1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64
65 #include <crypto/sha2/sha512.h>
66
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116
117 #include <netipsec/ah.h>
118
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125 "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128 "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130 "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140 "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142 "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144 "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146 "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149 "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151 "int");
152
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154 "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157 "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160 "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *");
163
164 /*
165 * Global variables
166 */
167
168 /* state tables */
169 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
170 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
171 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
172 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
173 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
174 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
175 VNET_DEFINE(struct pf_kstatus, pf_status);
176
177 VNET_DEFINE(u_int32_t, ticket_altqs_active);
178 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
179 VNET_DEFINE(int, altqs_inactive_open);
180 VNET_DEFINE(u_int32_t, ticket_pabuf);
181
182 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */
183
184 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx);
185 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
186 VNET_DEFINE(u_char, pf_tcp_secret[16]);
187 #define V_pf_tcp_secret VNET(pf_tcp_secret)
188 VNET_DEFINE(int, pf_tcp_secret_init);
189 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
190 VNET_DEFINE(int, pf_tcp_iss_off);
191 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
192 VNET_DECLARE(int, pf_vnet_active);
193 #define V_pf_vnet_active VNET(pf_vnet_active)
194
195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
196 #define V_pf_purge_idx VNET(pf_purge_idx)
197
198 #ifdef PF_WANT_32_TO_64_COUNTER
199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
200 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
201
202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
203 VNET_DEFINE(size_t, pf_allrulecount);
204 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
205 #endif
206
207 #define PF_SCTP_MAX_ENDPOINTS 8
208
209 struct pf_sctp_endpoint;
210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
211 struct pf_sctp_source {
212 sa_family_t af;
213 struct pf_addr addr;
214 TAILQ_ENTRY(pf_sctp_source) entry;
215 };
216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
217 struct pf_sctp_endpoint
218 {
219 uint32_t v_tag;
220 struct pf_sctp_sources sources;
221 RB_ENTRY(pf_sctp_endpoint) entry;
222 };
223 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
225 {
226 return (a->v_tag - b->v_tag);
227 }
228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
231 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
232 static struct mtx_padalign pf_sctp_endpoints_mtx;
233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
234 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
235 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
236
237 /*
238 * Queue for pf_intr() sends.
239 */
240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
241 struct pf_send_entry {
242 STAILQ_ENTRY(pf_send_entry) pfse_next;
243 struct mbuf *pfse_m;
244 enum {
245 PFSE_IP,
246 PFSE_IP6,
247 PFSE_ICMP,
248 PFSE_ICMP6,
249 } pfse_type;
250 struct {
251 int type;
252 int code;
253 int mtu;
254 } icmpopts;
255 };
256
257 STAILQ_HEAD(pf_send_head, pf_send_entry);
258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
259 #define V_pf_sendqueue VNET(pf_sendqueue)
260
261 static struct mtx_padalign pf_sendqueue_mtx;
262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
263 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
264 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
265
266 /*
267 * Queue for pf_overload_task() tasks.
268 */
269 struct pf_overload_entry {
270 SLIST_ENTRY(pf_overload_entry) next;
271 struct pf_addr addr;
272 sa_family_t af;
273 uint8_t dir;
274 struct pf_krule *rule;
275 };
276
277 SLIST_HEAD(pf_overload_head, pf_overload_entry);
278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
279 #define V_pf_overloadqueue VNET(pf_overloadqueue)
280 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
281 #define V_pf_overloadtask VNET(pf_overloadtask)
282
283 static struct mtx_padalign pf_overloadqueue_mtx;
284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
285 "pf overload/flush queue", MTX_DEF);
286 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
287 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
288
289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
290 struct mtx_padalign pf_unlnkdrules_mtx;
291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
292 MTX_DEF);
293
294 struct sx pf_config_lock;
295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
296
297 struct mtx_padalign pf_table_stats_lock;
298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
299 MTX_DEF);
300
301 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
302 #define V_pf_sources_z VNET(pf_sources_z)
303 uma_zone_t pf_mtag_z;
304 VNET_DEFINE(uma_zone_t, pf_state_z);
305 VNET_DEFINE(uma_zone_t, pf_state_key_z);
306 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
307
308 VNET_DEFINE(struct unrhdr64, pf_stateid);
309
310 static void pf_src_tree_remove_state(struct pf_kstate *);
311 static int pf_check_threshold(struct pf_kthreshold *);
312
313 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
314 struct pf_addr *, u_int16_t);
315 static int pf_modulate_sack(struct pf_pdesc *,
316 struct tcphdr *, struct pf_state_peer *);
317 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
318 u_int16_t *, u_int16_t *);
319 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
320 struct pf_addr *, struct pf_addr *, u_int16_t,
321 u_int16_t *, u_int16_t *, u_int16_t *,
322 u_int16_t *, u_int8_t, sa_family_t);
323 int pf_change_icmp_af(struct mbuf *, int,
324 struct pf_pdesc *, struct pf_pdesc *,
325 struct pf_addr *, struct pf_addr *, sa_family_t,
326 sa_family_t);
327 int pf_translate_icmp_af(int, void *);
328 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
329 int, sa_family_t, struct pf_krule *, int);
330 static void pf_detach_state(struct pf_kstate *);
331 static int pf_state_key_attach(struct pf_state_key *,
332 struct pf_state_key *, struct pf_kstate *);
333 static void pf_state_key_detach(struct pf_kstate *, int);
334 static int pf_state_key_ctor(void *, int, void *, int);
335 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
336 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
337 struct pf_mtag *pf_mtag);
338 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
339 struct pf_krule *, struct mbuf **);
340 static int pf_dummynet_route(struct pf_pdesc *,
341 struct pf_kstate *, struct pf_krule *,
342 struct ifnet *, const struct sockaddr *, struct mbuf **);
343 static int pf_test_eth_rule(int, struct pfi_kkif *,
344 struct mbuf **);
345 static enum pf_test_status pf_match_rule(struct pf_test_ctx *, struct pf_kruleset *);
346 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
347 struct pf_pdesc *, struct pf_krule **,
348 struct pf_kruleset **, u_short *, struct inpcb *,
349 struct pf_krule_slist *);
350 static int pf_create_state(struct pf_krule *,
351 struct pf_test_ctx *,
352 struct pf_kstate **, u_int16_t, u_int16_t);
353 static int pf_state_key_addr_setup(struct pf_pdesc *,
354 struct pf_state_key_cmp *, int);
355 static int pf_tcp_track_full(struct pf_kstate *,
356 struct pf_pdesc *, u_short *, int *,
357 struct pf_state_peer *, struct pf_state_peer *,
358 u_int8_t, u_int8_t);
359 static int pf_tcp_track_sloppy(struct pf_kstate *,
360 struct pf_pdesc *, u_short *,
361 struct pf_state_peer *, struct pf_state_peer *,
362 u_int8_t, u_int8_t);
363 static __inline int pf_synproxy_ack(struct pf_krule *, struct pf_pdesc *,
364 struct pf_kstate **, struct pf_rule_actions *);
365 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *,
366 u_short *);
367 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
368 struct pf_pdesc *, struct pf_kstate **,
369 u_int16_t, u_int16_t, int, int *, int, int);
370 static int pf_test_state_icmp(struct pf_kstate **,
371 struct pf_pdesc *, u_short *);
372 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
373 u_short *);
374 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
375 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
376 struct pfi_kkif *, struct pf_kstate *, int);
377 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
378 int, u_int16_t);
379 static int pf_check_proto_cksum(struct mbuf *, int, int,
380 u_int8_t, sa_family_t);
381 static int pf_walk_option(struct pf_pdesc *, struct ip *,
382 int, int, u_short *);
383 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
384 #ifdef INET6
385 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
386 int, int, u_short *);
387 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
388 u_short *);
389 #endif
390 static void pf_print_state_parts(struct pf_kstate *,
391 struct pf_state_key *, struct pf_state_key *);
392 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
393 bool);
394 static int pf_find_state(struct pf_pdesc *,
395 const struct pf_state_key_cmp *, struct pf_kstate **);
396 static bool pf_src_connlimit(struct pf_kstate *);
397 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
398 static void pf_counters_inc(int, struct pf_pdesc *,
399 struct pf_kstate *, struct pf_krule *,
400 struct pf_krule *, struct pf_krule_slist *);
401 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *,
402 struct pf_krule *, struct pf_kruleset *,
403 struct pf_krule_slist *);
404 static void pf_overload_task(void *v, int pending);
405 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
406 struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
407 struct pf_addr *, sa_family_t, struct pf_addr *,
408 struct pfi_kkif *, sa_family_t, pf_sn_types_t);
409 static u_int pf_purge_expired_states(u_int, int);
410 static void pf_purge_unlinked_rules(void);
411 static int pf_mtag_uminit(void *, int, int);
412 static void pf_mtag_free(struct m_tag *);
413 static void pf_packet_rework_nat(struct pf_pdesc *, int,
414 struct pf_state_key *);
415 #ifdef INET
416 static int pf_route(struct pf_krule *,
417 struct ifnet *, struct pf_kstate *,
418 struct pf_pdesc *, struct inpcb *);
419 #endif /* INET */
420 #ifdef INET6
421 static void pf_change_a6(struct pf_addr *, u_int16_t *,
422 struct pf_addr *, u_int8_t);
423 static int pf_route6(struct pf_krule *,
424 struct ifnet *, struct pf_kstate *,
425 struct pf_pdesc *, struct inpcb *);
426 #endif /* INET6 */
427 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
428
429 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
430
431 static inline int
pf_statelim_id_cmp(const struct pf_statelim * a,const struct pf_statelim * b)432 pf_statelim_id_cmp(const struct pf_statelim *a, const struct pf_statelim *b)
433 {
434 if (a->pfstlim_id > b->pfstlim_id)
435 return (1);
436 if (a->pfstlim_id < b->pfstlim_id)
437 return (-1);
438
439 return (0);
440 }
441
442 RB_GENERATE(pf_statelim_id_tree, pf_statelim, pfstlim_id_tree,
443 pf_statelim_id_cmp);
444
445 static inline int
pf_statelim_nm_cmp(const struct pf_statelim * a,const struct pf_statelim * b)446 pf_statelim_nm_cmp(const struct pf_statelim *a, const struct pf_statelim *b)
447 {
448 return (strncmp(a->pfstlim_nm, b->pfstlim_nm, sizeof(a->pfstlim_nm)));
449 }
450
451 RB_GENERATE(pf_statelim_nm_tree, pf_statelim, pfstlim_nm_tree,
452 pf_statelim_nm_cmp);
453
454 VNET_DEFINE(struct pf_statelim_id_tree, pf_statelim_id_tree_active);
455 VNET_DEFINE(struct pf_statelim_list, pf_statelim_list_active);
456 VNET_DEFINE(struct pf_statelim_id_tree, pf_statelim_id_tree_inactive);
457 VNET_DEFINE(struct pf_statelim_nm_tree, pf_statelim_nm_tree_inactive);
458 VNET_DEFINE(struct pf_statelim_list, pf_statelim_list_inactive);
459
460 static inline int
pf_sourcelim_id_cmp(const struct pf_sourcelim * a,const struct pf_sourcelim * b)461 pf_sourcelim_id_cmp(const struct pf_sourcelim *a, const struct pf_sourcelim *b)
462 {
463 if (a->pfsrlim_id > b->pfsrlim_id)
464 return (1);
465 if (a->pfsrlim_id < b->pfsrlim_id)
466 return (-1);
467
468 return (0);
469 }
470
471 RB_GENERATE(pf_sourcelim_id_tree, pf_sourcelim, pfsrlim_id_tree,
472 pf_sourcelim_id_cmp);
473
474 static inline int
pf_sourcelim_nm_cmp(const struct pf_sourcelim * a,const struct pf_sourcelim * b)475 pf_sourcelim_nm_cmp(const struct pf_sourcelim *a, const struct pf_sourcelim *b)
476 {
477 return (strncmp(a->pfsrlim_nm, b->pfsrlim_nm, sizeof(a->pfsrlim_nm)));
478 }
479
480 RB_GENERATE(pf_sourcelim_nm_tree, pf_sourcelim, pfsrlim_nm_tree,
481 pf_sourcelim_nm_cmp);
482
483 static inline int
pf_source_cmp(const struct pf_source * a,const struct pf_source * b)484 pf_source_cmp(const struct pf_source *a, const struct pf_source *b)
485 {
486 if (a->pfsr_af > b->pfsr_af)
487 return (1);
488 if (a->pfsr_af < b->pfsr_af)
489 return (-1);
490 if (a->pfsr_rdomain > b->pfsr_rdomain)
491 return (1);
492 if (a->pfsr_rdomain < b->pfsr_rdomain)
493 return (-1);
494
495 return (pf_addr_cmp(&a->pfsr_addr, &b->pfsr_addr, a->pfsr_af));
496 }
497
498 RB_GENERATE(pf_source_tree, pf_source, pfsr_tree, pf_source_cmp);
499
500 static inline int
pf_source_ioc_cmp(const struct pf_source * a,const struct pf_source * b)501 pf_source_ioc_cmp(const struct pf_source *a, const struct pf_source *b)
502 {
503 size_t i;
504
505 if (a->pfsr_af > b->pfsr_af)
506 return (1);
507 if (a->pfsr_af < b->pfsr_af)
508 return (-1);
509 if (a->pfsr_rdomain > b->pfsr_rdomain)
510 return (1);
511 if (a->pfsr_rdomain < b->pfsr_rdomain)
512 return (-1);
513
514 for (i = 0; i < nitems(a->pfsr_addr.addr32); i++) {
515 uint32_t wa = ntohl(a->pfsr_addr.addr32[i]);
516 uint32_t wb = ntohl(b->pfsr_addr.addr32[i]);
517
518 if (wa > wb)
519 return (1);
520 if (wa < wb)
521 return (-1);
522 }
523
524 return (0);
525 }
526
527 RB_GENERATE(pf_source_ioc_tree, pf_source, pfsr_ioc_tree, pf_source_ioc_cmp);
528
529 VNET_DEFINE(struct pf_sourcelim_id_tree, pf_sourcelim_id_tree_active);
530 VNET_DEFINE(struct pf_sourcelim_list, pf_sourcelim_list_active);
531
532 VNET_DEFINE(struct pf_sourcelim_id_tree, pf_sourcelim_id_tree_inactive);
533 VNET_DEFINE(struct pf_sourcelim_nm_tree, pf_sourcelim_nm_tree_inactive);
534 VNET_DEFINE(struct pf_sourcelim_list, pf_sourcelim_list_inactive);
535
536 static inline struct pf_statelim *
pf_statelim_find(uint32_t id)537 pf_statelim_find(uint32_t id)
538 {
539 struct pf_statelim key;
540
541 /* only the id is used in cmp, so don't have to zero all the things */
542 key.pfstlim_id = id;
543
544 return (RB_FIND(pf_statelim_id_tree,
545 &V_pf_statelim_id_tree_active, &key));
546 }
547
548 static inline struct pf_sourcelim *
pf_sourcelim_find(uint32_t id)549 pf_sourcelim_find(uint32_t id)
550 {
551 struct pf_sourcelim key;
552
553 /* only the id is used in cmp, so don't have to zero all the things */
554 key.pfsrlim_id = id;
555
556 return (RB_FIND(pf_sourcelim_id_tree,
557 &V_pf_sourcelim_id_tree_active, &key));
558 }
559
560 struct pf_source_list pf_source_gc = TAILQ_HEAD_INITIALIZER(pf_source_gc);
561
562 static void
pf_source_purge(void)563 pf_source_purge(void)
564 {
565 struct pf_source *sr, *nsr;
566
567 TAILQ_FOREACH_SAFE(sr, &pf_source_gc, pfsr_empty_gc, nsr) {
568 struct pf_sourcelim *srlim = sr->pfsr_parent;
569
570 if (time_uptime <= sr->pfsr_empty_ts +
571 srlim->pfsrlim_rate.seconds + 1)
572 continue;
573
574 TAILQ_REMOVE(&pf_source_gc, sr, pfsr_empty_gc);
575
576 RB_REMOVE(pf_source_tree, &srlim->pfsrlim_sources, sr);
577 RB_REMOVE(pf_source_ioc_tree, &srlim->pfsrlim_ioc_sources, sr);
578 srlim->pfsrlim_nsources--;
579
580 free(sr, M_PF_SOURCE_LIM);
581 }
582 }
583
584 static void
pf_source_pfr_addr(struct pfr_addr * p,const struct pf_source * sr)585 pf_source_pfr_addr(struct pfr_addr *p, const struct pf_source *sr)
586 {
587 struct pf_sourcelim *srlim = sr->pfsr_parent;
588
589 memset(p, 0, sizeof(*p));
590
591 p->pfra_af = sr->pfsr_af;
592 switch (sr->pfsr_af) {
593 case AF_INET:
594 p->pfra_net = srlim->pfsrlim_ipv4_prefix;
595 p->pfra_ip4addr = sr->pfsr_addr.v4;
596 break;
597 #ifdef INET6
598 case AF_INET6:
599 p->pfra_net = srlim->pfsrlim_ipv6_prefix;
600 p->pfra_ip6addr = sr->pfsr_addr.v6;
601 break;
602 #endif /* INET6 */
603 }
604 }
605
606 static void
pf_source_used(struct pf_source * sr)607 pf_source_used(struct pf_source *sr)
608 {
609 struct pf_sourcelim *srlim = sr->pfsr_parent;
610 struct pfr_ktable *t;
611 unsigned int used;
612
613 used = sr->pfsr_inuse++;
614 sr->pfsr_rate_ts += srlim->pfsrlim_rate_token;
615
616 if (used == 0)
617 TAILQ_REMOVE(&pf_source_gc, sr, pfsr_empty_gc);
618 else if ((t = srlim->pfsrlim_overload.table) != NULL &&
619 used >= srlim->pfsrlim_overload.hwm && !sr->pfsr_intable) {
620 struct pfr_addr p;
621
622 pf_source_pfr_addr(&p, sr);
623
624 pfr_insert_kentry(t, &p, time_second);
625 sr->pfsr_intable = 1;
626 }
627 }
628
629 static void
pf_source_rele(struct pf_source * sr)630 pf_source_rele(struct pf_source *sr)
631 {
632 struct pf_sourcelim *srlim = sr->pfsr_parent;
633 struct pfr_ktable *t;
634 unsigned int used;
635
636 used = --sr->pfsr_inuse;
637
638 t = srlim->pfsrlim_overload.table;
639 if (t != NULL && sr->pfsr_intable &&
640 used < srlim->pfsrlim_overload.lwm) {
641 struct pfr_addr p;
642
643 pf_source_pfr_addr(&p, sr);
644
645 pfr_remove_kentry(t, &p);
646 sr->pfsr_intable = 0;
647 }
648
649 if (used == 0) {
650 TAILQ_INSERT_TAIL(&pf_source_gc, sr, pfsr_empty_gc);
651 sr->pfsr_empty_ts = time_uptime + srlim->pfsrlim_rate.seconds;
652 }
653 }
654
655 static inline void
pf_source_key(struct pf_sourcelim * srlim,struct pf_source * key,sa_family_t af,const struct pf_addr * addr)656 pf_source_key(struct pf_sourcelim *srlim, struct pf_source *key,
657 sa_family_t af, const struct pf_addr *addr)
658 {
659 size_t i;
660
661 /* only af+addr is used for lookup. */
662 key->pfsr_af = af;
663 key->pfsr_rdomain = 0;
664 switch (af) {
665 case AF_INET:
666 key->pfsr_addr.addr32[0] =
667 srlim->pfsrlim_ipv4_mask.v4.s_addr &
668 addr->v4.s_addr;
669
670 for (i = 1; i < nitems(key->pfsr_addr.addr32); i++)
671 key->pfsr_addr.addr32[i] = htonl(0);
672 break;
673 #ifdef INET6
674 case AF_INET6:
675 for (i = 0; i < nitems(key->pfsr_addr.addr32); i++) {
676 key->pfsr_addr.addr32[i] =
677 srlim->pfsrlim_ipv6_mask.addr32[i] &
678 addr->addr32[i];
679 }
680 break;
681 #endif
682 default:
683 unhandled_af(af);
684 /* NOTREACHED */
685 }
686 }
687
688 static inline struct pf_source *
pf_source_find(struct pf_sourcelim * srlim,struct pf_source * key)689 pf_source_find(struct pf_sourcelim *srlim, struct pf_source *key)
690 {
691 return (RB_FIND(pf_source_tree, &srlim->pfsrlim_sources, key));
692 }
693
694 extern int pf_end_threads;
695 extern struct proc *pf_purge_proc;
696
697 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
698
699 #define PACKET_UNDO_NAT(_pd, _off, _s) \
700 do { \
701 struct pf_state_key *nk; \
702 if ((pd->dir) == PF_OUT) \
703 nk = (_s)->key[PF_SK_STACK]; \
704 else \
705 nk = (_s)->key[PF_SK_WIRE]; \
706 pf_packet_rework_nat(_pd, _off, nk); \
707 } while (0)
708
709 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
710 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
711
712 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)713 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
714 {
715 struct pfi_kkif *k = pd->kif;
716
717 SDT_PROBE2(pf, ip, , bound_iface, st, k);
718
719 /* Floating unless otherwise specified. */
720 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
721 return (V_pfi_all);
722
723 /*
724 * Initially set to all, because we don't know what interface we'll be
725 * sending this out when we create the state.
726 */
727 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
728 return (V_pfi_all);
729
730 /*
731 * If this state is created based on another state (e.g. SCTP
732 * multihome) always set it floating initially. We can't know for sure
733 * what interface the actual traffic for this state will come in on.
734 */
735 if (pd->related_rule)
736 return (V_pfi_all);
737
738 /* Don't overrule the interface for states created on incoming packets. */
739 if (st->direction == PF_IN)
740 return (k);
741
742 /* No route-to, so don't overrule. */
743 if (st->act.rt != PF_ROUTETO)
744 return (k);
745
746 /* Bind to the route-to interface. */
747 return (st->act.rt_kif);
748 }
749
750 #define STATE_INC_COUNTERS(s) \
751 do { \
752 struct pf_krule_item *mrm; \
753 counter_u64_add(s->rule->states_cur, 1); \
754 counter_u64_add(s->rule->states_tot, 1); \
755 if (s->anchor != NULL) { \
756 counter_u64_add(s->anchor->states_cur, 1); \
757 counter_u64_add(s->anchor->states_tot, 1); \
758 } \
759 if (s->nat_rule != NULL && s->nat_rule != s->rule) { \
760 counter_u64_add(s->nat_rule->states_cur, 1); \
761 counter_u64_add(s->nat_rule->states_tot, 1); \
762 } \
763 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
764 if (s->nat_rule != mrm->r) { \
765 counter_u64_add(mrm->r->states_cur, 1); \
766 counter_u64_add(mrm->r->states_tot, 1); \
767 } \
768 } \
769 } while (0)
770
771 #define STATE_DEC_COUNTERS(s) \
772 do { \
773 struct pf_krule_item *mrm; \
774 counter_u64_add(s->rule->states_cur, -1); \
775 if (s->anchor != NULL) \
776 counter_u64_add(s->anchor->states_cur, -1); \
777 if (s->nat_rule != NULL && s->nat_rule != s->rule) \
778 counter_u64_add(s->nat_rule->states_cur, -1); \
779 SLIST_FOREACH(mrm, &s->match_rules, entry) \
780 if (s->nat_rule != mrm->r) { \
781 counter_u64_add(mrm->r->states_cur, -1);\
782 } \
783 } while (0)
784
785 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
786 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
787 MALLOC_DEFINE(M_PF_STATE_LINK, "pf_state_link", "pf(4) state links");
788 MALLOC_DEFINE(M_PF_SOURCE_LIM, "pf_source_lim", "pf(4) source limiter");
789 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
790 VNET_DEFINE(struct pf_idhash *, pf_idhash);
791 VNET_DEFINE(struct pf_srchash *, pf_srchash);
792 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
793 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
794
795 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
796 "pf(4)");
797
798 VNET_DEFINE(u_long, pf_hashmask);
799 VNET_DEFINE(u_long, pf_srchashmask);
800 VNET_DEFINE(u_long, pf_udpendpointhashmask);
801 VNET_DEFINE_STATIC(u_long, pf_hashsize);
802 #define V_pf_hashsize VNET(pf_hashsize)
803 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
804 #define V_pf_srchashsize VNET(pf_srchashsize)
805 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
806 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
807 u_long pf_ioctl_maxcount = 65535;
808
809 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
810 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
811 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
812 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
813 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
814 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
815 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
816 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
817
818 VNET_DEFINE(void *, pf_swi_cookie);
819 VNET_DEFINE(struct intr_event *, pf_swi_ie);
820
821 VNET_DEFINE(uint32_t, pf_hashseed);
822 #define V_pf_hashseed VNET(pf_hashseed)
823
824 static void
pf_sctp_checksum(struct mbuf * m,int off)825 pf_sctp_checksum(struct mbuf *m, int off)
826 {
827 uint32_t sum = 0;
828
829 /* Zero out the checksum, to enable recalculation. */
830 m_copyback(m, off + offsetof(struct sctphdr, checksum),
831 sizeof(sum), (caddr_t)&sum);
832
833 sum = sctp_calculate_cksum(m, off);
834
835 m_copyback(m, off + offsetof(struct sctphdr, checksum),
836 sizeof(sum), (caddr_t)&sum);
837 }
838
839 int
pf_addr_cmp(const struct pf_addr * a,const struct pf_addr * b,sa_family_t af)840 pf_addr_cmp(const struct pf_addr *a, const struct pf_addr *b, sa_family_t af)
841 {
842
843 switch (af) {
844 #ifdef INET
845 case AF_INET:
846 if (a->addr32[0] > b->addr32[0])
847 return (1);
848 if (a->addr32[0] < b->addr32[0])
849 return (-1);
850 break;
851 #endif /* INET */
852 #ifdef INET6
853 case AF_INET6:
854 if (a->addr32[3] > b->addr32[3])
855 return (1);
856 if (a->addr32[3] < b->addr32[3])
857 return (-1);
858 if (a->addr32[2] > b->addr32[2])
859 return (1);
860 if (a->addr32[2] < b->addr32[2])
861 return (-1);
862 if (a->addr32[1] > b->addr32[1])
863 return (1);
864 if (a->addr32[1] < b->addr32[1])
865 return (-1);
866 if (a->addr32[0] > b->addr32[0])
867 return (1);
868 if (a->addr32[0] < b->addr32[0])
869 return (-1);
870 break;
871 #endif /* INET6 */
872 default:
873 unhandled_af(af);
874 }
875 return (0);
876 }
877
878 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)879 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
880 {
881 switch (af) {
882 #ifdef INET
883 case AF_INET:
884 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
885 #endif /* INET */
886 case AF_INET6:
887 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
888 default:
889 unhandled_af(af);
890 }
891 }
892
893 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)894 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
895 {
896
897 switch (pd->virtual_proto) {
898 case IPPROTO_TCP: {
899 struct tcphdr *th = &pd->hdr.tcp;
900
901 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
902 pf_change_ap(pd, pd->src, &th->th_sport,
903 &nk->addr[pd->sidx], nk->port[pd->sidx]);
904 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
905 pf_change_ap(pd, pd->dst, &th->th_dport,
906 &nk->addr[pd->didx], nk->port[pd->didx]);
907 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
908 break;
909 }
910 case IPPROTO_UDP: {
911 struct udphdr *uh = &pd->hdr.udp;
912
913 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
914 pf_change_ap(pd, pd->src, &uh->uh_sport,
915 &nk->addr[pd->sidx], nk->port[pd->sidx]);
916 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
917 pf_change_ap(pd, pd->dst, &uh->uh_dport,
918 &nk->addr[pd->didx], nk->port[pd->didx]);
919 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
920 break;
921 }
922 case IPPROTO_SCTP: {
923 struct sctphdr *sh = &pd->hdr.sctp;
924
925 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
926 pf_change_ap(pd, pd->src, &sh->src_port,
927 &nk->addr[pd->sidx], nk->port[pd->sidx]);
928 }
929 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
930 pf_change_ap(pd, pd->dst, &sh->dest_port,
931 &nk->addr[pd->didx], nk->port[pd->didx]);
932 }
933
934 break;
935 }
936 case IPPROTO_ICMP: {
937 struct icmp *ih = &pd->hdr.icmp;
938
939 if (nk->port[pd->sidx] != ih->icmp_id) {
940 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
941 ih->icmp_cksum, ih->icmp_id,
942 nk->port[pd->sidx], 0);
943 ih->icmp_id = nk->port[pd->sidx];
944 pd->sport = &ih->icmp_id;
945
946 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
947 }
948 /* FALLTHROUGH */
949 }
950 default:
951 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
952 switch (pd->af) {
953 case AF_INET:
954 pf_change_a(&pd->src->v4.s_addr,
955 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
956 0);
957 break;
958 case AF_INET6:
959 pf_addrcpy(pd->src, &nk->addr[pd->sidx],
960 pd->af);
961 break;
962 default:
963 unhandled_af(pd->af);
964 }
965 }
966 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
967 switch (pd->af) {
968 case AF_INET:
969 pf_change_a(&pd->dst->v4.s_addr,
970 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
971 0);
972 break;
973 case AF_INET6:
974 pf_addrcpy(pd->dst, &nk->addr[pd->didx],
975 pd->af);
976 break;
977 default:
978 unhandled_af(pd->af);
979 }
980 }
981 break;
982 }
983 }
984
985 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)986 pf_hashkey(const struct pf_state_key *sk)
987 {
988 uint32_t h;
989
990 h = murmur3_32_hash32((const uint32_t *)sk,
991 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
992 V_pf_hashseed);
993
994 return (h & V_pf_hashmask);
995 }
996
997 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)998 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
999 {
1000 uint32_t h;
1001
1002 switch (af) {
1003 case AF_INET:
1004 h = murmur3_32_hash32((uint32_t *)&addr->v4,
1005 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
1006 break;
1007 case AF_INET6:
1008 h = murmur3_32_hash32((uint32_t *)&addr->v6,
1009 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
1010 break;
1011 default:
1012 unhandled_af(af);
1013 }
1014
1015 return (h & V_pf_srchashmask);
1016 }
1017
1018 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)1019 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
1020 {
1021 uint32_t h;
1022
1023 h = murmur3_32_hash32((uint32_t *)endpoint,
1024 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
1025 V_pf_hashseed);
1026 return (h & V_pf_udpendpointhashmask);
1027 }
1028
1029 #ifdef ALTQ
1030 static int
pf_state_hash(struct pf_kstate * s)1031 pf_state_hash(struct pf_kstate *s)
1032 {
1033 u_int32_t hv = (intptr_t)s / sizeof(*s);
1034
1035 hv ^= crc32(&s->src, sizeof(s->src));
1036 hv ^= crc32(&s->dst, sizeof(s->dst));
1037 if (hv == 0)
1038 hv = 1;
1039 return (hv);
1040 }
1041 #endif /* ALTQ */
1042
1043 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)1044 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
1045 {
1046 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
1047 s->dst.state = newstate;
1048 if (which == PF_PEER_DST)
1049 return;
1050 if (s->src.state == newstate)
1051 return;
1052 if (s->creatorid == V_pf_status.hostid &&
1053 s->key[PF_SK_STACK] != NULL &&
1054 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
1055 !(TCPS_HAVEESTABLISHED(s->src.state) ||
1056 s->src.state == TCPS_CLOSED) &&
1057 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
1058 atomic_add_32(&V_pf_status.states_halfopen, -1);
1059
1060 s->src.state = newstate;
1061 }
1062
1063 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)1064 pf_init_threshold(struct pf_kthreshold *threshold,
1065 u_int32_t limit, u_int32_t seconds)
1066 {
1067 threshold->limit = limit;
1068 threshold->seconds = seconds;
1069 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
1070
1071 return (threshold->cr != NULL);
1072 }
1073
1074 static int
pf_check_threshold(struct pf_kthreshold * threshold)1075 pf_check_threshold(struct pf_kthreshold *threshold)
1076 {
1077 return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
1078 }
1079
1080 static bool
pf_src_connlimit(struct pf_kstate * state)1081 pf_src_connlimit(struct pf_kstate *state)
1082 {
1083 struct pf_overload_entry *pfoe;
1084 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT];
1085 bool limited = false;
1086
1087 PF_STATE_LOCK_ASSERT(state);
1088 PF_SRC_NODE_LOCK(src_node);
1089
1090 src_node->conn++;
1091 state->src.tcp_est = 1;
1092
1093 if (state->rule->max_src_conn &&
1094 state->rule->max_src_conn <
1095 src_node->conn) {
1096 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
1097 limited = true;
1098 }
1099
1100 if (state->rule->max_src_conn_rate.limit &&
1101 pf_check_threshold(&src_node->conn_rate)) {
1102 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
1103 limited = true;
1104 }
1105
1106 if (!limited)
1107 goto done;
1108
1109 /* Kill this state. */
1110 state->timeout = PFTM_PURGE;
1111 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
1112
1113 if (state->rule->overload_tbl == NULL)
1114 goto done;
1115
1116 /* Schedule overloading and flushing task. */
1117 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
1118 if (pfoe == NULL)
1119 goto done; /* too bad :( */
1120
1121 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
1122 pfoe->af = state->key[PF_SK_WIRE]->af;
1123 pfoe->rule = state->rule;
1124 pfoe->dir = state->direction;
1125 PF_OVERLOADQ_LOCK();
1126 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
1127 PF_OVERLOADQ_UNLOCK();
1128 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
1129
1130 done:
1131 PF_SRC_NODE_UNLOCK(src_node);
1132 return (limited);
1133 }
1134
1135 static void
pf_overload_task(void * v,int pending)1136 pf_overload_task(void *v, int pending)
1137 {
1138 struct pf_overload_head queue;
1139 struct pfr_addr p;
1140 struct pf_overload_entry *pfoe, *pfoe1;
1141 uint32_t killed = 0;
1142
1143 CURVNET_SET((struct vnet *)v);
1144
1145 PF_OVERLOADQ_LOCK();
1146 queue = V_pf_overloadqueue;
1147 SLIST_INIT(&V_pf_overloadqueue);
1148 PF_OVERLOADQ_UNLOCK();
1149
1150 bzero(&p, sizeof(p));
1151 SLIST_FOREACH(pfoe, &queue, next) {
1152 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
1153 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1154 printf("%s: blocking address ", __func__);
1155 pf_print_host(&pfoe->addr, 0, pfoe->af);
1156 printf("\n");
1157 }
1158
1159 p.pfra_af = pfoe->af;
1160 switch (pfoe->af) {
1161 #ifdef INET
1162 case AF_INET:
1163 p.pfra_net = 32;
1164 p.pfra_ip4addr = pfoe->addr.v4;
1165 break;
1166 #endif /* INET */
1167 #ifdef INET6
1168 case AF_INET6:
1169 p.pfra_net = 128;
1170 p.pfra_ip6addr = pfoe->addr.v6;
1171 break;
1172 #endif /* INET6 */
1173 default:
1174 unhandled_af(pfoe->af);
1175 }
1176
1177 PF_RULES_WLOCK();
1178 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
1179 PF_RULES_WUNLOCK();
1180 }
1181
1182 /*
1183 * Remove those entries, that don't need flushing.
1184 */
1185 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
1186 if (pfoe->rule->flush == 0) {
1187 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
1188 free(pfoe, M_PFTEMP);
1189 } else
1190 counter_u64_add(
1191 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
1192
1193 /* If nothing to flush, return. */
1194 if (SLIST_EMPTY(&queue)) {
1195 CURVNET_RESTORE();
1196 return;
1197 }
1198
1199 for (int i = 0; i <= V_pf_hashmask; i++) {
1200 struct pf_idhash *ih = &V_pf_idhash[i];
1201 struct pf_state_key *sk;
1202 struct pf_kstate *s;
1203
1204 PF_HASHROW_LOCK(ih);
1205 LIST_FOREACH(s, &ih->states, entry) {
1206 sk = s->key[PF_SK_WIRE];
1207 SLIST_FOREACH(pfoe, &queue, next)
1208 if (sk->af == pfoe->af &&
1209 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
1210 pfoe->rule == s->rule) &&
1211 ((pfoe->dir == PF_OUT &&
1212 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
1213 (pfoe->dir == PF_IN &&
1214 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
1215 s->timeout = PFTM_PURGE;
1216 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
1217 killed++;
1218 }
1219 }
1220 PF_HASHROW_UNLOCK(ih);
1221 }
1222 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
1223 free(pfoe, M_PFTEMP);
1224 if (V_pf_status.debug >= PF_DEBUG_MISC)
1225 printf("%s: %u states killed", __func__, killed);
1226
1227 CURVNET_RESTORE();
1228 }
1229
1230 /*
1231 * On node found always returns locked. On not found its configurable.
1232 */
1233 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)1234 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
1235 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
1236 {
1237 struct pf_ksrc_node *n;
1238
1239 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1240
1241 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
1242 PF_HASHROW_LOCK(*sh);
1243 LIST_FOREACH(n, &(*sh)->nodes, entry)
1244 if (n->rule == rule && n->af == af && n->type == sn_type &&
1245 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
1246 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
1247 break;
1248
1249 if (n == NULL && !returnlocked)
1250 PF_HASHROW_UNLOCK(*sh);
1251
1252 return (n);
1253 }
1254
1255 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)1256 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
1257 {
1258 struct pf_ksrc_node *cur;
1259
1260 if ((*sn) == NULL)
1261 return (false);
1262
1263 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
1264
1265 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1266 PF_HASHROW_LOCK(sh);
1267 LIST_FOREACH(cur, &(sh->nodes), entry) {
1268 if (cur == (*sn) &&
1269 cur->expire != 1) /* Ignore nodes being killed */
1270 return (true);
1271 }
1272 PF_HASHROW_UNLOCK(sh);
1273 (*sn) = NULL;
1274 return (false);
1275 }
1276
1277 void
pf_free_src_node(struct pf_ksrc_node * sn)1278 pf_free_src_node(struct pf_ksrc_node *sn)
1279 {
1280
1281 for (int i = 0; i < 2; i++) {
1282 counter_u64_free(sn->bytes[i]);
1283 counter_u64_free(sn->packets[i]);
1284 }
1285 counter_rate_free(sn->conn_rate.cr);
1286 uma_zfree(V_pf_sources_z, sn);
1287 }
1288
1289 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,sa_family_t raf,pf_sn_types_t sn_type)1290 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1291 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1292 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1293 struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type)
1294 {
1295 u_short reason = 0;
1296 struct pf_krule *r_track = rule;
1297 struct pf_ksrc_node **sn = &(sns[sn_type]);
1298 struct pf_srchash **sh = &(snhs[sn_type]);
1299
1300 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1301 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1302
1303 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1304 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1305
1306 /*
1307 * XXX: There could be a KASSERT for
1308 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1309 * but we'd need to pass pool *only* for this KASSERT.
1310 */
1311
1312 if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1313 !(rule->rule_flag & PFRULE_RULESRCTRACK))
1314 r_track = &V_pf_default_rule;
1315
1316 /*
1317 * Request the sh to always be locked, as we might insert a new sn.
1318 */
1319 if (*sn == NULL)
1320 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1321
1322 if (*sn == NULL) {
1323 PF_HASHROW_ASSERT(*sh);
1324
1325 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1326 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1327 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1328 reason = PFRES_SRCLIMIT;
1329 goto done;
1330 }
1331
1332 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1333 if ((*sn) == NULL) {
1334 reason = PFRES_MEMORY;
1335 goto done;
1336 }
1337
1338 for (int i = 0; i < 2; i++) {
1339 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1340 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1341
1342 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1343 pf_free_src_node(*sn);
1344 reason = PFRES_MEMORY;
1345 goto done;
1346 }
1347 }
1348
1349 if (sn_type == PF_SN_LIMIT)
1350 if (! pf_init_threshold(&(*sn)->conn_rate,
1351 rule->max_src_conn_rate.limit,
1352 rule->max_src_conn_rate.seconds)) {
1353 pf_free_src_node(*sn);
1354 reason = PFRES_MEMORY;
1355 goto done;
1356 }
1357
1358 MPASS((*sn)->lock == NULL);
1359 (*sn)->lock = &(*sh)->lock;
1360
1361 (*sn)->af = af;
1362 (*sn)->rule = r_track;
1363 pf_addrcpy(&(*sn)->addr, src, af);
1364 if (raddr != NULL)
1365 pf_addrcpy(&(*sn)->raddr, raddr, raf);
1366 (*sn)->rkif = rkif;
1367 (*sn)->raf = raf;
1368 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1369 (*sn)->creation = time_uptime;
1370 (*sn)->ruletype = rule->action;
1371 (*sn)->type = sn_type;
1372 counter_u64_add(r_track->src_nodes[sn_type], 1);
1373 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1374 } else {
1375 if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1376 (*sn)->states >= rule->max_src_states) {
1377 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1378 1);
1379 reason = PFRES_SRCLIMIT;
1380 goto done;
1381 }
1382 }
1383 done:
1384 if (reason == 0)
1385 (*sn)->states++;
1386 else
1387 (*sn) = NULL;
1388
1389 PF_HASHROW_UNLOCK(*sh);
1390 return (reason);
1391 }
1392
1393 void
pf_unlink_src_node(struct pf_ksrc_node * src)1394 pf_unlink_src_node(struct pf_ksrc_node *src)
1395 {
1396 PF_SRC_NODE_LOCK_ASSERT(src);
1397
1398 LIST_REMOVE(src, entry);
1399 if (src->rule)
1400 counter_u64_add(src->rule->src_nodes[src->type], -1);
1401 }
1402
1403 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1404 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1405 {
1406 struct pf_ksrc_node *sn, *tmp;
1407 u_int count = 0;
1408
1409 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1410 pf_free_src_node(sn);
1411 count++;
1412 }
1413
1414 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1415
1416 return (count);
1417 }
1418
1419 void
pf_mtag_initialize(void)1420 pf_mtag_initialize(void)
1421 {
1422
1423 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1424 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1425 UMA_ALIGN_PTR, 0);
1426 }
1427
1428 /* Per-vnet data storage structures initialization. */
1429 void
pf_initialize(void)1430 pf_initialize(void)
1431 {
1432 struct pf_keyhash *kh;
1433 struct pf_idhash *ih;
1434 struct pf_srchash *sh;
1435 struct pf_udpendpointhash *uh;
1436 u_int i;
1437
1438 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1439 V_pf_hashsize = PF_HASHSIZ;
1440 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1441 V_pf_srchashsize = PF_SRCHASHSIZ;
1442 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1443 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1444
1445 V_pf_hashseed = arc4random();
1446
1447 /* States and state keys storage. */
1448 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1449 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1450 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1451 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1452 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1453
1454 V_pf_state_key_z = uma_zcreate("pf state keys",
1455 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1456 UMA_ALIGN_PTR, 0);
1457
1458 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1459 M_PFHASH, M_NOWAIT | M_ZERO);
1460 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1461 M_PFHASH, M_NOWAIT | M_ZERO);
1462 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1463 printf("pf: Unable to allocate memory for "
1464 "state_hashsize %lu.\n", V_pf_hashsize);
1465
1466 free(V_pf_keyhash, M_PFHASH);
1467 free(V_pf_idhash, M_PFHASH);
1468
1469 V_pf_hashsize = PF_HASHSIZ;
1470 V_pf_keyhash = mallocarray(V_pf_hashsize,
1471 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1472 V_pf_idhash = mallocarray(V_pf_hashsize,
1473 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1474 }
1475
1476 V_pf_hashmask = V_pf_hashsize - 1;
1477 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1478 i++, kh++, ih++) {
1479 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1480 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1481 }
1482
1483 /* Source nodes. */
1484 V_pf_sources_z = uma_zcreate("pf source nodes",
1485 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1486 0);
1487 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1488 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1489 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1490
1491 V_pf_srchash = mallocarray(V_pf_srchashsize,
1492 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1493 if (V_pf_srchash == NULL) {
1494 printf("pf: Unable to allocate memory for "
1495 "source_hashsize %lu.\n", V_pf_srchashsize);
1496
1497 V_pf_srchashsize = PF_SRCHASHSIZ;
1498 V_pf_srchash = mallocarray(V_pf_srchashsize,
1499 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1500 }
1501
1502 V_pf_srchashmask = V_pf_srchashsize - 1;
1503 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1504 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1505
1506
1507 /* UDP endpoint mappings. */
1508 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1509 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1510 UMA_ALIGN_PTR, 0);
1511 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1512 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1513 if (V_pf_udpendpointhash == NULL) {
1514 printf("pf: Unable to allocate memory for "
1515 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1516
1517 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1518 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1519 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1520 }
1521
1522 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1523 for (i = 0, uh = V_pf_udpendpointhash;
1524 i <= V_pf_udpendpointhashmask;
1525 i++, uh++) {
1526 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1527 MTX_DEF | MTX_DUPOK);
1528 }
1529
1530 /* Anchors */
1531 V_pf_anchor_z = uma_zcreate("pf anchors",
1532 sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL,
1533 UMA_ALIGN_PTR, 0);
1534 V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z;
1535 uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT);
1536 uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached");
1537
1538 V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors",
1539 sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL,
1540 UMA_ALIGN_PTR, 0);
1541 V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z;
1542 uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT);
1543 uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached");
1544
1545 /* ALTQ */
1546 TAILQ_INIT(&V_pf_altqs[0]);
1547 TAILQ_INIT(&V_pf_altqs[1]);
1548 TAILQ_INIT(&V_pf_altqs[2]);
1549 TAILQ_INIT(&V_pf_altqs[3]);
1550 TAILQ_INIT(&V_pf_pabuf[0]);
1551 TAILQ_INIT(&V_pf_pabuf[1]);
1552 TAILQ_INIT(&V_pf_pabuf[2]);
1553 V_pf_altqs_active = &V_pf_altqs[0];
1554 V_pf_altq_ifs_active = &V_pf_altqs[1];
1555 V_pf_altqs_inactive = &V_pf_altqs[2];
1556 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1557
1558 /* Send & overload+flush queues. */
1559 STAILQ_INIT(&V_pf_sendqueue);
1560 SLIST_INIT(&V_pf_overloadqueue);
1561 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1562
1563 /* Unlinked, but may be referenced rules. */
1564 TAILQ_INIT(&V_pf_unlinked_rules);
1565
1566 /* State limiters */
1567 RB_INIT(&V_pf_statelim_id_tree_inactive);
1568 RB_INIT(&V_pf_statelim_nm_tree_inactive);
1569 TAILQ_INIT(&V_pf_statelim_list_inactive);
1570
1571 RB_INIT(&V_pf_statelim_id_tree_active);
1572 TAILQ_INIT(&V_pf_statelim_list_active);
1573
1574 /* Source limiters */
1575 RB_INIT(&V_pf_sourcelim_id_tree_active);
1576 TAILQ_INIT(&V_pf_sourcelim_list_active);
1577
1578 RB_INIT(&V_pf_sourcelim_id_tree_inactive);
1579 RB_INIT(&V_pf_sourcelim_nm_tree_inactive);
1580 TAILQ_INIT(&V_pf_sourcelim_list_inactive);
1581 }
1582
1583 void
pf_mtag_cleanup(void)1584 pf_mtag_cleanup(void)
1585 {
1586
1587 uma_zdestroy(pf_mtag_z);
1588 }
1589
1590 void
pf_cleanup(void)1591 pf_cleanup(void)
1592 {
1593 struct pf_keyhash *kh;
1594 struct pf_idhash *ih;
1595 struct pf_srchash *sh;
1596 struct pf_udpendpointhash *uh;
1597 struct pf_send_entry *pfse, *next;
1598 u_int i;
1599
1600 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1601 i <= V_pf_hashmask;
1602 i++, kh++, ih++) {
1603 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1604 __func__));
1605 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1606 __func__));
1607 mtx_destroy(&kh->lock);
1608 mtx_destroy(&ih->lock);
1609 }
1610 free(V_pf_keyhash, M_PFHASH);
1611 free(V_pf_idhash, M_PFHASH);
1612
1613 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1614 KASSERT(LIST_EMPTY(&sh->nodes),
1615 ("%s: source node hash not empty", __func__));
1616 mtx_destroy(&sh->lock);
1617 }
1618 free(V_pf_srchash, M_PFHASH);
1619
1620 for (i = 0, uh = V_pf_udpendpointhash;
1621 i <= V_pf_udpendpointhashmask;
1622 i++, uh++) {
1623 KASSERT(LIST_EMPTY(&uh->endpoints),
1624 ("%s: udp endpoint hash not empty", __func__));
1625 mtx_destroy(&uh->lock);
1626 }
1627 free(V_pf_udpendpointhash, M_PFHASH);
1628
1629 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1630 m_freem(pfse->pfse_m);
1631 free(pfse, M_PFTEMP);
1632 }
1633 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1634
1635 uma_zdestroy(V_pf_sources_z);
1636 uma_zdestroy(V_pf_state_z);
1637 uma_zdestroy(V_pf_state_key_z);
1638 uma_zdestroy(V_pf_udp_mapping_z);
1639 uma_zdestroy(V_pf_anchor_z);
1640 uma_zdestroy(V_pf_eth_anchor_z);
1641 }
1642
1643 static int
pf_mtag_uminit(void * mem,int size,int how)1644 pf_mtag_uminit(void *mem, int size, int how)
1645 {
1646 struct m_tag *t;
1647
1648 t = (struct m_tag *)mem;
1649 t->m_tag_cookie = MTAG_ABI_COMPAT;
1650 t->m_tag_id = PACKET_TAG_PF;
1651 t->m_tag_len = sizeof(struct pf_mtag);
1652 t->m_tag_free = pf_mtag_free;
1653
1654 return (0);
1655 }
1656
1657 static void
pf_mtag_free(struct m_tag * t)1658 pf_mtag_free(struct m_tag *t)
1659 {
1660
1661 uma_zfree(pf_mtag_z, t);
1662 }
1663
1664 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1665 pf_get_mtag(struct mbuf *m)
1666 {
1667 struct m_tag *mtag;
1668
1669 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1670 return ((struct pf_mtag *)(mtag + 1));
1671
1672 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1673 if (mtag == NULL)
1674 return (NULL);
1675 bzero(mtag + 1, sizeof(struct pf_mtag));
1676 m_tag_prepend(m, mtag);
1677
1678 return ((struct pf_mtag *)(mtag + 1));
1679 }
1680
1681 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1682 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1683 struct pf_kstate *s)
1684 {
1685 struct pf_keyhash *khs, *khw, *kh;
1686 struct pf_state_key *sk, *cur;
1687 struct pf_kstate *si, *olds = NULL;
1688 int idx;
1689
1690 NET_EPOCH_ASSERT();
1691 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1692 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1693 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1694
1695 /*
1696 * We need to lock hash slots of both keys. To avoid deadlock
1697 * we always lock the slot with lower address first. Unlock order
1698 * isn't important.
