1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
42 * pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107 * Kmemleak configuration and common defines.
108 */
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER sizeof(void *)
116
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long start;
121 size_t size;
122 };
123
124 #define KMEMLEAK_GREY 0
125 #define KMEMLEAK_BLACK -1
126
127 /*
128 * Structure holding the metadata for each allocated memory block.
129 * Modifications to such objects should be made while holding the
130 * object->lock. Insertions or deletions from object_list, gray_list or
131 * rb_node are already protected by the corresponding locks or mutex (see
132 * the notes on locking above). These objects are reference-counted
133 * (use_count) and freed using the RCU mechanism.
134 */
135 struct kmemleak_object {
136 raw_spinlock_t lock;
137 unsigned int flags; /* object status flags */
138 struct list_head object_list;
139 struct list_head gray_list;
140 struct rb_node rb_node;
141 struct rcu_head rcu; /* object_list lockless traversal */
142 /* object usage count; object freed when use_count == 0 */
143 atomic_t use_count;
144 unsigned int del_state; /* deletion state */
145 unsigned long pointer;
146 size_t size;
147 /* pass surplus references to this pointer */
148 unsigned long excess_ref;
149 /* minimum number of a pointers found before it is considered leak */
150 int min_count;
151 /* the total number of pointers found pointing to this object */
152 int count;
153 /* checksum for detecting modified objects */
154 u32 checksum;
155 depot_stack_handle_t trace_handle;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long jiffies; /* creation timestamp */
159 pid_t pid; /* pid of the current task */
160 char comm[TASK_COMM_LEN]; /* executable name */
161 };
162
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED (1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED (1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN (1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN (1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS (1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU (1 << 5)
175
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED (1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE (1 << 1)
180
181 #define HEX_PREFIX " "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE 16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE 1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII 1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES 2
190
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled __read_mostly = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled __read_mostly = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 /* minimum and maximum address that may be valid per-CPU pointers */
226 static unsigned long min_percpu_addr = ULONG_MAX;
227 static unsigned long max_percpu_addr;
228
229 static struct task_struct *scan_thread;
230 /* used to avoid reporting of recently allocated objects */
231 static unsigned long jiffies_min_age;
232 static unsigned long jiffies_last_scan;
233 /* delay between automatic memory scannings */
234 static unsigned long jiffies_scan_wait;
235 /* enables or disables the task stacks scanning */
236 static int kmemleak_stack_scan = 1;
237 /* protects the memory scanning, parameters and debug/kmemleak file access */
238 static DEFINE_MUTEX(scan_mutex);
239 /* setting kmemleak=on, will set this var, skipping the disable */
240 static int kmemleak_skip_disable;
241 /* If there are leaks that can be reported */
242 static bool kmemleak_found_leaks;
243
244 static bool kmemleak_verbose;
245 module_param_named(verbose, kmemleak_verbose, bool, 0600);
246
247 static void kmemleak_disable(void);
248
249 /*
250 * Print a warning and dump the stack trace.
251 */
252 #define kmemleak_warn(x...) do { \
253 pr_warn(x); \
254 dump_stack(); \
255 } while (0)
256
257 /*
258 * Macro invoked when a serious kmemleak condition occurred and cannot be
259 * recovered from. Kmemleak will be disabled and further allocation/freeing
260 * tracing no longer available.
261 */
262 #define kmemleak_stop(x...) do { \
263 kmemleak_warn(x); \
264 kmemleak_disable(); \
265 } while (0)
266
267 #define warn_or_seq_printf(seq, fmt, ...) do { \
268 if (seq) \
269 seq_printf(seq, fmt, ##__VA_ARGS__); \
270 else \
271 pr_warn(fmt, ##__VA_ARGS__); \
272 } while (0)
273
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
275 int rowsize, int groupsize, const void *buf,
276 size_t len, bool ascii)
277 {
278 if (seq)
279 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
280 buf, len, ascii);
281 else
282 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
283 rowsize, groupsize, buf, len, ascii);
284 }
285
286 /*
287 * Printing of the objects hex dump to the seq file. The number of lines to be
288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290 * with the object->lock held.
291 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)292 static void hex_dump_object(struct seq_file *seq,
293 struct kmemleak_object *object)
294 {
295 const u8 *ptr = (const u8 *)object->pointer;
296 size_t len;
297
298 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
299 return;
300
301 if (object->flags & OBJECT_PERCPU)
302 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
303
304 /* limit the number of lines to HEX_MAX_LINES */
305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307 if (object->flags & OBJECT_PERCPU)
308 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n",
309 len, raw_smp_processor_id());
310 else
311 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
312 kasan_disable_current();
313 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
315 kasan_enable_current();
316 }
317
318 /*
319 * Object colors, encoded with count and min_count:
320 * - white - orphan object, not enough references to it (count < min_count)
321 * - gray - not orphan, not marked as false positive (min_count == 0) or
322 * sufficient references to it (count >= min_count)
323 * - black - ignore, it doesn't contain references (e.g. text section)
324 * (min_count == -1). No function defined for this color.
325 */
color_white(const struct kmemleak_object * object)326 static bool color_white(const struct kmemleak_object *object)
327 {
328 return object->count != KMEMLEAK_BLACK &&
329 object->count < object->min_count;
330 }
331
color_gray(const struct kmemleak_object * object)332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 return object->min_count != KMEMLEAK_BLACK &&
335 object->count >= object->min_count;
336 }
337
338 /*
339 * Objects are considered unreferenced only if their color is white, they have
340 * not be deleted and have a minimum age to avoid false positives caused by
341 * pointers temporarily stored in CPU registers.
342 */
unreferenced_object(struct kmemleak_object * object)343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 time_before_eq(object->jiffies + jiffies_min_age,
347 jiffies_last_scan);
348 }
349
__object_type_str(struct kmemleak_object * object)350 static const char *__object_type_str(struct kmemleak_object *object)
351 {
352 if (object->flags & OBJECT_PHYS)
353 return " (phys)";
354 if (object->flags & OBJECT_PERCPU)
355 return " (percpu)";
356 return "";
357 }
358
359 /*
360 * Printing of the unreferenced objects information to the seq file. The
361 * print_unreferenced function must be called with the object->lock held.
362 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)363 static void print_unreferenced(struct seq_file *seq,
364 struct kmemleak_object *object)
365 {
366 int i;
367 unsigned long *entries;
368 unsigned int nr_entries;
369
370 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
371 warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n",
372 __object_type_str(object),
373 object->pointer, object->size);
374 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 hex_dump_object(seq, object);
377 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum);
378
379 for (i = 0; i < nr_entries; i++) {
380 void *ptr = (void *)entries[i];
381 warn_or_seq_printf(seq, " %pS\n", ptr);
382 }
383 }
384
385 /*
386 * Print the kmemleak_object information. This function is used mainly for
387 * debugging special cases when kmemleak operations. It must be called with
388 * the object->lock held.
389 */
dump_object_info(struct kmemleak_object * object)390 static void dump_object_info(struct kmemleak_object *object)
391 {
392 pr_notice("Object%s 0x%08lx (size %zu):\n",
393 __object_type_str(object), object->pointer, object->size);
394 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
395 object->comm, object->pid, object->jiffies);
396 pr_notice(" min_count = %d\n", object->min_count);
397 pr_notice(" count = %d\n", object->count);
398 pr_notice(" flags = 0x%x\n", object->flags);
399 pr_notice(" checksum = %u\n", object->checksum);
400 pr_notice(" backtrace:\n");
401 if (object->trace_handle)
402 stack_depot_print(object->trace_handle);
403 }
404
object_tree(unsigned long objflags)405 static struct rb_root *object_tree(unsigned long objflags)
406 {
407 if (objflags & OBJECT_PHYS)
408 return &object_phys_tree_root;
409 if (objflags & OBJECT_PERCPU)
410 return &object_percpu_tree_root;
411 return &object_tree_root;
412 }
413
414 /*
415 * Look-up a memory block metadata (kmemleak_object) in the object search
416 * tree based on a pointer value. If alias is 0, only values pointing to the
417 * beginning of the memory block are allowed. The kmemleak_lock must be held
418 * when calling this function.
419 */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
421 unsigned int objflags)
422 {
423 struct rb_node *rb = object_tree(objflags)->rb_node;
424 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
425
426 while (rb) {
427 struct kmemleak_object *object;
428 unsigned long untagged_objp;
429
430 object = rb_entry(rb, struct kmemleak_object, rb_node);
431 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
432
433 if (untagged_ptr < untagged_objp)
434 rb = object->rb_node.rb_left;
435 else if (untagged_objp + object->size <= untagged_ptr)
436 rb = object->rb_node.rb_right;
437 else if (untagged_objp == untagged_ptr || alias)
438 return object;
439 else {
440 /*
441 * Printk deferring due to the kmemleak_lock held.
