xref: /linux/drivers/nvme/target/tcp.c (revision 85502b2214d50ba0ddf2a5fb454e4d28a160d175)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/crc32c.h>
11 #include <linux/err.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <trace/events/sock.h>
22 
23 #include "nvmet.h"
24 
25 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
26 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
27 #define NVMET_TCP_BACKLOG 128
28 
param_store_val(const char * str,int * val,int min,int max)29 static int param_store_val(const char *str, int *val, int min, int max)
30 {
31 	int ret, new_val;
32 
33 	ret = kstrtoint(str, 10, &new_val);
34 	if (ret)
35 		return -EINVAL;
36 
37 	if (new_val < min || new_val > max)
38 		return -EINVAL;
39 
40 	*val = new_val;
41 	return 0;
42 }
43 
set_params(const char * str,const struct kernel_param * kp)44 static int set_params(const char *str, const struct kernel_param *kp)
45 {
46 	return param_store_val(str, kp->arg, 0, INT_MAX);
47 }
48 
49 static const struct kernel_param_ops set_param_ops = {
50 	.set	= set_params,
51 	.get	= param_get_int,
52 };
53 
54 /* Define the socket priority to use for connections were it is desirable
55  * that the NIC consider performing optimized packet processing or filtering.
56  * A non-zero value being sufficient to indicate general consideration of any
57  * possible optimization.  Making it a module param allows for alternative
58  * values that may be unique for some NIC implementations.
59  */
60 static int so_priority;
61 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
62 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
63 
64 /* Define a time period (in usecs) that io_work() shall sample an activated
65  * queue before determining it to be idle.  This optional module behavior
66  * can enable NIC solutions that support socket optimized packet processing
67  * using advanced interrupt moderation techniques.
68  */
69 static int idle_poll_period_usecs;
70 device_param_cb(idle_poll_period_usecs, &set_param_ops,
71 		&idle_poll_period_usecs, 0644);
72 MODULE_PARM_DESC(idle_poll_period_usecs,
73 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
74 
75 #ifdef CONFIG_NVME_TARGET_TCP_TLS
76 /*
77  * TLS handshake timeout
78  */
79 static int tls_handshake_timeout = 10;
80 module_param(tls_handshake_timeout, int, 0644);
81 MODULE_PARM_DESC(tls_handshake_timeout,
82 		 "nvme TLS handshake timeout in seconds (default 10)");
83 #endif
84 
85 #define NVMET_TCP_RECV_BUDGET		8
86 #define NVMET_TCP_SEND_BUDGET		8
87 #define NVMET_TCP_IO_WORK_BUDGET	64
88 
89 enum nvmet_tcp_send_state {
90 	NVMET_TCP_SEND_DATA_PDU,
91 	NVMET_TCP_SEND_DATA,
92 	NVMET_TCP_SEND_R2T,
93 	NVMET_TCP_SEND_DDGST,
94 	NVMET_TCP_SEND_RESPONSE
95 };
96 
97 enum nvmet_tcp_recv_state {
98 	NVMET_TCP_RECV_PDU,
99 	NVMET_TCP_RECV_DATA,
100 	NVMET_TCP_RECV_DDGST,
101 	NVMET_TCP_RECV_ERR,
102 };
103 
104 enum {
105 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
106 };
107 
108 struct nvmet_tcp_cmd {
109 	struct nvmet_tcp_queue		*queue;
110 	struct nvmet_req		req;
111 
112 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
113 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
114 	struct nvme_tcp_data_pdu	*data_pdu;
115 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
116 
117 	u32				rbytes_done;
118 	u32				wbytes_done;
119 
120 	u32				pdu_len;
121 	u32				pdu_recv;
122 	int				sg_idx;
123 	char				recv_cbuf[CMSG_LEN(sizeof(char))];
124 	struct msghdr			recv_msg;
125 	struct bio_vec			*iov;
126 	u32				flags;
127 
128 	struct list_head		entry;
129 	struct llist_node		lentry;
130 
131 	/* send state */
132 	u32				offset;
133 	struct scatterlist		*cur_sg;
134 	enum nvmet_tcp_send_state	state;
135 
136 	__le32				exp_ddgst;
137 	__le32				recv_ddgst;
138 };
139 
140 enum nvmet_tcp_queue_state {
141 	NVMET_TCP_Q_CONNECTING,
142 	NVMET_TCP_Q_TLS_HANDSHAKE,
143 	NVMET_TCP_Q_LIVE,
144 	NVMET_TCP_Q_DISCONNECTING,
145 	NVMET_TCP_Q_FAILED,
146 };
147 
148 struct nvmet_tcp_queue {
149 	struct socket		*sock;
150 	struct nvmet_tcp_port	*port;
151 	struct work_struct	io_work;
152 	struct nvmet_cq		nvme_cq;
153 	struct nvmet_sq		nvme_sq;
154 	struct kref		kref;
155 
156 	/* send state */
157 	struct nvmet_tcp_cmd	*cmds;
158 	unsigned int		nr_cmds;
159 	struct list_head	free_list;
160 	struct llist_head	resp_list;
161 	struct list_head	resp_send_list;
162 	int			send_list_len;
163 	struct nvmet_tcp_cmd	*snd_cmd;
164 
165 	/* recv state */
166 	int			offset;
167 	int			left;
168 	enum nvmet_tcp_recv_state rcv_state;
169 	struct nvmet_tcp_cmd	*cmd;
170 	union nvme_tcp_pdu	pdu;
171 
172 	/* digest state */
173 	bool			hdr_digest;
174 	bool			data_digest;
175 
176 	/* TLS state */
177 	key_serial_t		tls_pskid;
178 	struct delayed_work	tls_handshake_tmo_work;
179 
180 	unsigned long           poll_end;
181 
182 	spinlock_t		state_lock;
183 	enum nvmet_tcp_queue_state state;
184 
185 	struct sockaddr_storage	sockaddr;
186 	struct sockaddr_storage	sockaddr_peer;
187 	struct work_struct	release_work;
188 
189 	int			idx;
190 	struct list_head	queue_list;
191 
192 	struct nvmet_tcp_cmd	connect;
193 
194 	struct page_frag_cache	pf_cache;
195 
196 	void (*data_ready)(struct sock *);
197 	void (*state_change)(struct sock *);
198 	void (*write_space)(struct sock *);
199 };
200 
201 struct nvmet_tcp_port {
202 	struct socket		*sock;
203 	struct work_struct	accept_work;
204 	struct nvmet_port	*nport;
205 	struct sockaddr_storage addr;
206 	void (*data_ready)(struct sock *);
207 };
208 
209 static DEFINE_IDA(nvmet_tcp_queue_ida);
210 static LIST_HEAD(nvmet_tcp_queue_list);
211 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
212 
213 static struct workqueue_struct *nvmet_tcp_wq;
214 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
215 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
216 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
217 
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)218 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
219 		struct nvmet_tcp_cmd *cmd)
220 {
221 	if (unlikely(!queue->nr_cmds)) {
222 		/* We didn't allocate cmds yet, send 0xffff */
223 		return USHRT_MAX;
224 	}
225 
226 	return cmd - queue->cmds;
227 }
228 
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)229 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
230 {
231 	return nvme_is_write(cmd->req.cmd) &&
232 		cmd->rbytes_done < cmd->req.transfer_len;
233 }
234 
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)235 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
236 {
237 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
238 }
239 
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)240 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
241 {
242 	return !nvme_is_write(cmd->req.cmd) &&
243 		cmd->req.transfer_len > 0 &&
244 		!cmd->req.cqe->status;
245 }
246 
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)247 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
248 {
249 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
250 		!cmd->rbytes_done;
251 }
252 
253 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)254 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
255 {
256 	struct nvmet_tcp_cmd *cmd;
257 
258 	cmd = list_first_entry_or_null(&queue->free_list,
259 				struct nvmet_tcp_cmd, entry);
260 	if (!cmd)
261 		return NULL;
262 	list_del_init(&cmd->entry);
263 
264 	cmd->rbytes_done = cmd->wbytes_done = 0;
265 	cmd->pdu_len = 0;
266 	cmd->pdu_recv = 0;
267 	cmd->iov = NULL;
268 	cmd->flags = 0;
269 	return cmd;
270 }
271 
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)272 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
273 {
274 	if (unlikely(cmd == &cmd->queue->connect))
275 		return;
276 
277 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
278 }
279 
queue_cpu(struct nvmet_tcp_queue * queue)280 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
281 {
282 	return queue->sock->sk->sk_incoming_cpu;
283 }
284 
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)285 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
286 {
287 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
288 }
289 
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)290 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
291 {
292 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
293 }
294 
nvmet_tcp_hdgst(void * pdu,size_t len)295 static inline void nvmet_tcp_hdgst(void *pdu, size_t len)
296 {
297 	put_unaligned_le32(~crc32c(~0, pdu, len), pdu + len);
298 }
299 
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)300 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
301 	void *pdu, size_t len)
302 {
303 	struct nvme_tcp_hdr *hdr = pdu;
304 	__le32 recv_digest;
305 	__le32 exp_digest;
306 
307 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
308 		pr_err("queue %d: header digest enabled but no header digest\n",
309 			queue->idx);
310 		return -EPROTO;
311 	}
312 
313 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
314 	nvmet_tcp_hdgst(pdu, len);
