1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2003-2008 Joseph Koshy
5 * Copyright (c) 2007 The FreeBSD Foundation
6 * Copyright (c) 2018 Matthew Macy
7 * All rights reserved.
8 *
9 * Portions of this software were developed by A. Joseph Koshy under
10 * sponsorship from the FreeBSD Foundation and Google, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mount.h>
46 #include <sys/mutex.h>
47 #include <sys/pmc.h>
48 #include <sys/pmckern.h>
49 #include <sys/pmclog.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/resourcevar.h>
54 #include <sys/rwlock.h>
55 #include <sys/sched.h>
56 #include <sys/signalvar.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/syslog.h>
62 #include <sys/taskqueue.h>
63 #include <sys/vnode.h>
64
65 #include <sys/linker.h> /* needs to be after <sys/malloc.h> */
66
67 #include <machine/atomic.h>
68 #include <machine/md_var.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_extern.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75
76 #include "hwpmc_soft.h"
77
78 #define PMC_EPOCH_ENTER() \
79 struct epoch_tracker pmc_et; \
80 epoch_enter_preempt(global_epoch_preempt, &pmc_et)
81
82 #define PMC_EPOCH_EXIT() \
83 epoch_exit_preempt(global_epoch_preempt, &pmc_et)
84
85 /*
86 * Types
87 */
88
89 enum pmc_flags {
90 PMC_FLAG_NONE = 0x00, /* do nothing */
91 PMC_FLAG_REMOVE = 0x01, /* atomically remove entry from hash */
92 PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
93 PMC_FLAG_NOWAIT = 0x04, /* do not wait for mallocs */
94 };
95
96 /*
97 * The offset in sysent where the syscall is allocated.
98 */
99 static int pmc_syscall_num = NO_SYSCALL;
100
101 struct pmc_cpu **pmc_pcpu; /* per-cpu state */
102 pmc_value_t *pmc_pcpu_saved; /* saved PMC values: CSW handling */
103
104 #define PMC_PCPU_SAVED(C, R) pmc_pcpu_saved[(R) + md->pmd_npmc * (C)]
105
106 struct mtx_pool *pmc_mtxpool;
107 static int *pmc_pmcdisp; /* PMC row dispositions */
108
109 #define PMC_ROW_DISP_IS_FREE(R) (pmc_pmcdisp[(R)] == 0)
110 #define PMC_ROW_DISP_IS_THREAD(R) (pmc_pmcdisp[(R)] > 0)
111 #define PMC_ROW_DISP_IS_STANDALONE(R) (pmc_pmcdisp[(R)] < 0)
112
113 #define PMC_MARK_ROW_FREE(R) do { \
114 pmc_pmcdisp[(R)] = 0; \
115 } while (0)
116
117 #define PMC_MARK_ROW_STANDALONE(R) do { \
118 KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
119 __LINE__)); \
120 atomic_add_int(&pmc_pmcdisp[(R)], -1); \
121 KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()), \
122 ("[pmc,%d] row disposition error", __LINE__)); \
123 } while (0)
124
125 #define PMC_UNMARK_ROW_STANDALONE(R) do { \
126 atomic_add_int(&pmc_pmcdisp[(R)], 1); \
127 KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
128 __LINE__)); \
129 } while (0)
130
131 #define PMC_MARK_ROW_THREAD(R) do { \
132 KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
133 __LINE__)); \
134 atomic_add_int(&pmc_pmcdisp[(R)], 1); \
135 } while (0)
136
137 #define PMC_UNMARK_ROW_THREAD(R) do { \
138 atomic_add_int(&pmc_pmcdisp[(R)], -1); \
139 KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
140 __LINE__)); \
141 } while (0)
142
143 /* various event handlers */
144 static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
145 pmc_kld_unload_tag;
146
147 /* Module statistics */
148 struct pmc_driverstats pmc_stats;
149
150 /* Machine/processor dependent operations */
151 static struct pmc_mdep *md;
152
153 /*
154 * Hash tables mapping owner processes and target threads to PMCs.
155 */
156 struct mtx pmc_processhash_mtx; /* spin mutex */
157 static u_long pmc_processhashmask;
158 static LIST_HEAD(pmc_processhash, pmc_process) *pmc_processhash;
159
160 /*
161 * Hash table of PMC owner descriptors. This table is protected by
162 * the shared PMC "sx" lock.
163 */
164 static u_long pmc_ownerhashmask;
165 static LIST_HEAD(pmc_ownerhash, pmc_owner) *pmc_ownerhash;
166
167 /*
168 * List of PMC owners with system-wide sampling PMCs.
169 */
170 static CK_LIST_HEAD(, pmc_owner) pmc_ss_owners;
171
172 /*
173 * List of free thread entries. This is protected by the spin
174 * mutex.
175 */
176 static struct mtx pmc_threadfreelist_mtx; /* spin mutex */
177 static LIST_HEAD(, pmc_thread) pmc_threadfreelist;
178 static int pmc_threadfreelist_entries = 0;
179 #define THREADENTRY_SIZE (sizeof(struct pmc_thread) + \
180 (md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
181
182 /*
183 * Task to free thread descriptors
184 */
185 static struct task free_task;
186
187 /*
188 * A map of row indices to classdep structures.
189 */
190 static struct pmc_classdep **pmc_rowindex_to_classdep;
191
192 /*
193 * Prototypes
194 */
195
196 #ifdef HWPMC_DEBUG
197 static int pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
198 static int pmc_debugflags_parse(char *newstr, char *fence);
199 #endif
200
201 static int load(struct module *module, int cmd, void *arg);
202 static int pmc_add_sample(ring_type_t ring, struct pmc *pm,
203 struct trapframe *tf);
204 static void pmc_add_thread_descriptors_from_proc(struct proc *p,
205 struct pmc_process *pp);
206 static int pmc_attach_process(struct proc *p, struct pmc *pm);
207 static struct pmc *pmc_allocate_pmc_descriptor(void);
208 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
209 static int pmc_attach_one_process(struct proc *p, struct pmc *pm);
210 static bool pmc_can_allocate_row(int ri, enum pmc_mode mode);
211 static bool pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
212 int cpu);
213 static bool pmc_can_attach(struct pmc *pm, struct proc *p);
214 static void pmc_capture_user_callchain(int cpu, int soft,
215 struct trapframe *tf);
216 static void pmc_cleanup(void);
217 static int pmc_detach_process(struct proc *p, struct pmc *pm);
218 static int pmc_detach_one_process(struct proc *p, struct pmc *pm,
219 int flags);
220 static void pmc_destroy_owner_descriptor(struct pmc_owner *po);
221 static void pmc_destroy_pmc_descriptor(struct pmc *pm);
222 static void pmc_destroy_process_descriptor(struct pmc_process *pp);
223 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
224 static int pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
225 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
226 pmc_id_t pmc);
227 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
228 uint32_t mode);
229 static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
230 struct thread *td, uint32_t mode);
231 static void pmc_force_context_switch(void);
232 static void pmc_link_target_process(struct pmc *pm,
233 struct pmc_process *pp);
234 static void pmc_log_all_process_mappings(struct pmc_owner *po);
235 static void pmc_log_kernel_mappings(struct pmc *pm);
236 static void pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
237 static void pmc_maybe_remove_owner(struct pmc_owner *po);
238 static void pmc_post_callchain_callback(void);
239 static void pmc_process_allproc(struct pmc *pm);
240 static void pmc_process_csw_in(struct thread *td);
241 static void pmc_process_csw_out(struct thread *td);
242 static void pmc_process_exec(struct thread *td,
243 struct pmckern_procexec *pk);
244 static void pmc_process_exit(void *arg, struct proc *p);
245 static void pmc_process_fork(void *arg, struct proc *p1,
246 struct proc *p2, int n);
247 static void pmc_process_proccreate(struct proc *p);
248 static void pmc_process_samples(int cpu, ring_type_t soft);
249 static void pmc_process_threadcreate(struct thread *td);
250 static void pmc_process_threadexit(struct thread *td);
251 static void pmc_process_thread_add(struct thread *td);
252 static void pmc_process_thread_delete(struct thread *td);
253 static void pmc_process_thread_userret(struct thread *td);
254 static void pmc_release_pmc_descriptor(struct pmc *pmc);
255 static void pmc_remove_owner(struct pmc_owner *po);
256 static void pmc_remove_process_descriptor(struct pmc_process *pp);
257 static int pmc_start(struct pmc *pm);
258 static int pmc_stop(struct pmc *pm);
259 static int pmc_syscall_handler(struct thread *td, void *syscall_args);
260 static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
261 static void pmc_thread_descriptor_pool_drain(void);
262 static void pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
263 static void pmc_unlink_target_process(struct pmc *pmc,
264 struct pmc_process *pp);
265
266 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
267 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
268 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
269 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
270
271 /*
272 * Kernel tunables and sysctl(8) interface.
273 */
274
275 SYSCTL_DECL(_kern_hwpmc);
276 SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
277 "HWPMC stats");
278
279 /* Stats. */
280 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
281 &pmc_stats.pm_intr_ignored,
282 "# of interrupts ignored");
283 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
284 &pmc_stats.pm_intr_processed,
285 "# of interrupts processed");
286 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
287 &pmc_stats.pm_intr_bufferfull,
288 "# of interrupts where buffer was full");
289 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
290 &pmc_stats.pm_syscalls,
291 "# of syscalls");
292 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
293 &pmc_stats.pm_syscall_errors,
294 "# of syscall_errors");
295 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
296 &pmc_stats.pm_buffer_requests,
297 "# of buffer requests");
298 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed,
299 CTLFLAG_RW, &pmc_stats.pm_buffer_requests_failed,
300 "# of buffer requests which failed");
301 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
302 &pmc_stats.pm_log_sweeps,
303 "# of times samples were processed");
304 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, merges, CTLFLAG_RW,
305 &pmc_stats.pm_merges,
306 "# of times kernel stack was found for user trace");
307 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, overwrites, CTLFLAG_RW,
308 &pmc_stats.pm_overwrites,
309 "# of times a sample was overwritten before being logged");
310
311 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
312 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
313 &pmc_callchaindepth, 0,
314 "depth of call chain records");
315
316 char pmc_cpuid[PMC_CPUID_LEN];
317 SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
318 pmc_cpuid, 0,
319 "cpu version string");
320
321 #ifdef HWPMC_DEBUG
322 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
323 char pmc_debugstr[PMC_DEBUG_STRSIZE];
324 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
325 sizeof(pmc_debugstr));
326 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
327 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
328 0, 0, pmc_debugflags_sysctl_handler, "A",
329 "debug flags");
330 #endif
331
332 /*
333 * kern.hwpmc.hashsize -- determines the number of rows in the
334 * of the hash table used to look up threads
335 */
336 static int pmc_hashsize = PMC_HASH_SIZE;
337 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
338 &pmc_hashsize, 0,
339 "rows in hash tables");
340
341 /*
342 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
343 */
344 static int pmc_nsamples = PMC_NSAMPLES;
345 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
346 &pmc_nsamples, 0,
347 "number of PC samples per CPU");
348
349 static uint64_t pmc_sample_mask = PMC_NSAMPLES - 1;
350
351 /*
352 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
353 */
354 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
355 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
356 &pmc_mtxpool_size, 0,
357 "size of spin mutex pool");
358
359 /*
360 * kern.hwpmc.threadfreelist_entries -- number of free entries
361 */
362 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
363 &pmc_threadfreelist_entries, 0,
364 "number of available thread entries");
365
366 /*
367 * kern.hwpmc.threadfreelist_max -- maximum number of free entries
368 */
369 static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
370 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
371 &pmc_threadfreelist_max, 0,
372 "maximum number of available thread entries before freeing some");
373
374 /*
375 * kern.hwpmc.mincount -- minimum sample count
376 */
377 static u_int pmc_mincount = 1000;
378 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mincount, CTLFLAG_RWTUN,
379 &pmc_mincount, 0,
380 "minimum count for sampling counters");
381
382 /*
383 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
384 * allocate system-wide PMCs.
385 *
386 * Allowing unprivileged processes to allocate system PMCs is convenient
387 * if system-wide measurements need to be taken concurrently with other
388 * per-process measurements. This feature is turned off by default.
389 */
390 static int pmc_unprivileged_syspmcs = 0;
391 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
392 &pmc_unprivileged_syspmcs, 0,
393 "allow unprivileged process to allocate system PMCs");
394
395 /*
396 * Hash function. Discard the lower 2 bits of the pointer since
397 * these are always zero for our uses. The hash multiplier is
398 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
399 */
400 #if LONG_BIT == 64
401 #define _PMC_HM 11400714819323198486u
402 #elif LONG_BIT == 32
403 #define _PMC_HM 2654435769u
404 #else
405 #error Must know the size of 'long' to compile
406 #endif
407
408 #define PMC_HASH_PTR(P,M) ((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
409
410 /*
411 * Syscall structures
412 */
413
414 /* The `sysent' for the new syscall */
415 static struct sysent pmc_sysent = {
416 .sy_narg = 2,
417 .sy_call = pmc_syscall_handler,
418 };
419
420 static struct syscall_module_data pmc_syscall_mod = {
421 .chainevh = load,
422 .chainarg = NULL,
423 .offset = &pmc_syscall_num,
424 .new_sysent = &pmc_sysent,
425 .old_sysent = { .sy_narg = 0, .sy_call = NULL },
426 .flags = SY_THR_STATIC_KLD,
427 };
428
429 static moduledata_t pmc_mod = {
430 .name = PMC_MODULE_NAME,
431 .evhand = syscall_module_handler,
432 .priv = &pmc_syscall_mod,
433 };
434
435 #ifdef EARLY_AP_STARTUP
436 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
437 #else
438 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
439 #endif
440 MODULE_VERSION(pmc, PMC_VERSION);
441
442 #ifdef HWPMC_DEBUG
443 enum pmc_dbgparse_state {
444 PMCDS_WS, /* in whitespace */
445 PMCDS_MAJOR, /* seen a major keyword */
446 PMCDS_MINOR
447 };
448
449 static int
pmc_debugflags_parse(char * newstr,char * fence)450 pmc_debugflags_parse(char *newstr, char *fence)
451 {
452 struct pmc_debugflags *tmpflags;
453 size_t kwlen;
454 char c, *p, *q;
455 int error, *newbits, tmp;
456 int found;
457
458 tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK | M_ZERO);
459
460 error = 0;
461 for (p = newstr; p < fence && (c = *p); p++) {
462 /* skip white space */
463 if (c == ' ' || c == '\t')
464 continue;
465
466 /* look for a keyword followed by "=" */
467 for (q = p; p < fence && (c = *p) && c != '='; p++)
468 ;
469 if (c != '=') {
470 error = EINVAL;
471 goto done;
472 }
473
474 kwlen = p - q;
475 newbits = NULL;
476
477 /* lookup flag group name */
478 #define DBG_SET_FLAG_MAJ(S,F) \
479 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
480 newbits = &tmpflags->pdb_ ## F;
481
482 DBG_SET_FLAG_MAJ("cpu", CPU);
483 DBG_SET_FLAG_MAJ("csw", CSW);
484 DBG_SET_FLAG_MAJ("logging", LOG);
485 DBG_SET_FLAG_MAJ("module", MOD);
486 DBG_SET_FLAG_MAJ("md", MDP);
487 DBG_SET_FLAG_MAJ("owner", OWN);
488 DBG_SET_FLAG_MAJ("pmc", PMC);
489 DBG_SET_FLAG_MAJ("process", PRC);
490 DBG_SET_FLAG_MAJ("sampling", SAM);
491 #undef DBG_SET_FLAG_MAJ
492
493 if (newbits == NULL) {
494 error = EINVAL;
495 goto done;
496 }
497
498 p++; /* skip the '=' */
499
500 /* Now parse the individual flags */
501 tmp = 0;
502 newflag:
503 for (q = p; p < fence && (c = *p); p++)
504 if (c == ' ' || c == '\t' || c == ',')
505 break;
506
507 /* p == fence or c == ws or c == "," or c == 0 */
508
509 if ((kwlen = p - q) == 0) {
510 *newbits = tmp;
511 continue;
512 }
513
514 found = 0;
515 #define DBG_SET_FLAG_MIN(S,F) \
516 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
517 tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
518
519 /* a '*' denotes all possible flags in the group */
520 if (kwlen == 1 && *q == '*')
521 tmp = found = ~0;
522 /* look for individual flag names */
523 DBG_SET_FLAG_MIN("allocaterow", ALR);
524 DBG_SET_FLAG_MIN("allocate", ALL);
525 DBG_SET_FLAG_MIN("attach", ATT);
526 DBG_SET_FLAG_MIN("bind", BND);
527 DBG_SET_FLAG_MIN("config", CFG);
528 DBG_SET_FLAG_MIN("exec", EXC);
529 DBG_SET_FLAG_MIN("exit", EXT);
530 DBG_SET_FLAG_MIN("find", FND);
531 DBG_SET_FLAG_MIN("flush", FLS);
532 DBG_SET_FLAG_MIN("fork", FRK);
533 DBG_SET_FLAG_MIN("getbuf", GTB);
534 DBG_SET_FLAG_MIN("hook", PMH);
535 DBG_SET_FLAG_MIN("init", INI);
536 DBG_SET_FLAG_MIN("intr", INT);
537 DBG_SET_FLAG_MIN("linktarget", TLK);
538 DBG_SET_FLAG_MIN("mayberemove", OMR);
539 DBG_SET_FLAG_MIN("ops", OPS);
540 DBG_SET_FLAG_MIN("read", REA);
541 DBG_SET_FLAG_MIN("register", REG);
542 DBG_SET_FLAG_MIN("release", REL);
543 DBG_SET_FLAG_MIN("remove", ORM);
544 DBG_SET_FLAG_MIN("sample", SAM);
545 DBG_SET_FLAG_MIN("scheduleio", SIO);
546 DBG_SET_FLAG_MIN("select", SEL);
547 DBG_SET_FLAG_MIN("signal", SIG);
548 DBG_SET_FLAG_MIN("swi", SWI);
549 DBG_SET_FLAG_MIN("swo", SWO);
550 DBG_SET_FLAG_MIN("start", STA);
551 DBG_SET_FLAG_MIN("stop", STO);
552 DBG_SET_FLAG_MIN("syscall", PMS);
553 DBG_SET_FLAG_MIN("unlinktarget", TUL);
554 DBG_SET_FLAG_MIN("write", WRI);
555 #undef DBG_SET_FLAG_MIN
556 if (found == 0) {
557 /* unrecognized flag name */
558 error = EINVAL;
559 goto done;
560 }
561
562 if (c == 0 || c == ' ' || c == '\t') { /* end of flag group */
563 *newbits = tmp;
564 continue;
565 }
566
567 p++;
568 goto newflag;
569 }
570
571 /* save the new flag set */
572 bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
573 done:
574 free(tmpflags, M_PMC);
575 return (error);
576 }
577
578 static int
pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)579 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
580 {
581 char *fence, *newstr;
582 int error;
583 u_int n;
584
585 n = sizeof(pmc_debugstr);
586 newstr = malloc(n, M_PMC, M_WAITOK | M_ZERO);
587 strlcpy(newstr, pmc_debugstr, n);
588
589 error = sysctl_handle_string(oidp, newstr, n, req);
590
591 /* if there is a new string, parse and copy it */
592 if (error == 0 && req->newptr != NULL) {
593 fence = newstr + (n < req->newlen ? n : req->newlen + 1);
594 error = pmc_debugflags_parse(newstr, fence);
595 if (error == 0)
596 strlcpy(pmc_debugstr, newstr, sizeof(pmc_debugstr));
597 }
598 free(newstr, M_PMC);
599
600 return (error);
601 }
602 #endif
603
604 /*
605 * Map a row index to a classdep structure and return the adjusted row
606 * index for the PMC class index.
607 */
608 static struct pmc_classdep *
pmc_ri_to_classdep(struct pmc_mdep * md __unused,int ri,int * adjri)609 pmc_ri_to_classdep(struct pmc_mdep *md __unused, int ri, int *adjri)
610 {
611 struct pmc_classdep *pcd;
612
613 KASSERT(ri >= 0 && ri < md->pmd_npmc,
614 ("[pmc,%d] illegal row-index %d", __LINE__, ri));
615
616 pcd = pmc_rowindex_to_classdep[ri];
617 KASSERT(pcd != NULL,
618 ("[pmc,%d] ri %d null pcd", __LINE__, ri));
619
620 *adjri = ri - pcd->pcd_ri;
621 KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
622 ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
623
624 return (pcd);
625 }
626
627 /*
628 * Concurrency Control
629 *
630 * The driver manages the following data structures:
631 *
632 * - target process descriptors, one per target process
633 * - owner process descriptors (and attached lists), one per owner process
634 * - lookup hash tables for owner and target processes
635 * - PMC descriptors (and attached lists)
636 * - per-cpu hardware state
637 * - the 'hook' variable through which the kernel calls into
638 * this module
639 * - the machine hardware state (managed by the MD layer)
640 *
641 * These data structures are accessed from:
642 *
643 * - thread context-switch code
644 * - interrupt handlers (possibly on multiple cpus)
645 * - kernel threads on multiple cpus running on behalf of user
646 * processes doing system calls
647 * - this driver's private kernel threads
648 *
649 * = Locks and Locking strategy =
650 *
651 * The driver uses four locking strategies for its operation:
652 *
653 * - The global SX lock "pmc_sx" is used to protect internal
654 * data structures.
655 *
656 * Calls into the module by syscall() start with this lock being
657 * held in exclusive mode. Depending on the requested operation,
658 * the lock may be downgraded to 'shared' mode to allow more
659 * concurrent readers into the module. Calls into the module from
660 * other parts of the kernel acquire the lock in shared mode.
661 *
662 * This SX lock is held in exclusive mode for any operations that
663 * modify the linkages between the driver's internal data structures.
664 *
665 * The 'pmc_hook' function pointer is also protected by this lock.
666 * It is only examined with the sx lock held in exclusive mode. The
667 * kernel module is allowed to be unloaded only with the sx lock held
668 * in exclusive mode. In normal syscall handling, after acquiring the
669 * pmc_sx lock we first check that 'pmc_hook' is non-null before
670 * proceeding. This prevents races between the thread unloading the module
671 * and other threads seeking to use the module.
672 *
673 * - Lookups of target process structures and owner process structures
674 * cannot use the global "pmc_sx" SX lock because these lookups need
675 * to happen during context switches and in other critical sections
676 * where sleeping is not allowed. We protect these lookup tables
677 * with their own private spin-mutexes, "pmc_processhash_mtx" and
678 * "pmc_ownerhash_mtx".
679 *
680 * - Interrupt handlers work in a lock free manner. At interrupt
681 * time, handlers look at the PMC pointer (phw->phw_pmc) configured
682 * when the PMC was started. If this pointer is NULL, the interrupt
683 * is ignored after updating driver statistics. We ensure that this
684 * pointer is set (using an atomic operation if necessary) before the
685 * PMC hardware is started. Conversely, this pointer is unset atomically
686 * only after the PMC hardware is stopped.
687 *
688 * We ensure that everything needed for the operation of an
689 * interrupt handler is available without it needing to acquire any
690 * locks. We also ensure that a PMC's software state is destroyed only
691 * after the PMC is taken off hardware (on all CPUs).
692 *
693 * - Context-switch handling with process-private PMCs needs more
694 * care.
