xref: /linux/kernel/events/core.c (revision ab60bd57319cbfeeb4cff2337016c9fd72b51412)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 enum event_type_t {
159 	EVENT_FLEXIBLE	= 0x01,
160 	EVENT_PINNED	= 0x02,
161 	EVENT_TIME	= 0x04,
162 	EVENT_FROZEN	= 0x08,
163 	/* see ctx_resched() for details */
164 	EVENT_CPU	= 0x10,
165 	EVENT_CGROUP	= 0x20,
166 
167 	/* compound helpers */
168 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171 
__perf_ctx_lock(struct perf_event_context * ctx)172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 	raw_spin_lock(&ctx->lock);
175 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 			  struct perf_event_context *ctx)
180 {
181 	__perf_ctx_lock(&cpuctx->ctx);
182 	if (ctx)
183 		__perf_ctx_lock(ctx);
184 }
185 
__perf_ctx_unlock(struct perf_event_context * ctx)186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 	/*
189 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 	 * after ctx_sched_out() by clearing is_active.
191 	 */
192 	if (ctx->is_active & EVENT_FROZEN) {
193 		if (!(ctx->is_active & EVENT_ALL))
194 			ctx->is_active = 0;
195 		else
196 			ctx->is_active &= ~EVENT_FROZEN;
197 	}
198 	raw_spin_unlock(&ctx->lock);
199 }
200 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 			    struct perf_event_context *ctx)
203 {
204 	if (ctx)
205 		__perf_ctx_unlock(ctx);
206 	__perf_ctx_unlock(&cpuctx->ctx);
207 }
208 
209 #define TASK_TOMBSTONE ((void *)-1L)
210 
is_kernel_event(struct perf_event * event)211 static bool is_kernel_event(struct perf_event *event)
212 {
213 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215 
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217 
perf_cpu_task_ctx(void)218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 	lockdep_assert_irqs_disabled();
221 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223 
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242 
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 			struct perf_event_context *, void *);
245 
246 struct event_function_struct {
247 	struct perf_event *event;
248 	event_f func;
249 	void *data;
250 };
251 
event_function(void * info)252 static int event_function(void *info)
253 {
254 	struct event_function_struct *efs = info;
255 	struct perf_event *event = efs->event;
256 	struct perf_event_context *ctx = event->ctx;
257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 	int ret = 0;
260 
261 	lockdep_assert_irqs_disabled();
262 
263 	perf_ctx_lock(cpuctx, task_ctx);
264 	/*
265 	 * Since we do the IPI call without holding ctx->lock things can have
266 	 * changed, double check we hit the task we set out to hit.
267 	 */
268 	if (ctx->task) {
269 		if (ctx->task != current) {
270 			ret = -ESRCH;
271 			goto unlock;
272 		}
273 
274 		/*
275 		 * We only use event_function_call() on established contexts,
276 		 * and event_function() is only ever called when active (or
277 		 * rather, we'll have bailed in task_function_call() or the
278 		 * above ctx->task != current test), therefore we must have
279 		 * ctx->is_active here.
280 		 */
281 		WARN_ON_ONCE(!ctx->is_active);
282 		/*
283 		 * And since we have ctx->is_active, cpuctx->task_ctx must
284 		 * match.
285 		 */
286 		WARN_ON_ONCE(task_ctx != ctx);
287 	} else {
288 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 	}
290 
291 	efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 	perf_ctx_unlock(cpuctx, task_ctx);
294 
295 	return ret;
296 }
297 
event_function_call(struct perf_event * event,event_f func,void * data)298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 	struct perf_cpu_context *cpuctx;
303 	struct event_function_struct efs = {
304 		.event = event,
305 		.func = func,
306 		.data = data,
307 	};
308 
309 	if (!event->parent) {
310 		/*
311 		 * If this is a !child event, we must hold ctx::mutex to
312 		 * stabilize the event->ctx relation. See
313 		 * perf_event_ctx_lock().
314 		 */
315 		lockdep_assert_held(&ctx->mutex);
316 	}
317 
318 	if (!task) {
319 		cpu_function_call(event->cpu, event_function, &efs);
320 		return;
321 	}
322 
323 	if (task == TASK_TOMBSTONE)
324 		return;
325 
326 again:
327 	if (!task_function_call(task, event_function, &efs))
328 		return;
329 
330 	local_irq_disable();
331 	cpuctx = this_cpu_ptr(&perf_cpu_context);
332 	perf_ctx_lock(cpuctx, ctx);
333 	/*
334 	 * Reload the task pointer, it might have been changed by
335 	 * a concurrent perf_event_context_sched_out().
336 	 */
337 	task = ctx->task;
338 	if (task == TASK_TOMBSTONE)
339 		goto unlock;
340 	if (ctx->is_active) {
341 		perf_ctx_unlock(cpuctx, ctx);
342 		local_irq_enable();
343 		goto again;
344 	}
345 	func(event, NULL, ctx, data);
346 unlock:
347 	perf_ctx_unlock(cpuctx, ctx);
348 	local_irq_enable();
349 }
350 
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
event_function_local(struct perf_event * event,event_f func,void * data)355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 	struct perf_event_context *ctx = event->ctx;
358 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 	struct task_struct *task = READ_ONCE(ctx->task);
360 	struct perf_event_context *task_ctx = NULL;
361 
362 	lockdep_assert_irqs_disabled();
363 
364 	if (task) {
365 		if (task == TASK_TOMBSTONE)
366 			return;
367 
368 		task_ctx = ctx;
369 	}
370 
371 	perf_ctx_lock(cpuctx, task_ctx);
372 
373 	task = ctx->task;
374 	if (task == TASK_TOMBSTONE)
375 		goto unlock;
376 
377 	if (task) {
378 		/*
379 		 * We must be either inactive or active and the right task,
380 		 * otherwise we're screwed, since we cannot IPI to somewhere
381 		 * else.
382 		 */
383 		if (ctx->is_active) {
384 			if (WARN_ON_ONCE(task != current))
385 				goto unlock;
386 
387 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 				goto unlock;
389 		}
390 	} else {
391 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 	}
393 
394 	func(event, cpuctx, ctx, data);
395 unlock:
396 	perf_ctx_unlock(cpuctx, task_ctx);
397 }
398 
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 		       PERF_FLAG_FD_OUTPUT  |\
401 		       PERF_FLAG_PID_CGROUP |\
402 		       PERF_FLAG_FD_CLOEXEC)
403 
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 	(PERF_SAMPLE_BRANCH_KERNEL |\
409 	 PERF_SAMPLE_BRANCH_HV)
410 
411 /*
412  * perf_sched_events : >0 events exist
413  */
414 
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420 
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422 
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434 
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445 
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454 
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457 
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE		100000
462 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464 
465 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466 
467 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
469 
470 static int perf_sample_allowed_ns __read_mostly =
471 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472 
update_perf_cpu_limits(void)473 static void update_perf_cpu_limits(void)
474 {
475 	u64 tmp = perf_sample_period_ns;
476 
477 	tmp *= sysctl_perf_cpu_time_max_percent;
478 	tmp = div_u64(tmp, 100);
479 	if (!tmp)
480 		tmp = 1;
481 
482 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484 
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 				       void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 	/*
493 	 * If throttling is disabled don't allow the write:
494 	 */
495 	if (write && (perf_cpu == 100 || perf_cpu == 0))
496 		return -EINVAL;
497 
498 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 	if (ret || !write)
500 		return ret;
501 
502 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 	update_perf_cpu_limits();
505 
506 	return 0;
507 }
508 
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * perf samples are done in some very critical code paths (NMIs).
533  * If they take too much CPU time, the system can lock up and not
534  * get any real work done.  This will drop the sample rate when
535  * we detect that events are taking too long.
536  */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539 
540 static u64 __report_avg;
541 static u64 __report_allowed;
542 
perf_duration_warn(struct irq_work * w)543 static void perf_duration_warn(struct irq_work *w)
544 {
545 	printk_ratelimited(KERN_INFO
546 		"perf: interrupt took too long (%lld > %lld), lowering "
547 		"kernel.perf_event_max_sample_rate to %d\n",
548 		__report_avg, __report_allowed,
549 		sysctl_perf_event_sample_rate);
550 }
551 
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553 
perf_sample_event_took(u64 sample_len_ns)554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 	u64 running_len;
558 	u64 avg_len;
559 	u32 max;
560 
561 	if (max_len == 0)
562 		return;
563 
564 	/* Decay the counter by 1 average sample. */
565 	running_len = __this_cpu_read(running_sample_length);
566 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 	running_len += sample_len_ns;
568 	__this_cpu_write(running_sample_length, running_len);
569 
570 	/*
571 	 * Note: this will be biased artificially low until we have
572 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 	 * from having to maintain a count.
574 	 */
575 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 	if (avg_len <= max_len)
577 		return;
578 
579 	__report_avg = avg_len;
580 	__report_allowed = max_len;
581 
582 	/*
583 	 * Compute a throttle threshold 25% below the current duration.
584 	 */
585 	avg_len += avg_len / 4;
586 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 	if (avg_len < max)
588 		max /= (u32)avg_len;
589 	else
590 		max = 1;
591 
592 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 	WRITE_ONCE(max_samples_per_tick, max);
594 
595 	sysctl_perf_event_sample_rate = max * HZ;
596 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597 
598 	if (!irq_work_queue(&perf_duration_work)) {
599 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 			     "kernel.perf_event_max_sample_rate to %d\n",
601 			     __report_avg, __report_allowed,
602 			     sysctl_perf_event_sample_rate);
603 	}
604 }
605 
606 static atomic64_t perf_event_id;
607 
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610 
perf_event_print_debug(void)611 void __weak perf_event_print_debug(void)	{ }
612 
perf_clock(void)613 static inline u64 perf_clock(void)
614 {
615 	return local_clock();
616 }
617 
perf_event_clock(struct perf_event * event)618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 	return event->clock();
621 }
622 
623 /*
624  * State based event timekeeping...
625  *
626  * The basic idea is to use event->state to determine which (if any) time
627  * fields to increment with the current delta. This means we only need to
628  * update timestamps when we change state or when they are explicitly requested
629  * (read).
630  *
631  * Event groups make things a little more complicated, but not terribly so. The
632  * rules for a group are that if the group leader is OFF the entire group is
633  * OFF, irrespective of what the group member states are. This results in
634  * __perf_effective_state().
635  *
636  * A further ramification is that when a group leader flips between OFF and
637  * !OFF, we need to update all group member times.
638  *
639  *
640  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641  * need to make sure the relevant context time is updated before we try and
642  * update our timestamps.
643  */
644 
645 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)646 __perf_effective_state(struct perf_event *event)
647 {
648 	struct perf_event *leader = event->group_leader;
649 
650 	if (leader->state <= PERF_EVENT_STATE_OFF)
651 		return leader->state;
652 
653 	return event->state;
654 }
655 
656 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 	enum perf_event_state state = __perf_effective_state(event);
660 	u64 delta = now - event->tstamp;
661 
662 	*enabled = event->total_time_enabled;
663 	if (state >= PERF_EVENT_STATE_INACTIVE)
664 		*enabled += delta;
665 
666 	*running = event->total_time_running;
667 	if (state >= PERF_EVENT_STATE_ACTIVE)
668 		*running += delta;
669 }
670 
perf_event_update_time(struct perf_event * event)671 static void perf_event_update_time(struct perf_event *event)
672 {
673 	u64 now = perf_event_time(event);
674 
675 	__perf_update_times(event, now, &event->total_time_enabled,
676 					&event->total_time_running);
677 	event->tstamp = now;
678 }
679 
perf_event_update_sibling_time(struct perf_event * leader)680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 	struct perf_event *sibling;
683 
684 	for_each_sibling_event(sibling, leader)
685 		perf_event_update_time(sibling);
686 }
687 
688 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 	if (event->state == state)
692 		return;
693 
694 	perf_event_update_time(event);
695 	/*
696 	 * If a group leader gets enabled/disabled all its siblings
697 	 * are affected too.
698 	 */
699 	if ((event->state < 0) ^ (state < 0))
700 		perf_event_update_sibling_time(event);
701 
702 	WRITE_ONCE(event->state, state);
703 }
704 
705 /*
706  * UP store-release, load-acquire
707  */
708 
709 #define __store_release(ptr, val)					\
710 do {									\
711 	barrier();							\
712 	WRITE_ONCE(*(ptr), (val));					\
713 } while (0)
714 
715 #define __load_acquire(ptr)						\
716 ({									\
717 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
718 	barrier();							\
719 	___p;								\
720 })
721 
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
723 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 		if (_cgroup && !_epc->nr_cgroups)			\
725 			continue;					\
726 		else if (_pmu && _epc->pmu != _pmu)			\
727 			continue;					\
728 		else
729 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 	struct perf_event_pmu_context *pmu_ctx;
733 
734 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 		perf_pmu_disable(pmu_ctx->pmu);
736 }
737 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 	struct perf_event_pmu_context *pmu_ctx;
741 
742 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 		perf_pmu_enable(pmu_ctx->pmu);
744 }
745 
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748 
749 #ifdef CONFIG_CGROUP_PERF
750 
751 static inline bool
perf_cgroup_match(struct perf_event * event)752 perf_cgroup_match(struct perf_event *event)
753 {
754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755 
756 	/* @event doesn't care about cgroup */
757 	if (!event->cgrp)
758 		return true;
759 
760 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
761 	if (!cpuctx->cgrp)
762 		return false;
763 
764 	/*
765 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
766 	 * also enabled for all its descendant cgroups.  If @cpuctx's
767 	 * cgroup is a descendant of @event's (the test covers identity
768 	 * case), it's a match.
769 	 */
770 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 				    event->cgrp->css.cgroup);
772 }
773 
perf_detach_cgroup(struct perf_event * event)774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 	css_put(&event->cgrp->css);
777 	event->cgrp = NULL;
778 }
779 
is_cgroup_event(struct perf_event * event)780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 	return event->cgrp != NULL;
783 }
784 
perf_cgroup_event_time(struct perf_event * event)785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 	struct perf_cgroup_info *t;
788 
789 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 	return t->time;
791 }
792 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 	struct perf_cgroup_info *t;
796 
797 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 	if (!__load_acquire(&t->active))
799 		return t->time;
800 	now += READ_ONCE(t->timeoffset);
801 	return now;
802 }
803 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 	if (adv)
807 		info->time += now - info->timestamp;
808 	info->timestamp = now;
809 	/*
810 	 * see update_context_time()
811 	 */
812 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 	struct perf_cgroup *cgrp = cpuctx->cgrp;
818 	struct cgroup_subsys_state *css;
819 	struct perf_cgroup_info *info;
820 
821 	if (cgrp) {
822 		u64 now = perf_clock();
823 
824 		for (css = &cgrp->css; css; css = css->parent) {
825 			cgrp = container_of(css, struct perf_cgroup, css);
826 			info = this_cpu_ptr(cgrp->info);
827 
828 			__update_cgrp_time(info, now, true);
829 			if (final)
830 				__store_release(&info->active, 0);
831 		}
832 	}
833 }
834 
update_cgrp_time_from_event(struct perf_event * event)835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 	struct perf_cgroup_info *info;
838 
839 	/*
840 	 * ensure we access cgroup data only when needed and
841 	 * when we know the cgroup is pinned (css_get)
842 	 */
843 	if (!is_cgroup_event(event))
844 		return;
845 
846 	info = this_cpu_ptr(event->cgrp->info);
847 	/*
848 	 * Do not update time when cgroup is not active
849 	 */
850 	if (info->active)
851 		__update_cgrp_time(info, perf_clock(), true);
852 }
853 
854 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 	struct perf_event_context *ctx = &cpuctx->ctx;
858 	struct perf_cgroup *cgrp = cpuctx->cgrp;
859 	struct perf_cgroup_info *info;
860 	struct cgroup_subsys_state *css;
861 
862 	/*
863 	 * ctx->lock held by caller
864 	 * ensure we do not access cgroup data
865 	 * unless we have the cgroup pinned (css_get)
866 	 */
867 	if (!cgrp)
868 		return;
869 
870 	WARN_ON_ONCE(!ctx->nr_cgroups);
871 
872 	for (css = &cgrp->css; css; css = css->parent) {
873 		cgrp = container_of(css, struct perf_cgroup, css);
874 		info = this_cpu_ptr(cgrp->info);
875 		__update_cgrp_time(info, ctx->timestamp, false);
876 		__store_release(&info->active, 1);
877 	}
878 }
879 
880 /*
881  * reschedule events based on the cgroup constraint of task.
882  */
perf_cgroup_switch(struct task_struct * task)883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 	struct perf_cgroup *cgrp;
887 
888 	/*
889 	 * cpuctx->cgrp is set when the first cgroup event enabled,
890 	 * and is cleared when the last cgroup event disabled.
891 	 */
892 	if (READ_ONCE(cpuctx->cgrp) == NULL)
893 		return;
894 
895 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896 
897 	cgrp = perf_cgroup_from_task(task, NULL);
898 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 		return;
900 
901 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 	perf_ctx_disable(&cpuctx->ctx, true);
903 
904 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 	/*
906 	 * must not be done before ctxswout due
907 	 * to update_cgrp_time_from_cpuctx() in
908 	 * ctx_sched_out()
909 	 */
910 	cpuctx->cgrp = cgrp;
911 	/*
912 	 * set cgrp before ctxsw in to allow
913 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 	 * to not have to pass task around
915 	 */
916 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917 
918 	perf_ctx_enable(&cpuctx->ctx, true);
919 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 				struct cgroup_subsys_state *css)
924 {
925 	struct perf_cpu_context *cpuctx;
926 	struct perf_event **storage;
927 	int cpu, heap_size, ret = 0;
928 
929 	/*
930 	 * Allow storage to have sufficient space for an iterator for each
931 	 * possibly nested cgroup plus an iterator for events with no cgroup.
932 	 */
933 	for (heap_size = 1; css; css = css->parent)
934 		heap_size++;
935 
936 	for_each_possible_cpu(cpu) {
937 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 		if (heap_size <= cpuctx->heap_size)
939 			continue;
940 
941 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 				       GFP_KERNEL, cpu_to_node(cpu));
943 		if (!storage) {
944 			ret = -ENOMEM;
945 			break;
946 		}
947 
948 		raw_spin_lock_irq(&cpuctx->ctx.lock);
949 		if (cpuctx->heap_size < heap_size) {
950 			swap(cpuctx->heap, storage);
951 			if (storage == cpuctx->heap_default)
952 				storage = NULL;
953 			cpuctx->heap_size = heap_size;
954 		}
955 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
956 
957 		kfree(storage);
958 	}
959 
960 	return ret;
961 }
962 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 				      struct perf_event_attr *attr,
965 				      struct perf_event *group_leader)
966 {
967 	struct perf_cgroup *cgrp;
968 	struct cgroup_subsys_state *css;
969 	CLASS(fd, f)(fd);
970 	int ret = 0;
971 
972 	if (fd_empty(f))
973 		return -EBADF;
974 
975 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 					 &perf_event_cgrp_subsys);
977 	if (IS_ERR(css))
978 		return PTR_ERR(css);
979 
980 	ret = perf_cgroup_ensure_storage(event, css);
981 	if (ret)
982 		return ret;
983 
984 	cgrp = container_of(css, struct perf_cgroup, css);
985 	event->cgrp = cgrp;
986 
987 	/*
988 	 * all events in a group must monitor
989 	 * the same cgroup because a task belongs
990 	 * to only one perf cgroup at a time
991 	 */
992 	if (group_leader && group_leader->cgrp != cgrp) {
993 		perf_detach_cgroup(event);
994 		ret = -EINVAL;
995 	}
996 	return ret;
997 }
998 
999 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 
1004 	if (!is_cgroup_event(event))
1005 		return;
1006 
1007 	event->pmu_ctx->nr_cgroups++;
1008 
1009 	/*
1010 	 * Because cgroup events are always per-cpu events,
1011 	 * @ctx == &cpuctx->ctx.
1012 	 */
1013 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1014 
1015 	if (ctx->nr_cgroups++)
1016 		return;
1017 
1018 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1019 }
1020 
1021 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	event->pmu_ctx->nr_cgroups--;
1030 
1031 	/*
1032 	 * Because cgroup events are always per-cpu events,
1033 	 * @ctx == &cpuctx->ctx.
1034 	 */
1035 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036 
1037 	if (--ctx->nr_cgroups)
1038 		return;
1039 
1040 	cpuctx->cgrp = NULL;
1041 }
1042 
1043 #else /* !CONFIG_CGROUP_PERF */
1044 
1045 static inline bool
perf_cgroup_match(struct perf_event * event)1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 	return true;
1049 }
1050 
perf_detach_cgroup(struct perf_event * event)1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053 
is_cgroup_event(struct perf_event * event)1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 	return 0;
1057 }
1058 
update_cgrp_time_from_event(struct perf_event * event)1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064 						bool final)
1065 {
1066 }
1067 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 				      struct perf_event_attr *attr,
1070 				      struct perf_event *group_leader)
1071 {
1072 	return -EINVAL;
1073 }
1074 
1075 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1077 {
1078 }
1079 
perf_cgroup_event_time(struct perf_event * event)1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1081 {
1082 	return 0;
1083 }
1084 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1086 {
1087 	return 0;
1088 }
1089 
1090 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 }
1099 
perf_cgroup_switch(struct task_struct * task)1100 static void perf_cgroup_switch(struct task_struct *task)
1101 {
1102 }
1103 #endif
1104 
1105 /*
1106  * set default to be dependent on timer tick just
1107  * like original code
1108  */
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1110 /*
1111  * function must be called with interrupts disabled
1112  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1114 {
1115 	struct perf_cpu_pmu_context *cpc;
1116 	bool rotations;
1117 
1118 	lockdep_assert_irqs_disabled();
1119 
1120 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121 	rotations = perf_rotate_context(cpc);
1122 
1123 	raw_spin_lock(&cpc->hrtimer_lock);
1124 	if (rotations)
1125 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126 	else
1127 		cpc->hrtimer_active = 0;
1128 	raw_spin_unlock(&cpc->hrtimer_lock);
1129 
1130 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1131 }
1132 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1134 {
1135 	struct hrtimer *timer = &cpc->hrtimer;
1136 	struct pmu *pmu = cpc->epc.pmu;
1137 	u64 interval;
1138 
1139 	/*
1140 	 * check default is sane, if not set then force to
1141 	 * default interval (1/tick)
1142 	 */
1143 	interval = pmu->hrtimer_interval_ms;
1144 	if (interval < 1)
1145 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1146 
1147 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1148 
1149 	raw_spin_lock_init(&cpc->hrtimer_lock);
1150 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151 	timer->function = perf_mux_hrtimer_handler;
1152 }
1153 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1155 {
1156 	struct hrtimer *timer = &cpc->hrtimer;
1157 	unsigned long flags;
1158 
1159 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160 	if (!cpc->hrtimer_active) {
1161 		cpc->hrtimer_active = 1;
1162 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1164 	}
1165 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1166 
1167 	return 0;
1168 }
1169 
perf_mux_hrtimer_restart_ipi(void * arg)1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1171 {
1172 	return perf_mux_hrtimer_restart(arg);
1173 }
1174 
perf_pmu_disable(struct pmu * pmu)1175 void perf_pmu_disable(struct pmu *pmu)
1176 {
1177 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178 	if (!(*count)++)
1179 		pmu->pmu_disable(pmu);
1180 }
1181 
perf_pmu_enable(struct pmu * pmu)1182 void perf_pmu_enable(struct pmu *pmu)
1183 {
1184 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185 	if (!--(*count))
1186 		pmu->pmu_enable(pmu);
1187 }
1188 
perf_assert_pmu_disabled(struct pmu * pmu)1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1190 {
1191 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1192 }
1193 
get_ctx(struct perf_event_context * ctx)1194 static void get_ctx(struct perf_event_context *ctx)
1195 {
1196 	refcount_inc(&ctx->refcount);
1197 }
1198 
alloc_task_ctx_data(struct pmu * pmu)1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1200 {
1201 	if (pmu->task_ctx_cache)
1202 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1203 
1204 	return NULL;
1205 }
1206 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1208 {
1209 	if (pmu->task_ctx_cache && task_ctx_data)
1210 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1211 }
1212 
free_ctx(struct rcu_head * head)1213 static void free_ctx(struct rcu_head *head)
1214 {
1215 	struct perf_event_context *ctx;
1216 
1217 	ctx = container_of(head, struct perf_event_context, rcu_head);
1218 	kfree(ctx);
1219 }
1220 
put_ctx(struct perf_event_context * ctx)1221 static void put_ctx(struct perf_event_context *ctx)
1222 {
1223 	if (refcount_dec_and_test(&ctx->refcount)) {
1224 		if (ctx->parent_ctx)
1225 			put_ctx(ctx->parent_ctx);
1226 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227 			put_task_struct(ctx->task);
1228 		call_rcu(&ctx->rcu_head, free_ctx);
1229 	}
1230 }
1231 
1232 /*
1233  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234  * perf_pmu_migrate_context() we need some magic.
1235  *
1236  * Those places that change perf_event::ctx will hold both
1237  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1238  *
1239  * Lock ordering is by mutex address. There are two other sites where
1240  * perf_event_context::mutex nests and those are:
1241  *
1242  *  - perf_event_exit_task_context()	[ child , 0 ]
1243  *      perf_event_exit_event()
1244  *        put_event()			[ parent, 1 ]
1245  *
1246  *  - perf_event_init_context()		[ parent, 0 ]
1247  *      inherit_task_group()
1248  *        inherit_group()
1249  *          inherit_event()
1250  *            perf_event_alloc()
1251  *              perf_init_event()
1252  *                perf_try_init_event()	[ child , 1 ]
1253  *
1254  * While it appears there is an obvious deadlock here -- the parent and child
1255  * nesting levels are inverted between the two. This is in fact safe because
1256  * life-time rules separate them. That is an exiting task cannot fork, and a
1257  * spawning task cannot (yet) exit.
1258  *
1259  * But remember that these are parent<->child context relations, and
1260  * migration does not affect children, therefore these two orderings should not
1261  * interact.
1262  *
1263  * The change in perf_event::ctx does not affect children (as claimed above)
1264  * because the sys_perf_event_open() case will install a new event and break
1265  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266  * concerned with cpuctx and that doesn't have children.
1267  *
1268  * The places that change perf_event::ctx will issue:
1269  *
1270  *   perf_remove_from_context();
1271  *   synchronize_rcu();
1272  *   perf_install_in_context();
1273  *
1274  * to affect the change. The remove_from_context() + synchronize_rcu() should
1275  * quiesce the event, after which we can install it in the new location. This
1276  * means that only external vectors (perf_fops, prctl) can perturb the event
1277  * while in transit. Therefore all such accessors should also acquire
1278  * perf_event_context::mutex to serialize against this.
1279  *
1280  * However; because event->ctx can change while we're waiting to acquire
1281  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282  * function.
1283  *
1284  * Lock order:
1285  *    exec_update_lock
1286  *	task_struct::perf_event_mutex
1287  *	  perf_event_context::mutex
1288  *	    perf_event::child_mutex;
1289  *	      perf_event_context::lock
1290  *	    mmap_lock
1291  *	      perf_event::mmap_mutex
1292  *	        perf_buffer::aux_mutex
1293  *	      perf_addr_filters_head::lock
1294  *
1295  *    cpu_hotplug_lock
1296  *      pmus_lock
1297  *	  cpuctx->mutex / perf_event_context::mutex
1298  */
1299 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1301 {
1302 	struct perf_event_context *ctx;
1303 
1304 again:
1305 	rcu_read_lock();
1306 	ctx = READ_ONCE(event->ctx);
1307 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1308 		rcu_read_unlock();
1309 		goto again;
1310 	}
1311 	rcu_read_unlock();
1312 
1313 	mutex_lock_nested(&ctx->mutex, nesting);
1314 	if (event->ctx != ctx) {
1315 		mutex_unlock(&ctx->mutex);
1316 		put_ctx(ctx);
1317 		goto again;
1318 	}
1319 
1320 	return ctx;
1321 }
1322 
1323 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1324 perf_event_ctx_lock(struct perf_event *event)
1325 {
1326 	return perf_event_ctx_lock_nested(event, 0);
1327 }
1328 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330 				  struct perf_event_context *ctx)
1331 {
1332 	mutex_unlock(&ctx->mutex);
1333 	put_ctx(ctx);
1334 }
1335 
1336 /*
1337  * This must be done under the ctx->lock, such as to serialize against
1338  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339  * calling scheduler related locks and ctx->lock nests inside those.
1340  */
1341 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1342 unclone_ctx(struct perf_event_context *ctx)
1343 {
1344 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1345 
1346 	lockdep_assert_held(&ctx->lock);
1347 
1348 	if (parent_ctx)
1349 		ctx->parent_ctx = NULL;
1350 	ctx->generation++;
1351 
1352 	return parent_ctx;
1353 }
1354 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356 				enum pid_type type)
1357 {
1358 	u32 nr;
1359 	/*
1360 	 * only top level events have the pid namespace they were created in
1361 	 */
1362 	if (event->parent)
1363 		event = event->parent;
1364 
1365 	nr = __task_pid_nr_ns(p, type, event->ns);
1366 	/* avoid -1 if it is idle thread or runs in another ns */
1367 	if (!nr && !pid_alive(p))
1368 		nr = -1;
1369 	return nr;
1370 }
1371 
perf_event_pid(struct perf_event * event,struct task_struct * p)1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1373 {
1374 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1375 }
1376 
perf_event_tid(struct perf_event * event,struct task_struct * p)1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1378 {
1379 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1380 }
1381 
1382 /*
1383  * If we inherit events we want to return the parent event id
1384  * to userspace.
1385  */
primary_event_id(struct perf_event * event)1386 static u64 primary_event_id(struct perf_event *event)
1387 {
1388 	u64 id = event->id;
1389 
1390 	if (event->parent)
1391 		id = event->parent->id;
1392 
1393 	return id;
1394 }
1395 
1396 /*
1397  * Get the perf_event_context for a task and lock it.
1398  *
1399  * This has to cope with the fact that until it is locked,
1400  * the context could get moved to another task.
1401  */
1402 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1404 {
1405 	struct perf_event_context *ctx;
1406 
1407 retry:
1408 	/*
1409 	 * One of the few rules of preemptible RCU is that one cannot do
1410 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 	 * part of the read side critical section was irqs-enabled -- see
1412 	 * rcu_read_unlock_special().
1413 	 *
1414 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 	 * side critical section has interrupts disabled.
1416 	 */
1417 	local_irq_save(*flags);
1418 	rcu_read_lock();
1419 	ctx = rcu_dereference(task->perf_event_ctxp);
1420 	if (ctx) {
1421 		/*
1422 		 * If this context is a clone of another, it might
1423 		 * get swapped for another underneath us by
1424 		 * perf_event_task_sched_out, though the
1425 		 * rcu_read_lock() protects us from any context
1426 		 * getting freed.  Lock the context and check if it
1427 		 * got swapped before we could get the lock, and retry
1428 		 * if so.  If we locked the right context, then it
1429 		 * can't get swapped on us any more.
1430 		 */
1431 		raw_spin_lock(&ctx->lock);
1432 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433 			raw_spin_unlock(&ctx->lock);
1434 			rcu_read_unlock();
1435 			local_irq_restore(*flags);
1436 			goto retry;
1437 		}
1438 
1439 		if (ctx->task == TASK_TOMBSTONE ||
1440 		    !refcount_inc_not_zero(&ctx->refcount)) {
1441 			raw_spin_unlock(&ctx->lock);
1442 			ctx = NULL;
1443 		} else {
1444 			WARN_ON_ONCE(ctx->task != task);
1445 		}
1446 	}
1447 	rcu_read_unlock();
1448 	if (!ctx)
1449 		local_irq_restore(*flags);
1450 	return ctx;
1451 }
1452 
1453 /*
1454  * Get the context for a task and increment its pin_count so it
1455  * can't get swapped to another task.  This also increments its
1456  * reference count so that the context can't get freed.
1457  */
1458 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1459 perf_pin_task_context(struct task_struct *task)
1460 {
1461 	struct perf_event_context *ctx;
1462 	unsigned long flags;
1463 
1464 	ctx = perf_lock_task_context(task, &flags);
1465 	if (ctx) {
1466 		++ctx->pin_count;
1467 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1468 	}
1469 	return ctx;
1470 }
1471 
perf_unpin_context(struct perf_event_context * ctx)1472 static void perf_unpin_context(struct perf_event_context *ctx)
1473 {
1474 	unsigned long flags;
1475 
1476 	raw_spin_lock_irqsave(&ctx->lock, flags);
1477 	--ctx->pin_count;
1478 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1479 }
1480 
1481 /*
1482  * Update the record of the current time in a context.
1483  */
__update_context_time(struct perf_event_context * ctx,bool adv)1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1485 {
1486 	u64 now = perf_clock();
1487 
1488 	lockdep_assert_held(&ctx->lock);
1489 
1490 	if (adv)
1491 		ctx->time += now - ctx->timestamp;
1492 	ctx->timestamp = now;
1493 
1494 	/*
1495 	 * The above: time' = time + (now - timestamp), can be re-arranged
1496 	 * into: time` = now + (time - timestamp), which gives a single value
1497 	 * offset to compute future time without locks on.
1498 	 *
1499 	 * See perf_event_time_now(), which can be used from NMI context where
1500 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 	 * both the above values in a consistent manner.
1502 	 */
1503 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1504 }
1505 
update_context_time(struct perf_event_context * ctx)1506 static void update_context_time(struct perf_event_context *ctx)
1507 {
1508 	__update_context_time(ctx, true);
1509 }
1510 
perf_event_time(struct perf_event * event)1511 static u64 perf_event_time(struct perf_event *event)
1512 {
1513 	struct perf_event_context *ctx = event->ctx;
1514 
1515 	if (unlikely(!ctx))
1516 		return 0;
1517 
1518 	if (is_cgroup_event(event))
1519 		return perf_cgroup_event_time(event);
1520 
1521 	return ctx->time;
1522 }
1523 
perf_event_time_now(struct perf_event * event,u64 now)1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1525 {
1526 	struct perf_event_context *ctx = event->ctx;
1527 
1528 	if (unlikely(!ctx))
1529 		return 0;
1530 
1531 	if (is_cgroup_event(event))
1532 		return perf_cgroup_event_time_now(event, now);
1533 
1534 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535 		return ctx->time;
1536 
1537 	now += READ_ONCE(ctx->timeoffset);
1538 	return now;
1539 }
1540 
get_event_type(struct perf_event * event)1541 static enum event_type_t get_event_type(struct perf_event *event)
1542 {
1543 	struct perf_event_context *ctx = event->ctx;
1544 	enum event_type_t event_type;
1545 
1546 	lockdep_assert_held(&ctx->lock);
1547 
1548 	/*
1549 	 * It's 'group type', really, because if our group leader is
1550 	 * pinned, so are we.
1551 	 */
1552 	if (event->group_leader != event)
1553 		event = event->group_leader;
1554 
1555 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556 	if (!ctx->task)
1557 		event_type |= EVENT_CPU;
1558 
1559 	return event_type;
1560 }
1561 
1562 /*
1563  * Helper function to initialize event group nodes.
1564  */
init_event_group(struct perf_event * event)1565 static void init_event_group(struct perf_event *event)
1566 {
1567 	RB_CLEAR_NODE(&event->group_node);
1568 	event->group_index = 0;
1569 }
1570 
1571 /*
1572  * Extract pinned or flexible groups from the context
1573  * based on event attrs bits.
1574  */
1575 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578 	if (event->attr.pinned)
1579 		return &ctx->pinned_groups;
1580 	else
1581 		return &ctx->flexible_groups;
1582 }
1583 
1584 /*
1585  * Helper function to initializes perf_event_group trees.
1586  */
perf_event_groups_init(struct perf_event_groups * groups)1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1588 {
1589 	groups->tree = RB_ROOT;
1590 	groups->index = 0;
1591 }
1592 
event_cgroup(const struct perf_event * event)1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1594 {
1595 	struct cgroup *cgroup = NULL;
1596 
1597 #ifdef CONFIG_CGROUP_PERF
1598 	if (event->cgrp)
1599 		cgroup = event->cgrp->css.cgroup;
1600 #endif
1601 
1602 	return cgroup;
1603 }
1604 
1605 /*
1606  * Compare function for event groups;
1607  *
1608  * Implements complex key that first sorts by CPU and then by virtual index
1609  * which provides ordering when rotating groups for the same CPU.
1610  */
1611 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1614 		      const struct perf_event *right)
1615 {
1616 	if (left_cpu < right->cpu)
1617 		return -1;
1618 	if (left_cpu > right->cpu)
1619 		return 1;
1620 
1621 	if (left_pmu) {
1622 		if (left_pmu < right->pmu_ctx->pmu)
1623 			return -1;
1624 		if (left_pmu > right->pmu_ctx->pmu)
1625 			return 1;
1626 	}
1627 
1628 #ifdef CONFIG_CGROUP_PERF
1629 	{
1630 		const struct cgroup *right_cgroup = event_cgroup(right);
1631 
1632 		if (left_cgroup != right_cgroup) {
1633 			if (!left_cgroup) {
1634 				/*
1635 				 * Left has no cgroup but right does, no
1636 				 * cgroups come first.
1637 				 */
1638 				return -1;
1639 			}
1640 			if (!right_cgroup) {
1641 				/*
1642 				 * Right has no cgroup but left does, no
1643 				 * cgroups come first.
1644 				 */
1645 				return 1;
1646 			}
1647 			/* Two dissimilar cgroups, order by id. */
1648 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649 				return -1;
1650 
1651 			return 1;
1652 		}
1653 	}
1654 #endif
1655 
1656 	if (left_group_index < right->group_index)
1657 		return -1;
1658 	if (left_group_index > right->group_index)
1659 		return 1;
1660 
1661 	return 0;
1662 }
1663 
1664 #define __node_2_pe(node) \
1665 	rb_entry((node), struct perf_event, group_node)
1666 
__group_less(struct rb_node * a,const struct rb_node * b)1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669 	struct perf_event *e = __node_2_pe(a);
1670 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671 				     e->group_index, __node_2_pe(b)) < 0;
1672 }
1673 
1674 struct __group_key {
1675 	int cpu;
1676 	struct pmu *pmu;
1677 	struct cgroup *cgroup;
1678 };
1679 
__group_cmp(const void * key,const struct rb_node * node)1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682 	const struct __group_key *a = key;
1683 	const struct perf_event *b = __node_2_pe(node);
1684 
1685 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1687 }
1688 
1689 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1691 {
1692 	const struct __group_key *a = key;
1693 	const struct perf_event *b = __node_2_pe(node);
1694 
1695 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697 				     b->group_index, b);
1698 }
1699 
1700 /*
1701  * Insert @event into @groups' tree; using
1702  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1704  */
1705 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707 			 struct perf_event *event)
1708 {
1709 	event->group_index = ++groups->index;
1710 
1711 	rb_add(&event->group_node, &groups->tree, __group_less);
1712 }
1713 
1714 /*
1715  * Helper function to insert event into the pinned or flexible groups.
1716  */
1717 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1719 {
1720 	struct perf_event_groups *groups;
1721 
1722 	groups = get_event_groups(event, ctx);
1723 	perf_event_groups_insert(groups, event);
1724 }
1725 
1726 /*
1727  * Delete a group from a tree.
1728  */
1729 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731 			 struct perf_event *event)
1732 {
1733 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734 		     RB_EMPTY_ROOT(&groups->tree));
1735 
1736 	rb_erase(&event->group_node, &groups->tree);
1737 	init_event_group(event);
1738 }
1739 
1740 /*
1741  * Helper function to delete event from its groups.
1742  */
1743 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1745 {
1746 	struct perf_event_groups *groups;
1747 
1748 	groups = get_event_groups(event, ctx);
1749 	perf_event_groups_delete(groups, event);
1750 }
1751 
1752 /*
1753  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1754  */
1755 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757 			struct pmu *pmu, struct cgroup *cgrp)
1758 {
1759 	struct __group_key key = {
1760 		.cpu = cpu,
1761 		.pmu = pmu,
1762 		.cgroup = cgrp,
1763 	};
1764 	struct rb_node *node;
1765 
1766 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1767 	if (node)
1768 		return __node_2_pe(node);
1769 
1770 	return NULL;
1771 }
1772 
1773 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1775 {
1776 	struct __group_key key = {
1777 		.cpu = event->cpu,
1778 		.pmu = pmu,
1779 		.cgroup = event_cgroup(event),
1780 	};
1781 	struct rb_node *next;
1782 
1783 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1784 	if (next)
1785 		return __node_2_pe(next);
1786 
1787 	return NULL;
1788 }
1789 
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1791 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1792 	     event; event = perf_event_groups_next(event, pmu))
1793 
1794 /*
1795  * Iterate through the whole groups tree.
1796  */
1797 #define perf_event_groups_for_each(event, groups)			\
1798 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1799 				typeof(*event), group_node); event;	\
1800 		event = rb_entry_safe(rb_next(&event->group_node),	\
1801 				typeof(*event), group_node))
1802 
1803 /*
1804  * Does the event attribute request inherit with PERF_SAMPLE_READ
1805  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1807 {
1808 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1809 }
1810 
1811 /*
1812  * Add an event from the lists for its context.
1813  * Must be called with ctx->mutex and ctx->lock held.
1814  */
1815 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1817 {
1818 	lockdep_assert_held(&ctx->lock);
1819 
1820 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821 	event->attach_state |= PERF_ATTACH_CONTEXT;
1822 
1823 	event->tstamp = perf_event_time(event);
1824 
1825 	/*
1826 	 * If we're a stand alone event or group leader, we go to the context
1827 	 * list, group events are kept attached to the group so that
1828 	 * perf_group_detach can, at all times, locate all siblings.
1829 	 */
1830 	if (event->group_leader == event) {
1831 		event->group_caps = event->event_caps;
1832 		add_event_to_groups(event, ctx);
1833 	}
1834 
1835 	list_add_rcu(&event->event_entry, &ctx->event_list);
1836 	ctx->nr_events++;
1837 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838 		ctx->nr_user++;
1839 	if (event->attr.inherit_stat)
1840 		ctx->nr_stat++;
1841 	if (has_inherit_and_sample_read(&event->attr))
1842 		local_inc(&ctx->nr_no_switch_fast);
1843 
1844 	if (event->state > PERF_EVENT_STATE_OFF)
1845 		perf_cgroup_event_enable(event, ctx);
1846 
1847 	ctx->generation++;
1848 	event->pmu_ctx->nr_events++;
1849 }
1850 
1851 /*
1852  * Initialize event state based on the perf_event_attr::disabled.
1853  */
perf_event__state_init(struct perf_event * event)1854 static inline void perf_event__state_init(struct perf_event *event)
1855 {
1856 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857 					      PERF_EVENT_STATE_INACTIVE;
1858 }
1859 
__perf_event_read_size(u64 read_format,int nr_siblings)1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1861 {
1862 	int entry = sizeof(u64); /* value */
1863 	int size = 0;
1864 	int nr = 1;
1865 
1866 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 		size += sizeof(u64);
1868 
1869 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870 		size += sizeof(u64);
1871 
1872 	if (read_format & PERF_FORMAT_ID)
1873 		entry += sizeof(u64);
1874 
1875 	if (read_format & PERF_FORMAT_LOST)
1876 		entry += sizeof(u64);
1877 
1878 	if (read_format & PERF_FORMAT_GROUP) {
1879 		nr += nr_siblings;
1880 		size += sizeof(u64);
1881 	}
1882 
1883 	/*
1884 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 	 * adding more siblings, this will never overflow.
1886 	 */
1887 	return size + nr * entry;
1888 }
1889 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1891 {
1892 	struct perf_sample_data *data;
1893 	u16 size = 0;
1894 
1895 	if (sample_type & PERF_SAMPLE_IP)
1896 		size += sizeof(data->ip);
1897 
1898 	if (sample_type & PERF_SAMPLE_ADDR)
1899 		size += sizeof(data->addr);
1900 
1901 	if (sample_type & PERF_SAMPLE_PERIOD)
1902 		size += sizeof(data->period);
1903 
1904 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905 		size += sizeof(data->weight.full);
1906 
1907 	if (sample_type & PERF_SAMPLE_READ)
1908 		size += event->read_size;
1909 
1910 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1911 		size += sizeof(data->data_src.val);
1912 
1913 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1914 		size += sizeof(data->txn);
1915 
1916 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917 		size += sizeof(data->phys_addr);
1918 
1919 	if (sample_type & PERF_SAMPLE_CGROUP)
1920 		size += sizeof(data->cgroup);
1921 
1922 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923 		size += sizeof(data->data_page_size);
1924 
1925 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926 		size += sizeof(data->code_page_size);
1927 
1928 	event->header_size = size;
1929 }
1930 
1931 /*
1932  * Called at perf_event creation and when events are attached/detached from a
1933  * group.
1934  */
perf_event__header_size(struct perf_event * event)1935 static void perf_event__header_size(struct perf_event *event)
1936 {
1937 	event->read_size =
1938 		__perf_event_read_size(event->attr.read_format,
1939 				       event->group_leader->nr_siblings);
1940 	__perf_event_header_size(event, event->attr.sample_type);
1941 }
1942 
perf_event__id_header_size(struct perf_event * event)1943 static void perf_event__id_header_size(struct perf_event *event)
1944 {
1945 	struct perf_sample_data *data;
1946 	u64 sample_type = event->attr.sample_type;
1947 	u16 size = 0;
1948 
1949 	if (sample_type & PERF_SAMPLE_TID)
1950 		size += sizeof(data->tid_entry);
1951 
1952 	if (sample_type & PERF_SAMPLE_TIME)
1953 		size += sizeof(data->time);
1954 
1955 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956 		size += sizeof(data->id);
1957 
1958 	if (sample_type & PERF_SAMPLE_ID)
1959 		size += sizeof(data->id);
1960 
1961 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1962 		size += sizeof(data->stream_id);
1963 
1964 	if (sample_type & PERF_SAMPLE_CPU)
1965 		size += sizeof(data->cpu_entry);
1966 
1967 	event->id_header_size = size;
1968 }
1969 
1970 /*
1971  * Check that adding an event to the group does not result in anybody
1972  * overflowing the 64k event limit imposed by the output buffer.
1973  *
1974  * Specifically, check that the read_size for the event does not exceed 16k,
1975  * read_size being the one term that grows with groups size. Since read_size
1976  * depends on per-event read_format, also (re)check the existing events.
1977  *
1978  * This leaves 48k for the constant size fields and things like callchains,
1979  * branch stacks and register sets.
1980  */
perf_event_validate_size(struct perf_event * event)1981 static bool perf_event_validate_size(struct perf_event *event)
1982 {
1983 	struct perf_event *sibling, *group_leader = event->group_leader;
1984 
1985 	if (__perf_event_read_size(event->attr.read_format,
1986 				   group_leader->nr_siblings + 1) > 16*1024)
1987 		return false;
1988 
1989 	if (__perf_event_read_size(group_leader->attr.read_format,
1990 				   group_leader->nr_siblings + 1) > 16*1024)
1991 		return false;
1992 
1993 	/*
1994 	 * When creating a new group leader, group_leader->ctx is initialized
1995 	 * after the size has been validated, but we cannot safely use
1996 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 	 * leader cannot have any siblings yet, so we can safely skip checking
1998 	 * the non-existent siblings.
1999 	 */
2000 	if (event == group_leader)
2001 		return true;
2002 
2003 	for_each_sibling_event(sibling, group_leader) {
2004 		if (__perf_event_read_size(sibling->attr.read_format,
2005 					   group_leader->nr_siblings + 1) > 16*1024)
2006 			return false;
2007 	}
2008 
2009 	return true;
2010 }
2011 
perf_group_attach(struct perf_event * event)2012 static void perf_group_attach(struct perf_event *event)
2013 {
2014 	struct perf_event *group_leader = event->group_leader, *pos;
2015 
2016 	lockdep_assert_held(&event->ctx->lock);
2017 
2018 	/*
2019 	 * We can have double attach due to group movement (move_group) in
2020 	 * perf_event_open().
2021 	 */
2022 	if (event->attach_state & PERF_ATTACH_GROUP)
2023 		return;
2024 
2025 	event->attach_state |= PERF_ATTACH_GROUP;
2026 
2027 	if (group_leader == event)
2028 		return;
2029 
2030 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2031 
2032 	group_leader->group_caps &= event->event_caps;
2033 
2034 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035 	group_leader->nr_siblings++;
2036 	group_leader->group_generation++;
2037 
2038 	perf_event__header_size(group_leader);
2039 
2040 	for_each_sibling_event(pos, group_leader)
2041 		perf_event__header_size(pos);
2042 }
2043 
2044 /*
2045  * Remove an event from the lists for its context.
2046  * Must be called with ctx->mutex and ctx->lock held.
2047  */
2048 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2050 {
2051 	WARN_ON_ONCE(event->ctx != ctx);
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	/*
2055 	 * We can have double detach due to exit/hot-unplug + close.
2056 	 */
2057 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058 		return;
2059 
2060 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2061 
2062 	ctx->nr_events--;
2063 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064 		ctx->nr_user--;
2065 	if (event->attr.inherit_stat)
2066 		ctx->nr_stat--;
2067 	if (has_inherit_and_sample_read(&event->attr))
2068 		local_dec(&ctx->nr_no_switch_fast);
2069 
2070 	list_del_rcu(&event->event_entry);
2071 
2072 	if (event->group_leader == event)
2073 		del_event_from_groups(event, ctx);
2074 
2075 	/*
2076 	 * If event was in error state, then keep it
2077 	 * that way, otherwise bogus counts will be
2078 	 * returned on read(). The only way to get out
2079 	 * of error state is by explicit re-enabling
2080 	 * of the event
2081 	 */
2082 	if (event->state > PERF_EVENT_STATE_OFF) {
2083 		perf_cgroup_event_disable(event, ctx);
2084 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2085 	}
2086 
2087 	ctx->generation++;
2088 	event->pmu_ctx->nr_events--;
2089 }
2090 
2091 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2093 {
2094 	if (!has_aux(aux_event))
2095 		return 0;
2096 
2097 	if (!event->pmu->aux_output_match)
2098 		return 0;
2099 
2100 	return event->pmu->aux_output_match(aux_event);
2101 }
2102 
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105 			    struct perf_event_context *ctx);
2106 
perf_put_aux_event(struct perf_event * event)2107 static void perf_put_aux_event(struct perf_event *event)
2108 {
2109 	struct perf_event_context *ctx = event->ctx;
2110 	struct perf_event *iter;
2111 
2112 	/*
2113 	 * If event uses aux_event tear down the link
2114 	 */
2115 	if (event->aux_event) {
2116 		iter = event->aux_event;
2117 		event->aux_event = NULL;
2118 		put_event(iter);
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * If the event is an aux_event, tear down all links to
2124 	 * it from other events.
2125 	 */
2126 	for_each_sibling_event(iter, event->group_leader) {
2127 		if (iter->aux_event != event)
2128 			continue;
2129 
2130 		iter->aux_event = NULL;
2131 		put_event(event);
2132 
2133 		/*
2134 		 * If it's ACTIVE, schedule it out and put it into ERROR
2135 		 * state so that we don't try to schedule it again. Note
2136 		 * that perf_event_enable() will clear the ERROR status.
2137 		 */
2138 		event_sched_out(iter, ctx);
2139 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2140 	}
2141 }
2142 
perf_need_aux_event(struct perf_event * event)2143 static bool perf_need_aux_event(struct perf_event *event)
2144 {
2145 	return event->attr.aux_output || has_aux_action(event);
2146 }
2147 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2148 static int perf_get_aux_event(struct perf_event *event,
2149 			      struct perf_event *group_leader)
2150 {
2151 	/*
2152 	 * Our group leader must be an aux event if we want to be
2153 	 * an aux_output. This way, the aux event will precede its
2154 	 * aux_output events in the group, and therefore will always
2155 	 * schedule first.
2156 	 */
2157 	if (!group_leader)
2158 		return 0;
2159 
2160 	/*
2161 	 * aux_output and aux_sample_size are mutually exclusive.
2162 	 */
2163 	if (event->attr.aux_output && event->attr.aux_sample_size)
2164 		return 0;
2165 
2166 	if (event->attr.aux_output &&
2167 	    !perf_aux_output_match(event, group_leader))
2168 		return 0;
2169 
2170 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172 		return 0;
2173 
2174 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 		return 0;
2176 
2177 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 		return 0;
2179 
2180 	/*
2181 	 * Link aux_outputs to their aux event; this is undone in
2182 	 * perf_group_detach() by perf_put_aux_event(). When the
2183 	 * group in torn down, the aux_output events loose their
2184 	 * link to the aux_event and can't schedule any more.
2185 	 */
2186 	event->aux_event = group_leader;
2187 
2188 	return 1;
2189 }
2190 
get_event_list(struct perf_event * event)2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 				    &event->pmu_ctx->flexible_active;
2195 }
2196 
2197 /*
2198  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199  * cannot exist on their own, schedule them out and move them into the ERROR
2200  * state. Also see _perf_event_enable(), it will not be able to recover
2201  * this ERROR state.
