1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
158 enum event_type_t {
159 EVENT_FLEXIBLE = 0x01,
160 EVENT_PINNED = 0x02,
161 EVENT_TIME = 0x04,
162 EVENT_FROZEN = 0x08,
163 /* see ctx_resched() for details */
164 EVENT_CPU = 0x10,
165 EVENT_CGROUP = 0x20,
166
167 /* compound helpers */
168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171
__perf_ctx_lock(struct perf_event_context * ctx)172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 raw_spin_lock(&ctx->lock);
175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 struct perf_event_context *ctx)
180 {
181 __perf_ctx_lock(&cpuctx->ctx);
182 if (ctx)
183 __perf_ctx_lock(ctx);
184 }
185
__perf_ctx_unlock(struct perf_event_context * ctx)186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 /*
189 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 * after ctx_sched_out() by clearing is_active.
191 */
192 if (ctx->is_active & EVENT_FROZEN) {
193 if (!(ctx->is_active & EVENT_ALL))
194 ctx->is_active = 0;
195 else
196 ctx->is_active &= ~EVENT_FROZEN;
197 }
198 raw_spin_unlock(&ctx->lock);
199 }
200
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 struct perf_event_context *ctx)
203 {
204 if (ctx)
205 __perf_ctx_unlock(ctx);
206 __perf_ctx_unlock(&cpuctx->ctx);
207 }
208
209 #define TASK_TOMBSTONE ((void *)-1L)
210
is_kernel_event(struct perf_event * event)211 static bool is_kernel_event(struct perf_event *event)
212 {
213 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217
perf_cpu_task_ctx(void)218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 lockdep_assert_irqs_disabled();
221 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223
224 /*
225 * On task ctx scheduling...
226 *
227 * When !ctx->nr_events a task context will not be scheduled. This means
228 * we can disable the scheduler hooks (for performance) without leaving
229 * pending task ctx state.
230 *
231 * This however results in two special cases:
232 *
233 * - removing the last event from a task ctx; this is relatively straight
234 * forward and is done in __perf_remove_from_context.
235 *
236 * - adding the first event to a task ctx; this is tricky because we cannot
237 * rely on ctx->is_active and therefore cannot use event_function_call().
238 * See perf_install_in_context().
239 *
240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241 */
242
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 struct perf_event_context *, void *);
245
246 struct event_function_struct {
247 struct perf_event *event;
248 event_f func;
249 void *data;
250 };
251
event_function(void * info)252 static int event_function(void *info)
253 {
254 struct event_function_struct *efs = info;
255 struct perf_event *event = efs->event;
256 struct perf_event_context *ctx = event->ctx;
257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 int ret = 0;
260
261 lockdep_assert_irqs_disabled();
262
263 perf_ctx_lock(cpuctx, task_ctx);
264 /*
265 * Since we do the IPI call without holding ctx->lock things can have
266 * changed, double check we hit the task we set out to hit.
267 */
268 if (ctx->task) {
269 if (ctx->task != current) {
270 ret = -ESRCH;
271 goto unlock;
272 }
273
274 /*
275 * We only use event_function_call() on established contexts,
276 * and event_function() is only ever called when active (or
277 * rather, we'll have bailed in task_function_call() or the
278 * above ctx->task != current test), therefore we must have
279 * ctx->is_active here.
280 */
281 WARN_ON_ONCE(!ctx->is_active);
282 /*
283 * And since we have ctx->is_active, cpuctx->task_ctx must
284 * match.
285 */
286 WARN_ON_ONCE(task_ctx != ctx);
287 } else {
288 WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 }
290
291 efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 perf_ctx_unlock(cpuctx, task_ctx);
294
295 return ret;
296 }
297
event_function_call(struct perf_event * event,event_f func,void * data)298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 struct perf_cpu_context *cpuctx;
303 struct event_function_struct efs = {
304 .event = event,
305 .func = func,
306 .data = data,
307 };
308
309 if (!event->parent) {
310 /*
311 * If this is a !child event, we must hold ctx::mutex to
312 * stabilize the event->ctx relation. See
313 * perf_event_ctx_lock().
314 */
315 lockdep_assert_held(&ctx->mutex);
316 }
317
318 if (!task) {
319 cpu_function_call(event->cpu, event_function, &efs);
320 return;
321 }
322
323 if (task == TASK_TOMBSTONE)
324 return;
325
326 again:
327 if (!task_function_call(task, event_function, &efs))
328 return;
329
330 local_irq_disable();
331 cpuctx = this_cpu_ptr(&perf_cpu_context);
332 perf_ctx_lock(cpuctx, ctx);
333 /*
334 * Reload the task pointer, it might have been changed by
335 * a concurrent perf_event_context_sched_out().
336 */
337 task = ctx->task;
338 if (task == TASK_TOMBSTONE)
339 goto unlock;
340 if (ctx->is_active) {
341 perf_ctx_unlock(cpuctx, ctx);
342 local_irq_enable();
343 goto again;
344 }
345 func(event, NULL, ctx, data);
346 unlock:
347 perf_ctx_unlock(cpuctx, ctx);
348 local_irq_enable();
349 }
350
351 /*
352 * Similar to event_function_call() + event_function(), but hard assumes IRQs
353 * are already disabled and we're on the right CPU.
354 */
event_function_local(struct perf_event * event,event_f func,void * data)355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 struct perf_event_context *ctx = event->ctx;
358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 struct task_struct *task = READ_ONCE(ctx->task);
360 struct perf_event_context *task_ctx = NULL;
361
362 lockdep_assert_irqs_disabled();
363
364 if (task) {
365 if (task == TASK_TOMBSTONE)
366 return;
367
368 task_ctx = ctx;
369 }
370
371 perf_ctx_lock(cpuctx, task_ctx);
372
373 task = ctx->task;
374 if (task == TASK_TOMBSTONE)
375 goto unlock;
376
377 if (task) {
378 /*
379 * We must be either inactive or active and the right task,
380 * otherwise we're screwed, since we cannot IPI to somewhere
381 * else.
382 */
383 if (ctx->is_active) {
384 if (WARN_ON_ONCE(task != current))
385 goto unlock;
386
387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 goto unlock;
389 }
390 } else {
391 WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 }
393
394 func(event, cpuctx, ctx, data);
395 unlock:
396 perf_ctx_unlock(cpuctx, task_ctx);
397 }
398
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 PERF_FLAG_FD_OUTPUT |\
401 PERF_FLAG_PID_CGROUP |\
402 PERF_FLAG_FD_CLOEXEC)
403
404 /*
405 * branch priv levels that need permission checks
406 */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 (PERF_SAMPLE_BRANCH_KERNEL |\
409 PERF_SAMPLE_BRANCH_HV)
410
411 /*
412 * perf_sched_events : >0 events exist
413 */
414
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445
446 /*
447 * perf event paranoia level:
448 * -1 - not paranoid at all
449 * 0 - disallow raw tracepoint access for unpriv
450 * 1 - disallow cpu events for unpriv
451 * 2 - disallow kernel profiling for unpriv
452 */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457
458 /*
459 * max perf event sample rate
460 */
461 #define DEFAULT_MAX_SAMPLE_RATE 100000
462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
464
465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
466
467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
469
470 static int perf_sample_allowed_ns __read_mostly =
471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472
update_perf_cpu_limits(void)473 static void update_perf_cpu_limits(void)
474 {
475 u64 tmp = perf_sample_period_ns;
476
477 tmp *= sysctl_perf_cpu_time_max_percent;
478 tmp = div_u64(tmp, 100);
479 if (!tmp)
480 tmp = 1;
481
482 WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 int ret;
491 int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 /*
493 * If throttling is disabled don't allow the write:
494 */
495 if (write && (perf_cpu == 100 || perf_cpu == 0))
496 return -EINVAL;
497
498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 if (ret || !write)
500 return ret;
501
502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 update_perf_cpu_limits();
505
506 return 0;
507 }
508
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515
516 if (ret || !write)
517 return ret;
518
519 if (sysctl_perf_cpu_time_max_percent == 100 ||
520 sysctl_perf_cpu_time_max_percent == 0) {
521 printk(KERN_WARNING
522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 WRITE_ONCE(perf_sample_allowed_ns, 0);
524 } else {
525 update_perf_cpu_limits();
526 }
527
528 return 0;
529 }
530
531 /*
532 * perf samples are done in some very critical code paths (NMIs).
533 * If they take too much CPU time, the system can lock up and not
534 * get any real work done. This will drop the sample rate when
535 * we detect that events are taking too long.
536 */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539
540 static u64 __report_avg;
541 static u64 __report_allowed;
542
perf_duration_warn(struct irq_work * w)543 static void perf_duration_warn(struct irq_work *w)
544 {
545 printk_ratelimited(KERN_INFO
546 "perf: interrupt took too long (%lld > %lld), lowering "
547 "kernel.perf_event_max_sample_rate to %d\n",
548 __report_avg, __report_allowed,
549 sysctl_perf_event_sample_rate);
550 }
551
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553
perf_sample_event_took(u64 sample_len_ns)554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 u64 running_len;
558 u64 avg_len;
559 u32 max;
560
561 if (max_len == 0)
562 return;
563
564 /* Decay the counter by 1 average sample. */
565 running_len = __this_cpu_read(running_sample_length);
566 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 running_len += sample_len_ns;
568 __this_cpu_write(running_sample_length, running_len);
569
570 /*
571 * Note: this will be biased artificially low until we have
572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 * from having to maintain a count.
574 */
575 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 if (avg_len <= max_len)
577 return;
578
579 __report_avg = avg_len;
580 __report_allowed = max_len;
581
582 /*
583 * Compute a throttle threshold 25% below the current duration.
584 */
585 avg_len += avg_len / 4;
586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 if (avg_len < max)
588 max /= (u32)avg_len;
589 else
590 max = 1;
591
592 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 WRITE_ONCE(max_samples_per_tick, max);
594
595 sysctl_perf_event_sample_rate = max * HZ;
596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597
598 if (!irq_work_queue(&perf_duration_work)) {
599 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 "kernel.perf_event_max_sample_rate to %d\n",
601 __report_avg, __report_allowed,
602 sysctl_perf_event_sample_rate);
603 }
604 }
605
606 static atomic64_t perf_event_id;
607
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610
perf_event_print_debug(void)611 void __weak perf_event_print_debug(void) { }
612
perf_clock(void)613 static inline u64 perf_clock(void)
614 {
615 return local_clock();
616 }
617
perf_event_clock(struct perf_event * event)618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 return event->clock();
621 }
622
623 /*
624 * State based event timekeeping...
625 *
626 * The basic idea is to use event->state to determine which (if any) time
627 * fields to increment with the current delta. This means we only need to
628 * update timestamps when we change state or when they are explicitly requested
629 * (read).
630 *
631 * Event groups make things a little more complicated, but not terribly so. The
632 * rules for a group are that if the group leader is OFF the entire group is
633 * OFF, irrespective of what the group member states are. This results in
634 * __perf_effective_state().
635 *
636 * A further ramification is that when a group leader flips between OFF and
637 * !OFF, we need to update all group member times.
638 *
639 *
640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641 * need to make sure the relevant context time is updated before we try and
642 * update our timestamps.
643 */
644
645 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)646 __perf_effective_state(struct perf_event *event)
647 {
648 struct perf_event *leader = event->group_leader;
649
650 if (leader->state <= PERF_EVENT_STATE_OFF)
651 return leader->state;
652
653 return event->state;
654 }
655
656 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 enum perf_event_state state = __perf_effective_state(event);
660 u64 delta = now - event->tstamp;
661
662 *enabled = event->total_time_enabled;
663 if (state >= PERF_EVENT_STATE_INACTIVE)
664 *enabled += delta;
665
666 *running = event->total_time_running;
667 if (state >= PERF_EVENT_STATE_ACTIVE)
668 *running += delta;
669 }
670
perf_event_update_time(struct perf_event * event)671 static void perf_event_update_time(struct perf_event *event)
672 {
673 u64 now = perf_event_time(event);
674
675 __perf_update_times(event, now, &event->total_time_enabled,
676 &event->total_time_running);
677 event->tstamp = now;
678 }
679
perf_event_update_sibling_time(struct perf_event * leader)680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 struct perf_event *sibling;
683
684 for_each_sibling_event(sibling, leader)
685 perf_event_update_time(sibling);
686 }
687
688 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 if (event->state == state)
692 return;
693
694 perf_event_update_time(event);
695 /*
696 * If a group leader gets enabled/disabled all its siblings
697 * are affected too.
698 */
699 if ((event->state < 0) ^ (state < 0))
700 perf_event_update_sibling_time(event);
701
702 WRITE_ONCE(event->state, state);
703 }
704
705 /*
706 * UP store-release, load-acquire
707 */
708
709 #define __store_release(ptr, val) \
710 do { \
711 barrier(); \
712 WRITE_ONCE(*(ptr), (val)); \
713 } while (0)
714
715 #define __load_acquire(ptr) \
716 ({ \
717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
718 barrier(); \
719 ___p; \
720 })
721
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \
723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 if (_cgroup && !_epc->nr_cgroups) \
725 continue; \
726 else if (_pmu && _epc->pmu != _pmu) \
727 continue; \
728 else
729
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 struct perf_event_pmu_context *pmu_ctx;
733
734 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 perf_pmu_disable(pmu_ctx->pmu);
736 }
737
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 struct perf_event_pmu_context *pmu_ctx;
741
742 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 perf_pmu_enable(pmu_ctx->pmu);
744 }
745
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748
749 #ifdef CONFIG_CGROUP_PERF
750
751 static inline bool
perf_cgroup_match(struct perf_event * event)752 perf_cgroup_match(struct perf_event *event)
753 {
754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755
756 /* @event doesn't care about cgroup */
757 if (!event->cgrp)
758 return true;
759
760 /* wants specific cgroup scope but @cpuctx isn't associated with any */
761 if (!cpuctx->cgrp)
762 return false;
763
764 /*
765 * Cgroup scoping is recursive. An event enabled for a cgroup is
766 * also enabled for all its descendant cgroups. If @cpuctx's
767 * cgroup is a descendant of @event's (the test covers identity
768 * case), it's a match.
769 */
770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 event->cgrp->css.cgroup);
772 }
773
perf_detach_cgroup(struct perf_event * event)774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 css_put(&event->cgrp->css);
777 event->cgrp = NULL;
778 }
779
is_cgroup_event(struct perf_event * event)780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 return event->cgrp != NULL;
783 }
784
perf_cgroup_event_time(struct perf_event * event)785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 struct perf_cgroup_info *t;
788
789 t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 return t->time;
791 }
792
perf_cgroup_event_time_now(struct perf_event * event,u64 now)793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 struct perf_cgroup_info *t;
796
797 t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 if (!__load_acquire(&t->active))
799 return t->time;
800 now += READ_ONCE(t->timeoffset);
801 return now;
802 }
803
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 if (adv)
807 info->time += now - info->timestamp;
808 info->timestamp = now;
809 /*
810 * see update_context_time()
811 */
812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 struct perf_cgroup *cgrp = cpuctx->cgrp;
818 struct cgroup_subsys_state *css;
819 struct perf_cgroup_info *info;
820
821 if (cgrp) {
822 u64 now = perf_clock();
823
824 for (css = &cgrp->css; css; css = css->parent) {
825 cgrp = container_of(css, struct perf_cgroup, css);
826 info = this_cpu_ptr(cgrp->info);
827
828 __update_cgrp_time(info, now, true);
829 if (final)
830 __store_release(&info->active, 0);
831 }
832 }
833 }
834
update_cgrp_time_from_event(struct perf_event * event)835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 struct perf_cgroup_info *info;
838
839 /*
840 * ensure we access cgroup data only when needed and
841 * when we know the cgroup is pinned (css_get)
842 */
843 if (!is_cgroup_event(event))
844 return;
845
846 info = this_cpu_ptr(event->cgrp->info);
847 /*
848 * Do not update time when cgroup is not active
849 */
850 if (info->active)
851 __update_cgrp_time(info, perf_clock(), true);
852 }
853
854 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 struct perf_event_context *ctx = &cpuctx->ctx;
858 struct perf_cgroup *cgrp = cpuctx->cgrp;
859 struct perf_cgroup_info *info;
860 struct cgroup_subsys_state *css;
861
862 /*
863 * ctx->lock held by caller
864 * ensure we do not access cgroup data
865 * unless we have the cgroup pinned (css_get)
866 */
867 if (!cgrp)
868 return;
869
870 WARN_ON_ONCE(!ctx->nr_cgroups);
871
872 for (css = &cgrp->css; css; css = css->parent) {
873 cgrp = container_of(css, struct perf_cgroup, css);
874 info = this_cpu_ptr(cgrp->info);
875 __update_cgrp_time(info, ctx->timestamp, false);
876 __store_release(&info->active, 1);
877 }
878 }
879
880 /*
881 * reschedule events based on the cgroup constraint of task.
882 */
perf_cgroup_switch(struct task_struct * task)883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 struct perf_cgroup *cgrp;
887
888 /*
889 * cpuctx->cgrp is set when the first cgroup event enabled,
890 * and is cleared when the last cgroup event disabled.
891 */
892 if (READ_ONCE(cpuctx->cgrp) == NULL)
893 return;
894
895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896
897 cgrp = perf_cgroup_from_task(task, NULL);
898 if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 return;
900
901 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 perf_ctx_disable(&cpuctx->ctx, true);
903
904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 /*
906 * must not be done before ctxswout due
907 * to update_cgrp_time_from_cpuctx() in
908 * ctx_sched_out()
909 */
910 cpuctx->cgrp = cgrp;
911 /*
912 * set cgrp before ctxsw in to allow
913 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 * to not have to pass task around
915 */
916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917
918 perf_ctx_enable(&cpuctx->ctx, true);
919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 struct cgroup_subsys_state *css)
924 {
925 struct perf_cpu_context *cpuctx;
926 struct perf_event **storage;
927 int cpu, heap_size, ret = 0;
928
929 /*
930 * Allow storage to have sufficient space for an iterator for each
931 * possibly nested cgroup plus an iterator for events with no cgroup.
932 */
933 for (heap_size = 1; css; css = css->parent)
934 heap_size++;
935
936 for_each_possible_cpu(cpu) {
937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 if (heap_size <= cpuctx->heap_size)
939 continue;
940
941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 GFP_KERNEL, cpu_to_node(cpu));
943 if (!storage) {
944 ret = -ENOMEM;
945 break;
946 }
947
948 raw_spin_lock_irq(&cpuctx->ctx.lock);
949 if (cpuctx->heap_size < heap_size) {
950 swap(cpuctx->heap, storage);
951 if (storage == cpuctx->heap_default)
952 storage = NULL;
953 cpuctx->heap_size = heap_size;
954 }
955 raw_spin_unlock_irq(&cpuctx->ctx.lock);
956
957 kfree(storage);
958 }
959
960 return ret;
961 }
962
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 struct perf_event_attr *attr,
965 struct perf_event *group_leader)
966 {
967 struct perf_cgroup *cgrp;
968 struct cgroup_subsys_state *css;
969 CLASS(fd, f)(fd);
970 int ret = 0;
971
972 if (fd_empty(f))
973 return -EBADF;
974
975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 &perf_event_cgrp_subsys);
977 if (IS_ERR(css))
978 return PTR_ERR(css);
979
980 ret = perf_cgroup_ensure_storage(event, css);
981 if (ret)
982 return ret;
983
984 cgrp = container_of(css, struct perf_cgroup, css);
985 event->cgrp = cgrp;
986
987 /*
988 * all events in a group must monitor
989 * the same cgroup because a task belongs
990 * to only one perf cgroup at a time
991 */
992 if (group_leader && group_leader->cgrp != cgrp) {
993 perf_detach_cgroup(event);
994 ret = -EINVAL;
995 }
996 return ret;
997 }
998
999 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 struct perf_cpu_context *cpuctx;
1003
1004 if (!is_cgroup_event(event))
1005 return;
1006
1007 event->pmu_ctx->nr_cgroups++;
1008
1009 /*
1010 * Because cgroup events are always per-cpu events,
1011 * @ctx == &cpuctx->ctx.
1012 */
1013 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1014
1015 if (ctx->nr_cgroups++)
1016 return;
1017
1018 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1019 }
1020
1021 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 struct perf_cpu_context *cpuctx;
1025
1026 if (!is_cgroup_event(event))
1027 return;
1028
1029 event->pmu_ctx->nr_cgroups--;
1030
1031 /*
1032 * Because cgroup events are always per-cpu events,
1033 * @ctx == &cpuctx->ctx.
1034 */
1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036
1037 if (--ctx->nr_cgroups)
1038 return;
1039
1040 cpuctx->cgrp = NULL;
1041 }
1042
1043 #else /* !CONFIG_CGROUP_PERF */
1044
1045 static inline bool
perf_cgroup_match(struct perf_event * event)1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 return true;
1049 }
1050
perf_detach_cgroup(struct perf_event * event)1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053
is_cgroup_event(struct perf_event * event)1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 return 0;
1057 }
1058
update_cgrp_time_from_event(struct perf_event * event)1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064 bool final)
1065 {
1066 }
1067
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 struct perf_event_attr *attr,
1070 struct perf_event *group_leader)
1071 {
1072 return -EINVAL;
1073 }
1074
1075 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1077 {
1078 }
1079
perf_cgroup_event_time(struct perf_event * event)1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1081 {
1082 return 0;
1083 }
1084
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1086 {
1087 return 0;
1088 }
1089
1090 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 }
1099
perf_cgroup_switch(struct task_struct * task)1100 static void perf_cgroup_switch(struct task_struct *task)
1101 {
1102 }
1103 #endif
1104
1105 /*
1106 * set default to be dependent on timer tick just
1107 * like original code
1108 */
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1110 /*
1111 * function must be called with interrupts disabled
1112 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1114 {
1115 struct perf_cpu_pmu_context *cpc;
1116 bool rotations;
1117
1118 lockdep_assert_irqs_disabled();
1119
1120 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121 rotations = perf_rotate_context(cpc);
1122
1123 raw_spin_lock(&cpc->hrtimer_lock);
1124 if (rotations)
1125 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126 else
1127 cpc->hrtimer_active = 0;
1128 raw_spin_unlock(&cpc->hrtimer_lock);
1129
1130 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1131 }
1132
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1134 {
1135 struct hrtimer *timer = &cpc->hrtimer;
1136 struct pmu *pmu = cpc->epc.pmu;
1137 u64 interval;
1138
1139 /*
1140 * check default is sane, if not set then force to
1141 * default interval (1/tick)
1142 */
1143 interval = pmu->hrtimer_interval_ms;
1144 if (interval < 1)
1145 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1146
1147 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1148
1149 raw_spin_lock_init(&cpc->hrtimer_lock);
1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151 timer->function = perf_mux_hrtimer_handler;
1152 }
1153
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1155 {
1156 struct hrtimer *timer = &cpc->hrtimer;
1157 unsigned long flags;
1158
1159 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160 if (!cpc->hrtimer_active) {
1161 cpc->hrtimer_active = 1;
1162 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1164 }
1165 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1166
1167 return 0;
1168 }
1169
perf_mux_hrtimer_restart_ipi(void * arg)1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1171 {
1172 return perf_mux_hrtimer_restart(arg);
1173 }
1174
perf_pmu_disable(struct pmu * pmu)1175 void perf_pmu_disable(struct pmu *pmu)
1176 {
1177 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178 if (!(*count)++)
1179 pmu->pmu_disable(pmu);
1180 }
1181
perf_pmu_enable(struct pmu * pmu)1182 void perf_pmu_enable(struct pmu *pmu)
1183 {
1184 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185 if (!--(*count))
1186 pmu->pmu_enable(pmu);
1187 }
1188
perf_assert_pmu_disabled(struct pmu * pmu)1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1190 {
1191 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1192 }
1193
get_ctx(struct perf_event_context * ctx)1194 static void get_ctx(struct perf_event_context *ctx)
1195 {
1196 refcount_inc(&ctx->refcount);
1197 }
1198
alloc_task_ctx_data(struct pmu * pmu)1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1200 {
1201 if (pmu->task_ctx_cache)
1202 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1203
1204 return NULL;
1205 }
1206
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1208 {
1209 if (pmu->task_ctx_cache && task_ctx_data)
1210 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1211 }
1212
free_ctx(struct rcu_head * head)1213 static void free_ctx(struct rcu_head *head)
1214 {
1215 struct perf_event_context *ctx;
1216
1217 ctx = container_of(head, struct perf_event_context, rcu_head);
1218 kfree(ctx);
1219 }
1220
put_ctx(struct perf_event_context * ctx)1221 static void put_ctx(struct perf_event_context *ctx)
1222 {
1223 if (refcount_dec_and_test(&ctx->refcount)) {
1224 if (ctx->parent_ctx)
1225 put_ctx(ctx->parent_ctx);
1226 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227 put_task_struct(ctx->task);
1228 call_rcu(&ctx->rcu_head, free_ctx);
1229 }
1230 }
1231
1232 /*
1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234 * perf_pmu_migrate_context() we need some magic.
1235 *
1236 * Those places that change perf_event::ctx will hold both
1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1238 *
1239 * Lock ordering is by mutex address. There are two other sites where
1240 * perf_event_context::mutex nests and those are:
1241 *
1242 * - perf_event_exit_task_context() [ child , 0 ]
1243 * perf_event_exit_event()
1244 * put_event() [ parent, 1 ]
1245 *
1246 * - perf_event_init_context() [ parent, 0 ]
1247 * inherit_task_group()
1248 * inherit_group()
1249 * inherit_event()
1250 * perf_event_alloc()
1251 * perf_init_event()
1252 * perf_try_init_event() [ child , 1 ]
1253 *
1254 * While it appears there is an obvious deadlock here -- the parent and child
1255 * nesting levels are inverted between the two. This is in fact safe because
1256 * life-time rules separate them. That is an exiting task cannot fork, and a
1257 * spawning task cannot (yet) exit.
1258 *
1259 * But remember that these are parent<->child context relations, and
1260 * migration does not affect children, therefore these two orderings should not
1261 * interact.
1262 *
1263 * The change in perf_event::ctx does not affect children (as claimed above)
1264 * because the sys_perf_event_open() case will install a new event and break
1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266 * concerned with cpuctx and that doesn't have children.
1267 *
1268 * The places that change perf_event::ctx will issue:
1269 *
1270 * perf_remove_from_context();
1271 * synchronize_rcu();
1272 * perf_install_in_context();
1273 *
1274 * to affect the change. The remove_from_context() + synchronize_rcu() should
1275 * quiesce the event, after which we can install it in the new location. This
1276 * means that only external vectors (perf_fops, prctl) can perturb the event
1277 * while in transit. Therefore all such accessors should also acquire
1278 * perf_event_context::mutex to serialize against this.
1279 *
1280 * However; because event->ctx can change while we're waiting to acquire
1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282 * function.
1283 *
1284 * Lock order:
1285 * exec_update_lock
1286 * task_struct::perf_event_mutex
1287 * perf_event_context::mutex
1288 * perf_event::child_mutex;
1289 * perf_event_context::lock
1290 * mmap_lock
1291 * perf_event::mmap_mutex
1292 * perf_buffer::aux_mutex
1293 * perf_addr_filters_head::lock
1294 *
1295 * cpu_hotplug_lock
1296 * pmus_lock
1297 * cpuctx->mutex / perf_event_context::mutex
1298 */
1299 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1301 {
1302 struct perf_event_context *ctx;
1303
1304 again:
1305 rcu_read_lock();
1306 ctx = READ_ONCE(event->ctx);
1307 if (!refcount_inc_not_zero(&ctx->refcount)) {
1308 rcu_read_unlock();
1309 goto again;
1310 }
1311 rcu_read_unlock();
1312
1313 mutex_lock_nested(&ctx->mutex, nesting);
1314 if (event->ctx != ctx) {
1315 mutex_unlock(&ctx->mutex);
1316 put_ctx(ctx);
1317 goto again;
1318 }
1319
1320 return ctx;
1321 }
1322
1323 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1324 perf_event_ctx_lock(struct perf_event *event)
1325 {
1326 return perf_event_ctx_lock_nested(event, 0);
1327 }
1328
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330 struct perf_event_context *ctx)
1331 {
1332 mutex_unlock(&ctx->mutex);
1333 put_ctx(ctx);
1334 }
1335
1336 /*
1337 * This must be done under the ctx->lock, such as to serialize against
1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339 * calling scheduler related locks and ctx->lock nests inside those.
1340 */
1341 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1342 unclone_ctx(struct perf_event_context *ctx)
1343 {
1344 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1345
1346 lockdep_assert_held(&ctx->lock);
1347
1348 if (parent_ctx)
1349 ctx->parent_ctx = NULL;
1350 ctx->generation++;
1351
1352 return parent_ctx;
1353 }
1354
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356 enum pid_type type)
1357 {
1358 u32 nr;
1359 /*
1360 * only top level events have the pid namespace they were created in
1361 */
1362 if (event->parent)
1363 event = event->parent;
1364
1365 nr = __task_pid_nr_ns(p, type, event->ns);
1366 /* avoid -1 if it is idle thread or runs in another ns */
1367 if (!nr && !pid_alive(p))
1368 nr = -1;
1369 return nr;
1370 }
1371
perf_event_pid(struct perf_event * event,struct task_struct * p)1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1373 {
1374 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1375 }
1376
perf_event_tid(struct perf_event * event,struct task_struct * p)1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1378 {
1379 return perf_event_pid_type(event, p, PIDTYPE_PID);
1380 }
1381
1382 /*
1383 * If we inherit events we want to return the parent event id
1384 * to userspace.
1385 */
primary_event_id(struct perf_event * event)1386 static u64 primary_event_id(struct perf_event *event)
1387 {
1388 u64 id = event->id;
1389
1390 if (event->parent)
1391 id = event->parent->id;
1392
1393 return id;
1394 }
1395
1396 /*
1397 * Get the perf_event_context for a task and lock it.
1398 *
1399 * This has to cope with the fact that until it is locked,
1400 * the context could get moved to another task.
1401 */
1402 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1404 {
1405 struct perf_event_context *ctx;
1406
1407 retry:
1408 /*
1409 * One of the few rules of preemptible RCU is that one cannot do
1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 * part of the read side critical section was irqs-enabled -- see
1412 * rcu_read_unlock_special().
1413 *
1414 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 * side critical section has interrupts disabled.
1416 */
1417 local_irq_save(*flags);
1418 rcu_read_lock();
1419 ctx = rcu_dereference(task->perf_event_ctxp);
1420 if (ctx) {
1421 /*
1422 * If this context is a clone of another, it might
1423 * get swapped for another underneath us by
1424 * perf_event_task_sched_out, though the
1425 * rcu_read_lock() protects us from any context
1426 * getting freed. Lock the context and check if it
1427 * got swapped before we could get the lock, and retry
1428 * if so. If we locked the right context, then it
1429 * can't get swapped on us any more.
1430 */
1431 raw_spin_lock(&ctx->lock);
1432 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433 raw_spin_unlock(&ctx->lock);
1434 rcu_read_unlock();
1435 local_irq_restore(*flags);
1436 goto retry;
1437 }
1438
1439 if (ctx->task == TASK_TOMBSTONE ||
1440 !refcount_inc_not_zero(&ctx->refcount)) {
1441 raw_spin_unlock(&ctx->lock);
1442 ctx = NULL;
1443 } else {
1444 WARN_ON_ONCE(ctx->task != task);
1445 }
1446 }
1447 rcu_read_unlock();
1448 if (!ctx)
1449 local_irq_restore(*flags);
1450 return ctx;
1451 }
1452
1453 /*
1454 * Get the context for a task and increment its pin_count so it
1455 * can't get swapped to another task. This also increments its
1456 * reference count so that the context can't get freed.
1457 */
1458 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1459 perf_pin_task_context(struct task_struct *task)
1460 {
1461 struct perf_event_context *ctx;
1462 unsigned long flags;
1463
1464 ctx = perf_lock_task_context(task, &flags);
1465 if (ctx) {
1466 ++ctx->pin_count;
1467 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1468 }
1469 return ctx;
1470 }
1471
perf_unpin_context(struct perf_event_context * ctx)1472 static void perf_unpin_context(struct perf_event_context *ctx)
1473 {
1474 unsigned long flags;
1475
1476 raw_spin_lock_irqsave(&ctx->lock, flags);
1477 --ctx->pin_count;
1478 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1479 }
1480
1481 /*
1482 * Update the record of the current time in a context.
1483 */
__update_context_time(struct perf_event_context * ctx,bool adv)1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1485 {
1486 u64 now = perf_clock();
1487
1488 lockdep_assert_held(&ctx->lock);
1489
1490 if (adv)
1491 ctx->time += now - ctx->timestamp;
1492 ctx->timestamp = now;
1493
1494 /*
1495 * The above: time' = time + (now - timestamp), can be re-arranged
1496 * into: time` = now + (time - timestamp), which gives a single value
1497 * offset to compute future time without locks on.
1498 *
1499 * See perf_event_time_now(), which can be used from NMI context where
1500 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 * both the above values in a consistent manner.
1502 */
1503 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1504 }
1505
update_context_time(struct perf_event_context * ctx)1506 static void update_context_time(struct perf_event_context *ctx)
1507 {
1508 __update_context_time(ctx, true);
1509 }
1510
perf_event_time(struct perf_event * event)1511 static u64 perf_event_time(struct perf_event *event)
1512 {
1513 struct perf_event_context *ctx = event->ctx;
1514
1515 if (unlikely(!ctx))
1516 return 0;
1517
1518 if (is_cgroup_event(event))
1519 return perf_cgroup_event_time(event);
1520
1521 return ctx->time;
1522 }
1523
perf_event_time_now(struct perf_event * event,u64 now)1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1525 {
1526 struct perf_event_context *ctx = event->ctx;
1527
1528 if (unlikely(!ctx))
1529 return 0;
1530
1531 if (is_cgroup_event(event))
1532 return perf_cgroup_event_time_now(event, now);
1533
1534 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535 return ctx->time;
1536
1537 now += READ_ONCE(ctx->timeoffset);
1538 return now;
1539 }
1540
get_event_type(struct perf_event * event)1541 static enum event_type_t get_event_type(struct perf_event *event)
1542 {
1543 struct perf_event_context *ctx = event->ctx;
1544 enum event_type_t event_type;
1545
1546 lockdep_assert_held(&ctx->lock);
1547
1548 /*
1549 * It's 'group type', really, because if our group leader is
1550 * pinned, so are we.
1551 */
1552 if (event->group_leader != event)
1553 event = event->group_leader;
1554
1555 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556 if (!ctx->task)
1557 event_type |= EVENT_CPU;
1558
1559 return event_type;
1560 }
1561
1562 /*
1563 * Helper function to initialize event group nodes.
1564 */
init_event_group(struct perf_event * event)1565 static void init_event_group(struct perf_event *event)
1566 {
1567 RB_CLEAR_NODE(&event->group_node);
1568 event->group_index = 0;
1569 }
1570
1571 /*
1572 * Extract pinned or flexible groups from the context
1573 * based on event attrs bits.
1574 */
1575 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578 if (event->attr.pinned)
1579 return &ctx->pinned_groups;
1580 else
1581 return &ctx->flexible_groups;
1582 }
1583
1584 /*
1585 * Helper function to initializes perf_event_group trees.
1586 */
perf_event_groups_init(struct perf_event_groups * groups)1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1588 {
1589 groups->tree = RB_ROOT;
1590 groups->index = 0;
1591 }
1592
event_cgroup(const struct perf_event * event)1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1594 {
1595 struct cgroup *cgroup = NULL;
1596
1597 #ifdef CONFIG_CGROUP_PERF
1598 if (event->cgrp)
1599 cgroup = event->cgrp->css.cgroup;
1600 #endif
1601
1602 return cgroup;
1603 }
1604
1605 /*
1606 * Compare function for event groups;
1607 *
1608 * Implements complex key that first sorts by CPU and then by virtual index
1609 * which provides ordering when rotating groups for the same CPU.
1610 */
1611 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613 const struct cgroup *left_cgroup, const u64 left_group_index,
1614 const struct perf_event *right)
1615 {
1616 if (left_cpu < right->cpu)
1617 return -1;
1618 if (left_cpu > right->cpu)
1619 return 1;
1620
1621 if (left_pmu) {
1622 if (left_pmu < right->pmu_ctx->pmu)
1623 return -1;
1624 if (left_pmu > right->pmu_ctx->pmu)
1625 return 1;
1626 }
1627
1628 #ifdef CONFIG_CGROUP_PERF
1629 {
1630 const struct cgroup *right_cgroup = event_cgroup(right);
1631
1632 if (left_cgroup != right_cgroup) {
1633 if (!left_cgroup) {
1634 /*
1635 * Left has no cgroup but right does, no
1636 * cgroups come first.
1637 */
1638 return -1;
1639 }
1640 if (!right_cgroup) {
1641 /*
1642 * Right has no cgroup but left does, no
1643 * cgroups come first.
1644 */
1645 return 1;
1646 }
1647 /* Two dissimilar cgroups, order by id. */
1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649 return -1;
1650
1651 return 1;
1652 }
1653 }
1654 #endif
1655
1656 if (left_group_index < right->group_index)
1657 return -1;
1658 if (left_group_index > right->group_index)
1659 return 1;
1660
1661 return 0;
1662 }
1663
1664 #define __node_2_pe(node) \
1665 rb_entry((node), struct perf_event, group_node)
1666
__group_less(struct rb_node * a,const struct rb_node * b)1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669 struct perf_event *e = __node_2_pe(a);
1670 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671 e->group_index, __node_2_pe(b)) < 0;
1672 }
1673
1674 struct __group_key {
1675 int cpu;
1676 struct pmu *pmu;
1677 struct cgroup *cgroup;
1678 };
1679
__group_cmp(const void * key,const struct rb_node * node)1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682 const struct __group_key *a = key;
1683 const struct perf_event *b = __node_2_pe(node);
1684
1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1687 }
1688
1689 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1691 {
1692 const struct __group_key *a = key;
1693 const struct perf_event *b = __node_2_pe(node);
1694
1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697 b->group_index, b);
1698 }
1699
1700 /*
1701 * Insert @event into @groups' tree; using
1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1704 */
1705 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707 struct perf_event *event)
1708 {
1709 event->group_index = ++groups->index;
1710
1711 rb_add(&event->group_node, &groups->tree, __group_less);
1712 }
1713
1714 /*
1715 * Helper function to insert event into the pinned or flexible groups.
1716 */
1717 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1719 {
1720 struct perf_event_groups *groups;
1721
1722 groups = get_event_groups(event, ctx);
1723 perf_event_groups_insert(groups, event);
1724 }
1725
1726 /*
1727 * Delete a group from a tree.
1728 */
1729 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731 struct perf_event *event)
1732 {
1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734 RB_EMPTY_ROOT(&groups->tree));
1735
1736 rb_erase(&event->group_node, &groups->tree);
1737 init_event_group(event);
1738 }
1739
1740 /*
1741 * Helper function to delete event from its groups.
1742 */
1743 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1745 {
1746 struct perf_event_groups *groups;
1747
1748 groups = get_event_groups(event, ctx);
1749 perf_event_groups_delete(groups, event);
1750 }
1751
1752 /*
1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1754 */
1755 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757 struct pmu *pmu, struct cgroup *cgrp)
1758 {
1759 struct __group_key key = {
1760 .cpu = cpu,
1761 .pmu = pmu,
1762 .cgroup = cgrp,
1763 };
1764 struct rb_node *node;
1765
1766 node = rb_find_first(&key, &groups->tree, __group_cmp);
1767 if (node)
1768 return __node_2_pe(node);
1769
1770 return NULL;
1771 }
1772
1773 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1775 {
1776 struct __group_key key = {
1777 .cpu = event->cpu,
1778 .pmu = pmu,
1779 .cgroup = event_cgroup(event),
1780 };
1781 struct rb_node *next;
1782
1783 next = rb_next_match(&key, &event->group_node, __group_cmp);
1784 if (next)
1785 return __node_2_pe(next);
1786
1787 return NULL;
1788 }
1789
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1792 event; event = perf_event_groups_next(event, pmu))
1793
1794 /*
1795 * Iterate through the whole groups tree.
1796 */
1797 #define perf_event_groups_for_each(event, groups) \
1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1799 typeof(*event), group_node); event; \
1800 event = rb_entry_safe(rb_next(&event->group_node), \
1801 typeof(*event), group_node))
1802
1803 /*
1804 * Does the event attribute request inherit with PERF_SAMPLE_READ
1805 */
has_inherit_and_sample_read(struct perf_event_attr * attr)1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1807 {
1808 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1809 }
1810
1811 /*
1812 * Add an event from the lists for its context.
1813 * Must be called with ctx->mutex and ctx->lock held.
1814 */
1815 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1817 {
1818 lockdep_assert_held(&ctx->lock);
1819
1820 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821 event->attach_state |= PERF_ATTACH_CONTEXT;
1822
1823 event->tstamp = perf_event_time(event);
1824
1825 /*
1826 * If we're a stand alone event or group leader, we go to the context
1827 * list, group events are kept attached to the group so that
1828 * perf_group_detach can, at all times, locate all siblings.
1829 */
1830 if (event->group_leader == event) {
1831 event->group_caps = event->event_caps;
1832 add_event_to_groups(event, ctx);
1833 }
1834
1835 list_add_rcu(&event->event_entry, &ctx->event_list);
1836 ctx->nr_events++;
1837 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838 ctx->nr_user++;
1839 if (event->attr.inherit_stat)
1840 ctx->nr_stat++;
1841 if (has_inherit_and_sample_read(&event->attr))
1842 local_inc(&ctx->nr_no_switch_fast);
1843
1844 if (event->state > PERF_EVENT_STATE_OFF)
1845 perf_cgroup_event_enable(event, ctx);
1846
1847 ctx->generation++;
1848 event->pmu_ctx->nr_events++;
1849 }
1850
1851 /*
1852 * Initialize event state based on the perf_event_attr::disabled.