1699 *
1700 * We also need to lock ID hash slot before dropping key
1701 * locks. On success we return with ID hash slot locked.
1702 */
1703
1704 if (skw == sks) {
1705 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1706 PF_HASHROW_LOCK(khs);
1707 } else {
1708 khs = &V_pf_keyhash[pf_hashkey(sks)];
1709 khw = &V_pf_keyhash[pf_hashkey(skw)];
1710 if (khs == khw) {
1711 PF_HASHROW_LOCK(khs);
1712 } else if (khs < khw) {
1713 PF_HASHROW_LOCK(khs);
1714 PF_HASHROW_LOCK(khw);
1715 } else {
1716 PF_HASHROW_LOCK(khw);
1717 PF_HASHROW_LOCK(khs);
1718 }
1719 }
1720
1721 #define KEYS_UNLOCK() do { \
1722 if (khs != khw) { \
1723 PF_HASHROW_UNLOCK(khs); \
1724 PF_HASHROW_UNLOCK(khw); \
1725 } else \
1726 PF_HASHROW_UNLOCK(khs); \
1727 } while (0)
1728
1729 /*
1730 * First run: start with wire key.
1731 */
1732 sk = skw;
1733 kh = khw;
1734 idx = PF_SK_WIRE;
1735
1736 MPASS(s->lock == NULL);
1737 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1738
1739 keyattach:
1740 LIST_FOREACH(cur, &kh->keys, entry)
1741 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1742 break;
1743
1744 if (cur != NULL) {
1745 /* Key exists. Check for same kif, if none, add to key. */
1746 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1747 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1748
1749 PF_HASHROW_LOCK(ih);
1750 if (si->kif == s->kif &&
1751 ((si->key[PF_SK_WIRE]->af == sk->af &&
1752 si->direction == s->direction) ||
1753 (si->key[PF_SK_WIRE]->af !=
1754 si->key[PF_SK_STACK]->af &&
1755 sk->af == si->key[PF_SK_STACK]->af &&
1756 si->direction != s->direction))) {
1757 bool reuse = false;
1758
1759 if (sk->proto == IPPROTO_TCP &&
1760 si->src.state >= TCPS_FIN_WAIT_2 &&
1761 si->dst.state >= TCPS_FIN_WAIT_2)
1762 reuse = true;
1763
1764 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1765 printf("pf: %s key attach "
1766 "%s on %s: ",
1767 (idx == PF_SK_WIRE) ?
1768 "wire" : "stack",
1769 reuse ? "reuse" : "failed",
1770 s->kif->pfik_name);
1771 pf_print_state_parts(s,
1772 (idx == PF_SK_WIRE) ?
1773 sk : NULL,
1774 (idx == PF_SK_STACK) ?
1775 sk : NULL);
1776 printf(", existing: ");
1777 pf_print_state_parts(si,
1778 (idx == PF_SK_WIRE) ?
1779 sk : NULL,
1780 (idx == PF_SK_STACK) ?
1781 sk : NULL);
1782 printf("\n");
1783 }
1784
1785 if (reuse) {
1786 /*
1787 * New state matches an old >FIN_WAIT_2
1788 * state. We can't drop key hash locks,
1789 * thus we can't unlink it properly.
1790 *
1791 * As a workaround we drop it into
1792 * TCPS_CLOSED state, schedule purge
1793 * ASAP and push it into the very end
1794 * of the slot TAILQ, so that it won't
1795 * conflict with our new state.
1796 */
1797 pf_set_protostate(si, PF_PEER_BOTH,
1798 TCPS_CLOSED);
1799 si->timeout = PFTM_PURGE;
1800 olds = si;
1801 } else {
1802 s->timeout = PFTM_UNLINKED;
1803 if (idx == PF_SK_STACK)
1804 /*
1805 * Remove the wire key from
1806 * the hash. Other threads
1807 * can't be referencing it
1808 * because we still hold the
1809 * hash lock.
1810 */
1811 pf_state_key_detach(s,
1812 PF_SK_WIRE);
1813 PF_HASHROW_UNLOCK(ih);
1814 KEYS_UNLOCK();
1815 if (idx == PF_SK_WIRE)
1816 /*
1817 * We've not inserted either key.
1818 * Free both.
1819 */
1820 uma_zfree(V_pf_state_key_z, skw);
1821 if (skw != sks)
1822 uma_zfree(
1823 V_pf_state_key_z,
1824 sks);
1825 return (EEXIST); /* collision! */
1826 }
1827 }
1828 PF_HASHROW_UNLOCK(ih);
1829 }
1830 uma_zfree(V_pf_state_key_z, sk);
1831 s->key[idx] = cur;
1832 } else {
1833 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1834 s->key[idx] = sk;
1835 }
1836
1837 stateattach:
1838 /* List is sorted, if-bound states before floating. */
1839 if (s->kif == V_pfi_all)
1840 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1841 else
1842 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1843
1844 if (olds) {
1845 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1846 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1847 key_list[idx]);
1848 olds = NULL;
1849 }
1850
1851 /*
1852 * Attach done. See how should we (or should not?)
1853 * attach a second key.
1854 */
1855 if (sks == skw) {
1856 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1857 idx = PF_SK_STACK;
1858 sks = NULL;
1859 goto stateattach;
1860 } else if (sks != NULL) {
1861 /*
1862 * Continue attaching with stack key.
1863 */
1864 sk = sks;
1865 kh = khs;
1866 idx = PF_SK_STACK;
1867 sks = NULL;
1868 goto keyattach;
1869 }
1870
1871 PF_STATE_LOCK(s);
1872 KEYS_UNLOCK();
1873
1874 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1875 ("%s failure", __func__));
1876
1877 return (0);
1878 #undef KEYS_UNLOCK
1879 }
1880
1881 static void
pf_detach_state(struct pf_kstate * s)1882 pf_detach_state(struct pf_kstate *s)
1883 {
1884 struct pf_state_key *sks = s->key[PF_SK_STACK];
1885 struct pf_keyhash *kh;
1886
1887 NET_EPOCH_ASSERT();
1888 MPASS(s->timeout >= PFTM_MAX);
1889
1890 pf_sctp_multihome_detach_addr(s);
1891
1892 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1893 V_pflow_export_state_ptr(s);
1894
1895 if (sks != NULL) {
1896 kh = &V_pf_keyhash[pf_hashkey(sks)];
1897 PF_HASHROW_LOCK(kh);
1898 if (s->key[PF_SK_STACK] != NULL)
1899 pf_state_key_detach(s, PF_SK_STACK);
1900 /*
1901 * If both point to same key, then we are done.
1902 */
1903 if (sks == s->key[PF_SK_WIRE]) {
1904 pf_state_key_detach(s, PF_SK_WIRE);
1905 PF_HASHROW_UNLOCK(kh);
1906 return;
1907 }
1908 PF_HASHROW_UNLOCK(kh);
1909 }
1910
1911 if (s->key[PF_SK_WIRE] != NULL) {
1912 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1913 PF_HASHROW_LOCK(kh);
1914 if (s->key[PF_SK_WIRE] != NULL)
1915 pf_state_key_detach(s, PF_SK_WIRE);
1916 PF_HASHROW_UNLOCK(kh);
1917 }
1918 }
1919
1920 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1921 pf_state_key_detach(struct pf_kstate *s, int idx)
1922 {
1923 struct pf_state_key *sk = s->key[idx];
1924 #ifdef INVARIANTS
1925 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1926
1927 PF_HASHROW_ASSERT(kh);
1928 #endif /* INVARIANTS */
1929 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1930 s->key[idx] = NULL;
1931
1932 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1933 LIST_REMOVE(sk, entry);
1934 uma_zfree(V_pf_state_key_z, sk);
1935 }
1936 }
1937
1938 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1939 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1940 {
1941 struct pf_state_key *sk = mem;
1942
1943 bzero(sk, sizeof(struct pf_state_key_cmp));
1944 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1945 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1946
1947 return (0);
1948 }
1949
1950 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1951 pf_state_key_addr_setup(struct pf_pdesc *pd,
1952 struct pf_state_key_cmp *key, int multi)
1953 {
1954 struct pf_addr *saddr = pd->src;
1955 struct pf_addr *daddr = pd->dst;
1956 #ifdef INET6
1957 struct nd_neighbor_solicit nd;
1958 struct pf_addr *target;
1959
1960 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1961 goto copy;
1962
1963 switch (pd->hdr.icmp6.icmp6_type) {
1964 case ND_NEIGHBOR_SOLICIT:
1965 if (multi)
1966 return (-1);
1967 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1968 pd->af))
1969 return (-1);
1970 target = (struct pf_addr *)&nd.nd_ns_target;
1971 daddr = target;
1972 break;
1973 case ND_NEIGHBOR_ADVERT:
1974 if (multi)
1975 return (-1);
1976 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1977 pd->af))
1978 return (-1);
1979 target = (struct pf_addr *)&nd.nd_ns_target;
1980 saddr = target;
1981 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1982 key->addr[pd->didx].addr32[0] = 0;
1983 key->addr[pd->didx].addr32[1] = 0;
1984 key->addr[pd->didx].addr32[2] = 0;
1985 key->addr[pd->didx].addr32[3] = 0;
1986 daddr = NULL; /* overwritten */
1987 }
1988 break;
1989 default:
1990 if (multi) {
1991 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1992 key->addr[pd->sidx].addr32[1] = 0;
1993 key->addr[pd->sidx].addr32[2] = 0;
1994 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1995 saddr = NULL; /* overwritten */
1996 }
1997 }
1998 copy:
1999 #endif /* INET6 */
2000 if (saddr)
2001 pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af);
2002 if (daddr)
2003 pf_addrcpy(&key->addr[pd->didx], daddr, pd->af);
2004
2005 return (0);
2006 }
2007
2008 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)2009 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
2010 struct pf_state_key **sk, struct pf_state_key **nk)
2011 {
2012 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
2013 if (*sk == NULL)
2014 return (ENOMEM);
2015
2016 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
2017 0)) {
2018 uma_zfree(V_pf_state_key_z, *sk);
2019 *sk = NULL;
2020 return (ENOMEM);
2021 }
2022
2023 (*sk)->port[pd->sidx] = sport;
2024 (*sk)->port[pd->didx] = dport;
2025 (*sk)->proto = pd->proto;
2026 (*sk)->af = pd->af;
2027
2028 *nk = pf_state_key_clone(*sk);
2029 if (*nk == NULL) {
2030 uma_zfree(V_pf_state_key_z, *sk);
2031 *sk = NULL;
2032 return (ENOMEM);
2033 }
2034
2035 if (pd->af != pd->naf) {
2036 (*sk)->port[pd->sidx] = pd->osport;
2037 (*sk)->port[pd->didx] = pd->odport;
2038
2039 (*nk)->af = pd->naf;
2040
2041 /*
2042 * We're overwriting an address here, so potentially there's bits of an IPv6
2043 * address left in here. Clear that out first.
2044 */
2045 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
2046 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
2047 if (pd->dir == PF_IN) {
2048 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr,
2049 pd->naf);
2050 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr,
2051 pd->naf);
2052 (*nk)->port[pd->didx] = pd->nsport;
2053 (*nk)->port[pd->sidx] = pd->ndport;
2054 } else {
2055 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr,
2056 pd->naf);
2057 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr,
2058 pd->naf);
2059 (*nk)->port[pd->sidx] = pd->nsport;
2060 (*nk)->port[pd->didx] = pd->ndport;
2061 }
2062
2063 switch (pd->proto) {
2064 case IPPROTO_ICMP:
2065 (*nk)->proto = IPPROTO_ICMPV6;
2066 break;
2067 case IPPROTO_ICMPV6:
2068 (*nk)->proto = IPPROTO_ICMP;
2069 break;
2070 default:
2071 (*nk)->proto = pd->proto;
2072 }
2073 }
2074
2075 return (0);
2076 }
2077
2078 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)2079 pf_state_key_clone(const struct pf_state_key *orig)
2080 {
2081 struct pf_state_key *sk;
2082
2083 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
2084 if (sk == NULL)
2085 return (NULL);
2086
2087 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
2088
2089 return (sk);
2090 }
2091
2092 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)2093 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
2094 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
2095 {
2096 struct pf_idhash *ih;
2097 struct pf_kstate *cur;
2098 int error;
2099
2100 NET_EPOCH_ASSERT();
2101
2102 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
2103 ("%s: sks not pristine", __func__));
2104 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
2105 ("%s: skw not pristine", __func__));
2106 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
2107
2108 s->kif = kif;
2109 s->orig_kif = orig_kif;
2110
2111 if (s->id == 0 && s->creatorid == 0) {
2112 s->id = alloc_unr64(&V_pf_stateid);
2113 s->id = htobe64(s->id);
2114 s->creatorid = V_pf_status.hostid;
2115 }
2116
2117 /* Returns with ID locked on success. */
2118 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
2119 return (error);
2120 skw = sks = NULL;
2121
2122 ih = &V_pf_idhash[PF_IDHASH(s)];
2123 PF_HASHROW_ASSERT(ih);
2124 LIST_FOREACH(cur, &ih->states, entry)
2125 if (cur->id == s->id && cur->creatorid == s->creatorid)
2126 break;
2127
2128 if (cur != NULL) {
2129 s->timeout = PFTM_UNLINKED;
2130 PF_HASHROW_UNLOCK(ih);
2131 if (V_pf_status.debug >= PF_DEBUG_MISC) {
2132 printf("pf: state ID collision: "
2133 "id: %016llx creatorid: %08x\n",
2134 (unsigned long long)be64toh(s->id),
2135 ntohl(s->creatorid));
2136 }
2137 pf_detach_state(s);
2138 return (EEXIST);
2139 }
2140 LIST_INSERT_HEAD(&ih->states, s, entry);
2141 /* One for keys, one for ID hash. */
2142 refcount_init(&s->refs, 2);
2143
2144 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
2145 if (V_pfsync_insert_state_ptr != NULL)
2146 V_pfsync_insert_state_ptr(s);
2147
2148 /* Returns locked. */
2149 return (0);
2150 }
2151
2152 /*
2153 * Find state by ID: returns with locked row on success.
2154 */
2155 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)2156 pf_find_state_byid(uint64_t id, uint32_t creatorid)
2157 {
2158 struct pf_idhash *ih;
2159 struct pf_kstate *s;
2160
2161 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2162
2163 ih = &V_pf_idhash[PF_IDHASHID(id)];
2164
2165 PF_HASHROW_LOCK(ih);
2166 LIST_FOREACH(s, &ih->states, entry)
2167 if (s->id == id && s->creatorid == creatorid)
2168 break;
2169
2170 if (s == NULL)
2171 PF_HASHROW_UNLOCK(ih);
2172
2173 return (s);
2174 }
2175
2176 /*
2177 * Find state by key.
2178 * Returns with ID hash slot locked on success.
2179 */
2180 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)2181 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
2182 struct pf_kstate **state)
2183 {
2184 struct pf_keyhash *kh;
2185 struct pf_state_key *sk;
2186 struct pf_kstate *s;
2187 int idx;
2188
2189 *state = NULL;
2190
2191 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2192
2193 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2194
2195 PF_HASHROW_LOCK(kh);
2196 LIST_FOREACH(sk, &kh->keys, entry)
2197 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2198 break;
2199 if (sk == NULL) {
2200 PF_HASHROW_UNLOCK(kh);
2201 return (PF_DROP);
2202 }
2203
2204 idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
2205
2206 /* List is sorted, if-bound states before floating ones. */
2207 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
2208 if (s->kif == V_pfi_all || s->kif == pd->kif ||
2209 s->orig_kif == pd->kif) {
2210 PF_STATE_LOCK(s);
2211 PF_HASHROW_UNLOCK(kh);
2212 if (__predict_false(s->timeout >= PFTM_MAX)) {
2213 /*
2214 * State is either being processed by
2215 * pf_remove_state() in an other thread, or
2216 * is scheduled for immediate expiry.
2217 */
2218 PF_STATE_UNLOCK(s);
2219 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
2220 key, (pd->dir), pd, *state);
2221 return (PF_DROP);
2222 }
2223 goto out;
2224 }
2225
2226 /* Look through the other list, in case of AF-TO */
2227 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
2228 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2229 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
2230 continue;
2231 if (s->kif == V_pfi_all || s->kif == pd->kif ||
2232 s->orig_kif == pd->kif) {
2233 PF_STATE_LOCK(s);
2234 PF_HASHROW_UNLOCK(kh);
2235 if (__predict_false(s->timeout >= PFTM_MAX)) {
2236 /*
2237 * State is either being processed by
2238 * pf_remove_state() in an other thread, or
2239 * is scheduled for immediate expiry.
2240 */
2241 PF_STATE_UNLOCK(s);
2242 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
2243 key, (pd->dir), pd, NULL);
2244 return (PF_DROP);
2245 }
2246 goto out;
2247 }
2248 }
2249
2250 PF_HASHROW_UNLOCK(kh);
2251
2252 out:
2253 SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
2254
2255 if (s == NULL || s->timeout == PFTM_PURGE) {
2256 if (s)
2257 PF_STATE_UNLOCK(s);
2258 return (PF_DROP);
2259 }
2260
2261 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
2262 if (pf_check_threshold(&(s)->rule->pktrate)) {
2263 PF_STATE_UNLOCK(s);
2264 return (PF_DROP);
2265 }
2266 }
2267 if (PACKET_LOOPED(pd)) {
2268 PF_STATE_UNLOCK(s);
2269 return (PF_PASS);
2270 }
2271
2272 *state = s;
2273
2274 return (PF_MATCH);
2275 }
2276
2277 /*
2278 * Returns with ID hash slot locked on success.
2279 */
2280 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)2281 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
2282 {
2283 struct pf_keyhash *kh;
2284 struct pf_state_key *sk;
2285 struct pf_kstate *s, *ret = NULL;
2286 int idx, inout = 0;
2287
2288 if (more != NULL)
2289 *more = 0;
2290
2291 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2292
2293 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2294
2295 PF_HASHROW_LOCK(kh);
2296 LIST_FOREACH(sk, &kh->keys, entry)
2297 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2298 break;
2299 if (sk == NULL) {
2300 PF_HASHROW_UNLOCK(kh);
2301 return (NULL);
2302 }
2303 switch (dir) {
2304 case PF_IN:
2305 idx = PF_SK_WIRE;
2306 break;
2307 case PF_OUT:
2308 idx = PF_SK_STACK;
2309 break;
2310 case PF_INOUT:
2311 idx = PF_SK_WIRE;
2312 inout = 1;
2313 break;
2314 default:
2315 panic("%s: dir %u", __func__, dir);
2316 }
2317 second_run:
2318 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2319 if (more == NULL) {
2320 PF_STATE_LOCK(s);
2321 PF_HASHROW_UNLOCK(kh);
2322 return (s);
2323 }
2324
2325 if (ret)
2326 (*more)++;
2327 else {
2328 ret = s;
2329 PF_STATE_LOCK(s);
2330 }
2331 }
2332 if (inout == 1) {
2333 inout = 0;
2334 idx = PF_SK_STACK;
2335 goto second_run;
2336 }
2337 PF_HASHROW_UNLOCK(kh);
2338
2339 return (ret);
2340 }
2341
2342 /*
2343 * FIXME
2344 * This routine is inefficient -- locks the state only to unlock immediately on
2345 * return.
2346 * It is racy -- after the state is unlocked nothing stops other threads from
2347 * removing it.
2348 */
2349 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2350 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2351 {
2352 struct pf_kstate *s;
2353
2354 s = pf_find_state_all(key, dir, NULL);
2355 if (s != NULL) {
2356 PF_STATE_UNLOCK(s);
2357 return (true);
2358 }
2359 return (false);
2360 }
2361
2362 void
pf_state_peer_hton(const struct pf_state_peer * s,struct pf_state_peer_export * d)2363 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d)
2364 {
2365 d->seqlo = htonl(s->seqlo);
2366 d->seqhi = htonl(s->seqhi);
2367 d->seqdiff = htonl(s->seqdiff);
2368 d->max_win = htons(s->max_win);
2369 d->mss = htons(s->mss);
2370 d->state = s->state;
2371 d->wscale = s->wscale;
2372 if (s->scrub) {
2373 d->scrub.pfss_flags = htons(
2374 s->scrub->pfss_flags & PFSS_TIMESTAMP);
2375 d->scrub.pfss_ttl = (s)->scrub->pfss_ttl;
2376 d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);
2377 d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID;
2378 }
2379 }
2380
2381 void
pf_state_peer_ntoh(const struct pf_state_peer_export * s,struct pf_state_peer * d)2382 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d)
2383 {
2384 d->seqlo = ntohl(s->seqlo);
2385 d->seqhi = ntohl(s->seqhi);
2386 d->seqdiff = ntohl(s->seqdiff);
2387 d->max_win = ntohs(s->max_win);
2388 d->mss = ntohs(s->mss);
2389 d->state = s->state;
2390 d->wscale = s->wscale;
2391 if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID &&
2392 d->scrub != NULL) {
2393 d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) &
2394 PFSS_TIMESTAMP;
2395 d->scrub->pfss_ttl = s->scrub.pfss_ttl;
2396 d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod);
2397 }
2398 }
2399
2400 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2401 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2402 struct pf_addr *nat_addr, uint16_t nat_port)
2403 {
2404 struct pf_udp_mapping *mapping;
2405
2406 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2407 if (mapping == NULL)
2408 return (NULL);
2409 pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af);
2410 mapping->endpoints[0].port = src_port;
2411 mapping->endpoints[0].af = af;
2412 mapping->endpoints[0].mapping = mapping;
2413 pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af);
2414 mapping->endpoints[1].port = nat_port;
2415 mapping->endpoints[1].af = af;
2416 mapping->endpoints[1].mapping = mapping;
2417 refcount_init(&mapping->refs, 1);
2418 return (mapping);
2419 }
2420
2421 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2422 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2423 {
2424 struct pf_udpendpointhash *h0, *h1;
2425 struct pf_udp_endpoint *endpoint;
2426 int ret = EEXIST;
2427
2428 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2429 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2430 if (h0 == h1) {
2431 PF_HASHROW_LOCK(h0);
2432 } else if (h0 < h1) {
2433 PF_HASHROW_LOCK(h0);
2434 PF_HASHROW_LOCK(h1);
2435 } else {
2436 PF_HASHROW_LOCK(h1);
2437 PF_HASHROW_LOCK(h0);
2438 }
2439
2440 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2441 if (bcmp(endpoint, &mapping->endpoints[0],
2442 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2443 break;
2444 }
2445 if (endpoint != NULL)
2446 goto cleanup;
2447 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2448 if (bcmp(endpoint, &mapping->endpoints[1],
2449 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2450 break;
2451 }
2452 if (endpoint != NULL)
2453 goto cleanup;
2454 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2455 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2456 ret = 0;
2457
2458 cleanup:
2459 if (h0 != h1) {
2460 PF_HASHROW_UNLOCK(h0);
2461 PF_HASHROW_UNLOCK(h1);
2462 } else {
2463 PF_HASHROW_UNLOCK(h0);
2464 }
2465 return (ret);
2466 }
2467
2468 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2469 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2470 {
2471 /* refcount is synchronized on the source endpoint's row lock */
2472 struct pf_udpendpointhash *h0, *h1;
2473
2474 if (mapping == NULL)
2475 return;
2476
2477 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2478 PF_HASHROW_LOCK(h0);
2479 if (refcount_release(&mapping->refs)) {
2480 LIST_REMOVE(&mapping->endpoints[0], entry);
2481 PF_HASHROW_UNLOCK(h0);
2482 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2483 PF_HASHROW_LOCK(h1);
2484 LIST_REMOVE(&mapping->endpoints[1], entry);
2485 PF_HASHROW_UNLOCK(h1);
2486
2487 uma_zfree(V_pf_udp_mapping_z, mapping);
2488 } else {
2489 PF_HASHROW_UNLOCK(h0);
2490 }
2491 }
2492
2493
2494 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2495 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2496 {
2497 struct pf_udpendpointhash *uh;
2498 struct pf_udp_endpoint *endpoint;
2499
2500 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2501
2502 PF_HASHROW_LOCK(uh);
2503 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2504 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2505 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2506 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2507 break;
2508 }
2509 if (endpoint == NULL) {
2510 PF_HASHROW_UNLOCK(uh);
2511 return (NULL);
2512 }
2513 refcount_acquire(&endpoint->mapping->refs);
2514 PF_HASHROW_UNLOCK(uh);
2515 return (endpoint->mapping);
2516 }
2517 /* END state table stuff */
2518
2519 static void
pf_send(struct pf_send_entry * pfse)2520 pf_send(struct pf_send_entry *pfse)
2521 {
2522
2523 PF_SENDQ_LOCK();
2524 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2525 PF_SENDQ_UNLOCK();
2526 swi_sched(V_pf_swi_cookie, 0);
2527 }
2528
2529 static bool
pf_isforlocal(struct mbuf * m,int af)2530 pf_isforlocal(struct mbuf *m, int af)
2531 {
2532 switch (af) {
2533 #ifdef INET
2534 case AF_INET: {
2535 struct ip *ip = mtod(m, struct ip *);
2536
2537 return (in_localip(ip->ip_dst));
2538 }
2539 #endif /* INET */
2540 #ifdef INET6
2541 case AF_INET6: {
2542 struct ip6_hdr *ip6;
2543 struct in6_ifaddr *ia;
2544 ip6 = mtod(m, struct ip6_hdr *);
2545 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2546 if (ia == NULL)
2547 return (false);
2548 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2549 }
2550 #endif /* INET6 */
2551 default:
2552 unhandled_af(af);
2553 }
2554
2555 return (false);
2556 }
2557
2558 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2559 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2560 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2561 {
2562 /*
2563 * ICMP types marked with PF_OUT are typically responses to
2564 * PF_IN, and will match states in the opposite direction.
2565 * PF_IN ICMP types need to match a state with that type.
2566 */
2567 *icmp_dir = PF_OUT;
2568
2569 /* Queries (and responses) */
2570 switch (pd->af) {
2571 #ifdef INET
2572 case AF_INET:
2573 switch (type) {
2574 case ICMP_ECHO:
2575 *icmp_dir = PF_IN;
2576 /* FALLTHROUGH */
2577 case ICMP_ECHOREPLY:
2578 *virtual_type = ICMP_ECHO;
2579 *virtual_id = pd->hdr.icmp.icmp_id;
2580 break;
2581
2582 case ICMP_TSTAMP:
2583 *icmp_dir = PF_IN;
2584 /* FALLTHROUGH */
2585 case ICMP_TSTAMPREPLY:
2586 *virtual_type = ICMP_TSTAMP;
2587 *virtual_id = pd->hdr.icmp.icmp_id;
2588 break;
2589
2590 case ICMP_IREQ:
2591 *icmp_dir = PF_IN;
2592 /* FALLTHROUGH */
2593 case ICMP_IREQREPLY:
2594 *virtual_type = ICMP_IREQ;
2595 *virtual_id = pd->hdr.icmp.icmp_id;
2596 break;
2597
2598 case ICMP_MASKREQ:
2599 *icmp_dir = PF_IN;
2600 /* FALLTHROUGH */
2601 case ICMP_MASKREPLY:
2602 *virtual_type = ICMP_MASKREQ;
2603 *virtual_id = pd->hdr.icmp.icmp_id;
2604 break;
2605
2606 case ICMP_IPV6_WHEREAREYOU:
2607 *icmp_dir = PF_IN;
2608 /* FALLTHROUGH */
2609 case ICMP_IPV6_IAMHERE:
2610 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2611 *virtual_id = 0; /* Nothing sane to match on! */
2612 break;
2613
2614 case ICMP_MOBILE_REGREQUEST:
2615 *icmp_dir = PF_IN;
2616 /* FALLTHROUGH */
2617 case ICMP_MOBILE_REGREPLY:
2618 *virtual_type = ICMP_MOBILE_REGREQUEST;
2619 *virtual_id = 0; /* Nothing sane to match on! */
2620 break;
2621
2622 case ICMP_ROUTERSOLICIT:
2623 *icmp_dir = PF_IN;
2624 /* FALLTHROUGH */
2625 case ICMP_ROUTERADVERT:
2626 *virtual_type = ICMP_ROUTERSOLICIT;
2627 *virtual_id = 0; /* Nothing sane to match on! */
2628 break;
2629
2630 /* These ICMP types map to other connections */
2631 case ICMP_UNREACH:
2632 case ICMP_SOURCEQUENCH:
2633 case ICMP_REDIRECT:
2634 case ICMP_TIMXCEED:
2635 case ICMP_PARAMPROB:
2636 /* These will not be used, but set them anyway */
2637 *icmp_dir = PF_IN;
2638 *virtual_type = type;
2639 *virtual_id = 0;
2640 *virtual_type = htons(*virtual_type);
2641 return (1); /* These types match to another state */
2642
2643 /*
2644 * All remaining ICMP types get their own states,
2645 * and will only match in one direction.
2646 */
2647 default:
2648 *icmp_dir = PF_IN;
2649 *virtual_type = type;
2650 *virtual_id = 0;
2651 break;
2652 }
2653 break;
2654 #endif /* INET */
2655 #ifdef INET6
2656 case AF_INET6:
2657 switch (type) {
2658 case ICMP6_ECHO_REQUEST:
2659 *icmp_dir = PF_IN;
2660 /* FALLTHROUGH */
2661 case ICMP6_ECHO_REPLY:
2662 *virtual_type = ICMP6_ECHO_REQUEST;
2663 *virtual_id = pd->hdr.icmp6.icmp6_id;
2664 break;
2665
2666 case MLD_LISTENER_QUERY:
2667 case MLD_LISTENER_REPORT: {
2668 /*
2669 * Listener Report can be sent by clients
2670 * without an associated Listener Query.
2671 * In addition to that, when Report is sent as a
2672 * reply to a Query its source and destination
2673 * address are different.
2674 */
2675 *icmp_dir = PF_IN;
2676 *virtual_type = MLD_LISTENER_QUERY;
2677 *virtual_id = 0;
2678 break;
2679 }
2680 case MLD_MTRACE:
2681 *icmp_dir = PF_IN;
2682 /* FALLTHROUGH */
2683 case MLD_MTRACE_RESP:
2684 *virtual_type = MLD_MTRACE;
2685 *virtual_id = 0; /* Nothing sane to match on! */
2686 break;
2687
2688 case ND_NEIGHBOR_SOLICIT:
2689 *icmp_dir = PF_IN;
2690 /* FALLTHROUGH */
2691 case ND_NEIGHBOR_ADVERT: {
2692 *virtual_type = ND_NEIGHBOR_SOLICIT;
2693 *virtual_id = 0;
2694 break;
2695 }
2696
2697 /*
2698 * These ICMP types map to other connections.
2699 * ND_REDIRECT can't be in this list because the triggering
2700 * packet header is optional.
2701 */
2702 case ICMP6_DST_UNREACH:
2703 case ICMP6_PACKET_TOO_BIG:
2704 case ICMP6_TIME_EXCEEDED:
2705 case ICMP6_PARAM_PROB:
2706 /* These will not be used, but set them anyway */
2707 *icmp_dir = PF_IN;
2708 *virtual_type = type;
2709 *virtual_id = 0;
2710 *virtual_type = htons(*virtual_type);
2711 return (1); /* These types match to another state */
2712 /*
2713 * All remaining ICMP6 types get their own states,
2714 * and will only match in one direction.
2715 */
2716 default:
2717 *icmp_dir = PF_IN;
2718 *virtual_type = type;
2719 *virtual_id = 0;
2720 break;
2721 }
2722 break;
2723 #endif /* INET6 */
2724 default:
2725 unhandled_af(pd->af);
2726 }
2727 *virtual_type = htons(*virtual_type);
2728 return (0); /* These types match to their own state */
2729 }
2730
2731 void
pf_intr(void * v)2732 pf_intr(void *v)
2733 {
2734 struct epoch_tracker et;
2735 struct pf_send_head queue;
2736 struct pf_send_entry *pfse, *next;
2737
2738 CURVNET_SET((struct vnet *)v);
2739
2740 PF_SENDQ_LOCK();
2741 queue = V_pf_sendqueue;
2742 STAILQ_INIT(&V_pf_sendqueue);
2743 PF_SENDQ_UNLOCK();
2744
2745 NET_EPOCH_ENTER(et);
2746
2747 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2748 switch (pfse->pfse_type) {
2749 #ifdef INET
2750 case PFSE_IP: {
2751 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2752 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2753 ("%s: rcvif != loif", __func__));
2754
2755 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2756 pfse->pfse_m->m_pkthdr.csum_flags |=
2757 CSUM_IP_VALID | CSUM_IP_CHECKED |
2758 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2759 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2760 ip_input(pfse->pfse_m);
2761 } else {
2762 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2763 NULL);
2764 }
2765 break;
2766 }
2767 case PFSE_ICMP:
2768 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2769 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2770 break;
2771 #endif /* INET */
2772 #ifdef INET6
2773 case PFSE_IP6:
2774 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2775 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2776 ("%s: rcvif != loif", __func__));
2777
2778 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2779 M_LOOP;
2780 pfse->pfse_m->m_pkthdr.csum_flags |=
2781 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2782 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2783 ip6_input(pfse->pfse_m);
2784 } else {
2785 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2786 NULL, NULL);
2787 }
2788 break;
2789 case PFSE_ICMP6:
2790 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2791 pfse->icmpopts.code, pfse->icmpopts.mtu);
2792 break;
2793 #endif /* INET6 */
2794 default:
2795 panic("%s: unknown type", __func__);
2796 }
2797 free(pfse, M_PFTEMP);
2798 }
2799 NET_EPOCH_EXIT(et);
2800 CURVNET_RESTORE();
2801 }
2802
2803 #define pf_purge_thread_period (hz / 10)
2804
2805 #ifdef PF_WANT_32_TO_64_COUNTER
2806 static void
pf_status_counter_u64_periodic(void)2807 pf_status_counter_u64_periodic(void)
2808 {
2809
2810 PF_RULES_RASSERT();
2811
2812 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2813 return;
2814 }
2815
2816 for (int i = 0; i < FCNT_MAX; i++) {
2817 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2818 }
2819 }
2820
2821 static void
pf_kif_counter_u64_periodic(void)2822 pf_kif_counter_u64_periodic(void)
2823 {
2824 struct pfi_kkif *kif;
2825 size_t r, run;
2826
2827 PF_RULES_RASSERT();
2828
2829 if (__predict_false(V_pf_allkifcount == 0)) {
2830 return;
2831 }
2832
2833 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2834 return;
2835 }
2836
2837 run = V_pf_allkifcount / 10;
2838 if (run < 5)
2839 run = 5;
2840
2841 for (r = 0; r < run; r++) {
2842 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2843 if (kif == NULL) {
2844 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2845 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2846 break;
2847 }
2848
2849 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2850 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2851
2852 for (int i = 0; i < 2; i++) {
2853 for (int j = 0; j < 2; j++) {
2854 for (int k = 0; k < 2; k++) {
2855 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2856 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2857 }
2858 }
2859 }
2860 }
2861 }
2862
2863 static void
pf_rule_counter_u64_periodic(void)2864 pf_rule_counter_u64_periodic(void)
2865 {
2866 struct pf_krule *rule;
2867 size_t r, run;
2868
2869 PF_RULES_RASSERT();
2870
2871 if (__predict_false(V_pf_allrulecount == 0)) {
2872 return;
2873 }
2874
2875 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2876 return;
2877 }
2878
2879 run = V_pf_allrulecount / 10;
2880 if (run < 5)
2881 run = 5;
2882
2883 for (r = 0; r < run; r++) {
2884 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2885 if (rule == NULL) {
2886 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2887 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2888 break;
2889 }
2890
2891 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2892 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2893
2894 pf_counter_u64_periodic(&rule->evaluations);
2895 for (int i = 0; i < 2; i++) {
2896 pf_counter_u64_periodic(&rule->packets[i]);
2897 pf_counter_u64_periodic(&rule->bytes[i]);
2898 }
2899 }
2900 }
2901
2902 static void
pf_counter_u64_periodic_main(void)2903 pf_counter_u64_periodic_main(void)
2904 {
2905 PF_RULES_RLOCK_TRACKER;
2906
2907 V_pf_counter_periodic_iter++;
2908
2909 PF_RULES_RLOCK();
2910 pf_counter_u64_critical_enter();
2911 pf_status_counter_u64_periodic();
2912 pf_kif_counter_u64_periodic();
2913 pf_rule_counter_u64_periodic();
2914 pf_counter_u64_critical_exit();
2915 PF_RULES_RUNLOCK();
2916 }
2917 #else
2918 #define pf_counter_u64_periodic_main() do { } while (0)
2919 #endif
2920
2921 void
pf_purge_thread(void * unused __unused)2922 pf_purge_thread(void *unused __unused)
2923 {
2924 struct epoch_tracker et;
2925
2926 VNET_ITERATOR_DECL(vnet_iter);
2927
2928 sx_xlock(&pf_end_lock);
2929 while (pf_end_threads == 0) {
2930 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2931
2932 VNET_LIST_RLOCK();
2933 NET_EPOCH_ENTER(et);
2934 VNET_FOREACH(vnet_iter) {
2935 CURVNET_SET(vnet_iter);
2936
2937 /* Wait until V_pf_default_rule is initialized. */
2938 if (V_pf_vnet_active == 0) {
2939 CURVNET_RESTORE();
2940 continue;
2941 }
2942
2943 pf_counter_u64_periodic_main();
2944
2945 /*
2946 * Process 1/interval fraction of the state
2947 * table every run.
2948 */
2949 V_pf_purge_idx =
2950 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2951 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2952
2953 /*
2954 * Purge other expired types every
2955 * PFTM_INTERVAL seconds.
2956 */
2957 if (V_pf_purge_idx == 0) {
2958 /*
2959 * Order is important:
2960 * - states and src nodes reference rules
2961 * - states and rules reference kifs
2962 */
2963 pf_purge_expired_fragments();
2964 pf_purge_expired_src_nodes();
2965 pf_purge_unlinked_rules();
2966 pf_source_purge();
2967 pfi_kkif_purge();
2968 }
2969 CURVNET_RESTORE();
2970 }
2971 NET_EPOCH_EXIT(et);
2972 VNET_LIST_RUNLOCK();
2973 }
2974
2975 pf_end_threads++;
2976 sx_xunlock(&pf_end_lock);
2977 kproc_exit(0);
2978 }
2979
2980 void
pf_unload_vnet_purge(void)2981 pf_unload_vnet_purge(void)
2982 {
2983
2984 /*
2985 * To cleanse up all kifs and rules we need
2986 * two runs: first one clears reference flags,
2987 * then pf_purge_expired_states() doesn't
2988 * raise them, and then second run frees.
2989 */
2990 pf_purge_unlinked_rules();
2991 pfi_kkif_purge();
2992
2993 /*
2994 * Now purge everything.
2995 */
2996 pf_purge_expired_states(0, V_pf_hashmask);
2997 pf_purge_fragments(UINT_MAX);
2998 pf_purge_expired_src_nodes();
2999 pf_source_purge();
3000
3001 /*
3002 * Now all kifs & rules should be unreferenced,
3003 * thus should be successfully freed.
3004 */
3005 pf_purge_unlinked_rules();
3006 pfi_kkif_purge();
3007 }
3008
3009 u_int32_t
pf_state_expires(const struct pf_kstate * state)3010 pf_state_expires(const struct pf_kstate *state)
3011 {
3012 u_int32_t timeout;
3013 u_int32_t start;
3014 u_int32_t end;
3015 u_int32_t states;
3016
3017 /* handle all PFTM_* > PFTM_MAX here */
3018 if (state->timeout == PFTM_PURGE)
3019 return (time_uptime);
3020 KASSERT(state->timeout != PFTM_UNLINKED,
3021 ("pf_state_expires: timeout == PFTM_UNLINKED"));
3022 KASSERT((state->timeout < PFTM_MAX),
3023 ("pf_state_expires: timeout > PFTM_MAX"));
3024 timeout = state->rule->timeout[state->timeout];
3025 if (!timeout)
3026 timeout = V_pf_default_rule.timeout[state->timeout];
3027 start = state->rule->timeout[PFTM_ADAPTIVE_START];
3028 if (start && state->rule != &V_pf_default_rule) {
3029 end = state->rule->timeout[PFTM_ADAPTIVE_END];
3030 states = counter_u64_fetch(state->rule->states_cur);
3031 } else {
3032 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
3033 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
3034 states = V_pf_status.states;
3035 }
3036 if (end && states > start && start < end) {
3037 if (states < end) {
3038 timeout = (u_int64_t)timeout * (end - states) /
3039 (end - start);
3040 return ((state->expire / 1000) + timeout);
3041 }
3042 else
3043 return (time_uptime);
3044 }
3045 return ((state->expire / 1000) + timeout);
3046 }
3047
3048 void
pf_purge_expired_src_nodes(void)3049 pf_purge_expired_src_nodes(void)
3050 {
3051 struct pf_ksrc_node_list freelist;
3052 struct pf_srchash *sh;
3053 struct pf_ksrc_node *cur, *next;
3054 int i;
3055
3056 LIST_INIT(&freelist);
3057 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
3058 PF_HASHROW_LOCK(sh);
3059 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
3060 if (cur->states == 0 && cur->expire <= time_uptime) {
3061 pf_unlink_src_node(cur);
3062 LIST_INSERT_HEAD(&freelist, cur, entry);
3063 } else if (cur->rule != NULL)
3064 cur->rule->rule_ref |= PFRULE_REFS;
3065 PF_HASHROW_UNLOCK(sh);
3066 }
3067
3068 pf_free_src_nodes(&freelist);
3069
3070 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
3071 }
3072
3073 static void
pf_src_tree_remove_state(struct pf_kstate * s)3074 pf_src_tree_remove_state(struct pf_kstate *s)
3075 {
3076 uint32_t timeout;
3077
3078 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
3079 s->rule->timeout[PFTM_SRC_NODE] :
3080 V_pf_default_rule.timeout[PFTM_SRC_NODE];
3081
3082 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
3083 if (s->sns[sn_type] == NULL)
3084 continue;
3085 PF_SRC_NODE_LOCK(s->sns[sn_type]);
3086 if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
3087 --(s->sns[sn_type]->conn);
3088 if (--(s->sns[sn_type]->states) == 0)
3089 s->sns[sn_type]->expire = time_uptime + timeout;
3090 PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
3091 s->sns[sn_type] = NULL;
3092 }
3093
3094 }
3095
3096 /*
3097 * Unlink and potentilly free a state. Function may be
3098 * called with ID hash row locked, but always returns
3099 * unlocked, since it needs to go through key hash locking.
3100 */
3101 int
pf_remove_state(struct pf_kstate * s)3102 pf_remove_state(struct pf_kstate *s)
3103 {
3104 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
3105 struct pf_state_link *pfl;
3106
3107 NET_EPOCH_ASSERT();
3108 PF_HASHROW_ASSERT(ih);
3109
3110 if (s->timeout == PFTM_UNLINKED) {
3111 /*
3112 * State is being processed
3113 * by pf_remove_state() in
3114 * an other thread.
3115 */
3116 PF_HASHROW_UNLOCK(ih);
3117 return (0); /* XXXGL: undefined actually */
3118 }
3119
3120 if (s->src.state == PF_TCPS_PROXY_DST) {
3121 /* XXX wire key the right one? */
3122 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
3123 &s->key[PF_SK_WIRE]->addr[1],
3124 &s->key[PF_SK_WIRE]->addr[0],
3125 s->key[PF_SK_WIRE]->port[1],
3126 s->key[PF_SK_WIRE]->port[0],
3127 s->src.seqhi, s->src.seqlo + 1,
3128 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
3129 s->act.rtableid, NULL);
3130 }
3131
3132 LIST_REMOVE(s, entry);
3133 pf_src_tree_remove_state(s);
3134
3135 if (V_pfsync_delete_state_ptr != NULL)
3136 V_pfsync_delete_state_ptr(s);
3137
3138 STATE_DEC_COUNTERS(s);
3139
3140 s->timeout = PFTM_UNLINKED;
3141
3142 /* Ensure we remove it from the list of halfopen states, if needed. */
3143 if (s->key[PF_SK_STACK] != NULL &&
3144 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
3145 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
3146
3147 while ((pfl = SLIST_FIRST(&s->linkage)) != NULL) {
3148 struct pf_state_link_list *list;
3149 unsigned int gen;
3150
3151 SLIST_REMOVE_HEAD(&s->linkage, pfl_linkage);
3152
3153 switch (pfl->pfl_type) {
3154 case PF_STATE_LINK_TYPE_STATELIM: {
3155 struct pf_statelim *stlim;
3156
3157 stlim = pf_statelim_find(s->statelim);
3158 KASSERT(stlim != NULL,
3159 ("pf_state %p pfl %p cannot find statelim %u", s,
3160 pfl, s->statelim));
3161
3162 gen = pf_statelim_enter(stlim);
3163 stlim->pfstlim_inuse--;
3164 pf_statelim_leave(stlim, gen);
3165
3166 list = &stlim->pfstlim_states;
3167 break;
3168 }
3169 case PF_STATE_LINK_TYPE_SOURCELIM: {
3170 struct pf_sourcelim *srlim;
3171 struct pf_source key, *sr;
3172
3173 srlim = pf_sourcelim_find(s->sourcelim);
3174 KASSERT(srlim != NULL,
3175 ("pf_state %p pfl %p cannot find sourcelim %u", s,
3176 pfl, s->sourcelim));
3177
3178 pf_source_key(srlim, &key, s->key[PF_SK_WIRE]->af,
3179 &s->key[PF_SK_WIRE]->addr[0 /* XXX or 1? */]);
3180
3181 sr = pf_source_find(srlim, &key);
3182 KASSERT(sr != NULL,
3183 ("pf_state %p pfl %p cannot find source in %u", s,
3184 pfl, s->sourcelim));
3185
3186 gen = pf_sourcelim_enter(srlim);
3187 srlim->pfsrlim_counters.inuse--;
3188 pf_sourcelim_leave(srlim, gen);
3189 pf_source_rele(sr);
3190
3191 list = &sr->pfsr_states;
3192 break;
3193 }
3194 default:
3195 panic("%s: unexpected link type on pfl %p", __func__,
3196 pfl);
3197 }
3198
3199 PF_STATE_LOCK_ASSERT(s);
3200 TAILQ_REMOVE(list, pfl, pfl_link);
3201 free(pfl, M_PF_STATE_LINK);
3202 }
3203
3204 PF_HASHROW_UNLOCK(ih);
3205
3206 pf_detach_state(s);
3207
3208 pf_udp_mapping_release(s->udp_mapping);
3209
3210 /* pf_state_insert() initialises refs to 2 */
3211 return (pf_release_staten(s, 2));
3212 }
3213
3214 struct pf_kstate *
pf_alloc_state(int flags)3215 pf_alloc_state(int flags)
3216 {
3217
3218 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
3219 }
3220
3221 static __inline void
pf_free_match_rules(struct pf_krule_slist * match_rules)3222 pf_free_match_rules(struct pf_krule_slist *match_rules) {
3223 struct pf_krule_item *ri;
3224
3225 while ((ri = SLIST_FIRST(match_rules))) {
3226 SLIST_REMOVE_HEAD(match_rules, entry);
3227 free(ri, M_PF_RULE_ITEM);
3228 }
3229 }
3230
3231 void
pf_free_state(struct pf_kstate * cur)3232 pf_free_state(struct pf_kstate *cur)
3233 {
3234 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
3235 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
3236 cur->timeout));
3237
3238 pf_free_match_rules(&(cur->match_rules));
3239 pf_normalize_tcp_cleanup(cur);
3240 uma_zfree(V_pf_state_z, cur);
3241 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
3242 }
3243
3244 /*
3245 * Called only from pf_purge_thread(), thus serialized.