2202  */
perf_remove_sibling_event(struct perf_event * event)2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 	event_sched_out(event, event->ctx);
2206 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208 
perf_group_detach(struct perf_event * event)2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 	struct perf_event *leader = event->group_leader;
2212 	struct perf_event *sibling, *tmp;
2213 	struct perf_event_context *ctx = event->ctx;
2214 
2215 	lockdep_assert_held(&ctx->lock);
2216 
2217 	/*
2218 	 * We can have double detach due to exit/hot-unplug + close.
2219 	 */
2220 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 		return;
2222 
2223 	event->attach_state &= ~PERF_ATTACH_GROUP;
2224 
2225 	perf_put_aux_event(event);
2226 
2227 	/*
2228 	 * If this is a sibling, remove it from its group.
2229 	 */
2230 	if (leader != event) {
2231 		list_del_init(&event->sibling_list);
2232 		event->group_leader->nr_siblings--;
2233 		event->group_leader->group_generation++;
2234 		goto out;
2235 	}
2236 
2237 	/*
2238 	 * If this was a group event with sibling events then
2239 	 * upgrade the siblings to singleton events by adding them
2240 	 * to whatever list we are on.
2241 	 */
2242 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243 
2244 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 			perf_remove_sibling_event(sibling);
2246 
2247 		sibling->group_leader = sibling;
2248 		list_del_init(&sibling->sibling_list);
2249 
2250 		/* Inherit group flags from the previous leader */
2251 		sibling->group_caps = event->group_caps;
2252 
2253 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 			add_event_to_groups(sibling, event->ctx);
2255 
2256 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 		}
2259 
2260 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 	}
2262 
2263 out:
2264 	for_each_sibling_event(tmp, leader)
2265 		perf_event__header_size(tmp);
2266 
2267 	perf_event__header_size(leader);
2268 }
2269 
2270 static void sync_child_event(struct perf_event *child_event);
2271 
perf_child_detach(struct perf_event * event)2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 	struct perf_event *parent_event = event->parent;
2275 
2276 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 		return;
2278 
2279 	event->attach_state &= ~PERF_ATTACH_CHILD;
2280 
2281 	if (WARN_ON_ONCE(!parent_event))
2282 		return;
2283 
2284 	lockdep_assert_held(&parent_event->child_mutex);
2285 
2286 	sync_child_event(event);
2287 	list_del_init(&event->child_list);
2288 }
2289 
is_orphaned_event(struct perf_event * event)2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 	return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294 
2295 static inline int
event_filter_match(struct perf_event * event)2296 event_filter_match(struct perf_event *event)
2297 {
2298 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 	       perf_cgroup_match(event);
2300 }
2301 
2302 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308 
2309 	// XXX cpc serialization, probably per-cpu IRQ disabled
2310 
2311 	WARN_ON_ONCE(event->ctx != ctx);
2312 	lockdep_assert_held(&ctx->lock);
2313 
2314 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	/*
2318 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 	 * we can schedule events _OUT_ individually through things like
2320 	 * __perf_remove_from_context().
2321 	 */
2322 	list_del_init(&event->active_list);
2323 
2324 	perf_pmu_disable(event->pmu);
2325 
2326 	event->pmu->del(event, 0);
2327 	event->oncpu = -1;
2328 
2329 	if (event->pending_disable) {
2330 		event->pending_disable = 0;
2331 		perf_cgroup_event_disable(event, ctx);
2332 		state = PERF_EVENT_STATE_OFF;
2333 	}
2334 
2335 	perf_event_set_state(event, state);
2336 
2337 	if (!is_software_event(event))
2338 		cpc->active_oncpu--;
2339 	if (event->attr.freq && event->attr.sample_freq) {
2340 		ctx->nr_freq--;
2341 		epc->nr_freq--;
2342 	}
2343 	if (event->attr.exclusive || !cpc->active_oncpu)
2344 		cpc->exclusive = 0;
2345 
2346 	perf_pmu_enable(event->pmu);
2347 }
2348 
2349 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 	struct perf_event *event;
2353 
2354 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 		return;
2356 
2357 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358 
2359 	event_sched_out(group_event, ctx);
2360 
2361 	/*
2362 	 * Schedule out siblings (if any):
2363 	 */
2364 	for_each_sibling_event(event, group_event)
2365 		event_sched_out(event, ctx);
2366 }
2367 
2368 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 	if (ctx->is_active & EVENT_TIME) {
2372 		if (ctx->is_active & EVENT_FROZEN)
2373 			return;
2374 		update_context_time(ctx);
2375 		update_cgrp_time_from_cpuctx(cpuctx, final);
2376 	}
2377 }
2378 
2379 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 	__ctx_time_update(cpuctx, ctx, false);
2383 }
2384 
2385 /*
2386  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387  */
2388 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 	ctx_time_update(cpuctx, ctx);
2392 	if (ctx->is_active & EVENT_TIME)
2393 		ctx->is_active |= EVENT_FROZEN;
2394 }
2395 
2396 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 	if (ctx->is_active & EVENT_TIME) {
2400 		if (ctx->is_active & EVENT_FROZEN)
2401 			return;
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_event(event);
2404 	}
2405 }
2406 
2407 #define DETACH_GROUP	0x01UL
2408 #define DETACH_CHILD	0x02UL
2409 #define DETACH_DEAD	0x04UL
2410 
2411 /*
2412  * Cross CPU call to remove a performance event
2413  *
2414  * We disable the event on the hardware level first. After that we
2415  * remove it from the context list.
2416  */
2417 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2418 __perf_remove_from_context(struct perf_event *event,
2419 			   struct perf_cpu_context *cpuctx,
2420 			   struct perf_event_context *ctx,
2421 			   void *info)
2422 {
2423 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 	unsigned long flags = (unsigned long)info;
2425 
2426 	ctx_time_update(cpuctx, ctx);
2427 
2428 	/*
2429 	 * Ensure event_sched_out() switches to OFF, at the very least
2430 	 * this avoids raising perf_pending_task() at this time.
2431 	 */
2432 	if (flags & DETACH_DEAD)
2433 		event->pending_disable = 1;
2434 	event_sched_out(event, ctx);
2435 	if (flags & DETACH_GROUP)
2436 		perf_group_detach(event);
2437 	if (flags & DETACH_CHILD)
2438 		perf_child_detach(event);
2439 	list_del_event(event, ctx);
2440 	if (flags & DETACH_DEAD)
2441 		event->state = PERF_EVENT_STATE_DEAD;
2442 
2443 	if (!pmu_ctx->nr_events) {
2444 		pmu_ctx->rotate_necessary = 0;
2445 
2446 		if (ctx->task && ctx->is_active) {
2447 			struct perf_cpu_pmu_context *cpc;
2448 
2449 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 			cpc->task_epc = NULL;
2452 		}
2453 	}
2454 
2455 	if (!ctx->nr_events && ctx->is_active) {
2456 		if (ctx == &cpuctx->ctx)
2457 			update_cgrp_time_from_cpuctx(cpuctx, true);
2458 
2459 		ctx->is_active = 0;
2460 		if (ctx->task) {
2461 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 			cpuctx->task_ctx = NULL;
2463 		}
2464 	}
2465 }
2466 
2467 /*
2468  * Remove the event from a task's (or a CPU's) list of events.
2469  *
2470  * If event->ctx is a cloned context, callers must make sure that
2471  * every task struct that event->ctx->task could possibly point to
2472  * remains valid.  This is OK when called from perf_release since
2473  * that only calls us on the top-level context, which can't be a clone.
2474  * When called from perf_event_exit_task, it's OK because the
2475  * context has been detached from its task.
2476  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479 	struct perf_event_context *ctx = event->ctx;
2480 
2481 	lockdep_assert_held(&ctx->mutex);
2482 
2483 	/*
2484 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 	 * event_function_call() user.
2487 	 */
2488 	raw_spin_lock_irq(&ctx->lock);
2489 	if (!ctx->is_active) {
2490 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 					   ctx, (void *)flags);
2492 		raw_spin_unlock_irq(&ctx->lock);
2493 		return;
2494 	}
2495 	raw_spin_unlock_irq(&ctx->lock);
2496 
2497 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499 
2500 /*
2501  * Cross CPU call to disable a performance event
2502  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2503 static void __perf_event_disable(struct perf_event *event,
2504 				 struct perf_cpu_context *cpuctx,
2505 				 struct perf_event_context *ctx,
2506 				 void *info)
2507 {
2508 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 		return;
2510 
2511 	perf_pmu_disable(event->pmu_ctx->pmu);
2512 	ctx_time_update_event(ctx, event);
2513 
2514 	if (event == event->group_leader)
2515 		group_sched_out(event, ctx);
2516 	else
2517 		event_sched_out(event, ctx);
2518 
2519 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 	perf_cgroup_event_disable(event, ctx);
2521 
2522 	perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524 
2525 /*
2526  * Disable an event.
2527  *
2528  * If event->ctx is a cloned context, callers must make sure that
2529  * every task struct that event->ctx->task could possibly point to
2530  * remains valid.  This condition is satisfied when called through
2531  * perf_event_for_each_child or perf_event_for_each because they
2532  * hold the top-level event's child_mutex, so any descendant that
2533  * goes to exit will block in perf_event_exit_event().
2534  *
2535  * When called from perf_pending_disable it's OK because event->ctx
2536  * is the current context on this CPU and preemption is disabled,
2537  * hence we can't get into perf_event_task_sched_out for this context.
2538  */
_perf_event_disable(struct perf_event * event)2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541 	struct perf_event_context *ctx = event->ctx;
2542 
2543 	raw_spin_lock_irq(&ctx->lock);
2544 	if (event->state <= PERF_EVENT_STATE_OFF) {
2545 		raw_spin_unlock_irq(&ctx->lock);
2546 		return;
2547 	}
2548 	raw_spin_unlock_irq(&ctx->lock);
2549 
2550 	event_function_call(event, __perf_event_disable, NULL);
2551 }
2552 
perf_event_disable_local(struct perf_event * event)2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555 	event_function_local(event, __perf_event_disable, NULL);
2556 }
2557 
2558 /*
2559  * Strictly speaking kernel users cannot create groups and therefore this
2560  * interface does not need the perf_event_ctx_lock() magic.
2561  */
perf_event_disable(struct perf_event * event)2562 void perf_event_disable(struct perf_event *event)
2563 {
2564 	struct perf_event_context *ctx;
2565 
2566 	ctx = perf_event_ctx_lock(event);
2567 	_perf_event_disable(event);
2568 	perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571 
perf_event_disable_inatomic(struct perf_event * event)2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574 	event->pending_disable = 1;
2575 	irq_work_queue(&event->pending_disable_irq);
2576 }
2577 
2578 #define MAX_INTERRUPTS (~0ULL)
2579 
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582 
2583 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 	int ret = 0;
2589 
2590 	WARN_ON_ONCE(event->ctx != ctx);
2591 
2592 	lockdep_assert_held(&ctx->lock);
2593 
2594 	if (event->state <= PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	WRITE_ONCE(event->oncpu, smp_processor_id());
2598 	/*
2599 	 * Order event::oncpu write to happen before the ACTIVE state is
2600 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 	 * ->oncpu if it sees ACTIVE.
2602 	 */
2603 	smp_wmb();
2604 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605 
2606 	/*
2607 	 * Unthrottle events, since we scheduled we might have missed several
2608 	 * ticks already, also for a heavily scheduling task there is little
2609 	 * guarantee it'll get a tick in a timely manner.
2610 	 */
2611 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 		perf_log_throttle(event, 1);
2613 		event->hw.interrupts = 0;
2614 	}
2615 
2616 	perf_pmu_disable(event->pmu);
2617 
2618 	perf_log_itrace_start(event);
2619 
2620 	if (event->pmu->add(event, PERF_EF_START)) {
2621 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 		event->oncpu = -1;
2623 		ret = -EAGAIN;
2624 		goto out;
2625 	}
2626 
2627 	if (!is_software_event(event))
2628 		cpc->active_oncpu++;
2629 	if (event->attr.freq && event->attr.sample_freq) {
2630 		ctx->nr_freq++;
2631 		epc->nr_freq++;
2632 	}
2633 	if (event->attr.exclusive)
2634 		cpc->exclusive = 1;
2635 
2636 out:
2637 	perf_pmu_enable(event->pmu);
2638 
2639 	return ret;
2640 }
2641 
2642 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645 	struct perf_event *event, *partial_group = NULL;
2646 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2647 
2648 	if (group_event->state == PERF_EVENT_STATE_OFF)
2649 		return 0;
2650 
2651 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652 
2653 	if (event_sched_in(group_event, ctx))
2654 		goto error;
2655 
2656 	/*
2657 	 * Schedule in siblings as one group (if any):
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event_sched_in(event, ctx)) {
2661 			partial_group = event;
2662 			goto group_error;
2663 		}
2664 	}
2665 
2666 	if (!pmu->commit_txn(pmu))
2667 		return 0;
2668 
2669 group_error:
2670 	/*
2671 	 * Groups can be scheduled in as one unit only, so undo any
2672 	 * partial group before returning:
2673 	 * The events up to the failed event are scheduled out normally.
2674 	 */
2675 	for_each_sibling_event(event, group_event) {
2676 		if (event == partial_group)
2677 			break;
2678 
2679 		event_sched_out(event, ctx);
2680 	}
2681 	event_sched_out(group_event, ctx);
2682 
2683 error:
2684 	pmu->cancel_txn(pmu);
2685 	return -EAGAIN;
2686 }
2687 
2688 /*
2689  * Work out whether we can put this event group on the CPU now.
2690  */
group_can_go_on(struct perf_event * event,int can_add_hw)2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695 
2696 	/*
2697 	 * Groups consisting entirely of software events can always go on.
2698 	 */
2699 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 		return 1;
2701 	/*
2702 	 * If an exclusive group is already on, no other hardware
2703 	 * events can go on.
2704 	 */
2705 	if (cpc->exclusive)
2706 		return 0;
2707 	/*
2708 	 * If this group is exclusive and there are already
2709 	 * events on the CPU, it can't go on.
2710 	 */
2711 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 		return 0;
2713 	/*
2714 	 * Otherwise, try to add it if all previous groups were able
2715 	 * to go on.
2716 	 */
2717 	return can_add_hw;
2718 }
2719 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2720 static void add_event_to_ctx(struct perf_event *event,
2721 			       struct perf_event_context *ctx)
2722 {
2723 	list_add_event(event, ctx);
2724 	perf_group_attach(event);
2725 }
2726 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 			       struct pmu *pmu,
2729 			       enum event_type_t event_type)
2730 {
2731 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732 
2733 	if (!cpuctx->task_ctx)
2734 		return;
2735 
2736 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 		return;
2738 
2739 	ctx_sched_out(ctx, pmu, event_type);
2740 }
2741 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				struct pmu *pmu)
2745 {
2746 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 	if (ctx)
2748 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 	if (ctx)
2751 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753 
2754 /*
2755  * We want to maintain the following priority of scheduling:
2756  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757  *  - task pinned (EVENT_PINNED)
2758  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759  *  - task flexible (EVENT_FLEXIBLE).
2760  *
2761  * In order to avoid unscheduling and scheduling back in everything every
2762  * time an event is added, only do it for the groups of equal priority and
2763  * below.
2764  *
2765  * This can be called after a batch operation on task events, in which case
2766  * event_type is a bit mask of the types of events involved. For CPU events,
2767  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 			struct perf_event_context *task_ctx,
2771 			struct pmu *pmu, enum event_type_t event_type)
2772 {
2773 	bool cpu_event = !!(event_type & EVENT_CPU);
2774 	struct perf_event_pmu_context *epc;
2775 
2776 	/*
2777 	 * If pinned groups are involved, flexible groups also need to be
2778 	 * scheduled out.
2779 	 */
2780 	if (event_type & EVENT_PINNED)
2781 		event_type |= EVENT_FLEXIBLE;
2782 
2783 	event_type &= EVENT_ALL;
2784 
2785 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 		perf_pmu_disable(epc->pmu);
2787 
2788 	if (task_ctx) {
2789 		for_each_epc(epc, task_ctx, pmu, false)
2790 			perf_pmu_disable(epc->pmu);
2791 
2792 		task_ctx_sched_out(task_ctx, pmu, event_type);
2793 	}
2794 
2795 	/*
2796 	 * Decide which cpu ctx groups to schedule out based on the types
2797 	 * of events that caused rescheduling:
2798 	 *  - EVENT_CPU: schedule out corresponding groups;
2799 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 	 *  - otherwise, do nothing more.
2801 	 */
2802 	if (cpu_event)
2803 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 	else if (event_type & EVENT_PINNED)
2805 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806 
2807 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2808 
2809 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 		perf_pmu_enable(epc->pmu);
2811 
2812 	if (task_ctx) {
2813 		for_each_epc(epc, task_ctx, pmu, false)
2814 			perf_pmu_enable(epc->pmu);
2815 	}
2816 }
2817 
perf_pmu_resched(struct pmu * pmu)2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822 
2823 	perf_ctx_lock(cpuctx, task_ctx);
2824 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 	perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827 
2828 /*
2829  * Cross CPU call to install and enable a performance event
2830  *
2831  * Very similar to remote_function() + event_function() but cannot assume that
2832  * things like ctx->is_active and cpuctx->task_ctx are set.
2833  */
__perf_install_in_context(void * info)2834 static int  __perf_install_in_context(void *info)
2835 {
2836 	struct perf_event *event = info;
2837 	struct perf_event_context *ctx = event->ctx;
2838 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 	bool reprogram = true;
2841 	int ret = 0;
2842 
2843 	raw_spin_lock(&cpuctx->ctx.lock);
2844 	if (ctx->task) {
2845 		raw_spin_lock(&ctx->lock);
2846 		task_ctx = ctx;
2847 
2848 		reprogram = (ctx->task == current);
2849 
2850 		/*
2851 		 * If the task is running, it must be running on this CPU,
2852 		 * otherwise we cannot reprogram things.
2853 		 *
2854 		 * If its not running, we don't care, ctx->lock will
2855 		 * serialize against it becoming runnable.
2856 		 */
2857 		if (task_curr(ctx->task) && !reprogram) {
2858 			ret = -ESRCH;
2859 			goto unlock;
2860 		}
2861 
2862 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 	} else if (task_ctx) {
2864 		raw_spin_lock(&task_ctx->lock);
2865 	}
2866 
2867 #ifdef CONFIG_CGROUP_PERF
2868 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869 		/*
2870 		 * If the current cgroup doesn't match the event's
2871 		 * cgroup, we should not try to schedule it.
2872 		 */
2873 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 					event->cgrp->css.cgroup);
2876 	}
2877 #endif
2878 
2879 	if (reprogram) {
2880 		ctx_time_freeze(cpuctx, ctx);
2881 		add_event_to_ctx(event, ctx);
2882 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 			    get_event_type(event));
2884 	} else {
2885 		add_event_to_ctx(event, ctx);
2886 	}
2887 
2888 unlock:
2889 	perf_ctx_unlock(cpuctx, task_ctx);
2890 
2891 	return ret;
2892 }
2893 
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 					struct perf_event_context *ctx);
2896 
2897 /*
2898  * Attach a performance event to a context.
2899  *
2900  * Very similar to event_function_call, see comment there.
2901  */
2902 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2903 perf_install_in_context(struct perf_event_context *ctx,
2904 			struct perf_event *event,
2905 			int cpu)
2906 {
2907 	struct task_struct *task = READ_ONCE(ctx->task);
2908 
2909 	lockdep_assert_held(&ctx->mutex);
2910 
2911 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912 
2913 	if (event->cpu != -1)
2914 		WARN_ON_ONCE(event->cpu != cpu);
2915 
2916 	/*
2917 	 * Ensures that if we can observe event->ctx, both the event and ctx
2918 	 * will be 'complete'. See perf_iterate_sb_cpu().
2919 	 */
2920 	smp_store_release(&event->ctx, ctx);
2921 
2922 	/*
2923 	 * perf_event_attr::disabled events will not run and can be initialized
2924 	 * without IPI. Except when this is the first event for the context, in
2925 	 * that case we need the magic of the IPI to set ctx->is_active.
2926 	 *
2927 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 	 * event will issue the IPI and reprogram the hardware.
2929 	 */
2930 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 	    ctx->nr_events && !is_cgroup_event(event)) {
2932 		raw_spin_lock_irq(&ctx->lock);
2933 		if (ctx->task == TASK_TOMBSTONE) {
2934 			raw_spin_unlock_irq(&ctx->lock);
2935 			return;
2936 		}
2937 		add_event_to_ctx(event, ctx);
2938 		raw_spin_unlock_irq(&ctx->lock);
2939 		return;
2940 	}
2941 
2942 	if (!task) {
2943 		cpu_function_call(cpu, __perf_install_in_context, event);
2944 		return;
2945 	}
2946 
2947 	/*
2948 	 * Should not happen, we validate the ctx is still alive before calling.
2949 	 */
2950 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 		return;
2952 
2953 	/*
2954 	 * Installing events is tricky because we cannot rely on ctx->is_active
2955 	 * to be set in case this is the nr_events 0 -> 1 transition.
2956 	 *
2957 	 * Instead we use task_curr(), which tells us if the task is running.
2958 	 * However, since we use task_curr() outside of rq::lock, we can race
2959 	 * against the actual state. This means the result can be wrong.
2960 	 *
2961 	 * If we get a false positive, we retry, this is harmless.
2962 	 *
2963 	 * If we get a false negative, things are complicated. If we are after
2964 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 	 * value must be correct. If we're before, it doesn't matter since
2966 	 * perf_event_context_sched_in() will program the counter.
2967 	 *
2968 	 * However, this hinges on the remote context switch having observed
2969 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 	 * ctx::lock in perf_event_context_sched_in().
2971 	 *
2972 	 * We do this by task_function_call(), if the IPI fails to hit the task
2973 	 * we know any future context switch of task must see the
2974 	 * perf_event_ctpx[] store.
2975 	 */
2976 
2977 	/*
2978 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 	 * task_cpu() load, such that if the IPI then does not find the task
2980 	 * running, a future context switch of that task must observe the
2981 	 * store.
2982 	 */
2983 	smp_mb();
2984 again:
2985 	if (!task_function_call(task, __perf_install_in_context, event))
2986 		return;
2987 
2988 	raw_spin_lock_irq(&ctx->lock);
2989 	task = ctx->task;
2990 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991 		/*
2992 		 * Cannot happen because we already checked above (which also
2993 		 * cannot happen), and we hold ctx->mutex, which serializes us
2994 		 * against perf_event_exit_task_context().
2995 		 */
2996 		raw_spin_unlock_irq(&ctx->lock);
2997 		return;
2998 	}
2999 	/*
3000 	 * If the task is not running, ctx->lock will avoid it becoming so,
3001 	 * thus we can safely install the event.
3002 	 */
3003 	if (task_curr(task)) {
3004 		raw_spin_unlock_irq(&ctx->lock);
3005 		goto again;
3006 	}
3007 	add_event_to_ctx(event, ctx);
3008 	raw_spin_unlock_irq(&ctx->lock);
3009 }
3010 
3011 /*
3012  * Cross CPU call to enable a performance event
3013  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3014 static void __perf_event_enable(struct perf_event *event,
3015 				struct perf_cpu_context *cpuctx,
3016 				struct perf_event_context *ctx,
3017 				void *info)
3018 {
3019 	struct perf_event *leader = event->group_leader;
3020 	struct perf_event_context *task_ctx;
3021 
3022 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 	    event->state <= PERF_EVENT_STATE_ERROR)
3024 		return;
3025 
3026 	ctx_time_freeze(cpuctx, ctx);
3027 
3028 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 	perf_cgroup_event_enable(event, ctx);
3030 
3031 	if (!ctx->is_active)
3032 		return;
3033 
3034 	if (!event_filter_match(event))
3035 		return;
3036 
3037 	/*
3038 	 * If the event is in a group and isn't the group leader,
3039 	 * then don't put it on unless the group is on.
3040 	 */
3041 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 		return;
3043 
3044 	task_ctx = cpuctx->task_ctx;
3045 	if (ctx->task)
3046 		WARN_ON_ONCE(task_ctx != ctx);
3047 
3048 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050 
3051 /*
3052  * Enable an event.
3053  *
3054  * If event->ctx is a cloned context, callers must make sure that
3055  * every task struct that event->ctx->task could possibly point to
3056  * remains valid.  This condition is satisfied when called through
3057  * perf_event_for_each_child or perf_event_for_each as described
3058  * for perf_event_disable.
3059  */
_perf_event_enable(struct perf_event * event)3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062 	struct perf_event_context *ctx = event->ctx;
3063 
3064 	raw_spin_lock_irq(&ctx->lock);
3065 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 	    event->state <  PERF_EVENT_STATE_ERROR) {
3067 out:
3068 		raw_spin_unlock_irq(&ctx->lock);
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * If the event is in error state, clear that first.
3074 	 *
3075 	 * That way, if we see the event in error state below, we know that it
3076 	 * has gone back into error state, as distinct from the task having
3077 	 * been scheduled away before the cross-call arrived.
3078 	 */
3079 	if (event->state == PERF_EVENT_STATE_ERROR) {
3080 		/*
3081 		 * Detached SIBLING events cannot leave ERROR state.
3082 		 */
3083 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 		    event->group_leader == event)
3085 			goto out;
3086 
3087 		event->state = PERF_EVENT_STATE_OFF;
3088 	}
3089 	raw_spin_unlock_irq(&ctx->lock);
3090 
3091 	event_function_call(event, __perf_event_enable, NULL);
3092 }
3093 
3094 /*
3095  * See perf_event_disable();
3096  */
perf_event_enable(struct perf_event * event)3097 void perf_event_enable(struct perf_event *event)
3098 {
3099 	struct perf_event_context *ctx;
3100 
3101 	ctx = perf_event_ctx_lock(event);
3102 	_perf_event_enable(event);
3103 	perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106 
3107 struct stop_event_data {
3108 	struct perf_event	*event;
3109 	unsigned int		restart;
3110 };
3111 
__perf_event_stop(void * info)3112 static int __perf_event_stop(void *info)
3113 {
3114 	struct stop_event_data *sd = info;
3115 	struct perf_event *event = sd->event;
3116 
3117 	/* if it's already INACTIVE, do nothing */
3118 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 		return 0;
3120 
3121 	/* matches smp_wmb() in event_sched_in() */
3122 	smp_rmb();
3123 
3124 	/*
3125 	 * There is a window with interrupts enabled before we get here,
3126 	 * so we need to check again lest we try to stop another CPU's event.
3127 	 */
3128 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 		return -EAGAIN;
3130 
3131 	event->pmu->stop(event, PERF_EF_UPDATE);
3132 
3133 	/*
3134 	 * May race with the actual stop (through perf_pmu_output_stop()),
3135 	 * but it is only used for events with AUX ring buffer, and such
3136 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 	 * see comments in perf_aux_output_begin().
3138 	 *
3139 	 * Since this is happening on an event-local CPU, no trace is lost
3140 	 * while restarting.
3141 	 */
3142 	if (sd->restart)
3143 		event->pmu->start(event, 0);
3144 
3145 	return 0;
3146 }
3147 
perf_event_stop(struct perf_event * event,int restart)3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150 	struct stop_event_data sd = {
3151 		.event		= event,
3152 		.restart	= restart,
3153 	};
3154 	int ret = 0;
3155 
3156 	do {
3157 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 			return 0;
3159 
3160 		/* matches smp_wmb() in event_sched_in() */
3161 		smp_rmb();
3162 
3163 		/*
3164 		 * We only want to restart ACTIVE events, so if the event goes
3165 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 		 * fall through with ret==-ENXIO.
3167 		 */
3168 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 					__perf_event_stop, &sd);
3170 	} while (ret == -EAGAIN);
3171 
3172 	return ret;
3173 }
3174 
3175 /*
3176  * In order to contain the amount of racy and tricky in the address filter
3177  * configuration management, it is a two part process:
3178  *
3179  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180  *      we update the addresses of corresponding vmas in
3181  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182  * (p2) when an event is scheduled in (pmu::add), it calls
3183  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184  *      if the generation has changed since the previous call.
3185  *
3186  * If (p1) happens while the event is active, we restart it to force (p2).
3187  *
3188  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3190  *     ioctl;
3191  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3193  *     for reading;
3194  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195  *     of exec.
3196  */
perf_event_addr_filters_sync(struct perf_event * event)3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200 
3201 	if (!has_addr_filter(event))
3202 		return;
3203 
3204 	raw_spin_lock(&ifh->lock);
3205 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 		event->pmu->addr_filters_sync(event);
3207 		event->hw.addr_filters_gen = event->addr_filters_gen;
3208 	}
3209 	raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212 
_perf_event_refresh(struct perf_event * event,int refresh)3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	/*
3216 	 * not supported on inherited events
3217 	 */
3218 	if (event->attr.inherit || !is_sampling_event(event))
3219 		return -EINVAL;
3220 
3221 	atomic_add(refresh, &event->event_limit);
3222 	_perf_event_enable(event);
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * See perf_event_disable()
3229  */
perf_event_refresh(struct perf_event * event,int refresh)3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232 	struct perf_event_context *ctx;
3233 	int ret;
3234 
3235 	ctx = perf_event_ctx_lock(event);
3236 	ret = _perf_event_refresh(event, refresh);
3237 	perf_event_ctx_unlock(event, ctx);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 					 struct perf_event_attr *attr)
3245 {
3246 	int err;
3247 
3248 	_perf_event_disable(bp);
3249 
3250 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3251 
3252 	if (!bp->attr.disabled)
3253 		_perf_event_enable(bp);
3254 
3255 	return err;
3256 }
3257 
3258 /*
3259  * Copy event-type-independent attributes that may be modified.
3260  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 					const struct perf_event_attr *from)
3263 {
3264 	to->sig_data = from->sig_data;
3265 }
3266 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3267 static int perf_event_modify_attr(struct perf_event *event,
3268 				  struct perf_event_attr *attr)
3269 {
3270 	int (*func)(struct perf_event *, struct perf_event_attr *);
3271 	struct perf_event *child;
3272 	int err;
3273 
3274 	if (event->attr.type != attr->type)
3275 		return -EINVAL;
3276 
3277 	switch (event->attr.type) {
3278 	case PERF_TYPE_BREAKPOINT:
3279 		func = perf_event_modify_breakpoint;
3280 		break;
3281 	default:
3282 		/* Place holder for future additions. */
3283 		return -EOPNOTSUPP;
3284 	}
3285 
3286 	WARN_ON_ONCE(event->ctx->parent_ctx);
3287 
3288 	mutex_lock(&event->child_mutex);
3289 	/*
3290 	 * Event-type-independent attributes must be copied before event-type
3291 	 * modification, which will validate that final attributes match the
3292 	 * source attributes after all relevant attributes have been copied.
3293 	 */
3294 	perf_event_modify_copy_attr(&event->attr, attr);
3295 	err = func(event, attr);
3296 	if (err)
3297 		goto out;
3298 	list_for_each_entry(child, &event->child_list, child_list) {
3299 		perf_event_modify_copy_attr(&child->attr, attr);
3300 		err = func(child, attr);
3301 		if (err)
3302 			goto out;
3303 	}
3304 out:
3305 	mutex_unlock(&event->child_mutex);
3306 	return err;
3307 }
3308 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 				enum event_type_t event_type)
3311 {
3312 	struct perf_event_context *ctx = pmu_ctx->ctx;
3313 	struct perf_event *event, *tmp;
3314 	struct pmu *pmu = pmu_ctx->pmu;
3315 
3316 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 		struct perf_cpu_pmu_context *cpc;
3318 
3319 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 		cpc->task_epc = NULL;
3322 	}
3323 
3324 	if (!(event_type & EVENT_ALL))
3325 		return;
3326 
3327 	perf_pmu_disable(pmu);
3328 	if (event_type & EVENT_PINNED) {
3329 		list_for_each_entry_safe(event, tmp,
3330 					 &pmu_ctx->pinned_active,
3331 					 active_list)
3332 			group_sched_out(event, ctx);
3333 	}
3334 
3335 	if (event_type & EVENT_FLEXIBLE) {
3336 		list_for_each_entry_safe(event, tmp,
3337 					 &pmu_ctx->flexible_active,
3338 					 active_list)
3339 			group_sched_out(event, ctx);
3340 		/*
3341 		 * Since we cleared EVENT_FLEXIBLE, also clear
3342 		 * rotate_necessary, is will be reset by
3343 		 * ctx_flexible_sched_in() when needed.
3344 		 */
3345 		pmu_ctx->rotate_necessary = 0;
3346 	}
3347 	perf_pmu_enable(pmu);
3348 }
3349 
3350 /*
3351  * Be very careful with the @pmu argument since this will change ctx state.
3352  * The @pmu argument works for ctx_resched(), because that is symmetric in
3353  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354  *
3355  * However, if you were to be asymmetrical, you could end up with messed up
3356  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357  * be active.
3358  */
3359 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 	struct perf_event_pmu_context *pmu_ctx;
3364 	int is_active = ctx->is_active;
3365 	bool cgroup = event_type & EVENT_CGROUP;
3366 
3367 	event_type &= ~EVENT_CGROUP;
3368 
3369 	lockdep_assert_held(&ctx->lock);
3370 
3371 	if (likely(!ctx->nr_events)) {
3372 		/*
3373 		 * See __perf_remove_from_context().
3374 		 */
3375 		WARN_ON_ONCE(ctx->is_active);
3376 		if (ctx->task)
3377 			WARN_ON_ONCE(cpuctx->task_ctx);
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * Always update time if it was set; not only when it changes.
3383 	 * Otherwise we can 'forget' to update time for any but the last
3384 	 * context we sched out. For example:
3385 	 *
3386 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3388 	 *
3389 	 * would only update time for the pinned events.
3390 	 */
3391 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392 
3393 	/*
3394 	 * CPU-release for the below ->is_active store,
3395 	 * see __load_acquire() in perf_event_time_now()
3396 	 */
3397 	barrier();
3398 	ctx->is_active &= ~event_type;
3399 
3400 	if (!(ctx->is_active & EVENT_ALL)) {
3401 		/*
3402 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3404 		 */
3405 		if (ctx->is_active & EVENT_FROZEN)
3406 			ctx->is_active &= EVENT_TIME_FROZEN;
3407 		else
3408 			ctx->is_active = 0;
3409 	}
3410 
3411 	if (ctx->task) {
3412 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 		if (!(ctx->is_active & EVENT_ALL))
3414 			cpuctx->task_ctx = NULL;
3415 	}
3416 
3417 	is_active ^= ctx->is_active; /* changed bits */
3418 
3419 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422 
3423 /*
3424  * Test whether two contexts are equivalent, i.e. whether they have both been
3425  * cloned from the same version of the same context.
3426  *
3427  * Equivalence is measured using a generation number in the context that is
3428  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429  * and list_del_event().
3430  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3431 static int context_equiv(struct perf_event_context *ctx1,
3432 			 struct perf_event_context *ctx2)
3433 {
3434 	lockdep_assert_held(&ctx1->lock);
3435 	lockdep_assert_held(&ctx2->lock);
3436 
3437 	/* Pinning disables the swap optimization */
3438 	if (ctx1->pin_count || ctx2->pin_count)
3439 		return 0;
3440 
3441 	/* If ctx1 is the parent of ctx2 */
3442 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 		return 1;
3444 
3445 	/* If ctx2 is the parent of ctx1 */
3446 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 		return 1;
3448 
3449 	/*
3450 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 	 * hierarchy, see perf_event_init_context().
3452 	 */
3453 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 			ctx1->parent_gen == ctx2->parent_gen)
3455 		return 1;
3456 
3457 	/* Unmatched */
3458 	return 0;
3459 }
3460 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 				     struct perf_event *next_event)
3463 {
3464 	u64 value;
3465 
3466 	if (!event->attr.inherit_stat)
3467 		return;
3468 
3469 	/*
3470 	 * Update the event value, we cannot use perf_event_read()
3471 	 * because we're in the middle of a context switch and have IRQs
3472 	 * disabled, which upsets smp_call_function_single(), however
3473 	 * we know the event must be on the current CPU, therefore we
3474 	 * don't need to use it.
3475 	 */
3476 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 		event->pmu->read(event);
3478 
3479 	perf_event_update_time(event);
3480 
3481 	/*
3482 	 * In order to keep per-task stats reliable we need to flip the event
3483 	 * values when we flip the contexts.
3484 	 */
3485 	value = local64_read(&next_event->count);
3486 	value = local64_xchg(&event->count, value);
3487 	local64_set(&next_event->count, value);
3488 
3489 	swap(event->total_time_enabled, next_event->total_time_enabled);
3490 	swap(event->total_time_running, next_event->total_time_running);
3491 
3492 	/*
3493 	 * Since we swizzled the values, update the user visible data too.
3494 	 */
3495 	perf_event_update_userpage(event);
3496 	perf_event_update_userpage(next_event);
3497 }
3498 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 				   struct perf_event_context *next_ctx)
3501 {
3502 	struct perf_event *event, *next_event;
3503 
3504 	if (!ctx->nr_stat)
3505 		return;
3506 
3507 	update_context_time(ctx);
3508 
3509 	event = list_first_entry(&ctx->event_list,
3510 				   struct perf_event, event_entry);
3511 
3512 	next_event = list_first_entry(&next_ctx->event_list,
3513 					struct perf_event, event_entry);
3514 
3515 	while (&event->event_entry != &ctx->event_list &&
3516 	       &next_event->event_entry != &next_ctx->event_list) {
3517 
3518 		__perf_event_sync_stat(event, next_event);
3519 
3520 		event = list_next_entry(event, event_entry);
3521 		next_event = list_next_entry(next_event, event_entry);
3522 	}
3523 }
3524 
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3526 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3527 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3528 	     !list_entry_is_head(pos1, head1, member) &&		\
3529 	     !list_entry_is_head(pos2, head2, member);			\
3530 	     pos1 = list_next_entry(pos1, member),			\
3531 	     pos2 = list_next_entry(pos2, member))
3532 
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 					  struct perf_event_context *next_ctx)
3535 {
3536 	struct perf_event_pmu_context *prev_epc, *next_epc;
3537 
3538 	if (!prev_ctx->nr_task_data)
3539 		return;
3540 
3541 	double_list_for_each_entry(prev_epc, next_epc,
3542 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 				   pmu_ctx_entry) {
3544 
3545 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 			continue;
3547 
3548 		/*
3549 		 * PMU specific parts of task perf context can require
3550 		 * additional synchronization. As an example of such
3551 		 * synchronization see implementation details of Intel
3552 		 * LBR call stack data profiling;
3553 		 */
3554 		if (prev_epc->pmu->swap_task_ctx)
3555 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 		else
3557 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558 	}
3559 }
3560 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563 	struct perf_event_pmu_context *pmu_ctx;
3564 	struct perf_cpu_pmu_context *cpc;
3565 
3566 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568 
3569 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571 	}
3572 }
3573 
3574 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577 	struct perf_event_context *ctx = task->perf_event_ctxp;
3578 	struct perf_event_context *next_ctx;
3579 	struct perf_event_context *parent, *next_parent;
3580 	int do_switch = 1;
3581 
3582 	if (likely(!ctx))
3583 		return;
3584 
3585 	rcu_read_lock();
3586 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 	if (!next_ctx)
3588 		goto unlock;
3589 
3590 	parent = rcu_dereference(ctx->parent_ctx);
3591 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3592 
3593 	/* If neither context have a parent context; they cannot be clones. */
3594 	if (!parent && !next_parent)
3595 		goto unlock;
3596 
3597 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598 		/*
3599 		 * Looks like the two contexts are clones, so we might be
3600 		 * able to optimize the context switch.  We lock both
3601 		 * contexts and check that they are clones under the
3602 		 * lock (including re-checking that neither has been
3603 		 * uncloned in the meantime).  It doesn't matter which
3604 		 * order we take the locks because no other cpu could
3605 		 * be trying to lock both of these tasks.
3606 		 */
3607 		raw_spin_lock(&ctx->lock);
3608 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 		if (context_equiv(ctx, next_ctx)) {
3610 
3611 			perf_ctx_disable(ctx, false);
3612 
3613 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 			if (local_read(&ctx->nr_no_switch_fast) ||
3615 			    local_read(&next_ctx->nr_no_switch_fast)) {
3616 				/*
3617 				 * Must not swap out ctx when there's pending
3618 				 * events that rely on the ctx->task relation.
3619 				 *
3620 				 * Likewise, when a context contains inherit +
3621 				 * SAMPLE_READ events they should be switched
3622 				 * out using the slow path so that they are
3623 				 * treated as if they were distinct contexts.
3624 				 */
3625 				raw_spin_unlock(&next_ctx->lock);
3626 				rcu_read_unlock();
3627 				goto inside_switch;
3628 			}
3629 
3630 			WRITE_ONCE(ctx->task, next);
3631 			WRITE_ONCE(next_ctx->task, task);
3632 
3633 			perf_ctx_sched_task_cb(ctx, false);
3634 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3635 
3636 			perf_ctx_enable(ctx, false);
3637 
3638 			/*
3639 			 * RCU_INIT_POINTER here is safe because we've not
3640 			 * modified the ctx and the above modification of
3641 			 * ctx->task and ctx->task_ctx_data are immaterial
3642 			 * since those values are always verified under
3643 			 * ctx->lock which we're now holding.
3644 			 */
3645 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647 
3648 			do_switch = 0;
3649 
3650 			perf_event_sync_stat(ctx, next_ctx);
3651 		}
3652 		raw_spin_unlock(&next_ctx->lock);
3653 		raw_spin_unlock(&ctx->lock);
3654 	}
3655 unlock:
3656 	rcu_read_unlock();
3657 
3658 	if (do_switch) {
3659 		raw_spin_lock(&ctx->lock);
3660 		perf_ctx_disable(ctx, false);
3661 
3662 inside_switch:
3663 		perf_ctx_sched_task_cb(ctx, false);
3664 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665 
3666 		perf_ctx_enable(ctx, false);
3667 		raw_spin_unlock(&ctx->lock);
3668 	}
3669 }
3670 
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673 
perf_sched_cb_dec(struct pmu * pmu)3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677 
3678 	this_cpu_dec(perf_sched_cb_usages);
3679 	barrier();
3680 
3681 	if (!--cpc->sched_cb_usage)
3682 		list_del(&cpc->sched_cb_entry);
3683 }
3684 
3685 
perf_sched_cb_inc(struct pmu * pmu)3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689 
3690 	if (!cpc->sched_cb_usage++)
3691 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692 
3693 	barrier();
3694 	this_cpu_inc(perf_sched_cb_usages);
3695 }
3696 
3697 /*
3698  * This function provides the context switch callback to the lower code
3699  * layer. It is invoked ONLY when the context switch callback is enabled.
3700  *
3701  * This callback is relevant even to per-cpu events; for example multi event
3702  * PEBS requires this to provide PID/TID information. This requires we flush
3703  * all queued PEBS records before we context switch to a new task.
3704  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 	struct pmu *pmu;
3709 
3710 	pmu = cpc->epc.pmu;
3711 
3712 	/* software PMUs will not have sched_task */
3713 	if (WARN_ON_ONCE(!pmu->sched_task))
3714 		return;
3715 
3716 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 	perf_pmu_disable(pmu);
3718 
3719 	pmu->sched_task(cpc->task_epc, sched_in);
3720 
3721 	perf_pmu_enable(pmu);
3722 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 				struct task_struct *next,
3727 				bool sched_in)
3728 {
3729 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 	struct perf_cpu_pmu_context *cpc;
3731 
3732 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 	if (prev == next || cpuctx->task_ctx)
3734 		return;
3735 
3736 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 		__perf_pmu_sched_task(cpc, sched_in);
3738 }
3739 
3740 static void perf_event_switch(struct task_struct *task,
3741 			      struct task_struct *next_prev, bool sched_in);
3742 
3743 /*
3744  * Called from scheduler to remove the events of the current task,
3745  * with interrupts disabled.
3746  *
3747  * We stop each event and update the event value in event->count.
3748  *
3749  * This does not protect us against NMI, but disable()
3750  * sets the disabled bit in the control field of event _before_
3751  * accessing the event control register. If a NMI hits, then it will
3752  * not restart the event.
3753  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 				 struct task_struct *next)
3756 {
3757 	if (__this_cpu_read(perf_sched_cb_usages))
3758 		perf_pmu_sched_task(task, next, false);
3759 
3760 	if (atomic_read(&nr_switch_events))
3761 		perf_event_switch(task, next, false);
3762 
3763 	perf_event_context_sched_out(task, next);
3764 
3765 	/*
3766 	 * if cgroup events exist on this CPU, then we need
3767 	 * to check if we have to switch out PMU state.
3768 	 * cgroup event are system-wide mode only
3769 	 */
3770 	perf_cgroup_switch(next);
3771 }
3772 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775 	const struct perf_event *le = *(const struct perf_event **)l;
3776 	const struct perf_event *re = *(const struct perf_event **)r;
3777 
3778 	return le->group_index < re->group_index;
3779 }
3780 
3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3782 
3783 static const struct min_heap_callbacks perf_min_heap = {
3784 	.less = perf_less_group_idx,
3785 	.swp = NULL,
3786 };
3787 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3789 {
3790 	struct perf_event **itrs = heap->data;
3791 
3792 	if (event) {
3793 		itrs[heap->nr] = event;
3794 		heap->nr++;
3795 	}
3796 }
3797 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3799 {
3800 	struct perf_cpu_pmu_context *cpc;
3801 
3802 	if (!pmu_ctx->ctx->task)
3803 		return;
3804 
3805 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3806 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3807 	cpc->task_epc = pmu_ctx;
3808 }
3809 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3810 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3811 				struct perf_event_groups *groups, int cpu,
3812 				struct pmu *pmu,
3813 				int (*func)(struct perf_event *, void *),
3814 				void *data)
3815 {
3816 #ifdef CONFIG_CGROUP_PERF
3817 	struct cgroup_subsys_state *css = NULL;
3818 #endif
3819 	struct perf_cpu_context *cpuctx = NULL;
3820 	/* Space for per CPU and/or any CPU event iterators. */
3821 	struct perf_event *itrs[2];
3822 	struct perf_event_min_heap event_heap;
3823 	struct perf_event **evt;
3824 	int ret;
3825 
3826 	if (pmu->filter && pmu->filter(pmu, cpu))
3827 		return 0;
3828 
3829 	if (!ctx->task) {
3830 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3831 		event_heap = (struct perf_event_min_heap){
3832 			.data = cpuctx->heap,
3833 			.nr = 0,
3834 			.size = cpuctx->heap_size,
3835 		};
3836 
3837 		lockdep_assert_held(&cpuctx->ctx.lock);
3838 
3839 #ifdef CONFIG_CGROUP_PERF
3840 		if (cpuctx->cgrp)
3841 			css = &cpuctx->cgrp->css;
3842 #endif
3843 	} else {
3844 		event_heap = (struct perf_event_min_heap){
3845 			.data = itrs,
3846 			.nr = 0,
3847 			.size = ARRAY_SIZE(itrs),
3848 		};
3849 		/* Events not within a CPU context may be on any CPU. */
3850 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3851 	}
3852 	evt = event_heap.data;
3853 
3854 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3855 
3856 #ifdef CONFIG_CGROUP_PERF
3857 	for (; css; css = css->parent)
3858 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3859 #endif
3860 
3861 	if (event_heap.nr) {
3862 		__link_epc((*evt)->pmu_ctx);
3863 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3864 	}
3865 
3866 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3867 
3868 	while (event_heap.nr) {
3869 		ret = func(*evt, data);
3870 		if (ret)
3871 			return ret;
3872 
3873 		*evt = perf_event_groups_next(*evt, pmu);
3874 		if (*evt)
3875 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3876 		else
3877 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3878 	}
3879 
3880 	return 0;
3881 }
3882 
3883 /*
3884  * Because the userpage is strictly per-event (there is no concept of context,
3885  * so there cannot be a context indirection), every userpage must be updated
3886  * when context time starts :-(
3887  *
3888  * IOW, we must not miss EVENT_TIME edges.
3889  */
event_update_userpage(struct perf_event * event)3890 static inline bool event_update_userpage(struct perf_event *event)
3891 {
3892 	if (likely(!atomic_read(&event->mmap_count)))
3893 		return false;
3894 
3895 	perf_event_update_time(event);
3896 	perf_event_update_userpage(event);
3897 
3898 	return true;
3899 }
3900 
group_update_userpage(struct perf_event * group_event)3901 static inline void group_update_userpage(struct perf_event *group_event)
3902 {
3903 	struct perf_event *event;
3904 
3905 	if (!event_update_userpage(group_event))
3906 		return;
3907 
3908 	for_each_sibling_event(event, group_event)
3909 		event_update_userpage(event);
3910 }
3911 
merge_sched_in(struct perf_event * event,void * data)3912 static int merge_sched_in(struct perf_event *event, void *data)
3913 {
3914 	struct perf_event_context *ctx = event->ctx;
3915 	int *can_add_hw = data;
3916 
3917 	if (event->state <= PERF_EVENT_STATE_OFF)
3918 		return 0;
3919 
3920 	if (!event_filter_match(event))
3921 		return 0;
3922 
3923 	if (group_can_go_on(event, *can_add_hw)) {
3924 		if (!group_sched_in(event, ctx))
3925 			list_add_tail(&event->active_list, get_event_list(event));
3926 	}
3927 
3928 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3929 		*can_add_hw = 0;
3930 		if (event->attr.pinned) {
3931 			perf_cgroup_event_disable(event, ctx);
3932 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3933 		} else {
3934 			struct perf_cpu_pmu_context *cpc;
3935 
3936 			event->pmu_ctx->rotate_necessary = 1;
3937 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3938 			perf_mux_hrtimer_restart(cpc);
3939 			group_update_userpage(event);
3940 		}
3941 	}
3942 
3943 	return 0;
3944 }
3945 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3946 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3947 				struct perf_event_groups *groups,
3948 				struct pmu *pmu)
3949 {
3950 	int can_add_hw = 1;
3951 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3952 			   merge_sched_in, &can_add_hw);
3953 }
3954 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3956 			       enum event_type_t event_type)
3957 {
3958 	struct perf_event_context *ctx = pmu_ctx->ctx;
3959 
3960 	if (event_type & EVENT_PINNED)
3961 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3962 	if (event_type & EVENT_FLEXIBLE)
3963 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3964 }
3965 
3966 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3968 {
3969 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3970 	struct perf_event_pmu_context *pmu_ctx;
3971 	int is_active = ctx->is_active;
3972 	bool cgroup = event_type & EVENT_CGROUP;
3973 
3974 	event_type &= ~EVENT_CGROUP;
3975 
3976 	lockdep_assert_held(&ctx->lock);
3977 
3978 	if (likely(!ctx->nr_events))
3979 		return;
3980 
3981 	if (!(is_active & EVENT_TIME)) {
3982 		/* start ctx time */
3983 		__update_context_time(ctx, false);
3984 		perf_cgroup_set_timestamp(cpuctx);
3985 		/*
3986 		 * CPU-release for the below ->is_active store,
3987 		 * see __load_acquire() in perf_event_time_now()
3988 		 */
3989 		barrier();
3990 	}
3991 
3992 	ctx->is_active |= (event_type | EVENT_TIME);
3993 	if (ctx->task) {
3994 		if (!(is_active & EVENT_ALL))
3995 			cpuctx->task_ctx = ctx;
3996 		else
3997 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3998 	}
3999 
4000 	is_active ^= ctx->is_active; /* changed bits */
4001 
4002 	/*
4003 	 * First go through the list and put on any pinned groups
4004 	 * in order to give them the best chance of going on.
4005 	 */
4006 	if (is_active & EVENT_PINNED) {
4007 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4008 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4009 	}
4010 
4011 	/* Then walk through the lower prio flexible groups */
4012 	if (is_active & EVENT_FLEXIBLE) {
4013 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4014 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4015 	}
4016 }
4017 
perf_event_context_sched_in(struct task_struct * task)4018 static void perf_event_context_sched_in(struct task_struct *task)
4019 {
4020 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4021 	struct perf_event_context *ctx;
4022 
4023 	rcu_read_lock();
4024 	ctx = rcu_dereference(task->perf_event_ctxp);
4025 	if (!ctx)
4026 		goto rcu_unlock;
4027 
4028 	if (cpuctx->task_ctx == ctx) {
4029 		perf_ctx_lock(cpuctx, ctx);
4030 		perf_ctx_disable(ctx, false);
4031 
4032 		perf_ctx_sched_task_cb(ctx, true);
4033 
4034 		perf_ctx_enable(ctx, false);
4035 		perf_ctx_unlock(cpuctx, ctx);
4036 		goto rcu_unlock;
4037 	}
4038 
4039 	perf_ctx_lock(cpuctx, ctx);
4040 	/*
4041 	 * We must check ctx->nr_events while holding ctx->lock, such
4042 	 * that we serialize against perf_install_in_context().