1853 */
perf_event__state_init(struct perf_event * event)1854 static inline void perf_event__state_init(struct perf_event *event)
1855 {
1856 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857 PERF_EVENT_STATE_INACTIVE;
1858 }
1859
__perf_event_read_size(u64 read_format,int nr_siblings)1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1861 {
1862 int entry = sizeof(u64); /* value */
1863 int size = 0;
1864 int nr = 1;
1865
1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 size += sizeof(u64);
1868
1869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870 size += sizeof(u64);
1871
1872 if (read_format & PERF_FORMAT_ID)
1873 entry += sizeof(u64);
1874
1875 if (read_format & PERF_FORMAT_LOST)
1876 entry += sizeof(u64);
1877
1878 if (read_format & PERF_FORMAT_GROUP) {
1879 nr += nr_siblings;
1880 size += sizeof(u64);
1881 }
1882
1883 /*
1884 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 * adding more siblings, this will never overflow.
1886 */
1887 return size + nr * entry;
1888 }
1889
__perf_event_header_size(struct perf_event * event,u64 sample_type)1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1891 {
1892 struct perf_sample_data *data;
1893 u16 size = 0;
1894
1895 if (sample_type & PERF_SAMPLE_IP)
1896 size += sizeof(data->ip);
1897
1898 if (sample_type & PERF_SAMPLE_ADDR)
1899 size += sizeof(data->addr);
1900
1901 if (sample_type & PERF_SAMPLE_PERIOD)
1902 size += sizeof(data->period);
1903
1904 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905 size += sizeof(data->weight.full);
1906
1907 if (sample_type & PERF_SAMPLE_READ)
1908 size += event->read_size;
1909
1910 if (sample_type & PERF_SAMPLE_DATA_SRC)
1911 size += sizeof(data->data_src.val);
1912
1913 if (sample_type & PERF_SAMPLE_TRANSACTION)
1914 size += sizeof(data->txn);
1915
1916 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917 size += sizeof(data->phys_addr);
1918
1919 if (sample_type & PERF_SAMPLE_CGROUP)
1920 size += sizeof(data->cgroup);
1921
1922 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923 size += sizeof(data->data_page_size);
1924
1925 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926 size += sizeof(data->code_page_size);
1927
1928 event->header_size = size;
1929 }
1930
1931 /*
1932 * Called at perf_event creation and when events are attached/detached from a
1933 * group.
1934 */
perf_event__header_size(struct perf_event * event)1935 static void perf_event__header_size(struct perf_event *event)
1936 {
1937 event->read_size =
1938 __perf_event_read_size(event->attr.read_format,
1939 event->group_leader->nr_siblings);
1940 __perf_event_header_size(event, event->attr.sample_type);
1941 }
1942
perf_event__id_header_size(struct perf_event * event)1943 static void perf_event__id_header_size(struct perf_event *event)
1944 {
1945 struct perf_sample_data *data;
1946 u64 sample_type = event->attr.sample_type;
1947 u16 size = 0;
1948
1949 if (sample_type & PERF_SAMPLE_TID)
1950 size += sizeof(data->tid_entry);
1951
1952 if (sample_type & PERF_SAMPLE_TIME)
1953 size += sizeof(data->time);
1954
1955 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956 size += sizeof(data->id);
1957
1958 if (sample_type & PERF_SAMPLE_ID)
1959 size += sizeof(data->id);
1960
1961 if (sample_type & PERF_SAMPLE_STREAM_ID)
1962 size += sizeof(data->stream_id);
1963
1964 if (sample_type & PERF_SAMPLE_CPU)
1965 size += sizeof(data->cpu_entry);
1966
1967 event->id_header_size = size;
1968 }
1969
1970 /*
1971 * Check that adding an event to the group does not result in anybody
1972 * overflowing the 64k event limit imposed by the output buffer.
1973 *
1974 * Specifically, check that the read_size for the event does not exceed 16k,
1975 * read_size being the one term that grows with groups size. Since read_size
1976 * depends on per-event read_format, also (re)check the existing events.
1977 *
1978 * This leaves 48k for the constant size fields and things like callchains,
1979 * branch stacks and register sets.
1980 */
perf_event_validate_size(struct perf_event * event)1981 static bool perf_event_validate_size(struct perf_event *event)
1982 {
1983 struct perf_event *sibling, *group_leader = event->group_leader;
1984
1985 if (__perf_event_read_size(event->attr.read_format,
1986 group_leader->nr_siblings + 1) > 16*1024)
1987 return false;
1988
1989 if (__perf_event_read_size(group_leader->attr.read_format,
1990 group_leader->nr_siblings + 1) > 16*1024)
1991 return false;
1992
1993 /*
1994 * When creating a new group leader, group_leader->ctx is initialized
1995 * after the size has been validated, but we cannot safely use
1996 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 * leader cannot have any siblings yet, so we can safely skip checking
1998 * the non-existent siblings.
1999 */
2000 if (event == group_leader)
2001 return true;
2002
2003 for_each_sibling_event(sibling, group_leader) {
2004 if (__perf_event_read_size(sibling->attr.read_format,
2005 group_leader->nr_siblings + 1) > 16*1024)
2006 return false;
2007 }
2008
2009 return true;
2010 }
2011
perf_group_attach(struct perf_event * event)2012 static void perf_group_attach(struct perf_event *event)
2013 {
2014 struct perf_event *group_leader = event->group_leader, *pos;
2015
2016 lockdep_assert_held(&event->ctx->lock);
2017
2018 /*
2019 * We can have double attach due to group movement (move_group) in
2020 * perf_event_open().
2021 */
2022 if (event->attach_state & PERF_ATTACH_GROUP)
2023 return;
2024
2025 event->attach_state |= PERF_ATTACH_GROUP;
2026
2027 if (group_leader == event)
2028 return;
2029
2030 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2031
2032 group_leader->group_caps &= event->event_caps;
2033
2034 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035 group_leader->nr_siblings++;
2036 group_leader->group_generation++;
2037
2038 perf_event__header_size(group_leader);
2039
2040 for_each_sibling_event(pos, group_leader)
2041 perf_event__header_size(pos);
2042 }
2043
2044 /*
2045 * Remove an event from the lists for its context.
2046 * Must be called with ctx->mutex and ctx->lock held.
2047 */
2048 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2050 {
2051 WARN_ON_ONCE(event->ctx != ctx);
2052 lockdep_assert_held(&ctx->lock);
2053
2054 /*
2055 * We can have double detach due to exit/hot-unplug + close.
2056 */
2057 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058 return;
2059
2060 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2061
2062 ctx->nr_events--;
2063 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064 ctx->nr_user--;
2065 if (event->attr.inherit_stat)
2066 ctx->nr_stat--;
2067 if (has_inherit_and_sample_read(&event->attr))
2068 local_dec(&ctx->nr_no_switch_fast);
2069
2070 list_del_rcu(&event->event_entry);
2071
2072 if (event->group_leader == event)
2073 del_event_from_groups(event, ctx);
2074
2075 /*
2076 * If event was in error state, then keep it
2077 * that way, otherwise bogus counts will be
2078 * returned on read(). The only way to get out
2079 * of error state is by explicit re-enabling
2080 * of the event
2081 */
2082 if (event->state > PERF_EVENT_STATE_OFF) {
2083 perf_cgroup_event_disable(event, ctx);
2084 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2085 }
2086
2087 ctx->generation++;
2088 event->pmu_ctx->nr_events--;
2089 }
2090
2091 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2093 {
2094 if (!has_aux(aux_event))
2095 return 0;
2096
2097 if (!event->pmu->aux_output_match)
2098 return 0;
2099
2100 return event->pmu->aux_output_match(aux_event);
2101 }
2102
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105 struct perf_event_context *ctx);
2106
perf_put_aux_event(struct perf_event * event)2107 static void perf_put_aux_event(struct perf_event *event)
2108 {
2109 struct perf_event_context *ctx = event->ctx;
2110 struct perf_event *iter;
2111
2112 /*
2113 * If event uses aux_event tear down the link
2114 */
2115 if (event->aux_event) {
2116 iter = event->aux_event;
2117 event->aux_event = NULL;
2118 put_event(iter);
2119 return;
2120 }
2121
2122 /*
2123 * If the event is an aux_event, tear down all links to
2124 * it from other events.
2125 */
2126 for_each_sibling_event(iter, event->group_leader) {
2127 if (iter->aux_event != event)
2128 continue;
2129
2130 iter->aux_event = NULL;
2131 put_event(event);
2132
2133 /*
2134 * If it's ACTIVE, schedule it out and put it into ERROR
2135 * state so that we don't try to schedule it again. Note
2136 * that perf_event_enable() will clear the ERROR status.
2137 */
2138 event_sched_out(iter, ctx);
2139 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2140 }
2141 }
2142
perf_need_aux_event(struct perf_event * event)2143 static bool perf_need_aux_event(struct perf_event *event)
2144 {
2145 return event->attr.aux_output || has_aux_action(event);
2146 }
2147
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2148 static int perf_get_aux_event(struct perf_event *event,
2149 struct perf_event *group_leader)
2150 {
2151 /*
2152 * Our group leader must be an aux event if we want to be
2153 * an aux_output. This way, the aux event will precede its
2154 * aux_output events in the group, and therefore will always
2155 * schedule first.
2156 */
2157 if (!group_leader)
2158 return 0;
2159
2160 /*
2161 * aux_output and aux_sample_size are mutually exclusive.
2162 */
2163 if (event->attr.aux_output && event->attr.aux_sample_size)
2164 return 0;
2165
2166 if (event->attr.aux_output &&
2167 !perf_aux_output_match(event, group_leader))
2168 return 0;
2169
2170 if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172 return 0;
2173
2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 return 0;
2176
2177 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 return 0;
2179
2180 /*
2181 * Link aux_outputs to their aux event; this is undone in
2182 * perf_group_detach() by perf_put_aux_event(). When the
2183 * group in torn down, the aux_output events loose their
2184 * link to the aux_event and can't schedule any more.
2185 */
2186 event->aux_event = group_leader;
2187
2188 return 1;
2189 }
2190
get_event_list(struct perf_event * event)2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 &event->pmu_ctx->flexible_active;
2195 }
2196
2197 /*
2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199 * cannot exist on their own, schedule them out and move them into the ERROR
2200 * state. Also see _perf_event_enable(), it will not be able to recover
2201 * this ERROR state.
2202 */
perf_remove_sibling_event(struct perf_event * event)2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 event_sched_out(event, event->ctx);
2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208
perf_group_detach(struct perf_event * event)2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 struct perf_event *leader = event->group_leader;
2212 struct perf_event *sibling, *tmp;
2213 struct perf_event_context *ctx = event->ctx;
2214
2215 lockdep_assert_held(&ctx->lock);
2216
2217 /*
2218 * We can have double detach due to exit/hot-unplug + close.
2219 */
2220 if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 return;
2222
2223 event->attach_state &= ~PERF_ATTACH_GROUP;
2224
2225 perf_put_aux_event(event);
2226
2227 /*
2228 * If this is a sibling, remove it from its group.
2229 */
2230 if (leader != event) {
2231 list_del_init(&event->sibling_list);
2232 event->group_leader->nr_siblings--;
2233 event->group_leader->group_generation++;
2234 goto out;
2235 }
2236
2237 /*
2238 * If this was a group event with sibling events then
2239 * upgrade the siblings to singleton events by adding them
2240 * to whatever list we are on.
2241 */
2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243
2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 perf_remove_sibling_event(sibling);
2246
2247 sibling->group_leader = sibling;
2248 list_del_init(&sibling->sibling_list);
2249
2250 /* Inherit group flags from the previous leader */
2251 sibling->group_caps = event->group_caps;
2252
2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 add_event_to_groups(sibling, event->ctx);
2255
2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 }
2259
2260 WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 }
2262
2263 out:
2264 for_each_sibling_event(tmp, leader)
2265 perf_event__header_size(tmp);
2266
2267 perf_event__header_size(leader);
2268 }
2269
2270 static void sync_child_event(struct perf_event *child_event);
2271
perf_child_detach(struct perf_event * event)2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 struct perf_event *parent_event = event->parent;
2275
2276 if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 return;
2278
2279 event->attach_state &= ~PERF_ATTACH_CHILD;
2280
2281 if (WARN_ON_ONCE(!parent_event))
2282 return;
2283
2284 lockdep_assert_held(&parent_event->child_mutex);
2285
2286 sync_child_event(event);
2287 list_del_init(&event->child_list);
2288 }
2289
is_orphaned_event(struct perf_event * event)2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294
2295 static inline int
event_filter_match(struct perf_event * event)2296 event_filter_match(struct perf_event *event)
2297 {
2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 perf_cgroup_match(event);
2300 }
2301
2302 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308
2309 // XXX cpc serialization, probably per-cpu IRQ disabled
2310
2311 WARN_ON_ONCE(event->ctx != ctx);
2312 lockdep_assert_held(&ctx->lock);
2313
2314 if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 return;
2316
2317 /*
2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 * we can schedule events _OUT_ individually through things like
2320 * __perf_remove_from_context().
2321 */
2322 list_del_init(&event->active_list);
2323
2324 perf_pmu_disable(event->pmu);
2325
2326 event->pmu->del(event, 0);
2327 event->oncpu = -1;
2328
2329 if (event->pending_disable) {
2330 event->pending_disable = 0;
2331 perf_cgroup_event_disable(event, ctx);
2332 state = PERF_EVENT_STATE_OFF;
2333 }
2334
2335 perf_event_set_state(event, state);
2336
2337 if (!is_software_event(event))
2338 cpc->active_oncpu--;
2339 if (event->attr.freq && event->attr.sample_freq) {
2340 ctx->nr_freq--;
2341 epc->nr_freq--;
2342 }
2343 if (event->attr.exclusive || !cpc->active_oncpu)
2344 cpc->exclusive = 0;
2345
2346 perf_pmu_enable(event->pmu);
2347 }
2348
2349 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 struct perf_event *event;
2353
2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 return;
2356
2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358
2359 event_sched_out(group_event, ctx);
2360
2361 /*
2362 * Schedule out siblings (if any):
2363 */
2364 for_each_sibling_event(event, group_event)
2365 event_sched_out(event, ctx);
2366 }
2367
2368 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 if (ctx->is_active & EVENT_TIME) {
2372 if (ctx->is_active & EVENT_FROZEN)
2373 return;
2374 update_context_time(ctx);
2375 update_cgrp_time_from_cpuctx(cpuctx, final);
2376 }
2377 }
2378
2379 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 __ctx_time_update(cpuctx, ctx, false);
2383 }
2384
2385 /*
2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387 */
2388 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 ctx_time_update(cpuctx, ctx);
2392 if (ctx->is_active & EVENT_TIME)
2393 ctx->is_active |= EVENT_FROZEN;
2394 }
2395
2396 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 if (ctx->is_active & EVENT_TIME) {
2400 if (ctx->is_active & EVENT_FROZEN)
2401 return;
2402 update_context_time(ctx);
2403 update_cgrp_time_from_event(event);
2404 }
2405 }
2406
2407 #define DETACH_GROUP 0x01UL
2408 #define DETACH_CHILD 0x02UL
2409 #define DETACH_DEAD 0x04UL
2410
2411 /*
2412 * Cross CPU call to remove a performance event
2413 *
2414 * We disable the event on the hardware level first. After that we
2415 * remove it from the context list.
2416 */
2417 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2418 __perf_remove_from_context(struct perf_event *event,
2419 struct perf_cpu_context *cpuctx,
2420 struct perf_event_context *ctx,
2421 void *info)
2422 {
2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 unsigned long flags = (unsigned long)info;
2425
2426 ctx_time_update(cpuctx, ctx);
2427
2428 /*
2429 * Ensure event_sched_out() switches to OFF, at the very least
2430 * this avoids raising perf_pending_task() at this time.
2431 */
2432 if (flags & DETACH_DEAD)
2433 event->pending_disable = 1;
2434 event_sched_out(event, ctx);
2435 if (flags & DETACH_GROUP)
2436 perf_group_detach(event);
2437 if (flags & DETACH_CHILD)
2438 perf_child_detach(event);
2439 list_del_event(event, ctx);
2440 if (flags & DETACH_DEAD)
2441 event->state = PERF_EVENT_STATE_DEAD;
2442
2443 if (!pmu_ctx->nr_events) {
2444 pmu_ctx->rotate_necessary = 0;
2445
2446 if (ctx->task && ctx->is_active) {
2447 struct perf_cpu_pmu_context *cpc;
2448
2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 cpc->task_epc = NULL;
2452 }
2453 }
2454
2455 if (!ctx->nr_events && ctx->is_active) {
2456 if (ctx == &cpuctx->ctx)
2457 update_cgrp_time_from_cpuctx(cpuctx, true);
2458
2459 ctx->is_active = 0;
2460 if (ctx->task) {
2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 cpuctx->task_ctx = NULL;
2463 }
2464 }
2465 }
2466
2467 /*
2468 * Remove the event from a task's (or a CPU's) list of events.
2469 *
2470 * If event->ctx is a cloned context, callers must make sure that
2471 * every task struct that event->ctx->task could possibly point to
2472 * remains valid. This is OK when called from perf_release since
2473 * that only calls us on the top-level context, which can't be a clone.
2474 * When called from perf_event_exit_task, it's OK because the
2475 * context has been detached from its task.
2476 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479 struct perf_event_context *ctx = event->ctx;
2480
2481 lockdep_assert_held(&ctx->mutex);
2482
2483 /*
2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 * event_function_call() user.
2487 */
2488 raw_spin_lock_irq(&ctx->lock);
2489 if (!ctx->is_active) {
2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 ctx, (void *)flags);
2492 raw_spin_unlock_irq(&ctx->lock);
2493 return;
2494 }
2495 raw_spin_unlock_irq(&ctx->lock);
2496
2497 event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499
2500 /*
2501 * Cross CPU call to disable a performance event
2502 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2503 static void __perf_event_disable(struct perf_event *event,
2504 struct perf_cpu_context *cpuctx,
2505 struct perf_event_context *ctx,
2506 void *info)
2507 {
2508 if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 return;
2510
2511 perf_pmu_disable(event->pmu_ctx->pmu);
2512 ctx_time_update_event(ctx, event);
2513
2514 if (event == event->group_leader)
2515 group_sched_out(event, ctx);
2516 else
2517 event_sched_out(event, ctx);
2518
2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 perf_cgroup_event_disable(event, ctx);
2521
2522 perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524
2525 /*
2526 * Disable an event.
2527 *
2528 * If event->ctx is a cloned context, callers must make sure that
2529 * every task struct that event->ctx->task could possibly point to
2530 * remains valid. This condition is satisfied when called through
2531 * perf_event_for_each_child or perf_event_for_each because they
2532 * hold the top-level event's child_mutex, so any descendant that
2533 * goes to exit will block in perf_event_exit_event().
2534 *
2535 * When called from perf_pending_disable it's OK because event->ctx
2536 * is the current context on this CPU and preemption is disabled,
2537 * hence we can't get into perf_event_task_sched_out for this context.
2538 */
_perf_event_disable(struct perf_event * event)2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541 struct perf_event_context *ctx = event->ctx;
2542
2543 raw_spin_lock_irq(&ctx->lock);
2544 if (event->state <= PERF_EVENT_STATE_OFF) {
2545 raw_spin_unlock_irq(&ctx->lock);
2546 return;
2547 }
2548 raw_spin_unlock_irq(&ctx->lock);
2549
2550 event_function_call(event, __perf_event_disable, NULL);
2551 }
2552
perf_event_disable_local(struct perf_event * event)2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555 event_function_local(event, __perf_event_disable, NULL);
2556 }
2557
2558 /*
2559 * Strictly speaking kernel users cannot create groups and therefore this
2560 * interface does not need the perf_event_ctx_lock() magic.
2561 */
perf_event_disable(struct perf_event * event)2562 void perf_event_disable(struct perf_event *event)
2563 {
2564 struct perf_event_context *ctx;
2565
2566 ctx = perf_event_ctx_lock(event);
2567 _perf_event_disable(event);
2568 perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571
perf_event_disable_inatomic(struct perf_event * event)2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574 event->pending_disable = 1;
2575 irq_work_queue(&event->pending_disable_irq);
2576 }
2577
2578 #define MAX_INTERRUPTS (~0ULL)
2579
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582
2583 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586 struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 int ret = 0;
2589
2590 WARN_ON_ONCE(event->ctx != ctx);
2591
2592 lockdep_assert_held(&ctx->lock);
2593
2594 if (event->state <= PERF_EVENT_STATE_OFF)
2595 return 0;
2596
2597 WRITE_ONCE(event->oncpu, smp_processor_id());
2598 /*
2599 * Order event::oncpu write to happen before the ACTIVE state is
2600 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 * ->oncpu if it sees ACTIVE.
2602 */
2603 smp_wmb();
2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605
2606 /*
2607 * Unthrottle events, since we scheduled we might have missed several
2608 * ticks already, also for a heavily scheduling task there is little
2609 * guarantee it'll get a tick in a timely manner.
2610 */
2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 perf_log_throttle(event, 1);
2613 event->hw.interrupts = 0;
2614 }
2615
2616 perf_pmu_disable(event->pmu);
2617
2618 perf_log_itrace_start(event);
2619
2620 if (event->pmu->add(event, PERF_EF_START)) {
2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 event->oncpu = -1;
2623 ret = -EAGAIN;
2624 goto out;
2625 }
2626
2627 if (!is_software_event(event))
2628 cpc->active_oncpu++;
2629 if (event->attr.freq && event->attr.sample_freq) {
2630 ctx->nr_freq++;
2631 epc->nr_freq++;
2632 }
2633 if (event->attr.exclusive)
2634 cpc->exclusive = 1;
2635
2636 out:
2637 perf_pmu_enable(event->pmu);
2638
2639 return ret;
2640 }
2641
2642 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645 struct perf_event *event, *partial_group = NULL;
2646 struct pmu *pmu = group_event->pmu_ctx->pmu;
2647
2648 if (group_event->state == PERF_EVENT_STATE_OFF)
2649 return 0;
2650
2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652
2653 if (event_sched_in(group_event, ctx))
2654 goto error;
2655
2656 /*
2657 * Schedule in siblings as one group (if any):
2658 */
2659 for_each_sibling_event(event, group_event) {
2660 if (event_sched_in(event, ctx)) {
2661 partial_group = event;
2662 goto group_error;
2663 }
2664 }
2665
2666 if (!pmu->commit_txn(pmu))
2667 return 0;
2668
2669 group_error:
2670 /*
2671 * Groups can be scheduled in as one unit only, so undo any
2672 * partial group before returning:
2673 * The events up to the failed event are scheduled out normally.
2674 */
2675 for_each_sibling_event(event, group_event) {
2676 if (event == partial_group)
2677 break;
2678
2679 event_sched_out(event, ctx);
2680 }
2681 event_sched_out(group_event, ctx);
2682
2683 error:
2684 pmu->cancel_txn(pmu);
2685 return -EAGAIN;
2686 }
2687
2688 /*
2689 * Work out whether we can put this event group on the CPU now.
2690 */
group_can_go_on(struct perf_event * event,int can_add_hw)2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693 struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695
2696 /*
2697 * Groups consisting entirely of software events can always go on.
2698 */
2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 return 1;
2701 /*
2702 * If an exclusive group is already on, no other hardware
2703 * events can go on.
2704 */
2705 if (cpc->exclusive)
2706 return 0;
2707 /*
2708 * If this group is exclusive and there are already
2709 * events on the CPU, it can't go on.
2710 */
2711 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 return 0;
2713 /*
2714 * Otherwise, try to add it if all previous groups were able
2715 * to go on.
2716 */
2717 return can_add_hw;
2718 }
2719
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2720 static void add_event_to_ctx(struct perf_event *event,
2721 struct perf_event_context *ctx)
2722 {
2723 list_add_event(event, ctx);
2724 perf_group_attach(event);
2725 }
2726
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 struct pmu *pmu,
2729 enum event_type_t event_type)
2730 {
2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732
2733 if (!cpuctx->task_ctx)
2734 return;
2735
2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 return;
2738
2739 ctx_sched_out(ctx, pmu, event_type);
2740 }
2741
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 struct pmu *pmu)
2745 {
2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 if (ctx)
2748 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 if (ctx)
2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753
2754 /*
2755 * We want to maintain the following priority of scheduling:
2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757 * - task pinned (EVENT_PINNED)
2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759 * - task flexible (EVENT_FLEXIBLE).
2760 *
2761 * In order to avoid unscheduling and scheduling back in everything every
2762 * time an event is added, only do it for the groups of equal priority and
2763 * below.
2764 *
2765 * This can be called after a batch operation on task events, in which case
2766 * event_type is a bit mask of the types of events involved. For CPU events,
2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 struct perf_event_context *task_ctx,
2771 struct pmu *pmu, enum event_type_t event_type)
2772 {
2773 bool cpu_event = !!(event_type & EVENT_CPU);
2774 struct perf_event_pmu_context *epc;
2775
2776 /*
2777 * If pinned groups are involved, flexible groups also need to be
2778 * scheduled out.
2779 */
2780 if (event_type & EVENT_PINNED)
2781 event_type |= EVENT_FLEXIBLE;
2782
2783 event_type &= EVENT_ALL;
2784
2785 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 perf_pmu_disable(epc->pmu);
2787
2788 if (task_ctx) {
2789 for_each_epc(epc, task_ctx, pmu, false)
2790 perf_pmu_disable(epc->pmu);
2791
2792 task_ctx_sched_out(task_ctx, pmu, event_type);
2793 }
2794
2795 /*
2796 * Decide which cpu ctx groups to schedule out based on the types
2797 * of events that caused rescheduling:
2798 * - EVENT_CPU: schedule out corresponding groups;
2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 * - otherwise, do nothing more.
2801 */
2802 if (cpu_event)
2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 else if (event_type & EVENT_PINNED)
2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806
2807 perf_event_sched_in(cpuctx, task_ctx, pmu);
2808
2809 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 perf_pmu_enable(epc->pmu);
2811
2812 if (task_ctx) {
2813 for_each_epc(epc, task_ctx, pmu, false)
2814 perf_pmu_enable(epc->pmu);
2815 }
2816 }
2817
perf_pmu_resched(struct pmu * pmu)2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822
2823 perf_ctx_lock(cpuctx, task_ctx);
2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827
2828 /*
2829 * Cross CPU call to install and enable a performance event
2830 *
2831 * Very similar to remote_function() + event_function() but cannot assume that
2832 * things like ctx->is_active and cpuctx->task_ctx are set.
2833 */
__perf_install_in_context(void * info)2834 static int __perf_install_in_context(void *info)
2835 {
2836 struct perf_event *event = info;
2837 struct perf_event_context *ctx = event->ctx;
2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 bool reprogram = true;
2841 int ret = 0;
2842
2843 raw_spin_lock(&cpuctx->ctx.lock);
2844 if (ctx->task) {
2845 raw_spin_lock(&ctx->lock);
2846 task_ctx = ctx;
2847
2848 reprogram = (ctx->task == current);
2849
2850 /*
2851 * If the task is running, it must be running on this CPU,
2852 * otherwise we cannot reprogram things.
2853 *
2854 * If its not running, we don't care, ctx->lock will
2855 * serialize against it becoming runnable.
2856 */
2857 if (task_curr(ctx->task) && !reprogram) {
2858 ret = -ESRCH;
2859 goto unlock;
2860 }
2861
2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 } else if (task_ctx) {
2864 raw_spin_lock(&task_ctx->lock);
2865 }
2866
2867 #ifdef CONFIG_CGROUP_PERF
2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869 /*
2870 * If the current cgroup doesn't match the event's
2871 * cgroup, we should not try to schedule it.
2872 */
2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 event->cgrp->css.cgroup);
2876 }
2877 #endif
2878
2879 if (reprogram) {
2880 ctx_time_freeze(cpuctx, ctx);
2881 add_event_to_ctx(event, ctx);
2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 get_event_type(event));
2884 } else {
2885 add_event_to_ctx(event, ctx);
2886 }
2887
2888 unlock:
2889 perf_ctx_unlock(cpuctx, task_ctx);
2890
2891 return ret;
2892 }
2893
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 struct perf_event_context *ctx);
2896
2897 /*
2898 * Attach a performance event to a context.
2899 *
2900 * Very similar to event_function_call, see comment there.
2901 */
2902 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2903 perf_install_in_context(struct perf_event_context *ctx,
2904 struct perf_event *event,
2905 int cpu)
2906 {
2907 struct task_struct *task = READ_ONCE(ctx->task);
2908
2909 lockdep_assert_held(&ctx->mutex);
2910
2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912
2913 if (event->cpu != -1)
2914 WARN_ON_ONCE(event->cpu != cpu);
2915
2916 /*
2917 * Ensures that if we can observe event->ctx, both the event and ctx
2918 * will be 'complete'. See perf_iterate_sb_cpu().
2919 */
2920 smp_store_release(&event->ctx, ctx);
2921
2922 /*
2923 * perf_event_attr::disabled events will not run and can be initialized
2924 * without IPI. Except when this is the first event for the context, in
2925 * that case we need the magic of the IPI to set ctx->is_active.
2926 *
2927 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 * event will issue the IPI and reprogram the hardware.
2929 */
2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 ctx->nr_events && !is_cgroup_event(event)) {
2932 raw_spin_lock_irq(&ctx->lock);
2933 if (ctx->task == TASK_TOMBSTONE) {
2934 raw_spin_unlock_irq(&ctx->lock);
2935 return;
2936 }
2937 add_event_to_ctx(event, ctx);
2938 raw_spin_unlock_irq(&ctx->lock);
2939 return;
2940 }
2941
2942 if (!task) {
2943 cpu_function_call(cpu, __perf_install_in_context, event);
2944 return;
2945 }
2946
2947 /*
2948 * Should not happen, we validate the ctx is still alive before calling.
2949 */
2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 return;
2952
2953 /*
2954 * Installing events is tricky because we cannot rely on ctx->is_active
2955 * to be set in case this is the nr_events 0 -> 1 transition.
2956 *
2957 * Instead we use task_curr(), which tells us if the task is running.
2958 * However, since we use task_curr() outside of rq::lock, we can race
2959 * against the actual state. This means the result can be wrong.
2960 *
2961 * If we get a false positive, we retry, this is harmless.
2962 *
2963 * If we get a false negative, things are complicated. If we are after
2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 * value must be correct. If we're before, it doesn't matter since
2966 * perf_event_context_sched_in() will program the counter.
2967 *
2968 * However, this hinges on the remote context switch having observed
2969 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 * ctx::lock in perf_event_context_sched_in().
2971 *
2972 * We do this by task_function_call(), if the IPI fails to hit the task
2973 * we know any future context switch of task must see the
2974 * perf_event_ctpx[] store.
2975 */
2976
2977 /*
2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 * task_cpu() load, such that if the IPI then does not find the task
2980 * running, a future context switch of that task must observe the
2981 * store.
2982 */
2983 smp_mb();
2984 again:
2985 if (!task_function_call(task, __perf_install_in_context, event))
2986 return;
2987
2988 raw_spin_lock_irq(&ctx->lock);
2989 task = ctx->task;
2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991 /*
2992 * Cannot happen because we already checked above (which also
2993 * cannot happen), and we hold ctx->mutex, which serializes us
2994 * against perf_event_exit_task_context().
2995 */
2996 raw_spin_unlock_irq(&ctx->lock);
2997 return;
2998 }
2999 /*
3000 * If the task is not running, ctx->lock will avoid it becoming so,
3001 * thus we can safely install the event.
3002 */
3003 if (task_curr(task)) {
3004 raw_spin_unlock_irq(&ctx->lock);
3005 goto again;
3006 }
3007 add_event_to_ctx(event, ctx);
3008 raw_spin_unlock_irq(&ctx->lock);
3009 }
3010
3011 /*
3012 * Cross CPU call to enable a performance event
3013 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3014 static void __perf_event_enable(struct perf_event *event,
3015 struct perf_cpu_context *cpuctx,
3016 struct perf_event_context *ctx,
3017 void *info)
3018 {
3019 struct perf_event *leader = event->group_leader;
3020 struct perf_event_context *task_ctx;
3021
3022 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 event->state <= PERF_EVENT_STATE_ERROR)
3024 return;
3025
3026 ctx_time_freeze(cpuctx, ctx);
3027
3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 perf_cgroup_event_enable(event, ctx);
3030
3031 if (!ctx->is_active)
3032 return;
3033
3034 if (!event_filter_match(event))
3035 return;
3036
3037 /*
3038 * If the event is in a group and isn't the group leader,
3039 * then don't put it on unless the group is on.
3040 */
3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 return;
3043
3044 task_ctx = cpuctx->task_ctx;
3045 if (ctx->task)
3046 WARN_ON_ONCE(task_ctx != ctx);
3047
3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050
3051 /*
3052 * Enable an event.
3053 *
3054 * If event->ctx is a cloned context, callers must make sure that
3055 * every task struct that event->ctx->task could possibly point to
3056 * remains valid. This condition is satisfied when called through
3057 * perf_event_for_each_child or perf_event_for_each as described
3058 * for perf_event_disable.
3059 */
_perf_event_enable(struct perf_event * event)3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062 struct perf_event_context *ctx = event->ctx;
3063
3064 raw_spin_lock_irq(&ctx->lock);
3065 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 event->state < PERF_EVENT_STATE_ERROR) {
3067 out:
3068 raw_spin_unlock_irq(&ctx->lock);
3069 return;
3070 }
3071
3072 /*
3073 * If the event is in error state, clear that first.
3074 *
3075 * That way, if we see the event in error state below, we know that it
3076 * has gone back into error state, as distinct from the task having
3077 * been scheduled away before the cross-call arrived.
3078 */
3079 if (event->state == PERF_EVENT_STATE_ERROR) {
3080 /*
3081 * Detached SIBLING events cannot leave ERROR state.
3082 */
3083 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 event->group_leader == event)
3085 goto out;
3086
3087 event->state = PERF_EVENT_STATE_OFF;
3088 }
3089 raw_spin_unlock_irq(&ctx->lock);
3090
3091 event_function_call(event, __perf_event_enable, NULL);
3092 }
3093
3094 /*
3095 * See perf_event_disable();
3096 */
perf_event_enable(struct perf_event * event)3097 void perf_event_enable(struct perf_event *event)
3098 {
3099 struct perf_event_context *ctx;
3100
3101 ctx = perf_event_ctx_lock(event);
3102 _perf_event_enable(event);
3103 perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106
3107 struct stop_event_data {
3108 struct perf_event *event;
3109 unsigned int restart;
3110 };
3111
__perf_event_stop(void * info)3112 static int __perf_event_stop(void *info)
3113 {
3114 struct stop_event_data *sd = info;
3115 struct perf_event *event = sd->event;
3116
3117 /* if it's already INACTIVE, do nothing */
3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 return 0;
3120
3121 /* matches smp_wmb() in event_sched_in() */
3122 smp_rmb();
3123
3124 /*
3125 * There is a window with interrupts enabled before we get here,
3126 * so we need to check again lest we try to stop another CPU's event.
3127 */
3128 if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 return -EAGAIN;
3130
3131 event->pmu->stop(event, PERF_EF_UPDATE);
3132
3133 /*
3134 * May race with the actual stop (through perf_pmu_output_stop()),
3135 * but it is only used for events with AUX ring buffer, and such
3136 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 * see comments in perf_aux_output_begin().
3138 *
3139 * Since this is happening on an event-local CPU, no trace is lost
3140 * while restarting.
3141 */
3142 if (sd->restart)
3143 event->pmu->start(event, 0);
3144
3145 return 0;
3146 }
3147
perf_event_stop(struct perf_event * event,int restart)3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150 struct stop_event_data sd = {
3151 .event = event,
3152 .restart = restart,
3153 };
3154 int ret = 0;
3155
3156 do {
3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 return 0;
3159
3160 /* matches smp_wmb() in event_sched_in() */
3161 smp_rmb();
3162
3163 /*
3164 * We only want to restart ACTIVE events, so if the event goes
3165 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 * fall through with ret==-ENXIO.
3167 */
3168 ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 __perf_event_stop, &sd);
3170 } while (ret == -EAGAIN);
3171
3172 return ret;
3173 }
3174
3175 /*
3176 * In order to contain the amount of racy and tricky in the address filter
3177 * configuration management, it is a two part process:
3178 *
3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180 * we update the addresses of corresponding vmas in
3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182 * (p2) when an event is scheduled in (pmu::add), it calls
3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184 * if the generation has changed since the previous call.
3185 *
3186 * If (p1) happens while the event is active, we restart it to force (p2).
3187 *
3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3190 * ioctl;
3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3193 * for reading;
3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195 * of exec.
3196 */
perf_event_addr_filters_sync(struct perf_event * event)3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200
3201 if (!has_addr_filter(event))
3202 return;
3203
3204 raw_spin_lock(&ifh->lock);
3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 event->pmu->addr_filters_sync(event);
3207 event->hw.addr_filters_gen = event->addr_filters_gen;
3208 }
3209 raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212
_perf_event_refresh(struct perf_event * event,int refresh)3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 /*
3216 * not supported on inherited events
3217 */
3218 if (event->attr.inherit || !is_sampling_event(event))
3219 return -EINVAL;
3220
3221 atomic_add(refresh, &event->event_limit);
3222 _perf_event_enable(event);
3223
3224 return 0;
3225 }
3226
3227 /*
3228 * See perf_event_disable()
3229 */
perf_event_refresh(struct perf_event * event,int refresh)3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232 struct perf_event_context *ctx;
3233 int ret;
3234
3235 ctx = perf_event_ctx_lock(event);
3236 ret = _perf_event_refresh(event, refresh);
3237 perf_event_ctx_unlock(event, ctx);
3238
3239 return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 struct perf_event_attr *attr)
3245 {
3246 int err;
3247
3248 _perf_event_disable(bp);
3249
3250 err = modify_user_hw_breakpoint_check(bp, attr, true);
3251
3252 if (!bp->attr.disabled)
3253 _perf_event_enable(bp);
3254
3255 return err;
3256 }
3257
3258 /*
3259 * Copy event-type-independent attributes that may be modified.
3260 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 const struct perf_event_attr *from)
3263 {
3264 to->sig_data = from->sig_data;
3265 }
3266
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3267 static int perf_event_modify_attr(struct perf_event *event,
3268 struct perf_event_attr *attr)
3269 {
3270 int (*func)(struct perf_event *, struct perf_event_attr *);
3271 struct perf_event *child;
3272 int err;
3273
3274 if (event->attr.type != attr->type)
3275 return -EINVAL;
3276
3277 switch (event->attr.type) {
3278 case PERF_TYPE_BREAKPOINT:
3279 func = perf_event_modify_breakpoint;
3280 break;
3281 default:
3282 /* Place holder for future additions. */
3283 return -EOPNOTSUPP;
3284 }
3285
3286 WARN_ON_ONCE(event->ctx->parent_ctx);
3287
3288 mutex_lock(&event->child_mutex);
3289 /*
3290 * Event-type-independent attributes must be copied before event-type
3291 * modification, which will validate that final attributes match the
3292 * source attributes after all relevant attributes have been copied.
3293 */
3294 perf_event_modify_copy_attr(&event->attr, attr);
3295 err = func(event, attr);
3296 if (err)
3297 goto out;
3298 list_for_each_entry(child, &event->child_list, child_list) {
3299 perf_event_modify_copy_attr(&child->attr, attr);
3300 err = func(child, attr);
3301 if (err)
3302 goto out;
3303 }
3304 out:
3305 mutex_unlock(&event->child_mutex);
3306 return err;
3307 }
3308
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 enum event_type_t event_type)
3311 {
3312 struct perf_event_context *ctx = pmu_ctx->ctx;
3313 struct perf_event *event, *tmp;
3314 struct pmu *pmu = pmu_ctx->pmu;
3315
3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 struct perf_cpu_pmu_context *cpc;
3318
3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 cpc->task_epc = NULL;
3322 }
3323
3324 if (!(event_type & EVENT_ALL))
3325 return;
3326
3327 perf_pmu_disable(pmu);
3328 if (event_type & EVENT_PINNED) {
3329 list_for_each_entry_safe(event, tmp,
3330 &pmu_ctx->pinned_active,
3331 active_list)
3332 group_sched_out(event, ctx);
3333 }
3334
3335 if (event_type & EVENT_FLEXIBLE) {
3336 list_for_each_entry_safe(event, tmp,
3337 &pmu_ctx->flexible_active,
3338 active_list)
3339 group_sched_out(event, ctx);
3340 /*
3341 * Since we cleared EVENT_FLEXIBLE, also clear
3342 * rotate_necessary, is will be reset by
3343 * ctx_flexible_sched_in() when needed.
3344 */
3345 pmu_ctx->rotate_necessary = 0;
3346 }
3347 perf_pmu_enable(pmu);
3348 }
3349
3350 /*
3351 * Be very careful with the @pmu argument since this will change ctx state.
3352 * The @pmu argument works for ctx_resched(), because that is symmetric in
3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354 *
3355 * However, if you were to be asymmetrical, you could end up with messed up
3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357 * be active.
3358 */
3359 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 struct perf_event_pmu_context *pmu_ctx;
3364 int is_active = ctx->is_active;
3365 bool cgroup = event_type & EVENT_CGROUP;
3366
3367 event_type &= ~EVENT_CGROUP;
3368
3369 lockdep_assert_held(&ctx->lock);
3370
3371 if (likely(!ctx->nr_events)) {
3372 /*
3373 * See __perf_remove_from_context().
3374 */
3375 WARN_ON_ONCE(ctx->is_active);
3376 if (ctx->task)
3377 WARN_ON_ONCE(cpuctx->task_ctx);
3378 return;
3379 }
3380
3381 /*
3382 * Always update time if it was set; not only when it changes.
3383 * Otherwise we can 'forget' to update time for any but the last
3384 * context we sched out. For example:
3385 *
3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 * ctx_sched_out(.event_type = EVENT_PINNED)
3388 *
3389 * would only update time for the pinned events.
