
882
883 if (icreq->hpda != 0) {
884 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
885 icreq->hpda);
886 return -EPROTO;
887 }
888
889 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
890 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
891
892 memset(icresp, 0, sizeof(*icresp));
893 icresp->hdr.type = nvme_tcp_icresp;
894 icresp->hdr.hlen = sizeof(*icresp);
895 icresp->hdr.pdo = 0;
896 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
897 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
898 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
899 icresp->cpda = 0;
900 if (queue->hdr_digest)
901 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
902 if (queue->data_digest)
903 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
904
905 iov.iov_base = icresp;
906 iov.iov_len = sizeof(*icresp);
907 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
908 if (ret < 0) {
909 queue->state = NVMET_TCP_Q_FAILED;
910 return ret; /* queue removal will cleanup */
911 }
912
913 queue->state = NVMET_TCP_Q_LIVE;
914 nvmet_prepare_receive_pdu(queue);
915 return 0;
916 }
917
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)918 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
919 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
920 {
921 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
922 int ret;
923
924 /*
925 * This command has not been processed yet, hence we are trying to
926 * figure out if there is still pending data left to receive. If
927 * we don't, we can simply prepare for the next pdu and bail out,
928 * otherwise we will need to prepare a buffer and receive the
929 * stale data before continuing forward.
930 */
931 if (!nvme_is_write(cmd->req.cmd) || !data_len ||
932 data_len > cmd->req.port->inline_data_size) {
933 nvmet_prepare_receive_pdu(queue);
934 return;
935 }
936
937 ret = nvmet_tcp_map_data(cmd);
938 if (unlikely(ret)) {
939 pr_err("queue %d: failed to map data\n", queue->idx);
940 nvmet_tcp_fatal_error(queue);
941 return;
942 }
943
944 queue->rcv_state = NVMET_TCP_RECV_DATA;
945 nvmet_tcp_build_pdu_iovec(cmd);
946 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
947 }
948
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)949 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
950 {
951 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
952 struct nvmet_tcp_cmd *cmd;
953 unsigned int exp_data_len;
954
955 if (likely(queue->nr_cmds)) {
956 if (unlikely(data->ttag >= queue->nr_cmds)) {
957 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
958 queue->idx, data->ttag, queue->nr_cmds);
959 goto err_proto;
960 }
961 cmd = &queue->cmds[data->ttag];
962 } else {
963 cmd = &queue->connect;
964 }
965
966 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
967 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
968 data->ttag, le32_to_cpu(data->data_offset),
969 cmd->rbytes_done);
970 goto err_proto;
971 }
972
973 exp_data_len = le32_to_cpu(data->hdr.plen) -
974 nvmet_tcp_hdgst_len(queue) -
975 nvmet_tcp_ddgst_len(queue) -
976 sizeof(*data);
977
978 cmd->pdu_len = le32_to_cpu(data->data_length);
979 if (unlikely(cmd->pdu_len != exp_data_len ||
980 cmd->pdu_len == 0 ||
981 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
982 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
983 goto err_proto;
984 }
985 cmd->pdu_recv = 0;
986 nvmet_tcp_build_pdu_iovec(cmd);
987 queue->cmd = cmd;
988 queue->rcv_state = NVMET_TCP_RECV_DATA;
989
990 return 0;
991
992 err_proto:
993 /* FIXME: use proper transport errors */
994 nvmet_tcp_fatal_error(queue);
995 return -EPROTO;
996 }
997
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)998 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
999 {
1000 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1001 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1002 struct nvmet_req *req;
1003 int ret;
1004
1005 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1006 if (hdr->type != nvme_tcp_icreq) {
1007 pr_err("unexpected pdu type (%d) before icreq\n",
1008 hdr->type);
1009 nvmet_tcp_fatal_error(queue);
1010 return -EPROTO;
1011 }
1012 return nvmet_tcp_handle_icreq(queue);
1013 }
1014
1015 if (unlikely(hdr->type == nvme_tcp_icreq)) {
1016 pr_err("queue %d: received icreq pdu in state %d\n",
1017 queue->idx, queue->state);
1018 nvmet_tcp_fatal_error(queue);
1019 return -EPROTO;
1020 }
1021
1022 if (hdr->type == nvme_tcp_h2c_data) {
1023 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1024 if (unlikely(ret))
1025 return ret;
1026 return 0;
1027 }
1028
1029 queue->cmd = nvmet_tcp_get_cmd(queue);
1030 if (unlikely(!queue->cmd)) {
1031 /* This should never happen */
1032 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1033 queue->idx, queue->nr_cmds, queue->send_list_len,
1034 nvme_cmd->common.opcode);
1035 nvmet_tcp_fatal_error(queue);
1036 return -ENOMEM;
1037 }
1038
1039 req = &queue->cmd->req;
1040 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1041
1042 if (unlikely(!nvmet_req_init(req, &queue->nvme_sq, &nvmet_tcp_ops))) {
1043 pr_err("failed cmd %p id %d opcode %d, data_len: %d, status: %04x\n",
1044 req->cmd, req->cmd->common.command_id,
1045 req->cmd->common.opcode,
1046 le32_to_cpu(req->cmd->common.dptr.sgl.length),
1047 le16_to_cpu(req->cqe->status));
1048
1049 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1050 return 0;
1051 }
1052
1053 ret = nvmet_tcp_map_data(queue->cmd);
1054 if (unlikely(ret)) {
1055 pr_err("queue %d: failed to map data\n", queue->idx);
1056 if (nvmet_tcp_has_inline_data(queue->cmd))
1057 nvmet_tcp_fatal_error(queue);
1058 else
1059 nvmet_req_complete(req, ret);
1060 ret = -EAGAIN;
1061 goto out;
1062 }
1063
1064 if (nvmet_tcp_need_data_in(queue->cmd)) {
1065 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1066 queue->rcv_state = NVMET_TCP_RECV_DATA;
1067 nvmet_tcp_build_pdu_iovec(queue->cmd);
1068 return 0;
1069 }
1070 /* send back R2T */
1071 nvmet_tcp_queue_response(&queue->cmd->req);
1072 goto out;
1073 }
1074
1075 queue->cmd->req.execute(&queue->cmd->req);
1076 out:
1077 nvmet_prepare_receive_pdu(queue);
1078 return ret;
1079 }
1080
1081 static const u8 nvme_tcp_pdu_sizes[] = {
1082 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
1083 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
1084 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1085 };
1086
nvmet_tcp_pdu_size(u8 type)1087 static inline u8 nvmet_tcp_pdu_size(u8 type)
1088 {
1089 size_t idx = type;
1090
1091 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1092 nvme_tcp_pdu_sizes[idx]) ?