4043 	 */
4044 	if (!ctx->nr_events)
4045 		goto unlock;
4046 
4047 	perf_ctx_disable(ctx, false);
4048 	/*
4049 	 * We want to keep the following priority order:
4050 	 * cpu pinned (that don't need to move), task pinned,
4051 	 * cpu flexible, task flexible.
4052 	 *
4053 	 * However, if task's ctx is not carrying any pinned
4054 	 * events, no need to flip the cpuctx's events around.
4055 	 */
4056 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4057 		perf_ctx_disable(&cpuctx->ctx, false);
4058 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4059 	}
4060 
4061 	perf_event_sched_in(cpuctx, ctx, NULL);
4062 
4063 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4064 
4065 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4066 		perf_ctx_enable(&cpuctx->ctx, false);
4067 
4068 	perf_ctx_enable(ctx, false);
4069 
4070 unlock:
4071 	perf_ctx_unlock(cpuctx, ctx);
4072 rcu_unlock:
4073 	rcu_read_unlock();
4074 }
4075 
4076 /*
4077  * Called from scheduler to add the events of the current task
4078  * with interrupts disabled.
4079  *
4080  * We restore the event value and then enable it.
4081  *
4082  * This does not protect us against NMI, but enable()
4083  * sets the enabled bit in the control field of event _before_
4084  * accessing the event control register. If a NMI hits, then it will
4085  * keep the event running.
4086  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4087 void __perf_event_task_sched_in(struct task_struct *prev,
4088 				struct task_struct *task)
4089 {
4090 	perf_event_context_sched_in(task);
4091 
4092 	if (atomic_read(&nr_switch_events))
4093 		perf_event_switch(task, prev, true);
4094 
4095 	if (__this_cpu_read(perf_sched_cb_usages))
4096 		perf_pmu_sched_task(prev, task, true);
4097 }
4098 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4100 {
4101 	u64 frequency = event->attr.sample_freq;
4102 	u64 sec = NSEC_PER_SEC;
4103 	u64 divisor, dividend;
4104 
4105 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4106 
4107 	count_fls = fls64(count);
4108 	nsec_fls = fls64(nsec);
4109 	frequency_fls = fls64(frequency);
4110 	sec_fls = 30;
4111 
4112 	/*
4113 	 * We got @count in @nsec, with a target of sample_freq HZ
4114 	 * the target period becomes:
4115 	 *
4116 	 *             @count * 10^9
4117 	 * period = -------------------
4118 	 *          @nsec * sample_freq
4119 	 *
4120 	 */
4121 
4122 	/*
4123 	 * Reduce accuracy by one bit such that @a and @b converge
4124 	 * to a similar magnitude.
4125 	 */
4126 #define REDUCE_FLS(a, b)		\
4127 do {					\
4128 	if (a##_fls > b##_fls) {	\
4129 		a >>= 1;		\
4130 		a##_fls--;		\
4131 	} else {			\
4132 		b >>= 1;		\
4133 		b##_fls--;		\
4134 	}				\
4135 } while (0)
4136 
4137 	/*
4138 	 * Reduce accuracy until either term fits in a u64, then proceed with
4139 	 * the other, so that finally we can do a u64/u64 division.
4140 	 */
4141 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4142 		REDUCE_FLS(nsec, frequency);
4143 		REDUCE_FLS(sec, count);
4144 	}
4145 
4146 	if (count_fls + sec_fls > 64) {
4147 		divisor = nsec * frequency;
4148 
4149 		while (count_fls + sec_fls > 64) {
4150 			REDUCE_FLS(count, sec);
4151 			divisor >>= 1;
4152 		}
4153 
4154 		dividend = count * sec;
4155 	} else {
4156 		dividend = count * sec;
4157 
4158 		while (nsec_fls + frequency_fls > 64) {
4159 			REDUCE_FLS(nsec, frequency);
4160 			dividend >>= 1;
4161 		}
4162 
4163 		divisor = nsec * frequency;
4164 	}
4165 
4166 	if (!divisor)
4167 		return dividend;
4168 
4169 	return div64_u64(dividend, divisor);
4170 }
4171 
4172 static DEFINE_PER_CPU(int, perf_throttled_count);
4173 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4174 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4176 {
4177 	struct hw_perf_event *hwc = &event->hw;
4178 	s64 period, sample_period;
4179 	s64 delta;
4180 
4181 	period = perf_calculate_period(event, nsec, count);
4182 
4183 	delta = (s64)(period - hwc->sample_period);
4184 	if (delta >= 0)
4185 		delta += 7;
4186 	else
4187 		delta -= 7;
4188 	delta /= 8; /* low pass filter */
4189 
4190 	sample_period = hwc->sample_period + delta;
4191 
4192 	if (!sample_period)
4193 		sample_period = 1;
4194 
4195 	hwc->sample_period = sample_period;
4196 
4197 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4198 		if (disable)
4199 			event->pmu->stop(event, PERF_EF_UPDATE);
4200 
4201 		local64_set(&hwc->period_left, 0);
4202 
4203 		if (disable)
4204 			event->pmu->start(event, PERF_EF_RELOAD);
4205 	}
4206 }
4207 
perf_adjust_freq_unthr_events(struct list_head * event_list)4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4209 {
4210 	struct perf_event *event;
4211 	struct hw_perf_event *hwc;
4212 	u64 now, period = TICK_NSEC;
4213 	s64 delta;
4214 
4215 	list_for_each_entry(event, event_list, active_list) {
4216 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4217 			continue;
4218 
4219 		// XXX use visit thingy to avoid the -1,cpu match
4220 		if (!event_filter_match(event))
4221 			continue;
4222 
4223 		hwc = &event->hw;
4224 
4225 		if (hwc->interrupts == MAX_INTERRUPTS) {
4226 			hwc->interrupts = 0;
4227 			perf_log_throttle(event, 1);
4228 			if (!event->attr.freq || !event->attr.sample_freq)
4229 				event->pmu->start(event, 0);
4230 		}
4231 
4232 		if (!event->attr.freq || !event->attr.sample_freq)
4233 			continue;
4234 
4235 		/*
4236 		 * stop the event and update event->count
4237 		 */
4238 		event->pmu->stop(event, PERF_EF_UPDATE);
4239 
4240 		now = local64_read(&event->count);
4241 		delta = now - hwc->freq_count_stamp;
4242 		hwc->freq_count_stamp = now;
4243 
4244 		/*
4245 		 * restart the event
4246 		 * reload only if value has changed
4247 		 * we have stopped the event so tell that
4248 		 * to perf_adjust_period() to avoid stopping it
4249 		 * twice.
4250 		 */
4251 		if (delta > 0)
4252 			perf_adjust_period(event, period, delta, false);
4253 
4254 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4255 	}
4256 }
4257 
4258 /*
4259  * combine freq adjustment with unthrottling to avoid two passes over the
4260  * events. At the same time, make sure, having freq events does not change
4261  * the rate of unthrottling as that would introduce bias.
4262  */
4263 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4265 {
4266 	struct perf_event_pmu_context *pmu_ctx;
4267 
4268 	/*
4269 	 * only need to iterate over all events iff:
4270 	 * - context have events in frequency mode (needs freq adjust)
4271 	 * - there are events to unthrottle on this cpu
4272 	 */
4273 	if (!(ctx->nr_freq || unthrottle))
4274 		return;
4275 
4276 	raw_spin_lock(&ctx->lock);
4277 
4278 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4279 		if (!(pmu_ctx->nr_freq || unthrottle))
4280 			continue;
4281 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4282 			continue;
4283 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4284 			continue;
4285 
4286 		perf_pmu_disable(pmu_ctx->pmu);
4287 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4288 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4289 		perf_pmu_enable(pmu_ctx->pmu);
4290 	}
4291 
4292 	raw_spin_unlock(&ctx->lock);
4293 }
4294 
4295 /*
4296  * Move @event to the tail of the @ctx's elegible events.
4297  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4299 {
4300 	/*
4301 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4302 	 * disabled by the inheritance code.
4303 	 */
4304 	if (ctx->rotate_disable)
4305 		return;
4306 
4307 	perf_event_groups_delete(&ctx->flexible_groups, event);
4308 	perf_event_groups_insert(&ctx->flexible_groups, event);
4309 }
4310 
4311 /* pick an event from the flexible_groups to rotate */
4312 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4314 {
4315 	struct perf_event *event;
4316 	struct rb_node *node;
4317 	struct rb_root *tree;
4318 	struct __group_key key = {
4319 		.pmu = pmu_ctx->pmu,
4320 	};
4321 
4322 	/* pick the first active flexible event */
4323 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4324 					 struct perf_event, active_list);
4325 	if (event)
4326 		goto out;
4327 
4328 	/* if no active flexible event, pick the first event */
4329 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4330 
4331 	if (!pmu_ctx->ctx->task) {
4332 		key.cpu = smp_processor_id();
4333 
4334 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4335 		if (node)
4336 			event = __node_2_pe(node);
4337 		goto out;
4338 	}
4339 
4340 	key.cpu = -1;
4341 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 	if (node) {
4343 		event = __node_2_pe(node);
4344 		goto out;
4345 	}
4346 
4347 	key.cpu = smp_processor_id();
4348 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 	if (node)
4350 		event = __node_2_pe(node);
4351 
4352 out:
4353 	/*
4354 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4355 	 * finds there are unschedulable events, it will set it again.
4356 	 */
4357 	pmu_ctx->rotate_necessary = 0;
4358 
4359 	return event;
4360 }
4361 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4363 {
4364 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4365 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4366 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4367 	int cpu_rotate, task_rotate;
4368 	struct pmu *pmu;
4369 
4370 	/*
4371 	 * Since we run this from IRQ context, nobody can install new
4372 	 * events, thus the event count values are stable.
4373 	 */
4374 
4375 	cpu_epc = &cpc->epc;
4376 	pmu = cpu_epc->pmu;
4377 	task_epc = cpc->task_epc;
4378 
4379 	cpu_rotate = cpu_epc->rotate_necessary;
4380 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4381 
4382 	if (!(cpu_rotate || task_rotate))
4383 		return false;
4384 
4385 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4386 	perf_pmu_disable(pmu);
4387 
4388 	if (task_rotate)
4389 		task_event = ctx_event_to_rotate(task_epc);
4390 	if (cpu_rotate)
4391 		cpu_event = ctx_event_to_rotate(cpu_epc);
4392 
4393 	/*
4394 	 * As per the order given at ctx_resched() first 'pop' task flexible
4395 	 * and then, if needed CPU flexible.
4396 	 */
4397 	if (task_event || (task_epc && cpu_event)) {
4398 		update_context_time(task_epc->ctx);
4399 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4400 	}
4401 
4402 	if (cpu_event) {
4403 		update_context_time(&cpuctx->ctx);
4404 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4405 		rotate_ctx(&cpuctx->ctx, cpu_event);
4406 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4407 	}
4408 
4409 	if (task_event)
4410 		rotate_ctx(task_epc->ctx, task_event);
4411 
4412 	if (task_event || (task_epc && cpu_event))
4413 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4414 
4415 	perf_pmu_enable(pmu);
4416 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4417 
4418 	return true;
4419 }
4420 
perf_event_task_tick(void)4421 void perf_event_task_tick(void)
4422 {
4423 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4424 	struct perf_event_context *ctx;
4425 	int throttled;
4426 
4427 	lockdep_assert_irqs_disabled();
4428 
4429 	__this_cpu_inc(perf_throttled_seq);
4430 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4431 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4432 
4433 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4434 
4435 	rcu_read_lock();
4436 	ctx = rcu_dereference(current->perf_event_ctxp);
4437 	if (ctx)
4438 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4439 	rcu_read_unlock();
4440 }
4441 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4442 static int event_enable_on_exec(struct perf_event *event,
4443 				struct perf_event_context *ctx)
4444 {
4445 	if (!event->attr.enable_on_exec)
4446 		return 0;
4447 
4448 	event->attr.enable_on_exec = 0;
4449 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4450 		return 0;
4451 
4452 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4453 
4454 	return 1;
4455 }
4456 
4457 /*
4458  * Enable all of a task's events that have been marked enable-on-exec.
4459  * This expects task == current.
4460  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4462 {
4463 	struct perf_event_context *clone_ctx = NULL;
4464 	enum event_type_t event_type = 0;
4465 	struct perf_cpu_context *cpuctx;
4466 	struct perf_event *event;
4467 	unsigned long flags;
4468 	int enabled = 0;
4469 
4470 	local_irq_save(flags);
4471 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4472 		goto out;
4473 
4474 	if (!ctx->nr_events)
4475 		goto out;
4476 
4477 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4478 	perf_ctx_lock(cpuctx, ctx);
4479 	ctx_time_freeze(cpuctx, ctx);
4480 
4481 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4482 		enabled |= event_enable_on_exec(event, ctx);
4483 		event_type |= get_event_type(event);
4484 	}
4485 
4486 	/*
4487 	 * Unclone and reschedule this context if we enabled any event.
4488 	 */
4489 	if (enabled) {
4490 		clone_ctx = unclone_ctx(ctx);
4491 		ctx_resched(cpuctx, ctx, NULL, event_type);
4492 	}
4493 	perf_ctx_unlock(cpuctx, ctx);
4494 
4495 out:
4496 	local_irq_restore(flags);
4497 
4498 	if (clone_ctx)
4499 		put_ctx(clone_ctx);
4500 }
4501 
4502 static void perf_remove_from_owner(struct perf_event *event);
4503 static void perf_event_exit_event(struct perf_event *event,
4504 				  struct perf_event_context *ctx);
4505 
4506 /*
4507  * Removes all events from the current task that have been marked
4508  * remove-on-exec, and feeds their values back to parent events.
4509  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4511 {
4512 	struct perf_event_context *clone_ctx = NULL;
4513 	struct perf_event *event, *next;
4514 	unsigned long flags;
4515 	bool modified = false;
4516 
4517 	mutex_lock(&ctx->mutex);
4518 
4519 	if (WARN_ON_ONCE(ctx->task != current))
4520 		goto unlock;
4521 
4522 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4523 		if (!event->attr.remove_on_exec)
4524 			continue;
4525 
4526 		if (!is_kernel_event(event))
4527 			perf_remove_from_owner(event);
4528 
4529 		modified = true;
4530 
4531 		perf_event_exit_event(event, ctx);
4532 	}
4533 
4534 	raw_spin_lock_irqsave(&ctx->lock, flags);
4535 	if (modified)
4536 		clone_ctx = unclone_ctx(ctx);
4537 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4538 
4539 unlock:
4540 	mutex_unlock(&ctx->mutex);
4541 
4542 	if (clone_ctx)
4543 		put_ctx(clone_ctx);
4544 }
4545 
4546 struct perf_read_data {
4547 	struct perf_event *event;
4548 	bool group;
4549 	int ret;
4550 };
4551 
4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4553 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4555 {
4556 	int local_cpu = smp_processor_id();
4557 	u16 local_pkg, event_pkg;
4558 
4559 	if ((unsigned)event_cpu >= nr_cpu_ids)
4560 		return event_cpu;
4561 
4562 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4563 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4564 
4565 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4566 			return local_cpu;
4567 	}
4568 
4569 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4570 		event_pkg = topology_physical_package_id(event_cpu);
4571 		local_pkg = topology_physical_package_id(local_cpu);
4572 
4573 		if (event_pkg == local_pkg)
4574 			return local_cpu;
4575 	}
4576 
4577 	return event_cpu;
4578 }
4579 
4580 /*
4581  * Cross CPU call to read the hardware event
4582  */
__perf_event_read(void * info)4583 static void __perf_event_read(void *info)
4584 {
4585 	struct perf_read_data *data = info;
4586 	struct perf_event *sub, *event = data->event;
4587 	struct perf_event_context *ctx = event->ctx;
4588 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4589 	struct pmu *pmu = event->pmu;
4590 
4591 	/*
4592 	 * If this is a task context, we need to check whether it is
4593 	 * the current task context of this cpu.  If not it has been
4594 	 * scheduled out before the smp call arrived.  In that case
4595 	 * event->count would have been updated to a recent sample
4596 	 * when the event was scheduled out.
4597 	 */
4598 	if (ctx->task && cpuctx->task_ctx != ctx)
4599 		return;
4600 
4601 	raw_spin_lock(&ctx->lock);
4602 	ctx_time_update_event(ctx, event);
4603 
4604 	perf_event_update_time(event);
4605 	if (data->group)
4606 		perf_event_update_sibling_time(event);
4607 
4608 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4609 		goto unlock;
4610 
4611 	if (!data->group) {
4612 		pmu->read(event);
4613 		data->ret = 0;
4614 		goto unlock;
4615 	}
4616 
4617 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4618 
4619 	pmu->read(event);
4620 
4621 	for_each_sibling_event(sub, event) {
4622 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4623 			/*
4624 			 * Use sibling's PMU rather than @event's since
4625 			 * sibling could be on different (eg: software) PMU.
4626 			 */
4627 			sub->pmu->read(sub);
4628 		}
4629 	}
4630 
4631 	data->ret = pmu->commit_txn(pmu);
4632 
4633 unlock:
4634 	raw_spin_unlock(&ctx->lock);
4635 }
4636 
perf_event_count(struct perf_event * event,bool self)4637 static inline u64 perf_event_count(struct perf_event *event, bool self)
4638 {
4639 	if (self)
4640 		return local64_read(&event->count);
4641 
4642 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4643 }
4644 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4645 static void calc_timer_values(struct perf_event *event,
4646 				u64 *now,
4647 				u64 *enabled,
4648 				u64 *running)
4649 {
4650 	u64 ctx_time;
4651 
4652 	*now = perf_clock();
4653 	ctx_time = perf_event_time_now(event, *now);
4654 	__perf_update_times(event, ctx_time, enabled, running);
4655 }
4656 
4657 /*
4658  * NMI-safe method to read a local event, that is an event that
4659  * is:
4660  *   - either for the current task, or for this CPU
4661  *   - does not have inherit set, for inherited task events
4662  *     will not be local and we cannot read them atomically
4663  *   - must not have a pmu::count method
4664  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4665 int perf_event_read_local(struct perf_event *event, u64 *value,
4666 			  u64 *enabled, u64 *running)
4667 {
4668 	unsigned long flags;
4669 	int event_oncpu;
4670 	int event_cpu;
4671 	int ret = 0;
4672 
4673 	/*
4674 	 * Disabling interrupts avoids all counter scheduling (context
4675 	 * switches, timer based rotation and IPIs).
4676 	 */
4677 	local_irq_save(flags);
4678 
4679 	/*
4680 	 * It must not be an event with inherit set, we cannot read
4681 	 * all child counters from atomic context.
4682 	 */
4683 	if (event->attr.inherit) {
4684 		ret = -EOPNOTSUPP;
4685 		goto out;
4686 	}
4687 
4688 	/* If this is a per-task event, it must be for current */
4689 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4690 	    event->hw.target != current) {
4691 		ret = -EINVAL;
4692 		goto out;
4693 	}
4694 
4695 	/*
4696 	 * Get the event CPU numbers, and adjust them to local if the event is
4697 	 * a per-package event that can be read locally
4698 	 */
4699 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4700 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4701 
4702 	/* If this is a per-CPU event, it must be for this CPU */
4703 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4704 	    event_cpu != smp_processor_id()) {
4705 		ret = -EINVAL;
4706 		goto out;
4707 	}
4708 
4709 	/* If this is a pinned event it must be running on this CPU */
4710 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4711 		ret = -EBUSY;
4712 		goto out;
4713 	}
4714 
4715 	/*
4716 	 * If the event is currently on this CPU, its either a per-task event,
4717 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4718 	 * oncpu == -1).
4719 	 */
4720 	if (event_oncpu == smp_processor_id())
4721 		event->pmu->read(event);
4722 
4723 	*value = local64_read(&event->count);
4724 	if (enabled || running) {
4725 		u64 __enabled, __running, __now;
4726 
4727 		calc_timer_values(event, &__now, &__enabled, &__running);
4728 		if (enabled)
4729 			*enabled = __enabled;
4730 		if (running)
4731 			*running = __running;
4732 	}
4733 out:
4734 	local_irq_restore(flags);
4735 
4736 	return ret;
4737 }
4738 
perf_event_read(struct perf_event * event,bool group)4739 static int perf_event_read(struct perf_event *event, bool group)
4740 {
4741 	enum perf_event_state state = READ_ONCE(event->state);
4742 	int event_cpu, ret = 0;
4743 
4744 	/*
4745 	 * If event is enabled and currently active on a CPU, update the
4746 	 * value in the event structure:
4747 	 */
4748 again:
4749 	if (state == PERF_EVENT_STATE_ACTIVE) {
4750 		struct perf_read_data data;
4751 
4752 		/*
4753 		 * Orders the ->state and ->oncpu loads such that if we see
4754 		 * ACTIVE we must also see the right ->oncpu.
4755 		 *
4756 		 * Matches the smp_wmb() from event_sched_in().
4757 		 */
4758 		smp_rmb();
4759 
4760 		event_cpu = READ_ONCE(event->oncpu);
4761 		if ((unsigned)event_cpu >= nr_cpu_ids)
4762 			return 0;
4763 
4764 		data = (struct perf_read_data){
4765 			.event = event,
4766 			.group = group,
4767 			.ret = 0,
4768 		};
4769 
4770 		preempt_disable();
4771 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4772 
4773 		/*
4774 		 * Purposely ignore the smp_call_function_single() return
4775 		 * value.
4776 		 *
4777 		 * If event_cpu isn't a valid CPU it means the event got
4778 		 * scheduled out and that will have updated the event count.
4779 		 *
4780 		 * Therefore, either way, we'll have an up-to-date event count
4781 		 * after this.
4782 		 */
4783 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4784 		preempt_enable();
4785 		ret = data.ret;
4786 
4787 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4788 		struct perf_event_context *ctx = event->ctx;
4789 		unsigned long flags;
4790 
4791 		raw_spin_lock_irqsave(&ctx->lock, flags);
4792 		state = event->state;
4793 		if (state != PERF_EVENT_STATE_INACTIVE) {
4794 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795 			goto again;
4796 		}
4797 
4798 		/*
4799 		 * May read while context is not active (e.g., thread is
4800 		 * blocked), in that case we cannot update context time
4801 		 */
4802 		ctx_time_update_event(ctx, event);
4803 
4804 		perf_event_update_time(event);
4805 		if (group)
4806 			perf_event_update_sibling_time(event);
4807 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4808 	}
4809 
4810 	return ret;
4811 }
4812 
4813 /*
4814  * Initialize the perf_event context in a task_struct:
4815  */
__perf_event_init_context(struct perf_event_context * ctx)4816 static void __perf_event_init_context(struct perf_event_context *ctx)
4817 {
4818 	raw_spin_lock_init(&ctx->lock);
4819 	mutex_init(&ctx->mutex);
4820 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4821 	perf_event_groups_init(&ctx->pinned_groups);
4822 	perf_event_groups_init(&ctx->flexible_groups);
4823 	INIT_LIST_HEAD(&ctx->event_list);
4824 	refcount_set(&ctx->refcount, 1);
4825 }
4826 
4827 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4829 {
4830 	epc->pmu = pmu;
4831 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4832 	INIT_LIST_HEAD(&epc->pinned_active);
4833 	INIT_LIST_HEAD(&epc->flexible_active);
4834 	atomic_set(&epc->refcount, 1);
4835 }
4836 
4837 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4838 alloc_perf_context(struct task_struct *task)
4839 {
4840 	struct perf_event_context *ctx;
4841 
4842 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4843 	if (!ctx)
4844 		return NULL;
4845 
4846 	__perf_event_init_context(ctx);
4847 	if (task)
4848 		ctx->task = get_task_struct(task);
4849 
4850 	return ctx;
4851 }
4852 
4853 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4854 find_lively_task_by_vpid(pid_t vpid)
4855 {
4856 	struct task_struct *task;
4857 
4858 	rcu_read_lock();
4859 	if (!vpid)
4860 		task = current;
4861 	else
4862 		task = find_task_by_vpid(vpid);
4863 	if (task)
4864 		get_task_struct(task);
4865 	rcu_read_unlock();
4866 
4867 	if (!task)
4868 		return ERR_PTR(-ESRCH);
4869 
4870 	return task;
4871 }
4872 
4873 /*
4874  * Returns a matching context with refcount and pincount.
4875  */
4876 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4877 find_get_context(struct task_struct *task, struct perf_event *event)
4878 {
4879 	struct perf_event_context *ctx, *clone_ctx = NULL;
4880 	struct perf_cpu_context *cpuctx;
4881 	unsigned long flags;
4882 	int err;
4883 
4884 	if (!task) {
4885 		/* Must be root to operate on a CPU event: */
4886 		err = perf_allow_cpu(&event->attr);
4887 		if (err)
4888 			return ERR_PTR(err);
4889 
4890 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4891 		ctx = &cpuctx->ctx;
4892 		get_ctx(ctx);
4893 		raw_spin_lock_irqsave(&ctx->lock, flags);
4894 		++ctx->pin_count;
4895 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4896 
4897 		return ctx;
4898 	}
4899 
4900 	err = -EINVAL;
4901 retry:
4902 	ctx = perf_lock_task_context(task, &flags);
4903 	if (ctx) {
4904 		clone_ctx = unclone_ctx(ctx);
4905 		++ctx->pin_count;
4906 
4907 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4908 
4909 		if (clone_ctx)
4910 			put_ctx(clone_ctx);
4911 	} else {
4912 		ctx = alloc_perf_context(task);
4913 		err = -ENOMEM;
4914 		if (!ctx)
4915 			goto errout;
4916 
4917 		err = 0;
4918 		mutex_lock(&task->perf_event_mutex);
4919 		/*
4920 		 * If it has already passed perf_event_exit_task().
4921 		 * we must see PF_EXITING, it takes this mutex too.
4922 		 */
4923 		if (task->flags & PF_EXITING)
4924 			err = -ESRCH;
4925 		else if (task->perf_event_ctxp)
4926 			err = -EAGAIN;
4927 		else {
4928 			get_ctx(ctx);
4929 			++ctx->pin_count;
4930 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4931 		}
4932 		mutex_unlock(&task->perf_event_mutex);
4933 
4934 		if (unlikely(err)) {
4935 			put_ctx(ctx);
4936 
4937 			if (err == -EAGAIN)
4938 				goto retry;
4939 			goto errout;
4940 		}
4941 	}
4942 
4943 	return ctx;
4944 
4945 errout:
4946 	return ERR_PTR(err);
4947 }
4948 
4949 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4951 		     struct perf_event *event)
4952 {
4953 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4954 	void *task_ctx_data = NULL;
4955 
4956 	if (!ctx->task) {
4957 		/*
4958 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4959 		 * relies on the fact that find_get_pmu_context() cannot fail
4960 		 * for CPU contexts.
4961 		 */
4962 		struct perf_cpu_pmu_context *cpc;
4963 
4964 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4965 		epc = &cpc->epc;
4966 		raw_spin_lock_irq(&ctx->lock);
4967 		if (!epc->ctx) {
4968 			atomic_set(&epc->refcount, 1);
4969 			epc->embedded = 1;
4970 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4971 			epc->ctx = ctx;
4972 		} else {
4973 			WARN_ON_ONCE(epc->ctx != ctx);
4974 			atomic_inc(&epc->refcount);
4975 		}
4976 		raw_spin_unlock_irq(&ctx->lock);
4977 		return epc;
4978 	}
4979 
4980 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4981 	if (!new)
4982 		return ERR_PTR(-ENOMEM);
4983 
4984 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4985 		task_ctx_data = alloc_task_ctx_data(pmu);
4986 		if (!task_ctx_data) {
4987 			kfree(new);
4988 			return ERR_PTR(-ENOMEM);
4989 		}
4990 	}
4991 
4992 	__perf_init_event_pmu_context(new, pmu);
4993 
4994 	/*
4995 	 * XXX
4996 	 *
4997 	 * lockdep_assert_held(&ctx->mutex);
4998 	 *
4999 	 * can't because perf_event_init_task() doesn't actually hold the
5000 	 * child_ctx->mutex.
5001 	 */
5002 
5003 	raw_spin_lock_irq(&ctx->lock);
5004 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5005 		if (epc->pmu == pmu) {
5006 			WARN_ON_ONCE(epc->ctx != ctx);
5007 			atomic_inc(&epc->refcount);
5008 			goto found_epc;
5009 		}
5010 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5011 		if (!pos && epc->pmu->type > pmu->type)
5012 			pos = epc;
5013 	}
5014 
5015 	epc = new;
5016 	new = NULL;
5017 
5018 	if (!pos)
5019 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5020 	else
5021 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5022 
5023 	epc->ctx = ctx;
5024 
5025 found_epc:
5026 	if (task_ctx_data && !epc->task_ctx_data) {
5027 		epc->task_ctx_data = task_ctx_data;
5028 		task_ctx_data = NULL;
5029 		ctx->nr_task_data++;
5030 	}
5031 	raw_spin_unlock_irq(&ctx->lock);
5032 
5033 	free_task_ctx_data(pmu, task_ctx_data);
5034 	kfree(new);
5035 
5036 	return epc;
5037 }
5038 
get_pmu_ctx(struct perf_event_pmu_context * epc)5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5040 {
5041 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5042 }
5043 
free_epc_rcu(struct rcu_head * head)5044 static void free_epc_rcu(struct rcu_head *head)
5045 {
5046 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5047 
5048 	kfree(epc->task_ctx_data);
5049 	kfree(epc);
5050 }
5051 
put_pmu_ctx(struct perf_event_pmu_context * epc)5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5053 {
5054 	struct perf_event_context *ctx = epc->ctx;
5055 	unsigned long flags;
5056 
5057 	/*
5058 	 * XXX
5059 	 *
5060 	 * lockdep_assert_held(&ctx->mutex);
5061 	 *
5062 	 * can't because of the call-site in _free_event()/put_event()
5063 	 * which isn't always called under ctx->mutex.
5064 	 */
5065 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5066 		return;
5067 
5068 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5069 
5070 	list_del_init(&epc->pmu_ctx_entry);
5071 	epc->ctx = NULL;
5072 
5073 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5074 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5075 
5076 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077 
5078 	if (epc->embedded)
5079 		return;
5080 
5081 	call_rcu(&epc->rcu_head, free_epc_rcu);
5082 }
5083 
5084 static void perf_event_free_filter(struct perf_event *event);
5085 
free_event_rcu(struct rcu_head * head)5086 static void free_event_rcu(struct rcu_head *head)
5087 {
5088 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5089 
5090 	if (event->ns)
5091 		put_pid_ns(event->ns);
5092 	perf_event_free_filter(event);
5093 	kmem_cache_free(perf_event_cache, event);
5094 }
5095 
5096 static void ring_buffer_attach(struct perf_event *event,
5097 			       struct perf_buffer *rb);
5098 
detach_sb_event(struct perf_event * event)5099 static void detach_sb_event(struct perf_event *event)
5100 {
5101 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5102 
5103 	raw_spin_lock(&pel->lock);
5104 	list_del_rcu(&event->sb_list);
5105 	raw_spin_unlock(&pel->lock);
5106 }
5107 
is_sb_event(struct perf_event * event)5108 static bool is_sb_event(struct perf_event *event)
5109 {
5110 	struct perf_event_attr *attr = &event->attr;
5111 
5112 	if (event->parent)
5113 		return false;
5114 
5115 	if (event->attach_state & PERF_ATTACH_TASK)
5116 		return false;
5117 
5118 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5119 	    attr->comm || attr->comm_exec ||
5120 	    attr->task || attr->ksymbol ||
5121 	    attr->context_switch || attr->text_poke ||
5122 	    attr->bpf_event)
5123 		return true;
5124 	return false;
5125 }
5126 
unaccount_pmu_sb_event(struct perf_event * event)5127 static void unaccount_pmu_sb_event(struct perf_event *event)
5128 {
5129 	if (is_sb_event(event))
5130 		detach_sb_event(event);
5131 }
5132 
5133 #ifdef CONFIG_NO_HZ_FULL
5134 static DEFINE_SPINLOCK(nr_freq_lock);
5135 #endif
5136 
unaccount_freq_event_nohz(void)5137 static void unaccount_freq_event_nohz(void)
5138 {
5139 #ifdef CONFIG_NO_HZ_FULL
5140 	spin_lock(&nr_freq_lock);
5141 	if (atomic_dec_and_test(&nr_freq_events))
5142 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5143 	spin_unlock(&nr_freq_lock);
5144 #endif
5145 }
5146 
unaccount_freq_event(void)5147 static void unaccount_freq_event(void)
5148 {
5149 	if (tick_nohz_full_enabled())
5150 		unaccount_freq_event_nohz();
5151 	else
5152 		atomic_dec(&nr_freq_events);
5153 }
5154 
unaccount_event(struct perf_event * event)5155 static void unaccount_event(struct perf_event *event)
5156 {
5157 	bool dec = false;
5158 
5159 	if (event->parent)
5160 		return;
5161 
5162 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5163 		dec = true;
5164 	if (event->attr.mmap || event->attr.mmap_data)
5165 		atomic_dec(&nr_mmap_events);
5166 	if (event->attr.build_id)
5167 		atomic_dec(&nr_build_id_events);
5168 	if (event->attr.comm)
5169 		atomic_dec(&nr_comm_events);
5170 	if (event->attr.namespaces)
5171 		atomic_dec(&nr_namespaces_events);
5172 	if (event->attr.cgroup)
5173 		atomic_dec(&nr_cgroup_events);
5174 	if (event->attr.task)
5175 		atomic_dec(&nr_task_events);
5176 	if (event->attr.freq)
5177 		unaccount_freq_event();
5178 	if (event->attr.context_switch) {
5179 		dec = true;
5180 		atomic_dec(&nr_switch_events);
5181 	}
5182 	if (is_cgroup_event(event))
5183 		dec = true;
5184 	if (has_branch_stack(event))
5185 		dec = true;
5186 	if (event->attr.ksymbol)
5187 		atomic_dec(&nr_ksymbol_events);
5188 	if (event->attr.bpf_event)
5189 		atomic_dec(&nr_bpf_events);
5190 	if (event->attr.text_poke)
5191 		atomic_dec(&nr_text_poke_events);
5192 
5193 	if (dec) {
5194 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5195 			schedule_delayed_work(&perf_sched_work, HZ);
5196 	}
5197 
5198 	unaccount_pmu_sb_event(event);
5199 }
5200 
perf_sched_delayed(struct work_struct * work)5201 static void perf_sched_delayed(struct work_struct *work)
5202 {
5203 	mutex_lock(&perf_sched_mutex);
5204 	if (atomic_dec_and_test(&perf_sched_count))
5205 		static_branch_disable(&perf_sched_events);
5206 	mutex_unlock(&perf_sched_mutex);
5207 }
5208 
5209 /*
5210  * The following implement mutual exclusion of events on "exclusive" pmus
5211  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5212  * at a time, so we disallow creating events that might conflict, namely:
5213  *
5214  *  1) cpu-wide events in the presence of per-task events,
5215  *  2) per-task events in the presence of cpu-wide events,
5216  *  3) two matching events on the same perf_event_context.
5217  *
5218  * The former two cases are handled in the allocation path (perf_event_alloc(),
5219  * _free_event()), the latter -- before the first perf_install_in_context().
5220  */
exclusive_event_init(struct perf_event * event)5221 static int exclusive_event_init(struct perf_event *event)
5222 {
5223 	struct pmu *pmu = event->pmu;
5224 
5225 	if (!is_exclusive_pmu(pmu))
5226 		return 0;
5227 
5228 	/*
5229 	 * Prevent co-existence of per-task and cpu-wide events on the
5230 	 * same exclusive pmu.
5231 	 *
5232 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5233 	 * events on this "exclusive" pmu, positive means there are
5234 	 * per-task events.
5235 	 *
5236 	 * Since this is called in perf_event_alloc() path, event::ctx
5237 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5238 	 * to mean "per-task event", because unlike other attach states it
5239 	 * never gets cleared.
5240 	 */
5241 	if (event->attach_state & PERF_ATTACH_TASK) {
5242 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5243 			return -EBUSY;
5244 	} else {
5245 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5246 			return -EBUSY;
5247 	}
5248 
5249 	return 0;
5250 }
5251 
exclusive_event_destroy(struct perf_event * event)5252 static void exclusive_event_destroy(struct perf_event *event)
5253 {
5254 	struct pmu *pmu = event->pmu;
5255 
5256 	if (!is_exclusive_pmu(pmu))
5257 		return;
5258 
5259 	/* see comment in exclusive_event_init() */
5260 	if (event->attach_state & PERF_ATTACH_TASK)
5261 		atomic_dec(&pmu->exclusive_cnt);
5262 	else
5263 		atomic_inc(&pmu->exclusive_cnt);
5264 }
5265 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5267 {
5268 	if ((e1->pmu == e2->pmu) &&
5269 	    (e1->cpu == e2->cpu ||
5270 	     e1->cpu == -1 ||
5271 	     e2->cpu == -1))
5272 		return true;
5273 	return false;
5274 }
5275 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5276 static bool exclusive_event_installable(struct perf_event *event,
5277 					struct perf_event_context *ctx)
5278 {
5279 	struct perf_event *iter_event;
5280 	struct pmu *pmu = event->pmu;
5281 
5282 	lockdep_assert_held(&ctx->mutex);
5283 
5284 	if (!is_exclusive_pmu(pmu))
5285 		return true;
5286 
5287 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5288 		if (exclusive_event_match(iter_event, event))
5289 			return false;
5290 	}
5291 
5292 	return true;
5293 }
5294 
5295 static void perf_addr_filters_splice(struct perf_event *event,
5296 				       struct list_head *head);
5297 
perf_pending_task_sync(struct perf_event * event)5298 static void perf_pending_task_sync(struct perf_event *event)
5299 {
5300 	struct callback_head *head = &event->pending_task;
5301 
5302 	if (!event->pending_work)
5303 		return;
5304 	/*
5305 	 * If the task is queued to the current task's queue, we
5306 	 * obviously can't wait for it to complete. Simply cancel it.
5307 	 */
5308 	if (task_work_cancel(current, head)) {
5309 		event->pending_work = 0;
5310 		local_dec(&event->ctx->nr_no_switch_fast);
5311 		return;
5312 	}
5313 
5314 	/*
5315 	 * All accesses related to the event are within the same RCU section in
5316 	 * perf_pending_task(). The RCU grace period before the event is freed
5317 	 * will make sure all those accesses are complete by then.
5318 	 */
5319 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5320 }
5321 
_free_event(struct perf_event * event)5322 static void _free_event(struct perf_event *event)
5323 {
5324 	irq_work_sync(&event->pending_irq);
5325 	irq_work_sync(&event->pending_disable_irq);
5326 	perf_pending_task_sync(event);
5327 
5328 	unaccount_event(event);
5329 
5330 	security_perf_event_free(event);
5331 
5332 	if (event->rb) {
5333 		/*
5334 		 * Can happen when we close an event with re-directed output.
5335 		 *
5336 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5337 		 * over us; possibly making our ring_buffer_put() the last.
5338 		 */
5339 		mutex_lock(&event->mmap_mutex);
5340 		ring_buffer_attach(event, NULL);
5341 		mutex_unlock(&event->mmap_mutex);
5342 	}
5343 
5344 	if (is_cgroup_event(event))
5345 		perf_detach_cgroup(event);
5346 
5347 	if (!event->parent) {
5348 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5349 			put_callchain_buffers();
5350 	}
5351 
5352 	perf_event_free_bpf_prog(event);
5353 	perf_addr_filters_splice(event, NULL);
5354 	kfree(event->addr_filter_ranges);
5355 
5356 	if (event->destroy)
5357 		event->destroy(event);
5358 
5359 	/*
5360 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5361 	 * hw.target.
5362 	 */
5363 	if (event->hw.target)
5364 		put_task_struct(event->hw.target);
5365 
5366 	if (event->pmu_ctx)
5367 		put_pmu_ctx(event->pmu_ctx);
5368 
5369 	/*
5370 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5371 	 * all task references must be cleaned up.
5372 	 */
5373 	if (event->ctx)
5374 		put_ctx(event->ctx);
5375 
5376 	exclusive_event_destroy(event);
5377 	module_put(event->pmu->module);
5378 
5379 	call_rcu(&event->rcu_head, free_event_rcu);
5380 }
5381 
5382 /*
5383  * Used to free events which have a known refcount of 1, such as in error paths
5384  * where the event isn't exposed yet and inherited events.
5385  */
free_event(struct perf_event * event)5386 static void free_event(struct perf_event *event)
5387 {
5388 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5389 				"unexpected event refcount: %ld; ptr=%p\n",
5390 				atomic_long_read(&event->refcount), event)) {
5391 		/* leak to avoid use-after-free */
5392 		return;
5393 	}
5394 
5395 	_free_event(event);
5396 }
5397 
5398 /*
5399  * Remove user event from the owner task.
5400  */
perf_remove_from_owner(struct perf_event * event)5401 static void perf_remove_from_owner(struct perf_event *event)
5402 {
5403 	struct task_struct *owner;
5404 
5405 	rcu_read_lock();
5406 	/*
5407 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5408 	 * observe !owner it means the list deletion is complete and we can
5409 	 * indeed free this event, otherwise we need to serialize on
5410 	 * owner->perf_event_mutex.
5411 	 */
5412 	owner = READ_ONCE(event->owner);
5413 	if (owner) {
5414 		/*
5415 		 * Since delayed_put_task_struct() also drops the last
5416 		 * task reference we can safely take a new reference
5417 		 * while holding the rcu_read_lock().
5418 		 */
5419 		get_task_struct(owner);
5420 	}
5421 	rcu_read_unlock();
5422 
5423 	if (owner) {
5424 		/*
5425 		 * If we're here through perf_event_exit_task() we're already
5426 		 * holding ctx->mutex which would be an inversion wrt. the
5427 		 * normal lock order.
5428 		 *
5429 		 * However we can safely take this lock because its the child
5430 		 * ctx->mutex.
5431 		 */
5432 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5433 
5434 		/*
5435 		 * We have to re-check the event->owner field, if it is cleared
5436 		 * we raced with perf_event_exit_task(), acquiring the mutex
5437 		 * ensured they're done, and we can proceed with freeing the
5438 		 * event.
5439 		 */
5440 		if (event->owner) {
5441 			list_del_init(&event->owner_entry);
5442 			smp_store_release(&event->owner, NULL);
5443 		}
5444 		mutex_unlock(&owner->perf_event_mutex);
5445 		put_task_struct(owner);
5446 	}
5447 }
5448 
put_event(struct perf_event * event)5449 static void put_event(struct perf_event *event)
5450 {
5451 	if (!atomic_long_dec_and_test(&event->refcount))
5452 		return;
5453 
5454 	_free_event(event);
5455 }
5456 
5457 /*
5458  * Kill an event dead; while event:refcount will preserve the event
5459  * object, it will not preserve its functionality. Once the last 'user'
5460  * gives up the object, we'll destroy the thing.
5461  */
perf_event_release_kernel(struct perf_event * event)5462 int perf_event_release_kernel(struct perf_event *event)
5463 {
5464 	struct perf_event_context *ctx = event->ctx;
5465 	struct perf_event *child, *tmp;
5466 	LIST_HEAD(free_list);
5467 
5468 	/*
5469 	 * If we got here through err_alloc: free_event(event); we will not
5470 	 * have attached to a context yet.
5471 	 */
5472 	if (!ctx) {
5473 		WARN_ON_ONCE(event->attach_state &
5474 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5475 		goto no_ctx;
5476 	}
5477 
5478 	if (!is_kernel_event(event))
5479 		perf_remove_from_owner(event);
5480 
5481 	ctx = perf_event_ctx_lock(event);
5482 	WARN_ON_ONCE(ctx->parent_ctx);
5483 
5484 	/*
5485 	 * Mark this event as STATE_DEAD, there is no external reference to it
5486 	 * anymore.
5487 	 *
5488 	 * Anybody acquiring event->child_mutex after the below loop _must_
5489 	 * also see this, most importantly inherit_event() which will avoid
5490 	 * placing more children on the list.
5491 	 *
5492 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5493 	 * child events.
5494 	 */
5495 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5496 
5497 	perf_event_ctx_unlock(event, ctx);
5498 
5499 again:
5500 	mutex_lock(&event->child_mutex);
5501 	list_for_each_entry(child, &event->child_list, child_list) {
5502 		void *var = NULL;
5503 
5504 		/*
5505 		 * Cannot change, child events are not migrated, see the
5506 		 * comment with perf_event_ctx_lock_nested().
5507 		 */
5508 		ctx = READ_ONCE(child->ctx);
5509 		/*
5510 		 * Since child_mutex nests inside ctx::mutex, we must jump
5511 		 * through hoops. We start by grabbing a reference on the ctx.
5512 		 *
5513 		 * Since the event cannot get freed while we hold the
5514 		 * child_mutex, the context must also exist and have a !0
5515 		 * reference count.
5516 		 */
5517 		get_ctx(ctx);
5518 
5519 		/*
5520 		 * Now that we have a ctx ref, we can drop child_mutex, and
5521 		 * acquire ctx::mutex without fear of it going away. Then we
5522 		 * can re-acquire child_mutex.
5523 		 */
5524 		mutex_unlock(&event->child_mutex);
5525 		mutex_lock(&ctx->mutex);
5526 		mutex_lock(&event->child_mutex);
5527 
5528 		/*
5529 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5530 		 * state, if child is still the first entry, it didn't get freed
5531 		 * and we can continue doing so.
5532 		 */
5533 		tmp = list_first_entry_or_null(&event->child_list,
5534 					       struct perf_event, child_list);
5535 		if (tmp == child) {
5536 			perf_remove_from_context(child, DETACH_GROUP);
5537 			list_move(&child->child_list, &free_list);
5538 			/*
5539 			 * This matches the refcount bump in inherit_event();
5540 			 * this can't be the last reference.
5541 			 */
5542 			put_event(event);
5543 		} else {
5544 			var = &ctx->refcount;
5545 		}
5546 
5547 		mutex_unlock(&event->child_mutex);
5548 		mutex_unlock(&ctx->mutex);
5549 		put_ctx(ctx);
5550 
5551 		if (var) {
5552 			/*
5553 			 * If perf_event_free_task() has deleted all events from the
5554 			 * ctx while the child_mutex got released above, make sure to
5555 			 * notify about the preceding put_ctx().
5556 			 */
5557 			smp_mb(); /* pairs with wait_var_event() */
5558 			wake_up_var(var);
5559 		}
5560 		goto again;
5561 	}
5562 	mutex_unlock(&event->child_mutex);
5563 
5564 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5565 		void *var = &child->ctx->refcount;
5566 
5567 		list_del(&child->child_list);
5568 		free_event(child);
5569 
5570 		/*
5571 		 * Wake any perf_event_free_task() waiting for this event to be
5572 		 * freed.
5573 		 */
5574 		smp_mb(); /* pairs with wait_var_event() */
5575 		wake_up_var(var);
5576 	}
5577 
5578 no_ctx:
5579 	put_event(event); /* Must be the 'last' reference */
5580 	return 0;
5581 }
5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5583 
5584 /*
5585  * Called when the last reference to the file is gone.
5586  */
perf_release(struct inode * inode,struct file * file)5587 static int perf_release(struct inode *inode, struct file *file)
5588 {
5589 	perf_event_release_kernel(file->private_data);
5590 	return 0;
5591 }
5592 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5594 {
5595 	struct perf_event *child;
5596 	u64 total = 0;
5597 
5598 	*enabled = 0;
5599 	*running = 0;
5600 
5601 	mutex_lock(&event->child_mutex);
5602 
5603 	(void)perf_event_read(event, false);
5604 	total += perf_event_count(event, false);
5605 
5606 	*enabled += event->total_time_enabled +
5607 			atomic64_read(&event->child_total_time_enabled);
5608 	*running += event->total_time_running +
5609 			atomic64_read(&event->child_total_time_running);
5610 
5611 	list_for_each_entry(child, &event->child_list, child_list) {
5612 		(void)perf_event_read(child, false);
5613 		total += perf_event_count(child, false);
5614 		*enabled += child->total_time_enabled;
5615 		*running += child->total_time_running;
5616 	}
5617 	mutex_unlock(&event->child_mutex);
5618 
5619 	return total;
5620 }
5621 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5623 {
5624 	struct perf_event_context *ctx;
5625 	u64 count;
5626 
5627 	ctx = perf_event_ctx_lock(event);
5628 	count = __perf_event_read_value(event, enabled, running);
5629 	perf_event_ctx_unlock(event, ctx);
5630 
5631 	return count;
5632 }
5633 EXPORT_SYMBOL_GPL(perf_event_read_value);
5634 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5635 static int __perf_read_group_add(struct perf_event *leader,
5636 					u64 read_format, u64 *values)
5637 {
5638 	struct perf_event_context *ctx = leader->ctx;
5639 	struct perf_event *sub, *parent;
5640 	unsigned long flags;
5641 	int n = 1; /* skip @nr */
5642 	int ret;
5643 
5644 	ret = perf_event_read(leader, true);
5645 	if (ret)
5646 		return ret;
5647 
5648 	raw_spin_lock_irqsave(&ctx->lock, flags);
5649 	/*
5650 	 * Verify the grouping between the parent and child (inherited)
5651 	 * events is still in tact.
5652 	 *
5653 	 * Specifically:
5654 	 *  - leader->ctx->lock pins leader->sibling_list
5655 	 *  - parent->child_mutex pins parent->child_list
5656 	 *  - parent->ctx->mutex pins parent->sibling_list
5657 	 *
5658 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5659 	 * ctx->mutex), group destruction is not atomic between children, also
5660 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5661 	 * group.
5662 	 *
5663 	 * Therefore it is possible to have parent and child groups in a
5664 	 * different configuration and summing over such a beast makes no sense
5665 	 * what so ever.
5666 	 *
5667 	 * Reject this.
5668 	 */
5669 	parent = leader->parent;
5670 	if (parent &&
5671 	    (parent->group_generation != leader->group_generation ||
5672 	     parent->nr_siblings != leader->nr_siblings)) {
5673 		ret = -ECHILD;
5674 		goto unlock;
5675 	}
5676 
5677 	/*
5678 	 * Since we co-schedule groups, {enabled,running} times of siblings
5679 	 * will be identical to those of the leader, so we only publish one
5680 	 * set.
5681 	 */
5682 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5683 		values[n++] += leader->total_time_enabled +
5684 			atomic64_read(&leader->child_total_time_enabled);
5685 	}
5686 
5687 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5688 		values[n++] += leader->total_time_running +
5689 			atomic64_read(&leader->child_total_time_running);
5690 	}
5691 
5692 	/*
5693 	 * Write {count,id} tuples for every sibling.
5694 	 */
5695 	values[n++] += perf_event_count(leader, false);
5696 	if (read_format & PERF_FORMAT_ID)
5697 		values[n++] = primary_event_id(leader);
5698 	if (read_format & PERF_FORMAT_LOST)
5699 		values[n++] = atomic64_read(&leader->lost_samples);
5700 
5701 	for_each_sibling_event(sub, leader) {
5702 		values[n++] += perf_event_count(sub, false);
5703 		if (read_format & PERF_FORMAT_ID)
5704 			values[n++] = primary_event_id(sub);
5705 		if (read_format & PERF_FORMAT_LOST)
5706 			values[n++] = atomic64_read(&sub->lost_samples);
5707 	}
5708 
5709 unlock:
5710 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5711 	return ret;
5712 }
5713 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5714 static int perf_read_group(struct perf_event *event,
5715 				   u64 read_format, char __user *buf)
5716 {
5717 	struct perf_event *leader = event->group_leader, *child;
5718 	struct perf_event_context *ctx = leader->ctx;
5719 	int ret;
5720 	u64 *values;
5721 
5722 	lockdep_assert_held(&ctx->mutex);
5723 
5724 	values = kzalloc(event->read_size, GFP_KERNEL);
5725 	if (!values)
5726 		return -ENOMEM;
5727 
5728 	values[0] = 1 + leader->nr_siblings;
5729 
5730 	mutex_lock(&leader->child_mutex);
5731 
5732 	ret = __perf_read_group_add(leader, read_format, values);
5733 	if (ret)
5734 		goto unlock;
5735 
5736 	list_for_each_entry(child, &leader->child_list, child_list) {
5737 		ret = __perf_read_group_add(child, read_format, values);
5738 		if (ret)
5739 			goto unlock;
5740 	}
5741 
5742 	mutex_unlock(&leader->child_mutex);
5743 
5744 	ret = event->read_size;
5745 	if (copy_to_user(buf, values, event->read_size))
5746 		ret = -EFAULT;
5747 	goto out;
5748 
5749 unlock:
5750 	mutex_unlock(&leader->child_mutex);
5751 out:
5752 	kfree(values);
5753 	return ret;
5754 }
5755 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5756 static int perf_read_one(struct perf_event *event,
5757 				 u64 read_format, char __user *buf)
5758 {
5759 	u64 enabled, running;
5760 	u64 values[5];
5761 	int n = 0;
5762 
5763 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5764 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5765 		values[n++] = enabled;
5766 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5767 		values[n++] = running;
5768 	if (read_format & PERF_FORMAT_ID)
5769 		values[n++] = primary_event_id(event);
5770 	if (read_format & PERF_FORMAT_LOST)
5771 		values[n++] = atomic64_read(&event->lost_samples);
5772 
5773 	if (copy_to_user(buf, values, n * sizeof(u64)))
5774 		return -EFAULT;
5775 
5776 	return n * sizeof(u64);
5777 }
5778 
is_event_hup(struct perf_event * event)5779 static bool is_event_hup(struct perf_event *event)
5780 {
5781 	bool no_children;
5782 
5783 	if (event->state > PERF_EVENT_STATE_EXIT)
5784 		return false;
5785 
5786 	mutex_lock(&event->child_mutex);
5787 	no_children = list_empty(&event->child_list);
5788 	mutex_unlock(&event->child_mutex);
5789 	return no_children;
5790 }
5791 
5792 /*
5793  * Read the performance event - simple non blocking version for now
5794  */
5795 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5796 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5797 {
5798 	u64 read_format = event->attr.read_format;
5799 	int ret;
5800 
5801 	/*
5802 	 * Return end-of-file for a read on an event that is in
5803 	 * error state (i.e. because it was pinned but it couldn't be
5804 	 * scheduled on to the CPU at some point).