3390 */
3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392
3393 /*
3394 * CPU-release for the below ->is_active store,
3395 * see __load_acquire() in perf_event_time_now()
3396 */
3397 barrier();
3398 ctx->is_active &= ~event_type;
3399
3400 if (!(ctx->is_active & EVENT_ALL)) {
3401 /*
3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 * does not observe a hole. perf_ctx_unlock() will clean up.
3404 */
3405 if (ctx->is_active & EVENT_FROZEN)
3406 ctx->is_active &= EVENT_TIME_FROZEN;
3407 else
3408 ctx->is_active = 0;
3409 }
3410
3411 if (ctx->task) {
3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 if (!(ctx->is_active & EVENT_ALL))
3414 cpuctx->task_ctx = NULL;
3415 }
3416
3417 is_active ^= ctx->is_active; /* changed bits */
3418
3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 __pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422
3423 /*
3424 * Test whether two contexts are equivalent, i.e. whether they have both been
3425 * cloned from the same version of the same context.
3426 *
3427 * Equivalence is measured using a generation number in the context that is
3428 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429 * and list_del_event().
3430 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3431 static int context_equiv(struct perf_event_context *ctx1,
3432 struct perf_event_context *ctx2)
3433 {
3434 lockdep_assert_held(&ctx1->lock);
3435 lockdep_assert_held(&ctx2->lock);
3436
3437 /* Pinning disables the swap optimization */
3438 if (ctx1->pin_count || ctx2->pin_count)
3439 return 0;
3440
3441 /* If ctx1 is the parent of ctx2 */
3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 return 1;
3444
3445 /* If ctx2 is the parent of ctx1 */
3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 return 1;
3448
3449 /*
3450 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 * hierarchy, see perf_event_init_context().
3452 */
3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 ctx1->parent_gen == ctx2->parent_gen)
3455 return 1;
3456
3457 /* Unmatched */
3458 return 0;
3459 }
3460
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 struct perf_event *next_event)
3463 {
3464 u64 value;
3465
3466 if (!event->attr.inherit_stat)
3467 return;
3468
3469 /*
3470 * Update the event value, we cannot use perf_event_read()
3471 * because we're in the middle of a context switch and have IRQs
3472 * disabled, which upsets smp_call_function_single(), however
3473 * we know the event must be on the current CPU, therefore we
3474 * don't need to use it.
3475 */
3476 if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 event->pmu->read(event);
3478
3479 perf_event_update_time(event);
3480
3481 /*
3482 * In order to keep per-task stats reliable we need to flip the event
3483 * values when we flip the contexts.
3484 */
3485 value = local64_read(&next_event->count);
3486 value = local64_xchg(&event->count, value);
3487 local64_set(&next_event->count, value);
3488
3489 swap(event->total_time_enabled, next_event->total_time_enabled);
3490 swap(event->total_time_running, next_event->total_time_running);
3491
3492 /*
3493 * Since we swizzled the values, update the user visible data too.
3494 */
3495 perf_event_update_userpage(event);
3496 perf_event_update_userpage(next_event);
3497 }
3498
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 struct perf_event_context *next_ctx)
3501 {
3502 struct perf_event *event, *next_event;
3503
3504 if (!ctx->nr_stat)
3505 return;
3506
3507 update_context_time(ctx);
3508
3509 event = list_first_entry(&ctx->event_list,
3510 struct perf_event, event_entry);
3511
3512 next_event = list_first_entry(&next_ctx->event_list,
3513 struct perf_event, event_entry);
3514
3515 while (&event->event_entry != &ctx->event_list &&
3516 &next_event->event_entry != &next_ctx->event_list) {
3517
3518 __perf_event_sync_stat(event, next_event);
3519
3520 event = list_next_entry(event, event_entry);
3521 next_event = list_next_entry(next_event, event_entry);
3522 }
3523 }
3524
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3528 !list_entry_is_head(pos1, head1, member) && \
3529 !list_entry_is_head(pos2, head2, member); \
3530 pos1 = list_next_entry(pos1, member), \
3531 pos2 = list_next_entry(pos2, member))
3532
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 struct perf_event_context *next_ctx)
3535 {
3536 struct perf_event_pmu_context *prev_epc, *next_epc;
3537
3538 if (!prev_ctx->nr_task_data)
3539 return;
3540
3541 double_list_for_each_entry(prev_epc, next_epc,
3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 pmu_ctx_entry) {
3544
3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 continue;
3547
3548 /*
3549 * PMU specific parts of task perf context can require
3550 * additional synchronization. As an example of such
3551 * synchronization see implementation details of Intel
3552 * LBR call stack data profiling;
3553 */
3554 if (prev_epc->pmu->swap_task_ctx)
3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 else
3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558 }
3559 }
3560
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563 struct perf_event_pmu_context *pmu_ctx;
3564 struct perf_cpu_pmu_context *cpc;
3565
3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568
3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571 }
3572 }
3573
3574 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577 struct perf_event_context *ctx = task->perf_event_ctxp;
3578 struct perf_event_context *next_ctx;
3579 struct perf_event_context *parent, *next_parent;
3580 int do_switch = 1;
3581
3582 if (likely(!ctx))
3583 return;
3584
3585 rcu_read_lock();
3586 next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 if (!next_ctx)
3588 goto unlock;
3589
3590 parent = rcu_dereference(ctx->parent_ctx);
3591 next_parent = rcu_dereference(next_ctx->parent_ctx);
3592
3593 /* If neither context have a parent context; they cannot be clones. */
3594 if (!parent && !next_parent)
3595 goto unlock;
3596
3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598 /*
3599 * Looks like the two contexts are clones, so we might be
3600 * able to optimize the context switch. We lock both
3601 * contexts and check that they are clones under the
3602 * lock (including re-checking that neither has been
3603 * uncloned in the meantime). It doesn't matter which
3604 * order we take the locks because no other cpu could
3605 * be trying to lock both of these tasks.
3606 */
3607 raw_spin_lock(&ctx->lock);
3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 if (context_equiv(ctx, next_ctx)) {
3610
3611 perf_ctx_disable(ctx, false);
3612
3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 if (local_read(&ctx->nr_no_switch_fast) ||
3615 local_read(&next_ctx->nr_no_switch_fast)) {
3616 /*
3617 * Must not swap out ctx when there's pending
3618 * events that rely on the ctx->task relation.
3619 *
3620 * Likewise, when a context contains inherit +
3621 * SAMPLE_READ events they should be switched
3622 * out using the slow path so that they are
3623 * treated as if they were distinct contexts.
3624 */
3625 raw_spin_unlock(&next_ctx->lock);
3626 rcu_read_unlock();
3627 goto inside_switch;
3628 }
3629
3630 WRITE_ONCE(ctx->task, next);
3631 WRITE_ONCE(next_ctx->task, task);
3632
3633 perf_ctx_sched_task_cb(ctx, false);
3634 perf_event_swap_task_ctx_data(ctx, next_ctx);
3635
3636 perf_ctx_enable(ctx, false);
3637
3638 /*
3639 * RCU_INIT_POINTER here is safe because we've not
3640 * modified the ctx and the above modification of
3641 * ctx->task and ctx->task_ctx_data are immaterial
3642 * since those values are always verified under
3643 * ctx->lock which we're now holding.
3644 */
3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647
3648 do_switch = 0;
3649
3650 perf_event_sync_stat(ctx, next_ctx);
3651 }
3652 raw_spin_unlock(&next_ctx->lock);
3653 raw_spin_unlock(&ctx->lock);
3654 }
3655 unlock:
3656 rcu_read_unlock();
3657
3658 if (do_switch) {
3659 raw_spin_lock(&ctx->lock);
3660 perf_ctx_disable(ctx, false);
3661
3662 inside_switch:
3663 perf_ctx_sched_task_cb(ctx, false);
3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665
3666 perf_ctx_enable(ctx, false);
3667 raw_spin_unlock(&ctx->lock);
3668 }
3669 }
3670
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673
perf_sched_cb_dec(struct pmu * pmu)3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677
3678 this_cpu_dec(perf_sched_cb_usages);
3679 barrier();
3680
3681 if (!--cpc->sched_cb_usage)
3682 list_del(&cpc->sched_cb_entry);
3683 }
3684
3685
perf_sched_cb_inc(struct pmu * pmu)3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689
3690 if (!cpc->sched_cb_usage++)
3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692
3693 barrier();
3694 this_cpu_inc(perf_sched_cb_usages);
3695 }
3696
3697 /*
3698 * This function provides the context switch callback to the lower code
3699 * layer. It is invoked ONLY when the context switch callback is enabled.
3700 *
3701 * This callback is relevant even to per-cpu events; for example multi event
3702 * PEBS requires this to provide PID/TID information. This requires we flush
3703 * all queued PEBS records before we context switch to a new task.
3704 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 struct pmu *pmu;
3709
3710 pmu = cpc->epc.pmu;
3711
3712 /* software PMUs will not have sched_task */
3713 if (WARN_ON_ONCE(!pmu->sched_task))
3714 return;
3715
3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 perf_pmu_disable(pmu);
3718
3719 pmu->sched_task(cpc->task_epc, sched_in);
3720
3721 perf_pmu_enable(pmu);
3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 struct task_struct *next,
3727 bool sched_in)
3728 {
3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 struct perf_cpu_pmu_context *cpc;
3731
3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 if (prev == next || cpuctx->task_ctx)
3734 return;
3735
3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 __perf_pmu_sched_task(cpc, sched_in);
3738 }
3739
3740 static void perf_event_switch(struct task_struct *task,
3741 struct task_struct *next_prev, bool sched_in);
3742
3743 /*
3744 * Called from scheduler to remove the events of the current task,
3745 * with interrupts disabled.
3746 *
3747 * We stop each event and update the event value in event->count.
3748 *
3749 * This does not protect us against NMI, but disable()
3750 * sets the disabled bit in the control field of event _before_
3751 * accessing the event control register. If a NMI hits, then it will
3752 * not restart the event.
3753 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 struct task_struct *next)
3756 {
3757 if (__this_cpu_read(perf_sched_cb_usages))
3758 perf_pmu_sched_task(task, next, false);
3759
3760 if (atomic_read(&nr_switch_events))
3761 perf_event_switch(task, next, false);
3762
3763 perf_event_context_sched_out(task, next);
3764
3765 /*
3766 * if cgroup events exist on this CPU, then we need
3767 * to check if we have to switch out PMU state.
3768 * cgroup event are system-wide mode only
3769 */
3770 perf_cgroup_switch(next);
3771 }
3772
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775 const struct perf_event *le = *(const struct perf_event **)l;
3776 const struct perf_event *re = *(const struct perf_event **)r;
3777
3778 return le->group_index < re->group_index;
3779 }
3780
3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3782
3783 static const struct min_heap_callbacks perf_min_heap = {
3784 .less = perf_less_group_idx,
3785 .swp = NULL,
3786 };
3787
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3789 {
3790 struct perf_event **itrs = heap->data;
3791
3792 if (event) {
3793 itrs[heap->nr] = event;
3794 heap->nr++;
3795 }
3796 }
3797
__link_epc(struct perf_event_pmu_context * pmu_ctx)3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3799 {
3800 struct perf_cpu_pmu_context *cpc;
3801
3802 if (!pmu_ctx->ctx->task)
3803 return;
3804
3805 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3806 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3807 cpc->task_epc = pmu_ctx;
3808 }
3809
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3810 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3811 struct perf_event_groups *groups, int cpu,
3812 struct pmu *pmu,
3813 int (*func)(struct perf_event *, void *),
3814 void *data)
3815 {
3816 #ifdef CONFIG_CGROUP_PERF
3817 struct cgroup_subsys_state *css = NULL;
3818 #endif
3819 struct perf_cpu_context *cpuctx = NULL;
3820 /* Space for per CPU and/or any CPU event iterators. */
3821 struct perf_event *itrs[2];
3822 struct perf_event_min_heap event_heap;
3823 struct perf_event **evt;
3824 int ret;
3825
3826 if (pmu->filter && pmu->filter(pmu, cpu))
3827 return 0;
3828
3829 if (!ctx->task) {
3830 cpuctx = this_cpu_ptr(&perf_cpu_context);
3831 event_heap = (struct perf_event_min_heap){
3832 .data = cpuctx->heap,
3833 .nr = 0,
3834 .size = cpuctx->heap_size,
3835 };
3836
3837 lockdep_assert_held(&cpuctx->ctx.lock);
3838
3839 #ifdef CONFIG_CGROUP_PERF
3840 if (cpuctx->cgrp)
3841 css = &cpuctx->cgrp->css;
3842 #endif
3843 } else {
3844 event_heap = (struct perf_event_min_heap){
3845 .data = itrs,
3846 .nr = 0,
3847 .size = ARRAY_SIZE(itrs),
3848 };
3849 /* Events not within a CPU context may be on any CPU. */
3850 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3851 }
3852 evt = event_heap.data;
3853
3854 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3855
3856 #ifdef CONFIG_CGROUP_PERF
3857 for (; css; css = css->parent)
3858 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3859 #endif
3860
3861 if (event_heap.nr) {
3862 __link_epc((*evt)->pmu_ctx);
3863 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3864 }
3865
3866 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3867
3868 while (event_heap.nr) {
3869 ret = func(*evt, data);
3870 if (ret)
3871 return ret;
3872
3873 *evt = perf_event_groups_next(*evt, pmu);
3874 if (*evt)
3875 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3876 else
3877 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3878 }
3879
3880 return 0;
3881 }
3882
3883 /*
3884 * Because the userpage is strictly per-event (there is no concept of context,
3885 * so there cannot be a context indirection), every userpage must be updated
3886 * when context time starts :-(
3887 *
3888 * IOW, we must not miss EVENT_TIME edges.
3889 */
event_update_userpage(struct perf_event * event)3890 static inline bool event_update_userpage(struct perf_event *event)
3891 {
3892 if (likely(!atomic_read(&event->mmap_count)))
3893 return false;
3894
3895 perf_event_update_time(event);
3896 perf_event_update_userpage(event);
3897
3898 return true;
3899 }
3900
group_update_userpage(struct perf_event * group_event)3901 static inline void group_update_userpage(struct perf_event *group_event)
3902 {
3903 struct perf_event *event;
3904
3905 if (!event_update_userpage(group_event))
3906 return;
3907
3908 for_each_sibling_event(event, group_event)
3909 event_update_userpage(event);
3910 }
3911
merge_sched_in(struct perf_event * event,void * data)3912 static int merge_sched_in(struct perf_event *event, void *data)
3913 {
3914 struct perf_event_context *ctx = event->ctx;
3915 int *can_add_hw = data;
3916
3917 if (event->state <= PERF_EVENT_STATE_OFF)
3918 return 0;
3919
3920 if (!event_filter_match(event))
3921 return 0;
3922
3923 if (group_can_go_on(event, *can_add_hw)) {
3924 if (!group_sched_in(event, ctx))
3925 list_add_tail(&event->active_list, get_event_list(event));
3926 }
3927
3928 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3929 *can_add_hw = 0;
3930 if (event->attr.pinned) {
3931 perf_cgroup_event_disable(event, ctx);
3932 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3933 } else {
3934 struct perf_cpu_pmu_context *cpc;
3935
3936 event->pmu_ctx->rotate_necessary = 1;
3937 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3938 perf_mux_hrtimer_restart(cpc);
3939 group_update_userpage(event);
3940 }
3941 }
3942
3943 return 0;
3944 }
3945
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3946 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3947 struct perf_event_groups *groups,
3948 struct pmu *pmu)
3949 {
3950 int can_add_hw = 1;
3951 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3952 merge_sched_in, &can_add_hw);
3953 }
3954
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3956 enum event_type_t event_type)
3957 {
3958 struct perf_event_context *ctx = pmu_ctx->ctx;
3959
3960 if (event_type & EVENT_PINNED)
3961 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3962 if (event_type & EVENT_FLEXIBLE)
3963 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3964 }
3965
3966 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3968 {
3969 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3970 struct perf_event_pmu_context *pmu_ctx;
3971 int is_active = ctx->is_active;
3972 bool cgroup = event_type & EVENT_CGROUP;
3973
3974 event_type &= ~EVENT_CGROUP;
3975
3976 lockdep_assert_held(&ctx->lock);
3977
3978 if (likely(!ctx->nr_events))
3979 return;
3980
3981 if (!(is_active & EVENT_TIME)) {
3982 /* start ctx time */
3983 __update_context_time(ctx, false);
3984 perf_cgroup_set_timestamp(cpuctx);
3985 /*
3986 * CPU-release for the below ->is_active store,
3987 * see __load_acquire() in perf_event_time_now()
3988 */
3989 barrier();
3990 }
3991
3992 ctx->is_active |= (event_type | EVENT_TIME);
3993 if (ctx->task) {
3994 if (!(is_active & EVENT_ALL))
3995 cpuctx->task_ctx = ctx;
3996 else
3997 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3998 }
3999
4000 is_active ^= ctx->is_active; /* changed bits */
4001
4002 /*
4003 * First go through the list and put on any pinned groups
4004 * in order to give them the best chance of going on.
4005 */
4006 if (is_active & EVENT_PINNED) {
4007 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4008 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4009 }
4010
4011 /* Then walk through the lower prio flexible groups */
4012 if (is_active & EVENT_FLEXIBLE) {
4013 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4014 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4015 }
4016 }
4017
perf_event_context_sched_in(struct task_struct * task)4018 static void perf_event_context_sched_in(struct task_struct *task)
4019 {
4020 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4021 struct perf_event_context *ctx;
4022
4023 rcu_read_lock();
4024 ctx = rcu_dereference(task->perf_event_ctxp);
4025 if (!ctx)
4026 goto rcu_unlock;
4027
4028 if (cpuctx->task_ctx == ctx) {
4029 perf_ctx_lock(cpuctx, ctx);
4030 perf_ctx_disable(ctx, false);
4031
4032 perf_ctx_sched_task_cb(ctx, true);
4033
4034 perf_ctx_enable(ctx, false);
4035 perf_ctx_unlock(cpuctx, ctx);
4036 goto rcu_unlock;
4037 }
4038
4039 perf_ctx_lock(cpuctx, ctx);
4040 /*
4041 * We must check ctx->nr_events while holding ctx->lock, such
4042 * that we serialize against perf_install_in_context().
4043 */
4044 if (!ctx->nr_events)
4045 goto unlock;
4046
4047 perf_ctx_disable(ctx, false);
4048 /*
4049 * We want to keep the following priority order:
4050 * cpu pinned (that don't need to move), task pinned,
4051 * cpu flexible, task flexible.
4052 *
4053 * However, if task's ctx is not carrying any pinned
4054 * events, no need to flip the cpuctx's events around.
4055 */
4056 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4057 perf_ctx_disable(&cpuctx->ctx, false);
4058 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4059 }
4060
4061 perf_event_sched_in(cpuctx, ctx, NULL);
4062
4063 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4064
4065 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4066 perf_ctx_enable(&cpuctx->ctx, false);
4067
4068 perf_ctx_enable(ctx, false);
4069
4070 unlock:
4071 perf_ctx_unlock(cpuctx, ctx);
4072 rcu_unlock:
4073 rcu_read_unlock();
4074 }
4075
4076 /*
4077 * Called from scheduler to add the events of the current task
4078 * with interrupts disabled.
4079 *
4080 * We restore the event value and then enable it.
4081 *
4082 * This does not protect us against NMI, but enable()
4083 * sets the enabled bit in the control field of event _before_
4084 * accessing the event control register. If a NMI hits, then it will
4085 * keep the event running.
4086 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4087 void __perf_event_task_sched_in(struct task_struct *prev,
4088 struct task_struct *task)
4089 {
4090 perf_event_context_sched_in(task);
4091
4092 if (atomic_read(&nr_switch_events))
4093 perf_event_switch(task, prev, true);
4094
4095 if (__this_cpu_read(perf_sched_cb_usages))
4096 perf_pmu_sched_task(prev, task, true);
4097 }
4098
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4100 {
4101 u64 frequency = event->attr.sample_freq;
4102 u64 sec = NSEC_PER_SEC;
4103 u64 divisor, dividend;
4104
4105 int count_fls, nsec_fls, frequency_fls, sec_fls;
4106
4107 count_fls = fls64(count);
4108 nsec_fls = fls64(nsec);
4109 frequency_fls = fls64(frequency);
4110 sec_fls = 30;
4111
4112 /*
4113 * We got @count in @nsec, with a target of sample_freq HZ
4114 * the target period becomes:
4115 *
4116 * @count * 10^9
4117 * period = -------------------
4118 * @nsec * sample_freq
4119 *
4120 */
4121
4122 /*
4123 * Reduce accuracy by one bit such that @a and @b converge
4124 * to a similar magnitude.
4125 */
4126 #define REDUCE_FLS(a, b) \
4127 do { \
4128 if (a##_fls > b##_fls) { \
4129 a >>= 1; \
4130 a##_fls--; \
4131 } else { \
4132 b >>= 1; \
4133 b##_fls--; \
4134 } \
4135 } while (0)
4136
4137 /*
4138 * Reduce accuracy until either term fits in a u64, then proceed with
4139 * the other, so that finally we can do a u64/u64 division.
4140 */
4141 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4142 REDUCE_FLS(nsec, frequency);
4143 REDUCE_FLS(sec, count);
4144 }
4145
4146 if (count_fls + sec_fls > 64) {
4147 divisor = nsec * frequency;
4148
4149 while (count_fls + sec_fls > 64) {
4150 REDUCE_FLS(count, sec);
4151 divisor >>= 1;
4152 }
4153
4154 dividend = count * sec;
4155 } else {
4156 dividend = count * sec;
4157
4158 while (nsec_fls + frequency_fls > 64) {
4159 REDUCE_FLS(nsec, frequency);
4160 dividend >>= 1;
4161 }
4162
4163 divisor = nsec * frequency;
4164 }
4165
4166 if (!divisor)
4167 return dividend;
4168
4169 return div64_u64(dividend, divisor);
4170 }
4171
4172 static DEFINE_PER_CPU(int, perf_throttled_count);
4173 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4174
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4176 {
4177 struct hw_perf_event *hwc = &event->hw;
4178 s64 period, sample_period;
4179 s64 delta;
4180
4181 period = perf_calculate_period(event, nsec, count);
4182
4183 delta = (s64)(period - hwc->sample_period);
4184 if (delta >= 0)
4185 delta += 7;
4186 else
4187 delta -= 7;
4188 delta /= 8; /* low pass filter */
4189
4190 sample_period = hwc->sample_period + delta;
4191
4192 if (!sample_period)
4193 sample_period = 1;
4194
4195 hwc->sample_period = sample_period;
4196
4197 if (local64_read(&hwc->period_left) > 8*sample_period) {
4198 if (disable)
4199 event->pmu->stop(event, PERF_EF_UPDATE);
4200
4201 local64_set(&hwc->period_left, 0);
4202
4203 if (disable)
4204 event->pmu->start(event, PERF_EF_RELOAD);
4205 }
4206 }
4207
perf_adjust_freq_unthr_events(struct list_head * event_list)4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4209 {
4210 struct perf_event *event;
4211 struct hw_perf_event *hwc;
4212 u64 now, period = TICK_NSEC;
4213 s64 delta;
4214
4215 list_for_each_entry(event, event_list, active_list) {
4216 if (event->state != PERF_EVENT_STATE_ACTIVE)
4217 continue;
4218
4219 // XXX use visit thingy to avoid the -1,cpu match
4220 if (!event_filter_match(event))
4221 continue;
4222
4223 hwc = &event->hw;
4224
4225 if (hwc->interrupts == MAX_INTERRUPTS) {
4226 hwc->interrupts = 0;
4227 perf_log_throttle(event, 1);
4228 if (!event->attr.freq || !event->attr.sample_freq)
4229 event->pmu->start(event, 0);
4230 }
4231
4232 if (!event->attr.freq || !event->attr.sample_freq)
4233 continue;
4234
4235 /*
4236 * stop the event and update event->count
4237 */
4238 event->pmu->stop(event, PERF_EF_UPDATE);
4239
4240 now = local64_read(&event->count);
4241 delta = now - hwc->freq_count_stamp;
4242 hwc->freq_count_stamp = now;
4243
4244 /*
4245 * restart the event
4246 * reload only if value has changed
4247 * we have stopped the event so tell that
4248 * to perf_adjust_period() to avoid stopping it
4249 * twice.
4250 */
4251 if (delta > 0)
4252 perf_adjust_period(event, period, delta, false);
4253
4254 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4255 }
4256 }
4257
4258 /*
4259 * combine freq adjustment with unthrottling to avoid two passes over the
4260 * events. At the same time, make sure, having freq events does not change
4261 * the rate of unthrottling as that would introduce bias.
4262 */
4263 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4265 {
4266 struct perf_event_pmu_context *pmu_ctx;
4267
4268 /*
4269 * only need to iterate over all events iff:
4270 * - context have events in frequency mode (needs freq adjust)
4271 * - there are events to unthrottle on this cpu
4272 */
4273 if (!(ctx->nr_freq || unthrottle))
4274 return;
4275
4276 raw_spin_lock(&ctx->lock);
4277
4278 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4279 if (!(pmu_ctx->nr_freq || unthrottle))
4280 continue;
4281 if (!perf_pmu_ctx_is_active(pmu_ctx))
4282 continue;
4283 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4284 continue;
4285
4286 perf_pmu_disable(pmu_ctx->pmu);
4287 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4288 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4289 perf_pmu_enable(pmu_ctx->pmu);
4290 }
4291
4292 raw_spin_unlock(&ctx->lock);
4293 }
4294
4295 /*
4296 * Move @event to the tail of the @ctx's elegible events.
4297 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4299 {
4300 /*
4301 * Rotate the first entry last of non-pinned groups. Rotation might be
4302 * disabled by the inheritance code.
4303 */
4304 if (ctx->rotate_disable)
4305 return;
4306
4307 perf_event_groups_delete(&ctx->flexible_groups, event);
4308 perf_event_groups_insert(&ctx->flexible_groups, event);
4309 }
4310
4311 /* pick an event from the flexible_groups to rotate */
4312 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4314 {
4315 struct perf_event *event;
4316 struct rb_node *node;
4317 struct rb_root *tree;
4318 struct __group_key key = {
4319 .pmu = pmu_ctx->pmu,
4320 };
4321
4322 /* pick the first active flexible event */
4323 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4324 struct perf_event, active_list);
4325 if (event)
4326 goto out;
4327
4328 /* if no active flexible event, pick the first event */
4329 tree = &pmu_ctx->ctx->flexible_groups.tree;
4330
4331 if (!pmu_ctx->ctx->task) {
4332 key.cpu = smp_processor_id();
4333
4334 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4335 if (node)
4336 event = __node_2_pe(node);
4337 goto out;
4338 }
4339
4340 key.cpu = -1;
4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 if (node) {
4343 event = __node_2_pe(node);
4344 goto out;
4345 }
4346
4347 key.cpu = smp_processor_id();
4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 if (node)
4350 event = __node_2_pe(node);
4351
4352 out:
4353 /*
4354 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4355 * finds there are unschedulable events, it will set it again.
4356 */
4357 pmu_ctx->rotate_necessary = 0;
4358
4359 return event;
4360 }
4361
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4363 {
4364 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4365 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4366 struct perf_event *cpu_event = NULL, *task_event = NULL;
4367 int cpu_rotate, task_rotate;
4368 struct pmu *pmu;
4369
4370 /*
4371 * Since we run this from IRQ context, nobody can install new
4372 * events, thus the event count values are stable.
4373 */
4374
4375 cpu_epc = &cpc->epc;
4376 pmu = cpu_epc->pmu;
4377 task_epc = cpc->task_epc;
4378
4379 cpu_rotate = cpu_epc->rotate_necessary;
4380 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4381
4382 if (!(cpu_rotate || task_rotate))
4383 return false;
4384
4385 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4386 perf_pmu_disable(pmu);
4387
4388 if (task_rotate)
4389 task_event = ctx_event_to_rotate(task_epc);
4390 if (cpu_rotate)
4391 cpu_event = ctx_event_to_rotate(cpu_epc);
4392
4393 /*
4394 * As per the order given at ctx_resched() first 'pop' task flexible
4395 * and then, if needed CPU flexible.
4396 */
4397 if (task_event || (task_epc && cpu_event)) {
4398 update_context_time(task_epc->ctx);
4399 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4400 }
4401
4402 if (cpu_event) {
4403 update_context_time(&cpuctx->ctx);
4404 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4405 rotate_ctx(&cpuctx->ctx, cpu_event);
4406 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4407 }
4408
4409 if (task_event)
4410 rotate_ctx(task_epc->ctx, task_event);
4411
4412 if (task_event || (task_epc && cpu_event))
4413 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4414
4415 perf_pmu_enable(pmu);
4416 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4417
4418 return true;
4419 }
4420
perf_event_task_tick(void)4421 void perf_event_task_tick(void)
4422 {
4423 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4424 struct perf_event_context *ctx;
4425 int throttled;
4426
4427 lockdep_assert_irqs_disabled();
4428
4429 __this_cpu_inc(perf_throttled_seq);
4430 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4431 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4432
4433 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4434
4435 rcu_read_lock();
4436 ctx = rcu_dereference(current->perf_event_ctxp);
4437 if (ctx)
4438 perf_adjust_freq_unthr_context(ctx, !!throttled);
4439 rcu_read_unlock();
4440 }
4441
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4442 static int event_enable_on_exec(struct perf_event *event,
4443 struct perf_event_context *ctx)
4444 {
4445 if (!event->attr.enable_on_exec)
4446 return 0;
4447
4448 event->attr.enable_on_exec = 0;
4449 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4450 return 0;
4451
4452 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4453
4454 return 1;
4455 }
4456
4457 /*
4458 * Enable all of a task's events that have been marked enable-on-exec.
4459 * This expects task == current.
4460 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4462 {
4463 struct perf_event_context *clone_ctx = NULL;
4464 enum event_type_t event_type = 0;
4465 struct perf_cpu_context *cpuctx;
4466 struct perf_event *event;
4467 unsigned long flags;
4468 int enabled = 0;
4469
4470 local_irq_save(flags);
4471 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4472 goto out;
4473
4474 if (!ctx->nr_events)
4475 goto out;
4476
4477 cpuctx = this_cpu_ptr(&perf_cpu_context);
4478 perf_ctx_lock(cpuctx, ctx);
4479 ctx_time_freeze(cpuctx, ctx);
4480
4481 list_for_each_entry(event, &ctx->event_list, event_entry) {
4482 enabled |= event_enable_on_exec(event, ctx);
4483 event_type |= get_event_type(event);
4484 }
4485
4486 /*
4487 * Unclone and reschedule this context if we enabled any event.
4488 */
4489 if (enabled) {
4490 clone_ctx = unclone_ctx(ctx);
4491 ctx_resched(cpuctx, ctx, NULL, event_type);
4492 }
4493 perf_ctx_unlock(cpuctx, ctx);
4494
4495 out:
4496 local_irq_restore(flags);
4497
4498 if (clone_ctx)
4499 put_ctx(clone_ctx);
4500 }
4501
4502 static void perf_remove_from_owner(struct perf_event *event);
4503 static void perf_event_exit_event(struct perf_event *event,
4504 struct perf_event_context *ctx);
4505
4506 /*
4507 * Removes all events from the current task that have been marked
4508 * remove-on-exec, and feeds their values back to parent events.
4509 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4511 {
4512 struct perf_event_context *clone_ctx = NULL;
4513 struct perf_event *event, *next;
4514 unsigned long flags;
4515 bool modified = false;
4516
4517 mutex_lock(&ctx->mutex);
4518
4519 if (WARN_ON_ONCE(ctx->task != current))
4520 goto unlock;
4521
4522 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4523 if (!event->attr.remove_on_exec)
4524 continue;
4525
4526 if (!is_kernel_event(event))
4527 perf_remove_from_owner(event);
4528
4529 modified = true;
4530
4531 perf_event_exit_event(event, ctx);
4532 }
4533
4534 raw_spin_lock_irqsave(&ctx->lock, flags);
4535 if (modified)
4536 clone_ctx = unclone_ctx(ctx);
4537 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4538
4539 unlock:
4540 mutex_unlock(&ctx->mutex);
4541
4542 if (clone_ctx)
4543 put_ctx(clone_ctx);
4544 }
4545
4546 struct perf_read_data {
4547 struct perf_event *event;
4548 bool group;
4549 int ret;
4550 };
4551
4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4553
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4555 {
4556 int local_cpu = smp_processor_id();
4557 u16 local_pkg, event_pkg;
4558
4559 if ((unsigned)event_cpu >= nr_cpu_ids)
4560 return event_cpu;
4561
4562 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4563 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4564
4565 if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4566 return local_cpu;
4567 }
4568
4569 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4570 event_pkg = topology_physical_package_id(event_cpu);
4571 local_pkg = topology_physical_package_id(local_cpu);
4572
4573 if (event_pkg == local_pkg)
4574 return local_cpu;
4575 }
4576
4577 return event_cpu;
4578 }
4579
4580 /*
4581 * Cross CPU call to read the hardware event
4582 */
__perf_event_read(void * info)4583 static void __perf_event_read(void *info)
4584 {
4585 struct perf_read_data *data = info;
4586 struct perf_event *sub, *event = data->event;
4587 struct perf_event_context *ctx = event->ctx;
4588 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4589 struct pmu *pmu = event->pmu;
4590
4591 /*
4592 * If this is a task context, we need to check whether it is
4593 * the current task context of this cpu. If not it has been
4594 * scheduled out before the smp call arrived. In that case
4595 * event->count would have been updated to a recent sample
4596 * when the event was scheduled out.
4597 */
4598 if (ctx->task && cpuctx->task_ctx != ctx)
4599 return;
4600
4601 raw_spin_lock(&ctx->lock);
4602 ctx_time_update_event(ctx, event);
4603
4604 perf_event_update_time(event);
4605 if (data->group)
4606 perf_event_update_sibling_time(event);
4607
4608 if (event->state != PERF_EVENT_STATE_ACTIVE)
4609 goto unlock;
4610
4611 if (!data->group) {
4612 pmu->read(event);
4613 data->ret = 0;
4614 goto unlock;
4615 }
4616
4617 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4618
4619 pmu->read(event);
4620
4621 for_each_sibling_event(sub, event) {
4622 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4623 /*
4624 * Use sibling's PMU rather than @event's since
4625 * sibling could be on different (eg: software) PMU.
4626 */
4627 sub->pmu->read(sub);
4628 }
4629 }
4630
4631 data->ret = pmu->commit_txn(pmu);
4632
4633 unlock:
4634 raw_spin_unlock(&ctx->lock);
4635 }
4636
perf_event_count(struct perf_event * event,bool self)4637 static inline u64 perf_event_count(struct perf_event *event, bool self)
4638 {
4639 if (self)
4640 return local64_read(&event->count);
4641
4642 return local64_read(&event->count) + atomic64_read(&event->child_count);
4643 }
4644
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4645 static void calc_timer_values(struct perf_event *event,
4646 u64 *now,
4647 u64 *enabled,
4648 u64 *running)
4649 {
4650 u64 ctx_time;
4651
4652 *now = perf_clock();
4653 ctx_time = perf_event_time_now(event, *now);
4654 __perf_update_times(event, ctx_time, enabled, running);
4655 }
4656
4657 /*
4658 * NMI-safe method to read a local event, that is an event that
4659 * is:
4660 * - either for the current task, or for this CPU
4661 * - does not have inherit set, for inherited task events
4662 * will not be local and we cannot read them atomically
4663 * - must not have a pmu::count method
4664 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4665 int perf_event_read_local(struct perf_event *event, u64 *value,
4666 u64 *enabled, u64 *running)
4667 {
4668 unsigned long flags;
4669 int event_oncpu;
4670 int event_cpu;
4671 int ret = 0;
4672
4673 /*
4674 * Disabling interrupts avoids all counter scheduling (context
4675 * switches, timer based rotation and IPIs).
4676 */
4677 local_irq_save(flags);
4678
4679 /*
4680 * It must not be an event with inherit set, we cannot read
4681 * all child counters from atomic context.
4682 */
4683 if (event->attr.inherit) {
4684 ret = -EOPNOTSUPP;
4685 goto out;
4686 }
4687
4688 /* If this is a per-task event, it must be for current */
4689 if ((event->attach_state & PERF_ATTACH_TASK) &&
4690 event->hw.target != current) {
4691 ret = -EINVAL;
4692 goto out;
4693 }
4694
4695 /*
4696 * Get the event CPU numbers, and adjust them to local if the event is
4697 * a per-package event that can be read locally
4698 */
4699 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4700 event_cpu = __perf_event_read_cpu(event, event->cpu);
4701
4702 /* If this is a per-CPU event, it must be for this CPU */
4703 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4704 event_cpu != smp_processor_id()) {
4705 ret = -EINVAL;
4706 goto out;
4707 }
4708
4709 /* If this is a pinned event it must be running on this CPU */
4710 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4711 ret = -EBUSY;
4712 goto out;
4713 }
4714
4715 /*
4716 * If the event is currently on this CPU, its either a per-task event,
4717 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4718 * oncpu == -1).
4719 */
4720 if (event_oncpu == smp_processor_id())
4721 event->pmu->read(event);
4722
4723 *value = local64_read(&event->count);
4724 if (enabled || running) {
4725 u64 __enabled, __running, __now;
4726
4727 calc_timer_values(event, &__now, &__enabled, &__running);
4728 if (enabled)
4729 *enabled = __enabled;
4730 if (running)
4731 *running = __running;
4732 }
4733 out:
4734 local_irq_restore(flags);
4735
4736 return ret;
4737 }
4738
perf_event_read(struct perf_event * event,bool group)4739 static int perf_event_read(struct perf_event *event, bool group)
4740 {
4741 enum perf_event_state state = READ_ONCE(event->state);
4742 int event_cpu, ret = 0;
4743
4744 /*
4745 * If event is enabled and currently active on a CPU, update the
4746 * value in the event structure:
4747 */
4748 again:
4749 if (state == PERF_EVENT_STATE_ACTIVE) {
4750 struct perf_read_data data;
4751
4752 /*
4753 * Orders the ->state and ->oncpu loads such that if we see
4754 * ACTIVE we must also see the right ->oncpu.
4755 *
4756 * Matches the smp_wmb() from event_sched_in().
4757 */
4758 smp_rmb();
4759
4760 event_cpu = READ_ONCE(event->oncpu);
4761 if ((unsigned)event_cpu >= nr_cpu_ids)
4762 return 0;
4763
4764 data = (struct perf_read_data){
4765 .event = event,
4766 .group = group,
4767 .ret = 0,
4768 };
4769
4770 preempt_disable();
4771 event_cpu = __perf_event_read_cpu(event, event_cpu);
4772
4773 /*
4774 * Purposely ignore the smp_call_function_single() return
4775 * value.
4776 *
4777 * If event_cpu isn't a valid CPU it means the event got
4778 * scheduled out and that will have updated the event count.
4779 *
4780 * Therefore, either way, we'll have an up-to-date event count
4781 * after this.
4782 */
4783 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4784 preempt_enable();
4785 ret = data.ret;
4786
4787 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4788 struct perf_event_context *ctx = event->ctx;
4789 unsigned long flags;
4790
4791 raw_spin_lock_irqsave(&ctx->lock, flags);
4792 state = event->state;
4793 if (state != PERF_EVENT_STATE_INACTIVE) {
4794 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795 goto again;
4796 }
4797
4798 /*
4799 * May read while context is not active (e.g., thread is
4800 * blocked), in that case we cannot update context time
4801 */
4802 ctx_time_update_event(ctx, event);
4803
4804 perf_event_update_time(event);
4805 if (group)
4806 perf_event_update_sibling_time(event);
4807 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4808 }
4809
4810 return ret;
4811 }
4812
4813 /*
4814 * Initialize the perf_event context in a task_struct:
4815 */
__perf_event_init_context(struct perf_event_context * ctx)4816 static void __perf_event_init_context(struct perf_event_context *ctx)
4817 {
4818 raw_spin_lock_init(&ctx->lock);
4819 mutex_init(&ctx->mutex);
4820 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4821 perf_event_groups_init(&ctx->pinned_groups);
4822 perf_event_groups_init(&ctx->flexible_groups);
4823 INIT_LIST_HEAD(&ctx->event_list);
4824 refcount_set(&ctx->refcount, 1);
4825 }
4826
4827 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4829 {
4830 epc->pmu = pmu;
4831 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4832 INIT_LIST_HEAD(&epc->pinned_active);
4833 INIT_LIST_HEAD(&epc->flexible_active);
4834 atomic_set(&epc->refcount, 1);
4835 }
4836
4837 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4838 alloc_perf_context(struct task_struct *task)
4839 {
4840 struct perf_event_context *ctx;
4841
4842 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4843 if (!ctx)
4844 return NULL;
4845
4846 __perf_event_init_context(ctx);
4847 if (task)
4848 ctx->task = get_task_struct(task);
4849
4850 return ctx;
4851 }
4852
4853 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4854 find_lively_task_by_vpid(pid_t vpid)
4855 {
4856 struct task_struct *task;
4857
4858 rcu_read_lock();
4859 if (!vpid)
4860 task = current;
4861 else
4862 task = find_task_by_vpid(vpid);
4863 if (task)
4864 get_task_struct(task);
4865 rcu_read_unlock();
4866
4867 if (!task)
4868 return ERR_PTR(-ESRCH);
4869
4870 return task;
4871 }
4872
4873 /*
4874 * Returns a matching context with refcount and pincount.
