1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PWM_H
3 #define __LINUX_PWM_H
4
5 #include <linux/device.h>
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/of.h>
10
11 MODULE_IMPORT_NS("PWM");
12
13 struct pwm_chip;
14
15 /**
16 * enum pwm_polarity - polarity of a PWM signal
17 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
18 * cycle, followed by a low signal for the remainder of the pulse
19 * period
20 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
21 * cycle, followed by a high signal for the remainder of the pulse
22 * period
23 */
24 enum pwm_polarity {
25 PWM_POLARITY_NORMAL,
26 PWM_POLARITY_INVERSED,
27 };
28
29 /**
30 * struct pwm_args - board-dependent PWM arguments
31 * @period: reference period
32 * @polarity: reference polarity
33 *
34 * This structure describes board-dependent arguments attached to a PWM
35 * device. These arguments are usually retrieved from the PWM lookup table or
36 * device tree.
37 *
38 * Do not confuse this with the PWM state: PWM arguments represent the initial
39 * configuration that users want to use on this PWM device rather than the
40 * current PWM hardware state.
41 */
42 struct pwm_args {
43 u64 period;
44 enum pwm_polarity polarity;
45 };
46
47 enum {
48 PWMF_REQUESTED = 0,
49 PWMF_EXPORTED = 1,
50 };
51
52 /**
53 * struct pwm_waveform - description of a PWM waveform
54 * @period_length_ns: PWM period
55 * @duty_length_ns: PWM duty cycle
56 * @duty_offset_ns: offset of the rising edge from the period's start
57 *
58 * This is a representation of a PWM waveform alternative to struct pwm_state
59 * below. It's more expressive than struct pwm_state as it contains a
60 * duty_offset_ns and so can represent offsets other than zero (with .polarity =
61 * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity =
62 * PWM_POLARITY_INVERSED).
63 *
64 * Note there is no explicit bool for enabled. A "disabled" PWM is represented
65 * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM
66 * is undefined. Depending on the hardware's capabilities it might drive the
67 * active or inactive level, go high-z or even continue to toggle.
68 *
69 * The unit for all three members is nanoseconds.
70 */
71 struct pwm_waveform {
72 u64 period_length_ns;
73 u64 duty_length_ns;
74 u64 duty_offset_ns;
75 };
76
77 /*
78 * struct pwm_state - state of a PWM channel
79 * @period: PWM period (in nanoseconds)
80 * @duty_cycle: PWM duty cycle (in nanoseconds)
81 * @polarity: PWM polarity
82 * @enabled: PWM enabled status
83 * @usage_power: If set, the PWM driver is only required to maintain the power
84 * output but has more freedom regarding signal form.
85 * If supported, the signal can be optimized, for example to
86 * improve EMI by phase shifting individual channels.
87 */
88 struct pwm_state {
89 u64 period;
90 u64 duty_cycle;
91 enum pwm_polarity polarity;
92 bool enabled;
93 bool usage_power;
94 };
95
96 /**
97 * struct pwm_device - PWM channel object
98 * @label: name of the PWM device
99 * @flags: flags associated with the PWM device
100 * @hwpwm: per-chip relative index of the PWM device
101 * @chip: PWM chip providing this PWM device
102 * @args: PWM arguments
103 * @state: last applied state
104 * @last: last implemented state (for PWM_DEBUG)
105 */
106 struct pwm_device {
107 const char *label;
108 unsigned long flags;
109 unsigned int hwpwm;
110 struct pwm_chip *chip;
111
112 struct pwm_args args;
113 struct pwm_state state;
114 struct pwm_state last;
115 };
116
117 /**
118 * pwm_get_state() - retrieve the current PWM state
119 * @pwm: PWM device
120 * @state: state to fill with the current PWM state
121 *
122 * The returned PWM state represents the state that was applied by a previous call to
123 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to
124 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware
125 * state (if supported) or the default settings.