5805 	 */
5806 	if (event->state == PERF_EVENT_STATE_ERROR)
5807 		return 0;
5808 
5809 	if (count < event->read_size)
5810 		return -ENOSPC;
5811 
5812 	WARN_ON_ONCE(event->ctx->parent_ctx);
5813 	if (read_format & PERF_FORMAT_GROUP)
5814 		ret = perf_read_group(event, read_format, buf);
5815 	else
5816 		ret = perf_read_one(event, read_format, buf);
5817 
5818 	return ret;
5819 }
5820 
5821 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5823 {
5824 	struct perf_event *event = file->private_data;
5825 	struct perf_event_context *ctx;
5826 	int ret;
5827 
5828 	ret = security_perf_event_read(event);
5829 	if (ret)
5830 		return ret;
5831 
5832 	ctx = perf_event_ctx_lock(event);
5833 	ret = __perf_read(event, buf, count);
5834 	perf_event_ctx_unlock(event, ctx);
5835 
5836 	return ret;
5837 }
5838 
perf_poll(struct file * file,poll_table * wait)5839 static __poll_t perf_poll(struct file *file, poll_table *wait)
5840 {
5841 	struct perf_event *event = file->private_data;
5842 	struct perf_buffer *rb;
5843 	__poll_t events = EPOLLHUP;
5844 
5845 	poll_wait(file, &event->waitq, wait);
5846 
5847 	if (is_event_hup(event))
5848 		return events;
5849 
5850 	/*
5851 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5852 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5853 	 */
5854 	mutex_lock(&event->mmap_mutex);
5855 	rb = event->rb;
5856 	if (rb)
5857 		events = atomic_xchg(&rb->poll, 0);
5858 	mutex_unlock(&event->mmap_mutex);
5859 	return events;
5860 }
5861 
_perf_event_reset(struct perf_event * event)5862 static void _perf_event_reset(struct perf_event *event)
5863 {
5864 	(void)perf_event_read(event, false);
5865 	local64_set(&event->count, 0);
5866 	perf_event_update_userpage(event);
5867 }
5868 
5869 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5870 u64 perf_event_pause(struct perf_event *event, bool reset)
5871 {
5872 	struct perf_event_context *ctx;
5873 	u64 count;
5874 
5875 	ctx = perf_event_ctx_lock(event);
5876 	WARN_ON_ONCE(event->attr.inherit);
5877 	_perf_event_disable(event);
5878 	count = local64_read(&event->count);
5879 	if (reset)
5880 		local64_set(&event->count, 0);
5881 	perf_event_ctx_unlock(event, ctx);
5882 
5883 	return count;
5884 }
5885 EXPORT_SYMBOL_GPL(perf_event_pause);
5886 
5887 /*
5888  * Holding the top-level event's child_mutex means that any
5889  * descendant process that has inherited this event will block
5890  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5891  * task existence requirements of perf_event_enable/disable.
5892  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5893 static void perf_event_for_each_child(struct perf_event *event,
5894 					void (*func)(struct perf_event *))
5895 {
5896 	struct perf_event *child;
5897 
5898 	WARN_ON_ONCE(event->ctx->parent_ctx);
5899 
5900 	mutex_lock(&event->child_mutex);
5901 	func(event);
5902 	list_for_each_entry(child, &event->child_list, child_list)
5903 		func(child);
5904 	mutex_unlock(&event->child_mutex);
5905 }
5906 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5907 static void perf_event_for_each(struct perf_event *event,
5908 				  void (*func)(struct perf_event *))
5909 {
5910 	struct perf_event_context *ctx = event->ctx;
5911 	struct perf_event *sibling;
5912 
5913 	lockdep_assert_held(&ctx->mutex);
5914 
5915 	event = event->group_leader;
5916 
5917 	perf_event_for_each_child(event, func);
5918 	for_each_sibling_event(sibling, event)
5919 		perf_event_for_each_child(sibling, func);
5920 }
5921 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5922 static void __perf_event_period(struct perf_event *event,
5923 				struct perf_cpu_context *cpuctx,
5924 				struct perf_event_context *ctx,
5925 				void *info)
5926 {
5927 	u64 value = *((u64 *)info);
5928 	bool active;
5929 
5930 	if (event->attr.freq) {
5931 		event->attr.sample_freq = value;
5932 	} else {
5933 		event->attr.sample_period = value;
5934 		event->hw.sample_period = value;
5935 	}
5936 
5937 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5938 	if (active) {
5939 		perf_pmu_disable(event->pmu);
5940 		/*
5941 		 * We could be throttled; unthrottle now to avoid the tick
5942 		 * trying to unthrottle while we already re-started the event.
5943 		 */
5944 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5945 			event->hw.interrupts = 0;
5946 			perf_log_throttle(event, 1);
5947 		}
5948 		event->pmu->stop(event, PERF_EF_UPDATE);
5949 	}
5950 
5951 	local64_set(&event->hw.period_left, 0);
5952 
5953 	if (active) {
5954 		event->pmu->start(event, PERF_EF_RELOAD);
5955 		perf_pmu_enable(event->pmu);
5956 	}
5957 }
5958 
perf_event_check_period(struct perf_event * event,u64 value)5959 static int perf_event_check_period(struct perf_event *event, u64 value)
5960 {
5961 	return event->pmu->check_period(event, value);
5962 }
5963 
_perf_event_period(struct perf_event * event,u64 value)5964 static int _perf_event_period(struct perf_event *event, u64 value)
5965 {
5966 	if (!is_sampling_event(event))
5967 		return -EINVAL;
5968 
5969 	if (!value)
5970 		return -EINVAL;
5971 
5972 	if (event->attr.freq) {
5973 		if (value > sysctl_perf_event_sample_rate)
5974 			return -EINVAL;
5975 	} else {
5976 		if (perf_event_check_period(event, value))
5977 			return -EINVAL;
5978 		if (value & (1ULL << 63))
5979 			return -EINVAL;
5980 	}
5981 
5982 	event_function_call(event, __perf_event_period, &value);
5983 
5984 	return 0;
5985 }
5986 
perf_event_period(struct perf_event * event,u64 value)5987 int perf_event_period(struct perf_event *event, u64 value)
5988 {
5989 	struct perf_event_context *ctx;
5990 	int ret;
5991 
5992 	ctx = perf_event_ctx_lock(event);
5993 	ret = _perf_event_period(event, value);
5994 	perf_event_ctx_unlock(event, ctx);
5995 
5996 	return ret;
5997 }
5998 EXPORT_SYMBOL_GPL(perf_event_period);
5999 
6000 static const struct file_operations perf_fops;
6001 
is_perf_file(struct fd f)6002 static inline bool is_perf_file(struct fd f)
6003 {
6004 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6005 }
6006 
6007 static int perf_event_set_output(struct perf_event *event,
6008 				 struct perf_event *output_event);
6009 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6010 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6011 			  struct perf_event_attr *attr);
6012 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6013 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6014 {
6015 	void (*func)(struct perf_event *);
6016 	u32 flags = arg;
6017 
6018 	switch (cmd) {
6019 	case PERF_EVENT_IOC_ENABLE:
6020 		func = _perf_event_enable;
6021 		break;
6022 	case PERF_EVENT_IOC_DISABLE:
6023 		func = _perf_event_disable;
6024 		break;
6025 	case PERF_EVENT_IOC_RESET:
6026 		func = _perf_event_reset;
6027 		break;
6028 
6029 	case PERF_EVENT_IOC_REFRESH:
6030 		return _perf_event_refresh(event, arg);
6031 
6032 	case PERF_EVENT_IOC_PERIOD:
6033 	{
6034 		u64 value;
6035 
6036 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6037 			return -EFAULT;
6038 
6039 		return _perf_event_period(event, value);
6040 	}
6041 	case PERF_EVENT_IOC_ID:
6042 	{
6043 		u64 id = primary_event_id(event);
6044 
6045 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6046 			return -EFAULT;
6047 		return 0;
6048 	}
6049 
6050 	case PERF_EVENT_IOC_SET_OUTPUT:
6051 	{
6052 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6053 		struct perf_event *output_event = NULL;
6054 		if (arg != -1) {
6055 			if (!is_perf_file(output))
6056 				return -EBADF;
6057 			output_event = fd_file(output)->private_data;
6058 		}
6059 		return perf_event_set_output(event, output_event);
6060 	}
6061 
6062 	case PERF_EVENT_IOC_SET_FILTER:
6063 		return perf_event_set_filter(event, (void __user *)arg);
6064 
6065 	case PERF_EVENT_IOC_SET_BPF:
6066 	{
6067 		struct bpf_prog *prog;
6068 		int err;
6069 
6070 		prog = bpf_prog_get(arg);
6071 		if (IS_ERR(prog))
6072 			return PTR_ERR(prog);
6073 
6074 		err = perf_event_set_bpf_prog(event, prog, 0);
6075 		if (err) {
6076 			bpf_prog_put(prog);
6077 			return err;
6078 		}
6079 
6080 		return 0;
6081 	}
6082 
6083 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6084 		struct perf_buffer *rb;
6085 
6086 		rcu_read_lock();
6087 		rb = rcu_dereference(event->rb);
6088 		if (!rb || !rb->nr_pages) {
6089 			rcu_read_unlock();
6090 			return -EINVAL;
6091 		}
6092 		rb_toggle_paused(rb, !!arg);
6093 		rcu_read_unlock();
6094 		return 0;
6095 	}
6096 
6097 	case PERF_EVENT_IOC_QUERY_BPF:
6098 		return perf_event_query_prog_array(event, (void __user *)arg);
6099 
6100 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6101 		struct perf_event_attr new_attr;
6102 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6103 					 &new_attr);
6104 
6105 		if (err)
6106 			return err;
6107 
6108 		return perf_event_modify_attr(event,  &new_attr);
6109 	}
6110 	default:
6111 		return -ENOTTY;
6112 	}
6113 
6114 	if (flags & PERF_IOC_FLAG_GROUP)
6115 		perf_event_for_each(event, func);
6116 	else
6117 		perf_event_for_each_child(event, func);
6118 
6119 	return 0;
6120 }
6121 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6122 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6123 {
6124 	struct perf_event *event = file->private_data;
6125 	struct perf_event_context *ctx;
6126 	long ret;
6127 
6128 	/* Treat ioctl like writes as it is likely a mutating operation. */
6129 	ret = security_perf_event_write(event);
6130 	if (ret)
6131 		return ret;
6132 
6133 	ctx = perf_event_ctx_lock(event);
6134 	ret = _perf_ioctl(event, cmd, arg);
6135 	perf_event_ctx_unlock(event, ctx);
6136 
6137 	return ret;
6138 }
6139 
6140 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6141 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6142 				unsigned long arg)
6143 {
6144 	switch (_IOC_NR(cmd)) {
6145 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6146 	case _IOC_NR(PERF_EVENT_IOC_ID):
6147 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6148 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6149 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6150 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6151 			cmd &= ~IOCSIZE_MASK;
6152 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6153 		}
6154 		break;
6155 	}
6156 	return perf_ioctl(file, cmd, arg);
6157 }
6158 #else
6159 # define perf_compat_ioctl NULL
6160 #endif
6161 
perf_event_task_enable(void)6162 int perf_event_task_enable(void)
6163 {
6164 	struct perf_event_context *ctx;
6165 	struct perf_event *event;
6166 
6167 	mutex_lock(&current->perf_event_mutex);
6168 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6169 		ctx = perf_event_ctx_lock(event);
6170 		perf_event_for_each_child(event, _perf_event_enable);
6171 		perf_event_ctx_unlock(event, ctx);
6172 	}
6173 	mutex_unlock(&current->perf_event_mutex);
6174 
6175 	return 0;
6176 }
6177 
perf_event_task_disable(void)6178 int perf_event_task_disable(void)
6179 {
6180 	struct perf_event_context *ctx;
6181 	struct perf_event *event;
6182 
6183 	mutex_lock(&current->perf_event_mutex);
6184 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6185 		ctx = perf_event_ctx_lock(event);
6186 		perf_event_for_each_child(event, _perf_event_disable);
6187 		perf_event_ctx_unlock(event, ctx);
6188 	}
6189 	mutex_unlock(&current->perf_event_mutex);
6190 
6191 	return 0;
6192 }
6193 
perf_event_index(struct perf_event * event)6194 static int perf_event_index(struct perf_event *event)
6195 {
6196 	if (event->hw.state & PERF_HES_STOPPED)
6197 		return 0;
6198 
6199 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6200 		return 0;
6201 
6202 	return event->pmu->event_idx(event);
6203 }
6204 
perf_event_init_userpage(struct perf_event * event)6205 static void perf_event_init_userpage(struct perf_event *event)
6206 {
6207 	struct perf_event_mmap_page *userpg;
6208 	struct perf_buffer *rb;
6209 
6210 	rcu_read_lock();
6211 	rb = rcu_dereference(event->rb);
6212 	if (!rb)
6213 		goto unlock;
6214 
6215 	userpg = rb->user_page;
6216 
6217 	/* Allow new userspace to detect that bit 0 is deprecated */
6218 	userpg->cap_bit0_is_deprecated = 1;
6219 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6220 	userpg->data_offset = PAGE_SIZE;
6221 	userpg->data_size = perf_data_size(rb);
6222 
6223 unlock:
6224 	rcu_read_unlock();
6225 }
6226 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6227 void __weak arch_perf_update_userpage(
6228 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6229 {
6230 }
6231 
6232 /*
6233  * Callers need to ensure there can be no nesting of this function, otherwise
6234  * the seqlock logic goes bad. We can not serialize this because the arch
6235  * code calls this from NMI context.
6236  */
perf_event_update_userpage(struct perf_event * event)6237 void perf_event_update_userpage(struct perf_event *event)
6238 {
6239 	struct perf_event_mmap_page *userpg;
6240 	struct perf_buffer *rb;
6241 	u64 enabled, running, now;
6242 
6243 	rcu_read_lock();
6244 	rb = rcu_dereference(event->rb);
6245 	if (!rb)
6246 		goto unlock;
6247 
6248 	/*
6249 	 * compute total_time_enabled, total_time_running
6250 	 * based on snapshot values taken when the event
6251 	 * was last scheduled in.
6252 	 *
6253 	 * we cannot simply called update_context_time()
6254 	 * because of locking issue as we can be called in
6255 	 * NMI context
6256 	 */
6257 	calc_timer_values(event, &now, &enabled, &running);
6258 
6259 	userpg = rb->user_page;
6260 	/*
6261 	 * Disable preemption to guarantee consistent time stamps are stored to
6262 	 * the user page.
6263 	 */
6264 	preempt_disable();
6265 	++userpg->lock;
6266 	barrier();
6267 	userpg->index = perf_event_index(event);
6268 	userpg->offset = perf_event_count(event, false);
6269 	if (userpg->index)
6270 		userpg->offset -= local64_read(&event->hw.prev_count);
6271 
6272 	userpg->time_enabled = enabled +
6273 			atomic64_read(&event->child_total_time_enabled);
6274 
6275 	userpg->time_running = running +
6276 			atomic64_read(&event->child_total_time_running);
6277 
6278 	arch_perf_update_userpage(event, userpg, now);
6279 
6280 	barrier();
6281 	++userpg->lock;
6282 	preempt_enable();
6283 unlock:
6284 	rcu_read_unlock();
6285 }
6286 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6287 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6288 static void ring_buffer_attach(struct perf_event *event,
6289 			       struct perf_buffer *rb)
6290 {
6291 	struct perf_buffer *old_rb = NULL;
6292 	unsigned long flags;
6293 
6294 	WARN_ON_ONCE(event->parent);
6295 
6296 	if (event->rb) {
6297 		/*
6298 		 * Should be impossible, we set this when removing
6299 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6300 		 */
6301 		WARN_ON_ONCE(event->rcu_pending);
6302 
6303 		old_rb = event->rb;
6304 		spin_lock_irqsave(&old_rb->event_lock, flags);
6305 		list_del_rcu(&event->rb_entry);
6306 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6307 
6308 		event->rcu_batches = get_state_synchronize_rcu();
6309 		event->rcu_pending = 1;
6310 	}
6311 
6312 	if (rb) {
6313 		if (event->rcu_pending) {
6314 			cond_synchronize_rcu(event->rcu_batches);
6315 			event->rcu_pending = 0;
6316 		}
6317 
6318 		spin_lock_irqsave(&rb->event_lock, flags);
6319 		list_add_rcu(&event->rb_entry, &rb->event_list);
6320 		spin_unlock_irqrestore(&rb->event_lock, flags);
6321 	}
6322 
6323 	/*
6324 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6325 	 * before swizzling the event::rb pointer; if it's getting
6326 	 * unmapped, its aux_mmap_count will be 0 and it won't
6327 	 * restart. See the comment in __perf_pmu_output_stop().
6328 	 *
6329 	 * Data will inevitably be lost when set_output is done in
6330 	 * mid-air, but then again, whoever does it like this is
6331 	 * not in for the data anyway.
6332 	 */
6333 	if (has_aux(event))
6334 		perf_event_stop(event, 0);
6335 
6336 	rcu_assign_pointer(event->rb, rb);
6337 
6338 	if (old_rb) {
6339 		ring_buffer_put(old_rb);
6340 		/*
6341 		 * Since we detached before setting the new rb, so that we
6342 		 * could attach the new rb, we could have missed a wakeup.
6343 		 * Provide it now.
6344 		 */
6345 		wake_up_all(&event->waitq);
6346 	}
6347 }
6348 
ring_buffer_wakeup(struct perf_event * event)6349 static void ring_buffer_wakeup(struct perf_event *event)
6350 {
6351 	struct perf_buffer *rb;
6352 
6353 	if (event->parent)
6354 		event = event->parent;
6355 
6356 	rcu_read_lock();
6357 	rb = rcu_dereference(event->rb);
6358 	if (rb) {
6359 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6360 			wake_up_all(&event->waitq);
6361 	}
6362 	rcu_read_unlock();
6363 }
6364 
ring_buffer_get(struct perf_event * event)6365 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6366 {
6367 	struct perf_buffer *rb;
6368 
6369 	if (event->parent)
6370 		event = event->parent;
6371 
6372 	rcu_read_lock();
6373 	rb = rcu_dereference(event->rb);
6374 	if (rb) {
6375 		if (!refcount_inc_not_zero(&rb->refcount))
6376 			rb = NULL;
6377 	}
6378 	rcu_read_unlock();
6379 
6380 	return rb;
6381 }
6382 
ring_buffer_put(struct perf_buffer * rb)6383 void ring_buffer_put(struct perf_buffer *rb)
6384 {
6385 	if (!refcount_dec_and_test(&rb->refcount))
6386 		return;
6387 
6388 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6389 
6390 	call_rcu(&rb->rcu_head, rb_free_rcu);
6391 }
6392 
perf_mmap_open(struct vm_area_struct * vma)6393 static void perf_mmap_open(struct vm_area_struct *vma)
6394 {
6395 	struct perf_event *event = vma->vm_file->private_data;
6396 
6397 	atomic_inc(&event->mmap_count);
6398 	atomic_inc(&event->rb->mmap_count);
6399 
6400 	if (vma->vm_pgoff)
6401 		atomic_inc(&event->rb->aux_mmap_count);
6402 
6403 	if (event->pmu->event_mapped)
6404 		event->pmu->event_mapped(event, vma->vm_mm);
6405 }
6406 
6407 static void perf_pmu_output_stop(struct perf_event *event);
6408 
6409 /*
6410  * A buffer can be mmap()ed multiple times; either directly through the same
6411  * event, or through other events by use of perf_event_set_output().
6412  *
6413  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6414  * the buffer here, where we still have a VM context. This means we need
6415  * to detach all events redirecting to us.
6416  */
perf_mmap_close(struct vm_area_struct * vma)6417 static void perf_mmap_close(struct vm_area_struct *vma)
6418 {
6419 	struct perf_event *event = vma->vm_file->private_data;
6420 	struct perf_buffer *rb = ring_buffer_get(event);
6421 	struct user_struct *mmap_user = rb->mmap_user;
6422 	int mmap_locked = rb->mmap_locked;
6423 	unsigned long size = perf_data_size(rb);
6424 	bool detach_rest = false;
6425 
6426 	if (event->pmu->event_unmapped)
6427 		event->pmu->event_unmapped(event, vma->vm_mm);
6428 
6429 	/*
6430 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6431 	 * to avoid complications.
6432 	 */
6433 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6434 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6435 		/*
6436 		 * Stop all AUX events that are writing to this buffer,
6437 		 * so that we can free its AUX pages and corresponding PMU
6438 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6439 		 * they won't start any more (see perf_aux_output_begin()).
6440 		 */
6441 		perf_pmu_output_stop(event);
6442 
6443 		/* now it's safe to free the pages */
6444 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6445 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6446 
6447 		/* this has to be the last one */
6448 		rb_free_aux(rb);
6449 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6450 
6451 		mutex_unlock(&rb->aux_mutex);
6452 	}
6453 
6454 	if (atomic_dec_and_test(&rb->mmap_count))
6455 		detach_rest = true;
6456 
6457 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6458 		goto out_put;
6459 
6460 	ring_buffer_attach(event, NULL);
6461 	mutex_unlock(&event->mmap_mutex);
6462 
6463 	/* If there's still other mmap()s of this buffer, we're done. */
6464 	if (!detach_rest)
6465 		goto out_put;
6466 
6467 	/*
6468 	 * No other mmap()s, detach from all other events that might redirect
6469 	 * into the now unreachable buffer. Somewhat complicated by the
6470 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6471 	 */
6472 again:
6473 	rcu_read_lock();
6474 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6475 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6476 			/*
6477 			 * This event is en-route to free_event() which will
6478 			 * detach it and remove it from the list.
6479 			 */
6480 			continue;
6481 		}
6482 		rcu_read_unlock();
6483 
6484 		mutex_lock(&event->mmap_mutex);
6485 		/*
6486 		 * Check we didn't race with perf_event_set_output() which can
6487 		 * swizzle the rb from under us while we were waiting to
6488 		 * acquire mmap_mutex.
6489 		 *
6490 		 * If we find a different rb; ignore this event, a next
6491 		 * iteration will no longer find it on the list. We have to
6492 		 * still restart the iteration to make sure we're not now
6493 		 * iterating the wrong list.
6494 		 */
6495 		if (event->rb == rb)
6496 			ring_buffer_attach(event, NULL);
6497 
6498 		mutex_unlock(&event->mmap_mutex);
6499 		put_event(event);
6500 
6501 		/*
6502 		 * Restart the iteration; either we're on the wrong list or
6503 		 * destroyed its integrity by doing a deletion.
6504 		 */
6505 		goto again;
6506 	}
6507 	rcu_read_unlock();
6508 
6509 	/*
6510 	 * It could be there's still a few 0-ref events on the list; they'll
6511 	 * get cleaned up by free_event() -- they'll also still have their
6512 	 * ref on the rb and will free it whenever they are done with it.
6513 	 *
6514 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6515 	 * undo the VM accounting.
6516 	 */
6517 
6518 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6519 			&mmap_user->locked_vm);
6520 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6521 	free_uid(mmap_user);
6522 
6523 out_put:
6524 	ring_buffer_put(rb); /* could be last */
6525 }
6526 
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6527 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6528 {
6529 	/* The first page is the user control page, others are read-only. */
6530 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6531 }
6532 
6533 static const struct vm_operations_struct perf_mmap_vmops = {
6534 	.open		= perf_mmap_open,
6535 	.close		= perf_mmap_close, /* non mergeable */
6536 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6537 };
6538 
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6539 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6540 {
6541 	unsigned long nr_pages = vma_pages(vma);
6542 	int err = 0;
6543 	unsigned long pagenum;
6544 
6545 	/*
6546 	 * We map this as a VM_PFNMAP VMA.
6547 	 *
6548 	 * This is not ideal as this is designed broadly for mappings of PFNs
6549 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6550 	 * !pfn_valid(pfn).
6551 	 *
6552 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6553 	 * which would more ideally be mapped using vm_insert_page() or a
6554 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6555 	 *
6556 	 * However this won't work here, because:
6557 	 *
6558 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6559 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6560 	 *    indicate that this should be mapped CoW in order that the
6561 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6562 	 *    rest R/O as desired.
6563 	 *
6564 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6565 	 *    vm_normal_page() returning a struct page * pointer, which means
6566 	 *    vm_ops->page_mkwrite() will be invoked rather than
6567 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6568 	 *    to work around retry logic in the fault handler, however this
6569 	 *    field is no longer allowed to be used within struct page.
6570 	 *
6571 	 * 3. Having a struct page * made available in the fault logic also
6572 	 *    means that the page gets put on the rmap and becomes
6573 	 *    inappropriately accessible and subject to map and ref counting.
6574 	 *
6575 	 * Ideally we would have a mechanism that could explicitly express our
6576 	 * desires, but this is not currently the case, so we instead use
6577 	 * VM_PFNMAP.
6578 	 *
6579 	 * We manage the lifetime of these mappings with internal refcounts (see
6580 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6581 	 * this mapping is maintained correctly.
6582 	 */
6583 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6584 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6585 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6586 
6587 		if (page == NULL) {
6588 			err = -EINVAL;
6589 			break;
6590 		}
6591 
6592 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6593 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6594 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6595 		if (err)
6596 			break;
6597 	}
6598 
6599 #ifdef CONFIG_MMU
6600 	/* Clear any partial mappings on error. */
6601 	if (err)
6602 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6603 #endif
6604 
6605 	return err;
6606 }
6607 
perf_mmap(struct file * file,struct vm_area_struct * vma)6608 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6609 {
6610 	struct perf_event *event = file->private_data;
6611 	unsigned long user_locked, user_lock_limit;
6612 	struct user_struct *user = current_user();
6613 	struct mutex *aux_mutex = NULL;
6614 	struct perf_buffer *rb = NULL;
6615 	unsigned long locked, lock_limit;
6616 	unsigned long vma_size;
6617 	unsigned long nr_pages;
6618 	long user_extra = 0, extra = 0;
6619 	int ret = 0, flags = 0;
6620 
6621 	/*
6622 	 * Don't allow mmap() of inherited per-task counters. This would
6623 	 * create a performance issue due to all children writing to the
6624 	 * same rb.
6625 	 */
6626 	if (event->cpu == -1 && event->attr.inherit)
6627 		return -EINVAL;
6628 
6629 	if (!(vma->vm_flags & VM_SHARED))
6630 		return -EINVAL;
6631 
6632 	ret = security_perf_event_read(event);
6633 	if (ret)
6634 		return ret;
6635 
6636 	vma_size = vma->vm_end - vma->vm_start;
6637 
6638 	if (vma->vm_pgoff == 0) {
6639 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6640 	} else {
6641 		/*
6642 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6643 		 * mapped, all subsequent mappings should have the same size
6644 		 * and offset. Must be above the normal perf buffer.
6645 		 */
6646 		u64 aux_offset, aux_size;
6647 
6648 		if (!event->rb)
6649 			return -EINVAL;
6650 
6651 		nr_pages = vma_size / PAGE_SIZE;
6652 		if (nr_pages > INT_MAX)
6653 			return -ENOMEM;
6654 
6655 		mutex_lock(&event->mmap_mutex);
6656 		ret = -EINVAL;
6657 
6658 		rb = event->rb;
6659 		if (!rb)
6660 			goto aux_unlock;
6661 
6662 		aux_mutex = &rb->aux_mutex;
6663 		mutex_lock(aux_mutex);
6664 
6665 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6666 		aux_size = READ_ONCE(rb->user_page->aux_size);
6667 
6668 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6669 			goto aux_unlock;
6670 
6671 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6672 			goto aux_unlock;
6673 
6674 		/* already mapped with a different offset */
6675 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6676 			goto aux_unlock;
6677 
6678 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6679 			goto aux_unlock;
6680 
6681 		/* already mapped with a different size */
6682 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6683 			goto aux_unlock;
6684 
6685 		if (!is_power_of_2(nr_pages))
6686 			goto aux_unlock;
6687 
6688 		if (!atomic_inc_not_zero(&rb->mmap_count))
6689 			goto aux_unlock;
6690 
6691 		if (rb_has_aux(rb)) {
6692 			atomic_inc(&rb->aux_mmap_count);
6693 			ret = 0;
6694 			goto unlock;
6695 		}
6696 
6697 		atomic_set(&rb->aux_mmap_count, 1);
6698 		user_extra = nr_pages;
6699 
6700 		goto accounting;
6701 	}
6702 
6703 	/*
6704 	 * If we have rb pages ensure they're a power-of-two number, so we
6705 	 * can do bitmasks instead of modulo.
6706 	 */
6707 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6708 		return -EINVAL;
6709 
6710 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6711 		return -EINVAL;
6712 
6713 	WARN_ON_ONCE(event->ctx->parent_ctx);
6714 again:
6715 	mutex_lock(&event->mmap_mutex);
6716 	if (event->rb) {
6717 		if (data_page_nr(event->rb) != nr_pages) {
6718 			ret = -EINVAL;
6719 			goto unlock;
6720 		}
6721 
6722 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6723 			/*
6724 			 * Raced against perf_mmap_close(); remove the
6725 			 * event and try again.
6726 			 */
6727 			ring_buffer_attach(event, NULL);
6728 			mutex_unlock(&event->mmap_mutex);
6729 			goto again;
6730 		}
6731 
6732 		/* We need the rb to map pages. */
6733 		rb = event->rb;
6734 		goto unlock;
6735 	}
6736 
6737 	user_extra = nr_pages + 1;
6738 
6739 accounting:
6740 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6741 
6742 	/*
6743 	 * Increase the limit linearly with more CPUs:
6744 	 */
6745 	user_lock_limit *= num_online_cpus();
6746 
6747 	user_locked = atomic_long_read(&user->locked_vm);
6748 
6749 	/*
6750 	 * sysctl_perf_event_mlock may have changed, so that
6751 	 *     user->locked_vm > user_lock_limit
6752 	 */
6753 	if (user_locked > user_lock_limit)
6754 		user_locked = user_lock_limit;
6755 	user_locked += user_extra;
6756 
6757 	if (user_locked > user_lock_limit) {
6758 		/*
6759 		 * charge locked_vm until it hits user_lock_limit;
6760 		 * charge the rest from pinned_vm
6761 		 */
6762 		extra = user_locked - user_lock_limit;
6763 		user_extra -= extra;
6764 	}
6765 
6766 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6767 	lock_limit >>= PAGE_SHIFT;
6768 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6769 
6770 	if ((locked > lock_limit) && perf_is_paranoid() &&
6771 		!capable(CAP_IPC_LOCK)) {
6772 		ret = -EPERM;
6773 		goto unlock;
6774 	}
6775 
6776 	WARN_ON(!rb && event->rb);
6777 
6778 	if (vma->vm_flags & VM_WRITE)
6779 		flags |= RING_BUFFER_WRITABLE;
6780 
6781 	if (!rb) {
6782 		rb = rb_alloc(nr_pages,
6783 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6784 			      event->cpu, flags);
6785 
6786 		if (!rb) {
6787 			ret = -ENOMEM;
6788 			goto unlock;
6789 		}
6790 
6791 		atomic_set(&rb->mmap_count, 1);
6792 		rb->mmap_user = get_current_user();
6793 		rb->mmap_locked = extra;
6794 
6795 		ring_buffer_attach(event, rb);
6796 
6797 		perf_event_update_time(event);
6798 		perf_event_init_userpage(event);
6799 		perf_event_update_userpage(event);
6800 	} else {
6801 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6802 				   event->attr.aux_watermark, flags);
6803 		if (!ret)
6804 			rb->aux_mmap_locked = extra;
6805 	}
6806 
6807 unlock:
6808 	if (!ret) {
6809 		atomic_long_add(user_extra, &user->locked_vm);
6810 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6811 
6812 		atomic_inc(&event->mmap_count);
6813 	} else if (rb) {
6814 		atomic_dec(&rb->mmap_count);
6815 	}
6816 aux_unlock:
6817 	if (aux_mutex)
6818 		mutex_unlock(aux_mutex);
6819 	mutex_unlock(&event->mmap_mutex);
6820 
6821 	/*
6822 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6823 	 * vma.
6824 	 */
6825 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6826 	vma->vm_ops = &perf_mmap_vmops;
6827 
6828 	if (!ret)
6829 		ret = map_range(rb, vma);
6830 
6831 	if (event->pmu->event_mapped)
6832 		event->pmu->event_mapped(event, vma->vm_mm);
6833 
6834 	return ret;
6835 }
6836 
perf_fasync(int fd,struct file * filp,int on)6837 static int perf_fasync(int fd, struct file *filp, int on)
6838 {
6839 	struct inode *inode = file_inode(filp);
6840 	struct perf_event *event = filp->private_data;
6841 	int retval;
6842 
6843 	inode_lock(inode);
6844 	retval = fasync_helper(fd, filp, on, &event->fasync);
6845 	inode_unlock(inode);
6846 
6847 	if (retval < 0)
6848 		return retval;
6849 
6850 	return 0;
6851 }
6852 
6853 static const struct file_operations perf_fops = {
6854 	.release		= perf_release,
6855 	.read			= perf_read,
6856 	.poll			= perf_poll,
6857 	.unlocked_ioctl		= perf_ioctl,
6858 	.compat_ioctl		= perf_compat_ioctl,
6859 	.mmap			= perf_mmap,
6860 	.fasync			= perf_fasync,
6861 };
6862 
6863 /*
6864  * Perf event wakeup
6865  *
6866  * If there's data, ensure we set the poll() state and publish everything
6867  * to user-space before waking everybody up.
6868  */
6869 
perf_event_wakeup(struct perf_event * event)6870 void perf_event_wakeup(struct perf_event *event)
6871 {
6872 	ring_buffer_wakeup(event);
6873 
6874 	if (event->pending_kill) {
6875 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6876 		event->pending_kill = 0;
6877 	}
6878 }
6879 
perf_sigtrap(struct perf_event * event)6880 static void perf_sigtrap(struct perf_event *event)
6881 {
6882 	/*
6883 	 * We'd expect this to only occur if the irq_work is delayed and either
6884 	 * ctx->task or current has changed in the meantime. This can be the
6885 	 * case on architectures that do not implement arch_irq_work_raise().
6886 	 */
6887 	if (WARN_ON_ONCE(event->ctx->task != current))
6888 		return;
6889 
6890 	/*
6891 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6892 	 * task exiting.
6893 	 */
6894 	if (current->flags & PF_EXITING)
6895 		return;
6896 
6897 	send_sig_perf((void __user *)event->pending_addr,
6898 		      event->orig_type, event->attr.sig_data);
6899 }
6900 
6901 /*
6902  * Deliver the pending work in-event-context or follow the context.
6903  */
__perf_pending_disable(struct perf_event * event)6904 static void __perf_pending_disable(struct perf_event *event)
6905 {
6906 	int cpu = READ_ONCE(event->oncpu);
6907 
6908 	/*
6909 	 * If the event isn't running; we done. event_sched_out() will have
6910 	 * taken care of things.
6911 	 */
6912 	if (cpu < 0)
6913 		return;
6914 
6915 	/*
6916 	 * Yay, we hit home and are in the context of the event.
6917 	 */
6918 	if (cpu == smp_processor_id()) {
6919 		if (event->pending_disable) {
6920 			event->pending_disable = 0;
6921 			perf_event_disable_local(event);
6922 		}
6923 		return;
6924 	}
6925 
6926 	/*
6927 	 *  CPU-A			CPU-B
6928 	 *
6929 	 *  perf_event_disable_inatomic()
6930 	 *    @pending_disable = CPU-A;
6931 	 *    irq_work_queue();
6932 	 *
6933 	 *  sched-out
6934 	 *    @pending_disable = -1;
6935 	 *
6936 	 *				sched-in
6937 	 *				perf_event_disable_inatomic()
6938 	 *				  @pending_disable = CPU-B;
6939 	 *				  irq_work_queue(); // FAILS
6940 	 *
6941 	 *  irq_work_run()
6942 	 *    perf_pending_disable()
6943 	 *
6944 	 * But the event runs on CPU-B and wants disabling there.
6945 	 */
6946 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6947 }
6948 
perf_pending_disable(struct irq_work * entry)6949 static void perf_pending_disable(struct irq_work *entry)
6950 {
6951 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6952 	int rctx;
6953 
6954 	/*
6955 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6956 	 * and we won't recurse 'further'.
6957 	 */
6958 	rctx = perf_swevent_get_recursion_context();
6959 	__perf_pending_disable(event);
6960 	if (rctx >= 0)
6961 		perf_swevent_put_recursion_context(rctx);
6962 }
6963 
perf_pending_irq(struct irq_work * entry)6964 static void perf_pending_irq(struct irq_work *entry)
6965 {
6966 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6967 	int rctx;
6968 
6969 	/*
6970 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6971 	 * and we won't recurse 'further'.
6972 	 */
6973 	rctx = perf_swevent_get_recursion_context();
6974 
6975 	/*
6976 	 * The wakeup isn't bound to the context of the event -- it can happen
6977 	 * irrespective of where the event is.
6978 	 */
6979 	if (event->pending_wakeup) {
6980 		event->pending_wakeup = 0;
6981 		perf_event_wakeup(event);
6982 	}
6983 
6984 	if (rctx >= 0)
6985 		perf_swevent_put_recursion_context(rctx);
6986 }
6987 
perf_pending_task(struct callback_head * head)6988 static void perf_pending_task(struct callback_head *head)
6989 {
6990 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6991 	int rctx;
6992 
6993 	/*
6994 	 * All accesses to the event must belong to the same implicit RCU read-side
6995 	 * critical section as the ->pending_work reset. See comment in
6996 	 * perf_pending_task_sync().
6997 	 */
6998 	rcu_read_lock();
6999 	/*
7000 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7001 	 * and we won't recurse 'further'.
7002 	 */
7003 	rctx = perf_swevent_get_recursion_context();
7004 
7005 	if (event->pending_work) {
7006 		event->pending_work = 0;
7007 		perf_sigtrap(event);
7008 		local_dec(&event->ctx->nr_no_switch_fast);
7009 		rcuwait_wake_up(&event->pending_work_wait);
7010 	}
7011 	rcu_read_unlock();
7012 
7013 	if (rctx >= 0)
7014 		perf_swevent_put_recursion_context(rctx);
7015 }
7016 
7017 #ifdef CONFIG_GUEST_PERF_EVENTS
7018 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7019 
7020 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7021 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7022 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7023 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7024 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7025 {
7026 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7027 		return;
7028 
7029 	rcu_assign_pointer(perf_guest_cbs, cbs);
7030 	static_call_update(__perf_guest_state, cbs->state);
7031 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7032 
7033 	/* Implementing ->handle_intel_pt_intr is optional. */
7034 	if (cbs->handle_intel_pt_intr)
7035 		static_call_update(__perf_guest_handle_intel_pt_intr,
7036 				   cbs->handle_intel_pt_intr);
7037 }
7038 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7039 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7040 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7041 {
7042 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7043 		return;
7044 
7045 	rcu_assign_pointer(perf_guest_cbs, NULL);
7046 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7047 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7048 	static_call_update(__perf_guest_handle_intel_pt_intr,
7049 			   (void *)&__static_call_return0);
7050 	synchronize_rcu();
7051 }
7052 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7053 #endif
7054 
should_sample_guest(struct perf_event * event)7055 static bool should_sample_guest(struct perf_event *event)
7056 {
7057 	return !event->attr.exclude_guest && perf_guest_state();
7058 }
7059 
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7060 unsigned long perf_misc_flags(struct perf_event *event,
7061 			      struct pt_regs *regs)
7062 {
7063 	if (should_sample_guest(event))
7064 		return perf_arch_guest_misc_flags(regs);
7065 
7066 	return perf_arch_misc_flags(regs);
7067 }
7068 
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7069 unsigned long perf_instruction_pointer(struct perf_event *event,
7070 				       struct pt_regs *regs)
7071 {
7072 	if (should_sample_guest(event))
7073 		return perf_guest_get_ip();
7074 
7075 	return perf_arch_instruction_pointer(regs);
7076 }
7077 
7078 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7079 perf_output_sample_regs(struct perf_output_handle *handle,
7080 			struct pt_regs *regs, u64 mask)
7081 {
7082 	int bit;
7083 	DECLARE_BITMAP(_mask, 64);
7084 
7085 	bitmap_from_u64(_mask, mask);
7086 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7087 		u64 val;
7088 
7089 		val = perf_reg_value(regs, bit);
7090 		perf_output_put(handle, val);
7091 	}
7092 }
7093 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7094 static void perf_sample_regs_user(struct perf_regs *regs_user,
7095 				  struct pt_regs *regs)
7096 {
7097 	if (user_mode(regs)) {
7098 		regs_user->abi = perf_reg_abi(current);
7099 		regs_user->regs = regs;
7100 	} else if (!(current->flags & PF_KTHREAD)) {
7101 		perf_get_regs_user(regs_user, regs);
7102 	} else {
7103 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7104 		regs_user->regs = NULL;
7105 	}
7106 }
7107 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7108 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7109 				  struct pt_regs *regs)
7110 {
7111 	regs_intr->regs = regs;
7112 	regs_intr->abi  = perf_reg_abi(current);
7113 }
7114 
7115 
7116 /*
7117  * Get remaining task size from user stack pointer.
7118  *
7119  * It'd be better to take stack vma map and limit this more
7120  * precisely, but there's no way to get it safely under interrupt,
7121  * so using TASK_SIZE as limit.
7122  */
perf_ustack_task_size(struct pt_regs * regs)7123 static u64 perf_ustack_task_size(struct pt_regs *regs)
7124 {
7125 	unsigned long addr = perf_user_stack_pointer(regs);
7126 
7127 	if (!addr || addr >= TASK_SIZE)
7128 		return 0;
7129 
7130 	return TASK_SIZE - addr;
7131 }
7132 
7133 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7134 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7135 			struct pt_regs *regs)
7136 {
7137 	u64 task_size;
7138 
7139 	/* No regs, no stack pointer, no dump. */
7140 	if (!regs)
7141 		return 0;
7142 
7143 	/*
7144 	 * Check if we fit in with the requested stack size into the:
7145 	 * - TASK_SIZE
7146 	 *   If we don't, we limit the size to the TASK_SIZE.
7147 	 *
7148 	 * - remaining sample size
7149 	 *   If we don't, we customize the stack size to
7150 	 *   fit in to the remaining sample size.
7151 	 */
7152 
7153 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7154 	stack_size = min(stack_size, (u16) task_size);
7155 
7156 	/* Current header size plus static size and dynamic size. */
7157 	header_size += 2 * sizeof(u64);
7158 
7159 	/* Do we fit in with the current stack dump size? */
7160 	if ((u16) (header_size + stack_size) < header_size) {
7161 		/*
7162 		 * If we overflow the maximum size for the sample,
7163 		 * we customize the stack dump size to fit in.
7164 		 */
7165 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7166 		stack_size = round_up(stack_size, sizeof(u64));
7167 	}
7168 
7169 	return stack_size;
7170 }
7171 
7172 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7173 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7174 			  struct pt_regs *regs)
7175 {
7176 	/* Case of a kernel thread, nothing to dump */
7177 	if (!regs) {
7178 		u64 size = 0;
7179 		perf_output_put(handle, size);
7180 	} else {
7181 		unsigned long sp;
7182 		unsigned int rem;
7183 		u64 dyn_size;
7184 
7185 		/*
7186 		 * We dump:
7187 		 * static size
7188 		 *   - the size requested by user or the best one we can fit
7189 		 *     in to the sample max size
7190 		 * data
7191 		 *   - user stack dump data
7192 		 * dynamic size
7193 		 *   - the actual dumped size
7194 		 */
7195 
7196 		/* Static size. */
7197 		perf_output_put(handle, dump_size);
7198 
7199 		/* Data. */
7200 		sp = perf_user_stack_pointer(regs);
7201 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7202 		dyn_size = dump_size - rem;
7203 
7204 		perf_output_skip(handle, rem);
7205 
7206 		/* Dynamic size. */
7207 		perf_output_put(handle, dyn_size);
7208 	}
7209 }
7210 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7211 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7212 					  struct perf_sample_data *data,
7213 					  size_t size)
7214 {
7215 	struct perf_event *sampler = event->aux_event;
7216 	struct perf_buffer *rb;
7217 
7218 	data->aux_size = 0;
7219 
7220 	if (!sampler)
7221 		goto out;
7222 
7223 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7224 		goto out;
7225 
7226 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7227 		goto out;
7228 
7229 	rb = ring_buffer_get(sampler);
7230 	if (!rb)
7231 		goto out;
7232 
7233 	/*
7234 	 * If this is an NMI hit inside sampling code, don't take
7235 	 * the sample. See also perf_aux_sample_output().
7236 	 */
7237 	if (READ_ONCE(rb->aux_in_sampling)) {
7238 		data->aux_size = 0;
7239 	} else {
7240 		size = min_t(size_t, size, perf_aux_size(rb));
7241 		data->aux_size = ALIGN(size, sizeof(u64));
7242 	}
7243 	ring_buffer_put(rb);
7244 
7245 out:
7246 	return data->aux_size;
7247 }
7248 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7249 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7250                                  struct perf_event *event,
7251                                  struct perf_output_handle *handle,
7252                                  unsigned long size)
7253 {
7254 	unsigned long flags;
7255 	long ret;
7256 
7257 	/*
7258 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7259 	 * paths. If we start calling them in NMI context, they may race with
7260 	 * the IRQ ones, that is, for example, re-starting an event that's just
7261 	 * been stopped, which is why we're using a separate callback that
7262 	 * doesn't change the event state.
7263 	 *
7264 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7265 	 */
7266 	local_irq_save(flags);
7267 	/*
7268 	 * Guard against NMI hits inside the critical section;
7269 	 * see also perf_prepare_sample_aux().
7270 	 */
7271 	WRITE_ONCE(rb->aux_in_sampling, 1);
7272 	barrier();
7273 
7274 	ret = event->pmu->snapshot_aux(event, handle, size);
7275 
7276 	barrier();
7277 	WRITE_ONCE(rb->aux_in_sampling, 0);
7278 	local_irq_restore(flags);
7279 
7280 	return ret;
7281 }
7282 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7283 static void perf_aux_sample_output(struct perf_event *event,
7284 				   struct perf_output_handle *handle,
7285 				   struct perf_sample_data *data)
7286 {
7287 	struct perf_event *sampler = event->aux_event;
7288 	struct perf_buffer *rb;
7289 	unsigned long pad;
7290 	long size;
7291 
7292 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7293 		return;
7294 
7295 	rb = ring_buffer_get(sampler);
7296 	if (!rb)
7297 		return;
7298 
7299 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7300 
7301 	/*
7302 	 * An error here means that perf_output_copy() failed (returned a
7303 	 * non-zero surplus that it didn't copy), which in its current
7304 	 * enlightened implementation is not possible. If that changes, we'd
7305 	 * like to know.
7306 	 */
7307 	if (WARN_ON_ONCE(size < 0))
7308 		goto out_put;
7309 
7310 	/*
7311 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7312 	 * perf_prepare_sample_aux(), so should not be more than that.
7313 	 */
7314 	pad = data->aux_size - size;
7315 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7316 		pad = 8;
7317 
7318 	if (pad) {
7319 		u64 zero = 0;
7320 		perf_output_copy(handle, &zero, pad);
7321 	}
7322 
7323 out_put:
7324 	ring_buffer_put(rb);
7325 }
7326 
7327 /*
7328  * A set of common sample data types saved even for non-sample records
7329  * when event->attr.sample_id_all is set.
7330  */
7331 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7332 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7333 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7334 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7335 static void __perf_event_header__init_id(struct perf_sample_data *data,
7336 					 struct perf_event *event,
7337 					 u64 sample_type)
7338 {
7339 	data->type = event->attr.sample_type;
7340 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7341 
7342 	if (sample_type & PERF_SAMPLE_TID) {
7343 		/* namespace issues */
7344 		data->tid_entry.pid = perf_event_pid(event, current);
7345 		data->tid_entry.tid = perf_event_tid(event, current);
7346 	}
7347 
7348 	if (sample_type & PERF_SAMPLE_TIME)
7349 		data->time = perf_event_clock(event);
7350 
7351 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7352 		data->id = primary_event_id(event);
7353 
7354 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7355 		data->stream_id = event->id;
7356 
7357 	if (sample_type & PERF_SAMPLE_CPU) {
7358 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7359 		data->cpu_entry.reserved = 0;
7360 	}
7361 }
7362 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7363 void perf_event_header__init_id(struct perf_event_header *header,
7364 				struct perf_sample_data *data,
7365 				struct perf_event *event)
7366 {
7367 	if (event->attr.sample_id_all) {
7368 		header->size += event->id_header_size;
7369 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7370 	}
7371 }
7372 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7373 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7374 					   struct perf_sample_data *data)
7375 {
7376 	u64 sample_type = data->type;
7377 
7378 	if (sample_type & PERF_SAMPLE_TID)
7379 		perf_output_put(handle, data->tid_entry);
7380 
7381 	if (sample_type & PERF_SAMPLE_TIME)
7382 		perf_output_put(handle, data->time);
7383 
7384 	if (sample_type & PERF_SAMPLE_ID)
7385 		perf_output_put(handle, data->id);
7386 
7387 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7388 		perf_output_put(handle, data->stream_id);
7389 
7390 	if (sample_type & PERF_SAMPLE_CPU)
7391 		perf_output_put(handle, data->cpu_entry);
7392 
7393 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7394 		perf_output_put(handle, data->id);
7395 }
7396 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7397 void perf_event__output_id_sample(struct perf_event *event,
7398 				  struct perf_output_handle *handle,
7399 				  struct perf_sample_data *sample)
7400 {
7401 	if (event->attr.sample_id_all)
7402 		__perf_event__output_id_sample(handle, sample);
7403 }
7404 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7405 static void perf_output_read_one(struct perf_output_handle *handle,
7406 				 struct perf_event *event,
7407 				 u64 enabled, u64 running)
7408 {
7409 	u64 read_format = event->attr.read_format;
7410 	u64 values[5];
7411 	int n = 0;
7412 
7413 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7414 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7415 		values[n++] = enabled +
7416 			atomic64_read(&event->child_total_time_enabled);
7417 	}
7418 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7419 		values[n++] = running +
7420 			atomic64_read(&event->child_total_time_running);
7421 	}
7422 	if (read_format & PERF_FORMAT_ID)
7423 		values[n++] = primary_event_id(event);
7424 	if (read_format & PERF_FORMAT_LOST)
7425 		values[n++] = atomic64_read(&event->lost_samples);
7426 
7427 	__output_copy(handle, values, n * sizeof(u64));
7428 }
7429 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7430 static void perf_output_read_group(struct perf_output_handle *handle,
7431 				   struct perf_event *event,
7432 				   u64 enabled, u64 running)
7433 {
7434 	struct perf_event *leader = event->group_leader, *sub;
7435 	u64 read_format = event->attr.read_format;
7436 	unsigned long flags;
7437 	u64 values[6];
7438 	int n = 0;
7439 	bool self = has_inherit_and_sample_read(&event->attr);
7440 
7441 	/*
7442 	 * Disabling interrupts avoids all counter scheduling
7443 	 * (context switches, timer based rotation and IPIs).