695 *
696 * A given process may be the target of multiple PMCs. For example,
697 * PMCATTACH and PMCDETACH may be requested by a process on one CPU
698 * while the target process is running on another. A PMC could also
699 * be getting released because its owner is exiting. We tackle
700 * these situations in the following manner:
701 *
702 * - each target process structure 'pmc_process' has an array
703 * of 'struct pmc *' pointers, one for each hardware PMC.
704 *
705 * - At context switch IN time, each "target" PMC in RUNNING state
706 * gets started on hardware and a pointer to each PMC is copied into
707 * the per-cpu phw array. The 'runcount' for the PMC is
708 * incremented.
709 *
710 * - At context switch OUT time, all process-virtual PMCs are stopped
711 * on hardware. The saved value is added to the PMCs value field
712 * only if the PMC is in a non-deleted state (the PMCs state could
713 * have changed during the current time slice).
714 *
715 * Note that since in-between a switch IN on a processor and a switch
716 * OUT, the PMC could have been released on another CPU. Therefore
717 * context switch OUT always looks at the hardware state to turn
718 * OFF PMCs and will update a PMC's saved value only if reachable
719 * from the target process record.
720 *
721 * - OP PMCRELEASE could be called on a PMC at any time (the PMC could
722 * be attached to many processes at the time of the call and could
723 * be active on multiple CPUs).
724 *
725 * We prevent further scheduling of the PMC by marking it as in
726 * state 'DELETED'. If the runcount of the PMC is non-zero then
727 * this PMC is currently running on a CPU somewhere. The thread
728 * doing the PMCRELEASE operation waits by repeatedly doing a
729 * pause() till the runcount comes to zero.
730 *
731 * The contents of a PMC descriptor (struct pmc) are protected using
732 * a spin-mutex. In order to save space, we use a mutex pool.
733 *
734 * In terms of lock types used by witness(4), we use:
735 * - Type "pmc-sx", used by the global SX lock.
736 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
737 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
738 * - Type "pmc-leaf", used for all other spin mutexes.
739 */
740
741 /*
742 * Save the CPU binding of the current kthread.
743 */
744 void
pmc_save_cpu_binding(struct pmc_binding * pb)745 pmc_save_cpu_binding(struct pmc_binding *pb)
746 {
747 PMCDBG0(CPU,BND,2, "save-cpu");
748 thread_lock(curthread);
749 pb->pb_bound = sched_is_bound(curthread);
750 pb->pb_cpu = curthread->td_oncpu;
751 pb->pb_priority = curthread->td_priority;
752 thread_unlock(curthread);
753 PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
754 }
755
756 /*
757 * Restore the CPU binding of the current thread.
758 */
759 void
pmc_restore_cpu_binding(struct pmc_binding * pb)760 pmc_restore_cpu_binding(struct pmc_binding *pb)
761 {
762 PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
763 curthread->td_oncpu, pb->pb_cpu);
764 thread_lock(curthread);
765 sched_bind(curthread, pb->pb_cpu);
766 if (!pb->pb_bound)
767 sched_unbind(curthread);
768 sched_prio(curthread, pb->pb_priority);
769 thread_unlock(curthread);
770 PMCDBG0(CPU,BND,2, "restore-cpu done");
771 }
772
773 /*
774 * Move execution over to the specified CPU and bind it there.
775 */
776 void
pmc_select_cpu(int cpu)777 pmc_select_cpu(int cpu)
778 {
779 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
780 ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
781
782 /* Never move to an inactive CPU. */
783 KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
784 "CPU %d", __LINE__, cpu));
785
786 PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
787 thread_lock(curthread);
788 sched_prio(curthread, PRI_MIN);
789 sched_bind(curthread, cpu);
790 thread_unlock(curthread);
791
792 KASSERT(curthread->td_oncpu == cpu,
793 ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
794 cpu, curthread->td_oncpu));
795
796 PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
797 }
798
799 /*
800 * Force a context switch.
801 *
802 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
803 * guaranteed to force a context switch.
804 */
805 static void
pmc_force_context_switch(void)806 pmc_force_context_switch(void)
807 {
808
809 pause("pmcctx", 1);
810 }
811
812 uint64_t
pmc_rdtsc(void)813 pmc_rdtsc(void)
814 {
815 #if defined(__i386__) || defined(__amd64__)
816 if (__predict_true(amd_feature & AMDID_RDTSCP))
817 return (rdtscp());
818 else
819 return (rdtsc());
820 #else
821 return (get_cyclecount());
822 #endif
823 }
824
825 /*
826 * Get the file name for an executable. This is a simple wrapper
827 * around vn_fullpath(9).
828 */
829 static void
pmc_getfilename(struct vnode * v,char ** fullpath,char ** freepath)830 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
831 {
832
833 *fullpath = "unknown";
834 *freepath = NULL;
835 vn_fullpath(v, fullpath, freepath);
836 }
837
838 /*
839 * Remove a process owning PMCs.
840 */
841 void
pmc_remove_owner(struct pmc_owner * po)842 pmc_remove_owner(struct pmc_owner *po)
843 {
844 struct pmc *pm, *tmp;
845
846 sx_assert(&pmc_sx, SX_XLOCKED);
847
848 PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
849
850 /* Remove descriptor from the owner hash table */
851 LIST_REMOVE(po, po_next);
852
853 /* release all owned PMC descriptors */
854 LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
855 PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
856 KASSERT(pm->pm_owner == po,
857 ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
858
859 pmc_release_pmc_descriptor(pm); /* will unlink from the list */
860 pmc_destroy_pmc_descriptor(pm);
861 }
862
863 KASSERT(po->po_sscount == 0,
864 ("[pmc,%d] SS count not zero", __LINE__));
865 KASSERT(LIST_EMPTY(&po->po_pmcs),
866 ("[pmc,%d] PMC list not empty", __LINE__));
867
868 /* de-configure the log file if present */
869 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
870 pmclog_deconfigure_log(po);
871 }
872
873 /*
874 * Remove an owner process record if all conditions are met.
875 */
876 static void
pmc_maybe_remove_owner(struct pmc_owner * po)877 pmc_maybe_remove_owner(struct pmc_owner *po)
878 {
879
880 PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
881
882 /*
883 * Remove owner record if
884 * - this process does not own any PMCs
885 * - this process has not allocated a system-wide sampling buffer
886 */
887 if (LIST_EMPTY(&po->po_pmcs) &&
888 ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
889 pmc_remove_owner(po);
890 pmc_destroy_owner_descriptor(po);
891 }
892 }
893
894 /*
895 * Add an association between a target process and a PMC.
896 */
897 static void
pmc_link_target_process(struct pmc * pm,struct pmc_process * pp)898 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
899 {
900 struct pmc_target *pt;
901 struct pmc_thread *pt_td __diagused;
902 int ri;
903
904 sx_assert(&pmc_sx, SX_XLOCKED);
905 KASSERT(pm != NULL && pp != NULL,
906 ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
907 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
908 ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
909 __LINE__, pm, pp->pp_proc->p_pid));
910 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
911 ("[pmc,%d] Illegal reference count %d for process record %p",
912 __LINE__, pp->pp_refcnt, (void *) pp));
913
914 ri = PMC_TO_ROWINDEX(pm);
915
916 PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
917 pm, ri, pp);
918
919 #ifdef HWPMC_DEBUG
920 LIST_FOREACH(pt, &pm->pm_targets, pt_next) {
921 if (pt->pt_process == pp)
922 KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
923 __LINE__, pp, pm));
924 }
925 #endif
926 pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK | M_ZERO);
927 pt->pt_process = pp;
928
929 LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
930
931 atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
932 (uintptr_t)pm);
933
934 if (pm->pm_owner->po_owner == pp->pp_proc)
935 pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
936
937 /*
938 * Initialize the per-process values at this row index.
939 */
940 pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
941 pm->pm_sc.pm_reloadcount : 0;
942 pp->pp_refcnt++;
943
944 #ifdef INVARIANTS
945 /* Confirm that the per-thread values at this row index are cleared. */
946 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
947 mtx_lock_spin(pp->pp_tdslock);
948 LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
949 KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
950 ("[pmc,%d] pt_pmcval not cleared for pid=%d at "
951 "ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
952 }
953 mtx_unlock_spin(pp->pp_tdslock);
954 }
955 #endif
956 }
957
958 /*
959 * Removes the association between a target process and a PMC.
960 */
961 static void
pmc_unlink_target_process(struct pmc * pm,struct pmc_process * pp)962 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
963 {
964 int ri;
965 struct proc *p;
966 struct pmc_target *ptgt;
967 struct pmc_thread *pt;
968
969 sx_assert(&pmc_sx, SX_XLOCKED);
970
971 KASSERT(pm != NULL && pp != NULL,
972 ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
973
974 KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
975 ("[pmc,%d] Illegal ref count %d on process record %p",
976 __LINE__, pp->pp_refcnt, (void *) pp));
977
978 ri = PMC_TO_ROWINDEX(pm);
979
980 PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
981 pm, ri, pp);
982
983 KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
984 ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
985 ri, pm, pp->pp_pmcs[ri].pp_pmc));
986
987 pp->pp_pmcs[ri].pp_pmc = NULL;
988 pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t)0;
989
990 /* Clear the per-thread values at this row index. */
991 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
992 mtx_lock_spin(pp->pp_tdslock);
993 LIST_FOREACH(pt, &pp->pp_tds, pt_next)
994 pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t)0;
995 mtx_unlock_spin(pp->pp_tdslock);
996 }
997
998 /* Remove owner-specific flags */
999 if (pm->pm_owner->po_owner == pp->pp_proc) {
1000 pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
1001 pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
1002 }
1003
1004 pp->pp_refcnt--;
1005
1006 /* Remove the target process from the PMC structure */
1007 LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
1008 if (ptgt->pt_process == pp)
1009 break;
1010
1011 KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
1012 "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
1013
1014 LIST_REMOVE(ptgt, pt_next);
1015 free(ptgt, M_PMC);
1016
1017 /* if the PMC now lacks targets, send the owner a SIGIO */
1018 if (LIST_EMPTY(&pm->pm_targets)) {
1019 p = pm->pm_owner->po_owner;
1020 PROC_LOCK(p);
1021 kern_psignal(p, SIGIO);
1022 PROC_UNLOCK(p);
1023
1024 PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p, SIGIO);
1025 }
1026 }
1027
1028 /*
1029 * Check if PMC 'pm' may be attached to target process 't'.
1030 */
1031
1032 static bool
pmc_can_attach(struct pmc * pm,struct proc * t)1033 pmc_can_attach(struct pmc *pm, struct proc *t)
1034 {
1035 struct proc *o; /* pmc owner */
1036 struct ucred *oc, *tc; /* owner, target credentials */
1037 bool decline_attach;
1038
1039 /*
1040 * A PMC's owner can always attach that PMC to itself.
1041 */
1042
1043 if ((o = pm->pm_owner->po_owner) == t)
1044 return (true);
1045
1046 PROC_LOCK(o);
1047 oc = o->p_ucred;
1048 crhold(oc);
1049 PROC_UNLOCK(o);
1050
1051 PROC_LOCK(t);
1052 tc = t->p_ucred;
1053 crhold(tc);
1054 PROC_UNLOCK(t);
1055
1056 /*
1057 * The effective uid of the PMC owner should match at least one
1058 * of the {effective,real,saved} uids of the target process.
1059 */
1060
1061 decline_attach = oc->cr_uid != tc->cr_uid &&
1062 oc->cr_uid != tc->cr_svuid &&
1063 oc->cr_uid != tc->cr_ruid;
1064
1065 /*
1066 * Every one of the target's group ids, must be in the owner's
1067 * group list.
1068 */
1069 for (int i = 0; !decline_attach && i < tc->cr_ngroups; i++)
1070 decline_attach = !groupmember(tc->cr_groups[i], oc);
1071 if (!decline_attach)
1072 decline_attach = !groupmember(tc->cr_gid, oc) ||
1073 !groupmember(tc->cr_rgid, oc) ||
1074 !groupmember(tc->cr_svgid, oc);
1075
1076 crfree(tc);
1077 crfree(oc);
1078
1079 return (!decline_attach);
1080 }
1081
1082 /*
1083 * Attach a process to a PMC.
1084 */
1085 static int
pmc_attach_one_process(struct proc * p,struct pmc * pm)1086 pmc_attach_one_process(struct proc *p, struct pmc *pm)
1087 {
1088 int ri, error;
1089 char *fullpath, *freepath;
1090 struct pmc_process *pp;
1091
1092 sx_assert(&pmc_sx, SX_XLOCKED);
1093
1094 PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
1095 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1096
1097 /*
1098 * Locate the process descriptor corresponding to process 'p',
1099 * allocating space as needed.
1100 *
1101 * Verify that rowindex 'pm_rowindex' is free in the process
1102 * descriptor.
1103 *
1104 * If not, allocate space for a descriptor and link the
1105 * process descriptor and PMC.
1106 */
1107 ri = PMC_TO_ROWINDEX(pm);
1108
1109 /* mark process as using HWPMCs */
1110 PROC_LOCK(p);
1111 p->p_flag |= P_HWPMC;
1112 PROC_UNLOCK(p);
1113
1114 if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
1115 error = ENOMEM;
1116 goto fail;
1117 }
1118
1119 if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
1120 error = EEXIST;
1121 goto fail;
1122 }
1123
1124 if (pp->pp_pmcs[ri].pp_pmc != NULL) {
1125 error = EBUSY;
1126 goto fail;
1127 }
1128
1129 pmc_link_target_process(pm, pp);
1130
1131 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1132 (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1133 pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1134
1135 pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1136
1137 /* issue an attach event to a configured log file */
1138 if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1139 if (p->p_flag & P_KPROC) {
1140 fullpath = kernelname;
1141 freepath = NULL;
1142 } else {
1143 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1144 pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1145 }
1146 free(freepath, M_TEMP);
1147 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1148 pmc_log_process_mappings(pm->pm_owner, p);
1149 }
1150
1151 return (0);
1152 fail:
1153 PROC_LOCK(p);
1154 p->p_flag &= ~P_HWPMC;
1155 PROC_UNLOCK(p);
1156 return (error);
1157 }
1158
1159 /*
1160 * Attach a process and optionally its children
1161 */
1162 static int
pmc_attach_process(struct proc * p,struct pmc * pm)1163 pmc_attach_process(struct proc *p, struct pmc *pm)
1164 {
1165 int error;
1166 struct proc *top;
1167
1168 sx_assert(&pmc_sx, SX_XLOCKED);
1169
1170 PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1171 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1172
1173 /*
1174 * If this PMC successfully allowed a GETMSR operation
1175 * in the past, disallow further ATTACHes.
1176 */
1177 if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1178 return (EPERM);
1179
1180 if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1181 return (pmc_attach_one_process(p, pm));
1182
1183 /*
1184 * Traverse all child processes, attaching them to
1185 * this PMC.
1186 */
1187 sx_slock(&proctree_lock);
1188
1189 top = p;
1190 for (;;) {
1191 if ((error = pmc_attach_one_process(p, pm)) != 0)
1192 break;
1193 if (!LIST_EMPTY(&p->p_children))
1194 p = LIST_FIRST(&p->p_children);
1195 else for (;;) {
1196 if (p == top)
1197 goto done;
1198 if (LIST_NEXT(p, p_sibling)) {
1199 p = LIST_NEXT(p, p_sibling);
1200 break;
1201 }
1202 p = p->p_pptr;
1203 }
1204 }
1205
1206 if (error != 0)
1207 (void)pmc_detach_process(top, pm);
1208
1209 done:
1210 sx_sunlock(&proctree_lock);
1211 return (error);
1212 }
1213
1214 /*
1215 * Detach a process from a PMC. If there are no other PMCs tracking
1216 * this process, remove the process structure from its hash table. If
1217 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1218 */
1219 static int
pmc_detach_one_process(struct proc * p,struct pmc * pm,int flags)1220 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1221 {
1222 int ri;
1223 struct pmc_process *pp;
1224
1225 sx_assert(&pmc_sx, SX_XLOCKED);
1226
1227 KASSERT(pm != NULL,
1228 ("[pmc,%d] null pm pointer", __LINE__));
1229
1230 ri = PMC_TO_ROWINDEX(pm);
1231
1232 PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1233 pm, ri, p, p->p_pid, p->p_comm, flags);
1234
1235 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1236 return (ESRCH);
1237
1238 if (pp->pp_pmcs[ri].pp_pmc != pm)
1239 return (EINVAL);
1240
1241 pmc_unlink_target_process(pm, pp);
1242
1243 /* Issue a detach entry if a log file is configured */
1244 if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1245 pmclog_process_pmcdetach(pm, p->p_pid);
1246
1247 /*
1248 * If there are no PMCs targeting this process, we remove its
1249 * descriptor from the target hash table and unset the P_HWPMC
1250 * flag in the struct proc.
1251 */
1252 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1253 ("[pmc,%d] Illegal refcnt %d for process struct %p",
1254 __LINE__, pp->pp_refcnt, pp));
1255
1256 if (pp->pp_refcnt != 0) /* still a target of some PMC */
1257 return (0);
1258
1259 pmc_remove_process_descriptor(pp);
1260
1261 if (flags & PMC_FLAG_REMOVE)
1262 pmc_destroy_process_descriptor(pp);
1263
1264 PROC_LOCK(p);
1265 p->p_flag &= ~P_HWPMC;
1266 PROC_UNLOCK(p);
1267
1268 return (0);
1269 }
1270
1271 /*
1272 * Detach a process and optionally its descendants from a PMC.
1273 */
1274 static int
pmc_detach_process(struct proc * p,struct pmc * pm)1275 pmc_detach_process(struct proc *p, struct pmc *pm)
1276 {
1277 struct proc *top;
1278
1279 sx_assert(&pmc_sx, SX_XLOCKED);
1280
1281 PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1282 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1283
1284 if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1285 return (pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE));
1286
1287 /*
1288 * Traverse all children, detaching them from this PMC. We
1289 * ignore errors since we could be detaching a PMC from a
1290 * partially attached proc tree.
1291 */
1292 sx_slock(&proctree_lock);
1293
1294 top = p;
1295 for (;;) {
1296 (void)pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1297
1298 if (!LIST_EMPTY(&p->p_children)) {
1299 p = LIST_FIRST(&p->p_children);
1300 } else {
1301 for (;;) {
1302 if (p == top)
1303 goto done;
1304 if (LIST_NEXT(p, p_sibling)) {
1305 p = LIST_NEXT(p, p_sibling);
1306 break;
1307 }
1308 p = p->p_pptr;
1309 }
1310 }
1311 }
1312 done:
1313 sx_sunlock(&proctree_lock);
1314 if (LIST_EMPTY(&pm->pm_targets))
1315 pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1316
1317 return (0);
1318 }
1319
1320 /*
1321 * Handle events after an exec() for a process:
1322 * - Inform log owners of the new exec() event
1323 * - Release any PMCs owned by the process before the exec()
1324 * - Detach PMCs from the target if required
1325 */
1326 static void
pmc_process_exec(struct thread * td,struct pmckern_procexec * pk)1327 pmc_process_exec(struct thread *td, struct pmckern_procexec *pk)
1328 {
1329 struct pmc *pm;
1330 struct pmc_owner *po;
1331 struct pmc_process *pp;
1332 struct proc *p;
1333 char *fullpath, *freepath;
1334 u_int ri;
1335 bool is_using_hwpmcs;
1336
1337 sx_assert(&pmc_sx, SX_XLOCKED);
1338
1339 p = td->td_proc;
1340 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1341
1342 PMC_EPOCH_ENTER();
1343 /* Inform owners of SS mode PMCs of the exec event. */
1344 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
1345 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
1346 pmclog_process_procexec(po, PMC_ID_INVALID, p->p_pid,
1347 pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
1348 }
1349 }
1350 PMC_EPOCH_EXIT();
1351
1352 PROC_LOCK(p);
1353 is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
1354 PROC_UNLOCK(p);
1355
1356 if (!is_using_hwpmcs) {
1357 if (freepath != NULL)
1358 free(freepath, M_TEMP);
1359 return;
1360 }
1361
1362 /*
1363 * PMCs are not inherited across an exec(): remove any PMCs that this
1364 * process is the owner of.
1365 */
1366 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1367 pmc_remove_owner(po);
1368 pmc_destroy_owner_descriptor(po);
1369 }
1370
1371 /*
1372 * If the process being exec'ed is not the target of any PMC, we are
1373 * done.
1374 */
1375 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1376 if (freepath != NULL)
1377 free(freepath, M_TEMP);
1378 return;
1379 }
1380
1381 /*
1382 * Log the exec event to all monitoring owners. Skip owners who have
1383 * already received the event because they had system sampling PMCs
1384 * active.
1385 */
1386 for (ri = 0; ri < md->pmd_npmc; ri++) {
1387 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1388 continue;
1389
1390 po = pm->pm_owner;
1391 if (po->po_sscount == 0 &&
1392 (po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
1393 pmclog_process_procexec(po, pm->pm_id, p->p_pid,
1394 pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
1395 }
1396 }
1397
1398 if (freepath != NULL)
1399 free(freepath, M_TEMP);
1400
1401 PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1402 p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1403
1404 if (pk->pm_credentialschanged == 0) /* no change */
1405 return;
1406
1407 /*
1408 * If the newly exec()'ed process has a different credential
1409 * than before, allow it to be the target of a PMC only if
1410 * the PMC's owner has sufficient privilege.
1411 */
1412 for (ri = 0; ri < md->pmd_npmc; ri++) {
1413 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1414 if (pmc_can_attach(pm, td->td_proc)) {
1415 pmc_detach_one_process(td->td_proc, pm,
1416 PMC_FLAG_NONE);
1417 }
1418 }
1419 }
1420
1421 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= md->pmd_npmc,
1422 ("[pmc,%d] Illegal ref count %u on pp %p", __LINE__,
1423 pp->pp_refcnt, pp));
1424
1425 /*
1426 * If this process is no longer the target of any
1427 * PMCs, we can remove the process entry and free
1428 * up space.
1429 */
1430 if (pp->pp_refcnt == 0) {
1431 pmc_remove_process_descriptor(pp);
1432 pmc_destroy_process_descriptor(pp);
1433 }
1434 }
1435
1436 /*
1437 * Thread context switch IN.
1438 */
1439 static void
pmc_process_csw_in(struct thread * td)1440 pmc_process_csw_in(struct thread *td)
1441 {
1442 struct pmc *pm;
1443 struct pmc_classdep *pcd;
1444 struct pmc_cpu *pc;
1445 struct pmc_hw *phw __diagused;
1446 struct pmc_process *pp;
1447 struct pmc_thread *pt;
1448 struct proc *p;
1449 pmc_value_t newvalue;
1450 int cpu;
1451 u_int adjri, ri;
1452
1453 p = td->td_proc;
1454 pt = NULL;
1455 if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1456 return;
1457
1458 KASSERT(pp->pp_proc == td->td_proc,
1459 ("[pmc,%d] not my thread state", __LINE__));
1460
1461 critical_enter(); /* no preemption from this point */
1462
1463 cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1464
1465 PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1466 p->p_pid, p->p_comm, pp);
1467
1468 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1469 ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1470
1471 pc = pmc_pcpu[cpu];
1472 for (ri = 0; ri < md->pmd_npmc; ri++) {
1473 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1474 continue;
1475
1476 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1477 ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1478 __LINE__, PMC_TO_MODE(pm)));
1479 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1480 ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1481 __LINE__, PMC_TO_ROWINDEX(pm), ri));
1482
1483 /*
1484 * Only PMCs that are marked as 'RUNNING' need
1485 * be placed on hardware.