3246 */
3247 static u_int
pf_purge_expired_states(u_int i,int maxcheck)3248 pf_purge_expired_states(u_int i, int maxcheck)
3249 {
3250 struct pf_idhash *ih;
3251 struct pf_kstate *s;
3252 struct pf_krule_item *mrm;
3253 size_t count __unused;
3254
3255 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
3256
3257 /*
3258 * Go through hash and unlink states that expire now.
3259 */
3260 while (maxcheck > 0) {
3261 count = 0;
3262 ih = &V_pf_idhash[i];
3263
3264 /* only take the lock if we expect to do work */
3265 if (!LIST_EMPTY(&ih->states)) {
3266 relock:
3267 PF_HASHROW_LOCK(ih);
3268 LIST_FOREACH(s, &ih->states, entry) {
3269 if (pf_state_expires(s) <= time_uptime) {
3270 V_pf_status.states -=
3271 pf_remove_state(s);
3272 goto relock;
3273 }
3274 s->rule->rule_ref |= PFRULE_REFS;
3275 if (s->nat_rule != NULL)
3276 s->nat_rule->rule_ref |= PFRULE_REFS;
3277 if (s->anchor != NULL)
3278 s->anchor->rule_ref |= PFRULE_REFS;
3279 s->kif->pfik_flags |= PFI_IFLAG_REFS;
3280 SLIST_FOREACH(mrm, &s->match_rules, entry)
3281 mrm->r->rule_ref |= PFRULE_REFS;
3282 if (s->act.rt_kif)
3283 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
3284 count++;
3285 }
3286 PF_HASHROW_UNLOCK(ih);
3287 }
3288
3289 SDT_PROBE2(pf, purge, state, rowcount, i, count);
3290
3291 /* Return when we hit end of hash. */
3292 if (++i > V_pf_hashmask) {
3293 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
3294 return (0);
3295 }
3296
3297 maxcheck--;
3298 }
3299
3300 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
3301
3302 return (i);
3303 }
3304
3305 static void
pf_purge_unlinked_rules(void)3306 pf_purge_unlinked_rules(void)
3307 {
3308 struct pf_krulequeue tmpq;
3309 struct pf_krule *r, *r1;
3310
3311 /*
3312 * If we have overloading task pending, then we'd
3313 * better skip purging this time. There is a tiny
3314 * probability that overloading task references
3315 * an already unlinked rule.
3316 */
3317 PF_OVERLOADQ_LOCK();
3318 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
3319 PF_OVERLOADQ_UNLOCK();
3320 return;
3321 }
3322 PF_OVERLOADQ_UNLOCK();
3323
3324 /*
3325 * Do naive mark-and-sweep garbage collecting of old rules.
3326 * Reference flag is raised by pf_purge_expired_states()
3327 * and pf_purge_expired_src_nodes().
3328 *
3329 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
3330 * use a temporary queue.
3331 */
3332 TAILQ_INIT(&tmpq);
3333 PF_UNLNKDRULES_LOCK();
3334 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
3335 if (!(r->rule_ref & PFRULE_REFS)) {
3336 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
3337 TAILQ_INSERT_TAIL(&tmpq, r, entries);
3338 } else
3339 r->rule_ref &= ~PFRULE_REFS;
3340 }
3341 PF_UNLNKDRULES_UNLOCK();
3342
3343 if (!TAILQ_EMPTY(&tmpq)) {
3344 PF_CONFIG_LOCK();
3345 PF_RULES_WLOCK();
3346 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
3347 TAILQ_REMOVE(&tmpq, r, entries);
3348 pf_free_rule(r);
3349 }
3350 PF_RULES_WUNLOCK();
3351 PF_CONFIG_UNLOCK();
3352 }
3353 }
3354
3355 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)3356 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
3357 {
3358 switch (af) {
3359 #ifdef INET
3360 case AF_INET: {
3361 u_int32_t a = ntohl(addr->addr32[0]);
3362 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
3363 (a>>8)&255, a&255);
3364 if (p) {
3365 p = ntohs(p);
3366 printf(":%u", p);
3367 }
3368 break;
3369 }
3370 #endif /* INET */
3371 #ifdef INET6
3372 case AF_INET6: {
3373 u_int16_t b;
3374 u_int8_t i, curstart, curend, maxstart, maxend;
3375 curstart = curend = maxstart = maxend = 255;
3376 for (i = 0; i < 8; i++) {
3377 if (!addr->addr16[i]) {
3378 if (curstart == 255)
3379 curstart = i;
3380 curend = i;
3381 } else {
3382 if ((curend - curstart) >
3383 (maxend - maxstart)) {
3384 maxstart = curstart;
3385 maxend = curend;
3386 }
3387 curstart = curend = 255;
3388 }
3389 }
3390 if ((curend - curstart) >
3391 (maxend - maxstart)) {
3392 maxstart = curstart;
3393 maxend = curend;
3394 }
3395 for (i = 0; i < 8; i++) {
3396 if (i >= maxstart && i <= maxend) {
3397 if (i == 0)
3398 printf(":");
3399 if (i == maxend)
3400 printf(":");
3401 } else {
3402 b = ntohs(addr->addr16[i]);
3403 printf("%x", b);
3404 if (i < 7)
3405 printf(":");
3406 }
3407 }
3408 if (p) {
3409 p = ntohs(p);
3410 printf("[%u]", p);
3411 }
3412 break;
3413 }
3414 #endif /* INET6 */
3415 default:
3416 unhandled_af(af);
3417 }
3418 }
3419
3420 void
pf_print_state(struct pf_kstate * s)3421 pf_print_state(struct pf_kstate *s)
3422 {
3423 pf_print_state_parts(s, NULL, NULL);
3424 }
3425
3426 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3427 pf_print_state_parts(struct pf_kstate *s,
3428 struct pf_state_key *skwp, struct pf_state_key *sksp)
3429 {
3430 struct pf_state_key *skw, *sks;
3431 u_int8_t proto, dir;
3432
3433 /* Do our best to fill these, but they're skipped if NULL */
3434 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3435 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3436 proto = skw ? skw->proto : (sks ? sks->proto : 0);
3437 dir = s ? s->direction : 0;
3438
3439 switch (proto) {
3440 case IPPROTO_IPV4:
3441 printf("IPv4");
3442 break;
3443 case IPPROTO_IPV6:
3444 printf("IPv6");
3445 break;
3446 case IPPROTO_TCP:
3447 printf("TCP");
3448 break;
3449 case IPPROTO_UDP:
3450 printf("UDP");
3451 break;
3452 case IPPROTO_ICMP:
3453 printf("ICMP");
3454 break;
3455 case IPPROTO_ICMPV6:
3456 printf("ICMPv6");
3457 break;
3458 default:
3459 printf("%u", proto);
3460 break;
3461 }
3462 switch (dir) {
3463 case PF_IN:
3464 printf(" in");
3465 break;
3466 case PF_OUT:
3467 printf(" out");
3468 break;
3469 }
3470 if (skw) {
3471 printf(" wire: ");
3472 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3473 printf(" ");
3474 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3475 }
3476 if (sks) {
3477 printf(" stack: ");
3478 if (sks != skw) {
3479 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3480 printf(" ");
3481 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3482 } else
3483 printf("-");
3484 }
3485 if (s) {
3486 if (proto == IPPROTO_TCP) {
3487 printf(" [lo=%u high=%u win=%u modulator=%u",
3488 s->src.seqlo, s->src.seqhi,
3489 s->src.max_win, s->src.seqdiff);
3490 if (s->src.wscale && s->dst.wscale)
3491 printf(" wscale=%u",
3492 s->src.wscale & PF_WSCALE_MASK);
3493 printf("]");
3494 printf(" [lo=%u high=%u win=%u modulator=%u",
3495 s->dst.seqlo, s->dst.seqhi,
3496 s->dst.max_win, s->dst.seqdiff);
3497 if (s->src.wscale && s->dst.wscale)
3498 printf(" wscale=%u",
3499 s->dst.wscale & PF_WSCALE_MASK);
3500 printf("]");
3501 }
3502 printf(" %u:%u", s->src.state, s->dst.state);
3503 if (s->rule)
3504 printf(" @%d", s->rule->nr);
3505 }
3506 }
3507
3508 void
pf_print_flags(uint16_t f)3509 pf_print_flags(uint16_t f)
3510 {
3511 if (f)
3512 printf(" ");
3513 if (f & TH_FIN)
3514 printf("F");
3515 if (f & TH_SYN)
3516 printf("S");
3517 if (f & TH_RST)
3518 printf("R");
3519 if (f & TH_PUSH)
3520 printf("P");
3521 if (f & TH_ACK)
3522 printf("A");
3523 if (f & TH_URG)
3524 printf("U");
3525 if (f & TH_ECE)
3526 printf("E");
3527 if (f & TH_CWR)
3528 printf("W");
3529 if (f & TH_AE)
3530 printf("e");
3531 }
3532
3533 #define PF_SET_SKIP_STEPS(i) \
3534 do { \
3535 while (head[i] != cur) { \
3536 head[i]->skip[i] = cur; \
3537 head[i] = TAILQ_NEXT(head[i], entries); \
3538 } \
3539 } while (0)
3540
3541 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3542 pf_calc_skip_steps(struct pf_krulequeue *rules)
3543 {
3544 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3545 int i;
3546
3547 cur = TAILQ_FIRST(rules);
3548 prev = cur;
3549 for (i = 0; i < PF_SKIP_COUNT; ++i)
3550 head[i] = cur;
3551 while (cur != NULL) {
3552 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3553 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3554 if (cur->direction != prev->direction)
3555 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3556 if (cur->af != prev->af)
3557 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3558 if (cur->proto != prev->proto)
3559 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3560 if (cur->src.neg != prev->src.neg ||
3561 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3562 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3563 if (cur->dst.neg != prev->dst.neg ||
3564 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3565 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3566 if (cur->src.port[0] != prev->src.port[0] ||
3567 cur->src.port[1] != prev->src.port[1] ||
3568 cur->src.port_op != prev->src.port_op)
3569 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3570 if (cur->dst.port[0] != prev->dst.port[0] ||
3571 cur->dst.port[1] != prev->dst.port[1] ||
3572 cur->dst.port_op != prev->dst.port_op)
3573 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3574
3575 prev = cur;
3576 cur = TAILQ_NEXT(cur, entries);
3577 }
3578 for (i = 0; i < PF_SKIP_COUNT; ++i)
3579 PF_SET_SKIP_STEPS(i);
3580 }
3581
3582 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3583 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3584 {
3585 if (aw1->type != aw2->type)
3586 return (1);
3587 switch (aw1->type) {
3588 case PF_ADDR_ADDRMASK:
3589 case PF_ADDR_RANGE:
3590 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3591 return (1);
3592 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3593 return (1);
3594 return (0);
3595 case PF_ADDR_DYNIFTL:
3596 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3597 case PF_ADDR_NONE:
3598 case PF_ADDR_NOROUTE:
3599 case PF_ADDR_URPFFAILED:
3600 return (0);
3601 case PF_ADDR_TABLE:
3602 return (aw1->p.tbl != aw2->p.tbl);
3603 default:
3604 printf("invalid address type: %d\n", aw1->type);
3605 return (1);
3606 }
3607 }
3608
3609 /**
3610 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3611 * header isn't always a full checksum. In some cases (i.e. output) it's a
3612 * pseudo-header checksum, which is a partial checksum over src/dst IP
3613 * addresses, protocol number and length.
3614 *
3615 * That means we have the following cases:
3616 * * Input or forwarding: we don't have TSO, the checksum fields are full
3617 * checksums, we need to update the checksum whenever we change anything.
3618 * * Output (i.e. the checksum is a pseudo-header checksum):
3619 * x The field being updated is src/dst address or affects the length of
3620 * the packet. We need to update the pseudo-header checksum (note that this
3621 * checksum is not ones' complement).
3622 * x Some other field is being modified (e.g. src/dst port numbers): We
3623 * don't have to update anything.
3624 **/
3625 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3626 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3627 {
3628 u_int32_t x;
3629
3630 x = cksum + old - new;
3631 x = (x + (x >> 16)) & 0xffff;
3632
3633 /* optimise: eliminate a branch when not udp */
3634 if (udp && cksum == 0x0000)
3635 return cksum;
3636 if (udp && x == 0x0000)
3637 x = 0xffff;
3638
3639 return (u_int16_t)(x);
3640 }
3641
3642 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3643 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3644 {
3645 int rewrite = 0;
3646
3647 if (*f != v) {
3648 uint16_t old = htons(hi ? (*f << 8) : *f);
3649 uint16_t new = htons(hi ? ( v << 8) : v);
3650
3651 *f = v;
3652
3653 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3654 CSUM_DELAY_DATA_IPV6)))
3655 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3656 pd->proto == IPPROTO_UDP);
3657
3658 rewrite = 1;
3659 }
3660
3661 return (rewrite);
3662 }
3663
3664 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3665 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3666 {
3667 int rewrite = 0;
3668 u_int8_t *fb = (u_int8_t *)f;
3669 u_int8_t *vb = (u_int8_t *)&v;
3670
3671 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3672 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3673
3674 return (rewrite);
3675 }
3676
3677 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3678 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3679 {
3680 int rewrite = 0;
3681 u_int8_t *fb = (u_int8_t *)f;
3682 u_int8_t *vb = (u_int8_t *)&v;
3683
3684 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3685 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3686 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3687 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3688
3689 return (rewrite);
3690 }
3691
3692 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3693 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3694 u_int16_t new, u_int8_t udp)
3695 {
3696 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3697 return (cksum);
3698
3699 return (pf_cksum_fixup(cksum, old, new, udp));
3700 }
3701
3702 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3703 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3704 struct pf_addr *an, u_int16_t pn)
3705 {
3706 struct pf_addr ao;
3707 u_int16_t po;
3708 uint8_t u = pd->virtual_proto == IPPROTO_UDP;
3709
3710 MPASS(pd->pcksum != NULL);
3711 if (pd->af == AF_INET) {
3712 MPASS(pd->ip_sum);
3713 }
3714
3715 pf_addrcpy(&ao, a, pd->af);
3716 if (pd->af == pd->naf)
3717 pf_addrcpy(a, an, pd->af);
3718
3719 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3720 *pd->pcksum = ~*pd->pcksum;
3721
3722 if (p == NULL) /* no port -> done. no cksum to worry about. */
3723 return;
3724 po = *p;
3725 *p = pn;
3726
3727 switch (pd->af) {
3728 #ifdef INET
3729 case AF_INET:
3730 switch (pd->naf) {
3731 case AF_INET:
3732 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3733 ao.addr16[0], an->addr16[0], 0),
3734 ao.addr16[1], an->addr16[1], 0);
3735 *p = pn;
3736
3737 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3738 ao.addr16[0], an->addr16[0], u),
3739 ao.addr16[1], an->addr16[1], u);
3740
3741 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3742 break;
3743 #ifdef INET6
3744 case AF_INET6:
3745 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3746 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3747 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3748 ao.addr16[0], an->addr16[0], u),
3749 ao.addr16[1], an->addr16[1], u),
3750 0, an->addr16[2], u),
3751 0, an->addr16[3], u),
3752 0, an->addr16[4], u),
3753 0, an->addr16[5], u),
3754 0, an->addr16[6], u),
3755 0, an->addr16[7], u),
3756 po, pn, u);
3757 break;
3758 #endif /* INET6 */
3759 default:
3760 unhandled_af(pd->naf);
3761 }
3762 break;
3763 #endif /* INET */
3764 #ifdef INET6
3765 case AF_INET6:
3766 switch (pd->naf) {
3767 #ifdef INET
3768 case AF_INET:
3769 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3770 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3771 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3772 ao.addr16[0], an->addr16[0], u),
3773 ao.addr16[1], an->addr16[1], u),
3774 ao.addr16[2], 0, u),
3775 ao.addr16[3], 0, u),
3776 ao.addr16[4], 0, u),
3777 ao.addr16[5], 0, u),
3778 ao.addr16[6], 0, u),
3779 ao.addr16[7], 0, u),
3780 po, pn, u);
3781 break;
3782 #endif /* INET */
3783 case AF_INET6:
3784 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3785 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3786 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3787 ao.addr16[0], an->addr16[0], u),
3788 ao.addr16[1], an->addr16[1], u),
3789 ao.addr16[2], an->addr16[2], u),
3790 ao.addr16[3], an->addr16[3], u),
3791 ao.addr16[4], an->addr16[4], u),
3792 ao.addr16[5], an->addr16[5], u),
3793 ao.addr16[6], an->addr16[6], u),
3794 ao.addr16[7], an->addr16[7], u);
3795
3796 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3797 break;
3798 default:
3799 unhandled_af(pd->naf);
3800 }
3801 break;
3802 #endif /* INET6 */
3803 default:
3804 unhandled_af(pd->af);
3805 }
3806
3807 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3808 CSUM_DELAY_DATA_IPV6)) {
3809 *pd->pcksum = ~*pd->pcksum;
3810 if (! *pd->pcksum)
3811 *pd->pcksum = 0xffff;
3812 }
3813 }
3814
3815 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3816 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3817 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3818 {
3819 u_int32_t ao;
3820
3821 memcpy(&ao, a, sizeof(ao));
3822 memcpy(a, &an, sizeof(u_int32_t));
3823 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3824 ao % 65536, an % 65536, u);
3825 }
3826
3827 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3828 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3829 {
3830 u_int32_t ao;
3831
3832 memcpy(&ao, a, sizeof(ao));
3833 memcpy(a, &an, sizeof(u_int32_t));
3834
3835 *c = pf_proto_cksum_fixup(m,
3836 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3837 ao % 65536, an % 65536, udp);
3838 }
3839
3840 #ifdef INET6
3841 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3842 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3843 {
3844 struct pf_addr ao;
3845
3846 pf_addrcpy(&ao, a, AF_INET6);
3847 pf_addrcpy(a, an, AF_INET6);
3848
3849 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3850 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3851 pf_cksum_fixup(pf_cksum_fixup(*c,
3852 ao.addr16[0], an->addr16[0], u),
3853 ao.addr16[1], an->addr16[1], u),
3854 ao.addr16[2], an->addr16[2], u),
3855 ao.addr16[3], an->addr16[3], u),
3856 ao.addr16[4], an->addr16[4], u),
3857 ao.addr16[5], an->addr16[5], u),
3858 ao.addr16[6], an->addr16[6], u),
3859 ao.addr16[7], an->addr16[7], u);
3860 }
3861 #endif /* INET6 */
3862
3863 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3864 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3865 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3866 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3867 {
3868 struct pf_addr oia, ooa;
3869
3870 pf_addrcpy(&oia, ia, af);
3871 if (oa)
3872 pf_addrcpy(&ooa, oa, af);
3873
3874 /* Change inner protocol port, fix inner protocol checksum. */
3875 if (ip != NULL) {
3876 u_int16_t oip = *ip;
3877 u_int16_t opc;
3878
3879 if (pc != NULL)
3880 opc = *pc;
3881 *ip = np;
3882 if (pc != NULL)
3883 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3884 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3885 if (pc != NULL)
3886 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3887 }
3888 /* Change inner ip address, fix inner ip and icmp checksums. */
3889 pf_addrcpy(ia, na, af);
3890 switch (af) {
3891 #ifdef INET
3892 case AF_INET: {
3893 u_int16_t oh2c = *h2c;
3894
3895 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3896 oia.addr16[0], ia->addr16[0], 0),
3897 oia.addr16[1], ia->addr16[1], 0);
3898 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3899 oia.addr16[0], ia->addr16[0], 0),
3900 oia.addr16[1], ia->addr16[1], 0);
3901 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3902 break;
3903 }
3904 #endif /* INET */
3905 #ifdef INET6
3906 case AF_INET6:
3907 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3908 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3909 pf_cksum_fixup(pf_cksum_fixup(*ic,
3910 oia.addr16[0], ia->addr16[0], u),
3911 oia.addr16[1], ia->addr16[1], u),
3912 oia.addr16[2], ia->addr16[2], u),
3913 oia.addr16[3], ia->addr16[3], u),
3914 oia.addr16[4], ia->addr16[4], u),
3915 oia.addr16[5], ia->addr16[5], u),
3916 oia.addr16[6], ia->addr16[6], u),
3917 oia.addr16[7], ia->addr16[7], u);
3918 break;
3919 #endif /* INET6 */
3920 }
3921 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3922 if (oa) {
3923 pf_addrcpy(oa, na, af);
3924 switch (af) {
3925 #ifdef INET
3926 case AF_INET:
3927 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3928 ooa.addr16[0], oa->addr16[0], 0),
3929 ooa.addr16[1], oa->addr16[1], 0);
3930 break;
3931 #endif /* INET */
3932 #ifdef INET6
3933 case AF_INET6:
3934 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3935 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3936 pf_cksum_fixup(pf_cksum_fixup(*ic,
3937 ooa.addr16[0], oa->addr16[0], u),
3938 ooa.addr16[1], oa->addr16[1], u),
3939 ooa.addr16[2], oa->addr16[2], u),
3940 ooa.addr16[3], oa->addr16[3], u),
3941 ooa.addr16[4], oa->addr16[4], u),
3942 ooa.addr16[5], oa->addr16[5], u),
3943 ooa.addr16[6], oa->addr16[6], u),
3944 ooa.addr16[7], oa->addr16[7], u);
3945 break;
3946 #endif /* INET6 */
3947 }
3948 }
3949 }
3950
3951 static int
pf_translate_af(struct pf_pdesc * pd,struct pf_krule * r)3952 pf_translate_af(struct pf_pdesc *pd, struct pf_krule *r)
3953 {
3954 #if defined(INET) && defined(INET6)
3955 struct mbuf *mp;
3956 struct ip *ip4;
3957 struct ip6_hdr *ip6;
3958 struct icmp6_hdr *icmp;
3959 struct m_tag *mtag;
3960 struct pf_fragment_tag *ftag;
3961 int hlen;
3962
3963 if (pd->ttl == 1) {
3964 /* We'd generate an ICMP error. Do so now rather than after af translation. */
3965 if (pd->af == AF_INET) {
3966 pf_send_icmp(pd->m, ICMP_TIMXCEED,
3967 ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
3968 pd->act.rtableid);
3969 } else {
3970 pf_send_icmp(pd->m, ICMP6_TIME_EXCEEDED,
3971 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
3972 pd->act.rtableid);
3973 }
3974
3975 return (-1);
3976 }
3977
3978 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3979
3980 /* trim the old header */
3981 m_adj(pd->m, pd->off);
3982
3983 /* prepend a new one */
3984 M_PREPEND(pd->m, hlen, M_NOWAIT);
3985 if (pd->m == NULL)
3986 return (-1);
3987
3988 switch (pd->naf) {
3989 case AF_INET:
3990 ip4 = mtod(pd->m, struct ip *);
3991 bzero(ip4, hlen);
3992 ip4->ip_v = IPVERSION;
3993 ip4->ip_hl = hlen >> 2;
3994 ip4->ip_tos = pd->tos;
3995 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3996 ip_fillid(ip4, V_ip_random_id);
3997 ip4->ip_ttl = pd->ttl;
3998 ip4->ip_p = pd->proto;
3999 ip4->ip_src = pd->nsaddr.v4;
4000 ip4->ip_dst = pd->ndaddr.v4;
4001 pd->src = (struct pf_addr *)&ip4->ip_src;
4002 pd->dst = (struct pf_addr *)&ip4->ip_dst;
4003 pd->off = sizeof(struct ip);
4004 if (pd->m->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
4005 pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP_IPV6;
4006 pd->m->m_pkthdr.csum_flags |= CSUM_TCP;
4007 }
4008 if (pd->m->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
4009 pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP_IPV6;
4010 pd->m->m_pkthdr.csum_flags |= CSUM_UDP;
4011 }
4012 if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
4013 pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
4014 pd->m->m_pkthdr.csum_flags |= CSUM_SCTP;
4015 }
4016 break;
4017 case AF_INET6:
4018 ip6 = mtod(pd->m, struct ip6_hdr *);
4019 bzero(ip6, hlen);
4020 ip6->ip6_vfc = IPV6_VERSION;
4021 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
4022 ip6->ip6_plen = htons(pd->tot_len - pd->off);
4023 ip6->ip6_nxt = pd->proto;
4024 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
4025 ip6->ip6_hlim = IPV6_DEFHLIM;
4026 else
4027 ip6->ip6_hlim = pd->ttl;
4028 ip6->ip6_src = pd->nsaddr.v6;
4029 ip6->ip6_dst = pd->ndaddr.v6;
4030 pd->src = (struct pf_addr *)&ip6->ip6_src;
4031 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
4032 pd->off = sizeof(struct ip6_hdr);
4033 if (pd->m->m_pkthdr.csum_flags & CSUM_TCP) {
4034 pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP;
4035 pd->m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4036 }
4037 if (pd->m->m_pkthdr.csum_flags & CSUM_UDP) {
4038 pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP;
4039 pd->m->m_pkthdr.csum_flags |= CSUM_UDP_IPV6;
4040 }
4041 if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP) {
4042 pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
4043 pd->m->m_pkthdr.csum_flags |= CSUM_SCTP_IPV6;
4044 }
4045
4046 /*
4047 * If we're dealing with a reassembled packet we need to adjust
4048 * the header length from the IPv4 header size to IPv6 header
4049 * size.
4050 */
4051 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
4052 if (mtag) {
4053 ftag = (struct pf_fragment_tag *)(mtag + 1);
4054 ftag->ft_hdrlen = sizeof(*ip6);
4055 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
4056 sizeof(struct ip) + sizeof(struct ip6_frag);
4057 }
4058 break;
4059 default:
4060 return (-1);
4061 }
4062
4063 /* recalculate icmp/icmp6 checksums */
4064 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
4065 int off;
4066 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
4067 NULL) {
4068 pd->m = NULL;
4069 return (-1);
4070 }
4071 icmp = (struct icmp6_hdr *)(mp->m_data + off);
4072 icmp->icmp6_cksum = 0;
4073 icmp->icmp6_cksum = pd->naf == AF_INET ?
4074 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
4075 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
4076 ntohs(ip6->ip6_plen));
4077 }
4078 #endif /* INET && INET6 */
4079
4080 return (0);
4081 }
4082
4083 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)4084 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
4085 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
4086 sa_family_t af, sa_family_t naf)
4087 {
4088 #if defined(INET) && defined(INET6)
4089 struct mbuf *n = NULL;
4090 struct ip *ip4;
4091 struct ip6_hdr *ip6;
4092 int hlen, olen, mlen;
4093
4094 if (af == naf || (af != AF_INET && af != AF_INET6) ||
4095 (naf != AF_INET && naf != AF_INET6))
4096 return (-1);
4097
4098 /* split the mbuf chain on the inner ip/ip6 header boundary */
4099 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
4100 return (-1);
4101
4102 /* old header */
4103 olen = pd2->off - off;
4104 /* new header */
4105 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
4106
4107 /* trim old header */
4108 m_adj(n, olen);
4109
4110 /* prepend a new one */
4111 M_PREPEND(n, hlen, M_NOWAIT);
4112 if (n == NULL)
4113 return (-1);
4114
4115 /* translate inner ip/ip6 header */
4116 switch (naf) {
4117 case AF_INET:
4118 ip4 = mtod(n, struct ip *);
4119 bzero(ip4, sizeof(*ip4));
4120 ip4->ip_v = IPVERSION;
4121 ip4->ip_hl = sizeof(*ip4) >> 2;
4122 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
4123 ip_fillid(ip4, V_ip_random_id);
4124 ip4->ip_off = htons(IP_DF);
4125 ip4->ip_ttl = pd2->ttl;
4126 if (pd2->proto == IPPROTO_ICMPV6)
4127 ip4->ip_p = IPPROTO_ICMP;
4128 else
4129 ip4->ip_p = pd2->proto;
4130 ip4->ip_src = src->v4;
4131 ip4->ip_dst = dst->v4;
4132 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
4133 break;
4134 case AF_INET6:
4135 ip6 = mtod(n, struct ip6_hdr *);
4136 bzero(ip6, sizeof(*ip6));
4137 ip6->ip6_vfc = IPV6_VERSION;
4138 ip6->ip6_plen = htons(pd2->tot_len - olen);
4139 if (pd2->proto == IPPROTO_ICMP)
4140 ip6->ip6_nxt = IPPROTO_ICMPV6;
4141 else
4142 ip6->ip6_nxt = pd2->proto;
4143 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
4144 ip6->ip6_hlim = IPV6_DEFHLIM;
4145 else
4146 ip6->ip6_hlim = pd2->ttl;
4147 ip6->ip6_src = src->v6;
4148 ip6->ip6_dst = dst->v6;
4149 break;
4150 default:
4151 unhandled_af(naf);
4152 }
4153
4154 /* adjust payload offset and total packet length */
4155 pd2->off += hlen - olen;
4156 pd->tot_len += hlen - olen;
4157
4158 /* merge modified inner packet with the original header */
4159 mlen = n->m_pkthdr.len;
4160 m_cat(m, n);
4161 m->m_pkthdr.len += mlen;
4162 #endif /* INET && INET6 */
4163
4164 return (0);
4165 }
4166
4167 #define PTR_IP(field) (offsetof(struct ip, field))
4168 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
4169
4170 int
pf_translate_icmp_af(int af,void * arg)4171 pf_translate_icmp_af(int af, void *arg)
4172 {
4173 #if defined(INET) && defined(INET6)
4174 struct icmp *icmp4;
4175 struct icmp6_hdr *icmp6;
4176 u_int32_t mtu;
4177 int32_t ptr = -1;
4178 u_int8_t type;
4179 u_int8_t code;
4180
4181 switch (af) {
4182 case AF_INET:
4183 icmp6 = arg;
4184 type = icmp6->icmp6_type;
4185 code = icmp6->icmp6_code;
4186 mtu = ntohl(icmp6->icmp6_mtu);
4187
4188 switch (type) {
4189 case ICMP6_ECHO_REQUEST:
4190 type = ICMP_ECHO;
4191 break;
4192 case ICMP6_ECHO_REPLY:
4193 type = ICMP_ECHOREPLY;
4194 break;
4195 case ICMP6_DST_UNREACH:
4196 type = ICMP_UNREACH;
4197 switch (code) {
4198 case ICMP6_DST_UNREACH_NOROUTE:
4199 case ICMP6_DST_UNREACH_BEYONDSCOPE:
4200 case ICMP6_DST_UNREACH_ADDR:
4201 code = ICMP_UNREACH_HOST;
4202 break;
4203 case ICMP6_DST_UNREACH_ADMIN:
4204 code = ICMP_UNREACH_HOST_PROHIB;
4205 break;
4206 case ICMP6_DST_UNREACH_NOPORT:
4207 code = ICMP_UNREACH_PORT;
4208 break;
4209 default:
4210 return (-1);
4211 }
4212 break;
4213 case ICMP6_PACKET_TOO_BIG:
4214 type = ICMP_UNREACH;
4215 code = ICMP_UNREACH_NEEDFRAG;
4216 mtu -= 20;
4217 break;
4218 case ICMP6_TIME_EXCEEDED:
4219 type = ICMP_TIMXCEED;
4220 break;
4221 case ICMP6_PARAM_PROB:
4222 switch (code) {
4223 case ICMP6_PARAMPROB_HEADER:
4224 type = ICMP_PARAMPROB;
4225 code = ICMP_PARAMPROB_ERRATPTR;
4226 ptr = ntohl(icmp6->icmp6_pptr);
4227
4228 if (ptr == PTR_IP6(ip6_vfc))
4229 ; /* preserve */
4230 else if (ptr == PTR_IP6(ip6_vfc) + 1)
4231 ptr = PTR_IP(ip_tos);
4232 else if (ptr == PTR_IP6(ip6_plen) ||
4233 ptr == PTR_IP6(ip6_plen) + 1)
4234 ptr = PTR_IP(ip_len);
4235 else if (ptr == PTR_IP6(ip6_nxt))
4236 ptr = PTR_IP(ip_p);
4237 else if (ptr == PTR_IP6(ip6_hlim))
4238 ptr = PTR_IP(ip_ttl);
4239 else if (ptr >= PTR_IP6(ip6_src) &&
4240 ptr < PTR_IP6(ip6_dst))
4241 ptr = PTR_IP(ip_src);
4242 else if (ptr >= PTR_IP6(ip6_dst) &&
4243 ptr < sizeof(struct ip6_hdr))
4244 ptr = PTR_IP(ip_dst);
4245 else {
4246 return (-1);
4247 }
4248 break;
4249 case ICMP6_PARAMPROB_NEXTHEADER:
4250 type = ICMP_UNREACH;
4251 code = ICMP_UNREACH_PROTOCOL;
4252 break;
4253 default:
4254 return (-1);
4255 }
4256 break;
4257 default:
4258 return (-1);
4259 }
4260 if (icmp6->icmp6_type != type) {
4261 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
4262 icmp6->icmp6_type, type, 0);
4263 icmp6->icmp6_type = type;
4264 }
4265 if (icmp6->icmp6_code != code) {
4266 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
4267 icmp6->icmp6_code, code, 0);
4268 icmp6->icmp6_code = code;
4269 }
4270 if (icmp6->icmp6_mtu != htonl(mtu)) {
4271 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
4272 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
4273 /* aligns well with a icmpv4 nextmtu */
4274 icmp6->icmp6_mtu = htonl(mtu);
4275 }
4276 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
4277 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
4278 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
4279 /* icmpv4 pptr is a one most significant byte */
4280 icmp6->icmp6_pptr = htonl(ptr << 24);
4281 }
4282 break;
4283 case AF_INET6:
4284 icmp4 = arg;
4285 type = icmp4->icmp_type;
4286 code = icmp4->icmp_code;
4287 mtu = ntohs(icmp4->icmp_nextmtu);
4288
4289 switch (type) {
4290 case ICMP_ECHO:
4291 type = ICMP6_ECHO_REQUEST;
4292 break;
4293 case ICMP_ECHOREPLY:
4294 type = ICMP6_ECHO_REPLY;
4295 break;
4296 case ICMP_UNREACH:
4297 type = ICMP6_DST_UNREACH;
4298 switch (code) {
4299 case ICMP_UNREACH_NET:
4300 case ICMP_UNREACH_HOST:
4301 case ICMP_UNREACH_NET_UNKNOWN:
4302 case ICMP_UNREACH_HOST_UNKNOWN:
4303 case ICMP_UNREACH_ISOLATED:
4304 case ICMP_UNREACH_TOSNET:
4305 case ICMP_UNREACH_TOSHOST:
4306 code = ICMP6_DST_UNREACH_NOROUTE;
4307 break;
4308 case ICMP_UNREACH_PORT:
4309 code = ICMP6_DST_UNREACH_NOPORT;
4310 break;
4311 case ICMP_UNREACH_NET_PROHIB:
4312 case ICMP_UNREACH_HOST_PROHIB:
4313 case ICMP_UNREACH_FILTER_PROHIB:
4314 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
4315 code = ICMP6_DST_UNREACH_ADMIN;
4316 break;
4317 case ICMP_UNREACH_PROTOCOL:
4318 type = ICMP6_PARAM_PROB;
4319 code = ICMP6_PARAMPROB_NEXTHEADER;
4320 ptr = offsetof(struct ip6_hdr, ip6_nxt);
4321 break;
4322 case ICMP_UNREACH_NEEDFRAG:
4323 type = ICMP6_PACKET_TOO_BIG;
4324 code = 0;
4325 mtu += 20;
4326 break;
4327 default:
4328 return (-1);
4329 }
4330 break;
4331 case ICMP_TIMXCEED:
4332 type = ICMP6_TIME_EXCEEDED;
4333 break;
4334 case ICMP_PARAMPROB:
4335 type = ICMP6_PARAM_PROB;
4336 switch (code) {
4337 case ICMP_PARAMPROB_ERRATPTR:
4338 code = ICMP6_PARAMPROB_HEADER;
4339 break;
4340 case ICMP_PARAMPROB_LENGTH:
4341 code = ICMP6_PARAMPROB_HEADER;
4342 break;
4343 default:
4344 return (-1);
4345 }
4346
4347 ptr = icmp4->icmp_pptr;
4348 if (ptr == 0 || ptr == PTR_IP(ip_tos))
4349 ; /* preserve */
4350 else if (ptr == PTR_IP(ip_len) ||
4351 ptr == PTR_IP(ip_len) + 1)
4352 ptr = PTR_IP6(ip6_plen);
4353 else if (ptr == PTR_IP(ip_ttl))
4354 ptr = PTR_IP6(ip6_hlim);
4355 else if (ptr == PTR_IP(ip_p))
4356 ptr = PTR_IP6(ip6_nxt);
4357 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
4358 ptr = PTR_IP6(ip6_src);
4359 else if (ptr >= PTR_IP(ip_dst) &&
4360 ptr < sizeof(struct ip))
4361 ptr = PTR_IP6(ip6_dst);
4362 else {
4363 return (-1);
4364 }
4365 break;
4366 default:
4367 return (-1);
4368 }
4369 if (icmp4->icmp_type != type) {
4370 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4371 icmp4->icmp_type, type, 0);
4372 icmp4->icmp_type = type;
4373 }
4374 if (icmp4->icmp_code != code) {
4375 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4376 icmp4->icmp_code, code, 0);
4377 icmp4->icmp_code = code;
4378 }
4379 if (icmp4->icmp_nextmtu != htons(mtu)) {
4380 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4381 icmp4->icmp_nextmtu, htons(mtu), 0);
4382 icmp4->icmp_nextmtu = htons(mtu);
4383 }
4384 if (ptr >= 0 && icmp4->icmp_void != ptr) {
4385 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4386 htons(icmp4->icmp_pptr), htons(ptr), 0);
4387 icmp4->icmp_void = htonl(ptr);
4388 }
4389 break;
4390 default:
4391 unhandled_af(af);
4392 }
4393 #endif /* INET && INET6 */
4394
4395 return (0);
4396 }
4397
4398 /*
4399 * Need to modulate the sequence numbers in the TCP SACK option
4400 * (credits to Krzysztof Pfaff for report and patch)
4401 */
4402 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)4403 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
4404 struct pf_state_peer *dst)
4405 {
4406 struct sackblk sack;
4407 int copyback = 0, i;
4408 int olen, optsoff;
4409 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh;
4410
4411 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4412 optsoff = pd->off + sizeof(struct tcphdr);
4413 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2)
4414 if (olen < TCPOLEN_MINSACK ||
4415 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, pd->af))
4416 return (0);
4417
4418 eoh = opts + olen;
4419 opt = opts;
4420 while ((opt = pf_find_tcpopt(opt, opts, olen,
4421 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
4422 {
4423 size_t safelen = MIN(opt[1], (eoh - opt));
4424 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
4425 size_t startoff = (opt + i) - opts;
4426 memcpy(&sack, &opt[i], sizeof(sack));
4427 pf_patch_32(pd, &sack.start,
4428 htonl(ntohl(sack.start) - dst->seqdiff),
4429 PF_ALGNMNT(startoff));
4430 pf_patch_32(pd, &sack.end,
4431 htonl(ntohl(sack.end) - dst->seqdiff),
4432 PF_ALGNMNT(startoff + sizeof(sack.start)));
4433 memcpy(&opt[i], &sack, sizeof(sack));
4434 }
4435 copyback = 1;
4436 opt += opt[1];
4437 }
4438
4439 if (copyback)
4440 m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
4441
4442 return (copyback);
4443 }
4444
4445 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid,u_short * reason)4446 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
4447 const struct pf_addr *saddr, const struct pf_addr *daddr,
4448 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4449 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4450 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
4451 int rtableid, u_short *reason)
4452 {
4453 struct mbuf *m;
4454 int len, tlen;
4455 #ifdef INET
4456 struct ip *h = NULL;
4457 #endif /* INET */
4458 #ifdef INET6
4459 struct ip6_hdr *h6 = NULL;
4460 #endif /* INET6 */
4461 struct tcphdr *th;
4462 char *opt;
4463 struct pf_mtag *pf_mtag;
4464
4465 len = 0;
4466 th = NULL;
4467
4468 /* maximum segment size tcp option */
4469 tlen = sizeof(struct tcphdr);
4470 if (mss)
4471 tlen += 4;
4472 if (sack)
4473 tlen += 2;
4474
4475 switch (af) {
4476 #ifdef INET
4477 case AF_INET:
4478 len = sizeof(struct ip) + tlen;
4479 break;
4480 #endif /* INET */
4481 #ifdef INET6
4482 case AF_INET6:
4483 len = sizeof(struct ip6_hdr) + tlen;
4484 break;
4485 #endif /* INET6 */
4486 default:
4487 unhandled_af(af);
4488 }
4489
4490 m = m_gethdr(M_NOWAIT, MT_DATA);
4491 if (m == NULL) {
4492 REASON_SET(reason, PFRES_MEMORY);
4493 return (NULL);
4494 }
4495
4496 #ifdef MAC
4497 mac_netinet_firewall_send(m);
4498 #endif
4499 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4500 REASON_SET(reason, PFRES_MEMORY);
4501 m_freem(m);
4502 return (NULL);
4503 }
4504 m->m_flags |= mbuf_flags;
4505 pf_mtag->tag = mtag_tag;
4506 pf_mtag->flags = mtag_flags;
4507
4508 if (rtableid >= 0)
4509 M_SETFIB(m, rtableid);
4510
4511 #ifdef ALTQ
4512 if (r != NULL && r->qid) {
4513 pf_mtag->qid = r->qid;
4514
4515 /* add hints for ecn */
4516 pf_mtag->hdr = mtod(m, struct ip *);
4517 }
4518 #endif /* ALTQ */
4519 m->m_data += max_linkhdr;
4520 m->m_pkthdr.len = m->m_len = len;
4521 /* The rest of the stack assumes a rcvif, so provide one.
4522 * This is a locally generated packet, so .. close enough. */
4523 m->m_pkthdr.rcvif = V_loif;
4524 bzero(m->m_data, len);
4525 switch (af) {
4526 #ifdef INET
4527 case AF_INET:
4528 m->m_pkthdr.csum_flags |= CSUM_TCP;
4529 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4530
4531 h = mtod(m, struct ip *);
4532
4533 h->ip_p = IPPROTO_TCP;
4534 h->ip_len = htons(tlen);
4535 h->ip_v = 4;
4536 h->ip_hl = sizeof(*h) >> 2;
4537 h->ip_tos = IPTOS_LOWDELAY;
4538 h->ip_len = htons(len);
4539 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4540 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4541 h->ip_sum = 0;
4542 h->ip_src.s_addr = saddr->v4.s_addr;
4543 h->ip_dst.s_addr = daddr->v4.s_addr;
4544
4545 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4546 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4547 htons(len - sizeof(struct ip) + IPPROTO_TCP));
4548 break;
4549 #endif /* INET */
4550 #ifdef INET6
4551 case AF_INET6:
4552 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4553 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4554
4555 h6 = mtod(m, struct ip6_hdr *);
4556
4557 /* IP header fields included in the TCP checksum */
4558 h6->ip6_nxt = IPPROTO_TCP;
4559 h6->ip6_plen = htons(tlen);
4560 h6->ip6_vfc |= IPV6_VERSION;
4561 h6->ip6_hlim = V_ip6_defhlim;
4562 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4563 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4564
4565 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4566 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4567 IPPROTO_TCP, 0);
4568 break;
4569 #endif /* INET6 */
4570 }
4571
4572 /* TCP header */
4573 th->th_sport = sport;
4574 th->th_dport = dport;
4575 th->th_seq = htonl(seq);
4576 th->th_ack = htonl(ack);
4577 th->th_off = tlen >> 2;
4578 tcp_set_flags(th, tcp_flags);
4579 th->th_win = htons(win);
4580
4581 opt = (char *)(th + 1);
4582 if (mss) {
4583 opt = (char *)(th + 1);
4584 opt[0] = TCPOPT_MAXSEG;
4585 opt[1] = 4;
4586 mss = htons(mss);
4587 memcpy((opt + 2), &mss, 2);
4588 opt += 4;
4589 }
4590 if (sack) {
4591 opt[0] = TCPOPT_SACK_PERMITTED;
4592 opt[1] = 2;
4593 opt += 2;
4594 }
4595
4596 return (m);
4597 }
4598
4599 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4600 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4601 uint8_t ttl, int rtableid)
4602 {
4603 struct mbuf *m;
4604 #ifdef INET
4605 struct ip *h = NULL;
4606 #endif /* INET */
4607 #ifdef INET6
4608 struct ip6_hdr *h6 = NULL;
4609 #endif /* INET6 */
4610 struct sctphdr *hdr;
4611 struct sctp_chunkhdr *chunk;
4612 struct pf_send_entry *pfse;
4613 int off = 0;
4614
4615 MPASS(af == pd->af);
4616
4617 m = m_gethdr(M_NOWAIT, MT_DATA);
4618 if (m == NULL)
4619 return;
4620
4621 m->m_data += max_linkhdr;
4622 m->m_flags |= M_SKIP_FIREWALL;
4623 /* The rest of the stack assumes a rcvif, so provide one.