442 * This is done to avoid deadlock.
443 */
444 printk_deferred_enter();
445 kmemleak_warn("Found object by alias at 0x%08lx\n",
446 ptr);
447 dump_object_info(object);
448 printk_deferred_exit();
449 break;
450 }
451 }
452 return NULL;
453 }
454
455 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)456 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
457 {
458 return __lookup_object(ptr, alias, 0);
459 }
460
461 /*
462 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
463 * that once an object's use_count reached 0, the RCU freeing was already
464 * registered and the object should no longer be used. This function must be
465 * called under the protection of rcu_read_lock().
466 */
get_object(struct kmemleak_object * object)467 static int get_object(struct kmemleak_object *object)
468 {
469 return atomic_inc_not_zero(&object->use_count);
470 }
471
472 /*
473 * Memory pool allocation and freeing. kmemleak_lock must not be held.
474 */
mem_pool_alloc(gfp_t gfp)475 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
476 {
477 unsigned long flags;
478 struct kmemleak_object *object;
479 bool warn = false;
480
481 /* try the slab allocator first */
482 if (object_cache) {
483 object = kmem_cache_alloc_noprof(object_cache,
484 gfp_nested_mask(gfp));
485 if (object)
486 return object;
487 }
488
489 /* slab allocation failed, try the memory pool */
490 raw_spin_lock_irqsave(&kmemleak_lock, flags);
491 object = list_first_entry_or_null(&mem_pool_free_list,
492 typeof(*object), object_list);
493 if (object)
494 list_del(&object->object_list);
495 else if (mem_pool_free_count)
496 object = &mem_pool[--mem_pool_free_count];
497 else
498 warn = true;
499 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
500 if (warn)
501 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
502
503 return object;
504 }
505
506 /*
507 * Return the object to either the slab allocator or the memory pool.
508 */
mem_pool_free(struct kmemleak_object * object)509 static void mem_pool_free(struct kmemleak_object *object)
510 {
511 unsigned long flags;
512
513 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
514 kmem_cache_free(object_cache, object);
515 return;
516 }
517
518 /* add the object to the memory pool free list */
519 raw_spin_lock_irqsave(&kmemleak_lock, flags);
520 list_add(&object->object_list, &mem_pool_free_list);
521 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
522 }
523
524 /*
525 * RCU callback to free a kmemleak_object.
526 */
free_object_rcu(struct rcu_head * rcu)527 static void free_object_rcu(struct rcu_head *rcu)
528 {
529 struct hlist_node *tmp;
530 struct kmemleak_scan_area *area;
531 struct kmemleak_object *object =
532 container_of(rcu, struct kmemleak_object, rcu);
533
534 /*
535 * Once use_count is 0 (guaranteed by put_object), there is no other
536 * code accessing this object, hence no need for locking.
537 */
538 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
539 hlist_del(&area->node);
540 kmem_cache_free(scan_area_cache, area);
541 }
542 mem_pool_free(object);
543 }
544
545 /*
546 * Decrement the object use_count. Once the count is 0, free the object using
547 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
548 * delete_object() path, the delayed RCU freeing ensures that there is no
549 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
550 * is also possible.
551 */
put_object(struct kmemleak_object * object)552 static void put_object(struct kmemleak_object *object)
553 {
554 if (!atomic_dec_and_test(&object->use_count))
555 return;
556
557 /* should only get here after delete_object was called */
558 WARN_ON(object->flags & OBJECT_ALLOCATED);
559
560 /*
561 * It may be too early for the RCU callbacks, however, there is no
562 * concurrent object_list traversal when !object_cache and all objects
563 * came from the memory pool. Free the object directly.
564 */
565 if (object_cache)
566 call_rcu(&object->rcu, free_object_rcu);
567 else
568 free_object_rcu(&object->rcu);
569 }
570
571 /*
572 * Look up an object in the object search tree and increase its use_count.
573 */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)574 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
575 unsigned int objflags)
576 {
577 unsigned long flags;
578 struct kmemleak_object *object;
579
580 rcu_read_lock();
581 raw_spin_lock_irqsave(&kmemleak_lock, flags);
582 object = __lookup_object(ptr, alias, objflags);
583 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
584
585 /* check whether the object is still available */
586 if (object && !get_object(object))
587 object = NULL;
588 rcu_read_unlock();
589
590 return object;
591 }
592
593 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)594 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
595 {
596 return __find_and_get_object(ptr, alias, 0);
597 }
598
599 /*
600 * Remove an object from its object tree and object_list. Must be called with
601 * the kmemleak_lock held _if_ kmemleak is still enabled.
602 */
__remove_object(struct kmemleak_object * object)603 static void __remove_object(struct kmemleak_object *object)
604 {
605 rb_erase(&object->rb_node, object_tree(object->flags));
606 if (!(object->del_state & DELSTATE_NO_DELETE))
607 list_del_rcu(&object->object_list);
608 object->del_state |= DELSTATE_REMOVED;
609 }
610
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)611 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
612 int alias,
613 unsigned int objflags)
614 {
615 struct kmemleak_object *object;
616
617 object = __lookup_object(ptr, alias, objflags);
618 if (object)
619 __remove_object(object);
620
621 return object;
622 }
623
624 /*
625 * Look up an object in the object search tree and remove it from both object
626 * tree root and object_list. The returned object's use_count should be at
627 * least 1, as initially set by create_object().
628 */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)629 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
630 unsigned int objflags)
631 {
632 unsigned long flags;
633 struct kmemleak_object *object;
634
635 raw_spin_lock_irqsave(&kmemleak_lock, flags);
636 object = __find_and_remove_object(ptr, alias, objflags);
637 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
638
639 return object;
640 }
641
set_track_prepare(void)642 static noinline depot_stack_handle_t set_track_prepare(void)
643 {
644 depot_stack_handle_t trace_handle;
645 unsigned long entries[MAX_TRACE];
646 unsigned int nr_entries;
647
648 /*
649 * Use object_cache to determine whether kmemleak_init() has
650 * been invoked. stack_depot_early_init() is called before
651 * kmemleak_init() in mm_core_init().
652 */
653 if (!object_cache)
654 return 0;
655 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
656 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
657
658 return trace_handle;
659 }
660
__alloc_object(gfp_t gfp)661 static struct kmemleak_object *__alloc_object(gfp_t gfp)
662 {
663 struct kmemleak_object *object;
664
665 object = mem_pool_alloc(gfp);
666 if (!object) {
667 pr_warn("Cannot allocate a kmemleak_object structure\n");
668 kmemleak_disable();
669 return NULL;
670 }
671
672 INIT_LIST_HEAD(&object->object_list);
673 INIT_LIST_HEAD(&object->gray_list);
674 INIT_HLIST_HEAD(&object->area_list);
675 raw_spin_lock_init(&object->lock);
676 atomic_set(&object->use_count, 1);
677 object->excess_ref = 0;
678 object->count = 0; /* white color initially */
679 object->checksum = 0;
680 object->del_state = 0;
681
682 /* task information */
683 if (in_hardirq()) {
684 object->pid = 0;
685 strscpy(object->comm, "hardirq");
686 } else if (in_serving_softirq()) {
687 object->pid = 0;
688 strscpy(object->comm, "softirq");
689 } else {
690 object->pid = current->pid;
691 /*
692 * There is a small chance of a race with set_task_comm(),
693 * however using get_task_comm() here may cause locking
694 * dependency issues with current->alloc_lock. In the worst
695 * case, the command line is not correct.
696 */
697 strscpy(object->comm, current->comm);
698 }
699
700 /* kernel backtrace */
701 object->trace_handle = set_track_prepare();
702
703 return object;
704 }
705
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)706 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
707 size_t size, int min_count, unsigned int objflags)
708 {
709
710 struct kmemleak_object *parent;
711 struct rb_node **link, *rb_parent;
712 unsigned long untagged_ptr;
713 unsigned long untagged_objp;
714
715 object->flags = OBJECT_ALLOCATED | objflags;
716 object->pointer = ptr;
717 object->size = kfence_ksize((void *)ptr) ?: size;
718 object->min_count = min_count;
719 object->jiffies = jiffies;
720
721 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
722 /*
723 * Only update min_addr and max_addr with object storing virtual
724 * address. And update min_percpu_addr max_percpu_addr for per-CPU
725 * objects.
