xref: /freebsd/sys/netpfil/pf/pf.c (revision aa790af10a9a2ce36ca0b2bc445a01431b8bc0c4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64 
65 #include <crypto/sha2/sha512.h>
66 
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75 
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80 
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103 
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113 
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116 
117 #include <netipsec/ah.h>
118 
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121 
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125     "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128     "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130     "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140     "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142     "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144     "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146     "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149     "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151     "int");
152 
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154     "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157     "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160     "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *");
163 
164 /*
165  * Global variables
166  */
167 
168 /* state tables */
169 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
170 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf[3]);
171 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
172 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
173 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
174 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
175 VNET_DEFINE(struct pf_kstatus,		 pf_status);
176 
177 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
178 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
179 VNET_DEFINE(int,			 altqs_inactive_open);
180 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
181 
182 static const int			 PF_HDR_LIMIT = 20;	/* arbitrary limit */
183 
184 VNET_DEFINE(SHA512_CTX,			 pf_tcp_secret_ctx);
185 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
186 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
187 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
188 VNET_DEFINE(int,			 pf_tcp_secret_init);
189 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
190 VNET_DEFINE(int,			 pf_tcp_iss_off);
191 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
192 VNET_DECLARE(int,			 pf_vnet_active);
193 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
194 
195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
196 #define V_pf_purge_idx	VNET(pf_purge_idx)
197 
198 #ifdef PF_WANT_32_TO_64_COUNTER
199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
200 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
201 
202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
203 VNET_DEFINE(size_t, pf_allrulecount);
204 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
205 #endif
206 
207 #define PF_SCTP_MAX_ENDPOINTS		8
208 
209 struct pf_sctp_endpoint;
210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
211 struct pf_sctp_source {
212 	sa_family_t			af;
213 	struct pf_addr			addr;
214 	TAILQ_ENTRY(pf_sctp_source)	entry;
215 };
216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
217 struct pf_sctp_endpoint
218 {
219 	uint32_t		 v_tag;
220 	struct pf_sctp_sources	 sources;
221 	RB_ENTRY(pf_sctp_endpoint)	entry;
222 };
223 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
225 {
226 	return (a->v_tag - b->v_tag);
227 }
228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
231 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
232 static struct mtx_padalign pf_sctp_endpoints_mtx;
233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
234 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
235 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
236 
237 /*
238  * Queue for pf_intr() sends.
239  */
240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
241 struct pf_send_entry {
242 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
243 	struct mbuf			*pfse_m;
244 	enum {
245 		PFSE_IP,
246 		PFSE_IP6,
247 		PFSE_ICMP,
248 		PFSE_ICMP6,
249 	}				pfse_type;
250 	struct {
251 		int		type;
252 		int		code;
253 		int		mtu;
254 	} icmpopts;
255 };
256 
257 STAILQ_HEAD(pf_send_head, pf_send_entry);
258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
259 #define	V_pf_sendqueue	VNET(pf_sendqueue)
260 
261 static struct mtx_padalign pf_sendqueue_mtx;
262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
263 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
264 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
265 
266 /*
267  * Queue for pf_overload_task() tasks.
268  */
269 struct pf_overload_entry {
270 	SLIST_ENTRY(pf_overload_entry)	next;
271 	struct pf_addr  		addr;
272 	sa_family_t			af;
273 	uint8_t				dir;
274 	struct pf_krule  		*rule;
275 };
276 
277 SLIST_HEAD(pf_overload_head, pf_overload_entry);
278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
279 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
280 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
281 #define	V_pf_overloadtask	VNET(pf_overloadtask)
282 
283 static struct mtx_padalign pf_overloadqueue_mtx;
284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
285     "pf overload/flush queue", MTX_DEF);
286 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
287 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
288 
289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
290 struct mtx_padalign pf_unlnkdrules_mtx;
291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
292     MTX_DEF);
293 
294 struct sx pf_config_lock;
295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
296 
297 struct mtx_padalign pf_table_stats_lock;
298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
299     MTX_DEF);
300 
301 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
302 #define	V_pf_sources_z	VNET(pf_sources_z)
303 uma_zone_t		pf_mtag_z;
304 VNET_DEFINE(uma_zone_t,	 pf_state_z);
305 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
306 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
307 
308 VNET_DEFINE(struct unrhdr64, pf_stateid);
309 
310 static void		 pf_src_tree_remove_state(struct pf_kstate *);
311 static int		 pf_check_threshold(struct pf_kthreshold *);
312 
313 static void		 pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
314 			    struct pf_addr *, u_int16_t);
315 static int		 pf_modulate_sack(struct pf_pdesc *,
316 			    struct tcphdr *, struct pf_state_peer *);
317 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
318 			    u_int16_t *, u_int16_t *);
319 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
320 			    struct pf_addr *, struct pf_addr *, u_int16_t,
321 			    u_int16_t *, u_int16_t *, u_int16_t *,
322 			    u_int16_t *, u_int8_t, sa_family_t);
323 int			 pf_change_icmp_af(struct mbuf *, int,
324 			    struct pf_pdesc *, struct pf_pdesc *,
325 			    struct pf_addr *, struct pf_addr *, sa_family_t,
326 			    sa_family_t);
327 int			 pf_translate_icmp_af(int, void *);
328 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
329 			    int, sa_family_t, struct pf_krule *, int);
330 static void		 pf_detach_state(struct pf_kstate *);
331 static int		 pf_state_key_attach(struct pf_state_key *,
332 			    struct pf_state_key *, struct pf_kstate *);
333 static void		 pf_state_key_detach(struct pf_kstate *, int);
334 static int		 pf_state_key_ctor(void *, int, void *, int);
335 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
336 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
337 			    struct pf_mtag *pf_mtag);
338 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
339 			    struct pf_krule *, struct mbuf **);
340 static int		 pf_dummynet_route(struct pf_pdesc *,
341 			    struct pf_kstate *, struct pf_krule *,
342 			    struct ifnet *, const struct sockaddr *, struct mbuf **);
343 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
344 			    struct mbuf **);
345 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
346 			    struct pf_pdesc *, struct pf_krule **,
347 			    struct pf_kruleset **, u_short *, struct inpcb *);
348 static int		 pf_create_state(struct pf_krule *,
349 			    struct pf_test_ctx *,
350 			    struct pf_kstate **, u_int16_t, u_int16_t);
351 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
352 			    struct pf_state_key_cmp *, int);
353 static int		 pf_tcp_track_full(struct pf_kstate *,
354 			    struct pf_pdesc *, u_short *, int *,
355 			    struct pf_state_peer *, struct pf_state_peer *,
356 			    u_int8_t, u_int8_t);
357 static int		 pf_tcp_track_sloppy(struct pf_kstate *,
358 			    struct pf_pdesc *, u_short *,
359 			    struct pf_state_peer *, struct pf_state_peer *,
360 			    u_int8_t, u_int8_t);
361 static int		 pf_test_state(struct pf_kstate **, struct pf_pdesc *,
362 			    u_short *);
363 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
364 			    struct pf_pdesc *, struct pf_kstate **,
365 			    u_int16_t, u_int16_t, int, int *, int, int);
366 static int		 pf_test_state_icmp(struct pf_kstate **,
367 			    struct pf_pdesc *, u_short *);
368 static int		 pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
369 			    u_short *);
370 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
371 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
372 			    struct pfi_kkif *, struct pf_kstate *, int);
373 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
374 				int, u_int16_t);
375 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
376 			    u_int8_t, sa_family_t);
377 static int		 pf_walk_option(struct pf_pdesc *, struct ip *,
378 			    int, int, u_short *);
379 static int		 pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
380 #ifdef INET6
381 static int		 pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
382 			    int, int, u_short *);
383 static int		 pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
384 			    u_short *);
385 #endif
386 static void		 pf_print_state_parts(struct pf_kstate *,
387 			    struct pf_state_key *, struct pf_state_key *);
388 static int		 pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
389 			    bool);
390 static int		 pf_find_state(struct pf_pdesc *,
391 			    const struct pf_state_key_cmp *, struct pf_kstate **);
392 static bool		 pf_src_connlimit(struct pf_kstate *);
393 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
394 static void		 pf_counters_inc(int, struct pf_pdesc *,
395 			    struct pf_kstate *, struct pf_krule *,
396 			    struct pf_krule *);
397 static void		 pf_log_matches(struct pf_pdesc *, struct pf_krule *,
398 			    struct pf_krule *, struct pf_kruleset *,
399 			    struct pf_krule_slist *);
400 static void		 pf_overload_task(void *v, int pending);
401 static u_short		 pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
402 			    struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
403 			    struct pf_addr *, sa_family_t, struct pf_addr *,
404 			    struct pfi_kkif *, sa_family_t, pf_sn_types_t);
405 static u_int		 pf_purge_expired_states(u_int, int);
406 static void		 pf_purge_unlinked_rules(void);
407 static int		 pf_mtag_uminit(void *, int, int);
408 static void		 pf_mtag_free(struct m_tag *);
409 static void		 pf_packet_rework_nat(struct pf_pdesc *, int,
410 			    struct pf_state_key *);
411 #ifdef INET
412 static int		 pf_route(struct pf_krule *,
413 			    struct ifnet *, struct pf_kstate *,
414 			    struct pf_pdesc *, struct inpcb *);
415 #endif /* INET */
416 #ifdef INET6
417 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
418 			    struct pf_addr *, u_int8_t);
419 static int		 pf_route6(struct pf_krule *,
420 			    struct ifnet *, struct pf_kstate *,
421 			    struct pf_pdesc *, struct inpcb *);
422 #endif /* INET6 */
423 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
424 
425 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
426 
427 extern int pf_end_threads;
428 extern struct proc *pf_purge_proc;
429 
430 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
431 
432 #define	PACKET_UNDO_NAT(_pd, _off, _s)					\
433 	do {								\
434 		struct pf_state_key *nk;				\
435 		if ((pd->dir) == PF_OUT)				\
436 			nk = (_s)->key[PF_SK_STACK];			\
437 		else							\
438 			nk = (_s)->key[PF_SK_WIRE];			\
439 		pf_packet_rework_nat(_pd, _off, nk);		\
440 	} while (0)
441 
442 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
443 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
444 
445 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)446 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
447 {
448 	struct pfi_kkif *k = pd->kif;
449 
450 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
451 
452 	/* Floating unless otherwise specified. */
453 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
454 		return (V_pfi_all);
455 
456 	/*
457 	 * Initially set to all, because we don't know what interface we'll be
458 	 * sending this out when we create the state.
459 	 */
460 	if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
461 		return (V_pfi_all);
462 
463 	/*
464 	 * If this state is created based on another state (e.g. SCTP
465 	 * multihome) always set it floating initially. We can't know for sure
466 	 * what interface the actual traffic for this state will come in on.
467 	 */
468 	if (pd->related_rule)
469 		return (V_pfi_all);
470 
471 	/* Don't overrule the interface for states created on incoming packets. */
472 	if (st->direction == PF_IN)
473 		return (k);
474 
475 	/* No route-to, so don't overrule. */
476 	if (st->act.rt != PF_ROUTETO)
477 		return (k);
478 
479 	/* Bind to the route-to interface. */
480 	return (st->act.rt_kif);
481 }
482 
483 #define	STATE_INC_COUNTERS(s)						\
484 	do {								\
485 		struct pf_krule_item *mrm;				\
486 		counter_u64_add(s->rule->states_cur, 1);		\
487 		counter_u64_add(s->rule->states_tot, 1);		\
488 		if (s->anchor != NULL) {				\
489 			counter_u64_add(s->anchor->states_cur, 1);	\
490 			counter_u64_add(s->anchor->states_tot, 1);	\
491 		}							\
492 		if (s->nat_rule != NULL) {				\
493 			counter_u64_add(s->nat_rule->states_cur, 1);\
494 			counter_u64_add(s->nat_rule->states_tot, 1);\
495 		}							\
496 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
497 			counter_u64_add(mrm->r->states_cur, 1);		\
498 			counter_u64_add(mrm->r->states_tot, 1);		\
499 		}							\
500 	} while (0)
501 
502 #define	STATE_DEC_COUNTERS(s)						\
503 	do {								\
504 		struct pf_krule_item *mrm;				\
505 		if (s->nat_rule != NULL)				\
506 			counter_u64_add(s->nat_rule->states_cur, -1);\
507 		if (s->anchor != NULL)				\
508 			counter_u64_add(s->anchor->states_cur, -1);	\
509 		counter_u64_add(s->rule->states_cur, -1);		\
510 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
511 			counter_u64_add(mrm->r->states_cur, -1);	\
512 	} while (0)
513 
514 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
515 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
516 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
517 VNET_DEFINE(struct pf_idhash *, pf_idhash);
518 VNET_DEFINE(struct pf_srchash *, pf_srchash);
519 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
520 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
521 
522 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
523     "pf(4)");
524 
525 VNET_DEFINE(u_long, pf_hashmask);
526 VNET_DEFINE(u_long, pf_srchashmask);
527 VNET_DEFINE(u_long, pf_udpendpointhashmask);
528 VNET_DEFINE_STATIC(u_long, pf_hashsize);
529 #define V_pf_hashsize	VNET(pf_hashsize)
530 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
531 #define V_pf_srchashsize	VNET(pf_srchashsize)
532 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
533 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
534 u_long	pf_ioctl_maxcount = 65535;
535 
536 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
537     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
538 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
539     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
540 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
541     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
542 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
543     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
544 
545 VNET_DEFINE(void *, pf_swi_cookie);
546 VNET_DEFINE(struct intr_event *, pf_swi_ie);
547 
548 VNET_DEFINE(uint32_t, pf_hashseed);
549 #define	V_pf_hashseed	VNET(pf_hashseed)
550 
551 static void
pf_sctp_checksum(struct mbuf * m,int off)552 pf_sctp_checksum(struct mbuf *m, int off)
553 {
554 	uint32_t sum = 0;
555 
556 	/* Zero out the checksum, to enable recalculation. */
557 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
558 	    sizeof(sum), (caddr_t)&sum);
559 
560 	sum = sctp_calculate_cksum(m, off);
561 
562 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
563 	    sizeof(sum), (caddr_t)&sum);
564 }
565 
566 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)567 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
568 {
569 
570 	switch (af) {
571 #ifdef INET
572 	case AF_INET:
573 		if (a->addr32[0] > b->addr32[0])
574 			return (1);
575 		if (a->addr32[0] < b->addr32[0])
576 			return (-1);
577 		break;
578 #endif /* INET */
579 #ifdef INET6
580 	case AF_INET6:
581 		if (a->addr32[3] > b->addr32[3])
582 			return (1);
583 		if (a->addr32[3] < b->addr32[3])
584 			return (-1);
585 		if (a->addr32[2] > b->addr32[2])
586 			return (1);
587 		if (a->addr32[2] < b->addr32[2])
588 			return (-1);
589 		if (a->addr32[1] > b->addr32[1])
590 			return (1);
591 		if (a->addr32[1] < b->addr32[1])
592 			return (-1);
593 		if (a->addr32[0] > b->addr32[0])
594 			return (1);
595 		if (a->addr32[0] < b->addr32[0])
596 			return (-1);
597 		break;
598 #endif /* INET6 */
599 	default:
600 		unhandled_af(af);
601 	}
602 	return (0);
603 }
604 
605 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)606 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
607 {
608 	switch (af) {
609 #ifdef INET
610 	case AF_INET:
611 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
612 #endif /* INET */
613 	case AF_INET6:
614 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
615 	default:
616 		unhandled_af(af);
617 	}
618 }
619 
620 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)621 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
622 {
623 
624 	switch (pd->virtual_proto) {
625 	case IPPROTO_TCP: {
626 		struct tcphdr *th = &pd->hdr.tcp;
627 
628 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
629 			pf_change_ap(pd, pd->src, &th->th_sport,
630 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
631 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
632 			pf_change_ap(pd, pd->dst, &th->th_dport,
633 			    &nk->addr[pd->didx], nk->port[pd->didx]);
634 		m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
635 		break;
636 	}
637 	case IPPROTO_UDP: {
638 		struct udphdr *uh = &pd->hdr.udp;
639 
640 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
641 			pf_change_ap(pd, pd->src, &uh->uh_sport,
642 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
643 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
644 			pf_change_ap(pd, pd->dst, &uh->uh_dport,
645 			    &nk->addr[pd->didx], nk->port[pd->didx]);
646 		m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
647 		break;
648 	}
649 	case IPPROTO_SCTP: {
650 		struct sctphdr *sh = &pd->hdr.sctp;
651 
652 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
653 			pf_change_ap(pd, pd->src, &sh->src_port,
654 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
655 		}
656 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
657 			pf_change_ap(pd, pd->dst, &sh->dest_port,
658 			    &nk->addr[pd->didx], nk->port[pd->didx]);
659 		}
660 
661 		break;
662 	}
663 	case IPPROTO_ICMP: {
664 		struct icmp *ih = &pd->hdr.icmp;
665 
666 		if (nk->port[pd->sidx] != ih->icmp_id) {
667 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
668 			    ih->icmp_cksum, ih->icmp_id,
669 			    nk->port[pd->sidx], 0);
670 			ih->icmp_id = nk->port[pd->sidx];
671 			pd->sport = &ih->icmp_id;
672 
673 			m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
674 		}
675 		/* FALLTHROUGH */
676 	}
677 	default:
678 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
679 			switch (pd->af) {
680 			case AF_INET:
681 				pf_change_a(&pd->src->v4.s_addr,
682 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
683 				    0);
684 				break;
685 			case AF_INET6:
686 				pf_addrcpy(pd->src, &nk->addr[pd->sidx],
687 				    pd->af);
688 				break;
689 			default:
690 				unhandled_af(pd->af);
691 			}
692 		}
693 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
694 			switch (pd->af) {
695 			case AF_INET:
696 				pf_change_a(&pd->dst->v4.s_addr,
697 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
698 				    0);
699 				break;
700 			case AF_INET6:
701 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
702 				    pd->af);
703 				break;
704 			default:
705 				unhandled_af(pd->af);
706 			}
707 		}
708 		break;
709 	}
710 }
711 
712 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)713 pf_hashkey(const struct pf_state_key *sk)
714 {
715 	uint32_t h;
716 
717 	h = murmur3_32_hash32((const uint32_t *)sk,
718 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
719 	    V_pf_hashseed);
720 
721 	return (h & V_pf_hashmask);
722 }
723 
724 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)725 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
726 {
727 	uint32_t h;
728 
729 	switch (af) {
730 	case AF_INET:
731 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
732 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
733 		break;
734 	case AF_INET6:
735 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
736 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
737 		break;
738 	default:
739 		unhandled_af(af);
740 	}
741 
742 	return (h & V_pf_srchashmask);
743 }
744 
745 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)746 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
747 {
748 	uint32_t h;
749 
750 	h = murmur3_32_hash32((uint32_t *)endpoint,
751 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
752 	    V_pf_hashseed);
753 	return (h & V_pf_udpendpointhashmask);
754 }
755 
756 #ifdef ALTQ
757 static int
pf_state_hash(struct pf_kstate * s)758 pf_state_hash(struct pf_kstate *s)
759 {
760 	u_int32_t hv = (intptr_t)s / sizeof(*s);
761 
762 	hv ^= crc32(&s->src, sizeof(s->src));
763 	hv ^= crc32(&s->dst, sizeof(s->dst));
764 	if (hv == 0)
765 		hv = 1;
766 	return (hv);
767 }
768 #endif /* ALTQ */
769 
770 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)771 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
772 {
773 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
774 		s->dst.state = newstate;
775 	if (which == PF_PEER_DST)
776 		return;
777 	if (s->src.state == newstate)
778 		return;
779 	if (s->creatorid == V_pf_status.hostid &&
780 	    s->key[PF_SK_STACK] != NULL &&
781 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
782 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
783 	    s->src.state == TCPS_CLOSED) &&
784 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
785 		atomic_add_32(&V_pf_status.states_halfopen, -1);
786 
787 	s->src.state = newstate;
788 }
789 
790 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)791 pf_init_threshold(struct pf_kthreshold *threshold,
792     u_int32_t limit, u_int32_t seconds)
793 {
794 	threshold->limit = limit;
795 	threshold->seconds = seconds;
796 	threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
797 
798 	return (threshold->cr != NULL);
799 }
800 
801 static int
pf_check_threshold(struct pf_kthreshold * threshold)802 pf_check_threshold(struct pf_kthreshold *threshold)
803 {
804 	return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
805 }
806 
807 static bool
pf_src_connlimit(struct pf_kstate * state)808 pf_src_connlimit(struct pf_kstate *state)
809 {
810 	struct pf_overload_entry	*pfoe;
811 	struct pf_ksrc_node		*src_node = state->sns[PF_SN_LIMIT];
812 	bool				 limited = false;
813 
814 	PF_STATE_LOCK_ASSERT(state);
815 	PF_SRC_NODE_LOCK(src_node);
816 
817 	src_node->conn++;
818 	state->src.tcp_est = 1;
819 
820 	if (state->rule->max_src_conn &&
821 	    state->rule->max_src_conn <
822 	    src_node->conn) {
823 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
824 		limited = true;
825 	}
826 
827 	if (state->rule->max_src_conn_rate.limit &&
828 	    pf_check_threshold(&src_node->conn_rate)) {
829 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
830 		limited = true;
831 	}
832 
833 	if (!limited)
834 		goto done;
835 
836 	/* Kill this state. */
837 	state->timeout = PFTM_PURGE;
838 	pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
839 
840 	if (state->rule->overload_tbl == NULL)
841 		goto done;
842 
843 	/* Schedule overloading and flushing task. */
844 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
845 	if (pfoe == NULL)
846 		goto done;  /* too bad :( */
847 
848 	bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
849 	pfoe->af = state->key[PF_SK_WIRE]->af;
850 	pfoe->rule = state->rule;
851 	pfoe->dir = state->direction;
852 	PF_OVERLOADQ_LOCK();
853 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
854 	PF_OVERLOADQ_UNLOCK();
855 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
856 
857 done:
858 	PF_SRC_NODE_UNLOCK(src_node);
859 	return (limited);
860 }
861 
862 static void
pf_overload_task(void * v,int pending)863 pf_overload_task(void *v, int pending)
864 {
865 	struct pf_overload_head queue;
866 	struct pfr_addr p;
867 	struct pf_overload_entry *pfoe, *pfoe1;
868 	uint32_t killed = 0;
869 
870 	CURVNET_SET((struct vnet *)v);
871 
872 	PF_OVERLOADQ_LOCK();
873 	queue = V_pf_overloadqueue;
874 	SLIST_INIT(&V_pf_overloadqueue);
875 	PF_OVERLOADQ_UNLOCK();
876 
877 	bzero(&p, sizeof(p));
878 	SLIST_FOREACH(pfoe, &queue, next) {
879 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
880 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
881 			printf("%s: blocking address ", __func__);
882 			pf_print_host(&pfoe->addr, 0, pfoe->af);
883 			printf("\n");
884 		}
885 
886 		p.pfra_af = pfoe->af;
887 		switch (pfoe->af) {
888 #ifdef INET
889 		case AF_INET:
890 			p.pfra_net = 32;
891 			p.pfra_ip4addr = pfoe->addr.v4;
892 			break;
893 #endif /* INET */
894 #ifdef INET6
895 		case AF_INET6:
896 			p.pfra_net = 128;
897 			p.pfra_ip6addr = pfoe->addr.v6;
898 			break;
899 #endif /* INET6 */
900 		default:
901 			unhandled_af(pfoe->af);
902 		}
903 
904 		PF_RULES_WLOCK();
905 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
906 		PF_RULES_WUNLOCK();
907 	}
908 
909 	/*
910 	 * Remove those entries, that don't need flushing.
911 	 */
912 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
913 		if (pfoe->rule->flush == 0) {
914 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
915 			free(pfoe, M_PFTEMP);
916 		} else
917 			counter_u64_add(
918 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
919 
920 	/* If nothing to flush, return. */
921 	if (SLIST_EMPTY(&queue)) {
922 		CURVNET_RESTORE();
923 		return;
924 	}
925 
926 	for (int i = 0; i <= V_pf_hashmask; i++) {
927 		struct pf_idhash *ih = &V_pf_idhash[i];
928 		struct pf_state_key *sk;
929 		struct pf_kstate *s;
930 
931 		PF_HASHROW_LOCK(ih);
932 		LIST_FOREACH(s, &ih->states, entry) {
933 		    sk = s->key[PF_SK_WIRE];
934 		    SLIST_FOREACH(pfoe, &queue, next)
935 			if (sk->af == pfoe->af &&
936 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
937 			    pfoe->rule == s->rule) &&
938 			    ((pfoe->dir == PF_OUT &&
939 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
940 			    (pfoe->dir == PF_IN &&
941 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
942 				s->timeout = PFTM_PURGE;
943 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
944 				killed++;
945 			}
946 		}
947 		PF_HASHROW_UNLOCK(ih);
948 	}
949 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
950 		free(pfoe, M_PFTEMP);
951 	if (V_pf_status.debug >= PF_DEBUG_MISC)
952 		printf("%s: %u states killed", __func__, killed);
953 
954 	CURVNET_RESTORE();
955 }
956 
957 /*
958  * On node found always returns locked. On not found its configurable.
959  */
960 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
962     struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
963 {
964 	struct pf_ksrc_node *n;
965 
966 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
967 
968 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
969 	PF_HASHROW_LOCK(*sh);
970 	LIST_FOREACH(n, &(*sh)->nodes, entry)
971 		if (n->rule == rule && n->af == af && n->type == sn_type &&
972 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
973 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
974 			break;
975 
976 	if (n == NULL && !returnlocked)
977 		PF_HASHROW_UNLOCK(*sh);
978 
979 	return (n);
980 }
981 
982 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)983 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
984 {
985 	struct pf_ksrc_node	*cur;
986 
987 	if ((*sn) == NULL)
988 		return (false);
989 
990 	KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
991 
992 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
993 	PF_HASHROW_LOCK(sh);
994 	LIST_FOREACH(cur, &(sh->nodes), entry) {
995 		if (cur == (*sn) &&
996 		    cur->expire != 1) /* Ignore nodes being killed */
997 			return (true);
998 	}
999 	PF_HASHROW_UNLOCK(sh);
1000 	(*sn) = NULL;
1001 	return (false);
1002 }
1003 
1004 static void
pf_free_src_node(struct pf_ksrc_node * sn)1005 pf_free_src_node(struct pf_ksrc_node *sn)
1006 {
1007 
1008 	for (int i = 0; i < 2; i++) {
1009 		counter_u64_free(sn->bytes[i]);
1010 		counter_u64_free(sn->packets[i]);
1011 	}
1012 	counter_rate_free(sn->conn_rate.cr);
1013 	uma_zfree(V_pf_sources_z, sn);
1014 }
1015 
1016 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,sa_family_t raf,pf_sn_types_t sn_type)1017 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1018     struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1019     struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1020     struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type)
1021 {
1022 	u_short			 reason = 0;
1023 	struct pf_krule		*r_track = rule;
1024 	struct pf_ksrc_node	**sn = &(sns[sn_type]);
1025 	struct pf_srchash	**sh = &(snhs[sn_type]);
1026 
1027 	KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1028 	    ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1029 
1030 	KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1031 	    ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1032 
1033 	/*
1034 	 * XXX: There could be a KASSERT for
1035 	 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1036 	 * but we'd need to pass pool *only* for this KASSERT.
1037 	 */
1038 
1039 	if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1040 	    !(rule->rule_flag & PFRULE_RULESRCTRACK))
1041 		r_track = &V_pf_default_rule;
1042 
1043 	/*
1044 	 * Request the sh to always be locked, as we might insert a new sn.
1045 	 */
1046 	if (*sn == NULL)
1047 		*sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1048 
1049 	if (*sn == NULL) {
1050 		PF_HASHROW_ASSERT(*sh);
1051 
1052 		if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1053 		    counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1054 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1055 			reason = PFRES_SRCLIMIT;
1056 			goto done;
1057 		}
1058 
1059 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1060 		if ((*sn) == NULL) {
1061 			reason = PFRES_MEMORY;
1062 			goto done;
1063 		}
1064 
1065 		for (int i = 0; i < 2; i++) {
1066 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1067 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1068 
1069 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1070 				pf_free_src_node(*sn);
1071 				reason = PFRES_MEMORY;
1072 				goto done;
1073 			}
1074 		}
1075 
1076 		if (sn_type == PF_SN_LIMIT)
1077 			if (! pf_init_threshold(&(*sn)->conn_rate,
1078 			    rule->max_src_conn_rate.limit,
1079 			    rule->max_src_conn_rate.seconds)) {
1080 				pf_free_src_node(*sn);
1081 				reason = PFRES_MEMORY;
1082 				goto done;
1083 			}
1084 
1085 		MPASS((*sn)->lock == NULL);
1086 		(*sn)->lock = &(*sh)->lock;
1087 
1088 		(*sn)->af = af;
1089 		(*sn)->rule = r_track;
1090 		pf_addrcpy(&(*sn)->addr, src, af);
1091 		if (raddr != NULL)
1092 			pf_addrcpy(&(*sn)->raddr, raddr, raf);
1093 		(*sn)->rkif = rkif;
1094 		(*sn)->raf = raf;
1095 		LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1096 		(*sn)->creation = time_uptime;
1097 		(*sn)->ruletype = rule->action;
1098 		(*sn)->type = sn_type;
1099 		counter_u64_add(r_track->src_nodes[sn_type], 1);
1100 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1101 	} else {
1102 		if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1103 		    (*sn)->states >= rule->max_src_states) {
1104 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1105 			    1);
1106 			reason = PFRES_SRCLIMIT;
1107 			goto done;
1108 		}
1109 	}
1110 done:
1111 	if (reason == 0)
1112 		(*sn)->states++;
1113 	else
1114 		(*sn) = NULL;
1115 
1116 	PF_HASHROW_UNLOCK(*sh);
1117 	return (reason);
1118 }
1119 
1120 void
pf_unlink_src_node(struct pf_ksrc_node * src)1121 pf_unlink_src_node(struct pf_ksrc_node *src)
1122 {
1123 	PF_SRC_NODE_LOCK_ASSERT(src);
1124 
1125 	LIST_REMOVE(src, entry);
1126 	if (src->rule)
1127 		counter_u64_add(src->rule->src_nodes[src->type], -1);
1128 }
1129 
1130 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1131 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1132 {
1133 	struct pf_ksrc_node *sn, *tmp;
1134 	u_int count = 0;
1135 
1136 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1137 		pf_free_src_node(sn);
1138 		count++;
1139 	}
1140 
1141 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1142 
1143 	return (count);
1144 }
1145 
1146 void
pf_mtag_initialize(void)1147 pf_mtag_initialize(void)
1148 {
1149 
1150 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1151 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1152 	    UMA_ALIGN_PTR, 0);
1153 }
1154 
1155 /* Per-vnet data storage structures initialization. */
1156 void
pf_initialize(void)1157 pf_initialize(void)
1158 {
1159 	struct pf_keyhash	*kh;
1160 	struct pf_idhash	*ih;
1161 	struct pf_srchash	*sh;
1162 	struct pf_udpendpointhash	*uh;
1163 	u_int i;
1164 
1165 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1166 		V_pf_hashsize = PF_HASHSIZ;
1167 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1168 		V_pf_srchashsize = PF_SRCHASHSIZ;
1169 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1170 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1171 
1172 	V_pf_hashseed = arc4random();
1173 
1174 	/* States and state keys storage. */
1175 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1176 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1177 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1178 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1179 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1180 
1181 	V_pf_state_key_z = uma_zcreate("pf state keys",
1182 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1183 	    UMA_ALIGN_PTR, 0);
1184 
1185 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1186 	    M_PFHASH, M_NOWAIT | M_ZERO);
1187 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1188 	    M_PFHASH, M_NOWAIT | M_ZERO);
1189 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1190 		printf("pf: Unable to allocate memory for "
1191 		    "state_hashsize %lu.\n", V_pf_hashsize);
1192 
1193 		free(V_pf_keyhash, M_PFHASH);
1194 		free(V_pf_idhash, M_PFHASH);
1195 
1196 		V_pf_hashsize = PF_HASHSIZ;
1197 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1198 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1199 		V_pf_idhash = mallocarray(V_pf_hashsize,
1200 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1201 	}
1202 
1203 	V_pf_hashmask = V_pf_hashsize - 1;
1204 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1205 	    i++, kh++, ih++) {
1206 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1207 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1208 	}
1209 
1210 	/* Source nodes. */
1211 	V_pf_sources_z = uma_zcreate("pf source nodes",
1212 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1213 	    0);
1214 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1215 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1216 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1217 
1218 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1219 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1220 	if (V_pf_srchash == NULL) {
1221 		printf("pf: Unable to allocate memory for "
1222 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1223 
1224 		V_pf_srchashsize = PF_SRCHASHSIZ;
1225 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1226 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1227 	}
1228 
1229 	V_pf_srchashmask = V_pf_srchashsize - 1;
1230 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1231 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1232 
1233 
1234 	/* UDP endpoint mappings. */
1235 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1236 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1237 	    UMA_ALIGN_PTR, 0);
1238 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1239 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1240 	if (V_pf_udpendpointhash == NULL) {
1241 		printf("pf: Unable to allocate memory for "
1242 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1243 
1244 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1245 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1246 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1247 	}
1248 
1249 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1250 	for (i = 0, uh = V_pf_udpendpointhash;
1251 	    i <= V_pf_udpendpointhashmask;
1252 	    i++, uh++) {
1253 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1254 		    MTX_DEF | MTX_DUPOK);
1255 	}
1256 
1257 	/* Anchors */
1258 	V_pf_anchor_z = uma_zcreate("pf anchors",
1259 	    sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL,
1260 	    UMA_ALIGN_PTR, 0);
1261 	V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z;
1262 	uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT);
1263 	uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached");
1264 
1265 	V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors",
1266 	    sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL,
1267 	    UMA_ALIGN_PTR, 0);
1268 	V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z;
1269 	uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT);
1270 	uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached");
1271 
1272 	/* ALTQ */
1273 	TAILQ_INIT(&V_pf_altqs[0]);
1274 	TAILQ_INIT(&V_pf_altqs[1]);
1275 	TAILQ_INIT(&V_pf_altqs[2]);
1276 	TAILQ_INIT(&V_pf_altqs[3]);
1277 	TAILQ_INIT(&V_pf_pabuf[0]);
1278 	TAILQ_INIT(&V_pf_pabuf[1]);
1279 	TAILQ_INIT(&V_pf_pabuf[2]);
1280 	V_pf_altqs_active = &V_pf_altqs[0];
1281 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1282 	V_pf_altqs_inactive = &V_pf_altqs[2];
1283 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1284 
1285 	/* Send & overload+flush queues. */
1286 	STAILQ_INIT(&V_pf_sendqueue);
1287 	SLIST_INIT(&V_pf_overloadqueue);
1288 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1289 
1290 	/* Unlinked, but may be referenced rules. */
1291 	TAILQ_INIT(&V_pf_unlinked_rules);
1292 }
1293 
1294 void
pf_mtag_cleanup(void)1295 pf_mtag_cleanup(void)
1296 {
1297 
1298 	uma_zdestroy(pf_mtag_z);
1299 }
1300 
1301 void
pf_cleanup(void)1302 pf_cleanup(void)
1303 {
1304 	struct pf_keyhash	*kh;
1305 	struct pf_idhash	*ih;
1306 	struct pf_srchash	*sh;
1307 	struct pf_udpendpointhash	*uh;
1308 	struct pf_send_entry	*pfse, *next;
1309 	u_int i;
1310 
1311 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1312 	    i <= V_pf_hashmask;
1313 	    i++, kh++, ih++) {
1314 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1315 		    __func__));
1316 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1317 		    __func__));
1318 		mtx_destroy(&kh->lock);
1319 		mtx_destroy(&ih->lock);
1320 	}
1321 	free(V_pf_keyhash, M_PFHASH);
1322 	free(V_pf_idhash, M_PFHASH);
1323 
1324 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1325 		KASSERT(LIST_EMPTY(&sh->nodes),
1326 		    ("%s: source node hash not empty", __func__));
1327 		mtx_destroy(&sh->lock);
1328 	}
1329 	free(V_pf_srchash, M_PFHASH);
1330 
1331 	for (i = 0, uh = V_pf_udpendpointhash;
1332 	    i <= V_pf_udpendpointhashmask;
1333 	    i++, uh++) {
1334 		KASSERT(LIST_EMPTY(&uh->endpoints),
1335 		    ("%s: udp endpoint hash not empty", __func__));
1336 		mtx_destroy(&uh->lock);
1337 	}
1338 	free(V_pf_udpendpointhash, M_PFHASH);
1339 
1340 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1341 		m_freem(pfse->pfse_m);
1342 		free(pfse, M_PFTEMP);
1343 	}
1344 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1345 
1346 	uma_zdestroy(V_pf_sources_z);
1347 	uma_zdestroy(V_pf_state_z);
1348 	uma_zdestroy(V_pf_state_key_z);
1349 	uma_zdestroy(V_pf_udp_mapping_z);
1350 	uma_zdestroy(V_pf_anchor_z);
1351 	uma_zdestroy(V_pf_eth_anchor_z);
1352 }
1353 
1354 static int
pf_mtag_uminit(void * mem,int size,int how)1355 pf_mtag_uminit(void *mem, int size, int how)
1356 {
1357 	struct m_tag *t;
1358 
1359 	t = (struct m_tag *)mem;
1360 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1361 	t->m_tag_id = PACKET_TAG_PF;
1362 	t->m_tag_len = sizeof(struct pf_mtag);
1363 	t->m_tag_free = pf_mtag_free;
1364 
1365 	return (0);
1366 }
1367 
1368 static void
pf_mtag_free(struct m_tag * t)1369 pf_mtag_free(struct m_tag *t)
1370 {
1371 
1372 	uma_zfree(pf_mtag_z, t);
1373 }
1374 
1375 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1376 pf_get_mtag(struct mbuf *m)
1377 {
1378 	struct m_tag *mtag;
1379 
1380 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1381 		return ((struct pf_mtag *)(mtag + 1));
1382 
1383 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1384 	if (mtag == NULL)
1385 		return (NULL);
1386 	bzero(mtag + 1, sizeof(struct pf_mtag));
1387 	m_tag_prepend(m, mtag);
1388 
1389 	return ((struct pf_mtag *)(mtag + 1));
1390 }
1391 
1392 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1393 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1394     struct pf_kstate *s)
1395 {
1396 	struct pf_keyhash	*khs, *khw, *kh;
1397 	struct pf_state_key	*sk, *cur;
1398 	struct pf_kstate	*si, *olds = NULL;
1399 	int idx;
1400 
1401 	NET_EPOCH_ASSERT();
1402 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1403 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1404 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1405 
1406 	/*
1407 	 * We need to lock hash slots of both keys. To avoid deadlock
1408 	 * we always lock the slot with lower address first. Unlock order
1409 	 * isn't important.
1410 	 *
1411 	 * We also need to lock ID hash slot before dropping key
1412 	 * locks. On success we return with ID hash slot locked.
1413 	 */
1414 
1415 	if (skw == sks) {
1416 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1417 		PF_HASHROW_LOCK(khs);
1418 	} else {
1419 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1420 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1421 		if (khs == khw) {
1422 			PF_HASHROW_LOCK(khs);
1423 		} else if (khs < khw) {
1424 			PF_HASHROW_LOCK(khs);
1425 			PF_HASHROW_LOCK(khw);
1426 		} else {
1427 			PF_HASHROW_LOCK(khw);
1428 			PF_HASHROW_LOCK(khs);
1429 		}
1430 	}
1431 
1432 #define	KEYS_UNLOCK()	do {			\
1433 	if (khs != khw) {			\
1434 		PF_HASHROW_UNLOCK(khs);		\
1435 		PF_HASHROW_UNLOCK(khw);		\
1436 	} else					\
1437 		PF_HASHROW_UNLOCK(khs);		\
1438 } while (0)
1439 
1440 	/*
1441 	 * First run: start with wire key.
1442 	 */
1443 	sk = skw;
1444 	kh = khw;
1445 	idx = PF_SK_WIRE;
1446 
1447 	MPASS(s->lock == NULL);
1448 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1449 
1450 keyattach:
1451 	LIST_FOREACH(cur, &kh->keys, entry)
1452 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1453 			break;
1454 
1455 	if (cur != NULL) {
1456 		/* Key exists. Check for same kif, if none, add to key. */
1457 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1458 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1459 
1460 			PF_HASHROW_LOCK(ih);
1461 			if (si->kif == s->kif &&
1462 			    ((si->key[PF_SK_WIRE]->af == sk->af &&
1463 			    si->direction == s->direction) ||
1464 			    (si->key[PF_SK_WIRE]->af !=
1465 			    si->key[PF_SK_STACK]->af &&
1466 			    sk->af == si->key[PF_SK_STACK]->af &&
1467 			    si->direction != s->direction))) {
1468 				bool reuse = false;
1469 
1470 				if (sk->proto == IPPROTO_TCP &&
1471 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1472 				    si->dst.state >= TCPS_FIN_WAIT_2)
1473 					reuse = true;
1474 
1475 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
1476 					printf("pf: %s key attach "
1477 					    "%s on %s: ",
1478 					    (idx == PF_SK_WIRE) ?
1479 					    "wire" : "stack",
1480 					    reuse ? "reuse" : "failed",
1481 					    s->kif->pfik_name);
1482 					pf_print_state_parts(s,
1483 					    (idx == PF_SK_WIRE) ?
1484 					    sk : NULL,
1485 					    (idx == PF_SK_STACK) ?
1486 					    sk : NULL);
1487 					printf(", existing: ");
1488 					pf_print_state_parts(si,
1489 					    (idx == PF_SK_WIRE) ?
1490 					    sk : NULL,
1491 					    (idx == PF_SK_STACK) ?
1492 					    sk : NULL);
1493 					printf("\n");
1494 				}
1495 
1496 				if (reuse) {
1497 					/*
1498 					 * New state matches an old >FIN_WAIT_2
1499 					 * state. We can't drop key hash locks,
1500 					 * thus we can't unlink it properly.
1501 					 *
1502 					 * As a workaround we drop it into
1503 					 * TCPS_CLOSED state, schedule purge
1504 					 * ASAP and push it into the very end
1505 					 * of the slot TAILQ, so that it won't
1506 					 * conflict with our new state.
1507 					 */
1508 					pf_set_protostate(si, PF_PEER_BOTH,
1509 					    TCPS_CLOSED);
1510 					si->timeout = PFTM_PURGE;
1511 					olds = si;
1512 				} else {
1513 					s->timeout = PFTM_UNLINKED;
1514 					if (idx == PF_SK_STACK)
1515 						/*
1516 						 * Remove the wire key from
1517 						 * the hash. Other threads
1518 						 * can't be referencing it
1519 						 * because we still hold the
1520 						 * hash lock.
1521 						 */
1522 						pf_state_key_detach(s,
1523 						    PF_SK_WIRE);
1524 					PF_HASHROW_UNLOCK(ih);
1525 					KEYS_UNLOCK();
1526 					if (idx == PF_SK_WIRE)
1527 						/*
1528 						 * We've not inserted either key.
1529 						 * Free both.
1530 						 */
1531 						uma_zfree(V_pf_state_key_z, skw);
1532 					if (skw != sks)
1533 						uma_zfree(
1534 						    V_pf_state_key_z,
1535 						    sks);
1536 					return (EEXIST); /* collision! */
1537 				}
1538 			}
1539 			PF_HASHROW_UNLOCK(ih);
1540 		}
1541 		uma_zfree(V_pf_state_key_z, sk);
1542 		s->key[idx] = cur;
1543 	} else {
1544 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1545 		s->key[idx] = sk;
1546 	}
1547 
1548 stateattach:
1549 	/* List is sorted, if-bound states before floating. */
1550 	if (s->kif == V_pfi_all)
1551 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1552 	else
1553 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1554 
1555 	if (olds) {
1556 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1557 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1558 		    key_list[idx]);
1559 		olds = NULL;
1560 	}
1561 
1562 	/*
1563 	 * Attach done. See how should we (or should not?)
1564 	 * attach a second key.
1565 	 */
1566 	if (sks == skw) {
1567 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1568 		idx = PF_SK_STACK;
1569 		sks = NULL;
1570 		goto stateattach;
1571 	} else if (sks != NULL) {
1572 		/*
1573 		 * Continue attaching with stack key.
1574 		 */
1575 		sk = sks;
1576 		kh = khs;
1577 		idx = PF_SK_STACK;
1578 		sks = NULL;
1579 		goto keyattach;
1580 	}
1581 
1582 	PF_STATE_LOCK(s);
1583 	KEYS_UNLOCK();
1584 
1585 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1586 	    ("%s failure", __func__));
1587 
1588 	return (0);
1589 #undef	KEYS_UNLOCK
1590 }
1591 
1592 static void
pf_detach_state(struct pf_kstate * s)1593 pf_detach_state(struct pf_kstate *s)
1594 {
1595 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1596 	struct pf_keyhash *kh;
1597 
1598 	NET_EPOCH_ASSERT();
1599 	MPASS(s->timeout >= PFTM_MAX);
1600 
1601 	pf_sctp_multihome_detach_addr(s);
1602 
1603 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1604 		V_pflow_export_state_ptr(s);
1605 
1606 	if (sks != NULL) {
1607 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1608 		PF_HASHROW_LOCK(kh);
1609 		if (s->key[PF_SK_STACK] != NULL)
1610 			pf_state_key_detach(s, PF_SK_STACK);
1611 		/*
1612 		 * If both point to same key, then we are done.