4875 */
4876 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4877 find_get_context(struct task_struct *task, struct perf_event *event)
4878 {
4879 struct perf_event_context *ctx, *clone_ctx = NULL;
4880 struct perf_cpu_context *cpuctx;
4881 unsigned long flags;
4882 int err;
4883
4884 if (!task) {
4885 /* Must be root to operate on a CPU event: */
4886 err = perf_allow_cpu(&event->attr);
4887 if (err)
4888 return ERR_PTR(err);
4889
4890 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4891 ctx = &cpuctx->ctx;
4892 get_ctx(ctx);
4893 raw_spin_lock_irqsave(&ctx->lock, flags);
4894 ++ctx->pin_count;
4895 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4896
4897 return ctx;
4898 }
4899
4900 err = -EINVAL;
4901 retry:
4902 ctx = perf_lock_task_context(task, &flags);
4903 if (ctx) {
4904 clone_ctx = unclone_ctx(ctx);
4905 ++ctx->pin_count;
4906
4907 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4908
4909 if (clone_ctx)
4910 put_ctx(clone_ctx);
4911 } else {
4912 ctx = alloc_perf_context(task);
4913 err = -ENOMEM;
4914 if (!ctx)
4915 goto errout;
4916
4917 err = 0;
4918 mutex_lock(&task->perf_event_mutex);
4919 /*
4920 * If it has already passed perf_event_exit_task().
4921 * we must see PF_EXITING, it takes this mutex too.
4922 */
4923 if (task->flags & PF_EXITING)
4924 err = -ESRCH;
4925 else if (task->perf_event_ctxp)
4926 err = -EAGAIN;
4927 else {
4928 get_ctx(ctx);
4929 ++ctx->pin_count;
4930 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4931 }
4932 mutex_unlock(&task->perf_event_mutex);
4933
4934 if (unlikely(err)) {
4935 put_ctx(ctx);
4936
4937 if (err == -EAGAIN)
4938 goto retry;
4939 goto errout;
4940 }
4941 }
4942
4943 return ctx;
4944
4945 errout:
4946 return ERR_PTR(err);
4947 }
4948
4949 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4951 struct perf_event *event)
4952 {
4953 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4954 void *task_ctx_data = NULL;
4955
4956 if (!ctx->task) {
4957 /*
4958 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4959 * relies on the fact that find_get_pmu_context() cannot fail
4960 * for CPU contexts.
4961 */
4962 struct perf_cpu_pmu_context *cpc;
4963
4964 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4965 epc = &cpc->epc;
4966 raw_spin_lock_irq(&ctx->lock);
4967 if (!epc->ctx) {
4968 atomic_set(&epc->refcount, 1);
4969 epc->embedded = 1;
4970 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4971 epc->ctx = ctx;
4972 } else {
4973 WARN_ON_ONCE(epc->ctx != ctx);
4974 atomic_inc(&epc->refcount);
4975 }
4976 raw_spin_unlock_irq(&ctx->lock);
4977 return epc;
4978 }
4979
4980 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4981 if (!new)
4982 return ERR_PTR(-ENOMEM);
4983
4984 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4985 task_ctx_data = alloc_task_ctx_data(pmu);
4986 if (!task_ctx_data) {
4987 kfree(new);
4988 return ERR_PTR(-ENOMEM);
4989 }
4990 }
4991
4992 __perf_init_event_pmu_context(new, pmu);
4993
4994 /*
4995 * XXX
4996 *
4997 * lockdep_assert_held(&ctx->mutex);
4998 *
4999 * can't because perf_event_init_task() doesn't actually hold the
5000 * child_ctx->mutex.
5001 */
5002
5003 raw_spin_lock_irq(&ctx->lock);
5004 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5005 if (epc->pmu == pmu) {
5006 WARN_ON_ONCE(epc->ctx != ctx);
5007 atomic_inc(&epc->refcount);
5008 goto found_epc;
5009 }
5010 /* Make sure the pmu_ctx_list is sorted by PMU type: */
5011 if (!pos && epc->pmu->type > pmu->type)
5012 pos = epc;
5013 }
5014
5015 epc = new;
5016 new = NULL;
5017
5018 if (!pos)
5019 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5020 else
5021 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5022
5023 epc->ctx = ctx;
5024
5025 found_epc:
5026 if (task_ctx_data && !epc->task_ctx_data) {
5027 epc->task_ctx_data = task_ctx_data;
5028 task_ctx_data = NULL;
5029 ctx->nr_task_data++;
5030 }
5031 raw_spin_unlock_irq(&ctx->lock);
5032
5033 free_task_ctx_data(pmu, task_ctx_data);
5034 kfree(new);
5035
5036 return epc;
5037 }
5038
get_pmu_ctx(struct perf_event_pmu_context * epc)5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5040 {
5041 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5042 }
5043
free_epc_rcu(struct rcu_head * head)5044 static void free_epc_rcu(struct rcu_head *head)
5045 {
5046 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5047
5048 kfree(epc->task_ctx_data);
5049 kfree(epc);
5050 }
5051
put_pmu_ctx(struct perf_event_pmu_context * epc)5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5053 {
5054 struct perf_event_context *ctx = epc->ctx;
5055 unsigned long flags;
5056
5057 /*
5058 * XXX
5059 *
5060 * lockdep_assert_held(&ctx->mutex);
5061 *
5062 * can't because of the call-site in _free_event()/put_event()
5063 * which isn't always called under ctx->mutex.
5064 */
5065 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5066 return;
5067
5068 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5069
5070 list_del_init(&epc->pmu_ctx_entry);
5071 epc->ctx = NULL;
5072
5073 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5074 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5075
5076 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077
5078 if (epc->embedded)
5079 return;
5080
5081 call_rcu(&epc->rcu_head, free_epc_rcu);
5082 }
5083
5084 static void perf_event_free_filter(struct perf_event *event);
5085
free_event_rcu(struct rcu_head * head)5086 static void free_event_rcu(struct rcu_head *head)
5087 {
5088 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5089
5090 if (event->ns)
5091 put_pid_ns(event->ns);
5092 perf_event_free_filter(event);
5093 kmem_cache_free(perf_event_cache, event);
5094 }
5095
5096 static void ring_buffer_attach(struct perf_event *event,
5097 struct perf_buffer *rb);
5098
detach_sb_event(struct perf_event * event)5099 static void detach_sb_event(struct perf_event *event)
5100 {
5101 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5102
5103 raw_spin_lock(&pel->lock);
5104 list_del_rcu(&event->sb_list);
5105 raw_spin_unlock(&pel->lock);
5106 }
5107
is_sb_event(struct perf_event * event)5108 static bool is_sb_event(struct perf_event *event)
5109 {
5110 struct perf_event_attr *attr = &event->attr;
5111
5112 if (event->parent)
5113 return false;
5114
5115 if (event->attach_state & PERF_ATTACH_TASK)
5116 return false;
5117
5118 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5119 attr->comm || attr->comm_exec ||
5120 attr->task || attr->ksymbol ||
5121 attr->context_switch || attr->text_poke ||
5122 attr->bpf_event)
5123 return true;
5124 return false;
5125 }
5126
unaccount_pmu_sb_event(struct perf_event * event)5127 static void unaccount_pmu_sb_event(struct perf_event *event)
5128 {
5129 if (is_sb_event(event))
5130 detach_sb_event(event);
5131 }
5132
5133 #ifdef CONFIG_NO_HZ_FULL
5134 static DEFINE_SPINLOCK(nr_freq_lock);
5135 #endif
5136
unaccount_freq_event_nohz(void)5137 static void unaccount_freq_event_nohz(void)
5138 {
5139 #ifdef CONFIG_NO_HZ_FULL
5140 spin_lock(&nr_freq_lock);
5141 if (atomic_dec_and_test(&nr_freq_events))
5142 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5143 spin_unlock(&nr_freq_lock);
5144 #endif
5145 }
5146
unaccount_freq_event(void)5147 static void unaccount_freq_event(void)
5148 {
5149 if (tick_nohz_full_enabled())
5150 unaccount_freq_event_nohz();
5151 else
5152 atomic_dec(&nr_freq_events);
5153 }
5154
unaccount_event(struct perf_event * event)5155 static void unaccount_event(struct perf_event *event)
5156 {
5157 bool dec = false;
5158
5159 if (event->parent)
5160 return;
5161
5162 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5163 dec = true;
5164 if (event->attr.mmap || event->attr.mmap_data)
5165 atomic_dec(&nr_mmap_events);
5166 if (event->attr.build_id)
5167 atomic_dec(&nr_build_id_events);
5168 if (event->attr.comm)
5169 atomic_dec(&nr_comm_events);
5170 if (event->attr.namespaces)
5171 atomic_dec(&nr_namespaces_events);
5172 if (event->attr.cgroup)
5173 atomic_dec(&nr_cgroup_events);
5174 if (event->attr.task)
5175 atomic_dec(&nr_task_events);
5176 if (event->attr.freq)
5177 unaccount_freq_event();
5178 if (event->attr.context_switch) {
5179 dec = true;
5180 atomic_dec(&nr_switch_events);
5181 }
5182 if (is_cgroup_event(event))
5183 dec = true;
5184 if (has_branch_stack(event))
5185 dec = true;
5186 if (event->attr.ksymbol)
5187 atomic_dec(&nr_ksymbol_events);
5188 if (event->attr.bpf_event)
5189 atomic_dec(&nr_bpf_events);
5190 if (event->attr.text_poke)
5191 atomic_dec(&nr_text_poke_events);
5192
5193 if (dec) {
5194 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5195 schedule_delayed_work(&perf_sched_work, HZ);
5196 }
5197
5198 unaccount_pmu_sb_event(event);
5199 }
5200
perf_sched_delayed(struct work_struct * work)5201 static void perf_sched_delayed(struct work_struct *work)
5202 {
5203 mutex_lock(&perf_sched_mutex);
5204 if (atomic_dec_and_test(&perf_sched_count))
5205 static_branch_disable(&perf_sched_events);
5206 mutex_unlock(&perf_sched_mutex);
5207 }
5208
5209 /*
5210 * The following implement mutual exclusion of events on "exclusive" pmus
5211 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5212 * at a time, so we disallow creating events that might conflict, namely:
5213 *
5214 * 1) cpu-wide events in the presence of per-task events,
5215 * 2) per-task events in the presence of cpu-wide events,
5216 * 3) two matching events on the same perf_event_context.
5217 *
5218 * The former two cases are handled in the allocation path (perf_event_alloc(),
5219 * _free_event()), the latter -- before the first perf_install_in_context().
5220 */
exclusive_event_init(struct perf_event * event)5221 static int exclusive_event_init(struct perf_event *event)
5222 {
5223 struct pmu *pmu = event->pmu;
5224
5225 if (!is_exclusive_pmu(pmu))
5226 return 0;
5227
5228 /*
5229 * Prevent co-existence of per-task and cpu-wide events on the
5230 * same exclusive pmu.
5231 *
5232 * Negative pmu::exclusive_cnt means there are cpu-wide
5233 * events on this "exclusive" pmu, positive means there are
5234 * per-task events.
5235 *
5236 * Since this is called in perf_event_alloc() path, event::ctx
5237 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5238 * to mean "per-task event", because unlike other attach states it
5239 * never gets cleared.
5240 */
5241 if (event->attach_state & PERF_ATTACH_TASK) {
5242 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5243 return -EBUSY;
5244 } else {
5245 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5246 return -EBUSY;
5247 }
5248
5249 return 0;
5250 }
5251
exclusive_event_destroy(struct perf_event * event)5252 static void exclusive_event_destroy(struct perf_event *event)
5253 {
5254 struct pmu *pmu = event->pmu;
5255
5256 if (!is_exclusive_pmu(pmu))
5257 return;
5258
5259 /* see comment in exclusive_event_init() */
5260 if (event->attach_state & PERF_ATTACH_TASK)
5261 atomic_dec(&pmu->exclusive_cnt);
5262 else
5263 atomic_inc(&pmu->exclusive_cnt);
5264 }
5265
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5267 {
5268 if ((e1->pmu == e2->pmu) &&
5269 (e1->cpu == e2->cpu ||
5270 e1->cpu == -1 ||
5271 e2->cpu == -1))
5272 return true;
5273 return false;
5274 }
5275
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5276 static bool exclusive_event_installable(struct perf_event *event,
5277 struct perf_event_context *ctx)
5278 {
5279 struct perf_event *iter_event;
5280 struct pmu *pmu = event->pmu;
5281
5282 lockdep_assert_held(&ctx->mutex);
5283
5284 if (!is_exclusive_pmu(pmu))
5285 return true;
5286
5287 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5288 if (exclusive_event_match(iter_event, event))
5289 return false;
5290 }
5291
5292 return true;
5293 }
5294
5295 static void perf_addr_filters_splice(struct perf_event *event,
5296 struct list_head *head);
5297
perf_pending_task_sync(struct perf_event * event)5298 static void perf_pending_task_sync(struct perf_event *event)
5299 {
5300 struct callback_head *head = &event->pending_task;
5301
5302 if (!event->pending_work)
5303 return;
5304 /*
5305 * If the task is queued to the current task's queue, we
5306 * obviously can't wait for it to complete. Simply cancel it.
5307 */
5308 if (task_work_cancel(current, head)) {
5309 event->pending_work = 0;
5310 local_dec(&event->ctx->nr_no_switch_fast);
5311 return;
5312 }
5313
5314 /*
5315 * All accesses related to the event are within the same RCU section in
5316 * perf_pending_task(). The RCU grace period before the event is freed
5317 * will make sure all those accesses are complete by then.
5318 */
5319 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5320 }
5321
_free_event(struct perf_event * event)5322 static void _free_event(struct perf_event *event)
5323 {
5324 irq_work_sync(&event->pending_irq);
5325 irq_work_sync(&event->pending_disable_irq);
5326 perf_pending_task_sync(event);
5327
5328 unaccount_event(event);
5329
5330 security_perf_event_free(event);
5331
5332 if (event->rb) {
5333 /*
5334 * Can happen when we close an event with re-directed output.
5335 *
5336 * Since we have a 0 refcount, perf_mmap_close() will skip
5337 * over us; possibly making our ring_buffer_put() the last.
5338 */
5339 mutex_lock(&event->mmap_mutex);
5340 ring_buffer_attach(event, NULL);
5341 mutex_unlock(&event->mmap_mutex);
5342 }
5343
5344 if (is_cgroup_event(event))
5345 perf_detach_cgroup(event);
5346
5347 if (!event->parent) {
5348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5349 put_callchain_buffers();
5350 }
5351
5352 perf_event_free_bpf_prog(event);
5353 perf_addr_filters_splice(event, NULL);
5354 kfree(event->addr_filter_ranges);
5355
5356 if (event->destroy)
5357 event->destroy(event);
5358
5359 /*
5360 * Must be after ->destroy(), due to uprobe_perf_close() using
5361 * hw.target.
5362 */
5363 if (event->hw.target)
5364 put_task_struct(event->hw.target);
5365
5366 if (event->pmu_ctx)
5367 put_pmu_ctx(event->pmu_ctx);
5368
5369 /*
5370 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5371 * all task references must be cleaned up.
5372 */
5373 if (event->ctx)
5374 put_ctx(event->ctx);
5375
5376 exclusive_event_destroy(event);
5377 module_put(event->pmu->module);
5378
5379 call_rcu(&event->rcu_head, free_event_rcu);
5380 }
5381
5382 /*
5383 * Used to free events which have a known refcount of 1, such as in error paths
5384 * where the event isn't exposed yet and inherited events.
5385 */
free_event(struct perf_event * event)5386 static void free_event(struct perf_event *event)
5387 {
5388 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5389 "unexpected event refcount: %ld; ptr=%p\n",
5390 atomic_long_read(&event->refcount), event)) {
5391 /* leak to avoid use-after-free */
5392 return;
5393 }
5394
5395 _free_event(event);
5396 }
5397
5398 /*
5399 * Remove user event from the owner task.
5400 */
perf_remove_from_owner(struct perf_event * event)5401 static void perf_remove_from_owner(struct perf_event *event)
5402 {
5403 struct task_struct *owner;
5404
5405 rcu_read_lock();
5406 /*
5407 * Matches the smp_store_release() in perf_event_exit_task(). If we
5408 * observe !owner it means the list deletion is complete and we can
5409 * indeed free this event, otherwise we need to serialize on
5410 * owner->perf_event_mutex.
5411 */
5412 owner = READ_ONCE(event->owner);
5413 if (owner) {
5414 /*
5415 * Since delayed_put_task_struct() also drops the last
5416 * task reference we can safely take a new reference
5417 * while holding the rcu_read_lock().
5418 */
5419 get_task_struct(owner);
5420 }
5421 rcu_read_unlock();
5422
5423 if (owner) {
5424 /*
5425 * If we're here through perf_event_exit_task() we're already
5426 * holding ctx->mutex which would be an inversion wrt. the
5427 * normal lock order.
5428 *
5429 * However we can safely take this lock because its the child
5430 * ctx->mutex.
5431 */
5432 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5433
5434 /*
5435 * We have to re-check the event->owner field, if it is cleared
5436 * we raced with perf_event_exit_task(), acquiring the mutex
5437 * ensured they're done, and we can proceed with freeing the
5438 * event.
5439 */
5440 if (event->owner) {
5441 list_del_init(&event->owner_entry);
5442 smp_store_release(&event->owner, NULL);
5443 }
5444 mutex_unlock(&owner->perf_event_mutex);
5445 put_task_struct(owner);
5446 }
5447 }
5448
put_event(struct perf_event * event)5449 static void put_event(struct perf_event *event)
5450 {
5451 if (!atomic_long_dec_and_test(&event->refcount))
5452 return;
5453
5454 _free_event(event);
5455 }
5456
5457 /*
5458 * Kill an event dead; while event:refcount will preserve the event
5459 * object, it will not preserve its functionality. Once the last 'user'
5460 * gives up the object, we'll destroy the thing.
5461 */
perf_event_release_kernel(struct perf_event * event)5462 int perf_event_release_kernel(struct perf_event *event)
5463 {
5464 struct perf_event_context *ctx = event->ctx;
5465 struct perf_event *child, *tmp;
5466 LIST_HEAD(free_list);
5467
5468 /*
5469 * If we got here through err_alloc: free_event(event); we will not
5470 * have attached to a context yet.
5471 */
5472 if (!ctx) {
5473 WARN_ON_ONCE(event->attach_state &
5474 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5475 goto no_ctx;
5476 }
5477
5478 if (!is_kernel_event(event))
5479 perf_remove_from_owner(event);
5480
5481 ctx = perf_event_ctx_lock(event);
5482 WARN_ON_ONCE(ctx->parent_ctx);
5483
5484 /*
5485 * Mark this event as STATE_DEAD, there is no external reference to it
5486 * anymore.
5487 *
5488 * Anybody acquiring event->child_mutex after the below loop _must_
5489 * also see this, most importantly inherit_event() which will avoid
5490 * placing more children on the list.
5491 *
5492 * Thus this guarantees that we will in fact observe and kill _ALL_
5493 * child events.
5494 */
5495 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5496
5497 perf_event_ctx_unlock(event, ctx);
5498
5499 again:
5500 mutex_lock(&event->child_mutex);
5501 list_for_each_entry(child, &event->child_list, child_list) {
5502 void *var = NULL;
5503
5504 /*
5505 * Cannot change, child events are not migrated, see the
5506 * comment with perf_event_ctx_lock_nested().
5507 */
5508 ctx = READ_ONCE(child->ctx);
5509 /*
5510 * Since child_mutex nests inside ctx::mutex, we must jump
5511 * through hoops. We start by grabbing a reference on the ctx.
5512 *
5513 * Since the event cannot get freed while we hold the
5514 * child_mutex, the context must also exist and have a !0
5515 * reference count.
5516 */
5517 get_ctx(ctx);
5518
5519 /*
5520 * Now that we have a ctx ref, we can drop child_mutex, and
5521 * acquire ctx::mutex without fear of it going away. Then we
5522 * can re-acquire child_mutex.
5523 */
5524 mutex_unlock(&event->child_mutex);
5525 mutex_lock(&ctx->mutex);
5526 mutex_lock(&event->child_mutex);
5527
5528 /*
5529 * Now that we hold ctx::mutex and child_mutex, revalidate our
5530 * state, if child is still the first entry, it didn't get freed
5531 * and we can continue doing so.
5532 */
5533 tmp = list_first_entry_or_null(&event->child_list,
5534 struct perf_event, child_list);
5535 if (tmp == child) {
5536 perf_remove_from_context(child, DETACH_GROUP);
5537 list_move(&child->child_list, &free_list);
5538 /*
5539 * This matches the refcount bump in inherit_event();
5540 * this can't be the last reference.
5541 */
5542 put_event(event);
5543 } else {
5544 var = &ctx->refcount;
5545 }
5546
5547 mutex_unlock(&event->child_mutex);
5548 mutex_unlock(&ctx->mutex);
5549 put_ctx(ctx);
5550
5551 if (var) {
5552 /*
5553 * If perf_event_free_task() has deleted all events from the
5554 * ctx while the child_mutex got released above, make sure to
5555 * notify about the preceding put_ctx().
5556 */
5557 smp_mb(); /* pairs with wait_var_event() */
5558 wake_up_var(var);
5559 }
5560 goto again;
5561 }
5562 mutex_unlock(&event->child_mutex);
5563
5564 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5565 void *var = &child->ctx->refcount;
5566
5567 list_del(&child->child_list);
5568 free_event(child);
5569
5570 /*
5571 * Wake any perf_event_free_task() waiting for this event to be
5572 * freed.
5573 */
5574 smp_mb(); /* pairs with wait_var_event() */
5575 wake_up_var(var);
5576 }
5577
5578 no_ctx:
5579 put_event(event); /* Must be the 'last' reference */
5580 return 0;
5581 }
5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5583
5584 /*
5585 * Called when the last reference to the file is gone.
5586 */
perf_release(struct inode * inode,struct file * file)5587 static int perf_release(struct inode *inode, struct file *file)
5588 {
5589 perf_event_release_kernel(file->private_data);
5590 return 0;
5591 }
5592
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5594 {
5595 struct perf_event *child;
5596 u64 total = 0;
5597
5598 *enabled = 0;
5599 *running = 0;
5600
5601 mutex_lock(&event->child_mutex);
5602
5603 (void)perf_event_read(event, false);
5604 total += perf_event_count(event, false);
5605
5606 *enabled += event->total_time_enabled +
5607 atomic64_read(&event->child_total_time_enabled);
5608 *running += event->total_time_running +
5609 atomic64_read(&event->child_total_time_running);
5610
5611 list_for_each_entry(child, &event->child_list, child_list) {
5612 (void)perf_event_read(child, false);
5613 total += perf_event_count(child, false);
5614 *enabled += child->total_time_enabled;
5615 *running += child->total_time_running;
5616 }
5617 mutex_unlock(&event->child_mutex);
5618
5619 return total;
5620 }
5621
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5623 {
5624 struct perf_event_context *ctx;
5625 u64 count;
5626
5627 ctx = perf_event_ctx_lock(event);
5628 count = __perf_event_read_value(event, enabled, running);
5629 perf_event_ctx_unlock(event, ctx);
5630
5631 return count;
5632 }
5633 EXPORT_SYMBOL_GPL(perf_event_read_value);
5634
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5635 static int __perf_read_group_add(struct perf_event *leader,
5636 u64 read_format, u64 *values)
5637 {
5638 struct perf_event_context *ctx = leader->ctx;
5639 struct perf_event *sub, *parent;
5640 unsigned long flags;
5641 int n = 1; /* skip @nr */
5642 int ret;
5643
5644 ret = perf_event_read(leader, true);
5645 if (ret)
5646 return ret;
5647
5648 raw_spin_lock_irqsave(&ctx->lock, flags);
5649 /*
5650 * Verify the grouping between the parent and child (inherited)
5651 * events is still in tact.
5652 *
5653 * Specifically:
5654 * - leader->ctx->lock pins leader->sibling_list
5655 * - parent->child_mutex pins parent->child_list
5656 * - parent->ctx->mutex pins parent->sibling_list
5657 *
5658 * Because parent->ctx != leader->ctx (and child_list nests inside
5659 * ctx->mutex), group destruction is not atomic between children, also
5660 * see perf_event_release_kernel(). Additionally, parent can grow the
5661 * group.
5662 *
5663 * Therefore it is possible to have parent and child groups in a
5664 * different configuration and summing over such a beast makes no sense
5665 * what so ever.
5666 *
5667 * Reject this.
5668 */
5669 parent = leader->parent;
5670 if (parent &&
5671 (parent->group_generation != leader->group_generation ||
5672 parent->nr_siblings != leader->nr_siblings)) {
5673 ret = -ECHILD;
5674 goto unlock;
5675 }
5676
5677 /*
5678 * Since we co-schedule groups, {enabled,running} times of siblings
5679 * will be identical to those of the leader, so we only publish one
5680 * set.
5681 */
5682 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5683 values[n++] += leader->total_time_enabled +
5684 atomic64_read(&leader->child_total_time_enabled);
5685 }
5686
5687 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5688 values[n++] += leader->total_time_running +
5689 atomic64_read(&leader->child_total_time_running);
5690 }
5691
5692 /*
5693 * Write {count,id} tuples for every sibling.
5694 */
5695 values[n++] += perf_event_count(leader, false);
5696 if (read_format & PERF_FORMAT_ID)
5697 values[n++] = primary_event_id(leader);
5698 if (read_format & PERF_FORMAT_LOST)
5699 values[n++] = atomic64_read(&leader->lost_samples);
5700
5701 for_each_sibling_event(sub, leader) {
5702 values[n++] += perf_event_count(sub, false);
5703 if (read_format & PERF_FORMAT_ID)
5704 values[n++] = primary_event_id(sub);
5705 if (read_format & PERF_FORMAT_LOST)
5706 values[n++] = atomic64_read(&sub->lost_samples);
5707 }
5708
5709 unlock:
5710 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5711 return ret;
5712 }
5713
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5714 static int perf_read_group(struct perf_event *event,
5715 u64 read_format, char __user *buf)
5716 {
5717 struct perf_event *leader = event->group_leader, *child;
5718 struct perf_event_context *ctx = leader->ctx;
5719 int ret;
5720 u64 *values;
5721
5722 lockdep_assert_held(&ctx->mutex);
5723
5724 values = kzalloc(event->read_size, GFP_KERNEL);
5725 if (!values)
5726 return -ENOMEM;
5727
5728 values[0] = 1 + leader->nr_siblings;
5729
5730 mutex_lock(&leader->child_mutex);
5731
5732 ret = __perf_read_group_add(leader, read_format, values);
5733 if (ret)
5734 goto unlock;
5735
5736 list_for_each_entry(child, &leader->child_list, child_list) {
5737 ret = __perf_read_group_add(child, read_format, values);
5738 if (ret)
5739 goto unlock;
5740 }
5741
5742 mutex_unlock(&leader->child_mutex);
5743
5744 ret = event->read_size;
5745 if (copy_to_user(buf, values, event->read_size))
5746 ret = -EFAULT;
5747 goto out;
5748
5749 unlock:
5750 mutex_unlock(&leader->child_mutex);
5751 out:
5752 kfree(values);
5753 return ret;
5754 }
5755
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5756 static int perf_read_one(struct perf_event *event,
5757 u64 read_format, char __user *buf)
5758 {
5759 u64 enabled, running;
5760 u64 values[5];
5761 int n = 0;
5762
5763 values[n++] = __perf_event_read_value(event, &enabled, &running);
5764 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5765 values[n++] = enabled;
5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5767 values[n++] = running;
5768 if (read_format & PERF_FORMAT_ID)
5769 values[n++] = primary_event_id(event);
5770 if (read_format & PERF_FORMAT_LOST)
5771 values[n++] = atomic64_read(&event->lost_samples);
5772
5773 if (copy_to_user(buf, values, n * sizeof(u64)))
5774 return -EFAULT;
5775
5776 return n * sizeof(u64);
5777 }
5778
is_event_hup(struct perf_event * event)5779 static bool is_event_hup(struct perf_event *event)
5780 {
5781 bool no_children;
5782
5783 if (event->state > PERF_EVENT_STATE_EXIT)
5784 return false;
5785
5786 mutex_lock(&event->child_mutex);
5787 no_children = list_empty(&event->child_list);
5788 mutex_unlock(&event->child_mutex);
5789 return no_children;
5790 }
5791
5792 /*
5793 * Read the performance event - simple non blocking version for now
5794 */
5795 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5796 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5797 {
5798 u64 read_format = event->attr.read_format;
5799 int ret;
5800
5801 /*
5802 * Return end-of-file for a read on an event that is in
5803 * error state (i.e. because it was pinned but it couldn't be
5804 * scheduled on to the CPU at some point).
5805 */
5806 if (event->state == PERF_EVENT_STATE_ERROR)
5807 return 0;
5808
5809 if (count < event->read_size)
5810 return -ENOSPC;
5811
5812 WARN_ON_ONCE(event->ctx->parent_ctx);
5813 if (read_format & PERF_FORMAT_GROUP)
5814 ret = perf_read_group(event, read_format, buf);
5815 else
5816 ret = perf_read_one(event, read_format, buf);
5817
5818 return ret;
5819 }
5820
5821 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5823 {
5824 struct perf_event *event = file->private_data;
5825 struct perf_event_context *ctx;
5826 int ret;
5827
5828 ret = security_perf_event_read(event);
5829 if (ret)
5830 return ret;
5831
5832 ctx = perf_event_ctx_lock(event);
5833 ret = __perf_read(event, buf, count);
5834 perf_event_ctx_unlock(event, ctx);
5835
5836 return ret;
5837 }
5838
perf_poll(struct file * file,poll_table * wait)5839 static __poll_t perf_poll(struct file *file, poll_table *wait)
5840 {
5841 struct perf_event *event = file->private_data;
5842 struct perf_buffer *rb;
5843 __poll_t events = EPOLLHUP;
5844
5845 poll_wait(file, &event->waitq, wait);
5846
5847 if (is_event_hup(event))
5848 return events;
5849
5850 /*
5851 * Pin the event->rb by taking event->mmap_mutex; otherwise
5852 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5853 */
5854 mutex_lock(&event->mmap_mutex);
5855 rb = event->rb;
5856 if (rb)
5857 events = atomic_xchg(&rb->poll, 0);
5858 mutex_unlock(&event->mmap_mutex);
5859 return events;
5860 }
5861
_perf_event_reset(struct perf_event * event)5862 static void _perf_event_reset(struct perf_event *event)
5863 {
5864 (void)perf_event_read(event, false);
5865 local64_set(&event->count, 0);
5866 perf_event_update_userpage(event);
5867 }
5868
5869 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5870 u64 perf_event_pause(struct perf_event *event, bool reset)
5871 {
5872 struct perf_event_context *ctx;
5873 u64 count;
5874
5875 ctx = perf_event_ctx_lock(event);
5876 WARN_ON_ONCE(event->attr.inherit);
5877 _perf_event_disable(event);
5878 count = local64_read(&event->count);
5879 if (reset)
5880 local64_set(&event->count, 0);
5881 perf_event_ctx_unlock(event, ctx);
5882
5883 return count;
5884 }
5885 EXPORT_SYMBOL_GPL(perf_event_pause);
5886
5887 /*
5888 * Holding the top-level event's child_mutex means that any
5889 * descendant process that has inherited this event will block
5890 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5891 * task existence requirements of perf_event_enable/disable.
5892 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5893 static void perf_event_for_each_child(struct perf_event *event,
5894 void (*func)(struct perf_event *))
5895 {
5896 struct perf_event *child;
5897
5898 WARN_ON_ONCE(event->ctx->parent_ctx);
5899
5900 mutex_lock(&event->child_mutex);
5901 func(event);
5902 list_for_each_entry(child, &event->child_list, child_list)
5903 func(child);
5904 mutex_unlock(&event->child_mutex);
5905 }
5906
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5907 static void perf_event_for_each(struct perf_event *event,
5908 void (*func)(struct perf_event *))
5909 {
5910 struct perf_event_context *ctx = event->ctx;
5911 struct perf_event *sibling;
5912
5913 lockdep_assert_held(&ctx->mutex);
5914
5915 event = event->group_leader;
5916
5917 perf_event_for_each_child(event, func);
5918 for_each_sibling_event(sibling, event)
5919 perf_event_for_each_child(sibling, func);
5920 }
5921
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5922 static void __perf_event_period(struct perf_event *event,
5923 struct perf_cpu_context *cpuctx,
5924 struct perf_event_context *ctx,
5925 void *info)
5926 {
5927 u64 value = *((u64 *)info);
5928 bool active;
5929
5930 if (event->attr.freq) {
5931 event->attr.sample_freq = value;
5932 } else {
5933 event->attr.sample_period = value;
5934 event->hw.sample_period = value;
5935 }
5936
5937 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5938 if (active) {
5939 perf_pmu_disable(event->pmu);
5940 /*
5941 * We could be throttled; unthrottle now to avoid the tick
5942 * trying to unthrottle while we already re-started the event.
5943 */
5944 if (event->hw.interrupts == MAX_INTERRUPTS) {
5945 event->hw.interrupts = 0;
5946 perf_log_throttle(event, 1);
5947 }
5948 event->pmu->stop(event, PERF_EF_UPDATE);
5949 }
5950
5951 local64_set(&event->hw.period_left, 0);
5952
5953 if (active) {
5954 event->pmu->start(event, PERF_EF_RELOAD);
5955 perf_pmu_enable(event->pmu);
5956 }
5957 }
5958
perf_event_check_period(struct perf_event * event,u64 value)5959 static int perf_event_check_period(struct perf_event *event, u64 value)
5960 {
5961 return event->pmu->check_period(event, value);
5962 }
5963
_perf_event_period(struct perf_event * event,u64 value)5964 static int _perf_event_period(struct perf_event *event, u64 value)
5965 {
5966 if (!is_sampling_event(event))
5967 return -EINVAL;
5968
5969 if (!value)
5970 return -EINVAL;
5971
5972 if (event->attr.freq) {
5973 if (value > sysctl_perf_event_sample_rate)
5974 return -EINVAL;
5975 } else {
5976 if (perf_event_check_period(event, value))
5977 return -EINVAL;
5978 if (value & (1ULL << 63))
5979 return -EINVAL;
5980 }
5981
5982 event_function_call(event, __perf_event_period, &value);
5983
5984 return 0;
5985 }
5986
perf_event_period(struct perf_event * event,u64 value)5987 int perf_event_period(struct perf_event *event, u64 value)
5988 {
5989 struct perf_event_context *ctx;
5990 int ret;
5991
5992 ctx = perf_event_ctx_lock(event);
5993 ret = _perf_event_period(event, value);
5994 perf_event_ctx_unlock(event, ctx);
5995
5996 return ret;
5997 }
5998 EXPORT_SYMBOL_GPL(perf_event_period);
5999
6000 static const struct file_operations perf_fops;
6001
is_perf_file(struct fd f)6002 static inline bool is_perf_file(struct fd f)
6003 {
6004 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6005 }
6006
6007 static int perf_event_set_output(struct perf_event *event,
6008 struct perf_event *output_event);
6009 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6010 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6011 struct perf_event_attr *attr);
6012
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6013 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6014 {
6015 void (*func)(struct perf_event *);
6016 u32 flags = arg;
6017
6018 switch (cmd) {
6019 case PERF_EVENT_IOC_ENABLE:
6020 func = _perf_event_enable;
6021 break;
6022 case PERF_EVENT_IOC_DISABLE:
6023 func = _perf_event_disable;
6024 break;
6025 case PERF_EVENT_IOC_RESET:
6026 func = _perf_event_reset;
6027 break;
6028
6029 case PERF_EVENT_IOC_REFRESH:
6030 return _perf_event_refresh(event, arg);
6031
6032 case PERF_EVENT_IOC_PERIOD:
6033 {
6034 u64 value;
6035
6036 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6037 return -EFAULT;
6038
6039 return _perf_event_period(event, value);
6040 }
6041 case PERF_EVENT_IOC_ID:
6042 {
6043 u64 id = primary_event_id(event);
6044
6045 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6046 return -EFAULT;
6047 return 0;
6048 }
6049
6050 case PERF_EVENT_IOC_SET_OUTPUT:
6051 {
6052 CLASS(fd, output)(arg); // arg == -1 => empty
6053 struct perf_event *output_event = NULL;
6054 if (arg != -1) {
6055 if (!is_perf_file(output))
6056 return -EBADF;
6057 output_event = fd_file(output)->private_data;
6058 }
6059 return perf_event_set_output(event, output_event);
6060 }
6061
6062 case PERF_EVENT_IOC_SET_FILTER:
6063 return perf_event_set_filter(event, (void __user *)arg);
6064
6065 case PERF_EVENT_IOC_SET_BPF:
6066 {
6067 struct bpf_prog *prog;
6068 int err;
6069
6070 prog = bpf_prog_get(arg);
6071 if (IS_ERR(prog))
6072 return PTR_ERR(prog);
6073
6074 err = perf_event_set_bpf_prog(event, prog, 0);
6075 if (err) {
6076 bpf_prog_put(prog);
6077 return err;
6078 }
6079
6080 return 0;
6081 }
6082
6083 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6084 struct perf_buffer *rb;
6085
6086 rcu_read_lock();
6087 rb = rcu_dereference(event->rb);
6088 if (!rb || !rb->nr_pages) {
6089 rcu_read_unlock();
6090 return -EINVAL;
6091 }
6092 rb_toggle_paused(rb, !!arg);
6093 rcu_read_unlock();
6094 return 0;
6095 }
6096
6097 case PERF_EVENT_IOC_QUERY_BPF:
6098 return perf_event_query_prog_array(event, (void __user *)arg);
6099
6100 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6101 struct perf_event_attr new_attr;
6102 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6103 &new_attr);
6104
6105 if (err)
6106 return err;
6107
6108 return perf_event_modify_attr(event, &new_attr);
6109 }
6110 default:
6111 return -ENOTTY;
6112 }
6113
6114 if (flags & PERF_IOC_FLAG_GROUP)
6115 perf_event_for_each(event, func);
6116 else
6117 perf_event_for_each_child(event, func);
6118
6119 return 0;
6120 }
6121
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6122 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6123 {
6124 struct perf_event *event = file->private_data;
6125 struct perf_event_context *ctx;
6126 long ret;
6127
6128 /* Treat ioctl like writes as it is likely a mutating operation. */
6129 ret = security_perf_event_write(event);
6130 if (ret)
6131 return ret;
6132
6133 ctx = perf_event_ctx_lock(event);
6134 ret = _perf_ioctl(event, cmd, arg);
6135 perf_event_ctx_unlock(event, ctx);
6136
6137 return ret;
6138 }
6139
6140 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6141 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6142 unsigned long arg)
6143 {
6144 switch (_IOC_NR(cmd)) {
6145 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6146 case _IOC_NR(PERF_EVENT_IOC_ID):
6147 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6148 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6149 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6150 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6151 cmd &= ~IOCSIZE_MASK;
6152 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6153 }
6154 break;
6155 }
6156 return perf_ioctl(file, cmd, arg);
6157 }
6158 #else
6159 # define perf_compat_ioctl NULL
6160 #endif
6161
perf_event_task_enable(void)6162 int perf_event_task_enable(void)
6163 {
6164 struct perf_event_context *ctx;
6165 struct perf_event *event;
6166
6167 mutex_lock(¤t->perf_event_mutex);
6168 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6169 ctx = perf_event_ctx_lock(event);
6170 perf_event_for_each_child(event, _perf_event_enable);
6171 perf_event_ctx_unlock(event, ctx);
6172 }
6173 mutex_unlock(¤t->perf_event_mutex);
6174
6175 return 0;
6176 }
6177
perf_event_task_disable(void)6178 int perf_event_task_disable(void)
6179 {
6180 struct perf_event_context *ctx;
6181 struct perf_event *event;
6182
6183 mutex_lock(¤t->perf_event_mutex);
6184 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6185 ctx = perf_event_ctx_lock(event);
6186 perf_event_for_each_child(event, _perf_event_disable);
6187 perf_event_ctx_unlock(event, ctx);
6188 }
6189 mutex_unlock(¤t->perf_event_mutex);
6190
6191 return 0;
6192 }
6193
perf_event_index(struct perf_event * event)6194 static int perf_event_index(struct perf_event *event)
6195 {
6196 if (event->hw.state & PERF_HES_STOPPED)
6197 return 0;
6198
6199 if (event->state != PERF_EVENT_STATE_ACTIVE)
6200 return 0;
6201
6202 return event->pmu->event_idx(event);
6203 }
6204
perf_event_init_userpage(struct perf_event * event)6205 static void perf_event_init_userpage(struct perf_event *event)
6206 {
6207 struct perf_event_mmap_page *userpg;
6208 struct perf_buffer *rb;
6209
6210 rcu_read_lock();
6211 rb = rcu_dereference(event->rb);
6212 if (!rb)
6213 goto unlock;
6214
6215 userpg = rb->user_page;
6216
6217 /* Allow new userspace to detect that bit 0 is deprecated */
6218 userpg->cap_bit0_is_deprecated = 1;
6219 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6220 userpg->data_offset = PAGE_SIZE;
6221 userpg->data_size = perf_data_size(rb);
6222
6223 unlock:
6224 rcu_read_unlock();
6225 }
6226
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6227 void __weak arch_perf_update_userpage(
6228 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6229 {
6230 }
6231
6232 /*
6233 * Callers need to ensure there can be no nesting of this function, otherwise
6234 * the seqlock logic goes bad. We can not serialize this because the arch
6235 * code calls this from NMI context.
6236 */
perf_event_update_userpage(struct perf_event * event)6237 void perf_event_update_userpage(struct perf_event *event)
6238 {
6239 struct perf_event_mmap_page *userpg;
6240 struct perf_buffer *rb;
6241 u64 enabled, running, now;
6242
6243 rcu_read_lock();
6244 rb = rcu_dereference(event->rb);
6245 if (!rb)
6246 goto unlock;
6247
6248 /*
6249 * compute total_time_enabled, total_time_running
6250 * based on snapshot values taken when the event
6251 * was last scheduled in.
6252 *
6253 * we cannot simply called update_context_time()
6254 * because of locking issue as we can be called in
6255 * NMI context
6256 */
6257 calc_timer_values(event, &now, &enabled, &running);
6258
6259 userpg = rb->user_page;
6260 /*
6261 * Disable preemption to guarantee consistent time stamps are stored to
6262 * the user page.