726 */
727 if (objflags & OBJECT_PERCPU) {
728 min_percpu_addr = min(min_percpu_addr, untagged_ptr);
729 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
730 } else if (!(objflags & OBJECT_PHYS)) {
731 min_addr = min(min_addr, untagged_ptr);
732 max_addr = max(max_addr, untagged_ptr + size);
733 }
734 link = &object_tree(objflags)->rb_node;
735 rb_parent = NULL;
736 while (*link) {
737 rb_parent = *link;
738 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
739 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
740 if (untagged_ptr + size <= untagged_objp)
741 link = &parent->rb_node.rb_left;
742 else if (untagged_objp + parent->size <= untagged_ptr)
743 link = &parent->rb_node.rb_right;
744 else {
745 /*
746 * Printk deferring due to the kmemleak_lock held.
747 * This is done to avoid deadlock.
748 */
749 printk_deferred_enter();
750 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
751 ptr);
752 /*
753 * No need for parent->lock here since "parent" cannot
754 * be freed while the kmemleak_lock is held.
755 */
756 dump_object_info(parent);
757 printk_deferred_exit();
758 return -EEXIST;
759 }
760 }
761 rb_link_node(&object->rb_node, rb_parent, link);
762 rb_insert_color(&object->rb_node, object_tree(objflags));
763 list_add_tail_rcu(&object->object_list, &object_list);
764
765 return 0;
766 }
767
768 /*
769 * Create the metadata (struct kmemleak_object) corresponding to an allocated
770 * memory block and add it to the object_list and object tree.
771 */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)772 static void __create_object(unsigned long ptr, size_t size,
773 int min_count, gfp_t gfp, unsigned int objflags)
774 {
775 struct kmemleak_object *object;
776 unsigned long flags;
777 int ret;
778
779 object = __alloc_object(gfp);
780 if (!object)
781 return;
782
783 raw_spin_lock_irqsave(&kmemleak_lock, flags);
784 ret = __link_object(object, ptr, size, min_count, objflags);
785 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
786 if (ret)
787 mem_pool_free(object);
788 }
789
790 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)791 static void create_object(unsigned long ptr, size_t size,
792 int min_count, gfp_t gfp)
793 {
794 __create_object(ptr, size, min_count, gfp, 0);
795 }
796
797 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)798 static void create_object_phys(unsigned long ptr, size_t size,
799 int min_count, gfp_t gfp)
800 {
801 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
802 }
803
804 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)805 static void create_object_percpu(unsigned long ptr, size_t size,
806 int min_count, gfp_t gfp)
807 {
808 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
809 }
810
811 /*
812 * Mark the object as not allocated and schedule RCU freeing via put_object().
813 */
__delete_object(struct kmemleak_object * object)814 static void __delete_object(struct kmemleak_object *object)
815 {
816 unsigned long flags;
817
818 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
819 WARN_ON(atomic_read(&object->use_count) < 1);
820
821 /*
822 * Locking here also ensures that the corresponding memory block
823 * cannot be freed when it is being scanned.
824 */
825 raw_spin_lock_irqsave(&object->lock, flags);
826 object->flags &= ~OBJECT_ALLOCATED;
827 raw_spin_unlock_irqrestore(&object->lock, flags);
828 put_object(object);
829 }
830
831 /*
832 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
833 * delete it.
834 */
delete_object_full(unsigned long ptr,unsigned int objflags)835 static void delete_object_full(unsigned long ptr, unsigned int objflags)
836 {
837 struct kmemleak_object *object;
838
839 object = find_and_remove_object(ptr, 0, objflags);
840 if (!object) {
841 #ifdef DEBUG
842 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
843 ptr);
844 #endif
845 return;
846 }
847 __delete_object(object);
848 }
849
850 /*
851 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
852 * delete it. If the memory block is partially freed, the function may create
853 * additional metadata for the remaining parts of the block.
854 */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)855 static void delete_object_part(unsigned long ptr, size_t size,
856 unsigned int objflags)
857 {
858 struct kmemleak_object *object, *object_l, *object_r;
859 unsigned long start, end, flags;
860
861 object_l = __alloc_object(GFP_KERNEL);
862 if (!object_l)
863 return;
864
865 object_r = __alloc_object(GFP_KERNEL);
866 if (!object_r)
867 goto out;
868
869 raw_spin_lock_irqsave(&kmemleak_lock, flags);
870 object = __find_and_remove_object(ptr, 1, objflags);
871 if (!object)
872 goto unlock;
873
874 /*
875 * Create one or two objects that may result from the memory block
876 * split. Note that partial freeing is only done by free_bootmem() and
877 * this happens before kmemleak_init() is called.
878 */
879 start = object->pointer;
880 end = object->pointer + object->size;
881 if ((ptr > start) &&
882 !__link_object(object_l, start, ptr - start,
883 object->min_count, objflags))
884 object_l = NULL;
885 if ((ptr + size < end) &&
886 !__link_object(object_r, ptr + size, end - ptr - size,
887 object->min_count, objflags))
888 object_r = NULL;
889
890 unlock:
891 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
892 if (object) {
893 __delete_object(object);
894 } else {
895 #ifdef DEBUG
896 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
897 ptr, size);
898 #endif
899 }
900
901 out:
902 if (object_l)
903 mem_pool_free(object_l);
904 if (object_r)
905 mem_pool_free(object_r);
906 }
907
__paint_it(struct kmemleak_object * object,int color)908 static void __paint_it(struct kmemleak_object *object, int color)
909 {
910 object->min_count = color;
911 if (color == KMEMLEAK_BLACK)
912 object->flags |= OBJECT_NO_SCAN;
913 }
914
paint_it(struct kmemleak_object * object,int color)915 static void paint_it(struct kmemleak_object *object, int color)
916 {
917 unsigned long flags;
918
919 raw_spin_lock_irqsave(&object->lock, flags);
920 __paint_it(object, color);
921 raw_spin_unlock_irqrestore(&object->lock, flags);
922 }
923
paint_ptr(unsigned long ptr,int color,unsigned int objflags)924 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
925 {
926 struct kmemleak_object *object;
927
928 object = __find_and_get_object(ptr, 0, objflags);
929 if (!object) {
930 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
931 ptr,
932 (color == KMEMLEAK_GREY) ? "Grey" :
933 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
934 return;
935 }
936 paint_it(object, color);
937 put_object(object);
938 }
939
940 /*
941 * Mark an object permanently as gray-colored so that it can no longer be
942 * reported as a leak. This is used in general to mark a false positive.
943 */
make_gray_object(unsigned long ptr)944 static void make_gray_object(unsigned long ptr)
945 {
946 paint_ptr(ptr, KMEMLEAK_GREY, 0);
947 }
948
949 /*
950 * Mark the object as black-colored so that it is ignored from scans and
951 * reporting.
952 */
make_black_object(unsigned long ptr,unsigned int objflags)953 static void make_black_object(unsigned long ptr, unsigned int objflags)
954 {
955 paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
956 }
957
958 /*
959 * Reset the checksum of an object. The immediate effect is that it will not
960 * be reported as a leak during the next scan until its checksum is updated.
961 */
reset_checksum(unsigned long ptr)962 static void reset_checksum(unsigned long ptr)
963 {
964 unsigned long flags;
965 struct kmemleak_object *object;
966
967 object = find_and_get_object(ptr, 0);
968 if (!object) {
969 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
970 ptr);
971 return;
972 }
973
974 raw_spin_lock_irqsave(&object->lock, flags);
975 object->checksum = 0;
976 raw_spin_unlock_irqrestore(&object->lock, flags);
977 put_object(object);
978 }
979
980 /*
981 * Add a scanning area to the object. If at least one such area is added,
982 * kmemleak will only scan these ranges rather than the whole memory block.