1486 */
1487 if (pm->pm_state != PMC_STATE_RUNNING)
1488 continue;
1489
1490 KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
1491 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
1492 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
1493
1494 /* increment PMC runcount */
1495 counter_u64_add(pm->pm_runcount, 1);
1496
1497 /* configure the HWPMC we are going to use. */
1498 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1499 (void)pcd->pcd_config_pmc(cpu, adjri, pm);
1500
1501 phw = pc->pc_hwpmcs[ri];
1502
1503 KASSERT(phw != NULL,
1504 ("[pmc,%d] null hw pointer", __LINE__));
1505
1506 KASSERT(phw->phw_pmc == pm,
1507 ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1508 phw->phw_pmc, pm));
1509
1510 /*
1511 * Write out saved value and start the PMC.
1512 *
1513 * Sampling PMCs use a per-thread value, while
1514 * counting mode PMCs use a per-pmc value that is
1515 * inherited across descendants.
1516 */
1517 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1518 if (pt == NULL)
1519 pt = pmc_find_thread_descriptor(pp, td,
1520 PMC_FLAG_NONE);
1521
1522 KASSERT(pt != NULL,
1523 ("[pmc,%d] No thread found for td=%p", __LINE__,
1524 td));
1525
1526 mtx_pool_lock_spin(pmc_mtxpool, pm);
1527
1528 /*
1529 * If we have a thread descriptor, use the per-thread
1530 * counter in the descriptor. If not, we will use
1531 * a per-process counter.
1532 *
1533 * TODO: Remove the per-process "safety net" once
1534 * we have thoroughly tested that we don't hit the
1535 * above assert.
1536 */
1537 if (pt != NULL) {
1538 if (pt->pt_pmcs[ri].pt_pmcval > 0)
1539 newvalue = pt->pt_pmcs[ri].pt_pmcval;
1540 else
1541 newvalue = pm->pm_sc.pm_reloadcount;
1542 } else {
1543 /*
1544 * Use the saved value calculated after the most
1545 * recent time a thread using the shared counter
1546 * switched out. Reset the saved count in case
1547 * another thread from this process switches in
1548 * before any threads switch out.
1549 */
1550 newvalue = pp->pp_pmcs[ri].pp_pmcval;
1551 pp->pp_pmcs[ri].pp_pmcval =
1552 pm->pm_sc.pm_reloadcount;
1553 }
1554 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1555 KASSERT(newvalue > 0 && newvalue <=
1556 pm->pm_sc.pm_reloadcount,
1557 ("[pmc,%d] pmcval outside of expected range cpu=%d "
1558 "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
1559 cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
1560 } else {
1561 KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1562 ("[pmc,%d] illegal mode=%d", __LINE__,
1563 PMC_TO_MODE(pm)));
1564 mtx_pool_lock_spin(pmc_mtxpool, pm);
1565 newvalue = PMC_PCPU_SAVED(cpu, ri) =
1566 pm->pm_gv.pm_savedvalue;
1567 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1568 }
1569
1570 PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1571
1572 (void)pcd->pcd_write_pmc(cpu, adjri, pm, newvalue);
1573
1574 /* If a sampling mode PMC, reset stalled state. */
1575 if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1576 pm->pm_pcpu_state[cpu].pps_stalled = 0;
1577
1578 /* Indicate that we desire this to run. */
1579 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
1580
1581 /* Start the PMC. */
1582 (void)pcd->pcd_start_pmc(cpu, adjri, pm);
1583 }
1584
1585 /*
1586 * Perform any other architecture/cpu dependent thread
1587 * switch-in actions.
1588 */
1589 (void)(*md->pmd_switch_in)(pc, pp);
1590
1591 critical_exit();
1592 }
1593
1594 /*
1595 * Thread context switch OUT.
1596 */
1597 static void
pmc_process_csw_out(struct thread * td)1598 pmc_process_csw_out(struct thread *td)
1599 {
1600 struct pmc *pm;
1601 struct pmc_classdep *pcd;
1602 struct pmc_cpu *pc;
1603 struct pmc_process *pp;
1604 struct pmc_thread *pt = NULL;
1605 struct proc *p;
1606 pmc_value_t newvalue;
1607 int64_t tmp;
1608 enum pmc_mode mode;
1609 int cpu;
1610 u_int adjri, ri;
1611
1612 /*
1613 * Locate our process descriptor; this may be NULL if
1614 * this process is exiting and we have already removed
1615 * the process from the target process table.
1616 *
1617 * Note that due to kernel preemption, multiple
1618 * context switches may happen while the process is
1619 * exiting.
1620 *
1621 * Note also that if the target process cannot be
1622 * found we still need to deconfigure any PMCs that
1623 * are currently running on hardware.
1624 */
1625 p = td->td_proc;
1626 pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1627
1628 critical_enter();
1629
1630 cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1631
1632 PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1633 p->p_pid, p->p_comm, pp);
1634
1635 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1636 ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1637
1638 pc = pmc_pcpu[cpu];
1639
1640 /*
1641 * When a PMC gets unlinked from a target PMC, it will
1642 * be removed from the target's pp_pmc[] array.
1643 *
1644 * However, on a MP system, the target could have been
1645 * executing on another CPU at the time of the unlink.
1646 * So, at context switch OUT time, we need to look at
1647 * the hardware to determine if a PMC is scheduled on
1648 * it.
1649 */
1650 for (ri = 0; ri < md->pmd_npmc; ri++) {
1651 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1652 pm = NULL;
1653 (void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
1654
1655 if (pm == NULL) /* nothing at this row index */
1656 continue;
1657
1658 mode = PMC_TO_MODE(pm);
1659 if (!PMC_IS_VIRTUAL_MODE(mode))
1660 continue; /* not a process virtual PMC */
1661
1662 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1663 ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1664 __LINE__, PMC_TO_ROWINDEX(pm), ri));
1665
1666 /*
1667 * Change desired state, and then stop if not stalled.
1668 * This two-step dance should avoid race conditions where
1669 * an interrupt re-enables the PMC after this code has
1670 * already checked the pm_stalled flag.
1671 */
1672 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
1673 if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
1674 (void)pcd->pcd_stop_pmc(cpu, adjri, pm);
1675
1676 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
1677 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
1678 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
1679
1680 /* reduce this PMC's runcount */
1681 counter_u64_add(pm->pm_runcount, -1);
1682
1683 /*
1684 * If this PMC is associated with this process,
1685 * save the reading.
1686 */
1687 if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1688 pp->pp_pmcs[ri].pp_pmc != NULL) {
1689 KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1690 ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1691 pm, ri, pp->pp_pmcs[ri].pp_pmc));
1692 KASSERT(pp->pp_refcnt > 0,
1693 ("[pmc,%d] pp refcnt = %d", __LINE__,
1694 pp->pp_refcnt));
1695
1696 (void)pcd->pcd_read_pmc(cpu, adjri, pm, &newvalue);
1697
1698 if (mode == PMC_MODE_TS) {
1699 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
1700 cpu, ri, newvalue);
1701
1702 if (pt == NULL)
1703 pt = pmc_find_thread_descriptor(pp, td,
1704 PMC_FLAG_NONE);
1705
1706 KASSERT(pt != NULL,
1707 ("[pmc,%d] No thread found for td=%p",
1708 __LINE__, td));
1709
1710 mtx_pool_lock_spin(pmc_mtxpool, pm);
1711
1712 /*
1713 * If we have a thread descriptor, save the
1714 * per-thread counter in the descriptor. If not,
1715 * we will update the per-process counter.
1716 *
1717 * TODO: Remove the per-process "safety net"
1718 * once we have thoroughly tested that we
1719 * don't hit the above assert.
1720 */
1721 if (pt != NULL) {
1722 pt->pt_pmcs[ri].pt_pmcval = newvalue;
1723 } else {
1724 /*
1725 * For sampling process-virtual PMCs,
1726 * newvalue is the number of events to
1727 * be seen until the next sampling
1728 * interrupt. We can just add the events
1729 * left from this invocation to the
1730 * counter, then adjust in case we
1731 * overflow our range.
1732 *
1733 * (Recall that we reload the counter
1734 * every time we use it.)
1735 */
1736 pp->pp_pmcs[ri].pp_pmcval += newvalue;
1737 if (pp->pp_pmcs[ri].pp_pmcval >
1738 pm->pm_sc.pm_reloadcount) {
1739 pp->pp_pmcs[ri].pp_pmcval -=
1740 pm->pm_sc.pm_reloadcount;
1741 }
1742 }
1743 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1744 } else {
1745 tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
1746
1747 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1748 cpu, ri, tmp);
1749
1750 /*
1751 * For counting process-virtual PMCs,
1752 * we expect the count to be
1753 * increasing monotonically, modulo a 64
1754 * bit wraparound.
1755 */
1756 KASSERT(tmp >= 0,
1757 ("[pmc,%d] negative increment cpu=%d "
1758 "ri=%d newvalue=%jx saved=%jx "
1759 "incr=%jx", __LINE__, cpu, ri,
1760 newvalue, PMC_PCPU_SAVED(cpu, ri), tmp));
1761
1762 mtx_pool_lock_spin(pmc_mtxpool, pm);
1763 pm->pm_gv.pm_savedvalue += tmp;
1764 pp->pp_pmcs[ri].pp_pmcval += tmp;
1765 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1766
1767 if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1768 pmclog_process_proccsw(pm, pp, tmp, td);
1769 }
1770 }
1771
1772 /* Mark hardware as free. */
1773 (void)pcd->pcd_config_pmc(cpu, adjri, NULL);
1774 }
1775
1776 /*
1777 * Perform any other architecture/cpu dependent thread
1778 * switch out functions.
1779 */
1780 (void)(*md->pmd_switch_out)(pc, pp);
1781
1782 critical_exit();
1783 }
1784
1785 /*
1786 * A new thread for a process.
1787 */
1788 static void
pmc_process_thread_add(struct thread * td)1789 pmc_process_thread_add(struct thread *td)
1790 {
1791 struct pmc_process *pmc;
1792
1793 pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1794 if (pmc != NULL)
1795 pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
1796 }
1797
1798 /*
1799 * A thread delete for a process.
1800 */
1801 static void
pmc_process_thread_delete(struct thread * td)1802 pmc_process_thread_delete(struct thread *td)
1803 {
1804 struct pmc_process *pmc;
1805
1806 pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1807 if (pmc != NULL)
1808 pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
1809 td, PMC_FLAG_REMOVE));
1810 }
1811
1812 /*
1813 * A userret() call for a thread.
1814 */
1815 static void
pmc_process_thread_userret(struct thread * td)1816 pmc_process_thread_userret(struct thread *td)
1817 {
1818 sched_pin();
1819 pmc_capture_user_callchain(curcpu, PMC_UR, td->td_frame);
1820 sched_unpin();
1821 }
1822
1823 /*
1824 * A mapping change for a process.
1825 */
1826 static void
pmc_process_mmap(struct thread * td,struct pmckern_map_in * pkm)1827 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1828 {
1829 const struct pmc *pm;
1830 const struct pmc_process *pp;
1831 struct pmc_owner *po;
1832 char *fullpath, *freepath;
1833 pid_t pid;
1834 int ri;
1835
1836 MPASS(!in_epoch(global_epoch_preempt));
1837
1838 freepath = fullpath = NULL;
1839 pmc_getfilename((struct vnode *)pkm->pm_file, &fullpath, &freepath);
1840
1841 pid = td->td_proc->p_pid;
1842
1843 PMC_EPOCH_ENTER();
1844 /* Inform owners of all system-wide sampling PMCs. */
1845 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
1846 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1847 pmclog_process_map_in(po, pid, pkm->pm_address,
1848 fullpath);
1849 }
1850
1851 if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1852 goto done;
1853
1854 /*
1855 * Inform sampling PMC owners tracking this process.
1856 */
1857 for (ri = 0; ri < md->pmd_npmc; ri++) {
1858 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1859 PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1860 pmclog_process_map_in(pm->pm_owner,
1861 pid, pkm->pm_address, fullpath);
1862 }
1863 }
1864
1865 done:
1866 if (freepath != NULL)
1867 free(freepath, M_TEMP);
1868 PMC_EPOCH_EXIT();
1869 }
1870
1871 /*
1872 * Log an munmap request.
1873 */
1874 static void
pmc_process_munmap(struct thread * td,struct pmckern_map_out * pkm)1875 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1876 {
1877 const struct pmc *pm;
1878 const struct pmc_process *pp;
1879 struct pmc_owner *po;
1880 pid_t pid;
1881 int ri;
1882
1883 pid = td->td_proc->p_pid;
1884
1885 PMC_EPOCH_ENTER();
1886 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
1887 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1888 pmclog_process_map_out(po, pid, pkm->pm_address,
1889 pkm->pm_address + pkm->pm_size);
1890 }
1891 PMC_EPOCH_EXIT();
1892
1893 if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1894 return;
1895
1896 for (ri = 0; ri < md->pmd_npmc; ri++) {
1897 pm = pp->pp_pmcs[ri].pp_pmc;
1898 if (pm != NULL && PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1899 pmclog_process_map_out(pm->pm_owner, pid,
1900 pkm->pm_address, pkm->pm_address + pkm->pm_size);
1901 }
1902 }
1903 }
1904
1905 /*
1906 * Log mapping information about the kernel.
1907 */
1908 static void
pmc_log_kernel_mappings(struct pmc * pm)1909 pmc_log_kernel_mappings(struct pmc *pm)
1910 {
1911 struct pmc_owner *po;
1912 struct pmckern_map_in *km, *kmbase;
1913
1914 MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
1915 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1916 ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1917 __LINE__, (void *) pm));
1918
1919 po = pm->pm_owner;
1920 if ((po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE) != 0)
1921 return;
1922
1923 if (PMC_TO_MODE(pm) == PMC_MODE_SS)
1924 pmc_process_allproc(pm);
1925
1926 /*
1927 * Log the current set of kernel modules.
1928 */
1929 kmbase = linker_hwpmc_list_objects();
1930 for (km = kmbase; km->pm_file != NULL; km++) {
1931 PMCDBG2(LOG,REG,1,"%s %p", (char *)km->pm_file,
1932 (void *)km->pm_address);
1933 pmclog_process_map_in(po, (pid_t)-1, km->pm_address,
1934 km->pm_file);
1935 }
1936 free(kmbase, M_LINKER);
1937
1938 po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1939 }
1940
1941 /*
1942 * Log the mappings for a single process.
1943 */
1944 static void
pmc_log_process_mappings(struct pmc_owner * po,struct proc * p)1945 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1946 {
1947 vm_map_t map;
1948 vm_map_entry_t entry;
1949 vm_object_t obj, lobj, tobj;
1950 vm_offset_t last_end;
1951 vm_offset_t start_addr;
1952 struct vnode *vp, *last_vp;
1953 struct vmspace *vm;
1954 char *fullpath, *freepath;
1955 u_int last_timestamp;
1956
1957 last_vp = NULL;
1958 last_end = (vm_offset_t)0;
1959 fullpath = freepath = NULL;
1960
1961 if ((vm = vmspace_acquire_ref(p)) == NULL)
1962 return;
1963
1964 map = &vm->vm_map;
1965 vm_map_lock_read(map);
1966 VM_MAP_ENTRY_FOREACH(entry, map) {
1967 if (entry == NULL) {
1968 PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1969 "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1970 break;
1971 }
1972
1973 /*
1974 * We only care about executable map entries.
1975 */
1976 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
1977 (entry->protection & VM_PROT_EXECUTE) == 0 ||
1978 entry->object.vm_object == NULL) {
1979 continue;
1980 }
1981
1982 obj = entry->object.vm_object;
1983 VM_OBJECT_RLOCK(obj);
1984
1985 /*
1986 * Walk the backing_object list to find the base (non-shadowed)
1987 * vm_object.
1988 */
1989 for (lobj = tobj = obj; tobj != NULL;
1990 tobj = tobj->backing_object) {
1991 if (tobj != obj)
1992 VM_OBJECT_RLOCK(tobj);
1993 if (lobj != obj)
1994 VM_OBJECT_RUNLOCK(lobj);
1995 lobj = tobj;
1996 }
1997
1998 /*
1999 * At this point lobj is the base vm_object and it is locked.
2000 */
2001 if (lobj == NULL) {
2002 PMCDBG3(LOG,OPS,2,
2003 "hwpmc: lobj unexpectedly NULL! pid=%d "
2004 "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
2005 VM_OBJECT_RUNLOCK(obj);
2006 continue;
2007 }
2008
2009 vp = vm_object_vnode(lobj);
2010 if (vp == NULL) {
2011 if (lobj != obj)
2012 VM_OBJECT_RUNLOCK(lobj);
2013 VM_OBJECT_RUNLOCK(obj);
2014 continue;
2015 }
2016
2017 /*
2018 * Skip contiguous regions that point to the same vnode, so we
2019 * don't emit redundant MAP-IN directives.
2020 */
2021 if (entry->start == last_end && vp == last_vp) {
2022 last_end = entry->end;
2023 if (lobj != obj)
2024 VM_OBJECT_RUNLOCK(lobj);
2025 VM_OBJECT_RUNLOCK(obj);
2026 continue;
2027 }
2028
2029 /*
2030 * We don't want to keep the proc's vm_map or this vm_object
2031 * locked while we walk the pathname, since vn_fullpath() can
2032 * sleep. However, if we drop the lock, it's possible for
2033 * concurrent activity to modify the vm_map list. To protect
2034 * against this, we save the vm_map timestamp before we release
2035 * the lock, and check it after we reacquire the lock below.
2036 */
2037 start_addr = entry->start;
2038 last_end = entry->end;
2039 last_timestamp = map->timestamp;
2040 vm_map_unlock_read(map);
2041
2042 vref(vp);
2043 if (lobj != obj)
2044 VM_OBJECT_RUNLOCK(lobj);
2045 VM_OBJECT_RUNLOCK(obj);
2046
2047 freepath = NULL;
2048 pmc_getfilename(vp, &fullpath, &freepath);
2049 last_vp = vp;
2050
2051 vrele(vp);
2052
2053 vp = NULL;
2054 pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
2055 if (freepath != NULL)
2056 free(freepath, M_TEMP);
2057
2058 vm_map_lock_read(map);
2059
2060 /*
2061 * If our saved timestamp doesn't match, this means
2062 * that the vm_map was modified out from under us and
2063 * we can't trust our current "entry" pointer. Do a
2064 * new lookup for this entry. If there is no entry
2065 * for this address range, vm_map_lookup_entry() will
2066 * return the previous one, so we always want to go to
2067 * the next entry on the next loop iteration.
2068 *
2069 * There is an edge condition here that can occur if
2070 * there is no entry at or before this address. In
2071 * this situation, vm_map_lookup_entry returns
2072 * &map->header, which would cause our loop to abort
2073 * without processing the rest of the map. However,
2074 * in practice this will never happen for process
2075 * vm_map. This is because the executable's text
2076 * segment is the first mapping in the proc's address
2077 * space, and this mapping is never removed until the
2078 * process exits, so there will always be a non-header
2079 * entry at or before the requested address for
2080 * vm_map_lookup_entry to return.
2081 */
2082 if (map->timestamp != last_timestamp)
2083 vm_map_lookup_entry(map, last_end - 1, &entry);
2084 }
2085
2086 vm_map_unlock_read(map);
2087 vmspace_free(vm);
2088 return;
2089 }
2090
2091 /*
2092 * Log mappings for all processes in the system.
2093 */
2094 static void
pmc_log_all_process_mappings(struct pmc_owner * po)2095 pmc_log_all_process_mappings(struct pmc_owner *po)
2096 {
2097 struct proc *p, *top;
2098
2099 sx_assert(&pmc_sx, SX_XLOCKED);
2100
2101 if ((p = pfind(1)) == NULL)
2102 panic("[pmc,%d] Cannot find init", __LINE__);
2103
2104 PROC_UNLOCK(p);
2105
2106 sx_slock(&proctree_lock);
2107
2108 top = p;
2109 for (;;) {
2110 pmc_log_process_mappings(po, p);
2111 if (!LIST_EMPTY(&p->p_children))
2112 p = LIST_FIRST(&p->p_children);
2113 else for (;;) {
2114 if (p == top)
2115 goto done;
2116 if (LIST_NEXT(p, p_sibling)) {
2117 p = LIST_NEXT(p, p_sibling);
2118 break;
2119 }
2120 p = p->p_pptr;
2121 }
2122 }
2123 done:
2124 sx_sunlock(&proctree_lock);
2125 }
2126
2127 #ifdef HWPMC_DEBUG
2128 const char *pmc_hooknames[] = {
2129 /* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
2130 "",
2131 "EXEC",
2132 "CSW-IN",
2133 "CSW-OUT",
2134 "SAMPLE",
2135 "UNUSED1",
2136 "UNUSED2",
2137 "MMAP",
2138 "MUNMAP",
2139 "CALLCHAIN-NMI",
2140 "CALLCHAIN-SOFT",
2141 "SOFTSAMPLING",
2142 "THR-CREATE",
2143 "THR-EXIT",
2144 "THR-USERRET",
2145 "THR-CREATE-LOG",
2146 "THR-EXIT-LOG",
2147 "PROC-CREATE-LOG"
2148 };
2149 #endif
2150
2151 /*
2152 * The 'hook' invoked from the kernel proper
2153 */
2154 static int
pmc_hook_handler(struct thread * td,int function,void * arg)2155 pmc_hook_handler(struct thread *td, int function, void *arg)
2156 {
2157 int cpu;
2158
2159 PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
2160 pmc_hooknames[function], arg);
2161
2162 switch (function) {
2163 case PMC_FN_PROCESS_EXEC:
2164 pmc_process_exec(td, (struct pmckern_procexec *)arg);
2165 break;
2166
2167 case PMC_FN_CSW_IN:
2168 pmc_process_csw_in(td);
2169 break;
2170
2171 case PMC_FN_CSW_OUT:
2172 pmc_process_csw_out(td);
2173 break;
2174
2175 /*
2176 * Process accumulated PC samples.
2177 *
2178 * This function is expected to be called by hardclock() for
2179 * each CPU that has accumulated PC samples.
2180 *
2181 * This function is to be executed on the CPU whose samples
2182 * are being processed.
2183 */
2184 case PMC_FN_DO_SAMPLES:
2185 /*
2186 * Clear the cpu specific bit in the CPU mask before
2187 * do the rest of the processing. If the NMI handler
2188 * gets invoked after the "atomic_clear_int()" call
2189 * below but before "pmc_process_samples()" gets
2190 * around to processing the interrupt, then we will
2191 * come back here at the next hardclock() tick (and
2192 * may find nothing to do if "pmc_process_samples()"
2193 * had already processed the interrupt). We don't
2194 * lose the interrupt sample.
2195 */
2196 DPCPU_SET(pmc_sampled, 0);
2197 cpu = PCPU_GET(cpuid);
2198 pmc_process_samples(cpu, PMC_HR);
2199 pmc_process_samples(cpu, PMC_SR);
2200 pmc_process_samples(cpu, PMC_UR);
2201 break;
2202
2203 case PMC_FN_MMAP:
2204 pmc_process_mmap(td, (struct pmckern_map_in *)arg);
2205 break;
2206
2207 case PMC_FN_MUNMAP:
2208 MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
2209 pmc_process_munmap(td, (struct pmckern_map_out *)arg);
2210 break;
2211
2212 case PMC_FN_PROC_CREATE_LOG:
2213 pmc_process_proccreate((struct proc *)arg);
2214 break;
2215
2216 case PMC_FN_USER_CALLCHAIN:
2217 /*
2218 * Record a call chain.