7444 	 */
7445 	local_irq_save(flags);
7446 
7447 	values[n++] = 1 + leader->nr_siblings;
7448 
7449 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7450 		values[n++] = enabled;
7451 
7452 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7453 		values[n++] = running;
7454 
7455 	if ((leader != event) &&
7456 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7457 		leader->pmu->read(leader);
7458 
7459 	values[n++] = perf_event_count(leader, self);
7460 	if (read_format & PERF_FORMAT_ID)
7461 		values[n++] = primary_event_id(leader);
7462 	if (read_format & PERF_FORMAT_LOST)
7463 		values[n++] = atomic64_read(&leader->lost_samples);
7464 
7465 	__output_copy(handle, values, n * sizeof(u64));
7466 
7467 	for_each_sibling_event(sub, leader) {
7468 		n = 0;
7469 
7470 		if ((sub != event) &&
7471 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7472 			sub->pmu->read(sub);
7473 
7474 		values[n++] = perf_event_count(sub, self);
7475 		if (read_format & PERF_FORMAT_ID)
7476 			values[n++] = primary_event_id(sub);
7477 		if (read_format & PERF_FORMAT_LOST)
7478 			values[n++] = atomic64_read(&sub->lost_samples);
7479 
7480 		__output_copy(handle, values, n * sizeof(u64));
7481 	}
7482 
7483 	local_irq_restore(flags);
7484 }
7485 
7486 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7487 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7488 
7489 /*
7490  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7491  *
7492  * The problem is that its both hard and excessively expensive to iterate the
7493  * child list, not to mention that its impossible to IPI the children running
7494  * on another CPU, from interrupt/NMI context.
7495  *
7496  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7497  * counts rather than attempting to accumulate some value across all children on
7498  * all cores.
7499  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7500 static void perf_output_read(struct perf_output_handle *handle,
7501 			     struct perf_event *event)
7502 {
7503 	u64 enabled = 0, running = 0, now;
7504 	u64 read_format = event->attr.read_format;
7505 
7506 	/*
7507 	 * compute total_time_enabled, total_time_running
7508 	 * based on snapshot values taken when the event
7509 	 * was last scheduled in.
7510 	 *
7511 	 * we cannot simply called update_context_time()
7512 	 * because of locking issue as we are called in
7513 	 * NMI context
7514 	 */
7515 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7516 		calc_timer_values(event, &now, &enabled, &running);
7517 
7518 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7519 		perf_output_read_group(handle, event, enabled, running);
7520 	else
7521 		perf_output_read_one(handle, event, enabled, running);
7522 }
7523 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7524 void perf_output_sample(struct perf_output_handle *handle,
7525 			struct perf_event_header *header,
7526 			struct perf_sample_data *data,
7527 			struct perf_event *event)
7528 {
7529 	u64 sample_type = data->type;
7530 
7531 	perf_output_put(handle, *header);
7532 
7533 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7534 		perf_output_put(handle, data->id);
7535 
7536 	if (sample_type & PERF_SAMPLE_IP)
7537 		perf_output_put(handle, data->ip);
7538 
7539 	if (sample_type & PERF_SAMPLE_TID)
7540 		perf_output_put(handle, data->tid_entry);
7541 
7542 	if (sample_type & PERF_SAMPLE_TIME)
7543 		perf_output_put(handle, data->time);
7544 
7545 	if (sample_type & PERF_SAMPLE_ADDR)
7546 		perf_output_put(handle, data->addr);
7547 
7548 	if (sample_type & PERF_SAMPLE_ID)
7549 		perf_output_put(handle, data->id);
7550 
7551 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7552 		perf_output_put(handle, data->stream_id);
7553 
7554 	if (sample_type & PERF_SAMPLE_CPU)
7555 		perf_output_put(handle, data->cpu_entry);
7556 
7557 	if (sample_type & PERF_SAMPLE_PERIOD)
7558 		perf_output_put(handle, data->period);
7559 
7560 	if (sample_type & PERF_SAMPLE_READ)
7561 		perf_output_read(handle, event);
7562 
7563 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7564 		int size = 1;
7565 
7566 		size += data->callchain->nr;
7567 		size *= sizeof(u64);
7568 		__output_copy(handle, data->callchain, size);
7569 	}
7570 
7571 	if (sample_type & PERF_SAMPLE_RAW) {
7572 		struct perf_raw_record *raw = data->raw;
7573 
7574 		if (raw) {
7575 			struct perf_raw_frag *frag = &raw->frag;
7576 
7577 			perf_output_put(handle, raw->size);
7578 			do {
7579 				if (frag->copy) {
7580 					__output_custom(handle, frag->copy,
7581 							frag->data, frag->size);
7582 				} else {
7583 					__output_copy(handle, frag->data,
7584 						      frag->size);
7585 				}
7586 				if (perf_raw_frag_last(frag))
7587 					break;
7588 				frag = frag->next;
7589 			} while (1);
7590 			if (frag->pad)
7591 				__output_skip(handle, NULL, frag->pad);
7592 		} else {
7593 			struct {
7594 				u32	size;
7595 				u32	data;
7596 			} raw = {
7597 				.size = sizeof(u32),
7598 				.data = 0,
7599 			};
7600 			perf_output_put(handle, raw);
7601 		}
7602 	}
7603 
7604 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7605 		if (data->br_stack) {
7606 			size_t size;
7607 
7608 			size = data->br_stack->nr
7609 			     * sizeof(struct perf_branch_entry);
7610 
7611 			perf_output_put(handle, data->br_stack->nr);
7612 			if (branch_sample_hw_index(event))
7613 				perf_output_put(handle, data->br_stack->hw_idx);
7614 			perf_output_copy(handle, data->br_stack->entries, size);
7615 			/*
7616 			 * Add the extension space which is appended
7617 			 * right after the struct perf_branch_stack.
7618 			 */
7619 			if (data->br_stack_cntr) {
7620 				size = data->br_stack->nr * sizeof(u64);
7621 				perf_output_copy(handle, data->br_stack_cntr, size);
7622 			}
7623 		} else {
7624 			/*
7625 			 * we always store at least the value of nr
7626 			 */
7627 			u64 nr = 0;
7628 			perf_output_put(handle, nr);
7629 		}
7630 	}
7631 
7632 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7633 		u64 abi = data->regs_user.abi;
7634 
7635 		/*
7636 		 * If there are no regs to dump, notice it through
7637 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7638 		 */
7639 		perf_output_put(handle, abi);
7640 
7641 		if (abi) {
7642 			u64 mask = event->attr.sample_regs_user;
7643 			perf_output_sample_regs(handle,
7644 						data->regs_user.regs,
7645 						mask);
7646 		}
7647 	}
7648 
7649 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7650 		perf_output_sample_ustack(handle,
7651 					  data->stack_user_size,
7652 					  data->regs_user.regs);
7653 	}
7654 
7655 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7656 		perf_output_put(handle, data->weight.full);
7657 
7658 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7659 		perf_output_put(handle, data->data_src.val);
7660 
7661 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7662 		perf_output_put(handle, data->txn);
7663 
7664 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7665 		u64 abi = data->regs_intr.abi;
7666 		/*
7667 		 * If there are no regs to dump, notice it through
7668 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7669 		 */
7670 		perf_output_put(handle, abi);
7671 
7672 		if (abi) {
7673 			u64 mask = event->attr.sample_regs_intr;
7674 
7675 			perf_output_sample_regs(handle,
7676 						data->regs_intr.regs,
7677 						mask);
7678 		}
7679 	}
7680 
7681 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7682 		perf_output_put(handle, data->phys_addr);
7683 
7684 	if (sample_type & PERF_SAMPLE_CGROUP)
7685 		perf_output_put(handle, data->cgroup);
7686 
7687 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7688 		perf_output_put(handle, data->data_page_size);
7689 
7690 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7691 		perf_output_put(handle, data->code_page_size);
7692 
7693 	if (sample_type & PERF_SAMPLE_AUX) {
7694 		perf_output_put(handle, data->aux_size);
7695 
7696 		if (data->aux_size)
7697 			perf_aux_sample_output(event, handle, data);
7698 	}
7699 
7700 	if (!event->attr.watermark) {
7701 		int wakeup_events = event->attr.wakeup_events;
7702 
7703 		if (wakeup_events) {
7704 			struct perf_buffer *rb = handle->rb;
7705 			int events = local_inc_return(&rb->events);
7706 
7707 			if (events >= wakeup_events) {
7708 				local_sub(wakeup_events, &rb->events);
7709 				local_inc(&rb->wakeup);
7710 			}
7711 		}
7712 	}
7713 }
7714 
perf_virt_to_phys(u64 virt)7715 static u64 perf_virt_to_phys(u64 virt)
7716 {
7717 	u64 phys_addr = 0;
7718 
7719 	if (!virt)
7720 		return 0;
7721 
7722 	if (virt >= TASK_SIZE) {
7723 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7724 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7725 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7726 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7727 	} else {
7728 		/*
7729 		 * Walking the pages tables for user address.
7730 		 * Interrupts are disabled, so it prevents any tear down
7731 		 * of the page tables.
7732 		 * Try IRQ-safe get_user_page_fast_only first.
7733 		 * If failed, leave phys_addr as 0.
7734 		 */
7735 		if (current->mm != NULL) {
7736 			struct page *p;
7737 
7738 			pagefault_disable();
7739 			if (get_user_page_fast_only(virt, 0, &p)) {
7740 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7741 				put_page(p);
7742 			}
7743 			pagefault_enable();
7744 		}
7745 	}
7746 
7747 	return phys_addr;
7748 }
7749 
7750 /*
7751  * Return the pagetable size of a given virtual address.
7752  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7753 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7754 {
7755 	u64 size = 0;
7756 
7757 #ifdef CONFIG_HAVE_GUP_FAST
7758 	pgd_t *pgdp, pgd;
7759 	p4d_t *p4dp, p4d;
7760 	pud_t *pudp, pud;
7761 	pmd_t *pmdp, pmd;
7762 	pte_t *ptep, pte;
7763 
7764 	pgdp = pgd_offset(mm, addr);
7765 	pgd = READ_ONCE(*pgdp);
7766 	if (pgd_none(pgd))
7767 		return 0;
7768 
7769 	if (pgd_leaf(pgd))
7770 		return pgd_leaf_size(pgd);
7771 
7772 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7773 	p4d = READ_ONCE(*p4dp);
7774 	if (!p4d_present(p4d))
7775 		return 0;
7776 
7777 	if (p4d_leaf(p4d))
7778 		return p4d_leaf_size(p4d);
7779 
7780 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7781 	pud = READ_ONCE(*pudp);
7782 	if (!pud_present(pud))
7783 		return 0;
7784 
7785 	if (pud_leaf(pud))
7786 		return pud_leaf_size(pud);
7787 
7788 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7789 again:
7790 	pmd = pmdp_get_lockless(pmdp);
7791 	if (!pmd_present(pmd))
7792 		return 0;
7793 
7794 	if (pmd_leaf(pmd))
7795 		return pmd_leaf_size(pmd);
7796 
7797 	ptep = pte_offset_map(&pmd, addr);
7798 	if (!ptep)
7799 		goto again;
7800 
7801 	pte = ptep_get_lockless(ptep);
7802 	if (pte_present(pte))
7803 		size = __pte_leaf_size(pmd, pte);
7804 	pte_unmap(ptep);
7805 #endif /* CONFIG_HAVE_GUP_FAST */
7806 
7807 	return size;
7808 }
7809 
perf_get_page_size(unsigned long addr)7810 static u64 perf_get_page_size(unsigned long addr)
7811 {
7812 	struct mm_struct *mm;
7813 	unsigned long flags;
7814 	u64 size;
7815 
7816 	if (!addr)
7817 		return 0;
7818 
7819 	/*
7820 	 * Software page-table walkers must disable IRQs,
7821 	 * which prevents any tear down of the page tables.
7822 	 */
7823 	local_irq_save(flags);
7824 
7825 	mm = current->mm;
7826 	if (!mm) {
7827 		/*
7828 		 * For kernel threads and the like, use init_mm so that
7829 		 * we can find kernel memory.
7830 		 */
7831 		mm = &init_mm;
7832 	}
7833 
7834 	size = perf_get_pgtable_size(mm, addr);
7835 
7836 	local_irq_restore(flags);
7837 
7838 	return size;
7839 }
7840 
7841 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7842 
7843 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7844 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7845 {
7846 	bool kernel = !event->attr.exclude_callchain_kernel;
7847 	bool user   = !event->attr.exclude_callchain_user;
7848 	/* Disallow cross-task user callchains. */
7849 	bool crosstask = event->ctx->task && event->ctx->task != current;
7850 	const u32 max_stack = event->attr.sample_max_stack;
7851 	struct perf_callchain_entry *callchain;
7852 
7853 	if (!kernel && !user)
7854 		return &__empty_callchain;
7855 
7856 	callchain = get_perf_callchain(regs, 0, kernel, user,
7857 				       max_stack, crosstask, true);
7858 	return callchain ?: &__empty_callchain;
7859 }
7860 
__cond_set(u64 flags,u64 s,u64 d)7861 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7862 {
7863 	return d * !!(flags & s);
7864 }
7865 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7866 void perf_prepare_sample(struct perf_sample_data *data,
7867 			 struct perf_event *event,
7868 			 struct pt_regs *regs)
7869 {
7870 	u64 sample_type = event->attr.sample_type;
7871 	u64 filtered_sample_type;
7872 
7873 	/*
7874 	 * Add the sample flags that are dependent to others.  And clear the
7875 	 * sample flags that have already been done by the PMU driver.
7876 	 */
7877 	filtered_sample_type = sample_type;
7878 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7879 					   PERF_SAMPLE_IP);
7880 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7881 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7882 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7883 					   PERF_SAMPLE_REGS_USER);
7884 	filtered_sample_type &= ~data->sample_flags;
7885 
7886 	if (filtered_sample_type == 0) {
7887 		/* Make sure it has the correct data->type for output */
7888 		data->type = event->attr.sample_type;
7889 		return;
7890 	}
7891 
7892 	__perf_event_header__init_id(data, event, filtered_sample_type);
7893 
7894 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7895 		data->ip = perf_instruction_pointer(event, regs);
7896 		data->sample_flags |= PERF_SAMPLE_IP;
7897 	}
7898 
7899 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7900 		perf_sample_save_callchain(data, event, regs);
7901 
7902 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7903 		data->raw = NULL;
7904 		data->dyn_size += sizeof(u64);
7905 		data->sample_flags |= PERF_SAMPLE_RAW;
7906 	}
7907 
7908 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7909 		data->br_stack = NULL;
7910 		data->dyn_size += sizeof(u64);
7911 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7912 	}
7913 
7914 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7915 		perf_sample_regs_user(&data->regs_user, regs);
7916 
7917 	/*
7918 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7919 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7920 	 * the dyn_size if it's not requested by users.
7921 	 */
7922 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7923 		/* regs dump ABI info */
7924 		int size = sizeof(u64);
7925 
7926 		if (data->regs_user.regs) {
7927 			u64 mask = event->attr.sample_regs_user;
7928 			size += hweight64(mask) * sizeof(u64);
7929 		}
7930 
7931 		data->dyn_size += size;
7932 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7933 	}
7934 
7935 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7936 		/*
7937 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7938 		 * processed as the last one or have additional check added
7939 		 * in case new sample type is added, because we could eat
7940 		 * up the rest of the sample size.
7941 		 */
7942 		u16 stack_size = event->attr.sample_stack_user;
7943 		u16 header_size = perf_sample_data_size(data, event);
7944 		u16 size = sizeof(u64);
7945 
7946 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7947 						     data->regs_user.regs);
7948 
7949 		/*
7950 		 * If there is something to dump, add space for the dump
7951 		 * itself and for the field that tells the dynamic size,
7952 		 * which is how many have been actually dumped.
7953 		 */
7954 		if (stack_size)
7955 			size += sizeof(u64) + stack_size;
7956 
7957 		data->stack_user_size = stack_size;
7958 		data->dyn_size += size;
7959 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7960 	}
7961 
7962 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7963 		data->weight.full = 0;
7964 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7965 	}
7966 
7967 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7968 		data->data_src.val = PERF_MEM_NA;
7969 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7970 	}
7971 
7972 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7973 		data->txn = 0;
7974 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7975 	}
7976 
7977 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7978 		data->addr = 0;
7979 		data->sample_flags |= PERF_SAMPLE_ADDR;
7980 	}
7981 
7982 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7983 		/* regs dump ABI info */
7984 		int size = sizeof(u64);
7985 
7986 		perf_sample_regs_intr(&data->regs_intr, regs);
7987 
7988 		if (data->regs_intr.regs) {
7989 			u64 mask = event->attr.sample_regs_intr;
7990 
7991 			size += hweight64(mask) * sizeof(u64);
7992 		}
7993 
7994 		data->dyn_size += size;
7995 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7996 	}
7997 
7998 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7999 		data->phys_addr = perf_virt_to_phys(data->addr);
8000 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8001 	}
8002 
8003 #ifdef CONFIG_CGROUP_PERF
8004 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8005 		struct cgroup *cgrp;
8006 
8007 		/* protected by RCU */
8008 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8009 		data->cgroup = cgroup_id(cgrp);
8010 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8011 	}
8012 #endif
8013 
8014 	/*
8015 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8016 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8017 	 * but the value will not dump to the userspace.
8018 	 */
8019 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8020 		data->data_page_size = perf_get_page_size(data->addr);
8021 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8022 	}
8023 
8024 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8025 		data->code_page_size = perf_get_page_size(data->ip);
8026 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8027 	}
8028 
8029 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8030 		u64 size;
8031 		u16 header_size = perf_sample_data_size(data, event);
8032 
8033 		header_size += sizeof(u64); /* size */
8034 
8035 		/*
8036 		 * Given the 16bit nature of header::size, an AUX sample can
8037 		 * easily overflow it, what with all the preceding sample bits.
8038 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8039 		 * per sample in total (rounded down to 8 byte boundary).
8040 		 */
8041 		size = min_t(size_t, U16_MAX - header_size,
8042 			     event->attr.aux_sample_size);
8043 		size = rounddown(size, 8);
8044 		size = perf_prepare_sample_aux(event, data, size);
8045 
8046 		WARN_ON_ONCE(size + header_size > U16_MAX);
8047 		data->dyn_size += size + sizeof(u64); /* size above */
8048 		data->sample_flags |= PERF_SAMPLE_AUX;
8049 	}
8050 }
8051 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8052 void perf_prepare_header(struct perf_event_header *header,
8053 			 struct perf_sample_data *data,
8054 			 struct perf_event *event,
8055 			 struct pt_regs *regs)
8056 {
8057 	header->type = PERF_RECORD_SAMPLE;
8058 	header->size = perf_sample_data_size(data, event);
8059 	header->misc = perf_misc_flags(event, regs);
8060 
8061 	/*
8062 	 * If you're adding more sample types here, you likely need to do
8063 	 * something about the overflowing header::size, like repurpose the
8064 	 * lowest 3 bits of size, which should be always zero at the moment.
8065 	 * This raises a more important question, do we really need 512k sized
8066 	 * samples and why, so good argumentation is in order for whatever you
8067 	 * do here next.
8068 	 */
8069 	WARN_ON_ONCE(header->size & 7);
8070 }
8071 
__perf_event_aux_pause(struct perf_event * event,bool pause)8072 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8073 {
8074 	if (pause) {
8075 		if (!event->hw.aux_paused) {
8076 			event->hw.aux_paused = 1;
8077 			event->pmu->stop(event, PERF_EF_PAUSE);
8078 		}
8079 	} else {
8080 		if (event->hw.aux_paused) {
8081 			event->hw.aux_paused = 0;
8082 			event->pmu->start(event, PERF_EF_RESUME);
8083 		}
8084 	}
8085 }
8086 
perf_event_aux_pause(struct perf_event * event,bool pause)8087 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8088 {
8089 	struct perf_buffer *rb;
8090 
8091 	if (WARN_ON_ONCE(!event))
8092 		return;
8093 
8094 	rb = ring_buffer_get(event);
8095 	if (!rb)
8096 		return;
8097 
8098 	scoped_guard (irqsave) {
8099 		/*
8100 		 * Guard against self-recursion here. Another event could trip
8101 		 * this same from NMI context.
8102 		 */
8103 		if (READ_ONCE(rb->aux_in_pause_resume))
8104 			break;
8105 
8106 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8107 		barrier();
8108 		__perf_event_aux_pause(event, pause);
8109 		barrier();
8110 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8111 	}
8112 	ring_buffer_put(rb);
8113 }
8114 
8115 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8116 __perf_event_output(struct perf_event *event,
8117 		    struct perf_sample_data *data,
8118 		    struct pt_regs *regs,
8119 		    int (*output_begin)(struct perf_output_handle *,
8120 					struct perf_sample_data *,
8121 					struct perf_event *,
8122 					unsigned int))
8123 {
8124 	struct perf_output_handle handle;
8125 	struct perf_event_header header;
8126 	int err;
8127 
8128 	/* protect the callchain buffers */
8129 	rcu_read_lock();
8130 
8131 	perf_prepare_sample(data, event, regs);
8132 	perf_prepare_header(&header, data, event, regs);
8133 
8134 	err = output_begin(&handle, data, event, header.size);
8135 	if (err)
8136 		goto exit;
8137 
8138 	perf_output_sample(&handle, &header, data, event);
8139 
8140 	perf_output_end(&handle);
8141 
8142 exit:
8143 	rcu_read_unlock();
8144 	return err;
8145 }
8146 
8147 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8148 perf_event_output_forward(struct perf_event *event,
8149 			 struct perf_sample_data *data,
8150 			 struct pt_regs *regs)
8151 {
8152 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8153 }
8154 
8155 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8156 perf_event_output_backward(struct perf_event *event,
8157 			   struct perf_sample_data *data,
8158 			   struct pt_regs *regs)
8159 {
8160 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8161 }
8162 
8163 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8164 perf_event_output(struct perf_event *event,
8165 		  struct perf_sample_data *data,
8166 		  struct pt_regs *regs)
8167 {
8168 	return __perf_event_output(event, data, regs, perf_output_begin);
8169 }
8170 
8171 /*
8172  * read event_id
8173  */
8174 
8175 struct perf_read_event {
8176 	struct perf_event_header	header;
8177 
8178 	u32				pid;
8179 	u32				tid;
8180 };
8181 
8182 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8183 perf_event_read_event(struct perf_event *event,
8184 			struct task_struct *task)
8185 {
8186 	struct perf_output_handle handle;
8187 	struct perf_sample_data sample;
8188 	struct perf_read_event read_event = {
8189 		.header = {
8190 			.type = PERF_RECORD_READ,
8191 			.misc = 0,
8192 			.size = sizeof(read_event) + event->read_size,
8193 		},
8194 		.pid = perf_event_pid(event, task),
8195 		.tid = perf_event_tid(event, task),
8196 	};
8197 	int ret;
8198 
8199 	perf_event_header__init_id(&read_event.header, &sample, event);
8200 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8201 	if (ret)
8202 		return;
8203 
8204 	perf_output_put(&handle, read_event);
8205 	perf_output_read(&handle, event);
8206 	perf_event__output_id_sample(event, &handle, &sample);
8207 
8208 	perf_output_end(&handle);
8209 }
8210 
8211 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8212 
8213 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8214 perf_iterate_ctx(struct perf_event_context *ctx,
8215 		   perf_iterate_f output,
8216 		   void *data, bool all)
8217 {
8218 	struct perf_event *event;
8219 
8220 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8221 		if (!all) {
8222 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8223 				continue;
8224 			if (!event_filter_match(event))
8225 				continue;
8226 		}
8227 
8228 		output(event, data);
8229 	}
8230 }
8231 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8232 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8233 {
8234 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8235 	struct perf_event *event;
8236 
8237 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8238 		/*
8239 		 * Skip events that are not fully formed yet; ensure that
8240 		 * if we observe event->ctx, both event and ctx will be
8241 		 * complete enough. See perf_install_in_context().
8242 		 */
8243 		if (!smp_load_acquire(&event->ctx))
8244 			continue;
8245 
8246 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8247 			continue;
8248 		if (!event_filter_match(event))
8249 			continue;
8250 		output(event, data);
8251 	}
8252 }
8253 
8254 /*
8255  * Iterate all events that need to receive side-band events.
8256  *
8257  * For new callers; ensure that account_pmu_sb_event() includes
8258  * your event, otherwise it might not get delivered.
8259  */
8260 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8261 perf_iterate_sb(perf_iterate_f output, void *data,
8262 	       struct perf_event_context *task_ctx)
8263 {
8264 	struct perf_event_context *ctx;
8265 
8266 	rcu_read_lock();
8267 	preempt_disable();
8268 
8269 	/*
8270 	 * If we have task_ctx != NULL we only notify the task context itself.
8271 	 * The task_ctx is set only for EXIT events before releasing task
8272 	 * context.
8273 	 */
8274 	if (task_ctx) {
8275 		perf_iterate_ctx(task_ctx, output, data, false);
8276 		goto done;
8277 	}
8278 
8279 	perf_iterate_sb_cpu(output, data);
8280 
8281 	ctx = rcu_dereference(current->perf_event_ctxp);
8282 	if (ctx)
8283 		perf_iterate_ctx(ctx, output, data, false);
8284 done:
8285 	preempt_enable();
8286 	rcu_read_unlock();
8287 }
8288 
8289 /*
8290  * Clear all file-based filters at exec, they'll have to be
8291  * re-instated when/if these objects are mmapped again.
8292  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8293 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8294 {
8295 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8296 	struct perf_addr_filter *filter;
8297 	unsigned int restart = 0, count = 0;
8298 	unsigned long flags;
8299 
8300 	if (!has_addr_filter(event))
8301 		return;
8302 
8303 	raw_spin_lock_irqsave(&ifh->lock, flags);
8304 	list_for_each_entry(filter, &ifh->list, entry) {
8305 		if (filter->path.dentry) {
8306 			event->addr_filter_ranges[count].start = 0;
8307 			event->addr_filter_ranges[count].size = 0;
8308 			restart++;
8309 		}
8310 
8311 		count++;
8312 	}
8313 
8314 	if (restart)
8315 		event->addr_filters_gen++;
8316 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8317 
8318 	if (restart)
8319 		perf_event_stop(event, 1);
8320 }
8321 
perf_event_exec(void)8322 void perf_event_exec(void)
8323 {
8324 	struct perf_event_context *ctx;
8325 
8326 	ctx = perf_pin_task_context(current);
8327 	if (!ctx)
8328 		return;
8329 
8330 	perf_event_enable_on_exec(ctx);
8331 	perf_event_remove_on_exec(ctx);
8332 	scoped_guard(rcu)
8333 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8334 
8335 	perf_unpin_context(ctx);
8336 	put_ctx(ctx);
8337 }
8338 
8339 struct remote_output {
8340 	struct perf_buffer	*rb;
8341 	int			err;
8342 };
8343 
__perf_event_output_stop(struct perf_event * event,void * data)8344 static void __perf_event_output_stop(struct perf_event *event, void *data)
8345 {
8346 	struct perf_event *parent = event->parent;
8347 	struct remote_output *ro = data;
8348 	struct perf_buffer *rb = ro->rb;
8349 	struct stop_event_data sd = {
8350 		.event	= event,
8351 	};
8352 
8353 	if (!has_aux(event))
8354 		return;
8355 
8356 	if (!parent)
8357 		parent = event;
8358 
8359 	/*
8360 	 * In case of inheritance, it will be the parent that links to the
8361 	 * ring-buffer, but it will be the child that's actually using it.
8362 	 *
8363 	 * We are using event::rb to determine if the event should be stopped,
8364 	 * however this may race with ring_buffer_attach() (through set_output),
8365 	 * which will make us skip the event that actually needs to be stopped.
8366 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8367 	 * its rb pointer.
8368 	 */
8369 	if (rcu_dereference(parent->rb) == rb)
8370 		ro->err = __perf_event_stop(&sd);
8371 }
8372 
__perf_pmu_output_stop(void * info)8373 static int __perf_pmu_output_stop(void *info)
8374 {
8375 	struct perf_event *event = info;
8376 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8377 	struct remote_output ro = {
8378 		.rb	= event->rb,
8379 	};
8380 
8381 	rcu_read_lock();
8382 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8383 	if (cpuctx->task_ctx)
8384 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8385 				   &ro, false);
8386 	rcu_read_unlock();
8387 
8388 	return ro.err;
8389 }
8390 
perf_pmu_output_stop(struct perf_event * event)8391 static void perf_pmu_output_stop(struct perf_event *event)
8392 {
8393 	struct perf_event *iter;
8394 	int err, cpu;
8395 
8396 restart:
8397 	rcu_read_lock();
8398 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8399 		/*
8400 		 * For per-CPU events, we need to make sure that neither they
8401 		 * nor their children are running; for cpu==-1 events it's
8402 		 * sufficient to stop the event itself if it's active, since
8403 		 * it can't have children.
8404 		 */
8405 		cpu = iter->cpu;
8406 		if (cpu == -1)
8407 			cpu = READ_ONCE(iter->oncpu);
8408 
8409 		if (cpu == -1)
8410 			continue;
8411 
8412 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8413 		if (err == -EAGAIN) {
8414 			rcu_read_unlock();
8415 			goto restart;
8416 		}
8417 	}
8418 	rcu_read_unlock();
8419 }
8420 
8421 /*
8422  * task tracking -- fork/exit
8423  *
8424  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8425  */
8426 
8427 struct perf_task_event {
8428 	struct task_struct		*task;
8429 	struct perf_event_context	*task_ctx;
8430 
8431 	struct {
8432 		struct perf_event_header	header;
8433 
8434 		u32				pid;
8435 		u32				ppid;
8436 		u32				tid;
8437 		u32				ptid;
8438 		u64				time;
8439 	} event_id;
8440 };
8441 
perf_event_task_match(struct perf_event * event)8442 static int perf_event_task_match(struct perf_event *event)
8443 {
8444 	return event->attr.comm  || event->attr.mmap ||
8445 	       event->attr.mmap2 || event->attr.mmap_data ||
8446 	       event->attr.task;
8447 }
8448 
perf_event_task_output(struct perf_event * event,void * data)8449 static void perf_event_task_output(struct perf_event *event,
8450 				   void *data)
8451 {
8452 	struct perf_task_event *task_event = data;
8453 	struct perf_output_handle handle;
8454 	struct perf_sample_data	sample;
8455 	struct task_struct *task = task_event->task;
8456 	int ret, size = task_event->event_id.header.size;
8457 
8458 	if (!perf_event_task_match(event))
8459 		return;
8460 
8461 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8462 
8463 	ret = perf_output_begin(&handle, &sample, event,
8464 				task_event->event_id.header.size);
8465 	if (ret)
8466 		goto out;
8467 
8468 	task_event->event_id.pid = perf_event_pid(event, task);
8469 	task_event->event_id.tid = perf_event_tid(event, task);
8470 
8471 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8472 		task_event->event_id.ppid = perf_event_pid(event,
8473 							task->real_parent);
8474 		task_event->event_id.ptid = perf_event_pid(event,
8475 							task->real_parent);
8476 	} else {  /* PERF_RECORD_FORK */
8477 		task_event->event_id.ppid = perf_event_pid(event, current);
8478 		task_event->event_id.ptid = perf_event_tid(event, current);
8479 	}
8480 
8481 	task_event->event_id.time = perf_event_clock(event);
8482 
8483 	perf_output_put(&handle, task_event->event_id);
8484 
8485 	perf_event__output_id_sample(event, &handle, &sample);
8486 
8487 	perf_output_end(&handle);
8488 out:
8489 	task_event->event_id.header.size = size;
8490 }
8491 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8492 static void perf_event_task(struct task_struct *task,
8493 			      struct perf_event_context *task_ctx,
8494 			      int new)
8495 {
8496 	struct perf_task_event task_event;
8497 
8498 	if (!atomic_read(&nr_comm_events) &&
8499 	    !atomic_read(&nr_mmap_events) &&
8500 	    !atomic_read(&nr_task_events))
8501 		return;
8502 
8503 	task_event = (struct perf_task_event){
8504 		.task	  = task,
8505 		.task_ctx = task_ctx,
8506 		.event_id    = {
8507 			.header = {
8508 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8509 				.misc = 0,
8510 				.size = sizeof(task_event.event_id),
8511 			},
8512 			/* .pid  */
8513 			/* .ppid */
8514 			/* .tid  */
8515 			/* .ptid */
8516 			/* .time */
8517 		},
8518 	};
8519 
8520 	perf_iterate_sb(perf_event_task_output,
8521 		       &task_event,
8522 		       task_ctx);
8523 }
8524 
perf_event_fork(struct task_struct * task)8525 void perf_event_fork(struct task_struct *task)
8526 {
8527 	perf_event_task(task, NULL, 1);
8528 	perf_event_namespaces(task);
8529 }
8530 
8531 /*
8532  * comm tracking
8533  */
8534 
8535 struct perf_comm_event {
8536 	struct task_struct	*task;
8537 	char			*comm;
8538 	int			comm_size;
8539 
8540 	struct {
8541 		struct perf_event_header	header;
8542 
8543 		u32				pid;
8544 		u32				tid;
8545 	} event_id;
8546 };
8547 
perf_event_comm_match(struct perf_event * event)8548 static int perf_event_comm_match(struct perf_event *event)
8549 {
8550 	return event->attr.comm;
8551 }
8552 
perf_event_comm_output(struct perf_event * event,void * data)8553 static void perf_event_comm_output(struct perf_event *event,
8554 				   void *data)
8555 {
8556 	struct perf_comm_event *comm_event = data;
8557 	struct perf_output_handle handle;
8558 	struct perf_sample_data sample;
8559 	int size = comm_event->event_id.header.size;
8560 	int ret;
8561 
8562 	if (!perf_event_comm_match(event))
8563 		return;
8564 
8565 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8566 	ret = perf_output_begin(&handle, &sample, event,
8567 				comm_event->event_id.header.size);
8568 
8569 	if (ret)
8570 		goto out;
8571 
8572 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8573 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8574 
8575 	perf_output_put(&handle, comm_event->event_id);
8576 	__output_copy(&handle, comm_event->comm,
8577 				   comm_event->comm_size);
8578 
8579 	perf_event__output_id_sample(event, &handle, &sample);
8580 
8581 	perf_output_end(&handle);
8582 out:
8583 	comm_event->event_id.header.size = size;
8584 }
8585 
perf_event_comm_event(struct perf_comm_event * comm_event)8586 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8587 {
8588 	char comm[TASK_COMM_LEN];
8589 	unsigned int size;
8590 
8591 	memset(comm, 0, sizeof(comm));
8592 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8593 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8594 
8595 	comm_event->comm = comm;
8596 	comm_event->comm_size = size;
8597 
8598 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8599 
8600 	perf_iterate_sb(perf_event_comm_output,
8601 		       comm_event,
8602 		       NULL);
8603 }
8604 
perf_event_comm(struct task_struct * task,bool exec)8605 void perf_event_comm(struct task_struct *task, bool exec)
8606 {
8607 	struct perf_comm_event comm_event;
8608 
8609 	if (!atomic_read(&nr_comm_events))
8610 		return;
8611 
8612 	comm_event = (struct perf_comm_event){
8613 		.task	= task,
8614 		/* .comm      */
8615 		/* .comm_size */
8616 		.event_id  = {
8617 			.header = {
8618 				.type = PERF_RECORD_COMM,
8619 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8620 				/* .size */
8621 			},
8622 			/* .pid */
8623 			/* .tid */
8624 		},
8625 	};
8626 
8627 	perf_event_comm_event(&comm_event);
8628 }
8629 
8630 /*
8631  * namespaces tracking
8632  */
8633 
8634 struct perf_namespaces_event {
8635 	struct task_struct		*task;
8636 
8637 	struct {
8638 		struct perf_event_header	header;
8639 
8640 		u32				pid;
8641 		u32				tid;
8642 		u64				nr_namespaces;
8643 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8644 	} event_id;
8645 };
8646 
perf_event_namespaces_match(struct perf_event * event)8647 static int perf_event_namespaces_match(struct perf_event *event)
8648 {
8649 	return event->attr.namespaces;
8650 }
8651 
perf_event_namespaces_output(struct perf_event * event,void * data)8652 static void perf_event_namespaces_output(struct perf_event *event,
8653 					 void *data)
8654 {
8655 	struct perf_namespaces_event *namespaces_event = data;
8656 	struct perf_output_handle handle;
8657 	struct perf_sample_data sample;
8658 	u16 header_size = namespaces_event->event_id.header.size;
8659 	int ret;
8660 
8661 	if (!perf_event_namespaces_match(event))
8662 		return;
8663 
8664 	perf_event_header__init_id(&namespaces_event->event_id.header,
8665 				   &sample, event);
8666 	ret = perf_output_begin(&handle, &sample, event,
8667 				namespaces_event->event_id.header.size);
8668 	if (ret)
8669 		goto out;
8670 
8671 	namespaces_event->event_id.pid = perf_event_pid(event,
8672 							namespaces_event->task);
8673 	namespaces_event->event_id.tid = perf_event_tid(event,
8674 							namespaces_event->task);
8675 
8676 	perf_output_put(&handle, namespaces_event->event_id);
8677 
8678 	perf_event__output_id_sample(event, &handle, &sample);
8679 
8680 	perf_output_end(&handle);
8681 out:
8682 	namespaces_event->event_id.header.size = header_size;
8683 }
8684 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8685 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8686 				   struct task_struct *task,
8687 				   const struct proc_ns_operations *ns_ops)
8688 {
8689 	struct path ns_path;
8690 	struct inode *ns_inode;
8691 	int error;
8692 
8693 	error = ns_get_path(&ns_path, task, ns_ops);
8694 	if (!error) {
8695 		ns_inode = ns_path.dentry->d_inode;
8696 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8697 		ns_link_info->ino = ns_inode->i_ino;
8698 		path_put(&ns_path);
8699 	}
8700 }
8701 
perf_event_namespaces(struct task_struct * task)8702 void perf_event_namespaces(struct task_struct *task)
8703 {
8704 	struct perf_namespaces_event namespaces_event;
8705 	struct perf_ns_link_info *ns_link_info;
8706 
8707 	if (!atomic_read(&nr_namespaces_events))
8708 		return;
8709 
8710 	namespaces_event = (struct perf_namespaces_event){
8711 		.task	= task,
8712 		.event_id  = {
8713 			.header = {
8714 				.type = PERF_RECORD_NAMESPACES,
8715 				.misc = 0,
8716 				.size = sizeof(namespaces_event.event_id),
8717 			},
8718 			/* .pid */
8719 			/* .tid */
8720 			.nr_namespaces = NR_NAMESPACES,
8721 			/* .link_info[NR_NAMESPACES] */
8722 		},
8723 	};
8724 
8725 	ns_link_info = namespaces_event.event_id.link_info;
8726 
8727 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8728 			       task, &mntns_operations);
8729 
8730 #ifdef CONFIG_USER_NS
8731 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8732 			       task, &userns_operations);
8733 #endif
8734 #ifdef CONFIG_NET_NS
8735 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8736 			       task, &netns_operations);
8737 #endif
8738 #ifdef CONFIG_UTS_NS
8739 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8740 			       task, &utsns_operations);
8741 #endif
8742 #ifdef CONFIG_IPC_NS
8743 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8744 			       task, &ipcns_operations);
8745 #endif
8746 #ifdef CONFIG_PID_NS
8747 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8748 			       task, &pidns_operations);
8749 #endif
8750 #ifdef CONFIG_CGROUPS
8751 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8752 			       task, &cgroupns_operations);
8753 #endif
8754 
8755 	perf_iterate_sb(perf_event_namespaces_output,
8756 			&namespaces_event,
8757 			NULL);
8758 }
8759 
8760 /*
8761  * cgroup tracking
8762  */
8763 #ifdef CONFIG_CGROUP_PERF
8764 
8765 struct perf_cgroup_event {
8766 	char				*path;
8767 	int				path_size;
8768 	struct {
8769 		struct perf_event_header	header;
8770 		u64				id;
8771 		char				path[];
8772 	} event_id;
8773 };
8774 
perf_event_cgroup_match(struct perf_event * event)8775 static int perf_event_cgroup_match(struct perf_event *event)
8776 {
8777 	return event->attr.cgroup;
8778 }
8779 
perf_event_cgroup_output(struct perf_event * event,void * data)8780 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8781 {
8782 	struct perf_cgroup_event *cgroup_event = data;
8783 	struct perf_output_handle handle;
8784 	struct perf_sample_data sample;
8785 	u16 header_size = cgroup_event->event_id.header.size;
8786 	int ret;
8787 
8788 	if (!perf_event_cgroup_match(event))
8789 		return;
8790 
8791 	perf_event_header__init_id(&cgroup_event->event_id.header,
8792 				   &sample, event);
8793 	ret = perf_output_begin(&handle, &sample, event,
8794 				cgroup_event->event_id.header.size);
8795 	if (ret)
8796 		goto out;
8797 
8798 	perf_output_put(&handle, cgroup_event->event_id);
8799 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8800 
8801 	perf_event__output_id_sample(event, &handle, &sample);
8802 
8803 	perf_output_end(&handle);
8804 out:
8805 	cgroup_event->event_id.header.size = header_size;
8806 }
8807 
perf_event_cgroup(struct cgroup * cgrp)8808 static void perf_event_cgroup(struct cgroup *cgrp)
8809 {
8810 	struct perf_cgroup_event cgroup_event;
8811 	char path_enomem[16] = "//enomem";
8812 	char *pathname;
8813 	size_t size;
8814 
8815 	if (!atomic_read(&nr_cgroup_events))
8816 		return;
8817 
8818 	cgroup_event = (struct perf_cgroup_event){
8819 		.event_id  = {
8820 			.header = {
8821 				.type = PERF_RECORD_CGROUP,
8822 				.misc = 0,
8823 				.size = sizeof(cgroup_event.event_id),
8824 			},
8825 			.id = cgroup_id(cgrp),
8826 		},
8827 	};
8828 
8829 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8830 	if (pathname == NULL) {
8831 		cgroup_event.path = path_enomem;
8832 	} else {
8833 		/* just to be sure to have enough space for alignment */
8834 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8835 		cgroup_event.path = pathname;
8836 	}
8837 
8838 	/*
8839 	 * Since our buffer works in 8 byte units we need to align our string
8840 	 * size to a multiple of 8. However, we must guarantee the tail end is
8841 	 * zero'd out to avoid leaking random bits to userspace.
8842 	 */
8843 	size = strlen(cgroup_event.path) + 1;
8844 	while (!IS_ALIGNED(size, sizeof(u64)))
8845 		cgroup_event.path[size++] = '\0';
8846 
8847 	cgroup_event.event_id.header.size += size;
8848 	cgroup_event.path_size = size;
8849 
8850 	perf_iterate_sb(perf_event_cgroup_output,
8851 			&cgroup_event,
8852 			NULL);
8853 
8854 	kfree(pathname);
8855 }
8856 
8857 #endif
8858 
8859 /*
8860  * mmap tracking
8861  */
8862 
8863 struct perf_mmap_event {
8864 	struct vm_area_struct	*vma;
8865 
8866 	const char		*file_name;
8867 	int			file_size;
8868 	int			maj, min;
8869 	u64			ino;
8870 	u64			ino_generation;
8871 	u32			prot, flags;
8872 	u8			build_id[BUILD_ID_SIZE_MAX];
8873 	u32			build_id_size;
8874 
8875 	struct {
8876 		struct perf_event_header	header;
8877 
8878 		u32				pid;
8879 		u32				tid;
8880 		u64				start;
8881 		u64				len;
8882 		u64				pgoff;
8883 	} event_id;
8884 };
8885 
perf_event_mmap_match(struct perf_event * event,void * data)8886 static int perf_event_mmap_match(struct perf_event *event,
8887 				 void *data)
8888 {
8889 	struct perf_mmap_event *mmap_event = data;
8890 	struct vm_area_struct *vma = mmap_event->vma;
8891 	int executable = vma->vm_flags & VM_EXEC;
8892 
8893 	return (!executable && event->attr.mmap_data) ||
8894 	       (executable && (event->attr.mmap || event->attr.mmap2));
8895 }
8896 
perf_event_mmap_output(struct perf_event * event,void * data)8897 static void perf_event_mmap_output(struct perf_event *event,
8898 				   void *data)
8899 {
8900 	struct perf_mmap_event *mmap_event = data;
8901 	struct perf_output_handle handle;
8902 	struct perf_sample_data sample;
8903 	int size = mmap_event->event_id.header.size;
8904 	u32 type = mmap_event->event_id.header.type;
8905 	bool use_build_id;
8906 	int ret;
8907 
8908 	if (!perf_event_mmap_match(event, data))
8909 		return;
8910 
8911 	if (event->attr.mmap2) {
8912 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8913 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8914 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8915 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8916 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8917 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8918 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8919 	}
8920 
8921 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8922 	ret = perf_output_begin(&handle, &sample, event,
8923 				mmap_event->event_id.header.size);
8924 	if (ret)
8925 		goto out;
8926 
8927 	mmap_event->event_id.pid = perf_event_pid(event, current);
8928 	mmap_event->event_id.tid = perf_event_tid(event, current);
8929 
8930 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8931 
8932 	if (event->attr.mmap2 && use_build_id)
8933 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8934 
8935 	perf_output_put(&handle, mmap_event->event_id);
8936 
8937 	if (event->attr.mmap2) {
8938 		if (use_build_id) {
8939 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8940 
8941 			__output_copy(&handle, size, 4);
8942 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8943 		} else {
8944 			perf_output_put(&handle, mmap_event->maj);
8945 			perf_output_put(&handle, mmap_event->min);
8946 			perf_output_put(&handle, mmap_event->ino);
8947 			perf_output_put(&handle, mmap_event->ino_generation);
8948 		}
8949 		perf_output_put(&handle, mmap_event->prot);
8950 		perf_output_put(&handle, mmap_event->flags);
8951 	}
8952 
8953 	__output_copy(&handle, mmap_event->file_name,
8954 				   mmap_event->file_size);
8955 
8956 	perf_event__output_id_sample(event, &handle, &sample);
8957 
8958 	perf_output_end(&handle);
8959 out:
8960 	mmap_event->event_id.header.size = size;
8961 	mmap_event->event_id.header.type = type;
8962 }
8963 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8964 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8965 {
8966 	struct vm_area_struct *vma = mmap_event->vma;
8967 	struct file *file = vma->vm_file;
8968 	int maj = 0, min = 0;
8969 	u64 ino = 0, gen = 0;
8970 	u32 prot = 0, flags = 0;
8971 	unsigned int size;
8972 	char tmp[16];
8973 	char *buf = NULL;
8974 	char *name = NULL;
8975 
8976 	if (vma->vm_flags & VM_READ)
8977 		prot |= PROT_READ;
8978 	if (vma->vm_flags & VM_WRITE)
8979 		prot |= PROT_WRITE;
8980 	if (vma->vm_flags & VM_EXEC)
8981 		prot |= PROT_EXEC;
8982 
8983 	if (vma->vm_flags & VM_MAYSHARE)
8984 		flags = MAP_SHARED;
8985 	else
8986 		flags = MAP_PRIVATE;
8987 
8988 	if (vma->vm_flags & VM_LOCKED)
8989 		flags |= MAP_LOCKED;
8990 	if (is_vm_hugetlb_page(vma))
8991 		flags |= MAP_HUGETLB;
8992 
8993 	if (file) {
8994 		struct inode *inode;
8995 		dev_t dev;
8996 
8997 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8998 		if (!buf) {
8999 			name = "//enomem";
9000 			goto cpy_name;
9001 		}
9002 		/*
9003 		 * d_path() works from the end of the rb backwards, so we
9004 		 * need to add enough zero bytes after the string to handle
9005 		 * the 64bit alignment we do later.
9006 		 */
9007 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9008 		if (IS_ERR(name)) {
9009 			name = "//toolong";
9010 			goto cpy_name;
9011 		}
9012 		inode = file_inode(vma->vm_file);
9013 		dev = inode->i_sb->s_dev;
9014 		ino = inode->i_ino;
9015 		gen = inode->i_generation;
9016 		maj = MAJOR(dev);
9017 		min = MINOR(dev);
9018 
9019 		goto got_name;
9020 	} else {
9021 		if (vma->vm_ops && vma->vm_ops->name)
9022 			name = (char *) vma->vm_ops->name(vma);
9023 		if (!name)
9024 			name = (char *)arch_vma_name(vma);
9025 		if (!name) {
9026 			if (vma_is_initial_heap(vma))
9027 				name = "[heap]";
9028 			else if (vma_is_initial_stack(vma))
9029 				name = "[stack]";
9030 			else
9031 				name = "//anon";
9032 		}
9033 	}
9034 
9035 cpy_name:
9036 	strscpy(tmp, name, sizeof(tmp));
9037 	name = tmp;
9038 got_name:
9039 	/*
9040 	 * Since our buffer works in 8 byte units we need to align our string
9041 	 * size to a multiple of 8. However, we must guarantee the tail end is
9042 	 * zero'd out to avoid leaking random bits to userspace.
9043 	 */
9044 	size = strlen(name)+1;
9045 	while (!IS_ALIGNED(size, sizeof(u64)))
9046 		name[size++] = '\0';
9047 
9048 	mmap_event->file_name = name;
9049 	mmap_event->file_size = size;
9050 	mmap_event->maj = maj;
9051 	mmap_event->min = min;
9052 	mmap_event->ino = ino;
9053 	mmap_event->ino_generation = gen;
9054 	mmap_event->prot = prot;
9055 	mmap_event->flags = flags;
9056 
9057 	if (!(vma->vm_flags & VM_EXEC))
9058 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9059 
9060 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9061 
9062 	if (atomic_read(&nr_build_id_events))
9063 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9064 
9065 	perf_iterate_sb(perf_event_mmap_output,
9066 		       mmap_event,
9067 		       NULL);
9068 
9069 	kfree(buf);
9070 }
9071 
9072 /*
9073  * Check whether inode and address range match filter criteria.