1093 nvme_tcp_pdu_sizes[idx] : 0;
1094 }
1095
nvmet_tcp_pdu_valid(u8 type)1096 static inline bool nvmet_tcp_pdu_valid(u8 type)
1097 {
1098 switch (type) {
1099 case nvme_tcp_icreq:
1100 case nvme_tcp_cmd:
1101 case nvme_tcp_h2c_data:
1102 /* fallthru */
1103 return true;
1104 }
1105
1106 return false;
1107 }
1108
nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue * queue,struct msghdr * msg,char * cbuf)1109 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1110 struct msghdr *msg, char *cbuf)
1111 {
1112 struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1113 u8 ctype, level, description;
1114 int ret = 0;
1115
1116 ctype = tls_get_record_type(queue->sock->sk, cmsg);
1117 switch (ctype) {
1118 case 0:
1119 break;
1120 case TLS_RECORD_TYPE_DATA:
1121 break;
1122 case TLS_RECORD_TYPE_ALERT:
1123 tls_alert_recv(queue->sock->sk, msg, &level, &description);
1124 if (level == TLS_ALERT_LEVEL_FATAL) {
1125 pr_err("queue %d: TLS Alert desc %u\n",
1126 queue->idx, description);
1127 ret = -ENOTCONN;
1128 } else {
1129 pr_warn("queue %d: TLS Alert desc %u\n",
1130 queue->idx, description);
1131 ret = -EAGAIN;
1132 }
1133 break;
1134 default:
1135 /* discard this record type */
1136 pr_err("queue %d: TLS record %d unhandled\n",
1137 queue->idx, ctype);
1138 ret = -EAGAIN;
1139 break;
1140 }
1141 return ret;
1142 }
1143
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1144 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1145 {
1146 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1147 int len, ret;
1148 struct kvec iov;
1149 char cbuf[CMSG_LEN(sizeof(char))] = {};
1150 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1151
1152 recv:
1153 iov.iov_base = (void *)&queue->pdu + queue->offset;
1154 iov.iov_len = queue->left;
1155 if (queue->tls_pskid) {
1156 msg.msg_control = cbuf;
1157 msg.msg_controllen = sizeof(cbuf);
1158 }
1159 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1160 iov.iov_len, msg.msg_flags);
1161 if (unlikely(len < 0))
1162 return len;
1163 if (queue->tls_pskid) {
1164 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1165 if (ret < 0)
1166 return ret;
1167 }
1168
1169 queue->offset += len;
1170 queue->left -= len;
1171 if (queue->left)
1172 return -EAGAIN;
1173
1174 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1175 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1176
1177 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1178 pr_err("unexpected pdu type %d\n", hdr->type);
1179 nvmet_tcp_fatal_error(queue);
1180 return -EIO;
1181 }
1182
1183 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1184 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1185 return -EIO;
1186 }
1187
1188 queue->left = hdr->hlen - queue->offset + hdgst;
1189 goto recv;
1190 }
1191
1192 if (queue->hdr_digest &&
1193 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1194 nvmet_tcp_fatal_error(queue); /* fatal */
1195 return -EPROTO;
1196 }
1197
1198 if (queue->data_digest &&
1199 nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1200 nvmet_tcp_fatal_error(queue); /* fatal */
1201 return -EPROTO;
1202 }
1203
1204 return nvmet_tcp_done_recv_pdu(queue);
1205 }
1206
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1207 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1208 {
1209 struct nvmet_tcp_queue *queue = cmd->queue;
1210
1211 nvmet_tcp_calc_ddgst(cmd);
1212 queue->offset = 0;
1213 queue->left = NVME_TCP_DIGEST_LENGTH;
1214 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1215 }
1216
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1217 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1218 {
1219 struct nvmet_tcp_cmd *cmd = queue->cmd;
1220 int len, ret;
1221
1222 while (msg_data_left(&cmd->recv_msg)) {
1223 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1224 cmd->recv_msg.msg_flags);
1225 if (len <= 0)
1226 return len;
1227 if (queue->tls_pskid) {
1228 ret = nvmet_tcp_tls_record_ok(cmd->queue,
1229 &cmd->recv_msg, cmd->recv_cbuf);
1230 if (ret < 0)
1231 return ret;
1232 }
1233
1234 cmd->pdu_recv += len;
1235 cmd->rbytes_done += len;
1236 }
1237
1238 if (queue->data_digest) {
1239 nvmet_tcp_prep_recv_ddgst(cmd);
1240 return 0;
1241 }
1242
1243 if (cmd->rbytes_done == cmd->req.transfer_len)
1244 nvmet_tcp_execute_request(cmd);
1245
1246 nvmet_prepare_receive_pdu(queue);
1247 return 0;
1248 }
1249
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1250 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1251 {
1252 struct nvmet_tcp_cmd *cmd = queue->cmd;
1253 int ret, len;
1254 char cbuf[CMSG_LEN(sizeof(char))] = {};
1255 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1256 struct kvec iov = {