315 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
316 	if (recv_digest != exp_digest) {
317 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
318 			queue->idx, le32_to_cpu(recv_digest),
319 			le32_to_cpu(exp_digest));
320 		return -EPROTO;
321 	}
322 
323 	return 0;
324 }
325 
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)326 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
327 {
328 	struct nvme_tcp_hdr *hdr = pdu;
329 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
330 	u32 len;
331 
332 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
333 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
334 
335 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
336 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
337 		return -EPROTO;
338 	}
339 
340 	return 0;
341 }
342 
343 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)344 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
345 {
346 	kfree(cmd->iov);
347 	sgl_free(cmd->req.sg);
348 	cmd->iov = NULL;
349 	cmd->req.sg = NULL;
350 }
351 
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)352 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
353 {
354 	struct bio_vec *iov = cmd->iov;
355 	struct scatterlist *sg;
356 	u32 length, offset, sg_offset;
357 	int nr_pages;
358 
359 	length = cmd->pdu_len;
360 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
361 	offset = cmd->rbytes_done;
362 	cmd->sg_idx = offset / PAGE_SIZE;
363 	sg_offset = offset % PAGE_SIZE;
364 	sg = &cmd->req.sg[cmd->sg_idx];
365 
366 	while (length) {
367 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
368 
369 		bvec_set_page(iov, sg_page(sg), iov_len,
370 				sg->offset + sg_offset);
371 
372 		length -= iov_len;
373 		sg = sg_next(sg);
374 		iov++;
375 		sg_offset = 0;
376 	}
377 
378 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
379 		      nr_pages, cmd->pdu_len);
380 }
381 
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)382 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
383 {
384 	queue->rcv_state = NVMET_TCP_RECV_ERR;
385 	if (queue->nvme_sq.ctrl)
386 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
387 	else
388 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
389 }
390 
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)391 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
392 {
393 	queue->rcv_state = NVMET_TCP_RECV_ERR;
394 	if (status == -EPIPE || status == -ECONNRESET)
395 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
396 	else
397 		nvmet_tcp_fatal_error(queue);
398 }
399 
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)400 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
401 {
402 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
403 	u32 len = le32_to_cpu(sgl->length);
404 
405 	if (!len)
406 		return 0;
407 
408 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
409 			  NVME_SGL_FMT_OFFSET)) {
410 		if (!nvme_is_write(cmd->req.cmd))
411 			return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
412 
413 		if (len > cmd->req.port->inline_data_size)
414 			return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
415 		cmd->pdu_len = len;
416 	}
417 	cmd->req.transfer_len += len;
418 
419 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
420 	if (!cmd->req.sg)
421 		return NVME_SC_INTERNAL;
422 	cmd->cur_sg = cmd->req.sg;
423 
424 	if (nvmet_tcp_has_data_in(cmd)) {
425 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
426 				sizeof(*cmd->iov), GFP_KERNEL);
427 		if (!cmd->iov)
428 			goto err;
429 	}
430 
431 	return 0;
432 err:
433 	nvmet_tcp_free_cmd_buffers(cmd);
434 	return NVME_SC_INTERNAL;
435 }
436 
nvmet_tcp_calc_ddgst(struct nvmet_tcp_cmd * cmd)437 static void nvmet_tcp_calc_ddgst(struct nvmet_tcp_cmd *cmd)
438 {
439 	size_t total_len = cmd->req.transfer_len;
440 	struct scatterlist *sg = cmd->req.sg;
441 	u32 crc = ~0;
442 
443 	while (total_len) {
444 		size_t len = min_t(size_t, total_len, sg->length);
445 
446 		/*
447 		 * Note that the scatterlist does not contain any highmem pages,
448 		 * as it was allocated by sgl_alloc() with GFP_KERNEL.
449 		 */
450 		crc = crc32c(crc, sg_virt(sg), len);
451 		total_len -= len;
452 		sg = sg_next(sg);
453 	}
454 	cmd->exp_ddgst = cpu_to_le32(~crc);
455 }
456 
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)457 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
458 {
459 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
460 	struct nvmet_tcp_queue *queue = cmd->queue;
461 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
462 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
463 
464 	cmd->offset = 0;
465 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
466 
467 	pdu->hdr.type = nvme_tcp_c2h_data;
468 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
469 						NVME_TCP_F_DATA_SUCCESS : 0);
470 	pdu->hdr.hlen = sizeof(*pdu);
471 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
472 	pdu->hdr.plen =
473 		cpu_to_le32(pdu->hdr.hlen + hdgst +
474 				cmd->req.transfer_len + ddgst);
475 	pdu->command_id = cmd->req.cqe->command_id;
476 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
477 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
478 
479 	if (queue->data_digest) {
480 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
481 		nvmet_tcp_calc_ddgst(cmd);
482 	}
483 
484 	if (cmd->queue->hdr_digest) {
485 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
486 		nvmet_tcp_hdgst(pdu, sizeof(*pdu));
487 	}
488 }
489 
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)490 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
491 {
492 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
493 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
494 
495 	cmd->offset = 0;
496 	cmd->state = NVMET_TCP_SEND_R2T;
497 
498 	pdu->hdr.type = nvme_tcp_r2t;
499 	pdu->hdr.flags = 0;
500 	pdu->hdr.hlen = sizeof(*pdu);
501 	pdu->hdr.pdo = 0;
502 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
503 
504 	pdu->command_id = cmd->req.cmd->common.command_id;
505 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
506 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
507 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
508 	if (cmd->queue->hdr_digest) {
509 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
510 		nvmet_tcp_hdgst(pdu, sizeof(*pdu));
511 	}
512 }
513 
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)514 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
515 {
516 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
517 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
518 
519 	cmd->offset = 0;
520 	cmd->state = NVMET_TCP_SEND_RESPONSE;
521 
522 	pdu->hdr.type = nvme_tcp_rsp;
523 	pdu->hdr.flags = 0;
524 	pdu->hdr.hlen = sizeof(*pdu);
525 	pdu->hdr.pdo = 0;
526 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
527 	if (cmd->queue->hdr_digest) {
528 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
529 		nvmet_tcp_hdgst(pdu, sizeof(*pdu));
530 	}
531 }
532 
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)533 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
534 {
535 	struct llist_node *node;
536 	struct nvmet_tcp_cmd *cmd;
537 
538 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
539 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
540 		list_add(&cmd->entry, &queue->resp_send_list);
541 		queue->send_list_len++;
542 	}
543 }
544 
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)545 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
546 {
547 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
548 				struct nvmet_tcp_cmd, entry);
549 	if (!queue->snd_cmd) {
550 		nvmet_tcp_process_resp_list(queue);
551 		queue->snd_cmd =
552 			list_first_entry_or_null(&queue->resp_send_list,
553 					struct nvmet_tcp_cmd, entry);
554 		if (unlikely(!queue->snd_cmd))
555 			return NULL;
556 	}
557 
558 	list_del_init(&queue->snd_cmd->entry);
559 	queue->send_list_len--;
560 
561 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
562 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
563 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
564 		nvmet_setup_r2t_pdu(queue->snd_cmd);
565 	else
566 		nvmet_setup_response_pdu(queue->snd_cmd);
567 
568 	return queue->snd_cmd;
569 }
570 
nvmet_tcp_queue_response(struct nvmet_req * req)571 static void nvmet_tcp_queue_response(struct nvmet_req *req)
572 {
573 	struct nvmet_tcp_cmd *cmd =
574 		container_of(req, struct nvmet_tcp_cmd, req);
575 	struct nvmet_tcp_queue	*queue = cmd->queue;
576 	enum nvmet_tcp_recv_state queue_state;
577 	struct nvmet_tcp_cmd *queue_cmd;
578 	struct nvme_sgl_desc *sgl;
579 	u32 len;
580 
581 	/* Pairs with store_release in nvmet_prepare_receive_pdu() */
582 	queue_state = smp_load_acquire(&queue->rcv_state);
583 	queue_cmd = READ_ONCE(queue->cmd);
584 
585 	if (unlikely(cmd == queue_cmd)) {
586 		sgl = &cmd->req.cmd->common.dptr.sgl;
587 		len = le32_to_cpu(sgl->length);
588 
589 		/*
590 		 * Wait for inline data before processing the response.