6263 */
6264 preempt_disable();
6265 ++userpg->lock;
6266 barrier();
6267 userpg->index = perf_event_index(event);
6268 userpg->offset = perf_event_count(event, false);
6269 if (userpg->index)
6270 userpg->offset -= local64_read(&event->hw.prev_count);
6271
6272 userpg->time_enabled = enabled +
6273 atomic64_read(&event->child_total_time_enabled);
6274
6275 userpg->time_running = running +
6276 atomic64_read(&event->child_total_time_running);
6277
6278 arch_perf_update_userpage(event, userpg, now);
6279
6280 barrier();
6281 ++userpg->lock;
6282 preempt_enable();
6283 unlock:
6284 rcu_read_unlock();
6285 }
6286 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6287
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6288 static void ring_buffer_attach(struct perf_event *event,
6289 struct perf_buffer *rb)
6290 {
6291 struct perf_buffer *old_rb = NULL;
6292 unsigned long flags;
6293
6294 WARN_ON_ONCE(event->parent);
6295
6296 if (event->rb) {
6297 /*
6298 * Should be impossible, we set this when removing
6299 * event->rb_entry and wait/clear when adding event->rb_entry.
6300 */
6301 WARN_ON_ONCE(event->rcu_pending);
6302
6303 old_rb = event->rb;
6304 spin_lock_irqsave(&old_rb->event_lock, flags);
6305 list_del_rcu(&event->rb_entry);
6306 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6307
6308 event->rcu_batches = get_state_synchronize_rcu();
6309 event->rcu_pending = 1;
6310 }
6311
6312 if (rb) {
6313 if (event->rcu_pending) {
6314 cond_synchronize_rcu(event->rcu_batches);
6315 event->rcu_pending = 0;
6316 }
6317
6318 spin_lock_irqsave(&rb->event_lock, flags);
6319 list_add_rcu(&event->rb_entry, &rb->event_list);
6320 spin_unlock_irqrestore(&rb->event_lock, flags);
6321 }
6322
6323 /*
6324 * Avoid racing with perf_mmap_close(AUX): stop the event
6325 * before swizzling the event::rb pointer; if it's getting
6326 * unmapped, its aux_mmap_count will be 0 and it won't
6327 * restart. See the comment in __perf_pmu_output_stop().
6328 *
6329 * Data will inevitably be lost when set_output is done in
6330 * mid-air, but then again, whoever does it like this is
6331 * not in for the data anyway.
6332 */
6333 if (has_aux(event))
6334 perf_event_stop(event, 0);
6335
6336 rcu_assign_pointer(event->rb, rb);
6337
6338 if (old_rb) {
6339 ring_buffer_put(old_rb);
6340 /*
6341 * Since we detached before setting the new rb, so that we
6342 * could attach the new rb, we could have missed a wakeup.
6343 * Provide it now.
6344 */
6345 wake_up_all(&event->waitq);
6346 }
6347 }
6348
ring_buffer_wakeup(struct perf_event * event)6349 static void ring_buffer_wakeup(struct perf_event *event)
6350 {
6351 struct perf_buffer *rb;
6352
6353 if (event->parent)
6354 event = event->parent;
6355
6356 rcu_read_lock();
6357 rb = rcu_dereference(event->rb);
6358 if (rb) {
6359 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6360 wake_up_all(&event->waitq);
6361 }
6362 rcu_read_unlock();
6363 }
6364
ring_buffer_get(struct perf_event * event)6365 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6366 {
6367 struct perf_buffer *rb;
6368
6369 if (event->parent)
6370 event = event->parent;
6371
6372 rcu_read_lock();
6373 rb = rcu_dereference(event->rb);
6374 if (rb) {
6375 if (!refcount_inc_not_zero(&rb->refcount))
6376 rb = NULL;
6377 }
6378 rcu_read_unlock();
6379
6380 return rb;
6381 }
6382
ring_buffer_put(struct perf_buffer * rb)6383 void ring_buffer_put(struct perf_buffer *rb)
6384 {
6385 if (!refcount_dec_and_test(&rb->refcount))
6386 return;
6387
6388 WARN_ON_ONCE(!list_empty(&rb->event_list));
6389
6390 call_rcu(&rb->rcu_head, rb_free_rcu);
6391 }
6392
perf_mmap_open(struct vm_area_struct * vma)6393 static void perf_mmap_open(struct vm_area_struct *vma)
6394 {
6395 struct perf_event *event = vma->vm_file->private_data;
6396
6397 atomic_inc(&event->mmap_count);
6398 atomic_inc(&event->rb->mmap_count);
6399
6400 if (vma->vm_pgoff)
6401 atomic_inc(&event->rb->aux_mmap_count);
6402
6403 if (event->pmu->event_mapped)
6404 event->pmu->event_mapped(event, vma->vm_mm);
6405 }
6406
6407 static void perf_pmu_output_stop(struct perf_event *event);
6408
6409 /*
6410 * A buffer can be mmap()ed multiple times; either directly through the same
6411 * event, or through other events by use of perf_event_set_output().
6412 *
6413 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6414 * the buffer here, where we still have a VM context. This means we need
6415 * to detach all events redirecting to us.
6416 */
perf_mmap_close(struct vm_area_struct * vma)6417 static void perf_mmap_close(struct vm_area_struct *vma)
6418 {
6419 struct perf_event *event = vma->vm_file->private_data;
6420 struct perf_buffer *rb = ring_buffer_get(event);
6421 struct user_struct *mmap_user = rb->mmap_user;
6422 int mmap_locked = rb->mmap_locked;
6423 unsigned long size = perf_data_size(rb);
6424 bool detach_rest = false;
6425
6426 if (event->pmu->event_unmapped)
6427 event->pmu->event_unmapped(event, vma->vm_mm);
6428
6429 /*
6430 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6431 * to avoid complications.
6432 */
6433 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6434 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6435 /*
6436 * Stop all AUX events that are writing to this buffer,
6437 * so that we can free its AUX pages and corresponding PMU
6438 * data. Note that after rb::aux_mmap_count dropped to zero,
6439 * they won't start any more (see perf_aux_output_begin()).
6440 */
6441 perf_pmu_output_stop(event);
6442
6443 /* now it's safe to free the pages */
6444 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6445 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6446
6447 /* this has to be the last one */
6448 rb_free_aux(rb);
6449 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6450
6451 mutex_unlock(&rb->aux_mutex);
6452 }
6453
6454 if (atomic_dec_and_test(&rb->mmap_count))
6455 detach_rest = true;
6456
6457 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6458 goto out_put;
6459
6460 ring_buffer_attach(event, NULL);
6461 mutex_unlock(&event->mmap_mutex);
6462
6463 /* If there's still other mmap()s of this buffer, we're done. */
6464 if (!detach_rest)
6465 goto out_put;
6466
6467 /*
6468 * No other mmap()s, detach from all other events that might redirect
6469 * into the now unreachable buffer. Somewhat complicated by the
6470 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6471 */
6472 again:
6473 rcu_read_lock();
6474 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6475 if (!atomic_long_inc_not_zero(&event->refcount)) {
6476 /*
6477 * This event is en-route to free_event() which will
6478 * detach it and remove it from the list.
6479 */
6480 continue;
6481 }
6482 rcu_read_unlock();
6483
6484 mutex_lock(&event->mmap_mutex);
6485 /*
6486 * Check we didn't race with perf_event_set_output() which can
6487 * swizzle the rb from under us while we were waiting to
6488 * acquire mmap_mutex.
6489 *
6490 * If we find a different rb; ignore this event, a next
6491 * iteration will no longer find it on the list. We have to
6492 * still restart the iteration to make sure we're not now
6493 * iterating the wrong list.
6494 */
6495 if (event->rb == rb)
6496 ring_buffer_attach(event, NULL);
6497
6498 mutex_unlock(&event->mmap_mutex);
6499 put_event(event);
6500
6501 /*
6502 * Restart the iteration; either we're on the wrong list or
6503 * destroyed its integrity by doing a deletion.
6504 */
6505 goto again;
6506 }
6507 rcu_read_unlock();
6508
6509 /*
6510 * It could be there's still a few 0-ref events on the list; they'll
6511 * get cleaned up by free_event() -- they'll also still have their
6512 * ref on the rb and will free it whenever they are done with it.
6513 *
6514 * Aside from that, this buffer is 'fully' detached and unmapped,
6515 * undo the VM accounting.
6516 */
6517
6518 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6519 &mmap_user->locked_vm);
6520 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6521 free_uid(mmap_user);
6522
6523 out_put:
6524 ring_buffer_put(rb); /* could be last */
6525 }
6526
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6527 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6528 {
6529 /* The first page is the user control page, others are read-only. */
6530 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6531 }
6532
6533 static const struct vm_operations_struct perf_mmap_vmops = {
6534 .open = perf_mmap_open,
6535 .close = perf_mmap_close, /* non mergeable */
6536 .pfn_mkwrite = perf_mmap_pfn_mkwrite,
6537 };
6538
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6539 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6540 {
6541 unsigned long nr_pages = vma_pages(vma);
6542 int err = 0;
6543 unsigned long pagenum;
6544
6545 /*
6546 * We map this as a VM_PFNMAP VMA.
6547 *
6548 * This is not ideal as this is designed broadly for mappings of PFNs
6549 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6550 * !pfn_valid(pfn).
6551 *
6552 * We are mapping kernel-allocated memory (memory we manage ourselves)
6553 * which would more ideally be mapped using vm_insert_page() or a
6554 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6555 *
6556 * However this won't work here, because:
6557 *
6558 * 1. It uses vma->vm_page_prot, but this field has not been completely
6559 * setup at the point of the f_op->mmp() hook, so we are unable to
6560 * indicate that this should be mapped CoW in order that the
6561 * mkwrite() hook can be invoked to make the first page R/W and the
6562 * rest R/O as desired.
6563 *
6564 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6565 * vm_normal_page() returning a struct page * pointer, which means
6566 * vm_ops->page_mkwrite() will be invoked rather than
6567 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6568 * to work around retry logic in the fault handler, however this
6569 * field is no longer allowed to be used within struct page.
6570 *
6571 * 3. Having a struct page * made available in the fault logic also
6572 * means that the page gets put on the rmap and becomes
6573 * inappropriately accessible and subject to map and ref counting.
6574 *
6575 * Ideally we would have a mechanism that could explicitly express our
6576 * desires, but this is not currently the case, so we instead use
6577 * VM_PFNMAP.
6578 *
6579 * We manage the lifetime of these mappings with internal refcounts (see
6580 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6581 * this mapping is maintained correctly.
6582 */
6583 for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6584 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6585 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6586
6587 if (page == NULL) {
6588 err = -EINVAL;
6589 break;
6590 }
6591
6592 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6593 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6594 vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6595 if (err)
6596 break;
6597 }
6598
6599 #ifdef CONFIG_MMU
6600 /* Clear any partial mappings on error. */
6601 if (err)
6602 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6603 #endif
6604
6605 return err;
6606 }
6607
perf_mmap(struct file * file,struct vm_area_struct * vma)6608 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6609 {
6610 struct perf_event *event = file->private_data;
6611 unsigned long user_locked, user_lock_limit;
6612 struct user_struct *user = current_user();
6613 struct mutex *aux_mutex = NULL;
6614 struct perf_buffer *rb = NULL;
6615 unsigned long locked, lock_limit;
6616 unsigned long vma_size;
6617 unsigned long nr_pages;
6618 long user_extra = 0, extra = 0;
6619 int ret = 0, flags = 0;
6620
6621 /*
6622 * Don't allow mmap() of inherited per-task counters. This would
6623 * create a performance issue due to all children writing to the
6624 * same rb.
6625 */
6626 if (event->cpu == -1 && event->attr.inherit)
6627 return -EINVAL;
6628
6629 if (!(vma->vm_flags & VM_SHARED))
6630 return -EINVAL;
6631
6632 ret = security_perf_event_read(event);
6633 if (ret)
6634 return ret;
6635
6636 vma_size = vma->vm_end - vma->vm_start;
6637
6638 if (vma->vm_pgoff == 0) {
6639 nr_pages = (vma_size / PAGE_SIZE) - 1;
6640 } else {
6641 /*
6642 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6643 * mapped, all subsequent mappings should have the same size
6644 * and offset. Must be above the normal perf buffer.
6645 */
6646 u64 aux_offset, aux_size;
6647
6648 if (!event->rb)
6649 return -EINVAL;
6650
6651 nr_pages = vma_size / PAGE_SIZE;
6652 if (nr_pages > INT_MAX)
6653 return -ENOMEM;
6654
6655 mutex_lock(&event->mmap_mutex);
6656 ret = -EINVAL;
6657
6658 rb = event->rb;
6659 if (!rb)
6660 goto aux_unlock;
6661
6662 aux_mutex = &rb->aux_mutex;
6663 mutex_lock(aux_mutex);
6664
6665 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6666 aux_size = READ_ONCE(rb->user_page->aux_size);
6667
6668 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6669 goto aux_unlock;
6670
6671 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6672 goto aux_unlock;
6673
6674 /* already mapped with a different offset */
6675 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6676 goto aux_unlock;
6677
6678 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6679 goto aux_unlock;
6680
6681 /* already mapped with a different size */
6682 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6683 goto aux_unlock;
6684
6685 if (!is_power_of_2(nr_pages))
6686 goto aux_unlock;
6687
6688 if (!atomic_inc_not_zero(&rb->mmap_count))
6689 goto aux_unlock;
6690
6691 if (rb_has_aux(rb)) {
6692 atomic_inc(&rb->aux_mmap_count);
6693 ret = 0;
6694 goto unlock;
6695 }
6696
6697 atomic_set(&rb->aux_mmap_count, 1);
6698 user_extra = nr_pages;
6699
6700 goto accounting;
6701 }
6702
6703 /*
6704 * If we have rb pages ensure they're a power-of-two number, so we
6705 * can do bitmasks instead of modulo.
6706 */
6707 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6708 return -EINVAL;
6709
6710 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6711 return -EINVAL;
6712
6713 WARN_ON_ONCE(event->ctx->parent_ctx);
6714 again:
6715 mutex_lock(&event->mmap_mutex);
6716 if (event->rb) {
6717 if (data_page_nr(event->rb) != nr_pages) {
6718 ret = -EINVAL;
6719 goto unlock;
6720 }
6721
6722 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6723 /*
6724 * Raced against perf_mmap_close(); remove the
6725 * event and try again.
6726 */
6727 ring_buffer_attach(event, NULL);
6728 mutex_unlock(&event->mmap_mutex);
6729 goto again;
6730 }
6731
6732 /* We need the rb to map pages. */
6733 rb = event->rb;
6734 goto unlock;
6735 }
6736
6737 user_extra = nr_pages + 1;
6738
6739 accounting:
6740 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6741
6742 /*
6743 * Increase the limit linearly with more CPUs:
6744 */
6745 user_lock_limit *= num_online_cpus();
6746
6747 user_locked = atomic_long_read(&user->locked_vm);
6748
6749 /*
6750 * sysctl_perf_event_mlock may have changed, so that
6751 * user->locked_vm > user_lock_limit
6752 */
6753 if (user_locked > user_lock_limit)
6754 user_locked = user_lock_limit;
6755 user_locked += user_extra;
6756
6757 if (user_locked > user_lock_limit) {
6758 /*
6759 * charge locked_vm until it hits user_lock_limit;
6760 * charge the rest from pinned_vm
6761 */
6762 extra = user_locked - user_lock_limit;
6763 user_extra -= extra;
6764 }
6765
6766 lock_limit = rlimit(RLIMIT_MEMLOCK);
6767 lock_limit >>= PAGE_SHIFT;
6768 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6769
6770 if ((locked > lock_limit) && perf_is_paranoid() &&
6771 !capable(CAP_IPC_LOCK)) {
6772 ret = -EPERM;
6773 goto unlock;
6774 }
6775
6776 WARN_ON(!rb && event->rb);
6777
6778 if (vma->vm_flags & VM_WRITE)
6779 flags |= RING_BUFFER_WRITABLE;
6780
6781 if (!rb) {
6782 rb = rb_alloc(nr_pages,
6783 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6784 event->cpu, flags);
6785
6786 if (!rb) {
6787 ret = -ENOMEM;
6788 goto unlock;
6789 }
6790
6791 atomic_set(&rb->mmap_count, 1);
6792 rb->mmap_user = get_current_user();
6793 rb->mmap_locked = extra;
6794
6795 ring_buffer_attach(event, rb);
6796
6797 perf_event_update_time(event);
6798 perf_event_init_userpage(event);
6799 perf_event_update_userpage(event);
6800 } else {
6801 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6802 event->attr.aux_watermark, flags);
6803 if (!ret)
6804 rb->aux_mmap_locked = extra;
6805 }
6806
6807 unlock:
6808 if (!ret) {
6809 atomic_long_add(user_extra, &user->locked_vm);
6810 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6811
6812 atomic_inc(&event->mmap_count);
6813 } else if (rb) {
6814 atomic_dec(&rb->mmap_count);
6815 }
6816 aux_unlock:
6817 if (aux_mutex)
6818 mutex_unlock(aux_mutex);
6819 mutex_unlock(&event->mmap_mutex);
6820
6821 /*
6822 * Since pinned accounting is per vm we cannot allow fork() to copy our
6823 * vma.
6824 */
6825 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6826 vma->vm_ops = &perf_mmap_vmops;
6827
6828 if (!ret)
6829 ret = map_range(rb, vma);
6830
6831 if (event->pmu->event_mapped)
6832 event->pmu->event_mapped(event, vma->vm_mm);
6833
6834 return ret;
6835 }
6836
perf_fasync(int fd,struct file * filp,int on)6837 static int perf_fasync(int fd, struct file *filp, int on)
6838 {
6839 struct inode *inode = file_inode(filp);
6840 struct perf_event *event = filp->private_data;
6841 int retval;
6842
6843 inode_lock(inode);
6844 retval = fasync_helper(fd, filp, on, &event->fasync);
6845 inode_unlock(inode);
6846
6847 if (retval < 0)
6848 return retval;
6849
6850 return 0;
6851 }
6852
6853 static const struct file_operations perf_fops = {
6854 .release = perf_release,
6855 .read = perf_read,
6856 .poll = perf_poll,
6857 .unlocked_ioctl = perf_ioctl,
6858 .compat_ioctl = perf_compat_ioctl,
6859 .mmap = perf_mmap,
6860 .fasync = perf_fasync,
6861 };
6862
6863 /*
6864 * Perf event wakeup
6865 *
6866 * If there's data, ensure we set the poll() state and publish everything
6867 * to user-space before waking everybody up.
6868 */
6869
perf_event_wakeup(struct perf_event * event)6870 void perf_event_wakeup(struct perf_event *event)
6871 {
6872 ring_buffer_wakeup(event);
6873
6874 if (event->pending_kill) {
6875 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6876 event->pending_kill = 0;
6877 }
6878 }
6879
perf_sigtrap(struct perf_event * event)6880 static void perf_sigtrap(struct perf_event *event)
6881 {
6882 /*
6883 * We'd expect this to only occur if the irq_work is delayed and either
6884 * ctx->task or current has changed in the meantime. This can be the
6885 * case on architectures that do not implement arch_irq_work_raise().
6886 */
6887 if (WARN_ON_ONCE(event->ctx->task != current))
6888 return;
6889
6890 /*
6891 * Both perf_pending_task() and perf_pending_irq() can race with the
6892 * task exiting.
6893 */
6894 if (current->flags & PF_EXITING)
6895 return;
6896
6897 send_sig_perf((void __user *)event->pending_addr,
6898 event->orig_type, event->attr.sig_data);
6899 }
6900
6901 /*
6902 * Deliver the pending work in-event-context or follow the context.
6903 */
__perf_pending_disable(struct perf_event * event)6904 static void __perf_pending_disable(struct perf_event *event)
6905 {
6906 int cpu = READ_ONCE(event->oncpu);
6907
6908 /*
6909 * If the event isn't running; we done. event_sched_out() will have
6910 * taken care of things.
6911 */
6912 if (cpu < 0)
6913 return;
6914
6915 /*
6916 * Yay, we hit home and are in the context of the event.
6917 */
6918 if (cpu == smp_processor_id()) {
6919 if (event->pending_disable) {
6920 event->pending_disable = 0;
6921 perf_event_disable_local(event);
6922 }
6923 return;
6924 }
6925
6926 /*
6927 * CPU-A CPU-B
6928 *
6929 * perf_event_disable_inatomic()
6930 * @pending_disable = CPU-A;
6931 * irq_work_queue();
6932 *
6933 * sched-out
6934 * @pending_disable = -1;
6935 *
6936 * sched-in
6937 * perf_event_disable_inatomic()
6938 * @pending_disable = CPU-B;
6939 * irq_work_queue(); // FAILS
6940 *
6941 * irq_work_run()
6942 * perf_pending_disable()
6943 *
6944 * But the event runs on CPU-B and wants disabling there.
6945 */
6946 irq_work_queue_on(&event->pending_disable_irq, cpu);
6947 }
6948
perf_pending_disable(struct irq_work * entry)6949 static void perf_pending_disable(struct irq_work *entry)
6950 {
6951 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6952 int rctx;
6953
6954 /*
6955 * If we 'fail' here, that's OK, it means recursion is already disabled
6956 * and we won't recurse 'further'.
6957 */
6958 rctx = perf_swevent_get_recursion_context();
6959 __perf_pending_disable(event);
6960 if (rctx >= 0)
6961 perf_swevent_put_recursion_context(rctx);
6962 }
6963
perf_pending_irq(struct irq_work * entry)6964 static void perf_pending_irq(struct irq_work *entry)
6965 {
6966 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6967 int rctx;
6968
6969 /*
6970 * If we 'fail' here, that's OK, it means recursion is already disabled
6971 * and we won't recurse 'further'.
6972 */
6973 rctx = perf_swevent_get_recursion_context();
6974
6975 /*
6976 * The wakeup isn't bound to the context of the event -- it can happen
6977 * irrespective of where the event is.
6978 */
6979 if (event->pending_wakeup) {
6980 event->pending_wakeup = 0;
6981 perf_event_wakeup(event);
6982 }
6983
6984 if (rctx >= 0)
6985 perf_swevent_put_recursion_context(rctx);
6986 }
6987
perf_pending_task(struct callback_head * head)6988 static void perf_pending_task(struct callback_head *head)
6989 {
6990 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6991 int rctx;
6992
6993 /*
6994 * All accesses to the event must belong to the same implicit RCU read-side
6995 * critical section as the ->pending_work reset. See comment in
6996 * perf_pending_task_sync().
6997 */
6998 rcu_read_lock();
6999 /*
7000 * If we 'fail' here, that's OK, it means recursion is already disabled
7001 * and we won't recurse 'further'.
7002 */
7003 rctx = perf_swevent_get_recursion_context();
7004
7005 if (event->pending_work) {
7006 event->pending_work = 0;
7007 perf_sigtrap(event);
7008 local_dec(&event->ctx->nr_no_switch_fast);
7009 rcuwait_wake_up(&event->pending_work_wait);
7010 }
7011 rcu_read_unlock();
7012
7013 if (rctx >= 0)
7014 perf_swevent_put_recursion_context(rctx);
7015 }
7016
7017 #ifdef CONFIG_GUEST_PERF_EVENTS
7018 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7019
7020 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7021 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7022 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7023
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7024 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7025 {
7026 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7027 return;
7028
7029 rcu_assign_pointer(perf_guest_cbs, cbs);
7030 static_call_update(__perf_guest_state, cbs->state);
7031 static_call_update(__perf_guest_get_ip, cbs->get_ip);
7032
7033 /* Implementing ->handle_intel_pt_intr is optional. */
7034 if (cbs->handle_intel_pt_intr)
7035 static_call_update(__perf_guest_handle_intel_pt_intr,
7036 cbs->handle_intel_pt_intr);
7037 }
7038 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7039
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7040 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7041 {
7042 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7043 return;
7044
7045 rcu_assign_pointer(perf_guest_cbs, NULL);
7046 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7047 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7048 static_call_update(__perf_guest_handle_intel_pt_intr,
7049 (void *)&__static_call_return0);
7050 synchronize_rcu();
7051 }
7052 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7053 #endif
7054
should_sample_guest(struct perf_event * event)7055 static bool should_sample_guest(struct perf_event *event)
7056 {
7057 return !event->attr.exclude_guest && perf_guest_state();
7058 }
7059
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7060 unsigned long perf_misc_flags(struct perf_event *event,
7061 struct pt_regs *regs)
7062 {
7063 if (should_sample_guest(event))
7064 return perf_arch_guest_misc_flags(regs);
7065
7066 return perf_arch_misc_flags(regs);
7067 }
7068
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7069 unsigned long perf_instruction_pointer(struct perf_event *event,
7070 struct pt_regs *regs)
7071 {
7072 if (should_sample_guest(event))
7073 return perf_guest_get_ip();
7074
7075 return perf_arch_instruction_pointer(regs);
7076 }
7077
7078 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7079 perf_output_sample_regs(struct perf_output_handle *handle,
7080 struct pt_regs *regs, u64 mask)
7081 {
7082 int bit;
7083 DECLARE_BITMAP(_mask, 64);
7084
7085 bitmap_from_u64(_mask, mask);
7086 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7087 u64 val;
7088
7089 val = perf_reg_value(regs, bit);
7090 perf_output_put(handle, val);
7091 }
7092 }
7093
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7094 static void perf_sample_regs_user(struct perf_regs *regs_user,
7095 struct pt_regs *regs)
7096 {
7097 if (user_mode(regs)) {
7098 regs_user->abi = perf_reg_abi(current);
7099 regs_user->regs = regs;
7100 } else if (!(current->flags & PF_KTHREAD)) {
7101 perf_get_regs_user(regs_user, regs);
7102 } else {
7103 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7104 regs_user->regs = NULL;
7105 }
7106 }
7107
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7108 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7109 struct pt_regs *regs)
7110 {
7111 regs_intr->regs = regs;
7112 regs_intr->abi = perf_reg_abi(current);
7113 }
7114
7115
7116 /*
7117 * Get remaining task size from user stack pointer.
7118 *
7119 * It'd be better to take stack vma map and limit this more
7120 * precisely, but there's no way to get it safely under interrupt,
7121 * so using TASK_SIZE as limit.
7122 */
perf_ustack_task_size(struct pt_regs * regs)7123 static u64 perf_ustack_task_size(struct pt_regs *regs)
7124 {
7125 unsigned long addr = perf_user_stack_pointer(regs);
7126
7127 if (!addr || addr >= TASK_SIZE)
7128 return 0;
7129
7130 return TASK_SIZE - addr;
7131 }
7132
7133 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7134 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7135 struct pt_regs *regs)
7136 {
7137 u64 task_size;
7138
7139 /* No regs, no stack pointer, no dump. */
7140 if (!regs)
7141 return 0;
7142
7143 /*
7144 * Check if we fit in with the requested stack size into the:
7145 * - TASK_SIZE
7146 * If we don't, we limit the size to the TASK_SIZE.
7147 *
7148 * - remaining sample size
7149 * If we don't, we customize the stack size to
7150 * fit in to the remaining sample size.
7151 */
7152
7153 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7154 stack_size = min(stack_size, (u16) task_size);
7155
7156 /* Current header size plus static size and dynamic size. */
7157 header_size += 2 * sizeof(u64);
7158
7159 /* Do we fit in with the current stack dump size? */
7160 if ((u16) (header_size + stack_size) < header_size) {
7161 /*
7162 * If we overflow the maximum size for the sample,
7163 * we customize the stack dump size to fit in.
7164 */
7165 stack_size = USHRT_MAX - header_size - sizeof(u64);
7166 stack_size = round_up(stack_size, sizeof(u64));
7167 }
7168
7169 return stack_size;
7170 }
7171
7172 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7173 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7174 struct pt_regs *regs)
7175 {
7176 /* Case of a kernel thread, nothing to dump */
7177 if (!regs) {
7178 u64 size = 0;
7179 perf_output_put(handle, size);
7180 } else {
7181 unsigned long sp;
7182 unsigned int rem;
7183 u64 dyn_size;
7184
7185 /*
7186 * We dump:
7187 * static size
7188 * - the size requested by user or the best one we can fit
7189 * in to the sample max size
7190 * data
7191 * - user stack dump data
7192 * dynamic size
7193 * - the actual dumped size
7194 */
7195
7196 /* Static size. */
7197 perf_output_put(handle, dump_size);
7198
7199 /* Data. */
7200 sp = perf_user_stack_pointer(regs);
7201 rem = __output_copy_user(handle, (void *) sp, dump_size);
7202 dyn_size = dump_size - rem;
7203
7204 perf_output_skip(handle, rem);
7205
7206 /* Dynamic size. */
7207 perf_output_put(handle, dyn_size);
7208 }
7209 }
7210
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7211 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7212 struct perf_sample_data *data,
7213 size_t size)
7214 {
7215 struct perf_event *sampler = event->aux_event;
7216 struct perf_buffer *rb;
7217
7218 data->aux_size = 0;
7219
7220 if (!sampler)
7221 goto out;
7222
7223 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7224 goto out;
7225
7226 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7227 goto out;
7228
7229 rb = ring_buffer_get(sampler);
7230 if (!rb)
7231 goto out;
7232
7233 /*
7234 * If this is an NMI hit inside sampling code, don't take
7235 * the sample. See also perf_aux_sample_output().
7236 */
7237 if (READ_ONCE(rb->aux_in_sampling)) {
7238 data->aux_size = 0;
7239 } else {
7240 size = min_t(size_t, size, perf_aux_size(rb));
7241 data->aux_size = ALIGN(size, sizeof(u64));
7242 }
7243 ring_buffer_put(rb);
7244
7245 out:
7246 return data->aux_size;
7247 }
7248
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7249 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7250 struct perf_event *event,
7251 struct perf_output_handle *handle,
7252 unsigned long size)
7253 {
7254 unsigned long flags;
7255 long ret;
7256
7257 /*
7258 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7259 * paths. If we start calling them in NMI context, they may race with
7260 * the IRQ ones, that is, for example, re-starting an event that's just
7261 * been stopped, which is why we're using a separate callback that
7262 * doesn't change the event state.
7263 *
7264 * IRQs need to be disabled to prevent IPIs from racing with us.
7265 */
7266 local_irq_save(flags);
7267 /*
7268 * Guard against NMI hits inside the critical section;
7269 * see also perf_prepare_sample_aux().
7270 */
7271 WRITE_ONCE(rb->aux_in_sampling, 1);
7272 barrier();
7273
7274 ret = event->pmu->snapshot_aux(event, handle, size);
7275
7276 barrier();
7277 WRITE_ONCE(rb->aux_in_sampling, 0);
7278 local_irq_restore(flags);
7279
7280 return ret;
7281 }
7282
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7283 static void perf_aux_sample_output(struct perf_event *event,
7284 struct perf_output_handle *handle,
7285 struct perf_sample_data *data)
7286 {
7287 struct perf_event *sampler = event->aux_event;
7288 struct perf_buffer *rb;
7289 unsigned long pad;
7290 long size;
7291
7292 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7293 return;
7294
7295 rb = ring_buffer_get(sampler);
7296 if (!rb)
7297 return;
7298
7299 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7300
7301 /*
7302 * An error here means that perf_output_copy() failed (returned a
7303 * non-zero surplus that it didn't copy), which in its current
7304 * enlightened implementation is not possible. If that changes, we'd
7305 * like to know.
7306 */
7307 if (WARN_ON_ONCE(size < 0))
7308 goto out_put;
7309
7310 /*
7311 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7312 * perf_prepare_sample_aux(), so should not be more than that.
7313 */
7314 pad = data->aux_size - size;
7315 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7316 pad = 8;
7317
7318 if (pad) {
7319 u64 zero = 0;
7320 perf_output_copy(handle, &zero, pad);
7321 }
7322
7323 out_put:
7324 ring_buffer_put(rb);
7325 }
7326
7327 /*
7328 * A set of common sample data types saved even for non-sample records
7329 * when event->attr.sample_id_all is set.
7330 */
7331 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7332 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7333 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7334
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7335 static void __perf_event_header__init_id(struct perf_sample_data *data,
7336 struct perf_event *event,
7337 u64 sample_type)
7338 {
7339 data->type = event->attr.sample_type;
7340 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7341
7342 if (sample_type & PERF_SAMPLE_TID) {
7343 /* namespace issues */
7344 data->tid_entry.pid = perf_event_pid(event, current);
7345 data->tid_entry.tid = perf_event_tid(event, current);
7346 }
7347
7348 if (sample_type & PERF_SAMPLE_TIME)
7349 data->time = perf_event_clock(event);
7350
7351 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7352 data->id = primary_event_id(event);
7353
7354 if (sample_type & PERF_SAMPLE_STREAM_ID)
7355 data->stream_id = event->id;
7356
7357 if (sample_type & PERF_SAMPLE_CPU) {
7358 data->cpu_entry.cpu = raw_smp_processor_id();
7359 data->cpu_entry.reserved = 0;
7360 }
7361 }
7362
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7363 void perf_event_header__init_id(struct perf_event_header *header,
7364 struct perf_sample_data *data,
7365 struct perf_event *event)
7366 {
7367 if (event->attr.sample_id_all) {
7368 header->size += event->id_header_size;
7369 __perf_event_header__init_id(data, event, event->attr.sample_type);
7370 }
7371 }
7372
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7373 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7374 struct perf_sample_data *data)
7375 {
7376 u64 sample_type = data->type;
7377
7378 if (sample_type & PERF_SAMPLE_TID)
7379 perf_output_put(handle, data->tid_entry);
7380
7381 if (sample_type & PERF_SAMPLE_TIME)
7382 perf_output_put(handle, data->time);
7383
7384 if (sample_type & PERF_SAMPLE_ID)
7385 perf_output_put(handle, data->id);
7386
7387 if (sample_type & PERF_SAMPLE_STREAM_ID)
7388 perf_output_put(handle, data->stream_id);
7389
7390 if (sample_type & PERF_SAMPLE_CPU)
7391 perf_output_put(handle, data->cpu_entry);
7392
7393 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7394 perf_output_put(handle, data->id);
7395 }
7396
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7397 void perf_event__output_id_sample(struct perf_event *event,
7398 struct perf_output_handle *handle,
7399 struct perf_sample_data *sample)
7400 {
7401 if (event->attr.sample_id_all)
7402 __perf_event__output_id_sample(handle, sample);
7403 }
7404
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7405 static void perf_output_read_one(struct perf_output_handle *handle,
7406 struct perf_event *event,
7407 u64 enabled, u64 running)
7408 {
7409 u64 read_format = event->attr.read_format;
7410 u64 values[5];
7411 int n = 0;
7412
7413 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7414 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7415 values[n++] = enabled +
7416 atomic64_read(&event->child_total_time_enabled);
7417 }
7418 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7419 values[n++] = running +
7420 atomic64_read(&event->child_total_time_running);
7421 }
7422 if (read_format & PERF_FORMAT_ID)
7423 values[n++] = primary_event_id(event);
7424 if (read_format & PERF_FORMAT_LOST)
7425 values[n++] = atomic64_read(&event->lost_samples);
7426
7427 __output_copy(handle, values, n * sizeof(u64));
7428 }
7429
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7430 static void perf_output_read_group(struct perf_output_handle *handle,
7431 struct perf_event *event,
7432 u64 enabled, u64 running)
7433 {
7434 struct perf_event *leader = event->group_leader, *sub;
7435 u64 read_format = event->attr.read_format;
7436 unsigned long flags;
7437 u64 values[6];
7438 int n = 0;
7439 bool self = has_inherit_and_sample_read(&event->attr);
7440
7441 /*
7442 * Disabling interrupts avoids all counter scheduling
7443 * (context switches, timer based rotation and IPIs).
7444 */
7445 local_irq_save(flags);
7446
7447 values[n++] = 1 + leader->nr_siblings;
7448
7449 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7450 values[n++] = enabled;
7451
7452 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7453 values[n++] = running;
7454
7455 if ((leader != event) &&
7456 (leader->state == PERF_EVENT_STATE_ACTIVE))
7457 leader->pmu->read(leader);
7458
7459 values[n++] = perf_event_count(leader, self);
7460 if (read_format & PERF_FORMAT_ID)
7461 values[n++] = primary_event_id(leader);
7462 if (read_format & PERF_FORMAT_LOST)
7463 values[n++] = atomic64_read(&leader->lost_samples);
7464
7465 __output_copy(handle, values, n * sizeof(u64));
7466
7467 for_each_sibling_event(sub, leader) {
7468 n = 0;
7469
7470 if ((sub != event) &&
7471 (sub->state == PERF_EVENT_STATE_ACTIVE))
7472 sub->pmu->read(sub);
7473
7474 values[n++] = perf_event_count(sub, self);
7475 if (read_format & PERF_FORMAT_ID)
7476 values[n++] = primary_event_id(sub);
7477 if (read_format & PERF_FORMAT_LOST)
7478 values[n++] = atomic64_read(&sub->lost_samples);
7479
7480 __output_copy(handle, values, n * sizeof(u64));
7481 }
7482
7483 local_irq_restore(flags);
7484 }
7485
7486 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7487 PERF_FORMAT_TOTAL_TIME_RUNNING)
7488
7489 /*
7490 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7491 *
7492 * The problem is that its both hard and excessively expensive to iterate the
7493 * child list, not to mention that its impossible to IPI the children running
7494 * on another CPU, from interrupt/NMI context.
7495 *
7496 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7497 * counts rather than attempting to accumulate some value across all children on
7498 * all cores.
7499 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7500 static void perf_output_read(struct perf_output_handle *handle,
7501 struct perf_event *event)
7502 {
7503 u64 enabled = 0, running = 0, now;
7504 u64 read_format = event->attr.read_format;
7505
7506 /*
7507 * compute total_time_enabled, total_time_running
7508 * based on snapshot values taken when the event
7509 * was last scheduled in.
7510 *
7511 * we cannot simply called update_context_time()
7512 * because of locking issue as we are called in
7513 * NMI context
7514 */
7515 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7516 calc_timer_values(event, &now, &enabled, &running);
7517
7518 if (event->attr.read_format & PERF_FORMAT_GROUP)
7519 perf_output_read_group(handle, event, enabled, running);
7520 else
7521 perf_output_read_one(handle, event, enabled, running);
7522 }
7523
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7524 void perf_output_sample(struct perf_output_handle *handle,
7525 struct perf_event_header *header,
7526 struct perf_sample_data *data,
7527 struct perf_event *event)
7528 {
7529 u64 sample_type = data->type;
7530
7531 perf_output_put(handle, *header);
7532
7533 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7534 perf_output_put(handle, data->id);
7535
7536 if (sample_type & PERF_SAMPLE_IP)
7537 perf_output_put(handle, data->ip);
7538
7539 if (sample_type & PERF_SAMPLE_TID)
7540 perf_output_put(handle, data->tid_entry);
7541
7542 if (sample_type & PERF_SAMPLE_TIME)
7543 perf_output_put(handle, data->time);
7544
7545 if (sample_type & PERF_SAMPLE_ADDR)
7546 perf_output_put(handle, data->addr);
7547
7548 if (sample_type & PERF_SAMPLE_ID)
7549 perf_output_put(handle, data->id);
7550
7551 if (sample_type & PERF_SAMPLE_STREAM_ID)
7552 perf_output_put(handle, data->stream_id);
7553
7554 if (sample_type & PERF_SAMPLE_CPU)
7555 perf_output_put(handle, data->cpu_entry);
7556
7557 if (sample_type & PERF_SAMPLE_PERIOD)
7558 perf_output_put(handle, data->period);
7559
7560 if (sample_type & PERF_SAMPLE_READ)
7561 perf_output_read(handle, event);
7562
7563 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7564 int size = 1;
7565
7566 size += data->callchain->nr;
7567 size *= sizeof(u64);
7568 __output_copy(handle, data->callchain, size);
7569 }
7570
7571 if (sample_type & PERF_SAMPLE_RAW) {
7572 struct perf_raw_record *raw = data->raw;
7573
7574 if (raw) {
7575 struct perf_raw_frag *frag = &raw->frag;
7576
7577 perf_output_put(handle, raw->size);
7578 do {
7579 if (frag->copy) {
7580 __output_custom(handle, frag->copy,
7581 frag->data, frag->size);
7582 } else {
7583 __output_copy(handle, frag->data,
7584 frag->size);
7585 }
7586 if (perf_raw_frag_last(frag))
7587 break;
7588 frag = frag->next;
7589 } while (1);
7590 if (frag->pad)
7591 __output_skip(handle, NULL, frag->pad);
7592 } else {
7593 struct {
7594 u32 size;
7595 u32 data;
7596 } raw = {
7597 .size = sizeof(u32),
7598 .data = 0,
7599 };
7600 perf_output_put(handle, raw);
7601 }
7602 }
7603
7604 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7605 if (data->br_stack) {
7606 size_t size;
7607
7608 size = data->br_stack->nr
7609 * sizeof(struct perf_branch_entry);
7610
7611 perf_output_put(handle, data->br_stack->nr);
7612 if (branch_sample_hw_index(event))
7613 perf_output_put(handle, data->br_stack->hw_idx);
7614 perf_output_copy(handle, data->br_stack->entries, size);
7615 /*
7616 * Add the extension space which is appended
7617 * right after the struct perf_branch_stack.