1613 		 */
1614 		if (sks == s->key[PF_SK_WIRE]) {
1615 			pf_state_key_detach(s, PF_SK_WIRE);
1616 			PF_HASHROW_UNLOCK(kh);
1617 			return;
1618 		}
1619 		PF_HASHROW_UNLOCK(kh);
1620 	}
1621 
1622 	if (s->key[PF_SK_WIRE] != NULL) {
1623 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1624 		PF_HASHROW_LOCK(kh);
1625 		if (s->key[PF_SK_WIRE] != NULL)
1626 			pf_state_key_detach(s, PF_SK_WIRE);
1627 		PF_HASHROW_UNLOCK(kh);
1628 	}
1629 }
1630 
1631 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1632 pf_state_key_detach(struct pf_kstate *s, int idx)
1633 {
1634 	struct pf_state_key *sk = s->key[idx];
1635 #ifdef INVARIANTS
1636 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1637 
1638 	PF_HASHROW_ASSERT(kh);
1639 #endif /* INVARIANTS */
1640 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1641 	s->key[idx] = NULL;
1642 
1643 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1644 		LIST_REMOVE(sk, entry);
1645 		uma_zfree(V_pf_state_key_z, sk);
1646 	}
1647 }
1648 
1649 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1650 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1651 {
1652 	struct pf_state_key *sk = mem;
1653 
1654 	bzero(sk, sizeof(struct pf_state_key_cmp));
1655 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1656 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1657 
1658 	return (0);
1659 }
1660 
1661 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1662 pf_state_key_addr_setup(struct pf_pdesc *pd,
1663     struct pf_state_key_cmp *key, int multi)
1664 {
1665 	struct pf_addr *saddr = pd->src;
1666 	struct pf_addr *daddr = pd->dst;
1667 #ifdef INET6
1668 	struct nd_neighbor_solicit nd;
1669 	struct pf_addr *target;
1670 
1671 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1672 		goto copy;
1673 
1674 	switch (pd->hdr.icmp6.icmp6_type) {
1675 	case ND_NEIGHBOR_SOLICIT:
1676 		if (multi)
1677 			return (-1);
1678 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1679 		    NULL, pd->af))
1680 			return (-1);
1681 		target = (struct pf_addr *)&nd.nd_ns_target;
1682 		daddr = target;
1683 		break;
1684 	case ND_NEIGHBOR_ADVERT:
1685 		if (multi)
1686 			return (-1);
1687 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1688 		    NULL, pd->af))
1689 			return (-1);
1690 		target = (struct pf_addr *)&nd.nd_ns_target;
1691 		saddr = target;
1692 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1693 			key->addr[pd->didx].addr32[0] = 0;
1694 			key->addr[pd->didx].addr32[1] = 0;
1695 			key->addr[pd->didx].addr32[2] = 0;
1696 			key->addr[pd->didx].addr32[3] = 0;
1697 			daddr = NULL; /* overwritten */
1698 		}
1699 		break;
1700 	default:
1701 		if (multi) {
1702 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1703 			key->addr[pd->sidx].addr32[1] = 0;
1704 			key->addr[pd->sidx].addr32[2] = 0;
1705 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1706 			saddr = NULL; /* overwritten */
1707 		}
1708 	}
1709 copy:
1710 #endif /* INET6 */
1711 	if (saddr)
1712 		pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af);
1713 	if (daddr)
1714 		pf_addrcpy(&key->addr[pd->didx], daddr, pd->af);
1715 
1716 	return (0);
1717 }
1718 
1719 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1720 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1721     struct pf_state_key **sk, struct pf_state_key **nk)
1722 {
1723 	*sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1724 	if (*sk == NULL)
1725 		return (ENOMEM);
1726 
1727 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1728 	    0)) {
1729 		uma_zfree(V_pf_state_key_z, *sk);
1730 		*sk = NULL;
1731 		return (ENOMEM);
1732 	}
1733 
1734 	(*sk)->port[pd->sidx] = sport;
1735 	(*sk)->port[pd->didx] = dport;
1736 	(*sk)->proto = pd->proto;
1737 	(*sk)->af = pd->af;
1738 
1739 	*nk = pf_state_key_clone(*sk);
1740 	if (*nk == NULL) {
1741 		uma_zfree(V_pf_state_key_z, *sk);
1742 		*sk = NULL;
1743 		return (ENOMEM);
1744 	}
1745 
1746 	if (pd->af != pd->naf) {
1747 		(*sk)->port[pd->sidx] = pd->osport;
1748 		(*sk)->port[pd->didx] = pd->odport;
1749 
1750 		(*nk)->af = pd->naf;
1751 
1752 		/*
1753 		 * We're overwriting an address here, so potentially there's bits of an IPv6
1754 		 * address left in here. Clear that out first.
1755 		 */
1756 		bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1757 		bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1758 		if (pd->dir == PF_IN) {
1759 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr,
1760 			    pd->naf);
1761 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr,
1762 			    pd->naf);
1763 			(*nk)->port[pd->didx] = pd->nsport;
1764 			(*nk)->port[pd->sidx] = pd->ndport;
1765 		} else {
1766 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr,
1767 			    pd->naf);
1768 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr,
1769 			    pd->naf);
1770 			(*nk)->port[pd->sidx] = pd->nsport;
1771 			(*nk)->port[pd->didx] = pd->ndport;
1772 		}
1773 
1774 		switch (pd->proto) {
1775 		case IPPROTO_ICMP:
1776 			(*nk)->proto = IPPROTO_ICMPV6;
1777 			break;
1778 		case IPPROTO_ICMPV6:
1779 			(*nk)->proto = IPPROTO_ICMP;
1780 			break;
1781 		default:
1782 			(*nk)->proto = pd->proto;
1783 		}
1784 	}
1785 
1786 	return (0);
1787 }
1788 
1789 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1790 pf_state_key_clone(const struct pf_state_key *orig)
1791 {
1792 	struct pf_state_key *sk;
1793 
1794 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1795 	if (sk == NULL)
1796 		return (NULL);
1797 
1798 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1799 
1800 	return (sk);
1801 }
1802 
1803 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1804 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1805     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1806 {
1807 	struct pf_idhash *ih;
1808 	struct pf_kstate *cur;
1809 	int error;
1810 
1811 	NET_EPOCH_ASSERT();
1812 
1813 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1814 	    ("%s: sks not pristine", __func__));
1815 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1816 	    ("%s: skw not pristine", __func__));
1817 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1818 
1819 	s->kif = kif;
1820 	s->orig_kif = orig_kif;
1821 
1822 	if (s->id == 0 && s->creatorid == 0) {
1823 		s->id = alloc_unr64(&V_pf_stateid);
1824 		s->id = htobe64(s->id);
1825 		s->creatorid = V_pf_status.hostid;
1826 	}
1827 
1828 	/* Returns with ID locked on success. */
1829 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1830 		return (error);
1831 	skw = sks = NULL;
1832 
1833 	ih = &V_pf_idhash[PF_IDHASH(s)];
1834 	PF_HASHROW_ASSERT(ih);
1835 	LIST_FOREACH(cur, &ih->states, entry)
1836 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1837 			break;
1838 
1839 	if (cur != NULL) {
1840 		s->timeout = PFTM_UNLINKED;
1841 		PF_HASHROW_UNLOCK(ih);
1842 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1843 			printf("pf: state ID collision: "
1844 			    "id: %016llx creatorid: %08x\n",
1845 			    (unsigned long long)be64toh(s->id),
1846 			    ntohl(s->creatorid));
1847 		}
1848 		pf_detach_state(s);
1849 		return (EEXIST);
1850 	}
1851 	LIST_INSERT_HEAD(&ih->states, s, entry);
1852 	/* One for keys, one for ID hash. */
1853 	refcount_init(&s->refs, 2);
1854 
1855 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1856 	if (V_pfsync_insert_state_ptr != NULL)
1857 		V_pfsync_insert_state_ptr(s);
1858 
1859 	/* Returns locked. */
1860 	return (0);
1861 }
1862 
1863 /*
1864  * Find state by ID: returns with locked row on success.
1865  */
1866 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1867 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1868 {
1869 	struct pf_idhash *ih;
1870 	struct pf_kstate *s;
1871 
1872 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1873 
1874 	ih = &V_pf_idhash[PF_IDHASHID(id)];
1875 
1876 	PF_HASHROW_LOCK(ih);
1877 	LIST_FOREACH(s, &ih->states, entry)
1878 		if (s->id == id && s->creatorid == creatorid)
1879 			break;
1880 
1881 	if (s == NULL)
1882 		PF_HASHROW_UNLOCK(ih);
1883 
1884 	return (s);
1885 }
1886 
1887 /*
1888  * Find state by key.
1889  * Returns with ID hash slot locked on success.
1890  */
1891 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1892 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1893     struct pf_kstate **state)
1894 {
1895 	struct pf_keyhash	*kh;
1896 	struct pf_state_key	*sk;
1897 	struct pf_kstate	*s;
1898 	int idx;
1899 
1900 	*state = NULL;
1901 
1902 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1903 
1904 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1905 
1906 	PF_HASHROW_LOCK(kh);
1907 	LIST_FOREACH(sk, &kh->keys, entry)
1908 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1909 			break;
1910 	if (sk == NULL) {
1911 		PF_HASHROW_UNLOCK(kh);
1912 		return (PF_DROP);
1913 	}
1914 
1915 	idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1916 
1917 	/* List is sorted, if-bound states before floating ones. */
1918 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1919 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1920 		    s->orig_kif == pd->kif) {
1921 			PF_STATE_LOCK(s);
1922 			PF_HASHROW_UNLOCK(kh);
1923 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1924 				/*
1925 				 * State is either being processed by
1926 				 * pf_remove_state() in an other thread, or
1927 				 * is scheduled for immediate expiry.
1928 				 */
1929 				PF_STATE_UNLOCK(s);
1930 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1931 				    key, (pd->dir), pd, *state);
1932 				return (PF_DROP);
1933 			}
1934 			goto out;
1935 		}
1936 
1937 	/* Look through the other list, in case of AF-TO */
1938 	idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1939 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1940 		if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1941 			continue;
1942 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1943 		    s->orig_kif == pd->kif) {
1944 			PF_STATE_LOCK(s);
1945 			PF_HASHROW_UNLOCK(kh);
1946 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1947 				/*
1948 				 * State is either being processed by
1949 				 * pf_remove_state() in an other thread, or
1950 				 * is scheduled for immediate expiry.
1951 				 */
1952 				PF_STATE_UNLOCK(s);
1953 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1954 				    key, (pd->dir), pd, NULL);
1955 				return (PF_DROP);
1956 			}
1957 			goto out;
1958 		}
1959 	}
1960 
1961 	PF_HASHROW_UNLOCK(kh);
1962 
1963 out:
1964 	SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1965 
1966 	if (s == NULL || s->timeout == PFTM_PURGE) {
1967 		if (s)
1968 			PF_STATE_UNLOCK(s);
1969 		return (PF_DROP);
1970 	}
1971 
1972 	if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1973 		if (pf_check_threshold(&(s)->rule->pktrate)) {
1974 			PF_STATE_UNLOCK(s);
1975 			return (PF_DROP);
1976 		}
1977 	}
1978 	if (PACKET_LOOPED(pd)) {
1979 		PF_STATE_UNLOCK(s);
1980 		return (PF_PASS);
1981 	}
1982 
1983 	*state = s;
1984 
1985 	return (PF_MATCH);
1986 }
1987 
1988 /*
1989  * Returns with ID hash slot locked on success.
1990  */
1991 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1992 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1993 {
1994 	struct pf_keyhash	*kh;
1995 	struct pf_state_key	*sk;
1996 	struct pf_kstate	*s, *ret = NULL;
1997 	int			 idx, inout = 0;
1998 
1999 	if (more != NULL)
2000 		*more = 0;
2001 
2002 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2003 
2004 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2005 
2006 	PF_HASHROW_LOCK(kh);
2007 	LIST_FOREACH(sk, &kh->keys, entry)
2008 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2009 			break;
2010 	if (sk == NULL) {
2011 		PF_HASHROW_UNLOCK(kh);
2012 		return (NULL);
2013 	}
2014 	switch (dir) {
2015 	case PF_IN:
2016 		idx = PF_SK_WIRE;
2017 		break;
2018 	case PF_OUT:
2019 		idx = PF_SK_STACK;
2020 		break;
2021 	case PF_INOUT:
2022 		idx = PF_SK_WIRE;
2023 		inout = 1;
2024 		break;
2025 	default:
2026 		panic("%s: dir %u", __func__, dir);
2027 	}
2028 second_run:
2029 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2030 		if (more == NULL) {
2031 			PF_STATE_LOCK(s);
2032 			PF_HASHROW_UNLOCK(kh);
2033 			return (s);
2034 		}
2035 
2036 		if (ret)
2037 			(*more)++;
2038 		else {
2039 			ret = s;
2040 			PF_STATE_LOCK(s);
2041 		}
2042 	}
2043 	if (inout == 1) {
2044 		inout = 0;
2045 		idx = PF_SK_STACK;
2046 		goto second_run;
2047 	}
2048 	PF_HASHROW_UNLOCK(kh);
2049 
2050 	return (ret);
2051 }
2052 
2053 /*
2054  * FIXME
2055  * This routine is inefficient -- locks the state only to unlock immediately on
2056  * return.
2057  * It is racy -- after the state is unlocked nothing stops other threads from
2058  * removing it.
2059  */
2060 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2061 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2062 {
2063 	struct pf_kstate *s;
2064 
2065 	s = pf_find_state_all(key, dir, NULL);
2066 	if (s != NULL) {
2067 		PF_STATE_UNLOCK(s);
2068 		return (true);
2069 	}
2070 	return (false);
2071 }
2072 
2073 void
pf_state_peer_hton(const struct pf_state_peer * s,struct pf_state_peer_export * d)2074 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d)
2075 {
2076 	d->seqlo = htonl(s->seqlo);
2077 	d->seqhi = htonl(s->seqhi);
2078 	d->seqdiff = htonl(s->seqdiff);
2079 	d->max_win = htons(s->max_win);
2080 	d->mss = htons(s->mss);
2081 	d->state = s->state;
2082 	d->wscale = s->wscale;
2083 	if (s->scrub) {
2084 		d->scrub.pfss_flags = htons(
2085 		    s->scrub->pfss_flags & PFSS_TIMESTAMP);
2086 		d->scrub.pfss_ttl = (s)->scrub->pfss_ttl;
2087 		d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);
2088 		d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID;
2089 	}
2090 }
2091 
2092 void
pf_state_peer_ntoh(const struct pf_state_peer_export * s,struct pf_state_peer * d)2093 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d)
2094 {
2095 	d->seqlo = ntohl(s->seqlo);
2096 	d->seqhi = ntohl(s->seqhi);
2097 	d->seqdiff = ntohl(s->seqdiff);
2098 	d->max_win = ntohs(s->max_win);
2099 	d->mss = ntohs(s->mss);
2100 	d->state = s->state;
2101 	d->wscale = s->wscale;
2102 	if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID &&
2103 	    d->scrub != NULL) {
2104 		d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) &
2105 		    PFSS_TIMESTAMP;
2106 		d->scrub->pfss_ttl = s->scrub.pfss_ttl;
2107 		d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod);
2108 	}
2109 }
2110 
2111 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2112 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2113     struct pf_addr *nat_addr, uint16_t nat_port)
2114 {
2115 	struct pf_udp_mapping *mapping;
2116 
2117 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2118 	if (mapping == NULL)
2119 		return (NULL);
2120 	pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af);
2121 	mapping->endpoints[0].port = src_port;
2122 	mapping->endpoints[0].af = af;
2123 	mapping->endpoints[0].mapping = mapping;
2124 	pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af);
2125 	mapping->endpoints[1].port = nat_port;
2126 	mapping->endpoints[1].af = af;
2127 	mapping->endpoints[1].mapping = mapping;
2128 	refcount_init(&mapping->refs, 1);
2129 	return (mapping);
2130 }
2131 
2132 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2133 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2134 {
2135 	struct pf_udpendpointhash *h0, *h1;
2136 	struct pf_udp_endpoint *endpoint;
2137 	int ret = EEXIST;
2138 
2139 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2140 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2141 	if (h0 == h1) {
2142 		PF_HASHROW_LOCK(h0);
2143 	} else if (h0 < h1) {
2144 		PF_HASHROW_LOCK(h0);
2145 		PF_HASHROW_LOCK(h1);
2146 	} else {
2147 		PF_HASHROW_LOCK(h1);
2148 		PF_HASHROW_LOCK(h0);
2149 	}
2150 
2151 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2152 		if (bcmp(endpoint, &mapping->endpoints[0],
2153 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2154 			break;
2155 	}
2156 	if (endpoint != NULL)
2157 		goto cleanup;
2158 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2159 		if (bcmp(endpoint, &mapping->endpoints[1],
2160 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2161 			break;
2162 	}
2163 	if (endpoint != NULL)
2164 		goto cleanup;
2165 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2166 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2167 	ret = 0;
2168 
2169 cleanup:
2170 	if (h0 != h1) {
2171 		PF_HASHROW_UNLOCK(h0);
2172 		PF_HASHROW_UNLOCK(h1);
2173 	} else {
2174 		PF_HASHROW_UNLOCK(h0);
2175 	}
2176 	return (ret);
2177 }
2178 
2179 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2180 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2181 {
2182 	/* refcount is synchronized on the source endpoint's row lock */
2183 	struct pf_udpendpointhash *h0, *h1;
2184 
2185 	if (mapping == NULL)
2186 		return;
2187 
2188 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2189 	PF_HASHROW_LOCK(h0);
2190 	if (refcount_release(&mapping->refs)) {
2191 		LIST_REMOVE(&mapping->endpoints[0], entry);
2192 		PF_HASHROW_UNLOCK(h0);
2193 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2194 		PF_HASHROW_LOCK(h1);
2195 		LIST_REMOVE(&mapping->endpoints[1], entry);
2196 		PF_HASHROW_UNLOCK(h1);
2197 
2198 		uma_zfree(V_pf_udp_mapping_z, mapping);
2199 	} else {
2200 			PF_HASHROW_UNLOCK(h0);
2201 	}
2202 }
2203 
2204 
2205 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2206 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2207 {
2208 	struct pf_udpendpointhash *uh;
2209 	struct pf_udp_endpoint *endpoint;
2210 
2211 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2212 
2213 	PF_HASHROW_LOCK(uh);
2214 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2215 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2216 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
2217 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2218 			break;
2219 	}
2220 	if (endpoint == NULL) {
2221 		PF_HASHROW_UNLOCK(uh);
2222 		return (NULL);
2223 	}
2224 	refcount_acquire(&endpoint->mapping->refs);
2225 	PF_HASHROW_UNLOCK(uh);
2226 	return (endpoint->mapping);
2227 }
2228 /* END state table stuff */
2229 
2230 static void
pf_send(struct pf_send_entry * pfse)2231 pf_send(struct pf_send_entry *pfse)
2232 {
2233 
2234 	PF_SENDQ_LOCK();
2235 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2236 	PF_SENDQ_UNLOCK();
2237 	swi_sched(V_pf_swi_cookie, 0);
2238 }
2239 
2240 static bool
pf_isforlocal(struct mbuf * m,int af)2241 pf_isforlocal(struct mbuf *m, int af)
2242 {
2243 	switch (af) {
2244 #ifdef INET
2245 	case AF_INET: {
2246 		struct ip *ip = mtod(m, struct ip *);
2247 
2248 		return (in_localip(ip->ip_dst));
2249 	}
2250 #endif /* INET */
2251 #ifdef INET6
2252 	case AF_INET6: {
2253 		struct ip6_hdr *ip6;
2254 		struct in6_ifaddr *ia;
2255 		ip6 = mtod(m, struct ip6_hdr *);
2256 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2257 		if (ia == NULL)
2258 			return (false);
2259 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2260 	}
2261 #endif /* INET6 */
2262 	default:
2263 		unhandled_af(af);
2264 	}
2265 
2266 	return (false);
2267 }
2268 
2269 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2270 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2271     int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2272 {
2273 	/*
2274 	 * ICMP types marked with PF_OUT are typically responses to
2275 	 * PF_IN, and will match states in the opposite direction.
2276 	 * PF_IN ICMP types need to match a state with that type.
2277 	 */
2278 	*icmp_dir = PF_OUT;
2279 
2280 	/* Queries (and responses) */
2281 	switch (pd->af) {
2282 #ifdef INET
2283 	case AF_INET:
2284 		switch (type) {
2285 		case ICMP_ECHO:
2286 			*icmp_dir = PF_IN;
2287 			/* FALLTHROUGH */
2288 		case ICMP_ECHOREPLY:
2289 			*virtual_type = ICMP_ECHO;
2290 			*virtual_id = pd->hdr.icmp.icmp_id;
2291 			break;
2292 
2293 		case ICMP_TSTAMP:
2294 			*icmp_dir = PF_IN;
2295 			/* FALLTHROUGH */
2296 		case ICMP_TSTAMPREPLY:
2297 			*virtual_type = ICMP_TSTAMP;
2298 			*virtual_id = pd->hdr.icmp.icmp_id;
2299 			break;
2300 
2301 		case ICMP_IREQ:
2302 			*icmp_dir = PF_IN;
2303 			/* FALLTHROUGH */
2304 		case ICMP_IREQREPLY:
2305 			*virtual_type = ICMP_IREQ;
2306 			*virtual_id = pd->hdr.icmp.icmp_id;
2307 			break;
2308 
2309 		case ICMP_MASKREQ:
2310 			*icmp_dir = PF_IN;
2311 			/* FALLTHROUGH */
2312 		case ICMP_MASKREPLY:
2313 			*virtual_type = ICMP_MASKREQ;
2314 			*virtual_id = pd->hdr.icmp.icmp_id;
2315 			break;
2316 
2317 		case ICMP_IPV6_WHEREAREYOU:
2318 			*icmp_dir = PF_IN;
2319 			/* FALLTHROUGH */
2320 		case ICMP_IPV6_IAMHERE:
2321 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2322 			*virtual_id = 0; /* Nothing sane to match on! */
2323 			break;
2324 
2325 		case ICMP_MOBILE_REGREQUEST:
2326 			*icmp_dir = PF_IN;
2327 			/* FALLTHROUGH */
2328 		case ICMP_MOBILE_REGREPLY:
2329 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2330 			*virtual_id = 0; /* Nothing sane to match on! */
2331 			break;
2332 
2333 		case ICMP_ROUTERSOLICIT:
2334 			*icmp_dir = PF_IN;
2335 			/* FALLTHROUGH */
2336 		case ICMP_ROUTERADVERT:
2337 			*virtual_type = ICMP_ROUTERSOLICIT;
2338 			*virtual_id = 0; /* Nothing sane to match on! */
2339 			break;
2340 
2341 		/* These ICMP types map to other connections */
2342 		case ICMP_UNREACH:
2343 		case ICMP_SOURCEQUENCH:
2344 		case ICMP_REDIRECT:
2345 		case ICMP_TIMXCEED:
2346 		case ICMP_PARAMPROB:
2347 			/* These will not be used, but set them anyway */
2348 			*icmp_dir = PF_IN;
2349 			*virtual_type = type;
2350 			*virtual_id = 0;
2351 			*virtual_type = htons(*virtual_type);
2352 			return (1);  /* These types match to another state */
2353 
2354 		/*
2355 		 * All remaining ICMP types get their own states,
2356 		 * and will only match in one direction.
2357 		 */
2358 		default:
2359 			*icmp_dir = PF_IN;
2360 			*virtual_type = type;
2361 			*virtual_id = 0;
2362 			break;
2363 		}
2364 		break;
2365 #endif /* INET */
2366 #ifdef INET6
2367 	case AF_INET6:
2368 		switch (type) {
2369 		case ICMP6_ECHO_REQUEST:
2370 			*icmp_dir = PF_IN;
2371 			/* FALLTHROUGH */
2372 		case ICMP6_ECHO_REPLY:
2373 			*virtual_type = ICMP6_ECHO_REQUEST;
2374 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2375 			break;
2376 
2377 		case MLD_LISTENER_QUERY:
2378 		case MLD_LISTENER_REPORT: {
2379 			/*
2380 			 * Listener Report can be sent by clients
2381 			 * without an associated Listener Query.
2382 			 * In addition to that, when Report is sent as a
2383 			 * reply to a Query its source and destination
2384 			 * address are different.
2385 			 */
2386 			*icmp_dir = PF_IN;
2387 			*virtual_type = MLD_LISTENER_QUERY;
2388 			*virtual_id = 0;
2389 			break;
2390 		}
2391 		case MLD_MTRACE:
2392 			*icmp_dir = PF_IN;
2393 			/* FALLTHROUGH */
2394 		case MLD_MTRACE_RESP:
2395 			*virtual_type = MLD_MTRACE;
2396 			*virtual_id = 0; /* Nothing sane to match on! */
2397 			break;
2398 
2399 		case ND_NEIGHBOR_SOLICIT:
2400 			*icmp_dir = PF_IN;
2401 			/* FALLTHROUGH */
2402 		case ND_NEIGHBOR_ADVERT: {
2403 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2404 			*virtual_id = 0;
2405 			break;
2406 		}
2407 
2408 		/*
2409 		 * These ICMP types map to other connections.
2410 		 * ND_REDIRECT can't be in this list because the triggering
2411 		 * packet header is optional.
2412 		 */
2413 		case ICMP6_DST_UNREACH:
2414 		case ICMP6_PACKET_TOO_BIG:
2415 		case ICMP6_TIME_EXCEEDED:
2416 		case ICMP6_PARAM_PROB:
2417 			/* These will not be used, but set them anyway */
2418 			*icmp_dir = PF_IN;
2419 			*virtual_type = type;
2420 			*virtual_id = 0;
2421 			*virtual_type = htons(*virtual_type);
2422 			return (1);  /* These types match to another state */
2423 		/*
2424 		 * All remaining ICMP6 types get their own states,
2425 		 * and will only match in one direction.
2426 		 */
2427 		default:
2428 			*icmp_dir = PF_IN;
2429 			*virtual_type = type;
2430 			*virtual_id = 0;
2431 			break;
2432 		}
2433 		break;
2434 #endif /* INET6 */
2435 	default:
2436 		unhandled_af(pd->af);
2437 	}
2438 	*virtual_type = htons(*virtual_type);
2439 	return (0);  /* These types match to their own state */
2440 }
2441 
2442 void
pf_intr(void * v)2443 pf_intr(void *v)
2444 {
2445 	struct epoch_tracker et;
2446 	struct pf_send_head queue;
2447 	struct pf_send_entry *pfse, *next;
2448 
2449 	CURVNET_SET((struct vnet *)v);
2450 
2451 	PF_SENDQ_LOCK();
2452 	queue = V_pf_sendqueue;
2453 	STAILQ_INIT(&V_pf_sendqueue);
2454 	PF_SENDQ_UNLOCK();
2455 
2456 	NET_EPOCH_ENTER(et);
2457 
2458 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2459 		switch (pfse->pfse_type) {
2460 #ifdef INET
2461 		case PFSE_IP: {
2462 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2463 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2464 				    ("%s: rcvif != loif", __func__));
2465 
2466 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2467 				pfse->pfse_m->m_pkthdr.csum_flags |=
2468 				    CSUM_IP_VALID | CSUM_IP_CHECKED |
2469 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2470 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2471 				ip_input(pfse->pfse_m);
2472 			} else {
2473 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2474 				    NULL);
2475 			}
2476 			break;
2477 		}
2478 		case PFSE_ICMP:
2479 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2480 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2481 			break;
2482 #endif /* INET */
2483 #ifdef INET6
2484 		case PFSE_IP6:
2485 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2486 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2487 				    ("%s: rcvif != loif", __func__));
2488 
2489 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2490 				    M_LOOP;
2491 				pfse->pfse_m->m_pkthdr.csum_flags |=
2492 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2493 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2494 				ip6_input(pfse->pfse_m);
2495 			} else {
2496 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2497 				    NULL, NULL);
2498 			}
2499 			break;
2500 		case PFSE_ICMP6:
2501 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2502 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2503 			break;
2504 #endif /* INET6 */
2505 		default:
2506 			panic("%s: unknown type", __func__);
2507 		}
2508 		free(pfse, M_PFTEMP);
2509 	}
2510 	NET_EPOCH_EXIT(et);
2511 	CURVNET_RESTORE();
2512 }
2513 
2514 #define	pf_purge_thread_period	(hz / 10)
2515 
2516 #ifdef PF_WANT_32_TO_64_COUNTER
2517 static void
pf_status_counter_u64_periodic(void)2518 pf_status_counter_u64_periodic(void)
2519 {
2520 
2521 	PF_RULES_RASSERT();
2522 
2523 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2524 		return;
2525 	}
2526 
2527 	for (int i = 0; i < FCNT_MAX; i++) {
2528 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2529 	}
2530 }
2531 
2532 static void
pf_kif_counter_u64_periodic(void)2533 pf_kif_counter_u64_periodic(void)
2534 {
2535 	struct pfi_kkif *kif;
2536 	size_t r, run;
2537 
2538 	PF_RULES_RASSERT();
2539 
2540 	if (__predict_false(V_pf_allkifcount == 0)) {
2541 		return;
2542 	}
2543 
2544 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2545 		return;
2546 	}
2547 
2548 	run = V_pf_allkifcount / 10;
2549 	if (run < 5)
2550 		run = 5;
2551 
2552 	for (r = 0; r < run; r++) {
2553 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2554 		if (kif == NULL) {
2555 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2556 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2557 			break;
2558 		}
2559 
2560 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2561 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2562 
2563 		for (int i = 0; i < 2; i++) {
2564 			for (int j = 0; j < 2; j++) {
2565 				for (int k = 0; k < 2; k++) {
2566 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2567 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2568 				}
2569 			}
2570 		}
2571 	}
2572 }
2573 
2574 static void
pf_rule_counter_u64_periodic(void)2575 pf_rule_counter_u64_periodic(void)
2576 {
2577 	struct pf_krule *rule;
2578 	size_t r, run;
2579 
2580 	PF_RULES_RASSERT();
2581 
2582 	if (__predict_false(V_pf_allrulecount == 0)) {
2583 		return;
2584 	}
2585 
2586 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2587 		return;
2588 	}
2589 
2590 	run = V_pf_allrulecount / 10;
2591 	if (run < 5)
2592 		run = 5;
2593 
2594 	for (r = 0; r < run; r++) {
2595 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2596 		if (rule == NULL) {
2597 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2598 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2599 			break;
2600 		}
2601 
2602 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2603 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2604 
2605 		pf_counter_u64_periodic(&rule->evaluations);
2606 		for (int i = 0; i < 2; i++) {
2607 			pf_counter_u64_periodic(&rule->packets[i]);
2608 			pf_counter_u64_periodic(&rule->bytes[i]);
2609 		}
2610 	}
2611 }
2612 
2613 static void
pf_counter_u64_periodic_main(void)2614 pf_counter_u64_periodic_main(void)
2615 {
2616 	PF_RULES_RLOCK_TRACKER;
2617 
2618 	V_pf_counter_periodic_iter++;
2619 
2620 	PF_RULES_RLOCK();
2621 	pf_counter_u64_critical_enter();
2622 	pf_status_counter_u64_periodic();
2623 	pf_kif_counter_u64_periodic();
2624 	pf_rule_counter_u64_periodic();
2625 	pf_counter_u64_critical_exit();
2626 	PF_RULES_RUNLOCK();
2627 }
2628 #else
2629 #define	pf_counter_u64_periodic_main()	do { } while (0)
2630 #endif
2631 
2632 void
pf_purge_thread(void * unused __unused)2633 pf_purge_thread(void *unused __unused)
2634 {
2635 	struct epoch_tracker	 et;
2636 
2637 	VNET_ITERATOR_DECL(vnet_iter);
2638 
2639 	sx_xlock(&pf_end_lock);
2640 	while (pf_end_threads == 0) {
2641 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2642 
2643 		VNET_LIST_RLOCK();
2644 		NET_EPOCH_ENTER(et);
2645 		VNET_FOREACH(vnet_iter) {
2646 			CURVNET_SET(vnet_iter);
2647 
2648 			/* Wait until V_pf_default_rule is initialized. */
2649 			if (V_pf_vnet_active == 0) {
2650 				CURVNET_RESTORE();
2651 				continue;
2652 			}
2653 
2654 			pf_counter_u64_periodic_main();
2655 
2656 			/*
2657 			 *  Process 1/interval fraction of the state
2658 			 * table every run.
2659 			 */
2660 			V_pf_purge_idx =
2661 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2662 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2663 
2664 			/*
2665 			 * Purge other expired types every
2666 			 * PFTM_INTERVAL seconds.
2667 			 */
2668 			if (V_pf_purge_idx == 0) {
2669 				/*
2670 				 * Order is important:
2671 				 * - states and src nodes reference rules
2672 				 * - states and rules reference kifs
2673 				 */
2674 				pf_purge_expired_fragments();
2675 				pf_purge_expired_src_nodes();
2676 				pf_purge_unlinked_rules();
2677 				pfi_kkif_purge();
2678 			}
2679 			CURVNET_RESTORE();
2680 		}
2681 		NET_EPOCH_EXIT(et);
2682 		VNET_LIST_RUNLOCK();
2683 	}
2684 
2685 	pf_end_threads++;
2686 	sx_xunlock(&pf_end_lock);
2687 	kproc_exit(0);
2688 }
2689 
2690 void
pf_unload_vnet_purge(void)2691 pf_unload_vnet_purge(void)
2692 {
2693 
2694 	/*
2695 	 * To cleanse up all kifs and rules we need
2696 	 * two runs: first one clears reference flags,
2697 	 * then pf_purge_expired_states() doesn't
2698 	 * raise them, and then second run frees.
2699 	 */
2700 	pf_purge_unlinked_rules();
2701 	pfi_kkif_purge();
2702 
2703 	/*
2704 	 * Now purge everything.
2705 	 */
2706 	pf_purge_expired_states(0, V_pf_hashmask);
2707 	pf_purge_fragments(UINT_MAX);
2708 	pf_purge_expired_src_nodes();
2709 
2710 	/*
2711 	 * Now all kifs & rules should be unreferenced,
2712 	 * thus should be successfully freed.
2713 	 */
2714 	pf_purge_unlinked_rules();
2715 	pfi_kkif_purge();
2716 }
2717 
2718 u_int32_t
pf_state_expires(const struct pf_kstate * state)2719 pf_state_expires(const struct pf_kstate *state)
2720 {
2721 	u_int32_t	timeout;
2722 	u_int32_t	start;
2723 	u_int32_t	end;
2724 	u_int32_t	states;
2725 
2726 	/* handle all PFTM_* > PFTM_MAX here */
2727 	if (state->timeout == PFTM_PURGE)
2728 		return (time_uptime);
2729 	KASSERT(state->timeout != PFTM_UNLINKED,
2730 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2731 	KASSERT((state->timeout < PFTM_MAX),
2732 	    ("pf_state_expires: timeout > PFTM_MAX"));
2733 	timeout = state->rule->timeout[state->timeout];
2734 	if (!timeout)
2735 		timeout = V_pf_default_rule.timeout[state->timeout];
2736 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2737 	if (start && state->rule != &V_pf_default_rule) {
2738 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2739 		states = counter_u64_fetch(state->rule->states_cur);
2740 	} else {
2741 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2742 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2743 		states = V_pf_status.states;
2744 	}
2745 	if (end && states > start && start < end) {
2746 		if (states < end) {
2747 			timeout = (u_int64_t)timeout * (end - states) /
2748 			    (end - start);
2749 			return ((state->expire / 1000) + timeout);
2750 		}
2751 		else
2752 			return (time_uptime);
2753 	}
2754 	return ((state->expire / 1000) + timeout);
2755 }
2756 
2757 void
pf_purge_expired_src_nodes(void)2758 pf_purge_expired_src_nodes(void)
2759 {
2760 	struct pf_ksrc_node_list	 freelist;
2761 	struct pf_srchash	*sh;
2762 	struct pf_ksrc_node	*cur, *next;
2763 	int i;
2764 
2765 	LIST_INIT(&freelist);
2766 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2767 	    PF_HASHROW_LOCK(sh);
2768 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2769 		if (cur->states == 0 && cur->expire <= time_uptime) {
2770 			pf_unlink_src_node(cur);
2771 			LIST_INSERT_HEAD(&freelist, cur, entry);
2772 		} else if (cur->rule != NULL)
2773 			cur->rule->rule_ref |= PFRULE_REFS;
2774 	    PF_HASHROW_UNLOCK(sh);
2775 	}
2776 
2777 	pf_free_src_nodes(&freelist);
2778 
2779 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2780 }
2781 
2782 static void
pf_src_tree_remove_state(struct pf_kstate * s)2783 pf_src_tree_remove_state(struct pf_kstate *s)
2784 {
2785 	uint32_t timeout;
2786 
2787 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2788 	    s->rule->timeout[PFTM_SRC_NODE] :
2789 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2790 
2791 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2792 		if (s->sns[sn_type] == NULL)
2793 			continue;
2794 		PF_SRC_NODE_LOCK(s->sns[sn_type]);
2795 		if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2796 			--(s->sns[sn_type]->conn);
2797 		if (--(s->sns[sn_type]->states) == 0)
2798 			s->sns[sn_type]->expire = time_uptime + timeout;
2799 		PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2800 		s->sns[sn_type] = NULL;
2801 	}
2802 
2803 }
2804 
2805 /*
2806  * Unlink and potentilly free a state. Function may be
2807  * called with ID hash row locked, but always returns
2808  * unlocked, since it needs to go through key hash locking.
2809  */
2810 int
pf_remove_state(struct pf_kstate * s)2811 pf_remove_state(struct pf_kstate *s)
2812 {
2813 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2814 
2815 	NET_EPOCH_ASSERT();
2816 	PF_HASHROW_ASSERT(ih);
2817 
2818 	if (s->timeout == PFTM_UNLINKED) {
2819 		/*
2820 		 * State is being processed
2821 		 * by pf_remove_state() in
2822 		 * an other thread.
2823 		 */
2824 		PF_HASHROW_UNLOCK(ih);
2825 		return (0);	/* XXXGL: undefined actually */
2826 	}
2827 
2828 	if (s->src.state == PF_TCPS_PROXY_DST) {
2829 		/* XXX wire key the right one? */
2830 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2831 		    &s->key[PF_SK_WIRE]->addr[1],
2832 		    &s->key[PF_SK_WIRE]->addr[0],
2833 		    s->key[PF_SK_WIRE]->port[1],
2834 		    s->key[PF_SK_WIRE]->port[0],
2835 		    s->src.seqhi, s->src.seqlo + 1,
2836 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2837 		    s->act.rtableid);
2838 	}
2839 
2840 	LIST_REMOVE(s, entry);
2841 	pf_src_tree_remove_state(s);
2842 
2843 	if (V_pfsync_delete_state_ptr != NULL)
2844 		V_pfsync_delete_state_ptr(s);
2845 
2846 	STATE_DEC_COUNTERS(s);
2847 
2848 	s->timeout = PFTM_UNLINKED;
2849 
2850 	/* Ensure we remove it from the list of halfopen states, if needed. */
2851 	if (s->key[PF_SK_STACK] != NULL &&
2852 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2853 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2854 
2855 	PF_HASHROW_UNLOCK(ih);
2856 
2857 	pf_detach_state(s);
2858 
2859 	pf_udp_mapping_release(s->udp_mapping);
2860 
2861 	/* pf_state_insert() initialises refs to 2 */
2862 	return (pf_release_staten(s, 2));
2863 }
2864 
2865 struct pf_kstate *
pf_alloc_state(int flags)2866 pf_alloc_state(int flags)
2867 {
2868 
2869 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2870 }
2871 
2872 void
pf_free_state(struct pf_kstate * cur)2873 pf_free_state(struct pf_kstate *cur)
2874 {
2875 	struct pf_krule_item *ri;
2876 
2877 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2878 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2879 	    cur->timeout));
2880 
2881 	while ((ri = SLIST_FIRST(&cur->match_rules))) {
2882 		SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2883 		free(ri, M_PF_RULE_ITEM);
2884 	}
2885 
2886 	pf_normalize_tcp_cleanup(cur);
2887 	uma_zfree(V_pf_state_z, cur);
2888 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2889 }
2890 
2891 /*
2892  * Called only from pf_purge_thread(), thus serialized.
2893  */
2894 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2895 pf_purge_expired_states(u_int i, int maxcheck)
2896 {
2897 	struct pf_idhash *ih;
2898 	struct pf_kstate *s;
2899 	struct pf_krule_item *mrm;
2900 	size_t count __unused;
2901 
2902 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2903 
2904 	/*
2905 	 * Go through hash and unlink states that expire now.
2906 	 */
2907 	while (maxcheck > 0) {
2908 		count = 0;
2909 		ih = &V_pf_idhash[i];
2910 
2911 		/* only take the lock if we expect to do work */
2912 		if (!LIST_EMPTY(&ih->states)) {
2913 relock:
2914 			PF_HASHROW_LOCK(ih);
2915 			LIST_FOREACH(s, &ih->states, entry) {
2916 				if (pf_state_expires(s) <= time_uptime) {
2917 					V_pf_status.states -=
2918 					    pf_remove_state(s);
2919 					goto relock;
2920 				}
2921 				s->rule->rule_ref |= PFRULE_REFS;
2922 				if (s->nat_rule != NULL)
2923 					s->nat_rule->rule_ref |= PFRULE_REFS;
2924 				if (s->anchor != NULL)
2925 					s->anchor->rule_ref |= PFRULE_REFS;
2926 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2927 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2928 					mrm->r->rule_ref |= PFRULE_REFS;
2929 				if (s->act.rt_kif)
2930 					s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2931 				count++;
2932 			}
2933 			PF_HASHROW_UNLOCK(ih);
2934 		}
2935 
2936 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2937 
2938 		/* Return when we hit end of hash. */
2939 		if (++i > V_pf_hashmask) {
2940 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2941 			return (0);
2942 		}
2943 
2944 		maxcheck--;
2945 	}
2946 
2947 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2948 
2949 	return (i);
2950 }
2951 
2952 static void
pf_purge_unlinked_rules(void)2953 pf_purge_unlinked_rules(void)
2954 {
2955 	struct pf_krulequeue tmpq;
2956 	struct pf_krule *r, *r1;
2957 
2958 	/*
2959 	 * If we have overloading task pending, then we'd
2960 	 * better skip purging this time. There is a tiny
2961 	 * probability that overloading task references
2962 	 * an already unlinked rule.
2963 	 */
2964 	PF_OVERLOADQ_LOCK();
2965 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2966 		PF_OVERLOADQ_UNLOCK();
2967 		return;
2968 	}
2969 	PF_OVERLOADQ_UNLOCK();
2970 
2971 	/*
2972 	 * Do naive mark-and-sweep garbage collecting of old rules.
2973 	 * Reference flag is raised by pf_purge_expired_states()
2974 	 * and pf_purge_expired_src_nodes().
2975 	 *
2976 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2977 	 * use a temporary queue.