126 */
pwm_get_state(const struct pwm_device * pwm,struct pwm_state * state)127 static inline void pwm_get_state(const struct pwm_device *pwm,
128 struct pwm_state *state)
129 {
130 *state = pwm->state;
131 }
132
pwm_is_enabled(const struct pwm_device * pwm)133 static inline bool pwm_is_enabled(const struct pwm_device *pwm)
134 {
135 struct pwm_state state;
136
137 pwm_get_state(pwm, &state);
138
139 return state.enabled;
140 }
141
pwm_get_period(const struct pwm_device * pwm)142 static inline u64 pwm_get_period(const struct pwm_device *pwm)
143 {
144 struct pwm_state state;
145
146 pwm_get_state(pwm, &state);
147
148 return state.period;
149 }
150
pwm_get_duty_cycle(const struct pwm_device * pwm)151 static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm)
152 {
153 struct pwm_state state;
154
155 pwm_get_state(pwm, &state);
156
157 return state.duty_cycle;
158 }
159
pwm_get_polarity(const struct pwm_device * pwm)160 static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
161 {
162 struct pwm_state state;
163
164 pwm_get_state(pwm, &state);
165
166 return state.polarity;
167 }
168
pwm_get_args(const struct pwm_device * pwm,struct pwm_args * args)169 static inline void pwm_get_args(const struct pwm_device *pwm,
170 struct pwm_args *args)
171 {
172 *args = pwm->args;
173 }
174
175 /**
176 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep()
177 * @pwm: PWM device
178 * @state: state to fill with the prepared PWM state
179 *
180 * This functions prepares a state that can later be tweaked and applied
181 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function
182 * that first retrieves the current PWM state and the replaces the period
183 * and polarity fields with the reference values defined in pwm->args.
184 * Once the function returns, you can adjust the ->enabled and ->duty_cycle
185 * fields according to your needs before calling pwm_apply_might_sleep().
186 *
187 * ->duty_cycle is initially set to zero to avoid cases where the current
188 * ->duty_cycle value exceed the pwm_args->period one, which would trigger
189 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle
190 * first.
191 */
pwm_init_state(const struct pwm_device * pwm,struct pwm_state * state)192 static inline void pwm_init_state(const struct pwm_device *pwm,
193 struct pwm_state *state)
194 {
195 struct pwm_args args;
196
197 /* First get the current state. */
198 pwm_get_state(pwm, state);
199
200 /* Then fill it with the reference config */
201 pwm_get_args(pwm, &args);
202
203 state->period = args.period;
204 state->polarity = args.polarity;
205 state->duty_cycle = 0;
206 state->usage_power = false;
207 }
208
209 /**
210 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value
211 * @state: PWM state to extract the duty cycle from
212 * @scale: target scale of the relative duty cycle
213 *
214 * This functions converts the absolute duty cycle stored in @state (expressed
215 * in nanosecond) into a value relative to the period.
216 *
217 * For example if you want to get the duty_cycle expressed in percent, call:
218 *
219 * pwm_get_state(pwm, &state);
220 * duty = pwm_get_relative_duty_cycle(&state, 100);
221 */
222 static inline unsigned int
pwm_get_relative_duty_cycle(const struct pwm_state * state,unsigned int scale)223 pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale)
224 {
225 if (!state->period)
226 return 0;
227
228 return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale,
229 state->period);
230 }
231
232 /**
233 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value
234 * @state: PWM state to fill
235 * @duty_cycle: relative duty cycle value
236 * @scale: scale in which @duty_cycle is expressed
237 *
238 * This functions converts a relative into an absolute duty cycle (expressed
239 * in nanoseconds), and puts the result in state->duty_cycle.
240 *
241 * For example if you want to configure a 50% duty cycle, call:
242 *
243 * pwm_init_state(pwm, &state);
244 * pwm_set_relative_duty_cycle(&state, 50, 100);
245 * pwm_apply_might_sleep(pwm, &state);
246 *
247 * This functions returns -EINVAL if @duty_cycle and/or @scale are
248 * inconsistent (@scale == 0 or @duty_cycle > @scale).