1257 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1258 .iov_len = queue->left
1259 };
1260
1261 if (queue->tls_pskid) {
1262 msg.msg_control = cbuf;
1263 msg.msg_controllen = sizeof(cbuf);
1264 }
1265 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1266 iov.iov_len, msg.msg_flags);
1267 if (unlikely(len < 0))
1268 return len;
1269 if (queue->tls_pskid) {
1270 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1271 if (ret < 0)
1272 return ret;
1273 }
1274
1275 queue->offset += len;
1276 queue->left -= len;
1277 if (queue->left)
1278 return -EAGAIN;
1279
1280 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1281 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1282 queue->idx, cmd->req.cmd->common.command_id,
1283 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1284 le32_to_cpu(cmd->exp_ddgst));
1285 nvmet_req_uninit(&cmd->req);
1286 nvmet_tcp_free_cmd_buffers(cmd);
1287 nvmet_tcp_fatal_error(queue);
1288 ret = -EPROTO;
1289 goto out;
1290 }
1291
1292 if (cmd->rbytes_done == cmd->req.transfer_len)
1293 nvmet_tcp_execute_request(cmd);
1294
1295 ret = 0;
1296 out:
1297 nvmet_prepare_receive_pdu(queue);
1298 return ret;
1299 }
1300
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1301 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1302 {
1303 int result = 0;
1304
1305 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1306 return 0;
1307
1308 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1309 result = nvmet_tcp_try_recv_pdu(queue);
1310 if (result != 0)
1311 goto done_recv;
1312 }
1313
1314 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1315 result = nvmet_tcp_try_recv_data(queue);
1316 if (result != 0)
1317 goto done_recv;
1318 }
1319
1320 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1321 result = nvmet_tcp_try_recv_ddgst(queue);
1322 if (result != 0)
1323 goto done_recv;
1324 }
1325
1326 done_recv:
1327 if (result < 0) {
1328 if (result == -EAGAIN)
1329 return 0;
1330 return result;
1331 }
1332 return 1;
1333 }
1334
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1335 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1336 int budget, int *recvs)
1337 {
1338 int i, ret = 0;
1339
1340 for (i = 0; i < budget; i++) {
1341 ret = nvmet_tcp_try_recv_one(queue);
1342 if (unlikely(ret < 0)) {
1343 nvmet_tcp_socket_error(queue, ret);
1344 goto done;
1345 } else if (ret == 0) {
1346 break;
1347 }
1348 (*recvs)++;
1349 }
1350 done:
1351 return ret;
1352 }
1353
nvmet_tcp_release_queue(struct kref * kref)1354 static void nvmet_tcp_release_queue(struct kref *kref)
1355 {
1356 struct nvmet_tcp_queue *queue =
1357 container_of(kref, struct nvmet_tcp_queue, kref);
1358
1359 WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1360 queue_work(nvmet_wq, &queue->release_work);
1361 }
1362
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1363 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1364 {
1365 spin_lock_bh(&queue->state_lock);
1366 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1367 /* Socket closed during handshake */
1368 tls_handshake_cancel(queue->sock->sk);
1369 }
1370 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1371 queue->state = NVMET_TCP_Q_DISCONNECTING;
1372 kref_put(&queue->kref, nvmet_tcp_release_queue);
1373 }
1374 spin_unlock_bh(&queue->state_lock);
1375 }
1376
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1377 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1378 {
1379 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1380 }
1381
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1382 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1383 int ops)
1384 {
1385 if (!idle_poll_period_usecs)
1386 return false;
1387
1388 if (ops)
1389 nvmet_tcp_arm_queue_deadline(queue);
1390
1391 return !time_after(jiffies, queue->poll_end);
1392 }
1393
nvmet_tcp_io_work(struct work_struct * w)1394 static void nvmet_tcp_io_work(struct work_struct *w)
1395 {
1396 struct nvmet_tcp_queue *queue =
1397 container_of(w, struct nvmet_tcp_queue, io_work);
1398 bool pending;
1399 int ret, ops = 0;
1400
1401 do {
1402 pending = false;
1403
1404 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1405 if (ret > 0)
1406 pending = true;
1407 else if (ret < 0)
1408 return;
1409
1410 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1411 if (ret > 0)
1412 pending = true;
1413 else if (ret < 0)
1414 return;
1415
1416 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1417
1418 /*
1419 * Requeue the worker if idle deadline period is in progress or any
1420 * ops activity was recorded during the do-while loop above.