2978 	 */
2979 	TAILQ_INIT(&tmpq);
2980 	PF_UNLNKDRULES_LOCK();
2981 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2982 		if (!(r->rule_ref & PFRULE_REFS)) {
2983 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2984 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2985 		} else
2986 			r->rule_ref &= ~PFRULE_REFS;
2987 	}
2988 	PF_UNLNKDRULES_UNLOCK();
2989 
2990 	if (!TAILQ_EMPTY(&tmpq)) {
2991 		PF_CONFIG_LOCK();
2992 		PF_RULES_WLOCK();
2993 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2994 			TAILQ_REMOVE(&tmpq, r, entries);
2995 			pf_free_rule(r);
2996 		}
2997 		PF_RULES_WUNLOCK();
2998 		PF_CONFIG_UNLOCK();
2999 	}
3000 }
3001 
3002 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)3003 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
3004 {
3005 	switch (af) {
3006 #ifdef INET
3007 	case AF_INET: {
3008 		u_int32_t a = ntohl(addr->addr32[0]);
3009 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
3010 		    (a>>8)&255, a&255);
3011 		if (p) {
3012 			p = ntohs(p);
3013 			printf(":%u", p);
3014 		}
3015 		break;
3016 	}
3017 #endif /* INET */
3018 #ifdef INET6
3019 	case AF_INET6: {
3020 		u_int16_t b;
3021 		u_int8_t i, curstart, curend, maxstart, maxend;
3022 		curstart = curend = maxstart = maxend = 255;
3023 		for (i = 0; i < 8; i++) {
3024 			if (!addr->addr16[i]) {
3025 				if (curstart == 255)
3026 					curstart = i;
3027 				curend = i;
3028 			} else {
3029 				if ((curend - curstart) >
3030 				    (maxend - maxstart)) {
3031 					maxstart = curstart;
3032 					maxend = curend;
3033 				}
3034 				curstart = curend = 255;
3035 			}
3036 		}
3037 		if ((curend - curstart) >
3038 		    (maxend - maxstart)) {
3039 			maxstart = curstart;
3040 			maxend = curend;
3041 		}
3042 		for (i = 0; i < 8; i++) {
3043 			if (i >= maxstart && i <= maxend) {
3044 				if (i == 0)
3045 					printf(":");
3046 				if (i == maxend)
3047 					printf(":");
3048 			} else {
3049 				b = ntohs(addr->addr16[i]);
3050 				printf("%x", b);
3051 				if (i < 7)
3052 					printf(":");
3053 			}
3054 		}
3055 		if (p) {
3056 			p = ntohs(p);
3057 			printf("[%u]", p);
3058 		}
3059 		break;
3060 	}
3061 #endif /* INET6 */
3062 	default:
3063 		unhandled_af(af);
3064 	}
3065 }
3066 
3067 void
pf_print_state(struct pf_kstate * s)3068 pf_print_state(struct pf_kstate *s)
3069 {
3070 	pf_print_state_parts(s, NULL, NULL);
3071 }
3072 
3073 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3074 pf_print_state_parts(struct pf_kstate *s,
3075     struct pf_state_key *skwp, struct pf_state_key *sksp)
3076 {
3077 	struct pf_state_key *skw, *sks;
3078 	u_int8_t proto, dir;
3079 
3080 	/* Do our best to fill these, but they're skipped if NULL */
3081 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3082 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3083 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
3084 	dir = s ? s->direction : 0;
3085 
3086 	switch (proto) {
3087 	case IPPROTO_IPV4:
3088 		printf("IPv4");
3089 		break;
3090 	case IPPROTO_IPV6:
3091 		printf("IPv6");
3092 		break;
3093 	case IPPROTO_TCP:
3094 		printf("TCP");
3095 		break;
3096 	case IPPROTO_UDP:
3097 		printf("UDP");
3098 		break;
3099 	case IPPROTO_ICMP:
3100 		printf("ICMP");
3101 		break;
3102 	case IPPROTO_ICMPV6:
3103 		printf("ICMPv6");
3104 		break;
3105 	default:
3106 		printf("%u", proto);
3107 		break;
3108 	}
3109 	switch (dir) {
3110 	case PF_IN:
3111 		printf(" in");
3112 		break;
3113 	case PF_OUT:
3114 		printf(" out");
3115 		break;
3116 	}
3117 	if (skw) {
3118 		printf(" wire: ");
3119 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3120 		printf(" ");
3121 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3122 	}
3123 	if (sks) {
3124 		printf(" stack: ");
3125 		if (sks != skw) {
3126 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3127 			printf(" ");
3128 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3129 		} else
3130 			printf("-");
3131 	}
3132 	if (s) {
3133 		if (proto == IPPROTO_TCP) {
3134 			printf(" [lo=%u high=%u win=%u modulator=%u",
3135 			    s->src.seqlo, s->src.seqhi,
3136 			    s->src.max_win, s->src.seqdiff);
3137 			if (s->src.wscale && s->dst.wscale)
3138 				printf(" wscale=%u",
3139 				    s->src.wscale & PF_WSCALE_MASK);
3140 			printf("]");
3141 			printf(" [lo=%u high=%u win=%u modulator=%u",
3142 			    s->dst.seqlo, s->dst.seqhi,
3143 			    s->dst.max_win, s->dst.seqdiff);
3144 			if (s->src.wscale && s->dst.wscale)
3145 				printf(" wscale=%u",
3146 				s->dst.wscale & PF_WSCALE_MASK);
3147 			printf("]");
3148 		}
3149 		printf(" %u:%u", s->src.state, s->dst.state);
3150 		if (s->rule)
3151 			printf(" @%d", s->rule->nr);
3152 	}
3153 }
3154 
3155 void
pf_print_flags(uint16_t f)3156 pf_print_flags(uint16_t f)
3157 {
3158 	if (f)
3159 		printf(" ");
3160 	if (f & TH_FIN)
3161 		printf("F");
3162 	if (f & TH_SYN)
3163 		printf("S");
3164 	if (f & TH_RST)
3165 		printf("R");
3166 	if (f & TH_PUSH)
3167 		printf("P");
3168 	if (f & TH_ACK)
3169 		printf("A");
3170 	if (f & TH_URG)
3171 		printf("U");
3172 	if (f & TH_ECE)
3173 		printf("E");
3174 	if (f & TH_CWR)
3175 		printf("W");
3176 	if (f & TH_AE)
3177 		printf("e");
3178 }
3179 
3180 #define	PF_SET_SKIP_STEPS(i)					\
3181 	do {							\
3182 		while (head[i] != cur) {			\
3183 			head[i]->skip[i] = cur;			\
3184 			head[i] = TAILQ_NEXT(head[i], entries);	\
3185 		}						\
3186 	} while (0)
3187 
3188 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3189 pf_calc_skip_steps(struct pf_krulequeue *rules)
3190 {
3191 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3192 	int i;
3193 
3194 	cur = TAILQ_FIRST(rules);
3195 	prev = cur;
3196 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3197 		head[i] = cur;
3198 	while (cur != NULL) {
3199 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3200 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3201 		if (cur->direction != prev->direction)
3202 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3203 		if (cur->af != prev->af)
3204 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
3205 		if (cur->proto != prev->proto)
3206 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3207 		if (cur->src.neg != prev->src.neg ||
3208 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3209 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3210 		if (cur->dst.neg != prev->dst.neg ||
3211 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3212 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3213 		if (cur->src.port[0] != prev->src.port[0] ||
3214 		    cur->src.port[1] != prev->src.port[1] ||
3215 		    cur->src.port_op != prev->src.port_op)
3216 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3217 		if (cur->dst.port[0] != prev->dst.port[0] ||
3218 		    cur->dst.port[1] != prev->dst.port[1] ||
3219 		    cur->dst.port_op != prev->dst.port_op)
3220 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3221 
3222 		prev = cur;
3223 		cur = TAILQ_NEXT(cur, entries);
3224 	}
3225 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3226 		PF_SET_SKIP_STEPS(i);
3227 }
3228 
3229 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3230 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3231 {
3232 	if (aw1->type != aw2->type)
3233 		return (1);
3234 	switch (aw1->type) {
3235 	case PF_ADDR_ADDRMASK:
3236 	case PF_ADDR_RANGE:
3237 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3238 			return (1);
3239 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3240 			return (1);
3241 		return (0);
3242 	case PF_ADDR_DYNIFTL:
3243 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3244 	case PF_ADDR_NONE:
3245 	case PF_ADDR_NOROUTE:
3246 	case PF_ADDR_URPFFAILED:
3247 		return (0);
3248 	case PF_ADDR_TABLE:
3249 		return (aw1->p.tbl != aw2->p.tbl);
3250 	default:
3251 		printf("invalid address type: %d\n", aw1->type);
3252 		return (1);
3253 	}
3254 }
3255 
3256 /**
3257  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3258  * header isn't always a full checksum. In some cases (i.e. output) it's a
3259  * pseudo-header checksum, which is a partial checksum over src/dst IP
3260  * addresses, protocol number and length.
3261  *
3262  * That means we have the following cases:
3263  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3264  *  	checksums, we need to update the checksum whenever we change anything.
3265  *  * Output (i.e. the checksum is a pseudo-header checksum):
3266  *  	x The field being updated is src/dst address or affects the length of
3267  *  	the packet. We need to update the pseudo-header checksum (note that this
3268  *  	checksum is not ones' complement).
3269  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3270  *  	don't have to update anything.
3271  **/
3272 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3273 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3274 {
3275 	u_int32_t x;
3276 
3277 	x = cksum + old - new;
3278 	x = (x + (x >> 16)) & 0xffff;
3279 
3280 	/* optimise: eliminate a branch when not udp */
3281 	if (udp && cksum == 0x0000)
3282 		return cksum;
3283 	if (udp && x == 0x0000)
3284 		x = 0xffff;
3285 
3286 	return (u_int16_t)(x);
3287 }
3288 
3289 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3290 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3291 {
3292 	int	 rewrite = 0;
3293 
3294 	if (*f != v) {
3295 		uint16_t old = htons(hi ? (*f << 8) : *f);
3296 		uint16_t new = htons(hi ? ( v << 8) :  v);
3297 
3298 		*f = v;
3299 
3300 		if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3301 		    CSUM_DELAY_DATA_IPV6)))
3302 			*pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3303 			    pd->proto == IPPROTO_UDP);
3304 
3305 		rewrite = 1;
3306 	}
3307 
3308 	return (rewrite);
3309 }
3310 
3311 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3312 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3313 {
3314 	int rewrite = 0;
3315 	u_int8_t *fb = (u_int8_t *)f;
3316 	u_int8_t *vb = (u_int8_t *)&v;
3317 
3318 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3319 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3320 
3321 	return (rewrite);
3322 }
3323 
3324 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3325 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3326 {
3327 	int rewrite = 0;
3328 	u_int8_t *fb = (u_int8_t *)f;
3329 	u_int8_t *vb = (u_int8_t *)&v;
3330 
3331 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3332 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3333 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3334 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3335 
3336 	return (rewrite);
3337 }
3338 
3339 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3340 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3341         u_int16_t new, u_int8_t udp)
3342 {
3343 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3344 		return (cksum);
3345 
3346 	return (pf_cksum_fixup(cksum, old, new, udp));
3347 }
3348 
3349 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3350 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3351         struct pf_addr *an, u_int16_t pn)
3352 {
3353 	struct pf_addr	ao;
3354 	u_int16_t	po;
3355 	uint8_t		u = pd->virtual_proto == IPPROTO_UDP;
3356 
3357 	MPASS(pd->pcksum);
3358 	if (pd->af == AF_INET) {
3359 		MPASS(pd->ip_sum);
3360 	}
3361 
3362 	pf_addrcpy(&ao, a, pd->af);
3363 	if (pd->af == pd->naf)
3364 		pf_addrcpy(a, an, pd->af);
3365 
3366 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3367 		*pd->pcksum = ~*pd->pcksum;
3368 
3369 	if (p == NULL)  /* no port -> done. no cksum to worry about. */
3370 		return;
3371 	po = *p;
3372 	*p = pn;
3373 
3374 	switch (pd->af) {
3375 #ifdef INET
3376 	case AF_INET:
3377 		switch (pd->naf) {
3378 		case AF_INET:
3379 			*pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3380 			    ao.addr16[0], an->addr16[0], 0),
3381 			    ao.addr16[1], an->addr16[1], 0);
3382 			*p = pn;
3383 
3384 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3385 			    ao.addr16[0], an->addr16[0], u),
3386 			    ao.addr16[1], an->addr16[1], u);
3387 
3388 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3389 			break;
3390 #ifdef INET6
3391 		case AF_INET6:
3392 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3393 			   pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3394 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3395 			    ao.addr16[0], an->addr16[0], u),
3396 			    ao.addr16[1], an->addr16[1], u),
3397 			    0,            an->addr16[2], u),
3398 			    0,            an->addr16[3], u),
3399 			    0,            an->addr16[4], u),
3400 			    0,            an->addr16[5], u),
3401 			    0,            an->addr16[6], u),
3402 			    0,            an->addr16[7], u),
3403 			    po, pn, u);
3404 			break;
3405 #endif /* INET6 */
3406 		default:
3407 			unhandled_af(pd->naf);
3408 		}
3409 		break;
3410 #endif /* INET */
3411 #ifdef INET6
3412 	case AF_INET6:
3413 		switch (pd->naf) {
3414 #ifdef INET
3415 		case AF_INET:
3416 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3417 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3418 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3419 			    ao.addr16[0], an->addr16[0], u),
3420 			    ao.addr16[1], an->addr16[1], u),
3421 			    ao.addr16[2], 0,             u),
3422 			    ao.addr16[3], 0,             u),
3423 			    ao.addr16[4], 0,             u),
3424 			    ao.addr16[5], 0,             u),
3425 			    ao.addr16[6], 0,             u),
3426 			    ao.addr16[7], 0,             u),
3427 			    po, pn, u);
3428 			break;
3429 #endif /* INET */
3430 		case AF_INET6:
3431 			*pd->pcksum  = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3432 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3433 			    pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3434 			    ao.addr16[0], an->addr16[0], u),
3435 			    ao.addr16[1], an->addr16[1], u),
3436 			    ao.addr16[2], an->addr16[2], u),
3437 			    ao.addr16[3], an->addr16[3], u),
3438 			    ao.addr16[4], an->addr16[4], u),
3439 			    ao.addr16[5], an->addr16[5], u),
3440 			    ao.addr16[6], an->addr16[6], u),
3441 			    ao.addr16[7], an->addr16[7], u);
3442 
3443 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3444 			break;
3445 		default:
3446 			unhandled_af(pd->naf);
3447 		}
3448 		break;
3449 #endif /* INET6 */
3450 	default:
3451 		unhandled_af(pd->af);
3452 	}
3453 
3454 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3455 	    CSUM_DELAY_DATA_IPV6)) {
3456 		*pd->pcksum = ~*pd->pcksum;
3457 		if (! *pd->pcksum)
3458 			*pd->pcksum = 0xffff;
3459 	}
3460 }
3461 
3462 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3463 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3464 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3465 {
3466 	u_int32_t	ao;
3467 
3468 	memcpy(&ao, a, sizeof(ao));
3469 	memcpy(a, &an, sizeof(u_int32_t));
3470 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3471 	    ao % 65536, an % 65536, u);
3472 }
3473 
3474 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3475 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3476 {
3477 	u_int32_t	ao;
3478 
3479 	memcpy(&ao, a, sizeof(ao));
3480 	memcpy(a, &an, sizeof(u_int32_t));
3481 
3482 	*c = pf_proto_cksum_fixup(m,
3483 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3484 	    ao % 65536, an % 65536, udp);
3485 }
3486 
3487 #ifdef INET6
3488 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3489 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3490 {
3491 	struct pf_addr	ao;
3492 
3493 	pf_addrcpy(&ao, a, AF_INET6);
3494 	pf_addrcpy(a, an, AF_INET6);
3495 
3496 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3497 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3498 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3499 	    ao.addr16[0], an->addr16[0], u),
3500 	    ao.addr16[1], an->addr16[1], u),
3501 	    ao.addr16[2], an->addr16[2], u),
3502 	    ao.addr16[3], an->addr16[3], u),
3503 	    ao.addr16[4], an->addr16[4], u),
3504 	    ao.addr16[5], an->addr16[5], u),
3505 	    ao.addr16[6], an->addr16[6], u),
3506 	    ao.addr16[7], an->addr16[7], u);
3507 }
3508 #endif /* INET6 */
3509 
3510 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3511 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3512     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3513     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3514 {
3515 	struct pf_addr	oia, ooa;
3516 
3517 	pf_addrcpy(&oia, ia, af);
3518 	if (oa)
3519 		pf_addrcpy(&ooa, oa, af);
3520 
3521 	/* Change inner protocol port, fix inner protocol checksum. */
3522 	if (ip != NULL) {
3523 		u_int16_t	oip = *ip;
3524 		u_int32_t	opc;
3525 
3526 		if (pc != NULL)
3527 			opc = *pc;
3528 		*ip = np;
3529 		if (pc != NULL)
3530 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3531 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3532 		if (pc != NULL)
3533 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3534 	}
3535 	/* Change inner ip address, fix inner ip and icmp checksums. */
3536 	pf_addrcpy(ia, na, af);
3537 	switch (af) {
3538 #ifdef INET
3539 	case AF_INET: {
3540 		u_int32_t	 oh2c = *h2c;
3541 
3542 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3543 		    oia.addr16[0], ia->addr16[0], 0),
3544 		    oia.addr16[1], ia->addr16[1], 0);
3545 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3546 		    oia.addr16[0], ia->addr16[0], 0),
3547 		    oia.addr16[1], ia->addr16[1], 0);
3548 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3549 		break;
3550 	}
3551 #endif /* INET */
3552 #ifdef INET6
3553 	case AF_INET6:
3554 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3555 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3556 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3557 		    oia.addr16[0], ia->addr16[0], u),
3558 		    oia.addr16[1], ia->addr16[1], u),
3559 		    oia.addr16[2], ia->addr16[2], u),
3560 		    oia.addr16[3], ia->addr16[3], u),
3561 		    oia.addr16[4], ia->addr16[4], u),
3562 		    oia.addr16[5], ia->addr16[5], u),
3563 		    oia.addr16[6], ia->addr16[6], u),
3564 		    oia.addr16[7], ia->addr16[7], u);
3565 		break;
3566 #endif /* INET6 */
3567 	}
3568 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3569 	if (oa) {
3570 		pf_addrcpy(oa, na, af);
3571 		switch (af) {
3572 #ifdef INET
3573 		case AF_INET:
3574 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3575 			    ooa.addr16[0], oa->addr16[0], 0),
3576 			    ooa.addr16[1], oa->addr16[1], 0);
3577 			break;
3578 #endif /* INET */
3579 #ifdef INET6
3580 		case AF_INET6:
3581 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3582 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3583 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3584 			    ooa.addr16[0], oa->addr16[0], u),
3585 			    ooa.addr16[1], oa->addr16[1], u),
3586 			    ooa.addr16[2], oa->addr16[2], u),
3587 			    ooa.addr16[3], oa->addr16[3], u),
3588 			    ooa.addr16[4], oa->addr16[4], u),
3589 			    ooa.addr16[5], oa->addr16[5], u),
3590 			    ooa.addr16[6], oa->addr16[6], u),
3591 			    ooa.addr16[7], oa->addr16[7], u);
3592 			break;
3593 #endif /* INET6 */
3594 		}
3595 	}
3596 }
3597 
3598 int
pf_translate_af(struct pf_pdesc * pd)3599 pf_translate_af(struct pf_pdesc *pd)
3600 {
3601 #if defined(INET) && defined(INET6)
3602 	struct mbuf		*mp;
3603 	struct ip		*ip4;
3604 	struct ip6_hdr		*ip6;
3605 	struct icmp6_hdr	*icmp;
3606 	struct m_tag		*mtag;
3607 	struct pf_fragment_tag	*ftag;
3608 	int			 hlen;
3609 
3610 	hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3611 
3612 	/* trim the old header */
3613 	m_adj(pd->m, pd->off);
3614 
3615 	/* prepend a new one */
3616 	M_PREPEND(pd->m, hlen, M_NOWAIT);
3617 	if (pd->m == NULL)
3618 		return (-1);
3619 
3620 	switch (pd->naf) {
3621 	case AF_INET:
3622 		ip4 = mtod(pd->m, struct ip *);
3623 		bzero(ip4, hlen);
3624 		ip4->ip_v = IPVERSION;
3625 		ip4->ip_hl = hlen >> 2;
3626 		ip4->ip_tos = pd->tos;
3627 		ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3628 		ip_fillid(ip4, V_ip_random_id);
3629 		ip4->ip_ttl = pd->ttl;
3630 		ip4->ip_p = pd->proto;
3631 		ip4->ip_src = pd->nsaddr.v4;
3632 		ip4->ip_dst = pd->ndaddr.v4;
3633 		pd->src = (struct pf_addr *)&ip4->ip_src;
3634 		pd->dst = (struct pf_addr *)&ip4->ip_dst;
3635 		pd->off = sizeof(struct ip);
3636 		break;
3637 	case AF_INET6:
3638 		ip6 = mtod(pd->m, struct ip6_hdr *);
3639 		bzero(ip6, hlen);
3640 		ip6->ip6_vfc = IPV6_VERSION;
3641 		ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3642 		ip6->ip6_plen = htons(pd->tot_len - pd->off);
3643 		ip6->ip6_nxt = pd->proto;
3644 		if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3645 			ip6->ip6_hlim = IPV6_DEFHLIM;
3646 		else
3647 			ip6->ip6_hlim = pd->ttl;
3648 		ip6->ip6_src = pd->nsaddr.v6;
3649 		ip6->ip6_dst = pd->ndaddr.v6;
3650 		pd->src = (struct pf_addr *)&ip6->ip6_src;
3651 		pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3652 		pd->off = sizeof(struct ip6_hdr);
3653 
3654 		/*
3655 		 * If we're dealing with a reassembled packet we need to adjust
3656 		 * the header length from the IPv4 header size to IPv6 header
3657 		 * size.
3658 		 */
3659 		mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3660 		if (mtag) {
3661 			ftag = (struct pf_fragment_tag *)(mtag + 1);
3662 			ftag->ft_hdrlen = sizeof(*ip6);
3663 			ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3664 			    sizeof(struct ip) + sizeof(struct ip6_frag);
3665 		}
3666 		break;
3667 	default:
3668 		return (-1);
3669 	}
3670 
3671 	/* recalculate icmp/icmp6 checksums */
3672 	if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3673 		int off;
3674 		if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3675 		    NULL) {
3676 			pd->m = NULL;
3677 			return (-1);
3678 		}
3679 		icmp = (struct icmp6_hdr *)(mp->m_data + off);
3680 		icmp->icmp6_cksum = 0;
3681 		icmp->icmp6_cksum = pd->naf == AF_INET ?
3682 		    in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3683 		    in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3684 			ntohs(ip6->ip6_plen));
3685 	}
3686 #endif /* INET && INET6 */
3687 
3688 	return (0);
3689 }
3690 
3691 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3692 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3693     struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3694     sa_family_t af, sa_family_t naf)
3695 {
3696 #if defined(INET) && defined(INET6)
3697 	struct mbuf	*n = NULL;
3698 	struct ip	*ip4;
3699 	struct ip6_hdr	*ip6;
3700 	int		 hlen, olen, mlen;
3701 
3702 	if (af == naf || (af != AF_INET && af != AF_INET6) ||
3703 	    (naf != AF_INET && naf != AF_INET6))
3704 		return (-1);
3705 
3706 	/* split the mbuf chain on the inner ip/ip6 header boundary */
3707 	if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3708 		return (-1);
3709 
3710 	/* old header */
3711 	olen = pd2->off - off;
3712 	/* new header */
3713 	hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3714 
3715 	/* trim old header */
3716 	m_adj(n, olen);
3717 
3718 	/* prepend a new one */
3719 	M_PREPEND(n, hlen, M_NOWAIT);
3720 	if (n == NULL)
3721 		return (-1);
3722 
3723 	/* translate inner ip/ip6 header */
3724 	switch (naf) {
3725 	case AF_INET:
3726 		ip4 = mtod(n, struct ip *);
3727 		bzero(ip4, sizeof(*ip4));
3728 		ip4->ip_v = IPVERSION;
3729 		ip4->ip_hl = sizeof(*ip4) >> 2;
3730 		ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3731 		ip_fillid(ip4, V_ip_random_id);
3732 		ip4->ip_off = htons(IP_DF);
3733 		ip4->ip_ttl = pd2->ttl;
3734 		if (pd2->proto == IPPROTO_ICMPV6)
3735 			ip4->ip_p = IPPROTO_ICMP;
3736 		else
3737 			ip4->ip_p = pd2->proto;
3738 		ip4->ip_src = src->v4;
3739 		ip4->ip_dst = dst->v4;
3740 		ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3741 		break;
3742 	case AF_INET6:
3743 		ip6 = mtod(n, struct ip6_hdr *);
3744 		bzero(ip6, sizeof(*ip6));
3745 		ip6->ip6_vfc = IPV6_VERSION;
3746 		ip6->ip6_plen = htons(pd2->tot_len - olen);
3747 		if (pd2->proto == IPPROTO_ICMP)
3748 			ip6->ip6_nxt = IPPROTO_ICMPV6;
3749 		else
3750 			ip6->ip6_nxt = pd2->proto;
3751 		if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3752 			ip6->ip6_hlim = IPV6_DEFHLIM;
3753 		else
3754 			ip6->ip6_hlim = pd2->ttl;
3755 		ip6->ip6_src = src->v6;
3756 		ip6->ip6_dst = dst->v6;
3757 		break;
3758 	default:
3759 		unhandled_af(naf);
3760 	}
3761 
3762 	/* adjust payload offset and total packet length */
3763 	pd2->off += hlen - olen;
3764 	pd->tot_len += hlen - olen;
3765 
3766 	/* merge modified inner packet with the original header */
3767 	mlen = n->m_pkthdr.len;
3768 	m_cat(m, n);
3769 	m->m_pkthdr.len += mlen;
3770 #endif /* INET && INET6 */
3771 
3772 	return (0);
3773 }
3774 
3775 #define PTR_IP(field)	(offsetof(struct ip, field))
3776 #define PTR_IP6(field)	(offsetof(struct ip6_hdr, field))
3777 
3778 int
pf_translate_icmp_af(int af,void * arg)3779 pf_translate_icmp_af(int af, void *arg)
3780 {
3781 #if defined(INET) && defined(INET6)
3782 	struct icmp		*icmp4;
3783 	struct icmp6_hdr	*icmp6;
3784 	u_int32_t		 mtu;
3785 	int32_t			 ptr = -1;
3786 	u_int8_t		 type;
3787 	u_int8_t		 code;
3788 
3789 	switch (af) {
3790 	case AF_INET:
3791 		icmp6 = arg;
3792 		type = icmp6->icmp6_type;
3793 		code = icmp6->icmp6_code;
3794 		mtu = ntohl(icmp6->icmp6_mtu);
3795 
3796 		switch (type) {
3797 		case ICMP6_ECHO_REQUEST:
3798 			type = ICMP_ECHO;
3799 			break;
3800 		case ICMP6_ECHO_REPLY:
3801 			type = ICMP_ECHOREPLY;
3802 			break;
3803 		case ICMP6_DST_UNREACH:
3804 			type = ICMP_UNREACH;
3805 			switch (code) {
3806 			case ICMP6_DST_UNREACH_NOROUTE:
3807 			case ICMP6_DST_UNREACH_BEYONDSCOPE:
3808 			case ICMP6_DST_UNREACH_ADDR:
3809 				code = ICMP_UNREACH_HOST;
3810 				break;
3811 			case ICMP6_DST_UNREACH_ADMIN:
3812 				code = ICMP_UNREACH_HOST_PROHIB;
3813 				break;
3814 			case ICMP6_DST_UNREACH_NOPORT:
3815 				code = ICMP_UNREACH_PORT;
3816 				break;
3817 			default:
3818 				return (-1);
3819 			}
3820 			break;
3821 		case ICMP6_PACKET_TOO_BIG:
3822 			type = ICMP_UNREACH;
3823 			code = ICMP_UNREACH_NEEDFRAG;
3824 			mtu -= 20;
3825 			break;
3826 		case ICMP6_TIME_EXCEEDED:
3827 			type = ICMP_TIMXCEED;
3828 			break;
3829 		case ICMP6_PARAM_PROB:
3830 			switch (code) {
3831 			case ICMP6_PARAMPROB_HEADER:
3832 				type = ICMP_PARAMPROB;
3833 				code = ICMP_PARAMPROB_ERRATPTR;
3834 				ptr = ntohl(icmp6->icmp6_pptr);
3835 
3836 				if (ptr == PTR_IP6(ip6_vfc))
3837 					; /* preserve */
3838 				else if (ptr == PTR_IP6(ip6_vfc) + 1)
3839 					ptr = PTR_IP(ip_tos);
3840 				else if (ptr == PTR_IP6(ip6_plen) ||
3841 				    ptr == PTR_IP6(ip6_plen) + 1)
3842 					ptr = PTR_IP(ip_len);
3843 				else if (ptr == PTR_IP6(ip6_nxt))
3844 					ptr = PTR_IP(ip_p);
3845 				else if (ptr == PTR_IP6(ip6_hlim))
3846 					ptr = PTR_IP(ip_ttl);
3847 				else if (ptr >= PTR_IP6(ip6_src) &&
3848 				    ptr < PTR_IP6(ip6_dst))
3849 					ptr = PTR_IP(ip_src);
3850 				else if (ptr >= PTR_IP6(ip6_dst) &&
3851 				    ptr < sizeof(struct ip6_hdr))
3852 					ptr = PTR_IP(ip_dst);
3853 				else {
3854 					return (-1);
3855 				}
3856 				break;
3857 			case ICMP6_PARAMPROB_NEXTHEADER:
3858 				type = ICMP_UNREACH;
3859 				code = ICMP_UNREACH_PROTOCOL;
3860 				break;
3861 			default:
3862 				return (-1);
3863 			}
3864 			break;
3865 		default:
3866 			return (-1);
3867 		}
3868 		if (icmp6->icmp6_type != type) {
3869 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3870 			    icmp6->icmp6_type, type, 0);
3871 			icmp6->icmp6_type = type;
3872 		}
3873 		if (icmp6->icmp6_code != code) {
3874 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3875 			    icmp6->icmp6_code, code, 0);
3876 			icmp6->icmp6_code = code;
3877 		}
3878 		if (icmp6->icmp6_mtu != htonl(mtu)) {
3879 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3880 			    htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3881 			/* aligns well with a icmpv4 nextmtu */
3882 			icmp6->icmp6_mtu = htonl(mtu);
3883 		}
3884 		if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3885 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3886 			    htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3887 			/* icmpv4 pptr is a one most significant byte */
3888 			icmp6->icmp6_pptr = htonl(ptr << 24);
3889 		}
3890 		break;
3891 	case AF_INET6:
3892 		icmp4 = arg;
3893 		type = icmp4->icmp_type;
3894 		code = icmp4->icmp_code;
3895 		mtu = ntohs(icmp4->icmp_nextmtu);
3896 
3897 		switch (type) {
3898 		case ICMP_ECHO:
3899 			type = ICMP6_ECHO_REQUEST;
3900 			break;
3901 		case ICMP_ECHOREPLY:
3902 			type = ICMP6_ECHO_REPLY;
3903 			break;
3904 		case ICMP_UNREACH:
3905 			type = ICMP6_DST_UNREACH;
3906 			switch (code) {
3907 			case ICMP_UNREACH_NET:
3908 			case ICMP_UNREACH_HOST:
3909 			case ICMP_UNREACH_NET_UNKNOWN:
3910 			case ICMP_UNREACH_HOST_UNKNOWN:
3911 			case ICMP_UNREACH_ISOLATED:
3912 			case ICMP_UNREACH_TOSNET:
3913 			case ICMP_UNREACH_TOSHOST:
3914 				code = ICMP6_DST_UNREACH_NOROUTE;
3915 				break;
3916 			case ICMP_UNREACH_PORT:
3917 				code = ICMP6_DST_UNREACH_NOPORT;
3918 				break;
3919 			case ICMP_UNREACH_NET_PROHIB:
3920 			case ICMP_UNREACH_HOST_PROHIB:
3921 			case ICMP_UNREACH_FILTER_PROHIB:
3922 			case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3923 				code = ICMP6_DST_UNREACH_ADMIN;
3924 				break;
3925 			case ICMP_UNREACH_PROTOCOL:
3926 				type = ICMP6_PARAM_PROB;
3927 				code = ICMP6_PARAMPROB_NEXTHEADER;
3928 				ptr = offsetof(struct ip6_hdr, ip6_nxt);
3929 				break;
3930 			case ICMP_UNREACH_NEEDFRAG:
3931 				type = ICMP6_PACKET_TOO_BIG;
3932 				code = 0;
3933 				mtu += 20;
3934 				break;
3935 			default:
3936 				return (-1);
3937 			}
3938 			break;
3939 		case ICMP_TIMXCEED:
3940 			type = ICMP6_TIME_EXCEEDED;
3941 			break;
3942 		case ICMP_PARAMPROB:
3943 			type = ICMP6_PARAM_PROB;
3944 			switch (code) {
3945 			case ICMP_PARAMPROB_ERRATPTR:
3946 				code = ICMP6_PARAMPROB_HEADER;
3947 				break;
3948 			case ICMP_PARAMPROB_LENGTH:
3949 				code = ICMP6_PARAMPROB_HEADER;
3950 				break;
3951 			default:
3952 				return (-1);
3953 			}
3954 
3955 			ptr = icmp4->icmp_pptr;
3956 			if (ptr == 0 || ptr == PTR_IP(ip_tos))
3957 				; /* preserve */
3958 			else if (ptr == PTR_IP(ip_len) ||
3959 			    ptr == PTR_IP(ip_len) + 1)
3960 				ptr = PTR_IP6(ip6_plen);
3961 			else if (ptr == PTR_IP(ip_ttl))
3962 				ptr = PTR_IP6(ip6_hlim);
3963 			else if (ptr == PTR_IP(ip_p))
3964 				ptr = PTR_IP6(ip6_nxt);
3965 			else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3966 				ptr = PTR_IP6(ip6_src);
3967 			else if (ptr >= PTR_IP(ip_dst) &&
3968 			    ptr < sizeof(struct ip))
3969 				ptr = PTR_IP6(ip6_dst);
3970 			else {
3971 				return (-1);
3972 			}
3973 			break;
3974 		default:
3975 			return (-1);
3976 		}
3977 		if (icmp4->icmp_type != type) {
3978 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3979 			    icmp4->icmp_type, type, 0);
3980 			icmp4->icmp_type = type;
3981 		}
3982 		if (icmp4->icmp_code != code) {
3983 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3984 			    icmp4->icmp_code, code, 0);
3985 			icmp4->icmp_code = code;
3986 		}
3987 		if (icmp4->icmp_nextmtu != htons(mtu)) {
3988 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3989 			    icmp4->icmp_nextmtu, htons(mtu), 0);
3990 			icmp4->icmp_nextmtu = htons(mtu);
3991 		}
3992 		if (ptr >= 0 && icmp4->icmp_void != ptr) {
3993 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3994 			    htons(icmp4->icmp_pptr), htons(ptr), 0);
3995 			icmp4->icmp_void = htonl(ptr);
3996 		}
3997 		break;
3998 	default:
3999 		unhandled_af(af);
4000 	}
4001 #endif /* INET && INET6 */
4002 
4003 	return (0);
4004 }
4005 
4006 /*
4007  * Need to modulate the sequence numbers in the TCP SACK option
4008  * (credits to Krzysztof Pfaff for report and patch)
4009  */
4010 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)4011 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
4012     struct pf_state_peer *dst)
4013 {
4014 	struct sackblk	 sack;
4015 	int		 copyback = 0, i;
4016 	int		 olen, optsoff;
4017 	uint8_t		 opts[MAX_TCPOPTLEN], *opt, *eoh;
4018 
4019 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4020 	optsoff = pd->off + sizeof(struct tcphdr);
4021 #define	TCPOLEN_MINSACK	(TCPOLEN_SACK + 2)
4022 	if (olen < TCPOLEN_MINSACK ||
4023 	    !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af))
4024 		return (0);
4025 
4026 	eoh = opts + olen;
4027 	opt = opts;
4028 	while ((opt = pf_find_tcpopt(opt, opts, olen,
4029 	    TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
4030 	{
4031 		size_t safelen = MIN(opt[1], (eoh - opt));
4032 		for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
4033 			size_t startoff = (opt + i) - opts;
4034 			memcpy(&sack, &opt[i], sizeof(sack));
4035 			pf_patch_32(pd, &sack.start,
4036 			    htonl(ntohl(sack.start) - dst->seqdiff),
4037 			    PF_ALGNMNT(startoff));
4038 			pf_patch_32(pd, &sack.end,
4039 			    htonl(ntohl(sack.end) - dst->seqdiff),
4040 			    PF_ALGNMNT(startoff + sizeof(sack.start)));
4041 			memcpy(&opt[i], &sack, sizeof(sack));
4042 		}
4043 		copyback = 1;
4044 		opt += opt[1];
4045 	}
4046 
4047 	if (copyback)
4048 		m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
4049 
4050 	return (copyback);
4051 }
4052 
4053 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid)4054 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
4055     const struct pf_addr *saddr, const struct pf_addr *daddr,
4056     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4057     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4058     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
4059     int rtableid)
4060 {
4061 	struct mbuf	*m;
4062 	int		 len, tlen;
4063 #ifdef INET
4064 	struct ip	*h = NULL;
4065 #endif /* INET */
4066 #ifdef INET6
4067 	struct ip6_hdr	*h6 = NULL;
4068 #endif /* INET6 */
4069 	struct tcphdr	*th;
4070 	char		*opt;
4071 	struct pf_mtag  *pf_mtag;
4072 
4073 	len = 0;
4074 	th = NULL;
4075 
4076 	/* maximum segment size tcp option */
4077 	tlen = sizeof(struct tcphdr);
4078 	if (mss)
4079 		tlen += 4;
4080 	if (sack)
4081 		tlen += 2;
4082 
4083 	switch (af) {
4084 #ifdef INET
4085 	case AF_INET:
4086 		len = sizeof(struct ip) + tlen;
4087 		break;
4088 #endif /* INET */
4089 #ifdef INET6
4090 	case AF_INET6:
4091 		len = sizeof(struct ip6_hdr) + tlen;
4092 		break;
4093 #endif /* INET6 */
4094 	default:
4095 		unhandled_af(af);
4096 	}
4097 
4098 	m = m_gethdr(M_NOWAIT, MT_DATA);
4099 	if (m == NULL)
4100 		return (NULL);
4101 
4102 #ifdef MAC
4103 	mac_netinet_firewall_send(m);
4104 #endif
4105 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4106 		m_freem(m);
4107 		return (NULL);
4108 	}
4109 	m->m_flags |= mbuf_flags;
4110 	pf_mtag->tag = mtag_tag;
4111 	pf_mtag->flags = mtag_flags;
4112 
4113 	if (rtableid >= 0)
4114 		M_SETFIB(m, rtableid);
4115 
4116 #ifdef ALTQ
4117 	if (r != NULL && r->qid) {
4118 		pf_mtag->qid = r->qid;
4119 
4120 		/* add hints for ecn */
4121 		pf_mtag->hdr = mtod(m, struct ip *);
4122 	}
4123 #endif /* ALTQ */
4124 	m->m_data += max_linkhdr;
4125 	m->m_pkthdr.len = m->m_len = len;
4126 	/* The rest of the stack assumes a rcvif, so provide one.
4127 	 * This is a locally generated packet, so .. close enough. */
4128 	m->m_pkthdr.rcvif = V_loif;
4129 	bzero(m->m_data, len);
4130 	switch (af) {
4131 #ifdef INET
4132 	case AF_INET:
4133 		m->m_pkthdr.csum_flags |= CSUM_TCP;
4134 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4135 
4136 		h = mtod(m, struct ip *);
4137 
4138 		h->ip_p = IPPROTO_TCP;
4139 		h->ip_len = htons(tlen);
4140 		h->ip_v = 4;
4141 		h->ip_hl = sizeof(*h) >> 2;
4142 		h->ip_tos = IPTOS_LOWDELAY;
4143 		h->ip_len = htons(len);
4144 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4145 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4146 		h->ip_sum = 0;
4147 		h->ip_src.s_addr = saddr->v4.s_addr;
4148 		h->ip_dst.s_addr = daddr->v4.s_addr;
4149 
4150 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4151 		th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4152 		    htons(len - sizeof(struct ip) + IPPROTO_TCP));
4153 		break;
4154 #endif /* INET */
4155 #ifdef INET6
4156 	case AF_INET6:
4157 		m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4158 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4159 
4160 		h6 = mtod(m, struct ip6_hdr *);
4161 
4162 		/* IP header fields included in the TCP checksum */
4163 		h6->ip6_nxt = IPPROTO_TCP;
4164 		h6->ip6_plen = htons(tlen);
4165 		h6->ip6_vfc |= IPV6_VERSION;
4166 		h6->ip6_hlim = V_ip6_defhlim;
4167 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4168 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4169 
4170 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4171 		th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4172 		    IPPROTO_TCP, 0);
4173 		break;
4174 #endif /* INET6 */
4175 	}
4176 
4177 	/* TCP header */
4178 	th->th_sport = sport;
4179 	th->th_dport = dport;
4180 	th->th_seq = htonl(seq);
4181 	th->th_ack = htonl(ack);
4182 	th->th_off = tlen >> 2;
4183 	tcp_set_flags(th, tcp_flags);
4184 	th->th_win = htons(win);
4185 
4186 	opt = (char *)(th + 1);
4187 	if (mss) {
4188 		opt = (char *)(th + 1);
4189 		opt[0] = TCPOPT_MAXSEG;
4190 		opt[1] = 4;
4191 		mss = htons(mss);
4192 		memcpy((opt + 2), &mss, 2);
4193 		opt += 4;
4194 	}
4195 	if (sack) {
4196 		opt[0] = TCPOPT_SACK_PERMITTED;
4197 		opt[1] = 2;
4198 		opt += 2;
4199 	}
4200 
4201 	return (m);
4202 }
4203 
4204 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4205 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4206     uint8_t ttl, int rtableid)
4207 {
4208 	struct mbuf		*m;
4209 #ifdef INET
4210 	struct ip		*h = NULL;
4211 #endif /* INET */
4212 #ifdef INET6
4213 	struct ip6_hdr		*h6 = NULL;
4214 #endif /* INET6 */
4215 	struct sctphdr		*hdr;
4216 	struct sctp_chunkhdr	*chunk;
4217 	struct pf_send_entry	*pfse;
4218 	int			 off = 0;
4219 
4220 	MPASS(af == pd->af);
4221 
4222 	m = m_gethdr(M_NOWAIT, MT_DATA);
4223 	if (m == NULL)
4224 		return;
4225 
4226 	m->m_data += max_linkhdr;
4227 	m->m_flags |= M_SKIP_FIREWALL;
4228 	/* The rest of the stack assumes a rcvif, so provide one.
4229 	 * This is a locally generated packet, so .. close enough. */
4230 	m->m_pkthdr.rcvif = V_loif;
4231 
4232 	/* IPv4|6 header */
4233 	switch (af) {
4234 #ifdef INET
4235 	case AF_INET:
4236 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4237 
4238 		h = mtod(m, struct ip *);
4239 
4240 		/* IP header fields included in the TCP checksum */
4241 
4242 		h->ip_p = IPPROTO_SCTP;
4243 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4244 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4245 		h->ip_src = pd->dst->v4;
4246 		h->ip_dst = pd->src->v4;
4247 
4248 		off += sizeof(struct ip);
4249 		break;
4250 #endif /* INET */
4251 #ifdef INET6
4252 	case AF_INET6:
4253 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4254 
4255 		h6 = mtod(m, struct ip6_hdr *);
4256 
4257 		/* IP header fields included in the TCP checksum */
4258 		h6->ip6_vfc |= IPV6_VERSION;
4259 		h6->ip6_nxt = IPPROTO_SCTP;
4260 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4261 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4262 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4263 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4264 
4265 		off += sizeof(struct ip6_hdr);
4266 		break;
4267 #endif /* INET6 */
4268 	default:
4269 		unhandled_af(af);
4270 	}
4271 
4272 	/* SCTP header */
4273 	hdr = mtodo(m, off);
4274 
4275 	hdr->src_port = pd->hdr.sctp.dest_port;
4276 	hdr->dest_port = pd->hdr.sctp.src_port;
4277 	hdr->v_tag = pd->sctp_initiate_tag;
4278 	hdr->checksum = 0;
4279 
4280 	/* Abort chunk. */
4281 	off += sizeof(struct sctphdr);
4282 	chunk = mtodo(m, off);
4283 
4284 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4285 	chunk->chunk_length = htons(sizeof(*chunk));
4286 
4287 	/* SCTP checksum */
4288 	off += sizeof(*chunk);
4289 	m->m_pkthdr.len = m->m_len = off;
4290 
4291 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4292 
4293 	if (rtableid >= 0)
4294 		M_SETFIB(m, rtableid);
4295 
4296 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4297 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4298 	if (pfse == NULL) {
4299 		m_freem(m);
4300 		return;
4301 	}
4302 
4303 	switch (af) {
4304 #ifdef INET
4305 	case AF_INET:
4306 		pfse->pfse_type = PFSE_IP;
4307 		break;
4308 #endif /* INET */
4309 #ifdef INET6
4310 	case AF_INET6:
4311 		pfse->pfse_type = PFSE_IP6;
4312 		break;
4313 #endif /* INET6 */
4314 	}
4315 
4316 	pfse->pfse_m = m;
4317 	pf_send(pfse);
4318 }
4319 
4320 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4321 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4322     const struct pf_addr *saddr, const struct pf_addr *daddr,
4323     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4324     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4325     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4326 {
4327 	struct pf_send_entry *pfse;
4328 	struct mbuf	*m;
4329 
4330 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4331 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid);
4332 	if (m == NULL)
4333 		return;
4334 
4335 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4336 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4337 	if (pfse == NULL) {
4338 		m_freem(m);
4339 		return;
4340 	}
4341 
4342 	switch (af) {
4343 #ifdef INET
4344 	case AF_INET:
4345 		pfse->pfse_type = PFSE_IP;
4346 		break;
4347 #endif /* INET */
4348 #ifdef INET6
4349 	case AF_INET6:
4350 		pfse->pfse_type = PFSE_IP6;
4351 		break;
4352 #endif /* INET6 */
4353 	default:
4354 		unhandled_af(af);
4355 	}
4356 
4357 	pfse->pfse_m = m;
4358 	pf_send(pfse);
4359 }
4360 
4361 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4362 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4363 {
4364 	/* undo NAT changes, if they have taken place */
4365 	if (nr != NULL) {
4366 		pf_addrcpy(pd->src, &pd->osrc, pd->af);
4367 		pf_addrcpy(pd->dst, &pd->odst, pd->af);
4368 		if (pd->sport)
4369 			*pd->sport = pd->osport;
4370 		if (pd->dport)
4371 			*pd->dport = pd->odport;
4372 		if (pd->ip_sum)
4373 			*pd->ip_sum = bip_sum;
4374 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4375 	}
4376 }
4377 
4378 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4379 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4380     struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4381     u_short *reason, int rtableid)
4382 {
4383 	pf_undo_nat(nr, pd, bip_sum);
4384 
4385 	if (pd->proto == IPPROTO_TCP &&
4386 	    ((r->rule_flag & PFRULE_RETURNRST) ||
4387 	    (r->rule_flag & PFRULE_RETURN)) &&
4388 	    !(tcp_get_flags(th) & TH_RST)) {
4389 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
4390 
4391 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4392 		    IPPROTO_TCP, pd->af))
4393 			REASON_SET(reason, PFRES_PROTCKSUM);
4394 		else {
4395 			if (tcp_get_flags(th) & TH_SYN)
4396 				ack++;
4397 			if (tcp_get_flags(th) & TH_FIN)
4398 				ack++;
4399 			pf_send_tcp(r, pd->af, pd->dst,
4400 				pd->src, th->th_dport, th->th_sport,
4401 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4402 				r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4403 		}
4404 	} else if (pd->proto == IPPROTO_SCTP &&
4405 	    (r->rule_flag & PFRULE_RETURN)) {
4406 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4407 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4408 		r->return_icmp)
4409 		pf_send_icmp(pd->m, r->return_icmp >> 8,
4410 			r->return_icmp & 255, 0, pd->af, r, rtableid);
4411 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4412 		r->return_icmp6)
4413 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4414 			r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4415 }
4416 
4417 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4418 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4419 {
4420 	struct m_tag *mtag;
4421 	u_int8_t mpcp;
4422 
4423 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4424 	if (mtag == NULL)
4425 		return (0);
4426 
4427 	if (prio == PF_PRIO_ZERO)
4428 		prio = 0;
4429 
4430 	mpcp = *(uint8_t *)(mtag + 1);
4431 
4432 	return (mpcp == prio);
4433 }
4434 
4435 static int
pf_icmp_to_bandlim(uint8_t type)4436 pf_icmp_to_bandlim(uint8_t type)
4437 {
4438 	switch (type) {
4439 		case ICMP_ECHO:
4440 		case ICMP_ECHOREPLY:
4441 			return (BANDLIM_ICMP_ECHO);
4442 		case ICMP_TSTAMP:
4443 		case ICMP_TSTAMPREPLY:
4444 			return (BANDLIM_ICMP_TSTAMP);
4445 		case ICMP_UNREACH:
4446 		default:
4447 			return (BANDLIM_ICMP_UNREACH);
4448 	}
4449 }
4450 
4451 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst)4452 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4453     struct pf_state_peer *src, struct pf_state_peer *dst)
4454 {
4455 	/*
4456 	 * We are sending challenge ACK as a response to SYN packet, which
4457 	 * matches existing state (modulo TCP window check). Therefore packet
4458 	 * must be sent on behalf of destination.