591 		 * Avoid using helpers, this might happen before
592 		 * nvmet_req_init is completed.
593 		 */
594 		if (queue_state == NVMET_TCP_RECV_PDU &&
595 		    len && len <= cmd->req.port->inline_data_size &&
596 		    nvme_is_write(cmd->req.cmd))
597 			return;
598 	}
599 
600 	llist_add(&cmd->lentry, &queue->resp_list);
601 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
602 }
603 
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)604 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
605 {
606 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
607 		nvmet_tcp_queue_response(&cmd->req);
608 	else
609 		cmd->req.execute(&cmd->req);
610 }
611 
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)612 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
613 {
614 	struct msghdr msg = {
615 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
616 	};
617 	struct bio_vec bvec;
618 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
619 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
620 	int ret;
621 
622 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
623 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
624 	ret = sock_sendmsg(cmd->queue->sock, &msg);
625 	if (ret <= 0)
626 		return ret;
627 
628 	cmd->offset += ret;
629 	left -= ret;
630 
631 	if (left)
632 		return -EAGAIN;
633 
634 	cmd->state = NVMET_TCP_SEND_DATA;
635 	cmd->offset  = 0;
636 	return 1;
637 }
638 
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)639 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
640 {
641 	struct nvmet_tcp_queue *queue = cmd->queue;
642 	int ret;
643 
644 	while (cmd->cur_sg) {
645 		struct msghdr msg = {
646 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
647 		};
648 		struct page *page = sg_page(cmd->cur_sg);
649 		struct bio_vec bvec;
650 		u32 left = cmd->cur_sg->length - cmd->offset;
651 
652 		if ((!last_in_batch && cmd->queue->send_list_len) ||
653 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
654 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
655 			msg.msg_flags |= MSG_MORE;
656 
657 		bvec_set_page(&bvec, page, left, cmd->offset);
658 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
659 		ret = sock_sendmsg(cmd->queue->sock, &msg);
660 		if (ret <= 0)
661 			return ret;
662 
663 		cmd->offset += ret;
664 		cmd->wbytes_done += ret;
665 
666 		/* Done with sg?*/
667 		if (cmd->offset == cmd->cur_sg->length) {
668 			cmd->cur_sg = sg_next(cmd->cur_sg);
669 			cmd->offset = 0;
670 		}
671 	}
672 
673 	if (queue->data_digest) {
674 		cmd->state = NVMET_TCP_SEND_DDGST;
675 		cmd->offset = 0;
676 	} else {
677 		if (queue->nvme_sq.sqhd_disabled) {
678 			cmd->queue->snd_cmd = NULL;
679 			nvmet_tcp_put_cmd(cmd);
680 		} else {
681 			nvmet_setup_response_pdu(cmd);
682 		}
683 	}
684 
685 	if (queue->nvme_sq.sqhd_disabled)
686 		nvmet_tcp_free_cmd_buffers(cmd);
687 
688 	return 1;
689 
690 }
691 
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)692 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
693 		bool last_in_batch)
694 {
695 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
696 	struct bio_vec bvec;
697 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
698 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
699 	int ret;
700 
701 	if (!last_in_batch && cmd->queue->send_list_len)
702 		msg.msg_flags |= MSG_MORE;
703 	else
704 		msg.msg_flags |= MSG_EOR;
705 
706 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
707 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
708 	ret = sock_sendmsg(cmd->queue->sock, &msg);
709 	if (ret <= 0)
710 		return ret;
711 	cmd->offset += ret;
712 	left -= ret;
713 
714 	if (left)
715 		return -EAGAIN;
716 
717 	nvmet_tcp_free_cmd_buffers(cmd);
718 	cmd->queue->snd_cmd = NULL;
719 	nvmet_tcp_put_cmd(cmd);
720 	return 1;
721 }
722 
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)723 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
724 {
725 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
726 	struct bio_vec bvec;
727 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
728 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
729 	int ret;
730 
731 	if (!last_in_batch && cmd->queue->send_list_len)
732 		msg.msg_flags |= MSG_MORE;
733 	else
734 		msg.msg_flags |= MSG_EOR;
735 
736 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
737 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
738 	ret = sock_sendmsg(cmd->queue->sock, &msg);
739 	if (ret <= 0)
740 		return ret;
741 	cmd->offset += ret;
742 	left -= ret;
743 
744 	if (left)
745 		return -EAGAIN;
746 
747 	cmd->queue->snd_cmd = NULL;
748 	return 1;
749 }
750 
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)751 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
752 {
753 	struct nvmet_tcp_queue *queue = cmd->queue;
754 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
755 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
756 	struct kvec iov = {
757 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
758 		.iov_len = left
759 	};
760 	int ret;
761 
762 	if (!last_in_batch && cmd->queue->send_list_len)
763 		msg.msg_flags |= MSG_MORE;
764 	else
765 		msg.msg_flags |= MSG_EOR;
766 
767 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
768 	if (unlikely(ret <= 0))
769 		return ret;
770 
771 	cmd->offset += ret;
772 	left -= ret;
773 
774 	if (left)
775 		return -EAGAIN;
776 
777 	if (queue->nvme_sq.sqhd_disabled) {
778 		cmd->queue->snd_cmd = NULL;
779 		nvmet_tcp_put_cmd(cmd);
780 	} else {
781 		nvmet_setup_response_pdu(cmd);
782 	}
783 	return 1;
784 }
785 
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)786 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
787 		bool last_in_batch)
788 {
789 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
790 	int ret = 0;
791 
792 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
793 		cmd = nvmet_tcp_fetch_cmd(queue);
794 		if (unlikely(!cmd))
795 			return 0;
796 	}
797 
798 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
799 		ret = nvmet_try_send_data_pdu(cmd);
800 		if (ret <= 0)
801 			goto done_send;
802 	}
803 
804 	if (cmd->state == NVMET_TCP_SEND_DATA) {
805 		ret = nvmet_try_send_data(cmd, last_in_batch);
806 		if (ret <= 0)
807 			goto done_send;
808 	}
809 
810 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
811 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
812 		if (ret <= 0)
813 			goto done_send;
814 	}
815 
816 	if (cmd->state == NVMET_TCP_SEND_R2T) {
817 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
818 		if (ret <= 0)
819 			goto done_send;
820 	}
821 
822 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
823 		ret = nvmet_try_send_response(cmd, last_in_batch);
824 
825 done_send:
826 	if (ret < 0) {
827 		if (ret == -EAGAIN)
828 			return 0;
829 		return ret;
830 	}
831 
832 	return 1;
833 }
834 
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)835 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
836 		int budget, int *sends)
837 {
838 	int i, ret = 0;
839 
840 	for (i = 0; i < budget; i++) {
841 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
842 		if (unlikely(ret < 0)) {
843 			nvmet_tcp_socket_error(queue, ret);
844 			goto done;
845 		} else if (ret == 0) {
846 			break;
847 		}
848 		(*sends)++;
849 	}
850 done:
851 	return ret;
852 }
853 
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)854 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
855 {
856 	queue->offset = 0;
857 	queue->left = sizeof(struct nvme_tcp_hdr);
858 	WRITE_ONCE(queue->cmd, NULL);
859 	/* Ensure rcv_state is visible only after queue->cmd is set */
860 	smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU);
861 }
862 
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)863 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
864 {
865 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
866 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
867 	struct msghdr msg = {};
868 	struct kvec iov;
869 	int ret;
870 
871 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
872 		pr_err("bad nvme-tcp pdu length (%d)\n",
873 			le32_to_cpu(icreq->hdr.plen));
874 		nvmet_tcp_fatal_error(queue);
875 		return -EPROTO;
876 	}
877 
878 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
879 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
880 		return -EPROTO;
881 	}
882 
883 	if (icreq->hpda != 0) {
884 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
885 			icreq->hpda);
886 		return -EPROTO;
887 	}
888 
889 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
890 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
891 
892 	memset(icresp, 0, sizeof(*icresp));
893 	icresp->hdr.type = nvme_tcp_icresp;
894 	icresp->hdr.hlen = sizeof(*icresp);
895 	icresp->hdr.pdo = 0;
896 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
897 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
898 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
899 	icresp->cpda = 0;
900 	if (queue->hdr_digest)
901 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
902 	if (queue->data_digest)
903 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
904 
905 	iov.iov_base = icresp;
906 	iov.iov_len = sizeof(*icresp);
907 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
908 	if (ret < 0) {
909 		queue->state = NVMET_TCP_Q_FAILED;
910 		return ret; /* queue removal will cleanup */
911 	}
912 
913 	queue->state = NVMET_TCP_Q_LIVE;
914 	nvmet_prepare_receive_pdu(queue);
915 	return 0;
916 }
917 
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)918 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
919 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
920 {
921 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
922 	int ret;
923 
924 	/*
925 	 * This command has not been processed yet, hence we are trying to
926 	 * figure out if there is still pending data left to receive. If
927 	 * we don't, we can simply prepare for the next pdu and bail out,
928 	 * otherwise we will need to prepare a buffer and receive the
929 	 * stale data before continuing forward.