9074  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9075 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9076 				     struct file *file, unsigned long offset,
9077 				     unsigned long size)
9078 {
9079 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9080 	if (!filter->path.dentry)
9081 		return false;
9082 
9083 	if (d_inode(filter->path.dentry) != file_inode(file))
9084 		return false;
9085 
9086 	if (filter->offset > offset + size)
9087 		return false;
9088 
9089 	if (filter->offset + filter->size < offset)
9090 		return false;
9091 
9092 	return true;
9093 }
9094 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9095 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9096 					struct vm_area_struct *vma,
9097 					struct perf_addr_filter_range *fr)
9098 {
9099 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9100 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9101 	struct file *file = vma->vm_file;
9102 
9103 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9104 		return false;
9105 
9106 	if (filter->offset < off) {
9107 		fr->start = vma->vm_start;
9108 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9109 	} else {
9110 		fr->start = vma->vm_start + filter->offset - off;
9111 		fr->size = min(vma->vm_end - fr->start, filter->size);
9112 	}
9113 
9114 	return true;
9115 }
9116 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9117 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9118 {
9119 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9120 	struct vm_area_struct *vma = data;
9121 	struct perf_addr_filter *filter;
9122 	unsigned int restart = 0, count = 0;
9123 	unsigned long flags;
9124 
9125 	if (!has_addr_filter(event))
9126 		return;
9127 
9128 	if (!vma->vm_file)
9129 		return;
9130 
9131 	raw_spin_lock_irqsave(&ifh->lock, flags);
9132 	list_for_each_entry(filter, &ifh->list, entry) {
9133 		if (perf_addr_filter_vma_adjust(filter, vma,
9134 						&event->addr_filter_ranges[count]))
9135 			restart++;
9136 
9137 		count++;
9138 	}
9139 
9140 	if (restart)
9141 		event->addr_filters_gen++;
9142 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9143 
9144 	if (restart)
9145 		perf_event_stop(event, 1);
9146 }
9147 
9148 /*
9149  * Adjust all task's events' filters to the new vma
9150  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9151 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9152 {
9153 	struct perf_event_context *ctx;
9154 
9155 	/*
9156 	 * Data tracing isn't supported yet and as such there is no need
9157 	 * to keep track of anything that isn't related to executable code:
9158 	 */
9159 	if (!(vma->vm_flags & VM_EXEC))
9160 		return;
9161 
9162 	rcu_read_lock();
9163 	ctx = rcu_dereference(current->perf_event_ctxp);
9164 	if (ctx)
9165 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9166 	rcu_read_unlock();
9167 }
9168 
perf_event_mmap(struct vm_area_struct * vma)9169 void perf_event_mmap(struct vm_area_struct *vma)
9170 {
9171 	struct perf_mmap_event mmap_event;
9172 
9173 	if (!atomic_read(&nr_mmap_events))
9174 		return;
9175 
9176 	mmap_event = (struct perf_mmap_event){
9177 		.vma	= vma,
9178 		/* .file_name */
9179 		/* .file_size */
9180 		.event_id  = {
9181 			.header = {
9182 				.type = PERF_RECORD_MMAP,
9183 				.misc = PERF_RECORD_MISC_USER,
9184 				/* .size */
9185 			},
9186 			/* .pid */
9187 			/* .tid */
9188 			.start  = vma->vm_start,
9189 			.len    = vma->vm_end - vma->vm_start,
9190 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9191 		},
9192 		/* .maj (attr_mmap2 only) */
9193 		/* .min (attr_mmap2 only) */
9194 		/* .ino (attr_mmap2 only) */
9195 		/* .ino_generation (attr_mmap2 only) */
9196 		/* .prot (attr_mmap2 only) */
9197 		/* .flags (attr_mmap2 only) */
9198 	};
9199 
9200 	perf_addr_filters_adjust(vma);
9201 	perf_event_mmap_event(&mmap_event);
9202 }
9203 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9204 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9205 			  unsigned long size, u64 flags)
9206 {
9207 	struct perf_output_handle handle;
9208 	struct perf_sample_data sample;
9209 	struct perf_aux_event {
9210 		struct perf_event_header	header;
9211 		u64				offset;
9212 		u64				size;
9213 		u64				flags;
9214 	} rec = {
9215 		.header = {
9216 			.type = PERF_RECORD_AUX,
9217 			.misc = 0,
9218 			.size = sizeof(rec),
9219 		},
9220 		.offset		= head,
9221 		.size		= size,
9222 		.flags		= flags,
9223 	};
9224 	int ret;
9225 
9226 	perf_event_header__init_id(&rec.header, &sample, event);
9227 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9228 
9229 	if (ret)
9230 		return;
9231 
9232 	perf_output_put(&handle, rec);
9233 	perf_event__output_id_sample(event, &handle, &sample);
9234 
9235 	perf_output_end(&handle);
9236 }
9237 
9238 /*
9239  * Lost/dropped samples logging
9240  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9241 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9242 {
9243 	struct perf_output_handle handle;
9244 	struct perf_sample_data sample;
9245 	int ret;
9246 
9247 	struct {
9248 		struct perf_event_header	header;
9249 		u64				lost;
9250 	} lost_samples_event = {
9251 		.header = {
9252 			.type = PERF_RECORD_LOST_SAMPLES,
9253 			.misc = 0,
9254 			.size = sizeof(lost_samples_event),
9255 		},
9256 		.lost		= lost,
9257 	};
9258 
9259 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9260 
9261 	ret = perf_output_begin(&handle, &sample, event,
9262 				lost_samples_event.header.size);
9263 	if (ret)
9264 		return;
9265 
9266 	perf_output_put(&handle, lost_samples_event);
9267 	perf_event__output_id_sample(event, &handle, &sample);
9268 	perf_output_end(&handle);
9269 }
9270 
9271 /*
9272  * context_switch tracking
9273  */
9274 
9275 struct perf_switch_event {
9276 	struct task_struct	*task;
9277 	struct task_struct	*next_prev;
9278 
9279 	struct {
9280 		struct perf_event_header	header;
9281 		u32				next_prev_pid;
9282 		u32				next_prev_tid;
9283 	} event_id;
9284 };
9285 
perf_event_switch_match(struct perf_event * event)9286 static int perf_event_switch_match(struct perf_event *event)
9287 {
9288 	return event->attr.context_switch;
9289 }
9290 
perf_event_switch_output(struct perf_event * event,void * data)9291 static void perf_event_switch_output(struct perf_event *event, void *data)
9292 {
9293 	struct perf_switch_event *se = data;
9294 	struct perf_output_handle handle;
9295 	struct perf_sample_data sample;
9296 	int ret;
9297 
9298 	if (!perf_event_switch_match(event))
9299 		return;
9300 
9301 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9302 	if (event->ctx->task) {
9303 		se->event_id.header.type = PERF_RECORD_SWITCH;
9304 		se->event_id.header.size = sizeof(se->event_id.header);
9305 	} else {
9306 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9307 		se->event_id.header.size = sizeof(se->event_id);
9308 		se->event_id.next_prev_pid =
9309 					perf_event_pid(event, se->next_prev);
9310 		se->event_id.next_prev_tid =
9311 					perf_event_tid(event, se->next_prev);
9312 	}
9313 
9314 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9315 
9316 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9317 	if (ret)
9318 		return;
9319 
9320 	if (event->ctx->task)
9321 		perf_output_put(&handle, se->event_id.header);
9322 	else
9323 		perf_output_put(&handle, se->event_id);
9324 
9325 	perf_event__output_id_sample(event, &handle, &sample);
9326 
9327 	perf_output_end(&handle);
9328 }
9329 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9330 static void perf_event_switch(struct task_struct *task,
9331 			      struct task_struct *next_prev, bool sched_in)
9332 {
9333 	struct perf_switch_event switch_event;
9334 
9335 	/* N.B. caller checks nr_switch_events != 0 */
9336 
9337 	switch_event = (struct perf_switch_event){
9338 		.task		= task,
9339 		.next_prev	= next_prev,
9340 		.event_id	= {
9341 			.header = {
9342 				/* .type */
9343 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9344 				/* .size */
9345 			},
9346 			/* .next_prev_pid */
9347 			/* .next_prev_tid */
9348 		},
9349 	};
9350 
9351 	if (!sched_in && task_is_runnable(task)) {
9352 		switch_event.event_id.header.misc |=
9353 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9354 	}
9355 
9356 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9357 }
9358 
9359 /*
9360  * IRQ throttle logging
9361  */
9362 
perf_log_throttle(struct perf_event * event,int enable)9363 static void perf_log_throttle(struct perf_event *event, int enable)
9364 {
9365 	struct perf_output_handle handle;
9366 	struct perf_sample_data sample;
9367 	int ret;
9368 
9369 	struct {
9370 		struct perf_event_header	header;
9371 		u64				time;
9372 		u64				id;
9373 		u64				stream_id;
9374 	} throttle_event = {
9375 		.header = {
9376 			.type = PERF_RECORD_THROTTLE,
9377 			.misc = 0,
9378 			.size = sizeof(throttle_event),
9379 		},
9380 		.time		= perf_event_clock(event),
9381 		.id		= primary_event_id(event),
9382 		.stream_id	= event->id,
9383 	};
9384 
9385 	if (enable)
9386 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9387 
9388 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9389 
9390 	ret = perf_output_begin(&handle, &sample, event,
9391 				throttle_event.header.size);
9392 	if (ret)
9393 		return;
9394 
9395 	perf_output_put(&handle, throttle_event);
9396 	perf_event__output_id_sample(event, &handle, &sample);
9397 	perf_output_end(&handle);
9398 }
9399 
9400 /*
9401  * ksymbol register/unregister tracking
9402  */
9403 
9404 struct perf_ksymbol_event {
9405 	const char	*name;
9406 	int		name_len;
9407 	struct {
9408 		struct perf_event_header        header;
9409 		u64				addr;
9410 		u32				len;
9411 		u16				ksym_type;
9412 		u16				flags;
9413 	} event_id;
9414 };
9415 
perf_event_ksymbol_match(struct perf_event * event)9416 static int perf_event_ksymbol_match(struct perf_event *event)
9417 {
9418 	return event->attr.ksymbol;
9419 }
9420 
perf_event_ksymbol_output(struct perf_event * event,void * data)9421 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9422 {
9423 	struct perf_ksymbol_event *ksymbol_event = data;
9424 	struct perf_output_handle handle;
9425 	struct perf_sample_data sample;
9426 	int ret;
9427 
9428 	if (!perf_event_ksymbol_match(event))
9429 		return;
9430 
9431 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9432 				   &sample, event);
9433 	ret = perf_output_begin(&handle, &sample, event,
9434 				ksymbol_event->event_id.header.size);
9435 	if (ret)
9436 		return;
9437 
9438 	perf_output_put(&handle, ksymbol_event->event_id);
9439 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9440 	perf_event__output_id_sample(event, &handle, &sample);
9441 
9442 	perf_output_end(&handle);
9443 }
9444 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9445 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9446 			const char *sym)
9447 {
9448 	struct perf_ksymbol_event ksymbol_event;
9449 	char name[KSYM_NAME_LEN];
9450 	u16 flags = 0;
9451 	int name_len;
9452 
9453 	if (!atomic_read(&nr_ksymbol_events))
9454 		return;
9455 
9456 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9457 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9458 		goto err;
9459 
9460 	strscpy(name, sym, KSYM_NAME_LEN);
9461 	name_len = strlen(name) + 1;
9462 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9463 		name[name_len++] = '\0';
9464 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9465 
9466 	if (unregister)
9467 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9468 
9469 	ksymbol_event = (struct perf_ksymbol_event){
9470 		.name = name,
9471 		.name_len = name_len,
9472 		.event_id = {
9473 			.header = {
9474 				.type = PERF_RECORD_KSYMBOL,
9475 				.size = sizeof(ksymbol_event.event_id) +
9476 					name_len,
9477 			},
9478 			.addr = addr,
9479 			.len = len,
9480 			.ksym_type = ksym_type,
9481 			.flags = flags,
9482 		},
9483 	};
9484 
9485 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9486 	return;
9487 err:
9488 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9489 }
9490 
9491 /*
9492  * bpf program load/unload tracking
9493  */
9494 
9495 struct perf_bpf_event {
9496 	struct bpf_prog	*prog;
9497 	struct {
9498 		struct perf_event_header        header;
9499 		u16				type;
9500 		u16				flags;
9501 		u32				id;
9502 		u8				tag[BPF_TAG_SIZE];
9503 	} event_id;
9504 };
9505 
perf_event_bpf_match(struct perf_event * event)9506 static int perf_event_bpf_match(struct perf_event *event)
9507 {
9508 	return event->attr.bpf_event;
9509 }
9510 
perf_event_bpf_output(struct perf_event * event,void * data)9511 static void perf_event_bpf_output(struct perf_event *event, void *data)
9512 {
9513 	struct perf_bpf_event *bpf_event = data;
9514 	struct perf_output_handle handle;
9515 	struct perf_sample_data sample;
9516 	int ret;
9517 
9518 	if (!perf_event_bpf_match(event))
9519 		return;
9520 
9521 	perf_event_header__init_id(&bpf_event->event_id.header,
9522 				   &sample, event);
9523 	ret = perf_output_begin(&handle, &sample, event,
9524 				bpf_event->event_id.header.size);
9525 	if (ret)
9526 		return;
9527 
9528 	perf_output_put(&handle, bpf_event->event_id);
9529 	perf_event__output_id_sample(event, &handle, &sample);
9530 
9531 	perf_output_end(&handle);
9532 }
9533 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9534 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9535 					 enum perf_bpf_event_type type)
9536 {
9537 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9538 	int i;
9539 
9540 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9541 			   (u64)(unsigned long)prog->bpf_func,
9542 			   prog->jited_len, unregister,
9543 			   prog->aux->ksym.name);
9544 
9545 	for (i = 1; i < prog->aux->func_cnt; i++) {
9546 		struct bpf_prog *subprog = prog->aux->func[i];
9547 
9548 		perf_event_ksymbol(
9549 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9550 			(u64)(unsigned long)subprog->bpf_func,
9551 			subprog->jited_len, unregister,
9552 			subprog->aux->ksym.name);
9553 	}
9554 }
9555 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9556 void perf_event_bpf_event(struct bpf_prog *prog,
9557 			  enum perf_bpf_event_type type,
9558 			  u16 flags)
9559 {
9560 	struct perf_bpf_event bpf_event;
9561 
9562 	switch (type) {
9563 	case PERF_BPF_EVENT_PROG_LOAD:
9564 	case PERF_BPF_EVENT_PROG_UNLOAD:
9565 		if (atomic_read(&nr_ksymbol_events))
9566 			perf_event_bpf_emit_ksymbols(prog, type);
9567 		break;
9568 	default:
9569 		return;
9570 	}
9571 
9572 	if (!atomic_read(&nr_bpf_events))
9573 		return;
9574 
9575 	bpf_event = (struct perf_bpf_event){
9576 		.prog = prog,
9577 		.event_id = {
9578 			.header = {
9579 				.type = PERF_RECORD_BPF_EVENT,
9580 				.size = sizeof(bpf_event.event_id),
9581 			},
9582 			.type = type,
9583 			.flags = flags,
9584 			.id = prog->aux->id,
9585 		},
9586 	};
9587 
9588 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9589 
9590 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9591 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9592 }
9593 
9594 struct perf_text_poke_event {
9595 	const void		*old_bytes;
9596 	const void		*new_bytes;
9597 	size_t			pad;
9598 	u16			old_len;
9599 	u16			new_len;
9600 
9601 	struct {
9602 		struct perf_event_header	header;
9603 
9604 		u64				addr;
9605 	} event_id;
9606 };
9607 
perf_event_text_poke_match(struct perf_event * event)9608 static int perf_event_text_poke_match(struct perf_event *event)
9609 {
9610 	return event->attr.text_poke;
9611 }
9612 
perf_event_text_poke_output(struct perf_event * event,void * data)9613 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9614 {
9615 	struct perf_text_poke_event *text_poke_event = data;
9616 	struct perf_output_handle handle;
9617 	struct perf_sample_data sample;
9618 	u64 padding = 0;
9619 	int ret;
9620 
9621 	if (!perf_event_text_poke_match(event))
9622 		return;
9623 
9624 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9625 
9626 	ret = perf_output_begin(&handle, &sample, event,
9627 				text_poke_event->event_id.header.size);
9628 	if (ret)
9629 		return;
9630 
9631 	perf_output_put(&handle, text_poke_event->event_id);
9632 	perf_output_put(&handle, text_poke_event->old_len);
9633 	perf_output_put(&handle, text_poke_event->new_len);
9634 
9635 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9636 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9637 
9638 	if (text_poke_event->pad)
9639 		__output_copy(&handle, &padding, text_poke_event->pad);
9640 
9641 	perf_event__output_id_sample(event, &handle, &sample);
9642 
9643 	perf_output_end(&handle);
9644 }
9645 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9646 void perf_event_text_poke(const void *addr, const void *old_bytes,
9647 			  size_t old_len, const void *new_bytes, size_t new_len)
9648 {
9649 	struct perf_text_poke_event text_poke_event;
9650 	size_t tot, pad;
9651 
9652 	if (!atomic_read(&nr_text_poke_events))
9653 		return;
9654 
9655 	tot  = sizeof(text_poke_event.old_len) + old_len;
9656 	tot += sizeof(text_poke_event.new_len) + new_len;
9657 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9658 
9659 	text_poke_event = (struct perf_text_poke_event){
9660 		.old_bytes    = old_bytes,
9661 		.new_bytes    = new_bytes,
9662 		.pad          = pad,
9663 		.old_len      = old_len,
9664 		.new_len      = new_len,
9665 		.event_id  = {
9666 			.header = {
9667 				.type = PERF_RECORD_TEXT_POKE,
9668 				.misc = PERF_RECORD_MISC_KERNEL,
9669 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9670 			},
9671 			.addr = (unsigned long)addr,
9672 		},
9673 	};
9674 
9675 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9676 }
9677 
perf_event_itrace_started(struct perf_event * event)9678 void perf_event_itrace_started(struct perf_event *event)
9679 {
9680 	event->attach_state |= PERF_ATTACH_ITRACE;
9681 }
9682 
perf_log_itrace_start(struct perf_event * event)9683 static void perf_log_itrace_start(struct perf_event *event)
9684 {
9685 	struct perf_output_handle handle;
9686 	struct perf_sample_data sample;
9687 	struct perf_aux_event {
9688 		struct perf_event_header        header;
9689 		u32				pid;
9690 		u32				tid;
9691 	} rec;
9692 	int ret;
9693 
9694 	if (event->parent)
9695 		event = event->parent;
9696 
9697 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9698 	    event->attach_state & PERF_ATTACH_ITRACE)
9699 		return;
9700 
9701 	rec.header.type	= PERF_RECORD_ITRACE_START;
9702 	rec.header.misc	= 0;
9703 	rec.header.size	= sizeof(rec);
9704 	rec.pid	= perf_event_pid(event, current);
9705 	rec.tid	= perf_event_tid(event, current);
9706 
9707 	perf_event_header__init_id(&rec.header, &sample, event);
9708 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9709 
9710 	if (ret)
9711 		return;
9712 
9713 	perf_output_put(&handle, rec);
9714 	perf_event__output_id_sample(event, &handle, &sample);
9715 
9716 	perf_output_end(&handle);
9717 }
9718 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9719 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9720 {
9721 	struct perf_output_handle handle;
9722 	struct perf_sample_data sample;
9723 	struct perf_aux_event {
9724 		struct perf_event_header        header;
9725 		u64				hw_id;
9726 	} rec;
9727 	int ret;
9728 
9729 	if (event->parent)
9730 		event = event->parent;
9731 
9732 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9733 	rec.header.misc	= 0;
9734 	rec.header.size	= sizeof(rec);
9735 	rec.hw_id	= hw_id;
9736 
9737 	perf_event_header__init_id(&rec.header, &sample, event);
9738 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9739 
9740 	if (ret)
9741 		return;
9742 
9743 	perf_output_put(&handle, rec);
9744 	perf_event__output_id_sample(event, &handle, &sample);
9745 
9746 	perf_output_end(&handle);
9747 }
9748 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9749 
9750 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9751 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9752 {
9753 	struct hw_perf_event *hwc = &event->hw;
9754 	int ret = 0;
9755 	u64 seq;
9756 
9757 	seq = __this_cpu_read(perf_throttled_seq);
9758 	if (seq != hwc->interrupts_seq) {
9759 		hwc->interrupts_seq = seq;
9760 		hwc->interrupts = 1;
9761 	} else {
9762 		hwc->interrupts++;
9763 		if (unlikely(throttle &&
9764 			     hwc->interrupts > max_samples_per_tick)) {
9765 			__this_cpu_inc(perf_throttled_count);
9766 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9767 			hwc->interrupts = MAX_INTERRUPTS;
9768 			perf_log_throttle(event, 0);
9769 			ret = 1;
9770 		}
9771 	}
9772 
9773 	if (event->attr.freq) {
9774 		u64 now = perf_clock();
9775 		s64 delta = now - hwc->freq_time_stamp;
9776 
9777 		hwc->freq_time_stamp = now;
9778 
9779 		if (delta > 0 && delta < 2*TICK_NSEC)
9780 			perf_adjust_period(event, delta, hwc->last_period, true);
9781 	}
9782 
9783 	return ret;
9784 }
9785 
perf_event_account_interrupt(struct perf_event * event)9786 int perf_event_account_interrupt(struct perf_event *event)
9787 {
9788 	return __perf_event_account_interrupt(event, 1);
9789 }
9790 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9791 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9792 {
9793 	/*
9794 	 * Due to interrupt latency (AKA "skid"), we may enter the
9795 	 * kernel before taking an overflow, even if the PMU is only
9796 	 * counting user events.
9797 	 */
9798 	if (event->attr.exclude_kernel && !user_mode(regs))
9799 		return false;
9800 
9801 	return true;
9802 }
9803 
9804 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9805 static int bpf_overflow_handler(struct perf_event *event,
9806 				struct perf_sample_data *data,
9807 				struct pt_regs *regs)
9808 {
9809 	struct bpf_perf_event_data_kern ctx = {
9810 		.data = data,
9811 		.event = event,
9812 	};
9813 	struct bpf_prog *prog;
9814 	int ret = 0;
9815 
9816 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9817 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9818 		goto out;
9819 	rcu_read_lock();
9820 	prog = READ_ONCE(event->prog);
9821 	if (prog) {
9822 		perf_prepare_sample(data, event, regs);
9823 		ret = bpf_prog_run(prog, &ctx);
9824 	}
9825 	rcu_read_unlock();
9826 out:
9827 	__this_cpu_dec(bpf_prog_active);
9828 
9829 	return ret;
9830 }
9831 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9832 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9833 					     struct bpf_prog *prog,
9834 					     u64 bpf_cookie)
9835 {
9836 	if (event->overflow_handler_context)
9837 		/* hw breakpoint or kernel counter */
9838 		return -EINVAL;
9839 
9840 	if (event->prog)
9841 		return -EEXIST;
9842 
9843 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9844 		return -EINVAL;
9845 
9846 	if (event->attr.precise_ip &&
9847 	    prog->call_get_stack &&
9848 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9849 	     event->attr.exclude_callchain_kernel ||
9850 	     event->attr.exclude_callchain_user)) {
9851 		/*
9852 		 * On perf_event with precise_ip, calling bpf_get_stack()
9853 		 * may trigger unwinder warnings and occasional crashes.
9854 		 * bpf_get_[stack|stackid] works around this issue by using
9855 		 * callchain attached to perf_sample_data. If the
9856 		 * perf_event does not full (kernel and user) callchain
9857 		 * attached to perf_sample_data, do not allow attaching BPF
9858 		 * program that calls bpf_get_[stack|stackid].
9859 		 */
9860 		return -EPROTO;
9861 	}
9862 
9863 	event->prog = prog;
9864 	event->bpf_cookie = bpf_cookie;
9865 	return 0;
9866 }
9867 
perf_event_free_bpf_handler(struct perf_event * event)9868 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9869 {
9870 	struct bpf_prog *prog = event->prog;
9871 
9872 	if (!prog)
9873 		return;
9874 
9875 	event->prog = NULL;
9876 	bpf_prog_put(prog);
9877 }
9878 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9879 static inline int bpf_overflow_handler(struct perf_event *event,
9880 				       struct perf_sample_data *data,
9881 				       struct pt_regs *regs)
9882 {
9883 	return 1;
9884 }
9885 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9886 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9887 					     struct bpf_prog *prog,
9888 					     u64 bpf_cookie)
9889 {
9890 	return -EOPNOTSUPP;
9891 }
9892 
perf_event_free_bpf_handler(struct perf_event * event)9893 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9894 {
9895 }
9896 #endif
9897 
9898 /*
9899  * Generic event overflow handling, sampling.
9900  */
9901 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9902 static int __perf_event_overflow(struct perf_event *event,
9903 				 int throttle, struct perf_sample_data *data,
9904 				 struct pt_regs *regs)
9905 {
9906 	int events = atomic_read(&event->event_limit);
9907 	int ret = 0;
9908 
9909 	/*
9910 	 * Non-sampling counters might still use the PMI to fold short
9911 	 * hardware counters, ignore those.
9912 	 */
9913 	if (unlikely(!is_sampling_event(event)))
9914 		return 0;
9915 
9916 	ret = __perf_event_account_interrupt(event, throttle);
9917 
9918 	if (event->attr.aux_pause)
9919 		perf_event_aux_pause(event->aux_event, true);
9920 
9921 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9922 	    !bpf_overflow_handler(event, data, regs))
9923 		goto out;
9924 
9925 	/*
9926 	 * XXX event_limit might not quite work as expected on inherited
9927 	 * events
9928 	 */
9929 
9930 	event->pending_kill = POLL_IN;
9931 	if (events && atomic_dec_and_test(&event->event_limit)) {
9932 		ret = 1;
9933 		event->pending_kill = POLL_HUP;
9934 		perf_event_disable_inatomic(event);
9935 	}
9936 
9937 	if (event->attr.sigtrap) {
9938 		/*
9939 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9940 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9941 		 * it is the first event, on the other hand, we should also not
9942 		 * trigger the WARN or override the data address.
9943 		 */
9944 		bool valid_sample = sample_is_allowed(event, regs);
9945 		unsigned int pending_id = 1;
9946 		enum task_work_notify_mode notify_mode;
9947 
9948 		if (regs)
9949 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9950 
9951 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9952 
9953 		if (!event->pending_work &&
9954 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9955 			event->pending_work = pending_id;
9956 			local_inc(&event->ctx->nr_no_switch_fast);
9957 
9958 			event->pending_addr = 0;
9959 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9960 				event->pending_addr = data->addr;
9961 
9962 		} else if (event->attr.exclude_kernel && valid_sample) {
9963 			/*
9964 			 * Should not be able to return to user space without
9965 			 * consuming pending_work; with exceptions:
9966 			 *
9967 			 *  1. Where !exclude_kernel, events can overflow again
9968 			 *     in the kernel without returning to user space.
9969 			 *
9970 			 *  2. Events that can overflow again before the IRQ-
9971 			 *     work without user space progress (e.g. hrtimer).
9972 			 *     To approximate progress (with false negatives),
9973 			 *     check 32-bit hash of the current IP.
9974 			 */
9975 			WARN_ON_ONCE(event->pending_work != pending_id);
9976 		}
9977 	}
9978 
9979 	READ_ONCE(event->overflow_handler)(event, data, regs);
9980 
9981 	if (*perf_event_fasync(event) && event->pending_kill) {
9982 		event->pending_wakeup = 1;
9983 		irq_work_queue(&event->pending_irq);
9984 	}
9985 out:
9986 	if (event->attr.aux_resume)
9987 		perf_event_aux_pause(event->aux_event, false);
9988 
9989 	return ret;
9990 }
9991 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9992 int perf_event_overflow(struct perf_event *event,
9993 			struct perf_sample_data *data,
9994 			struct pt_regs *regs)
9995 {
9996 	return __perf_event_overflow(event, 1, data, regs);
9997 }
9998 
9999 /*
10000  * Generic software event infrastructure
10001  */
10002 
10003 struct swevent_htable {
10004 	struct swevent_hlist		*swevent_hlist;
10005 	struct mutex			hlist_mutex;
10006 	int				hlist_refcount;
10007 };
10008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10009 
10010 /*
10011  * We directly increment event->count and keep a second value in
10012  * event->hw.period_left to count intervals. This period event
10013  * is kept in the range [-sample_period, 0] so that we can use the
10014  * sign as trigger.
10015  */
10016 
perf_swevent_set_period(struct perf_event * event)10017 u64 perf_swevent_set_period(struct perf_event *event)
10018 {
10019 	struct hw_perf_event *hwc = &event->hw;
10020 	u64 period = hwc->last_period;
10021 	u64 nr, offset;
10022 	s64 old, val;
10023 
10024 	hwc->last_period = hwc->sample_period;
10025 
10026 	old = local64_read(&hwc->period_left);
10027 	do {
10028 		val = old;
10029 		if (val < 0)
10030 			return 0;
10031 
10032 		nr = div64_u64(period + val, period);
10033 		offset = nr * period;
10034 		val -= offset;
10035 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10036 
10037 	return nr;
10038 }
10039 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10041 				    struct perf_sample_data *data,
10042 				    struct pt_regs *regs)
10043 {
10044 	struct hw_perf_event *hwc = &event->hw;
10045 	int throttle = 0;
10046 
10047 	if (!overflow)
10048 		overflow = perf_swevent_set_period(event);
10049 
10050 	if (hwc->interrupts == MAX_INTERRUPTS)
10051 		return;
10052 
10053 	for (; overflow; overflow--) {
10054 		if (__perf_event_overflow(event, throttle,
10055 					    data, regs)) {
10056 			/*
10057 			 * We inhibit the overflow from happening when
10058 			 * hwc->interrupts == MAX_INTERRUPTS.
10059 			 */
10060 			break;
10061 		}
10062 		throttle = 1;
10063 	}
10064 }
10065 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10066 static void perf_swevent_event(struct perf_event *event, u64 nr,
10067 			       struct perf_sample_data *data,
10068 			       struct pt_regs *regs)
10069 {
10070 	struct hw_perf_event *hwc = &event->hw;
10071 
10072 	local64_add(nr, &event->count);
10073 
10074 	if (!regs)
10075 		return;
10076 
10077 	if (!is_sampling_event(event))
10078 		return;
10079 
10080 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10081 		data->period = nr;
10082 		return perf_swevent_overflow(event, 1, data, regs);
10083 	} else
10084 		data->period = event->hw.last_period;
10085 
10086 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10087 		return perf_swevent_overflow(event, 1, data, regs);
10088 
10089 	if (local64_add_negative(nr, &hwc->period_left))
10090 		return;
10091 
10092 	perf_swevent_overflow(event, 0, data, regs);
10093 }
10094 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10095 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10096 {
10097 	if (event->hw.state & PERF_HES_STOPPED)
10098 		return 1;
10099 
10100 	if (regs) {
10101 		if (event->attr.exclude_user && user_mode(regs))
10102 			return 1;
10103 
10104 		if (event->attr.exclude_kernel && !user_mode(regs))
10105 			return 1;
10106 	}
10107 
10108 	return 0;
10109 }
10110 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10111 static int perf_swevent_match(struct perf_event *event,
10112 				enum perf_type_id type,
10113 				u32 event_id,
10114 				struct perf_sample_data *data,
10115 				struct pt_regs *regs)
10116 {
10117 	if (event->attr.type != type)
10118 		return 0;
10119 
10120 	if (event->attr.config != event_id)
10121 		return 0;
10122 
10123 	if (perf_exclude_event(event, regs))
10124 		return 0;
10125 
10126 	return 1;
10127 }
10128 
swevent_hash(u64 type,u32 event_id)10129 static inline u64 swevent_hash(u64 type, u32 event_id)
10130 {
10131 	u64 val = event_id | (type << 32);
10132 
10133 	return hash_64(val, SWEVENT_HLIST_BITS);
10134 }
10135 
10136 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10137 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10138 {
10139 	u64 hash = swevent_hash(type, event_id);
10140 
10141 	return &hlist->heads[hash];
10142 }
10143 
10144 /* For the read side: events when they trigger */
10145 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10146 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10147 {
10148 	struct swevent_hlist *hlist;
10149 
10150 	hlist = rcu_dereference(swhash->swevent_hlist);
10151 	if (!hlist)
10152 		return NULL;
10153 
10154 	return __find_swevent_head(hlist, type, event_id);
10155 }
10156 
10157 /* For the event head insertion and removal in the hlist */
10158 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10159 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10160 {
10161 	struct swevent_hlist *hlist;
10162 	u32 event_id = event->attr.config;
10163 	u64 type = event->attr.type;
10164 
10165 	/*
10166 	 * Event scheduling is always serialized against hlist allocation
10167 	 * and release. Which makes the protected version suitable here.
10168 	 * The context lock guarantees that.
10169 	 */
10170 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10171 					  lockdep_is_held(&event->ctx->lock));
10172 	if (!hlist)
10173 		return NULL;
10174 
10175 	return __find_swevent_head(hlist, type, event_id);
10176 }
10177 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10178 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10179 				    u64 nr,
10180 				    struct perf_sample_data *data,
10181 				    struct pt_regs *regs)
10182 {
10183 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10184 	struct perf_event *event;
10185 	struct hlist_head *head;
10186 
10187 	rcu_read_lock();
10188 	head = find_swevent_head_rcu(swhash, type, event_id);
10189 	if (!head)
10190 		goto end;
10191 
10192 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10193 		if (perf_swevent_match(event, type, event_id, data, regs))
10194 			perf_swevent_event(event, nr, data, regs);
10195 	}
10196 end:
10197 	rcu_read_unlock();
10198 }
10199 
10200 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10201 
perf_swevent_get_recursion_context(void)10202 int perf_swevent_get_recursion_context(void)
10203 {
10204 	return get_recursion_context(current->perf_recursion);
10205 }
10206 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10207 
perf_swevent_put_recursion_context(int rctx)10208 void perf_swevent_put_recursion_context(int rctx)
10209 {
10210 	put_recursion_context(current->perf_recursion, rctx);
10211 }
10212 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10213 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10214 {
10215 	struct perf_sample_data data;
10216 
10217 	if (WARN_ON_ONCE(!regs))
10218 		return;
10219 
10220 	perf_sample_data_init(&data, addr, 0);
10221 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10222 }
10223 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10224 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10225 {
10226 	int rctx;
10227 
10228 	preempt_disable_notrace();
10229 	rctx = perf_swevent_get_recursion_context();
10230 	if (unlikely(rctx < 0))
10231 		goto fail;
10232 
10233 	___perf_sw_event(event_id, nr, regs, addr);
10234 
10235 	perf_swevent_put_recursion_context(rctx);
10236 fail:
10237 	preempt_enable_notrace();
10238 }
10239 
perf_swevent_read(struct perf_event * event)10240 static void perf_swevent_read(struct perf_event *event)
10241 {
10242 }
10243 
perf_swevent_add(struct perf_event * event,int flags)10244 static int perf_swevent_add(struct perf_event *event, int flags)
10245 {
10246 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10247 	struct hw_perf_event *hwc = &event->hw;
10248 	struct hlist_head *head;
10249 
10250 	if (is_sampling_event(event)) {
10251 		hwc->last_period = hwc->sample_period;
10252 		perf_swevent_set_period(event);
10253 	}
10254 
10255 	hwc->state = !(flags & PERF_EF_START);
10256 
10257 	head = find_swevent_head(swhash, event);
10258 	if (WARN_ON_ONCE(!head))
10259 		return -EINVAL;
10260 
10261 	hlist_add_head_rcu(&event->hlist_entry, head);
10262 	perf_event_update_userpage(event);
10263 
10264 	return 0;
10265 }
10266 
perf_swevent_del(struct perf_event * event,int flags)10267 static void perf_swevent_del(struct perf_event *event, int flags)
10268 {
10269 	hlist_del_rcu(&event->hlist_entry);
10270 }
10271 
perf_swevent_start(struct perf_event * event,int flags)10272 static void perf_swevent_start(struct perf_event *event, int flags)
10273 {
10274 	event->hw.state = 0;
10275 }
10276 
perf_swevent_stop(struct perf_event * event,int flags)10277 static void perf_swevent_stop(struct perf_event *event, int flags)
10278 {
10279 	event->hw.state = PERF_HES_STOPPED;
10280 }
10281 
10282 /* Deref the hlist from the update side */
10283 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10284 swevent_hlist_deref(struct swevent_htable *swhash)
10285 {
10286 	return rcu_dereference_protected(swhash->swevent_hlist,
10287 					 lockdep_is_held(&swhash->hlist_mutex));
10288 }
10289 
swevent_hlist_release(struct swevent_htable * swhash)10290 static void swevent_hlist_release(struct swevent_htable *swhash)
10291 {
10292 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10293 
10294 	if (!hlist)
10295 		return;
10296 
10297 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10298 	kfree_rcu(hlist, rcu_head);
10299 }
10300 
swevent_hlist_put_cpu(int cpu)10301 static void swevent_hlist_put_cpu(int cpu)
10302 {
10303 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10304 
10305 	mutex_lock(&swhash->hlist_mutex);
10306 
10307 	if (!--swhash->hlist_refcount)
10308 		swevent_hlist_release(swhash);
10309 
10310 	mutex_unlock(&swhash->hlist_mutex);
10311 }
10312 
swevent_hlist_put(void)10313 static void swevent_hlist_put(void)
10314 {
10315 	int cpu;
10316 
10317 	for_each_possible_cpu(cpu)
10318 		swevent_hlist_put_cpu(cpu);
10319 }
10320 
swevent_hlist_get_cpu(int cpu)10321 static int swevent_hlist_get_cpu(int cpu)
10322 {
10323 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10324 	int err = 0;
10325 
10326 	mutex_lock(&swhash->hlist_mutex);
10327 	if (!swevent_hlist_deref(swhash) &&
10328 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10329 		struct swevent_hlist *hlist;
10330 
10331 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10332 		if (!hlist) {
10333 			err = -ENOMEM;
10334 			goto exit;
10335 		}
10336 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10337 	}
10338 	swhash->hlist_refcount++;
10339 exit:
10340 	mutex_unlock(&swhash->hlist_mutex);
10341 
10342 	return err;
10343 }
10344 
swevent_hlist_get(void)10345 static int swevent_hlist_get(void)
10346 {
10347 	int err, cpu, failed_cpu;
10348 
10349 	mutex_lock(&pmus_lock);
10350 	for_each_possible_cpu(cpu) {
10351 		err = swevent_hlist_get_cpu(cpu);
10352 		if (err) {
10353 			failed_cpu = cpu;
10354 			goto fail;
10355 		}
10356 	}
10357 	mutex_unlock(&pmus_lock);
10358 	return 0;
10359 fail:
10360 	for_each_possible_cpu(cpu) {
10361 		if (cpu == failed_cpu)
10362 			break;
10363 		swevent_hlist_put_cpu(cpu);
10364 	}
10365 	mutex_unlock(&pmus_lock);
10366 	return err;
10367 }
10368 
10369 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10370 
sw_perf_event_destroy(struct perf_event * event)10371 static void sw_perf_event_destroy(struct perf_event *event)
10372 {
10373 	u64 event_id = event->attr.config;
10374 
10375 	WARN_ON(event->parent);
10376 
10377 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10378 	swevent_hlist_put();
10379 }
10380 
10381 static struct pmu perf_cpu_clock; /* fwd declaration */
10382 static struct pmu perf_task_clock;
10383 
perf_swevent_init(struct perf_event * event)10384 static int perf_swevent_init(struct perf_event *event)
10385 {
10386 	u64 event_id = event->attr.config;
10387 
10388 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10389 		return -ENOENT;
10390 
10391 	/*
10392 	 * no branch sampling for software events
10393 	 */
10394 	if (has_branch_stack(event))
10395 		return -EOPNOTSUPP;
10396 
10397 	switch (event_id) {
10398 	case PERF_COUNT_SW_CPU_CLOCK:
10399 		event->attr.type = perf_cpu_clock.type;
10400 		return -ENOENT;
10401 	case PERF_COUNT_SW_TASK_CLOCK:
10402 		event->attr.type = perf_task_clock.type;
10403 		return -ENOENT;
10404 
10405 	default:
10406 		break;
10407 	}
10408 
10409 	if (event_id >= PERF_COUNT_SW_MAX)
10410 		return -ENOENT;
10411 
10412 	if (!event->parent) {
10413 		int err;
10414 
10415 		err = swevent_hlist_get();
10416 		if (err)
10417 			return err;
10418 
10419 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10420 		event->destroy = sw_perf_event_destroy;
10421 	}
10422 
10423 	return 0;
10424 }
10425 
10426 static struct pmu perf_swevent = {
10427 	.task_ctx_nr	= perf_sw_context,
10428 
10429 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10430 
10431 	.event_init	= perf_swevent_init,
10432 	.add		= perf_swevent_add,
10433 	.del		= perf_swevent_del,
10434 	.start		= perf_swevent_start,
10435 	.stop		= perf_swevent_stop,
10436 	.read		= perf_swevent_read,
10437 };
10438 
10439 #ifdef CONFIG_EVENT_TRACING
10440 
tp_perf_event_destroy(struct perf_event * event)10441 static void tp_perf_event_destroy(struct perf_event *event)
10442 {
10443 	perf_trace_destroy(event);
10444 }
10445 
perf_tp_event_init(struct perf_event * event)10446 static int perf_tp_event_init(struct perf_event *event)
10447 {
10448 	int err;
10449 
10450 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10451 		return -ENOENT;
10452 
10453 	/*
10454 	 * no branch sampling for tracepoint events
10455 	 */
10456 	if (has_branch_stack(event))
10457 		return -EOPNOTSUPP;
10458 
10459 	err = perf_trace_init(event);
10460 	if (err)
10461 		return err;
10462 
10463 	event->destroy = tp_perf_event_destroy;
10464 
10465 	return 0;
10466 }
10467 
10468 static struct pmu perf_tracepoint = {
10469 	.task_ctx_nr	= perf_sw_context,
10470 
10471 	.event_init	= perf_tp_event_init,
10472 	.add		= perf_trace_add,
10473 	.del		= perf_trace_del,
10474 	.start		= perf_swevent_start,
10475 	.stop		= perf_swevent_stop,
10476 	.read		= perf_swevent_read,
10477 };
10478 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10479 static int perf_tp_filter_match(struct perf_event *event,
10480 				struct perf_raw_record *raw)
10481 {
10482 	void *record = raw->frag.data;
10483 
10484 	/* only top level events have filters set */
10485 	if (event->parent)
10486 		event = event->parent;
10487 
10488 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10489 		return 1;
10490 	return 0;
10491 }
10492 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10493 static int perf_tp_event_match(struct perf_event *event,
10494 				struct perf_raw_record *raw,
10495 				struct pt_regs *regs)
10496 {
10497 	if (event->hw.state & PERF_HES_STOPPED)
10498 		return 0;
10499 	/*
10500 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10501 	 */
10502 	if (event->attr.exclude_kernel && !user_mode(regs))
10503 		return 0;
10504 
10505 	if (!perf_tp_filter_match(event, raw))
10506 		return 0;
10507 
10508 	return 1;
10509 }
10510 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10511 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10512 			       struct trace_event_call *call, u64 count,
10513 			       struct pt_regs *regs, struct hlist_head *head,
10514 			       struct task_struct *task)
10515 {
10516 	if (bpf_prog_array_valid(call)) {
10517 		*(struct pt_regs **)raw_data = regs;
10518 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10519 			perf_swevent_put_recursion_context(rctx);
10520 			return;
10521 		}
10522 	}
10523 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10524 		      rctx, task);
10525 }
10526 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10527 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10528 static void __perf_tp_event_target_task(u64 count, void *record,
10529 					struct pt_regs *regs,
10530 					struct perf_sample_data *data,
10531 					struct perf_raw_record *raw,
10532 					struct perf_event *event)
10533 {
10534 	struct trace_entry *entry = record;
10535 
10536 	if (event->attr.config != entry->type)
10537 		return;
10538 	/* Cannot deliver synchronous signal to other task. */
10539 	if (event->attr.sigtrap)
10540 		return;
10541 	if (perf_tp_event_match(event, raw, regs)) {
10542 		perf_sample_data_init(data, 0, 0);
10543 		perf_sample_save_raw_data(data, event, raw);
10544 		perf_swevent_event(event, count, data, regs);
10545 	}
10546 }
10547 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10548 static void perf_tp_event_target_task(u64 count, void *record,
10549 				      struct pt_regs *regs,
10550 				      struct perf_sample_data *data,
10551 				      struct perf_raw_record *raw,
10552 				      struct perf_event_context *ctx)
10553 {
10554 	unsigned int cpu = smp_processor_id();
10555 	struct pmu *pmu = &perf_tracepoint;
10556 	struct perf_event *event, *sibling;
10557 
10558 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10559 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10560 		for_each_sibling_event(sibling, event)
10561 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10562 	}
10563 
10564 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10565 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10566 		for_each_sibling_event(sibling, event)
10567 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10568 	}
10569 }
10570 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10571 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10572 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10573 		   struct task_struct *task)
10574 {
10575 	struct perf_sample_data data;
10576 	struct perf_event *event;
10577 
10578 	struct perf_raw_record raw = {
10579 		.frag = {
10580 			.size = entry_size,
10581 			.data = record,
10582 		},
10583 	};
10584 
10585 	perf_trace_buf_update(record, event_type);
10586 
10587 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10588 		if (perf_tp_event_match(event, &raw, regs)) {
10589 			/*
10590 			 * Here use the same on-stack perf_sample_data,
10591 			 * some members in data are event-specific and
10592 			 * need to be re-computed for different sweveents.
10593 			 * Re-initialize data->sample_flags safely to avoid
10594 			 * the problem that next event skips preparing data
10595 			 * because data->sample_flags is set.
10596 			 */
10597 			perf_sample_data_init(&data, 0, 0);
10598 			perf_sample_save_raw_data(&data, event, &raw);
10599 			perf_swevent_event(event, count, &data, regs);
10600 		}
10601 	}
10602 
10603 	/*
10604 	 * If we got specified a target task, also iterate its context and
10605 	 * deliver this event there too.
10606 	 */
10607 	if (task && task != current) {
10608 		struct perf_event_context *ctx;
10609 
10610 		rcu_read_lock();
10611 		ctx = rcu_dereference(task->perf_event_ctxp);
10612 		if (!ctx)
10613 			goto unlock;
10614 
10615 		raw_spin_lock(&ctx->lock);
10616 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10617 		raw_spin_unlock(&ctx->lock);
10618 unlock:
10619 		rcu_read_unlock();
10620 	}
10621 
10622 	perf_swevent_put_recursion_context(rctx);
10623 }
10624 EXPORT_SYMBOL_GPL(perf_tp_event);
10625 
10626 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10627 /*
10628  * Flags in config, used by dynamic PMU kprobe and uprobe
10629  * The flags should match following PMU_FORMAT_ATTR().
10630  *
10631  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10632  *                               if not set, create kprobe/uprobe
10633  *
10634  * The following values specify a reference counter (or semaphore in the
10635  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10636  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10637  *
10638  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10639  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10640  */
10641 enum perf_probe_config {
10642 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10643 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10644 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10645 };
10646 
10647 PMU_FORMAT_ATTR(retprobe, "config:0");
10648 #endif
10649 
10650 #ifdef CONFIG_KPROBE_EVENTS
10651 static struct attribute *kprobe_attrs[] = {
10652 	&format_attr_retprobe.attr,
10653 	NULL,
10654 };
10655 
10656 static struct attribute_group kprobe_format_group = {
10657 	.name = "format",
10658 	.attrs = kprobe_attrs,
10659 };
10660 
10661 static const struct attribute_group *kprobe_attr_groups[] = {
10662 	&kprobe_format_group,
10663 	NULL,
10664 };
10665 
10666 static int perf_kprobe_event_init(struct perf_event *event);
10667 static struct pmu perf_kprobe = {
10668 	.task_ctx_nr	= perf_sw_context,
10669 	.event_init	= perf_kprobe_event_init,
10670 	.add		= perf_trace_add,
10671 	.del		= perf_trace_del,
10672 	.start		= perf_swevent_start,
10673 	.stop		= perf_swevent_stop,
10674 	.read		= perf_swevent_read,
10675 	.attr_groups	= kprobe_attr_groups,
10676 };
10677 
perf_kprobe_event_init(struct perf_event * event)10678 static int perf_kprobe_event_init(struct perf_event *event)
10679 {
10680 	int err;
10681 	bool is_retprobe;
10682 
10683 	if (event->attr.type != perf_kprobe.type)
10684 		return -ENOENT;
10685 
10686 	if (!perfmon_capable())
10687 		return -EACCES;
10688 
10689 	/*
10690 	 * no branch sampling for probe events
10691 	 */
10692 	if (has_branch_stack(event))
10693 		return -EOPNOTSUPP;
10694 
10695 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10696 	err = perf_kprobe_init(event, is_retprobe);
10697 	if (err)
10698 		return err;
10699 
10700 	event->destroy = perf_kprobe_destroy;
10701 
10702 	return 0;
10703 }
10704 #endif /* CONFIG_KPROBE_EVENTS */
10705 
10706 #ifdef CONFIG_UPROBE_EVENTS
10707 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10708 
10709 static struct attribute *uprobe_attrs[] = {
10710 	&format_attr_retprobe.attr,
10711 	&format_attr_ref_ctr_offset.attr,
10712 	NULL,
10713 };
10714 
10715 static struct attribute_group uprobe_format_group = {
10716 	.name = "format",
10717 	.attrs = uprobe_attrs,
10718 };
10719 
10720 static const struct attribute_group *uprobe_attr_groups[] = {
10721 	&uprobe_format_group,
10722 	NULL,
10723 };
10724 
10725 static int perf_uprobe_event_init(struct perf_event *event);
10726 static struct pmu perf_uprobe = {
10727 	.task_ctx_nr	= perf_sw_context,
10728 	.event_init	= perf_uprobe_event_init,
10729 	.add		= perf_trace_add,
10730 	.del		= perf_trace_del,
10731 	.start		= perf_swevent_start,
10732 	.stop		= perf_swevent_stop,
10733 	.read		= perf_swevent_read,
10734 	.attr_groups	= uprobe_attr_groups,
10735 };
10736 
perf_uprobe_event_init(struct perf_event * event)10737 static int perf_uprobe_event_init(struct perf_event *event)
10738 {
10739 	int err;
10740 	unsigned long ref_ctr_offset;
10741 	bool is_retprobe;
10742 
10743 	if (event->attr.type != perf_uprobe.type)
10744 		return -ENOENT;
10745 
10746 	if (!perfmon_capable())
10747 		return -EACCES;
10748 
10749 	/*
10750 	 * no branch sampling for probe events
10751 	 */
10752 	if (has_branch_stack(event))
10753 		return -EOPNOTSUPP;
10754 
10755 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10756 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10757 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10758 	if (err)
10759 		return err;
10760 
10761 	event->destroy = perf_uprobe_destroy;
10762 
10763 	return 0;
10764 }
10765 #endif /* CONFIG_UPROBE_EVENTS */
10766 
perf_tp_register(void)10767 static inline void perf_tp_register(void)
10768 {
10769 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10770 #ifdef CONFIG_KPROBE_EVENTS
10771 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10772 #endif
10773 #ifdef CONFIG_UPROBE_EVENTS
10774 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10775 #endif
10776 }
10777 
perf_event_free_filter(struct perf_event * event)10778 static void perf_event_free_filter(struct perf_event *event)
10779 {
10780 	ftrace_profile_free_filter(event);
10781 }
10782 
10783 /*
10784  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10785  * with perf_event_open()
10786  */
perf_event_is_tracing(struct perf_event * event)10787 static inline bool perf_event_is_tracing(struct perf_event *event)
10788 {
10789 	if (event->pmu == &perf_tracepoint)
10790 		return true;
10791 #ifdef CONFIG_KPROBE_EVENTS
10792 	if (event->pmu == &perf_kprobe)
10793 		return true;
10794 #endif
10795 #ifdef CONFIG_UPROBE_EVENTS
10796 	if (event->pmu == &perf_uprobe)
10797 		return true;
10798 #endif
10799 	return false;
10800 }
10801 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10802 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10803 			    u64 bpf_cookie)
10804 {
10805 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10806 
10807 	if (!perf_event_is_tracing(event))
10808 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10809 
10810 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10811 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10812 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10813 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10814 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10815 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10816 		return -EINVAL;
10817 
10818 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10819 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10820 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10821 		return -EINVAL;
10822 
10823 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10824 		/* only uprobe programs are allowed to be sleepable */
10825 		return -EINVAL;
10826 
10827 	/* Kprobe override only works for kprobes, not uprobes. */
10828 	if (prog->kprobe_override && !is_kprobe)
10829 		return -EINVAL;
10830 
10831 	if (is_tracepoint || is_syscall_tp) {
10832 		int off = trace_event_get_offsets(event->tp_event);
10833 
10834 		if (prog->aux->max_ctx_offset > off)
10835 			return -EACCES;
10836 	}
10837 
10838 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10839 }
10840 
perf_event_free_bpf_prog(struct perf_event * event)10841 void perf_event_free_bpf_prog(struct perf_event *event)
10842 {
10843 	if (!perf_event_is_tracing(event)) {
10844 		perf_event_free_bpf_handler(event);
10845 		return;
10846 	}
10847 	perf_event_detach_bpf_prog(event);
10848 }
10849 
10850 #else
10851 
perf_tp_register(void)10852 static inline void perf_tp_register(void)
10853 {
10854 }
10855 
perf_event_free_filter(struct perf_event * event)10856 static void perf_event_free_filter(struct perf_event *event)
10857 {
10858 }
10859 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10860 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10861 			    u64 bpf_cookie)
10862 {
10863 	return -ENOENT;
10864 }
10865 
perf_event_free_bpf_prog(struct perf_event * event)10866 void perf_event_free_bpf_prog(struct perf_event *event)
10867 {
10868 }
10869 #endif /* CONFIG_EVENT_TRACING */
10870 
10871 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10872 void perf_bp_event(struct perf_event *bp, void *data)
10873 {
10874 	struct perf_sample_data sample;
10875 	struct pt_regs *regs = data;
10876 
10877 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10878 
10879 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10880 		perf_swevent_event(bp, 1, &sample, regs);
10881 }
10882 #endif
10883 
10884 /*
10885  * Allocate a new address filter
10886  */
10887 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10888 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10889 {
10890 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10891 	struct perf_addr_filter *filter;
10892 
10893 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10894 	if (!filter)
10895 		return NULL;
10896 
10897 	INIT_LIST_HEAD(&filter->entry);
10898 	list_add_tail(&filter->entry, filters);
10899 
10900 	return filter;
10901 }
10902 
free_filters_list(struct list_head * filters)10903 static void free_filters_list(struct list_head *filters)
10904 {
10905 	struct perf_addr_filter *filter, *iter;
10906 
10907 	list_for_each_entry_safe(filter, iter, filters, entry) {
10908 		path_put(&filter->path);
10909 		list_del(&filter->entry);
10910 		kfree(filter);
10911 	}
10912 }
10913 
10914 /*
10915  * Free existing address filters and optionally install new ones
10916  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10917 static void perf_addr_filters_splice(struct perf_event *event,
10918 				     struct list_head *head)
10919 {
10920 	unsigned long flags;
10921 	LIST_HEAD(list);
10922 
10923 	if (!has_addr_filter(event))
10924 		return;
10925 
10926 	/* don't bother with children, they don't have their own filters */
10927 	if (event->parent)
10928 		return;
10929 
10930 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10931 
10932 	list_splice_init(&event->addr_filters.list, &list);
10933 	if (head)
10934 		list_splice(head, &event->addr_filters.list);
10935 
10936 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10937 
10938 	free_filters_list(&list);
10939 }
10940 
10941 /*
10942  * Scan through mm's vmas and see if one of them matches the
10943  * @filter; if so, adjust filter's address range.
10944  * Called with mm::mmap_lock down for reading.