4459 	 *
4460 	 * We expect sender to remain either silent, or send RST packet
4461 	 * so both, firewall and remote peer, can purge dead state from
4462 	 * memory.
4463 	 */
4464 	pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4465 	    pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4466 	    src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4467 	    s->rule->rtableid);
4468 }
4469 
4470 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4471 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4472     sa_family_t af, struct pf_krule *r, int rtableid)
4473 {
4474 	struct pf_send_entry *pfse;
4475 	struct mbuf *m0;
4476 	struct pf_mtag *pf_mtag;
4477 
4478 	/* ICMP packet rate limitation. */
4479 	switch (af) {
4480 #ifdef INET6
4481 	case AF_INET6:
4482 		if (icmp6_ratelimit(NULL, type, code))
4483 			return;
4484 		break;
4485 #endif /* INET6 */
4486 #ifdef INET
4487 	case AF_INET:
4488 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4489 			return;
4490 		break;
4491 #endif /* INET */
4492 	}
4493 
4494 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4495 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4496 	if (pfse == NULL)
4497 		return;
4498 
4499 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4500 		free(pfse, M_PFTEMP);
4501 		return;
4502 	}
4503 
4504 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4505 		free(pfse, M_PFTEMP);
4506 		return;
4507 	}
4508 	/* XXX: revisit */
4509 	m0->m_flags |= M_SKIP_FIREWALL;
4510 
4511 	if (rtableid >= 0)
4512 		M_SETFIB(m0, rtableid);
4513 
4514 #ifdef ALTQ
4515 	if (r->qid) {
4516 		pf_mtag->qid = r->qid;
4517 		/* add hints for ecn */
4518 		pf_mtag->hdr = mtod(m0, struct ip *);
4519 	}
4520 #endif /* ALTQ */
4521 
4522 	switch (af) {
4523 #ifdef INET
4524 	case AF_INET:
4525 		pfse->pfse_type = PFSE_ICMP;
4526 		break;
4527 #endif /* INET */
4528 #ifdef INET6
4529 	case AF_INET6:
4530 		pfse->pfse_type = PFSE_ICMP6;
4531 		break;
4532 #endif /* INET6 */
4533 	}
4534 	pfse->pfse_m = m0;
4535 	pfse->icmpopts.type = type;
4536 	pfse->icmpopts.code = code;
4537 	pfse->icmpopts.mtu = mtu;
4538 	pf_send(pfse);
4539 }
4540 
4541 /*
4542  * Return ((n = 0) == (a = b [with mask m]))
4543  * Note: n != 0 => returns (a != b [with mask m])
4544  */
4545 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4546 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4547     const struct pf_addr *b, sa_family_t af)
4548 {
4549 	switch (af) {
4550 #ifdef INET
4551 	case AF_INET:
4552 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4553 			return (n == 0);
4554 		break;
4555 #endif /* INET */
4556 #ifdef INET6
4557 	case AF_INET6:
4558 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4559 			return (n == 0);
4560 		break;
4561 #endif /* INET6 */
4562 	}
4563 
4564 	return (n != 0);
4565 }
4566 
4567 /*
4568  * Return 1 if b <= a <= e, otherwise return 0.
4569  */
4570 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4571 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4572     const struct pf_addr *a, sa_family_t af)
4573 {
4574 	switch (af) {
4575 #ifdef INET
4576 	case AF_INET:
4577 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4578 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4579 			return (0);
4580 		break;
4581 #endif /* INET */
4582 #ifdef INET6
4583 	case AF_INET6: {
4584 		int	i;
4585 
4586 		/* check a >= b */
4587 		for (i = 0; i < 4; ++i)
4588 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4589 				break;
4590 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4591 				return (0);
4592 		/* check a <= e */
4593 		for (i = 0; i < 4; ++i)
4594 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4595 				break;
4596 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4597 				return (0);
4598 		break;
4599 	}
4600 #endif /* INET6 */
4601 	}
4602 	return (1);
4603 }
4604 
4605 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4606 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4607 {
4608 	switch (op) {
4609 	case PF_OP_IRG:
4610 		return ((p > a1) && (p < a2));
4611 	case PF_OP_XRG:
4612 		return ((p < a1) || (p > a2));
4613 	case PF_OP_RRG:
4614 		return ((p >= a1) && (p <= a2));
4615 	case PF_OP_EQ:
4616 		return (p == a1);
4617 	case PF_OP_NE:
4618 		return (p != a1);
4619 	case PF_OP_LT:
4620 		return (p < a1);
4621 	case PF_OP_LE:
4622 		return (p <= a1);
4623 	case PF_OP_GT:
4624 		return (p > a1);
4625 	case PF_OP_GE:
4626 		return (p >= a1);
4627 	}
4628 	return (0); /* never reached */
4629 }
4630 
4631 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4632 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4633 {
4634 	return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4635 }
4636 
4637 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4638 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4639 {
4640 	if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4641 		return (0);
4642 	return (pf_match(op, a1, a2, u));
4643 }
4644 
4645 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4646 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4647 {
4648 	if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4649 		return (0);
4650 	return (pf_match(op, a1, a2, g));
4651 }
4652 
4653 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4654 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4655 {
4656 	if (*tag == -1)
4657 		*tag = mtag;
4658 
4659 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4660 	    (r->match_tag_not && r->match_tag != *tag));
4661 }
4662 
4663 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4664 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4665 {
4666 	struct ifnet *ifp = m->m_pkthdr.rcvif;
4667 	struct pfi_kkif *kif;
4668 
4669 	if (ifp == NULL)
4670 		return (0);
4671 
4672 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
4673 
4674 	if (kif == NULL) {
4675 		DPFPRINTF(PF_DEBUG_URGENT,
4676 		    "%s: kif == NULL, @%d via %s", __func__, r->nr,
4677 			r->rcv_ifname);
4678 		return (0);
4679 	}
4680 
4681 	return (pfi_kkif_match(r->rcv_kif, kif));
4682 }
4683 
4684 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4685 pf_tag_packet(struct pf_pdesc *pd, int tag)
4686 {
4687 
4688 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4689 
4690 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4691 		return (ENOMEM);
4692 
4693 	pd->pf_mtag->tag = tag;
4694 
4695 	return (0);
4696 }
4697 
4698 /*
4699  * XXX: We rely on malloc(9) returning pointer aligned addresses.
4700  */
4701 #define	PF_ANCHORSTACK_MATCH	0x00000001
4702 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
4703 
4704 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4705 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
4706 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4707 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
4708 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4709 } while (0)
4710 
4711 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)4712 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
4713 {
4714 	enum pf_test_status	rv;
4715 
4716 	PF_RULES_RASSERT();
4717 
4718 	if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4719 		printf("%s: anchor stack overflow on %s\n",
4720 		    __func__, r->anchor->name);
4721 		return (PF_TEST_FAIL);
4722 	}
4723 
4724 	ctx->depth++;
4725 
4726 	if (r->anchor_wildcard) {
4727 		struct pf_kanchor *child;
4728 		rv = PF_TEST_OK;
4729 		RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4730 			rv = pf_match_rule(ctx, &child->ruleset);
4731 			if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4732 				/*
4733 				 * we either hit a rule with quick action
4734 				 * (more likely), or hit some runtime
4735 				 * error (e.g. pool_get() failure).
4736 				 */
4737 				break;
4738 			}
4739 		}
4740 	} else {
4741 		rv = pf_match_rule(ctx, &r->anchor->ruleset);
4742 		/*
4743 		 * Unless errors occured, stop iff any rule matched
4744 		 * within quick anchors.
4745 		 */
4746 		if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK &&
4747 		    *ctx->am == r)
4748 			rv = PF_TEST_QUICK;
4749 	}
4750 
4751 	ctx->depth--;
4752 
4753 	return (rv);
4754 }
4755 
4756 struct pf_keth_anchor_stackframe {
4757 	struct pf_keth_ruleset	*rs;
4758 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4759 	struct pf_keth_anchor	*child;
4760 };
4761 
4762 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4763 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4764 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4765 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4766 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4767 } while (0)
4768 
4769 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4770 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4771     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4772     struct pf_keth_rule **a, int *match)
4773 {
4774 	struct pf_keth_anchor_stackframe	*f;
4775 
4776 	NET_EPOCH_ASSERT();
4777 
4778 	if (match)
4779 		*match = 0;
4780 	if (*depth >= PF_ANCHOR_STACK_MAX) {
4781 		printf("%s: anchor stack overflow on %s\n",
4782 		    __func__, (*r)->anchor->name);
4783 		*r = TAILQ_NEXT(*r, entries);
4784 		return;
4785 	} else if (*depth == 0 && a != NULL)
4786 		*a = *r;
4787 	f = stack + (*depth)++;
4788 	f->rs = *rs;
4789 	f->r = *r;
4790 	if ((*r)->anchor_wildcard) {
4791 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4792 
4793 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4794 			*r = NULL;
4795 			return;
4796 		}
4797 		*rs = &f->child->ruleset;
4798 	} else {
4799 		f->child = NULL;
4800 		*rs = &(*r)->anchor->ruleset;
4801 	}
4802 	*r = TAILQ_FIRST((*rs)->active.rules);
4803 }
4804 
4805 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4806 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4807     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4808     struct pf_keth_rule **a, int *match)
4809 {
4810 	struct pf_keth_anchor_stackframe	*f;
4811 	struct pf_keth_rule *fr;
4812 	int quick = 0;
4813 
4814 	NET_EPOCH_ASSERT();
4815 
4816 	do {
4817 		if (*depth <= 0)
4818 			break;
4819 		f = stack + *depth - 1;
4820 		fr = PF_ETH_ANCHOR_RULE(f);
4821 		if (f->child != NULL) {
4822 			/*
4823 			 * This block traverses through
4824 			 * a wildcard anchor.
4825 			 */
4826 			if (match != NULL && *match) {
4827 				/*
4828 				 * If any of "*" matched, then
4829 				 * "foo/ *" matched, mark frame
4830 				 * appropriately.
4831 				 */
4832 				PF_ETH_ANCHOR_SET_MATCH(f);
4833 				*match = 0;
4834 			}
4835 			f->child = RB_NEXT(pf_keth_anchor_node,
4836 			    &fr->anchor->children, f->child);
4837 			if (f->child != NULL) {
4838 				*rs = &f->child->ruleset;
4839 				*r = TAILQ_FIRST((*rs)->active.rules);
4840 				if (*r == NULL)
4841 					continue;
4842 				else
4843 					break;
4844 			}
4845 		}
4846 		(*depth)--;
4847 		if (*depth == 0 && a != NULL)
4848 			*a = NULL;
4849 		*rs = f->rs;
4850 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4851 			quick = fr->quick;
4852 		*r = TAILQ_NEXT(fr, entries);
4853 	} while (*r == NULL);
4854 
4855 	return (quick);
4856 }
4857 
4858 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4859 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4860     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4861 {
4862 	switch (af) {
4863 #ifdef INET
4864 	case AF_INET:
4865 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4866 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4867 		break;
4868 #endif /* INET */
4869 #ifdef INET6
4870 	case AF_INET6:
4871 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4872 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4873 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4874 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4875 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4876 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4877 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4878 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4879 		break;
4880 #endif /* INET6 */
4881 	}
4882 }
4883 
4884 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4885 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4886 {
4887 	switch (af) {
4888 #ifdef INET
4889 	case AF_INET:
4890 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4891 		break;
4892 #endif /* INET */
4893 #ifdef INET6
4894 	case AF_INET6:
4895 		if (addr->addr32[3] == 0xffffffff) {
4896 			addr->addr32[3] = 0;
4897 			if (addr->addr32[2] == 0xffffffff) {
4898 				addr->addr32[2] = 0;
4899 				if (addr->addr32[1] == 0xffffffff) {
4900 					addr->addr32[1] = 0;
4901 					addr->addr32[0] =
4902 					    htonl(ntohl(addr->addr32[0]) + 1);
4903 				} else
4904 					addr->addr32[1] =
4905 					    htonl(ntohl(addr->addr32[1]) + 1);
4906 			} else
4907 				addr->addr32[2] =
4908 				    htonl(ntohl(addr->addr32[2]) + 1);
4909 		} else
4910 			addr->addr32[3] =
4911 			    htonl(ntohl(addr->addr32[3]) + 1);
4912 		break;
4913 #endif /* INET6 */
4914 	}
4915 }
4916 
4917 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4918 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4919 {
4920 	/*
4921 	 * Modern rules use the same flags in rules as they do in states.
4922 	 */
4923 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4924 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4925 
4926 	/*
4927 	 * Old-style scrub rules have different flags which need to be translated.
4928 	 */
4929 	if (r->rule_flag & PFRULE_RANDOMID)
4930 		a->flags |= PFSTATE_RANDOMID;
4931 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4932 		a->flags |= PFSTATE_SETTOS;
4933 		a->set_tos = r->set_tos;
4934 	}
4935 
4936 	if (r->qid)
4937 		a->qid = r->qid;
4938 	if (r->pqid)
4939 		a->pqid = r->pqid;
4940 	if (r->rtableid >= 0)
4941 		a->rtableid = r->rtableid;
4942 	a->log |= r->log;
4943 	if (r->min_ttl)
4944 		a->min_ttl = r->min_ttl;
4945 	if (r->max_mss)
4946 		a->max_mss = r->max_mss;
4947 	if (r->dnpipe)
4948 		a->dnpipe = r->dnpipe;
4949 	if (r->dnrpipe)
4950 		a->dnrpipe = r->dnrpipe;
4951 	if (r->dnpipe || r->dnrpipe) {
4952 		if (r->free_flags & PFRULE_DN_IS_PIPE)
4953 			a->flags |= PFSTATE_DN_IS_PIPE;
4954 		else
4955 			a->flags &= ~PFSTATE_DN_IS_PIPE;
4956 	}
4957 	if (r->scrub_flags & PFSTATE_SETPRIO) {
4958 		a->set_prio[0] = r->set_prio[0];
4959 		a->set_prio[1] = r->set_prio[1];
4960 	}
4961 	if (r->allow_opts)
4962 		a->allow_opts = r->allow_opts;
4963 	if (r->max_pkt_size)
4964 		a->max_pkt_size = r->max_pkt_size;
4965 }
4966 
4967 int
pf_socket_lookup(struct pf_pdesc * pd)4968 pf_socket_lookup(struct pf_pdesc *pd)
4969 {
4970 	struct pf_addr		*saddr, *daddr;
4971 	u_int16_t		 sport, dport;
4972 	struct inpcbinfo	*pi;
4973 	struct inpcb		*inp;
4974 
4975 	pd->lookup.uid = -1;
4976 	pd->lookup.gid = -1;
4977 
4978 	switch (pd->proto) {
4979 	case IPPROTO_TCP:
4980 		sport = pd->hdr.tcp.th_sport;
4981 		dport = pd->hdr.tcp.th_dport;
4982 		pi = &V_tcbinfo;
4983 		break;
4984 	case IPPROTO_UDP:
4985 		sport = pd->hdr.udp.uh_sport;
4986 		dport = pd->hdr.udp.uh_dport;
4987 		pi = &V_udbinfo;
4988 		break;
4989 	default:
4990 		return (-1);
4991 	}
4992 	if (pd->dir == PF_IN) {
4993 		saddr = pd->src;
4994 		daddr = pd->dst;
4995 	} else {
4996 		u_int16_t	p;
4997 
4998 		p = sport;
4999 		sport = dport;
5000 		dport = p;
5001 		saddr = pd->dst;
5002 		daddr = pd->src;
5003 	}
5004 	switch (pd->af) {
5005 #ifdef INET
5006 	case AF_INET:
5007 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
5008 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5009 		if (inp == NULL) {
5010 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
5011 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
5012 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
5013 			if (inp == NULL)
5014 				return (-1);
5015 		}
5016 		break;
5017 #endif /* INET */
5018 #ifdef INET6
5019 	case AF_INET6:
5020 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
5021 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5022 		if (inp == NULL) {
5023 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
5024 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
5025 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
5026 			if (inp == NULL)
5027 				return (-1);
5028 		}
5029 		break;
5030 #endif /* INET6 */
5031 	default:
5032 		unhandled_af(pd->af);
5033 	}
5034 	INP_RLOCK_ASSERT(inp);
5035 	pd->lookup.uid = inp->inp_cred->cr_uid;
5036 	pd->lookup.gid = inp->inp_cred->cr_gid;
5037 	INP_RUNLOCK(inp);
5038 
5039 	return (1);
5040 }
5041 
5042 /* post: r  => (r[0] == type /\ r[1] >= min_typelen >= 2  "validity"
5043  *                      /\ (eoh - r) >= min_typelen >= 2  "safety"  )
5044  *
5045  * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
5046  */
5047 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)5048 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
5049     u_int8_t min_typelen)
5050 {
5051 	uint8_t	*eoh = opts + hlen;
5052 
5053 	if (min_typelen < 2)
5054 		return (NULL);
5055 
5056 	while ((eoh - opt) >= min_typelen) {
5057 		switch (*opt) {
5058 		case TCPOPT_EOL:
5059 			/* FALLTHROUGH - Workaround the failure of some
5060 			 systems to NOP-pad their bzero'd option buffers,
5061 			 producing spurious EOLs */
5062 		case TCPOPT_NOP:
5063 			opt++;
5064 			continue;
5065 		default:
5066 		if (opt[0] == type &&
5067 			    opt[1] >= min_typelen)
5068 			return (opt);
5069 		}
5070 
5071 		opt += MAX(opt[1], 2); /* evade infinite loops */
5072 	}
5073 
5074 	return (NULL);
5075 }
5076 
5077 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5078 pf_get_wscale(struct pf_pdesc *pd)
5079 {
5080 	int	 olen;
5081 	uint8_t	 opts[MAX_TCPOPTLEN], *opt;
5082 	uint8_t	 wscale = 0;
5083 
5084 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5085 	if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5086 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5087 		return (0);
5088 
5089 	opt = opts;
5090 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5091 		    TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5092 		wscale = opt[2];
5093 		wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5094 		wscale |= PF_WSCALE_FLAG;
5095 
5096 		opt += opt[1];
5097 	}
5098 
5099 	return (wscale);
5100 }
5101 
5102 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5103 pf_get_mss(struct pf_pdesc *pd)
5104 {
5105 	int		 olen;
5106 	uint8_t		 opts[MAX_TCPOPTLEN], *opt;
5107 	u_int16_t	 mss = V_tcp_mssdflt;
5108 
5109 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5110 	if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5111 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5112 		return (0);
5113 
5114 	opt = opts;
5115 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5116 	    TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5117 		memcpy(&mss, (opt + 2), 2);
5118 		mss = ntohs(mss);
5119 		opt += opt[1];
5120 	}
5121 
5122 	return (mss);
5123 }
5124 
5125 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5126 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5127 {
5128 	struct nhop_object *nh;
5129 #ifdef INET6
5130 	struct in6_addr		dst6;
5131 	uint32_t		scopeid;
5132 #endif /* INET6 */
5133 	int			 hlen = 0;
5134 	uint16_t		 mss = 0;
5135 
5136 	NET_EPOCH_ASSERT();
5137 
5138 	switch (af) {
5139 #ifdef INET
5140 	case AF_INET:
5141 		hlen = sizeof(struct ip);
5142 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5143 		if (nh != NULL)
5144 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5145 		break;
5146 #endif /* INET */
5147 #ifdef INET6
5148 	case AF_INET6:
5149 		hlen = sizeof(struct ip6_hdr);
5150 		in6_splitscope(&addr->v6, &dst6, &scopeid);
5151 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5152 		if (nh != NULL)
5153 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5154 		break;
5155 #endif /* INET6 */
5156 	}
5157 
5158 	mss = max(V_tcp_mssdflt, mss);
5159 	mss = min(mss, offer);
5160 	mss = max(mss, 64);		/* sanity - at least max opt space */
5161 	return (mss);
5162 }
5163 
5164 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5165 pf_tcp_iss(struct pf_pdesc *pd)
5166 {
5167 	SHA512_CTX ctx;
5168 	union {
5169 		uint8_t bytes[SHA512_DIGEST_LENGTH];
5170 		uint32_t words[1];
5171 	} digest;
5172 
5173 	if (V_pf_tcp_secret_init == 0) {
5174 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5175 		SHA512_Init(&V_pf_tcp_secret_ctx);
5176 		SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5177 		    sizeof(V_pf_tcp_secret));
5178 		V_pf_tcp_secret_init = 1;
5179 	}
5180 
5181 	ctx = V_pf_tcp_secret_ctx;
5182 
5183 	SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5184 	SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5185 	switch (pd->af) {
5186 	case AF_INET6:
5187 		SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5188 		SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5189 		break;
5190 	case AF_INET:
5191 		SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5192 		SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5193 		break;
5194 	}
5195 	SHA512_Final(digest.bytes, &ctx);
5196 	V_pf_tcp_iss_off += 4096;
5197 #define	ISN_RANDOM_INCREMENT (4096 - 1)
5198 	return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5199 	    V_pf_tcp_iss_off);
5200 #undef	ISN_RANDOM_INCREMENT
5201 }
5202 
5203 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5204 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5205 {
5206 	bool match = true;
5207 
5208 	/* Always matches if not set */
5209 	if (! r->isset)
5210 		return (!r->neg);
5211 
5212 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5213 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5214 			match = false;
5215 			break;
5216 		}
5217 	}
5218 
5219 	return (match ^ r->neg);
5220 }
5221 
5222 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5223 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5224 {
5225 	if (*tag == -1)
5226 		*tag = mtag;
5227 
5228 	return ((!r->match_tag_not && r->match_tag == *tag) ||
5229 	    (r->match_tag_not && r->match_tag != *tag));
5230 }
5231 
5232 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5233 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5234 {
5235 	/* If we don't have the interface drop the packet. */
5236 	if (ifp == NULL) {
5237 		m_freem(m);
5238 		return;
5239 	}
5240 
5241 	switch (ifp->if_type) {
5242 	case IFT_ETHER:
5243 	case IFT_XETHER:
5244 	case IFT_L2VLAN:
5245 	case IFT_BRIDGE:
5246 	case IFT_IEEE8023ADLAG:
5247 		break;
5248 	default:
5249 		m_freem(m);
5250 		return;
5251 	}
5252 
5253 	ifp->if_transmit(ifp, m);
5254 }
5255 
5256 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5257 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5258 {
5259 #ifdef INET
5260 	struct ip ip;
5261 #endif /* INET */
5262 #ifdef INET6
5263 	struct ip6_hdr ip6;
5264 #endif /* INET6 */
5265 	struct mbuf *m = *m0;
5266 	struct ether_header *e;
5267 	struct pf_keth_rule *r, *rm, *a = NULL;
5268 	struct pf_keth_ruleset *ruleset = NULL;
5269 	struct pf_mtag *mtag;
5270 	struct pf_keth_ruleq *rules;
5271 	struct pf_addr *src = NULL, *dst = NULL;
5272 	struct pfi_kkif *bridge_to;
5273 	sa_family_t af = 0;
5274 	uint16_t proto;
5275 	int asd = 0, match = 0;
5276 	int tag = -1;
5277 	uint8_t action;
5278 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACK_MAX];
5279 
5280 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
5281 	NET_EPOCH_ASSERT();
5282 
5283 	PF_RULES_RLOCK_TRACKER;
5284 
5285 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5286 
5287 	mtag = pf_find_mtag(m);
5288 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5289 		/* Dummynet re-injects packets after they've
5290 		 * completed their delay. We've already
5291 		 * processed them, so pass unconditionally. */
5292 
5293 		/* But only once. We may see the packet multiple times (e.g.
5294 		 * PFIL_IN/PFIL_OUT). */
5295 		pf_dummynet_flag_remove(m, mtag);
5296 
5297 		return (PF_PASS);
5298 	}
5299 
5300 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5301 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5302 		DPFPRINTF(PF_DEBUG_URGENT,
5303 		    "%s: m_len < sizeof(struct ether_header)"
5304 		     ", pullup failed", __func__);
5305 		return (PF_DROP);
5306 	}
5307 	e = mtod(m, struct ether_header *);
5308 	proto = ntohs(e->ether_type);
5309 
5310 	switch (proto) {
5311 #ifdef INET
5312 	case ETHERTYPE_IP: {
5313 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5314 		    sizeof(ip)))
5315 			return (PF_DROP);
5316 
5317 		af = AF_INET;
5318 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5319 		    (caddr_t)&ip);
5320 		src = (struct pf_addr *)&ip.ip_src;
5321 		dst = (struct pf_addr *)&ip.ip_dst;
5322 		break;
5323 	}
5324 #endif /* INET */
5325 #ifdef INET6
5326 	case ETHERTYPE_IPV6: {
5327 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5328 		    sizeof(ip6)))
5329 			return (PF_DROP);
5330 
5331 		af = AF_INET6;
5332 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5333 		    (caddr_t)&ip6);
5334 		src = (struct pf_addr *)&ip6.ip6_src;
5335 		dst = (struct pf_addr *)&ip6.ip6_dst;
5336 		break;
5337 	}
5338 #endif /* INET6 */
5339 	}
5340 
5341 	PF_RULES_RLOCK();
5342 
5343 	ruleset = V_pf_keth;
5344 	rules = atomic_load_ptr(&ruleset->active.rules);
5345 	for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5346 		counter_u64_add(r->evaluations, 1);
5347 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5348 
5349 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5350 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5351 			    "kif");
5352 			r = r->skip[PFE_SKIP_IFP].ptr;
5353 		}
5354 		else if (r->direction && r->direction != dir) {
5355 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5356 			    "dir");
5357 			r = r->skip[PFE_SKIP_DIR].ptr;
5358 		}
5359 		else if (r->proto && r->proto != proto) {
5360 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5361 			    "proto");
5362 			r = r->skip[PFE_SKIP_PROTO].ptr;
5363 		}
5364 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5365 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5366 			    "src");
5367 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5368 		}
5369 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5370 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5371 			    "dst");
5372 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5373 		}
5374 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5375 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
5376 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5377 			    "ip_src");
5378 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5379 		}
5380 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5381 		    r->ipdst.neg, kif, M_GETFIB(m))) {
5382 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5383 			    "ip_dst");
5384 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5385 		}
5386 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5387 		    mtag ? mtag->tag : 0)) {
5388 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5389 			    "match_tag");
5390 			r = TAILQ_NEXT(r, entries);
5391 		}
5392 		else {
5393 			if (r->tag)
5394 				tag = r->tag;
5395 			if (r->anchor == NULL) {
5396 				/* Rule matches */
5397 				rm = r;
5398 
5399 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5400 
5401 				if (r->quick)
5402 					break;
5403 
5404 				r = TAILQ_NEXT(r, entries);
5405 			} else {
5406 				pf_step_into_keth_anchor(anchor_stack, &asd,
5407 				    &ruleset, &r, &a, &match);
5408 			}
5409 		}
5410 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5411 		    &ruleset, &r, &a, &match))
5412 			break;
5413 	}
5414 
5415 	r = rm;
5416 
5417 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5418 
5419 	/* Default to pass. */
5420 	if (r == NULL) {
5421 		PF_RULES_RUNLOCK();
5422 		return (PF_PASS);
5423 	}
5424 
5425 	/* Execute action. */
5426 	counter_u64_add(r->packets[dir == PF_OUT], 1);
5427 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5428 	pf_update_timestamp(r);
5429 
5430 	/* Shortcut. Don't tag if we're just going to drop anyway. */
5431 	if (r->action == PF_DROP) {
5432 		PF_RULES_RUNLOCK();
5433 		return (PF_DROP);
5434 	}
5435 
5436 	if (tag > 0) {
5437 		if (mtag == NULL)
5438 			mtag = pf_get_mtag(m);
5439 		if (mtag == NULL) {
5440 			PF_RULES_RUNLOCK();
5441 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5442 			return (PF_DROP);
5443 		}
5444 		mtag->tag = tag;
5445 	}
5446 
5447 	if (r->qid != 0) {
5448 		if (mtag == NULL)
5449 			mtag = pf_get_mtag(m);
5450 		if (mtag == NULL) {
5451 			PF_RULES_RUNLOCK();
5452 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5453 			return (PF_DROP);
5454 		}
5455 		mtag->qid = r->qid;
5456 	}
5457 
5458 	action = r->action;
5459 	bridge_to = r->bridge_to;
5460 
5461 	/* Dummynet */
5462 	if (r->dnpipe) {
5463 		struct ip_fw_args dnflow;
5464 
5465 		/* Drop packet if dummynet is not loaded. */
5466 		if (ip_dn_io_ptr == NULL) {
5467 			PF_RULES_RUNLOCK();
5468 			m_freem(m);
5469 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5470 			return (PF_DROP);
5471 		}
5472 		if (mtag == NULL)
5473 			mtag = pf_get_mtag(m);
5474 		if (mtag == NULL) {
5475 			PF_RULES_RUNLOCK();
5476 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5477 			return (PF_DROP);
5478 		}
5479 
5480 		bzero(&dnflow, sizeof(dnflow));
5481 
5482 		/* We don't have port numbers here, so we set 0.  That means
5483 		 * that we'll be somewhat limited in distinguishing flows (i.e.
5484 		 * only based on IP addresses, not based on port numbers), but
5485 		 * it's better than nothing. */
5486 		dnflow.f_id.dst_port = 0;
5487 		dnflow.f_id.src_port = 0;
5488 		dnflow.f_id.proto = 0;
5489 
5490 		dnflow.rule.info = r->dnpipe;
5491 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
5492 		if (r->dnflags & PFRULE_DN_IS_PIPE)
5493 			dnflow.rule.info |= IPFW_IS_PIPE;
5494 
5495 		dnflow.f_id.extra = dnflow.rule.info;
5496 
5497 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5498 		dnflow.flags |= IPFW_ARGS_ETHER;
5499 		dnflow.ifp = kif->pfik_ifp;
5500 
5501 		switch (af) {
5502 		case AF_INET:
5503 			dnflow.f_id.addr_type = 4;
5504 			dnflow.f_id.src_ip = src->v4.s_addr;
5505 			dnflow.f_id.dst_ip = dst->v4.s_addr;
5506 			break;
5507 		case AF_INET6:
5508 			dnflow.flags |= IPFW_ARGS_IP6;
5509 			dnflow.f_id.addr_type = 6;
5510 			dnflow.f_id.src_ip6 = src->v6;
5511 			dnflow.f_id.dst_ip6 = dst->v6;
5512 			break;
5513 		}
5514 
5515 		PF_RULES_RUNLOCK();
5516 
5517 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5518 		ip_dn_io_ptr(m0, &dnflow);
5519 		if (*m0 != NULL)
5520 			pf_dummynet_flag_remove(m, mtag);
5521 	} else {
5522 		PF_RULES_RUNLOCK();
5523 	}
5524 
5525 	if (action == PF_PASS && bridge_to) {
5526 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
5527 		*m0 = NULL; /* We've eaten the packet. */
5528 	}
5529 
5530 	return (action);
5531 }
5532 
5533 #define PF_TEST_ATTRIB(t, a)		\
5534 	if (t) {			\
5535 		r = a;			\
5536 		continue;		\
5537 	} else do {			\
5538 	} while (0)
5539 
5540 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5541 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5542 {
5543 	struct pf_pdesc	*pd = ctx->pd;
5544 	u_short		 transerror;
5545 	u_int8_t	 nat_action;
5546 
5547 	if (r->rule_flag & PFRULE_AFTO) {
5548 		/* Don't translate if there was an old style NAT rule */
5549 		if (ctx->nr != NULL)
5550 			return (PFRES_TRANSLATE);
5551 
5552 		/* pass af-to rules, unsupported on match rules */
5553 		KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5554 		/* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5555 		ctx->nat_pool = &(r->nat);
5556 		ctx->nr = r;
5557 		pd->naf = r->naf;
5558 		if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5559 			return (PFRES_TRANSLATE);
5560 		}
5561 		return (PFRES_MATCH);
5562 	} else if (r->rdr.cur || r->nat.cur) {
5563 		/* Don't translate if there was an old style NAT rule */
5564 		if (ctx->nr != NULL)
5565 			return (PFRES_TRANSLATE);
5566 
5567 		/* match/pass nat-to/rdr-to rules */
5568 		ctx->nr = r;
5569 		if (r->nat.cur) {
5570 			nat_action = PF_NAT;
5571 			ctx->nat_pool = &(r->nat);
5572 		} else {
5573 			nat_action = PF_RDR;
5574 			ctx->nat_pool = &(r->rdr);
5575 		}
5576 
5577 		transerror = pf_get_transaddr(ctx, ctx->nr,
5578 		    nat_action, ctx->nat_pool);
5579 		if (transerror == PFRES_MATCH) {
5580 			ctx->rewrite += pf_translate_compat(ctx);
5581 			return(PFRES_MATCH);
5582 		}
5583 		return (transerror);
5584 	}
5585 
5586 	return (PFRES_MAX);
5587 }
5588 
5589 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5590 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5591 {
5592 	struct pf_krule_item	*ri;
5593 	struct pf_krule		*r;
5594 	struct pf_krule		*save_a;
5595 	struct pf_kruleset	*save_aruleset;
5596 	struct pf_pdesc		*pd = ctx->pd;
5597 	u_short			 transerror;
5598 
5599 	r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5600 	while (r != NULL) {
5601 		if (ctx->pd->related_rule) {
5602 			*ctx->rm = ctx->pd->related_rule;
5603 			break;
5604 		}
5605 		pf_counter_u64_add(&r->evaluations, 1);
5606 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5607 			r->skip[PF_SKIP_IFP]);
5608 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5609 			r->skip[PF_SKIP_DIR]);
5610 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5611 			r->skip[PF_SKIP_AF]);
5612 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5613 			r->skip[PF_SKIP_PROTO]);
5614 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5615 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5616 			r->skip[PF_SKIP_SRC_ADDR]);
5617 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5618 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5619 			r->skip[PF_SKIP_DST_ADDR]);
5620 		switch (pd->virtual_proto) {
5621 		case PF_VPROTO_FRAGMENT:
5622 			/* tcp/udp only. port_op always 0 in other cases */
5623 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5624 				TAILQ_NEXT(r, entries));
5625 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5626 				TAILQ_NEXT(r, entries));
5627 			/* icmp only. type/code always 0 in other cases */
5628 			PF_TEST_ATTRIB((r->type || r->code),
5629 				TAILQ_NEXT(r, entries));
5630 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5631 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5632 				TAILQ_NEXT(r, entries));
5633 			break;
5634 
5635 		case IPPROTO_TCP:
5636 			PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5637 			    != r->flags,
5638 				TAILQ_NEXT(r, entries));
5639 			/* FALLTHROUGH */
5640 		case IPPROTO_SCTP:
5641 		case IPPROTO_UDP:
5642 			/* tcp/udp only. port_op always 0 in other cases */
5643 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5644 			    r->src.port[0], r->src.port[1], pd->nsport),
5645 				r->skip[PF_SKIP_SRC_PORT]);
5646 			/* tcp/udp only. port_op always 0 in other cases */
5647 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5648 			    r->dst.port[0], r->dst.port[1], pd->ndport),
5649 				r->skip[PF_SKIP_DST_PORT]);
5650 			/* tcp/udp only. uid.op always 0 in other cases */
5651 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5652 			    pf_socket_lookup(pd), 1)) &&
5653 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5654 			    pd->lookup.uid),
5655 				TAILQ_NEXT(r, entries));
5656 			/* tcp/udp only. gid.op always 0 in other cases */
5657 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5658 			    pf_socket_lookup(pd), 1)) &&
5659 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5660 			    pd->lookup.gid),
5661 				TAILQ_NEXT(r, entries));
5662 			break;
5663 
5664 		case IPPROTO_ICMP:
5665 		case IPPROTO_ICMPV6:
5666 			/* icmp only. type always 0 in other cases */
5667 			PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5668 				TAILQ_NEXT(r, entries));
5669 			/* icmp only. type always 0 in other cases */
5670 			PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5671 				TAILQ_NEXT(r, entries));
5672 			break;
5673 
5674 		default:
5675 			break;
5676 		}
5677 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5678 			TAILQ_NEXT(r, entries));
5679 		PF_TEST_ATTRIB(r->prio &&
5680 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5681 			TAILQ_NEXT(r, entries));
5682 		PF_TEST_ATTRIB(r->prob &&
5683 		    r->prob <= arc4random(),
5684 			TAILQ_NEXT(r, entries));
5685 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5686 		    &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5687 			TAILQ_NEXT(r, entries));
5688 		PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5689 		   r->rcvifnot),
5690 			TAILQ_NEXT(r, entries));
5691 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5692 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5693 			TAILQ_NEXT(r, entries));
5694 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5695 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5696 		    pf_osfp_fingerprint(pd, ctx->th),
5697 		    r->os_fingerprint)),
5698 			TAILQ_NEXT(r, entries));
5699 		/* must be last! */
5700 		if (r->pktrate.limit) {
5701 			PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5702 			    TAILQ_NEXT(r, entries));
5703 		}
5704 		/* FALLTHROUGH */
5705 		if (r->tag)
5706 			ctx->tag = r->tag;
5707 		if (r->anchor == NULL) {
5708 			if (r->action == PF_MATCH) {
5709 				/*
5710 				 * Apply translations before increasing counters,
5711 				 * in case it fails.
5712 				 */
5713 				transerror = pf_rule_apply_nat(ctx, r);
5714 				switch (transerror) {
5715 				case PFRES_MATCH:
5716 					/* Translation action found in rule and applied successfully */
5717 				case PFRES_MAX:
5718 					/* No translation action found in rule */
5719 					break;
5720 				default:
5721 					/* Translation action found in rule but failed to apply */
5722 					REASON_SET(&ctx->reason, transerror);
5723 					return (PF_TEST_FAIL);
5724 				}
5725 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5726 				if (ri == NULL) {
5727 					REASON_SET(&ctx->reason, PFRES_MEMORY);
5728 					return (PF_TEST_FAIL);
5729 				}
5730 				ri->r = r;
5731 				SLIST_INSERT_HEAD(&ctx->rules, ri, entry);
5732 				pf_counter_u64_critical_enter();
5733 				pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5734 				pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5735 				pf_counter_u64_critical_exit();
5736 				pf_rule_to_actions(r, &pd->act);
5737 				if (r->log)
5738 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5739 					    ctx->a, ruleset, pd, 1, NULL);
5740 			} else {
5741 				/*
5742 				 * found matching r
5743 				 */
5744 				*ctx->rm = r;
5745 				/*
5746 				 * anchor, with ruleset, where r belongs to
5747 				 */
5748 				*ctx->am = ctx->a;
5749 				/*
5750 				 * ruleset where r belongs to
5751 				 */
5752 				*ctx->rsm = ruleset;
5753 				/*
5754 				 * ruleset, where anchor belongs to.
5755 				 */
5756 				ctx->arsm = ctx->aruleset;
5757 			}
5758 			if (pd->act.log & PF_LOG_MATCHES)
5759 				pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules);
5760 			if (r->quick) {
5761 				ctx->test_status = PF_TEST_QUICK;
5762 				break;
5763 			}
5764 		} else {
5765 			save_a = ctx->a;
5766 			save_aruleset = ctx->aruleset;
5767 
5768 			ctx->a = r;			/* remember anchor */
5769 			ctx->aruleset = ruleset;	/* and its ruleset */
5770 			if (ctx->a->quick)
5771 				ctx->test_status = PF_TEST_QUICK;
5772 			/*
5773 			 * Note: we don't need to restore if we are not going
5774 			 * to continue with ruleset evaluation.
5775 			 */
5776 			if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
5777 				break;
5778 			}
5779 			ctx->a = save_a;
5780 			ctx->aruleset = save_aruleset;
5781 		}
5782 		r = TAILQ_NEXT(r, entries);
5783 	}
5784 
5785 	return (ctx->test_status);
5786 }
5787 
5788 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5789 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5790     struct pf_pdesc *pd, struct pf_krule **am,
5791     struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5792 {
5793 	struct pf_krule		*r = NULL;
5794 	struct pf_kruleset	*ruleset = NULL;
5795 	struct pf_krule_item	*ri;
5796 	struct pf_test_ctx	 ctx;
5797 	u_short			 transerror;
5798 	int			 action = PF_PASS;
5799 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
5800 	enum pf_test_status	 rv;
5801 
5802 	PF_RULES_RASSERT();
5803 
5804 	bzero(&ctx, sizeof(ctx));
5805 	ctx.tag = -1;
5806 	ctx.pd = pd;
5807 	ctx.rm = rm;
5808 	ctx.am = am;
5809 	ctx.rsm = rsm;
5810 	ctx.th = &pd->hdr.tcp;
5811 	ctx.reason = *reason;
5812 	SLIST_INIT(&ctx.rules);
5813 
5814 	pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
5815 	pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
5816 
5817 	if (inp != NULL) {
5818 		INP_LOCK_ASSERT(inp);
5819 		pd->lookup.uid = inp->inp_cred->cr_uid;
5820 		pd->lookup.gid = inp->inp_cred->cr_gid;
5821 		pd->lookup.done = 1;
5822 	}
5823 
5824 	if (pd->ip_sum)
5825 		bip_sum = *pd->ip_sum;
5826 
5827 	switch (pd->virtual_proto) {
5828 	case IPPROTO_TCP:
5829 		bproto_sum = ctx.th->th_sum;
5830 		pd->nsport = ctx.th->th_sport;
5831 		pd->ndport = ctx.th->th_dport;
5832 		break;
5833 	case IPPROTO_UDP:
5834 		bproto_sum = pd->hdr.udp.uh_sum;
5835 		pd->nsport = pd->hdr.udp.uh_sport;
5836 		pd->ndport = pd->hdr.udp.uh_dport;
5837 		break;
5838 	case IPPROTO_SCTP:
5839 		pd->nsport = pd->hdr.sctp.src_port;
5840 		pd->ndport = pd->hdr.sctp.dest_port;
5841 		break;
5842 #ifdef INET
5843 	case IPPROTO_ICMP:
5844 		MPASS(pd->af == AF_INET);
5845 		ctx.icmptype = pd->hdr.icmp.icmp_type;
5846 		ctx.icmpcode = pd->hdr.icmp.icmp_code;
5847 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5848 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5849 		if (ctx.icmp_dir == PF_IN) {
5850 			pd->nsport = ctx.virtual_id;
5851 			pd->ndport = ctx.virtual_type;
5852 		} else {
5853 			pd->nsport = ctx.virtual_type;
5854 			pd->ndport = ctx.virtual_id;
5855 		}
5856 		break;
5857 #endif /* INET */
5858 #ifdef INET6
5859 	case IPPROTO_ICMPV6:
5860 		MPASS(pd->af == AF_INET6);
5861 		ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5862 		ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5863 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5864 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5865 		if (ctx.icmp_dir == PF_IN) {
5866 			pd->nsport = ctx.virtual_id;
5867 			pd->ndport = ctx.virtual_type;
5868 		} else {
5869 			pd->nsport = ctx.virtual_type;
5870 			pd->ndport = ctx.virtual_id;
5871 		}
5872 
5873 		break;
5874 #endif /* INET6 */
5875 	default:
5876 		pd->nsport = pd->ndport = 0;
5877 		break;
5878 	}
5879 	pd->osport = pd->nsport;
5880 	pd->odport = pd->ndport;
5881 
5882 	/* check packet for BINAT/NAT/RDR */
5883 	transerror = pf_get_translation(&ctx);
5884 	switch (transerror) {
5885 	default:
5886 		/* A translation error occurred. */
5887 		REASON_SET(&ctx.reason, transerror);
5888 		goto cleanup;
5889 	case PFRES_MAX:
5890 		/* No match. */
5891 		break;
5892 	case PFRES_MATCH:
5893 		KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5894 		KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5895 		if (ctx.nr->log) {
5896 			PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5897 			    ruleset, pd, 1, NULL);
5898 		}
5899 
5900 		ctx.rewrite += pf_translate_compat(&ctx);
5901 		ctx.nat_pool = &(ctx.nr->rdr);
5902 	}
5903 
5904 	ruleset = &pf_main_ruleset;
5905 	rv = pf_match_rule(&ctx, ruleset);
5906 	if (rv == PF_TEST_FAIL) {
5907 		/*
5908 		 * Reason has been set in pf_match_rule() already.