983 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)984 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
985 {
986 unsigned long flags;
987 struct kmemleak_object *object;
988 struct kmemleak_scan_area *area = NULL;
989 unsigned long untagged_ptr;
990 unsigned long untagged_objp;
991
992 object = find_and_get_object(ptr, 1);
993 if (!object) {
994 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
995 ptr);
996 return;
997 }
998
999 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
1000 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
1001
1002 if (scan_area_cache)
1003 area = kmem_cache_alloc_noprof(scan_area_cache,
1004 gfp_nested_mask(gfp));
1005
1006 raw_spin_lock_irqsave(&object->lock, flags);
1007 if (!area) {
1008 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
1009 /* mark the object for full scan to avoid false positives */
1010 object->flags |= OBJECT_FULL_SCAN;
1011 goto out_unlock;
1012 }
1013 if (size == SIZE_MAX) {
1014 size = untagged_objp + object->size - untagged_ptr;
1015 } else if (untagged_ptr + size > untagged_objp + object->size) {
1016 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
1017 dump_object_info(object);
1018 kmem_cache_free(scan_area_cache, area);
1019 goto out_unlock;
1020 }
1021
1022 INIT_HLIST_NODE(&area->node);
1023 area->start = ptr;
1024 area->size = size;
1025
1026 hlist_add_head(&area->node, &object->area_list);
1027 out_unlock:
1028 raw_spin_unlock_irqrestore(&object->lock, flags);
1029 put_object(object);
1030 }
1031
1032 /*
1033 * Any surplus references (object already gray) to 'ptr' are passed to
1034 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1035 * vm_struct may be used as an alternative reference to the vmalloc'ed object
1036 * (see free_thread_stack()).
1037 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)1038 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1039 {
1040 unsigned long flags;
1041 struct kmemleak_object *object;
1042
1043 object = find_and_get_object(ptr, 0);
1044 if (!object) {
1045 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1046 ptr);
1047 return;
1048 }
1049
1050 raw_spin_lock_irqsave(&object->lock, flags);
1051 object->excess_ref = excess_ref;
1052 raw_spin_unlock_irqrestore(&object->lock, flags);
1053 put_object(object);
1054 }
1055
1056 /*
1057 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1058 * pointer. Such object will not be scanned by kmemleak but references to it
1059 * are searched.
1060 */
object_no_scan(unsigned long ptr)1061 static void object_no_scan(unsigned long ptr)
1062 {
1063 unsigned long flags;
1064 struct kmemleak_object *object;
1065
1066 object = find_and_get_object(ptr, 0);
1067 if (!object) {
1068 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1069 return;
1070 }
1071
1072 raw_spin_lock_irqsave(&object->lock, flags);
1073 object->flags |= OBJECT_NO_SCAN;
1074 raw_spin_unlock_irqrestore(&object->lock, flags);
1075 put_object(object);
1076 }
1077
1078 /**
1079 * kmemleak_alloc - register a newly allocated object
1080 * @ptr: pointer to beginning of the object
1081 * @size: size of the object
1082 * @min_count: minimum number of references to this object. If during memory
1083 * scanning a number of references less than @min_count is found,
1084 * the object is reported as a memory leak. If @min_count is 0,
1085 * the object is never reported as a leak. If @min_count is -1,
1086 * the object is ignored (not scanned and not reported as a leak)
1087 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1088 *
1089 * This function is called from the kernel allocators when a new object
1090 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1091 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1092 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1093 gfp_t gfp)
1094 {
1095 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1096
1097 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1098 create_object((unsigned long)ptr, size, min_count, gfp);
1099 }
1100 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1101
1102 /**
1103 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1104 * @ptr: __percpu pointer to beginning of the object
1105 * @size: size of the object
1106 * @gfp: flags used for kmemleak internal memory allocations
1107 *
1108 * This function is called from the kernel percpu allocator when a new object
1109 * (memory block) is allocated (alloc_percpu).
1110 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1111 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1112 gfp_t gfp)
1113 {
1114 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1115
1116 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1117 create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
1118 }
1119 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1120
1121 /**
1122 * kmemleak_vmalloc - register a newly vmalloc'ed object
1123 * @area: pointer to vm_struct
1124 * @size: size of the object
1125 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1126 *
1127 * This function is called from the vmalloc() kernel allocator when a new
1128 * object (memory block) is allocated.
1129 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1130 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1131 {
1132 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1133
1134 /*
1135 * A min_count = 2 is needed because vm_struct contains a reference to
1136 * the virtual address of the vmalloc'ed block.
1137 */
1138 if (kmemleak_enabled) {
1139 create_object((unsigned long)area->addr, size, 2, gfp);
1140 object_set_excess_ref((unsigned long)area,
1141 (unsigned long)area->addr);
1142 }
1143 }
1144 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1145
1146 /**
1147 * kmemleak_free - unregister a previously registered object
1148 * @ptr: pointer to beginning of the object
1149 *
1150 * This function is called from the kernel allocators when an object (memory
1151 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1152 */
kmemleak_free(const void * ptr)1153 void __ref kmemleak_free(const void *ptr)
1154 {
1155 pr_debug("%s(0x%px)\n", __func__, ptr);
1156
1157 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1158 delete_object_full((unsigned long)ptr, 0);
1159 }
1160 EXPORT_SYMBOL_GPL(kmemleak_free);
1161
1162 /**
1163 * kmemleak_free_part - partially unregister a previously registered object
1164 * @ptr: pointer to the beginning or inside the object. This also
1165 * represents the start of the range to be freed
1166 * @size: size to be unregistered
1167 *
1168 * This function is called when only a part of a memory block is freed
1169 * (usually from the bootmem allocator).
1170 */
kmemleak_free_part(const void * ptr,size_t size)1171 void __ref kmemleak_free_part(const void *ptr, size_t size)
1172 {
1173 pr_debug("%s(0x%px)\n", __func__, ptr);
1174
1175 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1176 delete_object_part((unsigned long)ptr, size, 0);
1177 }
1178 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1179
1180 /**
1181 * kmemleak_free_percpu - unregister a previously registered __percpu object
1182 * @ptr: __percpu pointer to beginning of the object
1183 *
1184 * This function is called from the kernel percpu allocator when an object
1185 * (memory block) is freed (free_percpu).
1186 */
kmemleak_free_percpu(const void __percpu * ptr)1187 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1188 {
1189 pr_debug("%s(0x%px)\n", __func__, ptr);
1190
1191 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1192 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1193 }
1194 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1195
1196 /**
1197 * kmemleak_update_trace - update object allocation stack trace
1198 * @ptr: pointer to beginning of the object
1199 *
1200 * Override the object allocation stack trace for cases where the actual
1201 * allocation place is not always useful.
1202 */
kmemleak_update_trace(const void * ptr)1203 void __ref kmemleak_update_trace(const void *ptr)
1204 {
1205 struct kmemleak_object *object;
1206 depot_stack_handle_t trace_handle;
1207 unsigned long flags;
1208
1209 pr_debug("%s(0x%px)\n", __func__, ptr);
1210
1211 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1212 return;
1213
1214 object = find_and_get_object((unsigned long)ptr, 1);
1215 if (!object) {
1216 #ifdef DEBUG
1217 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1218 ptr);
1219 #endif
1220 return;
1221 }
1222
1223 trace_handle = set_track_prepare();
1224 raw_spin_lock_irqsave(&object->lock, flags);
1225 object->trace_handle = trace_handle;
1226 raw_spin_unlock_irqrestore(&object->lock, flags);
1227
1228 put_object(object);
1229 }
1230 EXPORT_SYMBOL(kmemleak_update_trace);
1231
1232 /**
1233 * kmemleak_not_leak - mark an allocated object as false positive
1234 * @ptr: pointer to beginning of the object
1235 *
1236 * Calling this function on an object will cause the memory block to no longer
1237 * be reported as leak and always be scanned.
1238 */
kmemleak_not_leak(const void * ptr)1239 void __ref kmemleak_not_leak(const void *ptr)
1240 {
1241 pr_debug("%s(0x%px)\n", __func__, ptr);
1242
1243 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1244 make_gray_object((unsigned long)ptr);
1245 }
1246 EXPORT_SYMBOL(kmemleak_not_leak);
1247
1248 /**
1249 * kmemleak_transient_leak - mark an allocated object as transient false positive
1250 * @ptr: pointer to beginning of the object
1251 *
1252 * Calling this function on an object will cause the memory block to not be
1253 * reported as a leak temporarily. This may happen, for example, if the object
1254 * is part of a singly linked list and the ->next reference to it is changed.