4624 * This is a locally generated packet, so .. close enough. */
4625 m->m_pkthdr.rcvif = V_loif;
4626
4627 /* IPv4|6 header */
4628 switch (af) {
4629 #ifdef INET
4630 case AF_INET:
4631 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4632
4633 h = mtod(m, struct ip *);
4634
4635 /* IP header fields included in the TCP checksum */
4636
4637 h->ip_p = IPPROTO_SCTP;
4638 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4639 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4640 h->ip_src = pd->dst->v4;
4641 h->ip_dst = pd->src->v4;
4642
4643 off += sizeof(struct ip);
4644 break;
4645 #endif /* INET */
4646 #ifdef INET6
4647 case AF_INET6:
4648 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4649
4650 h6 = mtod(m, struct ip6_hdr *);
4651
4652 /* IP header fields included in the TCP checksum */
4653 h6->ip6_vfc |= IPV6_VERSION;
4654 h6->ip6_nxt = IPPROTO_SCTP;
4655 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4656 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4657 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4658 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4659
4660 off += sizeof(struct ip6_hdr);
4661 break;
4662 #endif /* INET6 */
4663 default:
4664 unhandled_af(af);
4665 }
4666
4667 /* SCTP header */
4668 hdr = mtodo(m, off);
4669
4670 hdr->src_port = pd->hdr.sctp.dest_port;
4671 hdr->dest_port = pd->hdr.sctp.src_port;
4672 hdr->v_tag = pd->sctp_initiate_tag;
4673 hdr->checksum = 0;
4674
4675 /* Abort chunk. */
4676 off += sizeof(struct sctphdr);
4677 chunk = mtodo(m, off);
4678
4679 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4680 chunk->chunk_length = htons(sizeof(*chunk));
4681
4682 /* SCTP checksum */
4683 off += sizeof(*chunk);
4684 m->m_pkthdr.len = m->m_len = off;
4685
4686 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4687
4688 if (rtableid >= 0)
4689 M_SETFIB(m, rtableid);
4690
4691 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4692 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4693 if (pfse == NULL) {
4694 m_freem(m);
4695 return;
4696 }
4697
4698 switch (af) {
4699 #ifdef INET
4700 case AF_INET:
4701 pfse->pfse_type = PFSE_IP;
4702 break;
4703 #endif /* INET */
4704 #ifdef INET6
4705 case AF_INET6:
4706 pfse->pfse_type = PFSE_IP6;
4707 break;
4708 #endif /* INET6 */
4709 }
4710
4711 pfse->pfse_m = m;
4712 pf_send(pfse);
4713 }
4714
4715 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid,u_short * reason)4716 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4717 const struct pf_addr *saddr, const struct pf_addr *daddr,
4718 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4719 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4720 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid,
4721 u_short *reason)
4722 {
4723 struct pf_send_entry *pfse;
4724 struct mbuf *m;
4725
4726 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4727 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid, reason);
4728 if (m == NULL)
4729 return;
4730
4731 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4732 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4733 if (pfse == NULL) {
4734 m_freem(m);
4735 REASON_SET(reason, PFRES_MEMORY);
4736 return;
4737 }
4738
4739 switch (af) {
4740 #ifdef INET
4741 case AF_INET:
4742 pfse->pfse_type = PFSE_IP;
4743 break;
4744 #endif /* INET */
4745 #ifdef INET6
4746 case AF_INET6:
4747 pfse->pfse_type = PFSE_IP6;
4748 break;
4749 #endif /* INET6 */
4750 default:
4751 unhandled_af(af);
4752 }
4753
4754 pfse->pfse_m = m;
4755 pf_send(pfse);
4756 }
4757
4758 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4759 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4760 {
4761 /* undo NAT changes, if they have taken place */
4762 if (nr != NULL) {
4763 pf_addrcpy(pd->src, &pd->osrc, pd->af);
4764 pf_addrcpy(pd->dst, &pd->odst, pd->af);
4765 if (pd->sport)
4766 *pd->sport = pd->osport;
4767 if (pd->dport)
4768 *pd->dport = pd->odport;
4769 if (pd->ip_sum)
4770 *pd->ip_sum = bip_sum;
4771 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4772 }
4773 }
4774
4775 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4776 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4777 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4778 u_short *reason, int rtableid)
4779 {
4780 pf_undo_nat(nr, pd, bip_sum);
4781
4782 if (pd->proto == IPPROTO_TCP &&
4783 ((r->rule_flag & PFRULE_RETURNRST) ||
4784 (r->rule_flag & PFRULE_RETURN)) &&
4785 !(tcp_get_flags(th) & TH_RST)) {
4786 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4787
4788 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4789 IPPROTO_TCP, pd->af))
4790 REASON_SET(reason, PFRES_PROTCKSUM);
4791 else {
4792 if (tcp_get_flags(th) & TH_SYN)
4793 ack++;
4794 if (tcp_get_flags(th) & TH_FIN)
4795 ack++;
4796 pf_send_tcp(r, pd->af, pd->dst,
4797 pd->src, th->th_dport, th->th_sport,
4798 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4799 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid,
4800 reason);
4801 }
4802 } else if (pd->proto == IPPROTO_SCTP &&
4803 (r->rule_flag & PFRULE_RETURN)) {
4804 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4805 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4806 r->return_icmp)
4807 pf_send_icmp(pd->m, r->return_icmp >> 8,
4808 r->return_icmp & 255, 0, pd->af, r, rtableid);
4809 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4810 r->return_icmp6)
4811 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4812 r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4813 }
4814
4815 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4816 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4817 {
4818 struct m_tag *mtag;
4819 u_int8_t mpcp;
4820
4821 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4822 if (mtag == NULL)
4823 return (0);
4824
4825 if (prio == PF_PRIO_ZERO)
4826 prio = 0;
4827
4828 mpcp = *(uint8_t *)(mtag + 1);
4829
4830 return (mpcp == prio);
4831 }
4832
4833 static int
pf_icmp_to_bandlim(uint8_t type)4834 pf_icmp_to_bandlim(uint8_t type)
4835 {
4836 switch (type) {
4837 case ICMP_ECHO:
4838 case ICMP_ECHOREPLY:
4839 return (BANDLIM_ICMP_ECHO);
4840 case ICMP_TSTAMP:
4841 case ICMP_TSTAMPREPLY:
4842 return (BANDLIM_ICMP_TSTAMP);
4843 case ICMP_UNREACH:
4844 default:
4845 return (BANDLIM_ICMP_UNREACH);
4846 }
4847 }
4848
4849 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst,u_short * reason)4850 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4851 struct pf_state_peer *src, struct pf_state_peer *dst,
4852 u_short *reason)
4853 {
4854 /*
4855 * We are sending challenge ACK as a response to SYN packet, which
4856 * matches existing state (modulo TCP window check). Therefore packet
4857 * must be sent on behalf of destination.
4858 *
4859 * We expect sender to remain either silent, or send RST packet
4860 * so both, firewall and remote peer, can purge dead state from
4861 * memory.
4862 */
4863 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4864 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4865 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4866 s->rule->rtableid, reason);
4867 }
4868
4869 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4870 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4871 sa_family_t af, struct pf_krule *r, int rtableid)
4872 {
4873 struct pf_send_entry *pfse;
4874 struct mbuf *m0;
4875 struct pf_mtag *pf_mtag;
4876
4877 /* ICMP packet rate limitation. */
4878 switch (af) {
4879 #ifdef INET6
4880 case AF_INET6:
4881 if (icmp6_ratelimit(NULL, type, code))
4882 return;
4883 break;
4884 #endif /* INET6 */
4885 #ifdef INET
4886 case AF_INET:
4887 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4888 return;
4889 break;
4890 #endif /* INET */
4891 }
4892
4893 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4894 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4895 if (pfse == NULL)
4896 return;
4897
4898 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4899 free(pfse, M_PFTEMP);
4900 return;
4901 }
4902
4903 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4904 free(pfse, M_PFTEMP);
4905 return;
4906 }
4907 /* XXX: revisit */
4908 m0->m_flags |= M_SKIP_FIREWALL;
4909
4910 if (rtableid >= 0)
4911 M_SETFIB(m0, rtableid);
4912
4913 #ifdef ALTQ
4914 if (r->qid) {
4915 pf_mtag->qid = r->qid;
4916 /* add hints for ecn */
4917 pf_mtag->hdr = mtod(m0, struct ip *);
4918 }
4919 #endif /* ALTQ */
4920
4921 switch (af) {
4922 #ifdef INET
4923 case AF_INET:
4924 pfse->pfse_type = PFSE_ICMP;
4925 break;
4926 #endif /* INET */
4927 #ifdef INET6
4928 case AF_INET6:
4929 pfse->pfse_type = PFSE_ICMP6;
4930 break;
4931 #endif /* INET6 */
4932 }
4933 pfse->pfse_m = m0;
4934 pfse->icmpopts.type = type;
4935 pfse->icmpopts.code = code;
4936 pfse->icmpopts.mtu = mtu;
4937 pf_send(pfse);
4938 }
4939
4940 /*
4941 * Return ((n = 0) == (a = b [with mask m]))
4942 * Note: n != 0 => returns (a != b [with mask m])
4943 */
4944 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4945 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4946 const struct pf_addr *b, sa_family_t af)
4947 {
4948 switch (af) {
4949 #ifdef INET
4950 case AF_INET:
4951 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4952 return (n == 0);
4953 break;
4954 #endif /* INET */
4955 #ifdef INET6
4956 case AF_INET6:
4957 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4958 return (n == 0);
4959 break;
4960 #endif /* INET6 */
4961 }
4962
4963 return (n != 0);
4964 }
4965
4966 /*
4967 * Return 1 if b <= a <= e, otherwise return 0.
4968 */
4969 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4970 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4971 const struct pf_addr *a, sa_family_t af)
4972 {
4973 switch (af) {
4974 #ifdef INET
4975 case AF_INET:
4976 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4977 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4978 return (0);
4979 break;
4980 #endif /* INET */
4981 #ifdef INET6
4982 case AF_INET6: {
4983 int i;
4984
4985 /* check a >= b */
4986 for (i = 0; i < 4; ++i)
4987 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4988 break;
4989 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4990 return (0);
4991 /* check a <= e */
4992 for (i = 0; i < 4; ++i)
4993 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4994 break;
4995 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4996 return (0);
4997 break;
4998 }
4999 #endif /* INET6 */
5000 }
5001 return (1);
5002 }
5003
5004 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)5005 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
5006 {
5007 switch (op) {
5008 case PF_OP_IRG:
5009 return ((p > a1) && (p < a2));
5010 case PF_OP_XRG:
5011 return ((p < a1) || (p > a2));
5012 case PF_OP_RRG:
5013 return ((p >= a1) && (p <= a2));
5014 case PF_OP_EQ:
5015 return (p == a1);
5016 case PF_OP_NE:
5017 return (p != a1);
5018 case PF_OP_LT:
5019 return (p < a1);
5020 case PF_OP_LE:
5021 return (p <= a1);
5022 case PF_OP_GT:
5023 return (p > a1);
5024 case PF_OP_GE:
5025 return (p >= a1);
5026 }
5027 return (0); /* never reached */
5028 }
5029
5030 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)5031 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
5032 {
5033 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
5034 }
5035
5036 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)5037 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
5038 {
5039 if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE)
5040 return (0);
5041 return (pf_match(op, a1, a2, u));
5042 }
5043
5044 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)5045 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
5046 {
5047 if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE)
5048 return (0);
5049 return (pf_match(op, a1, a2, g));
5050 }
5051
5052 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)5053 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
5054 {
5055 if (*tag == -1)
5056 *tag = mtag;
5057
5058 return ((!r->match_tag_not && r->match_tag == *tag) ||
5059 (r->match_tag_not && r->match_tag != *tag));
5060 }
5061
5062 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)5063 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
5064 {
5065 struct ifnet *ifp = m->m_pkthdr.rcvif;
5066 struct pfi_kkif *kif;
5067
5068 if (ifp == NULL)
5069 return (0);
5070
5071 kif = (struct pfi_kkif *)ifp->if_pf_kif;
5072
5073 if (kif == NULL) {
5074 DPFPRINTF(PF_DEBUG_URGENT,
5075 "%s: kif == NULL, @%d via %s", __func__, r->nr,
5076 r->rcv_ifname);
5077 return (0);
5078 }
5079
5080 return (pfi_kkif_match(r->rcv_kif, kif));
5081 }
5082
5083 int
pf_tag_packet(struct pf_pdesc * pd,int tag)5084 pf_tag_packet(struct pf_pdesc *pd, int tag)
5085 {
5086
5087 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
5088
5089 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
5090 return (ENOMEM);
5091
5092 pd->pf_mtag->tag = tag;
5093
5094 return (0);
5095 }
5096
5097 /*
5098 * XXX: We rely on malloc(9) returning pointer aligned addresses.
5099 */
5100 #define PF_ANCHORSTACK_MATCH 0x00000001
5101 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
5102
5103 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
5104 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
5105 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
5106 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
5107 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
5108 } while (0)
5109
5110 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)5111 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
5112 {
5113 enum pf_test_status rv;
5114
5115 PF_RULES_RASSERT();
5116
5117 if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
5118 printf("%s: anchor stack overflow on %s\n",
5119 __func__, r->anchor->name);
5120 return (PF_TEST_FAIL);
5121 }
5122
5123 ctx->depth++;
5124
5125 if (r->anchor_wildcard) {
5126 struct pf_kanchor *child;
5127 rv = PF_TEST_OK;
5128 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
5129 rv = pf_match_rule(ctx, &child->ruleset);
5130 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
5131 /*
5132 * we either hit a rule with quick action
5133 * (more likely), or hit some runtime
5134 * error (e.g. pool_get() failure).
5135 */
5136 break;
5137 }
5138 }
5139 } else {
5140 rv = pf_match_rule(ctx, &r->anchor->ruleset);
5141 /*
5142 * Unless errors occured, stop iff any rule matched
5143 * within quick anchors.
5144 */
5145 if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK &&
5146 *ctx->am == r)
5147 rv = PF_TEST_QUICK;
5148 }
5149
5150 ctx->depth--;
5151
5152 return (rv);
5153 }
5154
5155 struct pf_keth_anchor_stackframe {
5156 struct pf_keth_ruleset *rs;
5157 struct pf_keth_rule *r; /* XXX: + match bit */
5158 struct pf_keth_anchor *child;
5159 };
5160
5161 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
5162 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
5163 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
5164 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
5165 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
5166 } while (0)
5167
5168 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)5169 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
5170 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
5171 struct pf_keth_rule **a, int *match)
5172 {
5173 struct pf_keth_anchor_stackframe *f;
5174
5175 NET_EPOCH_ASSERT();
5176
5177 if (match)
5178 *match = 0;
5179 if (*depth >= PF_ANCHOR_STACK_MAX) {
5180 printf("%s: anchor stack overflow on %s\n",
5181 __func__, (*r)->anchor->name);
5182 *r = TAILQ_NEXT(*r, entries);
5183 return;
5184 } else if (*depth == 0 && a != NULL)
5185 *a = *r;
5186 f = stack + (*depth)++;
5187 f->rs = *rs;
5188 f->r = *r;
5189 if ((*r)->anchor_wildcard) {
5190 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
5191
5192 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
5193 *r = NULL;
5194 return;
5195 }
5196 *rs = &f->child->ruleset;
5197 } else {
5198 f->child = NULL;
5199 *rs = &(*r)->anchor->ruleset;
5200 }
5201 *r = TAILQ_FIRST((*rs)->active.rules);
5202 }
5203
5204 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)5205 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
5206 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
5207 struct pf_keth_rule **a, int *match)
5208 {
5209 struct pf_keth_anchor_stackframe *f;
5210 struct pf_keth_rule *fr;
5211 int quick = 0;
5212
5213 NET_EPOCH_ASSERT();
5214
5215 do {
5216 if (*depth <= 0)
5217 break;
5218 f = stack + *depth - 1;
5219 fr = PF_ETH_ANCHOR_RULE(f);
5220 if (f->child != NULL) {
5221 /*
5222 * This block traverses through
5223 * a wildcard anchor.
5224 */
5225 if (match != NULL && *match) {
5226 /*
5227 * If any of "*" matched, then
5228 * "foo/ *" matched, mark frame
5229 * appropriately.
5230 */
5231 PF_ETH_ANCHOR_SET_MATCH(f);
5232 *match = 0;
5233 }
5234 f->child = RB_NEXT(pf_keth_anchor_node,
5235 &fr->anchor->children, f->child);
5236 if (f->child != NULL) {
5237 *rs = &f->child->ruleset;
5238 *r = TAILQ_FIRST((*rs)->active.rules);
5239 if (*r == NULL)
5240 continue;
5241 else
5242 break;
5243 }
5244 }
5245 (*depth)--;
5246 if (*depth == 0 && a != NULL)
5247 *a = NULL;
5248 *rs = f->rs;
5249 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
5250 quick = fr->quick;
5251 *r = TAILQ_NEXT(fr, entries);
5252 } while (*r == NULL);
5253
5254 return (quick);
5255 }
5256
5257 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)5258 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
5259 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
5260 {
5261 switch (af) {
5262 #ifdef INET
5263 case AF_INET:
5264 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
5265 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
5266 break;
5267 #endif /* INET */
5268 #ifdef INET6
5269 case AF_INET6:
5270 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
5271 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
5272 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
5273 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
5274 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
5275 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
5276 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
5277 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
5278 break;
5279 #endif /* INET6 */
5280 }
5281 }
5282
5283 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)5284 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
5285 {
5286 switch (af) {
5287 #ifdef INET
5288 case AF_INET:
5289 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
5290 break;
5291 #endif /* INET */
5292 #ifdef INET6
5293 case AF_INET6:
5294 if (addr->addr32[3] == 0xffffffff) {
5295 addr->addr32[3] = 0;
5296 if (addr->addr32[2] == 0xffffffff) {
5297 addr->addr32[2] = 0;
5298 if (addr->addr32[1] == 0xffffffff) {
5299 addr->addr32[1] = 0;
5300 addr->addr32[0] =
5301 htonl(ntohl(addr->addr32[0]) + 1);
5302 } else
5303 addr->addr32[1] =
5304 htonl(ntohl(addr->addr32[1]) + 1);
5305 } else
5306 addr->addr32[2] =
5307 htonl(ntohl(addr->addr32[2]) + 1);
5308 } else
5309 addr->addr32[3] =
5310 htonl(ntohl(addr->addr32[3]) + 1);
5311 break;
5312 #endif /* INET6 */
5313 }
5314 }
5315
5316 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)5317 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
5318 {
5319 /*
5320 * Modern rules use the same flags in rules as they do in states.
5321 */
5322 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
5323 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
5324
5325 /*
5326 * Old-style scrub rules have different flags which need to be translated.
5327 */
5328 if (r->rule_flag & PFRULE_RANDOMID)
5329 a->flags |= PFSTATE_RANDOMID;
5330 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
5331 a->flags |= PFSTATE_SETTOS;
5332 a->set_tos = r->set_tos;
5333 }
5334
5335 if (r->qid)
5336 a->qid = r->qid;
5337 if (r->pqid)
5338 a->pqid = r->pqid;
5339 if (r->rtableid >= 0)
5340 a->rtableid = r->rtableid;
5341 a->log |= r->log;
5342 if (r->min_ttl)
5343 a->min_ttl = r->min_ttl;
5344 if (r->max_mss)
5345 a->max_mss = r->max_mss;
5346 if (r->dnpipe)
5347 a->dnpipe = r->dnpipe;
5348 if (r->dnrpipe)
5349 a->dnrpipe = r->dnrpipe;
5350 if (r->dnpipe || r->dnrpipe) {
5351 if (r->free_flags & PFRULE_DN_IS_PIPE)
5352 a->flags |= PFSTATE_DN_IS_PIPE;
5353 else
5354 a->flags &= ~PFSTATE_DN_IS_PIPE;
5355 }
5356 if (r->scrub_flags & PFSTATE_SETPRIO) {
5357 a->set_prio[0] = r->set_prio[0];
5358 a->set_prio[1] = r->set_prio[1];
5359 }
5360 if (r->allow_opts)
5361 a->allow_opts = r->allow_opts;
5362 if (r->max_pkt_size)
5363 a->max_pkt_size = r->max_pkt_size;
5364 }
5365
5366 int
pf_socket_lookup(struct pf_pdesc * pd)5367 pf_socket_lookup(struct pf_pdesc *pd)
5368 {
5369 struct pf_addr *saddr, *daddr;
5370 u_int16_t sport, dport;
5371 struct inpcbinfo *pi;
5372 struct inpcb *inp;
5373
5374 pd->lookup.uid = -1;
5375 pd->lookup.gid = -1;
5376
5377 switch (pd->proto) {
5378 case IPPROTO_TCP:
5379 sport = pd->hdr.tcp.th_sport;
5380 dport = pd->hdr.tcp.th_dport;
5381 pi = &V_tcbinfo;
5382 break;
5383 case IPPROTO_UDP:
5384 sport = pd->hdr.udp.uh_sport;
5385 dport = pd->hdr.udp.uh_dport;
5386 pi = &V_udbinfo;
5387 break;
5388 default:
5389 return (-1);
5390 }
5391 if (pd->dir == PF_IN) {
5392 saddr = pd->src;
5393 daddr = pd->dst;
5394 } else {
5395 u_int16_t p;
5396
5397 p = sport;
5398 sport = dport;
5399 dport = p;
5400 saddr = pd->dst;
5401 daddr = pd->src;
5402 }
5403 switch (pd->af) {
5404 #ifdef INET
5405 case AF_INET:
5406 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
5407 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5408 if (inp == NULL) {
5409 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
5410 daddr->v4, dport, INPLOOKUP_WILDCARD |
5411 INPLOOKUP_RLOCKPCB, NULL, pd->m);
5412 if (inp == NULL)
5413 return (-1);
5414 }
5415 break;
5416 #endif /* INET */
5417 #ifdef INET6
5418 case AF_INET6:
5419 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
5420 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5421 if (inp == NULL) {
5422 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
5423 &daddr->v6, dport, INPLOOKUP_WILDCARD |
5424 INPLOOKUP_RLOCKPCB, NULL, pd->m);
5425 if (inp == NULL)
5426 return (-1);
5427 }
5428 break;
5429 #endif /* INET6 */
5430 default:
5431 unhandled_af(pd->af);
5432 }
5433 INP_RLOCK_ASSERT(inp);
5434 pd->lookup.uid = inp->inp_cred->cr_uid;
5435 pd->lookup.gid = inp->inp_cred->cr_gid;
5436 INP_RUNLOCK(inp);
5437
5438 return (1);
5439 }
5440
5441 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity"
5442 * /\ (eoh - r) >= min_typelen >= 2 "safety" )
5443 *
5444 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
5445 */
5446 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)5447 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
5448 u_int8_t min_typelen)
5449 {
5450 uint8_t *eoh = opts + hlen;
5451
5452 if (min_typelen < 2)
5453 return (NULL);
5454
5455 while ((eoh - opt) >= min_typelen) {
5456 switch (*opt) {
5457 case TCPOPT_EOL:
5458 /* FALLTHROUGH - Workaround the failure of some
5459 systems to NOP-pad their bzero'd option buffers,
5460 producing spurious EOLs */
5461 case TCPOPT_NOP:
5462 opt++;
5463 continue;
5464 default:
5465 if (opt[0] == type &&
5466 opt[1] >= min_typelen)
5467 return (opt);
5468 }
5469
5470 opt += MAX(opt[1], 2); /* evade infinite loops */
5471 }
5472
5473 return (NULL);
5474 }
5475
5476 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5477 pf_get_wscale(struct pf_pdesc *pd)
5478 {
5479 int olen;
5480 uint8_t opts[MAX_TCPOPTLEN], *opt;
5481 uint8_t wscale = 0;
5482
5483 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5484 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5485 pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5486 return (0);
5487
5488 opt = opts;
5489 while ((opt = pf_find_tcpopt(opt, opts, olen,
5490 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5491 wscale = opt[2];
5492 wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5493 wscale |= PF_WSCALE_FLAG;
5494
5495 opt += opt[1];
5496 }
5497
5498 return (wscale);
5499 }
5500
5501 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5502 pf_get_mss(struct pf_pdesc *pd)
5503 {
5504 int olen;
5505 uint8_t opts[MAX_TCPOPTLEN], *opt;
5506 u_int16_t mss = V_tcp_mssdflt;
5507
5508 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5509 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5510 pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5511 return (0);
5512
5513 opt = opts;
5514 while ((opt = pf_find_tcpopt(opt, opts, olen,
5515 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5516 memcpy(&mss, (opt + 2), 2);
5517 mss = ntohs(mss);
5518 opt += opt[1];
5519 }
5520
5521 return (mss);
5522 }
5523
5524 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5525 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5526 {
5527 struct nhop_object *nh;
5528 #ifdef INET6
5529 struct in6_addr dst6;
5530 uint32_t scopeid;
5531 #endif /* INET6 */
5532 int hlen = 0;
5533 uint16_t mss = 0;
5534
5535 NET_EPOCH_ASSERT();
5536
5537 switch (af) {
5538 #ifdef INET
5539 case AF_INET:
5540 hlen = sizeof(struct ip);
5541 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5542 if (nh != NULL)
5543 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5544 break;
5545 #endif /* INET */
5546 #ifdef INET6
5547 case AF_INET6:
5548 hlen = sizeof(struct ip6_hdr);
5549 in6_splitscope(&addr->v6, &dst6, &scopeid);
5550 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5551 if (nh != NULL)
5552 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5553 break;
5554 #endif /* INET6 */
5555 }
5556
5557 mss = max(V_tcp_mssdflt, mss);
5558 mss = min(mss, offer);
5559 mss = max(mss, 64); /* sanity - at least max opt space */
5560 return (mss);
5561 }
5562
5563 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5564 pf_tcp_iss(struct pf_pdesc *pd)
5565 {
5566 SHA512_CTX ctx;
5567 union {
5568 uint8_t bytes[SHA512_DIGEST_LENGTH];
5569 uint32_t words[1];
5570 } digest;
5571
5572 if (V_pf_tcp_secret_init == 0) {
5573 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5574 SHA512_Init(&V_pf_tcp_secret_ctx);
5575 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5576 sizeof(V_pf_tcp_secret));
5577 V_pf_tcp_secret_init = 1;
5578 }
5579
5580 ctx = V_pf_tcp_secret_ctx;
5581
5582 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5583 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5584 switch (pd->af) {
5585 case AF_INET6:
5586 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5587 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5588 break;
5589 case AF_INET:
5590 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5591 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5592 break;
5593 }
5594 SHA512_Final(digest.bytes, &ctx);
5595 V_pf_tcp_iss_off += 4096;
5596 #define ISN_RANDOM_INCREMENT (4096 - 1)
5597 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5598 V_pf_tcp_iss_off);
5599 #undef ISN_RANDOM_INCREMENT
5600 }
5601
5602 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5603 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5604 {
5605 bool match = true;
5606
5607 /* Always matches if not set */
5608 if (! r->isset)
5609 return (!r->neg);
5610
5611 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5612 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5613 match = false;
5614 break;
5615 }
5616 }
5617
5618 return (match ^ r->neg);
5619 }
5620
5621 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5622 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5623 {
5624 if (*tag == -1)
5625 *tag = mtag;
5626
5627 return ((!r->match_tag_not && r->match_tag == *tag) ||
5628 (r->match_tag_not && r->match_tag != *tag));
5629 }
5630
5631 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5632 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5633 {
5634 /* If we don't have the interface drop the packet. */
5635 if (ifp == NULL) {
5636 m_freem(m);
5637 return;
5638 }
5639
5640 switch (ifp->if_type) {
5641 case IFT_ETHER:
5642 case IFT_XETHER:
5643 case IFT_L2VLAN:
5644 case IFT_BRIDGE:
5645 case IFT_IEEE8023ADLAG:
5646 break;
5647 default:
5648 m_freem(m);
5649 return;
5650 }
5651
5652 ifp->if_transmit(ifp, m);
5653 }
5654
5655 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5656 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5657 {
5658 #ifdef INET
5659 struct ip ip;
5660 #endif /* INET */
5661 #ifdef INET6
5662 struct ip6_hdr ip6;
5663 #endif /* INET6 */
5664 struct mbuf *m = *m0;
5665 struct ether_header *e;
5666 struct pf_keth_rule *r, *rm, *a = NULL;
5667 struct pf_keth_ruleset *ruleset = NULL;
5668 struct pf_mtag *mtag;
5669 struct pf_keth_ruleq *rules;
5670 struct pf_addr *src = NULL, *dst = NULL;
5671 struct pfi_kkif *bridge_to;
5672 sa_family_t af = 0;
5673 uint16_t proto;
5674 int asd = 0, match = 0;
5675 int tag = -1;
5676 uint8_t action;
5677 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX];
5678
5679 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5680 NET_EPOCH_ASSERT();
5681
5682 PF_RULES_RLOCK_TRACKER;
5683
5684 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5685
5686 mtag = pf_find_mtag(m);
5687 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5688 /* Dummynet re-injects packets after they've
5689 * completed their delay. We've already
5690 * processed them, so pass unconditionally. */
5691
5692 /* But only once. We may see the packet multiple times (e.g.
5693 * PFIL_IN/PFIL_OUT). */
5694 pf_dummynet_flag_remove(m, mtag);
5695
5696 return (PF_PASS);
5697 }
5698
5699 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5700 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5701 DPFPRINTF(PF_DEBUG_URGENT,
5702 "%s: m_len < sizeof(struct ether_header)"
5703 ", pullup failed", __func__);
5704 return (PF_DROP);
5705 }
5706 e = mtod(m, struct ether_header *);
5707 proto = ntohs(e->ether_type);
5708
5709 switch (proto) {
5710 #ifdef INET
5711 case ETHERTYPE_IP: {
5712 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5713 sizeof(ip)))
5714 return (PF_DROP);
5715
5716 af = AF_INET;
5717 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5718 (caddr_t)&ip);
5719 src = (struct pf_addr *)&ip.ip_src;
5720 dst = (struct pf_addr *)&ip.ip_dst;
5721 break;
5722 }
5723 #endif /* INET */
5724 #ifdef INET6
5725 case ETHERTYPE_IPV6: {
5726 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5727 sizeof(ip6)))
5728 return (PF_DROP);
5729
5730 af = AF_INET6;
5731 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5732 (caddr_t)&ip6);
5733 src = (struct pf_addr *)&ip6.ip6_src;
5734 dst = (struct pf_addr *)&ip6.ip6_dst;
5735 break;
5736 }
5737 #endif /* INET6 */
5738 }
5739
5740 PF_RULES_RLOCK();
5741
5742 ruleset = V_pf_keth;
5743 rules = atomic_load_ptr(&ruleset->active.rules);
5744 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5745 counter_u64_add(r->evaluations, 1);
5746 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5747
5748 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5749 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5750 "kif");
5751 r = r->skip[PFE_SKIP_IFP].ptr;
5752 }
5753 else if (r->direction && r->direction != dir) {
5754 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5755 "dir");
5756 r = r->skip[PFE_SKIP_DIR].ptr;
5757 }
5758 else if (r->proto && r->proto != proto) {
5759 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5760 "proto");
5761 r = r->skip[PFE_SKIP_PROTO].ptr;
5762 }
5763 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5764 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5765 "src");
5766 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5767 }
5768 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5769 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5770 "dst");
5771 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5772 }
5773 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5774 r->ipsrc.neg, kif, M_GETFIB(m))) {
5775 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5776 "ip_src");
5777 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5778 }
5779 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5780 r->ipdst.neg, kif, M_GETFIB(m))) {
5781 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5782 "ip_dst");
5783 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5784 }
5785 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5786 mtag ? mtag->tag : 0)) {
5787 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5788 "match_tag");
5789 r = TAILQ_NEXT(r, entries);
5790 }
5791 else {
5792 if (r->tag)
5793 tag = r->tag;
5794 if (r->anchor == NULL) {
5795 /* Rule matches */
5796 rm = r;
5797
5798 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5799
5800 if (r->quick)
5801 break;
5802
5803 r = TAILQ_NEXT(r, entries);
5804 } else {
5805 pf_step_into_keth_anchor(anchor_stack, &asd,
5806 &ruleset, &r, &a, &match);
5807 }
5808 }
5809 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5810 &ruleset, &r, &a, &match))
5811 break;
5812 }
5813
5814 r = rm;
5815
5816 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5817
5818 /* Default to pass. */
5819 if (r == NULL) {
5820 PF_RULES_RUNLOCK();
5821 return (PF_PASS);
5822 }
5823
5824 /* Execute action. */
5825 counter_u64_add(r->packets[dir == PF_OUT], 1);
5826 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5827 pf_update_timestamp(r);
5828
5829 /* Shortcut. Don't tag if we're just going to drop anyway. */
5830 if (r->action == PF_DROP) {
5831 PF_RULES_RUNLOCK();
5832 return (PF_DROP);
5833 }
5834
5835 if (tag > 0) {
5836 if (mtag == NULL)
5837 mtag = pf_get_mtag(m);
5838 if (mtag == NULL) {
5839 PF_RULES_RUNLOCK();
5840 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5841 return (PF_DROP);
5842 }
5843 mtag->tag = tag;
5844 }
5845
5846 if (r->qid != 0) {
5847 if (mtag == NULL)
5848 mtag = pf_get_mtag(m);
5849 if (mtag == NULL) {
5850 PF_RULES_RUNLOCK();
5851 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5852 return (PF_DROP);
5853 }
5854 mtag->qid = r->qid;
5855 }
5856
5857 action = r->action;
5858 bridge_to = r->bridge_to;
5859
5860 /* Dummynet */
5861 if (r->dnpipe) {
5862 struct ip_fw_args dnflow;
5863
5864 /* Drop packet if dummynet is not loaded. */
5865 if (ip_dn_io_ptr == NULL) {
5866 PF_RULES_RUNLOCK();
5867 m_freem(m);
5868 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5869 return (PF_DROP);
5870 }
5871 if (mtag == NULL)
5872 mtag = pf_get_mtag(m);
5873 if (mtag == NULL) {
5874 PF_RULES_RUNLOCK();
5875 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5876 return (PF_DROP);
5877 }
5878
5879 bzero(&dnflow, sizeof(dnflow));
5880
5881 /* We don't have port numbers here, so we set 0. That means
5882 * that we'll be somewhat limited in distinguishing flows (i.e.
5883 * only based on IP addresses, not based on port numbers), but
5884 * it's better than nothing. */
5885 dnflow.f_id.dst_port = 0;
5886 dnflow.f_id.src_port = 0;
5887 dnflow.f_id.proto = 0;
5888
5889 dnflow.rule.info = r->dnpipe;
5890 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5891 if (r->dnflags & PFRULE_DN_IS_PIPE)
5892 dnflow.rule.info |= IPFW_IS_PIPE;
5893
5894 dnflow.f_id.extra = dnflow.rule.info;
5895
5896 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5897 dnflow.flags |= IPFW_ARGS_ETHER;
5898 dnflow.ifp = kif->pfik_ifp;
5899
5900 switch (af) {
5901 case AF_INET:
5902 dnflow.f_id.addr_type = 4;
5903 dnflow.f_id.src_ip = src->v4.s_addr;
5904 dnflow.f_id.dst_ip = dst->v4.s_addr;
5905 break;
5906 case AF_INET6:
5907 dnflow.flags |= IPFW_ARGS_IP6;
5908 dnflow.f_id.addr_type = 6;
5909 dnflow.f_id.src_ip6 = src->v6;
5910 dnflow.f_id.dst_ip6 = dst->v6;
5911 break;
5912 }
5913
5914 PF_RULES_RUNLOCK();
5915
5916 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5917 ip_dn_io_ptr(m0, &dnflow);
5918 if (*m0 != NULL)
5919 pf_dummynet_flag_remove(m, mtag);
5920 } else {
5921 PF_RULES_RUNLOCK();
5922 }
5923
5924 if (action == PF_PASS && bridge_to) {
5925 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5926 *m0 = NULL; /* We've eaten the packet. */
5927 }
5928
5929 return (action);
5930 }
5931
5932 #define PF_TEST_ATTRIB(t, a) \
5933 if (t) { \
5934 r = a; \
5935 continue; \
5936 } else do { \
5937 } while (0)
5938
5939 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5940 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5941 {
5942 struct pf_pdesc *pd = ctx->pd;
5943 u_short transerror;
5944 u_int8_t nat_action;
5945
5946 if (r->rule_flag & PFRULE_AFTO) {
5947 /* Don't translate if there was an old style NAT rule */
5948 if (ctx->nr != NULL)
5949 return (PFRES_TRANSLATE);
5950
5951 /* pass af-to rules, unsupported on match rules */
5952 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5953 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5954 ctx->nat_pool = &(r->nat);
5955 ctx->nr = r;
5956 pd->naf = r->naf;
5957 if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5958 return (PFRES_TRANSLATE);
5959 }
5960 return (PFRES_MATCH);
5961 } else if (r->rdr.cur || r->nat.cur) {
5962 /* Don't translate if there was an old style NAT rule */
5963 if (ctx->nr != NULL)
5964 return (PFRES_TRANSLATE);
5965
5966 /* match/pass nat-to/rdr-to rules */
5967 ctx->nr = r;
5968 if (r->nat.cur) {
5969 nat_action = PF_NAT;
5970 ctx->nat_pool = &(r->nat);
5971 } else {
5972 nat_action = PF_RDR;
5973 ctx->nat_pool = &(r->rdr);
5974 }
5975
5976 transerror = pf_get_transaddr(ctx, ctx->nr,
5977 nat_action, ctx->nat_pool);
5978 if (transerror == PFRES_MATCH) {
5979 ctx->rewrite += pf_translate_compat(ctx);
5980 return(PFRES_MATCH);
5981 }
5982 return (transerror);
5983 }
5984
5985 return (PFRES_MAX);
5986 }
5987
5988 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5989 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5990 {
5991 struct pf_krule_item *ri;
5992 struct pf_krule *r;
5993 struct pf_krule *save_a;
5994 struct pf_kruleset *save_aruleset;
5995 struct pf_pdesc *pd = ctx->pd;
5996 u_short transerror;
5997
5998 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5999 while (r != NULL) {
6000 struct pf_statelim *stlim = NULL;
6001 struct pf_sourcelim *srlim = NULL;
6002 struct pf_source *sr = NULL;
6003 unsigned int gen;
6004
6005 if (ctx->pd->related_rule) {
6006 *ctx->rm = ctx->pd->related_rule;
6007 break;
6008 }
6009 PF_TEST_ATTRIB(r->rule_flag & PFRULE_EXPIRED,
6010 TAILQ_NEXT(r, entries));
6011 /* Don't count expired rule evaluations. */
6012 pf_counter_u64_add(&r->evaluations, 1);
6013 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
6014 r->skip[PF_SKIP_IFP]);
6015 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
6016 r->skip[PF_SKIP_DIR]);
6017 PF_TEST_ATTRIB(r->af && r->af != pd->af,
6018 r->skip[PF_SKIP_AF]);
6019 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
6020 r->skip[PF_SKIP_PROTO]);
6021 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
6022 r->src.neg, pd->kif, M_GETFIB(pd->m)),
6023 r->skip[PF_SKIP_SRC_ADDR]);
6024 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
6025 r->dst.neg, NULL, M_GETFIB(pd->m)),
6026 r->skip[PF_SKIP_DST_ADDR]);
6027 switch (pd->virtual_proto) {
6028 case PF_VPROTO_FRAGMENT:
6029 /* tcp/udp only. port_op always 0 in other cases */
6030 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
6031 TAILQ_NEXT(r, entries));
6032 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
6033 TAILQ_NEXT(r, entries));
6034 /* icmp only. type/code always 0 in other cases */
6035 PF_TEST_ATTRIB((r->type || r->code),
6036 TAILQ_NEXT(r, entries));
6037 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
6038 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
6039 TAILQ_NEXT(r, entries));
6040 break;
6041
6042 case IPPROTO_TCP:
6043 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
6044 != r->flags,
6045 TAILQ_NEXT(r, entries));
6046 /* FALLTHROUGH */
6047 case IPPROTO_SCTP:
6048 case IPPROTO_UDP:
6049 /* tcp/udp only. port_op always 0 in other cases */
6050 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
6051 r->src.port[0], r->src.port[1], pd->nsport),
6052 r->skip[PF_SKIP_SRC_PORT]);
6053 /* tcp/udp only. port_op always 0 in other cases */
6054 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
6055 r->dst.port[0], r->dst.port[1], pd->ndport),
6056 r->skip[PF_SKIP_DST_PORT]);
6057 /* tcp/udp only. uid.op always 0 in other cases */
6058 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
6059 pf_socket_lookup(pd), 1)) &&
6060 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
6061 pd->lookup.uid),
6062 TAILQ_NEXT(r, entries));
6063 /* tcp/udp only. gid.op always 0 in other cases */
6064 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
6065 pf_socket_lookup(pd), 1)) &&
6066 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
6067 pd->lookup.gid),
6068 TAILQ_NEXT(r, entries));
6069 break;
6070
6071 case IPPROTO_ICMP:
6072 case IPPROTO_ICMPV6:
6073 /* icmp only. type always 0 in other cases */
6074 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
6075 TAILQ_NEXT(r, entries));
6076 /* icmp only. type always 0 in other cases */
6077 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
6078 TAILQ_NEXT(r, entries));
6079 break;
6080
6081 default:
6082 break;
6083 }
6084 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
6085 TAILQ_NEXT(r, entries));
6086 PF_TEST_ATTRIB(r->prio &&
6087 !pf_match_ieee8021q_pcp(r->prio, pd->m),
6088 TAILQ_NEXT(r, entries));
6089 PF_TEST_ATTRIB(r->prob &&
6090 r->prob <= arc4random(),
6091 TAILQ_NEXT(r, entries));
6092 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
6093 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
6094 TAILQ_NEXT(r, entries));
6095 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
6096 r->rcvifnot),
6097 TAILQ_NEXT(r, entries));
6098 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
6099 pd->virtual_proto != PF_VPROTO_FRAGMENT),
6100 TAILQ_NEXT(r, entries));
6101 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
6102 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
6103 pf_osfp_fingerprint(pd, ctx->th),
6104 r->os_fingerprint)),
6105 TAILQ_NEXT(r, entries));
6106 if (r->statelim.id != PF_STATELIM_ID_NONE) {
6107 stlim = pf_statelim_find(r->statelim.id);
6108
6109 /*
6110 * Treat a missing limiter like an exhausted limiter.
6111 * There is no "backend" to get a resource out of
6112 * so the rule can't create state.
6113 */
6114 PF_TEST_ATTRIB(stlim == NULL, TAILQ_NEXT(r, entries));
6115
6116 /*
6117 * An overcommitted pool means this rule
6118 * can't create state.
6119 */
6120 if (stlim->pfstlim_inuse >= stlim->pfstlim_limit) {
6121 gen = pf_statelim_enter(stlim);
6122 stlim->pfstlim_counters.hardlimited++;
6123 pf_statelim_leave(stlim, gen);
6124 if (r->statelim.limiter_action == PF_LIMITER_BLOCK) {
6125 ctx->limiter_drop = 1;
6126 REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6127 break; /* stop rule processing */
6128 }
6129 r = TAILQ_NEXT(r, entries);
6130 continue;
6131 }
6132
6133 /*
6134 * Is access to the pool rate limited?
6135 */
6136 if (stlim->pfstlim_rate.limit != 0) {
6137 struct timespec ts;
6138 getnanouptime(&ts);
6139 uint64_t diff = SEC_TO_NSEC(ts.tv_sec) +
6140 ts.tv_nsec - stlim->pfstlim_rate_ts;
6141
6142 if (diff < stlim->pfstlim_rate_token) {
6143 gen = pf_statelim_enter(stlim);
6144 stlim->pfstlim_counters.ratelimited++;
6145 pf_statelim_leave(stlim, gen);
6146 if (r->statelim.limiter_action ==
6147 PF_LIMITER_BLOCK) {
6148 ctx->limiter_drop = 1;
6149 REASON_SET(&ctx->reason,
6150 PFRES_MAXSTATES);
6151 /* stop rule processing */
6152 break;
6153 }
6154 r = TAILQ_NEXT(r, entries);
6155 continue;
6156 }
6157
6158 if (diff > stlim->pfstlim_rate_bucket) {
6159 stlim->pfstlim_rate_ts =
6160 SEC_TO_NSEC(ts.tv_sec) + ts.tv_nsec -
6161 stlim->pfstlim_rate_bucket;
6162 }
6163 }
6164 }
6165
6166 if (r->sourcelim.id != PF_SOURCELIM_ID_NONE) {
6167 struct pf_source key;
6168
6169 srlim = pf_sourcelim_find(r->sourcelim.id);
6170
6171 /*
6172 * Treat a missing pool like an overcommitted pool.
6173 * There is no "backend" to get a resource out of
6174 * so the rule can't create state.
6175 */
6176 PF_TEST_ATTRIB(srlim == NULL, TAILQ_NEXT(r, entries));
6177
6178 pf_source_key(srlim, &key, ctx->pd->af,
6179 ctx->pd->src);
6180 sr = pf_source_find(srlim, &key);
6181 if (sr != NULL) {
6182 /*
6183 * An overcommitted limiter means this rule
6184 * can't create state.
6185 */
6186 if (sr->pfsr_inuse >= srlim->pfsrlim_limit) {
6187 sr->pfsr_counters.hardlimited++;
6188 gen = pf_sourcelim_enter(srlim);
6189 srlim->pfsrlim_counters.hardlimited++;
6190 pf_sourcelim_leave(srlim, gen);
6191 if (r->sourcelim.limiter_action ==
6192 PF_LIMITER_BLOCK) {
6193 ctx->limiter_drop = 1;
6194 REASON_SET(&ctx->reason,
6195 PFRES_SRCLIMIT);
6196 /* stop rule processing */
6197 break;
6198 }
6199 r = TAILQ_NEXT(r, entries);
6200 continue;
6201 }
6202
6203 /*
6204 * Is access to the pool rate limited?
6205 */
6206 if (srlim->pfsrlim_rate.limit != 0) {
6207 struct timespec ts;
6208 getnanouptime(&ts);
6209 uint64_t diff = SEC_TO_NSEC(ts.tv_sec) +
6210 ts.tv_nsec - sr->pfsr_rate_ts;
6211
6212 if (diff < srlim->pfsrlim_rate_token) {
6213 sr->pfsr_counters.ratelimited++;
6214 gen = pf_sourcelim_enter(srlim);
6215 srlim->pfsrlim_counters
6216 .ratelimited++;
6217 pf_sourcelim_leave(srlim, gen);
6218 if (r->sourcelim.limiter_action ==
6219 PF_LIMITER_BLOCK) {
6220 ctx->limiter_drop = 1;
6221 REASON_SET(&ctx->reason,
6222 PFRES_SRCLIMIT);
6223 /* stop rules */
6224 break;
6225 }
6226 r = TAILQ_NEXT(r, entries);
6227 continue;
6228 }
6229
6230 if (diff > srlim->pfsrlim_rate_bucket) {
6231 sr->pfsr_rate_ts =
6232 SEC_TO_NSEC(ts.tv_sec) + ts.tv_nsec -
6233 srlim->pfsrlim_rate_bucket;
6234 }
6235 }
6236 } else {
6237 /*
6238 * a new source entry will (should)
6239 * admit a state.
6240 */
6241
6242 if (srlim->pfsrlim_nsources >=
6243 srlim->pfsrlim_entries) {
6244 gen = pf_sourcelim_enter(srlim);
6245 srlim->pfsrlim_counters.addrlimited++;
6246 pf_sourcelim_leave(srlim, gen);
6247 r = TAILQ_NEXT(r, entries);
6248 continue;
6249 }
6250 }
6251 }
6252
6253 /* must be last! */
6254 if (r->pktrate.limit) {
6255 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
6256 TAILQ_NEXT(r, entries));
6257 }
6258 /* FALLTHROUGH */
6259 if (r->tag)
6260 ctx->tag = r->tag;
6261 if (r->anchor == NULL) {
6262
6263 if (r->rule_flag & PFRULE_ONCE) {
6264 uint32_t rule_flag;
6265
6266 rule_flag = r->rule_flag;
6267 if ((rule_flag & PFRULE_EXPIRED) == 0 &&
6268 atomic_cmpset_int(&r->rule_flag, rule_flag,
6269 rule_flag | PFRULE_EXPIRED)) {
6270 r->exptime = time_uptime;
6271 } else {
6272 r = TAILQ_NEXT(r, entries);
6273 continue;
6274 }
6275 }
6276
6277 if (r->action == PF_MATCH) {
6278 /*
6279 * Apply translations before increasing counters,
6280 * in case it fails.
6281 */
6282 transerror = pf_rule_apply_nat(ctx, r);
6283 switch (transerror) {
6284 case PFRES_MATCH:
6285 /* Translation action found in rule and applied successfully */
6286 case PFRES_MAX:
6287 /* No translation action found in rule */
6288 break;
6289 default:
6290 /* Translation action found in rule but failed to apply */
6291 REASON_SET(&ctx->reason, transerror);
6292 return (PF_TEST_FAIL);
6293 }
6294 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
6295 if (ri == NULL) {
6296 REASON_SET(&ctx->reason, PFRES_MEMORY);
6297 return (PF_TEST_FAIL);
6298 }
6299 ri->r = r;
6300
6301 if (SLIST_EMPTY(ctx->match_rules)) {
6302 SLIST_INSERT_HEAD(ctx->match_rules, ri, entry);
6303 } else {
6304 SLIST_INSERT_AFTER(ctx->last_match_rule, ri, entry);
6305 }
6306 ctx->last_match_rule = ri;
6307
6308 pf_rule_to_actions(r, &pd->act);
6309 if (r->log)
6310 PFLOG_PACKET(r->action, PFRES_MATCH, r,
6311 ctx->a, ruleset, pd, 1, NULL);
6312 } else {
6313 /*
6314 * found matching r
6315 */
6316 *ctx->rm = r;
6317 /*
6318 * anchor, with ruleset, where r belongs to
6319 */
6320 *ctx->am = ctx->a;
6321 /*
6322 * ruleset where r belongs to
6323 */
6324 *ctx->rsm = ruleset;
6325 /*
6326 * ruleset, where anchor belongs to.
6327 */
6328 ctx->arsm = ctx->aruleset;
6329 /*
6330 * state/source pools
6331 */
6332
6333 ctx->statelim = stlim;
6334 ctx->sourcelim = srlim;
6335 ctx->source = sr;
6336 }
6337 if (pd->act.log & PF_LOG_MATCHES)
6338 pf_log_matches(pd, r, ctx->a, ruleset, ctx->match_rules);
6339 if (r->quick) {
6340 ctx->test_status = PF_TEST_QUICK;
6341 break;
6342 }
6343 } else {
6344 save_a = ctx->a;
6345 save_aruleset = ctx->aruleset;
6346
6347 ctx->a = r; /* remember anchor */
6348 ctx->aruleset = ruleset; /* and its ruleset */
6349 if (ctx->a->quick)
6350 ctx->test_status = PF_TEST_QUICK;
6351 /*
6352 * Note: we don't need to restore if we are not going
6353 * to continue with ruleset evaluation.