930 	 */
931 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
932 	    data_len > cmd->req.port->inline_data_size) {
933 		nvmet_prepare_receive_pdu(queue);
934 		return;
935 	}
936 
937 	ret = nvmet_tcp_map_data(cmd);
938 	if (unlikely(ret)) {
939 		pr_err("queue %d: failed to map data\n", queue->idx);
940 		nvmet_tcp_fatal_error(queue);
941 		return;
942 	}
943 
944 	queue->rcv_state = NVMET_TCP_RECV_DATA;
945 	nvmet_tcp_build_pdu_iovec(cmd);
946 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
947 }
948 
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)949 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
950 {
951 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
952 	struct nvmet_tcp_cmd *cmd;
953 	unsigned int exp_data_len;
954 
955 	if (likely(queue->nr_cmds)) {
956 		if (unlikely(data->ttag >= queue->nr_cmds)) {
957 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
958 				queue->idx, data->ttag, queue->nr_cmds);
959 			goto err_proto;
960 		}
961 		cmd = &queue->cmds[data->ttag];
962 	} else {
963 		cmd = &queue->connect;
964 	}
965 
966 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
967 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
968 			data->ttag, le32_to_cpu(data->data_offset),
969 			cmd->rbytes_done);
970 		goto err_proto;
971 	}
972 
973 	exp_data_len = le32_to_cpu(data->hdr.plen) -
974 			nvmet_tcp_hdgst_len(queue) -
975 			nvmet_tcp_ddgst_len(queue) -
976 			sizeof(*data);
977 
978 	cmd->pdu_len = le32_to_cpu(data->data_length);
979 	if (unlikely(cmd->pdu_len != exp_data_len ||
980 		     cmd->pdu_len == 0 ||
981 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
982 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
983 		goto err_proto;
984 	}
985 	cmd->pdu_recv = 0;
986 	nvmet_tcp_build_pdu_iovec(cmd);
987 	queue->cmd = cmd;
988 	queue->rcv_state = NVMET_TCP_RECV_DATA;
989 
990 	return 0;
991 
992 err_proto:
993 	/* FIXME: use proper transport errors */
994 	nvmet_tcp_fatal_error(queue);
995 	return -EPROTO;
996 }
997 
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)998 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
999 {
1000 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1001 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1002 	struct nvmet_req *req;
1003 	int ret;
1004 
1005 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1006 		if (hdr->type != nvme_tcp_icreq) {
1007 			pr_err("unexpected pdu type (%d) before icreq\n",
1008 				hdr->type);
1009 			nvmet_tcp_fatal_error(queue);
1010 			return -EPROTO;
1011 		}
1012 		return nvmet_tcp_handle_icreq(queue);
1013 	}
1014 
1015 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1016 		pr_err("queue %d: received icreq pdu in state %d\n",
1017 			queue->idx, queue->state);
1018 		nvmet_tcp_fatal_error(queue);
1019 		return -EPROTO;
1020 	}
1021 
1022 	if (hdr->type == nvme_tcp_h2c_data) {
1023 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1024 		if (unlikely(ret))
1025 			return ret;
1026 		return 0;
1027 	}
1028 
1029 	queue->cmd = nvmet_tcp_get_cmd(queue);
1030 	if (unlikely(!queue->cmd)) {
1031 		/* This should never happen */
1032 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1033 			queue->idx, queue->nr_cmds, queue->send_list_len,
1034 			nvme_cmd->common.opcode);
1035 		nvmet_tcp_fatal_error(queue);
1036 		return -ENOMEM;
1037 	}
1038 
1039 	req = &queue->cmd->req;
1040 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1041 
1042 	if (unlikely(!nvmet_req_init(req, &queue->nvme_sq, &nvmet_tcp_ops))) {
1043 		pr_err("failed cmd %p id %d opcode %d, data_len: %d, status: %04x\n",
1044 			req->cmd, req->cmd->common.command_id,
1045 			req->cmd->common.opcode,
1046 			le32_to_cpu(req->cmd->common.dptr.sgl.length),
1047 			le16_to_cpu(req->cqe->status));
1048 
1049 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1050 		return 0;
1051 	}
1052 
1053 	ret = nvmet_tcp_map_data(queue->cmd);
1054 	if (unlikely(ret)) {
1055 		pr_err("queue %d: failed to map data\n", queue->idx);
1056 		if (nvmet_tcp_has_inline_data(queue->cmd))
1057 			nvmet_tcp_fatal_error(queue);
1058 		else
1059 			nvmet_req_complete(req, ret);
1060 		ret = -EAGAIN;
1061 		goto out;
1062 	}
1063 
1064 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1065 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1066 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1067 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1068 			return 0;
1069 		}
1070 		/* send back R2T */
1071 		nvmet_tcp_queue_response(&queue->cmd->req);
1072 		goto out;
1073 	}
1074 
1075 	queue->cmd->req.execute(&queue->cmd->req);
1076 out:
1077 	nvmet_prepare_receive_pdu(queue);
1078 	return ret;
1079 }
1080 
1081 static const u8 nvme_tcp_pdu_sizes[] = {
1082 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1083 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1084 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1085 };
1086 
nvmet_tcp_pdu_size(u8 type)1087 static inline u8 nvmet_tcp_pdu_size(u8 type)
1088 {
1089 	size_t idx = type;
1090 
1091 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1092 		nvme_tcp_pdu_sizes[idx]) ?