1255 */
kmemleak_transient_leak(const void * ptr)1256 void __ref kmemleak_transient_leak(const void *ptr)
1257 {
1258 pr_debug("%s(0x%px)\n", __func__, ptr);
1259
1260 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1261 reset_checksum((unsigned long)ptr);
1262 }
1263 EXPORT_SYMBOL(kmemleak_transient_leak);
1264
1265 /**
1266 * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu
1267 * address argument
1268 * @ptr: percpu address of the object
1269 */
kmemleak_ignore_percpu(const void __percpu * ptr)1270 void __ref kmemleak_ignore_percpu(const void __percpu *ptr)
1271 {
1272 pr_debug("%s(0x%px)\n", __func__, ptr);
1273
1274 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1275 make_black_object((unsigned long)ptr, OBJECT_PERCPU);
1276 }
1277 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu);
1278
1279 /**
1280 * kmemleak_ignore - ignore an allocated object
1281 * @ptr: pointer to beginning of the object
1282 *
1283 * Calling this function on an object will cause the memory block to be
1284 * ignored (not scanned and not reported as a leak). This is usually done when
1285 * it is known that the corresponding block is not a leak and does not contain
1286 * any references to other allocated memory blocks.
1287 */
kmemleak_ignore(const void * ptr)1288 void __ref kmemleak_ignore(const void *ptr)
1289 {
1290 pr_debug("%s(0x%px)\n", __func__, ptr);
1291
1292 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1293 make_black_object((unsigned long)ptr, 0);
1294 }
1295 EXPORT_SYMBOL(kmemleak_ignore);
1296
1297 /**
1298 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1299 * @ptr: pointer to beginning or inside the object. This also
1300 * represents the start of the scan area
1301 * @size: size of the scan area
1302 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1303 *
1304 * This function is used when it is known that only certain parts of an object
1305 * contain references to other objects. Kmemleak will only scan these areas
1306 * reducing the number false negatives.
1307 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1308 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1309 {
1310 pr_debug("%s(0x%px)\n", __func__, ptr);
1311
1312 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1313 add_scan_area((unsigned long)ptr, size, gfp);
1314 }
1315 EXPORT_SYMBOL(kmemleak_scan_area);
1316
1317 /**
1318 * kmemleak_no_scan - do not scan an allocated object
1319 * @ptr: pointer to beginning of the object
1320 *
1321 * This function notifies kmemleak not to scan the given memory block. Useful
1322 * in situations where it is known that the given object does not contain any
1323 * references to other objects. Kmemleak will not scan such objects reducing
1324 * the number of false negatives.
1325 */
kmemleak_no_scan(const void * ptr)1326 void __ref kmemleak_no_scan(const void *ptr)
1327 {
1328 pr_debug("%s(0x%px)\n", __func__, ptr);
1329
1330 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1331 object_no_scan((unsigned long)ptr);
1332 }
1333 EXPORT_SYMBOL(kmemleak_no_scan);
1334
1335 /**
1336 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1337 * address argument
1338 * @phys: physical address of the object
1339 * @size: size of the object
1340 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1341 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1342 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1343 {
1344 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1345
1346 if (kmemleak_enabled)
1347 /*
1348 * Create object with OBJECT_PHYS flag and
1349 * assume min_count 0.
1350 */
1351 create_object_phys((unsigned long)phys, size, 0, gfp);
1352 }
1353 EXPORT_SYMBOL(kmemleak_alloc_phys);
1354
1355 /**
1356 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1357 * physical address argument
1358 * @phys: physical address if the beginning or inside an object. This
1359 * also represents the start of the range to be freed
1360 * @size: size to be unregistered
1361 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1362 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1363 {
1364 pr_debug("%s(0x%px)\n", __func__, &phys);
1365
1366 if (kmemleak_enabled)
1367 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1368 }
1369 EXPORT_SYMBOL(kmemleak_free_part_phys);
1370
1371 /**
1372 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1373 * address argument
1374 * @phys: physical address of the object
1375 */
kmemleak_ignore_phys(phys_addr_t phys)1376 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1377 {
1378 pr_debug("%s(0x%px)\n", __func__, &phys);
1379
1380 if (kmemleak_enabled)
1381 make_black_object((unsigned long)phys, OBJECT_PHYS);
1382 }
1383 EXPORT_SYMBOL(kmemleak_ignore_phys);
1384
1385 /*
1386 * Update an object's checksum and return true if it was modified.
1387 */
update_checksum(struct kmemleak_object * object)1388 static bool update_checksum(struct kmemleak_object *object)
1389 {
1390 u32 old_csum = object->checksum;
1391
1392 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1393 return false;
1394
1395 kasan_disable_current();
1396 kcsan_disable_current();
1397 if (object->flags & OBJECT_PERCPU) {
1398 unsigned int cpu;
1399
1400 object->checksum = 0;
1401 for_each_possible_cpu(cpu) {
1402 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1403
1404 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1405 }
1406 } else {
1407 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1408 }
1409 kasan_enable_current();
1410 kcsan_enable_current();
1411
1412 return object->checksum != old_csum;
1413 }
1414
1415 /*
1416 * Update an object's references. object->lock must be held by the caller.
1417 */
update_refs(struct kmemleak_object * object)1418 static void update_refs(struct kmemleak_object *object)
1419 {
1420 if (!color_white(object)) {
1421 /* non-orphan, ignored or new */
1422 return;
1423 }
1424
1425 /*
1426 * Increase the object's reference count (number of pointers to the
1427 * memory block). If this count reaches the required minimum, the
1428 * object's color will become gray and it will be added to the
1429 * gray_list.
1430 */
1431 object->count++;
1432 if (color_gray(object)) {
1433 /* put_object() called when removing from gray_list */
1434 WARN_ON(!get_object(object));
1435 list_add_tail(&object->gray_list, &gray_list);
1436 }
1437 }
1438
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1439 static void pointer_update_refs(struct kmemleak_object *scanned,
1440 unsigned long pointer, unsigned int objflags)
1441 {
1442 struct kmemleak_object *object;
1443 unsigned long untagged_ptr;
1444 unsigned long excess_ref;
1445
1446 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1447 if (objflags & OBJECT_PERCPU) {
1448 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1449 return;
1450 } else {
1451 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1452 return;
1453 }
1454
1455 /*
1456 * No need for get_object() here since we hold kmemleak_lock.
1457 * object->use_count cannot be dropped to 0 while the object
1458 * is still present in object_tree_root and object_list
1459 * (with updates protected by kmemleak_lock).
1460 */
1461 object = __lookup_object(pointer, 1, objflags);
1462 if (!object)
1463 return;
1464 if (object == scanned)
1465 /* self referenced, ignore */
1466 return;
1467
1468 /*
1469 * Avoid the lockdep recursive warning on object->lock being
1470 * previously acquired in scan_object(). These locks are
1471 * enclosed by scan_mutex.
1472 */
1473 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1474 /* only pass surplus references (object already gray) */
1475 if (color_gray(object)) {
1476 excess_ref = object->excess_ref;
1477 /* no need for update_refs() if object already gray */
1478 } else {
1479 excess_ref = 0;
1480 update_refs(object);
1481 }
1482 raw_spin_unlock(&object->lock);
1483
1484 if (excess_ref) {
1485 object = lookup_object(excess_ref, 0);
1486 if (!object)
1487 return;
1488 if (object == scanned)
1489 /* circular reference, ignore */
1490 return;
1491 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1492 update_refs(object);
1493 raw_spin_unlock(&object->lock);
1494 }
1495 }
1496
1497 /*
1498 * Memory scanning is a long process and it needs to be interruptible. This
1499 * function checks whether such interrupt condition occurred.
1500 */
scan_should_stop(void)1501 static int scan_should_stop(void)
1502 {
1503 if (!kmemleak_enabled)
1504 return 1;
1505
1506 /*
1507 * This function may be called from either process or kthread context,
1508 * hence the need to check for both stop conditions.
1509 */
1510 if (current->mm)
1511 return signal_pending(current);
1512 else
1513 return kthread_should_stop();
1514
1515 return 0;
1516 }
1517
1518 /*
1519 * Scan a memory block (exclusive range) for valid pointers and add those
1520 * found to the gray list.
1521 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1522 static void scan_block(void *_start, void *_end,
1523 struct kmemleak_object *scanned)
1524 {
1525 unsigned long *ptr;
1526 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1527 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1528 unsigned long flags;
1529
1530 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1531 for (ptr = start; ptr < end; ptr++) {
1532 unsigned long pointer;
1533
1534 if (scan_should_stop())
1535 break;
1536
1537 kasan_disable_current();
1538 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1539 kasan_enable_current();
1540
1541 pointer_update_refs(scanned, pointer, 0);
1542 pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1543 }
1544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1545 }
1546
1547 /*
1548 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1549 */
1550 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1551 static void scan_large_block(void *start, void *end)
1552 {
1553 void *next;
1554
1555 while (start < end) {
1556 next = min(start + MAX_SCAN_SIZE, end);
1557 scan_block(start, next, NULL);
1558 start = next;
1559 cond_resched();
1560 }
1561 }
1562 #endif
1563
1564 /*
1565 * Scan a memory block corresponding to a kmemleak_object. A condition is
1566 * that object->use_count >= 1.