5909 		 */
5910 		goto cleanup;
5911 	}
5912 
5913 	r = *ctx.rm;			/* matching rule */
5914 	ctx.a = *ctx.am;		/* rule that defines an anchor containing 'r' */
5915 	ruleset = *ctx.rsm;		/* ruleset of the anchor defined by the rule 'a' */
5916 	ctx.aruleset = ctx.arsm;	/* ruleset of the 'a' rule itself */
5917 
5918 	REASON_SET(&ctx.reason, PFRES_MATCH);
5919 
5920 	/* apply actions for last matching pass/block rule */
5921 	pf_rule_to_actions(r, &pd->act);
5922 	transerror = pf_rule_apply_nat(&ctx, r);
5923 	switch (transerror) {
5924 	case PFRES_MATCH:
5925 		/* Translation action found in rule and applied successfully */
5926 	case PFRES_MAX:
5927 		/* No translation action found in rule */
5928 		break;
5929 	default:
5930 		/* Translation action found in rule but failed to apply */
5931 		REASON_SET(&ctx.reason, transerror);
5932 		goto cleanup;
5933 	}
5934 
5935 	if (r->log) {
5936 		if (ctx.rewrite)
5937 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5938 		PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
5939 	}
5940 	if (pd->act.log & PF_LOG_MATCHES)
5941 		pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules);
5942 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5943 	   (r->action == PF_DROP) &&
5944 	    ((r->rule_flag & PFRULE_RETURNRST) ||
5945 	    (r->rule_flag & PFRULE_RETURNICMP) ||
5946 	    (r->rule_flag & PFRULE_RETURN))) {
5947 		pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
5948 		    bip_sum, &ctx.reason, r->rtableid);
5949 	}
5950 
5951 	if (r->action == PF_DROP)
5952 		goto cleanup;
5953 
5954 	if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
5955 		REASON_SET(&ctx.reason, PFRES_MEMORY);
5956 		goto cleanup;
5957 	}
5958 	if (pd->act.rtableid >= 0)
5959 		M_SETFIB(pd->m, pd->act.rtableid);
5960 
5961 	if (r->rt) {
5962 		/*
5963 		 * Set act.rt here instead of in pf_rule_to_actions() because
5964 		 * it is applied only from the last pass rule. For rules
5965 		 * with the prefer-ipv6-nexthop option act.rt_af is a hint
5966 		 * about AF of the forwarded packet and might be changed.
5967 		 */
5968 		pd->act.rt = r->rt;
5969 		if (r->rt == PF_REPLYTO)
5970 			pd->act.rt_af = pd->af;
5971 		else
5972 			pd->act.rt_af = pd->naf;
5973 		if ((transerror = pf_map_addr_sn(pd->af, r, pd->src,
5974 		    &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL,
5975 		    &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) {
5976 			REASON_SET(&ctx.reason, transerror);
5977 			goto cleanup;
5978 		}
5979 	}
5980 
5981 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5982 	   (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
5983 	    (pd->flags & PFDESC_TCP_NORM)))) {
5984 		bool nat64;
5985 
5986 		action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
5987 		ctx.sk = ctx.nk = NULL;
5988 		if (action != PF_PASS) {
5989 			pf_udp_mapping_release(ctx.udp_mapping);
5990 			if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
5991 			    ctx.reason == PFRES_MEMORY)
5992 				pd->act.log |= PF_LOG_FORCE;
5993 			if (action == PF_DROP &&
5994 			    (r->rule_flag & PFRULE_RETURN))
5995 				pf_return(r, ctx.nr, pd, ctx.th,
5996 				    bproto_sum, bip_sum, &ctx.reason,
5997 				    pd->act.rtableid);
5998 			*reason = ctx.reason;
5999 			return (action);
6000 		}
6001 
6002 		nat64 = pd->af != pd->naf;
6003 		if (nat64) {
6004 			int			 ret;
6005 
6006 			if (ctx.sk == NULL)
6007 				ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
6008 			if (ctx.nk == NULL)
6009 				ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
6010 
6011 			if (pd->dir == PF_IN) {
6012 				ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
6013 				    ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
6014 				    ctx.sk->port[pd->sidx], ctx.virtual_type,
6015 				    ctx.icmp_dir);
6016 			} else {
6017 				ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
6018 				    ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
6019 				    ctx.sk->port[pd->didx], ctx.virtual_type,
6020 				    ctx.icmp_dir);
6021 			}
6022 
6023 			if (ret < 0)
6024 				goto cleanup;
6025 
6026 			ctx.rewrite += ret;
6027 
6028 			if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
6029 				action = PF_AFRT;
6030 		}
6031 	} else {
6032 		while ((ri = SLIST_FIRST(&ctx.rules))) {
6033 			SLIST_REMOVE_HEAD(&ctx.rules, entry);
6034 			free(ri, M_PF_RULE_ITEM);
6035 		}
6036 
6037 		uma_zfree(V_pf_state_key_z, ctx.sk);
6038 		uma_zfree(V_pf_state_key_z, ctx.nk);
6039 		ctx.sk = ctx.nk = NULL;
6040 		pf_udp_mapping_release(ctx.udp_mapping);
6041 	}
6042 
6043 	/* copy back packet headers if we performed NAT operations */
6044 	if (ctx.rewrite)
6045 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6046 
6047 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6048 	    pd->dir == PF_OUT &&
6049 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
6050 		/*
6051 		 * We want the state created, but we dont
6052 		 * want to send this in case a partner
6053 		 * firewall has to know about it to allow
6054 		 * replies through it.
6055 		 */
6056 		*reason = ctx.reason;
6057 		return (PF_DEFER);
6058 	}
6059 
6060 	*reason = ctx.reason;
6061 	return (action);
6062 
6063 cleanup:
6064 	while ((ri = SLIST_FIRST(&ctx.rules))) {
6065 		SLIST_REMOVE_HEAD(&ctx.rules, entry);
6066 		free(ri, M_PF_RULE_ITEM);
6067 	}
6068 
6069 	uma_zfree(V_pf_state_key_z, ctx.sk);
6070 	uma_zfree(V_pf_state_key_z, ctx.nk);
6071 	pf_udp_mapping_release(ctx.udp_mapping);
6072 	*reason = ctx.reason;
6073 
6074 	return (PF_DROP);
6075 }
6076 
6077 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)6078 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6079     struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
6080 {
6081 	struct pf_pdesc		*pd = ctx->pd;
6082 	struct pf_kstate	*s = NULL;
6083 	struct pf_ksrc_node	*sns[PF_SN_MAX] = { NULL };
6084 	/*
6085 	 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6086 	 *        but for PF_SN_NAT it is different. Don't try optimizing it,
6087 	 *        just store all 3 hashes.
6088 	 */
6089 	struct pf_srchash	*snhs[PF_SN_MAX] = { NULL };
6090 	struct tcphdr		*th = &pd->hdr.tcp;
6091 	u_int16_t		 mss = V_tcp_mssdflt;
6092 	u_short			 sn_reason;
6093 	struct pf_krule_item	*ri;
6094 
6095 	/* check maximums */
6096 	if (r->max_states &&
6097 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6098 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6099 		REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6100 		goto csfailed;
6101 	}
6102 	/* src node for limits */
6103 	if ((r->rule_flag & PFRULE_SRCTRACK) &&
6104 	    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6105 	    NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) {
6106 		REASON_SET(&ctx->reason, sn_reason);
6107 		goto csfailed;
6108 	}
6109 	/* src node for route-to rule */
6110 	if (r->rt) {
6111 		if ((r->route.opts & PF_POOL_STICKYADDR) &&
6112 		    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6113 		    pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af,
6114 		    PF_SN_ROUTE)) != 0) {
6115 			REASON_SET(&ctx->reason, sn_reason);
6116 			goto csfailed;
6117 		}
6118 	}
6119 	/* src node for translation rule */
6120 	if (ctx->nr != NULL) {
6121 		KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6122 		/*
6123 		 * The NAT addresses are chosen during ruleset parsing.
6124 		 * The new afto code stores post-nat addresses in nsaddr.
6125 		 * The old nat code (also used for new nat-to rules) creates
6126 		 * state keys and stores addresses in them.
6127 		 */
6128 		if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6129 		    (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6130 		    ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af,
6131 		    ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL,
6132 		    pd->naf, PF_SN_NAT)) != 0 ) {
6133 			REASON_SET(&ctx->reason, sn_reason);
6134 			goto csfailed;
6135 		}
6136 	}
6137 	s = pf_alloc_state(M_NOWAIT);
6138 	if (s == NULL) {
6139 		REASON_SET(&ctx->reason, PFRES_MEMORY);
6140 		goto csfailed;
6141 	}
6142 	s->rule = r;
6143 	s->nat_rule = ctx->nr;
6144 	s->anchor = ctx->a;
6145 	memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules));
6146 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6147 
6148 	if (pd->act.allow_opts)
6149 		s->state_flags |= PFSTATE_ALLOWOPTS;
6150 	if (r->rule_flag & PFRULE_STATESLOPPY)
6151 		s->state_flags |= PFSTATE_SLOPPY;
6152 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6153 		s->state_flags |= PFSTATE_SCRUB_TCP;
6154 	if ((r->rule_flag & PFRULE_PFLOW) ||
6155 	    (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6156 		s->state_flags |= PFSTATE_PFLOW;
6157 
6158 	s->act.log = pd->act.log & PF_LOG_ALL;
6159 	s->sync_state = PFSYNC_S_NONE;
6160 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6161 
6162 	if (ctx->nr != NULL)
6163 		s->act.log |= ctx->nr->log & PF_LOG_ALL;
6164 	switch (pd->proto) {
6165 	case IPPROTO_TCP:
6166 		s->src.seqlo = ntohl(th->th_seq);
6167 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6168 		if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6169 		    r->keep_state == PF_STATE_MODULATE) {
6170 			/* Generate sequence number modulator */
6171 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6172 			    0)
6173 				s->src.seqdiff = 1;
6174 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6175 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
6176 			ctx->rewrite = 1;
6177 		} else
6178 			s->src.seqdiff = 0;
6179 		if (tcp_get_flags(th) & TH_SYN) {
6180 			s->src.seqhi++;
6181 			s->src.wscale = pf_get_wscale(pd);
6182 		}
6183 		s->src.max_win = MAX(ntohs(th->th_win), 1);
6184 		if (s->src.wscale & PF_WSCALE_MASK) {
6185 			/* Remove scale factor from initial window */
6186 			int win = s->src.max_win;
6187 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6188 			s->src.max_win = (win - 1) >>
6189 			    (s->src.wscale & PF_WSCALE_MASK);
6190 		}
6191 		if (tcp_get_flags(th) & TH_FIN)
6192 			s->src.seqhi++;
6193 		s->dst.seqhi = 1;
6194 		s->dst.max_win = 1;
6195 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6196 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6197 		s->timeout = PFTM_TCP_FIRST_PACKET;
6198 		atomic_add_32(&V_pf_status.states_halfopen, 1);
6199 		break;
6200 	case IPPROTO_UDP:
6201 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6202 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6203 		s->timeout = PFTM_UDP_FIRST_PACKET;
6204 		break;
6205 	case IPPROTO_SCTP:
6206 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6207 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6208 		s->timeout = PFTM_SCTP_FIRST_PACKET;
6209 		break;
6210 	case IPPROTO_ICMP:
6211 #ifdef INET6
6212 	case IPPROTO_ICMPV6:
6213 #endif /* INET6 */
6214 		s->timeout = PFTM_ICMP_FIRST_PACKET;
6215 		break;
6216 	default:
6217 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6218 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6219 		s->timeout = PFTM_OTHER_FIRST_PACKET;
6220 	}
6221 
6222 	s->creation = s->expire = pf_get_uptime();
6223 
6224 	if (pd->proto == IPPROTO_TCP) {
6225 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
6226 		    pf_normalize_tcp_init(pd, th, &s->src)) {
6227 			REASON_SET(&ctx->reason, PFRES_MEMORY);
6228 			goto csfailed;
6229 		}
6230 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6231 		    pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6232 		    &s->src, &s->dst, &ctx->rewrite)) {
6233 			/* This really shouldn't happen!!! */
6234 			DPFPRINTF(PF_DEBUG_URGENT,
6235 			    "%s: tcp normalize failed on first "
6236 			     "pkt", __func__);
6237 			goto csfailed;
6238 		}
6239 	} else if (pd->proto == IPPROTO_SCTP) {
6240 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6241 			goto csfailed;
6242 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6243 			goto csfailed;
6244 	}
6245 	s->direction = pd->dir;
6246 
6247 	/*
6248 	 * sk/nk could already been setup by pf_get_translation().
6249 	 */
6250 	if (ctx->sk == NULL && ctx->nk == NULL) {
6251 		MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6252 		MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6253 		if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6254 		    &ctx->sk, &ctx->nk)) {
6255 			goto csfailed;
6256 		}
6257 	} else
6258 		KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6259 		    __func__, ctx->nr, ctx->sk, ctx->nk));
6260 
6261 	/* Swap sk/nk for PF_OUT. */
6262 	if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6263 	    (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6264 	    (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6265 		REASON_SET(&ctx->reason, PFRES_STATEINS);
6266 		goto drop;
6267 	} else
6268 		*sm = s;
6269 	ctx->sk = ctx->nk = NULL;
6270 
6271 	STATE_INC_COUNTERS(s);
6272 
6273 	/*
6274 	 * Lock order is important: first state, then source node.
6275 	 */
6276 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6277 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6278 			s->sns[sn_type] = sns[sn_type];
6279 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6280 		}
6281 	}
6282 
6283 	if (ctx->tag > 0)
6284 		s->tag = ctx->tag;
6285 	if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6286 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6287 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6288 		pf_undo_nat(ctx->nr, pd, bip_sum);
6289 		s->src.seqhi = arc4random();
6290 		/* Find mss option */
6291 		int rtid = M_GETFIB(pd->m);
6292 		mss = pf_get_mss(pd);
6293 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6294 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6295 		s->src.mss = mss;
6296 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6297 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6298 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6299 		    pd->act.rtableid);
6300 		REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6301 		return (PF_SYNPROXY_DROP);
6302 	}
6303 
6304 	s->udp_mapping = ctx->udp_mapping;
6305 
6306 	return (PF_PASS);
6307 
6308 csfailed:
6309 	while ((ri = SLIST_FIRST(&ctx->rules))) {
6310 		SLIST_REMOVE_HEAD(&ctx->rules, entry);
6311 		free(ri, M_PF_RULE_ITEM);
6312 	}
6313 
6314 	uma_zfree(V_pf_state_key_z, ctx->sk);
6315 	uma_zfree(V_pf_state_key_z, ctx->nk);
6316 
6317 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6318 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6319 			if (--sns[sn_type]->states == 0 &&
6320 			    sns[sn_type]->expire == 0) {
6321 				pf_unlink_src_node(sns[sn_type]);
6322 				pf_free_src_node(sns[sn_type]);
6323 				counter_u64_add(
6324 				    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6325 			}
6326 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6327 		}
6328 	}
6329 
6330 drop:
6331 	if (s != NULL) {
6332 		pf_src_tree_remove_state(s);
6333 		s->timeout = PFTM_UNLINKED;
6334 		pf_free_state(s);
6335 	}
6336 
6337 	return (PF_DROP);
6338 }
6339 
6340 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6341 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6342     struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6343     int icmp_dir)
6344 {
6345 	/*
6346 	 * pf_translate() implements OpenBSD's "new" NAT approach.
6347 	 * We don't follow it, because it involves a breaking syntax change
6348 	 * (removing nat/rdr rules, moving it into regular pf rules.)
6349 	 * It also moves NAT processing to be done after normal rules evaluation
6350 	 * whereas in FreeBSD that's done before rules processing.
6351 	 *
6352 	 * We adopt the function only for nat64, and keep other NAT processing
6353 	 * before rules processing.
6354 	 */
6355 	int	rewrite = 0;
6356 	int	afto = pd->af != pd->naf;
6357 
6358 	MPASS(afto);
6359 
6360 	switch (pd->proto) {
6361 	case IPPROTO_TCP:
6362 	case IPPROTO_UDP:
6363 	case IPPROTO_SCTP:
6364 		if (afto || *pd->sport != sport) {
6365 			pf_change_ap(pd, pd->src, pd->sport,
6366 			    saddr, sport);
6367 			rewrite = 1;
6368 		}
6369 		if (afto || *pd->dport != dport) {
6370 			pf_change_ap(pd, pd->dst, pd->dport,
6371 			    daddr, dport);
6372 			rewrite = 1;
6373 		}
6374 		break;
6375 
6376 #ifdef INET
6377 	case IPPROTO_ICMP:
6378 		/* pf_translate() is also used when logging invalid packets */
6379 		if (pd->af != AF_INET)
6380 			return (0);
6381 
6382 		if (afto) {
6383 			if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6384 				return (-1);
6385 			pd->proto = IPPROTO_ICMPV6;
6386 			rewrite = 1;
6387 		}
6388 		if (virtual_type == htons(ICMP_ECHO)) {
6389 			u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6390 
6391 			if (icmpid != pd->hdr.icmp.icmp_id) {
6392 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6393 				    pd->hdr.icmp.icmp_cksum,
6394 				    pd->hdr.icmp.icmp_id, icmpid, 0);
6395 				pd->hdr.icmp.icmp_id = icmpid;
6396 				/* XXX TODO copyback. */
6397 				rewrite = 1;
6398 			}
6399 		}
6400 		break;
6401 #endif /* INET */
6402 
6403 #ifdef INET6
6404 	case IPPROTO_ICMPV6:
6405 		/* pf_translate() is also used when logging invalid packets */
6406 		if (pd->af != AF_INET6)
6407 			return (0);
6408 
6409 		if (afto) {
6410 			/* ip_sum will be recalculated in pf_translate_af */
6411 			if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6412 				return (0);
6413 			pd->proto = IPPROTO_ICMP;
6414 			rewrite = 1;
6415 		}
6416 		break;
6417 #endif /* INET6 */
6418 
6419 	default:
6420 		break;
6421 	}
6422 
6423 	return (rewrite);
6424 }
6425 
6426 int
pf_translate_compat(struct pf_test_ctx * ctx)6427 pf_translate_compat(struct pf_test_ctx *ctx)
6428 {
6429 	struct pf_pdesc		*pd = ctx->pd;
6430 	struct pf_state_key	*nk = ctx->nk;
6431 	struct tcphdr		*th = &pd->hdr.tcp;
6432 	int 			 rewrite = 0;
6433 
6434 	KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6435 	KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6436 
6437 	switch (pd->virtual_proto) {
6438 	case IPPROTO_TCP:
6439 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6440 		    nk->port[pd->sidx] != pd->nsport) {
6441 			pf_change_ap(pd, pd->src, &th->th_sport,
6442 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
6443 			pd->sport = &th->th_sport;
6444 			pd->nsport = th->th_sport;
6445 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6446 		}
6447 
6448 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6449 		    nk->port[pd->didx] != pd->ndport) {
6450 			pf_change_ap(pd, pd->dst, &th->th_dport,
6451 			    &nk->addr[pd->didx], nk->port[pd->didx]);
6452 			pd->dport = &th->th_dport;
6453 			pd->ndport = th->th_dport;
6454 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6455 		}
6456 		rewrite++;
6457 		break;
6458 	case IPPROTO_UDP:
6459 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6460 		    nk->port[pd->sidx] != pd->nsport) {
6461 			pf_change_ap(pd, pd->src,
6462 			    &pd->hdr.udp.uh_sport,
6463 			    &nk->addr[pd->sidx],
6464 			    nk->port[pd->sidx]);
6465 			pd->sport = &pd->hdr.udp.uh_sport;
6466 			pd->nsport = pd->hdr.udp.uh_sport;
6467 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6468 		}
6469 
6470 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6471 		    nk->port[pd->didx] != pd->ndport) {
6472 			pf_change_ap(pd, pd->dst,
6473 			    &pd->hdr.udp.uh_dport,
6474 			    &nk->addr[pd->didx],
6475 			    nk->port[pd->didx]);
6476 			pd->dport = &pd->hdr.udp.uh_dport;
6477 			pd->ndport = pd->hdr.udp.uh_dport;
6478 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6479 		}
6480 		rewrite++;
6481 		break;
6482 	case IPPROTO_SCTP: {
6483 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6484 		    nk->port[pd->sidx] != pd->nsport) {
6485 			pf_change_ap(pd, pd->src,
6486 			    &pd->hdr.sctp.src_port,
6487 			    &nk->addr[pd->sidx],
6488 			    nk->port[pd->sidx]);
6489 			pd->sport = &pd->hdr.sctp.src_port;
6490 			pd->nsport = pd->hdr.sctp.src_port;
6491 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6492 		}
6493 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6494 		    nk->port[pd->didx] != pd->ndport) {
6495 			pf_change_ap(pd, pd->dst,
6496 			    &pd->hdr.sctp.dest_port,
6497 			    &nk->addr[pd->didx],
6498 			    nk->port[pd->didx]);
6499 			pd->dport = &pd->hdr.sctp.dest_port;
6500 			pd->ndport = pd->hdr.sctp.dest_port;
6501 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6502 		}
6503 		break;
6504 	}
6505 #ifdef INET
6506 	case IPPROTO_ICMP:
6507 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6508 			pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6509 			    nk->addr[pd->sidx].v4.s_addr, 0);
6510 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6511 		}
6512 
6513 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6514 			pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6515 			    nk->addr[pd->didx].v4.s_addr, 0);
6516 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6517 		}
6518 
6519 		if (ctx->virtual_type == htons(ICMP_ECHO) &&
6520 		    nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6521 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6522 			    pd->hdr.icmp.icmp_cksum, pd->nsport,
6523 			    nk->port[pd->sidx], 0);
6524 			pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6525 			pd->sport = &pd->hdr.icmp.icmp_id;
6526 		}
6527 		m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6528 		break;
6529 #endif /* INET */
6530 #ifdef INET6
6531 	case IPPROTO_ICMPV6:
6532 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6533 			pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6534 			    &nk->addr[pd->sidx], 0);
6535 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6536 		}
6537 
6538 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6539 			pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6540 			    &nk->addr[pd->didx], 0);
6541 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6542 		}
6543 		rewrite++;
6544 		break;
6545 #endif /* INET */
6546 	default:
6547 		switch (pd->af) {
6548 #ifdef INET
6549 		case AF_INET:
6550 			if (PF_ANEQ(&pd->nsaddr,
6551 				&nk->addr[pd->sidx], AF_INET)) {
6552 				pf_change_a(&pd->src->v4.s_addr,
6553 				    pd->ip_sum,
6554 				    nk->addr[pd->sidx].v4.s_addr, 0);
6555 				pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6556 			}
6557 
6558 			if (PF_ANEQ(&pd->ndaddr,
6559 				&nk->addr[pd->didx], AF_INET)) {
6560 				pf_change_a(&pd->dst->v4.s_addr,
6561 				    pd->ip_sum,
6562 				    nk->addr[pd->didx].v4.s_addr, 0);
6563 				pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6564 			}
6565 			break;
6566 #endif /* INET */
6567 #ifdef INET6
6568 		case AF_INET6:
6569 			if (PF_ANEQ(&pd->nsaddr,
6570 				&nk->addr[pd->sidx], AF_INET6)) {
6571 				pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx],
6572 				    pd->af);
6573 				pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af);
6574 			}
6575 
6576 			if (PF_ANEQ(&pd->ndaddr,
6577 				&nk->addr[pd->didx], AF_INET6)) {
6578 				pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx],
6579 				    pd->af);
6580 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
6581 				    pd->af);
6582 			}
6583 			break;
6584 #endif /* INET6 */
6585 		}
6586 		break;
6587 	}
6588 	return (rewrite);
6589 }
6590 
6591 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6592 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6593     u_short *reason, int *copyback, struct pf_state_peer *src,
6594     struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6595 {
6596 	struct tcphdr		*th = &pd->hdr.tcp;
6597 	u_int16_t		 win = ntohs(th->th_win);
6598 	u_int32_t		 ack, end, data_end, seq, orig_seq;
6599 	u_int8_t		 sws, dws;
6600 	int			 ackskew;
6601 
6602 	if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6603 		sws = src->wscale & PF_WSCALE_MASK;
6604 		dws = dst->wscale & PF_WSCALE_MASK;
6605 	} else
6606 		sws = dws = 0;
6607 
6608 	/*
6609 	 * Sequence tracking algorithm from Guido van Rooij's paper:
6610 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
6611 	 *	tcp_filtering.ps
6612 	 */
6613 
6614 	orig_seq = seq = ntohl(th->th_seq);
6615 	if (src->seqlo == 0) {
6616 		/* First packet from this end. Set its state */
6617 
6618 		if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6619 		    src->scrub == NULL) {
6620 			if (pf_normalize_tcp_init(pd, th, src)) {
6621 				REASON_SET(reason, PFRES_MEMORY);
6622 				return (PF_DROP);
6623 			}
6624 		}
6625 
6626 		/* Deferred generation of sequence number modulator */
6627 		if (dst->seqdiff && !src->seqdiff) {
6628 			/* use random iss for the TCP server */
6629 			while ((src->seqdiff = arc4random() - seq) == 0)
6630 				;
6631 			ack = ntohl(th->th_ack) - dst->seqdiff;
6632 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6633 			    src->seqdiff), 0);
6634 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6635 			*copyback = 1;
6636 		} else {
6637 			ack = ntohl(th->th_ack);
6638 		}
6639 
6640 		end = seq + pd->p_len;
6641 		if (tcp_get_flags(th) & TH_SYN) {
6642 			end++;
6643 			if (dst->wscale & PF_WSCALE_FLAG) {
6644 				src->wscale = pf_get_wscale(pd);
6645 				if (src->wscale & PF_WSCALE_FLAG) {
6646 					/* Remove scale factor from initial
6647 					 * window */
6648 					sws = src->wscale & PF_WSCALE_MASK;
6649 					win = ((u_int32_t)win + (1 << sws) - 1)
6650 					    >> sws;
6651 					dws = dst->wscale & PF_WSCALE_MASK;
6652 				} else {
6653 					/* fixup other window */
6654 					dst->max_win = MIN(TCP_MAXWIN,
6655 					    (u_int32_t)dst->max_win <<
6656 					    (dst->wscale & PF_WSCALE_MASK));
6657 					/* in case of a retrans SYN|ACK */
6658 					dst->wscale = 0;
6659 				}
6660 			}
6661 		}
6662 		data_end = end;
6663 		if (tcp_get_flags(th) & TH_FIN)
6664 			end++;
6665 
6666 		src->seqlo = seq;
6667 		if (src->state < TCPS_SYN_SENT)
6668 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6669 
6670 		/*
6671 		 * May need to slide the window (seqhi may have been set by
6672 		 * the crappy stack check or if we picked up the connection
6673 		 * after establishment)
6674 		 */
6675 		if (src->seqhi == 1 ||
6676 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6677 			src->seqhi = end + MAX(1, dst->max_win << dws);
6678 		if (win > src->max_win)
6679 			src->max_win = win;
6680 
6681 	} else {
6682 		ack = ntohl(th->th_ack) - dst->seqdiff;
6683 		if (src->seqdiff) {
6684 			/* Modulate sequence numbers */
6685 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6686 			    src->seqdiff), 0);
6687 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6688 			*copyback = 1;
6689 		}
6690 		end = seq + pd->p_len;
6691 		if (tcp_get_flags(th) & TH_SYN)
6692 			end++;
6693 		data_end = end;
6694 		if (tcp_get_flags(th) & TH_FIN)
6695 			end++;
6696 	}
6697 
6698 	if ((tcp_get_flags(th) & TH_ACK) == 0) {
6699 		/* Let it pass through the ack skew check */
6700 		ack = dst->seqlo;
6701 	} else if ((ack == 0 &&
6702 	    (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6703 	    /* broken tcp stacks do not set ack */
6704 	    (dst->state < TCPS_SYN_SENT)) {
6705 		/*
6706 		 * Many stacks (ours included) will set the ACK number in an
6707 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
6708 		 */
6709 		ack = dst->seqlo;
6710 	}
6711 
6712 	if (seq == end) {
6713 		/* Ease sequencing restrictions on no data packets */
6714 		seq = src->seqlo;
6715 		data_end = end = seq;
6716 	}
6717 
6718 	ackskew = dst->seqlo - ack;
6719 
6720 	/*
6721 	 * Need to demodulate the sequence numbers in any TCP SACK options
6722 	 * (Selective ACK). We could optionally validate the SACK values
6723 	 * against the current ACK window, either forwards or backwards, but
6724 	 * I'm not confident that SACK has been implemented properly
6725 	 * everywhere. It wouldn't surprise me if several stacks accidentally
6726 	 * SACK too far backwards of previously ACKed data. There really aren't
6727 	 * any security implications of bad SACKing unless the target stack
6728 	 * doesn't validate the option length correctly. Someone trying to
6729 	 * spoof into a TCP connection won't bother blindly sending SACK
6730 	 * options anyway.
6731 	 */
6732 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6733 		if (pf_modulate_sack(pd, th, dst))
6734 			*copyback = 1;
6735 	}
6736 
6737 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
6738 	if (SEQ_GEQ(src->seqhi, data_end) &&
6739 	    /* Last octet inside other's window space */
6740 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6741 	    /* Retrans: not more than one window back */
6742 	    (ackskew >= -MAXACKWINDOW) &&
6743 	    /* Acking not more than one reassembled fragment backwards */
6744 	    (ackskew <= (MAXACKWINDOW << sws)) &&
6745 	    /* Acking not more than one window forward */
6746 	    ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6747 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6748 	    /* Require an exact/+1 sequence match on resets when possible */
6749 
6750 		if (dst->scrub || src->scrub) {
6751 			if (pf_normalize_tcp_stateful(pd, reason, th,
6752 			    state, src, dst, copyback))
6753 				return (PF_DROP);
6754 		}
6755 
6756 		/* update max window */
6757 		if (src->max_win < win)
6758 			src->max_win = win;
6759 		/* synchronize sequencing */
6760 		if (SEQ_GT(end, src->seqlo))
6761 			src->seqlo = end;
6762 		/* slide the window of what the other end can send */
6763 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6764 			dst->seqhi = ack + MAX((win << sws), 1);
6765 
6766 		/* update states */
6767 		if (tcp_get_flags(th) & TH_SYN)
6768 			if (src->state < TCPS_SYN_SENT)
6769 				pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6770 		if (tcp_get_flags(th) & TH_FIN)
6771 			if (src->state < TCPS_CLOSING)
6772 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6773 		if (tcp_get_flags(th) & TH_ACK) {
6774 			if (dst->state == TCPS_SYN_SENT) {
6775 				pf_set_protostate(state, pdst,
6776 				    TCPS_ESTABLISHED);
6777 				if (src->state == TCPS_ESTABLISHED &&
6778 				    state->sns[PF_SN_LIMIT] != NULL &&
6779 				    pf_src_connlimit(state)) {
6780 					REASON_SET(reason, PFRES_SRCLIMIT);
6781 					return (PF_DROP);
6782 				}
6783 			} else if (dst->state == TCPS_CLOSING)
6784 				pf_set_protostate(state, pdst,
6785 				    TCPS_FIN_WAIT_2);
6786 		}
6787 		if (tcp_get_flags(th) & TH_RST)
6788 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6789 
6790 		/* update expire time */
6791 		state->expire = pf_get_uptime();
6792 		if (src->state >= TCPS_FIN_WAIT_2 &&
6793 		    dst->state >= TCPS_FIN_WAIT_2)
6794 			state->timeout = PFTM_TCP_CLOSED;
6795 		else if (src->state >= TCPS_CLOSING &&
6796 		    dst->state >= TCPS_CLOSING)
6797 			state->timeout = PFTM_TCP_FIN_WAIT;
6798 		else if (src->state < TCPS_ESTABLISHED ||
6799 		    dst->state < TCPS_ESTABLISHED)
6800 			state->timeout = PFTM_TCP_OPENING;
6801 		else if (src->state >= TCPS_CLOSING ||
6802 		    dst->state >= TCPS_CLOSING)
6803 			state->timeout = PFTM_TCP_CLOSING;
6804 		else
6805 			state->timeout = PFTM_TCP_ESTABLISHED;
6806 
6807 		/* Fall through to PASS packet */
6808 
6809 	} else if ((dst->state < TCPS_SYN_SENT ||
6810 		dst->state >= TCPS_FIN_WAIT_2 ||
6811 		src->state >= TCPS_FIN_WAIT_2) &&
6812 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6813 	    /* Within a window forward of the originating packet */
6814 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6815 	    /* Within a window backward of the originating packet */
6816 
6817 		/*
6818 		 * This currently handles three situations:
6819 		 *  1) Stupid stacks will shotgun SYNs before their peer
6820 		 *     replies.
6821 		 *  2) When PF catches an already established stream (the
6822 		 *     firewall rebooted, the state table was flushed, routes
6823 		 *     changed...)
6824 		 *  3) Packets get funky immediately after the connection
6825 		 *     closes (this should catch Solaris spurious ACK|FINs
6826 		 *     that web servers like to spew after a close)
6827 		 *
6828 		 * This must be a little more careful than the above code
6829 		 * since packet floods will also be caught here. We don't
6830 		 * update the TTL here to mitigate the damage of a packet
6831 		 * flood and so the same code can handle awkward establishment
6832 		 * and a loosened connection close.
6833 		 * In the establishment case, a correct peer response will
6834 		 * validate the connection, go through the normal state code
6835 		 * and keep updating the state TTL.
6836 		 */
6837 
6838 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6839 			printf("pf: loose state match: ");
6840 			pf_print_state(state);
6841 			pf_print_flags(tcp_get_flags(th));
6842 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6843 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6844 			    pd->p_len, ackskew, (unsigned long long)state->packets[0],
6845 			    (unsigned long long)state->packets[1],
6846 			    pd->dir == PF_IN ? "in" : "out",
6847 			    pd->dir == state->direction ? "fwd" : "rev");
6848 		}
6849 
6850 		if (dst->scrub || src->scrub) {
6851 			if (pf_normalize_tcp_stateful(pd, reason, th,
6852 			    state, src, dst, copyback))
6853 				return (PF_DROP);
6854 		}
6855 
6856 		/* update max window */
6857 		if (src->max_win < win)
6858 			src->max_win = win;
6859 		/* synchronize sequencing */
6860 		if (SEQ_GT(end, src->seqlo))
6861 			src->seqlo = end;
6862 		/* slide the window of what the other end can send */
6863 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6864 			dst->seqhi = ack + MAX((win << sws), 1);
6865 
6866 		/*
6867 		 * Cannot set dst->seqhi here since this could be a shotgunned
6868 		 * SYN and not an already established connection.
6869 		 */
6870 
6871 		if (tcp_get_flags(th) & TH_FIN)
6872 			if (src->state < TCPS_CLOSING)
6873 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6874 		if (tcp_get_flags(th) & TH_RST)
6875 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6876 
6877 		/* Fall through to PASS packet */
6878 
6879 	} else {
6880 		if (state->dst.state == TCPS_SYN_SENT &&
6881 		    state->src.state == TCPS_SYN_SENT) {
6882 			/* Send RST for state mismatches during handshake */
6883 			if (!(tcp_get_flags(th) & TH_RST))
6884 				pf_send_tcp(state->rule, pd->af,
6885 				    pd->dst, pd->src, th->th_dport,
6886 				    th->th_sport, ntohl(th->th_ack), 0,
6887 				    TH_RST, 0, 0,
6888 				    state->rule->return_ttl, M_SKIP_FIREWALL,
6889 				    0, 0, state->act.rtableid);
6890 			src->seqlo = 0;
6891 			src->seqhi = 1;
6892 			src->max_win = 1;
6893 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6894 			printf("pf: BAD state: ");
6895 			pf_print_state(state);
6896 			pf_print_flags(tcp_get_flags(th));
6897 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6898 			    "pkts=%llu:%llu dir=%s,%s\n",
6899 			    seq, orig_seq, ack, pd->p_len, ackskew,
6900 			    (unsigned long long)state->packets[0],
6901 			    (unsigned long long)state->packets[1],
6902 			    pd->dir == PF_IN ? "in" : "out",
6903 			    pd->dir == state->direction ? "fwd" : "rev");
6904 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
6905 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6906 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6907 			    ' ': '2',
6908 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6909 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6910 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6911 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6912 		}
6913 		REASON_SET(reason, PFRES_BADSTATE);
6914 		return (PF_DROP);
6915 	}
6916 
6917 	return (PF_PASS);
6918 }
6919 
6920 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6921 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6922     u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6923     u_int8_t psrc, u_int8_t pdst)
6924 {
6925 	struct tcphdr		*th = &pd->hdr.tcp;
6926 
6927 	if (tcp_get_flags(th) & TH_SYN)
6928 		if (src->state < TCPS_SYN_SENT)
6929 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6930 	if (tcp_get_flags(th) & TH_FIN)
6931 		if (src->state < TCPS_CLOSING)
6932 			pf_set_protostate(state, psrc, TCPS_CLOSING);
6933 	if (tcp_get_flags(th) & TH_ACK) {
6934 		if (dst->state == TCPS_SYN_SENT) {
6935 			pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6936 			if (src->state == TCPS_ESTABLISHED &&
6937 			    state->sns[PF_SN_LIMIT] != NULL &&
6938 			    pf_src_connlimit(state)) {
6939 				REASON_SET(reason, PFRES_SRCLIMIT);
6940 				return (PF_DROP);
6941 			}
6942 		} else if (dst->state == TCPS_CLOSING) {
6943 			pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6944 		} else if (src->state == TCPS_SYN_SENT &&
6945 		    dst->state < TCPS_SYN_SENT) {
6946 			/*
6947 			 * Handle a special sloppy case where we only see one
6948 			 * half of the connection. If there is a ACK after
6949 			 * the initial SYN without ever seeing a packet from
6950 			 * the destination, set the connection to established.
6951 			 */
6952 			pf_set_protostate(state, PF_PEER_BOTH,
6953 			    TCPS_ESTABLISHED);
6954 			dst->state = src->state = TCPS_ESTABLISHED;
6955 			if (state->sns[PF_SN_LIMIT] != NULL &&
6956 			    pf_src_connlimit(state)) {
6957 				REASON_SET(reason, PFRES_SRCLIMIT);
6958 				return (PF_DROP);
6959 			}
6960 		} else if (src->state == TCPS_CLOSING &&
6961 		    dst->state == TCPS_ESTABLISHED &&
6962 		    dst->seqlo == 0) {
6963 			/*
6964 			 * Handle the closing of half connections where we
6965 			 * don't see the full bidirectional FIN/ACK+ACK
6966 			 * handshake.
6967 			 */
6968 			pf_set_protostate(state, pdst, TCPS_CLOSING);
6969 		}
6970 	}
6971 	if (tcp_get_flags(th) & TH_RST)
6972 		pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6973 
6974 	/* update expire time */
6975 	state->expire = pf_get_uptime();
6976 	if (src->state >= TCPS_FIN_WAIT_2 &&
6977 	    dst->state >= TCPS_FIN_WAIT_2)
6978 		state->timeout = PFTM_TCP_CLOSED;
6979 	else if (src->state >= TCPS_CLOSING &&
6980 	    dst->state >= TCPS_CLOSING)
6981 		state->timeout = PFTM_TCP_FIN_WAIT;
6982 	else if (src->state < TCPS_ESTABLISHED ||
6983 	    dst->state < TCPS_ESTABLISHED)
6984 		state->timeout = PFTM_TCP_OPENING;
6985 	else if (src->state >= TCPS_CLOSING ||
6986 	    dst->state >= TCPS_CLOSING)
6987 		state->timeout = PFTM_TCP_CLOSING;
6988 	else
6989 		state->timeout = PFTM_TCP_ESTABLISHED;
6990 
6991 	return (PF_PASS);
6992 }
6993 
6994 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)6995 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
6996 {
6997 	struct pf_state_key	*sk = state->key[pd->didx];
6998 	struct tcphdr		*th = &pd->hdr.tcp;
6999 
7000 	if (state->src.state == PF_TCPS_PROXY_SRC) {
7001 		if (pd->dir != state->direction) {
7002 			REASON_SET(reason, PFRES_SYNPROXY);
7003 			return (PF_SYNPROXY_DROP);
7004 		}
7005 		if (tcp_get_flags(th) & TH_SYN) {
7006 			if (ntohl(th->th_seq) != state->src.seqlo) {
7007 				REASON_SET(reason, PFRES_SYNPROXY);
7008 				return (PF_DROP);
7009 			}
7010 			pf_send_tcp(state->rule, pd->af, pd->dst,
7011 			    pd->src, th->th_dport, th->th_sport,
7012 			    state->src.seqhi, ntohl(th->th_seq) + 1,
7013 			    TH_SYN|TH_ACK, 0, state->src.mss, 0,
7014 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
7015 			REASON_SET(reason, PFRES_SYNPROXY);
7016 			return (PF_SYNPROXY_DROP);
7017 		} else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
7018 		    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7019 		    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7020 			REASON_SET(reason, PFRES_SYNPROXY);
7021 			return (PF_DROP);
7022 		} else if (state->sns[PF_SN_LIMIT] != NULL &&
7023 		    pf_src_connlimit(state)) {
7024 			REASON_SET(reason, PFRES_SRCLIMIT);
7025 			return (PF_DROP);
7026 		} else
7027 			pf_set_protostate(state, PF_PEER_SRC,
7028 			    PF_TCPS_PROXY_DST);
7029 	}
7030 	if (state->src.state == PF_TCPS_PROXY_DST) {
7031 		if (pd->dir == state->direction) {
7032 			if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
7033 			    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7034 			    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7035 				REASON_SET(reason, PFRES_SYNPROXY);
7036 				return (PF_DROP);
7037 			}
7038 			state->src.max_win = MAX(ntohs(th->th_win), 1);
7039 			if (state->dst.seqhi == 1)
7040 				state->dst.seqhi = arc4random();
7041 			pf_send_tcp(state->rule, pd->af,
7042 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7043 			    sk->port[pd->sidx], sk->port[pd->didx],
7044 			    state->dst.seqhi, 0, TH_SYN, 0,
7045 			    state->src.mss, 0,
7046 			    state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
7047 			    state->tag, 0, state->act.rtableid);
7048 			REASON_SET(reason, PFRES_SYNPROXY);
7049 			return (PF_SYNPROXY_DROP);
7050 		} else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
7051 		    (TH_SYN|TH_ACK)) ||
7052 		    (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
7053 			REASON_SET(reason, PFRES_SYNPROXY);
7054 			return (PF_DROP);
7055 		} else {
7056 			state->dst.max_win = MAX(ntohs(th->th_win), 1);
7057 			state->dst.seqlo = ntohl(th->th_seq);
7058 			pf_send_tcp(state->rule, pd->af, pd->dst,
7059 			    pd->src, th->th_dport, th->th_sport,
7060 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
7061 			    TH_ACK, state->src.max_win, 0, 0, 0,
7062 			    state->tag, 0, state->act.rtableid);
7063 			pf_send_tcp(state->rule, pd->af,
7064 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7065 			    sk->port[pd->sidx], sk->port[pd->didx],
7066 			    state->src.seqhi + 1, state->src.seqlo + 1,
7067 			    TH_ACK, state->dst.max_win, 0, 0,
7068 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
7069 			state->src.seqdiff = state->dst.seqhi -
7070 			    state->src.seqlo;
7071 			state->dst.seqdiff = state->src.seqhi -
7072 			    state->dst.seqlo;
7073 			state->src.seqhi = state->src.seqlo +
7074 			    state->dst.max_win;
7075 			state->dst.seqhi = state->dst.seqlo +
7076 			    state->src.max_win;
7077 			state->src.wscale = state->dst.wscale = 0;
7078 			pf_set_protostate(state, PF_PEER_BOTH,
7079 			    TCPS_ESTABLISHED);
7080 			REASON_SET(reason, PFRES_SYNPROXY);
7081 			return (PF_SYNPROXY_DROP);
7082 		}
7083 	}
7084 
7085 	return (PF_PASS);
7086 }
7087 
7088 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7089 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7090 {
7091 	struct pf_state_key_cmp	 key;
7092 	int			 copyback = 0;
7093 	struct pf_state_peer	*src, *dst;
7094 	uint8_t			 psrc, pdst;
7095 	int			 action;
7096 
7097 	bzero(&key, sizeof(key));
7098 	key.af = pd->af;
7099 	key.proto = pd->virtual_proto;
7100 	pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af);
7101 	pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af);
7102 	key.port[pd->sidx] = pd->osport;
7103 	key.port[pd->didx] = pd->odport;
7104 
7105 	action = pf_find_state(pd, &key, state);
7106 	if (action != PF_MATCH)
7107 		return (action);
7108 
7109 	action = PF_PASS;
7110 	if (pd->dir == (*state)->direction) {
7111 		if (PF_REVERSED_KEY(*state, pd->af)) {
7112 			src = &(*state)->dst;
7113 			dst = &(*state)->src;
7114 			psrc = PF_PEER_DST;
7115 			pdst = PF_PEER_SRC;
7116 		} else {
7117 			src = &(*state)->src;
7118 			dst = &(*state)->dst;
7119 			psrc = PF_PEER_SRC;
7120 			pdst = PF_PEER_DST;
7121 		}
7122 	} else {
7123 		if (PF_REVERSED_KEY(*state, pd->af)) {
7124 			src = &(*state)->src;
7125 			dst = &(*state)->dst;
7126 			psrc = PF_PEER_SRC;
7127 			pdst = PF_PEER_DST;
7128 		} else {
7129 			src = &(*state)->dst;
7130 			dst = &(*state)->src;
7131 			psrc = PF_PEER_DST;
7132 			pdst = PF_PEER_SRC;
7133 		}
7134 	}
7135 
7136 	switch (pd->virtual_proto) {
7137 	case IPPROTO_TCP: {
7138 		struct tcphdr		*th = &pd->hdr.tcp;
7139 
7140 		if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7141 			return (action);
7142 		if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7143 		    ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7144 		    pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7145 			if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7146 			    (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7147 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7148 					printf("pf: state reuse ");
7149 					pf_print_state(*state);
7150 					pf_print_flags(tcp_get_flags(th));
7151 					printf("\n");
7152 				}
7153 				/* XXX make sure it's the same direction ?? */
7154 				pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7155 				pf_remove_state(*state);
7156 				*state = NULL;
7157 				return (PF_DROP);
7158 			} else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7159 			    (*state)->dst.state >= TCPS_ESTABLISHED) {
7160 				/*
7161 				 * SYN matches existing state???