1421 */
1422 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1423 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1424 }
1425
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1426 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1427 struct nvmet_tcp_cmd *c)
1428 {
1429 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1430
1431 c->queue = queue;
1432 c->req.port = queue->port->nport;
1433
1434 c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1435 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1436 if (!c->cmd_pdu)
1437 return -ENOMEM;
1438 c->req.cmd = &c->cmd_pdu->cmd;
1439
1440 c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1441 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1442 if (!c->rsp_pdu)
1443 goto out_free_cmd;
1444 c->req.cqe = &c->rsp_pdu->cqe;
1445
1446 c->data_pdu = page_frag_alloc(&queue->pf_cache,
1447 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1448 if (!c->data_pdu)
1449 goto out_free_rsp;
1450
1451 c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1452 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1453 if (!c->r2t_pdu)
1454 goto out_free_data;
1455
1456 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1457 c->recv_msg.msg_control = c->recv_cbuf;
1458 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1459 }
1460 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1461
1462 list_add_tail(&c->entry, &queue->free_list);
1463
1464 return 0;
1465 out_free_data:
1466 page_frag_free(c->data_pdu);
1467 out_free_rsp:
1468 page_frag_free(c->rsp_pdu);
1469 out_free_cmd:
1470 page_frag_free(c->cmd_pdu);
1471 return -ENOMEM;
1472 }
1473
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1474 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1475 {
1476 page_frag_free(c->r2t_pdu);
1477 page_frag_free(c->data_pdu);
1478 page_frag_free(c->rsp_pdu);
1479 page_frag_free(c->cmd_pdu);
1480 }
1481
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1482 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1483 {
1484 struct nvmet_tcp_cmd *cmds;
1485 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1486
1487 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1488 if (!cmds)
1489 goto out;
1490
1491 for (i = 0; i < nr_cmds; i++) {
1492 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1493 if (ret)
1494 goto out_free;
1495 }
1496
1497 queue->cmds = cmds;
1498
1499 return 0;
1500 out_free:
1501 while (--i >= 0)
1502 nvmet_tcp_free_cmd(cmds + i);
1503 kfree(cmds);
1504 out:
1505 return ret;
1506 }
1507
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1508 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1509 {
1510 struct nvmet_tcp_cmd *cmds = queue->cmds;
1511 int i;
1512
1513 for (i = 0; i < queue->nr_cmds; i++)
1514 nvmet_tcp_free_cmd(cmds + i);
1515
1516 nvmet_tcp_free_cmd(&queue->connect);
1517 kfree(cmds);
1518 }
1519
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1520 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1521 {
1522 struct socket *sock = queue->sock;
1523
1524 if (!queue->state_change)
1525 return;
1526
1527 write_lock_bh(&sock->sk->sk_callback_lock);
1528 sock->sk->sk_data_ready = queue->data_ready;
1529 sock->sk->sk_state_change = queue->state_change;
1530 sock->sk->sk_write_space = queue->write_space;
1531 sock->sk->sk_user_data = NULL;
1532 write_unlock_bh(&sock->sk->sk_callback_lock);
1533 }
1534
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1535 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1536 {
1537 struct nvmet_tcp_cmd *cmd = queue->cmds;
1538 int i;
1539
1540 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1541 if (nvmet_tcp_need_data_in(cmd))
1542 nvmet_req_uninit(&cmd->req);
1543 }
1544
1545 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1546 /* failed in connect */
1547 nvmet_req_uninit(&queue->connect.req);
1548 }
1549 }
1550
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1551 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1552 {
1553 struct nvmet_tcp_cmd *cmd = queue->cmds;
1554 int i;
1555
1556 for (i = 0; i < queue->nr_cmds; i++, cmd++)
1557 nvmet_tcp_free_cmd_buffers(cmd);
1558 nvmet_tcp_free_cmd_buffers(&queue->connect);
1559 }
1560
nvmet_tcp_release_queue_work(struct work_struct * w)1561 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1562 {
1563 struct nvmet_tcp_queue *queue =
1564 container_of(w, struct nvmet_tcp_queue, release_work);
1565
1566 mutex_lock(&nvmet_tcp_queue_mutex);
1567 list_del_init(&queue->queue_list);
1568 mutex_unlock(&nvmet_tcp_queue_mutex);
1569
1570 nvmet_tcp_restore_socket_callbacks(queue);
1571 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1572 cancel_work_sync(&queue->io_work);
1573 /* stop accepting incoming data */
1574 queue->rcv_state = NVMET_TCP_RECV_ERR;
1575
1576 nvmet_sq_put_tls_key(&queue->nvme_sq);
1577 nvmet_tcp_uninit_data_in_cmds(queue);
1578 nvmet_sq_destroy(&queue->nvme_sq);
1579 nvmet_cq_put(&queue->nvme_cq);
1580 cancel_work_sync(&queue->io_work);
1581 nvmet_tcp_free_cmd_data_in_buffers(queue);
1582 /* ->sock will be released by fput() */
1583 fput(queue->sock->file);
1584 nvmet_tcp_free_cmds(queue);
1585 ida_free(&nvmet_tcp_queue_ida, queue->idx);
1586 page_frag_cache_drain(&queue->pf_cache);
1587 kfree(queue);
1588 }
1589
nvmet_tcp_data_ready(struct sock * sk)1590 static void nvmet_tcp_data_ready(struct sock *sk)