10945  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10946 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10947 				   struct mm_struct *mm,
10948 				   struct perf_addr_filter_range *fr)
10949 {
10950 	struct vm_area_struct *vma;
10951 	VMA_ITERATOR(vmi, mm, 0);
10952 
10953 	for_each_vma(vmi, vma) {
10954 		if (!vma->vm_file)
10955 			continue;
10956 
10957 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10958 			return;
10959 	}
10960 }
10961 
10962 /*
10963  * Update event's address range filters based on the
10964  * task's existing mappings, if any.
10965  */
perf_event_addr_filters_apply(struct perf_event * event)10966 static void perf_event_addr_filters_apply(struct perf_event *event)
10967 {
10968 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10969 	struct task_struct *task = READ_ONCE(event->ctx->task);
10970 	struct perf_addr_filter *filter;
10971 	struct mm_struct *mm = NULL;
10972 	unsigned int count = 0;
10973 	unsigned long flags;
10974 
10975 	/*
10976 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10977 	 * will stop on the parent's child_mutex that our caller is also holding
10978 	 */
10979 	if (task == TASK_TOMBSTONE)
10980 		return;
10981 
10982 	if (ifh->nr_file_filters) {
10983 		mm = get_task_mm(task);
10984 		if (!mm)
10985 			goto restart;
10986 
10987 		mmap_read_lock(mm);
10988 	}
10989 
10990 	raw_spin_lock_irqsave(&ifh->lock, flags);
10991 	list_for_each_entry(filter, &ifh->list, entry) {
10992 		if (filter->path.dentry) {
10993 			/*
10994 			 * Adjust base offset if the filter is associated to a
10995 			 * binary that needs to be mapped:
10996 			 */
10997 			event->addr_filter_ranges[count].start = 0;
10998 			event->addr_filter_ranges[count].size = 0;
10999 
11000 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11001 		} else {
11002 			event->addr_filter_ranges[count].start = filter->offset;
11003 			event->addr_filter_ranges[count].size  = filter->size;
11004 		}
11005 
11006 		count++;
11007 	}
11008 
11009 	event->addr_filters_gen++;
11010 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11011 
11012 	if (ifh->nr_file_filters) {
11013 		mmap_read_unlock(mm);
11014 
11015 		mmput(mm);
11016 	}
11017 
11018 restart:
11019 	perf_event_stop(event, 1);
11020 }
11021 
11022 /*
11023  * Address range filtering: limiting the data to certain
11024  * instruction address ranges. Filters are ioctl()ed to us from
11025  * userspace as ascii strings.
11026  *
11027  * Filter string format:
11028  *
11029  * ACTION RANGE_SPEC
11030  * where ACTION is one of the
11031  *  * "filter": limit the trace to this region
11032  *  * "start": start tracing from this address
11033  *  * "stop": stop tracing at this address/region;
11034  * RANGE_SPEC is
11035  *  * for kernel addresses: <start address>[/<size>]
11036  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11037  *
11038  * if <size> is not specified or is zero, the range is treated as a single
11039  * address; not valid for ACTION=="filter".
11040  */
11041 enum {
11042 	IF_ACT_NONE = -1,
11043 	IF_ACT_FILTER,
11044 	IF_ACT_START,
11045 	IF_ACT_STOP,
11046 	IF_SRC_FILE,
11047 	IF_SRC_KERNEL,
11048 	IF_SRC_FILEADDR,
11049 	IF_SRC_KERNELADDR,
11050 };
11051 
11052 enum {
11053 	IF_STATE_ACTION = 0,
11054 	IF_STATE_SOURCE,
11055 	IF_STATE_END,
11056 };
11057 
11058 static const match_table_t if_tokens = {
11059 	{ IF_ACT_FILTER,	"filter" },
11060 	{ IF_ACT_START,		"start" },
11061 	{ IF_ACT_STOP,		"stop" },
11062 	{ IF_SRC_FILE,		"%u/%u@%s" },
11063 	{ IF_SRC_KERNEL,	"%u/%u" },
11064 	{ IF_SRC_FILEADDR,	"%u@%s" },
11065 	{ IF_SRC_KERNELADDR,	"%u" },
11066 	{ IF_ACT_NONE,		NULL },
11067 };
11068 
11069 /*
11070  * Address filter string parser
11071  */
11072 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11073 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11074 			     struct list_head *filters)
11075 {
11076 	struct perf_addr_filter *filter = NULL;
11077 	char *start, *orig, *filename = NULL;
11078 	substring_t args[MAX_OPT_ARGS];
11079 	int state = IF_STATE_ACTION, token;
11080 	unsigned int kernel = 0;
11081 	int ret = -EINVAL;
11082 
11083 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11084 	if (!fstr)
11085 		return -ENOMEM;
11086 
11087 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11088 		static const enum perf_addr_filter_action_t actions[] = {
11089 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11090 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11091 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11092 		};
11093 		ret = -EINVAL;
11094 
11095 		if (!*start)
11096 			continue;
11097 
11098 		/* filter definition begins */
11099 		if (state == IF_STATE_ACTION) {
11100 			filter = perf_addr_filter_new(event, filters);
11101 			if (!filter)
11102 				goto fail;
11103 		}
11104 
11105 		token = match_token(start, if_tokens, args);
11106 		switch (token) {
11107 		case IF_ACT_FILTER:
11108 		case IF_ACT_START:
11109 		case IF_ACT_STOP:
11110 			if (state != IF_STATE_ACTION)
11111 				goto fail;
11112 
11113 			filter->action = actions[token];
11114 			state = IF_STATE_SOURCE;
11115 			break;
11116 
11117 		case IF_SRC_KERNELADDR:
11118 		case IF_SRC_KERNEL:
11119 			kernel = 1;
11120 			fallthrough;
11121 
11122 		case IF_SRC_FILEADDR:
11123 		case IF_SRC_FILE:
11124 			if (state != IF_STATE_SOURCE)
11125 				goto fail;
11126 
11127 			*args[0].to = 0;
11128 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11129 			if (ret)
11130 				goto fail;
11131 
11132 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11133 				*args[1].to = 0;
11134 				ret = kstrtoul(args[1].from, 0, &filter->size);
11135 				if (ret)
11136 					goto fail;
11137 			}
11138 
11139 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11140 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11141 
11142 				kfree(filename);
11143 				filename = match_strdup(&args[fpos]);
11144 				if (!filename) {
11145 					ret = -ENOMEM;
11146 					goto fail;
11147 				}
11148 			}
11149 
11150 			state = IF_STATE_END;
11151 			break;
11152 
11153 		default:
11154 			goto fail;
11155 		}
11156 
11157 		/*
11158 		 * Filter definition is fully parsed, validate and install it.
11159 		 * Make sure that it doesn't contradict itself or the event's
11160 		 * attribute.
11161 		 */
11162 		if (state == IF_STATE_END) {
11163 			ret = -EINVAL;
11164 
11165 			/*
11166 			 * ACTION "filter" must have a non-zero length region
11167 			 * specified.
11168 			 */
11169 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11170 			    !filter->size)
11171 				goto fail;
11172 
11173 			if (!kernel) {
11174 				if (!filename)
11175 					goto fail;
11176 
11177 				/*
11178 				 * For now, we only support file-based filters
11179 				 * in per-task events; doing so for CPU-wide
11180 				 * events requires additional context switching
11181 				 * trickery, since same object code will be
11182 				 * mapped at different virtual addresses in
11183 				 * different processes.
11184 				 */
11185 				ret = -EOPNOTSUPP;
11186 				if (!event->ctx->task)
11187 					goto fail;
11188 
11189 				/* look up the path and grab its inode */
11190 				ret = kern_path(filename, LOOKUP_FOLLOW,
11191 						&filter->path);
11192 				if (ret)
11193 					goto fail;
11194 
11195 				ret = -EINVAL;
11196 				if (!filter->path.dentry ||
11197 				    !S_ISREG(d_inode(filter->path.dentry)
11198 					     ->i_mode))
11199 					goto fail;
11200 
11201 				event->addr_filters.nr_file_filters++;
11202 			}
11203 
11204 			/* ready to consume more filters */
11205 			kfree(filename);
11206 			filename = NULL;
11207 			state = IF_STATE_ACTION;
11208 			filter = NULL;
11209 			kernel = 0;
11210 		}
11211 	}
11212 
11213 	if (state != IF_STATE_ACTION)
11214 		goto fail;
11215 
11216 	kfree(filename);
11217 	kfree(orig);
11218 
11219 	return 0;
11220 
11221 fail:
11222 	kfree(filename);
11223 	free_filters_list(filters);
11224 	kfree(orig);
11225 
11226 	return ret;
11227 }
11228 
11229 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11230 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11231 {
11232 	LIST_HEAD(filters);
11233 	int ret;
11234 
11235 	/*
11236 	 * Since this is called in perf_ioctl() path, we're already holding
11237 	 * ctx::mutex.
11238 	 */
11239 	lockdep_assert_held(&event->ctx->mutex);
11240 
11241 	if (WARN_ON_ONCE(event->parent))
11242 		return -EINVAL;
11243 
11244 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11245 	if (ret)
11246 		goto fail_clear_files;
11247 
11248 	ret = event->pmu->addr_filters_validate(&filters);
11249 	if (ret)
11250 		goto fail_free_filters;
11251 
11252 	/* remove existing filters, if any */
11253 	perf_addr_filters_splice(event, &filters);
11254 
11255 	/* install new filters */
11256 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11257 
11258 	return ret;
11259 
11260 fail_free_filters:
11261 	free_filters_list(&filters);
11262 
11263 fail_clear_files:
11264 	event->addr_filters.nr_file_filters = 0;
11265 
11266 	return ret;
11267 }
11268 
perf_event_set_filter(struct perf_event * event,void __user * arg)11269 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11270 {
11271 	int ret = -EINVAL;
11272 	char *filter_str;
11273 
11274 	filter_str = strndup_user(arg, PAGE_SIZE);
11275 	if (IS_ERR(filter_str))
11276 		return PTR_ERR(filter_str);
11277 
11278 #ifdef CONFIG_EVENT_TRACING
11279 	if (perf_event_is_tracing(event)) {
11280 		struct perf_event_context *ctx = event->ctx;
11281 
11282 		/*
11283 		 * Beware, here be dragons!!
11284 		 *
11285 		 * the tracepoint muck will deadlock against ctx->mutex, but
11286 		 * the tracepoint stuff does not actually need it. So
11287 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11288 		 * already have a reference on ctx.
11289 		 *
11290 		 * This can result in event getting moved to a different ctx,
11291 		 * but that does not affect the tracepoint state.
11292 		 */
11293 		mutex_unlock(&ctx->mutex);
11294 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11295 		mutex_lock(&ctx->mutex);
11296 	} else
11297 #endif
11298 	if (has_addr_filter(event))
11299 		ret = perf_event_set_addr_filter(event, filter_str);
11300 
11301 	kfree(filter_str);
11302 	return ret;
11303 }
11304 
11305 /*
11306  * hrtimer based swevent callback
11307  */
11308 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11309 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11310 {
11311 	enum hrtimer_restart ret = HRTIMER_RESTART;
11312 	struct perf_sample_data data;
11313 	struct pt_regs *regs;
11314 	struct perf_event *event;
11315 	u64 period;
11316 
11317 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11318 
11319 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11320 		return HRTIMER_NORESTART;
11321 
11322 	event->pmu->read(event);
11323 
11324 	perf_sample_data_init(&data, 0, event->hw.last_period);
11325 	regs = get_irq_regs();
11326 
11327 	if (regs && !perf_exclude_event(event, regs)) {
11328 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11329 			if (__perf_event_overflow(event, 1, &data, regs))
11330 				ret = HRTIMER_NORESTART;
11331 	}
11332 
11333 	period = max_t(u64, 10000, event->hw.sample_period);
11334 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11335 
11336 	return ret;
11337 }
11338 
perf_swevent_start_hrtimer(struct perf_event * event)11339 static void perf_swevent_start_hrtimer(struct perf_event *event)
11340 {
11341 	struct hw_perf_event *hwc = &event->hw;
11342 	s64 period;
11343 
11344 	if (!is_sampling_event(event))
11345 		return;
11346 
11347 	period = local64_read(&hwc->period_left);
11348 	if (period) {
11349 		if (period < 0)
11350 			period = 10000;
11351 
11352 		local64_set(&hwc->period_left, 0);
11353 	} else {
11354 		period = max_t(u64, 10000, hwc->sample_period);
11355 	}
11356 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11357 		      HRTIMER_MODE_REL_PINNED_HARD);
11358 }
11359 
perf_swevent_cancel_hrtimer(struct perf_event * event)11360 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11361 {
11362 	struct hw_perf_event *hwc = &event->hw;
11363 
11364 	if (is_sampling_event(event)) {
11365 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11366 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11367 
11368 		hrtimer_cancel(&hwc->hrtimer);
11369 	}
11370 }
11371 
perf_swevent_init_hrtimer(struct perf_event * event)11372 static void perf_swevent_init_hrtimer(struct perf_event *event)
11373 {
11374 	struct hw_perf_event *hwc = &event->hw;
11375 
11376 	if (!is_sampling_event(event))
11377 		return;
11378 
11379 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11380 	hwc->hrtimer.function = perf_swevent_hrtimer;
11381 
11382 	/*
11383 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11384 	 * mapping and avoid the whole period adjust feedback stuff.
11385 	 */
11386 	if (event->attr.freq) {
11387 		long freq = event->attr.sample_freq;
11388 
11389 		event->attr.sample_period = NSEC_PER_SEC / freq;
11390 		hwc->sample_period = event->attr.sample_period;
11391 		local64_set(&hwc->period_left, hwc->sample_period);
11392 		hwc->last_period = hwc->sample_period;
11393 		event->attr.freq = 0;
11394 	}
11395 }
11396 
11397 /*
11398  * Software event: cpu wall time clock
11399  */
11400 
cpu_clock_event_update(struct perf_event * event)11401 static void cpu_clock_event_update(struct perf_event *event)
11402 {
11403 	s64 prev;
11404 	u64 now;
11405 
11406 	now = local_clock();
11407 	prev = local64_xchg(&event->hw.prev_count, now);
11408 	local64_add(now - prev, &event->count);
11409 }
11410 
cpu_clock_event_start(struct perf_event * event,int flags)11411 static void cpu_clock_event_start(struct perf_event *event, int flags)
11412 {
11413 	local64_set(&event->hw.prev_count, local_clock());
11414 	perf_swevent_start_hrtimer(event);
11415 }
11416 
cpu_clock_event_stop(struct perf_event * event,int flags)11417 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11418 {
11419 	perf_swevent_cancel_hrtimer(event);
11420 	cpu_clock_event_update(event);
11421 }
11422 
cpu_clock_event_add(struct perf_event * event,int flags)11423 static int cpu_clock_event_add(struct perf_event *event, int flags)
11424 {
11425 	if (flags & PERF_EF_START)
11426 		cpu_clock_event_start(event, flags);
11427 	perf_event_update_userpage(event);
11428 
11429 	return 0;
11430 }
11431 
cpu_clock_event_del(struct perf_event * event,int flags)11432 static void cpu_clock_event_del(struct perf_event *event, int flags)
11433 {
11434 	cpu_clock_event_stop(event, flags);
11435 }
11436 
cpu_clock_event_read(struct perf_event * event)11437 static void cpu_clock_event_read(struct perf_event *event)
11438 {
11439 	cpu_clock_event_update(event);
11440 }
11441 
cpu_clock_event_init(struct perf_event * event)11442 static int cpu_clock_event_init(struct perf_event *event)
11443 {
11444 	if (event->attr.type != perf_cpu_clock.type)
11445 		return -ENOENT;
11446 
11447 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11448 		return -ENOENT;
11449 
11450 	/*
11451 	 * no branch sampling for software events
11452 	 */
11453 	if (has_branch_stack(event))
11454 		return -EOPNOTSUPP;
11455 
11456 	perf_swevent_init_hrtimer(event);
11457 
11458 	return 0;
11459 }
11460 
11461 static struct pmu perf_cpu_clock = {
11462 	.task_ctx_nr	= perf_sw_context,
11463 
11464 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11465 	.dev		= PMU_NULL_DEV,
11466 
11467 	.event_init	= cpu_clock_event_init,
11468 	.add		= cpu_clock_event_add,
11469 	.del		= cpu_clock_event_del,
11470 	.start		= cpu_clock_event_start,
11471 	.stop		= cpu_clock_event_stop,
11472 	.read		= cpu_clock_event_read,
11473 };
11474 
11475 /*
11476  * Software event: task time clock
11477  */
11478 
task_clock_event_update(struct perf_event * event,u64 now)11479 static void task_clock_event_update(struct perf_event *event, u64 now)
11480 {
11481 	u64 prev;
11482 	s64 delta;
11483 
11484 	prev = local64_xchg(&event->hw.prev_count, now);
11485 	delta = now - prev;
11486 	local64_add(delta, &event->count);
11487 }
11488 
task_clock_event_start(struct perf_event * event,int flags)11489 static void task_clock_event_start(struct perf_event *event, int flags)
11490 {
11491 	local64_set(&event->hw.prev_count, event->ctx->time);
11492 	perf_swevent_start_hrtimer(event);
11493 }
11494 
task_clock_event_stop(struct perf_event * event,int flags)11495 static void task_clock_event_stop(struct perf_event *event, int flags)
11496 {
11497 	perf_swevent_cancel_hrtimer(event);
11498 	task_clock_event_update(event, event->ctx->time);
11499 }
11500 
task_clock_event_add(struct perf_event * event,int flags)11501 static int task_clock_event_add(struct perf_event *event, int flags)
11502 {
11503 	if (flags & PERF_EF_START)
11504 		task_clock_event_start(event, flags);
11505 	perf_event_update_userpage(event);
11506 
11507 	return 0;
11508 }
11509 
task_clock_event_del(struct perf_event * event,int flags)11510 static void task_clock_event_del(struct perf_event *event, int flags)
11511 {
11512 	task_clock_event_stop(event, PERF_EF_UPDATE);
11513 }
11514 
task_clock_event_read(struct perf_event * event)11515 static void task_clock_event_read(struct perf_event *event)
11516 {
11517 	u64 now = perf_clock();
11518 	u64 delta = now - event->ctx->timestamp;
11519 	u64 time = event->ctx->time + delta;
11520 
11521 	task_clock_event_update(event, time);
11522 }
11523 
task_clock_event_init(struct perf_event * event)11524 static int task_clock_event_init(struct perf_event *event)
11525 {
11526 	if (event->attr.type != perf_task_clock.type)
11527 		return -ENOENT;
11528 
11529 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11530 		return -ENOENT;
11531 
11532 	/*
11533 	 * no branch sampling for software events
11534 	 */
11535 	if (has_branch_stack(event))
11536 		return -EOPNOTSUPP;
11537 
11538 	perf_swevent_init_hrtimer(event);
11539 
11540 	return 0;
11541 }
11542 
11543 static struct pmu perf_task_clock = {
11544 	.task_ctx_nr	= perf_sw_context,
11545 
11546 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11547 	.dev		= PMU_NULL_DEV,
11548 
11549 	.event_init	= task_clock_event_init,
11550 	.add		= task_clock_event_add,
11551 	.del		= task_clock_event_del,
11552 	.start		= task_clock_event_start,
11553 	.stop		= task_clock_event_stop,
11554 	.read		= task_clock_event_read,
11555 };
11556 
perf_pmu_nop_void(struct pmu * pmu)11557 static void perf_pmu_nop_void(struct pmu *pmu)
11558 {
11559 }
11560 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11561 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11562 {
11563 }
11564 
perf_pmu_nop_int(struct pmu * pmu)11565 static int perf_pmu_nop_int(struct pmu *pmu)
11566 {
11567 	return 0;
11568 }
11569 
perf_event_nop_int(struct perf_event * event,u64 value)11570 static int perf_event_nop_int(struct perf_event *event, u64 value)
11571 {
11572 	return 0;
11573 }
11574 
11575 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11576 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11577 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11578 {
11579 	__this_cpu_write(nop_txn_flags, flags);
11580 
11581 	if (flags & ~PERF_PMU_TXN_ADD)
11582 		return;
11583 
11584 	perf_pmu_disable(pmu);
11585 }
11586 
perf_pmu_commit_txn(struct pmu * pmu)11587 static int perf_pmu_commit_txn(struct pmu *pmu)
11588 {
11589 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11590 
11591 	__this_cpu_write(nop_txn_flags, 0);
11592 
11593 	if (flags & ~PERF_PMU_TXN_ADD)
11594 		return 0;
11595 
11596 	perf_pmu_enable(pmu);
11597 	return 0;
11598 }
11599 
perf_pmu_cancel_txn(struct pmu * pmu)11600 static void perf_pmu_cancel_txn(struct pmu *pmu)
11601 {
11602 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11603 
11604 	__this_cpu_write(nop_txn_flags, 0);
11605 
11606 	if (flags & ~PERF_PMU_TXN_ADD)
11607 		return;
11608 
11609 	perf_pmu_enable(pmu);
11610 }
11611 
perf_event_idx_default(struct perf_event * event)11612 static int perf_event_idx_default(struct perf_event *event)
11613 {
11614 	return 0;
11615 }
11616 
free_pmu_context(struct pmu * pmu)11617 static void free_pmu_context(struct pmu *pmu)
11618 {
11619 	free_percpu(pmu->cpu_pmu_context);
11620 }
11621 
11622 /*
11623  * Let userspace know that this PMU supports address range filtering:
11624  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11625 static ssize_t nr_addr_filters_show(struct device *dev,
11626 				    struct device_attribute *attr,
11627 				    char *page)
11628 {
11629 	struct pmu *pmu = dev_get_drvdata(dev);
11630 
11631 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11632 }
11633 DEVICE_ATTR_RO(nr_addr_filters);
11634 
11635 static struct idr pmu_idr;
11636 
11637 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11638 type_show(struct device *dev, struct device_attribute *attr, char *page)
11639 {
11640 	struct pmu *pmu = dev_get_drvdata(dev);
11641 
11642 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11643 }
11644 static DEVICE_ATTR_RO(type);
11645 
11646 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11647 perf_event_mux_interval_ms_show(struct device *dev,
11648 				struct device_attribute *attr,
11649 				char *page)
11650 {
11651 	struct pmu *pmu = dev_get_drvdata(dev);
11652 
11653 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11654 }
11655 
11656 static DEFINE_MUTEX(mux_interval_mutex);
11657 
11658 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11659 perf_event_mux_interval_ms_store(struct device *dev,
11660 				 struct device_attribute *attr,
11661 				 const char *buf, size_t count)
11662 {
11663 	struct pmu *pmu = dev_get_drvdata(dev);
11664 	int timer, cpu, ret;
11665 
11666 	ret = kstrtoint(buf, 0, &timer);
11667 	if (ret)
11668 		return ret;
11669 
11670 	if (timer < 1)
11671 		return -EINVAL;
11672 
11673 	/* same value, noting to do */
11674 	if (timer == pmu->hrtimer_interval_ms)
11675 		return count;
11676 
11677 	mutex_lock(&mux_interval_mutex);
11678 	pmu->hrtimer_interval_ms = timer;
11679 
11680 	/* update all cpuctx for this PMU */
11681 	cpus_read_lock();
11682 	for_each_online_cpu(cpu) {
11683 		struct perf_cpu_pmu_context *cpc;
11684 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11685 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11686 
11687 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11688 	}
11689 	cpus_read_unlock();
11690 	mutex_unlock(&mux_interval_mutex);
11691 
11692 	return count;
11693 }
11694 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11695 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11696 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11697 {
11698 	switch (scope) {
11699 	case PERF_PMU_SCOPE_CORE:
11700 		return topology_sibling_cpumask(cpu);
11701 	case PERF_PMU_SCOPE_DIE:
11702 		return topology_die_cpumask(cpu);
11703 	case PERF_PMU_SCOPE_CLUSTER:
11704 		return topology_cluster_cpumask(cpu);
11705 	case PERF_PMU_SCOPE_PKG:
11706 		return topology_core_cpumask(cpu);
11707 	case PERF_PMU_SCOPE_SYS_WIDE:
11708 		return cpu_online_mask;
11709 	}
11710 
11711 	return NULL;
11712 }
11713 
perf_scope_cpumask(unsigned int scope)11714 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11715 {
11716 	switch (scope) {
11717 	case PERF_PMU_SCOPE_CORE:
11718 		return perf_online_core_mask;
11719 	case PERF_PMU_SCOPE_DIE:
11720 		return perf_online_die_mask;
11721 	case PERF_PMU_SCOPE_CLUSTER:
11722 		return perf_online_cluster_mask;
11723 	case PERF_PMU_SCOPE_PKG:
11724 		return perf_online_pkg_mask;
11725 	case PERF_PMU_SCOPE_SYS_WIDE:
11726 		return perf_online_sys_mask;
11727 	}
11728 
11729 	return NULL;
11730 }
11731 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)11732 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11733 			    char *buf)
11734 {
11735 	struct pmu *pmu = dev_get_drvdata(dev);
11736 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11737 
11738 	if (mask)
11739 		return cpumap_print_to_pagebuf(true, buf, mask);
11740 	return 0;
11741 }
11742 
11743 static DEVICE_ATTR_RO(cpumask);
11744 
11745 static struct attribute *pmu_dev_attrs[] = {
11746 	&dev_attr_type.attr,
11747 	&dev_attr_perf_event_mux_interval_ms.attr,
11748 	&dev_attr_nr_addr_filters.attr,
11749 	&dev_attr_cpumask.attr,
11750 	NULL,
11751 };
11752 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11753 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11754 {
11755 	struct device *dev = kobj_to_dev(kobj);
11756 	struct pmu *pmu = dev_get_drvdata(dev);
11757 
11758 	if (n == 2 && !pmu->nr_addr_filters)
11759 		return 0;
11760 
11761 	/* cpumask */
11762 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11763 		return 0;
11764 
11765 	return a->mode;
11766 }
11767 
11768 static struct attribute_group pmu_dev_attr_group = {
11769 	.is_visible = pmu_dev_is_visible,
11770 	.attrs = pmu_dev_attrs,
11771 };
11772 
11773 static const struct attribute_group *pmu_dev_groups[] = {
11774 	&pmu_dev_attr_group,
11775 	NULL,
11776 };
11777 
11778 static int pmu_bus_running;
11779 static struct bus_type pmu_bus = {
11780 	.name		= "event_source",
11781 	.dev_groups	= pmu_dev_groups,
11782 };
11783 
pmu_dev_release(struct device * dev)11784 static void pmu_dev_release(struct device *dev)
11785 {
11786 	kfree(dev);
11787 }
11788 
pmu_dev_alloc(struct pmu * pmu)11789 static int pmu_dev_alloc(struct pmu *pmu)
11790 {
11791 	int ret = -ENOMEM;
11792 
11793 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11794 	if (!pmu->dev)
11795 		goto out;
11796 
11797 	pmu->dev->groups = pmu->attr_groups;
11798 	device_initialize(pmu->dev);
11799 
11800 	dev_set_drvdata(pmu->dev, pmu);
11801 	pmu->dev->bus = &pmu_bus;
11802 	pmu->dev->parent = pmu->parent;
11803 	pmu->dev->release = pmu_dev_release;
11804 
11805 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11806 	if (ret)
11807 		goto free_dev;
11808 
11809 	ret = device_add(pmu->dev);
11810 	if (ret)
11811 		goto free_dev;
11812 
11813 	if (pmu->attr_update) {
11814 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11815 		if (ret)
11816 			goto del_dev;
11817 	}
11818 
11819 out:
11820 	return ret;
11821 
11822 del_dev:
11823 	device_del(pmu->dev);
11824 
11825 free_dev:
11826 	put_device(pmu->dev);
11827 	goto out;
11828 }
11829 
11830 static struct lock_class_key cpuctx_mutex;
11831 static struct lock_class_key cpuctx_lock;
11832 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11833 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11834 {
11835 	void *tmp, *val = idr_find(idr, id);
11836 
11837 	if (val != old)
11838 		return false;
11839 
11840 	tmp = idr_replace(idr, new, id);
11841 	if (IS_ERR(tmp))
11842 		return false;
11843 
11844 	WARN_ON_ONCE(tmp != val);
11845 	return true;
11846 }
11847 
perf_pmu_register(struct pmu * pmu,const char * name,int type)11848 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11849 {
11850 	int cpu, ret, max = PERF_TYPE_MAX;
11851 
11852 	mutex_lock(&pmus_lock);
11853 	ret = -ENOMEM;
11854 	pmu->pmu_disable_count = alloc_percpu(int);
11855 	if (!pmu->pmu_disable_count)
11856 		goto unlock;
11857 
11858 	pmu->type = -1;
11859 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11860 		ret = -EINVAL;
11861 		goto free_pdc;
11862 	}
11863 
11864 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11865 		ret = -EINVAL;
11866 		goto free_pdc;
11867 	}
11868 
11869 	pmu->name = name;
11870 
11871 	if (type >= 0)
11872 		max = type;
11873 
11874 	ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11875 	if (ret < 0)
11876 		goto free_pdc;
11877 
11878 	WARN_ON(type >= 0 && ret != type);
11879 
11880 	type = ret;
11881 	pmu->type = type;
11882 	atomic_set(&pmu->exclusive_cnt, 0);
11883 
11884 	if (pmu_bus_running && !pmu->dev) {
11885 		ret = pmu_dev_alloc(pmu);
11886 		if (ret)
11887 			goto free_idr;
11888 	}
11889 
11890 	ret = -ENOMEM;
11891 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11892 	if (!pmu->cpu_pmu_context)
11893 		goto free_dev;
11894 
11895 	for_each_possible_cpu(cpu) {
11896 		struct perf_cpu_pmu_context *cpc;
11897 
11898 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11899 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11900 		__perf_mux_hrtimer_init(cpc, cpu);
11901 	}
11902 
11903 	if (!pmu->start_txn) {
11904 		if (pmu->pmu_enable) {
11905 			/*
11906 			 * If we have pmu_enable/pmu_disable calls, install
11907 			 * transaction stubs that use that to try and batch
11908 			 * hardware accesses.
11909 			 */
11910 			pmu->start_txn  = perf_pmu_start_txn;
11911 			pmu->commit_txn = perf_pmu_commit_txn;
11912 			pmu->cancel_txn = perf_pmu_cancel_txn;
11913 		} else {
11914 			pmu->start_txn  = perf_pmu_nop_txn;
11915 			pmu->commit_txn = perf_pmu_nop_int;
11916 			pmu->cancel_txn = perf_pmu_nop_void;
11917 		}
11918 	}
11919 
11920 	if (!pmu->pmu_enable) {
11921 		pmu->pmu_enable  = perf_pmu_nop_void;
11922 		pmu->pmu_disable = perf_pmu_nop_void;
11923 	}
11924 
11925 	if (!pmu->check_period)
11926 		pmu->check_period = perf_event_nop_int;
11927 
11928 	if (!pmu->event_idx)
11929 		pmu->event_idx = perf_event_idx_default;
11930 
11931 	/*
11932 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
11933 	 */
11934 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11935 		goto free_context;
11936 	list_add_rcu(&pmu->entry, &pmus);
11937 
11938 	ret = 0;
11939 unlock:
11940 	mutex_unlock(&pmus_lock);
11941 
11942 	return ret;
11943 
11944 free_context:
11945 	free_percpu(pmu->cpu_pmu_context);
11946 
11947 free_dev:
11948 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11949 		device_del(pmu->dev);
11950 		put_device(pmu->dev);
11951 	}
11952 
11953 free_idr:
11954 	idr_remove(&pmu_idr, pmu->type);
11955 
11956 free_pdc:
11957 	free_percpu(pmu->pmu_disable_count);
11958 	goto unlock;
11959 }
11960 EXPORT_SYMBOL_GPL(perf_pmu_register);
11961 
perf_pmu_unregister(struct pmu * pmu)11962 void perf_pmu_unregister(struct pmu *pmu)
11963 {
11964 	mutex_lock(&pmus_lock);
11965 	list_del_rcu(&pmu->entry);
11966 	idr_remove(&pmu_idr, pmu->type);
11967 	mutex_unlock(&pmus_lock);
11968 
11969 	/*
11970 	 * We dereference the pmu list under both SRCU and regular RCU, so
11971 	 * synchronize against both of those.
11972 	 */
11973 	synchronize_srcu(&pmus_srcu);
11974 	synchronize_rcu();
11975 
11976 	free_percpu(pmu->pmu_disable_count);
11977 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11978 		if (pmu->nr_addr_filters)
11979 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11980 		device_del(pmu->dev);
11981 		put_device(pmu->dev);
11982 	}
11983 	free_pmu_context(pmu);
11984 }
11985 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11986 
has_extended_regs(struct perf_event * event)11987 static inline bool has_extended_regs(struct perf_event *event)
11988 {
11989 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11990 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11991 }
11992 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11993 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11994 {
11995 	struct perf_event_context *ctx = NULL;
11996 	int ret;
11997 
11998 	if (!try_module_get(pmu->module))
11999 		return -ENODEV;
12000 
12001 	/*
12002 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12003 	 * for example, validate if the group fits on the PMU. Therefore,
12004 	 * if this is a sibling event, acquire the ctx->mutex to protect
12005 	 * the sibling_list.
12006 	 */
12007 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12008 		/*
12009 		 * This ctx->mutex can nest when we're called through
12010 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12011 		 */
12012 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12013 						 SINGLE_DEPTH_NESTING);
12014 		BUG_ON(!ctx);
12015 	}
12016 
12017 	event->pmu = pmu;
12018 	ret = pmu->event_init(event);
12019 
12020 	if (ctx)
12021 		perf_event_ctx_unlock(event->group_leader, ctx);
12022 
12023 	if (!ret) {
12024 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12025 		    has_extended_regs(event))
12026 			ret = -EOPNOTSUPP;
12027 
12028 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12029 		    event_has_any_exclude_flag(event))
12030 			ret = -EINVAL;
12031 
12032 		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12033 			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12034 			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
12035 			int cpu;
12036 
12037 			if (pmu_cpumask && cpumask) {
12038 				cpu = cpumask_any_and(pmu_cpumask, cpumask);
12039 				if (cpu >= nr_cpu_ids)
12040 					ret = -ENODEV;
12041 				else
12042 					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12043 			} else {
12044 				ret = -ENODEV;
12045 			}
12046 		}
12047 
12048 		if (ret && event->destroy)
12049 			event->destroy(event);
12050 	}
12051 
12052 	if (ret)
12053 		module_put(pmu->module);
12054 
12055 	return ret;
12056 }
12057 
perf_init_event(struct perf_event * event)12058 static struct pmu *perf_init_event(struct perf_event *event)
12059 {
12060 	bool extended_type = false;
12061 	int idx, type, ret;
12062 	struct pmu *pmu;
12063 
12064 	idx = srcu_read_lock(&pmus_srcu);
12065 
12066 	/*
12067 	 * Save original type before calling pmu->event_init() since certain
12068 	 * pmus overwrites event->attr.type to forward event to another pmu.
12069 	 */
12070 	event->orig_type = event->attr.type;
12071 
12072 	/* Try parent's PMU first: */
12073 	if (event->parent && event->parent->pmu) {
12074 		pmu = event->parent->pmu;
12075 		ret = perf_try_init_event(pmu, event);
12076 		if (!ret)
12077 			goto unlock;
12078 	}
12079 
12080 	/*
12081 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12082 	 * are often aliases for PERF_TYPE_RAW.
12083 	 */
12084 	type = event->attr.type;
12085 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12086 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12087 		if (!type) {
12088 			type = PERF_TYPE_RAW;
12089 		} else {
12090 			extended_type = true;
12091 			event->attr.config &= PERF_HW_EVENT_MASK;
12092 		}
12093 	}
12094 
12095 again:
12096 	rcu_read_lock();
12097 	pmu = idr_find(&pmu_idr, type);
12098 	rcu_read_unlock();
12099 	if (pmu) {
12100 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12101 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12102 			goto fail;
12103 
12104 		ret = perf_try_init_event(pmu, event);
12105 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12106 			type = event->attr.type;
12107 			goto again;
12108 		}
12109 
12110 		if (ret)
12111 			pmu = ERR_PTR(ret);
12112 
12113 		goto unlock;
12114 	}
12115 
12116 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12117 		ret = perf_try_init_event(pmu, event);
12118 		if (!ret)
12119 			goto unlock;
12120 
12121 		if (ret != -ENOENT) {
12122 			pmu = ERR_PTR(ret);
12123 			goto unlock;
12124 		}
12125 	}
12126 fail:
12127 	pmu = ERR_PTR(-ENOENT);
12128 unlock:
12129 	srcu_read_unlock(&pmus_srcu, idx);
12130 
12131 	return pmu;
12132 }
12133 
attach_sb_event(struct perf_event * event)12134 static void attach_sb_event(struct perf_event *event)
12135 {
12136 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12137 
12138 	raw_spin_lock(&pel->lock);
12139 	list_add_rcu(&event->sb_list, &pel->list);
12140 	raw_spin_unlock(&pel->lock);
12141 }
12142 
12143 /*
12144  * We keep a list of all !task (and therefore per-cpu) events
12145  * that need to receive side-band records.
12146  *
12147  * This avoids having to scan all the various PMU per-cpu contexts
12148  * looking for them.
12149  */
account_pmu_sb_event(struct perf_event * event)12150 static void account_pmu_sb_event(struct perf_event *event)
12151 {
12152 	if (is_sb_event(event))
12153 		attach_sb_event(event);
12154 }
12155 
12156 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12157 static void account_freq_event_nohz(void)
12158 {
12159 #ifdef CONFIG_NO_HZ_FULL
12160 	/* Lock so we don't race with concurrent unaccount */
12161 	spin_lock(&nr_freq_lock);
12162 	if (atomic_inc_return(&nr_freq_events) == 1)
12163 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12164 	spin_unlock(&nr_freq_lock);
12165 #endif
12166 }
12167 
account_freq_event(void)12168 static void account_freq_event(void)
12169 {
12170 	if (tick_nohz_full_enabled())
12171 		account_freq_event_nohz();
12172 	else
12173 		atomic_inc(&nr_freq_events);
12174 }
12175 
12176 
account_event(struct perf_event * event)12177 static void account_event(struct perf_event *event)
12178 {
12179 	bool inc = false;
12180 
12181 	if (event->parent)
12182 		return;
12183 
12184 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12185 		inc = true;
12186 	if (event->attr.mmap || event->attr.mmap_data)
12187 		atomic_inc(&nr_mmap_events);
12188 	if (event->attr.build_id)
12189 		atomic_inc(&nr_build_id_events);
12190 	if (event->attr.comm)
12191 		atomic_inc(&nr_comm_events);
12192 	if (event->attr.namespaces)
12193 		atomic_inc(&nr_namespaces_events);
12194 	if (event->attr.cgroup)
12195 		atomic_inc(&nr_cgroup_events);
12196 	if (event->attr.task)
12197 		atomic_inc(&nr_task_events);
12198 	if (event->attr.freq)
12199 		account_freq_event();
12200 	if (event->attr.context_switch) {
12201 		atomic_inc(&nr_switch_events);
12202 		inc = true;
12203 	}
12204 	if (has_branch_stack(event))
12205 		inc = true;
12206 	if (is_cgroup_event(event))
12207 		inc = true;
12208 	if (event->attr.ksymbol)
12209 		atomic_inc(&nr_ksymbol_events);
12210 	if (event->attr.bpf_event)
12211 		atomic_inc(&nr_bpf_events);
12212 	if (event->attr.text_poke)
12213 		atomic_inc(&nr_text_poke_events);
12214 
12215 	if (inc) {
12216 		/*
12217 		 * We need the mutex here because static_branch_enable()
12218 		 * must complete *before* the perf_sched_count increment
12219 		 * becomes visible.
12220 		 */
12221 		if (atomic_inc_not_zero(&perf_sched_count))
12222 			goto enabled;
12223 
12224 		mutex_lock(&perf_sched_mutex);
12225 		if (!atomic_read(&perf_sched_count)) {
12226 			static_branch_enable(&perf_sched_events);
12227 			/*
12228 			 * Guarantee that all CPUs observe they key change and
12229 			 * call the perf scheduling hooks before proceeding to
12230 			 * install events that need them.
12231 			 */
12232 			synchronize_rcu();
12233 		}
12234 		/*
12235 		 * Now that we have waited for the sync_sched(), allow further
12236 		 * increments to by-pass the mutex.
12237 		 */
12238 		atomic_inc(&perf_sched_count);
12239 		mutex_unlock(&perf_sched_mutex);
12240 	}
12241 enabled:
12242 
12243 	account_pmu_sb_event(event);
12244 }
12245 
12246 /*
12247  * Allocate and initialize an event structure
12248  */
12249 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12250 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12251 		 struct task_struct *task,
12252 		 struct perf_event *group_leader,
12253 		 struct perf_event *parent_event,
12254 		 perf_overflow_handler_t overflow_handler,
12255 		 void *context, int cgroup_fd)
12256 {
12257 	struct pmu *pmu;
12258 	struct perf_event *event;
12259 	struct hw_perf_event *hwc;
12260 	long err = -EINVAL;
12261 	int node;
12262 
12263 	if ((unsigned)cpu >= nr_cpu_ids) {
12264 		if (!task || cpu != -1)
12265 			return ERR_PTR(-EINVAL);
12266 	}
12267 	if (attr->sigtrap && !task) {
12268 		/* Requires a task: avoid signalling random tasks. */
12269 		return ERR_PTR(-EINVAL);
12270 	}
12271 
12272 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12273 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12274 				      node);
12275 	if (!event)
12276 		return ERR_PTR(-ENOMEM);
12277 
12278 	/*
12279 	 * Single events are their own group leaders, with an
12280 	 * empty sibling list:
12281 	 */
12282 	if (!group_leader)
12283 		group_leader = event;
12284 
12285 	mutex_init(&event->child_mutex);
12286 	INIT_LIST_HEAD(&event->child_list);
12287 
12288 	INIT_LIST_HEAD(&event->event_entry);
12289 	INIT_LIST_HEAD(&event->sibling_list);
12290 	INIT_LIST_HEAD(&event->active_list);
12291 	init_event_group(event);
12292 	INIT_LIST_HEAD(&event->rb_entry);
12293 	INIT_LIST_HEAD(&event->active_entry);
12294 	INIT_LIST_HEAD(&event->addr_filters.list);
12295 	INIT_HLIST_NODE(&event->hlist_entry);
12296 
12297 
12298 	init_waitqueue_head(&event->waitq);
12299 	init_irq_work(&event->pending_irq, perf_pending_irq);
12300 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12301 	init_task_work(&event->pending_task, perf_pending_task);
12302 	rcuwait_init(&event->pending_work_wait);
12303 
12304 	mutex_init(&event->mmap_mutex);
12305 	raw_spin_lock_init(&event->addr_filters.lock);
12306 
12307 	atomic_long_set(&event->refcount, 1);
12308 	event->cpu		= cpu;
12309 	event->attr		= *attr;
12310 	event->group_leader	= group_leader;
12311 	event->pmu		= NULL;
12312 	event->oncpu		= -1;
12313 
12314 	event->parent		= parent_event;
12315 
12316 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12317 	event->id		= atomic64_inc_return(&perf_event_id);
12318 
12319 	event->state		= PERF_EVENT_STATE_INACTIVE;
12320 
12321 	if (parent_event)
12322 		event->event_caps = parent_event->event_caps;
12323 
12324 	if (task) {
12325 		event->attach_state = PERF_ATTACH_TASK;
12326 		/*
12327 		 * XXX pmu::event_init needs to know what task to account to
12328 		 * and we cannot use the ctx information because we need the
12329 		 * pmu before we get a ctx.
12330 		 */
12331 		event->hw.target = get_task_struct(task);
12332 	}
12333 
12334 	event->clock = &local_clock;
12335 	if (parent_event)
12336 		event->clock = parent_event->clock;
12337 
12338 	if (!overflow_handler && parent_event) {
12339 		overflow_handler = parent_event->overflow_handler;
12340 		context = parent_event->overflow_handler_context;
12341 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12342 		if (parent_event->prog) {
12343 			struct bpf_prog *prog = parent_event->prog;
12344 
12345 			bpf_prog_inc(prog);
12346 			event->prog = prog;
12347 		}
12348 #endif
12349 	}
12350 
12351 	if (overflow_handler) {
12352 		event->overflow_handler	= overflow_handler;
12353 		event->overflow_handler_context = context;
12354 	} else if (is_write_backward(event)){
12355 		event->overflow_handler = perf_event_output_backward;
12356 		event->overflow_handler_context = NULL;
12357 	} else {
12358 		event->overflow_handler = perf_event_output_forward;
12359 		event->overflow_handler_context = NULL;
12360 	}
12361 
12362 	perf_event__state_init(event);
12363 
12364 	pmu = NULL;
12365 
12366 	hwc = &event->hw;
12367 	hwc->sample_period = attr->sample_period;
12368 	if (attr->freq && attr->sample_freq)
12369 		hwc->sample_period = 1;
12370 	hwc->last_period = hwc->sample_period;
12371 
12372 	local64_set(&hwc->period_left, hwc->sample_period);
12373 
12374 	/*
12375 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12376 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12377 	 * collect per-thread samples.
12378 	 * See perf_output_read().
12379 	 */
12380 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12381 		goto err_ns;
12382 
12383 	if (!has_branch_stack(event))
12384 		event->attr.branch_sample_type = 0;
12385 
12386 	pmu = perf_init_event(event);
12387 	if (IS_ERR(pmu)) {
12388 		err = PTR_ERR(pmu);
12389 		goto err_ns;
12390 	}
12391 
12392 	/*
12393 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12394 	 * events (they don't make sense as the cgroup will be different
12395 	 * on other CPUs in the uncore mask).
12396 	 */
12397 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12398 		err = -EINVAL;
12399 		goto err_pmu;
12400 	}
12401 
12402 	if (event->attr.aux_output &&
12403 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12404 	     event->attr.aux_pause || event->attr.aux_resume)) {
12405 		err = -EOPNOTSUPP;
12406 		goto err_pmu;
12407 	}
12408 
12409 	if (event->attr.aux_pause && event->attr.aux_resume) {
12410 		err = -EINVAL;
12411 		goto err_pmu;
12412 	}
12413 
12414 	if (event->attr.aux_start_paused) {
12415 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12416 			err = -EOPNOTSUPP;
12417 			goto err_pmu;
12418 		}
12419 		event->hw.aux_paused = 1;
12420 	}
12421 
12422 	if (cgroup_fd != -1) {
12423 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12424 		if (err)
12425 			goto err_pmu;
12426 	}
12427 
12428 	err = exclusive_event_init(event);
12429 	if (err)
12430 		goto err_pmu;
12431 
12432 	if (has_addr_filter(event)) {
12433 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12434 						    sizeof(struct perf_addr_filter_range),
12435 						    GFP_KERNEL);
12436 		if (!event->addr_filter_ranges) {
12437 			err = -ENOMEM;
12438 			goto err_per_task;
12439 		}
12440 
12441 		/*
12442 		 * Clone the parent's vma offsets: they are valid until exec()
12443 		 * even if the mm is not shared with the parent.
12444 		 */
12445 		if (event->parent) {
12446 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12447 
12448 			raw_spin_lock_irq(&ifh->lock);
12449 			memcpy(event->addr_filter_ranges,
12450 			       event->parent->addr_filter_ranges,
12451 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12452 			raw_spin_unlock_irq(&ifh->lock);
12453 		}
12454 
12455 		/* force hw sync on the address filters */
12456 		event->addr_filters_gen = 1;
12457 	}
12458 
12459 	if (!event->parent) {
12460 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12461 			err = get_callchain_buffers(attr->sample_max_stack);
12462 			if (err)
12463 				goto err_addr_filters;
12464 		}
12465 	}
12466 
12467 	err = security_perf_event_alloc(event);
12468 	if (err)
12469 		goto err_callchain_buffer;
12470 
12471 	/* symmetric to unaccount_event() in _free_event() */
12472 	account_event(event);
12473 
12474 	return event;
12475 
12476 err_callchain_buffer:
12477 	if (!event->parent) {
12478 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12479 			put_callchain_buffers();
12480 	}
12481 err_addr_filters:
12482 	kfree(event->addr_filter_ranges);
12483 
12484 err_per_task:
12485 	exclusive_event_destroy(event);
12486 
12487 err_pmu:
12488 	if (is_cgroup_event(event))
12489 		perf_detach_cgroup(event);
12490 	if (event->destroy)
12491 		event->destroy(event);
12492 	module_put(pmu->module);
12493 err_ns:
12494 	if (event->hw.target)
12495 		put_task_struct(event->hw.target);
12496 	call_rcu(&event->rcu_head, free_event_rcu);
12497 
12498 	return ERR_PTR(err);
12499 }
12500 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12501 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12502 			  struct perf_event_attr *attr)
12503 {
12504 	u32 size;
12505 	int ret;
12506 
12507 	/* Zero the full structure, so that a short copy will be nice. */
12508 	memset(attr, 0, sizeof(*attr));
12509 
12510 	ret = get_user(size, &uattr->size);
12511 	if (ret)
12512 		return ret;
12513 
12514 	/* ABI compatibility quirk: */
12515 	if (!size)
12516 		size = PERF_ATTR_SIZE_VER0;
12517 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12518 		goto err_size;
12519 
12520 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12521 	if (ret) {
12522 		if (ret == -E2BIG)
12523 			goto err_size;
12524 		return ret;
12525 	}
12526 
12527 	attr->size = size;
12528 
12529 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12530 		return -EINVAL;
12531 
12532 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12533 		return -EINVAL;
12534 
12535 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12536 		return -EINVAL;
12537 
12538 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12539 		u64 mask = attr->branch_sample_type;
12540 
12541 		/* only using defined bits */
12542 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12543 			return -EINVAL;
12544 
12545 		/* at least one branch bit must be set */
12546 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12547 			return -EINVAL;
12548 
12549 		/* propagate priv level, when not set for branch */
12550 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12551 
12552 			/* exclude_kernel checked on syscall entry */
12553 			if (!attr->exclude_kernel)
12554 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12555 
12556 			if (!attr->exclude_user)
12557 				mask |= PERF_SAMPLE_BRANCH_USER;
12558 
12559 			if (!attr->exclude_hv)
12560 				mask |= PERF_SAMPLE_BRANCH_HV;
12561 			/*
12562 			 * adjust user setting (for HW filter setup)
12563 			 */
12564 			attr->branch_sample_type = mask;
12565 		}
12566 		/* privileged levels capture (kernel, hv): check permissions */
12567 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12568 			ret = perf_allow_kernel(attr);
12569 			if (ret)
12570 				return ret;
12571 		}
12572 	}
12573 
12574 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12575 		ret = perf_reg_validate(attr->sample_regs_user);
12576 		if (ret)
12577 			return ret;
12578 	}
12579 
12580 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12581 		if (!arch_perf_have_user_stack_dump())
12582 			return -ENOSYS;
12583 
12584 		/*
12585 		 * We have __u32 type for the size, but so far
12586 		 * we can only use __u16 as maximum due to the
12587 		 * __u16 sample size limit.
12588 		 */
12589 		if (attr->sample_stack_user >= USHRT_MAX)
12590 			return -EINVAL;
12591 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12592 			return -EINVAL;
12593 	}
12594 
12595 	if (!attr->sample_max_stack)
12596 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12597 
12598 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12599 		ret = perf_reg_validate(attr->sample_regs_intr);
12600 
12601 #ifndef CONFIG_CGROUP_PERF
12602 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12603 		return -EINVAL;
12604 #endif
12605 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12606 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12607 		return -EINVAL;
12608 
12609 	if (!attr->inherit && attr->inherit_thread)
12610 		return -EINVAL;
12611 
12612 	if (attr->remove_on_exec && attr->enable_on_exec)
12613 		return -EINVAL;
12614 
12615 	if (attr->sigtrap && !attr->remove_on_exec)
12616 		return -EINVAL;
12617 
12618 out:
12619 	return ret;
12620 
12621 err_size:
12622 	put_user(sizeof(*attr), &uattr->size);
12623 	ret = -E2BIG;
12624 	goto out;
12625 }
12626 
mutex_lock_double(struct mutex * a,struct mutex * b)12627 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12628 {
12629 	if (b < a)
12630 		swap(a, b);
12631 
12632 	mutex_lock(a);
12633 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12634 }
12635 
12636 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12637 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12638 {
12639 	struct perf_buffer *rb = NULL;
12640 	int ret = -EINVAL;
12641 
12642 	if (!output_event) {
12643 		mutex_lock(&event->mmap_mutex);
12644 		goto set;
12645 	}
12646 
12647 	/* don't allow circular references */
12648 	if (event == output_event)
12649 		goto out;
12650 
12651 	/*
12652 	 * Don't allow cross-cpu buffers
12653 	 */
12654 	if (output_event->cpu != event->cpu)
12655 		goto out;
12656 
12657 	/*
12658 	 * If its not a per-cpu rb, it must be the same task.
12659 	 */
12660 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12661 		goto out;
12662 
12663 	/*
12664 	 * Mixing clocks in the same buffer is trouble you don't need.