7618 */
7619 if (data->br_stack_cntr) {
7620 size = data->br_stack->nr * sizeof(u64);
7621 perf_output_copy(handle, data->br_stack_cntr, size);
7622 }
7623 } else {
7624 /*
7625 * we always store at least the value of nr
7626 */
7627 u64 nr = 0;
7628 perf_output_put(handle, nr);
7629 }
7630 }
7631
7632 if (sample_type & PERF_SAMPLE_REGS_USER) {
7633 u64 abi = data->regs_user.abi;
7634
7635 /*
7636 * If there are no regs to dump, notice it through
7637 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7638 */
7639 perf_output_put(handle, abi);
7640
7641 if (abi) {
7642 u64 mask = event->attr.sample_regs_user;
7643 perf_output_sample_regs(handle,
7644 data->regs_user.regs,
7645 mask);
7646 }
7647 }
7648
7649 if (sample_type & PERF_SAMPLE_STACK_USER) {
7650 perf_output_sample_ustack(handle,
7651 data->stack_user_size,
7652 data->regs_user.regs);
7653 }
7654
7655 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7656 perf_output_put(handle, data->weight.full);
7657
7658 if (sample_type & PERF_SAMPLE_DATA_SRC)
7659 perf_output_put(handle, data->data_src.val);
7660
7661 if (sample_type & PERF_SAMPLE_TRANSACTION)
7662 perf_output_put(handle, data->txn);
7663
7664 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7665 u64 abi = data->regs_intr.abi;
7666 /*
7667 * If there are no regs to dump, notice it through
7668 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7669 */
7670 perf_output_put(handle, abi);
7671
7672 if (abi) {
7673 u64 mask = event->attr.sample_regs_intr;
7674
7675 perf_output_sample_regs(handle,
7676 data->regs_intr.regs,
7677 mask);
7678 }
7679 }
7680
7681 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7682 perf_output_put(handle, data->phys_addr);
7683
7684 if (sample_type & PERF_SAMPLE_CGROUP)
7685 perf_output_put(handle, data->cgroup);
7686
7687 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7688 perf_output_put(handle, data->data_page_size);
7689
7690 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7691 perf_output_put(handle, data->code_page_size);
7692
7693 if (sample_type & PERF_SAMPLE_AUX) {
7694 perf_output_put(handle, data->aux_size);
7695
7696 if (data->aux_size)
7697 perf_aux_sample_output(event, handle, data);
7698 }
7699
7700 if (!event->attr.watermark) {
7701 int wakeup_events = event->attr.wakeup_events;
7702
7703 if (wakeup_events) {
7704 struct perf_buffer *rb = handle->rb;
7705 int events = local_inc_return(&rb->events);
7706
7707 if (events >= wakeup_events) {
7708 local_sub(wakeup_events, &rb->events);
7709 local_inc(&rb->wakeup);
7710 }
7711 }
7712 }
7713 }
7714
perf_virt_to_phys(u64 virt)7715 static u64 perf_virt_to_phys(u64 virt)
7716 {
7717 u64 phys_addr = 0;
7718
7719 if (!virt)
7720 return 0;
7721
7722 if (virt >= TASK_SIZE) {
7723 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7724 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7725 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7726 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7727 } else {
7728 /*
7729 * Walking the pages tables for user address.
7730 * Interrupts are disabled, so it prevents any tear down
7731 * of the page tables.
7732 * Try IRQ-safe get_user_page_fast_only first.
7733 * If failed, leave phys_addr as 0.
7734 */
7735 if (current->mm != NULL) {
7736 struct page *p;
7737
7738 pagefault_disable();
7739 if (get_user_page_fast_only(virt, 0, &p)) {
7740 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7741 put_page(p);
7742 }
7743 pagefault_enable();
7744 }
7745 }
7746
7747 return phys_addr;
7748 }
7749
7750 /*
7751 * Return the pagetable size of a given virtual address.
7752 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7753 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7754 {
7755 u64 size = 0;
7756
7757 #ifdef CONFIG_HAVE_GUP_FAST
7758 pgd_t *pgdp, pgd;
7759 p4d_t *p4dp, p4d;
7760 pud_t *pudp, pud;
7761 pmd_t *pmdp, pmd;
7762 pte_t *ptep, pte;
7763
7764 pgdp = pgd_offset(mm, addr);
7765 pgd = READ_ONCE(*pgdp);
7766 if (pgd_none(pgd))
7767 return 0;
7768
7769 if (pgd_leaf(pgd))
7770 return pgd_leaf_size(pgd);
7771
7772 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7773 p4d = READ_ONCE(*p4dp);
7774 if (!p4d_present(p4d))
7775 return 0;
7776
7777 if (p4d_leaf(p4d))
7778 return p4d_leaf_size(p4d);
7779
7780 pudp = pud_offset_lockless(p4dp, p4d, addr);
7781 pud = READ_ONCE(*pudp);
7782 if (!pud_present(pud))
7783 return 0;
7784
7785 if (pud_leaf(pud))
7786 return pud_leaf_size(pud);
7787
7788 pmdp = pmd_offset_lockless(pudp, pud, addr);
7789 again:
7790 pmd = pmdp_get_lockless(pmdp);
7791 if (!pmd_present(pmd))
7792 return 0;
7793
7794 if (pmd_leaf(pmd))
7795 return pmd_leaf_size(pmd);
7796
7797 ptep = pte_offset_map(&pmd, addr);
7798 if (!ptep)
7799 goto again;
7800
7801 pte = ptep_get_lockless(ptep);
7802 if (pte_present(pte))
7803 size = __pte_leaf_size(pmd, pte);
7804 pte_unmap(ptep);
7805 #endif /* CONFIG_HAVE_GUP_FAST */
7806
7807 return size;
7808 }
7809
perf_get_page_size(unsigned long addr)7810 static u64 perf_get_page_size(unsigned long addr)
7811 {
7812 struct mm_struct *mm;
7813 unsigned long flags;
7814 u64 size;
7815
7816 if (!addr)
7817 return 0;
7818
7819 /*
7820 * Software page-table walkers must disable IRQs,
7821 * which prevents any tear down of the page tables.
7822 */
7823 local_irq_save(flags);
7824
7825 mm = current->mm;
7826 if (!mm) {
7827 /*
7828 * For kernel threads and the like, use init_mm so that
7829 * we can find kernel memory.
7830 */
7831 mm = &init_mm;
7832 }
7833
7834 size = perf_get_pgtable_size(mm, addr);
7835
7836 local_irq_restore(flags);
7837
7838 return size;
7839 }
7840
7841 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7842
7843 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7844 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7845 {
7846 bool kernel = !event->attr.exclude_callchain_kernel;
7847 bool user = !event->attr.exclude_callchain_user;
7848 /* Disallow cross-task user callchains. */
7849 bool crosstask = event->ctx->task && event->ctx->task != current;
7850 const u32 max_stack = event->attr.sample_max_stack;
7851 struct perf_callchain_entry *callchain;
7852
7853 if (!kernel && !user)
7854 return &__empty_callchain;
7855
7856 callchain = get_perf_callchain(regs, 0, kernel, user,
7857 max_stack, crosstask, true);
7858 return callchain ?: &__empty_callchain;
7859 }
7860
__cond_set(u64 flags,u64 s,u64 d)7861 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7862 {
7863 return d * !!(flags & s);
7864 }
7865
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7866 void perf_prepare_sample(struct perf_sample_data *data,
7867 struct perf_event *event,
7868 struct pt_regs *regs)
7869 {
7870 u64 sample_type = event->attr.sample_type;
7871 u64 filtered_sample_type;
7872
7873 /*
7874 * Add the sample flags that are dependent to others. And clear the
7875 * sample flags that have already been done by the PMU driver.
7876 */
7877 filtered_sample_type = sample_type;
7878 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7879 PERF_SAMPLE_IP);
7880 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7881 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7882 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7883 PERF_SAMPLE_REGS_USER);
7884 filtered_sample_type &= ~data->sample_flags;
7885
7886 if (filtered_sample_type == 0) {
7887 /* Make sure it has the correct data->type for output */
7888 data->type = event->attr.sample_type;
7889 return;
7890 }
7891
7892 __perf_event_header__init_id(data, event, filtered_sample_type);
7893
7894 if (filtered_sample_type & PERF_SAMPLE_IP) {
7895 data->ip = perf_instruction_pointer(event, regs);
7896 data->sample_flags |= PERF_SAMPLE_IP;
7897 }
7898
7899 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7900 perf_sample_save_callchain(data, event, regs);
7901
7902 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7903 data->raw = NULL;
7904 data->dyn_size += sizeof(u64);
7905 data->sample_flags |= PERF_SAMPLE_RAW;
7906 }
7907
7908 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7909 data->br_stack = NULL;
7910 data->dyn_size += sizeof(u64);
7911 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7912 }
7913
7914 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7915 perf_sample_regs_user(&data->regs_user, regs);
7916
7917 /*
7918 * It cannot use the filtered_sample_type here as REGS_USER can be set
7919 * by STACK_USER (using __cond_set() above) and we don't want to update
7920 * the dyn_size if it's not requested by users.
7921 */
7922 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7923 /* regs dump ABI info */
7924 int size = sizeof(u64);
7925
7926 if (data->regs_user.regs) {
7927 u64 mask = event->attr.sample_regs_user;
7928 size += hweight64(mask) * sizeof(u64);
7929 }
7930
7931 data->dyn_size += size;
7932 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7933 }
7934
7935 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7936 /*
7937 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7938 * processed as the last one or have additional check added
7939 * in case new sample type is added, because we could eat
7940 * up the rest of the sample size.
7941 */
7942 u16 stack_size = event->attr.sample_stack_user;
7943 u16 header_size = perf_sample_data_size(data, event);
7944 u16 size = sizeof(u64);
7945
7946 stack_size = perf_sample_ustack_size(stack_size, header_size,
7947 data->regs_user.regs);
7948
7949 /*
7950 * If there is something to dump, add space for the dump
7951 * itself and for the field that tells the dynamic size,
7952 * which is how many have been actually dumped.
7953 */
7954 if (stack_size)
7955 size += sizeof(u64) + stack_size;
7956
7957 data->stack_user_size = stack_size;
7958 data->dyn_size += size;
7959 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7960 }
7961
7962 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7963 data->weight.full = 0;
7964 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7965 }
7966
7967 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7968 data->data_src.val = PERF_MEM_NA;
7969 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7970 }
7971
7972 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7973 data->txn = 0;
7974 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7975 }
7976
7977 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7978 data->addr = 0;
7979 data->sample_flags |= PERF_SAMPLE_ADDR;
7980 }
7981
7982 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7983 /* regs dump ABI info */
7984 int size = sizeof(u64);
7985
7986 perf_sample_regs_intr(&data->regs_intr, regs);
7987
7988 if (data->regs_intr.regs) {
7989 u64 mask = event->attr.sample_regs_intr;
7990
7991 size += hweight64(mask) * sizeof(u64);
7992 }
7993
7994 data->dyn_size += size;
7995 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7996 }
7997
7998 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7999 data->phys_addr = perf_virt_to_phys(data->addr);
8000 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8001 }
8002
8003 #ifdef CONFIG_CGROUP_PERF
8004 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8005 struct cgroup *cgrp;
8006
8007 /* protected by RCU */
8008 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8009 data->cgroup = cgroup_id(cgrp);
8010 data->sample_flags |= PERF_SAMPLE_CGROUP;
8011 }
8012 #endif
8013
8014 /*
8015 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8016 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8017 * but the value will not dump to the userspace.
8018 */
8019 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8020 data->data_page_size = perf_get_page_size(data->addr);
8021 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8022 }
8023
8024 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8025 data->code_page_size = perf_get_page_size(data->ip);
8026 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8027 }
8028
8029 if (filtered_sample_type & PERF_SAMPLE_AUX) {
8030 u64 size;
8031 u16 header_size = perf_sample_data_size(data, event);
8032
8033 header_size += sizeof(u64); /* size */
8034
8035 /*
8036 * Given the 16bit nature of header::size, an AUX sample can
8037 * easily overflow it, what with all the preceding sample bits.
8038 * Make sure this doesn't happen by using up to U16_MAX bytes
8039 * per sample in total (rounded down to 8 byte boundary).
8040 */
8041 size = min_t(size_t, U16_MAX - header_size,
8042 event->attr.aux_sample_size);
8043 size = rounddown(size, 8);
8044 size = perf_prepare_sample_aux(event, data, size);
8045
8046 WARN_ON_ONCE(size + header_size > U16_MAX);
8047 data->dyn_size += size + sizeof(u64); /* size above */
8048 data->sample_flags |= PERF_SAMPLE_AUX;
8049 }
8050 }
8051
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8052 void perf_prepare_header(struct perf_event_header *header,
8053 struct perf_sample_data *data,
8054 struct perf_event *event,
8055 struct pt_regs *regs)
8056 {
8057 header->type = PERF_RECORD_SAMPLE;
8058 header->size = perf_sample_data_size(data, event);
8059 header->misc = perf_misc_flags(event, regs);
8060
8061 /*
8062 * If you're adding more sample types here, you likely need to do
8063 * something about the overflowing header::size, like repurpose the
8064 * lowest 3 bits of size, which should be always zero at the moment.
8065 * This raises a more important question, do we really need 512k sized
8066 * samples and why, so good argumentation is in order for whatever you
8067 * do here next.
8068 */
8069 WARN_ON_ONCE(header->size & 7);
8070 }
8071
__perf_event_aux_pause(struct perf_event * event,bool pause)8072 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8073 {
8074 if (pause) {
8075 if (!event->hw.aux_paused) {
8076 event->hw.aux_paused = 1;
8077 event->pmu->stop(event, PERF_EF_PAUSE);
8078 }
8079 } else {
8080 if (event->hw.aux_paused) {
8081 event->hw.aux_paused = 0;
8082 event->pmu->start(event, PERF_EF_RESUME);
8083 }
8084 }
8085 }
8086
perf_event_aux_pause(struct perf_event * event,bool pause)8087 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8088 {
8089 struct perf_buffer *rb;
8090
8091 if (WARN_ON_ONCE(!event))
8092 return;
8093
8094 rb = ring_buffer_get(event);
8095 if (!rb)
8096 return;
8097
8098 scoped_guard (irqsave) {
8099 /*
8100 * Guard against self-recursion here. Another event could trip
8101 * this same from NMI context.
8102 */
8103 if (READ_ONCE(rb->aux_in_pause_resume))
8104 break;
8105
8106 WRITE_ONCE(rb->aux_in_pause_resume, 1);
8107 barrier();
8108 __perf_event_aux_pause(event, pause);
8109 barrier();
8110 WRITE_ONCE(rb->aux_in_pause_resume, 0);
8111 }
8112 ring_buffer_put(rb);
8113 }
8114
8115 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8116 __perf_event_output(struct perf_event *event,
8117 struct perf_sample_data *data,
8118 struct pt_regs *regs,
8119 int (*output_begin)(struct perf_output_handle *,
8120 struct perf_sample_data *,
8121 struct perf_event *,
8122 unsigned int))
8123 {
8124 struct perf_output_handle handle;
8125 struct perf_event_header header;
8126 int err;
8127
8128 /* protect the callchain buffers */
8129 rcu_read_lock();
8130
8131 perf_prepare_sample(data, event, regs);
8132 perf_prepare_header(&header, data, event, regs);
8133
8134 err = output_begin(&handle, data, event, header.size);
8135 if (err)
8136 goto exit;
8137
8138 perf_output_sample(&handle, &header, data, event);
8139
8140 perf_output_end(&handle);
8141
8142 exit:
8143 rcu_read_unlock();
8144 return err;
8145 }
8146
8147 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8148 perf_event_output_forward(struct perf_event *event,
8149 struct perf_sample_data *data,
8150 struct pt_regs *regs)
8151 {
8152 __perf_event_output(event, data, regs, perf_output_begin_forward);
8153 }
8154
8155 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8156 perf_event_output_backward(struct perf_event *event,
8157 struct perf_sample_data *data,
8158 struct pt_regs *regs)
8159 {
8160 __perf_event_output(event, data, regs, perf_output_begin_backward);
8161 }
8162
8163 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8164 perf_event_output(struct perf_event *event,
8165 struct perf_sample_data *data,
8166 struct pt_regs *regs)
8167 {
8168 return __perf_event_output(event, data, regs, perf_output_begin);
8169 }
8170
8171 /*
8172 * read event_id
8173 */
8174
8175 struct perf_read_event {
8176 struct perf_event_header header;
8177
8178 u32 pid;
8179 u32 tid;
8180 };
8181
8182 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8183 perf_event_read_event(struct perf_event *event,
8184 struct task_struct *task)
8185 {
8186 struct perf_output_handle handle;
8187 struct perf_sample_data sample;
8188 struct perf_read_event read_event = {
8189 .header = {
8190 .type = PERF_RECORD_READ,
8191 .misc = 0,
8192 .size = sizeof(read_event) + event->read_size,
8193 },
8194 .pid = perf_event_pid(event, task),
8195 .tid = perf_event_tid(event, task),
8196 };
8197 int ret;
8198
8199 perf_event_header__init_id(&read_event.header, &sample, event);
8200 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8201 if (ret)
8202 return;
8203
8204 perf_output_put(&handle, read_event);
8205 perf_output_read(&handle, event);
8206 perf_event__output_id_sample(event, &handle, &sample);
8207
8208 perf_output_end(&handle);
8209 }
8210
8211 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8212
8213 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8214 perf_iterate_ctx(struct perf_event_context *ctx,
8215 perf_iterate_f output,
8216 void *data, bool all)
8217 {
8218 struct perf_event *event;
8219
8220 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8221 if (!all) {
8222 if (event->state < PERF_EVENT_STATE_INACTIVE)
8223 continue;
8224 if (!event_filter_match(event))
8225 continue;
8226 }
8227
8228 output(event, data);
8229 }
8230 }
8231
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8232 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8233 {
8234 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8235 struct perf_event *event;
8236
8237 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8238 /*
8239 * Skip events that are not fully formed yet; ensure that
8240 * if we observe event->ctx, both event and ctx will be
8241 * complete enough. See perf_install_in_context().
8242 */
8243 if (!smp_load_acquire(&event->ctx))
8244 continue;
8245
8246 if (event->state < PERF_EVENT_STATE_INACTIVE)
8247 continue;
8248 if (!event_filter_match(event))
8249 continue;
8250 output(event, data);
8251 }
8252 }
8253
8254 /*
8255 * Iterate all events that need to receive side-band events.
8256 *
8257 * For new callers; ensure that account_pmu_sb_event() includes
8258 * your event, otherwise it might not get delivered.
8259 */
8260 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8261 perf_iterate_sb(perf_iterate_f output, void *data,
8262 struct perf_event_context *task_ctx)
8263 {
8264 struct perf_event_context *ctx;
8265
8266 rcu_read_lock();
8267 preempt_disable();
8268
8269 /*
8270 * If we have task_ctx != NULL we only notify the task context itself.
8271 * The task_ctx is set only for EXIT events before releasing task
8272 * context.
8273 */
8274 if (task_ctx) {
8275 perf_iterate_ctx(task_ctx, output, data, false);
8276 goto done;
8277 }
8278
8279 perf_iterate_sb_cpu(output, data);
8280
8281 ctx = rcu_dereference(current->perf_event_ctxp);
8282 if (ctx)
8283 perf_iterate_ctx(ctx, output, data, false);
8284 done:
8285 preempt_enable();
8286 rcu_read_unlock();
8287 }
8288
8289 /*
8290 * Clear all file-based filters at exec, they'll have to be
8291 * re-instated when/if these objects are mmapped again.
8292 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8293 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8294 {
8295 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8296 struct perf_addr_filter *filter;
8297 unsigned int restart = 0, count = 0;
8298 unsigned long flags;
8299
8300 if (!has_addr_filter(event))
8301 return;
8302
8303 raw_spin_lock_irqsave(&ifh->lock, flags);
8304 list_for_each_entry(filter, &ifh->list, entry) {
8305 if (filter->path.dentry) {
8306 event->addr_filter_ranges[count].start = 0;
8307 event->addr_filter_ranges[count].size = 0;
8308 restart++;
8309 }
8310
8311 count++;
8312 }
8313
8314 if (restart)
8315 event->addr_filters_gen++;
8316 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8317
8318 if (restart)
8319 perf_event_stop(event, 1);
8320 }
8321
perf_event_exec(void)8322 void perf_event_exec(void)
8323 {
8324 struct perf_event_context *ctx;
8325
8326 ctx = perf_pin_task_context(current);
8327 if (!ctx)
8328 return;
8329
8330 perf_event_enable_on_exec(ctx);
8331 perf_event_remove_on_exec(ctx);
8332 scoped_guard(rcu)
8333 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8334
8335 perf_unpin_context(ctx);
8336 put_ctx(ctx);
8337 }
8338
8339 struct remote_output {
8340 struct perf_buffer *rb;
8341 int err;
8342 };
8343
__perf_event_output_stop(struct perf_event * event,void * data)8344 static void __perf_event_output_stop(struct perf_event *event, void *data)
8345 {
8346 struct perf_event *parent = event->parent;
8347 struct remote_output *ro = data;
8348 struct perf_buffer *rb = ro->rb;
8349 struct stop_event_data sd = {
8350 .event = event,
8351 };
8352
8353 if (!has_aux(event))
8354 return;
8355
8356 if (!parent)
8357 parent = event;
8358
8359 /*
8360 * In case of inheritance, it will be the parent that links to the
8361 * ring-buffer, but it will be the child that's actually using it.
8362 *
8363 * We are using event::rb to determine if the event should be stopped,
8364 * however this may race with ring_buffer_attach() (through set_output),
8365 * which will make us skip the event that actually needs to be stopped.
8366 * So ring_buffer_attach() has to stop an aux event before re-assigning
8367 * its rb pointer.
8368 */
8369 if (rcu_dereference(parent->rb) == rb)
8370 ro->err = __perf_event_stop(&sd);
8371 }
8372
__perf_pmu_output_stop(void * info)8373 static int __perf_pmu_output_stop(void *info)
8374 {
8375 struct perf_event *event = info;
8376 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8377 struct remote_output ro = {
8378 .rb = event->rb,
8379 };
8380
8381 rcu_read_lock();
8382 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8383 if (cpuctx->task_ctx)
8384 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8385 &ro, false);
8386 rcu_read_unlock();
8387
8388 return ro.err;
8389 }
8390
perf_pmu_output_stop(struct perf_event * event)8391 static void perf_pmu_output_stop(struct perf_event *event)
8392 {
8393 struct perf_event *iter;
8394 int err, cpu;
8395
8396 restart:
8397 rcu_read_lock();
8398 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8399 /*
8400 * For per-CPU events, we need to make sure that neither they
8401 * nor their children are running; for cpu==-1 events it's
8402 * sufficient to stop the event itself if it's active, since
8403 * it can't have children.
8404 */
8405 cpu = iter->cpu;
8406 if (cpu == -1)
8407 cpu = READ_ONCE(iter->oncpu);
8408
8409 if (cpu == -1)
8410 continue;
8411
8412 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8413 if (err == -EAGAIN) {
8414 rcu_read_unlock();
8415 goto restart;
8416 }
8417 }
8418 rcu_read_unlock();
8419 }
8420
8421 /*
8422 * task tracking -- fork/exit
8423 *
8424 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8425 */
8426
8427 struct perf_task_event {
8428 struct task_struct *task;
8429 struct perf_event_context *task_ctx;
8430
8431 struct {
8432 struct perf_event_header header;
8433
8434 u32 pid;
8435 u32 ppid;
8436 u32 tid;
8437 u32 ptid;
8438 u64 time;
8439 } event_id;
8440 };
8441
perf_event_task_match(struct perf_event * event)8442 static int perf_event_task_match(struct perf_event *event)
8443 {
8444 return event->attr.comm || event->attr.mmap ||
8445 event->attr.mmap2 || event->attr.mmap_data ||
8446 event->attr.task;
8447 }
8448
perf_event_task_output(struct perf_event * event,void * data)8449 static void perf_event_task_output(struct perf_event *event,
8450 void *data)
8451 {
8452 struct perf_task_event *task_event = data;
8453 struct perf_output_handle handle;
8454 struct perf_sample_data sample;
8455 struct task_struct *task = task_event->task;
8456 int ret, size = task_event->event_id.header.size;
8457
8458 if (!perf_event_task_match(event))
8459 return;
8460
8461 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8462
8463 ret = perf_output_begin(&handle, &sample, event,
8464 task_event->event_id.header.size);
8465 if (ret)
8466 goto out;
8467
8468 task_event->event_id.pid = perf_event_pid(event, task);
8469 task_event->event_id.tid = perf_event_tid(event, task);
8470
8471 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8472 task_event->event_id.ppid = perf_event_pid(event,
8473 task->real_parent);
8474 task_event->event_id.ptid = perf_event_pid(event,
8475 task->real_parent);
8476 } else { /* PERF_RECORD_FORK */
8477 task_event->event_id.ppid = perf_event_pid(event, current);
8478 task_event->event_id.ptid = perf_event_tid(event, current);
8479 }
8480
8481 task_event->event_id.time = perf_event_clock(event);
8482
8483 perf_output_put(&handle, task_event->event_id);
8484
8485 perf_event__output_id_sample(event, &handle, &sample);
8486
8487 perf_output_end(&handle);
8488 out:
8489 task_event->event_id.header.size = size;
8490 }
8491
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8492 static void perf_event_task(struct task_struct *task,
8493 struct perf_event_context *task_ctx,
8494 int new)
8495 {
8496 struct perf_task_event task_event;
8497
8498 if (!atomic_read(&nr_comm_events) &&
8499 !atomic_read(&nr_mmap_events) &&
8500 !atomic_read(&nr_task_events))
8501 return;
8502
8503 task_event = (struct perf_task_event){
8504 .task = task,
8505 .task_ctx = task_ctx,
8506 .event_id = {
8507 .header = {
8508 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8509 .misc = 0,
8510 .size = sizeof(task_event.event_id),
8511 },
8512 /* .pid */
8513 /* .ppid */
8514 /* .tid */
8515 /* .ptid */
8516 /* .time */
8517 },
8518 };
8519
8520 perf_iterate_sb(perf_event_task_output,
8521 &task_event,
8522 task_ctx);
8523 }
8524
perf_event_fork(struct task_struct * task)8525 void perf_event_fork(struct task_struct *task)
8526 {
8527 perf_event_task(task, NULL, 1);
8528 perf_event_namespaces(task);
8529 }
8530
8531 /*
8532 * comm tracking
8533 */
8534
8535 struct perf_comm_event {
8536 struct task_struct *task;
8537 char *comm;
8538 int comm_size;
8539
8540 struct {
8541 struct perf_event_header header;
8542
8543 u32 pid;
8544 u32 tid;
8545 } event_id;
8546 };
8547
perf_event_comm_match(struct perf_event * event)8548 static int perf_event_comm_match(struct perf_event *event)
8549 {
8550 return event->attr.comm;
8551 }
8552
perf_event_comm_output(struct perf_event * event,void * data)8553 static void perf_event_comm_output(struct perf_event *event,
8554 void *data)
8555 {
8556 struct perf_comm_event *comm_event = data;
8557 struct perf_output_handle handle;
8558 struct perf_sample_data sample;
8559 int size = comm_event->event_id.header.size;
8560 int ret;
8561
8562 if (!perf_event_comm_match(event))
8563 return;
8564
8565 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8566 ret = perf_output_begin(&handle, &sample, event,
8567 comm_event->event_id.header.size);
8568
8569 if (ret)
8570 goto out;
8571
8572 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8573 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8574
8575 perf_output_put(&handle, comm_event->event_id);
8576 __output_copy(&handle, comm_event->comm,
8577 comm_event->comm_size);
8578
8579 perf_event__output_id_sample(event, &handle, &sample);
8580
8581 perf_output_end(&handle);
8582 out:
8583 comm_event->event_id.header.size = size;
8584 }
8585
perf_event_comm_event(struct perf_comm_event * comm_event)8586 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8587 {
8588 char comm[TASK_COMM_LEN];
8589 unsigned int size;
8590
8591 memset(comm, 0, sizeof(comm));
8592 strscpy(comm, comm_event->task->comm, sizeof(comm));
8593 size = ALIGN(strlen(comm)+1, sizeof(u64));
8594
8595 comm_event->comm = comm;
8596 comm_event->comm_size = size;
8597
8598 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8599
8600 perf_iterate_sb(perf_event_comm_output,
8601 comm_event,
8602 NULL);
8603 }
8604
perf_event_comm(struct task_struct * task,bool exec)8605 void perf_event_comm(struct task_struct *task, bool exec)
8606 {
8607 struct perf_comm_event comm_event;
8608
8609 if (!atomic_read(&nr_comm_events))
8610 return;
8611
8612 comm_event = (struct perf_comm_event){
8613 .task = task,
8614 /* .comm */
8615 /* .comm_size */
8616 .event_id = {
8617 .header = {
8618 .type = PERF_RECORD_COMM,
8619 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8620 /* .size */
8621 },
8622 /* .pid */
8623 /* .tid */
8624 },
8625 };
8626
8627 perf_event_comm_event(&comm_event);
8628 }
8629
8630 /*
8631 * namespaces tracking
8632 */
8633
8634 struct perf_namespaces_event {
8635 struct task_struct *task;
8636
8637 struct {
8638 struct perf_event_header header;
8639
8640 u32 pid;
8641 u32 tid;
8642 u64 nr_namespaces;
8643 struct perf_ns_link_info link_info[NR_NAMESPACES];
8644 } event_id;
8645 };
8646
perf_event_namespaces_match(struct perf_event * event)8647 static int perf_event_namespaces_match(struct perf_event *event)
8648 {
8649 return event->attr.namespaces;
8650 }
8651
perf_event_namespaces_output(struct perf_event * event,void * data)8652 static void perf_event_namespaces_output(struct perf_event *event,
8653 void *data)
8654 {
8655 struct perf_namespaces_event *namespaces_event = data;
8656 struct perf_output_handle handle;
8657 struct perf_sample_data sample;
8658 u16 header_size = namespaces_event->event_id.header.size;
8659 int ret;
8660
8661 if (!perf_event_namespaces_match(event))
8662 return;
8663
8664 perf_event_header__init_id(&namespaces_event->event_id.header,
8665 &sample, event);
8666 ret = perf_output_begin(&handle, &sample, event,
8667 namespaces_event->event_id.header.size);
8668 if (ret)
8669 goto out;
8670
8671 namespaces_event->event_id.pid = perf_event_pid(event,
8672 namespaces_event->task);
8673 namespaces_event->event_id.tid = perf_event_tid(event,
8674 namespaces_event->task);
8675
8676 perf_output_put(&handle, namespaces_event->event_id);
8677
8678 perf_event__output_id_sample(event, &handle, &sample);
8679
8680 perf_output_end(&handle);
8681 out:
8682 namespaces_event->event_id.header.size = header_size;
8683 }
8684
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8685 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8686 struct task_struct *task,
8687 const struct proc_ns_operations *ns_ops)
8688 {
8689 struct path ns_path;
8690 struct inode *ns_inode;
8691 int error;
8692
8693 error = ns_get_path(&ns_path, task, ns_ops);
8694 if (!error) {
8695 ns_inode = ns_path.dentry->d_inode;
8696 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8697 ns_link_info->ino = ns_inode->i_ino;
8698 path_put(&ns_path);
8699 }
8700 }
8701
perf_event_namespaces(struct task_struct * task)8702 void perf_event_namespaces(struct task_struct *task)
8703 {
8704 struct perf_namespaces_event namespaces_event;
8705 struct perf_ns_link_info *ns_link_info;
8706
8707 if (!atomic_read(&nr_namespaces_events))
8708 return;
8709
8710 namespaces_event = (struct perf_namespaces_event){
8711 .task = task,
8712 .event_id = {
8713 .header = {
8714 .type = PERF_RECORD_NAMESPACES,
8715 .misc = 0,
8716 .size = sizeof(namespaces_event.event_id),
8717 },
8718 /* .pid */
8719 /* .tid */
8720 .nr_namespaces = NR_NAMESPACES,
8721 /* .link_info[NR_NAMESPACES] */
8722 },
8723 };
8724
8725 ns_link_info = namespaces_event.event_id.link_info;
8726
8727 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8728 task, &mntns_operations);
8729
8730 #ifdef CONFIG_USER_NS
8731 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8732 task, &userns_operations);
8733 #endif
8734 #ifdef CONFIG_NET_NS
8735 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8736 task, &netns_operations);
8737 #endif
8738 #ifdef CONFIG_UTS_NS
8739 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8740 task, &utsns_operations);
8741 #endif
8742 #ifdef CONFIG_IPC_NS
8743 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8744 task, &ipcns_operations);
8745 #endif
8746 #ifdef CONFIG_PID_NS
8747 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8748 task, &pidns_operations);
8749 #endif
8750 #ifdef CONFIG_CGROUPS
8751 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8752 task, &cgroupns_operations);
8753 #endif
8754
8755 perf_iterate_sb(perf_event_namespaces_output,
8756 &namespaces_event,
8757 NULL);
8758 }
8759
8760 /*
8761 * cgroup tracking
8762 */
8763 #ifdef CONFIG_CGROUP_PERF
8764
8765 struct perf_cgroup_event {
8766 char *path;
8767 int path_size;
8768 struct {
8769 struct perf_event_header header;
8770 u64 id;
8771 char path[];
8772 } event_id;
8773 };
8774
perf_event_cgroup_match(struct perf_event * event)8775 static int perf_event_cgroup_match(struct perf_event *event)
8776 {
8777 return event->attr.cgroup;
8778 }
8779
perf_event_cgroup_output(struct perf_event * event,void * data)8780 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8781 {
8782 struct perf_cgroup_event *cgroup_event = data;
8783 struct perf_output_handle handle;
8784 struct perf_sample_data sample;
8785 u16 header_size = cgroup_event->event_id.header.size;
8786 int ret;
8787
8788 if (!perf_event_cgroup_match(event))
8789 return;
8790
8791 perf_event_header__init_id(&cgroup_event->event_id.header,
8792 &sample, event);
8793 ret = perf_output_begin(&handle, &sample, event,
8794 cgroup_event->event_id.header.size);
8795 if (ret)
8796 goto out;
8797
8798 perf_output_put(&handle, cgroup_event->event_id);
8799 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8800
8801 perf_event__output_id_sample(event, &handle, &sample);
8802
8803 perf_output_end(&handle);
8804 out:
8805 cgroup_event->event_id.header.size = header_size;
8806 }
8807
perf_event_cgroup(struct cgroup * cgrp)8808 static void perf_event_cgroup(struct cgroup *cgrp)
8809 {
8810 struct perf_cgroup_event cgroup_event;
8811 char path_enomem[16] = "//enomem";
8812 char *pathname;
8813 size_t size;
8814
8815 if (!atomic_read(&nr_cgroup_events))
8816 return;
8817
8818 cgroup_event = (struct perf_cgroup_event){
8819 .event_id = {
8820 .header = {
8821 .type = PERF_RECORD_CGROUP,
8822 .misc = 0,
8823 .size = sizeof(cgroup_event.event_id),
8824 },
8825 .id = cgroup_id(cgrp),
8826 },
8827 };
8828
8829 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8830 if (pathname == NULL) {
8831 cgroup_event.path = path_enomem;
8832 } else {
8833 /* just to be sure to have enough space for alignment */
8834 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8835 cgroup_event.path = pathname;
8836 }
8837
8838 /*
8839 * Since our buffer works in 8 byte units we need to align our string
8840 * size to a multiple of 8. However, we must guarantee the tail end is
8841 * zero'd out to avoid leaking random bits to userspace.
8842 */
8843 size = strlen(cgroup_event.path) + 1;
8844 while (!IS_ALIGNED(size, sizeof(u64)))
8845 cgroup_event.path[size++] = '\0';
8846
8847 cgroup_event.event_id.header.size += size;
8848 cgroup_event.path_size = size;
8849
8850 perf_iterate_sb(perf_event_cgroup_output,
8851 &cgroup_event,
8852 NULL);
8853
8854 kfree(pathname);
8855 }
8856
8857 #endif
8858
8859 /*
8860 * mmap tracking
8861 */
8862
8863 struct perf_mmap_event {
8864 struct vm_area_struct *vma;
8865
8866 const char *file_name;
8867 int file_size;
8868 int maj, min;
8869 u64 ino;
8870 u64 ino_generation;
8871 u32 prot, flags;
8872 u8 build_id[BUILD_ID_SIZE_MAX];
8873 u32 build_id_size;
8874
8875 struct {
8876 struct perf_event_header header;
8877
8878 u32 pid;
8879 u32 tid;
8880 u64 start;
8881 u64 len;
8882 u64 pgoff;
8883 } event_id;
8884 };
8885
perf_event_mmap_match(struct perf_event * event,void * data)8886 static int perf_event_mmap_match(struct perf_event *event,
8887 void *data)
8888 {
8889 struct perf_mmap_event *mmap_event = data;
8890 struct vm_area_struct *vma = mmap_event->vma;
8891 int executable = vma->vm_flags & VM_EXEC;
8892
8893 return (!executable && event->attr.mmap_data) ||
8894 (executable && (event->attr.mmap || event->attr.mmap2));
8895 }
8896
perf_event_mmap_output(struct perf_event * event,void * data)8897 static void perf_event_mmap_output(struct perf_event *event,
8898 void *data)
8899 {
8900 struct perf_mmap_event *mmap_event = data;
8901 struct perf_output_handle handle;
8902 struct perf_sample_data sample;
8903 int size = mmap_event->event_id.header.size;
8904 u32 type = mmap_event->event_id.header.type;
8905 bool use_build_id;
8906 int ret;
8907
8908 if (!perf_event_mmap_match(event, data))
8909 return;
8910
8911 if (event->attr.mmap2) {
8912 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8913 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8914 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8915 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8916 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8917 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8918 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8919 }
8920
8921 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8922 ret = perf_output_begin(&handle, &sample, event,
8923 mmap_event->event_id.header.size);
8924 if (ret)
8925 goto out;
8926
8927 mmap_event->event_id.pid = perf_event_pid(event, current);
8928 mmap_event->event_id.tid = perf_event_tid(event, current);
8929
8930 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8931
8932 if (event->attr.mmap2 && use_build_id)
8933 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8934
8935 perf_output_put(&handle, mmap_event->event_id);
8936
8937 if (event->attr.mmap2) {
8938 if (use_build_id) {
8939 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8940
8941 __output_copy(&handle, size, 4);
8942 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8943 } else {
8944 perf_output_put(&handle, mmap_event->maj);
8945 perf_output_put(&handle, mmap_event->min);
8946 perf_output_put(&handle, mmap_event->ino);
8947 perf_output_put(&handle, mmap_event->ino_generation);
8948 }
8949 perf_output_put(&handle, mmap_event->prot);
8950 perf_output_put(&handle, mmap_event->flags);
8951 }
8952
8953 __output_copy(&handle, mmap_event->file_name,
8954 mmap_event->file_size);
8955
8956 perf_event__output_id_sample(event, &handle, &sample);
8957
8958 perf_output_end(&handle);
8959 out:
8960 mmap_event->event_id.header.size = size;
8961 mmap_event->event_id.header.type = type;
8962 }
8963
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8964 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8965 {
8966 struct vm_area_struct *vma = mmap_event->vma;
8967 struct file *file = vma->vm_file;
8968 int maj = 0, min = 0;
8969 u64 ino = 0, gen = 0;
8970 u32 prot = 0, flags = 0;
8971 unsigned int size;
8972 char tmp[16];
8973 char *buf = NULL;
8974 char *name = NULL;
8975
8976 if (vma->vm_flags & VM_READ)
8977 prot |= PROT_READ;
8978 if (vma->vm_flags & VM_WRITE)
8979 prot |= PROT_WRITE;
8980 if (vma->vm_flags & VM_EXEC)
8981 prot |= PROT_EXEC;
8982
8983 if (vma->vm_flags & VM_MAYSHARE)
8984 flags = MAP_SHARED;
8985 else
8986 flags = MAP_PRIVATE;
8987
8988 if (vma->vm_flags & VM_LOCKED)
8989 flags |= MAP_LOCKED;
8990 if (is_vm_hugetlb_page(vma))
8991 flags |= MAP_HUGETLB;
8992
8993 if (file) {
8994 struct inode *inode;
8995 dev_t dev;
8996
8997 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8998 if (!buf) {
8999 name = "//enomem";
9000 goto cpy_name;
9001 }
9002 /*
9003 * d_path() works from the end of the rb backwards, so we
9004 * need to add enough zero bytes after the string to handle
9005 * the 64bit alignment we do later.
9006 */
9007 name = file_path(file, buf, PATH_MAX - sizeof(u64));
9008 if (IS_ERR(name)) {
9009 name = "//toolong";
9010 goto cpy_name;
9011 }
9012 inode = file_inode(vma->vm_file);
9013 dev = inode->i_sb->s_dev;
9014 ino = inode->i_ino;
9015 gen = inode->i_generation;
9016 maj = MAJOR(dev);
9017 min = MINOR(dev);
9018
9019 goto got_name;
9020 } else {
9021 if (vma->vm_ops && vma->vm_ops->name)
9022 name = (char *) vma->vm_ops->name(vma);
9023 if (!name)
9024 name = (char *)arch_vma_name(vma);
9025 if (!name) {
9026 if (vma_is_initial_heap(vma))
9027 name = "[heap]";
9028 else if (vma_is_initial_stack(vma))
9029 name = "[stack]";
9030 else
9031 name = "//anon";
9032 }
9033 }
9034
9035 cpy_name:
9036 strscpy(tmp, name, sizeof(tmp));
9037 name = tmp;
9038 got_name:
9039 /*
9040 * Since our buffer works in 8 byte units we need to align our string
9041 * size to a multiple of 8. However, we must guarantee the tail end is
9042 * zero'd out to avoid leaking random bits to userspace.
9043 */
9044 size = strlen(name)+1;
9045 while (!IS_ALIGNED(size, sizeof(u64)))
9046 name[size++] = '\0';
9047
9048 mmap_event->file_name = name;
9049 mmap_event->file_size = size;
9050 mmap_event->maj = maj;
9051 mmap_event->min = min;
9052 mmap_event->ino = ino;
9053 mmap_event->ino_generation = gen;
9054 mmap_event->prot = prot;
9055 mmap_event->flags = flags;
9056
9057 if (!(vma->vm_flags & VM_EXEC))
9058 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9059
9060 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9061
9062 if (atomic_read(&nr_build_id_events))
9063 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9064
9065 perf_iterate_sb(perf_event_mmap_output,
9066 mmap_event,
9067 NULL);
9068
9069 kfree(buf);
9070 }
9071
9072 /*
9073 * Check whether inode and address range match filter criteria.