6354 */
6355 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
6356 break;
6357 }
6358 ctx->a = save_a;
6359 ctx->aruleset = save_aruleset;
6360 }
6361 r = TAILQ_NEXT(r, entries);
6362 }
6363
6364
6365 return (ctx->test_status);
6366 }
6367
6368 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp,struct pf_krule_slist * match_rules)6369 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
6370 struct pf_pdesc *pd, struct pf_krule **am,
6371 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp,
6372 struct pf_krule_slist *match_rules)
6373 {
6374 struct pf_krule *r = NULL;
6375 struct pf_kruleset *ruleset = NULL;
6376 struct pf_test_ctx ctx;
6377 u_short transerror;
6378 int action = PF_PASS;
6379 u_int16_t bproto_sum = 0, bip_sum = 0;
6380 enum pf_test_status rv;
6381
6382 PF_RULES_RASSERT();
6383
6384 bzero(&ctx, sizeof(ctx));
6385 ctx.tag = -1;
6386 ctx.pd = pd;
6387 ctx.rm = rm;
6388 ctx.am = am;
6389 ctx.rsm = rsm;
6390 ctx.th = &pd->hdr.tcp;
6391 ctx.reason = *reason;
6392 ctx.match_rules = match_rules;
6393
6394 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6395 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6396
6397 if (inp != NULL) {
6398 INP_LOCK_ASSERT(inp);
6399 pd->lookup.uid = inp->inp_cred->cr_uid;
6400 pd->lookup.gid = inp->inp_cred->cr_gid;
6401 pd->lookup.done = 1;
6402 }
6403
6404 if (pd->ip_sum)
6405 bip_sum = *pd->ip_sum;
6406
6407 switch (pd->virtual_proto) {
6408 case IPPROTO_TCP:
6409 bproto_sum = ctx.th->th_sum;
6410 pd->nsport = ctx.th->th_sport;
6411 pd->ndport = ctx.th->th_dport;
6412 break;
6413 case IPPROTO_UDP:
6414 bproto_sum = pd->hdr.udp.uh_sum;
6415 pd->nsport = pd->hdr.udp.uh_sport;
6416 pd->ndport = pd->hdr.udp.uh_dport;
6417 break;
6418 case IPPROTO_SCTP:
6419 pd->nsport = pd->hdr.sctp.src_port;
6420 pd->ndport = pd->hdr.sctp.dest_port;
6421 break;
6422 #ifdef INET
6423 case IPPROTO_ICMP:
6424 MPASS(pd->af == AF_INET);
6425 ctx.icmptype = pd->hdr.icmp.icmp_type;
6426 ctx.icmpcode = pd->hdr.icmp.icmp_code;
6427 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
6428 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
6429 if (ctx.icmp_dir == PF_IN) {
6430 pd->nsport = ctx.virtual_id;
6431 pd->ndport = ctx.virtual_type;
6432 } else {
6433 pd->nsport = ctx.virtual_type;
6434 pd->ndport = ctx.virtual_id;
6435 }
6436 break;
6437 #endif /* INET */
6438 #ifdef INET6
6439 case IPPROTO_ICMPV6:
6440 MPASS(pd->af == AF_INET6);
6441 ctx.icmptype = pd->hdr.icmp6.icmp6_type;
6442 ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
6443 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
6444 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
6445 if (ctx.icmp_dir == PF_IN) {
6446 pd->nsport = ctx.virtual_id;
6447 pd->ndport = ctx.virtual_type;
6448 } else {
6449 pd->nsport = ctx.virtual_type;
6450 pd->ndport = ctx.virtual_id;
6451 }
6452
6453 break;
6454 #endif /* INET6 */
6455 default:
6456 pd->nsport = pd->ndport = 0;
6457 break;
6458 }
6459 pd->osport = pd->nsport;
6460 pd->odport = pd->ndport;
6461
6462 /* check packet for BINAT/NAT/RDR */
6463 transerror = pf_get_translation(&ctx);
6464 switch (transerror) {
6465 default:
6466 /* A translation error occurred. */
6467 REASON_SET(&ctx.reason, transerror);
6468 goto cleanup;
6469 case PFRES_MAX:
6470 /* No match. */
6471 break;
6472 case PFRES_MATCH:
6473 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
6474 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
6475 if (ctx.nr->log) {
6476 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
6477 ruleset, pd, 1, NULL);
6478 }
6479
6480 ctx.rewrite += pf_translate_compat(&ctx);
6481 ctx.nat_pool = &(ctx.nr->rdr);
6482 }
6483
6484 *ctx.rm = &V_pf_default_rule;
6485 if (ctx.nr && ctx.nr->natpass) {
6486 r = ctx.nr;
6487 ruleset = *ctx.rsm;
6488 } else {
6489 ruleset = &pf_main_ruleset;
6490 rv = pf_match_rule(&ctx, ruleset);
6491 if (rv == PF_TEST_FAIL || ctx.limiter_drop == 1) {
6492 REASON_SET(reason, ctx.reason);
6493 goto cleanup;
6494 }
6495
6496 r = *ctx.rm; /* matching rule */
6497 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */
6498 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */
6499 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */
6500
6501 /* apply actions for last matching pass/block rule */
6502 pf_rule_to_actions(r, &pd->act);
6503 transerror = pf_rule_apply_nat(&ctx, r);
6504 switch (transerror) {
6505 case PFRES_MATCH:
6506 /* Translation action found in rule and applied successfully */
6507 case PFRES_MAX:
6508 /* No translation action found in rule */
6509 break;
6510 default:
6511 /* Translation action found in rule but failed to apply */
6512 REASON_SET(&ctx.reason, transerror);
6513 goto cleanup;
6514 }
6515 }
6516
6517 REASON_SET(&ctx.reason, PFRES_MATCH);
6518
6519 if (r->log) {
6520 if (ctx.rewrite)
6521 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6522 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
6523 }
6524 if (pd->act.log & PF_LOG_MATCHES)
6525 pf_log_matches(pd, r, ctx.a, ruleset, ctx.match_rules);
6526 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6527 (r->action == PF_DROP) &&
6528 ((r->rule_flag & PFRULE_RETURNRST) ||
6529 (r->rule_flag & PFRULE_RETURNICMP) ||
6530 (r->rule_flag & PFRULE_RETURN))) {
6531 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
6532 bip_sum, &ctx.reason, r->rtableid);
6533 }
6534
6535 if (r->action == PF_DROP)
6536 goto cleanup;
6537
6538 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
6539 REASON_SET(&ctx.reason, PFRES_MEMORY);
6540 goto cleanup;
6541 }
6542 if (pd->act.rtableid >= 0)
6543 M_SETFIB(pd->m, pd->act.rtableid);
6544
6545 if (r->rt) {
6546 /*
6547 * Set act.rt here instead of in pf_rule_to_actions() because
6548 * it is applied only from the last pass rule. For rules
6549 * with the prefer-ipv6-nexthop option act.rt_af is a hint
6550 * about AF of the forwarded packet and might be changed.
6551 */
6552 pd->act.rt = r->rt;
6553 if (r->rt == PF_REPLYTO)
6554 pd->act.rt_af = pd->af;
6555 else
6556 pd->act.rt_af = pd->naf;
6557 if ((transerror = pf_map_addr_sn(pd->af, r, pd->src,
6558 &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL,
6559 &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) {
6560 REASON_SET(&ctx.reason, transerror);
6561 goto cleanup;
6562 }
6563 }
6564
6565 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6566 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
6567 (pd->flags & PFDESC_TCP_NORM)))) {
6568 bool nat64;
6569
6570 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
6571 ctx.sk = ctx.nk = NULL;
6572 if (action != PF_PASS) {
6573 pf_udp_mapping_release(ctx.udp_mapping);
6574 if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
6575 ctx.reason == PFRES_MEMORY)
6576 pd->act.log |= PF_LOG_FORCE;
6577 if (action == PF_DROP &&
6578 (r->rule_flag & PFRULE_RETURN))
6579 pf_return(r, ctx.nr, pd, ctx.th,
6580 bproto_sum, bip_sum, &ctx.reason,
6581 pd->act.rtableid);
6582 *reason = ctx.reason;
6583 return (action);
6584 }
6585
6586 if (pd->proto == IPPROTO_TCP &&
6587 r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6588 action = pf_synproxy_ack(r, pd, sm, &ctx.act);
6589 if (action != PF_PASS)
6590 goto cleanup; /* PF_SYNPROXY_DROP */
6591 }
6592
6593 nat64 = pd->af != pd->naf;
6594 if (nat64) {
6595 int ret;
6596
6597 if (ctx.sk == NULL)
6598 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
6599 if (ctx.nk == NULL)
6600 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
6601
6602 if (pd->dir == PF_IN) {
6603 ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
6604 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
6605 ctx.sk->port[pd->sidx], ctx.virtual_type,
6606 ctx.icmp_dir);
6607 } else {
6608 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
6609 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
6610 ctx.sk->port[pd->didx], ctx.virtual_type,
6611 ctx.icmp_dir);
6612 }
6613
6614 if (ret < 0)
6615 goto cleanup;
6616
6617 ctx.rewrite += ret;
6618
6619 if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
6620 action = PF_AFRT;
6621 }
6622 } else {
6623 uma_zfree(V_pf_state_key_z, ctx.sk);
6624 uma_zfree(V_pf_state_key_z, ctx.nk);
6625 ctx.sk = ctx.nk = NULL;
6626 pf_udp_mapping_release(ctx.udp_mapping);
6627 }
6628
6629 /* copy back packet headers if we performed NAT operations */
6630 if (ctx.rewrite)
6631 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6632
6633 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6634 pd->dir == PF_OUT &&
6635 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
6636 /*
6637 * We want the state created, but we dont
6638 * want to send this in case a partner
6639 * firewall has to know about it to allow
6640 * replies through it.
6641 */
6642 *reason = ctx.reason;
6643 return (PF_DEFER);
6644 }
6645
6646 *reason = ctx.reason;
6647 return (action);
6648
6649 cleanup:
6650 uma_zfree(V_pf_state_key_z, ctx.sk);
6651 uma_zfree(V_pf_state_key_z, ctx.nk);
6652 pf_udp_mapping_release(ctx.udp_mapping);
6653 *reason = ctx.reason;
6654
6655 return (PF_DROP);
6656 }
6657
6658 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)6659 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6660 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
6661 {
6662 struct pf_pdesc *pd = ctx->pd;
6663 struct pf_kstate *s = NULL;
6664 struct pf_statelim *stlim = NULL;
6665 struct pf_sourcelim *srlim = NULL;
6666 struct pf_source *sr = NULL;
6667 struct pf_state_link *pfl;
6668 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL };
6669 /*
6670 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6671 * but for PF_SN_NAT it is different. Don't try optimizing it,
6672 * just store all 3 hashes.
6673 */
6674 struct pf_srchash *snhs[PF_SN_MAX] = { NULL };
6675 struct tcphdr *th = &pd->hdr.tcp;
6676 u_int16_t mss = V_tcp_mssdflt;
6677 u_short sn_reason;
6678
6679 /* check maximums */
6680 if (r->max_states &&
6681 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6682 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6683 REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6684 goto csfailed;
6685 }
6686 /* src node for limits */
6687 if ((r->rule_flag & PFRULE_SRCTRACK) &&
6688 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6689 NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) {
6690 REASON_SET(&ctx->reason, sn_reason);
6691 goto csfailed;
6692 }
6693 /* src node for route-to rule */
6694 if (r->rt) {
6695 if ((r->route.opts & PF_POOL_STICKYADDR) &&
6696 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6697 pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af,
6698 PF_SN_ROUTE)) != 0) {
6699 REASON_SET(&ctx->reason, sn_reason);
6700 goto csfailed;
6701 }
6702 }
6703 /* src node for translation rule */
6704 if (ctx->nr != NULL) {
6705 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6706 /*
6707 * The NAT addresses are chosen during ruleset parsing.
6708 * The new afto code stores post-nat addresses in nsaddr.
6709 * The old nat code (also used for new nat-to rules) creates
6710 * state keys and stores addresses in them.
6711 */
6712 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6713 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6714 ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af,
6715 ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL,
6716 pd->naf, PF_SN_NAT)) != 0 ) {
6717 REASON_SET(&ctx->reason, sn_reason);
6718 goto csfailed;
6719 }
6720 }
6721 s = pf_alloc_state(M_NOWAIT);
6722 if (s == NULL) {
6723 REASON_SET(&ctx->reason, PFRES_MEMORY);
6724 goto csfailed;
6725 }
6726 s->rule = r;
6727 s->nat_rule = ctx->nr;
6728 s->anchor = ctx->a;
6729 s->match_rules = *ctx->match_rules;
6730 SLIST_INIT(&s->linkage);
6731 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6732
6733 if (pd->act.allow_opts)
6734 s->state_flags |= PFSTATE_ALLOWOPTS;
6735 if (r->rule_flag & PFRULE_STATESLOPPY)
6736 s->state_flags |= PFSTATE_SLOPPY;
6737 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6738 s->state_flags |= PFSTATE_SCRUB_TCP;
6739 if ((r->rule_flag & PFRULE_PFLOW) ||
6740 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6741 s->state_flags |= PFSTATE_PFLOW;
6742
6743 s->act.log = pd->act.log & PF_LOG_ALL;
6744 s->sync_state = PFSYNC_S_NONE;
6745 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6746
6747 if (ctx->nr != NULL)
6748 s->act.log |= ctx->nr->log & PF_LOG_ALL;
6749 switch (pd->proto) {
6750 case IPPROTO_TCP:
6751 s->src.seqlo = ntohl(th->th_seq);
6752 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6753 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6754 r->keep_state == PF_STATE_MODULATE) {
6755 /* Generate sequence number modulator */
6756 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6757 0)
6758 s->src.seqdiff = 1;
6759 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6760 htonl(s->src.seqlo + s->src.seqdiff), 0);
6761 ctx->rewrite = 1;
6762 } else
6763 s->src.seqdiff = 0;
6764 if (tcp_get_flags(th) & TH_SYN) {
6765 s->src.seqhi++;
6766 s->src.wscale = pf_get_wscale(pd);
6767 }
6768 s->src.max_win = MAX(ntohs(th->th_win), 1);
6769 if (s->src.wscale & PF_WSCALE_MASK) {
6770 /* Remove scale factor from initial window */
6771 int win = s->src.max_win;
6772 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6773 s->src.max_win = (win - 1) >>
6774 (s->src.wscale & PF_WSCALE_MASK);
6775 }
6776 if (tcp_get_flags(th) & TH_FIN)
6777 s->src.seqhi++;
6778 s->dst.seqhi = 1;
6779 s->dst.max_win = 1;
6780 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6781 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6782 s->timeout = PFTM_TCP_FIRST_PACKET;
6783 atomic_add_32(&V_pf_status.states_halfopen, 1);
6784 break;
6785 case IPPROTO_UDP:
6786 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6787 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6788 s->timeout = PFTM_UDP_FIRST_PACKET;
6789 break;
6790 case IPPROTO_SCTP:
6791 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6792 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6793 s->timeout = PFTM_SCTP_FIRST_PACKET;
6794 break;
6795 case IPPROTO_ICMP:
6796 #ifdef INET6
6797 case IPPROTO_ICMPV6:
6798 #endif /* INET6 */
6799 s->timeout = PFTM_ICMP_FIRST_PACKET;
6800 break;
6801 default:
6802 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6803 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6804 s->timeout = PFTM_OTHER_FIRST_PACKET;
6805 }
6806
6807 s->creation = s->expire = pf_get_uptime();
6808
6809 if (pd->proto == IPPROTO_TCP) {
6810 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6811 pf_normalize_tcp_init(pd, th, &s->src)) {
6812 REASON_SET(&ctx->reason, PFRES_MEMORY);
6813 goto csfailed;
6814 }
6815 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6816 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6817 &s->src, &s->dst, &ctx->rewrite)) {
6818 /* This really shouldn't happen!!! */
6819 DPFPRINTF(PF_DEBUG_URGENT,
6820 "%s: tcp normalize failed on first "
6821 "pkt", __func__);
6822 goto csfailed;
6823 }
6824 } else if (pd->proto == IPPROTO_SCTP) {
6825 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6826 goto csfailed;
6827 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6828 goto csfailed;
6829 }
6830 s->direction = pd->dir;
6831
6832 /*
6833 * sk/nk could already been setup by pf_get_translation().
6834 */
6835 if (ctx->sk == NULL && ctx->nk == NULL) {
6836 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6837 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6838 if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6839 &ctx->sk, &ctx->nk)) {
6840 goto csfailed;
6841 }
6842 } else
6843 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6844 __func__, ctx->nr, ctx->sk, ctx->nk));
6845
6846 stlim = ctx->statelim;
6847 if (stlim != NULL) {
6848 unsigned int gen;
6849
6850 pfl = malloc(sizeof(*pfl), M_PF_STATE_LINK, M_NOWAIT);
6851 if (pfl == NULL) {
6852 REASON_SET(&ctx->reason, PFRES_MEMORY);
6853 goto csfailed;
6854 }
6855
6856 gen = pf_statelim_enter(stlim);
6857 stlim->pfstlim_counters.admitted++;
6858 stlim->pfstlim_inuse++;
6859 pf_statelim_leave(stlim, gen);
6860
6861 stlim->pfstlim_rate_ts += stlim->pfstlim_rate_token;
6862
6863 s->statelim = stlim->pfstlim_id;
6864 pfl->pfl_state = s;
6865 pfl->pfl_type = PF_STATE_LINK_TYPE_STATELIM;
6866
6867 TAILQ_INSERT_TAIL(&stlim->pfstlim_states, pfl, pfl_link);
6868 SLIST_INSERT_HEAD(&s->linkage, pfl, pfl_linkage);
6869 }
6870
6871 srlim = ctx->sourcelim;
6872 if (srlim != NULL) {
6873 unsigned int gen;
6874
6875 sr = ctx->source;
6876 if (sr == NULL) {
6877 sr = malloc(sizeof(*sr), M_PF_SOURCE_LIM, M_NOWAIT | M_ZERO);
6878 if (sr == NULL) {
6879 gen = pf_sourcelim_enter(srlim);
6880 srlim->pfsrlim_counters.addrnomem++;
6881 pf_sourcelim_leave(srlim, gen);
6882 REASON_SET(&ctx->reason, PFRES_MEMORY);
6883 goto csfailed;
6884 }
6885
6886 sr->pfsr_parent = srlim;
6887 pf_source_key(srlim, sr, ctx->pd->af, ctx->pd->src);
6888 TAILQ_INIT(&sr->pfsr_states);
6889
6890 if (RB_INSERT(pf_source_tree, &srlim->pfsrlim_sources,
6891 sr) != NULL) {
6892 panic("%s: source pool %u (%p) "
6893 "insert collision %p?!",
6894 __func__, srlim->pfsrlim_id, srlim, sr);
6895 }
6896
6897 if (RB_INSERT(pf_source_ioc_tree,
6898 &srlim->pfsrlim_ioc_sources, sr) != NULL) {
6899 panic("%s: source pool %u (%p) ioc "
6900 "insert collision (%p)?!",
6901 __func__, srlim->pfsrlim_id, srlim, sr);
6902 }
6903
6904 sr->pfsr_empty_ts = time_uptime;
6905 TAILQ_INSERT_TAIL(&pf_source_gc, sr, pfsr_empty_gc);
6906
6907 gen = pf_sourcelim_enter(srlim);
6908 srlim->pfsrlim_nsources++;
6909 srlim->pfsrlim_counters.addrallocs++;
6910 pf_sourcelim_leave(srlim, gen);
6911 } else {
6912 MPASS(sr->pfsr_parent == srlim);
6913 }
6914
6915 pfl = malloc(sizeof(*pfl), M_PF_STATE_LINK, M_NOWAIT);
6916 if (pfl == NULL) {
6917 REASON_SET(&ctx->reason, PFRES_MEMORY);
6918 goto csfailed;
6919 }
6920
6921 pf_source_used(sr);
6922
6923 sr->pfsr_counters.admitted++;
6924
6925 gen = pf_sourcelim_enter(srlim);
6926 srlim->pfsrlim_counters.inuse++;
6927 srlim->pfsrlim_counters.admitted++;
6928 pf_sourcelim_leave(srlim, gen);
6929
6930 s->sourcelim = srlim->pfsrlim_id;
6931 pfl->pfl_state = s;
6932 pfl->pfl_type = PF_STATE_LINK_TYPE_SOURCELIM;
6933
6934 TAILQ_INSERT_TAIL(&sr->pfsr_states, pfl, pfl_link);
6935 SLIST_INSERT_HEAD(&s->linkage, pfl, pfl_linkage);
6936 }
6937
6938 /* Swap sk/nk for PF_OUT. */
6939 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6940 (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6941 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6942 REASON_SET(&ctx->reason, PFRES_STATEINS);
6943 goto drop;
6944 } else
6945 *sm = s;
6946 ctx->sk = ctx->nk = NULL;
6947
6948 STATE_INC_COUNTERS(s);
6949
6950 /*
6951 * Lock order is important: first state, then source node.
6952 */
6953 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6954 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6955 s->sns[sn_type] = sns[sn_type];
6956 PF_HASHROW_UNLOCK(snhs[sn_type]);
6957 }
6958 }
6959
6960 if (ctx->tag > 0)
6961 s->tag = ctx->tag;
6962 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6963 TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6964 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6965 pf_undo_nat(ctx->nr, pd, bip_sum);
6966 s->src.seqhi = arc4random();
6967 /* Find mss option */
6968 int rtid = M_GETFIB(pd->m);
6969 mss = pf_get_mss(pd);
6970 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6971 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6972 s->src.mss = mss;
6973 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6974 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6975 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6976 pd->act.rtableid, &ctx->reason);
6977 REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6978 return (PF_SYNPROXY_DROP);
6979 }
6980
6981 s->udp_mapping = ctx->udp_mapping;
6982
6983 return (PF_PASS);
6984
6985 csfailed:
6986 uma_zfree(V_pf_state_key_z, ctx->sk);
6987 uma_zfree(V_pf_state_key_z, ctx->nk);
6988
6989 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6990 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6991 if (--sns[sn_type]->states == 0 &&
6992 sns[sn_type]->expire == 0) {
6993 pf_unlink_src_node(sns[sn_type]);
6994 pf_free_src_node(sns[sn_type]);
6995 counter_u64_add(
6996 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6997 }
6998 PF_HASHROW_UNLOCK(snhs[sn_type]);
6999 }
7000 }
7001
7002 drop:
7003 if (s != NULL) {
7004 struct pf_state_link *npfl;
7005
7006 SLIST_FOREACH_SAFE(pfl, &s->linkage, pfl_linkage, npfl) {
7007 struct pf_state_link_list *list;
7008 unsigned int gen;
7009
7010 /* who needs KASSERTS when we have NULL derefs */
7011
7012 switch (pfl->pfl_type) {
7013 case PF_STATE_LINK_TYPE_STATELIM:
7014 gen = pf_statelim_enter(stlim);
7015 stlim->pfstlim_inuse--;
7016 pf_statelim_leave(stlim, gen);
7017
7018 stlim->pfstlim_rate_ts -=
7019 stlim->pfstlim_rate_token;
7020 list = &stlim->pfstlim_states;
7021 break;
7022 case PF_STATE_LINK_TYPE_SOURCELIM:
7023 gen = pf_sourcelim_enter(srlim);
7024 srlim->pfsrlim_counters.inuse--;
7025 pf_sourcelim_leave(srlim, gen);
7026
7027 sr->pfsr_rate_ts -= srlim->pfsrlim_rate_token;
7028 pf_source_rele(sr);
7029
7030 list = &sr->pfsr_states;
7031 break;
7032 default:
7033 panic("%s: unexpected link type on pfl %p",
7034 __func__, pfl);
7035 }
7036
7037 TAILQ_REMOVE(list, pfl, pfl_link);
7038 PF_STATE_LOCK_ASSERT(s);
7039 free(pfl, M_PF_STATE_LINK);
7040 }
7041
7042 pf_src_tree_remove_state(s);
7043 s->timeout = PFTM_UNLINKED;
7044 pf_free_state(s);
7045 }
7046
7047 return (PF_DROP);
7048 }
7049
7050 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)7051 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
7052 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
7053 int icmp_dir)
7054 {
7055 /*
7056 * pf_translate() implements OpenBSD's "new" NAT approach.
7057 * We don't follow it, because it involves a breaking syntax change
7058 * (removing nat/rdr rules, moving it into regular pf rules.)
7059 * It also moves NAT processing to be done after normal rules evaluation
7060 * whereas in FreeBSD that's done before rules processing.
7061 *
7062 * We adopt the function only for nat64, and keep other NAT processing
7063 * before rules processing.
7064 */
7065 int rewrite = 0;
7066 int afto = pd->af != pd->naf;
7067
7068 MPASS(afto);
7069
7070 switch (pd->proto) {
7071 case IPPROTO_TCP:
7072 case IPPROTO_UDP:
7073 case IPPROTO_SCTP:
7074 if (afto || *pd->sport != sport) {
7075 pf_change_ap(pd, pd->src, pd->sport,
7076 saddr, sport);
7077 rewrite = 1;
7078 }
7079 if (afto || *pd->dport != dport) {
7080 pf_change_ap(pd, pd->dst, pd->dport,
7081 daddr, dport);
7082 rewrite = 1;
7083 }
7084 break;
7085
7086 #ifdef INET
7087 case IPPROTO_ICMP:
7088 /* pf_translate() is also used when logging invalid packets */
7089 if (pd->af != AF_INET)
7090 return (0);
7091
7092 if (afto) {
7093 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
7094 return (-1);
7095 pd->proto = IPPROTO_ICMPV6;
7096 rewrite = 1;
7097 }
7098 if (virtual_type == htons(ICMP_ECHO)) {
7099 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
7100
7101 if (icmpid != pd->hdr.icmp.icmp_id) {
7102 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
7103 pd->hdr.icmp.icmp_cksum,
7104 pd->hdr.icmp.icmp_id, icmpid, 0);
7105 pd->hdr.icmp.icmp_id = icmpid;
7106 /* XXX TODO copyback. */
7107 rewrite = 1;
7108 }
7109 }
7110 break;
7111 #endif /* INET */
7112
7113 #ifdef INET6
7114 case IPPROTO_ICMPV6:
7115 /* pf_translate() is also used when logging invalid packets */
7116 if (pd->af != AF_INET6)
7117 return (0);
7118
7119 if (afto) {
7120 /* ip_sum will be recalculated in pf_translate_af */
7121 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
7122 return (0);
7123 pd->proto = IPPROTO_ICMP;
7124 rewrite = 1;
7125 }
7126 break;
7127 #endif /* INET6 */
7128
7129 default:
7130 break;
7131 }
7132
7133 return (rewrite);
7134 }
7135
7136 int
pf_translate_compat(struct pf_test_ctx * ctx)7137 pf_translate_compat(struct pf_test_ctx *ctx)
7138 {
7139 struct pf_pdesc *pd = ctx->pd;
7140 struct pf_state_key *nk = ctx->nk;
7141 struct tcphdr *th = &pd->hdr.tcp;
7142 int rewrite = 0;
7143
7144 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
7145 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
7146
7147 switch (pd->virtual_proto) {
7148 case IPPROTO_TCP:
7149 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
7150 nk->port[pd->sidx] != pd->nsport) {
7151 pf_change_ap(pd, pd->src, &th->th_sport,
7152 &nk->addr[pd->sidx], nk->port[pd->sidx]);
7153 pd->sport = &th->th_sport;
7154 pd->nsport = th->th_sport;
7155 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
7156 }
7157
7158 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
7159 nk->port[pd->didx] != pd->ndport) {
7160 pf_change_ap(pd, pd->dst, &th->th_dport,
7161 &nk->addr[pd->didx], nk->port[pd->didx]);
7162 pd->dport = &th->th_dport;
7163 pd->ndport = th->th_dport;
7164 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
7165 }
7166 rewrite++;
7167 break;
7168 case IPPROTO_UDP:
7169 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
7170 nk->port[pd->sidx] != pd->nsport) {
7171 pf_change_ap(pd, pd->src,
7172 &pd->hdr.udp.uh_sport,
7173 &nk->addr[pd->sidx],
7174 nk->port[pd->sidx]);
7175 pd->sport = &pd->hdr.udp.uh_sport;
7176 pd->nsport = pd->hdr.udp.uh_sport;
7177 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
7178 }
7179
7180 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
7181 nk->port[pd->didx] != pd->ndport) {
7182 pf_change_ap(pd, pd->dst,
7183 &pd->hdr.udp.uh_dport,
7184 &nk->addr[pd->didx],
7185 nk->port[pd->didx]);
7186 pd->dport = &pd->hdr.udp.uh_dport;
7187 pd->ndport = pd->hdr.udp.uh_dport;
7188 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
7189 }
7190 rewrite++;
7191 break;
7192 case IPPROTO_SCTP: {
7193 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
7194 nk->port[pd->sidx] != pd->nsport) {
7195 pf_change_ap(pd, pd->src,
7196 &pd->hdr.sctp.src_port,
7197 &nk->addr[pd->sidx],
7198 nk->port[pd->sidx]);
7199 pd->sport = &pd->hdr.sctp.src_port;
7200 pd->nsport = pd->hdr.sctp.src_port;
7201 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
7202 }
7203 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
7204 nk->port[pd->didx] != pd->ndport) {
7205 pf_change_ap(pd, pd->dst,
7206 &pd->hdr.sctp.dest_port,
7207 &nk->addr[pd->didx],
7208 nk->port[pd->didx]);
7209 pd->dport = &pd->hdr.sctp.dest_port;
7210 pd->ndport = pd->hdr.sctp.dest_port;
7211 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
7212 }
7213 break;
7214 }
7215 #ifdef INET
7216 case IPPROTO_ICMP:
7217 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
7218 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
7219 nk->addr[pd->sidx].v4.s_addr, 0);
7220 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
7221 }
7222
7223 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
7224 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
7225 nk->addr[pd->didx].v4.s_addr, 0);
7226 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
7227 }
7228
7229 if (ctx->virtual_type == htons(ICMP_ECHO) &&
7230 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
7231 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
7232 pd->hdr.icmp.icmp_cksum, pd->nsport,
7233 nk->port[pd->sidx], 0);
7234 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
7235 pd->sport = &pd->hdr.icmp.icmp_id;
7236 }
7237 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
7238 break;
7239 #endif /* INET */
7240 #ifdef INET6
7241 case IPPROTO_ICMPV6:
7242 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
7243 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
7244 &nk->addr[pd->sidx], 0);
7245 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
7246 }
7247
7248 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
7249 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
7250 &nk->addr[pd->didx], 0);
7251 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
7252 }
7253 rewrite++;
7254 break;
7255 #endif /* INET */
7256 default:
7257 switch (pd->af) {
7258 #ifdef INET
7259 case AF_INET:
7260 if (PF_ANEQ(&pd->nsaddr,
7261 &nk->addr[pd->sidx], AF_INET)) {
7262 pf_change_a(&pd->src->v4.s_addr,
7263 pd->ip_sum,
7264 nk->addr[pd->sidx].v4.s_addr, 0);
7265 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
7266 }
7267
7268 if (PF_ANEQ(&pd->ndaddr,
7269 &nk->addr[pd->didx], AF_INET)) {
7270 pf_change_a(&pd->dst->v4.s_addr,
7271 pd->ip_sum,
7272 nk->addr[pd->didx].v4.s_addr, 0);
7273 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
7274 }
7275 break;
7276 #endif /* INET */
7277 #ifdef INET6
7278 case AF_INET6:
7279 if (PF_ANEQ(&pd->nsaddr,
7280 &nk->addr[pd->sidx], AF_INET6)) {
7281 pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx],
7282 pd->af);
7283 pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af);
7284 }
7285
7286 if (PF_ANEQ(&pd->ndaddr,
7287 &nk->addr[pd->didx], AF_INET6)) {
7288 pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx],
7289 pd->af);
7290 pf_addrcpy(pd->dst, &nk->addr[pd->didx],
7291 pd->af);
7292 }
7293 break;
7294 #endif /* INET6 */
7295 }
7296 break;
7297 }
7298 return (rewrite);
7299 }
7300
7301 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)7302 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
7303 u_short *reason, int *copyback, struct pf_state_peer *src,
7304 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
7305 {
7306 struct tcphdr *th = &pd->hdr.tcp;
7307 u_int16_t win = ntohs(th->th_win);
7308 u_int32_t ack, end, data_end, seq, orig_seq;
7309 u_int8_t sws, dws;
7310 int ackskew;
7311
7312 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
7313 sws = src->wscale & PF_WSCALE_MASK;
7314 dws = dst->wscale & PF_WSCALE_MASK;
7315 } else
7316 sws = dws = 0;
7317
7318 /*
7319 * Sequence tracking algorithm from Guido van Rooij's paper:
7320 * http://www.madison-gurkha.com/publications/tcp_filtering/
7321 * tcp_filtering.ps
7322 */
7323
7324 orig_seq = seq = ntohl(th->th_seq);
7325 if (src->seqlo == 0) {
7326 /* First packet from this end. Set its state */
7327
7328 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
7329 src->scrub == NULL) {
7330 if (pf_normalize_tcp_init(pd, th, src)) {
7331 REASON_SET(reason, PFRES_MEMORY);
7332 return (PF_DROP);
7333 }
7334 }
7335
7336 /* Deferred generation of sequence number modulator */
7337 if (dst->seqdiff && !src->seqdiff) {
7338 /* use random iss for the TCP server */
7339 while ((src->seqdiff = arc4random() - seq) == 0)
7340 ;
7341 ack = ntohl(th->th_ack) - dst->seqdiff;
7342 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
7343 src->seqdiff), 0);
7344 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
7345 *copyback = 1;
7346 } else {
7347 ack = ntohl(th->th_ack);
7348 }
7349
7350 end = seq + pd->p_len;
7351 if (tcp_get_flags(th) & TH_SYN) {
7352 end++;
7353 if (dst->wscale & PF_WSCALE_FLAG) {
7354 src->wscale = pf_get_wscale(pd);
7355 if (src->wscale & PF_WSCALE_FLAG) {
7356 /* Remove scale factor from initial
7357 * window */
7358 sws = src->wscale & PF_WSCALE_MASK;
7359 win = ((u_int32_t)win + (1 << sws) - 1)
7360 >> sws;
7361 dws = dst->wscale & PF_WSCALE_MASK;
7362 } else {
7363 /* fixup other window */
7364 dst->max_win = MIN(TCP_MAXWIN,
7365 (u_int32_t)dst->max_win <<
7366 (dst->wscale & PF_WSCALE_MASK));
7367 /* in case of a retrans SYN|ACK */
7368 dst->wscale = 0;
7369 }
7370 }
7371 }
7372 data_end = end;
7373 if (tcp_get_flags(th) & TH_FIN)
7374 end++;
7375
7376 src->seqlo = seq;
7377 if (src->state < TCPS_SYN_SENT)
7378 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
7379
7380 /*
7381 * May need to slide the window (seqhi may have been set by
7382 * the crappy stack check or if we picked up the connection
7383 * after establishment)
7384 */
7385 if (src->seqhi == 1 ||
7386 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
7387 src->seqhi = end + MAX(1, dst->max_win << dws);
7388 if (win > src->max_win)
7389 src->max_win = win;
7390
7391 } else {
7392 ack = ntohl(th->th_ack) - dst->seqdiff;
7393 if (src->seqdiff) {
7394 /* Modulate sequence numbers */
7395 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
7396 src->seqdiff), 0);
7397 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
7398 *copyback = 1;
7399 }
7400 end = seq + pd->p_len;
7401 if (tcp_get_flags(th) & TH_SYN)
7402 end++;
7403 data_end = end;
7404 if (tcp_get_flags(th) & TH_FIN)
7405 end++;
7406 }
7407
7408 if ((tcp_get_flags(th) & TH_ACK) == 0) {
7409 /* Let it pass through the ack skew check */
7410 ack = dst->seqlo;
7411 } else if ((ack == 0 &&
7412 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
7413 /* broken tcp stacks do not set ack */
7414 (dst->state < TCPS_SYN_SENT)) {
7415 /*
7416 * Many stacks (ours included) will set the ACK number in an
7417 * FIN|ACK if the SYN times out -- no sequence to ACK.
7418 */
7419 ack = dst->seqlo;
7420 }
7421
7422 if (seq == end) {
7423 /* Ease sequencing restrictions on no data packets */
7424 seq = src->seqlo;
7425 data_end = end = seq;
7426 }
7427
7428 ackskew = dst->seqlo - ack;
7429
7430 /*
7431 * Need to demodulate the sequence numbers in any TCP SACK options
7432 * (Selective ACK). We could optionally validate the SACK values
7433 * against the current ACK window, either forwards or backwards, but
7434 * I'm not confident that SACK has been implemented properly
7435 * everywhere. It wouldn't surprise me if several stacks accidentally
7436 * SACK too far backwards of previously ACKed data. There really aren't
7437 * any security implications of bad SACKing unless the target stack
7438 * doesn't validate the option length correctly. Someone trying to
7439 * spoof into a TCP connection won't bother blindly sending SACK
7440 * options anyway.
7441 */
7442 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
7443 if (pf_modulate_sack(pd, th, dst))
7444 *copyback = 1;
7445 }
7446
7447 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
7448 if (SEQ_GEQ(src->seqhi, data_end) &&
7449 /* Last octet inside other's window space */
7450 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
7451 /* Retrans: not more than one window back */
7452 (ackskew >= -MAXACKWINDOW) &&
7453 /* Acking not more than one reassembled fragment backwards */
7454 (ackskew <= (MAXACKWINDOW << sws)) &&
7455 /* Acking not more than one window forward */
7456 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
7457 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
7458 /* Require an exact/+1 sequence match on resets when possible */
7459 (SEQ_GEQ(orig_seq, src->seqlo - (dst->max_win << dws)) &&
7460 SEQ_LEQ(orig_seq, src->seqlo + 1) && ackskew == 0 &&
7461 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)))) {
7462 /* Allow resets to match sequence window if ack is perfect match */
7463
7464 if (dst->scrub || src->scrub) {
7465 if (pf_normalize_tcp_stateful(pd, reason, th,
7466 state, src, dst, copyback))
7467 return (PF_DROP);
7468 }
7469
7470 /* update max window */
7471 if (src->max_win < win)
7472 src->max_win = win;
7473 /* synchronize sequencing */
7474 if (SEQ_GT(end, src->seqlo))
7475 src->seqlo = end;
7476 /* slide the window of what the other end can send */
7477 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
7478 dst->seqhi = ack + MAX((win << sws), 1);
7479
7480 /* update states */
7481 if (tcp_get_flags(th) & TH_SYN)
7482 if (src->state < TCPS_SYN_SENT)
7483 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
7484 if (tcp_get_flags(th) & TH_FIN)
7485 if (src->state < TCPS_CLOSING)
7486 pf_set_protostate(state, psrc, TCPS_CLOSING);
7487 if (tcp_get_flags(th) & TH_ACK) {
7488 if (dst->state == TCPS_SYN_SENT) {
7489 pf_set_protostate(state, pdst,
7490 TCPS_ESTABLISHED);
7491 if (src->state == TCPS_ESTABLISHED &&
7492 state->sns[PF_SN_LIMIT] != NULL &&
7493 pf_src_connlimit(state)) {
7494 REASON_SET(reason, PFRES_SRCLIMIT);
7495 return (PF_DROP);
7496 }
7497 } else if (dst->state == TCPS_CLOSING)
7498 pf_set_protostate(state, pdst,
7499 TCPS_FIN_WAIT_2);
7500 }
7501 if (tcp_get_flags(th) & TH_RST)
7502 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
7503
7504 /* update expire time */
7505 state->expire = pf_get_uptime();
7506 if (src->state >= TCPS_FIN_WAIT_2 &&
7507 dst->state >= TCPS_FIN_WAIT_2)
7508 state->timeout = PFTM_TCP_CLOSED;
7509 else if (src->state >= TCPS_CLOSING &&
7510 dst->state >= TCPS_CLOSING)
7511 state->timeout = PFTM_TCP_FIN_WAIT;
7512 else if (src->state < TCPS_ESTABLISHED ||
7513 dst->state < TCPS_ESTABLISHED)
7514 state->timeout = PFTM_TCP_OPENING;
7515 else if (src->state >= TCPS_CLOSING ||
7516 dst->state >= TCPS_CLOSING)
7517 state->timeout = PFTM_TCP_CLOSING;
7518 else
7519 state->timeout = PFTM_TCP_ESTABLISHED;
7520
7521 /* Fall through to PASS packet */
7522
7523 } else if ((dst->state < TCPS_SYN_SENT ||
7524 dst->state >= TCPS_FIN_WAIT_2 ||
7525 src->state >= TCPS_FIN_WAIT_2) &&
7526 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
7527 /* Within a window forward of the originating packet */
7528 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
7529 /* Within a window backward of the originating packet */
7530
7531 /*
7532 * This currently handles three situations:
7533 * 1) Stupid stacks will shotgun SYNs before their peer
7534 * replies.
7535 * 2) When PF catches an already established stream (the
7536 * firewall rebooted, the state table was flushed, routes
7537 * changed...)
7538 * 3) Packets get funky immediately after the connection
7539 * closes (this should catch Solaris spurious ACK|FINs
7540 * that web servers like to spew after a close)
7541 *
7542 * This must be a little more careful than the above code
7543 * since packet floods will also be caught here. We don't
7544 * update the TTL here to mitigate the damage of a packet
7545 * flood and so the same code can handle awkward establishment
7546 * and a loosened connection close.
7547 * In the establishment case, a correct peer response will
7548 * validate the connection, go through the normal state code
7549 * and keep updating the state TTL.
7550 */
7551
7552 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7553 printf("pf: loose state match: ");
7554 pf_print_state(state);
7555 pf_print_flags(tcp_get_flags(th));
7556 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
7557 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
7558 pd->p_len, ackskew, (unsigned long long)state->packets[0],
7559 (unsigned long long)state->packets[1],
7560 pd->dir == PF_IN ? "in" : "out",
7561 pd->dir == state->direction ? "fwd" : "rev");
7562 }
7563
7564 if (dst->scrub || src->scrub) {
7565 if (pf_normalize_tcp_stateful(pd, reason, th,
7566 state, src, dst, copyback))
7567 return (PF_DROP);
7568 }
7569
7570 /* update max window */
7571 if (src->max_win < win)
7572 src->max_win = win;
7573 /* synchronize sequencing */
7574 if (SEQ_GT(end, src->seqlo))
7575 src->seqlo = end;
7576 /* slide the window of what the other end can send */
7577 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
7578 dst->seqhi = ack + MAX((win << sws), 1);
7579
7580 /*
7581 * Cannot set dst->seqhi here since this could be a shotgunned
7582 * SYN and not an already established connection.
7583 */
7584
7585 if (tcp_get_flags(th) & TH_FIN)
7586 if (src->state < TCPS_CLOSING)
7587 pf_set_protostate(state, psrc, TCPS_CLOSING);
7588 if (tcp_get_flags(th) & TH_RST)
7589 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
7590
7591 /* Fall through to PASS packet */
7592
7593 } else {
7594 if (state->dst.state == TCPS_SYN_SENT &&
7595 state->src.state == TCPS_SYN_SENT) {
7596 /* Send RST for state mismatches during handshake */
7597 if (!(tcp_get_flags(th) & TH_RST))
7598 pf_send_tcp(state->rule, pd->af,
7599 pd->dst, pd->src, th->th_dport,
7600 th->th_sport, ntohl(th->th_ack), 0,
7601 TH_RST, 0, 0,
7602 state->rule->return_ttl, M_SKIP_FIREWALL,
7603 0, 0, state->act.rtableid, reason);
7604 src->seqlo = 0;
7605 src->seqhi = 1;
7606 src->max_win = 1;
7607 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
7608 printf("pf: BAD state: ");
7609 pf_print_state(state);
7610 pf_print_flags(tcp_get_flags(th));
7611 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
7612 "pkts=%llu:%llu dir=%s,%s\n",
7613 seq, orig_seq, ack, pd->p_len, ackskew,
7614 (unsigned long long)state->packets[0],
7615 (unsigned long long)state->packets[1],
7616 pd->dir == PF_IN ? "in" : "out",
7617 pd->dir == state->direction ? "fwd" : "rev");
7618 printf("pf: State failure on: %c %c %c %c | %c %c\n",
7619 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
7620 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
7621 ' ': '2',
7622 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
7623 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
7624 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
7625 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
7626 }
7627 REASON_SET(reason, PFRES_BADSTATE);
7628 return (PF_DROP);
7629 }
7630
7631 return (PF_PASS);
7632 }
7633
7634 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)7635 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
7636 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
7637 u_int8_t psrc, u_int8_t pdst)
7638 {
7639 struct tcphdr *th = &pd->hdr.tcp;
7640
7641 if (tcp_get_flags(th) & TH_SYN)
7642 if (src->state < TCPS_SYN_SENT)
7643 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
7644 if (tcp_get_flags(th) & TH_FIN)
7645 if (src->state < TCPS_CLOSING)
7646 pf_set_protostate(state, psrc, TCPS_CLOSING);
7647 if (tcp_get_flags(th) & TH_ACK) {
7648 if (dst->state == TCPS_SYN_SENT) {
7649 pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
7650 if (src->state == TCPS_ESTABLISHED &&
7651 state->sns[PF_SN_LIMIT] != NULL &&
7652 pf_src_connlimit(state)) {
7653 REASON_SET(reason, PFRES_SRCLIMIT);
7654 return (PF_DROP);
7655 }
7656 } else if (dst->state == TCPS_CLOSING) {
7657 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
7658 } else if (src->state == TCPS_SYN_SENT &&
7659 dst->state < TCPS_SYN_SENT) {
7660 /*
7661 * Handle a special sloppy case where we only see one
7662 * half of the connection. If there is a ACK after
7663 * the initial SYN without ever seeing a packet from
7664 * the destination, set the connection to established.
7665 */
7666 pf_set_protostate(state, PF_PEER_BOTH,
7667 TCPS_ESTABLISHED);
7668 dst->state = src->state = TCPS_ESTABLISHED;
7669 if (state->sns[PF_SN_LIMIT] != NULL &&
7670 pf_src_connlimit(state)) {
7671 REASON_SET(reason, PFRES_SRCLIMIT);
7672 return (PF_DROP);
7673 }
7674 } else if (src->state == TCPS_CLOSING &&
7675 dst->state == TCPS_ESTABLISHED &&
7676 dst->seqlo == 0) {
7677 /*
7678 * Handle the closing of half connections where we
7679 * don't see the full bidirectional FIN/ACK+ACK
7680 * handshake.