2219 */
2220 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2221 __LINE__));
2222
2223 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2224 (struct trapframe *)arg);
2225
2226 KASSERT(td->td_pinned == 1,
2227 ("[pmc,%d] invalid td_pinned value", __LINE__));
2228 sched_unpin(); /* Can migrate safely now. */
2229
2230 td->td_pflags &= ~TDP_CALLCHAIN;
2231 break;
2232
2233 case PMC_FN_USER_CALLCHAIN_SOFT:
2234 /*
2235 * Record a call chain.
2236 */
2237 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2238 __LINE__));
2239
2240 cpu = PCPU_GET(cpuid);
2241 pmc_capture_user_callchain(cpu, PMC_SR,
2242 (struct trapframe *) arg);
2243
2244 KASSERT(td->td_pinned == 1,
2245 ("[pmc,%d] invalid td_pinned value", __LINE__));
2246
2247 sched_unpin(); /* Can migrate safely now. */
2248
2249 td->td_pflags &= ~TDP_CALLCHAIN;
2250 break;
2251
2252 case PMC_FN_SOFT_SAMPLING:
2253 /*
2254 * Call soft PMC sampling intr.
2255 */
2256 pmc_soft_intr((struct pmckern_soft *)arg);
2257 break;
2258
2259 case PMC_FN_THR_CREATE:
2260 pmc_process_thread_add(td);
2261 pmc_process_threadcreate(td);
2262 break;
2263
2264 case PMC_FN_THR_CREATE_LOG:
2265 pmc_process_threadcreate(td);
2266 break;
2267
2268 case PMC_FN_THR_EXIT:
2269 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2270 __LINE__));
2271 pmc_process_thread_delete(td);
2272 pmc_process_threadexit(td);
2273 break;
2274 case PMC_FN_THR_EXIT_LOG:
2275 pmc_process_threadexit(td);
2276 break;
2277 case PMC_FN_THR_USERRET:
2278 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2279 __LINE__));
2280 pmc_process_thread_userret(td);
2281 break;
2282 default:
2283 #ifdef HWPMC_DEBUG
2284 KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2285 #endif
2286 break;
2287 }
2288
2289 return (0);
2290 }
2291
2292 /*
2293 * Allocate a 'struct pmc_owner' descriptor in the owner hash table.
2294 */
2295 static struct pmc_owner *
pmc_allocate_owner_descriptor(struct proc * p)2296 pmc_allocate_owner_descriptor(struct proc *p)
2297 {
2298 struct pmc_owner *po;
2299 struct pmc_ownerhash *poh;
2300 uint32_t hindex;
2301
2302 hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2303 poh = &pmc_ownerhash[hindex];
2304
2305 /* Allocate space for N pointers and one descriptor struct. */
2306 po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK | M_ZERO);
2307 po->po_owner = p;
2308 LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2309
2310 TAILQ_INIT(&po->po_logbuffers);
2311 mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2312
2313 PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2314 p, p->p_pid, p->p_comm, po);
2315
2316 return (po);
2317 }
2318
2319 static void
pmc_destroy_owner_descriptor(struct pmc_owner * po)2320 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2321 {
2322
2323 PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2324 po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2325
2326 mtx_destroy(&po->po_mtx);
2327 free(po, M_PMC);
2328 }
2329
2330 /*
2331 * Allocate a thread descriptor from the free pool.
2332 *
2333 * NOTE: This *can* return NULL.
2334 */
2335 static struct pmc_thread *
pmc_thread_descriptor_pool_alloc(void)2336 pmc_thread_descriptor_pool_alloc(void)
2337 {
2338 struct pmc_thread *pt;
2339
2340 mtx_lock_spin(&pmc_threadfreelist_mtx);
2341 if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2342 LIST_REMOVE(pt, pt_next);
2343 pmc_threadfreelist_entries--;
2344 }
2345 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2346
2347 return (pt);
2348 }
2349
2350 /*
2351 * Add a thread descriptor to the free pool. We use this instead of free()
2352 * to maintain a cache of free entries. Additionally, we can safely call
2353 * this function when we cannot call free(), such as in a critical section.
2354 */
2355 static void
pmc_thread_descriptor_pool_free(struct pmc_thread * pt)2356 pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
2357 {
2358
2359 if (pt == NULL)
2360 return;
2361
2362 memset(pt, 0, THREADENTRY_SIZE);
2363 mtx_lock_spin(&pmc_threadfreelist_mtx);
2364 LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
2365 pmc_threadfreelist_entries++;
2366 if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
2367 taskqueue_enqueue(taskqueue_fast, &free_task);
2368 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2369 }
2370
2371 /*
2372 * An asynchronous task to manage the free list.
2373 */
2374 static void
pmc_thread_descriptor_pool_free_task(void * arg __unused,int pending __unused)2375 pmc_thread_descriptor_pool_free_task(void *arg __unused, int pending __unused)
2376 {
2377 struct pmc_thread *pt;
2378 LIST_HEAD(, pmc_thread) tmplist;
2379 int delta;
2380
2381 LIST_INIT(&tmplist);
2382
2383 /* Determine what changes, if any, we need to make. */
2384 mtx_lock_spin(&pmc_threadfreelist_mtx);
2385 delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
2386 while (delta > 0 && (pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2387 delta--;
2388 pmc_threadfreelist_entries--;
2389 LIST_REMOVE(pt, pt_next);
2390 LIST_INSERT_HEAD(&tmplist, pt, pt_next);
2391 }
2392 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2393
2394 /* If there are entries to free, free them. */
2395 while (!LIST_EMPTY(&tmplist)) {
2396 pt = LIST_FIRST(&tmplist);
2397 LIST_REMOVE(pt, pt_next);
2398 free(pt, M_PMC);
2399 }
2400 }
2401
2402 /*
2403 * Drain the thread free pool, freeing all allocations.
2404 */
2405 static void
pmc_thread_descriptor_pool_drain(void)2406 pmc_thread_descriptor_pool_drain(void)
2407 {
2408 struct pmc_thread *pt, *next;
2409
2410 LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
2411 LIST_REMOVE(pt, pt_next);
2412 free(pt, M_PMC);
2413 }
2414 }
2415
2416 /*
2417 * find the descriptor corresponding to thread 'td', adding or removing it
2418 * as specified by 'mode'.
2419 *
2420 * Note that this supports additional mode flags in addition to those
2421 * supported by pmc_find_process_descriptor():
2422 * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
2423 * This makes it safe to call while holding certain other locks.
2424 */
2425 static struct pmc_thread *
pmc_find_thread_descriptor(struct pmc_process * pp,struct thread * td,uint32_t mode)2426 pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
2427 uint32_t mode)
2428 {
2429 struct pmc_thread *pt = NULL, *ptnew = NULL;
2430 int wait_flag;
2431
2432 KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
2433
2434 /*
2435 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
2436 * acquiring the lock.
2437 */
2438 if ((mode & PMC_FLAG_ALLOCATE) != 0) {
2439 if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
2440 wait_flag = M_WAITOK;
2441 if ((mode & PMC_FLAG_NOWAIT) != 0 ||
2442 in_epoch(global_epoch_preempt))
2443 wait_flag = M_NOWAIT;
2444
2445 ptnew = malloc(THREADENTRY_SIZE, M_PMC,
2446 wait_flag | M_ZERO);
2447 }
2448 }
2449
2450 mtx_lock_spin(pp->pp_tdslock);
2451 LIST_FOREACH(pt, &pp->pp_tds, pt_next) {
2452 if (pt->pt_td == td)
2453 break;
2454 }
2455
2456 if ((mode & PMC_FLAG_REMOVE) != 0 && pt != NULL)
2457 LIST_REMOVE(pt, pt_next);
2458
2459 if ((mode & PMC_FLAG_ALLOCATE) != 0 && pt == NULL && ptnew != NULL) {
2460 pt = ptnew;
2461 ptnew = NULL;
2462 pt->pt_td = td;
2463 LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
2464 }
2465
2466 mtx_unlock_spin(pp->pp_tdslock);
2467
2468 if (ptnew != NULL) {
2469 free(ptnew, M_PMC);
2470 }
2471
2472 return (pt);
2473 }
2474
2475 /*
2476 * Try to add thread descriptors for each thread in a process.
2477 */
2478 static void
pmc_add_thread_descriptors_from_proc(struct proc * p,struct pmc_process * pp)2479 pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
2480 {
2481 struct pmc_thread **tdlist;
2482 struct thread *curtd;
2483 int i, tdcnt, tdlistsz;
2484
2485 KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
2486 __LINE__));
2487 tdcnt = 32;
2488 restart:
2489 tdlistsz = roundup2(tdcnt, 32);
2490
2491 tdcnt = 0;
2492 tdlist = malloc(sizeof(struct pmc_thread *) * tdlistsz, M_TEMP,
2493 M_WAITOK);
2494
2495 PROC_LOCK(p);
2496 FOREACH_THREAD_IN_PROC(p, curtd)
2497 tdcnt++;
2498 if (tdcnt >= tdlistsz) {
2499 PROC_UNLOCK(p);
2500 free(tdlist, M_TEMP);
2501 goto restart;
2502 }
2503
2504 /*
2505 * Try to add each thread to the list without sleeping. If unable,
2506 * add to a queue to retry after dropping the process lock.
2507 */
2508 tdcnt = 0;
2509 FOREACH_THREAD_IN_PROC(p, curtd) {
2510 tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
2511 PMC_FLAG_ALLOCATE | PMC_FLAG_NOWAIT);
2512 if (tdlist[tdcnt] == NULL) {
2513 PROC_UNLOCK(p);
2514 for (i = 0; i <= tdcnt; i++)
2515 pmc_thread_descriptor_pool_free(tdlist[i]);
2516 free(tdlist, M_TEMP);
2517 goto restart;
2518 }
2519 tdcnt++;
2520 }
2521 PROC_UNLOCK(p);
2522 free(tdlist, M_TEMP);
2523 }
2524
2525 /*
2526 * Find the descriptor corresponding to process 'p', adding or removing it
2527 * as specified by 'mode'.
2528 */
2529 static struct pmc_process *
pmc_find_process_descriptor(struct proc * p,uint32_t mode)2530 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2531 {
2532 struct pmc_process *pp, *ppnew;
2533 struct pmc_processhash *pph;
2534 uint32_t hindex;
2535
2536 hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2537 pph = &pmc_processhash[hindex];
2538
2539 ppnew = NULL;
2540
2541 /*
2542 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
2543 * cannot call malloc(9) once we hold a spin lock.
2544 */
2545 if ((mode & PMC_FLAG_ALLOCATE) != 0)
2546 ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2547 sizeof(struct pmc_targetstate), M_PMC, M_WAITOK | M_ZERO);
2548
2549 mtx_lock_spin(&pmc_processhash_mtx);
2550 LIST_FOREACH(pp, pph, pp_next) {
2551 if (pp->pp_proc == p)
2552 break;
2553 }
2554
2555 if ((mode & PMC_FLAG_REMOVE) != 0 && pp != NULL)
2556 LIST_REMOVE(pp, pp_next);
2557
2558 if ((mode & PMC_FLAG_ALLOCATE) != 0 && pp == NULL && ppnew != NULL) {
2559 ppnew->pp_proc = p;
2560 LIST_INIT(&ppnew->pp_tds);
2561 ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
2562 LIST_INSERT_HEAD(pph, ppnew, pp_next);
2563 mtx_unlock_spin(&pmc_processhash_mtx);
2564 pp = ppnew;
2565 ppnew = NULL;
2566
2567 /* Add thread descriptors for this process' current threads. */
2568 pmc_add_thread_descriptors_from_proc(p, pp);
2569 } else
2570 mtx_unlock_spin(&pmc_processhash_mtx);
2571
2572 if (ppnew != NULL)
2573 free(ppnew, M_PMC);
2574 return (pp);
2575 }
2576
2577 /*
2578 * Remove a process descriptor from the process hash table.
2579 */
2580 static void
pmc_remove_process_descriptor(struct pmc_process * pp)2581 pmc_remove_process_descriptor(struct pmc_process *pp)
2582 {
2583 KASSERT(pp->pp_refcnt == 0,
2584 ("[pmc,%d] Removing process descriptor %p with count %d",
2585 __LINE__, pp, pp->pp_refcnt));
2586
2587 mtx_lock_spin(&pmc_processhash_mtx);
2588 LIST_REMOVE(pp, pp_next);
2589 mtx_unlock_spin(&pmc_processhash_mtx);
2590 }
2591
2592 /*
2593 * Destroy a process descriptor.
2594 */
2595 static void
pmc_destroy_process_descriptor(struct pmc_process * pp)2596 pmc_destroy_process_descriptor(struct pmc_process *pp)
2597 {
2598 struct pmc_thread *pmc_td;
2599
2600 while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
2601 LIST_REMOVE(pmc_td, pt_next);
2602 pmc_thread_descriptor_pool_free(pmc_td);
2603 }
2604 free(pp, M_PMC);
2605 }
2606
2607 /*
2608 * Find an owner descriptor corresponding to proc 'p'.
2609 */
2610 static struct pmc_owner *
pmc_find_owner_descriptor(struct proc * p)2611 pmc_find_owner_descriptor(struct proc *p)
2612 {
2613 struct pmc_owner *po;
2614 struct pmc_ownerhash *poh;
2615 uint32_t hindex;
2616
2617 hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2618 poh = &pmc_ownerhash[hindex];
2619
2620 po = NULL;
2621 LIST_FOREACH(po, poh, po_next) {
2622 if (po->po_owner == p)
2623 break;
2624 }
2625
2626 PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2627 "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2628
2629 return (po);
2630 }
2631
2632 /*
2633 * Allocate a pmc descriptor and initialize its fields.
2634 */
2635 static struct pmc *
pmc_allocate_pmc_descriptor(void)2636 pmc_allocate_pmc_descriptor(void)
2637 {
2638 struct pmc *pmc;
2639
2640 pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK | M_ZERO);
2641 pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
2642 pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state) * mp_ncpus,
2643 M_PMC, M_WAITOK | M_ZERO);
2644 PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2645
2646 return (pmc);
2647 }
2648
2649 /*
2650 * Destroy a pmc descriptor.
2651 */
2652 static void
pmc_destroy_pmc_descriptor(struct pmc * pm)2653 pmc_destroy_pmc_descriptor(struct pmc *pm)
2654 {
2655
2656 KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2657 pm->pm_state == PMC_STATE_FREE,
2658 ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2659 KASSERT(LIST_EMPTY(&pm->pm_targets),
2660 ("[pmc,%d] destroying pmc with targets", __LINE__));
2661 KASSERT(pm->pm_owner == NULL,
2662 ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2663 KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
2664 ("[pmc,%d] pmc has non-zero run count %ju", __LINE__,
2665 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
2666
2667 counter_u64_free(pm->pm_runcount);
2668 free(pm->pm_pcpu_state, M_PMC);
2669 free(pm, M_PMC);
2670 }
2671
2672 static void
pmc_wait_for_pmc_idle(struct pmc * pm)2673 pmc_wait_for_pmc_idle(struct pmc *pm)
2674 {
2675 #ifdef INVARIANTS
2676 volatile int maxloop;
2677
2678 maxloop = 100 * pmc_cpu_max();
2679 #endif
2680 /*
2681 * Loop (with a forced context switch) till the PMC's runcount
2682 * comes down to zero.
2683 */
2684 pmclog_flush(pm->pm_owner, 1);
2685 while (counter_u64_fetch(pm->pm_runcount) > 0) {
2686 pmclog_flush(pm->pm_owner, 1);
2687 #ifdef INVARIANTS
2688 maxloop--;
2689 KASSERT(maxloop > 0,
2690 ("[pmc,%d] (ri%d, rc%ju) waiting too long for "
2691 "pmc to be free", __LINE__, PMC_TO_ROWINDEX(pm),
2692 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
2693 #endif
2694 pmc_force_context_switch();
2695 }
2696 }
2697
2698 /*
2699 * This function does the following things:
2700 *
2701 * - detaches the PMC from hardware
2702 * - unlinks all target threads that were attached to it
2703 * - removes the PMC from its owner's list
2704 * - destroys the PMC private mutex
2705 *
2706 * Once this function completes, the given pmc pointer can be freed by
2707 * calling pmc_destroy_pmc_descriptor().
2708 */
2709 static void
pmc_release_pmc_descriptor(struct pmc * pm)2710 pmc_release_pmc_descriptor(struct pmc *pm)
2711 {
2712 struct pmc_binding pb;
2713 struct pmc_classdep *pcd;
2714 struct pmc_hw *phw __diagused;
2715 struct pmc_owner *po;
2716 struct pmc_process *pp;
2717 struct pmc_target *ptgt, *tmp;
2718 enum pmc_mode mode;
2719 u_int adjri, ri, cpu;
2720
2721 sx_assert(&pmc_sx, SX_XLOCKED);
2722 KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2723
2724 ri = PMC_TO_ROWINDEX(pm);
2725 pcd = pmc_ri_to_classdep(md, ri, &adjri);
2726 mode = PMC_TO_MODE(pm);
2727
2728 PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2729 mode);
2730
2731 /*
2732 * First, we take the PMC off hardware.
2733 */
2734 cpu = 0;
2735 if (PMC_IS_SYSTEM_MODE(mode)) {
2736 /*
2737 * A system mode PMC runs on a specific CPU. Switch
2738 * to this CPU and turn hardware off.
2739 */
2740 pmc_save_cpu_binding(&pb);
2741 cpu = PMC_TO_CPU(pm);
2742 pmc_select_cpu(cpu);
2743
2744 /* switch off non-stalled CPUs */
2745 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
2746 if (pm->pm_state == PMC_STATE_RUNNING &&
2747 pm->pm_pcpu_state[cpu].pps_stalled == 0) {
2748
2749 phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2750
2751 KASSERT(phw->phw_pmc == pm,
2752 ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2753 __LINE__, ri, phw->phw_pmc, pm));
2754 PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2755
2756 critical_enter();
2757 (void)pcd->pcd_stop_pmc(cpu, adjri, pm);
2758 critical_exit();
2759 }
2760
2761 PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2762
2763 critical_enter();
2764 (void)pcd->pcd_config_pmc(cpu, adjri, NULL);
2765 critical_exit();
2766
2767 /* adjust the global and process count of SS mode PMCs */
2768 if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2769 po = pm->pm_owner;
2770 po->po_sscount--;
2771 if (po->po_sscount == 0) {
2772 atomic_subtract_rel_int(&pmc_ss_count, 1);
2773 CK_LIST_REMOVE(po, po_ssnext);
2774 epoch_wait_preempt(global_epoch_preempt);
2775 }
2776 }
2777 pm->pm_state = PMC_STATE_DELETED;
2778
2779 pmc_restore_cpu_binding(&pb);
2780
2781 /*
2782 * We could have references to this PMC structure in the
2783 * per-cpu sample queues. Wait for the queue to drain.
2784 */
2785 pmc_wait_for_pmc_idle(pm);
2786
2787 } else if (PMC_IS_VIRTUAL_MODE(mode)) {
2788 /*
2789 * A virtual PMC could be running on multiple CPUs at a given
2790 * instant.
2791 *
2792 * By marking its state as DELETED, we ensure that this PMC is
2793 * never further scheduled on hardware.
2794 *
2795 * Then we wait till all CPUs are done with this PMC.
2796 */
2797 pm->pm_state = PMC_STATE_DELETED;
2798
2799 /* Wait for the PMCs runcount to come to zero. */
2800 pmc_wait_for_pmc_idle(pm);
2801
2802 /*
2803 * At this point the PMC is off all CPUs and cannot be freshly
2804 * scheduled onto a CPU. It is now safe to unlink all targets
2805 * from this PMC. If a process-record's refcount falls to zero,
2806 * we remove it from the hash table. The module-wide SX lock
2807 * protects us from races.
2808 */
2809 LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2810 pp = ptgt->pt_process;
2811 pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2812
2813 PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2814
2815 /*
2816 * If the target process record shows that no PMCs are
2817 * attached to it, reclaim its space.
2818 */
2819 if (pp->pp_refcnt == 0) {
2820 pmc_remove_process_descriptor(pp);
2821 pmc_destroy_process_descriptor(pp);
2822 }
2823 }
2824
2825 cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2826 }
2827
2828 /*
2829 * Release any MD resources.
2830 */
2831 (void)pcd->pcd_release_pmc(cpu, adjri, pm);
2832
2833 /*
2834 * Update row disposition.
2835 */
2836 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2837 PMC_UNMARK_ROW_STANDALONE(ri);
2838 else
2839 PMC_UNMARK_ROW_THREAD(ri);
2840
2841 /* Unlink from the owner's list. */
2842 if (pm->pm_owner != NULL) {
2843 LIST_REMOVE(pm, pm_next);
2844 pm->pm_owner = NULL;
2845 }
2846 }
2847
2848 /*
2849 * Register an owner and a pmc.
2850 */
2851 static int
pmc_register_owner(struct proc * p,struct pmc * pmc)2852 pmc_register_owner(struct proc *p, struct pmc *pmc)
2853 {
2854 struct pmc_owner *po;
2855
2856 sx_assert(&pmc_sx, SX_XLOCKED);
2857
2858 if ((po = pmc_find_owner_descriptor(p)) == NULL) {
2859 if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2860 return (ENOMEM);
2861 }
2862
2863 KASSERT(pmc->pm_owner == NULL,
2864 ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2865 pmc->pm_owner = po;
2866
2867 LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2868
2869 PROC_LOCK(p);
2870 p->p_flag |= P_HWPMC;
2871 PROC_UNLOCK(p);
2872
2873 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
2874 pmclog_process_pmcallocate(pmc);
2875
2876 PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2877 po, pmc);
2878
2879 return (0);
2880 }
2881
2882 /*
2883 * Return the current row disposition:
2884 * == 0 => FREE
2885 * > 0 => PROCESS MODE
2886 * < 0 => SYSTEM MODE
2887 */
2888 int
pmc_getrowdisp(int ri)2889 pmc_getrowdisp(int ri)
2890 {
2891 return (pmc_pmcdisp[ri]);
2892 }
2893
2894 /*
2895 * Check if a PMC at row index 'ri' can be allocated to the current
2896 * process.
2897 *
2898 * Allocation can fail if:
2899 * - the current process is already being profiled by a PMC at index 'ri',
2900 * attached to it via OP_PMCATTACH.
2901 * - the current process has already allocated a PMC at index 'ri'
2902 * via OP_ALLOCATE.
2903 */
2904 static bool
pmc_can_allocate_rowindex(struct proc * p,unsigned int ri,int cpu)2905 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2906 {
2907 struct pmc *pm;
2908 struct pmc_owner *po;
2909 struct pmc_process *pp;
2910 enum pmc_mode mode;
2911
2912 PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2913 "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2914
2915 /*
2916 * We shouldn't have already allocated a process-mode PMC at
2917 * row index 'ri'.
2918 *
2919 * We shouldn't have allocated a system-wide PMC on the same
2920 * CPU and same RI.
2921 */
2922 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
2923 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2924 if (PMC_TO_ROWINDEX(pm) == ri) {
2925 mode = PMC_TO_MODE(pm);
2926 if (PMC_IS_VIRTUAL_MODE(mode))
2927 return (false);
2928 if (PMC_IS_SYSTEM_MODE(mode) &&
2929 PMC_TO_CPU(pm) == cpu)
2930 return (false);
2931 }
2932 }
2933 }
2934
2935 /*
2936 * We also shouldn't be the target of any PMC at this index
2937 * since otherwise a PMC_ATTACH to ourselves will fail.