7162 				 * Typically happens when sender boots up after
7163 				 * sudden panic. Certain protocols (NFSv3) are
7164 				 * always using same port numbers. Challenge
7165 				 * ACK enables all parties (firewall and peers)
7166 				 * to get in sync again.
7167 				 */
7168 				pf_send_challenge_ack(pd, *state, src, dst);
7169 				return (PF_DROP);
7170 			}
7171 		}
7172 		if ((*state)->state_flags & PFSTATE_SLOPPY) {
7173 			if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7174 			    psrc, pdst) == PF_DROP)
7175 				return (PF_DROP);
7176 		} else {
7177 			int	 ret;
7178 
7179 			ret = pf_tcp_track_full(*state, pd, reason,
7180 			    &copyback, src, dst, psrc, pdst);
7181 			if (ret == PF_DROP)
7182 				return (PF_DROP);
7183 		}
7184 		break;
7185 	}
7186 	case IPPROTO_UDP:
7187 		/* update states */
7188 		if (src->state < PFUDPS_SINGLE)
7189 			pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7190 		if (dst->state == PFUDPS_SINGLE)
7191 			pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7192 
7193 		/* update expire time */
7194 		(*state)->expire = pf_get_uptime();
7195 		if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7196 			(*state)->timeout = PFTM_UDP_MULTIPLE;
7197 		else
7198 			(*state)->timeout = PFTM_UDP_SINGLE;
7199 		break;
7200 	case IPPROTO_SCTP:
7201 		if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7202 		    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7203 		    pd->sctp_flags & PFDESC_SCTP_INIT) {
7204 			pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7205 			pf_remove_state(*state);
7206 			*state = NULL;
7207 			return (PF_DROP);
7208 		}
7209 
7210 		if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7211 			return (PF_DROP);
7212 
7213 		/* Track state. */
7214 		if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7215 			if (src->state < SCTP_COOKIE_WAIT) {
7216 				pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7217 				(*state)->timeout = PFTM_SCTP_OPENING;
7218 			}
7219 		}
7220 		if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7221 			MPASS(dst->scrub != NULL);
7222 			if (dst->scrub->pfss_v_tag == 0)
7223 				dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7224 		}
7225 
7226 		/*
7227 		 * Bind to the correct interface if we're if-bound. For multihomed
7228 		 * extra associations we don't know which interface that will be until
7229 		 * here, so we've inserted the state on V_pf_all. Fix that now.
7230 		 */
7231 		if ((*state)->kif == V_pfi_all &&
7232 		    (*state)->rule->rule_flag & PFRULE_IFBOUND)
7233 			(*state)->kif = pd->kif;
7234 
7235 		if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7236 			if (src->state < SCTP_ESTABLISHED) {
7237 				pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7238 				(*state)->timeout = PFTM_SCTP_ESTABLISHED;
7239 			}
7240 		}
7241 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7242 		    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7243 			if (src->state < SCTP_SHUTDOWN_PENDING) {
7244 				pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7245 				(*state)->timeout = PFTM_SCTP_CLOSING;
7246 			}
7247 		}
7248 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7249 			pf_set_protostate(*state, psrc, SCTP_CLOSED);
7250 			(*state)->timeout = PFTM_SCTP_CLOSED;
7251 		}
7252 
7253 		(*state)->expire = pf_get_uptime();
7254 		break;
7255 	default:
7256 		/* update states */
7257 		if (src->state < PFOTHERS_SINGLE)
7258 			pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7259 		if (dst->state == PFOTHERS_SINGLE)
7260 			pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7261 
7262 		/* update expire time */
7263 		(*state)->expire = pf_get_uptime();
7264 		if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7265 			(*state)->timeout = PFTM_OTHER_MULTIPLE;
7266 		else
7267 			(*state)->timeout = PFTM_OTHER_SINGLE;
7268 		break;
7269 	}
7270 
7271 	/* translate source/destination address, if necessary */
7272 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7273 		struct pf_state_key	*nk;
7274 		int			 afto, sidx, didx;
7275 
7276 		if (PF_REVERSED_KEY(*state, pd->af))
7277 			nk = (*state)->key[pd->sidx];
7278 		else
7279 			nk = (*state)->key[pd->didx];
7280 
7281 		afto = pd->af != nk->af;
7282 
7283 		if (afto && (*state)->direction == PF_IN) {
7284 			sidx = pd->didx;
7285 			didx = pd->sidx;
7286 		} else {
7287 			sidx = pd->sidx;
7288 			didx = pd->didx;
7289 		}
7290 
7291 		if (afto) {
7292 			pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af);
7293 			pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af);
7294 			pd->naf = nk->af;
7295 			action = PF_AFRT;
7296 		}
7297 
7298 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7299 		    nk->port[sidx] != pd->osport)
7300 			pf_change_ap(pd, pd->src, pd->sport,
7301 			    &nk->addr[sidx], nk->port[sidx]);
7302 
7303 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7304 		    nk->port[didx] != pd->odport)
7305 			pf_change_ap(pd, pd->dst, pd->dport,
7306 			    &nk->addr[didx], nk->port[didx]);
7307 
7308 		copyback = 1;
7309 	}
7310 
7311 	if (copyback && pd->hdrlen > 0)
7312 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7313 
7314 	return (action);
7315 }
7316 
7317 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7318 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7319     u_short *reason)
7320 {
7321 	struct pf_state_peer	*src;
7322 	if (pd->dir == state->direction) {
7323 		if (PF_REVERSED_KEY(state, pd->af))
7324 			src = &state->dst;
7325 		else
7326 			src = &state->src;
7327 	} else {
7328 		if (PF_REVERSED_KEY(state, pd->af))
7329 			src = &state->src;
7330 		else
7331 			src = &state->dst;
7332 	}
7333 
7334 	if (src->scrub != NULL) {
7335 		if (src->scrub->pfss_v_tag == 0)
7336 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7337 		else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7338 			return (PF_DROP);
7339 	}
7340 
7341 	return (PF_PASS);
7342 }
7343 
7344 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7345 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7346 {
7347 	struct pf_sctp_endpoint key;
7348 	struct pf_sctp_endpoint *ep;
7349 	struct pf_state_key *sks = s->key[PF_SK_STACK];
7350 	struct pf_sctp_source *i, *tmp;
7351 
7352 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7353 		return;
7354 
7355 	PF_SCTP_ENDPOINTS_LOCK();
7356 
7357 	key.v_tag = s->dst.scrub->pfss_v_tag;
7358 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7359 	if (ep != NULL) {
7360 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7361 			if (pf_addr_cmp(&i->addr,
7362 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7363 			    s->key[PF_SK_WIRE]->af) == 0) {
7364 				SDT_PROBE3(pf, sctp, multihome, remove,
7365 				    key.v_tag, s, i);
7366 				TAILQ_REMOVE(&ep->sources, i, entry);
7367 				free(i, M_PFTEMP);
7368 				break;
7369 			}
7370 		}
7371 
7372 		if (TAILQ_EMPTY(&ep->sources)) {
7373 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7374 			free(ep, M_PFTEMP);
7375 		}
7376 	}
7377 
7378 	/* Other direction. */
7379 	key.v_tag = s->src.scrub->pfss_v_tag;
7380 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7381 	if (ep != NULL) {
7382 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7383 			if (pf_addr_cmp(&i->addr,
7384 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7385 			    s->key[PF_SK_WIRE]->af) == 0) {
7386 				SDT_PROBE3(pf, sctp, multihome, remove,
7387 				    key.v_tag, s, i);
7388 				TAILQ_REMOVE(&ep->sources, i, entry);
7389 				free(i, M_PFTEMP);
7390 				break;
7391 			}
7392 		}
7393 
7394 		if (TAILQ_EMPTY(&ep->sources)) {
7395 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7396 			free(ep, M_PFTEMP);
7397 		}
7398 	}
7399 
7400 	PF_SCTP_ENDPOINTS_UNLOCK();
7401 }
7402 
7403 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7404 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7405 {
7406 	struct pf_sctp_endpoint key = {
7407 		.v_tag = v_tag,
7408 	};
7409 	struct pf_sctp_source *i;
7410 	struct pf_sctp_endpoint *ep;
7411 	int count;
7412 
7413 	PF_SCTP_ENDPOINTS_LOCK();
7414 
7415 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7416 	if (ep == NULL) {
7417 		ep = malloc(sizeof(struct pf_sctp_endpoint),
7418 		    M_PFTEMP, M_NOWAIT);
7419 		if (ep == NULL) {
7420 			PF_SCTP_ENDPOINTS_UNLOCK();
7421 			return;
7422 		}
7423 
7424 		ep->v_tag = v_tag;
7425 		TAILQ_INIT(&ep->sources);
7426 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7427 	}
7428 
7429 	/* Avoid inserting duplicates. */
7430 	count = 0;
7431 	TAILQ_FOREACH(i, &ep->sources, entry) {
7432 		count++;
7433 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7434 			PF_SCTP_ENDPOINTS_UNLOCK();
7435 			return;
7436 		}
7437 	}
7438 
7439 	/* Limit the number of addresses per endpoint. */
7440 	if (count >= PF_SCTP_MAX_ENDPOINTS) {
7441 		PF_SCTP_ENDPOINTS_UNLOCK();
7442 		return;
7443 	}
7444 
7445 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7446 	if (i == NULL) {
7447 		PF_SCTP_ENDPOINTS_UNLOCK();
7448 		return;
7449 	}
7450 
7451 	i->af = pd->af;
7452 	memcpy(&i->addr, a, sizeof(*a));
7453 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7454 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7455 
7456 	PF_SCTP_ENDPOINTS_UNLOCK();
7457 }
7458 
7459 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7460 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7461     struct pf_kstate *s, int action)
7462 {
7463 	struct pf_sctp_multihome_job	*j, *tmp;
7464 	struct pf_sctp_source		*i;
7465 	int			 ret;
7466 	struct pf_kstate	*sm = NULL;
7467 	struct pf_krule		*ra = NULL;
7468 	struct pf_krule		*r = &V_pf_default_rule;
7469 	struct pf_kruleset	*rs = NULL;
7470 	u_short			 reason;
7471 	bool do_extra = true;
7472 
7473 	PF_RULES_RLOCK_TRACKER;
7474 
7475 again:
7476 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7477 		if (s == NULL || action != PF_PASS)
7478 			goto free;
7479 
7480 		/* Confirm we don't recurse here. */
7481 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7482 
7483 		switch (j->op) {
7484 		case  SCTP_ADD_IP_ADDRESS: {
7485 			uint32_t v_tag = pd->sctp_initiate_tag;
7486 
7487 			if (v_tag == 0) {
7488 				if (s->direction == pd->dir)
7489 					v_tag = s->src.scrub->pfss_v_tag;
7490 				else
7491 					v_tag = s->dst.scrub->pfss_v_tag;
7492 			}
7493 
7494 			/*
7495 			 * Avoid duplicating states. We'll already have
7496 			 * created a state based on the source address of
7497 			 * the packet, but SCTP endpoints may also list this
7498 			 * address again in the INIT(_ACK) parameters.
7499 			 */
7500 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7501 				break;
7502 			}
7503 
7504 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7505 			PF_RULES_RLOCK();
7506 			sm = NULL;
7507 			if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7508 				j->pd.related_rule = s->rule;
7509 			}
7510 			ret = pf_test_rule(&r, &sm,
7511 			    &j->pd, &ra, &rs, &reason, NULL);
7512 			PF_RULES_RUNLOCK();
7513 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7514 			if (ret != PF_DROP && sm != NULL) {
7515 				/* Inherit v_tag values. */
7516 				if (sm->direction == s->direction) {
7517 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7518 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7519 				} else {
7520 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7521 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7522 				}
7523 				PF_STATE_UNLOCK(sm);
7524 			} else {
7525 				/* If we try duplicate inserts? */
7526 				break;
7527 			}
7528 
7529 			/* Only add the address if we've actually allowed the state. */
7530 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7531 
7532 			if (! do_extra) {
7533 				break;
7534 			}
7535 			/*
7536 			 * We need to do this for each of our source addresses.
7537 			 * Find those based on the verification tag.
7538 			 */
7539 			struct pf_sctp_endpoint key = {
7540 				.v_tag = pd->hdr.sctp.v_tag,
7541 			};
7542 			struct pf_sctp_endpoint *ep;
7543 
7544 			PF_SCTP_ENDPOINTS_LOCK();
7545 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7546 			if (ep == NULL) {
7547 				PF_SCTP_ENDPOINTS_UNLOCK();
7548 				break;
7549 			}
7550 			MPASS(ep != NULL);
7551 
7552 			TAILQ_FOREACH(i, &ep->sources, entry) {
7553 				struct pf_sctp_multihome_job *nj;
7554 
7555 				/* SCTP can intermingle IPv4 and IPv6. */
7556 				if (i->af != pd->af)
7557 					continue;
7558 
7559 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7560 				if (! nj) {
7561 					continue;
7562 				}
7563 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7564 				memcpy(&nj->src, &j->src, sizeof(nj->src));
7565 				nj->pd.src = &nj->src;
7566 				// New destination address!
7567 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7568 				nj->pd.dst = &nj->dst;
7569 				nj->pd.m = j->pd.m;
7570 				nj->op = j->op;
7571 
7572 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7573 			}
7574 			PF_SCTP_ENDPOINTS_UNLOCK();
7575 
7576 			break;
7577 		}
7578 		case SCTP_DEL_IP_ADDRESS: {
7579 			struct pf_state_key_cmp key;
7580 			uint8_t psrc;
7581 			int action;
7582 
7583 			bzero(&key, sizeof(key));
7584 			key.af = j->pd.af;
7585 			key.proto = IPPROTO_SCTP;
7586 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
7587 				pf_addrcpy(&key.addr[0], j->pd.src, key.af);
7588 				pf_addrcpy(&key.addr[1], j->pd.dst, key.af);
7589 				key.port[0] = j->pd.hdr.sctp.src_port;
7590 				key.port[1] = j->pd.hdr.sctp.dest_port;
7591 			} else {			/* stack side, reverse */
7592 				pf_addrcpy(&key.addr[1], j->pd.src, key.af);
7593 				pf_addrcpy(&key.addr[0], j->pd.dst, key.af);
7594 				key.port[1] = j->pd.hdr.sctp.src_port;
7595 				key.port[0] = j->pd.hdr.sctp.dest_port;
7596 			}
7597 
7598 			action = pf_find_state(&j->pd, &key, &sm);
7599 			if (action == PF_MATCH) {
7600 				PF_STATE_LOCK_ASSERT(sm);
7601 				if (j->pd.dir == sm->direction) {
7602 					psrc = PF_PEER_SRC;
7603 				} else {
7604 					psrc = PF_PEER_DST;
7605 				}
7606 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7607 				sm->timeout = PFTM_SCTP_CLOSING;
7608 				PF_STATE_UNLOCK(sm);
7609 			}
7610 			break;
7611 		default:
7612 			panic("Unknown op %#x", j->op);
7613 		}
7614 	}
7615 
7616 	free:
7617 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7618 		free(j, M_PFTEMP);
7619 	}
7620 
7621 	/* We may have inserted extra work while processing the list. */
7622 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7623 		do_extra = false;
7624 		goto again;
7625 	}
7626 }
7627 
7628 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7629 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7630 {
7631 	int			 off = 0;
7632 	struct pf_sctp_multihome_job	*job;
7633 
7634 	SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7635 
7636 	while (off < len) {
7637 		struct sctp_paramhdr h;
7638 
7639 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7640 		    pd->af))
7641 			return (PF_DROP);
7642 
7643 		/* Parameters are at least 4 bytes. */
7644 		if (ntohs(h.param_length) < 4)
7645 			return (PF_DROP);
7646 
7647 		SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7648 		    ntohs(h.param_length));
7649 
7650 		switch (ntohs(h.param_type)) {
7651 		case  SCTP_IPV4_ADDRESS: {
7652 			struct in_addr t;
7653 
7654 			if (ntohs(h.param_length) !=
7655 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7656 				return (PF_DROP);
7657 
7658 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7659 			    NULL, NULL, pd->af))
7660 				return (PF_DROP);
7661 
7662 			if (in_nullhost(t))
7663 				t.s_addr = pd->src->v4.s_addr;
7664 
7665 			/*
7666 			 * We hold the state lock (idhash) here, which means
7667 			 * that we can't acquire the keyhash, or we'll get a
7668 			 * LOR (and potentially double-lock things too). We also
7669 			 * can't release the state lock here, so instead we'll
7670 			 * enqueue this for async handling.
7671 			 * There's a relatively small race here, in that a
7672 			 * packet using the new addresses could arrive already,
7673 			 * but that's just though luck for it.
7674 			 */
7675 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7676 			if (! job)
7677 				return (PF_DROP);
7678 
7679 			SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7680 
7681 			memcpy(&job->pd, pd, sizeof(*pd));
7682 
7683 			// New source address!
7684 			memcpy(&job->src, &t, sizeof(t));
7685 			job->pd.src = &job->src;
7686 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7687 			job->pd.dst = &job->dst;
7688 			job->pd.m = pd->m;
7689 			job->op = op;
7690 
7691 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7692 			break;
7693 		}
7694 #ifdef INET6
7695 		case SCTP_IPV6_ADDRESS: {
7696 			struct in6_addr t;
7697 
7698 			if (ntohs(h.param_length) !=
7699 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7700 				return (PF_DROP);
7701 
7702 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7703 			    NULL, NULL, pd->af))
7704 				return (PF_DROP);
7705 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7706 				break;
7707 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7708 				memcpy(&t, &pd->src->v6, sizeof(t));
7709 
7710 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7711 			if (! job)
7712 				return (PF_DROP);
7713 
7714 			SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7715 
7716 			memcpy(&job->pd, pd, sizeof(*pd));
7717 			memcpy(&job->src, &t, sizeof(t));
7718 			job->pd.src = &job->src;
7719 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7720 			job->pd.dst = &job->dst;
7721 			job->pd.m = pd->m;
7722 			job->op = op;
7723 
7724 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7725 			break;
7726 		}
7727 #endif /* INET6 */
7728 		case SCTP_ADD_IP_ADDRESS: {
7729 			int ret;
7730 			struct sctp_asconf_paramhdr ah;
7731 
7732 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7733 			    NULL, NULL, pd->af))
7734 				return (PF_DROP);
7735 
7736 			ret = pf_multihome_scan(start + off + sizeof(ah),
7737 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7738 			    SCTP_ADD_IP_ADDRESS);
7739 			if (ret != PF_PASS)
7740 				return (ret);
7741 			break;
7742 		}
7743 		case SCTP_DEL_IP_ADDRESS: {
7744 			int ret;
7745 			struct sctp_asconf_paramhdr ah;
7746 
7747 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7748 			    NULL, NULL, pd->af))
7749 				return (PF_DROP);
7750 			ret = pf_multihome_scan(start + off + sizeof(ah),
7751 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7752 			    SCTP_DEL_IP_ADDRESS);
7753 			if (ret != PF_PASS)
7754 				return (ret);
7755 			break;
7756 		}
7757 		default:
7758 			break;
7759 		}
7760 
7761 		off += roundup(ntohs(h.param_length), 4);
7762 	}
7763 
7764 	return (PF_PASS);
7765 }
7766 
7767 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7768 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7769 {
7770 	start += sizeof(struct sctp_init_chunk);
7771 	len -= sizeof(struct sctp_init_chunk);
7772 
7773 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7774 }
7775 
7776 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7777 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7778 {
7779 	start += sizeof(struct sctp_asconf_chunk);
7780 	len -= sizeof(struct sctp_asconf_chunk);
7781 
7782 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7783 }
7784 
7785 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7786 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7787     struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7788     int *iidx, int multi, int inner)
7789 {
7790 	int	 action, direction = pd->dir;
7791 
7792 	key->af = pd->af;
7793 	key->proto = pd->proto;
7794 	if (icmp_dir == PF_IN) {
7795 		*iidx = pd->sidx;
7796 		key->port[pd->sidx] = icmpid;
7797 		key->port[pd->didx] = type;
7798 	} else {
7799 		*iidx = pd->didx;
7800 		key->port[pd->sidx] = type;
7801 		key->port[pd->didx] = icmpid;
7802 	}
7803 	if (pf_state_key_addr_setup(pd, key, multi))
7804 		return (PF_DROP);
7805 
7806 	action = pf_find_state(pd, key, state);
7807 	if (action != PF_MATCH)
7808 		return (action);
7809 
7810 	if ((*state)->state_flags & PFSTATE_SLOPPY)
7811 		return (-1);
7812 
7813 	/* Is this ICMP message flowing in right direction? */
7814 	if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7815 		direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7816 		    PF_IN : PF_OUT;
7817 	else
7818 		direction = (*state)->direction;
7819 	if ((*state)->rule->type &&
7820 	    (((!inner && direction == pd->dir) ||
7821 	    (inner && direction != pd->dir)) ?
7822 	    PF_IN : PF_OUT) != icmp_dir) {
7823 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
7824 			printf("pf: icmp type %d in wrong direction (%d): ",
7825 			    ntohs(type), icmp_dir);
7826 			pf_print_state(*state);
7827 			printf("\n");
7828 		}
7829 		PF_STATE_UNLOCK(*state);
7830 		*state = NULL;
7831 		return (PF_DROP);
7832 	}
7833 	return (-1);
7834 }
7835 
7836 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7837 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7838     u_short *reason)
7839 {
7840 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
7841 	u_int16_t	*icmpsum, virtual_id, virtual_type;
7842 	u_int8_t	 icmptype, icmpcode;
7843 	int		 icmp_dir, iidx, ret;
7844 	struct pf_state_key_cmp key;
7845 #ifdef INET
7846 	u_int16_t	 icmpid;
7847 #endif /* INET*/
7848 
7849 	MPASS(*state == NULL);
7850 
7851 	bzero(&key, sizeof(key));
7852 	switch (pd->proto) {
7853 #ifdef INET
7854 	case IPPROTO_ICMP:
7855 		icmptype = pd->hdr.icmp.icmp_type;
7856 		icmpcode = pd->hdr.icmp.icmp_code;
7857 		icmpid = pd->hdr.icmp.icmp_id;
7858 		icmpsum = &pd->hdr.icmp.icmp_cksum;
7859 		break;
7860 #endif /* INET */
7861 #ifdef INET6
7862 	case IPPROTO_ICMPV6:
7863 		icmptype = pd->hdr.icmp6.icmp6_type;
7864 		icmpcode = pd->hdr.icmp6.icmp6_code;
7865 #ifdef INET
7866 		icmpid = pd->hdr.icmp6.icmp6_id;
7867 #endif /* INET */
7868 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7869 		break;
7870 #endif /* INET6 */
7871 	default:
7872 		panic("unhandled proto %d", pd->proto);
7873 	}
7874 
7875 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7876 	    &virtual_type) == 0) {
7877 		/*
7878 		 * ICMP query/reply message not related to a TCP/UDP/SCTP
7879 		 * packet. Search for an ICMP state.
7880 		 */
7881 		ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7882 		    virtual_type, icmp_dir, &iidx, 0, 0);
7883 		/* IPv6? try matching a multicast address */
7884 		if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7885 			MPASS(*state == NULL);
7886 			ret = pf_icmp_state_lookup(&key, pd, state,
7887 			    virtual_id, virtual_type,
7888 			    icmp_dir, &iidx, 1, 0);
7889 		}
7890 		if (ret >= 0) {
7891 			MPASS(*state == NULL);
7892 			return (ret);
7893 		}
7894 
7895 		(*state)->expire = pf_get_uptime();
7896 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7897 
7898 		/* translate source/destination address, if necessary */
7899 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7900 			struct pf_state_key	*nk;
7901 			int			 afto, sidx, didx;
7902 
7903 			if (PF_REVERSED_KEY(*state, pd->af))
7904 				nk = (*state)->key[pd->sidx];
7905 			else
7906 				nk = (*state)->key[pd->didx];
7907 
7908 			afto = pd->af != nk->af;
7909 
7910 			if (afto && (*state)->direction == PF_IN) {
7911 				sidx = pd->didx;
7912 				didx = pd->sidx;
7913 				iidx = !iidx;
7914 			} else {
7915 				sidx = pd->sidx;
7916 				didx = pd->didx;
7917 			}
7918 
7919 			switch (pd->af) {
7920 #ifdef INET
7921 			case AF_INET:
7922 #ifdef INET6
7923 				if (afto) {
7924 					if (pf_translate_icmp_af(AF_INET6,
7925 					    &pd->hdr.icmp))
7926 						return (PF_DROP);
7927 					pd->proto = IPPROTO_ICMPV6;
7928 				}
7929 #endif /* INET6 */
7930 				if (!afto &&
7931 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7932 					pf_change_a(&saddr->v4.s_addr,
7933 					    pd->ip_sum,
7934 					    nk->addr[sidx].v4.s_addr,
7935 					    0);
7936 
7937 				if (!afto && PF_ANEQ(pd->dst,
7938 				    &nk->addr[didx], AF_INET))
7939 					pf_change_a(&daddr->v4.s_addr,
7940 					    pd->ip_sum,
7941 					    nk->addr[didx].v4.s_addr, 0);
7942 
7943 				if (nk->port[iidx] !=
7944 				    pd->hdr.icmp.icmp_id) {
7945 					pd->hdr.icmp.icmp_cksum =
7946 					    pf_cksum_fixup(
7947 					    pd->hdr.icmp.icmp_cksum, icmpid,
7948 					    nk->port[iidx], 0);
7949 					pd->hdr.icmp.icmp_id =
7950 					    nk->port[iidx];
7951 				}
7952 
7953 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
7954 				    (caddr_t )&pd->hdr.icmp);
7955 				break;
7956 #endif /* INET */
7957 #ifdef INET6
7958 			case AF_INET6:
7959 #ifdef INET
7960 				if (afto) {
7961 					if (pf_translate_icmp_af(AF_INET,
7962 					    &pd->hdr.icmp6))
7963 						return (PF_DROP);
7964 					pd->proto = IPPROTO_ICMP;
7965 				}
7966 #endif /* INET */
7967 				if (!afto &&
7968 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7969 					pf_change_a6(saddr,
7970 					    &pd->hdr.icmp6.icmp6_cksum,
7971 					    &nk->addr[sidx], 0);
7972 
7973 				if (!afto && PF_ANEQ(pd->dst,
7974 				    &nk->addr[didx], AF_INET6))
7975 					pf_change_a6(daddr,
7976 					    &pd->hdr.icmp6.icmp6_cksum,
7977 					    &nk->addr[didx], 0);
7978 
7979 				if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7980 					pd->hdr.icmp6.icmp6_id =
7981 					    nk->port[iidx];
7982 
7983 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7984 				    (caddr_t )&pd->hdr.icmp6);
7985 				break;
7986 #endif /* INET6 */
7987 			}
7988 			if (afto) {
7989 				pf_addrcpy(&pd->nsaddr, &nk->addr[sidx],
7990 				    nk->af);
7991 				pf_addrcpy(&pd->ndaddr, &nk->addr[didx],
7992 				    nk->af);
7993 				pd->naf = nk->af;
7994 				return (PF_AFRT);
7995 			}
7996 		}
7997 		return (PF_PASS);
7998 
7999 	} else {
8000 		/*
8001 		 * ICMP error message in response to a TCP/UDP packet.
8002 		 * Extract the inner TCP/UDP header and search for that state.
8003 		 */
8004 
8005 		struct pf_pdesc	pd2;
8006 		bzero(&pd2, sizeof pd2);
8007 #ifdef INET
8008 		struct ip	h2;
8009 #endif /* INET */
8010 #ifdef INET6
8011 		struct ip6_hdr	h2_6;
8012 #endif /* INET6 */
8013 		int		ipoff2 = 0;
8014 
8015 		pd2.af = pd->af;
8016 		pd2.dir = pd->dir;
8017 		/* Payload packet is from the opposite direction. */
8018 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
8019 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
8020 		pd2.m = pd->m;
8021 		pd2.pf_mtag = pd->pf_mtag;
8022 		pd2.kif = pd->kif;
8023 		switch (pd->af) {
8024 #ifdef INET
8025 		case AF_INET:
8026 			/* offset of h2 in mbuf chain */
8027 			ipoff2 = pd->off + ICMP_MINLEN;
8028 
8029 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
8030 			    NULL, reason, pd2.af)) {
8031 				DPFPRINTF(PF_DEBUG_MISC,
8032 				    "pf: ICMP error message too short "
8033 				    "(ip)");
8034 				return (PF_DROP);
8035 			}
8036 			/*
8037 			 * ICMP error messages don't refer to non-first
8038 			 * fragments
8039 			 */
8040 			if (h2.ip_off & htons(IP_OFFMASK)) {
8041 				REASON_SET(reason, PFRES_FRAG);
8042 				return (PF_DROP);
8043 			}
8044 
8045 			/* offset of protocol header that follows h2 */
8046 			pd2.off = ipoff2;
8047 			if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
8048 				return (PF_DROP);
8049 
8050 			pd2.tot_len = ntohs(h2.ip_len);
8051 			pd2.ttl = h2.ip_ttl;
8052 			pd2.src = (struct pf_addr *)&h2.ip_src;
8053 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
8054 			pd2.ip_sum = &h2.ip_sum;
8055 			break;
8056 #endif /* INET */
8057 #ifdef INET6
8058 		case AF_INET6:
8059 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
8060 
8061 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
8062 			    NULL, reason, pd2.af)) {
8063 				DPFPRINTF(PF_DEBUG_MISC,
8064 				    "pf: ICMP error message too short "
8065 				    "(ip6)");
8066 				return (PF_DROP);
8067 			}
8068 			pd2.off = ipoff2;
8069 			if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
8070 				return (PF_DROP);
8071 
8072 			pd2.tot_len = ntohs(h2_6.ip6_plen) +
8073 			    sizeof(struct ip6_hdr);
8074 			pd2.ttl = h2_6.ip6_hlim;
8075 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
8076 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
8077 			pd2.ip_sum = NULL;
8078 			break;
8079 #endif /* INET6 */
8080 		default:
8081 			unhandled_af(pd->af);
8082 		}
8083 
8084 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
8085 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
8086 				printf("pf: BAD ICMP %d:%d outer dst: ",
8087 				    icmptype, icmpcode);
8088 				pf_print_host(pd->src, 0, pd->af);
8089 				printf(" -> ");
8090 				pf_print_host(pd->dst, 0, pd->af);
8091 				printf(" inner src: ");
8092 				pf_print_host(pd2.src, 0, pd2.af);
8093 				printf(" -> ");
8094 				pf_print_host(pd2.dst, 0, pd2.af);
8095 				printf("\n");
8096 			}
8097 			REASON_SET(reason, PFRES_BADSTATE);
8098 			return (PF_DROP);
8099 		}
8100 
8101 		switch (pd2.proto) {
8102 		case IPPROTO_TCP: {
8103 			struct tcphdr		*th = &pd2.hdr.tcp;
8104 			u_int32_t		 seq;
8105 			struct pf_state_peer	*src, *dst;
8106 			u_int8_t		 dws;
8107 			int			 copyback = 0;
8108 			int			 action;
8109 
8110 			/*
8111 			 * Only the first 8 bytes of the TCP header can be
8112 			 * expected. Don't access any TCP header fields after
8113 			 * th_seq, an ackskew test is not possible.
8114 			 */
8115 			if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason,
8116 			    pd2.af)) {
8117 				DPFPRINTF(PF_DEBUG_MISC,
8118 				    "pf: ICMP error message too short "
8119 				    "(tcp)");
8120 				return (PF_DROP);
8121 			}
8122 			pd2.pcksum = &pd2.hdr.tcp.th_sum;
8123 
8124 			key.af = pd2.af;
8125 			key.proto = IPPROTO_TCP;
8126 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8127 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8128 			key.port[pd2.sidx] = th->th_sport;
8129 			key.port[pd2.didx] = th->th_dport;
8130 
8131 			action = pf_find_state(&pd2, &key, state);
8132 			if (action != PF_MATCH)
8133 				return (action);
8134 
8135 			if (pd->dir == (*state)->direction) {
8136 				if (PF_REVERSED_KEY(*state, pd->af)) {
8137 					src = &(*state)->src;
8138 					dst = &(*state)->dst;
8139 				} else {
8140 					src = &(*state)->dst;
8141 					dst = &(*state)->src;
8142 				}
8143 			} else {
8144 				if (PF_REVERSED_KEY(*state, pd->af)) {
8145 					src = &(*state)->dst;
8146 					dst = &(*state)->src;
8147 				} else {
8148 					src = &(*state)->src;
8149 					dst = &(*state)->dst;
8150 				}
8151 			}
8152 
8153 			if (src->wscale && dst->wscale)
8154 				dws = dst->wscale & PF_WSCALE_MASK;
8155 			else
8156 				dws = 0;
8157 
8158 			/* Demodulate sequence number */
8159 			seq = ntohl(th->th_seq) - src->seqdiff;
8160 			if (src->seqdiff) {
8161 				pf_change_a(&th->th_seq, icmpsum,
8162 				    htonl(seq), 0);
8163 				copyback = 1;
8164 			}
8165 
8166 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8167 			    (!SEQ_GEQ(src->seqhi, seq) ||
8168 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8169 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8170 					printf("pf: BAD ICMP %d:%d ",
8171 					    icmptype, icmpcode);
8172 					pf_print_host(pd->src, 0, pd->af);
8173 					printf(" -> ");
8174 					pf_print_host(pd->dst, 0, pd->af);
8175 					printf(" state: ");
8176 					pf_print_state(*state);
8177 					printf(" seq=%u\n", seq);
8178 				}
8179 				REASON_SET(reason, PFRES_BADSTATE);
8180 				return (PF_DROP);
8181 			} else {
8182 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8183 					printf("pf: OK ICMP %d:%d ",
8184 					    icmptype, icmpcode);
8185 					pf_print_host(pd->src, 0, pd->af);
8186 					printf(" -> ");
8187 					pf_print_host(pd->dst, 0, pd->af);
8188 					printf(" state: ");
8189 					pf_print_state(*state);
8190 					printf(" seq=%u\n", seq);
8191 				}
8192 			}
8193 
8194 			/* translate source/destination address, if necessary */
8195 			if ((*state)->key[PF_SK_WIRE] !=
8196 			    (*state)->key[PF_SK_STACK]) {
8197 
8198 				struct pf_state_key	*nk;
8199 
8200 				if (PF_REVERSED_KEY(*state, pd->af))
8201 					nk = (*state)->key[pd->sidx];
8202 				else
8203 					nk = (*state)->key[pd->didx];
8204 
8205 #if defined(INET) && defined(INET6)
8206 				int		 afto, sidx, didx;
8207 
8208 				afto = pd->af != nk->af;
8209 
8210 				if (afto && (*state)->direction == PF_IN) {
8211 					sidx = pd2.didx;
8212 					didx = pd2.sidx;
8213 				} else {
8214 					sidx = pd2.sidx;
8215 					didx = pd2.didx;
8216 				}
8217 
8218 				if (afto) {
8219 					if (pf_translate_icmp_af(nk->af,
8220 					    &pd->hdr.icmp))
8221 						return (PF_DROP);
8222 					m_copyback(pd->m, pd->off,
8223 					    sizeof(struct icmp6_hdr),
8224 					    (c_caddr_t)&pd->hdr.icmp6);
8225 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8226 					    &pd2, &nk->addr[sidx],
8227 					    &nk->addr[didx], pd->af,
8228 					    nk->af))
8229 						return (PF_DROP);
8230 					pf_addrcpy(&pd->nsaddr,
8231 					    &nk->addr[pd2.sidx], nk->af);
8232 					pf_addrcpy(&pd->ndaddr,
8233 					    &nk->addr[pd2.didx], nk->af);
8234 					if (nk->af == AF_INET) {
8235 						pd->proto = IPPROTO_ICMP;
8236 					} else {
8237 						pd->proto = IPPROTO_ICMPV6;
8238 						/*
8239 						 * IPv4 becomes IPv6 so we must
8240 						 * copy IPv4 src addr to least
8241 						 * 32bits in IPv6 address to
8242 						 * keep traceroute/icmp
8243 						 * working.
8244 						 */
8245 						pd->nsaddr.addr32[3] =
8246 						    pd->src->addr32[0];
8247 					}
8248 					pd->naf = pd2.naf = nk->af;
8249 					pf_change_ap(&pd2, pd2.src, &th->th_sport,
8250 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8251 					pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8252 					    &nk->addr[pd2.didx], nk->port[didx]);
8253 					m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8254 					return (PF_AFRT);
8255 				}
8256 #endif /* INET && INET6 */
8257 
8258 				if (PF_ANEQ(pd2.src,
8259 				    &nk->addr[pd2.sidx], pd2.af) ||
8260 				    nk->port[pd2.sidx] != th->th_sport)
8261 					pf_change_icmp(pd2.src, &th->th_sport,
8262 					    daddr, &nk->addr[pd2.sidx],
8263 					    nk->port[pd2.sidx], NULL,
8264 					    pd2.ip_sum, icmpsum,
8265 					    pd->ip_sum, 0, pd2.af);
8266 
8267 				if (PF_ANEQ(pd2.dst,
8268 				    &nk->addr[pd2.didx], pd2.af) ||
8269 				    nk->port[pd2.didx] != th->th_dport)
8270 					pf_change_icmp(pd2.dst, &th->th_dport,
8271 					    saddr, &nk->addr[pd2.didx],
8272 					    nk->port[pd2.didx], NULL,
8273 					    pd2.ip_sum, icmpsum,
8274 					    pd->ip_sum, 0, pd2.af);
8275 				copyback = 1;
8276 			}
8277 
8278 			if (copyback) {
8279 				switch (pd2.af) {
8280 #ifdef INET
8281 				case AF_INET:
8282 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8283 					    (caddr_t )&pd->hdr.icmp);
8284 					m_copyback(pd->m, ipoff2, sizeof(h2),
8285 					    (caddr_t )&h2);
8286 					break;
8287 #endif /* INET */
8288 #ifdef INET6
8289 				case AF_INET6:
8290 					m_copyback(pd->m, pd->off,
8291 					    sizeof(struct icmp6_hdr),
8292 					    (caddr_t )&pd->hdr.icmp6);
8293 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8294 					    (caddr_t )&h2_6);
8295 					break;
8296 #endif /* INET6 */
8297 				default:
8298 					unhandled_af(pd->af);
8299 				}
8300 				m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8301 			}
8302 
8303 			return (PF_PASS);
8304 			break;
8305 		}
8306 		case IPPROTO_UDP: {
8307 			struct udphdr		*uh = &pd2.hdr.udp;
8308 			int			 action;
8309 
8310 			if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8311 			    NULL, reason, pd2.af)) {
8312 				DPFPRINTF(PF_DEBUG_MISC,
8313 				    "pf: ICMP error message too short "
8314 				    "(udp)");
8315 				return (PF_DROP);
8316 			}
8317 			pd2.pcksum = &pd2.hdr.udp.uh_sum;
8318 
8319 			key.af = pd2.af;
8320 			key.proto = IPPROTO_UDP;
8321 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8322 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8323 			key.port[pd2.sidx] = uh->uh_sport;
8324 			key.port[pd2.didx] = uh->uh_dport;
8325 
8326 			action = pf_find_state(&pd2, &key, state);
8327 			if (action != PF_MATCH)
8328 				return (action);
8329 
8330 			/* translate source/destination address, if necessary */
8331 			if ((*state)->key[PF_SK_WIRE] !=
8332 			    (*state)->key[PF_SK_STACK]) {
8333 				struct pf_state_key	*nk;
8334 
8335 				if (PF_REVERSED_KEY(*state, pd->af))
8336 					nk = (*state)->key[pd->sidx];
8337 				else
8338 					nk = (*state)->key[pd->didx];
8339 
8340 #if defined(INET) && defined(INET6)
8341 				int	 afto, sidx, didx;
8342 
8343 				afto = pd->af != nk->af;
8344 
8345 				if (afto && (*state)->direction == PF_IN) {
8346 					sidx = pd2.didx;
8347 					didx = pd2.sidx;
8348 				} else {
8349 					sidx = pd2.sidx;
8350 					didx = pd2.didx;
8351 				}
8352 
8353 				if (afto) {
8354 					if (pf_translate_icmp_af(nk->af,
8355 					    &pd->hdr.icmp))
8356 						return (PF_DROP);
8357 					m_copyback(pd->m, pd->off,
8358 					    sizeof(struct icmp6_hdr),
8359 					    (c_caddr_t)&pd->hdr.icmp6);
8360 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8361 					    &pd2, &nk->addr[sidx],
8362 					    &nk->addr[didx], pd->af,
8363 					    nk->af))
8364 						return (PF_DROP);
8365 					pf_addrcpy(&pd->nsaddr,
8366 					    &nk->addr[pd2.sidx], nk->af);
8367 					pf_addrcpy(&pd->ndaddr,
8368 					    &nk->addr[pd2.didx], nk->af);
8369 					if (nk->af == AF_INET) {
8370 						pd->proto = IPPROTO_ICMP;
8371 					} else {
8372 						pd->proto = IPPROTO_ICMPV6;
8373 						/*
8374 						 * IPv4 becomes IPv6 so we must
8375 						 * copy IPv4 src addr to least
8376 						 * 32bits in IPv6 address to
8377 						 * keep traceroute/icmp
8378 						 * working.
8379 						 */
8380 						pd->nsaddr.addr32[3] =
8381 						    pd->src->addr32[0];
8382 					}
8383 					pd->naf = pd2.naf = nk->af;
8384 					pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8385 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8386 					pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8387 					    &nk->addr[pd2.didx], nk->port[didx]);
8388 					m_copyback(pd2.m, pd2.off, sizeof(*uh),
8389 					    (c_caddr_t)uh);
8390 					return (PF_AFRT);
8391 				}
8392 #endif /* INET && INET6 */
8393 
8394 				if (PF_ANEQ(pd2.src,
8395 				    &nk->addr[pd2.sidx], pd2.af) ||
8396 				    nk->port[pd2.sidx] != uh->uh_sport)
8397 					pf_change_icmp(pd2.src, &uh->uh_sport,
8398 					    daddr, &nk->addr[pd2.sidx],
8399 					    nk->port[pd2.sidx], &uh->uh_sum,
8400 					    pd2.ip_sum, icmpsum,
8401 					    pd->ip_sum, 1, pd2.af);
8402 
8403 				if (PF_ANEQ(pd2.dst,
8404 				    &nk->addr[pd2.didx], pd2.af) ||
8405 				    nk->port[pd2.didx] != uh->uh_dport)
8406 					pf_change_icmp(pd2.dst, &uh->uh_dport,
8407 					    saddr, &nk->addr[pd2.didx],
8408 					    nk->port[pd2.didx], &uh->uh_sum,
8409 					    pd2.ip_sum, icmpsum,
8410 					    pd->ip_sum, 1, pd2.af);
8411 
8412 				switch (pd2.af) {
8413 #ifdef INET
8414 				case AF_INET:
8415 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8416 					    (caddr_t )&pd->hdr.icmp);
8417 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8418 					break;
8419 #endif /* INET */
8420 #ifdef INET6
8421 				case AF_INET6:
8422 					m_copyback(pd->m, pd->off,
8423 					    sizeof(struct icmp6_hdr),
8424 					    (caddr_t )&pd->hdr.icmp6);
8425 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8426 					    (caddr_t )&h2_6);
8427 					break;
8428 #endif /* INET6 */
8429 				}
8430 				m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8431 			}
8432 			return (PF_PASS);
8433 			break;
8434 		}
8435 #ifdef INET
8436 		case IPPROTO_SCTP: {
8437 			struct sctphdr		*sh = &pd2.hdr.sctp;
8438 			struct pf_state_peer	*src;
8439 			int			 copyback = 0;
8440 			int			 action;
8441 
8442 			if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason,
8443 			    pd2.af)) {
8444 				DPFPRINTF(PF_DEBUG_MISC,
8445 				    "pf: ICMP error message too short "
8446 				    "(sctp)");
8447 				return (PF_DROP);
8448 			}
8449 			pd2.pcksum = &pd2.sctp_dummy_sum;
8450 
8451 			key.af = pd2.af;
8452 			key.proto = IPPROTO_SCTP;
8453 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8454 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8455 			key.port[pd2.sidx] = sh->src_port;
8456 			key.port[pd2.didx] = sh->dest_port;
8457 
8458 			action = pf_find_state(&pd2, &key, state);
8459 			if (action != PF_MATCH)
8460 				return (action);
8461 
8462 			if (pd->dir == (*state)->direction) {
8463 				if (PF_REVERSED_KEY(*state, pd->af))
8464 					src = &(*state)->src;
8465 				else
8466 					src = &(*state)->dst;
8467 			} else {
8468 				if (PF_REVERSED_KEY(*state, pd->af))
8469 					src = &(*state)->dst;
8470 				else
8471 					src = &(*state)->src;
8472 			}
8473 
8474 			if (src->scrub->pfss_v_tag != sh->v_tag) {
8475 				DPFPRINTF(PF_DEBUG_MISC,
8476 				    "pf: ICMP error message has incorrect "
8477 				    "SCTP v_tag");
8478 				return (PF_DROP);
8479 			}
8480 
8481 			/* translate source/destination address, if necessary */
8482 			if ((*state)->key[PF_SK_WIRE] !=
8483 			    (*state)->key[PF_SK_STACK]) {
8484 
8485 				struct pf_state_key	*nk;
8486 
8487 				if (PF_REVERSED_KEY(*state, pd->af))
8488 					nk = (*state)->key[pd->sidx];
8489 				else
8490 					nk = (*state)->key[pd->didx];
8491 
8492 #if defined(INET) && defined(INET6)
8493 				int	 afto, sidx, didx;
8494 
8495 				afto = pd->af != nk->af;
8496 
8497 				if (afto && (*state)->direction == PF_IN) {
8498 					sidx = pd2.didx;
8499 					didx = pd2.sidx;
8500 				} else {
8501 					sidx = pd2.sidx;
8502 					didx = pd2.didx;
8503 				}
8504 
8505 				if (afto) {
8506 					if (pf_translate_icmp_af(nk->af,
8507 					    &pd->hdr.icmp))
8508 						return (PF_DROP);
8509 					m_copyback(pd->m, pd->off,
8510 					    sizeof(struct icmp6_hdr),
8511 					    (c_caddr_t)&pd->hdr.icmp6);
8512 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8513 					    &pd2, &nk->addr[sidx],
8514 					    &nk->addr[didx], pd->af,
8515 					    nk->af))
8516 						return (PF_DROP);
8517 					sh->src_port = nk->port[sidx];
8518 					sh->dest_port = nk->port[didx];
8519 					m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8520 					pf_addrcpy(&pd->nsaddr,
8521 					    &nk->addr[pd2.sidx], nk->af);
8522 					pf_addrcpy(&pd->ndaddr,
8523 					    &nk->addr[pd2.didx], nk->af);
8524 					if (nk->af == AF_INET) {
8525 						pd->proto = IPPROTO_ICMP;
8526 					} else {
8527 						pd->proto = IPPROTO_ICMPV6;
8528 						/*
8529 						 * IPv4 becomes IPv6 so we must
8530 						 * copy IPv4 src addr to least
8531 						 * 32bits in IPv6 address to
8532 						 * keep traceroute/icmp
8533 						 * working.