1591 {
1592 struct nvmet_tcp_queue *queue;
1593
1594 trace_sk_data_ready(sk);
1595
1596 read_lock_bh(&sk->sk_callback_lock);
1597 queue = sk->sk_user_data;
1598 if (likely(queue)) {
1599 if (queue->data_ready)
1600 queue->data_ready(sk);
1601 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1602 queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1603 &queue->io_work);
1604 }
1605 read_unlock_bh(&sk->sk_callback_lock);
1606 }
1607
nvmet_tcp_write_space(struct sock * sk)1608 static void nvmet_tcp_write_space(struct sock *sk)
1609 {
1610 struct nvmet_tcp_queue *queue;
1611
1612 read_lock_bh(&sk->sk_callback_lock);
1613 queue = sk->sk_user_data;
1614 if (unlikely(!queue))
1615 goto out;
1616
1617 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1618 queue->write_space(sk);
1619 goto out;
1620 }
1621
1622 if (sk_stream_is_writeable(sk)) {
1623 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1624 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1625 }
1626 out:
1627 read_unlock_bh(&sk->sk_callback_lock);
1628 }
1629
nvmet_tcp_state_change(struct sock * sk)1630 static void nvmet_tcp_state_change(struct sock *sk)
1631 {
1632 struct nvmet_tcp_queue *queue;
1633
1634 read_lock_bh(&sk->sk_callback_lock);
1635 queue = sk->sk_user_data;
1636 if (!queue)
1637 goto done;
1638
1639 switch (sk->sk_state) {
1640 case TCP_FIN_WAIT2:
1641 case TCP_LAST_ACK:
1642 break;
1643 case TCP_FIN_WAIT1:
1644 case TCP_CLOSE_WAIT:
1645 case TCP_CLOSE:
1646 /* FALLTHRU */
1647 nvmet_tcp_schedule_release_queue(queue);
1648 break;
1649 default:
1650 pr_warn("queue %d unhandled state %d\n",
1651 queue->idx, sk->sk_state);
1652 }
1653 done:
1654 read_unlock_bh(&sk->sk_callback_lock);
1655 }
1656
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1657 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1658 {
1659 struct socket *sock = queue->sock;
1660 struct inet_sock *inet = inet_sk(sock->sk);
1661 int ret;
1662
1663 ret = kernel_getsockname(sock,
1664 (struct sockaddr *)&queue->sockaddr);
1665 if (ret < 0)
1666 return ret;
1667
1668 ret = kernel_getpeername(sock,
1669 (struct sockaddr *)&queue->sockaddr_peer);
1670 if (ret < 0)
1671 return ret;
1672
1673 /*
1674 * Cleanup whatever is sitting in the TCP transmit queue on socket
1675 * close. This is done to prevent stale data from being sent should
1676 * the network connection be restored before TCP times out.
1677 */
1678 sock_no_linger(sock->sk);
1679
1680 if (so_priority > 0)
1681 sock_set_priority(sock->sk, so_priority);
1682
1683 /* Set socket type of service */
1684 if (inet->rcv_tos > 0)
1685 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1686
1687 ret = 0;
1688 write_lock_bh(&sock->sk->sk_callback_lock);
1689 if (sock->sk->sk_state != TCP_ESTABLISHED) {
1690 /*
1691 * If the socket is already closing, don't even start
1692 * consuming it
1693 */
1694 ret = -ENOTCONN;
1695 } else {
1696 sock->sk->sk_user_data = queue;
1697 queue->data_ready = sock->sk->sk_data_ready;
1698 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1699 queue->state_change = sock->sk->sk_state_change;
1700 sock->sk->sk_state_change = nvmet_tcp_state_change;
1701 queue->write_space = sock->sk->sk_write_space;
1702 sock->sk->sk_write_space = nvmet_tcp_write_space;
1703 if (idle_poll_period_usecs)
1704 nvmet_tcp_arm_queue_deadline(queue);
1705 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1706 }
1707 write_unlock_bh(&sock->sk->sk_callback_lock);
1708
1709 return ret;
1710 }
1711
1712 #ifdef CONFIG_NVME_TARGET_TCP_TLS
nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue * queue)1713 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1714 {
1715 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1716 int len, ret;
1717 struct kvec iov = {
1718 .iov_base = (u8 *)&queue->pdu + queue->offset,
1719 .iov_len = sizeof(struct nvme_tcp_hdr),
1720 };
1721 char cbuf[CMSG_LEN(sizeof(char))] = {};
1722 struct msghdr msg = {
1723 .msg_control = cbuf,
1724 .msg_controllen = sizeof(cbuf),
1725 .msg_flags = MSG_PEEK,
1726 };
1727
1728 if (nvmet_port_secure_channel_required(queue->port->nport))
1729 return 0;
1730
1731 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1732 iov.iov_len, msg.msg_flags);
1733 if (unlikely(len < 0)) {
1734 pr_debug("queue %d: peek error %d\n",
1735 queue->idx, len);
1736 return len;
1737 }
1738
1739 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1740 if (ret < 0)
1741 return ret;
1742
1743 if (len < sizeof(struct nvme_tcp_hdr)) {
1744 pr_debug("queue %d: short read, %d bytes missing\n",
1745 queue->idx, (int)iov.iov_len - len);
1746 return -EAGAIN;
1747 }
1748 pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1749 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1750 (int)sizeof(struct nvme_tcp_icreq_pdu));
1751 if (hdr->type == nvme_tcp_icreq &&
1752 hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1753 hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1754 pr_debug("queue %d: icreq detected\n",
1755 queue->idx);
1756 return len;
1757 }
1758 return 0;
1759 }
1760
nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue * queue,key_serial_t peerid)1761 static int nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue *queue,
1762 key_serial_t peerid)
1763 {
1764 struct key *tls_key = nvme_tls_key_lookup(peerid);