7681 */
7682 pf_set_protostate(state, pdst, TCPS_CLOSING);
7683 }
7684 }
7685 if (tcp_get_flags(th) & TH_RST)
7686 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
7687
7688 /* update expire time */
7689 state->expire = pf_get_uptime();
7690 if (src->state >= TCPS_FIN_WAIT_2 &&
7691 dst->state >= TCPS_FIN_WAIT_2)
7692 state->timeout = PFTM_TCP_CLOSED;
7693 else if (src->state >= TCPS_CLOSING &&
7694 dst->state >= TCPS_CLOSING)
7695 state->timeout = PFTM_TCP_FIN_WAIT;
7696 else if (src->state < TCPS_ESTABLISHED ||
7697 dst->state < TCPS_ESTABLISHED)
7698 state->timeout = PFTM_TCP_OPENING;
7699 else if (src->state >= TCPS_CLOSING ||
7700 dst->state >= TCPS_CLOSING)
7701 state->timeout = PFTM_TCP_CLOSING;
7702 else
7703 state->timeout = PFTM_TCP_ESTABLISHED;
7704
7705 return (PF_PASS);
7706 }
7707
7708 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)7709 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
7710 {
7711 struct pf_state_key *sk = state->key[pd->didx];
7712 struct tcphdr *th = &pd->hdr.tcp;
7713
7714 if (state->src.state == PF_TCPS_PROXY_SRC) {
7715 if (pd->dir != state->direction) {
7716 REASON_SET(reason, PFRES_SYNPROXY);
7717 return (PF_SYNPROXY_DROP);
7718 }
7719 if (tcp_get_flags(th) & TH_SYN) {
7720 if (ntohl(th->th_seq) != state->src.seqlo) {
7721 REASON_SET(reason, PFRES_SYNPROXY);
7722 return (PF_DROP);
7723 }
7724 pf_send_tcp(state->rule, pd->af, pd->dst,
7725 pd->src, th->th_dport, th->th_sport,
7726 state->src.seqhi, ntohl(th->th_seq) + 1,
7727 TH_SYN|TH_ACK, 0, state->src.mss, 0,
7728 M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7729 reason);
7730 REASON_SET(reason, PFRES_SYNPROXY);
7731 return (PF_SYNPROXY_DROP);
7732 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
7733 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7734 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7735 REASON_SET(reason, PFRES_SYNPROXY);
7736 return (PF_DROP);
7737 } else if (state->sns[PF_SN_LIMIT] != NULL &&
7738 pf_src_connlimit(state)) {
7739 REASON_SET(reason, PFRES_SRCLIMIT);
7740 return (PF_DROP);
7741 } else
7742 pf_set_protostate(state, PF_PEER_SRC,
7743 PF_TCPS_PROXY_DST);
7744 }
7745 if (state->src.state == PF_TCPS_PROXY_DST) {
7746 if (pd->dir == state->direction) {
7747 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
7748 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7749 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7750 REASON_SET(reason, PFRES_SYNPROXY);
7751 return (PF_DROP);
7752 }
7753 state->src.max_win = MAX(ntohs(th->th_win), 1);
7754 if (state->dst.seqhi == 1)
7755 state->dst.seqhi = arc4random();
7756 pf_send_tcp(state->rule, pd->af,
7757 &sk->addr[pd->sidx], &sk->addr[pd->didx],
7758 sk->port[pd->sidx], sk->port[pd->didx],
7759 state->dst.seqhi, 0, TH_SYN, 0,
7760 state->src.mss, 0,
7761 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
7762 state->tag, 0, state->act.rtableid,
7763 reason);
7764 REASON_SET(reason, PFRES_SYNPROXY);
7765 return (PF_SYNPROXY_DROP);
7766 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
7767 (TH_SYN|TH_ACK)) ||
7768 (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
7769 REASON_SET(reason, PFRES_SYNPROXY);
7770 return (PF_DROP);
7771 } else {
7772 state->dst.max_win = MAX(ntohs(th->th_win), 1);
7773 state->dst.seqlo = ntohl(th->th_seq);
7774 pf_send_tcp(state->rule, pd->af, pd->dst,
7775 pd->src, th->th_dport, th->th_sport,
7776 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
7777 TH_ACK, state->src.max_win, 0, 0, 0,
7778 state->tag, 0, state->act.rtableid,
7779 reason);
7780 pf_send_tcp(state->rule, pd->af,
7781 &sk->addr[pd->sidx], &sk->addr[pd->didx],
7782 sk->port[pd->sidx], sk->port[pd->didx],
7783 state->src.seqhi + 1, state->src.seqlo + 1,
7784 TH_ACK, state->dst.max_win, 0, 0,
7785 M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7786 reason);
7787 state->src.seqdiff = state->dst.seqhi -
7788 state->src.seqlo;
7789 state->dst.seqdiff = state->src.seqhi -
7790 state->dst.seqlo;
7791 state->src.seqhi = state->src.seqlo +
7792 state->dst.max_win;
7793 state->dst.seqhi = state->dst.seqlo +
7794 state->src.max_win;
7795 state->src.wscale = state->dst.wscale = 0;
7796 pf_set_protostate(state, PF_PEER_BOTH,
7797 TCPS_ESTABLISHED);
7798 REASON_SET(reason, PFRES_SYNPROXY);
7799 return (PF_SYNPROXY_DROP);
7800 }
7801 }
7802
7803 return (PF_PASS);
7804 }
7805
7806 static __inline int
pf_synproxy_ack(struct pf_krule * r,struct pf_pdesc * pd,struct pf_kstate ** sm,struct pf_rule_actions * act)7807 pf_synproxy_ack(struct pf_krule *r, struct pf_pdesc *pd, struct pf_kstate **sm,
7808 struct pf_rule_actions *act)
7809 {
7810 struct tcphdr *th = &pd->hdr.tcp;
7811 struct pf_kstate *s;
7812 u_int16_t mss;
7813 int rtid;
7814 u_short reason;
7815
7816 if ((th->th_flags & (TH_SYN | TH_ACK)) != TH_SYN)
7817 return (PF_PASS);
7818
7819 s = *sm;
7820 rtid = act->rtableid;
7821
7822 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
7823 s->src.seqhi = arc4random();
7824 /* Find mss option */
7825 mss = pf_get_mss(pd);
7826 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
7827 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
7828 s->src.mss = mss;
7829
7830 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
7831 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
7832 TH_SYN | TH_ACK, 0, s->src.mss, 0, 1, 0, 0, r->rtableid, NULL);
7833
7834 REASON_SET(&reason, PFRES_SYNPROXY);
7835 return (PF_SYNPROXY_DROP);
7836 }
7837
7838 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7839 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7840 {
7841 struct pf_state_key_cmp key;
7842 int copyback = 0;
7843 struct pf_state_peer *src, *dst;
7844 uint8_t psrc, pdst;
7845 int action;
7846
7847 bzero(&key, sizeof(key));
7848 key.af = pd->af;
7849 key.proto = pd->virtual_proto;
7850 pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af);
7851 pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af);
7852 key.port[pd->sidx] = pd->osport;
7853 key.port[pd->didx] = pd->odport;
7854
7855 action = pf_find_state(pd, &key, state);
7856 if (action != PF_MATCH)
7857 return (action);
7858
7859 action = PF_PASS;
7860 if (pd->dir == (*state)->direction) {
7861 if (PF_REVERSED_KEY(*state, pd->af)) {
7862 src = &(*state)->dst;
7863 dst = &(*state)->src;
7864 psrc = PF_PEER_DST;
7865 pdst = PF_PEER_SRC;
7866 } else {
7867 src = &(*state)->src;
7868 dst = &(*state)->dst;
7869 psrc = PF_PEER_SRC;
7870 pdst = PF_PEER_DST;
7871 }
7872 } else {
7873 if (PF_REVERSED_KEY(*state, pd->af)) {
7874 src = &(*state)->src;
7875 dst = &(*state)->dst;
7876 psrc = PF_PEER_SRC;
7877 pdst = PF_PEER_DST;
7878 } else {
7879 src = &(*state)->dst;
7880 dst = &(*state)->src;
7881 psrc = PF_PEER_DST;
7882 pdst = PF_PEER_SRC;
7883 }
7884 }
7885
7886 switch (pd->virtual_proto) {
7887 case IPPROTO_TCP: {
7888 struct tcphdr *th = &pd->hdr.tcp;
7889
7890 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7891 return (action);
7892 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7893 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7894 pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7895 if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7896 (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7897 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7898 printf("pf: state reuse ");
7899 pf_print_state(*state);
7900 pf_print_flags(tcp_get_flags(th));
7901 printf("\n");
7902 }
7903 /* XXX make sure it's the same direction ?? */
7904 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7905 pf_remove_state(*state);
7906 *state = NULL;
7907 return (PF_DROP);
7908 } else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7909 (*state)->dst.state >= TCPS_ESTABLISHED) {
7910 /*
7911 * SYN matches existing state???
7912 * Typically happens when sender boots up after
7913 * sudden panic. Certain protocols (NFSv3) are
7914 * always using same port numbers. Challenge
7915 * ACK enables all parties (firewall and peers)
7916 * to get in sync again.
7917 */
7918 pf_send_challenge_ack(pd, *state, src, dst, reason);
7919 return (PF_DROP);
7920 }
7921 }
7922 if ((*state)->state_flags & PFSTATE_SLOPPY) {
7923 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7924 psrc, pdst) == PF_DROP)
7925 return (PF_DROP);
7926 } else {
7927 int ret;
7928
7929 ret = pf_tcp_track_full(*state, pd, reason,
7930 ©back, src, dst, psrc, pdst);
7931 if (ret == PF_DROP)
7932 return (PF_DROP);
7933 }
7934 break;
7935 }
7936 case IPPROTO_UDP:
7937 /* update states */
7938 if (src->state < PFUDPS_SINGLE)
7939 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7940 if (dst->state == PFUDPS_SINGLE)
7941 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7942
7943 /* update expire time */
7944 (*state)->expire = pf_get_uptime();
7945 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7946 (*state)->timeout = PFTM_UDP_MULTIPLE;
7947 else
7948 (*state)->timeout = PFTM_UDP_SINGLE;
7949 break;
7950 case IPPROTO_SCTP:
7951 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7952 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7953 pd->sctp_flags & PFDESC_SCTP_INIT) {
7954 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7955 pf_remove_state(*state);
7956 *state = NULL;
7957 return (PF_DROP);
7958 }
7959
7960 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7961 return (PF_DROP);
7962
7963 /* Track state. */
7964 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7965 if (src->state < SCTP_COOKIE_WAIT) {
7966 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7967 (*state)->timeout = PFTM_SCTP_OPENING;
7968 }
7969 }
7970 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7971 MPASS(dst->scrub != NULL);
7972 if (dst->scrub->pfss_v_tag == 0)
7973 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7974 }
7975
7976 /*
7977 * Bind to the correct interface if we're if-bound. For multihomed
7978 * extra associations we don't know which interface that will be until
7979 * here, so we've inserted the state on V_pf_all. Fix that now.
7980 */
7981 if ((*state)->kif == V_pfi_all &&
7982 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7983 (*state)->kif = pd->kif;
7984
7985 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7986 if (src->state < SCTP_ESTABLISHED) {
7987 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7988 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7989 }
7990 }
7991 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7992 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7993 if (src->state < SCTP_SHUTDOWN_PENDING) {
7994 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7995 (*state)->timeout = PFTM_SCTP_CLOSING;
7996 }
7997 }
7998 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7999 pf_set_protostate(*state, psrc, SCTP_CLOSED);
8000 (*state)->timeout = PFTM_SCTP_CLOSED;
8001 }
8002
8003 (*state)->expire = pf_get_uptime();
8004 break;
8005 default:
8006 /* update states */
8007 if (src->state < PFOTHERS_SINGLE)
8008 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
8009 if (dst->state == PFOTHERS_SINGLE)
8010 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
8011
8012 /* update expire time */
8013 (*state)->expire = pf_get_uptime();
8014 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
8015 (*state)->timeout = PFTM_OTHER_MULTIPLE;
8016 else
8017 (*state)->timeout = PFTM_OTHER_SINGLE;
8018 break;
8019 }
8020
8021 /* translate source/destination address, if necessary */
8022 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
8023 struct pf_state_key *nk;
8024 int afto, sidx, didx;
8025
8026 if (PF_REVERSED_KEY(*state, pd->af))
8027 nk = (*state)->key[pd->sidx];
8028 else
8029 nk = (*state)->key[pd->didx];
8030
8031 afto = pd->af != nk->af;
8032
8033 if (afto && (*state)->direction == PF_IN) {
8034 sidx = pd->didx;
8035 didx = pd->sidx;
8036 } else {
8037 sidx = pd->sidx;
8038 didx = pd->didx;
8039 }
8040
8041 if (afto) {
8042 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af);
8043 pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af);
8044 pd->naf = nk->af;
8045 action = PF_AFRT;
8046 }
8047
8048 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
8049 nk->port[sidx] != pd->osport)
8050 pf_change_ap(pd, pd->src, pd->sport,
8051 &nk->addr[sidx], nk->port[sidx]);
8052
8053 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
8054 nk->port[didx] != pd->odport)
8055 pf_change_ap(pd, pd->dst, pd->dport,
8056 &nk->addr[didx], nk->port[didx]);
8057
8058 copyback = 1;
8059 }
8060
8061 if (copyback && pd->hdrlen > 0)
8062 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
8063
8064 return (action);
8065 }
8066
8067 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)8068 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
8069 u_short *reason)
8070 {
8071 struct pf_state_peer *src;
8072 if (pd->dir == state->direction) {
8073 if (PF_REVERSED_KEY(state, pd->af))
8074 src = &state->dst;
8075 else
8076 src = &state->src;
8077 } else {
8078 if (PF_REVERSED_KEY(state, pd->af))
8079 src = &state->src;
8080 else
8081 src = &state->dst;
8082 }
8083
8084 if (src->scrub != NULL) {
8085 /*
8086 * Allow tags to be updated, in case of retransmission of
8087 * INIT/INIT_ACK chunks.
8088 **/
8089 if (src->state <= SCTP_COOKIE_WAIT)
8090 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
8091 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
8092 return (PF_DROP);
8093 }
8094
8095 return (PF_PASS);
8096 }
8097
8098 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)8099 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
8100 {
8101 struct pf_sctp_endpoint key;
8102 struct pf_sctp_endpoint *ep;
8103 struct pf_state_key *sks = s->key[PF_SK_STACK];
8104 struct pf_sctp_source *i, *tmp;
8105
8106 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
8107 return;
8108
8109 PF_SCTP_ENDPOINTS_LOCK();
8110
8111 key.v_tag = s->dst.scrub->pfss_v_tag;
8112 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
8113 if (ep != NULL) {
8114 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
8115 if (pf_addr_cmp(&i->addr,
8116 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
8117 s->key[PF_SK_WIRE]->af) == 0) {
8118 SDT_PROBE3(pf, sctp, multihome, remove,
8119 key.v_tag, s, i);
8120 TAILQ_REMOVE(&ep->sources, i, entry);
8121 free(i, M_PFTEMP);
8122 break;
8123 }
8124 }
8125
8126 if (TAILQ_EMPTY(&ep->sources)) {
8127 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
8128 free(ep, M_PFTEMP);
8129 }
8130 }
8131
8132 /* Other direction. */
8133 key.v_tag = s->src.scrub->pfss_v_tag;
8134 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
8135 if (ep != NULL) {
8136 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
8137 if (pf_addr_cmp(&i->addr,
8138 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
8139 s->key[PF_SK_WIRE]->af) == 0) {
8140 SDT_PROBE3(pf, sctp, multihome, remove,
8141 key.v_tag, s, i);
8142 TAILQ_REMOVE(&ep->sources, i, entry);
8143 free(i, M_PFTEMP);
8144 break;
8145 }
8146 }
8147
8148 if (TAILQ_EMPTY(&ep->sources)) {
8149 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
8150 free(ep, M_PFTEMP);
8151 }
8152 }
8153
8154 PF_SCTP_ENDPOINTS_UNLOCK();
8155 }
8156
8157 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)8158 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
8159 {
8160 struct pf_sctp_endpoint key = {
8161 .v_tag = v_tag,
8162 };
8163 struct pf_sctp_source *i;
8164 struct pf_sctp_endpoint *ep;
8165 int count;
8166
8167 PF_SCTP_ENDPOINTS_LOCK();
8168
8169 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
8170 if (ep == NULL) {
8171 ep = malloc(sizeof(struct pf_sctp_endpoint),
8172 M_PFTEMP, M_NOWAIT);
8173 if (ep == NULL) {
8174 PF_SCTP_ENDPOINTS_UNLOCK();
8175 return;
8176 }
8177
8178 ep->v_tag = v_tag;
8179 TAILQ_INIT(&ep->sources);
8180 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
8181 }
8182
8183 /* Avoid inserting duplicates. */
8184 count = 0;
8185 TAILQ_FOREACH(i, &ep->sources, entry) {
8186 count++;
8187 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
8188 PF_SCTP_ENDPOINTS_UNLOCK();
8189 return;
8190 }
8191 }
8192
8193 /* Limit the number of addresses per endpoint. */
8194 if (count >= PF_SCTP_MAX_ENDPOINTS) {
8195 PF_SCTP_ENDPOINTS_UNLOCK();
8196 return;
8197 }
8198
8199 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
8200 if (i == NULL) {
8201 PF_SCTP_ENDPOINTS_UNLOCK();
8202 return;
8203 }
8204
8205 i->af = pd->af;
8206 memcpy(&i->addr, a, sizeof(*a));
8207 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
8208 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
8209
8210 PF_SCTP_ENDPOINTS_UNLOCK();
8211 }
8212
8213 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)8214 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
8215 struct pf_kstate *s, int action)
8216 {
8217 struct pf_krule_slist match_rules;
8218 struct pf_sctp_multihome_job *j, *tmp;
8219 struct pf_sctp_source *i;
8220 int ret;
8221 struct pf_kstate *sm = NULL;
8222 struct pf_krule *ra = NULL;
8223 struct pf_krule *r = &V_pf_default_rule;
8224 struct pf_kruleset *rs = NULL;
8225 u_short reason;
8226 bool do_extra = true;
8227
8228 PF_RULES_RLOCK_TRACKER;
8229
8230 again:
8231 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
8232 if (s == NULL || action != PF_PASS)
8233 goto free;
8234
8235 /* Confirm we don't recurse here. */
8236 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
8237
8238 switch (j->op) {
8239 case SCTP_ADD_IP_ADDRESS: {
8240 uint32_t v_tag = pd->sctp_initiate_tag;
8241
8242 if (v_tag == 0) {
8243 if (s->direction == pd->dir)
8244 v_tag = s->src.scrub->pfss_v_tag;
8245 else
8246 v_tag = s->dst.scrub->pfss_v_tag;
8247 }
8248
8249 /*
8250 * Avoid duplicating states. We'll already have
8251 * created a state based on the source address of
8252 * the packet, but SCTP endpoints may also list this
8253 * address again in the INIT(_ACK) parameters.
8254 */
8255 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
8256 break;
8257 }
8258
8259 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
8260 PF_RULES_RLOCK();
8261 sm = NULL;
8262 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
8263 j->pd.related_rule = s->rule;
8264 }
8265 SLIST_INIT(&match_rules);
8266 ret = pf_test_rule(&r, &sm,
8267 &j->pd, &ra, &rs, &reason, NULL, &match_rules);
8268 /*
8269 * Nothing to do about match rules, the processed
8270 * packet has already increased the counters.
8271 */
8272 pf_free_match_rules(&match_rules);
8273 PF_RULES_RUNLOCK();
8274 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
8275 if (ret != PF_DROP && sm != NULL) {
8276 /* Inherit v_tag values. */
8277 if (sm->direction == s->direction) {
8278 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
8279 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
8280 } else {
8281 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
8282 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
8283 }
8284 PF_STATE_UNLOCK(sm);
8285 } else {
8286 /* If we try duplicate inserts? */
8287 break;
8288 }
8289
8290 /* Only add the address if we've actually allowed the state. */
8291 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
8292
8293 if (! do_extra) {
8294 break;
8295 }
8296 /*
8297 * We need to do this for each of our source addresses.
8298 * Find those based on the verification tag.
8299 */
8300 struct pf_sctp_endpoint key = {
8301 .v_tag = pd->hdr.sctp.v_tag,
8302 };
8303 struct pf_sctp_endpoint *ep;
8304
8305 PF_SCTP_ENDPOINTS_LOCK();
8306 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
8307 if (ep == NULL) {
8308 PF_SCTP_ENDPOINTS_UNLOCK();
8309 break;
8310 }
8311 MPASS(ep != NULL);
8312
8313 TAILQ_FOREACH(i, &ep->sources, entry) {
8314 struct pf_sctp_multihome_job *nj;
8315
8316 /* SCTP can intermingle IPv4 and IPv6. */
8317 if (i->af != pd->af)
8318 continue;
8319
8320 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
8321 if (! nj) {
8322 continue;
8323 }
8324 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
8325 memcpy(&nj->src, &j->src, sizeof(nj->src));
8326 nj->pd.src = &nj->src;
8327 // New destination address!
8328 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
8329 nj->pd.dst = &nj->dst;
8330 nj->pd.m = j->pd.m;
8331 nj->op = j->op;
8332
8333 MPASS(nj->pd.pcksum);
8334 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
8335 }
8336 PF_SCTP_ENDPOINTS_UNLOCK();
8337
8338 break;
8339 }
8340 case SCTP_DEL_IP_ADDRESS: {
8341 struct pf_state_key_cmp key;
8342 uint8_t psrc;
8343 int action;
8344
8345 bzero(&key, sizeof(key));
8346 key.af = j->pd.af;
8347 key.proto = IPPROTO_SCTP;
8348 if (j->pd.dir == PF_IN) { /* wire side, straight */
8349 pf_addrcpy(&key.addr[0], j->pd.src, key.af);
8350 pf_addrcpy(&key.addr[1], j->pd.dst, key.af);
8351 key.port[0] = j->pd.hdr.sctp.src_port;
8352 key.port[1] = j->pd.hdr.sctp.dest_port;
8353 } else { /* stack side, reverse */
8354 pf_addrcpy(&key.addr[1], j->pd.src, key.af);
8355 pf_addrcpy(&key.addr[0], j->pd.dst, key.af);
8356 key.port[1] = j->pd.hdr.sctp.src_port;
8357 key.port[0] = j->pd.hdr.sctp.dest_port;
8358 }
8359
8360 action = pf_find_state(&j->pd, &key, &sm);
8361 if (action == PF_MATCH) {
8362 PF_STATE_LOCK_ASSERT(sm);
8363 if (j->pd.dir == sm->direction) {
8364 psrc = PF_PEER_SRC;
8365 } else {
8366 psrc = PF_PEER_DST;
8367 }
8368 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
8369 sm->timeout = PFTM_SCTP_CLOSING;
8370 PF_STATE_UNLOCK(sm);
8371 }
8372 break;
8373 default:
8374 panic("Unknown op %#x", j->op);
8375 }
8376 }
8377
8378 free:
8379 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
8380 free(j, M_PFTEMP);
8381 }
8382
8383 /* We may have inserted extra work while processing the list. */
8384 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
8385 do_extra = false;
8386 goto again;
8387 }
8388 }
8389
8390 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)8391 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
8392 {
8393 int off = 0;
8394 struct pf_sctp_multihome_job *job;
8395
8396 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
8397
8398 while (off < len) {
8399 struct sctp_paramhdr h;
8400
8401 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL,
8402 pd->af))
8403 return (PF_DROP);
8404
8405 /* Parameters are at least 4 bytes. */
8406 if (ntohs(h.param_length) < 4)
8407 return (PF_DROP);
8408
8409 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
8410 ntohs(h.param_length));
8411
8412 switch (ntohs(h.param_type)) {
8413 case SCTP_IPV4_ADDRESS: {
8414 struct in_addr t;
8415
8416 if (ntohs(h.param_length) !=
8417 (sizeof(struct sctp_paramhdr) + sizeof(t)))
8418 return (PF_DROP);
8419
8420 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
8421 NULL, pd->af))
8422 return (PF_DROP);
8423
8424 if (in_nullhost(t))
8425 t.s_addr = pd->src->v4.s_addr;
8426
8427 /*
8428 * We hold the state lock (idhash) here, which means
8429 * that we can't acquire the keyhash, or we'll get a
8430 * LOR (and potentially double-lock things too). We also
8431 * can't release the state lock here, so instead we'll
8432 * enqueue this for async handling.
8433 * There's a relatively small race here, in that a
8434 * packet using the new addresses could arrive already,
8435 * but that's just though luck for it.
8436 */
8437 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
8438 if (! job)
8439 return (PF_DROP);
8440
8441 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
8442
8443 memcpy(&job->pd, pd, sizeof(*pd));
8444
8445 // New source address!
8446 memcpy(&job->src, &t, sizeof(t));
8447 job->pd.src = &job->src;
8448 memcpy(&job->dst, pd->dst, sizeof(job->dst));
8449 job->pd.dst = &job->dst;
8450 job->pd.m = pd->m;
8451 job->op = op;
8452
8453 MPASS(job->pd.pcksum);
8454 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
8455 break;
8456 }
8457 #ifdef INET6
8458 case SCTP_IPV6_ADDRESS: {
8459 struct in6_addr t;
8460
8461 if (ntohs(h.param_length) !=
8462 (sizeof(struct sctp_paramhdr) + sizeof(t)))
8463 return (PF_DROP);
8464
8465 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
8466 NULL, pd->af))
8467 return (PF_DROP);
8468 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
8469 break;
8470 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
8471 memcpy(&t, &pd->src->v6, sizeof(t));
8472
8473 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
8474 if (! job)
8475 return (PF_DROP);
8476
8477 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
8478
8479 memcpy(&job->pd, pd, sizeof(*pd));
8480 memcpy(&job->src, &t, sizeof(t));
8481 job->pd.src = &job->src;
8482 memcpy(&job->dst, pd->dst, sizeof(job->dst));
8483 job->pd.dst = &job->dst;
8484 job->pd.m = pd->m;
8485 job->op = op;
8486
8487 MPASS(job->pd.pcksum);
8488 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
8489 break;
8490 }
8491 #endif /* INET6 */
8492 case SCTP_ADD_IP_ADDRESS: {
8493 int ret;
8494 struct sctp_asconf_paramhdr ah;
8495
8496 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
8497 NULL, pd->af))
8498 return (PF_DROP);
8499
8500 ret = pf_multihome_scan(start + off + sizeof(ah),
8501 ntohs(ah.ph.param_length) - sizeof(ah), pd,
8502 SCTP_ADD_IP_ADDRESS);
8503 if (ret != PF_PASS)
8504 return (ret);
8505 break;
8506 }
8507 case SCTP_DEL_IP_ADDRESS: {
8508 int ret;
8509 struct sctp_asconf_paramhdr ah;
8510
8511 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
8512 NULL, pd->af))
8513 return (PF_DROP);
8514 ret = pf_multihome_scan(start + off + sizeof(ah),
8515 ntohs(ah.ph.param_length) - sizeof(ah), pd,
8516 SCTP_DEL_IP_ADDRESS);
8517 if (ret != PF_PASS)
8518 return (ret);
8519 break;
8520 }
8521 default:
8522 break;
8523 }
8524
8525 off += roundup(ntohs(h.param_length), 4);
8526 }
8527
8528 return (PF_PASS);
8529 }
8530
8531 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)8532 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
8533 {
8534 start += sizeof(struct sctp_init_chunk);
8535 len -= sizeof(struct sctp_init_chunk);
8536
8537 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
8538 }
8539
8540 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)8541 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
8542 {
8543 start += sizeof(struct sctp_asconf_chunk);
8544 len -= sizeof(struct sctp_asconf_chunk);
8545
8546 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
8547 }
8548
8549 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)8550 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
8551 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
8552 int *iidx, int multi, int inner)
8553 {
8554 int action, direction = pd->dir;
8555
8556 key->af = pd->af;
8557 key->proto = pd->proto;
8558 if (icmp_dir == PF_IN) {
8559 *iidx = pd->sidx;
8560 key->port[pd->sidx] = icmpid;
8561 key->port[pd->didx] = type;
8562 } else {
8563 *iidx = pd->didx;
8564 key->port[pd->sidx] = type;
8565 key->port[pd->didx] = icmpid;
8566 }
8567 if (pf_state_key_addr_setup(pd, key, multi))
8568 return (PF_DROP);
8569
8570 action = pf_find_state(pd, key, state);
8571 if (action != PF_MATCH)
8572 return (action);
8573
8574 if ((*state)->state_flags & PFSTATE_SLOPPY)
8575 return (-1);
8576
8577 /* Is this ICMP message flowing in right direction? */
8578 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
8579 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
8580 PF_IN : PF_OUT;
8581 else
8582 direction = (*state)->direction;
8583 if ((*state)->rule->type &&
8584 (((!inner && direction == pd->dir) ||
8585 (inner && direction != pd->dir)) ?
8586 PF_IN : PF_OUT) != icmp_dir) {
8587 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8588 printf("pf: icmp type %d in wrong direction (%d): ",
8589 ntohs(type), icmp_dir);
8590 pf_print_state(*state);
8591 printf("\n");
8592 }
8593 PF_STATE_UNLOCK(*state);
8594 *state = NULL;
8595 return (PF_DROP);
8596 }
8597 return (-1);
8598 }
8599
8600 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)8601 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
8602 u_short *reason)
8603 {
8604 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
8605 u_int16_t *icmpsum, virtual_id, virtual_type;
8606 u_int8_t icmptype, icmpcode;
8607 int icmp_dir, iidx, ret;
8608 struct pf_state_key_cmp key;
8609 #ifdef INET
8610 u_int16_t icmpid;
8611 #endif /* INET*/
8612
8613 MPASS(*state == NULL);
8614
8615 bzero(&key, sizeof(key));
8616 switch (pd->proto) {
8617 #ifdef INET
8618 case IPPROTO_ICMP:
8619 icmptype = pd->hdr.icmp.icmp_type;
8620 icmpcode = pd->hdr.icmp.icmp_code;
8621 icmpid = pd->hdr.icmp.icmp_id;
8622 icmpsum = &pd->hdr.icmp.icmp_cksum;
8623 break;
8624 #endif /* INET */
8625 #ifdef INET6
8626 case IPPROTO_ICMPV6:
8627 icmptype = pd->hdr.icmp6.icmp6_type;
8628 icmpcode = pd->hdr.icmp6.icmp6_code;
8629 #ifdef INET
8630 icmpid = pd->hdr.icmp6.icmp6_id;
8631 #endif /* INET */
8632 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
8633 break;
8634 #endif /* INET6 */
8635 default:
8636 panic("unhandled proto %d", pd->proto);
8637 }
8638
8639 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
8640 &virtual_type) == 0) {
8641 /*
8642 * ICMP query/reply message not related to a TCP/UDP/SCTP
8643 * packet. Search for an ICMP state.
8644 */
8645 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
8646 virtual_type, icmp_dir, &iidx, 0, 0);
8647 /* IPv6? try matching a multicast address */
8648 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
8649 MPASS(*state == NULL);
8650 ret = pf_icmp_state_lookup(&key, pd, state,
8651 virtual_id, virtual_type,
8652 icmp_dir, &iidx, 1, 0);
8653 }
8654 if (ret >= 0) {
8655 MPASS(*state == NULL);
8656 return (ret);
8657 }
8658
8659 (*state)->expire = pf_get_uptime();
8660 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
8661
8662 /* translate source/destination address, if necessary */
8663 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
8664 struct pf_state_key *nk;
8665 int afto, sidx, didx;
8666
8667 if (PF_REVERSED_KEY(*state, pd->af))
8668 nk = (*state)->key[pd->sidx];
8669 else
8670 nk = (*state)->key[pd->didx];
8671
8672 afto = pd->af != nk->af;
8673
8674 if (afto && (*state)->direction == PF_IN) {
8675 sidx = pd->didx;
8676 didx = pd->sidx;
8677 iidx = !iidx;
8678 } else {
8679 sidx = pd->sidx;
8680 didx = pd->didx;
8681 }
8682
8683 switch (pd->af) {
8684 #ifdef INET
8685 case AF_INET:
8686 #ifdef INET6
8687 if (afto) {
8688 if (pf_translate_icmp_af(AF_INET6,
8689 &pd->hdr.icmp))
8690 return (PF_DROP);
8691 pd->proto = IPPROTO_ICMPV6;
8692 }
8693 #endif /* INET6 */
8694 if (!afto &&
8695 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
8696 pf_change_a(&saddr->v4.s_addr,
8697 pd->ip_sum,
8698 nk->addr[sidx].v4.s_addr,
8699 0);
8700
8701 if (!afto && PF_ANEQ(pd->dst,
8702 &nk->addr[didx], AF_INET))
8703 pf_change_a(&daddr->v4.s_addr,
8704 pd->ip_sum,
8705 nk->addr[didx].v4.s_addr, 0);
8706
8707 if (nk->port[iidx] !=
8708 pd->hdr.icmp.icmp_id) {
8709 pd->hdr.icmp.icmp_cksum =
8710 pf_cksum_fixup(
8711 pd->hdr.icmp.icmp_cksum, icmpid,
8712 nk->port[iidx], 0);
8713 pd->hdr.icmp.icmp_id =
8714 nk->port[iidx];
8715 }
8716
8717 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8718 (caddr_t )&pd->hdr.icmp);
8719 break;
8720 #endif /* INET */
8721 #ifdef INET6
8722 case AF_INET6:
8723 #ifdef INET
8724 if (afto) {
8725 if (pf_translate_icmp_af(AF_INET,
8726 &pd->hdr.icmp6))
8727 return (PF_DROP);
8728 pd->proto = IPPROTO_ICMP;
8729 }
8730 #endif /* INET */
8731 if (!afto &&
8732 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
8733 pf_change_a6(saddr,
8734 &pd->hdr.icmp6.icmp6_cksum,
8735 &nk->addr[sidx], 0);
8736
8737 if (!afto && PF_ANEQ(pd->dst,
8738 &nk->addr[didx], AF_INET6))
8739 pf_change_a6(daddr,
8740 &pd->hdr.icmp6.icmp6_cksum,
8741 &nk->addr[didx], 0);
8742
8743 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
8744 pd->hdr.icmp6.icmp6_id =
8745 nk->port[iidx];
8746
8747 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8748 (caddr_t )&pd->hdr.icmp6);
8749 break;
8750 #endif /* INET6 */
8751 }
8752 if (afto) {
8753 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx],
8754 nk->af);
8755 pf_addrcpy(&pd->ndaddr, &nk->addr[didx],
8756 nk->af);
8757 pd->naf = nk->af;
8758 return (PF_AFRT);
8759 }
8760 }
8761 return (PF_PASS);
8762
8763 } else {
8764 /*
8765 * ICMP error message in response to a TCP/UDP packet.
8766 * Extract the inner TCP/UDP header and search for that state.
8767 */
8768
8769 struct pf_pdesc pd2;
8770 bzero(&pd2, sizeof pd2);
8771 #ifdef INET
8772 struct ip h2;
8773 #endif /* INET */
8774 #ifdef INET6
8775 struct ip6_hdr h2_6;
8776 #endif /* INET6 */
8777 int ipoff2 = 0;
8778
8779 pd2.af = pd->af;
8780 pd2.dir = pd->dir;
8781 /* Payload packet is from the opposite direction. */
8782 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
8783 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
8784 pd2.m = pd->m;
8785 pd2.pf_mtag = pd->pf_mtag;
8786 pd2.kif = pd->kif;
8787 switch (pd->af) {
8788 #ifdef INET
8789 case AF_INET:
8790 /* offset of h2 in mbuf chain */
8791 ipoff2 = pd->off + ICMP_MINLEN;
8792
8793 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
8794 reason, pd2.af)) {
8795 DPFPRINTF(PF_DEBUG_MISC,
8796 "pf: ICMP error message too short "
8797 "(ip)");
8798 return (PF_DROP);
8799 }
8800 /*
8801 * ICMP error messages don't refer to non-first
8802 * fragments
8803 */
8804 if (h2.ip_off & htons(IP_OFFMASK)) {
8805 REASON_SET(reason, PFRES_FRAG);
8806 return (PF_DROP);
8807 }
8808
8809 /* offset of protocol header that follows h2 */
8810 pd2.off = ipoff2;
8811 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
8812 return (PF_DROP);
8813
8814 pd2.tot_len = ntohs(h2.ip_len);
8815 pd2.ttl = h2.ip_ttl;
8816 pd2.src = (struct pf_addr *)&h2.ip_src;
8817 pd2.dst = (struct pf_addr *)&h2.ip_dst;
8818 pd2.ip_sum = &h2.ip_sum;
8819 break;
8820 #endif /* INET */
8821 #ifdef INET6
8822 case AF_INET6:
8823 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
8824
8825 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
8826 reason, pd2.af)) {
8827 DPFPRINTF(PF_DEBUG_MISC,
8828 "pf: ICMP error message too short "
8829 "(ip6)");
8830 return (PF_DROP);
8831 }
8832 pd2.off = ipoff2;
8833 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
8834 return (PF_DROP);
8835
8836 pd2.tot_len = ntohs(h2_6.ip6_plen) +
8837 sizeof(struct ip6_hdr);
8838 pd2.ttl = h2_6.ip6_hlim;
8839 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
8840 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
8841 pd2.ip_sum = NULL;
8842 break;
8843 #endif /* INET6 */
8844 default:
8845 unhandled_af(pd->af);
8846 }
8847
8848 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
8849 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8850 printf("pf: BAD ICMP %d:%d outer dst: ",
8851 icmptype, icmpcode);
8852 pf_print_host(pd->src, 0, pd->af);
8853 printf(" -> ");
8854 pf_print_host(pd->dst, 0, pd->af);
8855 printf(" inner src: ");
8856 pf_print_host(pd2.src, 0, pd2.af);
8857 printf(" -> ");
8858 pf_print_host(pd2.dst, 0, pd2.af);
8859 printf("\n");
8860 }
8861 REASON_SET(reason, PFRES_BADSTATE);
8862 return (PF_DROP);
8863 }
8864
8865 switch (pd2.proto) {
8866 case IPPROTO_TCP: {
8867 struct tcphdr *th = &pd2.hdr.tcp;
8868 u_int32_t seq;
8869 struct pf_state_peer *src, *dst;
8870 u_int8_t dws;
8871 int copyback = 0;
8872 int action;
8873
8874 /*
8875 * Only the first 8 bytes of the TCP header can be
8876 * expected. Don't access any TCP header fields after
8877 * th_seq, an ackskew test is not possible.
8878 */
8879 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, reason,
8880 pd2.af)) {
8881 DPFPRINTF(PF_DEBUG_MISC,
8882 "pf: ICMP error message too short "
8883 "(tcp)");
8884 return (PF_DROP);
8885 }
8886 pd2.pcksum = &pd2.hdr.tcp.th_sum;
8887
8888 key.af = pd2.af;
8889 key.proto = IPPROTO_TCP;
8890 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8891 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8892 key.port[pd2.sidx] = th->th_sport;
8893 key.port[pd2.didx] = th->th_dport;
8894
8895 action = pf_find_state(&pd2, &key, state);
8896 if (action != PF_MATCH)
8897 return (action);
8898
8899 if (pd->dir == (*state)->direction) {
8900 if (PF_REVERSED_KEY(*state, pd->af)) {
8901 src = &(*state)->src;
8902 dst = &(*state)->dst;
8903 } else {
8904 src = &(*state)->dst;
8905 dst = &(*state)->src;
8906 }
8907 } else {
8908 if (PF_REVERSED_KEY(*state, pd->af)) {
8909 src = &(*state)->dst;
8910 dst = &(*state)->src;
8911 } else {
8912 src = &(*state)->src;
8913 dst = &(*state)->dst;
8914 }
8915 }
8916
8917 if (src->wscale && dst->wscale)
8918 dws = dst->wscale & PF_WSCALE_MASK;
8919 else
8920 dws = 0;
8921
8922 /* Demodulate sequence number */
8923 seq = ntohl(th->th_seq) - src->seqdiff;
8924 if (src->seqdiff) {
8925 pf_change_a(&th->th_seq, icmpsum,
8926 htonl(seq), 0);
8927 copyback = 1;
8928 }
8929
8930 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8931 (!SEQ_GEQ(src->seqhi, seq) ||
8932 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8933 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8934 printf("pf: BAD ICMP %d:%d ",
8935 icmptype, icmpcode);
8936 pf_print_host(pd->src, 0, pd->af);
8937 printf(" -> ");
8938 pf_print_host(pd->dst, 0, pd->af);
8939 printf(" state: ");
8940 pf_print_state(*state);
8941 printf(" seq=%u\n", seq);
8942 }
8943 REASON_SET(reason, PFRES_BADSTATE);
8944 return (PF_DROP);
8945 } else {
8946 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8947 printf("pf: OK ICMP %d:%d ",
8948 icmptype, icmpcode);
8949 pf_print_host(pd->src, 0, pd->af);
8950 printf(" -> ");
8951 pf_print_host(pd->dst, 0, pd->af);
8952 printf(" state: ");
8953 pf_print_state(*state);
8954 printf(" seq=%u\n", seq);
8955 }
8956 }
8957
8958 /* translate source/destination address, if necessary */
8959 if ((*state)->key[PF_SK_WIRE] !=
8960 (*state)->key[PF_SK_STACK]) {
8961
8962 struct pf_state_key *nk;
8963
8964 if (PF_REVERSED_KEY(*state, pd->af))
8965 nk = (*state)->key[pd->sidx];
8966 else
8967 nk = (*state)->key[pd->didx];
8968
8969 #if defined(INET) && defined(INET6)
8970 int afto, sidx, didx;
8971
8972 afto = pd->af != nk->af;
8973
8974 if (afto && (*state)->direction == PF_IN) {
8975 sidx = pd2.didx;
8976 didx = pd2.sidx;
8977 } else {
8978 sidx = pd2.sidx;
8979 didx = pd2.didx;
8980 }
8981
8982 if (afto) {
8983 if (pf_translate_icmp_af(nk->af,
8984 &pd->hdr.icmp))
8985 return (PF_DROP);
8986 m_copyback(pd->m, pd->off,
8987 sizeof(struct icmp6_hdr),
8988 (c_caddr_t)&pd->hdr.icmp6);
8989 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8990 &pd2, &nk->addr[sidx],
8991 &nk->addr[didx], pd->af,
8992 nk->af))
8993 return (PF_DROP);
8994 pf_addrcpy(&pd->nsaddr,
8995 &nk->addr[pd2.sidx], nk->af);
8996 pf_addrcpy(&pd->ndaddr,
8997 &nk->addr[pd2.didx], nk->af);
8998 if (nk->af == AF_INET) {
8999 pd->proto = IPPROTO_ICMP;
9000 } else {
9001 pd->proto = IPPROTO_ICMPV6;
9002 /*
9003 * IPv4 becomes IPv6 so we must
9004 * copy IPv4 src addr to least
9005 * 32bits in IPv6 address to
9006 * keep traceroute/icmp
9007 * working.
9008 */
9009 pd->nsaddr.addr32[3] =
9010 pd->src->addr32[0];
9011 }
9012 pd->naf = pd2.naf = nk->af;
9013 pf_change_ap(&pd2, pd2.src, &th->th_sport,
9014 &nk->addr[pd2.sidx], nk->port[sidx]);
9015 pf_change_ap(&pd2, pd2.dst, &th->th_dport,
9016 &nk->addr[pd2.didx], nk->port[didx]);
9017 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
9018 return (PF_AFRT);
9019 }
9020 #endif /* INET && INET6 */
9021
9022 if (PF_ANEQ(pd2.src,
9023 &nk->addr[pd2.sidx], pd2.af) ||
9024 nk->port[pd2.sidx] != th->th_sport)
9025 pf_change_icmp(pd2.src, &th->th_sport,
9026 daddr, &nk->addr[pd2.sidx],
9027 nk->port[pd2.sidx], NULL,
9028 pd2.ip_sum, icmpsum,
9029 pd->ip_sum, 0, pd2.af);
9030
9031 if (PF_ANEQ(pd2.dst,
9032 &nk->addr[pd2.didx], pd2.af) ||
9033 nk->port[pd2.didx] != th->th_dport)
9034 pf_change_icmp(pd2.dst, &th->th_dport,
9035 saddr, &nk->addr[pd2.didx],
9036 nk->port[pd2.didx], NULL,
9037 pd2.ip_sum, icmpsum,
9038 pd->ip_sum, 0, pd2.af);
9039 copyback = 1;
9040 }
9041
9042 if (copyback) {
9043 switch (pd2.af) {
9044 #ifdef INET
9045 case AF_INET:
9046 m_copyback(pd->m, pd->off, ICMP_MINLEN,
9047 (caddr_t )&pd->hdr.icmp);
9048 m_copyback(pd->m, ipoff2, sizeof(h2),
9049 (caddr_t )&h2);
9050 break;
9051 #endif /* INET */
9052 #ifdef INET6
9053 case AF_INET6:
9054 m_copyback(pd->m, pd->off,
9055 sizeof(struct icmp6_hdr),
9056 (caddr_t )&pd->hdr.icmp6);
9057 m_copyback(pd->m, ipoff2, sizeof(h2_6),
9058 (caddr_t )&h2_6);
9059 break;
9060 #endif /* INET6 */
9061 default:
9062 unhandled_af(pd->af);
9063 }
9064 m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
9065 }
9066
9067 return (PF_PASS);
9068 break;
9069 }
9070 case IPPROTO_UDP: {
9071 struct udphdr *uh = &pd2.hdr.udp;
9072 int action;
9073
9074 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
9075 reason, pd2.af)) {
9076 DPFPRINTF(PF_DEBUG_MISC,
9077 "pf: ICMP error message too short "
9078 "(udp)");
9079 return (PF_DROP);
9080 }
9081 pd2.pcksum = &pd2.hdr.udp.uh_sum;
9082
9083 key.af = pd2.af;
9084 key.proto = IPPROTO_UDP;
9085 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
9086 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
9087 key.port[pd2.sidx] = uh->uh_sport;
9088 key.port[pd2.didx] = uh->uh_dport;
9089
9090 action = pf_find_state(&pd2, &key, state);
9091 if (action != PF_MATCH)
9092 return (action);
9093
9094 /* translate source/destination address, if necessary */
9095 if ((*state)->key[PF_SK_WIRE] !=
9096 (*state)->key[PF_SK_STACK]) {
9097 struct pf_state_key *nk;
9098
9099 if (PF_REVERSED_KEY(*state, pd->af))
9100 nk = (*state)->key[pd->sidx];
9101 else
9102 nk = (*state)->key[pd->didx];
9103
9104 #if defined(INET) && defined(INET6)
9105 int afto, sidx, didx;
9106
9107 afto = pd->af != nk->af;
9108
9109 if (afto && (*state)->direction == PF_IN) {
9110 sidx = pd2.didx;
9111 didx = pd2.sidx;
9112 } else {
9113 sidx = pd2.sidx;
9114 didx = pd2.didx;
9115 }
9116
9117 if (afto) {
9118 if (pf_translate_icmp_af(nk->af,
9119 &pd->hdr.icmp))
9120 return (PF_DROP);
9121 m_copyback(pd->m, pd->off,
9122 sizeof(struct icmp6_hdr),
9123 (c_caddr_t)&pd->hdr.icmp6);
9124 if (pf_change_icmp_af(pd->m, ipoff2, pd,
9125 &pd2, &nk->addr[sidx],
9126 &nk->addr[didx], pd->af,
9127 nk->af))
9128 return (PF_DROP);
9129 pf_addrcpy(&pd->nsaddr,
9130 &nk->addr[pd2.sidx], nk->af);
9131 pf_addrcpy(&pd->ndaddr,
9132 &nk->addr[pd2.didx], nk->af);
9133 if (nk->af == AF_INET) {
9134 pd->proto = IPPROTO_ICMP;
9135 } else {
9136 pd->proto = IPPROTO_ICMPV6;
9137 /*
9138 * IPv4 becomes IPv6 so we must
9139 * copy IPv4 src addr to least
9140 * 32bits in IPv6 address to
9141 * keep traceroute/icmp
9142 * working.