249 */
250 static inline int
pwm_set_relative_duty_cycle(struct pwm_state * state,unsigned int duty_cycle,unsigned int scale)251 pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle,
252 unsigned int scale)
253 {
254 if (!scale || duty_cycle > scale)
255 return -EINVAL;
256
257 state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle *
258 state->period,
259 scale);
260
261 return 0;
262 }
263
264 /**
265 * struct pwm_capture - PWM capture data
266 * @period: period of the PWM signal (in nanoseconds)
267 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)
268 */
269 struct pwm_capture {
270 unsigned int period;
271 unsigned int duty_cycle;
272 };
273
274 /**
275 * struct pwm_ops - PWM controller operations
276 * @request: optional hook for requesting a PWM
277 * @free: optional hook for freeing a PWM
278 * @capture: capture and report PWM signal
279 * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation
280 * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation
281 * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform
282 * @read_waveform: read driver specific waveform presentation from hardware
283 * @write_waveform: write driver specific waveform presentation to hardware
284 * @apply: atomically apply a new PWM config
285 * @get_state: get the current PWM state.
286 */
287 struct pwm_ops {
288 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
289 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
290 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,
291 struct pwm_capture *result, unsigned long timeout);
292
293 size_t sizeof_wfhw;
294 int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm,
295 const struct pwm_waveform *wf, void *wfhw);
296 int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm,
297 const void *wfhw, struct pwm_waveform *wf);
298 int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
299 void *wfhw);
300 int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
301 const void *wfhw);
302
303 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
304 const struct pwm_state *state);
305 int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
306 struct pwm_state *state);
307 };
308
309 /**
310 * struct pwm_chip - abstract a PWM controller
311 * @dev: device providing the PWMs
312 * @ops: callbacks for this PWM controller
313 * @owner: module providing this chip
314 * @id: unique number of this PWM chip
315 * @npwm: number of PWMs controlled by this chip
316 * @of_xlate: request a PWM device given a device tree PWM specifier
317 * @atomic: can the driver's ->apply() be called in atomic context
318 * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
319 * @operational: signals if the chip can be used (or is already deregistered)
320 * @nonatomic_lock: mutex for nonatomic chips
321 * @atomic_lock: mutex for atomic chips
322 * @pwms: array of PWM devices allocated by the framework
323 */
324 struct pwm_chip {
325 struct device dev;
326 const struct pwm_ops *ops;
327 struct module *owner;
328 unsigned int id;
329 unsigned int npwm;
330
331 struct pwm_device * (*of_xlate)(struct pwm_chip *chip,
332 const struct of_phandle_args *args);
333 bool atomic;
334
335 /* only used internally by the PWM framework */
336 bool uses_pwmchip_alloc;
337 bool operational;
338 union {
339 /*
340 * depending on the chip being atomic or not either the mutex or
341 * the spinlock is used. It protects .operational and
342 * synchronizes the callbacks in .ops
343 */
344 struct mutex nonatomic_lock;
345 spinlock_t atomic_lock;
346 };
347 struct pwm_device pwms[] __counted_by(npwm);
348 };
349
350 /**
351 * pwmchip_supports_waveform() - checks if the given chip supports waveform callbacks
352 * @chip: The pwm_chip to test
353 *
354 * Returns true iff the pwm chip support the waveform functions like
355 * pwm_set_waveform_might_sleep() and pwm_round_waveform_might_sleep()
356 */
pwmchip_supports_waveform(struct pwm_chip * chip)357 static inline bool pwmchip_supports_waveform(struct pwm_chip *chip)
358 {
359 /*
360 * only check for .write_waveform(). If that is available,
361 * .round_waveform_tohw() and .round_waveform_fromhw() asserted to be
362 * available, too, in pwmchip_add().
363 */
364 return chip->ops->write_waveform != NULL;
365 }
366
pwmchip_parent(const struct pwm_chip * chip)367 static inline struct device *pwmchip_parent(const struct pwm_chip *chip)
368 {
369 return chip->dev.parent;
370 }
371
pwmchip_get_drvdata(struct pwm_chip * chip)372 static inline void *pwmchip_get_drvdata(struct pwm_chip *chip)
373 {
374 return dev_get_drvdata(&chip->dev);
375 }
376
pwmchip_set_drvdata(struct pwm_chip * chip,void * data)377 static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
378 {
379 dev_set_drvdata(&chip->dev, data);
380 }
381
382 #if IS_ENABLED(CONFIG_PWM)
383
384 /* PWM consumer APIs */
385 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
386 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
387 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact);
388 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
389 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
390 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state);
391 int pwm_adjust_config(struct pwm_device *pwm);
392
393 /**
394 * pwm_config() - change a PWM device configuration
395 * @pwm: PWM device
396 * @duty_ns: "on" time (in nanoseconds)
397 * @period_ns: duration (in nanoseconds) of one cycle
398 *
399 * Returns: 0 on success or a negative error code on failure.