8534 						 */
8535 						pd->nsaddr.addr32[3] =
8536 						    pd->src->addr32[0];
8537 					}
8538 					pd->naf = nk->af;
8539 					return (PF_AFRT);
8540 				}
8541 #endif /* INET && INET6 */
8542 
8543 				if (PF_ANEQ(pd2.src,
8544 				    &nk->addr[pd2.sidx], pd2.af) ||
8545 				    nk->port[pd2.sidx] != sh->src_port)
8546 					pf_change_icmp(pd2.src, &sh->src_port,
8547 					    daddr, &nk->addr[pd2.sidx],
8548 					    nk->port[pd2.sidx], NULL,
8549 					    pd2.ip_sum, icmpsum,
8550 					    pd->ip_sum, 0, pd2.af);
8551 
8552 				if (PF_ANEQ(pd2.dst,
8553 				    &nk->addr[pd2.didx], pd2.af) ||
8554 				    nk->port[pd2.didx] != sh->dest_port)
8555 					pf_change_icmp(pd2.dst, &sh->dest_port,
8556 					    saddr, &nk->addr[pd2.didx],
8557 					    nk->port[pd2.didx], NULL,
8558 					    pd2.ip_sum, icmpsum,
8559 					    pd->ip_sum, 0, pd2.af);
8560 				copyback = 1;
8561 			}
8562 
8563 			if (copyback) {
8564 				switch (pd2.af) {
8565 #ifdef INET
8566 				case AF_INET:
8567 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8568 					    (caddr_t )&pd->hdr.icmp);
8569 					m_copyback(pd->m, ipoff2, sizeof(h2),
8570 					    (caddr_t )&h2);
8571 					break;
8572 #endif /* INET */
8573 #ifdef INET6
8574 				case AF_INET6:
8575 					m_copyback(pd->m, pd->off,
8576 					    sizeof(struct icmp6_hdr),
8577 					    (caddr_t )&pd->hdr.icmp6);
8578 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8579 					    (caddr_t )&h2_6);
8580 					break;
8581 #endif /* INET6 */
8582 				}
8583 				m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8584 			}
8585 
8586 			return (PF_PASS);
8587 			break;
8588 		}
8589 		case IPPROTO_ICMP: {
8590 			struct icmp	*iih = &pd2.hdr.icmp;
8591 
8592 			if (pd2.af != AF_INET) {
8593 				REASON_SET(reason, PFRES_NORM);
8594 				return (PF_DROP);
8595 			}
8596 
8597 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8598 			    NULL, reason, pd2.af)) {
8599 				DPFPRINTF(PF_DEBUG_MISC,
8600 				    "pf: ICMP error message too short i"
8601 				    "(icmp)");
8602 				return (PF_DROP);
8603 			}
8604 			pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8605 
8606 			icmpid = iih->icmp_id;
8607 			pf_icmp_mapping(&pd2, iih->icmp_type,
8608 			    &icmp_dir, &virtual_id, &virtual_type);
8609 
8610 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8611 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8612 			if (ret >= 0) {
8613 				MPASS(*state == NULL);
8614 				return (ret);
8615 			}
8616 
8617 			/* translate source/destination address, if necessary */
8618 			if ((*state)->key[PF_SK_WIRE] !=
8619 			    (*state)->key[PF_SK_STACK]) {
8620 				struct pf_state_key	*nk;
8621 
8622 				if (PF_REVERSED_KEY(*state, pd->af))
8623 					nk = (*state)->key[pd->sidx];
8624 				else
8625 					nk = (*state)->key[pd->didx];
8626 
8627 #if defined(INET) && defined(INET6)
8628 				int	 afto, sidx, didx;
8629 
8630 				afto = pd->af != nk->af;
8631 
8632 				if (afto && (*state)->direction == PF_IN) {
8633 					sidx = pd2.didx;
8634 					didx = pd2.sidx;
8635 					iidx = !iidx;
8636 				} else {
8637 					sidx = pd2.sidx;
8638 					didx = pd2.didx;
8639 				}
8640 
8641 				if (afto) {
8642 					if (nk->af != AF_INET6)
8643 						return (PF_DROP);
8644 					if (pf_translate_icmp_af(nk->af,
8645 					    &pd->hdr.icmp))
8646 						return (PF_DROP);
8647 					m_copyback(pd->m, pd->off,
8648 					    sizeof(struct icmp6_hdr),
8649 					    (c_caddr_t)&pd->hdr.icmp6);
8650 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8651 					    &pd2, &nk->addr[sidx],
8652 					    &nk->addr[didx], pd->af,
8653 					    nk->af))
8654 						return (PF_DROP);
8655 					pd->proto = IPPROTO_ICMPV6;
8656 					if (pf_translate_icmp_af(nk->af, iih))
8657 						return (PF_DROP);
8658 					if (virtual_type == htons(ICMP_ECHO) &&
8659 					    nk->port[iidx] != iih->icmp_id)
8660 						iih->icmp_id = nk->port[iidx];
8661 					m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8662 					    (c_caddr_t)iih);
8663 					pf_addrcpy(&pd->nsaddr,
8664 					    &nk->addr[pd2.sidx], nk->af);
8665 					pf_addrcpy(&pd->ndaddr,
8666 					    &nk->addr[pd2.didx], nk->af);
8667 					/*
8668 					 * IPv4 becomes IPv6 so we must copy
8669 					 * IPv4 src addr to least 32bits in
8670 					 * IPv6 address to keep traceroute
8671 					 * working.
8672 					 */
8673 					pd->nsaddr.addr32[3] =
8674 					    pd->src->addr32[0];
8675 					pd->naf = nk->af;
8676 					return (PF_AFRT);
8677 				}
8678 #endif /* INET && INET6 */
8679 
8680 				if (PF_ANEQ(pd2.src,
8681 				    &nk->addr[pd2.sidx], pd2.af) ||
8682 				    (virtual_type == htons(ICMP_ECHO) &&
8683 				    nk->port[iidx] != iih->icmp_id))
8684 					pf_change_icmp(pd2.src,
8685 					    (virtual_type == htons(ICMP_ECHO)) ?
8686 					    &iih->icmp_id : NULL,
8687 					    daddr, &nk->addr[pd2.sidx],
8688 					    (virtual_type == htons(ICMP_ECHO)) ?
8689 					    nk->port[iidx] : 0, NULL,
8690 					    pd2.ip_sum, icmpsum,
8691 					    pd->ip_sum, 0, AF_INET);
8692 
8693 				if (PF_ANEQ(pd2.dst,
8694 				    &nk->addr[pd2.didx], pd2.af))
8695 					pf_change_icmp(pd2.dst, NULL, NULL,
8696 					    &nk->addr[pd2.didx], 0, NULL,
8697 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8698 					    AF_INET);
8699 
8700 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8701 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8702 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8703 			}
8704 			return (PF_PASS);
8705 			break;
8706 		}
8707 #endif /* INET */
8708 #ifdef INET6
8709 		case IPPROTO_ICMPV6: {
8710 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
8711 
8712 			if (pd2.af != AF_INET6) {
8713 				REASON_SET(reason, PFRES_NORM);
8714 				return (PF_DROP);
8715 			}
8716 
8717 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
8718 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8719 				DPFPRINTF(PF_DEBUG_MISC,
8720 				    "pf: ICMP error message too short "
8721 				    "(icmp6)");
8722 				return (PF_DROP);
8723 			}
8724 			pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8725 
8726 			pf_icmp_mapping(&pd2, iih->icmp6_type,
8727 			    &icmp_dir, &virtual_id, &virtual_type);
8728 
8729 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8730 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8731 			/* IPv6? try matching a multicast address */
8732 			if (ret == PF_DROP && pd2.af == AF_INET6 &&
8733 			    icmp_dir == PF_OUT) {
8734 				MPASS(*state == NULL);
8735 				ret = pf_icmp_state_lookup(&key, &pd2,
8736 				    state, virtual_id, virtual_type,
8737 				    icmp_dir, &iidx, 1, 1);
8738 			}
8739 			if (ret >= 0) {
8740 				MPASS(*state == NULL);
8741 				return (ret);
8742 			}
8743 
8744 			/* translate source/destination address, if necessary */
8745 			if ((*state)->key[PF_SK_WIRE] !=
8746 			    (*state)->key[PF_SK_STACK]) {
8747 				struct pf_state_key	*nk;
8748 
8749 				if (PF_REVERSED_KEY(*state, pd->af))
8750 					nk = (*state)->key[pd->sidx];
8751 				else
8752 					nk = (*state)->key[pd->didx];
8753 
8754 #if defined(INET) && defined(INET6)
8755 				int	 afto, sidx, didx;
8756 
8757 				afto = pd->af != nk->af;
8758 
8759 				if (afto && (*state)->direction == PF_IN) {
8760 					sidx = pd2.didx;
8761 					didx = pd2.sidx;
8762 					iidx = !iidx;
8763 				} else {
8764 					sidx = pd2.sidx;
8765 					didx = pd2.didx;
8766 				}
8767 
8768 				if (afto) {
8769 					if (nk->af != AF_INET)
8770 						return (PF_DROP);
8771 					if (pf_translate_icmp_af(nk->af,
8772 					    &pd->hdr.icmp))
8773 						return (PF_DROP);
8774 					m_copyback(pd->m, pd->off,
8775 					    sizeof(struct icmp6_hdr),
8776 					    (c_caddr_t)&pd->hdr.icmp6);
8777 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8778 					    &pd2, &nk->addr[sidx],
8779 					    &nk->addr[didx], pd->af,
8780 					    nk->af))
8781 						return (PF_DROP);
8782 					pd->proto = IPPROTO_ICMP;
8783 					if (pf_translate_icmp_af(nk->af, iih))
8784 						return (PF_DROP);
8785 					if (virtual_type ==
8786 					    htons(ICMP6_ECHO_REQUEST) &&
8787 					    nk->port[iidx] != iih->icmp6_id)
8788 						iih->icmp6_id = nk->port[iidx];
8789 					m_copyback(pd2.m, pd2.off,
8790 					    sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8791 					pf_addrcpy(&pd->nsaddr,
8792 					    &nk->addr[pd2.sidx], nk->af);
8793 					pf_addrcpy(&pd->ndaddr,
8794 					    &nk->addr[pd2.didx], nk->af);
8795 					pd->naf = nk->af;
8796 					return (PF_AFRT);
8797 				}
8798 #endif /* INET && INET6 */
8799 
8800 				if (PF_ANEQ(pd2.src,
8801 				    &nk->addr[pd2.sidx], pd2.af) ||
8802 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8803 				    nk->port[pd2.sidx] != iih->icmp6_id))
8804 					pf_change_icmp(pd2.src,
8805 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8806 					    ? &iih->icmp6_id : NULL,
8807 					    daddr, &nk->addr[pd2.sidx],
8808 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8809 					    ? nk->port[iidx] : 0, NULL,
8810 					    pd2.ip_sum, icmpsum,
8811 					    pd->ip_sum, 0, AF_INET6);
8812 
8813 				if (PF_ANEQ(pd2.dst,
8814 				    &nk->addr[pd2.didx], pd2.af))
8815 					pf_change_icmp(pd2.dst, NULL, NULL,
8816 					    &nk->addr[pd2.didx], 0, NULL,
8817 					    pd2.ip_sum, icmpsum,
8818 					    pd->ip_sum, 0, AF_INET6);
8819 
8820 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8821 				    (caddr_t)&pd->hdr.icmp6);
8822 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8823 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8824 				    (caddr_t)iih);
8825 			}
8826 			return (PF_PASS);
8827 			break;
8828 		}
8829 #endif /* INET6 */
8830 		default: {
8831 			int	action;
8832 
8833 			key.af = pd2.af;
8834 			key.proto = pd2.proto;
8835 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8836 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8837 			key.port[0] = key.port[1] = 0;
8838 
8839 			action = pf_find_state(&pd2, &key, state);
8840 			if (action != PF_MATCH)
8841 				return (action);
8842 
8843 			/* translate source/destination address, if necessary */
8844 			if ((*state)->key[PF_SK_WIRE] !=
8845 			    (*state)->key[PF_SK_STACK]) {
8846 				struct pf_state_key *nk =
8847 				    (*state)->key[pd->didx];
8848 
8849 				if (PF_ANEQ(pd2.src,
8850 				    &nk->addr[pd2.sidx], pd2.af))
8851 					pf_change_icmp(pd2.src, NULL, daddr,
8852 					    &nk->addr[pd2.sidx], 0, NULL,
8853 					    pd2.ip_sum, icmpsum,
8854 					    pd->ip_sum, 0, pd2.af);
8855 
8856 				if (PF_ANEQ(pd2.dst,
8857 				    &nk->addr[pd2.didx], pd2.af))
8858 					pf_change_icmp(pd2.dst, NULL, saddr,
8859 					    &nk->addr[pd2.didx], 0, NULL,
8860 					    pd2.ip_sum, icmpsum,
8861 					    pd->ip_sum, 0, pd2.af);
8862 
8863 				switch (pd2.af) {
8864 #ifdef INET
8865 				case AF_INET:
8866 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8867 					    (caddr_t)&pd->hdr.icmp);
8868 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8869 					break;
8870 #endif /* INET */
8871 #ifdef INET6
8872 				case AF_INET6:
8873 					m_copyback(pd->m, pd->off,
8874 					    sizeof(struct icmp6_hdr),
8875 					    (caddr_t )&pd->hdr.icmp6);
8876 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8877 					    (caddr_t )&h2_6);
8878 					break;
8879 #endif /* INET6 */
8880 				}
8881 			}
8882 			return (PF_PASS);
8883 			break;
8884 		}
8885 		}
8886 	}
8887 }
8888 
8889 /*
8890  * ipoff and off are measured from the start of the mbuf chain.
8891  * h must be at "ipoff" on the mbuf chain.
8892  */
8893 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8894 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8895     u_short *actionp, u_short *reasonp, sa_family_t af)
8896 {
8897 	int iplen = 0;
8898 	switch (af) {
8899 #ifdef INET
8900 	case AF_INET: {
8901 		const struct ip	*h = mtod(m, struct ip *);
8902 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8903 
8904 		if (fragoff) {
8905 			if (fragoff >= len)
8906 				ACTION_SET(actionp, PF_PASS);
8907 			else {
8908 				ACTION_SET(actionp, PF_DROP);
8909 				REASON_SET(reasonp, PFRES_FRAG);
8910 			}
8911 			return (NULL);
8912 		}
8913 		iplen = ntohs(h->ip_len);
8914 		break;
8915 	}
8916 #endif /* INET */
8917 #ifdef INET6
8918 	case AF_INET6: {
8919 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
8920 
8921 		iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8922 		break;
8923 	}
8924 #endif /* INET6 */
8925 	}
8926 	if (m->m_pkthdr.len < off + len || iplen < off + len) {
8927 		ACTION_SET(actionp, PF_DROP);
8928 		REASON_SET(reasonp, PFRES_SHORT);
8929 		return (NULL);
8930 	}
8931 	m_copydata(m, off, len, p);
8932 	return (p);
8933 }
8934 
8935 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8936 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8937     int rtableid)
8938 {
8939 	struct ifnet		*ifp;
8940 
8941 	/*
8942 	 * Skip check for addresses with embedded interface scope,
8943 	 * as they would always match anyway.
8944 	 */
8945 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8946 		return (1);
8947 
8948 	if (af != AF_INET && af != AF_INET6)
8949 		return (0);
8950 
8951 	if (kif == V_pfi_all)
8952 		return (1);
8953 
8954 	/* Skip checks for ipsec interfaces */
8955 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8956 		return (1);
8957 
8958 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8959 
8960 	switch (af) {
8961 #ifdef INET6
8962 	case AF_INET6:
8963 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8964 		    ifp));
8965 #endif /* INET6 */
8966 #ifdef INET
8967 	case AF_INET:
8968 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8969 		    ifp));
8970 #endif /* INET */
8971 	}
8972 
8973 	return (0);
8974 }
8975 
8976 #ifdef INET
8977 static int
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8978 pf_route(struct pf_krule *r, struct ifnet *oifp,
8979     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8980 {
8981 	struct mbuf		*m0, *m1, *md;
8982 	struct route_in6	 ro;
8983 	union sockaddr_union	 rt_gw;
8984 	const union sockaddr_union	*gw = (const union sockaddr_union *)&ro.ro_dst;
8985 	union sockaddr_union	*dst;
8986 	struct ip		*ip;
8987 	struct ifnet		*ifp = NULL;
8988 	int			 error = 0;
8989 	uint16_t		 ip_len, ip_off;
8990 	uint16_t		 tmp;
8991 	int			 r_dir;
8992 	bool			 skip_test = false;
8993 	int			 action = PF_PASS;
8994 
8995 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
8996 
8997 	SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
8998 
8999 	if (s) {
9000 		r_dir = s->direction;
9001 	} else {
9002 		r_dir = r->direction;
9003 	}
9004 
9005 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9006 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9007 	    __func__));
9008 
9009 	if ((pd->pf_mtag == NULL &&
9010 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9011 	    pd->pf_mtag->routed++ > 3) {
9012 		m0 = pd->m;
9013 		pd->m = NULL;
9014 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9015 		action = PF_DROP;
9016 		goto bad_locked;
9017 	}
9018 
9019 	if (pd->act.rt_kif != NULL)
9020 		ifp = pd->act.rt_kif->pfik_ifp;
9021 
9022 	if (pd->act.rt == PF_DUPTO) {
9023 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9024 			if (s != NULL) {
9025 				PF_STATE_UNLOCK(s);
9026 			}
9027 			if (ifp == oifp) {
9028 				/* When the 2nd interface is not skipped */
9029 				return (action);
9030 			} else {
9031 				m0 = pd->m;
9032 				pd->m = NULL;
9033 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9034 				action = PF_DROP;
9035 				goto bad;
9036 			}
9037 		} else {
9038 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9039 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9040 				if (s)
9041 					PF_STATE_UNLOCK(s);
9042 				return (action);
9043 			}
9044 		}
9045 	} else {
9046 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9047 			if (pd->af == pd->naf) {
9048 				pf_dummynet(pd, s, r, &pd->m);
9049 				if (s)
9050 					PF_STATE_UNLOCK(s);
9051 				return (action);
9052 			} else {
9053 				if (r_dir == PF_IN) {
9054 					skip_test = true;
9055 				}
9056 			}
9057 		}
9058 
9059 		/*
9060 		 * If we're actually doing route-to and af-to and are in the
9061 		 * reply direction.
9062 		 */
9063 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9064 		    pd->af != pd->naf) {
9065 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
9066 				/* Un-set ifp so we do a plain route lookup. */
9067 				ifp = NULL;
9068 			}
9069 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
9070 				/* Un-set ifp so we do a plain route lookup. */
9071 				ifp = NULL;
9072 			}
9073 		}
9074 		m0 = pd->m;
9075 	}
9076 
9077 	ip = mtod(m0, struct ip *);
9078 
9079 	bzero(&ro, sizeof(ro));
9080 	dst = (union sockaddr_union *)&ro.ro_dst;
9081 	dst->sin.sin_family = AF_INET;
9082 	dst->sin.sin_len = sizeof(struct sockaddr_in);
9083 	dst->sin.sin_addr = ip->ip_dst;
9084 	if (ifp) { /* Only needed in forward direction and route-to */
9085 		bzero(&rt_gw, sizeof(rt_gw));
9086 		ro.ro_flags |= RT_HAS_GW;
9087 		gw = &rt_gw;
9088 		switch (pd->act.rt_af) {
9089 #ifdef INET
9090 		case AF_INET:
9091 			rt_gw.sin.sin_family = AF_INET;
9092 			rt_gw.sin.sin_len = sizeof(struct sockaddr_in);
9093 			rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
9094 			break;
9095 #endif /* INET */
9096 #ifdef INET6
9097 		case AF_INET6:
9098 			rt_gw.sin6.sin6_family = AF_INET6;
9099 			rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6);
9100 			pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr,
9101 			    &pd->act.rt_addr, AF_INET6);
9102 			break;
9103 #endif /* INET6 */
9104 		default:
9105 			/* Normal af-to without route-to */
9106 			break;
9107 		}
9108 	}
9109 
9110 	if (pd->dir == PF_IN) {
9111 		if (ip->ip_ttl <= IPTTLDEC) {
9112 			if (r->rt != PF_DUPTO)
9113 				pf_send_icmp(m0, ICMP_TIMXCEED,
9114 				    ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9115 				    pd->act.rtableid);
9116 			action = PF_DROP;
9117 			goto bad_locked;
9118 		}
9119 		ip->ip_ttl -= IPTTLDEC;
9120 	}
9121 
9122 	if (s != NULL) {
9123 		if (ifp == NULL && (pd->af != pd->naf)) {
9124 			/* We're in the AFTO case. Do a route lookup. */
9125 			const struct nhop_object *nh;
9126 			nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9127 			if (nh) {
9128 				ifp = nh->nh_ifp;
9129 
9130 				/* Use the gateway if needed. */
9131 				if (nh->nh_flags & NHF_GATEWAY) {
9132 					gw = (const union sockaddr_union *)&nh->gw_sa;
9133 					ro.ro_flags |= RT_HAS_GW;
9134 				} else {
9135 					dst->sin.sin_addr = ip->ip_dst;
9136 				}
9137 
9138 				/*
9139 				 * Bind to the correct interface if we're
9140 				 * if-bound. We don't know which interface
9141 				 * that will be until here, so we've inserted
9142 				 * the state on V_pf_all. Fix that now.
9143 				 */
9144 				if (s->kif == V_pfi_all && ifp != NULL &&
9145 				    r->rule_flag & PFRULE_IFBOUND)
9146 					s->kif = ifp->if_pf_kif;
9147 			}
9148 		}
9149 
9150 		if (r->rule_flag & PFRULE_IFBOUND &&
9151 		    pd->act.rt == PF_REPLYTO &&
9152 		    s->kif == V_pfi_all) {
9153 			s->kif = pd->act.rt_kif;
9154 			s->orig_kif = oifp->if_pf_kif;
9155 		}
9156 
9157 		PF_STATE_UNLOCK(s);
9158 	}
9159 
9160 	/* It must have been either set from rt_af or from fib4_lookup */
9161 	KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__));
9162 
9163 	if (ifp == NULL) {
9164 		m0 = pd->m;
9165 		pd->m = NULL;
9166 		action = PF_DROP;
9167 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9168 		goto bad;
9169 	}
9170 
9171 	if (r->rt == PF_DUPTO)
9172 		skip_test = true;
9173 
9174 	if (pd->dir == PF_IN && !skip_test) {
9175 		if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9176 		    &pd->act) != PF_PASS) {
9177 			action = PF_DROP;
9178 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9179 			goto bad;
9180 		} else if (m0 == NULL) {
9181 			action = PF_DROP;
9182 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9183 			goto done;
9184 		}
9185 		if (m0->m_len < sizeof(struct ip)) {
9186 			DPFPRINTF(PF_DEBUG_URGENT,
9187 			    "%s: m0->m_len < sizeof(struct ip)", __func__);
9188 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9189 			action = PF_DROP;
9190 			goto bad;
9191 		}
9192 		ip = mtod(m0, struct ip *);
9193 	}
9194 
9195 	if (ifp->if_flags & IFF_LOOPBACK)
9196 		m0->m_flags |= M_SKIP_FIREWALL;
9197 
9198 	ip_len = ntohs(ip->ip_len);
9199 	ip_off = ntohs(ip->ip_off);
9200 
9201 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
9202 	m0->m_pkthdr.csum_flags |= CSUM_IP;
9203 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9204 		in_delayed_cksum(m0);
9205 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9206 	}
9207 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9208 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9209 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9210 	}
9211 
9212 	if (pd->dir == PF_IN) {
9213 		/*
9214 		 * Make sure dummynet gets the correct direction, in case it needs to
9215 		 * re-inject later.
9216 		 */
9217 		pd->dir = PF_OUT;
9218 
9219 		/*
9220 		 * The following processing is actually the rest of the inbound processing, even
9221 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9222 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9223 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9224 		 * conclusion about what direction it's processing, and we can't fix it or it
9225 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9226 		 * decision will pick the right pipe, and everything will mostly work as expected.
9227 		 */
9228 		tmp = pd->act.dnrpipe;
9229 		pd->act.dnrpipe = pd->act.dnpipe;
9230 		pd->act.dnpipe = tmp;
9231 	}
9232 
9233 	/*
9234 	 * If small enough for interface, or the interface will take
9235 	 * care of the fragmentation for us, we can just send directly.
9236 	 */
9237 	if (ip_len <= ifp->if_mtu ||
9238 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9239 		ip->ip_sum = 0;
9240 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9241 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9242 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9243 		}
9244 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
9245 
9246 		md = m0;
9247 		error = pf_dummynet_route(pd, s, r, ifp,
9248 		    (const struct sockaddr *)gw, &md);
9249 		if (md != NULL) {
9250 			error = (*ifp->if_output)(ifp, md,
9251 			    (const struct sockaddr *)gw, (struct route *)&ro);
9252 			SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9253 		}
9254 		goto done;
9255 	}
9256 
9257 	/* Balk when DF bit is set or the interface didn't support TSO. */
9258 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9259 		error = EMSGSIZE;
9260 		KMOD_IPSTAT_INC(ips_cantfrag);
9261 		if (pd->act.rt != PF_DUPTO) {
9262 			if (s && s->nat_rule != NULL) {
9263 				MPASS(m0 == pd->m);
9264 				PACKET_UNDO_NAT(pd,
9265 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9266 				    s);
9267 			}
9268 
9269 			pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9270 			   ifp->if_mtu, pd->af, r, pd->act.rtableid);
9271 		}
9272 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9273 		action = PF_DROP;
9274 		goto bad;
9275 	}
9276 
9277 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9278 	if (error) {
9279 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9280 		action = PF_DROP;
9281 		goto bad;
9282 	}
9283 
9284 	for (; m0; m0 = m1) {
9285 		m1 = m0->m_nextpkt;
9286 		m0->m_nextpkt = NULL;
9287 		if (error == 0) {
9288 			m_clrprotoflags(m0);
9289 			md = m0;
9290 			pd->pf_mtag = pf_find_mtag(md);
9291 			error = pf_dummynet_route(pd, s, r, ifp,
9292 			    (const struct sockaddr *)gw, &md);
9293 			if (md != NULL) {
9294 				error = (*ifp->if_output)(ifp, md,
9295 				    (const struct sockaddr *)gw,
9296 				    (struct route *)&ro);
9297 				SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9298 			}
9299 		} else
9300 			m_freem(m0);
9301 	}
9302 
9303 	if (error == 0)
9304 		KMOD_IPSTAT_INC(ips_fragmented);
9305 
9306 done:
9307 	if (pd->act.rt != PF_DUPTO)
9308 		pd->m = NULL;
9309 	else
9310 		action = PF_PASS;
9311 	return (action);
9312 
9313 bad_locked:
9314 	if (s)
9315 		PF_STATE_UNLOCK(s);
9316 bad:
9317 	m_freem(m0);
9318 	goto done;
9319 }
9320 #endif /* INET */
9321 
9322 #ifdef INET6
9323 static int
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9324 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9325     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9326 {
9327 	struct mbuf		*m0, *md;
9328 	struct m_tag		*mtag;
9329 	struct sockaddr_in6	dst;
9330 	struct ip6_hdr		*ip6;
9331 	struct ifnet		*ifp = NULL;
9332 	int			 r_dir;
9333 	bool			 skip_test = false;
9334 	int			 action = PF_PASS;
9335 
9336 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9337 
9338 	SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9339 
9340 	if (s) {
9341 		r_dir = s->direction;
9342 	} else {
9343 		r_dir = r->direction;
9344 	}
9345 
9346 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9347 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9348 	    __func__));
9349 
9350 	if ((pd->pf_mtag == NULL &&
9351 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9352 	    pd->pf_mtag->routed++ > 3) {
9353 		m0 = pd->m;
9354 		pd->m = NULL;
9355 		action = PF_DROP;
9356 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9357 		goto bad_locked;
9358 	}
9359 
9360 	if (pd->act.rt_kif != NULL)
9361 		ifp = pd->act.rt_kif->pfik_ifp;
9362 
9363 	if (pd->act.rt == PF_DUPTO) {
9364 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9365 			if (s != NULL) {
9366 				PF_STATE_UNLOCK(s);
9367 			}
9368 			if (ifp == oifp) {
9369 				/* When the 2nd interface is not skipped */
9370 				return (action);
9371 			} else {
9372 				m0 = pd->m;
9373 				pd->m = NULL;
9374 				action = PF_DROP;
9375 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9376 				goto bad;
9377 			}
9378 		} else {
9379 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9380 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9381 				if (s)
9382 					PF_STATE_UNLOCK(s);
9383 				return (action);
9384 			}
9385 		}
9386 	} else {
9387 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9388 			if (pd->af == pd->naf) {
9389 				pf_dummynet(pd, s, r, &pd->m);
9390 				if (s)
9391 					PF_STATE_UNLOCK(s);
9392 				return (action);
9393 			} else {
9394 				if (r_dir == PF_IN) {
9395 					skip_test = true;
9396 				}
9397 			}
9398 		}
9399 
9400 		/*
9401 		 * If we're actually doing route-to and af-to and are in the
9402 		 * reply direction.
9403 		 */
9404 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9405 		    pd->af != pd->naf) {
9406 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9407 				/* Un-set ifp so we do a plain route lookup. */
9408 				ifp = NULL;
9409 			}
9410 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9411 				/* Un-set ifp so we do a plain route lookup. */
9412 				ifp = NULL;
9413 			}
9414 		}
9415 		m0 = pd->m;
9416 	}
9417 
9418 	ip6 = mtod(m0, struct ip6_hdr *);
9419 
9420 	bzero(&dst, sizeof(dst));
9421 	dst.sin6_family = AF_INET6;
9422 	dst.sin6_len = sizeof(dst);
9423 	pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr,
9424 	    AF_INET6);
9425 
9426 	if (pd->dir == PF_IN) {
9427 		if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9428 			if (r->rt != PF_DUPTO)
9429 				pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9430 				    ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9431 				    pd->act.rtableid);
9432 			action = PF_DROP;
9433 			goto bad_locked;
9434 		}
9435 		ip6->ip6_hlim -= IPV6_HLIMDEC;
9436 	}
9437 
9438 	if (s != NULL) {
9439 		if (ifp == NULL && (pd->af != pd->naf)) {
9440 			const struct nhop_object *nh;
9441 			nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9442 			if (nh) {
9443 				ifp = nh->nh_ifp;
9444 
9445 				/* Use the gateway if needed. */
9446 				if (nh->nh_flags & NHF_GATEWAY)
9447 					bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9448 					    sizeof(dst.sin6_addr));
9449 				else
9450 					dst.sin6_addr = ip6->ip6_dst;
9451 
9452 				/*
9453 				 * Bind to the correct interface if we're
9454 				 * if-bound. We don't know which interface
9455 				 * that will be until here, so we've inserted
9456 				 * the state on V_pf_all. Fix that now.
9457 				 */
9458 				if (s->kif == V_pfi_all && ifp != NULL &&
9459 				    r->rule_flag & PFRULE_IFBOUND)
9460 					s->kif = ifp->if_pf_kif;
9461 			}
9462 		}
9463 
9464 		if (r->rule_flag & PFRULE_IFBOUND &&
9465 		    pd->act.rt == PF_REPLYTO &&
9466 		    s->kif == V_pfi_all) {
9467 			s->kif = pd->act.rt_kif;
9468 			s->orig_kif = oifp->if_pf_kif;
9469 		}
9470 
9471 		PF_STATE_UNLOCK(s);
9472 	}
9473 
9474 	if (pd->af != pd->naf) {
9475 		struct udphdr *uh = &pd->hdr.udp;
9476 
9477 		if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9478 			uh->uh_sum = in6_cksum_pseudo(ip6,
9479 			    ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9480 			m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9481 		}
9482 	}
9483 
9484 	if (ifp == NULL) {
9485 		m0 = pd->m;
9486 		pd->m = NULL;
9487 		action = PF_DROP;
9488 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9489 		goto bad;
9490 	}
9491 
9492 	if (r->rt == PF_DUPTO)
9493 		skip_test = true;
9494 
9495 	if (pd->dir == PF_IN && !skip_test) {
9496 		if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9497 		    ifp, &m0, inp, &pd->act) != PF_PASS) {
9498 			action = PF_DROP;
9499 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9500 			goto bad;
9501 		} else if (m0 == NULL) {
9502 			action = PF_DROP;
9503 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9504 			goto done;
9505 		}
9506 		if (m0->m_len < sizeof(struct ip6_hdr)) {
9507 			DPFPRINTF(PF_DEBUG_URGENT,
9508 			    "%s: m0->m_len < sizeof(struct ip6_hdr)",
9509 			    __func__);
9510 			action = PF_DROP;
9511 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9512 			goto bad;
9513 		}
9514 		ip6 = mtod(m0, struct ip6_hdr *);
9515 	}
9516 
9517 	if (ifp->if_flags & IFF_LOOPBACK)
9518 		m0->m_flags |= M_SKIP_FIREWALL;
9519 
9520 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9521 	    ~ifp->if_hwassist) {
9522 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9523 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9524 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9525 	}
9526 
9527 	if (pd->dir == PF_IN) {
9528 		uint16_t	 tmp;
9529 		/*
9530 		 * Make sure dummynet gets the correct direction, in case it needs to
9531 		 * re-inject later.
9532 		 */
9533 		pd->dir = PF_OUT;
9534 
9535 		/*
9536 		 * The following processing is actually the rest of the inbound processing, even
9537 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9538 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9539 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9540 		 * conclusion about what direction it's processing, and we can't fix it or it
9541 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9542 		 * decision will pick the right pipe, and everything will mostly work as expected.
9543 		 */
9544 		tmp = pd->act.dnrpipe;
9545 		pd->act.dnrpipe = pd->act.dnpipe;
9546 		pd->act.dnpipe = tmp;
9547 	}
9548 
9549 	/*
9550 	 * If the packet is too large for the outgoing interface,
9551 	 * send back an icmp6 error.
9552 	 */
9553 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9554 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9555 	mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9556 	if (mtag != NULL) {
9557 		int ret __sdt_used;
9558 		ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9559 		SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9560 		goto done;
9561 	}
9562 
9563 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9564 		md = m0;
9565 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9566 		if (md != NULL) {
9567 			int ret __sdt_used;
9568 			ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9569 			SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9570 		}
9571 	}
9572 	else {
9573 		in6_ifstat_inc(ifp, ifs6_in_toobig);
9574 		if (pd->act.rt != PF_DUPTO) {
9575 			if (s && s->nat_rule != NULL) {
9576 				MPASS(m0 == pd->m);
9577 				PACKET_UNDO_NAT(pd,
9578 				    ((caddr_t)ip6 - m0->m_data) +
9579 				    sizeof(struct ip6_hdr), s);
9580 			}
9581 
9582 			if (r->rt != PF_DUPTO)
9583 				pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9584 				    ifp->if_mtu, pd->af, r, pd->act.rtableid);
9585 		}
9586 		action = PF_DROP;
9587 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9588 		goto bad;
9589 	}
9590 
9591 done:
9592 	if (pd->act.rt != PF_DUPTO)
9593 		pd->m = NULL;
9594 	else
9595 		action = PF_PASS;
9596 	return (action);
9597 
9598 bad_locked:
9599 	if (s)
9600 		PF_STATE_UNLOCK(s);
9601 bad:
9602 	m_freem(m0);
9603 	goto done;
9604 }
9605 #endif /* INET6 */
9606 
9607 /*
9608  * FreeBSD supports cksum offloads for the following drivers.
9609  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9610  *
9611  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9612  *  network driver performed cksum including pseudo header, need to verify
9613  *   csum_data
9614  * CSUM_DATA_VALID :
9615  *  network driver performed cksum, needs to additional pseudo header
9616  *  cksum computation with partial csum_data(i.e. lack of H/W support for
9617  *  pseudo header, for instance sk(4) and possibly gem(4))
9618  *
9619  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9620  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9621  * TCP/UDP layer.
9622  * Also, set csum_data to 0xffff to force cksum validation.
9623  */
9624 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9625 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9626 {
9627 	u_int16_t sum = 0;
9628 	int hw_assist = 0;
9629 	struct ip *ip;
9630 
9631 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9632 		return (1);
9633 	if (m->m_pkthdr.len < off + len)
9634 		return (1);
9635 
9636 	switch (p) {
9637 	case IPPROTO_TCP:
9638 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9639 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9640 				sum = m->m_pkthdr.csum_data;
9641 			} else {
9642 				ip = mtod(m, struct ip *);
9643 				sum = in_pseudo(ip->ip_src.s_addr,
9644 				ip->ip_dst.s_addr, htonl((u_short)len +
9645 				m->m_pkthdr.csum_data + IPPROTO_TCP));
9646 			}
9647 			sum ^= 0xffff;
9648 			++hw_assist;
9649 		}
9650 		break;
9651 	case IPPROTO_UDP:
9652 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9653 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9654 				sum = m->m_pkthdr.csum_data;
9655 			} else {
9656 				ip = mtod(m, struct ip *);
9657 				sum = in_pseudo(ip->ip_src.s_addr,
9658 				ip->ip_dst.s_addr, htonl((u_short)len +
9659 				m->m_pkthdr.csum_data + IPPROTO_UDP));
9660 			}
9661 			sum ^= 0xffff;
9662 			++hw_assist;
9663 		}
9664 		break;
9665 	case IPPROTO_ICMP:
9666 #ifdef INET6
9667 	case IPPROTO_ICMPV6:
9668 #endif /* INET6 */
9669 		break;
9670 	default:
9671 		return (1);
9672 	}
9673 
9674 	if (!hw_assist) {
9675 		switch (af) {
9676 		case AF_INET:
9677 			if (m->m_len < sizeof(struct ip))
9678 				return (1);
9679 			sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9680 			break;
9681 #ifdef INET6
9682 		case AF_INET6:
9683 			if (m->m_len < sizeof(struct ip6_hdr))
9684 				return (1);
9685 			sum = in6_cksum(m, p, off, len);
9686 			break;
9687 #endif /* INET6 */
9688 		}
9689 	}
9690 	if (sum) {
9691 		switch (p) {
9692 		case IPPROTO_TCP:
9693 		    {
9694 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9695 			break;
9696 		    }
9697 		case IPPROTO_UDP:
9698 		    {
9699 			KMOD_UDPSTAT_INC(udps_badsum);
9700 			break;
9701 		    }
9702 #ifdef INET
9703 		case IPPROTO_ICMP:
9704 		    {
9705 			KMOD_ICMPSTAT_INC(icps_checksum);
9706 			break;
9707 		    }
9708 #endif
9709 #ifdef INET6
9710 		case IPPROTO_ICMPV6:
9711 		    {
9712 			KMOD_ICMP6STAT_INC(icp6s_checksum);
9713 			break;
9714 		    }
9715 #endif /* INET6 */
9716 		}
9717 		return (1);
9718 	} else {
9719 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9720 			m->m_pkthdr.csum_flags |=
9721 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9722 			m->m_pkthdr.csum_data = 0xffff;
9723 		}
9724 	}
9725 	return (0);
9726 }
9727 
9728 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9729 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9730     const struct pf_kstate *s, struct ip_fw_args *dnflow)
9731 {
9732 	int dndir = r->direction;
9733 
9734 	if (s && dndir == PF_INOUT) {
9735 		dndir = s->direction;
9736 	} else if (dndir == PF_INOUT) {
9737 		/* Assume primary direction. Happens when we've set dnpipe in
9738 		 * the ethernet level code. */
9739 		dndir = pd->dir;
9740 	}
9741 
9742 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9743 		return (false);
9744 
9745 	memset(dnflow, 0, sizeof(*dnflow));
9746 
9747 	if (pd->dport != NULL)
9748 		dnflow->f_id.dst_port = ntohs(*pd->dport);
9749 	if (pd->sport != NULL)
9750 		dnflow->f_id.src_port = ntohs(*pd->sport);
9751 
9752 	if (pd->dir == PF_IN)
9753 		dnflow->flags |= IPFW_ARGS_IN;
9754 	else
9755 		dnflow->flags |= IPFW_ARGS_OUT;
9756 
9757 	if (pd->dir != dndir && pd->act.dnrpipe) {
9758 		dnflow->rule.info = pd->act.dnrpipe;
9759 	}
9760 	else if (pd->dir == dndir && pd->act.dnpipe) {
9761 		dnflow->rule.info = pd->act.dnpipe;
9762 	}
9763 	else {
9764 		return (false);
9765 	}
9766 
9767 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
9768 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9769 		dnflow->rule.info |= IPFW_IS_PIPE;
9770 
9771 	dnflow->f_id.proto = pd->proto;
9772 	dnflow->f_id.extra = dnflow->rule.info;
9773 	switch (pd->naf) {
9774 	case AF_INET:
9775 		dnflow->f_id.addr_type = 4;
9776 		dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9777 		dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9778 		break;
9779 	case AF_INET6:
9780 		dnflow->flags |= IPFW_ARGS_IP6;
9781 		dnflow->f_id.addr_type = 6;
9782 		dnflow->f_id.src_ip6 = pd->src->v6;
9783 		dnflow->f_id.dst_ip6 = pd->dst->v6;
9784 		break;
9785 	}
9786 
9787 	return (true);
9788 }
9789 
9790 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9791 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9792     struct inpcb *inp)
9793 {
9794 	struct pfi_kkif		*kif;
9795 	struct mbuf		*m = *m0;
9796 
9797 	M_ASSERTPKTHDR(m);
9798 	MPASS(ifp->if_vnet == curvnet);
9799 	NET_EPOCH_ASSERT();
9800 
9801 	if (!V_pf_status.running)
9802 		return (PF_PASS);
9803 
9804 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
9805 
9806 	if (kif == NULL) {
9807 		DPFPRINTF(PF_DEBUG_URGENT,
9808 		    "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname);
9809 		return (PF_DROP);
9810 	}
9811 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
9812 		return (PF_PASS);
9813 
9814 	if (m->m_flags & M_SKIP_FIREWALL)
9815 		return (PF_PASS);
9816 
9817 	if (__predict_false(! M_WRITABLE(*m0))) {
9818 		m = *m0 = m_unshare(*m0, M_NOWAIT);
9819 		if (*m0 == NULL)
9820 			return (PF_DROP);
9821 	}
9822 
9823 	/* Stateless! */
9824 	return (pf_test_eth_rule(dir, kif, m0));
9825 }
9826 
9827 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9828 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9829 {
9830 	struct m_tag *mtag;
9831 
9832 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9833 
9834 	/* dummynet adds this tag, but pf does not need it,
9835 	 * and keeping it creates unexpected behavior,
9836 	 * e.g. in case of divert(4) usage right after dummynet. */
9837 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9838 	if (mtag != NULL)
9839 		m_tag_delete(m, mtag);
9840 }
9841 
9842 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9843 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9844     struct pf_krule *r, struct mbuf **m0)
9845 {
9846 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9847 }
9848 
9849 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9850 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9851     struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9852     struct mbuf **m0)
9853 {
9854 	struct ip_fw_args dnflow;
9855 
9856 	NET_EPOCH_ASSERT();
9857 
9858 	if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9859 		return (0);
9860 
9861 	if (ip_dn_io_ptr == NULL) {
9862 		m_freem(*m0);
9863 		*m0 = NULL;
9864 		return (ENOMEM);
9865 	}
9866 
9867 	if (pd->pf_mtag == NULL &&
9868 	    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9869 		m_freem(*m0);
9870 		*m0 = NULL;
9871 		return (ENOMEM);
9872 	}
9873 
9874 	if (ifp != NULL) {
9875 		pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9876 
9877 		pd->pf_mtag->if_index = ifp->if_index;
9878 		pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9879 
9880 		MPASS(sa != NULL);
9881 
9882 		switch (sa->sa_family) {
9883 		case AF_INET:
9884 			memcpy(&pd->pf_mtag->dst, sa,
9885 			    sizeof(struct sockaddr_in));
9886 			break;
9887 		case AF_INET6:
9888 			memcpy(&pd->pf_mtag->dst, sa,
9889 			    sizeof(struct sockaddr_in6));
9890 			break;
9891 		}
9892 	}
9893 
9894 	if (s != NULL && s->nat_rule != NULL &&
9895 	    s->nat_rule->action == PF_RDR &&
9896 	    (
9897 #ifdef INET
9898 	    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9899 #endif /* INET */
9900 	    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9901 		/*
9902 		 * If we're redirecting to loopback mark this packet
9903 		 * as being local. Otherwise it might get dropped
9904 		 * if dummynet re-injects.