1765 int status = 0;
1766
1767 if (IS_ERR(tls_key)) {
1768 pr_warn("%s: queue %d failed to lookup key %x\n",
1769 __func__, queue->idx, peerid);
1770 spin_lock_bh(&queue->state_lock);
1771 queue->state = NVMET_TCP_Q_FAILED;
1772 spin_unlock_bh(&queue->state_lock);
1773 status = PTR_ERR(tls_key);
1774 } else {
1775 pr_debug("%s: queue %d using TLS PSK %x\n",
1776 __func__, queue->idx, peerid);
1777 queue->nvme_sq.tls_key = tls_key;
1778 }
1779 return status;
1780 }
1781
nvmet_tcp_tls_handshake_done(void * data,int status,key_serial_t peerid)1782 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1783 key_serial_t peerid)
1784 {
1785 struct nvmet_tcp_queue *queue = data;
1786
1787 pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1788 queue->idx, peerid, status);
1789 spin_lock_bh(&queue->state_lock);
1790 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1791 spin_unlock_bh(&queue->state_lock);
1792 return;
1793 }
1794 if (!status) {
1795 queue->tls_pskid = peerid;
1796 queue->state = NVMET_TCP_Q_CONNECTING;
1797 } else
1798 queue->state = NVMET_TCP_Q_FAILED;
1799 spin_unlock_bh(&queue->state_lock);
1800
1801 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1802
1803 if (!status)
1804 status = nvmet_tcp_tls_key_lookup(queue, peerid);
1805
1806 if (status)
1807 nvmet_tcp_schedule_release_queue(queue);
1808 else
1809 nvmet_tcp_set_queue_sock(queue);
1810 kref_put(&queue->kref, nvmet_tcp_release_queue);
1811 }
1812
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1813 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1814 {
1815 struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1816 struct nvmet_tcp_queue, tls_handshake_tmo_work);
1817
1818 pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1819 /*
1820 * If tls_handshake_cancel() fails we've lost the race with
1821 * nvmet_tcp_tls_handshake_done() */
1822 if (!tls_handshake_cancel(queue->sock->sk))
1823 return;
1824 spin_lock_bh(&queue->state_lock);
1825 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1826 spin_unlock_bh(&queue->state_lock);
1827 return;
1828 }
1829 queue->state = NVMET_TCP_Q_FAILED;
1830 spin_unlock_bh(&queue->state_lock);
1831 nvmet_tcp_schedule_release_queue(queue);
1832 kref_put(&queue->kref, nvmet_tcp_release_queue);
1833 }
1834
nvmet_tcp_tls_handshake(struct nvmet_tcp_queue * queue)1835 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1836 {
1837 int ret = -EOPNOTSUPP;
1838 struct tls_handshake_args args;
1839
1840 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1841 pr_warn("cannot start TLS in state %d\n", queue->state);
1842 return -EINVAL;
1843 }
1844
1845 kref_get(&queue->kref);
1846 pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1847 memset(&args, 0, sizeof(args));
1848 args.ta_sock = queue->sock;
1849 args.ta_done = nvmet_tcp_tls_handshake_done;
1850 args.ta_data = queue;
1851 args.ta_keyring = key_serial(queue->port->nport->keyring);
1852 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1853
1854 ret = tls_server_hello_psk(&args, GFP_KERNEL);
1855 if (ret) {
1856 kref_put(&queue->kref, nvmet_tcp_release_queue);
1857 pr_err("failed to start TLS, err=%d\n", ret);
1858 } else {
1859 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1860 tls_handshake_timeout * HZ);
1861 }
1862 return ret;
1863 }
1864 #else
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1865 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1866 #endif
1867
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1868 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1869 struct socket *newsock)
1870 {
1871 struct nvmet_tcp_queue *queue;
1872 struct file *sock_file = NULL;
1873 int ret;
1874
1875 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1876 if (!queue) {
1877 ret = -ENOMEM;
1878 goto out_release;
1879 }
1880
1881 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1882 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1883 kref_init(&queue->kref);
1884 queue->sock = newsock;
1885 queue->port = port;
1886 queue->nr_cmds = 0;
1887 spin_lock_init(&queue->state_lock);
1888 if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1889 NVMF_TCP_SECTYPE_TLS13)
1890 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1891 else
1892 queue->state = NVMET_TCP_Q_CONNECTING;
1893 INIT_LIST_HEAD(&queue->free_list);
1894 init_llist_head(&queue->resp_list);
1895 INIT_LIST_HEAD(&queue->resp_send_list);
1896
1897 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1898 if (IS_ERR(sock_file)) {
1899 ret = PTR_ERR(sock_file);
1900 goto out_free_queue;
1901 }
1902
1903 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1904 if (queue->idx < 0) {
1905 ret = queue->idx;
1906 goto out_sock;
1907 }
1908
1909 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1910 if (ret)
1911 goto out_ida_remove;
1912
1913 nvmet_cq_init(&queue->nvme_cq);
1914 ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
1915 if (ret)
1916 goto out_free_connect;
1917
1918 nvmet_prepare_receive_pdu(queue);
1919
1920 mutex_lock(&nvmet_tcp_queue_mutex);
1921 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1922 mutex_unlock(&nvmet_tcp_queue_mutex);
1923
1924 INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1925 nvmet_tcp_tls_handshake_timeout);
1926 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1927 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1928 struct sock *sk = queue->sock->sk;