400 */
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)401 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
402 int period_ns)
403 {
404 struct pwm_state state;
405
406 if (!pwm)
407 return -EINVAL;
408
409 if (duty_ns < 0 || period_ns < 0)
410 return -EINVAL;
411
412 pwm_get_state(pwm, &state);
413 if (state.duty_cycle == duty_ns && state.period == period_ns)
414 return 0;
415
416 state.duty_cycle = duty_ns;
417 state.period = period_ns;
418 return pwm_apply_might_sleep(pwm, &state);
419 }
420
421 /**
422 * pwm_enable() - start a PWM output toggling
423 * @pwm: PWM device
424 *
425 * Returns: 0 on success or a negative error code on failure.
426 */
pwm_enable(struct pwm_device * pwm)427 static inline int pwm_enable(struct pwm_device *pwm)
428 {
429 struct pwm_state state;
430
431 if (!pwm)
432 return -EINVAL;
433
434 pwm_get_state(pwm, &state);
435 if (state.enabled)
436 return 0;
437
438 state.enabled = true;
439 return pwm_apply_might_sleep(pwm, &state);
440 }
441
442 /**
443 * pwm_disable() - stop a PWM output toggling
444 * @pwm: PWM device
445 */
pwm_disable(struct pwm_device * pwm)446 static inline void pwm_disable(struct pwm_device *pwm)
447 {
448 struct pwm_state state;
449
450 if (!pwm)
451 return;
452
453 pwm_get_state(pwm, &state);
454 if (!state.enabled)
455 return;
456
457 state.enabled = false;
458 pwm_apply_might_sleep(pwm, &state);
459 }
460
461 /**
462 * pwm_might_sleep() - is pwm_apply_atomic() supported?
463 * @pwm: PWM device
464 *
465 * Returns: false if pwm_apply_atomic() can be called from atomic context.
466 */
pwm_might_sleep(struct pwm_device * pwm)467 static inline bool pwm_might_sleep(struct pwm_device *pwm)
468 {
469 return !pwm->chip->atomic;
470 }
471
472 /* PWM provider APIs */
473 void pwmchip_put(struct pwm_chip *chip);
474 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
475 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
476
477 int __pwmchip_add(struct pwm_chip *chip, struct module *owner);
478 #define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE)
479 void pwmchip_remove(struct pwm_chip *chip);
480
481 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner);
482 #define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE)
483
484 struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip,
485 const struct of_phandle_args *args);
486 struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip,
487 const struct of_phandle_args *args);
488
489 struct pwm_device *pwm_get(struct device *dev, const char *con_id);
490 void pwm_put(struct pwm_device *pwm);
491
492 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
493 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
494 struct fwnode_handle *fwnode,
495 const char *con_id);
496 #else
pwm_might_sleep(struct pwm_device * pwm)497 static inline bool pwm_might_sleep(struct pwm_device *pwm)
498 {
499 return true;
500 }
501
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)502 static inline int pwm_apply_might_sleep(struct pwm_device *pwm,
503 const struct pwm_state *state)
504 {
505 might_sleep();
506 return -EOPNOTSUPP;
507 }
508
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)509 static inline int pwm_apply_atomic(struct pwm_device *pwm,
510 const struct pwm_state *state)
511 {
512 return -EOPNOTSUPP;
513 }
514
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)515 static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
516 {
517 return -EOPNOTSUPP;
518 }
519
pwm_adjust_config(struct pwm_device * pwm)520 static inline int pwm_adjust_config(struct pwm_device *pwm)
521 {
522 return -EOPNOTSUPP;
523 }
524
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)525 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
526 int period_ns)
527 {
528 might_sleep();
529 return -EINVAL;
530 }
531
pwm_enable(struct pwm_device * pwm)532 static inline int pwm_enable(struct pwm_device *pwm)
533 {
534 might_sleep();
535 return -EINVAL;
536 }
537
pwm_disable(struct pwm_device * pwm)538 static inline void pwm_disable(struct pwm_device *pwm)
539 {
540 might_sleep();
541 }
542
pwmchip_put(struct pwm_chip * chip)543 static inline void pwmchip_put(struct pwm_chip *chip)
544 {