12665 	 */
12666 	if (output_event->clock != event->clock)
12667 		goto out;
12668 
12669 	/*
12670 	 * Either writing ring buffer from beginning or from end.
12671 	 * Mixing is not allowed.
12672 	 */
12673 	if (is_write_backward(output_event) != is_write_backward(event))
12674 		goto out;
12675 
12676 	/*
12677 	 * If both events generate aux data, they must be on the same PMU
12678 	 */
12679 	if (has_aux(event) && has_aux(output_event) &&
12680 	    event->pmu != output_event->pmu)
12681 		goto out;
12682 
12683 	/*
12684 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12685 	 * output_event is already on rb->event_list, and the list iteration
12686 	 * restarts after every removal, it is guaranteed this new event is
12687 	 * observed *OR* if output_event is already removed, it's guaranteed we
12688 	 * observe !rb->mmap_count.
12689 	 */
12690 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12691 set:
12692 	/* Can't redirect output if we've got an active mmap() */
12693 	if (atomic_read(&event->mmap_count))
12694 		goto unlock;
12695 
12696 	if (output_event) {
12697 		/* get the rb we want to redirect to */
12698 		rb = ring_buffer_get(output_event);
12699 		if (!rb)
12700 			goto unlock;
12701 
12702 		/* did we race against perf_mmap_close() */
12703 		if (!atomic_read(&rb->mmap_count)) {
12704 			ring_buffer_put(rb);
12705 			goto unlock;
12706 		}
12707 	}
12708 
12709 	ring_buffer_attach(event, rb);
12710 
12711 	ret = 0;
12712 unlock:
12713 	mutex_unlock(&event->mmap_mutex);
12714 	if (output_event)
12715 		mutex_unlock(&output_event->mmap_mutex);
12716 
12717 out:
12718 	return ret;
12719 }
12720 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12721 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12722 {
12723 	bool nmi_safe = false;
12724 
12725 	switch (clk_id) {
12726 	case CLOCK_MONOTONIC:
12727 		event->clock = &ktime_get_mono_fast_ns;
12728 		nmi_safe = true;
12729 		break;
12730 
12731 	case CLOCK_MONOTONIC_RAW:
12732 		event->clock = &ktime_get_raw_fast_ns;
12733 		nmi_safe = true;
12734 		break;
12735 
12736 	case CLOCK_REALTIME:
12737 		event->clock = &ktime_get_real_ns;
12738 		break;
12739 
12740 	case CLOCK_BOOTTIME:
12741 		event->clock = &ktime_get_boottime_ns;
12742 		break;
12743 
12744 	case CLOCK_TAI:
12745 		event->clock = &ktime_get_clocktai_ns;
12746 		break;
12747 
12748 	default:
12749 		return -EINVAL;
12750 	}
12751 
12752 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12753 		return -EINVAL;
12754 
12755 	return 0;
12756 }
12757 
12758 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12759 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12760 {
12761 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12762 	bool is_capable = perfmon_capable();
12763 
12764 	if (attr->sigtrap) {
12765 		/*
12766 		 * perf_event_attr::sigtrap sends signals to the other task.
12767 		 * Require the current task to also have CAP_KILL.
12768 		 */
12769 		rcu_read_lock();
12770 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12771 		rcu_read_unlock();
12772 
12773 		/*
12774 		 * If the required capabilities aren't available, checks for
12775 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12776 		 * can effectively change the target task.
12777 		 */
12778 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12779 	}
12780 
12781 	/*
12782 	 * Preserve ptrace permission check for backwards compatibility. The
12783 	 * ptrace check also includes checks that the current task and other
12784 	 * task have matching uids, and is therefore not done here explicitly.
12785 	 */
12786 	return is_capable || ptrace_may_access(task, ptrace_mode);
12787 }
12788 
12789 /**
12790  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12791  *
12792  * @attr_uptr:	event_id type attributes for monitoring/sampling
12793  * @pid:		target pid
12794  * @cpu:		target cpu
12795  * @group_fd:		group leader event fd
12796  * @flags:		perf event open flags
12797  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12798 SYSCALL_DEFINE5(perf_event_open,
12799 		struct perf_event_attr __user *, attr_uptr,
12800 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12801 {
12802 	struct perf_event *group_leader = NULL, *output_event = NULL;
12803 	struct perf_event_pmu_context *pmu_ctx;
12804 	struct perf_event *event, *sibling;
12805 	struct perf_event_attr attr;
12806 	struct perf_event_context *ctx;
12807 	struct file *event_file = NULL;
12808 	struct task_struct *task = NULL;
12809 	struct pmu *pmu;
12810 	int event_fd;
12811 	int move_group = 0;
12812 	int err;
12813 	int f_flags = O_RDWR;
12814 	int cgroup_fd = -1;
12815 
12816 	/* for future expandability... */
12817 	if (flags & ~PERF_FLAG_ALL)
12818 		return -EINVAL;
12819 
12820 	err = perf_copy_attr(attr_uptr, &attr);
12821 	if (err)
12822 		return err;
12823 
12824 	/* Do we allow access to perf_event_open(2) ? */
12825 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12826 	if (err)
12827 		return err;
12828 
12829 	if (!attr.exclude_kernel) {
12830 		err = perf_allow_kernel(&attr);
12831 		if (err)
12832 			return err;
12833 	}
12834 
12835 	if (attr.namespaces) {
12836 		if (!perfmon_capable())
12837 			return -EACCES;
12838 	}
12839 
12840 	if (attr.freq) {
12841 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12842 			return -EINVAL;
12843 	} else {
12844 		if (attr.sample_period & (1ULL << 63))
12845 			return -EINVAL;
12846 	}
12847 
12848 	/* Only privileged users can get physical addresses */
12849 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12850 		err = perf_allow_kernel(&attr);
12851 		if (err)
12852 			return err;
12853 	}
12854 
12855 	/* REGS_INTR can leak data, lockdown must prevent this */
12856 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12857 		err = security_locked_down(LOCKDOWN_PERF);
12858 		if (err)
12859 			return err;
12860 	}
12861 
12862 	/*
12863 	 * In cgroup mode, the pid argument is used to pass the fd
12864 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12865 	 * designates the cpu on which to monitor threads from that
12866 	 * cgroup.
12867 	 */
12868 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12869 		return -EINVAL;
12870 
12871 	if (flags & PERF_FLAG_FD_CLOEXEC)
12872 		f_flags |= O_CLOEXEC;
12873 
12874 	event_fd = get_unused_fd_flags(f_flags);
12875 	if (event_fd < 0)
12876 		return event_fd;
12877 
12878 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
12879 	if (group_fd != -1) {
12880 		if (!is_perf_file(group)) {
12881 			err = -EBADF;
12882 			goto err_fd;
12883 		}
12884 		group_leader = fd_file(group)->private_data;
12885 		if (flags & PERF_FLAG_FD_OUTPUT)
12886 			output_event = group_leader;
12887 		if (flags & PERF_FLAG_FD_NO_GROUP)
12888 			group_leader = NULL;
12889 	}
12890 
12891 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12892 		task = find_lively_task_by_vpid(pid);
12893 		if (IS_ERR(task)) {
12894 			err = PTR_ERR(task);
12895 			goto err_fd;
12896 		}
12897 	}
12898 
12899 	if (task && group_leader &&
12900 	    group_leader->attr.inherit != attr.inherit) {
12901 		err = -EINVAL;
12902 		goto err_task;
12903 	}
12904 
12905 	if (flags & PERF_FLAG_PID_CGROUP)
12906 		cgroup_fd = pid;
12907 
12908 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12909 				 NULL, NULL, cgroup_fd);
12910 	if (IS_ERR(event)) {
12911 		err = PTR_ERR(event);
12912 		goto err_task;
12913 	}
12914 
12915 	if (is_sampling_event(event)) {
12916 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12917 			err = -EOPNOTSUPP;
12918 			goto err_alloc;
12919 		}
12920 	}
12921 
12922 	/*
12923 	 * Special case software events and allow them to be part of
12924 	 * any hardware group.
12925 	 */
12926 	pmu = event->pmu;
12927 
12928 	if (attr.use_clockid) {
12929 		err = perf_event_set_clock(event, attr.clockid);
12930 		if (err)
12931 			goto err_alloc;
12932 	}
12933 
12934 	if (pmu->task_ctx_nr == perf_sw_context)
12935 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12936 
12937 	if (task) {
12938 		err = down_read_interruptible(&task->signal->exec_update_lock);
12939 		if (err)
12940 			goto err_alloc;
12941 
12942 		/*
12943 		 * We must hold exec_update_lock across this and any potential
12944 		 * perf_install_in_context() call for this new event to
12945 		 * serialize against exec() altering our credentials (and the
12946 		 * perf_event_exit_task() that could imply).
12947 		 */
12948 		err = -EACCES;
12949 		if (!perf_check_permission(&attr, task))
12950 			goto err_cred;
12951 	}
12952 
12953 	/*
12954 	 * Get the target context (task or percpu):
12955 	 */
12956 	ctx = find_get_context(task, event);
12957 	if (IS_ERR(ctx)) {
12958 		err = PTR_ERR(ctx);
12959 		goto err_cred;
12960 	}
12961 
12962 	mutex_lock(&ctx->mutex);
12963 
12964 	if (ctx->task == TASK_TOMBSTONE) {
12965 		err = -ESRCH;
12966 		goto err_locked;
12967 	}
12968 
12969 	if (!task) {
12970 		/*
12971 		 * Check if the @cpu we're creating an event for is online.
12972 		 *
12973 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12974 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12975 		 */
12976 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12977 
12978 		if (!cpuctx->online) {
12979 			err = -ENODEV;
12980 			goto err_locked;
12981 		}
12982 	}
12983 
12984 	if (group_leader) {
12985 		err = -EINVAL;
12986 
12987 		/*
12988 		 * Do not allow a recursive hierarchy (this new sibling
12989 		 * becoming part of another group-sibling):
12990 		 */
12991 		if (group_leader->group_leader != group_leader)
12992 			goto err_locked;
12993 
12994 		/* All events in a group should have the same clock */
12995 		if (group_leader->clock != event->clock)
12996 			goto err_locked;
12997 
12998 		/*
12999 		 * Make sure we're both events for the same CPU;
13000 		 * grouping events for different CPUs is broken; since
13001 		 * you can never concurrently schedule them anyhow.
13002 		 */
13003 		if (group_leader->cpu != event->cpu)
13004 			goto err_locked;
13005 
13006 		/*
13007 		 * Make sure we're both on the same context; either task or cpu.
13008 		 */
13009 		if (group_leader->ctx != ctx)
13010 			goto err_locked;
13011 
13012 		/*
13013 		 * Only a group leader can be exclusive or pinned
13014 		 */
13015 		if (attr.exclusive || attr.pinned)
13016 			goto err_locked;
13017 
13018 		if (is_software_event(event) &&
13019 		    !in_software_context(group_leader)) {
13020 			/*
13021 			 * If the event is a sw event, but the group_leader
13022 			 * is on hw context.
13023 			 *
13024 			 * Allow the addition of software events to hw
13025 			 * groups, this is safe because software events
13026 			 * never fail to schedule.
13027 			 *
13028 			 * Note the comment that goes with struct
13029 			 * perf_event_pmu_context.
13030 			 */
13031 			pmu = group_leader->pmu_ctx->pmu;
13032 		} else if (!is_software_event(event)) {
13033 			if (is_software_event(group_leader) &&
13034 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13035 				/*
13036 				 * In case the group is a pure software group, and we
13037 				 * try to add a hardware event, move the whole group to
13038 				 * the hardware context.
13039 				 */
13040 				move_group = 1;
13041 			}
13042 
13043 			/* Don't allow group of multiple hw events from different pmus */
13044 			if (!in_software_context(group_leader) &&
13045 			    group_leader->pmu_ctx->pmu != pmu)
13046 				goto err_locked;
13047 		}
13048 	}
13049 
13050 	/*
13051 	 * Now that we're certain of the pmu; find the pmu_ctx.
13052 	 */
13053 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13054 	if (IS_ERR(pmu_ctx)) {
13055 		err = PTR_ERR(pmu_ctx);
13056 		goto err_locked;
13057 	}
13058 	event->pmu_ctx = pmu_ctx;
13059 
13060 	if (output_event) {
13061 		err = perf_event_set_output(event, output_event);
13062 		if (err)
13063 			goto err_context;
13064 	}
13065 
13066 	if (!perf_event_validate_size(event)) {
13067 		err = -E2BIG;
13068 		goto err_context;
13069 	}
13070 
13071 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13072 		err = -EINVAL;
13073 		goto err_context;
13074 	}
13075 
13076 	/*
13077 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13078 	 * because we need to serialize with concurrent event creation.
13079 	 */
13080 	if (!exclusive_event_installable(event, ctx)) {
13081 		err = -EBUSY;
13082 		goto err_context;
13083 	}
13084 
13085 	WARN_ON_ONCE(ctx->parent_ctx);
13086 
13087 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13088 	if (IS_ERR(event_file)) {
13089 		err = PTR_ERR(event_file);
13090 		event_file = NULL;
13091 		goto err_context;
13092 	}
13093 
13094 	/*
13095 	 * This is the point on no return; we cannot fail hereafter. This is
13096 	 * where we start modifying current state.
13097 	 */
13098 
13099 	if (move_group) {
13100 		perf_remove_from_context(group_leader, 0);
13101 		put_pmu_ctx(group_leader->pmu_ctx);
13102 
13103 		for_each_sibling_event(sibling, group_leader) {
13104 			perf_remove_from_context(sibling, 0);
13105 			put_pmu_ctx(sibling->pmu_ctx);
13106 		}
13107 
13108 		/*
13109 		 * Install the group siblings before the group leader.
13110 		 *
13111 		 * Because a group leader will try and install the entire group
13112 		 * (through the sibling list, which is still in-tact), we can
13113 		 * end up with siblings installed in the wrong context.
13114 		 *
13115 		 * By installing siblings first we NO-OP because they're not
13116 		 * reachable through the group lists.
13117 		 */
13118 		for_each_sibling_event(sibling, group_leader) {
13119 			sibling->pmu_ctx = pmu_ctx;
13120 			get_pmu_ctx(pmu_ctx);
13121 			perf_event__state_init(sibling);
13122 			perf_install_in_context(ctx, sibling, sibling->cpu);
13123 		}
13124 
13125 		/*
13126 		 * Removing from the context ends up with disabled
13127 		 * event. What we want here is event in the initial
13128 		 * startup state, ready to be add into new context.
13129 		 */
13130 		group_leader->pmu_ctx = pmu_ctx;
13131 		get_pmu_ctx(pmu_ctx);
13132 		perf_event__state_init(group_leader);
13133 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13134 	}
13135 
13136 	/*
13137 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13138 	 * that we're serialized against further additions and before
13139 	 * perf_install_in_context() which is the point the event is active and
13140 	 * can use these values.
13141 	 */
13142 	perf_event__header_size(event);
13143 	perf_event__id_header_size(event);
13144 
13145 	event->owner = current;
13146 
13147 	perf_install_in_context(ctx, event, event->cpu);
13148 	perf_unpin_context(ctx);
13149 
13150 	mutex_unlock(&ctx->mutex);
13151 
13152 	if (task) {
13153 		up_read(&task->signal->exec_update_lock);
13154 		put_task_struct(task);
13155 	}
13156 
13157 	mutex_lock(&current->perf_event_mutex);
13158 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13159 	mutex_unlock(&current->perf_event_mutex);
13160 
13161 	/*
13162 	 * File reference in group guarantees that group_leader has been
13163 	 * kept alive until we place the new event on the sibling_list.
13164 	 * This ensures destruction of the group leader will find
13165 	 * the pointer to itself in perf_group_detach().
13166 	 */
13167 	fd_install(event_fd, event_file);
13168 	return event_fd;
13169 
13170 err_context:
13171 	put_pmu_ctx(event->pmu_ctx);
13172 	event->pmu_ctx = NULL; /* _free_event() */
13173 err_locked:
13174 	mutex_unlock(&ctx->mutex);
13175 	perf_unpin_context(ctx);
13176 	put_ctx(ctx);
13177 err_cred:
13178 	if (task)
13179 		up_read(&task->signal->exec_update_lock);
13180 err_alloc:
13181 	free_event(event);
13182 err_task:
13183 	if (task)
13184 		put_task_struct(task);
13185 err_fd:
13186 	put_unused_fd(event_fd);
13187 	return err;
13188 }
13189 
13190 /**
13191  * perf_event_create_kernel_counter
13192  *
13193  * @attr: attributes of the counter to create
13194  * @cpu: cpu in which the counter is bound
13195  * @task: task to profile (NULL for percpu)
13196  * @overflow_handler: callback to trigger when we hit the event
13197  * @context: context data could be used in overflow_handler callback
13198  */
13199 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13200 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13201 				 struct task_struct *task,
13202 				 perf_overflow_handler_t overflow_handler,
13203 				 void *context)
13204 {
13205 	struct perf_event_pmu_context *pmu_ctx;
13206 	struct perf_event_context *ctx;
13207 	struct perf_event *event;
13208 	struct pmu *pmu;
13209 	int err;
13210 
13211 	/*
13212 	 * Grouping is not supported for kernel events, neither is 'AUX',
13213 	 * make sure the caller's intentions are adjusted.
13214 	 */
13215 	if (attr->aux_output || attr->aux_action)
13216 		return ERR_PTR(-EINVAL);
13217 
13218 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13219 				 overflow_handler, context, -1);
13220 	if (IS_ERR(event)) {
13221 		err = PTR_ERR(event);
13222 		goto err;
13223 	}
13224 
13225 	/* Mark owner so we could distinguish it from user events. */
13226 	event->owner = TASK_TOMBSTONE;
13227 	pmu = event->pmu;
13228 
13229 	if (pmu->task_ctx_nr == perf_sw_context)
13230 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13231 
13232 	/*
13233 	 * Get the target context (task or percpu):
13234 	 */
13235 	ctx = find_get_context(task, event);
13236 	if (IS_ERR(ctx)) {
13237 		err = PTR_ERR(ctx);
13238 		goto err_alloc;
13239 	}
13240 
13241 	WARN_ON_ONCE(ctx->parent_ctx);
13242 	mutex_lock(&ctx->mutex);
13243 	if (ctx->task == TASK_TOMBSTONE) {
13244 		err = -ESRCH;
13245 		goto err_unlock;
13246 	}
13247 
13248 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13249 	if (IS_ERR(pmu_ctx)) {
13250 		err = PTR_ERR(pmu_ctx);
13251 		goto err_unlock;
13252 	}
13253 	event->pmu_ctx = pmu_ctx;
13254 
13255 	if (!task) {
13256 		/*
13257 		 * Check if the @cpu we're creating an event for is online.
13258 		 *
13259 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13260 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13261 		 */
13262 		struct perf_cpu_context *cpuctx =
13263 			container_of(ctx, struct perf_cpu_context, ctx);
13264 		if (!cpuctx->online) {
13265 			err = -ENODEV;
13266 			goto err_pmu_ctx;
13267 		}
13268 	}
13269 
13270 	if (!exclusive_event_installable(event, ctx)) {
13271 		err = -EBUSY;
13272 		goto err_pmu_ctx;
13273 	}
13274 
13275 	perf_install_in_context(ctx, event, event->cpu);
13276 	perf_unpin_context(ctx);
13277 	mutex_unlock(&ctx->mutex);
13278 
13279 	return event;
13280 
13281 err_pmu_ctx:
13282 	put_pmu_ctx(pmu_ctx);
13283 	event->pmu_ctx = NULL; /* _free_event() */
13284 err_unlock:
13285 	mutex_unlock(&ctx->mutex);
13286 	perf_unpin_context(ctx);
13287 	put_ctx(ctx);
13288 err_alloc:
13289 	free_event(event);
13290 err:
13291 	return ERR_PTR(err);
13292 }
13293 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13294 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13295 static void __perf_pmu_remove(struct perf_event_context *ctx,
13296 			      int cpu, struct pmu *pmu,
13297 			      struct perf_event_groups *groups,
13298 			      struct list_head *events)
13299 {
13300 	struct perf_event *event, *sibling;
13301 
13302 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13303 		perf_remove_from_context(event, 0);
13304 		put_pmu_ctx(event->pmu_ctx);
13305 		list_add(&event->migrate_entry, events);
13306 
13307 		for_each_sibling_event(sibling, event) {
13308 			perf_remove_from_context(sibling, 0);
13309 			put_pmu_ctx(sibling->pmu_ctx);
13310 			list_add(&sibling->migrate_entry, events);
13311 		}
13312 	}
13313 }
13314 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13315 static void __perf_pmu_install_event(struct pmu *pmu,
13316 				     struct perf_event_context *ctx,
13317 				     int cpu, struct perf_event *event)
13318 {
13319 	struct perf_event_pmu_context *epc;
13320 	struct perf_event_context *old_ctx = event->ctx;
13321 
13322 	get_ctx(ctx); /* normally find_get_context() */
13323 
13324 	event->cpu = cpu;
13325 	epc = find_get_pmu_context(pmu, ctx, event);
13326 	event->pmu_ctx = epc;
13327 
13328 	if (event->state >= PERF_EVENT_STATE_OFF)
13329 		event->state = PERF_EVENT_STATE_INACTIVE;
13330 	perf_install_in_context(ctx, event, cpu);
13331 
13332 	/*
13333 	 * Now that event->ctx is updated and visible, put the old ctx.
13334 	 */
13335 	put_ctx(old_ctx);
13336 }
13337 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13338 static void __perf_pmu_install(struct perf_event_context *ctx,
13339 			       int cpu, struct pmu *pmu, struct list_head *events)
13340 {
13341 	struct perf_event *event, *tmp;
13342 
13343 	/*
13344 	 * Re-instate events in 2 passes.
13345 	 *
13346 	 * Skip over group leaders and only install siblings on this first
13347 	 * pass, siblings will not get enabled without a leader, however a
13348 	 * leader will enable its siblings, even if those are still on the old
13349 	 * context.
13350 	 */
13351 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13352 		if (event->group_leader == event)
13353 			continue;
13354 
13355 		list_del(&event->migrate_entry);
13356 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13357 	}
13358 
13359 	/*
13360 	 * Once all the siblings are setup properly, install the group leaders
13361 	 * to make it go.
13362 	 */
13363 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13364 		list_del(&event->migrate_entry);
13365 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13366 	}
13367 }
13368 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13369 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13370 {
13371 	struct perf_event_context *src_ctx, *dst_ctx;
13372 	LIST_HEAD(events);
13373 
13374 	/*
13375 	 * Since per-cpu context is persistent, no need to grab an extra
13376 	 * reference.
13377 	 */
13378 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13379 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13380 
13381 	/*
13382 	 * See perf_event_ctx_lock() for comments on the details
13383 	 * of swizzling perf_event::ctx.
13384 	 */
13385 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13386 
13387 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13388 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13389 
13390 	if (!list_empty(&events)) {
13391 		/*
13392 		 * Wait for the events to quiesce before re-instating them.
13393 		 */
13394 		synchronize_rcu();
13395 
13396 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13397 	}
13398 
13399 	mutex_unlock(&dst_ctx->mutex);
13400 	mutex_unlock(&src_ctx->mutex);
13401 }
13402 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13403 
sync_child_event(struct perf_event * child_event)13404 static void sync_child_event(struct perf_event *child_event)
13405 {
13406 	struct perf_event *parent_event = child_event->parent;
13407 	u64 child_val;
13408 
13409 	if (child_event->attr.inherit_stat) {
13410 		struct task_struct *task = child_event->ctx->task;
13411 
13412 		if (task && task != TASK_TOMBSTONE)
13413 			perf_event_read_event(child_event, task);
13414 	}
13415 
13416 	child_val = perf_event_count(child_event, false);
13417 
13418 	/*
13419 	 * Add back the child's count to the parent's count:
13420 	 */
13421 	atomic64_add(child_val, &parent_event->child_count);
13422 	atomic64_add(child_event->total_time_enabled,
13423 		     &parent_event->child_total_time_enabled);
13424 	atomic64_add(child_event->total_time_running,
13425 		     &parent_event->child_total_time_running);
13426 }
13427 
13428 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13429 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13430 {
13431 	struct perf_event *parent_event = event->parent;
13432 	unsigned long detach_flags = 0;
13433 
13434 	if (parent_event) {
13435 		/*
13436 		 * Do not destroy the 'original' grouping; because of the
13437 		 * context switch optimization the original events could've
13438 		 * ended up in a random child task.
13439 		 *
13440 		 * If we were to destroy the original group, all group related
13441 		 * operations would cease to function properly after this
13442 		 * random child dies.
13443 		 *
13444 		 * Do destroy all inherited groups, we don't care about those
13445 		 * and being thorough is better.
13446 		 */
13447 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13448 		mutex_lock(&parent_event->child_mutex);
13449 	}
13450 
13451 	perf_remove_from_context(event, detach_flags);
13452 
13453 	raw_spin_lock_irq(&ctx->lock);
13454 	if (event->state > PERF_EVENT_STATE_EXIT)
13455 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13456 	raw_spin_unlock_irq(&ctx->lock);
13457 
13458 	/*
13459 	 * Child events can be freed.
13460 	 */
13461 	if (parent_event) {
13462 		mutex_unlock(&parent_event->child_mutex);
13463 		/*
13464 		 * Kick perf_poll() for is_event_hup();
13465 		 */
13466 		perf_event_wakeup(parent_event);
13467 		free_event(event);
13468 		put_event(parent_event);
13469 		return;
13470 	}
13471 
13472 	/*
13473 	 * Parent events are governed by their filedesc, retain them.
13474 	 */
13475 	perf_event_wakeup(event);
13476 }
13477 
perf_event_exit_task_context(struct task_struct * child)13478 static void perf_event_exit_task_context(struct task_struct *child)
13479 {
13480 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13481 	struct perf_event *child_event, *next;
13482 
13483 	WARN_ON_ONCE(child != current);
13484 
13485 	child_ctx = perf_pin_task_context(child);
13486 	if (!child_ctx)
13487 		return;
13488 
13489 	/*
13490 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13491 	 * ctx::mutex over the entire thing. This serializes against almost
13492 	 * everything that wants to access the ctx.
13493 	 *
13494 	 * The exception is sys_perf_event_open() /
13495 	 * perf_event_create_kernel_count() which does find_get_context()
13496 	 * without ctx::mutex (it cannot because of the move_group double mutex
13497 	 * lock thing). See the comments in perf_install_in_context().
13498 	 */
13499 	mutex_lock(&child_ctx->mutex);
13500 
13501 	/*
13502 	 * In a single ctx::lock section, de-schedule the events and detach the
13503 	 * context from the task such that we cannot ever get it scheduled back
13504 	 * in.
13505 	 */
13506 	raw_spin_lock_irq(&child_ctx->lock);
13507 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13508 
13509 	/*
13510 	 * Now that the context is inactive, destroy the task <-> ctx relation
13511 	 * and mark the context dead.
13512 	 */
13513 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13514 	put_ctx(child_ctx); /* cannot be last */
13515 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13516 	put_task_struct(current); /* cannot be last */
13517 
13518 	clone_ctx = unclone_ctx(child_ctx);
13519 	raw_spin_unlock_irq(&child_ctx->lock);
13520 
13521 	if (clone_ctx)
13522 		put_ctx(clone_ctx);
13523 
13524 	/*
13525 	 * Report the task dead after unscheduling the events so that we
13526 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13527 	 * get a few PERF_RECORD_READ events.
13528 	 */
13529 	perf_event_task(child, child_ctx, 0);
13530 
13531 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13532 		perf_event_exit_event(child_event, child_ctx);
13533 
13534 	mutex_unlock(&child_ctx->mutex);
13535 
13536 	put_ctx(child_ctx);
13537 }
13538 
13539 /*
13540  * When a child task exits, feed back event values to parent events.
13541  *
13542  * Can be called with exec_update_lock held when called from
13543  * setup_new_exec().
13544  */
perf_event_exit_task(struct task_struct * child)13545 void perf_event_exit_task(struct task_struct *child)
13546 {
13547 	struct perf_event *event, *tmp;
13548 
13549 	mutex_lock(&child->perf_event_mutex);
13550 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13551 				 owner_entry) {
13552 		list_del_init(&event->owner_entry);
13553 
13554 		/*
13555 		 * Ensure the list deletion is visible before we clear
13556 		 * the owner, closes a race against perf_release() where
13557 		 * we need to serialize on the owner->perf_event_mutex.
13558 		 */
13559 		smp_store_release(&event->owner, NULL);
13560 	}
13561 	mutex_unlock(&child->perf_event_mutex);
13562 
13563 	perf_event_exit_task_context(child);
13564 
13565 	/*
13566 	 * The perf_event_exit_task_context calls perf_event_task
13567 	 * with child's task_ctx, which generates EXIT events for
13568 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13569 	 * At this point we need to send EXIT events to cpu contexts.
13570 	 */
13571 	perf_event_task(child, NULL, 0);
13572 }
13573 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13574 static void perf_free_event(struct perf_event *event,
13575 			    struct perf_event_context *ctx)
13576 {
13577 	struct perf_event *parent = event->parent;
13578 
13579 	if (WARN_ON_ONCE(!parent))
13580 		return;
13581 
13582 	mutex_lock(&parent->child_mutex);
13583 	list_del_init(&event->child_list);
13584 	mutex_unlock(&parent->child_mutex);
13585 
13586 	put_event(parent);
13587 
13588 	raw_spin_lock_irq(&ctx->lock);
13589 	perf_group_detach(event);
13590 	list_del_event(event, ctx);
13591 	raw_spin_unlock_irq(&ctx->lock);
13592 	free_event(event);
13593 }
13594 
13595 /*
13596  * Free a context as created by inheritance by perf_event_init_task() below,
13597  * used by fork() in case of fail.
13598  *
13599  * Even though the task has never lived, the context and events have been
13600  * exposed through the child_list, so we must take care tearing it all down.
13601  */
perf_event_free_task(struct task_struct * task)13602 void perf_event_free_task(struct task_struct *task)
13603 {
13604 	struct perf_event_context *ctx;
13605 	struct perf_event *event, *tmp;
13606 
13607 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13608 	if (!ctx)
13609 		return;
13610 
13611 	mutex_lock(&ctx->mutex);
13612 	raw_spin_lock_irq(&ctx->lock);
13613 	/*
13614 	 * Destroy the task <-> ctx relation and mark the context dead.
13615 	 *
13616 	 * This is important because even though the task hasn't been
13617 	 * exposed yet the context has been (through child_list).
13618 	 */
13619 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13620 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13621 	put_task_struct(task); /* cannot be last */
13622 	raw_spin_unlock_irq(&ctx->lock);
13623 
13624 
13625 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13626 		perf_free_event(event, ctx);
13627 
13628 	mutex_unlock(&ctx->mutex);
13629 
13630 	/*
13631 	 * perf_event_release_kernel() could've stolen some of our
13632 	 * child events and still have them on its free_list. In that
13633 	 * case we must wait for these events to have been freed (in
13634 	 * particular all their references to this task must've been
13635 	 * dropped).
13636 	 *
13637 	 * Without this copy_process() will unconditionally free this
13638 	 * task (irrespective of its reference count) and
13639 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13640 	 * use-after-free.
13641 	 *
13642 	 * Wait for all events to drop their context reference.
13643 	 */
13644 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13645 	put_ctx(ctx); /* must be last */
13646 }
13647 
perf_event_delayed_put(struct task_struct * task)13648 void perf_event_delayed_put(struct task_struct *task)
13649 {
13650 	WARN_ON_ONCE(task->perf_event_ctxp);
13651 }
13652 
perf_event_get(unsigned int fd)13653 struct file *perf_event_get(unsigned int fd)
13654 {
13655 	struct file *file = fget(fd);
13656 	if (!file)
13657 		return ERR_PTR(-EBADF);
13658 
13659 	if (file->f_op != &perf_fops) {
13660 		fput(file);
13661 		return ERR_PTR(-EBADF);
13662 	}
13663 
13664 	return file;
13665 }
13666 
perf_get_event(struct file * file)13667 const struct perf_event *perf_get_event(struct file *file)
13668 {
13669 	if (file->f_op != &perf_fops)
13670 		return ERR_PTR(-EINVAL);
13671 
13672 	return file->private_data;
13673 }
13674 
perf_event_attrs(struct perf_event * event)13675 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13676 {
13677 	if (!event)
13678 		return ERR_PTR(-EINVAL);
13679 
13680 	return &event->attr;
13681 }
13682 
perf_allow_kernel(struct perf_event_attr * attr)13683 int perf_allow_kernel(struct perf_event_attr *attr)
13684 {
13685 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13686 		return -EACCES;
13687 
13688 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13689 }
13690 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13691 
13692 /*
13693  * Inherit an event from parent task to child task.
13694  *
13695  * Returns:
13696  *  - valid pointer on success
13697  *  - NULL for orphaned events
13698  *  - IS_ERR() on error
13699  */
13700 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13701 inherit_event(struct perf_event *parent_event,
13702 	      struct task_struct *parent,
13703 	      struct perf_event_context *parent_ctx,
13704 	      struct task_struct *child,
13705 	      struct perf_event *group_leader,
13706 	      struct perf_event_context *child_ctx)
13707 {
13708 	enum perf_event_state parent_state = parent_event->state;
13709 	struct perf_event_pmu_context *pmu_ctx;
13710 	struct perf_event *child_event;
13711 	unsigned long flags;
13712 
13713 	/*
13714 	 * Instead of creating recursive hierarchies of events,
13715 	 * we link inherited events back to the original parent,
13716 	 * which has a filp for sure, which we use as the reference
13717 	 * count:
13718 	 */
13719 	if (parent_event->parent)
13720 		parent_event = parent_event->parent;
13721 
13722 	child_event = perf_event_alloc(&parent_event->attr,
13723 					   parent_event->cpu,
13724 					   child,
13725 					   group_leader, parent_event,
13726 					   NULL, NULL, -1);
13727 	if (IS_ERR(child_event))
13728 		return child_event;
13729 
13730 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13731 	if (IS_ERR(pmu_ctx)) {
13732 		free_event(child_event);
13733 		return ERR_CAST(pmu_ctx);
13734 	}
13735 	child_event->pmu_ctx = pmu_ctx;
13736 
13737 	/*
13738 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13739 	 * must be under the same lock in order to serialize against
13740 	 * perf_event_release_kernel(), such that either we must observe
13741 	 * is_orphaned_event() or they will observe us on the child_list.
13742 	 */
13743 	mutex_lock(&parent_event->child_mutex);
13744 	if (is_orphaned_event(parent_event) ||
13745 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13746 		mutex_unlock(&parent_event->child_mutex);
13747 		/* task_ctx_data is freed with child_ctx */
13748 		free_event(child_event);
13749 		return NULL;
13750 	}
13751 
13752 	get_ctx(child_ctx);
13753 
13754 	/*
13755 	 * Make the child state follow the state of the parent event,
13756 	 * not its attr.disabled bit.  We hold the parent's mutex,
13757 	 * so we won't race with perf_event_{en, dis}able_family.
13758 	 */
13759 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13760 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13761 	else
13762 		child_event->state = PERF_EVENT_STATE_OFF;
13763 
13764 	if (parent_event->attr.freq) {
13765 		u64 sample_period = parent_event->hw.sample_period;
13766 		struct hw_perf_event *hwc = &child_event->hw;
13767 
13768 		hwc->sample_period = sample_period;
13769 		hwc->last_period   = sample_period;
13770 
13771 		local64_set(&hwc->period_left, sample_period);
13772 	}
13773 
13774 	child_event->ctx = child_ctx;
13775 	child_event->overflow_handler = parent_event->overflow_handler;
13776 	child_event->overflow_handler_context
13777 		= parent_event->overflow_handler_context;
13778 
13779 	/*
13780 	 * Precalculate sample_data sizes
13781 	 */
13782 	perf_event__header_size(child_event);
13783 	perf_event__id_header_size(child_event);
13784 
13785 	/*
13786 	 * Link it up in the child's context:
13787 	 */
13788 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13789 	add_event_to_ctx(child_event, child_ctx);
13790 	child_event->attach_state |= PERF_ATTACH_CHILD;
13791 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13792 
13793 	/*
13794 	 * Link this into the parent event's child list
13795 	 */
13796 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13797 	mutex_unlock(&parent_event->child_mutex);
13798 
13799 	return child_event;
13800 }
13801 
13802 /*
13803  * Inherits an event group.
13804  *
13805  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13806  * This matches with perf_event_release_kernel() removing all child events.
13807  *
13808  * Returns:
13809  *  - 0 on success
13810  *  - <0 on error
13811  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13812 static int inherit_group(struct perf_event *parent_event,
13813 	      struct task_struct *parent,
13814 	      struct perf_event_context *parent_ctx,
13815 	      struct task_struct *child,
13816 	      struct perf_event_context *child_ctx)
13817 {
13818 	struct perf_event *leader;
13819 	struct perf_event *sub;
13820 	struct perf_event *child_ctr;
13821 
13822 	leader = inherit_event(parent_event, parent, parent_ctx,
13823 				 child, NULL, child_ctx);
13824 	if (IS_ERR(leader))
13825 		return PTR_ERR(leader);
13826 	/*
13827 	 * @leader can be NULL here because of is_orphaned_event(). In this
13828 	 * case inherit_event() will create individual events, similar to what
13829 	 * perf_group_detach() would do anyway.
13830 	 */
13831 	for_each_sibling_event(sub, parent_event) {
13832 		child_ctr = inherit_event(sub, parent, parent_ctx,
13833 					    child, leader, child_ctx);
13834 		if (IS_ERR(child_ctr))
13835 			return PTR_ERR(child_ctr);
13836 
13837 		if (sub->aux_event == parent_event && child_ctr &&
13838 		    !perf_get_aux_event(child_ctr, leader))
13839 			return -EINVAL;
13840 	}
13841 	if (leader)
13842 		leader->group_generation = parent_event->group_generation;
13843 	return 0;
13844 }
13845 
13846 /*
13847  * Creates the child task context and tries to inherit the event-group.
13848  *
13849  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13850  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13851  * consistent with perf_event_release_kernel() removing all child events.
13852  *
13853  * Returns:
13854  *  - 0 on success
13855  *  - <0 on error
13856  */
13857 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13858 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13859 		   struct perf_event_context *parent_ctx,
13860 		   struct task_struct *child,
13861 		   u64 clone_flags, int *inherited_all)
13862 {
13863 	struct perf_event_context *child_ctx;
13864 	int ret;
13865 
13866 	if (!event->attr.inherit ||
13867 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13868 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13869 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13870 		*inherited_all = 0;
13871 		return 0;
13872 	}
13873 
13874 	child_ctx = child->perf_event_ctxp;
13875 	if (!child_ctx) {
13876 		/*
13877 		 * This is executed from the parent task context, so
13878 		 * inherit events that have been marked for cloning.
13879 		 * First allocate and initialize a context for the
13880 		 * child.
13881 		 */
13882 		child_ctx = alloc_perf_context(child);
13883 		if (!child_ctx)
13884 			return -ENOMEM;
13885 
13886 		child->perf_event_ctxp = child_ctx;
13887 	}
13888 
13889 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13890 	if (ret)
13891 		*inherited_all = 0;
13892 
13893 	return ret;
13894 }
13895 
13896 /*
13897  * Initialize the perf_event context in task_struct
13898  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13899 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13900 {
13901 	struct perf_event_context *child_ctx, *parent_ctx;
13902 	struct perf_event_context *cloned_ctx;
13903 	struct perf_event *event;
13904 	struct task_struct *parent = current;
13905 	int inherited_all = 1;
13906 	unsigned long flags;
13907 	int ret = 0;
13908 
13909 	if (likely(!parent->perf_event_ctxp))
13910 		return 0;
13911 
13912 	/*
13913 	 * If the parent's context is a clone, pin it so it won't get
13914 	 * swapped under us.
13915 	 */
13916 	parent_ctx = perf_pin_task_context(parent);
13917 	if (!parent_ctx)
13918 		return 0;
13919 
13920 	/*
13921 	 * No need to check if parent_ctx != NULL here; since we saw
13922 	 * it non-NULL earlier, the only reason for it to become NULL
13923 	 * is if we exit, and since we're currently in the middle of
13924 	 * a fork we can't be exiting at the same time.
13925 	 */
13926 
13927 	/*
13928 	 * Lock the parent list. No need to lock the child - not PID
13929 	 * hashed yet and not running, so nobody can access it.
13930 	 */
13931 	mutex_lock(&parent_ctx->mutex);
13932 
13933 	/*
13934 	 * We dont have to disable NMIs - we are only looking at
13935 	 * the list, not manipulating it:
13936 	 */
13937 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13938 		ret = inherit_task_group(event, parent, parent_ctx,
13939 					 child, clone_flags, &inherited_all);
13940 		if (ret)
13941 			goto out_unlock;
13942 	}
13943 
13944 	/*
13945 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13946 	 * to allocations, but we need to prevent rotation because
13947 	 * rotate_ctx() will change the list from interrupt context.
13948 	 */
13949 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13950 	parent_ctx->rotate_disable = 1;
13951 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13952 
13953 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13954 		ret = inherit_task_group(event, parent, parent_ctx,
13955 					 child, clone_flags, &inherited_all);
13956 		if (ret)
13957 			goto out_unlock;
13958 	}
13959 
13960 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13961 	parent_ctx->rotate_disable = 0;
13962 
13963 	child_ctx = child->perf_event_ctxp;
13964 
13965 	if (child_ctx && inherited_all) {
13966 		/*
13967 		 * Mark the child context as a clone of the parent
13968 		 * context, or of whatever the parent is a clone of.
13969 		 *
13970 		 * Note that if the parent is a clone, the holding of
13971 		 * parent_ctx->lock avoids it from being uncloned.
13972 		 */
13973 		cloned_ctx = parent_ctx->parent_ctx;
13974 		if (cloned_ctx) {
13975 			child_ctx->parent_ctx = cloned_ctx;
13976 			child_ctx->parent_gen = parent_ctx->parent_gen;
13977 		} else {
13978 			child_ctx->parent_ctx = parent_ctx;
13979 			child_ctx->parent_gen = parent_ctx->generation;
13980 		}
13981 		get_ctx(child_ctx->parent_ctx);
13982 	}
13983 
13984 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13985 out_unlock:
13986 	mutex_unlock(&parent_ctx->mutex);
13987 
13988 	perf_unpin_context(parent_ctx);
13989 	put_ctx(parent_ctx);
13990 
13991 	return ret;
13992 }
13993 
13994 /*
13995  * Initialize the perf_event context in task_struct
13996  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13997 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13998 {
13999 	int ret;
14000 
14001 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14002 	child->perf_event_ctxp = NULL;
14003 	mutex_init(&child->perf_event_mutex);
14004 	INIT_LIST_HEAD(&child->perf_event_list);
14005 
14006 	ret = perf_event_init_context(child, clone_flags);
14007 	if (ret) {
14008 		perf_event_free_task(child);
14009 		return ret;
14010 	}
14011 
14012 	return 0;
14013 }
14014 
perf_event_init_all_cpus(void)14015 static void __init perf_event_init_all_cpus(void)
14016 {
14017 	struct swevent_htable *swhash;
14018 	struct perf_cpu_context *cpuctx;
14019 	int cpu;
14020 
14021 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14022 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14023 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14024 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14025 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14026 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14027 
14028 
14029 	for_each_possible_cpu(cpu) {
14030 		swhash = &per_cpu(swevent_htable, cpu);
14031 		mutex_init(&swhash->hlist_mutex);
14032 
14033 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14034 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14035 
14036 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14037 
14038 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14039 		__perf_event_init_context(&cpuctx->ctx);
14040 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14041 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14042 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14043 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14044 		cpuctx->heap = cpuctx->heap_default;
14045 	}
14046 }
14047 
perf_swevent_init_cpu(unsigned int cpu)14048 static void perf_swevent_init_cpu(unsigned int cpu)
14049 {
14050 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14051 
14052 	mutex_lock(&swhash->hlist_mutex);
14053 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14054 		struct swevent_hlist *hlist;
14055 
14056 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14057 		WARN_ON(!hlist);
14058 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14059 	}
14060 	mutex_unlock(&swhash->hlist_mutex);
14061 }
14062 
14063 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14064 static void __perf_event_exit_context(void *__info)
14065 {
14066 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14067 	struct perf_event_context *ctx = __info;
14068 	struct perf_event *event;
14069 
14070 	raw_spin_lock(&ctx->lock);
14071 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14072 	list_for_each_entry(event, &ctx->event_list, event_entry)
14073 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14074 	raw_spin_unlock(&ctx->lock);
14075 }
14076 
perf_event_clear_cpumask(unsigned int cpu)14077 static void perf_event_clear_cpumask(unsigned int cpu)
14078 {
14079 	int target[PERF_PMU_MAX_SCOPE];
14080 	unsigned int scope;
14081 	struct pmu *pmu;
14082 
14083 	cpumask_clear_cpu(cpu, perf_online_mask);
14084 
14085 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14086 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14087 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14088 
14089 		target[scope] = -1;
14090 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14091 			continue;
14092 
14093 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14094 			continue;
14095 		target[scope] = cpumask_any_but(cpumask, cpu);
14096 		if (target[scope] < nr_cpu_ids)
14097 			cpumask_set_cpu(target[scope], pmu_cpumask);
14098 	}
14099 
14100 	/* migrate */
14101 	list_for_each_entry(pmu, &pmus, entry) {
14102 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14103 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14104 			continue;
14105 
14106 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14107 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14108 	}
14109 }
14110 
perf_event_exit_cpu_context(int cpu)14111 static void perf_event_exit_cpu_context(int cpu)
14112 {
14113 	struct perf_cpu_context *cpuctx;
14114 	struct perf_event_context *ctx;
14115 
14116 	// XXX simplify cpuctx->online
14117 	mutex_lock(&pmus_lock);
14118 	/*
14119 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14120 	 * Must be invoked before the __perf_event_exit_context.
14121 	 */
14122 	perf_event_clear_cpumask(cpu);
14123 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14124 	ctx = &cpuctx->ctx;
14125 
14126 	mutex_lock(&ctx->mutex);
14127 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14128 	cpuctx->online = 0;
14129 	mutex_unlock(&ctx->mutex);
14130 	mutex_unlock(&pmus_lock);
14131 }
14132 #else
14133 
perf_event_exit_cpu_context(int cpu)14134 static void perf_event_exit_cpu_context(int cpu) { }
14135 
14136 #endif
14137 
perf_event_setup_cpumask(unsigned int cpu)14138 static void perf_event_setup_cpumask(unsigned int cpu)
14139 {
14140 	struct cpumask *pmu_cpumask;
14141 	unsigned int scope;
14142 
14143 	/*
14144 	 * Early boot stage, the cpumask hasn't been set yet.
14145 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14146 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14147 	 */
14148 	if (cpumask_empty(perf_online_mask)) {
14149 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14150 			pmu_cpumask = perf_scope_cpumask(scope);
14151 			if (WARN_ON_ONCE(!pmu_cpumask))
14152 				continue;
14153 			cpumask_set_cpu(cpu, pmu_cpumask);
14154 		}
14155 		goto end;
14156 	}
14157 
14158 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14159 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14160 
14161 		pmu_cpumask = perf_scope_cpumask(scope);
14162 
14163 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14164 			continue;
14165 
14166 		if (!cpumask_empty(cpumask) &&
14167 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14168 			cpumask_set_cpu(cpu, pmu_cpumask);
14169 	}
14170 end:
14171 	cpumask_set_cpu(cpu, perf_online_mask);
14172 }
14173 
perf_event_init_cpu(unsigned int cpu)14174 int perf_event_init_cpu(unsigned int cpu)
14175 {
14176 	struct perf_cpu_context *cpuctx;
14177 	struct perf_event_context *ctx;
14178 
14179 	perf_swevent_init_cpu(cpu);
14180 
14181 	mutex_lock(&pmus_lock);
14182 	perf_event_setup_cpumask(cpu);
14183 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14184 	ctx = &cpuctx->ctx;
14185 
14186 	mutex_lock(&ctx->mutex);
14187 	cpuctx->online = 1;
14188 	mutex_unlock(&ctx->mutex);
14189 	mutex_unlock(&pmus_lock);
14190 
14191 	return 0;
14192 }
14193 
perf_event_exit_cpu(unsigned int cpu)14194 int perf_event_exit_cpu(unsigned int cpu)
14195 {
14196 	perf_event_exit_cpu_context(cpu);
14197 	return 0;
14198 }
14199 
14200 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14201 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14202 {
14203 	int cpu;
14204 
14205 	for_each_online_cpu(cpu)
14206 		perf_event_exit_cpu(cpu);
14207 
14208 	return NOTIFY_OK;
14209 }
14210 
14211 /*
14212  * Run the perf reboot notifier at the very last possible moment so that
14213  * the generic watchdog code runs as long as possible.
14214  */
14215 static struct notifier_block perf_reboot_notifier = {
14216 	.notifier_call = perf_reboot,
14217 	.priority = INT_MIN,
14218 };
14219 
perf_event_init(void)14220 void __init perf_event_init(void)
14221 {
14222 	int ret;
14223 
14224 	idr_init(&pmu_idr);
14225 
14226 	perf_event_init_all_cpus();
14227 	init_srcu_struct(&pmus_srcu);
14228 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14229 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14230 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14231 	perf_tp_register();
14232 	perf_event_init_cpu(smp_processor_id());
14233 	register_reboot_notifier(&perf_reboot_notifier);
14234 
14235 	ret = init_hw_breakpoint();
14236 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14237 
14238 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14239 
14240 	/*
14241 	 * Build time assertion that we keep the data_head at the intended
14242 	 * location.  IOW, validation we got the __reserved[] size right.
14243 	 */
14244 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14245 		     != 1024);
14246 }
14247 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14248 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14249 			      char *page)
14250 {
14251 	struct perf_pmu_events_attr *pmu_attr =
14252 		container_of(attr, struct perf_pmu_events_attr, attr);
14253 
14254 	if (pmu_attr->event_str)
14255 		return sprintf(page, "%s\n", pmu_attr->event_str);
14256 
14257 	return 0;
14258 }
14259 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14260 
perf_event_sysfs_init(void)14261 static int __init perf_event_sysfs_init(void)
14262 {
14263 	struct pmu *pmu;
14264 	int ret;
14265 
14266 	mutex_lock(&pmus_lock);
14267 
14268 	ret = bus_register(&pmu_bus);
14269 	if (ret)
14270 		goto unlock;
14271 
14272 	list_for_each_entry(pmu, &pmus, entry) {
14273 		if (pmu->dev)
14274 			continue;
14275 
14276 		ret = pmu_dev_alloc(pmu);
14277 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14278 	}
14279 	pmu_bus_running = 1;
14280 	ret = 0;
14281 
14282 unlock:
14283 	mutex_unlock(&pmus_lock);
14284 
14285 	return ret;
14286 }
14287 device_initcall(perf_event_sysfs_init);
14288 
14289 #ifdef CONFIG_CGROUP_PERF
14290 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14291 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14292 {
14293 	struct perf_cgroup *jc;
14294 
14295 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14296 	if (!jc)
14297 		return ERR_PTR(-ENOMEM);
14298 
14299 	jc->info = alloc_percpu(struct perf_cgroup_info);
14300 	if (!jc->info) {
14301 		kfree(jc);
14302 		return ERR_PTR(-ENOMEM);
14303 	}
14304 
14305 	return &jc->css;
14306 }
14307 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14308 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14309 {
14310 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14311 
14312 	free_percpu(jc->info);
14313 	kfree(jc);
14314 }
14315 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14316 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14317 {
14318 	perf_event_cgroup(css->cgroup);
14319 	return 0;
14320 }
14321 
__perf_cgroup_move(void * info)14322 static int __perf_cgroup_move(void *info)
14323 {
14324 	struct task_struct *task = info;
14325 
14326 	preempt_disable();
14327 	perf_cgroup_switch(task);
14328 	preempt_enable();
14329 
14330 	return 0;
14331 }
14332 
perf_cgroup_attach(struct cgroup_taskset * tset)14333 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14334 {
14335 	struct task_struct *task;
14336 	struct cgroup_subsys_state *css;
14337 
14338 	cgroup_taskset_for_each(task, css, tset)
14339 		task_function_call(task, __perf_cgroup_move, task);
14340 }
14341 
14342 struct cgroup_subsys perf_event_cgrp_subsys = {
14343 	.css_alloc	= perf_cgroup_css_alloc,
14344 	.css_free	= perf_cgroup_css_free,
14345 	.css_online	= perf_cgroup_css_online,
14346 	.attach		= perf_cgroup_attach,
14347 	/*
14348 	 * Implicitly enable on dfl hierarchy so that perf events can
14349 	 * always be filtered by cgroup2 path as long as perf_event
14350 	 * controller is not mounted on a legacy hierarchy.
14351 	 */
14352 	.implicit_on_dfl = true,
14353 	.threaded	= true,
14354 };
14355 #endif /* CONFIG_CGROUP_PERF */
14356 
14357 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14358