1929
1930 /* Restore the default callbacks before starting upcall */
1931 read_lock_bh(&sk->sk_callback_lock);
1932 sk->sk_user_data = NULL;
1933 sk->sk_data_ready = port->data_ready;
1934 read_unlock_bh(&sk->sk_callback_lock);
1935 if (!nvmet_tcp_try_peek_pdu(queue)) {
1936 if (!nvmet_tcp_tls_handshake(queue))
1937 return;
1938 /* TLS handshake failed, terminate the connection */
1939 goto out_destroy_sq;
1940 }
1941 /* Not a TLS connection, continue with normal processing */
1942 queue->state = NVMET_TCP_Q_CONNECTING;
1943 }
1944 #endif
1945
1946 ret = nvmet_tcp_set_queue_sock(queue);
1947 if (ret)
1948 goto out_destroy_sq;
1949
1950 return;
1951 out_destroy_sq:
1952 mutex_lock(&nvmet_tcp_queue_mutex);
1953 list_del_init(&queue->queue_list);
1954 mutex_unlock(&nvmet_tcp_queue_mutex);
1955 nvmet_sq_destroy(&queue->nvme_sq);
1956 out_free_connect:
1957 nvmet_cq_put(&queue->nvme_cq);
1958 nvmet_tcp_free_cmd(&queue->connect);
1959 out_ida_remove:
1960 ida_free(&nvmet_tcp_queue_ida, queue->idx);
1961 out_sock:
1962 fput(queue->sock->file);
1963 out_free_queue:
1964 kfree(queue);
1965 out_release:
1966 pr_err("failed to allocate queue, error %d\n", ret);
1967 if (!sock_file)
1968 sock_release(newsock);
1969 }
1970
nvmet_tcp_accept_work(struct work_struct * w)1971 static void nvmet_tcp_accept_work(struct work_struct *w)
1972 {
1973 struct nvmet_tcp_port *port =
1974 container_of(w, struct nvmet_tcp_port, accept_work);
1975 struct socket *newsock;
1976 int ret;
1977
1978 while (true) {
1979 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1980 if (ret < 0) {
1981 if (ret != -EAGAIN)
1982 pr_warn("failed to accept err=%d\n", ret);
1983 return;
1984 }
1985 nvmet_tcp_alloc_queue(port, newsock);
1986 }
1987 }
1988
nvmet_tcp_listen_data_ready(struct sock * sk)1989 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1990 {
1991 struct nvmet_tcp_port *port;
1992
1993 trace_sk_data_ready(sk);
1994
1995 read_lock_bh(&sk->sk_callback_lock);
1996 port = sk->sk_user_data;
1997 if (!port)
1998 goto out;
1999
2000 if (sk->sk_state == TCP_LISTEN)
2001 queue_work(nvmet_wq, &port->accept_work);
2002 out:
2003 read_unlock_bh(&sk->sk_callback_lock);
2004 }
2005
nvmet_tcp_add_port(struct nvmet_port * nport)2006 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2007 {
2008 struct nvmet_tcp_port *port;
2009 __kernel_sa_family_t af;
2010 int ret;
2011
2012 port = kzalloc(sizeof(*port), GFP_KERNEL);
2013 if (!port)
2014 return -ENOMEM;
2015
2016 switch (nport->disc_addr.adrfam) {
2017 case NVMF_ADDR_FAMILY_IP4:
2018 af = AF_INET;
2019 break;
2020 case NVMF_ADDR_FAMILY_IP6:
2021 af = AF_INET6;
2022 break;
2023 default:
2024 pr_err("address family %d not supported\n",
2025 nport->disc_addr.adrfam);
2026 ret = -EINVAL;
2027 goto err_port;
2028 }
2029
2030 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2031 nport->disc_addr.trsvcid, &port->addr);
2032 if (ret) {
2033 pr_err("malformed ip/port passed: %s:%s\n",
2034 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2035 goto err_port;
2036 }
2037
2038 port->nport = nport;
2039 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2040 if (port->nport->inline_data_size < 0)
2041 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2042
2043 ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2044 IPPROTO_TCP, &port->sock);
2045 if (ret) {
2046 pr_err("failed to create a socket\n");
2047 goto err_port;
2048 }
2049
2050 port->sock->sk->sk_user_data = port;
2051 port->data_ready = port->sock->sk->sk_data_ready;
2052 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2053 sock_set_reuseaddr(port->sock->sk);
2054 tcp_sock_set_nodelay(port->sock->sk);
2055 if (so_priority > 0)
2056 sock_set_priority(port->sock->sk, so_priority);
2057
2058 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2059 sizeof(port->addr));
2060 if (ret) {
2061 pr_err("failed to bind port socket %d\n", ret);
2062 goto err_sock;
2063 }
2064
2065 ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2066 if (ret) {
2067 pr_err("failed to listen %d on port sock\n", ret);
2068 goto err_sock;
2069 }
2070
2071 nport->priv = port;
2072 pr_info("enabling port %d (%pISpc)\n",
2073 le16_to_cpu(nport->disc_addr.portid), &port->addr);
2074
2075 return 0;
2076
2077 err_sock:
2078 sock_release(port->sock);
2079 err_port:
2080 kfree(port);
2081 return ret;
2082 }
2083
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)2084 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2085 {
2086 struct nvmet_tcp_queue *queue;
2087
2088 mutex_lock(&nvmet_tcp_queue_mutex);
2089 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2090 if (queue->port == port)
2091 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2092 mutex_unlock(&nvmet_tcp_queue_mutex);
2093 }
2094
nvmet_tcp_remove_port(struct nvmet_port * nport)2095 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2096 {
2097 struct nvmet_tcp_port *port = nport->priv;
2098
2099 write_lock_bh(&port->sock->sk->sk_callback_lock);
2100 port->sock->sk->sk_data_ready = port->data_ready;
2101 port->sock->sk->sk_user_data = NULL;
2102 write_unlock_bh(&port->sock->sk->sk_callback_lock);
2103 cancel_work_sync(&port->accept_work);
2104 /*
2105 * Destroy the remaining queues, which are not belong to any
2106 * controller yet.