2938 */
2939 if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2940 if (pp->pp_pmcs[ri].pp_pmc != NULL)
2941 return (false);
2942
2943 PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2944 p, p->p_pid, p->p_comm, ri);
2945 return (true);
2946 }
2947
2948 /*
2949 * Check if a given PMC at row index 'ri' can be currently used in
2950 * mode 'mode'.
2951 */
2952 static bool
pmc_can_allocate_row(int ri,enum pmc_mode mode)2953 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2954 {
2955 enum pmc_disp disp;
2956
2957 sx_assert(&pmc_sx, SX_XLOCKED);
2958
2959 PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2960
2961 if (PMC_IS_SYSTEM_MODE(mode))
2962 disp = PMC_DISP_STANDALONE;
2963 else
2964 disp = PMC_DISP_THREAD;
2965
2966 /*
2967 * check disposition for PMC row 'ri':
2968 *
2969 * Expected disposition Row-disposition Result
2970 *
2971 * STANDALONE STANDALONE or FREE proceed
2972 * STANDALONE THREAD fail
2973 * THREAD THREAD or FREE proceed
2974 * THREAD STANDALONE fail
2975 */
2976 if (!PMC_ROW_DISP_IS_FREE(ri) &&
2977 !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2978 !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2979 return (false);
2980
2981 /*
2982 * All OK
2983 */
2984 PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2985 return (true);
2986 }
2987
2988 /*
2989 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2990 */
2991 static struct pmc *
pmc_find_pmc_descriptor_in_process(struct pmc_owner * po,pmc_id_t pmcid)2992 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2993 {
2994 struct pmc *pm;
2995
2996 KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2997 ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2998 PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2999
3000 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
3001 if (pm->pm_id == pmcid)
3002 return (pm);
3003 }
3004
3005 return (NULL);
3006 }
3007
3008 static int
pmc_find_pmc(pmc_id_t pmcid,struct pmc ** pmc)3009 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
3010 {
3011 struct pmc *pm, *opm;
3012 struct pmc_owner *po;
3013 struct pmc_process *pp;
3014
3015 PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
3016 if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
3017 return (EINVAL);
3018
3019 if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
3020 /*
3021 * In case of PMC_F_DESCENDANTS child processes we will not find
3022 * the current process in the owners hash list. Find the owner
3023 * process first and from there lookup the po.
3024 */
3025 pp = pmc_find_process_descriptor(curthread->td_proc,
3026 PMC_FLAG_NONE);
3027 if (pp == NULL)
3028 return (ESRCH);
3029 opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
3030 if (opm == NULL)
3031 return (ESRCH);
3032 if ((opm->pm_flags &
3033 (PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS)) !=
3034 (PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS))
3035 return (ESRCH);
3036
3037 po = opm->pm_owner;
3038 }
3039
3040 if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
3041 return (EINVAL);
3042
3043 PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
3044
3045 *pmc = pm;
3046 return (0);
3047 }
3048
3049 /*
3050 * Start a PMC.
3051 */
3052 static int
pmc_start(struct pmc * pm)3053 pmc_start(struct pmc *pm)
3054 {
3055 struct pmc_binding pb;
3056 struct pmc_classdep *pcd;
3057 struct pmc_owner *po;
3058 pmc_value_t v;
3059 enum pmc_mode mode;
3060 int adjri, error, cpu, ri;
3061
3062 KASSERT(pm != NULL,
3063 ("[pmc,%d] null pm", __LINE__));
3064
3065 mode = PMC_TO_MODE(pm);
3066 ri = PMC_TO_ROWINDEX(pm);
3067 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3068
3069 error = 0;
3070 po = pm->pm_owner;
3071
3072 PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
3073
3074 po = pm->pm_owner;
3075
3076 /*
3077 * Disallow PMCSTART if a logfile is required but has not been
3078 * configured yet.
3079 */
3080 if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
3081 (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
3082 return (EDOOFUS); /* programming error */
3083
3084 /*
3085 * If this is a sampling mode PMC, log mapping information for
3086 * the kernel modules that are currently loaded.
3087 */
3088 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3089 pmc_log_kernel_mappings(pm);
3090
3091 if (PMC_IS_VIRTUAL_MODE(mode)) {
3092 /*
3093 * If a PMCATTACH has never been done on this PMC,
3094 * attach it to its owner process.
3095 */
3096 if (LIST_EMPTY(&pm->pm_targets)) {
3097 error = (pm->pm_flags & PMC_F_ATTACH_DONE) != 0 ?
3098 ESRCH : pmc_attach_process(po->po_owner, pm);
3099 }
3100
3101 /*
3102 * If the PMC is attached to its owner, then force a context
3103 * switch to ensure that the MD state gets set correctly.
3104 */
3105 if (error == 0) {
3106 pm->pm_state = PMC_STATE_RUNNING;
3107 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) != 0)
3108 pmc_force_context_switch();
3109 }
3110
3111 return (error);
3112 }
3113
3114 /*
3115 * A system-wide PMC.
3116 *
3117 * Add the owner to the global list if this is a system-wide
3118 * sampling PMC.
3119 */
3120 if (mode == PMC_MODE_SS) {
3121 /*
3122 * Log mapping information for all existing processes in the
3123 * system. Subsequent mappings are logged as they happen;
3124 * see pmc_process_mmap().
3125 */
3126 if (po->po_logprocmaps == 0) {
3127 pmc_log_all_process_mappings(po);
3128 po->po_logprocmaps = 1;
3129 }
3130 po->po_sscount++;
3131 if (po->po_sscount == 1) {
3132 atomic_add_rel_int(&pmc_ss_count, 1);
3133 CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
3134 PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
3135 }
3136 }
3137
3138 /*
3139 * Move to the CPU associated with this
3140 * PMC, and start the hardware.
3141 */
3142 pmc_save_cpu_binding(&pb);
3143 cpu = PMC_TO_CPU(pm);
3144 if (!pmc_cpu_is_active(cpu))
3145 return (ENXIO);
3146 pmc_select_cpu(cpu);
3147
3148 /*
3149 * global PMCs are configured at allocation time
3150 * so write out the initial value and start the PMC.
3151 */
3152 pm->pm_state = PMC_STATE_RUNNING;
3153
3154 critical_enter();
3155 v = PMC_IS_SAMPLING_MODE(mode) ? pm->pm_sc.pm_reloadcount :
3156 pm->pm_sc.pm_initial;
3157 if ((error = pcd->pcd_write_pmc(cpu, adjri, pm, v)) == 0) {
3158 /* If a sampling mode PMC, reset stalled state. */
3159 if (PMC_IS_SAMPLING_MODE(mode))
3160 pm->pm_pcpu_state[cpu].pps_stalled = 0;
3161
3162 /* Indicate that we desire this to run. Start it. */
3163 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
3164 error = pcd->pcd_start_pmc(cpu, adjri, pm);
3165 }
3166 critical_exit();
3167
3168 pmc_restore_cpu_binding(&pb);
3169 return (error);
3170 }
3171
3172 /*
3173 * Stop a PMC.
3174 */
3175 static int
pmc_stop(struct pmc * pm)3176 pmc_stop(struct pmc *pm)
3177 {
3178 struct pmc_binding pb;
3179 struct pmc_classdep *pcd;
3180 struct pmc_owner *po;
3181 int adjri, cpu, error, ri;
3182
3183 KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
3184
3185 PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm, PMC_TO_MODE(pm),
3186 PMC_TO_ROWINDEX(pm));
3187
3188 pm->pm_state = PMC_STATE_STOPPED;
3189
3190 /*
3191 * If the PMC is a virtual mode one, changing the state to non-RUNNING
3192 * is enough to ensure that the PMC never gets scheduled.
3193 *
3194 * If this PMC is current running on a CPU, then it will handled
3195 * correctly at the time its target process is context switched out.
3196 */
3197 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
3198 return (0);
3199
3200 /*
3201 * A system-mode PMC. Move to the CPU associated with this PMC, and
3202 * stop the hardware. We update the 'initial count' so that a
3203 * subsequent PMCSTART will resume counting from the current hardware
3204 * count.
3205 */
3206 pmc_save_cpu_binding(&pb);
3207
3208 cpu = PMC_TO_CPU(pm);
3209 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
3210 ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
3211 if (!pmc_cpu_is_active(cpu))
3212 return (ENXIO);
3213
3214 pmc_select_cpu(cpu);
3215
3216 ri = PMC_TO_ROWINDEX(pm);
3217 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3218
3219 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
3220 critical_enter();
3221 if ((error = pcd->pcd_stop_pmc(cpu, adjri, pm)) == 0) {
3222 error = pcd->pcd_read_pmc(cpu, adjri, pm,
3223 &pm->pm_sc.pm_initial);
3224 }
3225 critical_exit();
3226
3227 pmc_restore_cpu_binding(&pb);
3228
3229 /* Remove this owner from the global list of SS PMC owners. */
3230 po = pm->pm_owner;
3231 if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
3232 po->po_sscount--;
3233 if (po->po_sscount == 0) {
3234 atomic_subtract_rel_int(&pmc_ss_count, 1);
3235 CK_LIST_REMOVE(po, po_ssnext);
3236 epoch_wait_preempt(global_epoch_preempt);
3237 PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
3238 }
3239 }
3240
3241 return (error);
3242 }
3243
3244 static struct pmc_classdep *
pmc_class_to_classdep(enum pmc_class class)3245 pmc_class_to_classdep(enum pmc_class class)
3246 {
3247 int n;
3248
3249 for (n = 0; n < md->pmd_nclass; n++) {
3250 if (md->pmd_classdep[n].pcd_class == class)
3251 return (&md->pmd_classdep[n]);
3252 }
3253 return (NULL);
3254 }
3255
3256 #if defined(HWPMC_DEBUG) && defined(KTR)
3257 static const char *pmc_op_to_name[] = {
3258 #undef __PMC_OP
3259 #define __PMC_OP(N, D) #N ,
3260 __PMC_OPS()
3261 NULL
3262 };
3263 #endif
3264
3265 /*
3266 * The syscall interface
3267 */
3268
3269 #define PMC_GET_SX_XLOCK(...) do { \
3270 sx_xlock(&pmc_sx); \
3271 if (pmc_hook == NULL) { \
3272 sx_xunlock(&pmc_sx); \
3273 return __VA_ARGS__; \
3274 } \
3275 } while (0)
3276
3277 #define PMC_DOWNGRADE_SX() do { \
3278 sx_downgrade(&pmc_sx); \
3279 is_sx_downgraded = true; \
3280 } while (0)
3281
3282 /*
3283 * Main body of PMC_OP_PMCALLOCATE.
3284 */
3285 static int
pmc_do_op_pmcallocate(struct thread * td,struct pmc_op_pmcallocate * pa)3286 pmc_do_op_pmcallocate(struct thread *td, struct pmc_op_pmcallocate *pa)
3287 {
3288 struct proc *p;
3289 struct pmc *pmc;
3290 struct pmc_binding pb;
3291 struct pmc_classdep *pcd;
3292 struct pmc_hw *phw;
3293 enum pmc_mode mode;
3294 enum pmc_class class;
3295 uint32_t caps, flags;
3296 u_int cpu;
3297 int adjri, n;
3298 int error;
3299
3300 class = pa->pm_class;
3301 caps = pa->pm_caps;
3302 flags = pa->pm_flags;
3303 mode = pa->pm_mode;
3304 cpu = pa->pm_cpu;
3305
3306 p = td->td_proc;
3307
3308 /* Requested mode must exist. */
3309 if ((mode != PMC_MODE_SS && mode != PMC_MODE_SC &&
3310 mode != PMC_MODE_TS && mode != PMC_MODE_TC))
3311 return (EINVAL);
3312
3313 /* Requested CPU must be valid. */
3314 if (cpu != PMC_CPU_ANY && cpu >= pmc_cpu_max())
3315 return (EINVAL);
3316
3317 /*
3318 * Virtual PMCs should only ask for a default CPU.
3319 * System mode PMCs need to specify a non-default CPU.
3320 */
3321 if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != PMC_CPU_ANY) ||
3322 (PMC_IS_SYSTEM_MODE(mode) && cpu == PMC_CPU_ANY))
3323 return (EINVAL);
3324
3325 /*
3326 * Check that an inactive CPU is not being asked for.
3327 */
3328 if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu))
3329 return (ENXIO);
3330
3331 /*
3332 * Refuse an allocation for a system-wide PMC if this process has been
3333 * jailed, or if this process lacks super-user credentials and the
3334 * sysctl tunable 'security.bsd.unprivileged_syspmcs' is zero.
3335 */
3336 if (PMC_IS_SYSTEM_MODE(mode)) {
3337 if (jailed(td->td_ucred))
3338 return (EPERM);
3339 if (!pmc_unprivileged_syspmcs) {
3340 error = priv_check(td, PRIV_PMC_SYSTEM);
3341 if (error != 0)
3342 return (error);
3343 }
3344 }
3345
3346 /*
3347 * Look for valid values for 'pm_flags'.
3348 */
3349 if ((flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3350 PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN |
3351 PMC_F_EV_PMU)) != 0)
3352 return (EINVAL);
3353
3354 /* PMC_F_USERCALLCHAIN is only valid with PMC_F_CALLCHAIN. */
3355 if ((flags & (PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) ==
3356 PMC_F_USERCALLCHAIN)
3357 return (EINVAL);
3358
3359 /* PMC_F_USERCALLCHAIN is only valid for sampling mode. */
3360 if ((flags & PMC_F_USERCALLCHAIN) != 0 && mode != PMC_MODE_TS &&
3361 mode != PMC_MODE_SS)
3362 return (EINVAL);
3363
3364 /* Process logging options are not allowed for system PMCs. */
3365 if (PMC_IS_SYSTEM_MODE(mode) &&
3366 (flags & (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT)) != 0)
3367 return (EINVAL);
3368
3369 /*
3370 * All sampling mode PMCs need to be able to interrupt the CPU.
3371 */
3372 if (PMC_IS_SAMPLING_MODE(mode))
3373 caps |= PMC_CAP_INTERRUPT;
3374
3375 /* A valid class specifier should have been passed in. */
3376 pcd = pmc_class_to_classdep(class);
3377 if (pcd == NULL)
3378 return (EINVAL);
3379
3380 /* The requested PMC capabilities should be feasible. */
3381 if ((pcd->pcd_caps & caps) != caps)
3382 return (EOPNOTSUPP);
3383
3384 PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d", pa->pm_ev,
3385 caps, mode, cpu);
3386
3387 pmc = pmc_allocate_pmc_descriptor();
3388 pmc->pm_id = PMC_ID_MAKE_ID(cpu, pa->pm_mode, class, PMC_ID_INVALID);
3389 pmc->pm_event = pa->pm_ev;
3390 pmc->pm_state = PMC_STATE_FREE;
3391 pmc->pm_caps = caps;
3392 pmc->pm_flags = flags;
3393
3394 /* XXX set lower bound on sampling for process counters */
3395 if (PMC_IS_SAMPLING_MODE(mode)) {
3396 /*
3397 * Don't permit requested sample rate to be less than
3398 * pmc_mincount.
3399 */
3400 if (pa->pm_count < MAX(1, pmc_mincount))
3401 log(LOG_WARNING, "pmcallocate: passed sample "
3402 "rate %ju - setting to %u\n",
3403 (uintmax_t)pa->pm_count,
3404 MAX(1, pmc_mincount));
3405 pmc->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
3406 pa->pm_count);
3407 } else
3408 pmc->pm_sc.pm_initial = pa->pm_count;
3409
3410 /* switch thread to CPU 'cpu' */
3411 pmc_save_cpu_binding(&pb);
3412
3413 #define PMC_IS_SHAREABLE_PMC(cpu, n) \
3414 (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state & \
3415 PMC_PHW_FLAG_IS_SHAREABLE)
3416 #define PMC_IS_UNALLOCATED(cpu, n) \
3417 (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3418
3419 if (PMC_IS_SYSTEM_MODE(mode)) {
3420 pmc_select_cpu(cpu);
3421 for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
3422 pcd = pmc_ri_to_classdep(md, n, &adjri);
3423
3424 if (!pmc_can_allocate_row(n, mode) ||
3425 !pmc_can_allocate_rowindex(p, n, cpu))
3426 continue;
3427 if (!PMC_IS_UNALLOCATED(cpu, n) &&
3428 !PMC_IS_SHAREABLE_PMC(cpu, n))
3429 continue;
3430
3431 if (pcd->pcd_allocate_pmc(cpu, adjri, pmc, pa) == 0) {
3432 /* Success. */
3433 break;
3434 }
3435 }
3436 } else {
3437 /* Process virtual mode */
3438 for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
3439 pcd = pmc_ri_to_classdep(md, n, &adjri);
3440
3441 if (!pmc_can_allocate_row(n, mode) ||
3442 !pmc_can_allocate_rowindex(p, n, PMC_CPU_ANY))
3443 continue;
3444
3445 if (pcd->pcd_allocate_pmc(td->td_oncpu, adjri, pmc,
3446 pa) == 0) {
3447 /* Success. */
3448 break;
3449 }
3450 }
3451 }
3452
3453 #undef PMC_IS_UNALLOCATED
3454 #undef PMC_IS_SHAREABLE_PMC
3455
3456 pmc_restore_cpu_binding(&pb);
3457
3458 if (n == md->pmd_npmc) {
3459 pmc_destroy_pmc_descriptor(pmc);
3460 return (EINVAL);
3461 }
3462
3463 /* Fill in the correct value in the ID field. */
3464 pmc->pm_id = PMC_ID_MAKE_ID(cpu, mode, class, n);
3465
3466 PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3467 pmc->pm_event, class, mode, n, pmc->pm_id);
3468
3469 /* Process mode PMCs with logging enabled need log files. */
3470 if ((pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW)) != 0)
3471 pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3472
3473 /* All system mode sampling PMCs require a log file. */
3474 if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3475 pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3476
3477 /*
3478 * Configure global pmc's immediately.
3479 */
3480 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3481 pmc_save_cpu_binding(&pb);
3482 pmc_select_cpu(cpu);
3483
3484 phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3485 pcd = pmc_ri_to_classdep(md, n, &adjri);
3486
3487 if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3488 (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3489 (void)pcd->pcd_release_pmc(cpu, adjri, pmc);
3490 pmc_destroy_pmc_descriptor(pmc);
3491 pmc_restore_cpu_binding(&pb);
3492 return (EPERM);
3493 }
3494
3495 pmc_restore_cpu_binding(&pb);
3496 }
3497
3498 pmc->pm_state = PMC_STATE_ALLOCATED;
3499 pmc->pm_class = class;
3500
3501 /*
3502 * Mark row disposition.
3503 */
3504 if (PMC_IS_SYSTEM_MODE(mode))
3505 PMC_MARK_ROW_STANDALONE(n);
3506 else
3507 PMC_MARK_ROW_THREAD(n);
3508
3509 /*
3510 * Register this PMC with the current thread as its owner.
3511 */
3512 error = pmc_register_owner(p, pmc);
3513 if (error != 0) {
3514 pmc_release_pmc_descriptor(pmc);
3515 pmc_destroy_pmc_descriptor(pmc);
3516 return (error);
3517 }
3518
3519 /*
3520 * Return the allocated index.
3521 */
3522 pa->pm_pmcid = pmc->pm_id;
3523 return (0);
3524 }
3525
3526 /*
3527 * Main body of PMC_OP_PMCATTACH.
3528 */
3529 static int
pmc_do_op_pmcattach(struct thread * td,struct pmc_op_pmcattach a)3530 pmc_do_op_pmcattach(struct thread *td, struct pmc_op_pmcattach a)
3531 {
3532 struct pmc *pm;
3533 struct proc *p;
3534 int error;
3535
3536 sx_assert(&pmc_sx, SX_XLOCKED);
3537
3538 if (a.pm_pid < 0) {
3539 return (EINVAL);
3540 } else if (a.pm_pid == 0) {
3541 a.pm_pid = td->td_proc->p_pid;
3542 }
3543
3544 error = pmc_find_pmc(a.pm_pmc, &pm);
3545 if (error != 0)
3546 return (error);
3547
3548 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
3549 return (EINVAL);
3550
3551 /* PMCs may be (re)attached only when allocated or stopped */
3552 if (pm->pm_state == PMC_STATE_RUNNING) {
3553 return (EBUSY);
3554 } else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3555 pm->pm_state != PMC_STATE_STOPPED) {
3556 return (EINVAL);
3557 }
3558
3559 /* lookup pid */
3560 if ((p = pfind(a.pm_pid)) == NULL)
3561 return (ESRCH);
3562
3563 /*
3564 * Ignore processes that are working on exiting.
3565 */
3566 if ((p->p_flag & P_WEXIT) != 0) {
3567 PROC_UNLOCK(p); /* pfind() returns a locked process */
3568 return (ESRCH);
3569 }
3570
3571 /*
3572 * We are allowed to attach a PMC to a process if we can debug it.
3573 */
3574 error = p_candebug(curthread, p);
3575
3576 PROC_UNLOCK(p);
3577
3578 if (error == 0)
3579 error = pmc_attach_process(p, pm);
3580
3581 return (error);
3582 }
3583
3584 /*
3585 * Main body of PMC_OP_PMCDETACH.
3586 */
3587 static int
pmc_do_op_pmcdetach(struct thread * td,struct pmc_op_pmcattach a)3588 pmc_do_op_pmcdetach(struct thread *td, struct pmc_op_pmcattach a)
3589 {
3590 struct pmc *pm;
3591 struct proc *p;
3592 int error;
3593
3594 if (a.pm_pid < 0) {
3595 return (EINVAL);
3596 } else if (a.pm_pid == 0)
3597 a.pm_pid = td->td_proc->p_pid;
3598
3599 error = pmc_find_pmc(a.pm_pmc, &pm);
3600 if (error != 0)
3601 return (error);
3602
3603 if ((p = pfind(a.pm_pid)) == NULL)
3604 return (ESRCH);
3605
3606 /*
3607 * Treat processes that are in the process of exiting as if they were
3608 * not present.
3609 */
3610 if ((p->p_flag & P_WEXIT) != 0) {
3611 PROC_UNLOCK(p);
3612 return (ESRCH);
3613 }
3614
3615 PROC_UNLOCK(p); /* pfind() returns a locked process */
3616
3617 if (error == 0)
3618 error = pmc_detach_process(p, pm);
3619
3620 return (error);
3621 }
3622
3623 /*
3624 * Main body of PMC_OP_PMCRELEASE.
3625 */
3626 static int
pmc_do_op_pmcrelease(pmc_id_t pmcid)3627 pmc_do_op_pmcrelease(pmc_id_t pmcid)
3628 {
3629 struct pmc_owner *po;
3630 struct pmc *pm;
3631 int error;
3632
3633 /*
3634 * Find PMC pointer for the named PMC.
3635 *
3636 * Use pmc_release_pmc_descriptor() to switch off the
3637 * PMC, remove all its target threads, and remove the
3638 * PMC from its owner's list.
3639 *
3640 * Remove the owner record if this is the last PMC
3641 * owned.
3642 *
3643 * Free up space.