9074 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9075 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9076 struct file *file, unsigned long offset,
9077 unsigned long size)
9078 {
9079 /* d_inode(NULL) won't be equal to any mapped user-space file */
9080 if (!filter->path.dentry)
9081 return false;
9082
9083 if (d_inode(filter->path.dentry) != file_inode(file))
9084 return false;
9085
9086 if (filter->offset > offset + size)
9087 return false;
9088
9089 if (filter->offset + filter->size < offset)
9090 return false;
9091
9092 return true;
9093 }
9094
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9095 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9096 struct vm_area_struct *vma,
9097 struct perf_addr_filter_range *fr)
9098 {
9099 unsigned long vma_size = vma->vm_end - vma->vm_start;
9100 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9101 struct file *file = vma->vm_file;
9102
9103 if (!perf_addr_filter_match(filter, file, off, vma_size))
9104 return false;
9105
9106 if (filter->offset < off) {
9107 fr->start = vma->vm_start;
9108 fr->size = min(vma_size, filter->size - (off - filter->offset));
9109 } else {
9110 fr->start = vma->vm_start + filter->offset - off;
9111 fr->size = min(vma->vm_end - fr->start, filter->size);
9112 }
9113
9114 return true;
9115 }
9116
__perf_addr_filters_adjust(struct perf_event * event,void * data)9117 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9118 {
9119 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9120 struct vm_area_struct *vma = data;
9121 struct perf_addr_filter *filter;
9122 unsigned int restart = 0, count = 0;
9123 unsigned long flags;
9124
9125 if (!has_addr_filter(event))
9126 return;
9127
9128 if (!vma->vm_file)
9129 return;
9130
9131 raw_spin_lock_irqsave(&ifh->lock, flags);
9132 list_for_each_entry(filter, &ifh->list, entry) {
9133 if (perf_addr_filter_vma_adjust(filter, vma,
9134 &event->addr_filter_ranges[count]))
9135 restart++;
9136
9137 count++;
9138 }
9139
9140 if (restart)
9141 event->addr_filters_gen++;
9142 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9143
9144 if (restart)
9145 perf_event_stop(event, 1);
9146 }
9147
9148 /*
9149 * Adjust all task's events' filters to the new vma
9150 */
perf_addr_filters_adjust(struct vm_area_struct * vma)9151 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9152 {
9153 struct perf_event_context *ctx;
9154
9155 /*
9156 * Data tracing isn't supported yet and as such there is no need
9157 * to keep track of anything that isn't related to executable code:
9158 */
9159 if (!(vma->vm_flags & VM_EXEC))
9160 return;
9161
9162 rcu_read_lock();
9163 ctx = rcu_dereference(current->perf_event_ctxp);
9164 if (ctx)
9165 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9166 rcu_read_unlock();
9167 }
9168
perf_event_mmap(struct vm_area_struct * vma)9169 void perf_event_mmap(struct vm_area_struct *vma)
9170 {
9171 struct perf_mmap_event mmap_event;
9172
9173 if (!atomic_read(&nr_mmap_events))
9174 return;
9175
9176 mmap_event = (struct perf_mmap_event){
9177 .vma = vma,
9178 /* .file_name */
9179 /* .file_size */
9180 .event_id = {
9181 .header = {
9182 .type = PERF_RECORD_MMAP,
9183 .misc = PERF_RECORD_MISC_USER,
9184 /* .size */
9185 },
9186 /* .pid */
9187 /* .tid */
9188 .start = vma->vm_start,
9189 .len = vma->vm_end - vma->vm_start,
9190 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
9191 },
9192 /* .maj (attr_mmap2 only) */
9193 /* .min (attr_mmap2 only) */
9194 /* .ino (attr_mmap2 only) */
9195 /* .ino_generation (attr_mmap2 only) */
9196 /* .prot (attr_mmap2 only) */
9197 /* .flags (attr_mmap2 only) */
9198 };
9199
9200 perf_addr_filters_adjust(vma);
9201 perf_event_mmap_event(&mmap_event);
9202 }
9203
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9204 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9205 unsigned long size, u64 flags)
9206 {
9207 struct perf_output_handle handle;
9208 struct perf_sample_data sample;
9209 struct perf_aux_event {
9210 struct perf_event_header header;
9211 u64 offset;
9212 u64 size;
9213 u64 flags;
9214 } rec = {
9215 .header = {
9216 .type = PERF_RECORD_AUX,
9217 .misc = 0,
9218 .size = sizeof(rec),
9219 },
9220 .offset = head,
9221 .size = size,
9222 .flags = flags,
9223 };
9224 int ret;
9225
9226 perf_event_header__init_id(&rec.header, &sample, event);
9227 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9228
9229 if (ret)
9230 return;
9231
9232 perf_output_put(&handle, rec);
9233 perf_event__output_id_sample(event, &handle, &sample);
9234
9235 perf_output_end(&handle);
9236 }
9237
9238 /*
9239 * Lost/dropped samples logging
9240 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9241 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9242 {
9243 struct perf_output_handle handle;
9244 struct perf_sample_data sample;
9245 int ret;
9246
9247 struct {
9248 struct perf_event_header header;
9249 u64 lost;
9250 } lost_samples_event = {
9251 .header = {
9252 .type = PERF_RECORD_LOST_SAMPLES,
9253 .misc = 0,
9254 .size = sizeof(lost_samples_event),
9255 },
9256 .lost = lost,
9257 };
9258
9259 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9260
9261 ret = perf_output_begin(&handle, &sample, event,
9262 lost_samples_event.header.size);
9263 if (ret)
9264 return;
9265
9266 perf_output_put(&handle, lost_samples_event);
9267 perf_event__output_id_sample(event, &handle, &sample);
9268 perf_output_end(&handle);
9269 }
9270
9271 /*
9272 * context_switch tracking
9273 */
9274
9275 struct perf_switch_event {
9276 struct task_struct *task;
9277 struct task_struct *next_prev;
9278
9279 struct {
9280 struct perf_event_header header;
9281 u32 next_prev_pid;
9282 u32 next_prev_tid;
9283 } event_id;
9284 };
9285
perf_event_switch_match(struct perf_event * event)9286 static int perf_event_switch_match(struct perf_event *event)
9287 {
9288 return event->attr.context_switch;
9289 }
9290
perf_event_switch_output(struct perf_event * event,void * data)9291 static void perf_event_switch_output(struct perf_event *event, void *data)
9292 {
9293 struct perf_switch_event *se = data;
9294 struct perf_output_handle handle;
9295 struct perf_sample_data sample;
9296 int ret;
9297
9298 if (!perf_event_switch_match(event))
9299 return;
9300
9301 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9302 if (event->ctx->task) {
9303 se->event_id.header.type = PERF_RECORD_SWITCH;
9304 se->event_id.header.size = sizeof(se->event_id.header);
9305 } else {
9306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9307 se->event_id.header.size = sizeof(se->event_id);
9308 se->event_id.next_prev_pid =
9309 perf_event_pid(event, se->next_prev);
9310 se->event_id.next_prev_tid =
9311 perf_event_tid(event, se->next_prev);
9312 }
9313
9314 perf_event_header__init_id(&se->event_id.header, &sample, event);
9315
9316 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9317 if (ret)
9318 return;
9319
9320 if (event->ctx->task)
9321 perf_output_put(&handle, se->event_id.header);
9322 else
9323 perf_output_put(&handle, se->event_id);
9324
9325 perf_event__output_id_sample(event, &handle, &sample);
9326
9327 perf_output_end(&handle);
9328 }
9329
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9330 static void perf_event_switch(struct task_struct *task,
9331 struct task_struct *next_prev, bool sched_in)
9332 {
9333 struct perf_switch_event switch_event;
9334
9335 /* N.B. caller checks nr_switch_events != 0 */
9336
9337 switch_event = (struct perf_switch_event){
9338 .task = task,
9339 .next_prev = next_prev,
9340 .event_id = {
9341 .header = {
9342 /* .type */
9343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9344 /* .size */
9345 },
9346 /* .next_prev_pid */
9347 /* .next_prev_tid */
9348 },
9349 };
9350
9351 if (!sched_in && task_is_runnable(task)) {
9352 switch_event.event_id.header.misc |=
9353 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9354 }
9355
9356 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9357 }
9358
9359 /*
9360 * IRQ throttle logging
9361 */
9362
perf_log_throttle(struct perf_event * event,int enable)9363 static void perf_log_throttle(struct perf_event *event, int enable)
9364 {
9365 struct perf_output_handle handle;
9366 struct perf_sample_data sample;
9367 int ret;
9368
9369 struct {
9370 struct perf_event_header header;
9371 u64 time;
9372 u64 id;
9373 u64 stream_id;
9374 } throttle_event = {
9375 .header = {
9376 .type = PERF_RECORD_THROTTLE,
9377 .misc = 0,
9378 .size = sizeof(throttle_event),
9379 },
9380 .time = perf_event_clock(event),
9381 .id = primary_event_id(event),
9382 .stream_id = event->id,
9383 };
9384
9385 if (enable)
9386 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9387
9388 perf_event_header__init_id(&throttle_event.header, &sample, event);
9389
9390 ret = perf_output_begin(&handle, &sample, event,
9391 throttle_event.header.size);
9392 if (ret)
9393 return;
9394
9395 perf_output_put(&handle, throttle_event);
9396 perf_event__output_id_sample(event, &handle, &sample);
9397 perf_output_end(&handle);
9398 }
9399
9400 /*
9401 * ksymbol register/unregister tracking
9402 */
9403
9404 struct perf_ksymbol_event {
9405 const char *name;
9406 int name_len;
9407 struct {
9408 struct perf_event_header header;
9409 u64 addr;
9410 u32 len;
9411 u16 ksym_type;
9412 u16 flags;
9413 } event_id;
9414 };
9415
perf_event_ksymbol_match(struct perf_event * event)9416 static int perf_event_ksymbol_match(struct perf_event *event)
9417 {
9418 return event->attr.ksymbol;
9419 }
9420
perf_event_ksymbol_output(struct perf_event * event,void * data)9421 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9422 {
9423 struct perf_ksymbol_event *ksymbol_event = data;
9424 struct perf_output_handle handle;
9425 struct perf_sample_data sample;
9426 int ret;
9427
9428 if (!perf_event_ksymbol_match(event))
9429 return;
9430
9431 perf_event_header__init_id(&ksymbol_event->event_id.header,
9432 &sample, event);
9433 ret = perf_output_begin(&handle, &sample, event,
9434 ksymbol_event->event_id.header.size);
9435 if (ret)
9436 return;
9437
9438 perf_output_put(&handle, ksymbol_event->event_id);
9439 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9440 perf_event__output_id_sample(event, &handle, &sample);
9441
9442 perf_output_end(&handle);
9443 }
9444
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9445 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9446 const char *sym)
9447 {
9448 struct perf_ksymbol_event ksymbol_event;
9449 char name[KSYM_NAME_LEN];
9450 u16 flags = 0;
9451 int name_len;
9452
9453 if (!atomic_read(&nr_ksymbol_events))
9454 return;
9455
9456 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9457 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9458 goto err;
9459
9460 strscpy(name, sym, KSYM_NAME_LEN);
9461 name_len = strlen(name) + 1;
9462 while (!IS_ALIGNED(name_len, sizeof(u64)))
9463 name[name_len++] = '\0';
9464 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9465
9466 if (unregister)
9467 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9468
9469 ksymbol_event = (struct perf_ksymbol_event){
9470 .name = name,
9471 .name_len = name_len,
9472 .event_id = {
9473 .header = {
9474 .type = PERF_RECORD_KSYMBOL,
9475 .size = sizeof(ksymbol_event.event_id) +
9476 name_len,
9477 },
9478 .addr = addr,
9479 .len = len,
9480 .ksym_type = ksym_type,
9481 .flags = flags,
9482 },
9483 };
9484
9485 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9486 return;
9487 err:
9488 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9489 }
9490
9491 /*
9492 * bpf program load/unload tracking
9493 */
9494
9495 struct perf_bpf_event {
9496 struct bpf_prog *prog;
9497 struct {
9498 struct perf_event_header header;
9499 u16 type;
9500 u16 flags;
9501 u32 id;
9502 u8 tag[BPF_TAG_SIZE];
9503 } event_id;
9504 };
9505
perf_event_bpf_match(struct perf_event * event)9506 static int perf_event_bpf_match(struct perf_event *event)
9507 {
9508 return event->attr.bpf_event;
9509 }
9510
perf_event_bpf_output(struct perf_event * event,void * data)9511 static void perf_event_bpf_output(struct perf_event *event, void *data)
9512 {
9513 struct perf_bpf_event *bpf_event = data;
9514 struct perf_output_handle handle;
9515 struct perf_sample_data sample;
9516 int ret;
9517
9518 if (!perf_event_bpf_match(event))
9519 return;
9520
9521 perf_event_header__init_id(&bpf_event->event_id.header,
9522 &sample, event);
9523 ret = perf_output_begin(&handle, &sample, event,
9524 bpf_event->event_id.header.size);
9525 if (ret)
9526 return;
9527
9528 perf_output_put(&handle, bpf_event->event_id);
9529 perf_event__output_id_sample(event, &handle, &sample);
9530
9531 perf_output_end(&handle);
9532 }
9533
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9534 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9535 enum perf_bpf_event_type type)
9536 {
9537 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9538 int i;
9539
9540 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9541 (u64)(unsigned long)prog->bpf_func,
9542 prog->jited_len, unregister,
9543 prog->aux->ksym.name);
9544
9545 for (i = 1; i < prog->aux->func_cnt; i++) {
9546 struct bpf_prog *subprog = prog->aux->func[i];
9547
9548 perf_event_ksymbol(
9549 PERF_RECORD_KSYMBOL_TYPE_BPF,
9550 (u64)(unsigned long)subprog->bpf_func,
9551 subprog->jited_len, unregister,
9552 subprog->aux->ksym.name);
9553 }
9554 }
9555
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9556 void perf_event_bpf_event(struct bpf_prog *prog,
9557 enum perf_bpf_event_type type,
9558 u16 flags)
9559 {
9560 struct perf_bpf_event bpf_event;
9561
9562 switch (type) {
9563 case PERF_BPF_EVENT_PROG_LOAD:
9564 case PERF_BPF_EVENT_PROG_UNLOAD:
9565 if (atomic_read(&nr_ksymbol_events))
9566 perf_event_bpf_emit_ksymbols(prog, type);
9567 break;
9568 default:
9569 return;
9570 }
9571
9572 if (!atomic_read(&nr_bpf_events))
9573 return;
9574
9575 bpf_event = (struct perf_bpf_event){
9576 .prog = prog,
9577 .event_id = {
9578 .header = {
9579 .type = PERF_RECORD_BPF_EVENT,
9580 .size = sizeof(bpf_event.event_id),
9581 },
9582 .type = type,
9583 .flags = flags,
9584 .id = prog->aux->id,
9585 },
9586 };
9587
9588 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9589
9590 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9591 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9592 }
9593
9594 struct perf_text_poke_event {
9595 const void *old_bytes;
9596 const void *new_bytes;
9597 size_t pad;
9598 u16 old_len;
9599 u16 new_len;
9600
9601 struct {
9602 struct perf_event_header header;
9603
9604 u64 addr;
9605 } event_id;
9606 };
9607
perf_event_text_poke_match(struct perf_event * event)9608 static int perf_event_text_poke_match(struct perf_event *event)
9609 {
9610 return event->attr.text_poke;
9611 }
9612
perf_event_text_poke_output(struct perf_event * event,void * data)9613 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9614 {
9615 struct perf_text_poke_event *text_poke_event = data;
9616 struct perf_output_handle handle;
9617 struct perf_sample_data sample;
9618 u64 padding = 0;
9619 int ret;
9620
9621 if (!perf_event_text_poke_match(event))
9622 return;
9623
9624 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9625
9626 ret = perf_output_begin(&handle, &sample, event,
9627 text_poke_event->event_id.header.size);
9628 if (ret)
9629 return;
9630
9631 perf_output_put(&handle, text_poke_event->event_id);
9632 perf_output_put(&handle, text_poke_event->old_len);
9633 perf_output_put(&handle, text_poke_event->new_len);
9634
9635 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9636 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9637
9638 if (text_poke_event->pad)
9639 __output_copy(&handle, &padding, text_poke_event->pad);
9640
9641 perf_event__output_id_sample(event, &handle, &sample);
9642
9643 perf_output_end(&handle);
9644 }
9645
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9646 void perf_event_text_poke(const void *addr, const void *old_bytes,
9647 size_t old_len, const void *new_bytes, size_t new_len)
9648 {
9649 struct perf_text_poke_event text_poke_event;
9650 size_t tot, pad;
9651
9652 if (!atomic_read(&nr_text_poke_events))
9653 return;
9654
9655 tot = sizeof(text_poke_event.old_len) + old_len;
9656 tot += sizeof(text_poke_event.new_len) + new_len;
9657 pad = ALIGN(tot, sizeof(u64)) - tot;
9658
9659 text_poke_event = (struct perf_text_poke_event){
9660 .old_bytes = old_bytes,
9661 .new_bytes = new_bytes,
9662 .pad = pad,
9663 .old_len = old_len,
9664 .new_len = new_len,
9665 .event_id = {
9666 .header = {
9667 .type = PERF_RECORD_TEXT_POKE,
9668 .misc = PERF_RECORD_MISC_KERNEL,
9669 .size = sizeof(text_poke_event.event_id) + tot + pad,
9670 },
9671 .addr = (unsigned long)addr,
9672 },
9673 };
9674
9675 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9676 }
9677
perf_event_itrace_started(struct perf_event * event)9678 void perf_event_itrace_started(struct perf_event *event)
9679 {
9680 event->attach_state |= PERF_ATTACH_ITRACE;
9681 }
9682
perf_log_itrace_start(struct perf_event * event)9683 static void perf_log_itrace_start(struct perf_event *event)
9684 {
9685 struct perf_output_handle handle;
9686 struct perf_sample_data sample;
9687 struct perf_aux_event {
9688 struct perf_event_header header;
9689 u32 pid;
9690 u32 tid;
9691 } rec;
9692 int ret;
9693
9694 if (event->parent)
9695 event = event->parent;
9696
9697 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9698 event->attach_state & PERF_ATTACH_ITRACE)
9699 return;
9700
9701 rec.header.type = PERF_RECORD_ITRACE_START;
9702 rec.header.misc = 0;
9703 rec.header.size = sizeof(rec);
9704 rec.pid = perf_event_pid(event, current);
9705 rec.tid = perf_event_tid(event, current);
9706
9707 perf_event_header__init_id(&rec.header, &sample, event);
9708 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9709
9710 if (ret)
9711 return;
9712
9713 perf_output_put(&handle, rec);
9714 perf_event__output_id_sample(event, &handle, &sample);
9715
9716 perf_output_end(&handle);
9717 }
9718
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9719 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9720 {
9721 struct perf_output_handle handle;
9722 struct perf_sample_data sample;
9723 struct perf_aux_event {
9724 struct perf_event_header header;
9725 u64 hw_id;
9726 } rec;
9727 int ret;
9728
9729 if (event->parent)
9730 event = event->parent;
9731
9732 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9733 rec.header.misc = 0;
9734 rec.header.size = sizeof(rec);
9735 rec.hw_id = hw_id;
9736
9737 perf_event_header__init_id(&rec.header, &sample, event);
9738 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9739
9740 if (ret)
9741 return;
9742
9743 perf_output_put(&handle, rec);
9744 perf_event__output_id_sample(event, &handle, &sample);
9745
9746 perf_output_end(&handle);
9747 }
9748 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9749
9750 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9751 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9752 {
9753 struct hw_perf_event *hwc = &event->hw;
9754 int ret = 0;
9755 u64 seq;
9756
9757 seq = __this_cpu_read(perf_throttled_seq);
9758 if (seq != hwc->interrupts_seq) {
9759 hwc->interrupts_seq = seq;
9760 hwc->interrupts = 1;
9761 } else {
9762 hwc->interrupts++;
9763 if (unlikely(throttle &&
9764 hwc->interrupts > max_samples_per_tick)) {
9765 __this_cpu_inc(perf_throttled_count);
9766 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9767 hwc->interrupts = MAX_INTERRUPTS;
9768 perf_log_throttle(event, 0);
9769 ret = 1;
9770 }
9771 }
9772
9773 if (event->attr.freq) {
9774 u64 now = perf_clock();
9775 s64 delta = now - hwc->freq_time_stamp;
9776
9777 hwc->freq_time_stamp = now;
9778
9779 if (delta > 0 && delta < 2*TICK_NSEC)
9780 perf_adjust_period(event, delta, hwc->last_period, true);
9781 }
9782
9783 return ret;
9784 }
9785
perf_event_account_interrupt(struct perf_event * event)9786 int perf_event_account_interrupt(struct perf_event *event)
9787 {
9788 return __perf_event_account_interrupt(event, 1);
9789 }
9790
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9791 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9792 {
9793 /*
9794 * Due to interrupt latency (AKA "skid"), we may enter the
9795 * kernel before taking an overflow, even if the PMU is only
9796 * counting user events.
9797 */
9798 if (event->attr.exclude_kernel && !user_mode(regs))
9799 return false;
9800
9801 return true;
9802 }
9803
9804 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9805 static int bpf_overflow_handler(struct perf_event *event,
9806 struct perf_sample_data *data,
9807 struct pt_regs *regs)
9808 {
9809 struct bpf_perf_event_data_kern ctx = {
9810 .data = data,
9811 .event = event,
9812 };
9813 struct bpf_prog *prog;
9814 int ret = 0;
9815
9816 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9817 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9818 goto out;
9819 rcu_read_lock();
9820 prog = READ_ONCE(event->prog);
9821 if (prog) {
9822 perf_prepare_sample(data, event, regs);
9823 ret = bpf_prog_run(prog, &ctx);
9824 }
9825 rcu_read_unlock();
9826 out:
9827 __this_cpu_dec(bpf_prog_active);
9828
9829 return ret;
9830 }
9831
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9832 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9833 struct bpf_prog *prog,
9834 u64 bpf_cookie)
9835 {
9836 if (event->overflow_handler_context)
9837 /* hw breakpoint or kernel counter */
9838 return -EINVAL;
9839
9840 if (event->prog)
9841 return -EEXIST;
9842
9843 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9844 return -EINVAL;
9845
9846 if (event->attr.precise_ip &&
9847 prog->call_get_stack &&
9848 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9849 event->attr.exclude_callchain_kernel ||
9850 event->attr.exclude_callchain_user)) {
9851 /*
9852 * On perf_event with precise_ip, calling bpf_get_stack()
9853 * may trigger unwinder warnings and occasional crashes.
9854 * bpf_get_[stack|stackid] works around this issue by using
9855 * callchain attached to perf_sample_data. If the
9856 * perf_event does not full (kernel and user) callchain
9857 * attached to perf_sample_data, do not allow attaching BPF
9858 * program that calls bpf_get_[stack|stackid].
9859 */
9860 return -EPROTO;
9861 }
9862
9863 event->prog = prog;
9864 event->bpf_cookie = bpf_cookie;
9865 return 0;
9866 }
9867
perf_event_free_bpf_handler(struct perf_event * event)9868 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9869 {
9870 struct bpf_prog *prog = event->prog;
9871
9872 if (!prog)
9873 return;
9874
9875 event->prog = NULL;
9876 bpf_prog_put(prog);
9877 }
9878 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9879 static inline int bpf_overflow_handler(struct perf_event *event,
9880 struct perf_sample_data *data,
9881 struct pt_regs *regs)
9882 {
9883 return 1;
9884 }
9885
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9886 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9887 struct bpf_prog *prog,
9888 u64 bpf_cookie)
9889 {
9890 return -EOPNOTSUPP;
9891 }
9892
perf_event_free_bpf_handler(struct perf_event * event)9893 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9894 {
9895 }
9896 #endif
9897
9898 /*
9899 * Generic event overflow handling, sampling.
9900 */
9901
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9902 static int __perf_event_overflow(struct perf_event *event,
9903 int throttle, struct perf_sample_data *data,
9904 struct pt_regs *regs)
9905 {
9906 int events = atomic_read(&event->event_limit);
9907 int ret = 0;
9908
9909 /*
9910 * Non-sampling counters might still use the PMI to fold short
9911 * hardware counters, ignore those.
9912 */
9913 if (unlikely(!is_sampling_event(event)))
9914 return 0;
9915
9916 ret = __perf_event_account_interrupt(event, throttle);
9917
9918 if (event->attr.aux_pause)
9919 perf_event_aux_pause(event->aux_event, true);
9920
9921 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9922 !bpf_overflow_handler(event, data, regs))
9923 goto out;
9924
9925 /*
9926 * XXX event_limit might not quite work as expected on inherited
9927 * events
9928 */
9929
9930 event->pending_kill = POLL_IN;
9931 if (events && atomic_dec_and_test(&event->event_limit)) {
9932 ret = 1;
9933 event->pending_kill = POLL_HUP;
9934 perf_event_disable_inatomic(event);
9935 }
9936
9937 if (event->attr.sigtrap) {
9938 /*
9939 * The desired behaviour of sigtrap vs invalid samples is a bit
9940 * tricky; on the one hand, one should not loose the SIGTRAP if
9941 * it is the first event, on the other hand, we should also not
9942 * trigger the WARN or override the data address.
9943 */
9944 bool valid_sample = sample_is_allowed(event, regs);
9945 unsigned int pending_id = 1;
9946 enum task_work_notify_mode notify_mode;
9947
9948 if (regs)
9949 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9950
9951 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9952
9953 if (!event->pending_work &&
9954 !task_work_add(current, &event->pending_task, notify_mode)) {
9955 event->pending_work = pending_id;
9956 local_inc(&event->ctx->nr_no_switch_fast);
9957
9958 event->pending_addr = 0;
9959 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9960 event->pending_addr = data->addr;
9961
9962 } else if (event->attr.exclude_kernel && valid_sample) {
9963 /*
9964 * Should not be able to return to user space without
9965 * consuming pending_work; with exceptions:
9966 *
9967 * 1. Where !exclude_kernel, events can overflow again
9968 * in the kernel without returning to user space.
9969 *
9970 * 2. Events that can overflow again before the IRQ-
9971 * work without user space progress (e.g. hrtimer).
9972 * To approximate progress (with false negatives),
9973 * check 32-bit hash of the current IP.
9974 */
9975 WARN_ON_ONCE(event->pending_work != pending_id);
9976 }
9977 }
9978
9979 READ_ONCE(event->overflow_handler)(event, data, regs);
9980
9981 if (*perf_event_fasync(event) && event->pending_kill) {
9982 event->pending_wakeup = 1;
9983 irq_work_queue(&event->pending_irq);
9984 }
9985 out:
9986 if (event->attr.aux_resume)
9987 perf_event_aux_pause(event->aux_event, false);
9988
9989 return ret;
9990 }
9991
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9992 int perf_event_overflow(struct perf_event *event,
9993 struct perf_sample_data *data,
9994 struct pt_regs *regs)
9995 {
9996 return __perf_event_overflow(event, 1, data, regs);
9997 }
9998
9999 /*
10000 * Generic software event infrastructure
10001 */
10002
10003 struct swevent_htable {
10004 struct swevent_hlist *swevent_hlist;
10005 struct mutex hlist_mutex;
10006 int hlist_refcount;
10007 };
10008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10009
10010 /*
10011 * We directly increment event->count and keep a second value in
10012 * event->hw.period_left to count intervals. This period event
10013 * is kept in the range [-sample_period, 0] so that we can use the
10014 * sign as trigger.
10015 */
10016
perf_swevent_set_period(struct perf_event * event)10017 u64 perf_swevent_set_period(struct perf_event *event)
10018 {
10019 struct hw_perf_event *hwc = &event->hw;
10020 u64 period = hwc->last_period;
10021 u64 nr, offset;
10022 s64 old, val;
10023
10024 hwc->last_period = hwc->sample_period;
10025
10026 old = local64_read(&hwc->period_left);
10027 do {
10028 val = old;
10029 if (val < 0)
10030 return 0;
10031
10032 nr = div64_u64(period + val, period);
10033 offset = nr * period;
10034 val -= offset;
10035 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10036
10037 return nr;
10038 }
10039
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10041 struct perf_sample_data *data,
10042 struct pt_regs *regs)
10043 {
10044 struct hw_perf_event *hwc = &event->hw;
10045 int throttle = 0;
10046
10047 if (!overflow)
10048 overflow = perf_swevent_set_period(event);
10049
10050 if (hwc->interrupts == MAX_INTERRUPTS)
10051 return;
10052
10053 for (; overflow; overflow--) {
10054 if (__perf_event_overflow(event, throttle,
10055 data, regs)) {
10056 /*
10057 * We inhibit the overflow from happening when
10058 * hwc->interrupts == MAX_INTERRUPTS.
10059 */
10060 break;
10061 }
10062 throttle = 1;
10063 }
10064 }
10065
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10066 static void perf_swevent_event(struct perf_event *event, u64 nr,
10067 struct perf_sample_data *data,
10068 struct pt_regs *regs)
10069 {
10070 struct hw_perf_event *hwc = &event->hw;
10071
10072 local64_add(nr, &event->count);
10073
10074 if (!regs)
10075 return;
10076
10077 if (!is_sampling_event(event))
10078 return;
10079
10080 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10081 data->period = nr;
10082 return perf_swevent_overflow(event, 1, data, regs);
10083 } else
10084 data->period = event->hw.last_period;
10085
10086 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10087 return perf_swevent_overflow(event, 1, data, regs);
10088
10089 if (local64_add_negative(nr, &hwc->period_left))
10090 return;
10091
10092 perf_swevent_overflow(event, 0, data, regs);
10093 }
10094
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10095 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10096 {
10097 if (event->hw.state & PERF_HES_STOPPED)
10098 return 1;
10099
10100 if (regs) {
10101 if (event->attr.exclude_user && user_mode(regs))
10102 return 1;
10103
10104 if (event->attr.exclude_kernel && !user_mode(regs))
10105 return 1;
10106 }
10107
10108 return 0;
10109 }
10110
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10111 static int perf_swevent_match(struct perf_event *event,
10112 enum perf_type_id type,
10113 u32 event_id,
10114 struct perf_sample_data *data,
10115 struct pt_regs *regs)
10116 {
10117 if (event->attr.type != type)
10118 return 0;
10119
10120 if (event->attr.config != event_id)
10121 return 0;
10122
10123 if (perf_exclude_event(event, regs))
10124 return 0;
10125
10126 return 1;
10127 }
10128
swevent_hash(u64 type,u32 event_id)10129 static inline u64 swevent_hash(u64 type, u32 event_id)
10130 {
10131 u64 val = event_id | (type << 32);
10132
10133 return hash_64(val, SWEVENT_HLIST_BITS);
10134 }
10135
10136 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10137 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10138 {
10139 u64 hash = swevent_hash(type, event_id);
10140
10141 return &hlist->heads[hash];
10142 }
10143
10144 /* For the read side: events when they trigger */
10145 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10146 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10147 {
10148 struct swevent_hlist *hlist;
10149
10150 hlist = rcu_dereference(swhash->swevent_hlist);
10151 if (!hlist)
10152 return NULL;
10153
10154 return __find_swevent_head(hlist, type, event_id);
10155 }
10156
10157 /* For the event head insertion and removal in the hlist */
10158 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10159 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10160 {
10161 struct swevent_hlist *hlist;
10162 u32 event_id = event->attr.config;
10163 u64 type = event->attr.type;
10164
10165 /*
10166 * Event scheduling is always serialized against hlist allocation
10167 * and release. Which makes the protected version suitable here.
10168 * The context lock guarantees that.
10169 */
10170 hlist = rcu_dereference_protected(swhash->swevent_hlist,
10171 lockdep_is_held(&event->ctx->lock));
10172 if (!hlist)
10173 return NULL;
10174
10175 return __find_swevent_head(hlist, type, event_id);
10176 }
10177
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10178 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10179 u64 nr,
10180 struct perf_sample_data *data,
10181 struct pt_regs *regs)
10182 {
10183 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10184 struct perf_event *event;
10185 struct hlist_head *head;
10186
10187 rcu_read_lock();
10188 head = find_swevent_head_rcu(swhash, type, event_id);
10189 if (!head)
10190 goto end;
10191
10192 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10193 if (perf_swevent_match(event, type, event_id, data, regs))
10194 perf_swevent_event(event, nr, data, regs);
10195 }
10196 end:
10197 rcu_read_unlock();
10198 }
10199
10200 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10201
perf_swevent_get_recursion_context(void)10202 int perf_swevent_get_recursion_context(void)
10203 {
10204 return get_recursion_context(current->perf_recursion);
10205 }
10206 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10207
perf_swevent_put_recursion_context(int rctx)10208 void perf_swevent_put_recursion_context(int rctx)
10209 {
10210 put_recursion_context(current->perf_recursion, rctx);
10211 }
10212
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10213 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10214 {
10215 struct perf_sample_data data;
10216
10217 if (WARN_ON_ONCE(!regs))
10218 return;
10219
10220 perf_sample_data_init(&data, addr, 0);
10221 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10222 }
10223
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10224 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10225 {
10226 int rctx;
10227
10228 preempt_disable_notrace();
10229 rctx = perf_swevent_get_recursion_context();
10230 if (unlikely(rctx < 0))
10231 goto fail;
10232
10233 ___perf_sw_event(event_id, nr, regs, addr);
10234
10235 perf_swevent_put_recursion_context(rctx);
10236 fail:
10237 preempt_enable_notrace();
10238 }
10239
perf_swevent_read(struct perf_event * event)10240 static void perf_swevent_read(struct perf_event *event)
10241 {
10242 }
10243
perf_swevent_add(struct perf_event * event,int flags)10244 static int perf_swevent_add(struct perf_event *event, int flags)
10245 {
10246 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10247 struct hw_perf_event *hwc = &event->hw;
10248 struct hlist_head *head;
10249
10250 if (is_sampling_event(event)) {
10251 hwc->last_period = hwc->sample_period;
10252 perf_swevent_set_period(event);
10253 }
10254
10255 hwc->state = !(flags & PERF_EF_START);
10256
10257 head = find_swevent_head(swhash, event);
10258 if (WARN_ON_ONCE(!head))
10259 return -EINVAL;
10260
10261 hlist_add_head_rcu(&event->hlist_entry, head);
10262 perf_event_update_userpage(event);
10263
10264 return 0;
10265 }
10266
perf_swevent_del(struct perf_event * event,int flags)10267 static void perf_swevent_del(struct perf_event *event, int flags)
10268 {
10269 hlist_del_rcu(&event->hlist_entry);
10270 }
10271
perf_swevent_start(struct perf_event * event,int flags)10272 static void perf_swevent_start(struct perf_event *event, int flags)
10273 {
10274 event->hw.state = 0;
10275 }
10276
perf_swevent_stop(struct perf_event * event,int flags)10277 static void perf_swevent_stop(struct perf_event *event, int flags)
10278 {
10279 event->hw.state = PERF_HES_STOPPED;
10280 }
10281
10282 /* Deref the hlist from the update side */
10283 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10284 swevent_hlist_deref(struct swevent_htable *swhash)
10285 {
10286 return rcu_dereference_protected(swhash->swevent_hlist,
10287 lockdep_is_held(&swhash->hlist_mutex));
10288 }
10289
swevent_hlist_release(struct swevent_htable * swhash)10290 static void swevent_hlist_release(struct swevent_htable *swhash)
10291 {
10292 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10293
10294 if (!hlist)
10295 return;
10296
10297 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10298 kfree_rcu(hlist, rcu_head);
10299 }
10300
swevent_hlist_put_cpu(int cpu)10301 static void swevent_hlist_put_cpu(int cpu)
10302 {
10303 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10304
10305 mutex_lock(&swhash->hlist_mutex);
10306
10307 if (!--swhash->hlist_refcount)
10308 swevent_hlist_release(swhash);
10309
10310 mutex_unlock(&swhash->hlist_mutex);
10311 }
10312
swevent_hlist_put(void)10313 static void swevent_hlist_put(void)
10314 {
10315 int cpu;
10316
10317 for_each_possible_cpu(cpu)
10318 swevent_hlist_put_cpu(cpu);
10319 }
10320
swevent_hlist_get_cpu(int cpu)10321 static int swevent_hlist_get_cpu(int cpu)
10322 {
10323 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10324 int err = 0;
10325
10326 mutex_lock(&swhash->hlist_mutex);
10327 if (!swevent_hlist_deref(swhash) &&
10328 cpumask_test_cpu(cpu, perf_online_mask)) {
10329 struct swevent_hlist *hlist;
10330
10331 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10332 if (!hlist) {
10333 err = -ENOMEM;
10334 goto exit;
10335 }
10336 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10337 }
10338 swhash->hlist_refcount++;
10339 exit:
10340 mutex_unlock(&swhash->hlist_mutex);
10341
10342 return err;
10343 }
10344
swevent_hlist_get(void)10345 static int swevent_hlist_get(void)
10346 {
10347 int err, cpu, failed_cpu;
10348
10349 mutex_lock(&pmus_lock);
10350 for_each_possible_cpu(cpu) {
10351 err = swevent_hlist_get_cpu(cpu);
10352 if (err) {
10353 failed_cpu = cpu;
10354 goto fail;
10355 }
10356 }
10357 mutex_unlock(&pmus_lock);
10358 return 0;
10359 fail:
10360 for_each_possible_cpu(cpu) {
10361 if (cpu == failed_cpu)
10362 break;
10363 swevent_hlist_put_cpu(cpu);
10364 }
10365 mutex_unlock(&pmus_lock);
10366 return err;
10367 }
10368
10369 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10370
sw_perf_event_destroy(struct perf_event * event)10371 static void sw_perf_event_destroy(struct perf_event *event)
10372 {
10373 u64 event_id = event->attr.config;
10374
10375 WARN_ON(event->parent);
10376
10377 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10378 swevent_hlist_put();
10379 }
10380
10381 static struct pmu perf_cpu_clock; /* fwd declaration */
10382 static struct pmu perf_task_clock;
10383
perf_swevent_init(struct perf_event * event)10384 static int perf_swevent_init(struct perf_event *event)
10385 {
10386 u64 event_id = event->attr.config;
10387
10388 if (event->attr.type != PERF_TYPE_SOFTWARE)
10389 return -ENOENT;
10390
10391 /*
10392 * no branch sampling for software events
10393 */
10394 if (has_branch_stack(event))
10395 return -EOPNOTSUPP;
10396
10397 switch (event_id) {
10398 case PERF_COUNT_SW_CPU_CLOCK:
10399 event->attr.type = perf_cpu_clock.type;
10400 return -ENOENT;
10401 case PERF_COUNT_SW_TASK_CLOCK:
10402 event->attr.type = perf_task_clock.type;
10403 return -ENOENT;
10404
10405 default:
10406 break;
10407 }
10408
10409 if (event_id >= PERF_COUNT_SW_MAX)
10410 return -ENOENT;
10411
10412 if (!event->parent) {
10413 int err;
10414
10415 err = swevent_hlist_get();
10416 if (err)
10417 return err;
10418
10419 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10420 event->destroy = sw_perf_event_destroy;
10421 }
10422
10423 return 0;
10424 }
10425
10426 static struct pmu perf_swevent = {
10427 .task_ctx_nr = perf_sw_context,
10428
10429 .capabilities = PERF_PMU_CAP_NO_NMI,
10430
10431 .event_init = perf_swevent_init,
10432 .add = perf_swevent_add,
10433 .del = perf_swevent_del,
10434 .start = perf_swevent_start,
10435 .stop = perf_swevent_stop,
10436 .read = perf_swevent_read,
10437 };
10438
10439 #ifdef CONFIG_EVENT_TRACING
10440
tp_perf_event_destroy(struct perf_event * event)10441 static void tp_perf_event_destroy(struct perf_event *event)
10442 {
10443 perf_trace_destroy(event);
10444 }
10445
perf_tp_event_init(struct perf_event * event)10446 static int perf_tp_event_init(struct perf_event *event)
10447 {
10448 int err;
10449
10450 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10451 return -ENOENT;
10452
10453 /*
10454 * no branch sampling for tracepoint events
10455 */
10456 if (has_branch_stack(event))
10457 return -EOPNOTSUPP;
10458
10459 err = perf_trace_init(event);
10460 if (err)
10461 return err;
10462
10463 event->destroy = tp_perf_event_destroy;
10464
10465 return 0;
10466 }
10467
10468 static struct pmu perf_tracepoint = {
10469 .task_ctx_nr = perf_sw_context,
10470
10471 .event_init = perf_tp_event_init,
10472 .add = perf_trace_add,
10473 .del = perf_trace_del,
10474 .start = perf_swevent_start,
10475 .stop = perf_swevent_stop,
10476 .read = perf_swevent_read,
10477 };
10478
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10479 static int perf_tp_filter_match(struct perf_event *event,
10480 struct perf_raw_record *raw)
10481 {
10482 void *record = raw->frag.data;
10483
10484 /* only top level events have filters set */
10485 if (event->parent)
10486 event = event->parent;
10487
10488 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10489 return 1;
10490 return 0;
10491 }
10492
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10493 static int perf_tp_event_match(struct perf_event *event,
10494 struct perf_raw_record *raw,
10495 struct pt_regs *regs)
10496 {
10497 if (event->hw.state & PERF_HES_STOPPED)
10498 return 0;
10499 /*
10500 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10501 */
10502 if (event->attr.exclude_kernel && !user_mode(regs))
10503 return 0;
10504
10505 if (!perf_tp_filter_match(event, raw))
10506 return 0;
10507
10508 return 1;
10509 }
10510
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10511 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10512 struct trace_event_call *call, u64 count,
10513 struct pt_regs *regs, struct hlist_head *head,
10514 struct task_struct *task)
10515 {
10516 if (bpf_prog_array_valid(call)) {
10517 *(struct pt_regs **)raw_data = regs;
10518 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10519 perf_swevent_put_recursion_context(rctx);
10520 return;
10521 }
10522 }
10523 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10524 rctx, task);
10525 }
10526 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10527
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10528 static void __perf_tp_event_target_task(u64 count, void *record,
10529 struct pt_regs *regs,
10530 struct perf_sample_data *data,
10531 struct perf_raw_record *raw,
10532 struct perf_event *event)
10533 {
10534 struct trace_entry *entry = record;
10535
10536 if (event->attr.config != entry->type)
10537 return;
10538 /* Cannot deliver synchronous signal to other task. */
10539 if (event->attr.sigtrap)
10540 return;
10541 if (perf_tp_event_match(event, raw, regs)) {
10542 perf_sample_data_init(data, 0, 0);
10543 perf_sample_save_raw_data(data, event, raw);
10544 perf_swevent_event(event, count, data, regs);
10545 }
10546 }
10547
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10548 static void perf_tp_event_target_task(u64 count, void *record,
10549 struct pt_regs *regs,
10550 struct perf_sample_data *data,
10551 struct perf_raw_record *raw,
10552 struct perf_event_context *ctx)
10553 {
10554 unsigned int cpu = smp_processor_id();
10555 struct pmu *pmu = &perf_tracepoint;
10556 struct perf_event *event, *sibling;
10557
10558 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10559 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10560 for_each_sibling_event(sibling, event)
10561 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10562 }
10563
10564 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10565 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10566 for_each_sibling_event(sibling, event)
10567 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10568 }
10569 }
10570
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10571 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10572 struct pt_regs *regs, struct hlist_head *head, int rctx,
10573 struct task_struct *task)
10574 {
10575 struct perf_sample_data data;
10576 struct perf_event *event;
10577
10578 struct perf_raw_record raw = {
10579 .frag = {
10580 .size = entry_size,
10581 .data = record,
10582 },
10583 };
10584
10585 perf_trace_buf_update(record, event_type);
10586
10587 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10588 if (perf_tp_event_match(event, &raw, regs)) {
10589 /*
10590 * Here use the same on-stack perf_sample_data,
10591 * some members in data are event-specific and
10592 * need to be re-computed for different sweveents.