1093 			nvme_tcp_pdu_sizes[idx] : 0;
1094 }
1095 
nvmet_tcp_pdu_valid(u8 type)1096 static inline bool nvmet_tcp_pdu_valid(u8 type)
1097 {
1098 	switch (type) {
1099 	case nvme_tcp_icreq:
1100 	case nvme_tcp_cmd:
1101 	case nvme_tcp_h2c_data:
1102 		/* fallthru */
1103 		return true;
1104 	}
1105 
1106 	return false;
1107 }
1108 
nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue * queue,struct msghdr * msg,char * cbuf)1109 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1110 		struct msghdr *msg, char *cbuf)
1111 {
1112 	struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1113 	u8 ctype, level, description;
1114 	int ret = 0;
1115 
1116 	ctype = tls_get_record_type(queue->sock->sk, cmsg);
1117 	switch (ctype) {
1118 	case 0:
1119 		break;
1120 	case TLS_RECORD_TYPE_DATA:
1121 		break;
1122 	case TLS_RECORD_TYPE_ALERT:
1123 		tls_alert_recv(queue->sock->sk, msg, &level, &description);
1124 		if (level == TLS_ALERT_LEVEL_FATAL) {
1125 			pr_err("queue %d: TLS Alert desc %u\n",
1126 			       queue->idx, description);
1127 			ret = -ENOTCONN;
1128 		} else {
1129 			pr_warn("queue %d: TLS Alert desc %u\n",
1130 			       queue->idx, description);
1131 			ret = -EAGAIN;
1132 		}
1133 		break;
1134 	default:
1135 		/* discard this record type */
1136 		pr_err("queue %d: TLS record %d unhandled\n",
1137 		       queue->idx, ctype);
1138 		ret = -EAGAIN;
1139 		break;
1140 	}
1141 	return ret;
1142 }
1143 
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1144 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1145 {
1146 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1147 	int len, ret;
1148 	struct kvec iov;
1149 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1150 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1151 
1152 recv:
1153 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1154 	iov.iov_len = queue->left;
1155 	if (queue->tls_pskid) {
1156 		msg.msg_control = cbuf;
1157 		msg.msg_controllen = sizeof(cbuf);
1158 	}
1159 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1160 			iov.iov_len, msg.msg_flags);
1161 	if (unlikely(len < 0))
1162 		return len;
1163 	if (queue->tls_pskid) {
1164 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1165 		if (ret < 0)
1166 			return ret;
1167 	}
1168 
1169 	queue->offset += len;
1170 	queue->left -= len;
1171 	if (queue->left)
1172 		return -EAGAIN;
1173 
1174 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1175 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1176 
1177 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1178 			pr_err("unexpected pdu type %d\n", hdr->type);
1179 			nvmet_tcp_fatal_error(queue);
1180 			return -EIO;
1181 		}
1182 
1183 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1184 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1185 			return -EIO;
1186 		}
1187 
1188 		queue->left = hdr->hlen - queue->offset + hdgst;
1189 		goto recv;
1190 	}
1191 
1192 	if (queue->hdr_digest &&
1193 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1194 		nvmet_tcp_fatal_error(queue); /* fatal */
1195 		return -EPROTO;
1196 	}
1197 
1198 	if (queue->data_digest &&
1199 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1200 		nvmet_tcp_fatal_error(queue); /* fatal */
1201 		return -EPROTO;
1202 	}
1203 
1204 	return nvmet_tcp_done_recv_pdu(queue);
1205 }
1206 
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1207 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1208 {
1209 	struct nvmet_tcp_queue *queue = cmd->queue;
1210 
1211 	nvmet_tcp_calc_ddgst(cmd);
1212 	queue->offset = 0;
1213 	queue->left = NVME_TCP_DIGEST_LENGTH;
1214 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1215 }
1216 
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1217 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1218 {
1219 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1220 	int len, ret;
1221 
1222 	while (msg_data_left(&cmd->recv_msg)) {
1223 		len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1224 			cmd->recv_msg.msg_flags);
1225 		if (len <= 0)
1226 			return len;
1227 		if (queue->tls_pskid) {
1228 			ret = nvmet_tcp_tls_record_ok(cmd->queue,
1229 					&cmd->recv_msg, cmd->recv_cbuf);
1230 			if (ret < 0)
1231 				return ret;
1232 		}
1233 
1234 		cmd->pdu_recv += len;
1235 		cmd->rbytes_done += len;
1236 	}
1237 
1238 	if (queue->data_digest) {
1239 		nvmet_tcp_prep_recv_ddgst(cmd);
1240 		return 0;
1241 	}
1242 
1243 	if (cmd->rbytes_done == cmd->req.transfer_len)
1244 		nvmet_tcp_execute_request(cmd);
1245 
1246 	nvmet_prepare_receive_pdu(queue);
1247 	return 0;
1248 }
1249 
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1250 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1251 {
1252 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1253 	int ret, len;
1254 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1255 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1256 	struct kvec iov = {
1257 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1258 		.iov_len = queue->left
1259 	};
1260 
1261 	if (queue->tls_pskid) {
1262 		msg.msg_control = cbuf;
1263 		msg.msg_controllen = sizeof(cbuf);
1264 	}
1265 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1266 			iov.iov_len, msg.msg_flags);
1267 	if (unlikely(len < 0))
1268 		return len;
1269 	if (queue->tls_pskid) {
1270 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1271 		if (ret < 0)
1272 			return ret;
1273 	}
1274 
1275 	queue->offset += len;
1276 	queue->left -= len;
1277 	if (queue->left)
1278 		return -EAGAIN;
1279 
1280 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1281 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1282 			queue->idx, cmd->req.cmd->common.command_id,
1283 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1284 			le32_to_cpu(cmd->exp_ddgst));
1285 		nvmet_req_uninit(&cmd->req);
1286 		nvmet_tcp_free_cmd_buffers(cmd);
1287 		nvmet_tcp_fatal_error(queue);
1288 		ret = -EPROTO;
1289 		goto out;
1290 	}
1291 
1292 	if (cmd->rbytes_done == cmd->req.transfer_len)
1293 		nvmet_tcp_execute_request(cmd);
1294 
1295 	ret = 0;
1296 out:
1297 	nvmet_prepare_receive_pdu(queue);
1298 	return ret;
1299 }
1300 
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1301 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1302 {
1303 	int result = 0;
1304 
1305 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1306 		return 0;
1307 
1308 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1309 		result = nvmet_tcp_try_recv_pdu(queue);
1310 		if (result != 0)
1311 			goto done_recv;
1312 	}
1313 
1314 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1315 		result = nvmet_tcp_try_recv_data(queue);
1316 		if (result != 0)
1317 			goto done_recv;
1318 	}
1319 
1320 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1321 		result = nvmet_tcp_try_recv_ddgst(queue);
1322 		if (result != 0)
1323 			goto done_recv;
1324 	}
1325 
1326 done_recv:
1327 	if (result < 0) {
1328 		if (result == -EAGAIN)
1329 			return 0;
1330 		return result;
1331 	}
1332 	return 1;
1333 }
1334 
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1335 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1336 		int budget, int *recvs)
1337 {
1338 	int i, ret = 0;
1339 
1340 	for (i = 0; i < budget; i++) {
1341 		ret = nvmet_tcp_try_recv_one(queue);
1342 		if (unlikely(ret < 0)) {
1343 			nvmet_tcp_socket_error(queue, ret);
1344 			goto done;
1345 		} else if (ret == 0) {
1346 			break;
1347 		}
1348 		(*recvs)++;
1349 	}
1350 done:
1351 	return ret;
1352 }
1353 
nvmet_tcp_release_queue(struct kref * kref)1354 static void nvmet_tcp_release_queue(struct kref *kref)
1355 {
1356 	struct nvmet_tcp_queue *queue =
1357 		container_of(kref, struct nvmet_tcp_queue, kref);
1358 
1359 	WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1360 	queue_work(nvmet_wq, &queue->release_work);
1361 }
1362 
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1363 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1364 {
1365 	spin_lock_bh(&queue->state_lock);
1366 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1367 		/* Socket closed during handshake */
1368 		tls_handshake_cancel(queue->sock->sk);
1369 	}
1370 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1371 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1372 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1373 	}
1374 	spin_unlock_bh(&queue->state_lock);
1375 }
1376 
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1377 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1378 {
1379 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1380 }
1381 
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1382 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1383 		int ops)
1384 {
1385 	if (!idle_poll_period_usecs)
1386 		return false;
1387 
1388 	if (ops)
1389 		nvmet_tcp_arm_queue_deadline(queue);
1390 
1391 	return !time_after(jiffies, queue->poll_end);
1392 }
1393 
nvmet_tcp_io_work(struct work_struct * w)1394 static void nvmet_tcp_io_work(struct work_struct *w)
1395 {
1396 	struct nvmet_tcp_queue *queue =
1397 		container_of(w, struct nvmet_tcp_queue, io_work);
1398 	bool pending;
1399 	int ret, ops = 0;
1400 
1401 	do {
1402 		pending = false;
1403 
1404 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1405 		if (ret > 0)
1406 			pending = true;
1407 		else if (ret < 0)
1408 			return;
1409 
1410 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1411 		if (ret > 0)
1412 			pending = true;
1413 		else if (ret < 0)
1414 			return;
1415 
1416 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1417 
1418 	/*
1419 	 * Requeue the worker if idle deadline period is in progress or any
1420 	 * ops activity was recorded during the do-while loop above.