3644 */
3645 error = pmc_find_pmc(pmcid, &pm);
3646 if (error != 0)
3647 return (error);
3648
3649 po = pm->pm_owner;
3650 pmc_release_pmc_descriptor(pm);
3651 pmc_maybe_remove_owner(po);
3652 pmc_destroy_pmc_descriptor(pm);
3653
3654 return (error);
3655 }
3656
3657 /*
3658 * Main body of PMC_OP_PMCRW.
3659 */
3660 static int
pmc_do_op_pmcrw(const struct pmc_op_pmcrw * prw,pmc_value_t * valp)3661 pmc_do_op_pmcrw(const struct pmc_op_pmcrw *prw, pmc_value_t *valp)
3662 {
3663 struct pmc_binding pb;
3664 struct pmc_classdep *pcd;
3665 struct pmc *pm;
3666 u_int cpu, ri, adjri;
3667 int error;
3668
3669 PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw->pm_pmcid, prw->pm_flags);
3670
3671 /* Must have at least one flag set. */
3672 if ((prw->pm_flags & (PMC_F_OLDVALUE | PMC_F_NEWVALUE)) == 0)
3673 return (EINVAL);
3674
3675 /* Locate PMC descriptor. */
3676 error = pmc_find_pmc(prw->pm_pmcid, &pm);
3677 if (error != 0)
3678 return (error);
3679
3680 /* Can't read a PMC that hasn't been started. */
3681 if (pm->pm_state != PMC_STATE_ALLOCATED &&
3682 pm->pm_state != PMC_STATE_STOPPED &&
3683 pm->pm_state != PMC_STATE_RUNNING)
3684 return (EINVAL);
3685
3686 /* Writing a new value is allowed only for 'STOPPED' PMCs. */
3687 if (pm->pm_state == PMC_STATE_RUNNING &&
3688 (prw->pm_flags & PMC_F_NEWVALUE) != 0)
3689 return (EBUSY);
3690
3691 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3692 /*
3693 * If this PMC is attached to its owner (i.e., the process
3694 * requesting this operation) and is running, then attempt to
3695 * get an upto-date reading from hardware for a READ. Writes
3696 * are only allowed when the PMC is stopped, so only update the
3697 * saved value field.
3698 *
3699 * If the PMC is not running, or is not attached to its owner,
3700 * read/write to the savedvalue field.
3701 */
3702
3703 ri = PMC_TO_ROWINDEX(pm);
3704 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3705
3706 mtx_pool_lock_spin(pmc_mtxpool, pm);
3707 cpu = curthread->td_oncpu;
3708
3709 if ((prw->pm_flags & PMC_F_OLDVALUE) != 0) {
3710 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3711 (pm->pm_state == PMC_STATE_RUNNING)) {
3712 error = (*pcd->pcd_read_pmc)(cpu, adjri, pm,
3713 valp);
3714 } else {
3715 *valp = pm->pm_gv.pm_savedvalue;
3716 }
3717 }
3718
3719 if ((prw->pm_flags & PMC_F_NEWVALUE) != 0)
3720 pm->pm_gv.pm_savedvalue = prw->pm_value;
3721
3722 mtx_pool_unlock_spin(pmc_mtxpool, pm);
3723 } else { /* System mode PMCs */
3724 cpu = PMC_TO_CPU(pm);
3725 ri = PMC_TO_ROWINDEX(pm);
3726 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3727
3728 if (!pmc_cpu_is_active(cpu))
3729 return (ENXIO);
3730
3731 /* Move this thread to CPU 'cpu'. */
3732 pmc_save_cpu_binding(&pb);
3733 pmc_select_cpu(cpu);
3734 critical_enter();
3735
3736 /* Save old value. */
3737 if ((prw->pm_flags & PMC_F_OLDVALUE) != 0)
3738 error = (*pcd->pcd_read_pmc)(cpu, adjri, pm, valp);
3739
3740 /* Write out new value. */
3741 if (error == 0 && (prw->pm_flags & PMC_F_NEWVALUE) != 0)
3742 error = (*pcd->pcd_write_pmc)(cpu, adjri, pm,
3743 prw->pm_value);
3744
3745 critical_exit();
3746 pmc_restore_cpu_binding(&pb);
3747 if (error != 0)
3748 return (error);
3749 }
3750
3751 #ifdef HWPMC_DEBUG
3752 if ((prw->pm_flags & PMC_F_NEWVALUE) != 0)
3753 PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3754 ri, prw->pm_value, *valp);
3755 else
3756 PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, *valp);
3757 #endif
3758 return (error);
3759 }
3760
3761 static int
pmc_syscall_handler(struct thread * td,void * syscall_args)3762 pmc_syscall_handler(struct thread *td, void *syscall_args)
3763 {
3764 struct pmc_syscall_args *c;
3765 void *pmclog_proc_handle;
3766 void *arg;
3767 int error, op;
3768 bool is_sx_downgraded;
3769
3770 c = (struct pmc_syscall_args *)syscall_args;
3771 op = c->pmop_code;
3772 arg = c->pmop_data;
3773
3774 /* PMC isn't set up yet */
3775 if (pmc_hook == NULL)
3776 return (EINVAL);
3777
3778 if (op == PMC_OP_CONFIGURELOG) {
3779 /*
3780 * We cannot create the logging process inside
3781 * pmclog_configure_log() because there is a LOR
3782 * between pmc_sx and process structure locks.
3783 * Instead, pre-create the process and ignite the loop
3784 * if everything is fine, otherwise direct the process
3785 * to exit.
3786 */
3787 error = pmclog_proc_create(td, &pmclog_proc_handle);
3788 if (error != 0)
3789 goto done_syscall;
3790 }
3791
3792 PMC_GET_SX_XLOCK(ENOSYS);
3793 is_sx_downgraded = false;
3794 PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
3795 pmc_op_to_name[op], arg);
3796
3797 error = 0;
3798 counter_u64_add(pmc_stats.pm_syscalls, 1);
3799
3800 switch (op) {
3801
3802
3803 /*
3804 * Configure a log file.
3805 *
3806 * XXX This OP will be reworked.
3807 */
3808
3809 case PMC_OP_CONFIGURELOG:
3810 {
3811 struct proc *p;
3812 struct pmc *pm;
3813 struct pmc_owner *po;
3814 struct pmc_op_configurelog cl;
3815
3816 if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
3817 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3818 break;
3819 }
3820
3821 /* No flags currently implemented */
3822 if (cl.pm_flags != 0) {
3823 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3824 error = EINVAL;
3825 break;
3826 }
3827
3828 /* mark this process as owning a log file */
3829 p = td->td_proc;
3830 if ((po = pmc_find_owner_descriptor(p)) == NULL)
3831 if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
3832 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3833 error = ENOMEM;
3834 break;
3835 }
3836
3837 /*
3838 * If a valid fd was passed in, try to configure that,
3839 * otherwise if 'fd' was less than zero and there was
3840 * a log file configured, flush its buffers and
3841 * de-configure it.
3842 */
3843 if (cl.pm_logfd >= 0) {
3844 error = pmclog_configure_log(md, po, cl.pm_logfd);
3845 pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
3846 po : NULL);
3847 } else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
3848 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3849 error = pmclog_close(po);
3850 if (error == 0) {
3851 LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3852 if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
3853 pm->pm_state == PMC_STATE_RUNNING)
3854 pmc_stop(pm);
3855 error = pmclog_deconfigure_log(po);
3856 }
3857 } else {
3858 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3859 error = EINVAL;
3860 }
3861 }
3862 break;
3863
3864 /*
3865 * Flush a log file.
3866 */
3867
3868 case PMC_OP_FLUSHLOG:
3869 {
3870 struct pmc_owner *po;
3871
3872 sx_assert(&pmc_sx, SX_XLOCKED);
3873
3874 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3875 error = EINVAL;
3876 break;
3877 }
3878
3879 error = pmclog_flush(po, 0);
3880 }
3881 break;
3882
3883 /*
3884 * Close a log file.
3885 */
3886
3887 case PMC_OP_CLOSELOG:
3888 {
3889 struct pmc_owner *po;
3890
3891 sx_assert(&pmc_sx, SX_XLOCKED);
3892
3893 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3894 error = EINVAL;
3895 break;
3896 }
3897
3898 error = pmclog_close(po);
3899 }
3900 break;
3901
3902 /*
3903 * Retrieve hardware configuration.
3904 */
3905
3906 case PMC_OP_GETCPUINFO: /* CPU information */
3907 {
3908 struct pmc_op_getcpuinfo gci;
3909 struct pmc_classinfo *pci;
3910 struct pmc_classdep *pcd;
3911 int cl;
3912
3913 memset(&gci, 0, sizeof(gci));
3914 gci.pm_cputype = md->pmd_cputype;
3915 gci.pm_ncpu = pmc_cpu_max();
3916 gci.pm_npmc = md->pmd_npmc;
3917 gci.pm_nclass = md->pmd_nclass;
3918 pci = gci.pm_classes;
3919 pcd = md->pmd_classdep;
3920 for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3921 pci->pm_caps = pcd->pcd_caps;
3922 pci->pm_class = pcd->pcd_class;
3923 pci->pm_width = pcd->pcd_width;
3924 pci->pm_num = pcd->pcd_num;
3925 }
3926 error = copyout(&gci, arg, sizeof(gci));
3927 }
3928 break;
3929
3930 /*
3931 * Retrieve soft events list.
3932 */
3933 case PMC_OP_GETDYNEVENTINFO:
3934 {
3935 enum pmc_class cl;
3936 enum pmc_event ev;
3937 struct pmc_op_getdyneventinfo *gei;
3938 struct pmc_dyn_event_descr dev;
3939 struct pmc_soft *ps;
3940 uint32_t nevent;
3941
3942 sx_assert(&pmc_sx, SX_LOCKED);
3943
3944 gei = (struct pmc_op_getdyneventinfo *) arg;
3945
3946 if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3947 break;
3948
3949 /* Only SOFT class is dynamic. */
3950 if (cl != PMC_CLASS_SOFT) {
3951 error = EINVAL;
3952 break;
3953 }
3954
3955 nevent = 0;
3956 for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3957 ps = pmc_soft_ev_acquire(ev);
3958 if (ps == NULL)
3959 continue;
3960 bcopy(&ps->ps_ev, &dev, sizeof(dev));
3961 pmc_soft_ev_release(ps);
3962
3963 error = copyout(&dev,
3964 &gei->pm_events[nevent],
3965 sizeof(struct pmc_dyn_event_descr));
3966 if (error != 0)
3967 break;
3968 nevent++;
3969 }
3970 if (error != 0)
3971 break;
3972
3973 error = copyout(&nevent, &gei->pm_nevent,
3974 sizeof(nevent));
3975 }
3976 break;
3977
3978 /*
3979 * Get module statistics
3980 */
3981
3982 case PMC_OP_GETDRIVERSTATS:
3983 {
3984 struct pmc_op_getdriverstats gms;
3985 #define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
3986 CFETCH(gms, pmc_stats, pm_intr_ignored);
3987 CFETCH(gms, pmc_stats, pm_intr_processed);
3988 CFETCH(gms, pmc_stats, pm_intr_bufferfull);
3989 CFETCH(gms, pmc_stats, pm_syscalls);
3990 CFETCH(gms, pmc_stats, pm_syscall_errors);
3991 CFETCH(gms, pmc_stats, pm_buffer_requests);
3992 CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
3993 CFETCH(gms, pmc_stats, pm_log_sweeps);
3994 #undef CFETCH
3995 error = copyout(&gms, arg, sizeof(gms));
3996 }
3997 break;
3998
3999
4000 /*
4001 * Retrieve module version number
4002 */
4003
4004 case PMC_OP_GETMODULEVERSION:
4005 {
4006 uint32_t cv, modv;
4007
4008 /* retrieve the client's idea of the ABI version */
4009 if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
4010 break;
4011 /* don't service clients newer than our driver */
4012 modv = PMC_VERSION;
4013 if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
4014 error = EPROGMISMATCH;
4015 break;
4016 }
4017 error = copyout(&modv, arg, sizeof(int));
4018 }
4019 break;
4020
4021
4022 /*
4023 * Retrieve the state of all the PMCs on a given
4024 * CPU.
4025 */
4026
4027 case PMC_OP_GETPMCINFO:
4028 {
4029 int ari;
4030 struct pmc *pm;
4031 size_t pmcinfo_size;
4032 uint32_t cpu, n, npmc;
4033 struct pmc_owner *po;
4034 struct pmc_binding pb;
4035 struct pmc_classdep *pcd;
4036 struct pmc_info *p, *pmcinfo;
4037 struct pmc_op_getpmcinfo *gpi;
4038
4039 PMC_DOWNGRADE_SX();
4040
4041 gpi = (struct pmc_op_getpmcinfo *) arg;
4042
4043 if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
4044 break;
4045
4046 if (cpu >= pmc_cpu_max()) {
4047 error = EINVAL;
4048 break;
4049 }
4050
4051 if (!pmc_cpu_is_active(cpu)) {
4052 error = ENXIO;
4053 break;
4054 }
4055
4056 /* switch to CPU 'cpu' */
4057 pmc_save_cpu_binding(&pb);
4058 pmc_select_cpu(cpu);
4059
4060 npmc = md->pmd_npmc;
4061
4062 pmcinfo_size = npmc * sizeof(struct pmc_info);
4063 pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
4064
4065 p = pmcinfo;
4066
4067 for (n = 0; n < md->pmd_npmc; n++, p++) {
4068
4069 pcd = pmc_ri_to_classdep(md, n, &ari);
4070
4071 KASSERT(pcd != NULL,
4072 ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4073
4074 if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
4075 break;
4076
4077 if (PMC_ROW_DISP_IS_STANDALONE(n))
4078 p->pm_rowdisp = PMC_DISP_STANDALONE;
4079 else if (PMC_ROW_DISP_IS_THREAD(n))
4080 p->pm_rowdisp = PMC_DISP_THREAD;
4081 else
4082 p->pm_rowdisp = PMC_DISP_FREE;
4083
4084 p->pm_ownerpid = -1;
4085
4086 if (pm == NULL) /* no PMC associated */
4087 continue;
4088
4089 po = pm->pm_owner;
4090
4091 KASSERT(po->po_owner != NULL,
4092 ("[pmc,%d] pmc_owner had a null proc pointer",
4093 __LINE__));
4094
4095 p->pm_ownerpid = po->po_owner->p_pid;
4096 p->pm_mode = PMC_TO_MODE(pm);
4097 p->pm_event = pm->pm_event;
4098 p->pm_flags = pm->pm_flags;
4099
4100 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
4101 p->pm_reloadcount =
4102 pm->pm_sc.pm_reloadcount;
4103 }
4104
4105 pmc_restore_cpu_binding(&pb);
4106
4107 /* now copy out the PMC info collected */
4108 if (error == 0)
4109 error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
4110
4111 free(pmcinfo, M_PMC);
4112 }
4113 break;
4114
4115
4116 /*
4117 * Set the administrative state of a PMC. I.e. whether
4118 * the PMC is to be used or not.
4119 */
4120
4121 case PMC_OP_PMCADMIN:
4122 {
4123 int cpu, ri;
4124 enum pmc_state request;
4125 struct pmc_cpu *pc;
4126 struct pmc_hw *phw;
4127 struct pmc_op_pmcadmin pma;
4128 struct pmc_binding pb;
4129
4130 sx_assert(&pmc_sx, SX_XLOCKED);
4131
4132 KASSERT(td == curthread,
4133 ("[pmc,%d] td != curthread", __LINE__));
4134
4135 error = priv_check(td, PRIV_PMC_MANAGE);
4136 if (error)
4137 break;
4138
4139 if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
4140 break;
4141
4142 cpu = pma.pm_cpu;
4143
4144 if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
4145 error = EINVAL;
4146 break;
4147 }
4148
4149 if (!pmc_cpu_is_active(cpu)) {
4150 error = ENXIO;
4151 break;
4152 }
4153
4154 request = pma.pm_state;
4155
4156 if (request != PMC_STATE_DISABLED &&
4157 request != PMC_STATE_FREE) {
4158 error = EINVAL;
4159 break;
4160 }
4161
4162 ri = pma.pm_pmc; /* pmc id == row index */
4163 if (ri < 0 || ri >= (int) md->pmd_npmc) {
4164 error = EINVAL;
4165 break;
4166 }
4167
4168 /*
4169 * We can't disable a PMC with a row-index allocated
4170 * for process virtual PMCs.
4171 */
4172
4173 if (PMC_ROW_DISP_IS_THREAD(ri) &&
4174 request == PMC_STATE_DISABLED) {
4175 error = EBUSY;
4176 break;
4177 }
4178
4179 /*
4180 * otherwise, this PMC on this CPU is either free or
4181 * in system-wide mode.
4182 */
4183
4184 pmc_save_cpu_binding(&pb);
4185 pmc_select_cpu(cpu);
4186
4187 pc = pmc_pcpu[cpu];
4188 phw = pc->pc_hwpmcs[ri];
4189
4190 /*
4191 * XXX do we need some kind of 'forced' disable?
4192 */
4193
4194 if (phw->phw_pmc == NULL) {
4195 if (request == PMC_STATE_DISABLED &&
4196 (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
4197 phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
4198 PMC_MARK_ROW_STANDALONE(ri);
4199 } else if (request == PMC_STATE_FREE &&
4200 (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
4201 phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED;
4202 PMC_UNMARK_ROW_STANDALONE(ri);
4203 }
4204 /* other cases are a no-op */
4205 } else
4206 error = EBUSY;
4207
4208 pmc_restore_cpu_binding(&pb);
4209 }
4210 break;
4211
4212
4213 /*
4214 * Allocate a PMC.
4215 */
4216 case PMC_OP_PMCALLOCATE:
4217 {
4218 struct pmc_op_pmcallocate pa;
4219
4220 error = copyin(arg, &pa, sizeof(pa));
4221 if (error != 0)
4222 break;
4223
4224 error = pmc_do_op_pmcallocate(td, &pa);
4225 if (error != 0)
4226 break;
4227
4228 error = copyout(&pa, arg, sizeof(pa));
4229 }
4230 break;
4231
4232 /*
4233 * Attach a PMC to a process.
4234 */
4235 case PMC_OP_PMCATTACH:
4236 {
4237 struct pmc_op_pmcattach a;
4238
4239 error = copyin(arg, &a, sizeof(a));
4240 if (error != 0)
4241 break;
4242
4243 error = pmc_do_op_pmcattach(td, a);
4244 }
4245 break;
4246
4247 /*
4248 * Detach an attached PMC from a process.
4249 */
4250 case PMC_OP_PMCDETACH:
4251 {
4252 struct pmc_op_pmcattach a;
4253
4254 error = copyin(arg, &a, sizeof(a));
4255 if (error != 0)
4256 break;
4257
4258 error = pmc_do_op_pmcdetach(td, a);
4259 }
4260 break;
4261
4262
4263 /*
4264 * Retrieve the MSR number associated with the counter
4265 * 'pmc_id'. This allows processes to directly use RDPMC
4266 * instructions to read their PMCs, without the overhead of a
4267 * system call.
4268 */
4269
4270 case PMC_OP_PMCGETMSR:
4271 {
4272 int adjri, ri;
4273 struct pmc *pm;
4274 struct pmc_target *pt;
4275 struct pmc_op_getmsr gm;
4276 struct pmc_classdep *pcd;
4277
4278 PMC_DOWNGRADE_SX();
4279
4280 if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
4281 break;
4282
4283 if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
4284 break;
4285
4286 /*
4287 * The allocated PMC has to be a process virtual PMC,
4288 * i.e., of type MODE_T[CS]. Global PMCs can only be
4289 * read using the PMCREAD operation since they may be
4290 * allocated on a different CPU than the one we could
4291 * be running on at the time of the RDPMC instruction.
4292 *
4293 * The GETMSR operation is not allowed for PMCs that
4294 * are inherited across processes.
4295 */
4296
4297 if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
4298 (pm->pm_flags & PMC_F_DESCENDANTS)) {
4299 error = EINVAL;
4300 break;
4301 }
4302
4303 /*
4304 * It only makes sense to use a RDPMC (or its
4305 * equivalent instruction on non-x86 architectures) on
4306 * a process that has allocated and attached a PMC to
4307 * itself. Conversely the PMC is only allowed to have
4308 * one process attached to it -- its owner.
4309 */
4310
4311 if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
4312 LIST_NEXT(pt, pt_next) != NULL ||
4313 pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
4314 error = EINVAL;
4315 break;
4316 }
4317
4318 ri = PMC_TO_ROWINDEX(pm);
4319 pcd = pmc_ri_to_classdep(md, ri, &adjri);
4320
4321 /* PMC class has no 'GETMSR' support */
4322 if (pcd->pcd_get_msr == NULL) {
4323 error = ENOSYS;
4324 break;
4325 }
4326
4327 if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
4328 break;
4329
4330 if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
4331 break;
4332
4333 /*
4334 * Mark our process as using MSRs. Update machine
4335 * state using a forced context switch.
4336 */
4337
4338 pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
4339 pmc_force_context_switch();
4340
4341 }
4342 break;
4343
4344 /*
4345 * Release an allocated PMC.
4346 */
4347 case PMC_OP_PMCRELEASE:
4348 {
4349 struct pmc_op_simple sp;
4350
4351 error = copyin(arg, &sp, sizeof(sp));
4352 if (error != 0)
4353 break;
4354
4355 error = pmc_do_op_pmcrelease(sp.pm_pmcid);
4356 }
4357 break;
4358
4359 /*
4360 * Read and/or write a PMC.
4361 */
4362 case PMC_OP_PMCRW:
4363 {
4364 struct pmc_op_pmcrw prw;
4365 struct pmc_op_pmcrw *pprw;
4366 pmc_value_t oldvalue;
4367
4368 PMC_DOWNGRADE_SX();
4369
4370 error = copyin(arg, &prw, sizeof(prw));
4371 if (error != 0)
4372 break;
4373
4374 error = pmc_do_op_pmcrw(&prw, &oldvalue);
4375 if (error != 0)
4376 break;
4377
4378 /* Return old value if requested. */
4379 if ((prw.pm_flags & PMC_F_OLDVALUE) != 0) {
4380 pprw = arg;
4381 error = copyout(&oldvalue, &pprw->pm_value,
4382 sizeof(prw.pm_value));
4383 }
4384 }
4385 break;
4386
4387
4388 /*
4389 * Set the sampling rate for a sampling mode PMC and the
4390 * initial count for a counting mode PMC.
4391 */
4392
4393 case PMC_OP_PMCSETCOUNT:
4394 {
4395 struct pmc *pm;
4396 struct pmc_op_pmcsetcount sc;
4397
4398 PMC_DOWNGRADE_SX();
4399
4400 if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
4401 break;
4402
4403 if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
4404 break;
4405
4406 if (pm->pm_state == PMC_STATE_RUNNING) {
4407 error = EBUSY;
4408 break;
4409 }
4410
4411 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
4412 /*
4413 * Don't permit requested sample rate to be
4414 * less than pmc_mincount.
4415 */
4416 if (sc.pm_count < MAX(1, pmc_mincount))
4417 log(LOG_WARNING, "pmcsetcount: passed sample "
4418 "rate %ju - setting to %u\n",
4419 (uintmax_t)sc.pm_count,
4420 MAX(1, pmc_mincount));
4421 pm->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
4422 sc.pm_count);
4423 } else
4424 pm->pm_sc.pm_initial = sc.pm_count;
4425 }
4426 break;
4427
4428
4429 /*
4430 * Start a PMC.