545 }
546
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)547 static inline struct pwm_chip *pwmchip_alloc(struct device *parent,
548 unsigned int npwm,
549 size_t sizeof_priv)
550 {
551 return ERR_PTR(-EINVAL);
552 }
553
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)554 static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent,
555 unsigned int npwm,
556 size_t sizeof_priv)
557 {
558 return pwmchip_alloc(parent, npwm, sizeof_priv);
559 }
560
pwmchip_add(struct pwm_chip * chip)561 static inline int pwmchip_add(struct pwm_chip *chip)
562 {
563 return -EINVAL;
564 }
565
pwmchip_remove(struct pwm_chip * chip)566 static inline int pwmchip_remove(struct pwm_chip *chip)
567 {
568 return -EINVAL;
569 }
570
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)571 static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
572 {
573 return -EINVAL;
574 }
575
pwm_get(struct device * dev,const char * consumer)576 static inline struct pwm_device *pwm_get(struct device *dev,
577 const char *consumer)
578 {
579 might_sleep();
580 return ERR_PTR(-ENODEV);
581 }
582
pwm_put(struct pwm_device * pwm)583 static inline void pwm_put(struct pwm_device *pwm)
584 {
585 might_sleep();
586 }
587
devm_pwm_get(struct device * dev,const char * consumer)588 static inline struct pwm_device *devm_pwm_get(struct device *dev,
589 const char *consumer)
590 {
591 might_sleep();
592 return ERR_PTR(-ENODEV);
593 }
594
595 static inline struct pwm_device *
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)596 devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode,
597 const char *con_id)
598 {
599 might_sleep();
600 return ERR_PTR(-ENODEV);
601 }
602 #endif
603
pwm_apply_args(struct pwm_device * pwm)604 static inline void pwm_apply_args(struct pwm_device *pwm)
605 {
606 struct pwm_state state = { };
607
608 /*
609 * PWM users calling pwm_apply_args() expect to have a fresh config
610 * where the polarity and period are set according to pwm_args info.
611 * The problem is, polarity can only be changed when the PWM is
612 * disabled.
613 *
614 * PWM drivers supporting hardware readout may declare the PWM device
615 * as enabled, and prevent polarity setting, which changes from the
616 * existing behavior, where all PWM devices are declared as disabled
617 * at startup (even if they are actually enabled), thus authorizing
618 * polarity setting.
619 *
620 * To fulfill this requirement, we apply a new state which disables
621 * the PWM device and set the reference period and polarity config.
622 *
623 * Note that PWM users requiring a smooth handover between the
624 * bootloader and the kernel (like critical regulators controlled by
625 * PWM devices) will have to switch to the atomic API and avoid calling
626 * pwm_apply_args().
627 */
628
629 state.enabled = false;
630 state.polarity = pwm->args.polarity;
631 state.period = pwm->args.period;
632 state.usage_power = false;
633
634 pwm_apply_might_sleep(pwm, &state);
635 }
636
637 struct pwm_lookup {
638 struct list_head list;
639 const char *provider;
640 unsigned int index;
641 const char *dev_id;
642 const char *con_id;
643 unsigned int period;
644 enum pwm_polarity polarity;
645 const char *module; /* optional, may be NULL */
646 };
647
648 #define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, \
649 _period, _polarity, _module) \
650 { \
651 .provider = _provider, \
652 .index = _index, \
653 .dev_id = _dev_id, \
654 .con_id = _con_id, \
655 .period = _period, \
656 .polarity = _polarity, \
657 .module = _module, \
658 }
659
660 #define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \
661 PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \
662 _polarity, NULL)
663
664 #if IS_ENABLED(CONFIG_PWM)
665 void pwm_add_table(struct pwm_lookup *table, size_t num);
666 void pwm_remove_table(struct pwm_lookup *table, size_t num);
667 #else
pwm_add_table(struct pwm_lookup * table,size_t num)668 static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
669 {
670 }
671
pwm_remove_table(struct pwm_lookup * table,size_t num)672 static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
673 {
674 }
675 #endif
676
677 #endif /* __LINUX_PWM_H */
678