1421 	 */
1422 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1423 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1424 }
1425 
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1426 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1427 		struct nvmet_tcp_cmd *c)
1428 {
1429 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1430 
1431 	c->queue = queue;
1432 	c->req.port = queue->port->nport;
1433 
1434 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1435 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1436 	if (!c->cmd_pdu)
1437 		return -ENOMEM;
1438 	c->req.cmd = &c->cmd_pdu->cmd;
1439 
1440 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1441 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1442 	if (!c->rsp_pdu)
1443 		goto out_free_cmd;
1444 	c->req.cqe = &c->rsp_pdu->cqe;
1445 
1446 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1447 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1448 	if (!c->data_pdu)
1449 		goto out_free_rsp;
1450 
1451 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1452 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1453 	if (!c->r2t_pdu)
1454 		goto out_free_data;
1455 
1456 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1457 		c->recv_msg.msg_control = c->recv_cbuf;
1458 		c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1459 	}
1460 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1461 
1462 	list_add_tail(&c->entry, &queue->free_list);
1463 
1464 	return 0;
1465 out_free_data:
1466 	page_frag_free(c->data_pdu);
1467 out_free_rsp:
1468 	page_frag_free(c->rsp_pdu);
1469 out_free_cmd:
1470 	page_frag_free(c->cmd_pdu);
1471 	return -ENOMEM;
1472 }
1473 
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1474 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1475 {
1476 	page_frag_free(c->r2t_pdu);
1477 	page_frag_free(c->data_pdu);
1478 	page_frag_free(c->rsp_pdu);
1479 	page_frag_free(c->cmd_pdu);
1480 }
1481 
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1482 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1483 {
1484 	struct nvmet_tcp_cmd *cmds;
1485 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1486 
1487 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1488 	if (!cmds)
1489 		goto out;
1490 
1491 	for (i = 0; i < nr_cmds; i++) {
1492 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1493 		if (ret)
1494 			goto out_free;
1495 	}
1496 
1497 	queue->cmds = cmds;
1498 
1499 	return 0;
1500 out_free:
1501 	while (--i >= 0)
1502 		nvmet_tcp_free_cmd(cmds + i);
1503 	kfree(cmds);
1504 out:
1505 	return ret;
1506 }
1507 
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1508 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1509 {
1510 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1511 	int i;
1512 
1513 	for (i = 0; i < queue->nr_cmds; i++)
1514 		nvmet_tcp_free_cmd(cmds + i);
1515 
1516 	nvmet_tcp_free_cmd(&queue->connect);
1517 	kfree(cmds);
1518 }
1519 
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1520 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1521 {
1522 	struct socket *sock = queue->sock;
1523 
1524 	if (!queue->state_change)
1525 		return;
1526 
1527 	write_lock_bh(&sock->sk->sk_callback_lock);
1528 	sock->sk->sk_data_ready =  queue->data_ready;
1529 	sock->sk->sk_state_change = queue->state_change;
1530 	sock->sk->sk_write_space = queue->write_space;
1531 	sock->sk->sk_user_data = NULL;
1532 	write_unlock_bh(&sock->sk->sk_callback_lock);
1533 }
1534 
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1535 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1536 {
1537 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1538 	int i;
1539 
1540 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1541 		if (nvmet_tcp_need_data_in(cmd))
1542 			nvmet_req_uninit(&cmd->req);
1543 	}
1544 
1545 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1546 		/* failed in connect */
1547 		nvmet_req_uninit(&queue->connect.req);
1548 	}
1549 }
1550 
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1551 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1552 {
1553 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1554 	int i;
1555 
1556 	for (i = 0; i < queue->nr_cmds; i++, cmd++)
1557 		nvmet_tcp_free_cmd_buffers(cmd);
1558 	nvmet_tcp_free_cmd_buffers(&queue->connect);
1559 }
1560 
nvmet_tcp_release_queue_work(struct work_struct * w)1561 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1562 {
1563 	struct nvmet_tcp_queue *queue =
1564 		container_of(w, struct nvmet_tcp_queue, release_work);
1565 
1566 	mutex_lock(&nvmet_tcp_queue_mutex);
1567 	list_del_init(&queue->queue_list);
1568 	mutex_unlock(&nvmet_tcp_queue_mutex);
1569 
1570 	nvmet_tcp_restore_socket_callbacks(queue);
1571 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1572 	cancel_work_sync(&queue->io_work);
1573 	/* stop accepting incoming data */
1574 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1575 
1576 	nvmet_sq_put_tls_key(&queue->nvme_sq);
1577 	nvmet_tcp_uninit_data_in_cmds(queue);
1578 	nvmet_sq_destroy(&queue->nvme_sq);
1579 	nvmet_cq_put(&queue->nvme_cq);
1580 	cancel_work_sync(&queue->io_work);
1581 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1582 	/* ->sock will be released by fput() */
1583 	fput(queue->sock->file);
1584 	nvmet_tcp_free_cmds(queue);
1585 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1586 	page_frag_cache_drain(&queue->pf_cache);
1587 	kfree(queue);
1588 }
1589 
nvmet_tcp_data_ready(struct sock * sk)1590 static void nvmet_tcp_data_ready(struct sock *sk)
1591 {
1592 	struct nvmet_tcp_queue *queue;
1593 
1594 	trace_sk_data_ready(sk);
1595 
1596 	read_lock_bh(&sk->sk_callback_lock);
1597 	queue = sk->sk_user_data;
1598 	if (likely(queue)) {
1599 		if (queue->data_ready)
1600 			queue->data_ready(sk);
1601 		if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1602 			queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1603 				      &queue->io_work);
1604 	}
1605 	read_unlock_bh(&sk->sk_callback_lock);
1606 }
1607 
nvmet_tcp_write_space(struct sock * sk)1608 static void nvmet_tcp_write_space(struct sock *sk)
1609 {
1610 	struct nvmet_tcp_queue *queue;
1611 
1612 	read_lock_bh(&sk->sk_callback_lock);
1613 	queue = sk->sk_user_data;
1614 	if (unlikely(!queue))
1615 		goto out;
1616 
1617 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1618 		queue->write_space(sk);
1619 		goto out;
1620 	}
1621 
1622 	if (sk_stream_is_writeable(sk)) {
1623 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1624 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1625 	}
1626 out:
1627 	read_unlock_bh(&sk->sk_callback_lock);
1628 }
1629 
nvmet_tcp_state_change(struct sock * sk)1630 static void nvmet_tcp_state_change(struct sock *sk)
1631 {
1632 	struct nvmet_tcp_queue *queue;
1633 
1634 	read_lock_bh(&sk->sk_callback_lock);
1635 	queue = sk->sk_user_data;
1636 	if (!queue)
1637 		goto done;
1638 
1639 	switch (sk->sk_state) {
1640 	case TCP_FIN_WAIT2:
1641 	case TCP_LAST_ACK:
1642 		break;
1643 	case TCP_FIN_WAIT1:
1644 	case TCP_CLOSE_WAIT:
1645 	case TCP_CLOSE:
1646 		/* FALLTHRU */
1647 		nvmet_tcp_schedule_release_queue(queue);
1648 		break;
1649 	default:
1650 		pr_warn("queue %d unhandled state %d\n",
1651 			queue->idx, sk->sk_state);
1652 	}
1653 done:
1654 	read_unlock_bh(&sk->sk_callback_lock);
1655 }
1656 
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1657 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1658 {
1659 	struct socket *sock = queue->sock;
1660 	struct inet_sock *inet = inet_sk(sock->sk);
1661 	int ret;
1662 
1663 	ret = kernel_getsockname(sock,
1664 		(struct sockaddr *)&queue->sockaddr);
1665 	if (ret < 0)
1666 		return ret;
1667 
1668 	ret = kernel_getpeername(sock,
1669 		(struct sockaddr *)&queue->sockaddr_peer);
1670 	if (ret < 0)
1671 		return ret;
1672 
1673 	/*
1674 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1675 	 * close. This is done to prevent stale data from being sent should
1676 	 * the network connection be restored before TCP times out.