1567 */
scan_object(struct kmemleak_object * object)1568 static void scan_object(struct kmemleak_object *object)
1569 {
1570 struct kmemleak_scan_area *area;
1571 unsigned long flags;
1572
1573 /*
1574 * Once the object->lock is acquired, the corresponding memory block
1575 * cannot be freed (the same lock is acquired in delete_object).
1576 */
1577 raw_spin_lock_irqsave(&object->lock, flags);
1578 if (object->flags & OBJECT_NO_SCAN)
1579 goto out;
1580 if (!(object->flags & OBJECT_ALLOCATED))
1581 /* already freed object */
1582 goto out;
1583
1584 if (object->flags & OBJECT_PERCPU) {
1585 unsigned int cpu;
1586
1587 for_each_possible_cpu(cpu) {
1588 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1589 void *end = start + object->size;
1590
1591 scan_block(start, end, object);
1592
1593 raw_spin_unlock_irqrestore(&object->lock, flags);
1594 cond_resched();
1595 raw_spin_lock_irqsave(&object->lock, flags);
1596 if (!(object->flags & OBJECT_ALLOCATED))
1597 break;
1598 }
1599 } else if (hlist_empty(&object->area_list) ||
1600 object->flags & OBJECT_FULL_SCAN) {
1601 void *start = object->flags & OBJECT_PHYS ?
1602 __va((phys_addr_t)object->pointer) :
1603 (void *)object->pointer;
1604 void *end = start + object->size;
1605 void *next;
1606
1607 do {
1608 next = min(start + MAX_SCAN_SIZE, end);
1609 scan_block(start, next, object);
1610
1611 start = next;
1612 if (start >= end)
1613 break;
1614
1615 raw_spin_unlock_irqrestore(&object->lock, flags);
1616 cond_resched();
1617 raw_spin_lock_irqsave(&object->lock, flags);
1618 } while (object->flags & OBJECT_ALLOCATED);
1619 } else {
1620 hlist_for_each_entry(area, &object->area_list, node)
1621 scan_block((void *)area->start,
1622 (void *)(area->start + area->size),
1623 object);
1624 }
1625 out:
1626 raw_spin_unlock_irqrestore(&object->lock, flags);
1627 }
1628
1629 /*
1630 * Scan the objects already referenced (gray objects). More objects will be
1631 * referenced and, if there are no memory leaks, all the objects are scanned.
1632 */
scan_gray_list(void)1633 static void scan_gray_list(void)
1634 {
1635 struct kmemleak_object *object, *tmp;
1636
1637 /*
1638 * The list traversal is safe for both tail additions and removals
1639 * from inside the loop. The kmemleak objects cannot be freed from
1640 * outside the loop because their use_count was incremented.
1641 */
1642 object = list_entry(gray_list.next, typeof(*object), gray_list);
1643 while (&object->gray_list != &gray_list) {
1644 cond_resched();
1645
1646 /* may add new objects to the list */
1647 if (!scan_should_stop())
1648 scan_object(object);
1649
1650 tmp = list_entry(object->gray_list.next, typeof(*object),
1651 gray_list);
1652
1653 /* remove the object from the list and release it */
1654 list_del(&object->gray_list);
1655 put_object(object);
1656
1657 object = tmp;
1658 }
1659 WARN_ON(!list_empty(&gray_list));
1660 }
1661
1662 /*
1663 * Conditionally call resched() in an object iteration loop while making sure
1664 * that the given object won't go away without RCU read lock by performing a
1665 * get_object() if necessaary.
1666 */
kmemleak_cond_resched(struct kmemleak_object * object)1667 static void kmemleak_cond_resched(struct kmemleak_object *object)
1668 {
1669 if (!get_object(object))
1670 return; /* Try next object */
1671
1672 raw_spin_lock_irq(&kmemleak_lock);
1673 if (object->del_state & DELSTATE_REMOVED)
1674 goto unlock_put; /* Object removed */
1675 object->del_state |= DELSTATE_NO_DELETE;
1676 raw_spin_unlock_irq(&kmemleak_lock);
1677
1678 rcu_read_unlock();
1679 cond_resched();
1680 rcu_read_lock();
1681
1682 raw_spin_lock_irq(&kmemleak_lock);
1683 if (object->del_state & DELSTATE_REMOVED)
1684 list_del_rcu(&object->object_list);
1685 object->del_state &= ~DELSTATE_NO_DELETE;
1686 unlock_put:
1687 raw_spin_unlock_irq(&kmemleak_lock);
1688 put_object(object);
1689 }
1690
1691 /*
1692 * Scan data sections and all the referenced memory blocks allocated via the
1693 * kernel's standard allocators. This function must be called with the
1694 * scan_mutex held.
1695 */
kmemleak_scan(void)1696 static void kmemleak_scan(void)
1697 {
1698 struct kmemleak_object *object;
1699 struct zone *zone;
1700 int __maybe_unused i;
1701 int new_leaks = 0;
1702
1703 jiffies_last_scan = jiffies;
1704
1705 /* prepare the kmemleak_object's */
1706 rcu_read_lock();
1707 list_for_each_entry_rcu(object, &object_list, object_list) {
1708 raw_spin_lock_irq(&object->lock);
1709 #ifdef DEBUG
1710 /*
1711 * With a few exceptions there should be a maximum of
1712 * 1 reference to any object at this point.
1713 */
1714 if (atomic_read(&object->use_count) > 1) {
1715 pr_debug("object->use_count = %d\n",
1716 atomic_read(&object->use_count));
1717 dump_object_info(object);
1718 }
1719 #endif
1720
1721 /* ignore objects outside lowmem (paint them black) */
1722 if ((object->flags & OBJECT_PHYS) &&
1723 !(object->flags & OBJECT_NO_SCAN)) {
1724 unsigned long phys = object->pointer;
1725
1726 if (PHYS_PFN(phys) < min_low_pfn ||
1727 PHYS_PFN(phys + object->size) > max_low_pfn)
1728 __paint_it(object, KMEMLEAK_BLACK);
1729 }
1730
1731 /* reset the reference count (whiten the object) */
1732 object->count = 0;
1733 if (color_gray(object) && get_object(object))
1734 list_add_tail(&object->gray_list, &gray_list);
1735
1736 raw_spin_unlock_irq(&object->lock);
1737
1738 if (need_resched())
1739 kmemleak_cond_resched(object);
1740 }
1741 rcu_read_unlock();
1742
1743 #ifdef CONFIG_SMP
1744 /* per-cpu sections scanning */
1745 for_each_possible_cpu(i)
1746 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1747 __per_cpu_end + per_cpu_offset(i));
1748 #endif
1749
1750 /*
1751 * Struct page scanning for each node.
1752 */
1753 get_online_mems();
1754 for_each_populated_zone(zone) {
1755 unsigned long start_pfn = zone->zone_start_pfn;
1756 unsigned long end_pfn = zone_end_pfn(zone);
1757 unsigned long pfn;
1758
1759 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1760 struct page *page = pfn_to_online_page(pfn);
1761
1762 if (!(pfn & 63))
1763 cond_resched();
1764
1765 if (!page)
1766 continue;
1767
1768 /* only scan pages belonging to this zone */
1769 if (page_zone(page) != zone)
1770 continue;
1771 /* only scan if page is in use */
1772 if (page_count(page) == 0)
1773 continue;
1774 scan_block(page, page + 1, NULL);
1775 }
1776 }
1777 put_online_mems();
1778
1779 /*
1780 * Scanning the task stacks (may introduce false negatives).
1781 */
1782 if (kmemleak_stack_scan) {
1783 struct task_struct *p, *g;
1784
1785 rcu_read_lock();
1786 for_each_process_thread(g, p) {
1787 void *stack = try_get_task_stack(p);
1788 if (stack) {
1789 scan_block(stack, stack + THREAD_SIZE, NULL);
1790 put_task_stack(p);
1791 }
1792 }
1793 rcu_read_unlock();
1794 }
1795
1796 /*
1797 * Scan the objects already referenced from the sections scanned
1798 * above.
1799 */
1800 scan_gray_list();
1801
1802 /*
1803 * Check for new or unreferenced objects modified since the previous
1804 * scan and color them gray until the next scan.