9143 */
9144 pd->nsaddr.addr32[3] =
9145 pd->src->addr32[0];
9146 }
9147 pd->naf = pd2.naf = nk->af;
9148 pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
9149 &nk->addr[pd2.sidx], nk->port[sidx]);
9150 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
9151 &nk->addr[pd2.didx], nk->port[didx]);
9152 m_copyback(pd2.m, pd2.off, sizeof(*uh),
9153 (c_caddr_t)uh);
9154 return (PF_AFRT);
9155 }
9156 #endif /* INET && INET6 */
9157
9158 if (PF_ANEQ(pd2.src,
9159 &nk->addr[pd2.sidx], pd2.af) ||
9160 nk->port[pd2.sidx] != uh->uh_sport)
9161 pf_change_icmp(pd2.src, &uh->uh_sport,
9162 daddr, &nk->addr[pd2.sidx],
9163 nk->port[pd2.sidx], &uh->uh_sum,
9164 pd2.ip_sum, icmpsum,
9165 pd->ip_sum, 1, pd2.af);
9166
9167 if (PF_ANEQ(pd2.dst,
9168 &nk->addr[pd2.didx], pd2.af) ||
9169 nk->port[pd2.didx] != uh->uh_dport)
9170 pf_change_icmp(pd2.dst, &uh->uh_dport,
9171 saddr, &nk->addr[pd2.didx],
9172 nk->port[pd2.didx], &uh->uh_sum,
9173 pd2.ip_sum, icmpsum,
9174 pd->ip_sum, 1, pd2.af);
9175
9176 switch (pd2.af) {
9177 #ifdef INET
9178 case AF_INET:
9179 m_copyback(pd->m, pd->off, ICMP_MINLEN,
9180 (caddr_t )&pd->hdr.icmp);
9181 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
9182 break;
9183 #endif /* INET */
9184 #ifdef INET6
9185 case AF_INET6:
9186 m_copyback(pd->m, pd->off,
9187 sizeof(struct icmp6_hdr),
9188 (caddr_t )&pd->hdr.icmp6);
9189 m_copyback(pd->m, ipoff2, sizeof(h2_6),
9190 (caddr_t )&h2_6);
9191 break;
9192 #endif /* INET6 */
9193 }
9194 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
9195 }
9196 return (PF_PASS);
9197 break;
9198 }
9199 #ifdef INET
9200 case IPPROTO_SCTP: {
9201 struct sctphdr *sh = &pd2.hdr.sctp;
9202 struct pf_state_peer *src;
9203 int copyback = 0;
9204 int action;
9205
9206 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), reason,
9207 pd2.af)) {
9208 DPFPRINTF(PF_DEBUG_MISC,
9209 "pf: ICMP error message too short "
9210 "(sctp)");
9211 return (PF_DROP);
9212 }
9213 pd2.pcksum = &pd2.sctp_dummy_sum;
9214
9215 key.af = pd2.af;
9216 key.proto = IPPROTO_SCTP;
9217 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
9218 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
9219 key.port[pd2.sidx] = sh->src_port;
9220 key.port[pd2.didx] = sh->dest_port;
9221
9222 action = pf_find_state(&pd2, &key, state);
9223 if (action != PF_MATCH)
9224 return (action);
9225
9226 if (pd->dir == (*state)->direction) {
9227 if (PF_REVERSED_KEY(*state, pd->af))
9228 src = &(*state)->src;
9229 else
9230 src = &(*state)->dst;
9231 } else {
9232 if (PF_REVERSED_KEY(*state, pd->af))
9233 src = &(*state)->dst;
9234 else
9235 src = &(*state)->src;
9236 }
9237
9238 if (src->scrub->pfss_v_tag != sh->v_tag) {
9239 DPFPRINTF(PF_DEBUG_MISC,
9240 "pf: ICMP error message has incorrect "
9241 "SCTP v_tag");
9242 return (PF_DROP);
9243 }
9244
9245 /* translate source/destination address, if necessary */
9246 if ((*state)->key[PF_SK_WIRE] !=
9247 (*state)->key[PF_SK_STACK]) {
9248
9249 struct pf_state_key *nk;
9250
9251 if (PF_REVERSED_KEY(*state, pd->af))
9252 nk = (*state)->key[pd->sidx];
9253 else
9254 nk = (*state)->key[pd->didx];
9255
9256 #if defined(INET) && defined(INET6)
9257 int afto, sidx, didx;
9258
9259 afto = pd->af != nk->af;
9260
9261 if (afto && (*state)->direction == PF_IN) {
9262 sidx = pd2.didx;
9263 didx = pd2.sidx;
9264 } else {
9265 sidx = pd2.sidx;
9266 didx = pd2.didx;
9267 }
9268
9269 if (afto) {
9270 if (pf_translate_icmp_af(nk->af,
9271 &pd->hdr.icmp))
9272 return (PF_DROP);
9273 m_copyback(pd->m, pd->off,
9274 sizeof(struct icmp6_hdr),
9275 (c_caddr_t)&pd->hdr.icmp6);
9276 if (pf_change_icmp_af(pd->m, ipoff2, pd,
9277 &pd2, &nk->addr[sidx],
9278 &nk->addr[didx], pd->af,
9279 nk->af))
9280 return (PF_DROP);
9281 sh->src_port = nk->port[sidx];
9282 sh->dest_port = nk->port[didx];
9283 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
9284 pf_addrcpy(&pd->nsaddr,
9285 &nk->addr[pd2.sidx], nk->af);
9286 pf_addrcpy(&pd->ndaddr,
9287 &nk->addr[pd2.didx], nk->af);
9288 if (nk->af == AF_INET) {
9289 pd->proto = IPPROTO_ICMP;
9290 } else {
9291 pd->proto = IPPROTO_ICMPV6;
9292 /*
9293 * IPv4 becomes IPv6 so we must
9294 * copy IPv4 src addr to least
9295 * 32bits in IPv6 address to
9296 * keep traceroute/icmp
9297 * working.
9298 */
9299 pd->nsaddr.addr32[3] =
9300 pd->src->addr32[0];
9301 }
9302 pd->naf = nk->af;
9303 return (PF_AFRT);
9304 }
9305 #endif /* INET && INET6 */
9306
9307 if (PF_ANEQ(pd2.src,
9308 &nk->addr[pd2.sidx], pd2.af) ||
9309 nk->port[pd2.sidx] != sh->src_port)
9310 pf_change_icmp(pd2.src, &sh->src_port,
9311 daddr, &nk->addr[pd2.sidx],
9312 nk->port[pd2.sidx], NULL,
9313 pd2.ip_sum, icmpsum,
9314 pd->ip_sum, 0, pd2.af);
9315
9316 if (PF_ANEQ(pd2.dst,
9317 &nk->addr[pd2.didx], pd2.af) ||
9318 nk->port[pd2.didx] != sh->dest_port)
9319 pf_change_icmp(pd2.dst, &sh->dest_port,
9320 saddr, &nk->addr[pd2.didx],
9321 nk->port[pd2.didx], NULL,
9322 pd2.ip_sum, icmpsum,
9323 pd->ip_sum, 0, pd2.af);
9324 copyback = 1;
9325 }
9326
9327 if (copyback) {
9328 switch (pd2.af) {
9329 #ifdef INET
9330 case AF_INET:
9331 m_copyback(pd->m, pd->off, ICMP_MINLEN,
9332 (caddr_t )&pd->hdr.icmp);
9333 m_copyback(pd->m, ipoff2, sizeof(h2),
9334 (caddr_t )&h2);
9335 break;
9336 #endif /* INET */
9337 #ifdef INET6
9338 case AF_INET6:
9339 m_copyback(pd->m, pd->off,
9340 sizeof(struct icmp6_hdr),
9341 (caddr_t )&pd->hdr.icmp6);
9342 m_copyback(pd->m, ipoff2, sizeof(h2_6),
9343 (caddr_t )&h2_6);
9344 break;
9345 #endif /* INET6 */
9346 }
9347 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
9348 }
9349
9350 return (PF_PASS);
9351 break;
9352 }
9353 case IPPROTO_ICMP: {
9354 struct icmp *iih = &pd2.hdr.icmp;
9355
9356 if (pd2.af != AF_INET) {
9357 REASON_SET(reason, PFRES_NORM);
9358 return (PF_DROP);
9359 }
9360
9361 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
9362 reason, pd2.af)) {
9363 DPFPRINTF(PF_DEBUG_MISC,
9364 "pf: ICMP error message too short i"
9365 "(icmp)");
9366 return (PF_DROP);
9367 }
9368 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
9369
9370 icmpid = iih->icmp_id;
9371 pf_icmp_mapping(&pd2, iih->icmp_type,
9372 &icmp_dir, &virtual_id, &virtual_type);
9373
9374 ret = pf_icmp_state_lookup(&key, &pd2, state,
9375 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
9376 if (ret >= 0) {
9377 MPASS(*state == NULL);
9378 return (ret);
9379 }
9380
9381 /* translate source/destination address, if necessary */
9382 if ((*state)->key[PF_SK_WIRE] !=
9383 (*state)->key[PF_SK_STACK]) {
9384 struct pf_state_key *nk;
9385
9386 if (PF_REVERSED_KEY(*state, pd->af))
9387 nk = (*state)->key[pd->sidx];
9388 else
9389 nk = (*state)->key[pd->didx];
9390
9391 #if defined(INET) && defined(INET6)
9392 int afto, sidx, didx;
9393
9394 afto = pd->af != nk->af;
9395
9396 if (afto && (*state)->direction == PF_IN) {
9397 sidx = pd2.didx;
9398 didx = pd2.sidx;
9399 iidx = !iidx;
9400 } else {
9401 sidx = pd2.sidx;
9402 didx = pd2.didx;
9403 }
9404
9405 if (afto) {
9406 if (nk->af != AF_INET6)
9407 return (PF_DROP);
9408 if (pf_translate_icmp_af(nk->af,
9409 &pd->hdr.icmp))
9410 return (PF_DROP);
9411 m_copyback(pd->m, pd->off,
9412 sizeof(struct icmp6_hdr),
9413 (c_caddr_t)&pd->hdr.icmp6);
9414 if (pf_change_icmp_af(pd->m, ipoff2, pd,
9415 &pd2, &nk->addr[sidx],
9416 &nk->addr[didx], pd->af,
9417 nk->af))
9418 return (PF_DROP);
9419 pd->proto = IPPROTO_ICMPV6;
9420 if (pf_translate_icmp_af(nk->af, iih))
9421 return (PF_DROP);
9422 if (virtual_type == htons(ICMP_ECHO) &&
9423 nk->port[iidx] != iih->icmp_id)
9424 iih->icmp_id = nk->port[iidx];
9425 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
9426 (c_caddr_t)iih);
9427 pf_addrcpy(&pd->nsaddr,
9428 &nk->addr[pd2.sidx], nk->af);
9429 pf_addrcpy(&pd->ndaddr,
9430 &nk->addr[pd2.didx], nk->af);
9431 /*
9432 * IPv4 becomes IPv6 so we must copy
9433 * IPv4 src addr to least 32bits in
9434 * IPv6 address to keep traceroute
9435 * working.
9436 */
9437 pd->nsaddr.addr32[3] =
9438 pd->src->addr32[0];
9439 pd->naf = nk->af;
9440 return (PF_AFRT);
9441 }
9442 #endif /* INET && INET6 */
9443
9444 if (PF_ANEQ(pd2.src,
9445 &nk->addr[pd2.sidx], pd2.af) ||
9446 (virtual_type == htons(ICMP_ECHO) &&
9447 nk->port[iidx] != iih->icmp_id))
9448 pf_change_icmp(pd2.src,
9449 (virtual_type == htons(ICMP_ECHO)) ?
9450 &iih->icmp_id : NULL,
9451 daddr, &nk->addr[pd2.sidx],
9452 (virtual_type == htons(ICMP_ECHO)) ?
9453 nk->port[iidx] : 0, NULL,
9454 pd2.ip_sum, icmpsum,
9455 pd->ip_sum, 0, AF_INET);
9456
9457 if (PF_ANEQ(pd2.dst,
9458 &nk->addr[pd2.didx], pd2.af))
9459 pf_change_icmp(pd2.dst, NULL, NULL,
9460 &nk->addr[pd2.didx], 0, NULL,
9461 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
9462 AF_INET);
9463
9464 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
9465 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
9466 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
9467 }
9468 return (PF_PASS);
9469 break;
9470 }
9471 #endif /* INET */
9472 #ifdef INET6
9473 case IPPROTO_ICMPV6: {
9474 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
9475
9476 if (pd2.af != AF_INET6) {
9477 REASON_SET(reason, PFRES_NORM);
9478 return (PF_DROP);
9479 }
9480
9481 if (!pf_pull_hdr(pd->m, pd2.off, iih,
9482 sizeof(struct icmp6_hdr), reason, pd2.af)) {
9483 DPFPRINTF(PF_DEBUG_MISC,
9484 "pf: ICMP error message too short "
9485 "(icmp6)");
9486 return (PF_DROP);
9487 }
9488 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
9489
9490 pf_icmp_mapping(&pd2, iih->icmp6_type,
9491 &icmp_dir, &virtual_id, &virtual_type);
9492
9493 ret = pf_icmp_state_lookup(&key, &pd2, state,
9494 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
9495 /* IPv6? try matching a multicast address */
9496 if (ret == PF_DROP && pd2.af == AF_INET6 &&
9497 icmp_dir == PF_OUT) {
9498 MPASS(*state == NULL);
9499 ret = pf_icmp_state_lookup(&key, &pd2,
9500 state, virtual_id, virtual_type,
9501 icmp_dir, &iidx, 1, 1);
9502 }
9503 if (ret >= 0) {
9504 MPASS(*state == NULL);
9505 return (ret);
9506 }
9507
9508 /* translate source/destination address, if necessary */
9509 if ((*state)->key[PF_SK_WIRE] !=
9510 (*state)->key[PF_SK_STACK]) {
9511 struct pf_state_key *nk;
9512
9513 if (PF_REVERSED_KEY(*state, pd->af))
9514 nk = (*state)->key[pd->sidx];
9515 else
9516 nk = (*state)->key[pd->didx];
9517
9518 #if defined(INET) && defined(INET6)
9519 int afto, sidx, didx;
9520
9521 afto = pd->af != nk->af;
9522
9523 if (afto && (*state)->direction == PF_IN) {
9524 sidx = pd2.didx;
9525 didx = pd2.sidx;
9526 iidx = !iidx;
9527 } else {
9528 sidx = pd2.sidx;
9529 didx = pd2.didx;
9530 }
9531
9532 if (afto) {
9533 if (nk->af != AF_INET)
9534 return (PF_DROP);
9535 if (pf_translate_icmp_af(nk->af,
9536 &pd->hdr.icmp))
9537 return (PF_DROP);
9538 m_copyback(pd->m, pd->off,
9539 sizeof(struct icmp6_hdr),
9540 (c_caddr_t)&pd->hdr.icmp6);
9541 if (pf_change_icmp_af(pd->m, ipoff2, pd,
9542 &pd2, &nk->addr[sidx],
9543 &nk->addr[didx], pd->af,
9544 nk->af))
9545 return (PF_DROP);
9546 pd->proto = IPPROTO_ICMP;
9547 if (pf_translate_icmp_af(nk->af, iih))
9548 return (PF_DROP);
9549 if (virtual_type ==
9550 htons(ICMP6_ECHO_REQUEST) &&
9551 nk->port[iidx] != iih->icmp6_id)
9552 iih->icmp6_id = nk->port[iidx];
9553 m_copyback(pd2.m, pd2.off,
9554 sizeof(struct icmp6_hdr), (c_caddr_t)iih);
9555 pf_addrcpy(&pd->nsaddr,
9556 &nk->addr[pd2.sidx], nk->af);
9557 pf_addrcpy(&pd->ndaddr,
9558 &nk->addr[pd2.didx], nk->af);
9559 pd->naf = nk->af;
9560 return (PF_AFRT);
9561 }
9562 #endif /* INET && INET6 */
9563
9564 if (PF_ANEQ(pd2.src,
9565 &nk->addr[pd2.sidx], pd2.af) ||
9566 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
9567 nk->port[pd2.sidx] != iih->icmp6_id))
9568 pf_change_icmp(pd2.src,
9569 (virtual_type == htons(ICMP6_ECHO_REQUEST))
9570 ? &iih->icmp6_id : NULL,
9571 daddr, &nk->addr[pd2.sidx],
9572 (virtual_type == htons(ICMP6_ECHO_REQUEST))
9573 ? nk->port[iidx] : 0, NULL,
9574 pd2.ip_sum, icmpsum,
9575 pd->ip_sum, 0, AF_INET6);
9576
9577 if (PF_ANEQ(pd2.dst,
9578 &nk->addr[pd2.didx], pd2.af))
9579 pf_change_icmp(pd2.dst, NULL, NULL,
9580 &nk->addr[pd2.didx], 0, NULL,
9581 pd2.ip_sum, icmpsum,
9582 pd->ip_sum, 0, AF_INET6);
9583
9584 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
9585 (caddr_t)&pd->hdr.icmp6);
9586 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
9587 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
9588 (caddr_t)iih);
9589 }
9590 return (PF_PASS);
9591 break;
9592 }
9593 #endif /* INET6 */
9594 default: {
9595 int action;
9596
9597 /*
9598 * Placeholder value, so future calls to pf_change_ap()
9599 * don't try to update a NULL checksum pointer.
9600 */
9601 pd->pcksum = &pd->sctp_dummy_sum;
9602 key.af = pd2.af;
9603 key.proto = pd2.proto;
9604 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
9605 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
9606 key.port[0] = key.port[1] = 0;
9607
9608 action = pf_find_state(&pd2, &key, state);
9609 if (action != PF_MATCH)
9610 return (action);
9611
9612 /* translate source/destination address, if necessary */
9613 if ((*state)->key[PF_SK_WIRE] !=
9614 (*state)->key[PF_SK_STACK]) {
9615 struct pf_state_key *nk =
9616 (*state)->key[pd->didx];
9617
9618 if (PF_ANEQ(pd2.src,
9619 &nk->addr[pd2.sidx], pd2.af))
9620 pf_change_icmp(pd2.src, NULL, daddr,
9621 &nk->addr[pd2.sidx], 0, NULL,
9622 pd2.ip_sum, icmpsum,
9623 pd->ip_sum, 0, pd2.af);
9624
9625 if (PF_ANEQ(pd2.dst,
9626 &nk->addr[pd2.didx], pd2.af))
9627 pf_change_icmp(pd2.dst, NULL, saddr,
9628 &nk->addr[pd2.didx], 0, NULL,
9629 pd2.ip_sum, icmpsum,
9630 pd->ip_sum, 0, pd2.af);
9631
9632 switch (pd2.af) {
9633 #ifdef INET
9634 case AF_INET:
9635 m_copyback(pd->m, pd->off, ICMP_MINLEN,
9636 (caddr_t)&pd->hdr.icmp);
9637 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
9638 break;
9639 #endif /* INET */
9640 #ifdef INET6
9641 case AF_INET6:
9642 m_copyback(pd->m, pd->off,
9643 sizeof(struct icmp6_hdr),
9644 (caddr_t )&pd->hdr.icmp6);
9645 m_copyback(pd->m, ipoff2, sizeof(h2_6),
9646 (caddr_t )&h2_6);
9647 break;
9648 #endif /* INET6 */
9649 }
9650 }
9651 return (PF_PASS);
9652 break;
9653 }
9654 }
9655 }
9656 }
9657
9658 /*
9659 * ipoff and off are measured from the start of the mbuf chain.
9660 * h must be at "ipoff" on the mbuf chain.
9661 */
9662 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * reasonp,sa_family_t af)9663 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
9664 u_short *reasonp, sa_family_t af)
9665 {
9666 int iplen = 0;
9667 switch (af) {
9668 #ifdef INET
9669 case AF_INET: {
9670 const struct ip *h = mtod(m, struct ip *);
9671 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
9672
9673 if (fragoff) {
9674 REASON_SET(reasonp, PFRES_FRAG);
9675 return (NULL);
9676 }
9677 iplen = ntohs(h->ip_len);
9678 break;
9679 }
9680 #endif /* INET */
9681 #ifdef INET6
9682 case AF_INET6: {
9683 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
9684
9685 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
9686 break;
9687 }
9688 #endif /* INET6 */
9689 }
9690 if (m->m_pkthdr.len < off + len || iplen < off + len) {
9691 REASON_SET(reasonp, PFRES_SHORT);
9692 return (NULL);
9693 }
9694 m_copydata(m, off, len, p);
9695 return (p);
9696 }
9697
9698 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)9699 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
9700 int rtableid)
9701 {
9702 struct ifnet *ifp;
9703
9704 /*
9705 * Skip check for addresses with embedded interface scope,
9706 * as they would always match anyway.
9707 */
9708 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
9709 return (1);
9710
9711 if (af != AF_INET && af != AF_INET6)
9712 return (0);
9713
9714 if (kif == V_pfi_all)
9715 return (1);
9716
9717 /* Skip checks for ipsec interfaces */
9718 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
9719 return (1);
9720
9721 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
9722
9723 switch (af) {
9724 #ifdef INET6
9725 case AF_INET6:
9726 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
9727 ifp));
9728 #endif /* INET6 */
9729 #ifdef INET
9730 case AF_INET:
9731 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
9732 ifp));
9733 #endif /* INET */
9734 }
9735
9736 return (0);
9737 }
9738
9739 #ifdef INET
9740 static int
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9741 pf_route(struct pf_krule *r, struct ifnet *oifp,
9742 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9743 {
9744 struct mbuf *m0, *m1, *md;
9745 struct route_in6 ro;
9746 union sockaddr_union rt_gw;
9747 const union sockaddr_union *gw = (const union sockaddr_union *)&ro.ro_dst;
9748 union sockaddr_union *dst;
9749 struct ip *ip;
9750 struct ifnet *ifp = NULL;
9751 int error = 0;
9752 uint16_t ip_len, ip_off;
9753 uint16_t tmp;
9754 int r_dir;
9755 bool skip_test = false;
9756 int action = PF_PASS;
9757
9758 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9759
9760 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
9761
9762 if (s) {
9763 r_dir = s->direction;
9764 } else {
9765 r_dir = r->direction;
9766 }
9767
9768 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9769 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9770 __func__));
9771
9772 if ((pd->pf_mtag == NULL &&
9773 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9774 pd->pf_mtag->routed++ > 3) {
9775 m0 = pd->m;
9776 pd->m = NULL;
9777 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9778 action = PF_DROP;
9779 goto bad_locked;
9780 }
9781
9782 if (pd->act.rt_kif != NULL)
9783 ifp = pd->act.rt_kif->pfik_ifp;
9784
9785 if (pd->act.rt == PF_DUPTO) {
9786 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9787 if (s != NULL) {
9788 PF_STATE_UNLOCK(s);
9789 }
9790 if (ifp == oifp) {
9791 /* When the 2nd interface is not skipped */
9792 return (action);
9793 } else {
9794 m0 = pd->m;
9795 pd->m = NULL;
9796 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9797 action = PF_DROP;
9798 goto bad;
9799 }
9800 } else {
9801 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9802 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9803 if (s)
9804 PF_STATE_UNLOCK(s);
9805 return (action);
9806 }
9807 }
9808 } else {
9809 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9810 if (pd->af == pd->naf) {
9811 pf_dummynet(pd, s, r, &pd->m);
9812 if (s)
9813 PF_STATE_UNLOCK(s);
9814 return (action);
9815 } else {
9816 if (r_dir == PF_IN) {
9817 skip_test = true;
9818 }
9819 }
9820 }
9821
9822 /*
9823 * If we're actually doing route-to and af-to and are in the
9824 * reply direction.
9825 */
9826 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9827 pd->af != pd->naf) {
9828 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
9829 /* Un-set ifp so we do a plain route lookup. */
9830 ifp = NULL;
9831 }
9832 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
9833 /* Un-set ifp so we do a plain route lookup. */
9834 ifp = NULL;
9835 }
9836 }
9837 m0 = pd->m;
9838 }
9839
9840 ip = mtod(m0, struct ip *);
9841
9842 bzero(&ro, sizeof(ro));
9843 dst = (union sockaddr_union *)&ro.ro_dst;
9844 dst->sin.sin_family = AF_INET;
9845 dst->sin.sin_len = sizeof(struct sockaddr_in);
9846 dst->sin.sin_addr = ip->ip_dst;
9847 if (ifp) { /* Only needed in forward direction and route-to */
9848 bzero(&rt_gw, sizeof(rt_gw));
9849 ro.ro_flags |= RT_HAS_GW;
9850 gw = &rt_gw;
9851 switch (pd->act.rt_af) {
9852 #ifdef INET
9853 case AF_INET:
9854 rt_gw.sin.sin_family = AF_INET;
9855 rt_gw.sin.sin_len = sizeof(struct sockaddr_in);
9856 rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
9857 break;
9858 #endif /* INET */
9859 #ifdef INET6
9860 case AF_INET6:
9861 rt_gw.sin6.sin6_family = AF_INET6;
9862 rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6);
9863 pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr,
9864 &pd->act.rt_addr, AF_INET6);
9865 break;
9866 #endif /* INET6 */
9867 default:
9868 /* Normal af-to without route-to */
9869 break;
9870 }
9871 }
9872
9873 if (pd->dir == PF_IN) {
9874 if (ip->ip_ttl <= IPTTLDEC) {
9875 if (r->rt != PF_DUPTO && pd->naf == pd->af)
9876 pf_send_icmp(m0, ICMP_TIMXCEED,
9877 ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9878 pd->act.rtableid);
9879 action = PF_DROP;
9880 goto bad_locked;
9881 }
9882 ip->ip_ttl -= IPTTLDEC;
9883 }
9884
9885 if (s != NULL) {
9886 if (ifp == NULL && (pd->af != pd->naf)) {
9887 /* We're in the AFTO case. Do a route lookup. */
9888 const struct nhop_object *nh;
9889 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9890 if (nh) {
9891 ifp = nh->nh_ifp;
9892
9893 /* Use the gateway if needed. */
9894 if (nh->nh_flags & NHF_GATEWAY) {
9895 gw = (const union sockaddr_union *)&nh->gw_sa;
9896 ro.ro_flags |= RT_HAS_GW;
9897 } else {
9898 dst->sin.sin_addr = ip->ip_dst;
9899 }
9900 }
9901 }
9902 PF_STATE_UNLOCK(s);
9903 }
9904
9905 /* It must have been either set from rt_af or from fib4_lookup */
9906 KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__));
9907
9908 if (ifp == NULL) {
9909 m0 = pd->m;
9910 pd->m = NULL;
9911 action = PF_DROP;
9912 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9913 goto bad;
9914 }
9915
9916 /*
9917 * Bind to the correct interface if we're if-bound. We don't know which
9918 * interface that will be until here, so we've inserted the state
9919 * on V_pf_all. Fix that now.
9920 */
9921 if (s != NULL && s->kif == V_pfi_all && r->rule_flag & PFRULE_IFBOUND) {
9922 /* Verify that we're here because of BOUND_IFACE */
9923 MPASS(r->rt == PF_REPLYTO || (pd->af != pd->naf && s->direction == PF_IN));
9924 s->kif = ifp->if_pf_kif;
9925 if (pd->act.rt == PF_REPLYTO) {
9926 s->orig_kif = oifp->if_pf_kif;
9927 }
9928 }
9929
9930 if (r->rt == PF_DUPTO || (pd->af != pd->naf && s->direction == PF_IN))
9931 skip_test = true;
9932
9933 if (pd->dir == PF_IN) {
9934 if (skip_test) {
9935 struct pfi_kkif *out_kif = (struct pfi_kkif *)ifp->if_pf_kif;
9936 MPASS(s != NULL);
9937 pf_counter_u64_critical_enter();
9938 pf_counter_u64_add_protected(
9939 &out_kif->pfik_bytes[pd->naf == AF_INET6][1]
9940 [action != PF_PASS && action != PF_AFRT], pd->tot_len);
9941 pf_counter_u64_add_protected(
9942 &out_kif->pfik_packets[pd->naf == AF_INET6][1]
9943 [action != PF_PASS && action != PF_AFRT], 1);
9944 pf_counter_u64_critical_exit();
9945 } else {
9946 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9947 &pd->act) != PF_PASS) {
9948 action = PF_DROP;
9949 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9950 goto bad;
9951 } else if (m0 == NULL) {
9952 action = PF_DROP;
9953 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9954 goto done;
9955 }
9956 if (m0->m_len < sizeof(struct ip)) {
9957 DPFPRINTF(PF_DEBUG_URGENT,
9958 "%s: m0->m_len < sizeof(struct ip)", __func__);
9959 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9960 action = PF_DROP;
9961 goto bad;
9962 }
9963 ip = mtod(m0, struct ip *);
9964 }
9965 }
9966
9967 if (ifp->if_flags & IFF_LOOPBACK)
9968 m0->m_flags |= M_SKIP_FIREWALL;
9969
9970 ip_len = ntohs(ip->ip_len);
9971 ip_off = ntohs(ip->ip_off);
9972
9973 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9974 m0->m_pkthdr.csum_flags |= CSUM_IP;
9975 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9976 in_delayed_cksum(m0);
9977 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9978 }
9979 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9980 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9981 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9982 }
9983
9984 if (pd->dir == PF_IN) {
9985 /*
9986 * Make sure dummynet gets the correct direction, in case it needs to
9987 * re-inject later.
9988 */
9989 pd->dir = PF_OUT;
9990
9991 /*
9992 * The following processing is actually the rest of the inbound processing, even
9993 * though we've marked it as outbound (so we don't look through dummynet) and it
9994 * happens after the outbound processing (pf_test(PF_OUT) above).
9995 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9996 * conclusion about what direction it's processing, and we can't fix it or it
9997 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9998 * decision will pick the right pipe, and everything will mostly work as expected.
9999 */
10000 tmp = pd->act.dnrpipe;
10001 pd->act.dnrpipe = pd->act.dnpipe;
10002 pd->act.dnpipe = tmp;
10003 }
10004
10005 /*
10006 * If small enough for interface, or the interface will take
10007 * care of the fragmentation for us, we can just send directly.
10008 */
10009 if (ip_len <= ifp->if_mtu ||
10010 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
10011 ip->ip_sum = 0;
10012 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
10013 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
10014 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
10015 }
10016 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
10017
10018 md = m0;
10019 error = pf_dummynet_route(pd, s, r, ifp,
10020 (const struct sockaddr *)gw, &md);
10021 if (md != NULL) {
10022 error = (*ifp->if_output)(ifp, md,
10023 (const struct sockaddr *)gw, (struct route *)&ro);
10024 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
10025 }
10026 goto done;
10027 }
10028
10029 /* Balk when DF bit is set or the interface didn't support TSO. */
10030 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
10031 error = EMSGSIZE;
10032 KMOD_IPSTAT_INC(ips_cantfrag);
10033 if (pd->act.rt != PF_DUPTO) {
10034 if (s && s->nat_rule != NULL) {
10035 MPASS(m0 == pd->m);
10036 PACKET_UNDO_NAT(pd,
10037 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
10038 s);
10039 }
10040
10041 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10042 ifp->if_mtu, pd->af, r, pd->act.rtableid);
10043 }
10044 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
10045 /* Return pass, so we return PFIL_CONSUMED to the stack. */
10046 action = PF_PASS;
10047 goto bad;
10048 }
10049
10050 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
10051 if (error) {
10052 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
10053 action = PF_DROP;
10054 goto bad;
10055 }
10056
10057 for (; m0; m0 = m1) {
10058 m1 = m0->m_nextpkt;
10059 m0->m_nextpkt = NULL;
10060 if (error == 0) {
10061 m_clrprotoflags(m0);
10062 md = m0;
10063 pd->pf_mtag = pf_find_mtag(md);
10064 error = pf_dummynet_route(pd, s, r, ifp,
10065 (const struct sockaddr *)gw, &md);
10066 if (md != NULL) {
10067 error = (*ifp->if_output)(ifp, md,
10068 (const struct sockaddr *)gw,
10069 (struct route *)&ro);
10070 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
10071 }
10072 } else
10073 m_freem(m0);
10074 }
10075
10076 if (error == 0)
10077 KMOD_IPSTAT_INC(ips_fragmented);
10078
10079 done:
10080 if (pd->act.rt != PF_DUPTO)
10081 pd->m = NULL;
10082 else
10083 action = PF_PASS;
10084 return (action);
10085
10086 bad_locked:
10087 if (s)
10088 PF_STATE_UNLOCK(s);
10089 bad:
10090 m_freem(m0);
10091 goto done;
10092 }
10093 #endif /* INET */
10094
10095 #ifdef INET6
10096 static int
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)10097 pf_route6(struct pf_krule *r, struct ifnet *oifp,
10098 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
10099 {
10100 struct mbuf *m0, *md;
10101 struct m_tag *mtag;
10102 struct sockaddr_in6 dst;
10103 struct ip6_hdr *ip6;
10104 struct ifnet *ifp = NULL;
10105 int r_dir;
10106 bool skip_test = false;
10107 int action = PF_PASS;
10108
10109 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
10110
10111 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
10112
10113 if (s) {
10114 r_dir = s->direction;
10115 } else {
10116 r_dir = r->direction;
10117 }
10118
10119 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
10120 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
10121 __func__));
10122
10123 if ((pd->pf_mtag == NULL &&
10124 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
10125 pd->pf_mtag->routed++ > 3) {
10126 m0 = pd->m;
10127 pd->m = NULL;
10128 action = PF_DROP;
10129 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10130 goto bad_locked;
10131 }
10132
10133 if (pd->act.rt_kif != NULL)
10134 ifp = pd->act.rt_kif->pfik_ifp;
10135
10136 if (pd->act.rt == PF_DUPTO) {
10137 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
10138 if (s != NULL) {
10139 PF_STATE_UNLOCK(s);
10140 }
10141 if (ifp == oifp) {
10142 /* When the 2nd interface is not skipped */
10143 return (action);
10144 } else {
10145 m0 = pd->m;
10146 pd->m = NULL;
10147 action = PF_DROP;
10148 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10149 goto bad;
10150 }
10151 } else {
10152 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
10153 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
10154 if (s)
10155 PF_STATE_UNLOCK(s);
10156 return (action);
10157 }
10158 }
10159 } else {
10160 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
10161 if (pd->af == pd->naf) {
10162 pf_dummynet(pd, s, r, &pd->m);
10163 if (s)
10164 PF_STATE_UNLOCK(s);
10165 return (action);
10166 } else {
10167 if (r_dir == PF_IN) {
10168 skip_test = true;
10169 }
10170 }
10171 }
10172
10173 /*
10174 * If we're actually doing route-to and af-to and are in the
10175 * reply direction.
10176 */
10177 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
10178 pd->af != pd->naf) {
10179 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
10180 /* Un-set ifp so we do a plain route lookup. */
10181 ifp = NULL;
10182 }
10183 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
10184 /* Un-set ifp so we do a plain route lookup. */
10185 ifp = NULL;
10186 }
10187 }
10188 m0 = pd->m;
10189 }
10190
10191 ip6 = mtod(m0, struct ip6_hdr *);
10192
10193 bzero(&dst, sizeof(dst));
10194 dst.sin6_family = AF_INET6;
10195 dst.sin6_len = sizeof(dst);
10196 pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr,
10197 AF_INET6);
10198
10199 if (pd->dir == PF_IN) {
10200 if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
10201 if (r->rt != PF_DUPTO && pd->naf == pd->af)
10202 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
10203 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
10204 pd->act.rtableid);
10205 action = PF_DROP;
10206 goto bad_locked;
10207 }
10208 ip6->ip6_hlim -= IPV6_HLIMDEC;
10209 }
10210
10211 if (s != NULL) {
10212 if (ifp == NULL && (pd->af != pd->naf)) {
10213 const struct nhop_object *nh;
10214 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
10215 if (nh) {
10216 ifp = nh->nh_ifp;
10217
10218 /* Use the gateway if needed. */
10219 if (nh->nh_flags & NHF_GATEWAY)
10220 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
10221 sizeof(dst.sin6_addr));
10222 else
10223 dst.sin6_addr = ip6->ip6_dst;
10224 }
10225 }
10226 PF_STATE_UNLOCK(s);
10227 }
10228
10229 if (pd->af != pd->naf) {
10230 struct udphdr *uh = &pd->hdr.udp;
10231
10232 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
10233 uh->uh_sum = in6_cksum_pseudo(ip6,
10234 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
10235 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
10236 }
10237 }
10238
10239 if (ifp == NULL) {
10240 m0 = pd->m;
10241 pd->m = NULL;
10242 action = PF_DROP;
10243 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10244 goto bad;
10245 }
10246
10247 /*
10248 * Bind to the correct interface if we're if-bound. We don't know which
10249 * interface that will be until here, so we've inserted the state
10250 * on V_pf_all. Fix that now.
10251 */
10252 if (s != NULL && s->kif == V_pfi_all && r->rule_flag & PFRULE_IFBOUND) {
10253 /* Verify that we're here because of BOUND_IFACE */
10254 MPASS(r->rt == PF_REPLYTO || (pd->af != pd->naf && s->direction == PF_IN));
10255 s->kif = ifp->if_pf_kif;
10256 if (pd->act.rt == PF_REPLYTO) {
10257 s->orig_kif = oifp->if_pf_kif;
10258 }
10259 }
10260
10261 if (r->rt == PF_DUPTO || (pd->af != pd->naf && s->direction == PF_IN))
10262 skip_test = true;
10263
10264 if (pd->dir == PF_IN) {
10265 if (skip_test) {
10266 struct pfi_kkif *out_kif = (struct pfi_kkif *)ifp->if_pf_kif;
10267 MPASS(s != NULL);
10268 pf_counter_u64_critical_enter();
10269 pf_counter_u64_add_protected(
10270 &out_kif->pfik_bytes[pd->naf == AF_INET6][1]
10271 [action != PF_PASS && action != PF_AFRT], pd->tot_len);
10272 pf_counter_u64_add_protected(
10273 &out_kif->pfik_packets[pd->naf == AF_INET6][1]
10274 [action != PF_PASS && action != PF_AFRT], 1);
10275 pf_counter_u64_critical_exit();
10276 } else {
10277 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
10278 ifp, &m0, inp, &pd->act) != PF_PASS) {
10279 action = PF_DROP;
10280 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10281 goto bad;
10282 } else if (m0 == NULL) {
10283 action = PF_DROP;
10284 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10285 goto done;
10286 }
10287 if (m0->m_len < sizeof(struct ip6_hdr)) {
10288 DPFPRINTF(PF_DEBUG_URGENT,
10289 "%s: m0->m_len < sizeof(struct ip6_hdr)",
10290 __func__);
10291 action = PF_DROP;
10292 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10293 goto bad;
10294 }
10295 ip6 = mtod(m0, struct ip6_hdr *);
10296 }
10297 }
10298
10299 if (ifp->if_flags & IFF_LOOPBACK)
10300 m0->m_flags |= M_SKIP_FIREWALL;
10301
10302 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
10303 ~ifp->if_hwassist) {
10304 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
10305 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
10306 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
10307 }
10308
10309 if (pd->dir == PF_IN) {
10310 uint16_t tmp;
10311 /*
10312 * Make sure dummynet gets the correct direction, in case it needs to
10313 * re-inject later.
10314 */
10315 pd->dir = PF_OUT;
10316
10317 /*
10318 * The following processing is actually the rest of the inbound processing, even
10319 * though we've marked it as outbound (so we don't look through dummynet) and it
10320 * happens after the outbound processing (pf_test(PF_OUT) above).
10321 * Swap the dummynet pipe numbers, because it's going to come to the wrong
10322 * conclusion about what direction it's processing, and we can't fix it or it
10323 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
10324 * decision will pick the right pipe, and everything will mostly work as expected.
10325 */
10326 tmp = pd->act.dnrpipe;
10327 pd->act.dnrpipe = pd->act.dnpipe;
10328 pd->act.dnpipe = tmp;
10329 }
10330
10331 /*
10332 * If the packet is too large for the outgoing interface,
10333 * send back an icmp6 error.
10334 */
10335 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
10336 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
10337 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
10338 if (mtag != NULL) {
10339 int ret __sdt_used;
10340 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
10341 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
10342 goto done;
10343 }
10344
10345 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
10346 md = m0;
10347 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
10348 if (md != NULL) {
10349 int ret __sdt_used;
10350 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
10351 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
10352 }
10353 }
10354 else {
10355 in6_ifstat_inc(ifp, ifs6_in_toobig);
10356 if (pd->act.rt != PF_DUPTO) {
10357 if (s && s->nat_rule != NULL) {
10358 MPASS(m0 == pd->m);
10359 PACKET_UNDO_NAT(pd,
10360 ((caddr_t)ip6 - m0->m_data) +
10361 sizeof(struct ip6_hdr), s);
10362 }
10363
10364 if (r->rt != PF_DUPTO)
10365 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
10366 ifp->if_mtu, pd->af, r, pd->act.rtableid);
10367 }
10368 /* Return pass, so we return PFIL_CONSUMED to the stack. */
10369 action = PF_PASS;
10370 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
10371 goto bad;
10372 }
10373
10374 done:
10375 if (pd->act.rt != PF_DUPTO)
10376 pd->m = NULL;
10377 else
10378 action = PF_PASS;
10379 return (action);
10380
10381 bad_locked:
10382 if (s)
10383 PF_STATE_UNLOCK(s);
10384 bad:
10385 m_freem(m0);
10386 goto done;
10387 }
10388 #endif /* INET6 */
10389
10390 /*
10391 * FreeBSD supports cksum offloads for the following drivers.
10392 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
10393 *
10394 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
10395 * network driver performed cksum including pseudo header, need to verify
10396 * csum_data
10397 * CSUM_DATA_VALID :
10398 * network driver performed cksum, needs to additional pseudo header
10399 * cksum computation with partial csum_data(i.e. lack of H/W support for
10400 * pseudo header, for instance sk(4) and possibly gem(4))
10401 *
10402 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
10403 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
10404 * TCP/UDP layer.
10405 * Also, set csum_data to 0xffff to force cksum validation.
10406 */
10407 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)10408 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
10409 {
10410 u_int16_t sum = 0;
10411 int hw_assist = 0;
10412 struct ip *ip;
10413
10414 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
10415 return (1);
10416 if (m->m_pkthdr.len < off + len)
10417 return (1);
10418
10419 switch (p) {
10420 case IPPROTO_TCP:
10421 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
10422 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
10423 sum = m->m_pkthdr.csum_data;
10424 } else {
10425 ip = mtod(m, struct ip *);
10426 sum = in_pseudo(ip->ip_src.s_addr,
10427 ip->ip_dst.s_addr, htonl((u_short)len +
10428 m->m_pkthdr.csum_data + IPPROTO_TCP));
10429 }
10430 sum ^= 0xffff;
10431 ++hw_assist;
10432 }
10433 break;
10434 case IPPROTO_UDP:
10435 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
10436 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
10437 sum = m->m_pkthdr.csum_data;
10438 } else {
10439 ip = mtod(m, struct ip *);
10440 sum = in_pseudo(ip->ip_src.s_addr,
10441 ip->ip_dst.s_addr, htonl((u_short)len +
10442 m->m_pkthdr.csum_data + IPPROTO_UDP));
10443 }
10444 sum ^= 0xffff;
10445 ++hw_assist;
10446 }
10447 break;
10448 case IPPROTO_ICMP:
10449 #ifdef INET6
10450 case IPPROTO_ICMPV6:
10451 #endif /* INET6 */
10452 break;
10453 default:
10454 return (1);
10455 }
10456
10457 if (!hw_assist) {
10458 switch (af) {
10459 case AF_INET:
10460 if (m->m_len < sizeof(struct ip))
10461 return (1);
10462 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
10463 break;
10464 #ifdef INET6
10465 case AF_INET6:
10466 if (m->m_len < sizeof(struct ip6_hdr))
10467 return (1);
10468 sum = in6_cksum(m, p, off, len);
10469 break;
10470 #endif /* INET6 */
10471 }
10472 }
10473 if (sum) {
10474 switch (p) {
10475 case IPPROTO_TCP:
10476 {
10477 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
10478 break;
10479 }
10480 case IPPROTO_UDP:
10481 {
10482 KMOD_UDPSTAT_INC(udps_badsum);
10483 break;
10484 }
10485 #ifdef INET
10486 case IPPROTO_ICMP:
10487 {
10488 KMOD_ICMPSTAT_INC(icps_checksum);
10489 break;
10490 }
10491 #endif
10492 #ifdef INET6
10493 case IPPROTO_ICMPV6:
10494 {
10495 KMOD_ICMP6STAT_INC(icp6s_checksum);
10496 break;
10497 }
10498 #endif /* INET6 */
10499 }
10500 return (1);
10501 } else {
10502 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
10503 m->m_pkthdr.csum_flags |=
10504 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
10505 m->m_pkthdr.csum_data = 0xffff;
10506 }
10507 }
10508 return (0);
10509 }
10510
10511 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)10512 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
10513 const struct pf_kstate *s, struct ip_fw_args *dnflow)
10514 {
10515 int dndir = r->direction;
10516 sa_family_t af = pd->naf;
10517
10518 if (s && dndir == PF_INOUT) {
10519 dndir = s->direction;
10520 } else if (dndir == PF_INOUT) {
10521 /* Assume primary direction. Happens when we've set dnpipe in
10522 * the ethernet level code. */
10523 dndir = pd->dir;
10524 }
10525
10526 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
10527 return (false);
10528
10529 memset(dnflow, 0, sizeof(*dnflow));
10530
10531 if (pd->dport != NULL)
10532 dnflow->f_id.dst_port = ntohs(*pd->dport);
10533 if (pd->sport != NULL)
10534 dnflow->f_id.src_port = ntohs(*pd->sport);
10535
10536 if (pd->dir == PF_IN)
10537 dnflow->flags |= IPFW_ARGS_IN;
10538 else
10539 dnflow->flags |= IPFW_ARGS_OUT;
10540
10541 if (pd->dir != dndir && pd->act.dnrpipe) {
10542 dnflow->rule.info = pd->act.dnrpipe;
10543 }
10544 else if (pd->dir == dndir && pd->act.dnpipe) {
10545 dnflow->rule.info = pd->act.dnpipe;
10546 }
10547 else {
10548 return (false);
10549 }
10550
10551 dnflow->rule.info |= IPFW_IS_DUMMYNET;
10552 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
10553 dnflow->rule.info |= IPFW_IS_PIPE;
10554
10555 dnflow->f_id.proto = pd->proto;
10556 dnflow->f_id.extra = dnflow->rule.info;
10557 if (s)
10558 af = s->key[PF_SK_STACK]->af;
10559
10560 switch (af) {
10561 case AF_INET:
10562 dnflow->f_id.addr_type = 4;
10563 if (s) {
10564 dnflow->f_id.src_ip = htonl(
10565 s->key[PF_SK_STACK]->addr[pd->sidx].v4.s_addr);
10566 dnflow->f_id.dst_ip = htonl(
10567 s->key[PF_SK_STACK]->addr[pd->didx].v4.s_addr);
10568 } else {
10569 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
10570 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
10571 }
10572 break;
10573 case AF_INET6:
10574 dnflow->f_id.addr_type = 6;
10575
10576 if (s) {
10577 dnflow->f_id.src_ip6 =
10578 s->key[PF_SK_STACK]->addr[pd->sidx].v6;
10579 dnflow->f_id.dst_ip6 =
10580 s->key[PF_SK_STACK]->addr[pd->didx].v6;
10581 } else {
10582 dnflow->f_id.src_ip6 = pd->src->v6;
10583 dnflow->f_id.dst_ip6 = pd->dst->v6;
10584 }
10585 break;
10586 }
10587
10588 /*
10589 * Separate this out, because while we pass the pre-NAT addresses to
10590 * dummynet we want the post-nat address family in case of nat64.
10591 * Dummynet may call ip_output/ip6_output itself, and we need it to
10592 * call the correct one.
10593 */
10594 if (pd->naf == AF_INET6)
10595 dnflow->flags |= IPFW_ARGS_IP6;
10596
10597 return (true);
10598 }
10599
10600 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)10601 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10602 struct inpcb *inp)
10603 {
10604 struct pfi_kkif *kif;
10605 struct mbuf *m = *m0;
10606
10607 M_ASSERTPKTHDR(m);
10608 MPASS(ifp->if_vnet == curvnet);
10609 NET_EPOCH_ASSERT();
10610
10611 if (!V_pf_status.running)
10612 return (PF_PASS);
10613
10614 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10615
10616 if (kif == NULL) {
10617 DPFPRINTF(PF_DEBUG_URGENT,
10618 "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname);
10619 return (PF_DROP);
10620 }
10621 if (kif->pfik_flags & PFI_IFLAG_SKIP)
10622 return (PF_PASS);
10623
10624 if (m->m_flags & M_SKIP_FIREWALL)
10625 return (PF_PASS);
10626
10627 if (__predict_false(! M_WRITABLE(*m0))) {
10628 m = *m0 = m_unshare(*m0, M_NOWAIT);
10629 if (*m0 == NULL)
10630 return (PF_DROP);
10631 }
10632
10633 /* Stateless! */
10634 return (pf_test_eth_rule(dir, kif, m0));
10635 }
10636
10637 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)10638 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
10639 {
10640 struct m_tag *mtag;
10641
10642 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
10643
10644 /* dummynet adds this tag, but pf does not need it,
10645 * and keeping it creates unexpected behavior,
10646 * e.g. in case of divert(4) usage right after dummynet. */
10647 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
10648 if (mtag != NULL)
10649 m_tag_delete(m, mtag);
10650 }
10651
10652 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)10653 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
10654 struct pf_krule *r, struct mbuf **m0)
10655 {
10656 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
10657 }
10658
10659 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)10660 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
10661 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
10662 struct mbuf **m0)
10663 {
10664 struct ip_fw_args dnflow;
10665
10666 NET_EPOCH_ASSERT();
10667
10668 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
10669 return (0);
10670
10671 if (ip_dn_io_ptr == NULL) {
10672 m_freem(*m0);
10673 *m0 = NULL;
10674 return (ENOMEM);
10675 }
10676
10677 if (pd->pf_mtag == NULL &&
10678 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
10679 m_freem(*m0);
10680 *m0 = NULL;
10681 return (ENOMEM);
10682 }
10683
10684 if (ifp != NULL) {
10685 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
10686
10687 pd->pf_mtag->if_index = ifp->if_index;
10688 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
10689
10690 MPASS(sa != NULL);
10691
10692 switch (sa->sa_family) {
10693 case AF_INET:
10694 memcpy(&pd->pf_mtag->dst, sa,
10695 sizeof(struct sockaddr_in));
10696 break;
10697 case AF_INET6:
10698 memcpy(&pd->pf_mtag->dst, sa,
10699 sizeof(struct sockaddr_in6));
10700 break;
10701 }
10702 }
10703
10704 if (s != NULL && s->nat_rule != NULL &&
10705 s->nat_rule->action == PF_RDR &&
10706 (
10707 #ifdef INET
10708 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
10709 #endif /* INET */
10710 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
10711 /*
10712 * If we're redirecting to loopback mark this packet
10713 * as being local. Otherwise it might get dropped
10714 * if dummynet re-injects.