1677 	 */
1678 	sock_no_linger(sock->sk);
1679 
1680 	if (so_priority > 0)
1681 		sock_set_priority(sock->sk, so_priority);
1682 
1683 	/* Set socket type of service */
1684 	if (inet->rcv_tos > 0)
1685 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1686 
1687 	ret = 0;
1688 	write_lock_bh(&sock->sk->sk_callback_lock);
1689 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1690 		/*
1691 		 * If the socket is already closing, don't even start
1692 		 * consuming it
1693 		 */
1694 		ret = -ENOTCONN;
1695 	} else {
1696 		sock->sk->sk_user_data = queue;
1697 		queue->data_ready = sock->sk->sk_data_ready;
1698 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1699 		queue->state_change = sock->sk->sk_state_change;
1700 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1701 		queue->write_space = sock->sk->sk_write_space;
1702 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1703 		if (idle_poll_period_usecs)
1704 			nvmet_tcp_arm_queue_deadline(queue);
1705 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1706 	}
1707 	write_unlock_bh(&sock->sk->sk_callback_lock);
1708 
1709 	return ret;
1710 }
1711 
1712 #ifdef CONFIG_NVME_TARGET_TCP_TLS
nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue * queue)1713 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1714 {
1715 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1716 	int len, ret;
1717 	struct kvec iov = {
1718 		.iov_base = (u8 *)&queue->pdu + queue->offset,
1719 		.iov_len = sizeof(struct nvme_tcp_hdr),
1720 	};
1721 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1722 	struct msghdr msg = {
1723 		.msg_control = cbuf,
1724 		.msg_controllen = sizeof(cbuf),
1725 		.msg_flags = MSG_PEEK,
1726 	};
1727 
1728 	if (nvmet_port_secure_channel_required(queue->port->nport))
1729 		return 0;
1730 
1731 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1732 			iov.iov_len, msg.msg_flags);
1733 	if (unlikely(len < 0)) {
1734 		pr_debug("queue %d: peek error %d\n",
1735 			 queue->idx, len);
1736 		return len;
1737 	}
1738 
1739 	ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1740 	if (ret < 0)
1741 		return ret;
1742 
1743 	if (len < sizeof(struct nvme_tcp_hdr)) {
1744 		pr_debug("queue %d: short read, %d bytes missing\n",
1745 			 queue->idx, (int)iov.iov_len - len);
1746 		return -EAGAIN;
1747 	}
1748 	pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1749 		 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1750 		 (int)sizeof(struct nvme_tcp_icreq_pdu));
1751 	if (hdr->type == nvme_tcp_icreq &&
1752 	    hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1753 	    hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1754 		pr_debug("queue %d: icreq detected\n",
1755 			 queue->idx);
1756 		return len;
1757 	}
1758 	return 0;
1759 }
1760 
nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue * queue,key_serial_t peerid)1761 static int nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue *queue,
1762 				    key_serial_t peerid)
1763 {
1764 	struct key *tls_key = nvme_tls_key_lookup(peerid);
1765 	int status = 0;
1766 
1767 	if (IS_ERR(tls_key)) {
1768 		pr_warn("%s: queue %d failed to lookup key %x\n",
1769 			__func__, queue->idx, peerid);
1770 		spin_lock_bh(&queue->state_lock);
1771 		queue->state = NVMET_TCP_Q_FAILED;
1772 		spin_unlock_bh(&queue->state_lock);
1773 		status = PTR_ERR(tls_key);
1774 	} else {
1775 		pr_debug("%s: queue %d using TLS PSK %x\n",
1776 			 __func__, queue->idx, peerid);
1777 		queue->nvme_sq.tls_key = tls_key;
1778 	}
1779 	return status;
1780 }
1781 
nvmet_tcp_tls_handshake_done(void * data,int status,key_serial_t peerid)1782 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1783 					 key_serial_t peerid)
1784 {
1785 	struct nvmet_tcp_queue *queue = data;
1786 
1787 	pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1788 		 queue->idx, peerid, status);
1789 	spin_lock_bh(&queue->state_lock);
1790 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1791 		spin_unlock_bh(&queue->state_lock);
1792 		return;
1793 	}
1794 	if (!status) {
1795 		queue->tls_pskid = peerid;
1796 		queue->state = NVMET_TCP_Q_CONNECTING;
1797 	} else
1798 		queue->state = NVMET_TCP_Q_FAILED;
1799 	spin_unlock_bh(&queue->state_lock);
1800 
1801 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1802 
1803 	if (!status)
1804 		status = nvmet_tcp_tls_key_lookup(queue, peerid);
1805 
1806 	if (status)
1807 		nvmet_tcp_schedule_release_queue(queue);
1808 	else
1809 		nvmet_tcp_set_queue_sock(queue);
1810 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1811 }
1812 
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1813 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1814 {
1815 	struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1816 			struct nvmet_tcp_queue, tls_handshake_tmo_work);
1817 
1818 	pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1819 	/*
1820 	 * If tls_handshake_cancel() fails we've lost the race with
1821 	 * nvmet_tcp_tls_handshake_done() */
1822 	if (!tls_handshake_cancel(queue->sock->sk))
1823 		return;
1824 	spin_lock_bh(&queue->state_lock);
1825 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1826 		spin_unlock_bh(&queue->state_lock);
1827 		return;
1828 	}
1829 	queue->state = NVMET_TCP_Q_FAILED;
1830 	spin_unlock_bh(&queue->state_lock);
1831 	nvmet_tcp_schedule_release_queue(queue);
1832 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1833 }
1834 
nvmet_tcp_tls_handshake(struct nvmet_tcp_queue * queue)1835 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1836 {
1837 	int ret = -EOPNOTSUPP;
1838 	struct tls_handshake_args args;
1839 
1840 	if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1841 		pr_warn("cannot start TLS in state %d\n", queue->state);
1842 		return -EINVAL;
1843 	}
1844 
1845 	kref_get(&queue->kref);
1846 	pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1847 	memset(&args, 0, sizeof(args));
1848 	args.ta_sock = queue->sock;
1849 	args.ta_done = nvmet_tcp_tls_handshake_done;
1850 	args.ta_data = queue;
1851 	args.ta_keyring = key_serial(queue->port->nport->keyring);
1852 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1853 
1854 	ret = tls_server_hello_psk(&args, GFP_KERNEL);
1855 	if (ret) {
1856 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1857 		pr_err("failed to start TLS, err=%d\n", ret);
1858 	} else {
1859 		queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1860 				   tls_handshake_timeout * HZ);
1861 	}
1862 	return ret;
1863 }
1864 #else
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1865 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1866 #endif
1867 
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1868 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1869 		struct socket *newsock)
1870 {
1871 	struct nvmet_tcp_queue *queue;
1872 	struct file *sock_file = NULL;
1873 	int ret;
1874 
1875 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1876 	if (!queue) {
1877 		ret = -ENOMEM;
1878 		goto out_release;
1879 	}
1880 
1881 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1882 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1883 	kref_init(&queue->kref);
1884 	queue->sock = newsock;
1885 	queue->port = port;
1886 	queue->nr_cmds = 0;
1887 	spin_lock_init(&queue->state_lock);
1888 	if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1889 	    NVMF_TCP_SECTYPE_TLS13)
1890 		queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1891 	else
1892 		queue->state = NVMET_TCP_Q_CONNECTING;
1893 	INIT_LIST_HEAD(&queue->free_list);
1894 	init_llist_head(&queue->resp_list);
1895 	INIT_LIST_HEAD(&queue->resp_send_list);
1896 
1897 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1898 	if (IS_ERR(sock_file)) {
1899 		ret = PTR_ERR(sock_file);
1900 		goto out_free_queue;
1901 	}
1902 
1903 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1904 	if (queue->idx < 0) {
1905 		ret = queue->idx;
1906 		goto out_sock;
1907 	}
1908 
1909 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1910 	if (ret)
1911 		goto out_ida_remove;
1912 
1913 	nvmet_cq_init(&queue->nvme_cq);
1914 	ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
1915 	if (ret)
1916 		goto out_free_connect;
1917 
1918 	nvmet_prepare_receive_pdu(queue);
1919 
1920 	mutex_lock(&nvmet_tcp_queue_mutex);
1921 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1922 	mutex_unlock(&nvmet_tcp_queue_mutex);
1923 
1924 	INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1925 			  nvmet_tcp_tls_handshake_timeout);
1926 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1927 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1928 		struct sock *sk = queue->sock->sk;
1929 
1930 		/* Restore the default callbacks before starting upcall */
1931 		read_lock_bh(&sk->sk_callback_lock);
1932 		sk->sk_user_data = NULL;
1933 		sk->sk_data_ready = port->data_ready;
1934 		read_unlock_bh(&sk->sk_callback_lock);
1935 		if (!nvmet_tcp_try_peek_pdu(queue)) {
1936 			if (!nvmet_tcp_tls_handshake(queue))
1937 				return;
1938 			/* TLS handshake failed, terminate the connection */
1939 			goto out_destroy_sq;
1940 		}
1941 		/* Not a TLS connection, continue with normal processing */