1805 */
1806 rcu_read_lock();
1807 list_for_each_entry_rcu(object, &object_list, object_list) {
1808 if (need_resched())
1809 kmemleak_cond_resched(object);
1810
1811 /*
1812 * This is racy but we can save the overhead of lock/unlock
1813 * calls. The missed objects, if any, should be caught in
1814 * the next scan.
1815 */
1816 if (!color_white(object))
1817 continue;
1818 raw_spin_lock_irq(&object->lock);
1819 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1820 && update_checksum(object) && get_object(object)) {
1821 /* color it gray temporarily */
1822 object->count = object->min_count;
1823 list_add_tail(&object->gray_list, &gray_list);
1824 }
1825 raw_spin_unlock_irq(&object->lock);
1826 }
1827 rcu_read_unlock();
1828
1829 /*
1830 * Re-scan the gray list for modified unreferenced objects.
1831 */
1832 scan_gray_list();
1833
1834 /*
1835 * If scanning was stopped do not report any new unreferenced objects.
1836 */
1837 if (scan_should_stop())
1838 return;
1839
1840 /*
1841 * Scanning result reporting.
1842 */
1843 rcu_read_lock();
1844 list_for_each_entry_rcu(object, &object_list, object_list) {
1845 if (need_resched())
1846 kmemleak_cond_resched(object);
1847
1848 /*
1849 * This is racy but we can save the overhead of lock/unlock
1850 * calls. The missed objects, if any, should be caught in
1851 * the next scan.
1852 */
1853 if (!color_white(object))
1854 continue;
1855 raw_spin_lock_irq(&object->lock);
1856 if (unreferenced_object(object) &&
1857 !(object->flags & OBJECT_REPORTED)) {
1858 object->flags |= OBJECT_REPORTED;
1859
1860 if (kmemleak_verbose)
1861 print_unreferenced(NULL, object);
1862
1863 new_leaks++;
1864 }
1865 raw_spin_unlock_irq(&object->lock);
1866 }
1867 rcu_read_unlock();
1868
1869 if (new_leaks) {
1870 kmemleak_found_leaks = true;
1871
1872 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1873 new_leaks);
1874 }
1875
1876 }
1877
1878 /*
1879 * Thread function performing automatic memory scanning. Unreferenced objects
1880 * at the end of a memory scan are reported but only the first time.
1881 */
kmemleak_scan_thread(void * arg)1882 static int kmemleak_scan_thread(void *arg)
1883 {
1884 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1885
1886 pr_info("Automatic memory scanning thread started\n");
1887 set_user_nice(current, 10);
1888
1889 /*
1890 * Wait before the first scan to allow the system to fully initialize.
1891 */
1892 if (first_run) {
1893 signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN);
1894 first_run = 0;
1895 while (timeout && !kthread_should_stop())
1896 timeout = schedule_timeout_interruptible(timeout);
1897 }
1898
1899 while (!kthread_should_stop()) {
1900 signed long timeout = READ_ONCE(jiffies_scan_wait);
1901
1902 mutex_lock(&scan_mutex);
1903 kmemleak_scan();
1904 mutex_unlock(&scan_mutex);
1905
1906 /* wait before the next scan */
1907 while (timeout && !kthread_should_stop())
1908 timeout = schedule_timeout_interruptible(timeout);
1909 }
1910
1911 pr_info("Automatic memory scanning thread ended\n");
1912
1913 return 0;
1914 }
1915
1916 /*
1917 * Start the automatic memory scanning thread. This function must be called
1918 * with the scan_mutex held.
1919 */
start_scan_thread(void)1920 static void start_scan_thread(void)
1921 {
1922 if (scan_thread)
1923 return;
1924 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1925 if (IS_ERR(scan_thread)) {
1926 pr_warn("Failed to create the scan thread\n");
1927 scan_thread = NULL;
1928 }
1929 }
1930
1931 /*
1932 * Stop the automatic memory scanning thread.
1933 */
stop_scan_thread(void)1934 static void stop_scan_thread(void)
1935 {
1936 if (scan_thread) {
1937 kthread_stop(scan_thread);
1938 scan_thread = NULL;
1939 }
1940 }
1941
1942 /*
1943 * Iterate over the object_list and return the first valid object at or after
1944 * the required position with its use_count incremented. The function triggers
1945 * a memory scanning when the pos argument points to the first position.
1946 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1947 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1948 {
1949 struct kmemleak_object *object;
1950 loff_t n = *pos;
1951 int err;
1952
1953 err = mutex_lock_interruptible(&scan_mutex);
1954 if (err < 0)
1955 return ERR_PTR(err);
1956
1957 rcu_read_lock();
1958 list_for_each_entry_rcu(object, &object_list, object_list) {
1959 if (n-- > 0)
1960 continue;
1961 if (get_object(object))
1962 goto out;
1963 }
1964 object = NULL;
1965 out:
1966 return object;
1967 }
1968
1969 /*
1970 * Return the next object in the object_list. The function decrements the
1971 * use_count of the previous object and increases that of the next one.
1972 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1973 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1974 {
1975 struct kmemleak_object *prev_obj = v;
1976 struct kmemleak_object *next_obj = NULL;
1977 struct kmemleak_object *obj = prev_obj;
1978
1979 ++(*pos);
1980
1981 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1982 if (get_object(obj)) {
1983 next_obj = obj;
1984 break;
1985 }
1986 }
1987
1988 put_object(prev_obj);
1989 return next_obj;
1990 }
1991
1992 /*
1993 * Decrement the use_count of the last object required, if any.
1994 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1995 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1996 {
1997 if (!IS_ERR(v)) {
1998 /*
1999 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
2000 * waiting was interrupted, so only release it if !IS_ERR.
2001 */
2002 rcu_read_unlock();
2003 mutex_unlock(&scan_mutex);
2004 if (v)
2005 put_object(v);
2006 }
2007 }
2008
2009 /*
2010 * Print the information for an unreferenced object to the seq file.
2011 */
kmemleak_seq_show(struct seq_file * seq,void * v)2012 static int kmemleak_seq_show(struct seq_file *seq, void *v)
2013 {
2014 struct kmemleak_object *object = v;
2015 unsigned long flags;
2016
2017 raw_spin_lock_irqsave(&object->lock, flags);
2018 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
2019 print_unreferenced(seq, object);
2020 raw_spin_unlock_irqrestore(&object->lock, flags);
2021 return 0;
2022 }
2023
2024 static const struct seq_operations kmemleak_seq_ops = {
2025 .start = kmemleak_seq_start,
2026 .next = kmemleak_seq_next,
2027 .stop = kmemleak_seq_stop,
2028 .show = kmemleak_seq_show,
2029 };
2030
kmemleak_open(struct inode * inode,struct file * file)2031 static int kmemleak_open(struct inode *inode, struct file *file)
2032 {
2033 return seq_open(file, &kmemleak_seq_ops);
2034 }
2035
__dump_str_object_info(unsigned long addr,unsigned int objflags)2036 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags)
2037 {
2038 unsigned long flags;
2039 struct kmemleak_object *object;
2040
2041 object = __find_and_get_object(addr, 1, objflags);
2042 if (!object)
2043 return false;
2044
2045 raw_spin_lock_irqsave(&object->lock, flags);
2046 dump_object_info(object);
2047 raw_spin_unlock_irqrestore(&object->lock, flags);
2048
2049 put_object(object);
2050
2051 return true;
2052 }
2053
dump_str_object_info(const char * str)2054 static int dump_str_object_info(const char *str)
2055 {
2056 unsigned long addr;
2057 bool found = false;
2058
2059 if (kstrtoul(str, 0, &addr))
2060 return -EINVAL;
2061
2062 found |= __dump_str_object_info(addr, 0);
2063 found |= __dump_str_object_info(addr, OBJECT_PHYS);
2064 found |= __dump_str_object_info(addr, OBJECT_PERCPU);
2065
2066 if (!found) {
2067 pr_info("Unknown object at 0x%08lx\n", addr);
2068 return -EINVAL;
2069 }
2070
2071 return 0;
2072 }
2073
2074 /*
2075 * We use grey instead of black to ensure we can do future scans on the same
2076 * objects. If we did not do future scans these black objects could
2077 * potentially contain references to newly allocated objects in the future and
2078 * we'd end up with false positives.