10715 */
10716 (*m0)->m_pkthdr.rcvif = V_loif;
10717 }
10718
10719 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
10720 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
10721 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
10722 ip_dn_io_ptr(m0, &dnflow);
10723 if (*m0 != NULL) {
10724 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10725 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
10726 }
10727 }
10728
10729 return (0);
10730 }
10731
10732 static int
pf_walk_option(struct pf_pdesc * pd,struct ip * h,int off,int end,u_short * reason)10733 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end,
10734 u_short *reason)
10735 {
10736 uint8_t type, length, opts[15 * 4 - sizeof(struct ip)];
10737
10738 /* IP header in payload of ICMP packet may be too short */
10739 if (pd->m->m_pkthdr.len < end) {
10740 DPFPRINTF(PF_DEBUG_MISC, "IP option too short");
10741 REASON_SET(reason, PFRES_SHORT);
10742 return (PF_DROP);
10743 }
10744
10745 MPASS(end - off <= sizeof(opts));
10746 m_copydata(pd->m, off, end - off, opts);
10747 end -= off;
10748 off = 0;
10749
10750 while (off < end) {
10751 type = opts[off];
10752 if (type == IPOPT_EOL)
10753 break;
10754 if (type == IPOPT_NOP) {
10755 off++;
10756 continue;
10757 }
10758 if (off + 2 > end) {
10759 DPFPRINTF(PF_DEBUG_MISC, "IP length opt");
10760 REASON_SET(reason, PFRES_IPOPTIONS);
10761 return (PF_DROP);
10762 }
10763 length = opts[off + 1];
10764 if (length < 2) {
10765 DPFPRINTF(PF_DEBUG_MISC, "IP short opt");
10766 REASON_SET(reason, PFRES_IPOPTIONS);
10767 return (PF_DROP);
10768 }
10769 if (off + length > end) {
10770 DPFPRINTF(PF_DEBUG_MISC, "IP long opt");
10771 REASON_SET(reason, PFRES_IPOPTIONS);
10772 return (PF_DROP);
10773 }
10774 switch (type) {
10775 case IPOPT_RA:
10776 pd->badopts |= PF_OPT_ROUTER_ALERT;
10777 break;
10778 default:
10779 pd->badopts |= PF_OPT_OTHER;
10780 break;
10781 }
10782 off += length;
10783 }
10784
10785 return (PF_PASS);
10786 }
10787
10788 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)10789 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
10790 {
10791 struct ah ext;
10792 u_int32_t hlen, end;
10793 int hdr_cnt;
10794
10795 hlen = h->ip_hl << 2;
10796 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
10797 REASON_SET(reason, PFRES_SHORT);
10798 return (PF_DROP);
10799 }
10800 if (hlen != sizeof(struct ip)) {
10801 if (pf_walk_option(pd, h, pd->off + sizeof(struct ip),
10802 pd->off + hlen, reason) != PF_PASS)
10803 return (PF_DROP);
10804 /* header options which contain only padding is fishy */
10805 if (pd->badopts == 0)
10806 pd->badopts |= PF_OPT_OTHER;
10807 }
10808 end = pd->off + ntohs(h->ip_len);
10809 pd->off += hlen;
10810 pd->proto = h->ip_p;
10811 /* IGMP packets have router alert options, allow them */
10812 if (pd->proto == IPPROTO_IGMP) {
10813 /*
10814 * According to RFC 1112 ttl must be set to 1 in all IGMP
10815 * packets sent to 224.0.0.1
10816 */
10817 if ((h->ip_ttl != 1) &&
10818 (h->ip_dst.s_addr == INADDR_ALLHOSTS_GROUP)) {
10819 DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP");
10820 REASON_SET(reason, PFRES_IPOPTIONS);
10821 return (PF_DROP);
10822 }
10823 pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10824 }
10825 /* stop walking over non initial fragments */
10826 if ((h->ip_off & htons(IP_OFFMASK)) != 0)
10827 return (PF_PASS);
10828 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10829 switch (pd->proto) {
10830 case IPPROTO_AH:
10831 /* fragments may be short */
10832 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
10833 end < pd->off + sizeof(ext))
10834 return (PF_PASS);
10835 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10836 reason, AF_INET)) {
10837 DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr");
10838 return (PF_DROP);
10839 }
10840 pd->off += (ext.ah_len + 2) * 4;
10841 pd->proto = ext.ah_nxt;
10842 break;
10843 default:
10844 return (PF_PASS);
10845 }
10846 }
10847 DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit");
10848 REASON_SET(reason, PFRES_IPOPTIONS);
10849 return (PF_DROP);
10850 }
10851
10852 #ifdef INET6
10853 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)10854 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
10855 u_short *reason)
10856 {
10857 struct ip6_opt opt;
10858 struct ip6_opt_jumbo jumbo;
10859
10860 while (off < end) {
10861 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
10862 sizeof(opt.ip6o_type), reason, AF_INET6)) {
10863 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type");
10864 return (PF_DROP);
10865 }
10866 if (opt.ip6o_type == IP6OPT_PAD1) {
10867 off++;
10868 continue;
10869 }
10870 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt),
10871 reason, AF_INET6)) {
10872 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt");
10873 return (PF_DROP);
10874 }
10875 if (off + sizeof(opt) + opt.ip6o_len > end) {
10876 DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt");
10877 REASON_SET(reason, PFRES_IPOPTIONS);
10878 return (PF_DROP);
10879 }
10880 switch (opt.ip6o_type) {
10881 case IP6OPT_PADN:
10882 break;
10883 case IP6OPT_JUMBO:
10884 pd->badopts |= PF_OPT_JUMBO;
10885 if (pd->jumbolen != 0) {
10886 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo");
10887 REASON_SET(reason, PFRES_IPOPTIONS);
10888 return (PF_DROP);
10889 }
10890 if (ntohs(h->ip6_plen) != 0) {
10891 DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen");
10892 REASON_SET(reason, PFRES_IPOPTIONS);
10893 return (PF_DROP);
10894 }
10895 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo),
10896 reason, AF_INET6)) {
10897 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo");
10898 return (PF_DROP);
10899 }
10900 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
10901 sizeof(pd->jumbolen));
10902 pd->jumbolen = ntohl(pd->jumbolen);
10903 if (pd->jumbolen < IPV6_MAXPACKET) {
10904 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen");
10905 REASON_SET(reason, PFRES_IPOPTIONS);
10906 return (PF_DROP);
10907 }
10908 break;
10909 case IP6OPT_ROUTER_ALERT:
10910 pd->badopts |= PF_OPT_ROUTER_ALERT;
10911 break;
10912 default:
10913 pd->badopts |= PF_OPT_OTHER;
10914 break;
10915 }
10916 off += sizeof(opt) + opt.ip6o_len;
10917 }
10918
10919 return (PF_PASS);
10920 }
10921
10922 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)10923 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
10924 {
10925 struct ip6_frag frag;
10926 struct ip6_ext ext;
10927 struct icmp6_hdr icmp6;
10928 struct ip6_rthdr rthdr;
10929 uint32_t end;
10930 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
10931
10932 pd->off += sizeof(struct ip6_hdr);
10933 end = pd->off + ntohs(h->ip6_plen);
10934 pd->fragoff = pd->extoff = pd->jumbolen = 0;
10935 pd->proto = h->ip6_nxt;
10936 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10937 switch (pd->proto) {
10938 case IPPROTO_ROUTING:
10939 case IPPROTO_DSTOPTS:
10940 pd->badopts |= PF_OPT_OTHER;
10941 break;
10942 case IPPROTO_HOPOPTS:
10943 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10944 reason, AF_INET6)) {
10945 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10946 return (PF_DROP);
10947 }
10948 if (pf_walk_option6(pd, h, pd->off + sizeof(ext),
10949 pd->off + (ext.ip6e_len + 1) * 8,
10950 reason) != PF_PASS)
10951 return (PF_DROP);
10952 /* option header which contains only padding is fishy */
10953 if (pd->badopts == 0)
10954 pd->badopts |= PF_OPT_OTHER;
10955 break;
10956 }
10957 switch (pd->proto) {
10958 case IPPROTO_FRAGMENT:
10959 if (fraghdr_cnt++) {
10960 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment");
10961 REASON_SET(reason, PFRES_FRAG);
10962 return (PF_DROP);
10963 }
10964 /* jumbo payload packets cannot be fragmented */
10965 if (pd->jumbolen != 0) {
10966 DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo");
10967 REASON_SET(reason, PFRES_FRAG);
10968 return (PF_DROP);
10969 }
10970 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
10971 reason, AF_INET6)) {
10972 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment");
10973 return (PF_DROP);
10974 }
10975 /* stop walking over non initial fragments */
10976 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
10977 pd->fragoff = pd->off;
10978 return (PF_PASS);
10979 }
10980 /* RFC6946: reassemble only non atomic fragments */
10981 if (frag.ip6f_offlg & IP6F_MORE_FRAG)
10982 pd->fragoff = pd->off;
10983 pd->off += sizeof(frag);
10984 pd->proto = frag.ip6f_nxt;
10985 break;
10986 case IPPROTO_ROUTING:
10987 if (rthdr_cnt++) {
10988 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr");
10989 REASON_SET(reason, PFRES_IPOPTIONS);
10990 return (PF_DROP);
10991 }
10992 /* fragments may be short */
10993 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
10994 pd->off = pd->fragoff;
10995 pd->proto = IPPROTO_FRAGMENT;
10996 return (PF_PASS);
10997 }
10998 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
10999 reason, AF_INET6)) {
11000 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr");
11001 return (PF_DROP);
11002 }
11003 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
11004 DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0");
11005 REASON_SET(reason, PFRES_IPOPTIONS);
11006 return (PF_DROP);
11007 }
11008 /* FALLTHROUGH */
11009 case IPPROTO_HOPOPTS:
11010 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */
11011 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
11012 DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first");
11013 REASON_SET(reason, PFRES_IPOPTIONS);
11014 return (PF_DROP);
11015 }
11016 /* FALLTHROUGH */
11017 case IPPROTO_AH:
11018 case IPPROTO_DSTOPTS:
11019 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
11020 reason, AF_INET6)) {
11021 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
11022 return (PF_DROP);
11023 }
11024 /* fragments may be short */
11025 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
11026 pd->off = pd->fragoff;
11027 pd->proto = IPPROTO_FRAGMENT;
11028 return (PF_PASS);
11029 }
11030 /* reassembly needs the ext header before the frag */
11031 if (pd->fragoff == 0)
11032 pd->extoff = pd->off;
11033 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 &&
11034 ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
11035 DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo");
11036 REASON_SET(reason, PFRES_IPOPTIONS);
11037 return (PF_DROP);
11038 }
11039 if (pd->proto == IPPROTO_AH)
11040 pd->off += (ext.ip6e_len + 2) * 4;
11041 else
11042 pd->off += (ext.ip6e_len + 1) * 8;
11043 pd->proto = ext.ip6e_nxt;
11044 break;
11045 case IPPROTO_ICMPV6:
11046 /* fragments may be short, ignore inner header then */
11047 if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) {
11048 pd->off = pd->fragoff;
11049 pd->proto = IPPROTO_FRAGMENT;
11050 return (PF_PASS);
11051 }
11052 if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6),
11053 reason, AF_INET6)) {
11054 DPFPRINTF(PF_DEBUG_MISC,
11055 "IPv6 short icmp6hdr");
11056 return (PF_DROP);
11057 }
11058 /* ICMP multicast packets have router alert options */
11059 switch (icmp6.icmp6_type) {
11060 case MLD_LISTENER_QUERY:
11061 case MLD_LISTENER_REPORT:
11062 case MLD_LISTENER_DONE:
11063 case MLDV2_LISTENER_REPORT:
11064 /*
11065 * According to RFC 2710 all MLD messages are
11066 * sent with hop-limit (ttl) set to 1, and link
11067 * local source address. If either one is
11068 * missing then MLD message is invalid and
11069 * should be discarded.
11070 */
11071 if ((h->ip6_hlim != 1) ||
11072 !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) {
11073 DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD");
11074 REASON_SET(reason, PFRES_IPOPTIONS);
11075 return (PF_DROP);
11076 }
11077 pd->badopts &= ~PF_OPT_ROUTER_ALERT;
11078 break;
11079 }
11080 return (PF_PASS);
11081 case IPPROTO_TCP:
11082 case IPPROTO_UDP:
11083 case IPPROTO_SCTP:
11084 /* fragments may be short, ignore inner header then */
11085 if (pd->fragoff != 0 && end < pd->off +
11086 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
11087 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
11088 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
11089 sizeof(struct icmp6_hdr))) {
11090 pd->off = pd->fragoff;
11091 pd->proto = IPPROTO_FRAGMENT;
11092 }
11093 /* FALLTHROUGH */
11094 default:
11095 return (PF_PASS);
11096 }
11097 }
11098 DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit");
11099 REASON_SET(reason, PFRES_IPOPTIONS);
11100 return (PF_DROP);
11101 }
11102 #endif /* INET6 */
11103
11104 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)11105 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
11106 {
11107 memset(pd, 0, sizeof(*pd));
11108 pd->pf_mtag = pf_find_mtag(m);
11109 pd->m = m;
11110 }
11111
11112 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)11113 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
11114 u_short *action, u_short *reason, struct pfi_kkif *kif,
11115 struct pf_rule_actions *default_actions)
11116 {
11117 pd->dir = dir;
11118 pd->kif = kif;
11119 pd->m = *m0;
11120 pd->sidx = (dir == PF_IN) ? 0 : 1;
11121 pd->didx = (dir == PF_IN) ? 1 : 0;
11122 pd->af = pd->naf = af;
11123
11124 PF_RULES_ASSERT();
11125
11126 TAILQ_INIT(&pd->sctp_multihome_jobs);
11127 if (default_actions != NULL)
11128 memcpy(&pd->act, default_actions, sizeof(pd->act));
11129
11130 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
11131 pd->act.dnpipe = pd->pf_mtag->dnpipe;
11132 pd->act.flags = pd->pf_mtag->dnflags;
11133 }
11134
11135 switch (af) {
11136 #ifdef INET
11137 case AF_INET: {
11138 struct ip *h;
11139
11140 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
11141 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
11142 DPFPRINTF(PF_DEBUG_URGENT,
11143 "%s: m_len < sizeof(struct ip), pullup failed",
11144 __func__);
11145 *action = PF_DROP;
11146 REASON_SET(reason, PFRES_SHORT);
11147 return (PF_DROP);
11148 }
11149
11150 h = mtod(pd->m, struct ip *);
11151 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
11152 *action = PF_DROP;
11153 REASON_SET(reason, PFRES_SHORT);
11154 return (PF_DROP);
11155 }
11156
11157 if (pf_normalize_ip(reason, pd) != PF_PASS) {
11158 /* We do IP header normalization and packet reassembly here */
11159 *m0 = pd->m;
11160 *action = PF_DROP;
11161 return (PF_DROP);
11162 }
11163 *m0 = pd->m;
11164 h = mtod(pd->m, struct ip *);
11165
11166 if (pf_walk_header(pd, h, reason) != PF_PASS) {
11167 *action = PF_DROP;
11168 return (PF_DROP);
11169 }
11170
11171 pd->src = (struct pf_addr *)&h->ip_src;
11172 pd->dst = (struct pf_addr *)&h->ip_dst;
11173 pf_addrcpy(&pd->osrc, pd->src, af);
11174 pf_addrcpy(&pd->odst, pd->dst, af);
11175 pd->ip_sum = &h->ip_sum;
11176 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
11177 pd->ttl = h->ip_ttl;
11178 pd->tot_len = ntohs(h->ip_len);
11179 pd->act.rtableid = -1;
11180 pd->df = h->ip_off & htons(IP_DF);
11181 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
11182 PF_VPROTO_FRAGMENT : pd->proto;
11183
11184 break;
11185 }
11186 #endif /* INET */
11187 #ifdef INET6
11188 case AF_INET6: {
11189 struct ip6_hdr *h;
11190
11191 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
11192 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
11193 DPFPRINTF(PF_DEBUG_URGENT,
11194 "%s: m_len < sizeof(struct ip6_hdr)"
11195 ", pullup failed", __func__);
11196 *action = PF_DROP;
11197 REASON_SET(reason, PFRES_SHORT);
11198 return (PF_DROP);
11199 }
11200
11201 h = mtod(pd->m, struct ip6_hdr *);
11202 if (pd->m->m_pkthdr.len <
11203 sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) {
11204 *action = PF_DROP;
11205 REASON_SET(reason, PFRES_SHORT);
11206 return (PF_DROP);
11207 }
11208
11209 /*
11210 * we do not support jumbogram. if we keep going, zero ip6_plen
11211 * will do something bad, so drop the packet for now.
11212 */
11213 if (htons(h->ip6_plen) == 0) {
11214 *action = PF_DROP;
11215 return (PF_DROP);
11216 }
11217
11218 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
11219 *action = PF_DROP;
11220 return (PF_DROP);
11221 }
11222
11223 h = mtod(pd->m, struct ip6_hdr *);
11224 pd->src = (struct pf_addr *)&h->ip6_src;
11225 pd->dst = (struct pf_addr *)&h->ip6_dst;
11226 pf_addrcpy(&pd->osrc, pd->src, af);
11227 pf_addrcpy(&pd->odst, pd->dst, af);
11228 pd->ip_sum = NULL;
11229 pd->tos = IPV6_DSCP(h);
11230 pd->ttl = h->ip6_hlim;
11231 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
11232 pd->act.rtableid = -1;
11233
11234 pd->virtual_proto = (pd->fragoff != 0) ?
11235 PF_VPROTO_FRAGMENT : pd->proto;
11236
11237 /* We do IP header normalization and packet reassembly here */
11238 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
11239 PF_PASS) {
11240 *m0 = pd->m;
11241 *action = PF_DROP;
11242 return (PF_DROP);
11243 }
11244 *m0 = pd->m;
11245 if (pd->m == NULL) {
11246 /* packet sits in reassembly queue, no error */
11247 *action = PF_PASS;
11248 return (PF_DROP);
11249 }
11250
11251 /* Update pointers into the packet. */
11252 h = mtod(pd->m, struct ip6_hdr *);
11253 pd->src = (struct pf_addr *)&h->ip6_src;
11254 pd->dst = (struct pf_addr *)&h->ip6_dst;
11255
11256 pd->off = 0;
11257
11258 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
11259 *action = PF_DROP;
11260 return (PF_DROP);
11261 }
11262
11263 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
11264 /*
11265 * Reassembly may have changed the next protocol from
11266 * fragment to something else, so update.
11267 */
11268 pd->virtual_proto = pd->proto;
11269 MPASS(pd->fragoff == 0);
11270 }
11271
11272 if (pd->fragoff != 0)
11273 pd->virtual_proto = PF_VPROTO_FRAGMENT;
11274
11275 break;
11276 }
11277 #endif /* INET6 */
11278 default:
11279 panic("pf_setup_pdesc called with illegal af %u", af);
11280 }
11281
11282 switch (pd->virtual_proto) {
11283 case IPPROTO_TCP: {
11284 struct tcphdr *th = &pd->hdr.tcp;
11285
11286 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th),
11287 reason, af)) {
11288 *action = PF_DROP;
11289 REASON_SET(reason, PFRES_SHORT);
11290 return (PF_DROP);
11291 }
11292 pd->hdrlen = sizeof(*th);
11293 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
11294 pd->sport = &th->th_sport;
11295 pd->dport = &th->th_dport;
11296 pd->pcksum = &th->th_sum;
11297 break;
11298 }
11299 case IPPROTO_UDP: {
11300 struct udphdr *uh = &pd->hdr.udp;
11301
11302 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh),
11303 reason, af)) {
11304 *action = PF_DROP;
11305 REASON_SET(reason, PFRES_SHORT);
11306 return (PF_DROP);
11307 }
11308 pd->hdrlen = sizeof(*uh);
11309 if (uh->uh_dport == 0 ||
11310 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
11311 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
11312 *action = PF_DROP;
11313 REASON_SET(reason, PFRES_SHORT);
11314 return (PF_DROP);
11315 }
11316 pd->sport = &uh->uh_sport;
11317 pd->dport = &uh->uh_dport;
11318 pd->pcksum = &uh->uh_sum;
11319 break;
11320 }
11321 case IPPROTO_SCTP: {
11322 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
11323 reason, af)) {
11324 *action = PF_DROP;
11325 REASON_SET(reason, PFRES_SHORT);
11326 return (PF_DROP);
11327 }
11328 pd->hdrlen = sizeof(pd->hdr.sctp);
11329 pd->p_len = pd->tot_len - pd->off;
11330
11331 pd->sport = &pd->hdr.sctp.src_port;
11332 pd->dport = &pd->hdr.sctp.dest_port;
11333 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
11334 *action = PF_DROP;
11335 REASON_SET(reason, PFRES_SHORT);
11336 return (PF_DROP);
11337 }
11338
11339 /*
11340 * Placeholder. The SCTP checksum is 32-bits, but
11341 * pf_test_state() expects to update a 16-bit checksum.
11342 * Provide a dummy value which we'll subsequently ignore.
11343 * Do this before pf_scan_sctp() so any jobs we enqueue
11344 * have a pcksum set.
11345 */
11346 pd->pcksum = &pd->sctp_dummy_sum;
11347
11348 if (pf_scan_sctp(pd) != PF_PASS) {
11349 *action = PF_DROP;
11350 REASON_SET(reason, PFRES_SHORT);
11351 return (PF_DROP);
11352 }
11353 break;
11354 }
11355 case IPPROTO_ICMP: {
11356 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
11357 reason, af)) {
11358 *action = PF_DROP;
11359 REASON_SET(reason, PFRES_SHORT);
11360 return (PF_DROP);
11361 }
11362 pd->pcksum = &pd->hdr.icmp.icmp_cksum;
11363 pd->hdrlen = ICMP_MINLEN;
11364 break;
11365 }
11366 #ifdef INET6
11367 case IPPROTO_ICMPV6: {
11368 size_t icmp_hlen = sizeof(struct icmp6_hdr);
11369
11370 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
11371 reason, af)) {
11372 *action = PF_DROP;
11373 REASON_SET(reason, PFRES_SHORT);
11374 return (PF_DROP);
11375 }
11376 /* ICMP headers we look further into to match state */
11377 switch (pd->hdr.icmp6.icmp6_type) {
11378 case MLD_LISTENER_QUERY:
11379 case MLD_LISTENER_REPORT:
11380 icmp_hlen = sizeof(struct mld_hdr);
11381 break;
11382 case ND_NEIGHBOR_SOLICIT:
11383 case ND_NEIGHBOR_ADVERT:
11384 icmp_hlen = sizeof(struct nd_neighbor_solicit);
11385 /* FALLTHROUGH */
11386 case ND_ROUTER_SOLICIT:
11387 case ND_ROUTER_ADVERT:
11388 case ND_REDIRECT:
11389 if (pd->ttl != 255) {
11390 REASON_SET(reason, PFRES_NORM);
11391 return (PF_DROP);
11392 }
11393 break;
11394 }
11395 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
11396 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
11397 reason, af)) {
11398 *action = PF_DROP;
11399 REASON_SET(reason, PFRES_SHORT);
11400 return (PF_DROP);
11401 }
11402 pd->hdrlen = icmp_hlen;
11403 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
11404 break;
11405 }
11406 #endif /* INET6 */
11407 default:
11408 /*
11409 * Placeholder value, so future calls to pf_change_ap() don't
11410 * try to update a NULL checksum pointer.
11411 */
11412 pd->pcksum = &pd->sctp_dummy_sum;
11413 break;
11414 }
11415
11416 if (pd->sport)
11417 pd->osport = pd->nsport = *pd->sport;
11418 if (pd->dport)
11419 pd->odport = pd->ndport = *pd->dport;
11420
11421 MPASS(pd->pcksum != NULL);
11422
11423 return (PF_PASS);
11424 }
11425
11426 static __inline void
pf_rule_counters_inc(struct pf_pdesc * pd,struct pf_krule * r,int dir_out,int op_pass,sa_family_t af,struct pf_addr * src_host,struct pf_addr * dst_host)11427 pf_rule_counters_inc(struct pf_pdesc *pd, struct pf_krule *r, int dir_out,
11428 int op_pass, sa_family_t af, struct pf_addr *src_host,
11429 struct pf_addr *dst_host)
11430 {
11431 pf_counter_u64_add_protected(&(r->packets[dir_out]), 1);
11432 pf_counter_u64_add_protected(&(r->bytes[dir_out]), pd->tot_len);
11433 pf_update_timestamp(r);
11434
11435 if (r->src.addr.type == PF_ADDR_TABLE)
11436 pfr_update_stats(r->src.addr.p.tbl, src_host, af,
11437 pd->tot_len, dir_out, op_pass, r->src.neg);
11438 if (r->dst.addr.type == PF_ADDR_TABLE)
11439 pfr_update_stats(r->dst.addr.p.tbl, dst_host, af,
11440 pd->tot_len, dir_out, op_pass, r->dst.neg);
11441 }
11442
11443 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a,struct pf_krule_slist * match_rules)11444 pf_counters_inc(int action, struct pf_pdesc *pd, struct pf_kstate *s,
11445 struct pf_krule *r, struct pf_krule *a, struct pf_krule_slist *match_rules)
11446 {
11447 struct pf_krule_slist *mr = match_rules;
11448 struct pf_krule_item *ri;
11449 struct pf_krule *nr = NULL;
11450 struct pf_addr *src_host = pd->src;
11451 struct pf_addr *dst_host = pd->dst;
11452 struct pf_state_key *key;
11453 int dir_out = (pd->dir == PF_OUT);
11454 int op_r_pass = (r->action == PF_PASS);
11455 int op_pass = (action == PF_PASS || action == PF_AFRT);
11456 int s_dir_in, s_dir_out, s_dir_rev;
11457 sa_family_t af = pd->af;
11458
11459 pf_counter_u64_critical_enter();
11460
11461 /*
11462 * Set AF for interface counters, it will be later overwritten for
11463 * rule and state counters with value from proper state key.
11464 */
11465 if (action == PF_AFRT) {
11466 MPASS(s != NULL);
11467 if (s->direction == PF_OUT && dir_out)
11468 af = pd->naf;
11469 }
11470
11471 pf_counter_u64_add_protected(
11472 &pd->kif->pfik_bytes[af == AF_INET6][dir_out][!op_pass],
11473 pd->tot_len);
11474 pf_counter_u64_add_protected(
11475 &pd->kif->pfik_packets[af == AF_INET6][dir_out][!op_pass],
11476 1);
11477
11478 /* If the rule has failed to apply, don't increase its counters */
11479 if (!(op_pass || r->action == PF_DROP)) {
11480 pf_counter_u64_critical_exit();
11481 return;
11482 }
11483
11484 if (s != NULL) {
11485 PF_STATE_LOCK_ASSERT(s);
11486 mr = &(s->match_rules);
11487
11488 /*
11489 * For af-to on the inbound direction we can determine
11490 * the direction of passing packet only by checking direction
11491 * of AF translation. The af-to in "in" direction covers both
11492 * the inbound and the outbound side of state tracking,
11493 * so pd->dir is always PF_IN. We set dir_out and s_dir_rev
11494 * in a way to count packets as if the state was outbound,
11495 * because pfctl -ss shows the state with "->", as if it was
11496 * oubound.
11497 */
11498 if (action == PF_AFRT && s->direction == PF_IN) {
11499 dir_out = (pd->naf == s->rule->naf);
11500 s_dir_in = 1;
11501 s_dir_out = 0;
11502 s_dir_rev = (pd->naf == s->rule->af);
11503 } else {
11504 dir_out = (pd->dir == PF_OUT);
11505 s_dir_in = (s->direction == PF_IN);
11506 s_dir_out = (s->direction == PF_OUT);
11507 s_dir_rev = (pd->dir != s->direction);
11508 }
11509
11510 /* pd->tot_len is a problematic with af-to rules. Sure, we can
11511 * agree that it's the post-af-to packet length that was
11512 * forwarded through a state, but what about tables which match
11513 * on pre-af-to addresses? We don't have access the the original
11514 * packet length anymore.
11515 */
11516 s->packets[s_dir_rev]++;
11517 s->bytes[s_dir_rev] += pd->tot_len;
11518
11519 /*
11520 * Source nodes are accessed unlocked here. But since we are
11521 * operating with stateful tracking and the state is locked,
11522 * those SNs could not have been freed.
11523 */
11524 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
11525 if (s->sns[sn_type] != NULL) {
11526 counter_u64_add(
11527 s->sns[sn_type]->packets[dir_out],
11528 1);
11529 counter_u64_add(
11530 s->sns[sn_type]->bytes[dir_out],
11531 pd->tot_len);
11532 }
11533 }
11534
11535 /* Start with pre-NAT addresses */
11536 key = s->key[(s->direction == PF_OUT)];
11537 src_host = &(key->addr[s_dir_out]);
11538 dst_host = &(key->addr[s_dir_in]);
11539 af = key->af;
11540 if (s->nat_rule) {
11541 /* Old-style NAT rules */
11542 if (s->nat_rule->action == PF_NAT ||
11543 s->nat_rule->action == PF_RDR ||
11544 s->nat_rule->action == PF_BINAT) {
11545 nr = s->nat_rule;
11546 pf_rule_counters_inc(pd, s->nat_rule, dir_out,
11547 op_r_pass, af, src_host, dst_host);
11548 /* Use post-NAT addresses from now on */
11549 key = s->key[s_dir_in];
11550 src_host = &(key->addr[s_dir_out]);
11551 dst_host = &(key->addr[s_dir_in]);
11552 af = key->af;
11553 }
11554 }
11555 }
11556
11557 SLIST_FOREACH(ri, mr, entry) {
11558 pf_rule_counters_inc(pd, ri->r, dir_out, op_r_pass, af,
11559 src_host, dst_host);
11560 if (s && s->nat_rule == ri->r) {
11561 /* Use post-NAT addresses after a match NAT rule */
11562 key = s->key[s_dir_in];
11563 src_host = &(key->addr[s_dir_out]);
11564 dst_host = &(key->addr[s_dir_in]);
11565 af = key->af;
11566 }
11567 }
11568
11569 if (s == NULL) {
11570 pf_free_match_rules(mr);
11571 }
11572
11573 if (a != NULL) {
11574 pf_rule_counters_inc(pd, a, dir_out, op_r_pass, af,
11575 src_host, dst_host);
11576 }
11577
11578 if (r != nr) {
11579 pf_rule_counters_inc(pd, r, dir_out, op_r_pass, af,
11580 src_host, dst_host);
11581 }
11582
11583 pf_counter_u64_critical_exit();
11584 }
11585
11586 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * match_rules)11587 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
11588 struct pf_krule *am, struct pf_kruleset *ruleset,
11589 struct pf_krule_slist *match_rules)
11590 {
11591 struct pf_krule_item *ri;
11592
11593 /* if this is the log(matches) rule, packet has been logged already */
11594 if (rm->log & PF_LOG_MATCHES)
11595 return;
11596
11597 SLIST_FOREACH(ri, match_rules, entry)
11598 if (ri->r->log & PF_LOG_MATCHES)
11599 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
11600 ruleset, pd, 1, ri->r);
11601 }
11602
11603 #if defined(INET) || defined(INET6)
11604 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)11605 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
11606 struct inpcb *inp, struct pf_rule_actions *default_actions)
11607 {
11608 struct pfi_kkif *kif;
11609 u_short action, reason = 0;
11610 struct m_tag *mtag;
11611 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
11612 struct pf_kstate *s = NULL;
11613 struct pf_kruleset *ruleset = NULL;
11614 struct pf_krule_item *ri;
11615 struct pf_krule_slist match_rules;
11616 struct pf_pdesc pd;
11617 int use_2nd_queue = 0;
11618 uint16_t tag;
11619
11620 PF_RULES_RLOCK_TRACKER;
11621 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
11622 M_ASSERTPKTHDR(*m0);
11623 NET_EPOCH_ASSERT();
11624
11625 if (!V_pf_status.running)
11626 return (PF_PASS);
11627
11628 kif = (struct pfi_kkif *)ifp->if_pf_kif;
11629
11630 if (__predict_false(kif == NULL)) {
11631 DPFPRINTF(PF_DEBUG_URGENT,
11632 "%s: kif == NULL, if_xname %s",
11633 __func__, ifp->if_xname);
11634 return (PF_DROP);
11635 }
11636 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
11637 return (PF_PASS);
11638 }
11639
11640 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
11641 return (PF_PASS);
11642 }
11643
11644 if (__predict_false(! M_WRITABLE(*m0))) {
11645 *m0 = m_unshare(*m0, M_NOWAIT);
11646 if (*m0 == NULL) {
11647 return (PF_DROP);
11648 }
11649 }
11650
11651 pf_init_pdesc(&pd, *m0);
11652 SLIST_INIT(&match_rules);
11653
11654 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
11655 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
11656
11657 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
11658 pd.pf_mtag->if_idxgen);
11659 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
11660 m_freem(*m0);
11661 *m0 = NULL;
11662 return (PF_PASS);
11663 }
11664 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
11665 *m0 = NULL;
11666 return (PF_PASS);
11667 }
11668
11669 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
11670 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
11671 /* Dummynet re-injects packets after they've
11672 * completed their delay. We've already
11673 * processed them, so pass unconditionally. */
11674
11675 /* But only once. We may see the packet multiple times (e.g.
11676 * PFIL_IN/PFIL_OUT). */
11677 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
11678
11679 return (PF_PASS);
11680 }
11681
11682 PF_RULES_RLOCK();
11683
11684 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
11685 kif, default_actions) != PF_PASS) {
11686 if (action != PF_PASS)
11687 pd.act.log |= PF_LOG_FORCE;
11688 goto done;
11689 }
11690
11691 #ifdef INET
11692 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
11693 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
11694 PF_RULES_RUNLOCK();
11695 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
11696 0, ifp->if_mtu);
11697 *m0 = NULL;
11698 return (PF_DROP);
11699 }
11700 #endif /* INET */
11701 #ifdef INET6
11702 /*
11703 * If we end up changing IP addresses (e.g. binat) the stack may get
11704 * confused and fail to send the icmp6 packet too big error. Just send
11705 * it here, before we do any NAT.
11706 */
11707 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
11708 in6_ifmtu(ifp) < pf_max_frag_size(*m0)) {
11709 PF_RULES_RUNLOCK();
11710 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, in6_ifmtu(ifp));
11711 *m0 = NULL;
11712 return (PF_DROP);
11713 }
11714 #endif /* INET6 */
11715
11716 if (__predict_false(ip_divert_ptr != NULL) &&
11717 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
11718 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
11719 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
11720 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
11721 if (pd.pf_mtag == NULL &&
11722 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11723 action = PF_DROP;
11724 goto done;
11725 }
11726 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
11727 }
11728 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
11729 pd.m->m_flags |= M_FASTFWD_OURS;
11730 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11731 }
11732 m_tag_delete(pd.m, mtag);
11733
11734 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
11735 if (mtag != NULL)
11736 m_tag_delete(pd.m, mtag);
11737 }
11738
11739 switch (pd.virtual_proto) {
11740 case PF_VPROTO_FRAGMENT:
11741 /*
11742 * handle fragments that aren't reassembled by
11743 * normalization
11744 */
11745 if (kif == NULL || r == NULL) /* pflog */
11746 action = PF_DROP;
11747 else
11748 action = pf_test_rule(&r, &s, &pd, &a,
11749 &ruleset, &reason, inp, &match_rules);
11750 if (action != PF_PASS)
11751 REASON_SET(&reason, PFRES_FRAG);
11752 break;
11753
11754 case IPPROTO_TCP: {
11755 /* Respond to SYN with a syncookie. */
11756 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
11757 pd.dir == PF_IN && pf_synflood_check(&pd)) {
11758 pf_syncookie_send(&pd, &reason);
11759 action = PF_DROP;
11760 break;
11761 }
11762
11763 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
11764 use_2nd_queue = 1;
11765 action = pf_normalize_tcp(&pd);
11766 if (action == PF_DROP)
11767 break;
11768 action = pf_test_state(&s, &pd, &reason);
11769 if (action == PF_PASS || action == PF_AFRT) {
11770 if (s != NULL) {
11771 if (V_pfsync_update_state_ptr != NULL)
11772 V_pfsync_update_state_ptr(s);
11773 r = s->rule;
11774 a = s->anchor;
11775 }
11776 } else if (s == NULL) {
11777 /* Validate remote SYN|ACK, re-create original SYN if
11778 * valid. */
11779 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
11780 TH_ACK && pf_syncookie_validate(&pd) &&
11781 pd.dir == PF_IN) {
11782 struct mbuf *msyn;
11783
11784 msyn = pf_syncookie_recreate_syn(&pd, &reason);
11785 if (msyn == NULL) {
11786 action = PF_DROP;
11787 break;
11788 }
11789
11790 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
11791 &pd.act);
11792 m_freem(msyn);
11793 if (action != PF_PASS)
11794 break;
11795
11796 action = pf_test_state(&s, &pd, &reason);
11797 if (action != PF_PASS || s == NULL) {
11798 action = PF_DROP;
11799 break;
11800 }
11801
11802 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
11803 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
11804 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
11805 action = pf_synproxy(&pd, s, &reason);
11806 break;
11807 } else {
11808 action = pf_test_rule(&r, &s, &pd,
11809 &a, &ruleset, &reason, inp, &match_rules);
11810 }
11811 }
11812 break;
11813 }
11814
11815 case IPPROTO_SCTP:
11816 action = pf_normalize_sctp(&pd);
11817 if (action == PF_DROP)
11818 break;
11819 /* fallthrough */
11820 case IPPROTO_UDP:
11821 default:
11822 action = pf_test_state(&s, &pd, &reason);
11823 if (action == PF_PASS || action == PF_AFRT) {
11824 if (s != NULL) {
11825 if (V_pfsync_update_state_ptr != NULL)
11826 V_pfsync_update_state_ptr(s);
11827 r = s->rule;
11828 a = s->anchor;
11829 }
11830 } else if (s == NULL) {
11831 action = pf_test_rule(&r, &s,
11832 &pd, &a, &ruleset, &reason, inp, &match_rules);
11833 }
11834 break;
11835
11836 case IPPROTO_ICMP:
11837 case IPPROTO_ICMPV6: {
11838 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
11839 action = PF_DROP;
11840 REASON_SET(&reason, PFRES_NORM);
11841 DPFPRINTF(PF_DEBUG_MISC,
11842 "dropping IPv6 packet with ICMPv4 payload");
11843 break;
11844 }
11845 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
11846 action = PF_DROP;
11847 REASON_SET(&reason, PFRES_NORM);
11848 DPFPRINTF(PF_DEBUG_MISC,
11849 "pf: dropping IPv4 packet with ICMPv6 payload");
11850 break;
11851 }
11852 action = pf_test_state_icmp(&s, &pd, &reason);
11853 if (action == PF_PASS || action == PF_AFRT) {
11854 if (s != NULL) {
11855 if (V_pfsync_update_state_ptr != NULL)
11856 V_pfsync_update_state_ptr(s);
11857 r = s->rule;
11858 a = s->anchor;
11859 }
11860 } else if (s == NULL)
11861 action = pf_test_rule(&r, &s, &pd,
11862 &a, &ruleset, &reason, inp, &match_rules);
11863 break;
11864 }
11865
11866 }
11867
11868 done:
11869 PF_RULES_RUNLOCK();
11870
11871 /* if packet sits in reassembly queue, return without error */
11872 if (pd.m == NULL) {
11873 pf_free_match_rules(&match_rules);
11874 goto eat_pkt;
11875 }
11876
11877 if (s)
11878 memcpy(&pd.act, &s->act, sizeof(s->act));
11879
11880 if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) {
11881 action = PF_DROP;
11882 REASON_SET(&reason, PFRES_IPOPTIONS);
11883 pd.act.log = PF_LOG_FORCE;
11884 DPFPRINTF(PF_DEBUG_MISC,
11885 "pf: dropping packet with dangerous headers");
11886 }
11887
11888 if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
11889 pd.tot_len > pd.act.max_pkt_size) {
11890 action = PF_DROP;
11891 REASON_SET(&reason, PFRES_NORM);
11892 pd.act.log = PF_LOG_FORCE;
11893 DPFPRINTF(PF_DEBUG_MISC,
11894 "pf: dropping overly long packet");
11895 }
11896
11897 if (s) {
11898 uint8_t log = pd.act.log;
11899 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
11900 pd.act.log |= log;
11901 tag = s->tag;
11902 } else {
11903 tag = r->tag;
11904 }
11905
11906 if (tag > 0 && pf_tag_packet(&pd, tag)) {
11907 action = PF_DROP;
11908 REASON_SET(&reason, PFRES_MEMORY);
11909 }
11910
11911 pf_scrub(&pd);
11912 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
11913 pf_normalize_mss(&pd);
11914
11915 if (pd.act.rtableid >= 0)
11916 M_SETFIB(pd.m, pd.act.rtableid);
11917
11918 if (pd.act.flags & PFSTATE_SETPRIO) {
11919 if (pd.tos & IPTOS_LOWDELAY)
11920 use_2nd_queue = 1;
11921 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
11922 action = PF_DROP;
11923 REASON_SET(&reason, PFRES_MEMORY);
11924 pd.act.log = PF_LOG_FORCE;
11925 DPFPRINTF(PF_DEBUG_MISC,
11926 "pf: failed to allocate 802.1q mtag");
11927 }
11928 }
11929
11930 #ifdef ALTQ
11931 if (action == PF_PASS && pd.act.qid) {
11932 if (pd.pf_mtag == NULL &&
11933 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11934 action = PF_DROP;
11935 REASON_SET(&reason, PFRES_MEMORY);
11936 } else {
11937 if (s != NULL)
11938 pd.pf_mtag->qid_hash = pf_state_hash(s);
11939 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
11940 pd.pf_mtag->qid = pd.act.pqid;
11941 else
11942 pd.pf_mtag->qid = pd.act.qid;
11943 /* Add hints for ecn. */
11944 pd.pf_mtag->hdr = mtod(pd.m, void *);
11945 }
11946 }
11947 #endif /* ALTQ */
11948
11949 /*
11950 * connections redirected to loopback should not match sockets
11951 * bound specifically to loopback due to security implications,
11952 * see tcp_input() and in_pcblookup_listen().
11953 */
11954 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
11955 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
11956 (s->nat_rule->action == PF_RDR ||
11957 s->nat_rule->action == PF_BINAT) &&
11958 pf_is_loopback(af, pd.dst))
11959 pd.m->m_flags |= M_SKIP_FIREWALL;
11960
11961 if (action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
11962 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
11963 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
11964 if (__predict_true(mtag != NULL && ip_divert_ptr != NULL)) {
11965 ((struct pf_divert_mtag *)(mtag+1))->port =
11966 ntohs(r->divert.port);
11967 ((struct pf_divert_mtag *)(mtag+1))->idir =
11968 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
11969 PF_DIVERT_MTAG_DIR_OUT;
11970
11971 pf_counters_inc(action, &pd, s, r, a, &match_rules);
11972
11973 if (s)
11974 PF_STATE_UNLOCK(s);
11975
11976 m_tag_prepend(pd.m, mtag);
11977 if (pd.m->m_flags & M_FASTFWD_OURS) {
11978 if (pd.pf_mtag == NULL &&
11979 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11980 action = PF_DROP;
11981 REASON_SET(&reason, PFRES_MEMORY);
11982 pd.act.log = PF_LOG_FORCE;
11983 DPFPRINTF(PF_DEBUG_MISC,
11984 "pf: failed to allocate tag");
11985 } else {
11986 pd.pf_mtag->flags |=
11987 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11988 pd.m->m_flags &= ~M_FASTFWD_OURS;
11989 }
11990 }
11991 ip_divert_ptr(*m0, dir == PF_IN);
11992 *m0 = NULL;
11993 return (action);
11994 } else if (mtag == NULL) {
11995 /* XXX: ipfw has the same behaviour! */
11996 action = PF_DROP;
11997 REASON_SET(&reason, PFRES_MEMORY);
11998 pd.act.log = PF_LOG_FORCE;
11999 DPFPRINTF(PF_DEBUG_MISC,
12000 "pf: failed to allocate divert tag");
12001 } else {
12002 action = PF_DROP;
12003 REASON_SET(&reason, PFRES_MATCH);
12004 pd.act.log = PF_LOG_FORCE;
12005 DPFPRINTF(PF_DEBUG_MISC,
12006 "pf: divert(4) is not loaded");
12007 }
12008 }
12009
12010 /* this flag will need revising if the pkt is forwarded */
12011 if (pd.pf_mtag)
12012 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
12013
12014 if (pd.act.log) {
12015 struct pf_krule *lr;
12016
12017 if (s != NULL && s->nat_rule != NULL &&
12018 s->nat_rule->log & PF_LOG_ALL)
12019 lr = s->nat_rule;
12020 else
12021 lr = r;
12022
12023 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
12024 PFLOG_PACKET(action, reason, lr, a,
12025 ruleset, &pd, (s == NULL), NULL);
12026 if (s) {
12027 SLIST_FOREACH(ri, &s->match_rules, entry)
12028 if (ri->r->log & PF_LOG_ALL)
12029 PFLOG_PACKET(action,
12030 reason, ri->r, a, ruleset, &pd, 0, NULL);
12031 }
12032 }
12033
12034 pf_counters_inc(action, &pd, s, r, a, &match_rules);
12035
12036 switch (action) {
12037 case PF_SYNPROXY_DROP:
12038 m_freem(*m0);
12039 case PF_DEFER:
12040 *m0 = NULL;
12041 action = PF_PASS;
12042 break;
12043 case PF_DROP:
12044 m_freem(*m0);
12045 *m0 = NULL;
12046 break;
12047 case PF_AFRT:
12048 if (pf_translate_af(&pd, r)) {
12049 *m0 = pd.m;
12050 action = PF_DROP;
12051 break;
12052 }
12053 #ifdef INET
12054 if (pd.naf == AF_INET) {
12055 action = pf_route(r, kif->pfik_ifp, s, &pd,
12056 inp);
12057 }
12058 #endif /* INET */
12059 #ifdef INET6
12060 if (pd.naf == AF_INET6) {
12061 action = pf_route6(r, kif->pfik_ifp, s, &pd,
12062 inp);
12063 }
12064 #endif /* INET6 */
12065 *m0 = pd.m;
12066 goto out;
12067 break;
12068 default:
12069 if (pd.act.rt) {
12070 switch (af) {
12071 #ifdef INET
12072 case AF_INET:
12073 /* pf_route() returns unlocked. */
12074 action = pf_route(r, kif->pfik_ifp, s, &pd,
12075 inp);
12076 break;
12077 #endif /* INET */
12078 #ifdef INET6
12079 case AF_INET6:
12080 /* pf_route6() returns unlocked. */
12081 action = pf_route6(r, kif->pfik_ifp, s, &pd,
12082 inp);
12083 break;
12084 #endif /* INET6 */
12085 }
12086 *m0 = pd.m;
12087 goto out;
12088 }
12089 if (pf_dummynet(&pd, s, r, m0) != 0) {
12090 action = PF_DROP;
12091 REASON_SET(&reason, PFRES_MEMORY);
12092 }
12093 break;
12094 }
12095
12096 eat_pkt:
12097 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
12098
12099 if (s && action != PF_DROP) {
12100 if (!s->if_index_in && dir == PF_IN)
12101 s->if_index_in = ifp->if_index;
12102 else if (!s->if_index_out && dir == PF_OUT)
12103 s->if_index_out = ifp->if_index;
12104 }
12105
12106 if (s)
12107 PF_STATE_UNLOCK(s);
12108
12109 out:
12110 #ifdef INET6
12111 /* If reassembled packet passed, create new fragments. */
12112 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
12113 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
12114 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
12115 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
12116 #endif /* INET6 */
12117
12118 pf_sctp_multihome_delayed(&pd, kif, s, action);
12119
12120 return (action);
12121 }
12122 #endif /* INET || INET6 */
12123