1942 		queue->state = NVMET_TCP_Q_CONNECTING;
1943 	}
1944 #endif
1945 
1946 	ret = nvmet_tcp_set_queue_sock(queue);
1947 	if (ret)
1948 		goto out_destroy_sq;
1949 
1950 	return;
1951 out_destroy_sq:
1952 	mutex_lock(&nvmet_tcp_queue_mutex);
1953 	list_del_init(&queue->queue_list);
1954 	mutex_unlock(&nvmet_tcp_queue_mutex);
1955 	nvmet_sq_destroy(&queue->nvme_sq);
1956 out_free_connect:
1957 	nvmet_cq_put(&queue->nvme_cq);
1958 	nvmet_tcp_free_cmd(&queue->connect);
1959 out_ida_remove:
1960 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1961 out_sock:
1962 	fput(queue->sock->file);
1963 out_free_queue:
1964 	kfree(queue);
1965 out_release:
1966 	pr_err("failed to allocate queue, error %d\n", ret);
1967 	if (!sock_file)
1968 		sock_release(newsock);
1969 }
1970 
nvmet_tcp_accept_work(struct work_struct * w)1971 static void nvmet_tcp_accept_work(struct work_struct *w)
1972 {
1973 	struct nvmet_tcp_port *port =
1974 		container_of(w, struct nvmet_tcp_port, accept_work);
1975 	struct socket *newsock;
1976 	int ret;
1977 
1978 	while (true) {
1979 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1980 		if (ret < 0) {
1981 			if (ret != -EAGAIN)
1982 				pr_warn("failed to accept err=%d\n", ret);
1983 			return;
1984 		}
1985 		nvmet_tcp_alloc_queue(port, newsock);
1986 	}
1987 }
1988 
nvmet_tcp_listen_data_ready(struct sock * sk)1989 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1990 {
1991 	struct nvmet_tcp_port *port;
1992 
1993 	trace_sk_data_ready(sk);
1994 
1995 	read_lock_bh(&sk->sk_callback_lock);
1996 	port = sk->sk_user_data;
1997 	if (!port)
1998 		goto out;
1999 
2000 	if (sk->sk_state == TCP_LISTEN)
2001 		queue_work(nvmet_wq, &port->accept_work);
2002 out:
2003 	read_unlock_bh(&sk->sk_callback_lock);
2004 }
2005 
nvmet_tcp_add_port(struct nvmet_port * nport)2006 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2007 {
2008 	struct nvmet_tcp_port *port;
2009 	__kernel_sa_family_t af;
2010 	int ret;
2011 
2012 	port = kzalloc(sizeof(*port), GFP_KERNEL);
2013 	if (!port)
2014 		return -ENOMEM;
2015 
2016 	switch (nport->disc_addr.adrfam) {
2017 	case NVMF_ADDR_FAMILY_IP4:
2018 		af = AF_INET;
2019 		break;
2020 	case NVMF_ADDR_FAMILY_IP6:
2021 		af = AF_INET6;
2022 		break;
2023 	default:
2024 		pr_err("address family %d not supported\n",
2025 				nport->disc_addr.adrfam);
2026 		ret = -EINVAL;
2027 		goto err_port;
2028 	}
2029 
2030 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2031 			nport->disc_addr.trsvcid, &port->addr);
2032 	if (ret) {
2033 		pr_err("malformed ip/port passed: %s:%s\n",
2034 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2035 		goto err_port;
2036 	}
2037 
2038 	port->nport = nport;
2039 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2040 	if (port->nport->inline_data_size < 0)
2041 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2042 
2043 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2044 				IPPROTO_TCP, &port->sock);
2045 	if (ret) {
2046 		pr_err("failed to create a socket\n");
2047 		goto err_port;
2048 	}
2049 
2050 	port->sock->sk->sk_user_data = port;
2051 	port->data_ready = port->sock->sk->sk_data_ready;
2052 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2053 	sock_set_reuseaddr(port->sock->sk);
2054 	tcp_sock_set_nodelay(port->sock->sk);
2055 	if (so_priority > 0)
2056 		sock_set_priority(port->sock->sk, so_priority);
2057 
2058 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2059 			sizeof(port->addr));
2060 	if (ret) {
2061 		pr_err("failed to bind port socket %d\n", ret);
2062 		goto err_sock;
2063 	}
2064 
2065 	ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2066 	if (ret) {
2067 		pr_err("failed to listen %d on port sock\n", ret);
2068 		goto err_sock;
2069 	}
2070 
2071 	nport->priv = port;
2072 	pr_info("enabling port %d (%pISpc)\n",
2073 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
2074 
2075 	return 0;
2076 
2077 err_sock:
2078 	sock_release(port->sock);
2079 err_port:
2080 	kfree(port);
2081 	return ret;
2082 }
2083 
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)2084 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2085 {
2086 	struct nvmet_tcp_queue *queue;
2087 
2088 	mutex_lock(&nvmet_tcp_queue_mutex);
2089 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2090 		if (queue->port == port)
2091 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2092 	mutex_unlock(&nvmet_tcp_queue_mutex);
2093 }
2094 
nvmet_tcp_remove_port(struct nvmet_port * nport)2095 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2096 {
2097 	struct nvmet_tcp_port *port = nport->priv;
2098 
2099 	write_lock_bh(&port->sock->sk->sk_callback_lock);
2100 	port->sock->sk->sk_data_ready = port->data_ready;
2101 	port->sock->sk->sk_user_data = NULL;
2102 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
2103 	cancel_work_sync(&port->accept_work);
2104 	/*
2105 	 * Destroy the remaining queues, which are not belong to any
2106 	 * controller yet.
2107 	 */
2108 	nvmet_tcp_destroy_port_queues(port);
2109 
2110 	sock_release(port->sock);
2111 	kfree(port);
2112 }
2113 
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)2114 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2115 {
2116 	struct nvmet_tcp_queue *queue;
2117 
2118 	mutex_lock(&nvmet_tcp_queue_mutex);
2119 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2120 		if (queue->nvme_sq.ctrl == ctrl)
2121 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2122 	mutex_unlock(&nvmet_tcp_queue_mutex);
2123 }
2124 
nvmet_tcp_install_queue(struct nvmet_sq * sq)2125 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2126 {
2127 	struct nvmet_tcp_queue *queue =
2128 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2129 
2130 	if (sq->qid == 0) {
2131 		struct nvmet_tcp_queue *q;
2132 		int pending = 0;
2133 
2134 		/* Check for pending controller teardown */
2135 		mutex_lock(&nvmet_tcp_queue_mutex);
2136 		list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2137 			if (q->nvme_sq.ctrl == sq->ctrl &&
2138 			    q->state == NVMET_TCP_Q_DISCONNECTING)
2139 				pending++;
2140 		}
2141 		mutex_unlock(&nvmet_tcp_queue_mutex);
2142 		if (pending > NVMET_TCP_BACKLOG)
2143 			return NVME_SC_CONNECT_CTRL_BUSY;
2144 	}
2145 
2146 	queue->nr_cmds = sq->size * 2;
2147 	if (nvmet_tcp_alloc_cmds(queue)) {
2148 		queue->nr_cmds = 0;
2149 		return NVME_SC_INTERNAL;
2150 	}
2151 	return 0;
2152 }
2153 
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)2154 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2155 		struct nvmet_port *nport, char *traddr)
2156 {
2157 	struct nvmet_tcp_port *port = nport->priv;
2158 
2159 	if (inet_addr_is_any(&port->addr)) {
2160 		struct nvmet_tcp_cmd *cmd =
2161 			container_of(req, struct nvmet_tcp_cmd, req);
2162 		struct nvmet_tcp_queue *queue = cmd->queue;
2163 
2164 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2165 	} else {
2166 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2167 	}
2168 }
2169 
nvmet_tcp_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2170 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2171 			char *traddr, size_t traddr_len)
2172 {
2173 	struct nvmet_sq *sq = ctrl->sqs[0];
2174 	struct nvmet_tcp_queue *queue =
2175 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2176 
2177 	if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2178 		return -EINVAL;
2179 	return snprintf(traddr, traddr_len, "%pISc",
2180 			(struct sockaddr *)&queue->sockaddr_peer);
2181 }
2182 
2183 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2184 	.owner			= THIS_MODULE,
2185 	.type			= NVMF_TRTYPE_TCP,
2186 	.msdbd			= 1,
2187 	.add_port		= nvmet_tcp_add_port,
2188 	.remove_port		= nvmet_tcp_remove_port,
2189 	.queue_response		= nvmet_tcp_queue_response,
2190 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
2191 	.install_queue		= nvmet_tcp_install_queue,
2192 	.disc_traddr		= nvmet_tcp_disc_port_addr,
2193 	.host_traddr		= nvmet_tcp_host_port_addr,
2194 };
2195 
nvmet_tcp_init(void)2196 static int __init nvmet_tcp_init(void)
2197 {
2198 	int ret;
2199 
2200 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2201 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2202 	if (!nvmet_tcp_wq)
2203 		return -ENOMEM;
2204 
2205 	ret = nvmet_register_transport(&nvmet_tcp_ops);
2206 	if (ret)
2207 		goto err;
2208 
2209 	return 0;
2210 err:
2211 	destroy_workqueue(nvmet_tcp_wq);
2212 	return ret;
2213 }
2214 
nvmet_tcp_exit(void)2215 static void __exit nvmet_tcp_exit(void)
2216 {
2217 	struct nvmet_tcp_queue *queue;
2218 
2219 	nvmet_unregister_transport(&nvmet_tcp_ops);
2220 
2221 	flush_workqueue(nvmet_wq);
2222 	mutex_lock(&nvmet_tcp_queue_mutex);
2223 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2224 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2225 	mutex_unlock(&nvmet_tcp_queue_mutex);
2226 	flush_workqueue(nvmet_wq);
2227 
2228 	destroy_workqueue(nvmet_tcp_wq);
2229 	ida_destroy(&nvmet_tcp_queue_ida);
2230 }
2231 
2232 module_init(nvmet_tcp_init);
2233 module_exit(nvmet_tcp_exit);
2234 
2235 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2236 MODULE_LICENSE("GPL v2");
2237 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2238