4431 */
4432
4433 case PMC_OP_PMCSTART:
4434 {
4435 pmc_id_t pmcid;
4436 struct pmc *pm;
4437 struct pmc_op_simple sp;
4438
4439 sx_assert(&pmc_sx, SX_XLOCKED);
4440
4441 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4442 break;
4443
4444 pmcid = sp.pm_pmcid;
4445
4446 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4447 break;
4448
4449 KASSERT(pmcid == pm->pm_id,
4450 ("[pmc,%d] pmcid %x != id %x", __LINE__,
4451 pm->pm_id, pmcid));
4452
4453 if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
4454 break;
4455 else if (pm->pm_state != PMC_STATE_STOPPED &&
4456 pm->pm_state != PMC_STATE_ALLOCATED) {
4457 error = EINVAL;
4458 break;
4459 }
4460
4461 error = pmc_start(pm);
4462 }
4463 break;
4464
4465
4466 /*
4467 * Stop a PMC.
4468 */
4469
4470 case PMC_OP_PMCSTOP:
4471 {
4472 pmc_id_t pmcid;
4473 struct pmc *pm;
4474 struct pmc_op_simple sp;
4475
4476 PMC_DOWNGRADE_SX();
4477
4478 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4479 break;
4480
4481 pmcid = sp.pm_pmcid;
4482
4483 /*
4484 * Mark the PMC as inactive and invoke the MD stop
4485 * routines if needed.
4486 */
4487
4488 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4489 break;
4490
4491 KASSERT(pmcid == pm->pm_id,
4492 ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
4493 pm->pm_id, pmcid));
4494
4495 if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
4496 break;
4497 else if (pm->pm_state != PMC_STATE_RUNNING) {
4498 error = EINVAL;
4499 break;
4500 }
4501
4502 error = pmc_stop(pm);
4503 }
4504 break;
4505
4506
4507 /*
4508 * Write a user supplied value to the log file.
4509 */
4510
4511 case PMC_OP_WRITELOG:
4512 {
4513 struct pmc_op_writelog wl;
4514 struct pmc_owner *po;
4515
4516 PMC_DOWNGRADE_SX();
4517
4518 if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4519 break;
4520
4521 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4522 error = EINVAL;
4523 break;
4524 }
4525
4526 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4527 error = EINVAL;
4528 break;
4529 }
4530
4531 error = pmclog_process_userlog(po, &wl);
4532 }
4533 break;
4534
4535
4536 default:
4537 error = EINVAL;
4538 break;
4539 }
4540
4541 if (is_sx_downgraded)
4542 sx_sunlock(&pmc_sx);
4543 else
4544 sx_xunlock(&pmc_sx);
4545 done_syscall:
4546 if (error)
4547 counter_u64_add(pmc_stats.pm_syscall_errors, 1);
4548
4549 return (error);
4550 }
4551
4552 /*
4553 * Helper functions
4554 */
4555
4556 /*
4557 * Mark the thread as needing callchain capture and post an AST. The
4558 * actual callchain capture will be done in a context where it is safe
4559 * to take page faults.
4560 */
4561 static void
pmc_post_callchain_callback(void)4562 pmc_post_callchain_callback(void)
4563 {
4564 struct thread *td;
4565
4566 td = curthread;
4567
4568 /*
4569 * If there is multiple PMCs for the same interrupt ignore new post
4570 */
4571 if ((td->td_pflags & TDP_CALLCHAIN) != 0)
4572 return;
4573
4574 /*
4575 * Mark this thread as needing callchain capture.
4576 * `td->td_pflags' will be safe to touch because this thread
4577 * was in user space when it was interrupted.
4578 */
4579 td->td_pflags |= TDP_CALLCHAIN;
4580
4581 /*
4582 * Don't let this thread migrate between CPUs until callchain
4583 * capture completes.
4584 */
4585 sched_pin();
4586
4587 return;
4588 }
4589
4590 /*
4591 * Find a free slot in the per-cpu array of samples and capture the
4592 * current callchain there. If a sample was successfully added, a bit
4593 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4594 * needs to be invoked from the clock handler.
4595 *
4596 * This function is meant to be called from an NMI handler. It cannot
4597 * use any of the locking primitives supplied by the OS.
4598 */
4599 static int
pmc_add_sample(ring_type_t ring,struct pmc * pm,struct trapframe * tf)4600 pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf)
4601 {
4602 struct pmc_sample *ps;
4603 struct pmc_samplebuffer *psb;
4604 struct thread *td;
4605 int error, cpu, callchaindepth;
4606 bool inuserspace;
4607
4608 error = 0;
4609
4610 /*
4611 * Allocate space for a sample buffer.
4612 */
4613 cpu = curcpu;
4614 psb = pmc_pcpu[cpu]->pc_sb[ring];
4615 inuserspace = TRAPF_USERMODE(tf);
4616 ps = PMC_PROD_SAMPLE(psb);
4617 if (psb->ps_considx != psb->ps_prodidx &&
4618 ps->ps_nsamples) { /* in use, reader hasn't caught up */
4619 pm->pm_pcpu_state[cpu].pps_stalled = 1;
4620 counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
4621 PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4622 cpu, pm, tf, inuserspace,
4623 (int)(psb->ps_prodidx & pmc_sample_mask),
4624 (int)(psb->ps_considx & pmc_sample_mask));
4625 callchaindepth = 1;
4626 error = ENOMEM;
4627 goto done;
4628 }
4629
4630 /* Fill in entry. */
4631 PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm, tf,
4632 inuserspace, (int)(psb->ps_prodidx & pmc_sample_mask),
4633 (int)(psb->ps_considx & pmc_sample_mask));
4634
4635 td = curthread;
4636 ps->ps_pmc = pm;
4637 ps->ps_td = td;
4638 ps->ps_pid = td->td_proc->p_pid;
4639 ps->ps_tid = td->td_tid;
4640 ps->ps_tsc = pmc_rdtsc();
4641 ps->ps_ticks = ticks;
4642 ps->ps_cpu = cpu;
4643 ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4644
4645 callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4646 pmc_callchaindepth : 1;
4647
4648 MPASS(ps->ps_pc != NULL);
4649 if (callchaindepth == 1) {
4650 ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4651 } else {
4652 /*
4653 * Kernel stack traversals can be done immediately, while we
4654 * defer to an AST for user space traversals.
4655 */
4656 if (!inuserspace) {
4657 callchaindepth = pmc_save_kernel_callchain(ps->ps_pc,
4658 callchaindepth, tf);
4659 } else {
4660 pmc_post_callchain_callback();
4661 callchaindepth = PMC_USER_CALLCHAIN_PENDING;
4662 }
4663 }
4664
4665 ps->ps_nsamples = callchaindepth; /* mark entry as in-use */
4666 if (ring == PMC_UR) {
4667 ps->ps_nsamples_actual = callchaindepth;
4668 ps->ps_nsamples = PMC_USER_CALLCHAIN_PENDING;
4669 }
4670
4671 KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
4672 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
4673 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4674
4675 counter_u64_add(pm->pm_runcount, 1); /* hold onto PMC */
4676 /* increment write pointer */
4677 psb->ps_prodidx++;
4678 done:
4679 /* mark CPU as needing processing */
4680 if (callchaindepth != PMC_USER_CALLCHAIN_PENDING)
4681 DPCPU_SET(pmc_sampled, 1);
4682
4683 return (error);
4684 }
4685
4686 /*
4687 * Interrupt processing.
4688 *
4689 * This function may be called from an NMI handler. It cannot use any of the
4690 * locking primitives supplied by the OS.
4691 */
4692 int
pmc_process_interrupt(int ring,struct pmc * pm,struct trapframe * tf)4693 pmc_process_interrupt(int ring, struct pmc *pm, struct trapframe *tf)
4694 {
4695 struct thread *td;
4696
4697 td = curthread;
4698 if ((pm->pm_flags & PMC_F_USERCALLCHAIN) &&
4699 (td->td_proc->p_flag & P_KPROC) == 0 && !TRAPF_USERMODE(tf)) {
4700 atomic_add_int(&td->td_pmcpend, 1);
4701 return (pmc_add_sample(PMC_UR, pm, tf));
4702 }
4703 return (pmc_add_sample(ring, pm, tf));
4704 }
4705
4706 /*
4707 * Capture a user call chain. This function will be called from ast()
4708 * before control returns to userland and before the process gets
4709 * rescheduled.
4710 */
4711 static void
pmc_capture_user_callchain(int cpu,int ring,struct trapframe * tf)4712 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4713 {
4714 struct pmc *pm;
4715 struct pmc_sample *ps;
4716 struct pmc_samplebuffer *psb;
4717 struct thread *td;
4718 uint64_t considx, prodidx;
4719 int nsamples, nrecords, pass, iter;
4720 int start_ticks __diagused;
4721
4722 psb = pmc_pcpu[cpu]->pc_sb[ring];
4723 td = curthread;
4724 nrecords = INT_MAX;
4725 pass = 0;
4726 start_ticks = ticks;
4727
4728 KASSERT(td->td_pflags & TDP_CALLCHAIN,
4729 ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4730 __LINE__));
4731 restart:
4732 if (ring == PMC_UR)
4733 nrecords = atomic_readandclear_32(&td->td_pmcpend);
4734
4735 for (iter = 0, considx = psb->ps_considx, prodidx = psb->ps_prodidx;
4736 considx < prodidx && iter < pmc_nsamples; considx++, iter++) {
4737 ps = PMC_CONS_SAMPLE_OFF(psb, considx);
4738
4739 /*
4740 * Iterate through all deferred callchain requests. Walk from
4741 * the current read pointer to the current write pointer.
4742 */
4743 #ifdef INVARIANTS
4744 if (ps->ps_nsamples == PMC_SAMPLE_FREE) {
4745 continue;
4746 }
4747 #endif
4748 if (ps->ps_td != td ||
4749 ps->ps_nsamples != PMC_USER_CALLCHAIN_PENDING ||
4750 ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
4751 continue;
4752
4753 KASSERT(ps->ps_cpu == cpu,
4754 ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4755 ps->ps_cpu, PCPU_GET(cpuid)));
4756
4757 pm = ps->ps_pmc;
4758 KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4759 ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4760 "want it", __LINE__));
4761 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4762 ("[pmc,%d] runcount %ju", __LINE__,
4763 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4764
4765 if (ring == PMC_UR) {
4766 nsamples = ps->ps_nsamples_actual;
4767 counter_u64_add(pmc_stats.pm_merges, 1);
4768 } else
4769 nsamples = 0;
4770
4771 /*
4772 * Retrieve the callchain and mark the sample buffer
4773 * as 'processable' by the timer tick sweep code.
4774 */
4775 if (__predict_true(nsamples < pmc_callchaindepth - 1))
4776 nsamples += pmc_save_user_callchain(ps->ps_pc + nsamples,
4777 pmc_callchaindepth - nsamples - 1, tf);
4778
4779 /*
4780 * We have to prevent hardclock from potentially overwriting
4781 * this sample between when we read the value and when we set
4782 * it.
4783 */
4784 spinlock_enter();
4785
4786 /*
4787 * Verify that the sample hasn't been dropped in the meantime.
4788 */
4789 if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4790 ps->ps_nsamples = nsamples;
4791 /*
4792 * If we couldn't get a sample, simply drop the
4793 * reference.
4794 */
4795 if (nsamples == 0)
4796 counter_u64_add(pm->pm_runcount, -1);
4797 }
4798 spinlock_exit();
4799 if (nrecords-- == 1)
4800 break;
4801 }
4802 if (__predict_false(ring == PMC_UR && td->td_pmcpend)) {
4803 if (pass == 0) {
4804 pass = 1;
4805 goto restart;
4806 }
4807 /* only collect samples for this part once */
4808 td->td_pmcpend = 0;
4809 }
4810
4811 #ifdef INVARIANTS
4812 if ((ticks - start_ticks) > hz)
4813 log(LOG_ERR, "%s took %d ticks\n", __func__, (ticks - start_ticks));
4814 #endif
4815 /* mark CPU as needing processing */
4816 DPCPU_SET(pmc_sampled, 1);
4817 }
4818
4819 /*
4820 * Process saved PC samples.
4821 */
4822 static void
pmc_process_samples(int cpu,ring_type_t ring)4823 pmc_process_samples(int cpu, ring_type_t ring)
4824 {
4825 struct pmc *pm;
4826 struct thread *td;
4827 struct pmc_owner *po;
4828 struct pmc_sample *ps;
4829 struct pmc_classdep *pcd;
4830 struct pmc_samplebuffer *psb;
4831 uint64_t delta __diagused;
4832 int adjri, n;
4833
4834 KASSERT(PCPU_GET(cpuid) == cpu,
4835 ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4836 PCPU_GET(cpuid), cpu));
4837
4838 psb = pmc_pcpu[cpu]->pc_sb[ring];
4839 delta = psb->ps_prodidx - psb->ps_considx;
4840 MPASS(delta <= pmc_nsamples);
4841 MPASS(psb->ps_considx <= psb->ps_prodidx);
4842 for (n = 0; psb->ps_considx < psb->ps_prodidx; psb->ps_considx++, n++) {
4843 ps = PMC_CONS_SAMPLE(psb);
4844
4845 if (__predict_false(ps->ps_nsamples == PMC_SAMPLE_FREE))
4846 continue;
4847
4848 /* skip non-running samples */
4849 pm = ps->ps_pmc;
4850 if (pm->pm_state != PMC_STATE_RUNNING)
4851 goto entrydone;
4852
4853 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4854 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
4855 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4856 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4857 ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4858 pm, PMC_TO_MODE(pm)));
4859
4860 po = pm->pm_owner;
4861
4862 /* If there is a pending AST wait for completion */
4863 if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4864 /*
4865 * If we've been waiting more than 1 tick to
4866 * collect a callchain for this record then
4867 * drop it and move on.
4868 */
4869 if (ticks - ps->ps_ticks > 1) {
4870 /*
4871 * Track how often we hit this as it will
4872 * preferentially lose user samples
4873 * for long running system calls.
4874 */
4875 counter_u64_add(pmc_stats.pm_overwrites, 1);
4876 goto entrydone;
4877 }
4878 /* Need a rescan at a later time. */
4879 DPCPU_SET(pmc_sampled, 1);
4880 break;
4881 }
4882
4883 PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4884 pm, ps->ps_nsamples, ps->ps_flags,
4885 (int)(psb->ps_prodidx & pmc_sample_mask),
4886 (int)(psb->ps_considx & pmc_sample_mask));
4887
4888 /*
4889 * If this is a process-mode PMC that is attached to
4890 * its owner, and if the PC is in user mode, update
4891 * profiling statistics like timer-based profiling
4892 * would have done.
4893 *
4894 * Otherwise, this is either a sampling-mode PMC that
4895 * is attached to a different process than its owner,
4896 * or a system-wide sampling PMC. Dispatch a log
4897 * entry to the PMC's owner process.
4898 */
4899 if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4900 if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4901 td = FIRST_THREAD_IN_PROC(po->po_owner);
4902 addupc_intr(td, ps->ps_pc[0], 1);
4903 }
4904 } else
4905 pmclog_process_callchain(pm, ps);
4906
4907 entrydone:
4908 ps->ps_nsamples = 0; /* mark entry as free */
4909 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4910 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
4911 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4912
4913 counter_u64_add(pm->pm_runcount, -1);
4914 }
4915
4916 counter_u64_add(pmc_stats.pm_log_sweeps, 1);
4917
4918 /* Do not re-enable stalled PMCs if we failed to process any samples */
4919 if (n == 0)
4920 return;
4921
4922 /*
4923 * Restart any stalled sampling PMCs on this CPU.
4924 *
4925 * If the NMI handler sets the pm_stalled field of a PMC after
4926 * the check below, we'll end up processing the stalled PMC at
4927 * the next hardclock tick.
4928 */
4929 for (n = 0; n < md->pmd_npmc; n++) {
4930 pcd = pmc_ri_to_classdep(md, n, &adjri);
4931 KASSERT(pcd != NULL,
4932 ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4933 (void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
4934
4935 if (pm == NULL || /* !cfg'ed */
4936 pm->pm_state != PMC_STATE_RUNNING || /* !active */
4937 !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4938 !pm->pm_pcpu_state[cpu].pps_cpustate || /* !desired */
4939 !pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */
4940 continue;
4941
4942 pm->pm_pcpu_state[cpu].pps_stalled = 0;
4943 (void)(*pcd->pcd_start_pmc)(cpu, adjri, pm);
4944 }
4945 }
4946
4947 /*
4948 * Event handlers.
4949 */
4950
4951 /*
4952 * Handle a process exit.
4953 *
4954 * Remove this process from all hash tables. If this process
4955 * owned any PMCs, turn off those PMCs and deallocate them,
4956 * removing any associations with target processes.
4957 *
4958 * This function will be called by the last 'thread' of a
4959 * process.
4960 *
4961 * XXX This eventhandler gets called early in the exit process.
4962 * Consider using a 'hook' invocation from thread_exit() or equivalent
4963 * spot. Another negative is that kse_exit doesn't seem to call
4964 * exit1() [??].
4965 */
4966 static void
pmc_process_exit(void * arg __unused,struct proc * p)4967 pmc_process_exit(void *arg __unused, struct proc *p)
4968 {
4969 struct pmc *pm;
4970 struct pmc_owner *po;
4971 struct pmc_process *pp;
4972 struct pmc_classdep *pcd;
4973 pmc_value_t newvalue, tmp;
4974 int ri, adjri, cpu;
4975 bool is_using_hwpmcs;
4976
4977 PROC_LOCK(p);
4978 is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
4979 PROC_UNLOCK(p);
4980
4981 /*
4982 * Log a sysexit event to all SS PMC owners.
4983 */
4984 PMC_EPOCH_ENTER();
4985 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
4986 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
4987 pmclog_process_sysexit(po, p->p_pid);
4988 }
4989 PMC_EPOCH_EXIT();
4990
4991 PMC_GET_SX_XLOCK();
4992 PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4993 p->p_comm);
4994
4995 if (!is_using_hwpmcs)
4996 goto out;
4997
4998 /*
4999 * Since this code is invoked by the last thread in an exiting process,
5000 * we would have context switched IN at some prior point. However, with
5001 * PREEMPTION, kernel mode context switches may happen any time, so we
5002 * want to disable a context switch OUT till we get any PMCs targeting
5003 * this process off the hardware.
5004 *
5005 * We also need to atomically remove this process' entry from our
5006 * target process hash table, using PMC_FLAG_REMOVE.
5007 */
5008 PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
5009 p->p_comm);
5010
5011 critical_enter(); /* no preemption */
5012
5013 cpu = curthread->td_oncpu;
5014
5015 pp = pmc_find_process_descriptor(p, PMC_FLAG_REMOVE);
5016 if (pp == NULL) {
5017 critical_exit();
5018 goto out;
5019 }
5020
5021 PMCDBG2(PRC,EXT,2, "process-exit proc=%p pmc-process=%p", p, pp);
5022
5023 /*
5024 * The exiting process could be the target of some PMCs which will be
5025 * running on currently executing CPU.
5026 *
5027 * We need to turn these PMCs off like we would do at context switch
5028 * OUT time.
5029 */
5030 for (ri = 0; ri < md->pmd_npmc; ri++) {
5031 /*
5032 * Pick up the pmc pointer from hardware state similar to the
5033 * CSW_OUT code.
5034 */
5035 pm = NULL;
5036 pcd = pmc_ri_to_classdep(md, ri, &adjri);
5037
5038 (void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
5039
5040 PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
5041
5042 if (pm == NULL || !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
5043 continue;
5044
5045 PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p state=%d", ri,
5046 pp->pp_pmcs[ri].pp_pmc, pm, pm->pm_state);
5047
5048 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
5049 ("[pmc,%d] ri mismatch pmc(%d) ri(%d)", __LINE__,
5050 PMC_TO_ROWINDEX(pm), ri));
5051 KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
5052 ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__, pm, ri,
5053 pp->pp_pmcs[ri].pp_pmc));
5054 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
5055 ("[pmc,%d] bad runcount ri %d rc %ju", __LINE__, ri,
5056 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
5057
5058 /*
5059 * Change desired state, and then stop if not stalled. This
5060 * two-step dance should avoid race conditions where an
5061 * interrupt re-enables the PMC after this code has already
5062 * checked the pm_stalled flag.
5063 */
5064 if (pm->pm_pcpu_state[cpu].pps_cpustate) {
5065 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
5066 if (!pm->pm_pcpu_state[cpu].pps_stalled) {
5067 (void)pcd->pcd_stop_pmc(cpu, adjri, pm);
5068
5069 if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
5070 pcd->pcd_read_pmc(cpu, adjri, pm,
5071 &newvalue);
5072 tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
5073
5074 mtx_pool_lock_spin(pmc_mtxpool, pm);
5075 pm->pm_gv.pm_savedvalue += tmp;
5076 pp->pp_pmcs[ri].pp_pmcval += tmp;
5077 mtx_pool_unlock_spin(pmc_mtxpool, pm);
5078 }
5079 }
5080 }
5081
5082 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
5083 ("[pmc,%d] runcount is %d", __LINE__, ri));
5084
5085 counter_u64_add(pm->pm_runcount, -1);
5086 (void)pcd->pcd_config_pmc(cpu, adjri, NULL);
5087 }
5088
5089 /*
5090 * Inform the MD layer of this pseudo "context switch out".
5091 */
5092 (void)md->pmd_switch_out(pmc_pcpu[cpu], pp);
5093
5094 critical_exit(); /* ok to be pre-empted now */
5095
5096 /*
5097 * Unlink this process from the PMCs that are targeting it. This will
5098 * send a signal to all PMC owner's whose PMCs are orphaned.
5099 *
5100 * Log PMC value at exit time if requested.
5101 */
5102 for (ri = 0; ri < md->pmd_npmc; ri++) {
5103 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
5104 if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
5105 PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
5106 pmclog_process_procexit(pm, pp);
5107 }
5108 pmc_unlink_target_process(pm, pp);
5109 }
5110 }
5111 free(pp, M_PMC);
5112
5113 out:
5114 /*
5115 * If the process owned PMCs, free them up and free up memory.
5116 */
5117 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
5118 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5119 pmclog_close(po);
5120 pmc_remove_owner(po);
5121 pmc_destroy_owner_descriptor(po);
5122 }
5123
5124 sx_xunlock(&pmc_sx);
5125 }
5126
5127 /*
5128 * Handle a process fork.
5129 *
5130 * If the parent process 'p1' is under HWPMC monitoring, then copy
5131 * over any attached PMCs that have 'do_descendants' semantics.
5132 */
5133 static void
pmc_process_fork(void * arg __unused,struct proc * p1,struct proc * newproc,int flags __unused)5134 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
5135 int flags __unused)
5136 {
5137 struct pmc *pm;
5138 struct pmc_owner *po;
5139 struct pmc_process *ppnew, *ppold;
5140 unsigned int ri;
5141 bool is_using_hwpmcs, do_descendants;
5142
5143 PROC_LOCK(p1);
5144 is_using_hwpmcs = (p1->p_flag & P_HWPMC) != 0;
5145 PROC_UNLOCK(p1);
5146
5147 /*
5148 * If there are system-wide sampling PMCs active, we need to
5149 * log all fork events to their owner's logs.