9905 		 */
9906 		(*m0)->m_pkthdr.rcvif = V_loif;
9907 	}
9908 
9909 	if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9910 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9911 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9912 		ip_dn_io_ptr(m0, &dnflow);
9913 		if (*m0 != NULL) {
9914 			pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9915 			pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9916 		}
9917 	}
9918 
9919 	return (0);
9920 }
9921 
9922 static int
pf_walk_option(struct pf_pdesc * pd,struct ip * h,int off,int end,u_short * reason)9923 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end,
9924     u_short *reason)
9925 {
9926 	uint8_t type, length, opts[15 * 4 - sizeof(struct ip)];
9927 
9928 	/* IP header in payload of ICMP packet may be too short */
9929 	if (pd->m->m_pkthdr.len < end) {
9930 		DPFPRINTF(PF_DEBUG_MISC, "IP option too short");
9931 		REASON_SET(reason, PFRES_SHORT);
9932 		return (PF_DROP);
9933 	}
9934 
9935 	MPASS(end - off <= sizeof(opts));
9936 	m_copydata(pd->m, off, end - off, opts);
9937 	end -= off;
9938 	off = 0;
9939 
9940 	while (off < end) {
9941 		type = opts[off];
9942 		if (type == IPOPT_EOL)
9943 			break;
9944 		if (type == IPOPT_NOP) {
9945 			off++;
9946 			continue;
9947 		}
9948 		if (off + 2 > end) {
9949 			DPFPRINTF(PF_DEBUG_MISC, "IP length opt");
9950 			REASON_SET(reason, PFRES_IPOPTIONS);
9951 			return (PF_DROP);
9952 		}
9953 		length = opts[off + 1];
9954 		if (length < 2) {
9955 			DPFPRINTF(PF_DEBUG_MISC, "IP short opt");
9956 			REASON_SET(reason, PFRES_IPOPTIONS);
9957 			return (PF_DROP);
9958 		}
9959 		if (off + length > end) {
9960 			DPFPRINTF(PF_DEBUG_MISC, "IP long opt");
9961 			REASON_SET(reason, PFRES_IPOPTIONS);
9962 			return (PF_DROP);
9963 		}
9964 		switch (type) {
9965 		case IPOPT_RA:
9966 			pd->badopts |= PF_OPT_ROUTER_ALERT;
9967 			break;
9968 		default:
9969 			pd->badopts |= PF_OPT_OTHER;
9970 			break;
9971 		}
9972 		off += length;
9973 	}
9974 
9975 	return (PF_PASS);
9976 }
9977 
9978 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)9979 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
9980 {
9981 	struct ah	 ext;
9982 	u_int32_t	 hlen, end;
9983 	int		 hdr_cnt;
9984 
9985 	hlen = h->ip_hl << 2;
9986 	if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
9987 		REASON_SET(reason, PFRES_SHORT);
9988 		return (PF_DROP);
9989 	}
9990 	if (hlen != sizeof(struct ip)) {
9991 		if (pf_walk_option(pd, h, pd->off + sizeof(struct ip),
9992 		    pd->off + hlen, reason) != PF_PASS)
9993 			return (PF_DROP);
9994 		/* header options which contain only padding is fishy */
9995 		if (pd->badopts == 0)
9996 			pd->badopts |= PF_OPT_OTHER;
9997 	}
9998 	end = pd->off + ntohs(h->ip_len);
9999 	pd->off += hlen;
10000 	pd->proto = h->ip_p;
10001 	/* IGMP packets have router alert options, allow them */
10002 	if (pd->proto == IPPROTO_IGMP) {
10003 		/*
10004 		 * According to RFC 1112 ttl must be set to 1 in all IGMP
10005 		 * packets sent to 224.0.0.1
10006 		 */
10007 		if ((h->ip_ttl != 1) &&
10008 		    (h->ip_dst.s_addr == INADDR_ALLHOSTS_GROUP)) {
10009 			DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP");
10010 			REASON_SET(reason, PFRES_IPOPTIONS);
10011 			return (PF_DROP);
10012 		}
10013 		pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10014 	}
10015 	/* stop walking over non initial fragments */
10016 	if ((h->ip_off & htons(IP_OFFMASK)) != 0)
10017 		return (PF_PASS);
10018 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10019 		switch (pd->proto) {
10020 		case IPPROTO_AH:
10021 			/* fragments may be short */
10022 			if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
10023 			    end < pd->off + sizeof(ext))
10024 				return (PF_PASS);
10025 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10026 				NULL, reason, AF_INET)) {
10027 				DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr");
10028 				return (PF_DROP);
10029 			}
10030 			pd->off += (ext.ah_len + 2) * 4;
10031 			pd->proto = ext.ah_nxt;
10032 			break;
10033 		default:
10034 			return (PF_PASS);
10035 		}
10036 	}
10037 	DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit");
10038 	REASON_SET(reason, PFRES_IPOPTIONS);
10039 	return (PF_DROP);
10040 }
10041 
10042 #ifdef INET6
10043 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)10044 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
10045     u_short *reason)
10046 {
10047 	struct ip6_opt		 opt;
10048 	struct ip6_opt_jumbo	 jumbo;
10049 
10050 	while (off < end) {
10051 		if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
10052 		    sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
10053 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type");
10054 			return (PF_DROP);
10055 		}
10056 		if (opt.ip6o_type == IP6OPT_PAD1) {
10057 			off++;
10058 			continue;
10059 		}
10060 		if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
10061 		    reason, AF_INET6)) {
10062 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt");
10063 			return (PF_DROP);
10064 		}
10065 		if (off + sizeof(opt) + opt.ip6o_len > end) {
10066 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt");
10067 			REASON_SET(reason, PFRES_IPOPTIONS);
10068 			return (PF_DROP);
10069 		}
10070 		switch (opt.ip6o_type) {
10071 		case IP6OPT_PADN:
10072 			break;
10073 		case IP6OPT_JUMBO:
10074 			pd->badopts |= PF_OPT_JUMBO;
10075 			if (pd->jumbolen != 0) {
10076 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo");
10077 				REASON_SET(reason, PFRES_IPOPTIONS);
10078 				return (PF_DROP);
10079 			}
10080 			if (ntohs(h->ip6_plen) != 0) {
10081 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen");
10082 				REASON_SET(reason, PFRES_IPOPTIONS);
10083 				return (PF_DROP);
10084 			}
10085 			if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
10086 				reason, AF_INET6)) {
10087 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo");
10088 				return (PF_DROP);
10089 			}
10090 			memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
10091 			    sizeof(pd->jumbolen));
10092 			pd->jumbolen = ntohl(pd->jumbolen);
10093 			if (pd->jumbolen < IPV6_MAXPACKET) {
10094 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen");
10095 				REASON_SET(reason, PFRES_IPOPTIONS);
10096 				return (PF_DROP);
10097 			}
10098 			break;
10099 		case IP6OPT_ROUTER_ALERT:
10100 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10101 			break;
10102 		default:
10103 			pd->badopts |= PF_OPT_OTHER;
10104 			break;
10105 		}
10106 		off += sizeof(opt) + opt.ip6o_len;
10107 	}
10108 
10109 	return (PF_PASS);
10110 }
10111 
10112 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)10113 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
10114 {
10115 	struct ip6_frag		 frag;
10116 	struct ip6_ext		 ext;
10117 	struct icmp6_hdr	 icmp6;
10118 	struct ip6_rthdr	 rthdr;
10119 	uint32_t		 end;
10120 	int			 hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
10121 
10122 	pd->off += sizeof(struct ip6_hdr);
10123 	end = pd->off + ntohs(h->ip6_plen);
10124 	pd->fragoff = pd->extoff = pd->jumbolen = 0;
10125 	pd->proto = h->ip6_nxt;
10126 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10127 		switch (pd->proto) {
10128 		case IPPROTO_ROUTING:
10129 		case IPPROTO_DSTOPTS:
10130 			pd->badopts |= PF_OPT_OTHER;
10131 			break;
10132 		case IPPROTO_HOPOPTS:
10133 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10134 			    NULL, reason, AF_INET6)) {
10135 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10136 				return (PF_DROP);
10137 			}
10138 			if (pf_walk_option6(pd, h, pd->off + sizeof(ext),
10139 				pd->off + (ext.ip6e_len + 1) * 8,
10140 				reason) != PF_PASS)
10141 				return (PF_DROP);
10142 			/* option header which contains only padding is fishy */
10143 			if (pd->badopts == 0)
10144 				pd->badopts |= PF_OPT_OTHER;
10145 			break;
10146 		}
10147 		switch (pd->proto) {
10148 		case IPPROTO_FRAGMENT:
10149 			if (fraghdr_cnt++) {
10150 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment");
10151 				REASON_SET(reason, PFRES_FRAG);
10152 				return (PF_DROP);
10153 			}
10154 			/* jumbo payload packets cannot be fragmented */
10155 			if (pd->jumbolen != 0) {
10156 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo");
10157 				REASON_SET(reason, PFRES_FRAG);
10158 				return (PF_DROP);
10159 			}
10160 			if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
10161 			    NULL, reason, AF_INET6)) {
10162 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment");
10163 				return (PF_DROP);
10164 			}
10165 			/* stop walking over non initial fragments */
10166 			if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
10167 				pd->fragoff = pd->off;
10168 				return (PF_PASS);
10169 			}
10170 			/* RFC6946:  reassemble only non atomic fragments */
10171 			if (frag.ip6f_offlg & IP6F_MORE_FRAG)
10172 				pd->fragoff = pd->off;
10173 			pd->off += sizeof(frag);
10174 			pd->proto = frag.ip6f_nxt;
10175 			break;
10176 		case IPPROTO_ROUTING:
10177 			if (rthdr_cnt++) {
10178 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr");
10179 				REASON_SET(reason, PFRES_IPOPTIONS);
10180 				return (PF_DROP);
10181 			}
10182 			/* fragments may be short */
10183 			if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
10184 				pd->off = pd->fragoff;
10185 				pd->proto = IPPROTO_FRAGMENT;
10186 				return (PF_PASS);
10187 			}
10188 			if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
10189 			    NULL, reason, AF_INET6)) {
10190 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr");
10191 				return (PF_DROP);
10192 			}
10193 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
10194 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0");
10195 				REASON_SET(reason, PFRES_IPOPTIONS);
10196 				return (PF_DROP);
10197 			}
10198 			/* FALLTHROUGH */
10199 		case IPPROTO_HOPOPTS:
10200 			/* RFC2460 4.1:  Hop-by-Hop only after IPv6 header */
10201 			if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
10202 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first");
10203 				REASON_SET(reason, PFRES_IPOPTIONS);
10204 				return (PF_DROP);
10205 			}
10206 			/* FALLTHROUGH */
10207 		case IPPROTO_AH:
10208 		case IPPROTO_DSTOPTS:
10209 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10210 			    NULL, reason, AF_INET6)) {
10211 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10212 				return (PF_DROP);
10213 			}
10214 			/* fragments may be short */
10215 			if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
10216 				pd->off = pd->fragoff;
10217 				pd->proto = IPPROTO_FRAGMENT;
10218 				return (PF_PASS);
10219 			}
10220 			/* reassembly needs the ext header before the frag */
10221 			if (pd->fragoff == 0)
10222 				pd->extoff = pd->off;
10223 			if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 &&
10224 			    ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
10225 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo");
10226 				REASON_SET(reason, PFRES_IPOPTIONS);
10227 				return (PF_DROP);
10228 			}
10229 			if (pd->proto == IPPROTO_AH)
10230 				pd->off += (ext.ip6e_len + 2) * 4;
10231 			else
10232 				pd->off += (ext.ip6e_len + 1) * 8;
10233 			pd->proto = ext.ip6e_nxt;
10234 			break;
10235 		case IPPROTO_ICMPV6:
10236 			/* fragments may be short, ignore inner header then */
10237 			if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) {
10238 				pd->off = pd->fragoff;
10239 				pd->proto = IPPROTO_FRAGMENT;
10240 				return (PF_PASS);
10241 			}
10242 			if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6),
10243 				NULL, reason, AF_INET6)) {
10244 				DPFPRINTF(PF_DEBUG_MISC,
10245 				    "IPv6 short icmp6hdr");
10246 				return (PF_DROP);
10247 			}
10248 			/* ICMP multicast packets have router alert options */
10249 			switch (icmp6.icmp6_type) {
10250 			case MLD_LISTENER_QUERY:
10251 			case MLD_LISTENER_REPORT:
10252 			case MLD_LISTENER_DONE:
10253 			case MLDV2_LISTENER_REPORT:
10254 				/*
10255 				 * According to RFC 2710 all MLD messages are
10256 				 * sent with hop-limit (ttl) set to 1, and link
10257 				 * local source address.  If either one is
10258 				 * missing then MLD message is invalid and
10259 				 * should be discarded.
10260 				 */
10261 				if ((h->ip6_hlim != 1) ||
10262 				    !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) {
10263 					DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD");
10264 					REASON_SET(reason, PFRES_IPOPTIONS);
10265 					return (PF_DROP);
10266 				}
10267 				pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10268 				break;
10269 			}
10270 			return (PF_PASS);
10271 		case IPPROTO_TCP:
10272 		case IPPROTO_UDP:
10273 		case IPPROTO_SCTP:
10274 			/* fragments may be short, ignore inner header then */
10275 			if (pd->fragoff != 0 && end < pd->off +
10276 			    (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
10277 			    pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
10278 			    pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
10279 			    sizeof(struct icmp6_hdr))) {
10280 				pd->off = pd->fragoff;
10281 				pd->proto = IPPROTO_FRAGMENT;
10282 			}
10283 			/* FALLTHROUGH */
10284 		default:
10285 			return (PF_PASS);
10286 		}
10287 	}
10288 	DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit");
10289 	REASON_SET(reason, PFRES_IPOPTIONS);
10290 	return (PF_DROP);
10291 }
10292 #endif /* INET6 */
10293 
10294 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10295 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10296 {
10297 	memset(pd, 0, sizeof(*pd));
10298 	pd->pf_mtag = pf_find_mtag(m);
10299 	pd->m = m;
10300 }
10301 
10302 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10303 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10304     u_short *action, u_short *reason, struct pfi_kkif *kif,
10305     struct pf_rule_actions *default_actions)
10306 {
10307 	pd->dir = dir;
10308 	pd->kif = kif;
10309 	pd->m = *m0;
10310 	pd->sidx = (dir == PF_IN) ? 0 : 1;
10311 	pd->didx = (dir == PF_IN) ? 1 : 0;
10312 	pd->af = pd->naf = af;
10313 
10314 	PF_RULES_ASSERT();
10315 
10316 	TAILQ_INIT(&pd->sctp_multihome_jobs);
10317 	if (default_actions != NULL)
10318 		memcpy(&pd->act, default_actions, sizeof(pd->act));
10319 
10320 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10321 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
10322 		pd->act.flags = pd->pf_mtag->dnflags;
10323 	}
10324 
10325 	switch (af) {
10326 #ifdef INET
10327 	case AF_INET: {
10328 		struct ip *h;
10329 
10330 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10331 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10332 			DPFPRINTF(PF_DEBUG_URGENT,
10333 			    "%s: m_len < sizeof(struct ip), pullup failed",
10334 			    __func__);
10335 			*action = PF_DROP;
10336 			REASON_SET(reason, PFRES_SHORT);
10337 			return (-1);
10338 		}
10339 
10340 		h = mtod(pd->m, struct ip *);
10341 		if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10342 			*action = PF_DROP;
10343 			REASON_SET(reason, PFRES_SHORT);
10344 			return (-1);
10345 		}
10346 
10347 		if (pf_normalize_ip(reason, pd) != PF_PASS) {
10348 			/* We do IP header normalization and packet reassembly here */
10349 			*m0 = pd->m;
10350 			*action = PF_DROP;
10351 			return (-1);
10352 		}
10353 		*m0 = pd->m;
10354 		h = mtod(pd->m, struct ip *);
10355 
10356 		if (pf_walk_header(pd, h, reason) != PF_PASS) {
10357 			*action = PF_DROP;
10358 			return (-1);
10359 		}
10360 
10361 		pd->src = (struct pf_addr *)&h->ip_src;
10362 		pd->dst = (struct pf_addr *)&h->ip_dst;
10363 		pf_addrcpy(&pd->osrc, pd->src, af);
10364 		pf_addrcpy(&pd->odst, pd->dst, af);
10365 		pd->ip_sum = &h->ip_sum;
10366 		pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10367 		pd->ttl = h->ip_ttl;
10368 		pd->tot_len = ntohs(h->ip_len);
10369 		pd->act.rtableid = -1;
10370 		pd->df = h->ip_off & htons(IP_DF);
10371 		pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10372 		    PF_VPROTO_FRAGMENT : pd->proto;
10373 
10374 		break;
10375 	}
10376 #endif /* INET */
10377 #ifdef INET6
10378 	case AF_INET6: {
10379 		struct ip6_hdr *h;
10380 
10381 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10382 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10383 			DPFPRINTF(PF_DEBUG_URGENT,
10384 			    "%s: m_len < sizeof(struct ip6_hdr)"
10385 			     ", pullup failed", __func__);
10386 			*action = PF_DROP;
10387 			REASON_SET(reason, PFRES_SHORT);
10388 			return (-1);
10389 		}
10390 
10391 		h = mtod(pd->m, struct ip6_hdr *);
10392 		if (pd->m->m_pkthdr.len <
10393 		    sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) {
10394 			*action = PF_DROP;
10395 			REASON_SET(reason, PFRES_SHORT);
10396 			return (-1);
10397 		}
10398 
10399 		/*
10400 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
10401 		 * will do something bad, so drop the packet for now.
10402 		 */
10403 		if (htons(h->ip6_plen) == 0) {
10404 			*action = PF_DROP;
10405 			return (-1);
10406 		}
10407 
10408 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10409 			*action = PF_DROP;
10410 			return (-1);
10411 		}
10412 
10413 		h = mtod(pd->m, struct ip6_hdr *);
10414 		pd->src = (struct pf_addr *)&h->ip6_src;
10415 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10416 		pf_addrcpy(&pd->osrc, pd->src, af);
10417 		pf_addrcpy(&pd->odst, pd->dst, af);
10418 		pd->ip_sum = NULL;
10419 		pd->tos = IPV6_DSCP(h);
10420 		pd->ttl = h->ip6_hlim;
10421 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10422 		pd->act.rtableid = -1;
10423 
10424 		pd->virtual_proto = (pd->fragoff != 0) ?
10425 		    PF_VPROTO_FRAGMENT : pd->proto;
10426 
10427 		/* We do IP header normalization and packet reassembly here */
10428 		if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10429 		    PF_PASS) {
10430 			*m0 = pd->m;
10431 			*action = PF_DROP;
10432 			return (-1);
10433 		}
10434 		*m0 = pd->m;
10435 		if (pd->m == NULL) {
10436 			/* packet sits in reassembly queue, no error */
10437 			*action = PF_PASS;
10438 			return (-1);
10439 		}
10440 
10441 		/* Update pointers into the packet. */
10442 		h = mtod(pd->m, struct ip6_hdr *);
10443 		pd->src = (struct pf_addr *)&h->ip6_src;
10444 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10445 
10446 		pd->off = 0;
10447 
10448 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10449 			*action = PF_DROP;
10450 			return (-1);
10451 		}
10452 
10453 		if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10454 			/*
10455 			 * Reassembly may have changed the next protocol from
10456 			 * fragment to something else, so update.
10457 			 */
10458 			pd->virtual_proto = pd->proto;
10459 			MPASS(pd->fragoff == 0);
10460 		}
10461 
10462 		if (pd->fragoff != 0)
10463 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
10464 
10465 		break;
10466 	}
10467 #endif /* INET6 */
10468 	default:
10469 		panic("pf_setup_pdesc called with illegal af %u", af);
10470 	}
10471 
10472 	switch (pd->virtual_proto) {
10473 	case IPPROTO_TCP: {
10474 		struct tcphdr *th = &pd->hdr.tcp;
10475 
10476 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10477 			reason, af)) {
10478 			*action = PF_DROP;
10479 			REASON_SET(reason, PFRES_SHORT);
10480 			return (-1);
10481 		}
10482 		pd->hdrlen = sizeof(*th);
10483 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10484 		pd->sport = &th->th_sport;
10485 		pd->dport = &th->th_dport;
10486 		pd->pcksum = &th->th_sum;
10487 		break;
10488 	}
10489 	case IPPROTO_UDP: {
10490 		struct udphdr *uh = &pd->hdr.udp;
10491 
10492 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10493 			reason, af)) {
10494 			*action = PF_DROP;
10495 			REASON_SET(reason, PFRES_SHORT);
10496 			return (-1);
10497 		}
10498 		pd->hdrlen = sizeof(*uh);
10499 		if (uh->uh_dport == 0 ||
10500 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10501 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10502 			*action = PF_DROP;
10503 			REASON_SET(reason, PFRES_SHORT);
10504 			return (-1);
10505 		}
10506 		pd->sport = &uh->uh_sport;
10507 		pd->dport = &uh->uh_dport;
10508 		pd->pcksum = &uh->uh_sum;
10509 		break;
10510 	}
10511 	case IPPROTO_SCTP: {
10512 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10513 		    action, reason, af)) {
10514 			*action = PF_DROP;
10515 			REASON_SET(reason, PFRES_SHORT);
10516 			return (-1);
10517 		}
10518 		pd->hdrlen = sizeof(pd->hdr.sctp);
10519 		pd->p_len = pd->tot_len - pd->off;
10520 
10521 		pd->sport = &pd->hdr.sctp.src_port;
10522 		pd->dport = &pd->hdr.sctp.dest_port;
10523 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10524 			*action = PF_DROP;
10525 			REASON_SET(reason, PFRES_SHORT);
10526 			return (-1);
10527 		}
10528 		if (pf_scan_sctp(pd) != PF_PASS) {
10529 			*action = PF_DROP;
10530 			REASON_SET(reason, PFRES_SHORT);
10531 			return (-1);
10532 		}
10533 		/*
10534 		 * Placeholder. The SCTP checksum is 32-bits, but
10535 		 * pf_test_state() expects to update a 16-bit checksum.
10536 		 * Provide a dummy value which we'll subsequently ignore.
10537 		 */
10538 		pd->pcksum = &pd->sctp_dummy_sum;
10539 		break;
10540 	}
10541 	case IPPROTO_ICMP: {
10542 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10543 			action, reason, af)) {
10544 			*action = PF_DROP;
10545 			REASON_SET(reason, PFRES_SHORT);
10546 			return (-1);
10547 		}
10548 		pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10549 		pd->hdrlen = ICMP_MINLEN;
10550 		break;
10551 	}
10552 #ifdef INET6
10553 	case IPPROTO_ICMPV6: {
10554 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
10555 
10556 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10557 			action, reason, af)) {
10558 			*action = PF_DROP;
10559 			REASON_SET(reason, PFRES_SHORT);
10560 			return (-1);
10561 		}
10562 		/* ICMP headers we look further into to match state */
10563 		switch (pd->hdr.icmp6.icmp6_type) {
10564 		case MLD_LISTENER_QUERY:
10565 		case MLD_LISTENER_REPORT:
10566 			icmp_hlen = sizeof(struct mld_hdr);
10567 			break;
10568 		case ND_NEIGHBOR_SOLICIT:
10569 		case ND_NEIGHBOR_ADVERT:
10570 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
10571 			/* FALLTHROUGH */
10572 		case ND_ROUTER_SOLICIT:
10573 		case ND_ROUTER_ADVERT:
10574 		case ND_REDIRECT:
10575 			if (pd->ttl != 255) {
10576 				REASON_SET(reason, PFRES_NORM);
10577 				return (PF_DROP);
10578 			}
10579 			break;
10580 		}
10581 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10582 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10583 			action, reason, af)) {
10584 			*action = PF_DROP;
10585 			REASON_SET(reason, PFRES_SHORT);
10586 			return (-1);
10587 		}
10588 		pd->hdrlen = icmp_hlen;
10589 		pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10590 		break;
10591 	}
10592 #endif /* INET6 */
10593 	}
10594 
10595 	if (pd->sport)
10596 		pd->osport = pd->nsport = *pd->sport;
10597 	if (pd->dport)
10598 		pd->odport = pd->ndport = *pd->dport;
10599 
10600 	return (0);
10601 }
10602 
10603 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10604 pf_counters_inc(int action, struct pf_pdesc *pd,
10605     struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10606 {
10607 	struct pf_krule		*tr;
10608 	int			 dir = pd->dir;
10609 	int			 dirndx;
10610 
10611 	pf_counter_u64_critical_enter();
10612 	pf_counter_u64_add_protected(
10613 	    &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10614 	    pd->tot_len);
10615 	pf_counter_u64_add_protected(
10616 	    &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10617 	    1);
10618 
10619 	if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10620 		dirndx = (dir == PF_OUT);
10621 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10622 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10623 		pf_update_timestamp(r);
10624 
10625 		if (a != NULL) {
10626 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10627 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10628 		}
10629 		if (s != NULL) {
10630 			struct pf_krule_item	*ri;
10631 
10632 			if (s->nat_rule != NULL) {
10633 				pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10634 				    1);
10635 				pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10636 				    pd->tot_len);
10637 			}
10638 			/*
10639 			 * Source nodes are accessed unlocked here.
10640 			 * But since we are operating with stateful tracking
10641 			 * and the state is locked, those SNs could not have
10642 			 * been freed.
10643 			 */
10644 			for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10645 				if (s->sns[sn_type] != NULL) {
10646 					counter_u64_add(
10647 					    s->sns[sn_type]->packets[dirndx],
10648 					    1);
10649 					counter_u64_add(
10650 					    s->sns[sn_type]->bytes[dirndx],
10651 					    pd->tot_len);
10652 				}
10653 			}
10654 			dirndx = (dir == s->direction) ? 0 : 1;
10655 			s->packets[dirndx]++;
10656 			s->bytes[dirndx] += pd->tot_len;
10657 
10658 			SLIST_FOREACH(ri, &s->match_rules, entry) {
10659 				pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10660 				pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10661 
10662 				if (ri->r->src.addr.type == PF_ADDR_TABLE)
10663 					pfr_update_stats(ri->r->src.addr.p.tbl,
10664 					    (s == NULL) ? pd->src :
10665 					    &s->key[(s->direction == PF_IN)]->
10666 						addr[(s->direction == PF_OUT)],
10667 					    pd->af, pd->tot_len, dir == PF_OUT,
10668 					    r->action == PF_PASS, ri->r->src.neg);
10669 				if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10670 					pfr_update_stats(ri->r->dst.addr.p.tbl,
10671 					    (s == NULL) ? pd->dst :
10672 					    &s->key[(s->direction == PF_IN)]->
10673 						addr[(s->direction == PF_IN)],
10674 					    pd->af, pd->tot_len, dir == PF_OUT,
10675 					    r->action == PF_PASS, ri->r->dst.neg);
10676 			}
10677 		}
10678 
10679 		tr = r;
10680 		if (s != NULL && s->nat_rule != NULL &&
10681 		    r == &V_pf_default_rule)
10682 			tr = s->nat_rule;
10683 
10684 		if (tr->src.addr.type == PF_ADDR_TABLE)
10685 			pfr_update_stats(tr->src.addr.p.tbl,
10686 			    (s == NULL) ? pd->src :
10687 			    &s->key[(s->direction == PF_IN)]->
10688 				addr[(s->direction == PF_OUT)],
10689 			    pd->af, pd->tot_len, dir == PF_OUT,
10690 			    r->action == PF_PASS, tr->src.neg);
10691 		if (tr->dst.addr.type == PF_ADDR_TABLE)
10692 			pfr_update_stats(tr->dst.addr.p.tbl,
10693 			    (s == NULL) ? pd->dst :
10694 			    &s->key[(s->direction == PF_IN)]->
10695 				addr[(s->direction == PF_IN)],
10696 			    pd->af, pd->tot_len, dir == PF_OUT,
10697 			    r->action == PF_PASS, tr->dst.neg);
10698 	}
10699 	pf_counter_u64_critical_exit();
10700 }
10701 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10702 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10703     struct pf_krule *am, struct pf_kruleset *ruleset,
10704     struct pf_krule_slist *matchrules)
10705 {
10706 	struct pf_krule_item	*ri;
10707 
10708 	/* if this is the log(matches) rule, packet has been logged already */
10709 	if (rm->log & PF_LOG_MATCHES)
10710 		return;
10711 
10712 	SLIST_FOREACH(ri, matchrules, entry)
10713 		if (ri->r->log & PF_LOG_MATCHES)
10714 			PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10715 			    ruleset, pd, 1, ri->r);
10716 }
10717 
10718 #if defined(INET) || defined(INET6)
10719 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10720 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10721     struct inpcb *inp, struct pf_rule_actions *default_actions)
10722 {
10723 	struct pfi_kkif		*kif;
10724 	u_short			 action, reason = 0;
10725 	struct m_tag		*mtag;
10726 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
10727 	struct pf_kstate	*s = NULL;
10728 	struct pf_kruleset	*ruleset = NULL;
10729 	struct pf_pdesc		 pd;
10730 	int			 use_2nd_queue = 0;
10731 	uint16_t		 tag;
10732 
10733 	PF_RULES_RLOCK_TRACKER;
10734 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10735 	M_ASSERTPKTHDR(*m0);
10736 	NET_EPOCH_ASSERT();
10737 
10738 	if (!V_pf_status.running)
10739 		return (PF_PASS);
10740 
10741 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
10742 
10743 	if (__predict_false(kif == NULL)) {
10744 		DPFPRINTF(PF_DEBUG_URGENT,
10745 		    "%s: kif == NULL, if_xname %s",
10746 		    __func__, ifp->if_xname);
10747 		return (PF_DROP);
10748 	}
10749 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10750 		return (PF_PASS);
10751 	}
10752 
10753 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10754 		return (PF_PASS);
10755 	}
10756 
10757 	if (__predict_false(! M_WRITABLE(*m0))) {
10758 		*m0 = m_unshare(*m0, M_NOWAIT);
10759 		if (*m0 == NULL) {
10760 			return (PF_DROP);
10761 		}
10762 	}
10763 
10764 	pf_init_pdesc(&pd, *m0);
10765 
10766 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10767 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10768 
10769 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10770 		    pd.pf_mtag->if_idxgen);
10771 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10772 			m_freem(*m0);
10773 			*m0 = NULL;
10774 			return (PF_PASS);
10775 		}
10776 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10777 		*m0 = NULL;
10778 		return (PF_PASS);
10779 	}
10780 
10781 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10782 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10783 		/* Dummynet re-injects packets after they've
10784 		 * completed their delay. We've already
10785 		 * processed them, so pass unconditionally. */
10786 
10787 		/* But only once. We may see the packet multiple times (e.g.
10788 		 * PFIL_IN/PFIL_OUT). */
10789 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10790 
10791 		return (PF_PASS);
10792 	}
10793 
10794 	PF_RULES_RLOCK();
10795 
10796 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10797 		kif, default_actions) == -1) {
10798 		if (action != PF_PASS)
10799 			pd.act.log |= PF_LOG_FORCE;
10800 		goto done;
10801 	}
10802 
10803 #ifdef INET
10804 	if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10805 	    pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10806 		PF_RULES_RUNLOCK();
10807 		icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10808 			0, ifp->if_mtu);
10809 		*m0 = NULL;
10810 		return (PF_DROP);
10811 	}
10812 #endif /* INET */
10813 #ifdef INET6
10814 	/*
10815 	 * If we end up changing IP addresses (e.g. binat) the stack may get
10816 	 * confused and fail to send the icmp6 packet too big error. Just send
10817 	 * it here, before we do any NAT.
10818 	 */
10819 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10820 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10821 		PF_RULES_RUNLOCK();
10822 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10823 		*m0 = NULL;
10824 		return (PF_DROP);
10825 	}
10826 #endif /* INET6 */
10827 
10828 	if (__predict_false(ip_divert_ptr != NULL) &&
10829 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10830 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10831 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10832 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10833 			if (pd.pf_mtag == NULL &&
10834 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10835 				action = PF_DROP;
10836 				goto done;
10837 			}
10838 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10839 		}
10840 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10841 			pd.m->m_flags |= M_FASTFWD_OURS;
10842 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10843 		}
10844 		m_tag_delete(pd.m, mtag);
10845 
10846 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10847 		if (mtag != NULL)
10848 			m_tag_delete(pd.m, mtag);
10849 	}
10850 
10851 	switch (pd.virtual_proto) {
10852 	case PF_VPROTO_FRAGMENT:
10853 		/*
10854 		 * handle fragments that aren't reassembled by
10855 		 * normalization
10856 		 */
10857 		if (kif == NULL || r == NULL) /* pflog */
10858 			action = PF_DROP;
10859 		else
10860 			action = pf_test_rule(&r, &s, &pd, &a,
10861 			    &ruleset, &reason, inp);
10862 		if (action != PF_PASS)
10863 			REASON_SET(&reason, PFRES_FRAG);
10864 		break;
10865 
10866 	case IPPROTO_TCP: {
10867 		/* Respond to SYN with a syncookie. */
10868 		if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10869 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
10870 			pf_syncookie_send(&pd);
10871 			action = PF_DROP;
10872 			break;
10873 		}
10874 
10875 		if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10876 			use_2nd_queue = 1;
10877 		action = pf_normalize_tcp(&pd);
10878 		if (action == PF_DROP)
10879 			break;
10880 		action = pf_test_state(&s, &pd, &reason);
10881 		if (action == PF_PASS || action == PF_AFRT) {
10882 			if (V_pfsync_update_state_ptr != NULL)
10883 				V_pfsync_update_state_ptr(s);
10884 			r = s->rule;
10885 			a = s->anchor;
10886 		} else if (s == NULL) {
10887 			/* Validate remote SYN|ACK, re-create original SYN if
10888 			 * valid. */
10889 			if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10890 			    TH_ACK && pf_syncookie_validate(&pd) &&
10891 			    pd.dir == PF_IN) {
10892 				struct mbuf *msyn;
10893 
10894 				msyn = pf_syncookie_recreate_syn(&pd);
10895 				if (msyn == NULL) {
10896 					action = PF_DROP;
10897 					break;
10898 				}
10899 
10900 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10901 				    &pd.act);
10902 				m_freem(msyn);
10903 				if (action != PF_PASS)
10904 					break;
10905 
10906 				action = pf_test_state(&s, &pd, &reason);
10907 				if (action != PF_PASS || s == NULL) {
10908 					action = PF_DROP;
10909 					break;
10910 				}
10911 
10912 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10913 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10914 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10915 				action = pf_synproxy(&pd, s, &reason);
10916 				break;
10917 			} else {
10918 				action = pf_test_rule(&r, &s, &pd,
10919 				    &a, &ruleset, &reason, inp);
10920 			}
10921 		}
10922 		break;
10923 	}
10924 
10925 	case IPPROTO_SCTP:
10926 		action = pf_normalize_sctp(&pd);
10927 		if (action == PF_DROP)
10928 			break;
10929 		/* fallthrough */
10930 	case IPPROTO_UDP:
10931 	default:
10932 		action = pf_test_state(&s, &pd, &reason);
10933 		if (action == PF_PASS || action == PF_AFRT) {
10934 			if (V_pfsync_update_state_ptr != NULL)
10935 				V_pfsync_update_state_ptr(s);
10936 			r = s->rule;
10937 			a = s->anchor;
10938 		} else if (s == NULL) {
10939 			action = pf_test_rule(&r, &s,
10940 			    &pd, &a, &ruleset, &reason, inp);
10941 		}
10942 		break;
10943 
10944 	case IPPROTO_ICMP:
10945 	case IPPROTO_ICMPV6: {
10946 		if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10947 			action = PF_DROP;
10948 			REASON_SET(&reason, PFRES_NORM);
10949 			DPFPRINTF(PF_DEBUG_MISC,
10950 			    "dropping IPv6 packet with ICMPv4 payload");
10951 			break;
10952 		}
10953 		if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10954 			action = PF_DROP;
10955 			REASON_SET(&reason, PFRES_NORM);
10956 			DPFPRINTF(PF_DEBUG_MISC,
10957 			    "pf: dropping IPv4 packet with ICMPv6 payload");
10958 			break;
10959 		}
10960 		action = pf_test_state_icmp(&s, &pd, &reason);
10961 		if (action == PF_PASS || action == PF_AFRT) {
10962 			if (V_pfsync_update_state_ptr != NULL)
10963 				V_pfsync_update_state_ptr(s);
10964 			r = s->rule;
10965 			a = s->anchor;
10966 		} else if (s == NULL)
10967 			action = pf_test_rule(&r, &s, &pd,
10968 			    &a, &ruleset, &reason, inp);
10969 		break;
10970 	}
10971 
10972 	}
10973 
10974 done:
10975 	PF_RULES_RUNLOCK();
10976 
10977 	if (pd.m == NULL)
10978 		goto eat_pkt;
10979 
10980 	if (s)
10981 		memcpy(&pd.act, &s->act, sizeof(s->act));
10982 
10983 	if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) {
10984 		action = PF_DROP;
10985 		REASON_SET(&reason, PFRES_IPOPTIONS);
10986 		pd.act.log = PF_LOG_FORCE;
10987 		DPFPRINTF(PF_DEBUG_MISC,
10988 		    "pf: dropping packet with dangerous headers");
10989 	}
10990 
10991 	if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
10992 	    pd.tot_len > pd.act.max_pkt_size) {
10993 		action = PF_DROP;
10994 		REASON_SET(&reason, PFRES_NORM);
10995 		pd.act.log = PF_LOG_FORCE;
10996 		DPFPRINTF(PF_DEBUG_MISC,
10997 		    "pf: dropping overly long packet");
10998 	}
10999 
11000 	if (s) {
11001 		uint8_t log = pd.act.log;
11002 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
11003 		pd.act.log |= log;
11004 		tag = s->tag;
11005 	} else {
11006 		tag = r->tag;
11007 	}
11008 
11009 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
11010 		action = PF_DROP;
11011 		REASON_SET(&reason, PFRES_MEMORY);
11012 	}
11013 
11014 	pf_scrub(&pd);
11015 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
11016 		pf_normalize_mss(&pd);
11017 
11018 	if (pd.act.rtableid >= 0)
11019 		M_SETFIB(pd.m, pd.act.rtableid);
11020 
11021 	if (pd.act.flags & PFSTATE_SETPRIO) {
11022 		if (pd.tos & IPTOS_LOWDELAY)
11023 			use_2nd_queue = 1;
11024 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
11025 			action = PF_DROP;
11026 			REASON_SET(&reason, PFRES_MEMORY);
11027 			pd.act.log = PF_LOG_FORCE;
11028 			DPFPRINTF(PF_DEBUG_MISC,
11029 			    "pf: failed to allocate 802.1q mtag");
11030 		}
11031 	}
11032 
11033 #ifdef ALTQ
11034 	if (action == PF_PASS && pd.act.qid) {
11035 		if (pd.pf_mtag == NULL &&
11036 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11037 			action = PF_DROP;
11038 			REASON_SET(&reason, PFRES_MEMORY);
11039 		} else {
11040 			if (s != NULL)
11041 				pd.pf_mtag->qid_hash = pf_state_hash(s);
11042 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
11043 				pd.pf_mtag->qid = pd.act.pqid;
11044 			else
11045 				pd.pf_mtag->qid = pd.act.qid;
11046 			/* Add hints for ecn. */
11047 			pd.pf_mtag->hdr = mtod(pd.m, void *);
11048 		}
11049 	}
11050 #endif /* ALTQ */
11051 
11052 	/*
11053 	 * connections redirected to loopback should not match sockets
11054 	 * bound specifically to loopback due to security implications,
11055 	 * see tcp_input() and in_pcblookup_listen().
11056 	 */
11057 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
11058 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
11059 	    (s->nat_rule->action == PF_RDR ||
11060 	    s->nat_rule->action == PF_BINAT) &&
11061 	    pf_is_loopback(af, pd.dst))
11062 		pd.m->m_flags |= M_SKIP_FIREWALL;
11063 
11064 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
11065 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
11066 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
11067 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
11068 		if (mtag != NULL) {
11069 			((struct pf_divert_mtag *)(mtag+1))->port =
11070 			    ntohs(r->divert.port);
11071 			((struct pf_divert_mtag *)(mtag+1))->idir =
11072 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
11073 			    PF_DIVERT_MTAG_DIR_OUT;
11074 
11075 			if (s)
11076 				PF_STATE_UNLOCK(s);
11077 
11078 			m_tag_prepend(pd.m, mtag);
11079 			if (pd.m->m_flags & M_FASTFWD_OURS) {
11080 				if (pd.pf_mtag == NULL &&
11081 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11082 					action = PF_DROP;
11083 					REASON_SET(&reason, PFRES_MEMORY);
11084 					pd.act.log = PF_LOG_FORCE;
11085 					DPFPRINTF(PF_DEBUG_MISC,
11086 					    "pf: failed to allocate tag");
11087 				} else {
11088 					pd.pf_mtag->flags |=
11089 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11090 					pd.m->m_flags &= ~M_FASTFWD_OURS;
11091 				}
11092 			}
11093 			ip_divert_ptr(*m0, dir == PF_IN);
11094 			*m0 = NULL;
11095 
11096 			return (action);
11097 		} else {
11098 			/* XXX: ipfw has the same behaviour! */
11099 			action = PF_DROP;
11100 			REASON_SET(&reason, PFRES_MEMORY);
11101 			pd.act.log = PF_LOG_FORCE;
11102 			DPFPRINTF(PF_DEBUG_MISC,
11103 			    "pf: failed to allocate divert tag");
11104 		}
11105 	}
11106 	/* XXX: Anybody working on it?! */
11107 	if (af == AF_INET6 && r->divert.port)
11108 		printf("pf: divert(9) is not supported for IPv6\n");
11109 
11110 	/* this flag will need revising if the pkt is forwarded */
11111 	if (pd.pf_mtag)
11112 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
11113 
11114 	if (pd.act.log) {
11115 		struct pf_krule		*lr;
11116 		struct pf_krule_item	*ri;
11117 
11118 		if (s != NULL && s->nat_rule != NULL &&
11119 		    s->nat_rule->log & PF_LOG_ALL)
11120 			lr = s->nat_rule;
11121 		else
11122 			lr = r;
11123 
11124 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
11125 			PFLOG_PACKET(action, reason, lr, a,
11126 			    ruleset, &pd, (s == NULL), NULL);
11127 		if (s) {
11128 			SLIST_FOREACH(ri, &s->match_rules, entry)
11129 				if (ri->r->log & PF_LOG_ALL)
11130 					PFLOG_PACKET(action,
11131 					    reason, ri->r, a, ruleset, &pd, 0, NULL);
11132 		}
11133 	}
11134 
11135 	pf_counters_inc(action, &pd, s, r, a);
11136 
11137 	switch (action) {
11138 	case PF_SYNPROXY_DROP:
11139 		m_freem(*m0);
11140 	case PF_DEFER:
11141 		*m0 = NULL;
11142 		action = PF_PASS;
11143 		break;
11144 	case PF_DROP:
11145 		m_freem(*m0);
11146 		*m0 = NULL;
11147 		break;
11148 	case PF_AFRT:
11149 		if (pf_translate_af(&pd)) {
11150 			*m0 = pd.m;
11151 			action = PF_DROP;
11152 			break;
11153 		}
11154 #ifdef INET
11155 		if (pd.naf == AF_INET) {
11156 			action = pf_route(r, kif->pfik_ifp, s, &pd,
11157 			    inp);
11158 		}
11159 #endif /* INET */
11160 #ifdef INET6
11161 		if (pd.naf == AF_INET6) {
11162 			action = pf_route6(r, kif->pfik_ifp, s, &pd,
11163 			    inp);
11164 }
11165 #endif /* INET6 */
11166 		*m0 = pd.m;
11167 		goto out;
11168 		break;
11169 	default:
11170 		if (pd.act.rt) {
11171 			switch (af) {
11172 #ifdef INET
11173 			case AF_INET:
11174 				/* pf_route() returns unlocked. */
11175 				action = pf_route(r, kif->pfik_ifp, s, &pd,
11176 				    inp);
11177 				break;
11178 #endif /* INET */
11179 #ifdef INET6
11180 			case AF_INET6:
11181 				/* pf_route6() returns unlocked. */
11182 				action = pf_route6(r, kif->pfik_ifp, s, &pd,
11183 				    inp);
11184 				break;
11185 #endif /* INET6 */
11186 			}
11187 			*m0 = pd.m;
11188 			goto out;
11189 		}
11190 		if (pf_dummynet(&pd, s, r, m0) != 0) {
11191 			action = PF_DROP;
11192 			REASON_SET(&reason, PFRES_MEMORY);
11193 		}
11194 		break;
11195 	}
11196 
11197 eat_pkt:
11198 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
11199 
11200 	if (s && action != PF_DROP) {
11201 		if (!s->if_index_in && dir == PF_IN)
11202 			s->if_index_in = ifp->if_index;
11203 		else if (!s->if_index_out && dir == PF_OUT)
11204 			s->if_index_out = ifp->if_index;
11205 	}
11206 
11207 	if (s)
11208 		PF_STATE_UNLOCK(s);
11209 
11210 out:
11211 #ifdef INET6
11212 	/* If reassembled packet passed, create new fragments. */
11213 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
11214 	    (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
11215 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
11216 		action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
11217 #endif /* INET6 */
11218 
11219 	pf_sctp_multihome_delayed(&pd, kif, s, action);
11220 
11221 	return (action);
11222 }
11223 #endif /* INET || INET6 */
11224