2079 */
kmemleak_clear(void)2080 static void kmemleak_clear(void)
2081 {
2082 struct kmemleak_object *object;
2083
2084 rcu_read_lock();
2085 list_for_each_entry_rcu(object, &object_list, object_list) {
2086 raw_spin_lock_irq(&object->lock);
2087 if ((object->flags & OBJECT_REPORTED) &&
2088 unreferenced_object(object))
2089 __paint_it(object, KMEMLEAK_GREY);
2090 raw_spin_unlock_irq(&object->lock);
2091 }
2092 rcu_read_unlock();
2093
2094 kmemleak_found_leaks = false;
2095 }
2096
2097 static void __kmemleak_do_cleanup(void);
2098
2099 /*
2100 * File write operation to configure kmemleak at run-time. The following
2101 * commands can be written to the /sys/kernel/debug/kmemleak file:
2102 * off - disable kmemleak (irreversible)
2103 * stack=on - enable the task stacks scanning
2104 * stack=off - disable the tasks stacks scanning
2105 * scan=on - start the automatic memory scanning thread
2106 * scan=off - stop the automatic memory scanning thread
2107 * scan=... - set the automatic memory scanning period in seconds (0 to
2108 * disable it)
2109 * scan - trigger a memory scan
2110 * clear - mark all current reported unreferenced kmemleak objects as
2111 * grey to ignore printing them, or free all kmemleak objects
2112 * if kmemleak has been disabled.
2113 * dump=... - dump information about the object found at the given address
2114 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2115 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2116 size_t size, loff_t *ppos)
2117 {
2118 char buf[64];
2119 int buf_size;
2120 int ret;
2121
2122 buf_size = min(size, (sizeof(buf) - 1));
2123 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2124 return -EFAULT;
2125 buf[buf_size] = 0;
2126
2127 ret = mutex_lock_interruptible(&scan_mutex);
2128 if (ret < 0)
2129 return ret;
2130
2131 if (strncmp(buf, "clear", 5) == 0) {
2132 if (kmemleak_enabled)
2133 kmemleak_clear();
2134 else
2135 __kmemleak_do_cleanup();
2136 goto out;
2137 }
2138
2139 if (!kmemleak_enabled) {
2140 ret = -EPERM;
2141 goto out;
2142 }
2143
2144 if (strncmp(buf, "off", 3) == 0)
2145 kmemleak_disable();
2146 else if (strncmp(buf, "stack=on", 8) == 0)
2147 kmemleak_stack_scan = 1;
2148 else if (strncmp(buf, "stack=off", 9) == 0)
2149 kmemleak_stack_scan = 0;
2150 else if (strncmp(buf, "scan=on", 7) == 0)
2151 start_scan_thread();
2152 else if (strncmp(buf, "scan=off", 8) == 0)
2153 stop_scan_thread();
2154 else if (strncmp(buf, "scan=", 5) == 0) {
2155 unsigned secs;
2156 unsigned long msecs;
2157
2158 ret = kstrtouint(buf + 5, 0, &secs);
2159 if (ret < 0)
2160 goto out;
2161
2162 msecs = secs * MSEC_PER_SEC;
2163 if (msecs > UINT_MAX)
2164 msecs = UINT_MAX;
2165
2166 stop_scan_thread();
2167 if (msecs) {
2168 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2169 start_scan_thread();
2170 }
2171 } else if (strncmp(buf, "scan", 4) == 0)
2172 kmemleak_scan();
2173 else if (strncmp(buf, "dump=", 5) == 0)
2174 ret = dump_str_object_info(buf + 5);
2175 else
2176 ret = -EINVAL;
2177
2178 out:
2179 mutex_unlock(&scan_mutex);
2180 if (ret < 0)
2181 return ret;
2182
2183 /* ignore the rest of the buffer, only one command at a time */
2184 *ppos += size;
2185 return size;
2186 }
2187
2188 static const struct file_operations kmemleak_fops = {
2189 .owner = THIS_MODULE,
2190 .open = kmemleak_open,
2191 .read = seq_read,
2192 .write = kmemleak_write,
2193 .llseek = seq_lseek,
2194 .release = seq_release,
2195 };
2196
__kmemleak_do_cleanup(void)2197 static void __kmemleak_do_cleanup(void)
2198 {
2199 struct kmemleak_object *object, *tmp;
2200 unsigned int cnt = 0;
2201
2202 /*
2203 * Kmemleak has already been disabled, no need for RCU list traversal
2204 * or kmemleak_lock held.
2205 */
2206 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2207 __remove_object(object);
2208 __delete_object(object);
2209
2210 /* Call cond_resched() once per 64 iterations to avoid soft lockup */
2211 if (!(++cnt & 0x3f))
2212 cond_resched();
2213 }
2214 }
2215
2216 /*
2217 * Stop the memory scanning thread and free the kmemleak internal objects if
2218 * no previous scan thread (otherwise, kmemleak may still have some useful
2219 * information on memory leaks).
2220 */
kmemleak_do_cleanup(struct work_struct * work)2221 static void kmemleak_do_cleanup(struct work_struct *work)
2222 {
2223 stop_scan_thread();
2224
2225 mutex_lock(&scan_mutex);
2226 /*
2227 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2228 * longer track object freeing. Ordering of the scan thread stopping and
2229 * the memory accesses below is guaranteed by the kthread_stop()
2230 * function.
2231 */
2232 kmemleak_free_enabled = 0;
2233 mutex_unlock(&scan_mutex);
2234
2235 if (!kmemleak_found_leaks)
2236 __kmemleak_do_cleanup();
2237 else
2238 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2239 }
2240
2241 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2242
2243 /*
2244 * Disable kmemleak. No memory allocation/freeing will be traced once this
2245 * function is called. Disabling kmemleak is an irreversible operation.
2246 */
kmemleak_disable(void)2247 static void kmemleak_disable(void)
2248 {
2249 /* atomically check whether it was already invoked */
2250 if (cmpxchg(&kmemleak_error, 0, 1))
2251 return;
2252
2253 /* stop any memory operation tracing */
2254 kmemleak_enabled = 0;
2255
2256 /* check whether it is too early for a kernel thread */
2257 if (kmemleak_late_initialized)
2258 schedule_work(&cleanup_work);
2259 else
2260 kmemleak_free_enabled = 0;
2261
2262 pr_info("Kernel memory leak detector disabled\n");
2263 }
2264
2265 /*
2266 * Allow boot-time kmemleak disabling (enabled by default).
2267 */
kmemleak_boot_config(char * str)2268 static int __init kmemleak_boot_config(char *str)
2269 {
2270 if (!str)
2271 return -EINVAL;
2272 if (strcmp(str, "off") == 0)
2273 kmemleak_disable();
2274 else if (strcmp(str, "on") == 0) {
2275 kmemleak_skip_disable = 1;
2276 stack_depot_request_early_init();
2277 }
2278 else
2279 return -EINVAL;
2280 return 0;
2281 }
2282 early_param("kmemleak", kmemleak_boot_config);
2283
2284 /*
2285 * Kmemleak initialization.
2286 */
kmemleak_init(void)2287 void __init kmemleak_init(void)
2288 {
2289 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2290 if (!kmemleak_skip_disable) {
2291 kmemleak_disable();
2292 return;
2293 }
2294 #endif
2295
2296 if (kmemleak_error)
2297 return;
2298
2299 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2300 jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT);
2301
2302 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2303 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2304
2305 /* register the data/bss sections */
2306 create_object((unsigned long)_sdata, _edata - _sdata,
2307 KMEMLEAK_GREY, GFP_ATOMIC);
2308 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2309 KMEMLEAK_GREY, GFP_ATOMIC);
2310 /* only register .data..ro_after_init if not within .data */
2311 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2312 create_object((unsigned long)__start_ro_after_init,
2313 __end_ro_after_init - __start_ro_after_init,
2314 KMEMLEAK_GREY, GFP_ATOMIC);
2315 }
2316
2317 /*
2318 * Late initialization function.
2319 */
kmemleak_late_init(void)2320 static int __init kmemleak_late_init(void)
2321 {
2322 kmemleak_late_initialized = 1;
2323
2324 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2325
2326 if (kmemleak_error) {
2327 /*
2328 * Some error occurred and kmemleak was disabled. There is a
2329 * small chance that kmemleak_disable() was called immediately
2330 * after setting kmemleak_late_initialized and we may end up with
2331 * two clean-up threads but serialized by scan_mutex.
2332 */
2333 schedule_work(&cleanup_work);
2334 return -ENOMEM;
2335 }
2336
2337 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2338 mutex_lock(&scan_mutex);
2339 start_scan_thread();
2340 mutex_unlock(&scan_mutex);
2341 }
2342
2343 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2344 mem_pool_free_count);
2345
2346 return 0;
2347 }
2348 late_initcall(kmemleak_late_init);
2349