5150 */
5151 PMC_EPOCH_ENTER();
5152 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5153 if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
5154 pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
5155 pmclog_process_proccreate(po, newproc, 1);
5156 }
5157 }
5158 PMC_EPOCH_EXIT();
5159
5160 if (!is_using_hwpmcs)
5161 return;
5162
5163 PMC_GET_SX_XLOCK();
5164 PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
5165 p1->p_pid, p1->p_comm, newproc);
5166
5167 /*
5168 * If the parent process (curthread->td_proc) is a
5169 * target of any PMCs, look for PMCs that are to be
5170 * inherited, and link these into the new process
5171 * descriptor.
5172 */
5173 ppold = pmc_find_process_descriptor(curthread->td_proc, PMC_FLAG_NONE);
5174 if (ppold == NULL)
5175 goto done; /* nothing to do */
5176
5177 do_descendants = false;
5178 for (ri = 0; ri < md->pmd_npmc; ri++) {
5179 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5180 (pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
5181 do_descendants = true;
5182 break;
5183 }
5184 }
5185 if (!do_descendants) /* nothing to do */
5186 goto done;
5187
5188 /*
5189 * Now mark the new process as being tracked by this driver.
5190 */
5191 PROC_LOCK(newproc);
5192 newproc->p_flag |= P_HWPMC;
5193 PROC_UNLOCK(newproc);
5194
5195 /* Allocate a descriptor for the new process. */
5196 ppnew = pmc_find_process_descriptor(newproc, PMC_FLAG_ALLOCATE);
5197 if (ppnew == NULL)
5198 goto done;
5199
5200 /*
5201 * Run through all PMCs that were targeting the old process
5202 * and which specified F_DESCENDANTS and attach them to the
5203 * new process.
5204 *
5205 * Log the fork event to all owners of PMCs attached to this
5206 * process, if not already logged.
5207 */
5208 for (ri = 0; ri < md->pmd_npmc; ri++) {
5209 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5210 (pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
5211 pmc_link_target_process(pm, ppnew);
5212 po = pm->pm_owner;
5213 if (po->po_sscount == 0 &&
5214 (po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
5215 pmclog_process_procfork(po, p1->p_pid,
5216 newproc->p_pid);
5217 }
5218 }
5219 }
5220
5221 done:
5222 sx_xunlock(&pmc_sx);
5223 }
5224
5225 static void
pmc_process_threadcreate(struct thread * td)5226 pmc_process_threadcreate(struct thread *td)
5227 {
5228 struct pmc_owner *po;
5229
5230 PMC_EPOCH_ENTER();
5231 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5232 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5233 pmclog_process_threadcreate(po, td, 1);
5234 }
5235 PMC_EPOCH_EXIT();
5236 }
5237
5238 static void
pmc_process_threadexit(struct thread * td)5239 pmc_process_threadexit(struct thread *td)
5240 {
5241 struct pmc_owner *po;
5242
5243 PMC_EPOCH_ENTER();
5244 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5245 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5246 pmclog_process_threadexit(po, td);
5247 }
5248 PMC_EPOCH_EXIT();
5249 }
5250
5251 static void
pmc_process_proccreate(struct proc * p)5252 pmc_process_proccreate(struct proc *p)
5253 {
5254 struct pmc_owner *po;
5255
5256 PMC_EPOCH_ENTER();
5257 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5258 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5259 pmclog_process_proccreate(po, p, 1 /* sync */);
5260 }
5261 PMC_EPOCH_EXIT();
5262 }
5263
5264 static void
pmc_process_allproc(struct pmc * pm)5265 pmc_process_allproc(struct pmc *pm)
5266 {
5267 struct pmc_owner *po;
5268 struct thread *td;
5269 struct proc *p;
5270
5271 po = pm->pm_owner;
5272 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
5273 return;
5274
5275 sx_slock(&allproc_lock);
5276 FOREACH_PROC_IN_SYSTEM(p) {
5277 pmclog_process_proccreate(po, p, 0 /* sync */);
5278 PROC_LOCK(p);
5279 FOREACH_THREAD_IN_PROC(p, td)
5280 pmclog_process_threadcreate(po, td, 0 /* sync */);
5281 PROC_UNLOCK(p);
5282 }
5283 sx_sunlock(&allproc_lock);
5284 pmclog_flush(po, 0);
5285 }
5286
5287 static void
pmc_kld_load(void * arg __unused,linker_file_t lf)5288 pmc_kld_load(void *arg __unused, linker_file_t lf)
5289 {
5290 struct pmc_owner *po;
5291
5292 /*
5293 * Notify owners of system sampling PMCs about KLD operations.
5294 */
5295 PMC_EPOCH_ENTER();
5296 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5297 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5298 pmclog_process_map_in(po, (pid_t) -1,
5299 (uintfptr_t) lf->address, lf->pathname);
5300 }
5301 PMC_EPOCH_EXIT();
5302
5303 /*
5304 * TODO: Notify owners of (all) process-sampling PMCs too.
5305 */
5306 }
5307
5308 static void
pmc_kld_unload(void * arg __unused,const char * filename __unused,caddr_t address,size_t size)5309 pmc_kld_unload(void *arg __unused, const char *filename __unused,
5310 caddr_t address, size_t size)
5311 {
5312 struct pmc_owner *po;
5313
5314 PMC_EPOCH_ENTER();
5315 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5316 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
5317 pmclog_process_map_out(po, (pid_t)-1,
5318 (uintfptr_t)address, (uintfptr_t)address + size);
5319 }
5320 }
5321 PMC_EPOCH_EXIT();
5322
5323 /*
5324 * TODO: Notify owners of process-sampling PMCs.
5325 */
5326 }
5327
5328 /*
5329 * initialization
5330 */
5331 static const char *
pmc_name_of_pmcclass(enum pmc_class class)5332 pmc_name_of_pmcclass(enum pmc_class class)
5333 {
5334
5335 switch (class) {
5336 #undef __PMC_CLASS
5337 #define __PMC_CLASS(S,V,D) \
5338 case PMC_CLASS_##S: \
5339 return #S;
5340 __PMC_CLASSES();
5341 default:
5342 return ("<unknown>");
5343 }
5344 }
5345
5346 /*
5347 * Base class initializer: allocate structure and set default classes.
5348 */
5349 struct pmc_mdep *
pmc_mdep_alloc(int nclasses)5350 pmc_mdep_alloc(int nclasses)
5351 {
5352 struct pmc_mdep *md;
5353 int n;
5354
5355 /* SOFT + md classes */
5356 n = 1 + nclasses;
5357 md = malloc(sizeof(struct pmc_mdep) + n * sizeof(struct pmc_classdep),
5358 M_PMC, M_WAITOK | M_ZERO);
5359 md->pmd_nclass = n;
5360
5361 /* Default methods */
5362 md->pmd_switch_in = generic_switch_in;
5363 md->pmd_switch_out = generic_switch_out;
5364
5365 /* Add base class. */
5366 pmc_soft_initialize(md);
5367 return (md);
5368 }
5369
5370 void
pmc_mdep_free(struct pmc_mdep * md)5371 pmc_mdep_free(struct pmc_mdep *md)
5372 {
5373 pmc_soft_finalize(md);
5374 free(md, M_PMC);
5375 }
5376
5377 static int
generic_switch_in(struct pmc_cpu * pc __unused,struct pmc_process * pp __unused)5378 generic_switch_in(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
5379 {
5380
5381 return (0);
5382 }
5383
5384 static int
generic_switch_out(struct pmc_cpu * pc __unused,struct pmc_process * pp __unused)5385 generic_switch_out(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
5386 {
5387
5388 return (0);
5389 }
5390
5391 static struct pmc_mdep *
pmc_generic_cpu_initialize(void)5392 pmc_generic_cpu_initialize(void)
5393 {
5394 struct pmc_mdep *md;
5395
5396 md = pmc_mdep_alloc(0);
5397
5398 md->pmd_cputype = PMC_CPU_GENERIC;
5399
5400 return (md);
5401 }
5402
5403 static void
pmc_generic_cpu_finalize(struct pmc_mdep * md __unused)5404 pmc_generic_cpu_finalize(struct pmc_mdep *md __unused)
5405 {
5406
5407 }
5408
5409 static int
pmc_initialize(void)5410 pmc_initialize(void)
5411 {
5412 struct pcpu *pc;
5413 struct pmc_binding pb;
5414 struct pmc_classdep *pcd;
5415 struct pmc_sample *ps;
5416 struct pmc_samplebuffer *sb;
5417 int c, cpu, error, n, ri;
5418 u_int maxcpu, domain;
5419
5420 md = NULL;
5421 error = 0;
5422
5423 pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
5424 pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
5425 pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
5426 pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
5427 pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
5428 pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
5429 pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
5430 pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
5431 pmc_stats.pm_merges = counter_u64_alloc(M_WAITOK);
5432 pmc_stats.pm_overwrites = counter_u64_alloc(M_WAITOK);
5433
5434 #ifdef HWPMC_DEBUG
5435 /* parse debug flags first */
5436 if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
5437 pmc_debugstr, sizeof(pmc_debugstr))) {
5438 pmc_debugflags_parse(pmc_debugstr, pmc_debugstr +
5439 strlen(pmc_debugstr));
5440 }
5441 #endif
5442
5443 PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
5444
5445 /* check kernel version */
5446 if (pmc_kernel_version != PMC_VERSION) {
5447 if (pmc_kernel_version == 0)
5448 printf("hwpmc: this kernel has not been compiled with "
5449 "'options HWPMC_HOOKS'.\n");
5450 else
5451 printf("hwpmc: kernel version (0x%x) does not match "
5452 "module version (0x%x).\n", pmc_kernel_version,
5453 PMC_VERSION);
5454 return (EPROGMISMATCH);
5455 }
5456
5457 /*
5458 * check sysctl parameters
5459 */
5460 if (pmc_hashsize <= 0) {
5461 printf("hwpmc: tunable \"hashsize\"=%d must be "
5462 "greater than zero.\n", pmc_hashsize);
5463 pmc_hashsize = PMC_HASH_SIZE;
5464 }
5465
5466 if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
5467 printf("hwpmc: tunable \"nsamples\"=%d out of "
5468 "range.\n", pmc_nsamples);
5469 pmc_nsamples = PMC_NSAMPLES;
5470 }
5471 pmc_sample_mask = pmc_nsamples - 1;
5472
5473 if (pmc_callchaindepth <= 0 ||
5474 pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
5475 printf("hwpmc: tunable \"callchaindepth\"=%d out of "
5476 "range - using %d.\n", pmc_callchaindepth,
5477 PMC_CALLCHAIN_DEPTH_MAX);
5478 pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
5479 }
5480
5481 md = pmc_md_initialize();
5482 if (md == NULL) {
5483 /* Default to generic CPU. */
5484 md = pmc_generic_cpu_initialize();
5485 if (md == NULL)
5486 return (ENOSYS);
5487 }
5488
5489 /*
5490 * Refresh classes base ri. Optional classes may come in different
5491 * order.
5492 */
5493 for (ri = c = 0; c < md->pmd_nclass; c++) {
5494 pcd = &md->pmd_classdep[c];
5495 pcd->pcd_ri = ri;
5496 ri += pcd->pcd_num;
5497 }
5498
5499 KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
5500 ("[pmc,%d] no classes or pmcs", __LINE__));
5501
5502 /* Compute the map from row-indices to classdep pointers. */
5503 pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
5504 md->pmd_npmc, M_PMC, M_WAITOK | M_ZERO);
5505
5506 for (n = 0; n < md->pmd_npmc; n++)
5507 pmc_rowindex_to_classdep[n] = NULL;
5508
5509 for (ri = c = 0; c < md->pmd_nclass; c++) {
5510 pcd = &md->pmd_classdep[c];
5511 for (n = 0; n < pcd->pcd_num; n++, ri++)
5512 pmc_rowindex_to_classdep[ri] = pcd;
5513 }
5514
5515 KASSERT(ri == md->pmd_npmc,
5516 ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
5517 ri, md->pmd_npmc));
5518
5519 maxcpu = pmc_cpu_max();
5520
5521 /* allocate space for the per-cpu array */
5522 pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
5523 M_WAITOK | M_ZERO);
5524
5525 /* per-cpu 'saved values' for managing process-mode PMCs */
5526 pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
5527 M_PMC, M_WAITOK);
5528
5529 /* Perform CPU-dependent initialization. */
5530 pmc_save_cpu_binding(&pb);
5531 error = 0;
5532 for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
5533 if (!pmc_cpu_is_active(cpu))
5534 continue;
5535 pmc_select_cpu(cpu);
5536 pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
5537 md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
5538 M_WAITOK | M_ZERO);
5539 for (n = 0; error == 0 && n < md->pmd_nclass; n++)
5540 if (md->pmd_classdep[n].pcd_num > 0)
5541 error = md->pmd_classdep[n].pcd_pcpu_init(md,
5542 cpu);
5543 }
5544 pmc_restore_cpu_binding(&pb);
5545
5546 if (error != 0)
5547 return (error);
5548
5549 /* allocate space for the sample array */
5550 for (cpu = 0; cpu < maxcpu; cpu++) {
5551 if (!pmc_cpu_is_active(cpu))
5552 continue;
5553 pc = pcpu_find(cpu);
5554 domain = pc->pc_domain;
5555 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5556 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5557 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5558
5559 KASSERT(pmc_pcpu[cpu] != NULL,
5560 ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
5561
5562 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5563 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5564 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5565
5566 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5567 ps->ps_pc = sb->ps_callchains +
5568 (n * pmc_callchaindepth);
5569
5570 pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
5571
5572 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5573 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5574 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5575
5576 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5577 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5578 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5579 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5580 ps->ps_pc = sb->ps_callchains +
5581 (n * pmc_callchaindepth);
5582
5583 pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
5584
5585 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5586 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5587 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5588 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5589 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5590 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5591 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5592 ps->ps_pc = sb->ps_callchains + n * pmc_callchaindepth;
5593
5594 pmc_pcpu[cpu]->pc_sb[PMC_UR] = sb;
5595 }
5596
5597 /* allocate space for the row disposition array */
5598 pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
5599 M_PMC, M_WAITOK | M_ZERO);
5600
5601 /* mark all PMCs as available */
5602 for (n = 0; n < md->pmd_npmc; n++)
5603 PMC_MARK_ROW_FREE(n);
5604
5605 /* allocate thread hash tables */
5606 pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
5607 &pmc_ownerhashmask);
5608
5609 pmc_processhash = hashinit(pmc_hashsize, M_PMC,
5610 &pmc_processhashmask);
5611 mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
5612 MTX_SPIN);
5613
5614 CK_LIST_INIT(&pmc_ss_owners);
5615 pmc_ss_count = 0;
5616
5617 /* allocate a pool of spin mutexes */
5618 pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
5619 MTX_SPIN);
5620
5621 PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
5622 "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
5623 pmc_processhash, pmc_processhashmask);
5624
5625 /* Initialize a spin mutex for the thread free list. */
5626 mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
5627 MTX_SPIN);
5628
5629 /* Initialize the task to prune the thread free list. */
5630 TASK_INIT(&free_task, 0, pmc_thread_descriptor_pool_free_task, NULL);
5631
5632 /* register process {exit,fork,exec} handlers */
5633 pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
5634 pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
5635 pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
5636 pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
5637
5638 /* register kld event handlers */
5639 pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5640 NULL, EVENTHANDLER_PRI_ANY);
5641 pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5642 NULL, EVENTHANDLER_PRI_ANY);
5643
5644 /* initialize logging */
5645 pmclog_initialize();
5646
5647 /* set hook functions */
5648 pmc_intr = md->pmd_intr;
5649 wmb();
5650 pmc_hook = pmc_hook_handler;
5651
5652 if (error == 0) {
5653 printf(PMC_MODULE_NAME ":");
5654 for (n = 0; n < md->pmd_nclass; n++) {
5655 if (md->pmd_classdep[n].pcd_num == 0)
5656 continue;
5657 pcd = &md->pmd_classdep[n];
5658 printf(" %s/%d/%d/0x%b",
5659 pmc_name_of_pmcclass(pcd->pcd_class),
5660 pcd->pcd_num,
5661 pcd->pcd_width,
5662 pcd->pcd_caps,
5663 "\20"
5664 "\1INT\2USR\3SYS\4EDG\5THR"
5665 "\6REA\7WRI\10INV\11QUA\12PRC"
5666 "\13TAG\14CSC");
5667 }
5668 printf("\n");
5669 }
5670
5671 return (error);
5672 }
5673
5674 /* prepare to be unloaded */
5675 static void
pmc_cleanup(void)5676 pmc_cleanup(void)
5677 {
5678 struct pmc_binding pb;
5679 struct pmc_owner *po, *tmp;
5680 struct pmc_ownerhash *ph;
5681 struct pmc_processhash *prh __pmcdbg_used;
5682 u_int maxcpu;
5683 int cpu, c;
5684
5685 PMCDBG0(MOD,INI,0, "cleanup");
5686
5687 /* switch off sampling */
5688 CPU_FOREACH(cpu)
5689 DPCPU_ID_SET(cpu, pmc_sampled, 0);
5690 pmc_intr = NULL;
5691
5692 sx_xlock(&pmc_sx);
5693 if (pmc_hook == NULL) { /* being unloaded already */
5694 sx_xunlock(&pmc_sx);
5695 return;
5696 }
5697
5698 pmc_hook = NULL; /* prevent new threads from entering module */
5699
5700 /* deregister event handlers */
5701 EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5702 EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5703 EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5704 EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5705
5706 /* send SIGBUS to all owner threads, free up allocations */
5707 if (pmc_ownerhash != NULL) {
5708 for (ph = pmc_ownerhash;
5709 ph <= &pmc_ownerhash[pmc_ownerhashmask];
5710 ph++) {
5711 LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5712 pmc_remove_owner(po);
5713
5714 PMCDBG3(MOD,INI,2,
5715 "cleanup signal proc=%p (%d, %s)",
5716 po->po_owner, po->po_owner->p_pid,
5717 po->po_owner->p_comm);
5718
5719 PROC_LOCK(po->po_owner);
5720 kern_psignal(po->po_owner, SIGBUS);
5721 PROC_UNLOCK(po->po_owner);
5722
5723 pmc_destroy_owner_descriptor(po);
5724 }
5725 }
5726 }
5727
5728 /* reclaim allocated data structures */
5729 taskqueue_drain(taskqueue_fast, &free_task);
5730 mtx_destroy(&pmc_threadfreelist_mtx);
5731 pmc_thread_descriptor_pool_drain();
5732
5733 if (pmc_mtxpool != NULL)
5734 mtx_pool_destroy(&pmc_mtxpool);
5735
5736 mtx_destroy(&pmc_processhash_mtx);
5737 if (pmc_processhash != NULL) {
5738 #ifdef HWPMC_DEBUG
5739 struct pmc_process *pp;
5740
5741 PMCDBG0(MOD,INI,3, "destroy process hash");
5742 for (prh = pmc_processhash;
5743 prh <= &pmc_processhash[pmc_processhashmask];
5744 prh++)
5745 LIST_FOREACH(pp, prh, pp_next)
5746 PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5747 #endif
5748
5749 hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5750 pmc_processhash = NULL;
5751 }
5752
5753 if (pmc_ownerhash != NULL) {
5754 PMCDBG0(MOD,INI,3, "destroy owner hash");
5755 hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5756 pmc_ownerhash = NULL;
5757 }
5758
5759 KASSERT(CK_LIST_EMPTY(&pmc_ss_owners),
5760 ("[pmc,%d] Global SS owner list not empty", __LINE__));
5761 KASSERT(pmc_ss_count == 0,
5762 ("[pmc,%d] Global SS count not empty", __LINE__));
5763
5764 /* do processor and pmc-class dependent cleanup */
5765 maxcpu = pmc_cpu_max();
5766
5767 PMCDBG0(MOD,INI,3, "md cleanup");
5768 if (md) {
5769 pmc_save_cpu_binding(&pb);
5770 for (cpu = 0; cpu < maxcpu; cpu++) {
5771 PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5772 cpu, pmc_pcpu[cpu]);
5773 if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5774 continue;
5775
5776 pmc_select_cpu(cpu);
5777 for (c = 0; c < md->pmd_nclass; c++) {
5778 if (md->pmd_classdep[c].pcd_num > 0) {
5779 md->pmd_classdep[c].pcd_pcpu_fini(md,
5780 cpu);
5781 }
5782 }
5783 }
5784
5785 if (md->pmd_cputype == PMC_CPU_GENERIC)
5786 pmc_generic_cpu_finalize(md);
5787 else
5788 pmc_md_finalize(md);
5789
5790 pmc_mdep_free(md);
5791 md = NULL;
5792 pmc_restore_cpu_binding(&pb);
5793 }
5794
5795 /* Free per-cpu descriptors. */
5796 for (cpu = 0; cpu < maxcpu; cpu++) {
5797 if (!pmc_cpu_is_active(cpu))
5798 continue;
5799 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5800 ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5801 cpu));
5802 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5803 ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5804 cpu));
5805 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_UR] != NULL,
5806 ("[pmc,%d] Null userret cpu sample buffer cpu=%d", __LINE__,
5807 cpu));
5808 free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5809 free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5810 free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5811 free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5812 free(pmc_pcpu[cpu]->pc_sb[PMC_UR]->ps_callchains, M_PMC);
5813 free(pmc_pcpu[cpu]->pc_sb[PMC_UR], M_PMC);
5814 free(pmc_pcpu[cpu], M_PMC);
5815 }
5816
5817 free(pmc_pcpu, M_PMC);
5818 pmc_pcpu = NULL;
5819
5820 free(pmc_pcpu_saved, M_PMC);
5821 pmc_pcpu_saved = NULL;
5822
5823 if (pmc_pmcdisp != NULL) {
5824 free(pmc_pmcdisp, M_PMC);
5825 pmc_pmcdisp = NULL;
5826 }
5827
5828 if (pmc_rowindex_to_classdep != NULL) {
5829 free(pmc_rowindex_to_classdep, M_PMC);
5830 pmc_rowindex_to_classdep = NULL;
5831 }
5832
5833 pmclog_shutdown();
5834 counter_u64_free(pmc_stats.pm_intr_ignored);
5835 counter_u64_free(pmc_stats.pm_intr_processed);
5836 counter_u64_free(pmc_stats.pm_intr_bufferfull);
5837 counter_u64_free(pmc_stats.pm_syscalls);
5838 counter_u64_free(pmc_stats.pm_syscall_errors);
5839 counter_u64_free(pmc_stats.pm_buffer_requests);
5840 counter_u64_free(pmc_stats.pm_buffer_requests_failed);
5841 counter_u64_free(pmc_stats.pm_log_sweeps);
5842 counter_u64_free(pmc_stats.pm_merges);
5843 counter_u64_free(pmc_stats.pm_overwrites);
5844 sx_xunlock(&pmc_sx); /* we are done */
5845 }
5846
5847 /*
5848 * The function called at load/unload.
5849 */
5850 static int
load(struct module * module __unused,int cmd,void * arg __unused)5851 load(struct module *module __unused, int cmd, void *arg __unused)
5852 {
5853 int error;
5854
5855 error = 0;
5856
5857 switch (cmd) {
5858 case MOD_LOAD:
5859 /* initialize the subsystem */
5860 error = pmc_initialize();
5861 if (error != 0)
5862 break;
5863 PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d", pmc_syscall_num,
5864 pmc_cpu_max());
5865 break;
5866 case MOD_UNLOAD:
5867 case MOD_SHUTDOWN:
5868 pmc_cleanup();
5869 PMCDBG0(MOD,INI,1, "unloaded");
5870 break;
5871 default:
5872 error = EINVAL;
5873 break;
5874 }
5875
5876 return (error);
5877 }
5878