2107 */
2108 nvmet_tcp_destroy_port_queues(port);
2109
2110 sock_release(port->sock);
2111 kfree(port);
2112 }
2113
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)2114 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2115 {
2116 struct nvmet_tcp_queue *queue;
2117
2118 mutex_lock(&nvmet_tcp_queue_mutex);
2119 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2120 if (queue->nvme_sq.ctrl == ctrl)
2121 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2122 mutex_unlock(&nvmet_tcp_queue_mutex);
2123 }
2124
nvmet_tcp_install_queue(struct nvmet_sq * sq)2125 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2126 {
2127 struct nvmet_tcp_queue *queue =
2128 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2129
2130 if (sq->qid == 0) {
2131 struct nvmet_tcp_queue *q;
2132 int pending = 0;
2133
2134 /* Check for pending controller teardown */
2135 mutex_lock(&nvmet_tcp_queue_mutex);
2136 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2137 if (q->nvme_sq.ctrl == sq->ctrl &&
2138 q->state == NVMET_TCP_Q_DISCONNECTING)
2139 pending++;
2140 }
2141 mutex_unlock(&nvmet_tcp_queue_mutex);
2142 if (pending > NVMET_TCP_BACKLOG)
2143 return NVME_SC_CONNECT_CTRL_BUSY;
2144 }
2145
2146 queue->nr_cmds = sq->size * 2;
2147 if (nvmet_tcp_alloc_cmds(queue)) {
2148 queue->nr_cmds = 0;
2149 return NVME_SC_INTERNAL;
2150 }
2151 return 0;
2152 }
2153
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)2154 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2155 struct nvmet_port *nport, char *traddr)
2156 {
2157 struct nvmet_tcp_port *port = nport->priv;
2158
2159 if (inet_addr_is_any(&port->addr)) {
2160 struct nvmet_tcp_cmd *cmd =
2161 container_of(req, struct nvmet_tcp_cmd, req);
2162 struct nvmet_tcp_queue *queue = cmd->queue;
2163
2164 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2165 } else {
2166 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2167 }
2168 }
2169
nvmet_tcp_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2170 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2171 char *traddr, size_t traddr_len)
2172 {
2173 struct nvmet_sq *sq = ctrl->sqs[0];
2174 struct nvmet_tcp_queue *queue =
2175 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2176
2177 if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2178 return -EINVAL;
2179 return snprintf(traddr, traddr_len, "%pISc",
2180 (struct sockaddr *)&queue->sockaddr_peer);
2181 }
2182
2183 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2184 .owner = THIS_MODULE,
2185 .type = NVMF_TRTYPE_TCP,
2186 .msdbd = 1,
2187 .add_port = nvmet_tcp_add_port,
2188 .remove_port = nvmet_tcp_remove_port,
2189 .queue_response = nvmet_tcp_queue_response,
2190 .delete_ctrl = nvmet_tcp_delete_ctrl,
2191 .install_queue = nvmet_tcp_install_queue,
2192 .disc_traddr = nvmet_tcp_disc_port_addr,
2193 .host_traddr = nvmet_tcp_host_port_addr,
2194 };
2195
nvmet_tcp_init(void)2196 static int __init nvmet_tcp_init(void)
2197 {
2198 int ret;
2199
2200 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2201 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2202 if (!nvmet_tcp_wq)
2203 return -ENOMEM;
2204
2205 ret = nvmet_register_transport(&nvmet_tcp_ops);
2206 if (ret)
2207 goto err;
2208
2209 return 0;
2210 err:
2211 destroy_workqueue(nvmet_tcp_wq);
2212 return ret;
2213 }
2214
nvmet_tcp_exit(void)2215 static void __exit nvmet_tcp_exit(void)
2216 {
2217 struct nvmet_tcp_queue *queue;
2218
2219 nvmet_unregister_transport(&nvmet_tcp_ops);
2220
2221 flush_workqueue(nvmet_wq);
2222 mutex_lock(&nvmet_tcp_queue_mutex);
2223 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2224 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2225 mutex_unlock(&nvmet_tcp_queue_mutex);
2226 flush_workqueue(nvmet_wq);
2227
2228 destroy_workqueue(nvmet_tcp_wq);
2229 ida_destroy(&nvmet_tcp_queue_ida);
2230 }
2231
2232 module_init(nvmet_tcp_init);
2233 module_exit(nvmet_tcp_exit);
2234
2235 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2236 MODULE_LICENSE("GPL v2");
2237 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2238