10593 * Re-initialize data->sample_flags safely to avoid
10594 * the problem that next event skips preparing data
10595 * because data->sample_flags is set.
10596 */
10597 perf_sample_data_init(&data, 0, 0);
10598 perf_sample_save_raw_data(&data, event, &raw);
10599 perf_swevent_event(event, count, &data, regs);
10600 }
10601 }
10602
10603 /*
10604 * If we got specified a target task, also iterate its context and
10605 * deliver this event there too.
10606 */
10607 if (task && task != current) {
10608 struct perf_event_context *ctx;
10609
10610 rcu_read_lock();
10611 ctx = rcu_dereference(task->perf_event_ctxp);
10612 if (!ctx)
10613 goto unlock;
10614
10615 raw_spin_lock(&ctx->lock);
10616 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10617 raw_spin_unlock(&ctx->lock);
10618 unlock:
10619 rcu_read_unlock();
10620 }
10621
10622 perf_swevent_put_recursion_context(rctx);
10623 }
10624 EXPORT_SYMBOL_GPL(perf_tp_event);
10625
10626 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10627 /*
10628 * Flags in config, used by dynamic PMU kprobe and uprobe
10629 * The flags should match following PMU_FORMAT_ATTR().
10630 *
10631 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10632 * if not set, create kprobe/uprobe
10633 *
10634 * The following values specify a reference counter (or semaphore in the
10635 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10636 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10637 *
10638 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10639 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10640 */
10641 enum perf_probe_config {
10642 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10643 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10644 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10645 };
10646
10647 PMU_FORMAT_ATTR(retprobe, "config:0");
10648 #endif
10649
10650 #ifdef CONFIG_KPROBE_EVENTS
10651 static struct attribute *kprobe_attrs[] = {
10652 &format_attr_retprobe.attr,
10653 NULL,
10654 };
10655
10656 static struct attribute_group kprobe_format_group = {
10657 .name = "format",
10658 .attrs = kprobe_attrs,
10659 };
10660
10661 static const struct attribute_group *kprobe_attr_groups[] = {
10662 &kprobe_format_group,
10663 NULL,
10664 };
10665
10666 static int perf_kprobe_event_init(struct perf_event *event);
10667 static struct pmu perf_kprobe = {
10668 .task_ctx_nr = perf_sw_context,
10669 .event_init = perf_kprobe_event_init,
10670 .add = perf_trace_add,
10671 .del = perf_trace_del,
10672 .start = perf_swevent_start,
10673 .stop = perf_swevent_stop,
10674 .read = perf_swevent_read,
10675 .attr_groups = kprobe_attr_groups,
10676 };
10677
perf_kprobe_event_init(struct perf_event * event)10678 static int perf_kprobe_event_init(struct perf_event *event)
10679 {
10680 int err;
10681 bool is_retprobe;
10682
10683 if (event->attr.type != perf_kprobe.type)
10684 return -ENOENT;
10685
10686 if (!perfmon_capable())
10687 return -EACCES;
10688
10689 /*
10690 * no branch sampling for probe events
10691 */
10692 if (has_branch_stack(event))
10693 return -EOPNOTSUPP;
10694
10695 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10696 err = perf_kprobe_init(event, is_retprobe);
10697 if (err)
10698 return err;
10699
10700 event->destroy = perf_kprobe_destroy;
10701
10702 return 0;
10703 }
10704 #endif /* CONFIG_KPROBE_EVENTS */
10705
10706 #ifdef CONFIG_UPROBE_EVENTS
10707 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10708
10709 static struct attribute *uprobe_attrs[] = {
10710 &format_attr_retprobe.attr,
10711 &format_attr_ref_ctr_offset.attr,
10712 NULL,
10713 };
10714
10715 static struct attribute_group uprobe_format_group = {
10716 .name = "format",
10717 .attrs = uprobe_attrs,
10718 };
10719
10720 static const struct attribute_group *uprobe_attr_groups[] = {
10721 &uprobe_format_group,
10722 NULL,
10723 };
10724
10725 static int perf_uprobe_event_init(struct perf_event *event);
10726 static struct pmu perf_uprobe = {
10727 .task_ctx_nr = perf_sw_context,
10728 .event_init = perf_uprobe_event_init,
10729 .add = perf_trace_add,
10730 .del = perf_trace_del,
10731 .start = perf_swevent_start,
10732 .stop = perf_swevent_stop,
10733 .read = perf_swevent_read,
10734 .attr_groups = uprobe_attr_groups,
10735 };
10736
perf_uprobe_event_init(struct perf_event * event)10737 static int perf_uprobe_event_init(struct perf_event *event)
10738 {
10739 int err;
10740 unsigned long ref_ctr_offset;
10741 bool is_retprobe;
10742
10743 if (event->attr.type != perf_uprobe.type)
10744 return -ENOENT;
10745
10746 if (!perfmon_capable())
10747 return -EACCES;
10748
10749 /*
10750 * no branch sampling for probe events
10751 */
10752 if (has_branch_stack(event))
10753 return -EOPNOTSUPP;
10754
10755 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10756 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10757 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10758 if (err)
10759 return err;
10760
10761 event->destroy = perf_uprobe_destroy;
10762
10763 return 0;
10764 }
10765 #endif /* CONFIG_UPROBE_EVENTS */
10766
perf_tp_register(void)10767 static inline void perf_tp_register(void)
10768 {
10769 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10770 #ifdef CONFIG_KPROBE_EVENTS
10771 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10772 #endif
10773 #ifdef CONFIG_UPROBE_EVENTS
10774 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10775 #endif
10776 }
10777
perf_event_free_filter(struct perf_event * event)10778 static void perf_event_free_filter(struct perf_event *event)
10779 {
10780 ftrace_profile_free_filter(event);
10781 }
10782
10783 /*
10784 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10785 * with perf_event_open()
10786 */
perf_event_is_tracing(struct perf_event * event)10787 static inline bool perf_event_is_tracing(struct perf_event *event)
10788 {
10789 if (event->pmu == &perf_tracepoint)
10790 return true;
10791 #ifdef CONFIG_KPROBE_EVENTS
10792 if (event->pmu == &perf_kprobe)
10793 return true;
10794 #endif
10795 #ifdef CONFIG_UPROBE_EVENTS
10796 if (event->pmu == &perf_uprobe)
10797 return true;
10798 #endif
10799 return false;
10800 }
10801
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10802 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10803 u64 bpf_cookie)
10804 {
10805 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10806
10807 if (!perf_event_is_tracing(event))
10808 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10809
10810 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10811 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10812 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10813 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10814 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10815 /* bpf programs can only be attached to u/kprobe or tracepoint */
10816 return -EINVAL;
10817
10818 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10819 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10820 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10821 return -EINVAL;
10822
10823 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10824 /* only uprobe programs are allowed to be sleepable */
10825 return -EINVAL;
10826
10827 /* Kprobe override only works for kprobes, not uprobes. */
10828 if (prog->kprobe_override && !is_kprobe)
10829 return -EINVAL;
10830
10831 if (is_tracepoint || is_syscall_tp) {
10832 int off = trace_event_get_offsets(event->tp_event);
10833
10834 if (prog->aux->max_ctx_offset > off)
10835 return -EACCES;
10836 }
10837
10838 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10839 }
10840
perf_event_free_bpf_prog(struct perf_event * event)10841 void perf_event_free_bpf_prog(struct perf_event *event)
10842 {
10843 if (!perf_event_is_tracing(event)) {
10844 perf_event_free_bpf_handler(event);
10845 return;
10846 }
10847 perf_event_detach_bpf_prog(event);
10848 }
10849
10850 #else
10851
perf_tp_register(void)10852 static inline void perf_tp_register(void)
10853 {
10854 }
10855
perf_event_free_filter(struct perf_event * event)10856 static void perf_event_free_filter(struct perf_event *event)
10857 {
10858 }
10859
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10860 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10861 u64 bpf_cookie)
10862 {
10863 return -ENOENT;
10864 }
10865
perf_event_free_bpf_prog(struct perf_event * event)10866 void perf_event_free_bpf_prog(struct perf_event *event)
10867 {
10868 }
10869 #endif /* CONFIG_EVENT_TRACING */
10870
10871 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10872 void perf_bp_event(struct perf_event *bp, void *data)
10873 {
10874 struct perf_sample_data sample;
10875 struct pt_regs *regs = data;
10876
10877 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10878
10879 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10880 perf_swevent_event(bp, 1, &sample, regs);
10881 }
10882 #endif
10883
10884 /*
10885 * Allocate a new address filter
10886 */
10887 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10888 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10889 {
10890 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10891 struct perf_addr_filter *filter;
10892
10893 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10894 if (!filter)
10895 return NULL;
10896
10897 INIT_LIST_HEAD(&filter->entry);
10898 list_add_tail(&filter->entry, filters);
10899
10900 return filter;
10901 }
10902
free_filters_list(struct list_head * filters)10903 static void free_filters_list(struct list_head *filters)
10904 {
10905 struct perf_addr_filter *filter, *iter;
10906
10907 list_for_each_entry_safe(filter, iter, filters, entry) {
10908 path_put(&filter->path);
10909 list_del(&filter->entry);
10910 kfree(filter);
10911 }
10912 }
10913
10914 /*
10915 * Free existing address filters and optionally install new ones
10916 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10917 static void perf_addr_filters_splice(struct perf_event *event,
10918 struct list_head *head)
10919 {
10920 unsigned long flags;
10921 LIST_HEAD(list);
10922
10923 if (!has_addr_filter(event))
10924 return;
10925
10926 /* don't bother with children, they don't have their own filters */
10927 if (event->parent)
10928 return;
10929
10930 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10931
10932 list_splice_init(&event->addr_filters.list, &list);
10933 if (head)
10934 list_splice(head, &event->addr_filters.list);
10935
10936 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10937
10938 free_filters_list(&list);
10939 }
10940
10941 /*
10942 * Scan through mm's vmas and see if one of them matches the
10943 * @filter; if so, adjust filter's address range.
10944 * Called with mm::mmap_lock down for reading.
10945 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10946 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10947 struct mm_struct *mm,
10948 struct perf_addr_filter_range *fr)
10949 {
10950 struct vm_area_struct *vma;
10951 VMA_ITERATOR(vmi, mm, 0);
10952
10953 for_each_vma(vmi, vma) {
10954 if (!vma->vm_file)
10955 continue;
10956
10957 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10958 return;
10959 }
10960 }
10961
10962 /*
10963 * Update event's address range filters based on the
10964 * task's existing mappings, if any.
10965 */
perf_event_addr_filters_apply(struct perf_event * event)10966 static void perf_event_addr_filters_apply(struct perf_event *event)
10967 {
10968 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10969 struct task_struct *task = READ_ONCE(event->ctx->task);
10970 struct perf_addr_filter *filter;
10971 struct mm_struct *mm = NULL;
10972 unsigned int count = 0;
10973 unsigned long flags;
10974
10975 /*
10976 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10977 * will stop on the parent's child_mutex that our caller is also holding
10978 */
10979 if (task == TASK_TOMBSTONE)
10980 return;
10981
10982 if (ifh->nr_file_filters) {
10983 mm = get_task_mm(task);
10984 if (!mm)
10985 goto restart;
10986
10987 mmap_read_lock(mm);
10988 }
10989
10990 raw_spin_lock_irqsave(&ifh->lock, flags);
10991 list_for_each_entry(filter, &ifh->list, entry) {
10992 if (filter->path.dentry) {
10993 /*
10994 * Adjust base offset if the filter is associated to a
10995 * binary that needs to be mapped:
10996 */
10997 event->addr_filter_ranges[count].start = 0;
10998 event->addr_filter_ranges[count].size = 0;
10999
11000 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11001 } else {
11002 event->addr_filter_ranges[count].start = filter->offset;
11003 event->addr_filter_ranges[count].size = filter->size;
11004 }
11005
11006 count++;
11007 }
11008
11009 event->addr_filters_gen++;
11010 raw_spin_unlock_irqrestore(&ifh->lock, flags);
11011
11012 if (ifh->nr_file_filters) {
11013 mmap_read_unlock(mm);
11014
11015 mmput(mm);
11016 }
11017
11018 restart:
11019 perf_event_stop(event, 1);
11020 }
11021
11022 /*
11023 * Address range filtering: limiting the data to certain
11024 * instruction address ranges. Filters are ioctl()ed to us from
11025 * userspace as ascii strings.
11026 *
11027 * Filter string format:
11028 *
11029 * ACTION RANGE_SPEC
11030 * where ACTION is one of the
11031 * * "filter": limit the trace to this region
11032 * * "start": start tracing from this address
11033 * * "stop": stop tracing at this address/region;
11034 * RANGE_SPEC is
11035 * * for kernel addresses: <start address>[/<size>]
11036 * * for object files: <start address>[/<size>]@</path/to/object/file>
11037 *
11038 * if <size> is not specified or is zero, the range is treated as a single
11039 * address; not valid for ACTION=="filter".
11040 */
11041 enum {
11042 IF_ACT_NONE = -1,
11043 IF_ACT_FILTER,
11044 IF_ACT_START,
11045 IF_ACT_STOP,
11046 IF_SRC_FILE,
11047 IF_SRC_KERNEL,
11048 IF_SRC_FILEADDR,
11049 IF_SRC_KERNELADDR,
11050 };
11051
11052 enum {
11053 IF_STATE_ACTION = 0,
11054 IF_STATE_SOURCE,
11055 IF_STATE_END,
11056 };
11057
11058 static const match_table_t if_tokens = {
11059 { IF_ACT_FILTER, "filter" },
11060 { IF_ACT_START, "start" },
11061 { IF_ACT_STOP, "stop" },
11062 { IF_SRC_FILE, "%u/%u@%s" },
11063 { IF_SRC_KERNEL, "%u/%u" },
11064 { IF_SRC_FILEADDR, "%u@%s" },
11065 { IF_SRC_KERNELADDR, "%u" },
11066 { IF_ACT_NONE, NULL },
11067 };
11068
11069 /*
11070 * Address filter string parser
11071 */
11072 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11073 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11074 struct list_head *filters)
11075 {
11076 struct perf_addr_filter *filter = NULL;
11077 char *start, *orig, *filename = NULL;
11078 substring_t args[MAX_OPT_ARGS];
11079 int state = IF_STATE_ACTION, token;
11080 unsigned int kernel = 0;
11081 int ret = -EINVAL;
11082
11083 orig = fstr = kstrdup(fstr, GFP_KERNEL);
11084 if (!fstr)
11085 return -ENOMEM;
11086
11087 while ((start = strsep(&fstr, " ,\n")) != NULL) {
11088 static const enum perf_addr_filter_action_t actions[] = {
11089 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
11090 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
11091 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
11092 };
11093 ret = -EINVAL;
11094
11095 if (!*start)
11096 continue;
11097
11098 /* filter definition begins */
11099 if (state == IF_STATE_ACTION) {
11100 filter = perf_addr_filter_new(event, filters);
11101 if (!filter)
11102 goto fail;
11103 }
11104
11105 token = match_token(start, if_tokens, args);
11106 switch (token) {
11107 case IF_ACT_FILTER:
11108 case IF_ACT_START:
11109 case IF_ACT_STOP:
11110 if (state != IF_STATE_ACTION)
11111 goto fail;
11112
11113 filter->action = actions[token];
11114 state = IF_STATE_SOURCE;
11115 break;
11116
11117 case IF_SRC_KERNELADDR:
11118 case IF_SRC_KERNEL:
11119 kernel = 1;
11120 fallthrough;
11121
11122 case IF_SRC_FILEADDR:
11123 case IF_SRC_FILE:
11124 if (state != IF_STATE_SOURCE)
11125 goto fail;
11126
11127 *args[0].to = 0;
11128 ret = kstrtoul(args[0].from, 0, &filter->offset);
11129 if (ret)
11130 goto fail;
11131
11132 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11133 *args[1].to = 0;
11134 ret = kstrtoul(args[1].from, 0, &filter->size);
11135 if (ret)
11136 goto fail;
11137 }
11138
11139 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11140 int fpos = token == IF_SRC_FILE ? 2 : 1;
11141
11142 kfree(filename);
11143 filename = match_strdup(&args[fpos]);
11144 if (!filename) {
11145 ret = -ENOMEM;
11146 goto fail;
11147 }
11148 }
11149
11150 state = IF_STATE_END;
11151 break;
11152
11153 default:
11154 goto fail;
11155 }
11156
11157 /*
11158 * Filter definition is fully parsed, validate and install it.
11159 * Make sure that it doesn't contradict itself or the event's
11160 * attribute.
11161 */
11162 if (state == IF_STATE_END) {
11163 ret = -EINVAL;
11164
11165 /*
11166 * ACTION "filter" must have a non-zero length region
11167 * specified.
11168 */
11169 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11170 !filter->size)
11171 goto fail;
11172
11173 if (!kernel) {
11174 if (!filename)
11175 goto fail;
11176
11177 /*
11178 * For now, we only support file-based filters
11179 * in per-task events; doing so for CPU-wide
11180 * events requires additional context switching
11181 * trickery, since same object code will be
11182 * mapped at different virtual addresses in
11183 * different processes.
11184 */
11185 ret = -EOPNOTSUPP;
11186 if (!event->ctx->task)
11187 goto fail;
11188
11189 /* look up the path and grab its inode */
11190 ret = kern_path(filename, LOOKUP_FOLLOW,
11191 &filter->path);
11192 if (ret)
11193 goto fail;
11194
11195 ret = -EINVAL;
11196 if (!filter->path.dentry ||
11197 !S_ISREG(d_inode(filter->path.dentry)
11198 ->i_mode))
11199 goto fail;
11200
11201 event->addr_filters.nr_file_filters++;
11202 }
11203
11204 /* ready to consume more filters */
11205 kfree(filename);
11206 filename = NULL;
11207 state = IF_STATE_ACTION;
11208 filter = NULL;
11209 kernel = 0;
11210 }
11211 }
11212
11213 if (state != IF_STATE_ACTION)
11214 goto fail;
11215
11216 kfree(filename);
11217 kfree(orig);
11218
11219 return 0;
11220
11221 fail:
11222 kfree(filename);
11223 free_filters_list(filters);
11224 kfree(orig);
11225
11226 return ret;
11227 }
11228
11229 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11230 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11231 {
11232 LIST_HEAD(filters);
11233 int ret;
11234
11235 /*
11236 * Since this is called in perf_ioctl() path, we're already holding
11237 * ctx::mutex.
11238 */
11239 lockdep_assert_held(&event->ctx->mutex);
11240
11241 if (WARN_ON_ONCE(event->parent))
11242 return -EINVAL;
11243
11244 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11245 if (ret)
11246 goto fail_clear_files;
11247
11248 ret = event->pmu->addr_filters_validate(&filters);
11249 if (ret)
11250 goto fail_free_filters;
11251
11252 /* remove existing filters, if any */
11253 perf_addr_filters_splice(event, &filters);
11254
11255 /* install new filters */
11256 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11257
11258 return ret;
11259
11260 fail_free_filters:
11261 free_filters_list(&filters);
11262
11263 fail_clear_files:
11264 event->addr_filters.nr_file_filters = 0;
11265
11266 return ret;
11267 }
11268
perf_event_set_filter(struct perf_event * event,void __user * arg)11269 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11270 {
11271 int ret = -EINVAL;
11272 char *filter_str;
11273
11274 filter_str = strndup_user(arg, PAGE_SIZE);
11275 if (IS_ERR(filter_str))
11276 return PTR_ERR(filter_str);
11277
11278 #ifdef CONFIG_EVENT_TRACING
11279 if (perf_event_is_tracing(event)) {
11280 struct perf_event_context *ctx = event->ctx;
11281
11282 /*
11283 * Beware, here be dragons!!
11284 *
11285 * the tracepoint muck will deadlock against ctx->mutex, but
11286 * the tracepoint stuff does not actually need it. So
11287 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11288 * already have a reference on ctx.
11289 *
11290 * This can result in event getting moved to a different ctx,
11291 * but that does not affect the tracepoint state.
11292 */
11293 mutex_unlock(&ctx->mutex);
11294 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11295 mutex_lock(&ctx->mutex);
11296 } else
11297 #endif
11298 if (has_addr_filter(event))
11299 ret = perf_event_set_addr_filter(event, filter_str);
11300
11301 kfree(filter_str);
11302 return ret;
11303 }
11304
11305 /*
11306 * hrtimer based swevent callback
11307 */
11308
perf_swevent_hrtimer(struct hrtimer * hrtimer)11309 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11310 {
11311 enum hrtimer_restart ret = HRTIMER_RESTART;
11312 struct perf_sample_data data;
11313 struct pt_regs *regs;
11314 struct perf_event *event;
11315 u64 period;
11316
11317 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11318
11319 if (event->state != PERF_EVENT_STATE_ACTIVE)
11320 return HRTIMER_NORESTART;
11321
11322 event->pmu->read(event);
11323
11324 perf_sample_data_init(&data, 0, event->hw.last_period);
11325 regs = get_irq_regs();
11326
11327 if (regs && !perf_exclude_event(event, regs)) {
11328 if (!(event->attr.exclude_idle && is_idle_task(current)))
11329 if (__perf_event_overflow(event, 1, &data, regs))
11330 ret = HRTIMER_NORESTART;
11331 }
11332
11333 period = max_t(u64, 10000, event->hw.sample_period);
11334 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11335
11336 return ret;
11337 }
11338
perf_swevent_start_hrtimer(struct perf_event * event)11339 static void perf_swevent_start_hrtimer(struct perf_event *event)
11340 {
11341 struct hw_perf_event *hwc = &event->hw;
11342 s64 period;
11343
11344 if (!is_sampling_event(event))
11345 return;
11346
11347 period = local64_read(&hwc->period_left);
11348 if (period) {
11349 if (period < 0)
11350 period = 10000;
11351
11352 local64_set(&hwc->period_left, 0);
11353 } else {
11354 period = max_t(u64, 10000, hwc->sample_period);
11355 }
11356 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11357 HRTIMER_MODE_REL_PINNED_HARD);
11358 }
11359
perf_swevent_cancel_hrtimer(struct perf_event * event)11360 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11361 {
11362 struct hw_perf_event *hwc = &event->hw;
11363
11364 if (is_sampling_event(event)) {
11365 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11366 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11367
11368 hrtimer_cancel(&hwc->hrtimer);
11369 }
11370 }
11371
perf_swevent_init_hrtimer(struct perf_event * event)11372 static void perf_swevent_init_hrtimer(struct perf_event *event)
11373 {
11374 struct hw_perf_event *hwc = &event->hw;
11375
11376 if (!is_sampling_event(event))
11377 return;
11378
11379 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11380 hwc->hrtimer.function = perf_swevent_hrtimer;
11381
11382 /*
11383 * Since hrtimers have a fixed rate, we can do a static freq->period
11384 * mapping and avoid the whole period adjust feedback stuff.
11385 */
11386 if (event->attr.freq) {
11387 long freq = event->attr.sample_freq;
11388
11389 event->attr.sample_period = NSEC_PER_SEC / freq;
11390 hwc->sample_period = event->attr.sample_period;
11391 local64_set(&hwc->period_left, hwc->sample_period);
11392 hwc->last_period = hwc->sample_period;
11393 event->attr.freq = 0;
11394 }
11395 }
11396
11397 /*
11398 * Software event: cpu wall time clock
11399 */
11400
cpu_clock_event_update(struct perf_event * event)11401 static void cpu_clock_event_update(struct perf_event *event)
11402 {
11403 s64 prev;
11404 u64 now;
11405
11406 now = local_clock();
11407 prev = local64_xchg(&event->hw.prev_count, now);
11408 local64_add(now - prev, &event->count);
11409 }
11410
cpu_clock_event_start(struct perf_event * event,int flags)11411 static void cpu_clock_event_start(struct perf_event *event, int flags)
11412 {
11413 local64_set(&event->hw.prev_count, local_clock());
11414 perf_swevent_start_hrtimer(event);
11415 }
11416
cpu_clock_event_stop(struct perf_event * event,int flags)11417 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11418 {
11419 perf_swevent_cancel_hrtimer(event);
11420 cpu_clock_event_update(event);
11421 }
11422
cpu_clock_event_add(struct perf_event * event,int flags)11423 static int cpu_clock_event_add(struct perf_event *event, int flags)
11424 {
11425 if (flags & PERF_EF_START)
11426 cpu_clock_event_start(event, flags);
11427 perf_event_update_userpage(event);
11428
11429 return 0;
11430 }
11431
cpu_clock_event_del(struct perf_event * event,int flags)11432 static void cpu_clock_event_del(struct perf_event *event, int flags)
11433 {
11434 cpu_clock_event_stop(event, flags);
11435 }
11436
cpu_clock_event_read(struct perf_event * event)11437 static void cpu_clock_event_read(struct perf_event *event)
11438 {
11439 cpu_clock_event_update(event);
11440 }
11441
cpu_clock_event_init(struct perf_event * event)11442 static int cpu_clock_event_init(struct perf_event *event)
11443 {
11444 if (event->attr.type != perf_cpu_clock.type)
11445 return -ENOENT;
11446
11447 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11448 return -ENOENT;
11449
11450 /*
11451 * no branch sampling for software events
11452 */
11453 if (has_branch_stack(event))
11454 return -EOPNOTSUPP;
11455
11456 perf_swevent_init_hrtimer(event);
11457
11458 return 0;
11459 }
11460
11461 static struct pmu perf_cpu_clock = {
11462 .task_ctx_nr = perf_sw_context,
11463
11464 .capabilities = PERF_PMU_CAP_NO_NMI,
11465 .dev = PMU_NULL_DEV,
11466
11467 .event_init = cpu_clock_event_init,
11468 .add = cpu_clock_event_add,
11469 .del = cpu_clock_event_del,
11470 .start = cpu_clock_event_start,
11471 .stop = cpu_clock_event_stop,
11472 .read = cpu_clock_event_read,
11473 };
11474
11475 /*
11476 * Software event: task time clock
11477 */
11478
task_clock_event_update(struct perf_event * event,u64 now)11479 static void task_clock_event_update(struct perf_event *event, u64 now)
11480 {
11481 u64 prev;
11482 s64 delta;
11483
11484 prev = local64_xchg(&event->hw.prev_count, now);
11485 delta = now - prev;
11486 local64_add(delta, &event->count);
11487 }
11488
task_clock_event_start(struct perf_event * event,int flags)11489 static void task_clock_event_start(struct perf_event *event, int flags)
11490 {
11491 local64_set(&event->hw.prev_count, event->ctx->time);
11492 perf_swevent_start_hrtimer(event);
11493 }
11494
task_clock_event_stop(struct perf_event * event,int flags)11495 static void task_clock_event_stop(struct perf_event *event, int flags)
11496 {
11497 perf_swevent_cancel_hrtimer(event);
11498 task_clock_event_update(event, event->ctx->time);
11499 }
11500
task_clock_event_add(struct perf_event * event,int flags)11501 static int task_clock_event_add(struct perf_event *event, int flags)
11502 {
11503 if (flags & PERF_EF_START)
11504 task_clock_event_start(event, flags);
11505 perf_event_update_userpage(event);
11506
11507 return 0;
11508 }
11509
task_clock_event_del(struct perf_event * event,int flags)11510 static void task_clock_event_del(struct perf_event *event, int flags)
11511 {
11512 task_clock_event_stop(event, PERF_EF_UPDATE);
11513 }
11514
task_clock_event_read(struct perf_event * event)11515 static void task_clock_event_read(struct perf_event *event)
11516 {
11517 u64 now = perf_clock();
11518 u64 delta = now - event->ctx->timestamp;
11519 u64 time = event->ctx->time + delta;
11520
11521 task_clock_event_update(event, time);
11522 }
11523
task_clock_event_init(struct perf_event * event)11524 static int task_clock_event_init(struct perf_event *event)
11525 {
11526 if (event->attr.type != perf_task_clock.type)
11527 return -ENOENT;
11528
11529 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11530 return -ENOENT;
11531
11532 /*
11533 * no branch sampling for software events
11534 */
11535 if (has_branch_stack(event))
11536 return -EOPNOTSUPP;
11537
11538 perf_swevent_init_hrtimer(event);
11539
11540 return 0;
11541 }
11542
11543 static struct pmu perf_task_clock = {
11544 .task_ctx_nr = perf_sw_context,
11545
11546 .capabilities = PERF_PMU_CAP_NO_NMI,
11547 .dev = PMU_NULL_DEV,
11548
11549 .event_init = task_clock_event_init,
11550 .add = task_clock_event_add,
11551 .del = task_clock_event_del,
11552 .start = task_clock_event_start,
11553 .stop = task_clock_event_stop,
11554 .read = task_clock_event_read,
11555 };
11556
perf_pmu_nop_void(struct pmu * pmu)11557 static void perf_pmu_nop_void(struct pmu *pmu)
11558 {
11559 }
11560
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11561 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11562 {
11563 }
11564
perf_pmu_nop_int(struct pmu * pmu)11565 static int perf_pmu_nop_int(struct pmu *pmu)
11566 {
11567 return 0;
11568 }
11569
perf_event_nop_int(struct perf_event * event,u64 value)11570 static int perf_event_nop_int(struct perf_event *event, u64 value)
11571 {
11572 return 0;
11573 }
11574
11575 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11576
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11577 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11578 {
11579 __this_cpu_write(nop_txn_flags, flags);
11580
11581 if (flags & ~PERF_PMU_TXN_ADD)
11582 return;
11583
11584 perf_pmu_disable(pmu);
11585 }
11586
perf_pmu_commit_txn(struct pmu * pmu)11587 static int perf_pmu_commit_txn(struct pmu *pmu)
11588 {
11589 unsigned int flags = __this_cpu_read(nop_txn_flags);
11590
11591 __this_cpu_write(nop_txn_flags, 0);
11592
11593 if (flags & ~PERF_PMU_TXN_ADD)
11594 return 0;
11595
11596 perf_pmu_enable(pmu);
11597 return 0;
11598 }
11599
perf_pmu_cancel_txn(struct pmu * pmu)11600 static void perf_pmu_cancel_txn(struct pmu *pmu)
11601 {
11602 unsigned int flags = __this_cpu_read(nop_txn_flags);
11603
11604 __this_cpu_write(nop_txn_flags, 0);
11605
11606 if (flags & ~PERF_PMU_TXN_ADD)
11607 return;
11608
11609 perf_pmu_enable(pmu);
11610 }
11611
perf_event_idx_default(struct perf_event * event)11612 static int perf_event_idx_default(struct perf_event *event)
11613 {
11614 return 0;
11615 }
11616
free_pmu_context(struct pmu * pmu)11617 static void free_pmu_context(struct pmu *pmu)
11618 {
11619 free_percpu(pmu->cpu_pmu_context);
11620 }
11621
11622 /*
11623 * Let userspace know that this PMU supports address range filtering:
11624 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11625 static ssize_t nr_addr_filters_show(struct device *dev,
11626 struct device_attribute *attr,
11627 char *page)
11628 {
11629 struct pmu *pmu = dev_get_drvdata(dev);
11630
11631 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11632 }
11633 DEVICE_ATTR_RO(nr_addr_filters);
11634
11635 static struct idr pmu_idr;
11636
11637 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11638 type_show(struct device *dev, struct device_attribute *attr, char *page)
11639 {
11640 struct pmu *pmu = dev_get_drvdata(dev);
11641
11642 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11643 }
11644 static DEVICE_ATTR_RO(type);
11645
11646 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11647 perf_event_mux_interval_ms_show(struct device *dev,
11648 struct device_attribute *attr,
11649 char *page)
11650 {
11651 struct pmu *pmu = dev_get_drvdata(dev);
11652
11653 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11654 }
11655
11656 static DEFINE_MUTEX(mux_interval_mutex);
11657
11658 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11659 perf_event_mux_interval_ms_store(struct device *dev,
11660 struct device_attribute *attr,
11661 const char *buf, size_t count)
11662 {
11663 struct pmu *pmu = dev_get_drvdata(dev);
11664 int timer, cpu, ret;
11665
11666 ret = kstrtoint(buf, 0, &timer);
11667 if (ret)
11668 return ret;
11669
11670 if (timer < 1)
11671 return -EINVAL;
11672
11673 /* same value, noting to do */
11674 if (timer == pmu->hrtimer_interval_ms)
11675 return count;
11676
11677 mutex_lock(&mux_interval_mutex);
11678 pmu->hrtimer_interval_ms = timer;
11679
11680 /* update all cpuctx for this PMU */
11681 cpus_read_lock();
11682 for_each_online_cpu(cpu) {
11683 struct perf_cpu_pmu_context *cpc;
11684 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11685 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11686
11687 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11688 }
11689 cpus_read_unlock();
11690 mutex_unlock(&mux_interval_mutex);
11691
11692 return count;
11693 }
11694 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11695
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11696 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11697 {
11698 switch (scope) {
11699 case PERF_PMU_SCOPE_CORE:
11700 return topology_sibling_cpumask(cpu);
11701 case PERF_PMU_SCOPE_DIE:
11702 return topology_die_cpumask(cpu);
11703 case PERF_PMU_SCOPE_CLUSTER:
11704 return topology_cluster_cpumask(cpu);
11705 case PERF_PMU_SCOPE_PKG:
11706 return topology_core_cpumask(cpu);
11707 case PERF_PMU_SCOPE_SYS_WIDE:
11708 return cpu_online_mask;
11709 }
11710
11711 return NULL;
11712 }
11713
perf_scope_cpumask(unsigned int scope)11714 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11715 {
11716 switch (scope) {
11717 case PERF_PMU_SCOPE_CORE:
11718 return perf_online_core_mask;
11719 case PERF_PMU_SCOPE_DIE:
11720 return perf_online_die_mask;
11721 case PERF_PMU_SCOPE_CLUSTER:
11722 return perf_online_cluster_mask;
11723 case PERF_PMU_SCOPE_PKG:
11724 return perf_online_pkg_mask;
11725 case PERF_PMU_SCOPE_SYS_WIDE:
11726 return perf_online_sys_mask;
11727 }
11728
11729 return NULL;
11730 }
11731
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)11732 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11733 char *buf)
11734 {
11735 struct pmu *pmu = dev_get_drvdata(dev);
11736 struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11737
11738 if (mask)
11739 return cpumap_print_to_pagebuf(true, buf, mask);
11740 return 0;
11741 }
11742
11743 static DEVICE_ATTR_RO(cpumask);
11744
11745 static struct attribute *pmu_dev_attrs[] = {
11746 &dev_attr_type.attr,
11747 &dev_attr_perf_event_mux_interval_ms.attr,
11748 &dev_attr_nr_addr_filters.attr,
11749 &dev_attr_cpumask.attr,
11750 NULL,
11751 };
11752
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11753 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11754 {
11755 struct device *dev = kobj_to_dev(kobj);
11756 struct pmu *pmu = dev_get_drvdata(dev);
11757
11758 if (n == 2 && !pmu->nr_addr_filters)
11759 return 0;
11760
11761 /* cpumask */
11762 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11763 return 0;
11764
11765 return a->mode;
11766 }
11767
11768 static struct attribute_group pmu_dev_attr_group = {
11769 .is_visible = pmu_dev_is_visible,
11770 .attrs = pmu_dev_attrs,
11771 };
11772
11773 static const struct attribute_group *pmu_dev_groups[] = {
11774 &pmu_dev_attr_group,
11775 NULL,
11776 };
11777
11778 static int pmu_bus_running;
11779 static struct bus_type pmu_bus = {
11780 .name = "event_source",
11781 .dev_groups = pmu_dev_groups,
11782 };
11783
pmu_dev_release(struct device * dev)11784 static void pmu_dev_release(struct device *dev)
11785 {
11786 kfree(dev);
11787 }
11788
pmu_dev_alloc(struct pmu * pmu)11789 static int pmu_dev_alloc(struct pmu *pmu)
11790 {
11791 int ret = -ENOMEM;
11792
11793 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11794 if (!pmu->dev)
11795 goto out;
11796
11797 pmu->dev->groups = pmu->attr_groups;
11798 device_initialize(pmu->dev);
11799
11800 dev_set_drvdata(pmu->dev, pmu);
11801 pmu->dev->bus = &pmu_bus;
11802 pmu->dev->parent = pmu->parent;
11803 pmu->dev->release = pmu_dev_release;
11804
11805 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11806 if (ret)
11807 goto free_dev;
11808
11809 ret = device_add(pmu->dev);
11810 if (ret)
11811 goto free_dev;
11812
11813 if (pmu->attr_update) {
11814 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11815 if (ret)
11816 goto del_dev;
11817 }
11818
11819 out:
11820 return ret;
11821
11822 del_dev:
11823 device_del(pmu->dev);
11824
11825 free_dev:
11826 put_device(pmu->dev);
11827 goto out;
11828 }
11829
11830 static struct lock_class_key cpuctx_mutex;
11831 static struct lock_class_key cpuctx_lock;
11832
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11833 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11834 {
11835 void *tmp, *val = idr_find(idr, id);
11836
11837 if (val != old)
11838 return false;
11839
11840 tmp = idr_replace(idr, new, id);
11841 if (IS_ERR(tmp))
11842 return false;
11843
11844 WARN_ON_ONCE(tmp != val);
11845 return true;
11846 }
11847
perf_pmu_register(struct pmu * pmu,const char * name,int type)11848 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11849 {
11850 int cpu, ret, max = PERF_TYPE_MAX;
11851
11852 mutex_lock(&pmus_lock);
11853 ret = -ENOMEM;
11854 pmu->pmu_disable_count = alloc_percpu(int);
11855 if (!pmu->pmu_disable_count)
11856 goto unlock;
11857
11858 pmu->type = -1;
11859 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11860 ret = -EINVAL;
11861 goto free_pdc;
11862 }
11863
11864 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11865 ret = -EINVAL;
11866 goto free_pdc;
11867 }
11868
11869 pmu->name = name;
11870
11871 if (type >= 0)
11872 max = type;
11873
11874 ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11875 if (ret < 0)
11876 goto free_pdc;
11877
11878 WARN_ON(type >= 0 && ret != type);
11879
11880 type = ret;
11881 pmu->type = type;
11882 atomic_set(&pmu->exclusive_cnt, 0);
11883
11884 if (pmu_bus_running && !pmu->dev) {
11885 ret = pmu_dev_alloc(pmu);
11886 if (ret)
11887 goto free_idr;
11888 }
11889
11890 ret = -ENOMEM;
11891 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11892 if (!pmu->cpu_pmu_context)
11893 goto free_dev;
11894
11895 for_each_possible_cpu(cpu) {
11896 struct perf_cpu_pmu_context *cpc;
11897
11898 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11899 __perf_init_event_pmu_context(&cpc->epc, pmu);
11900 __perf_mux_hrtimer_init(cpc, cpu);
11901 }
11902
11903 if (!pmu->start_txn) {
11904 if (pmu->pmu_enable) {
11905 /*
11906 * If we have pmu_enable/pmu_disable calls, install
11907 * transaction stubs that use that to try and batch
11908 * hardware accesses.
11909 */
11910 pmu->start_txn = perf_pmu_start_txn;
11911 pmu->commit_txn = perf_pmu_commit_txn;
11912 pmu->cancel_txn = perf_pmu_cancel_txn;
11913 } else {
11914 pmu->start_txn = perf_pmu_nop_txn;
11915 pmu->commit_txn = perf_pmu_nop_int;
11916 pmu->cancel_txn = perf_pmu_nop_void;
11917 }
11918 }
11919
11920 if (!pmu->pmu_enable) {
11921 pmu->pmu_enable = perf_pmu_nop_void;
11922 pmu->pmu_disable = perf_pmu_nop_void;
11923 }
11924
11925 if (!pmu->check_period)
11926 pmu->check_period = perf_event_nop_int;
11927
11928 if (!pmu->event_idx)
11929 pmu->event_idx = perf_event_idx_default;
11930
11931 /*
11932 * Now that the PMU is complete, make it visible to perf_try_init_event().
11933 */
11934 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11935 goto free_context;
11936 list_add_rcu(&pmu->entry, &pmus);
11937
11938 ret = 0;
11939 unlock:
11940 mutex_unlock(&pmus_lock);
11941
11942 return ret;
11943
11944 free_context:
11945 free_percpu(pmu->cpu_pmu_context);
11946
11947 free_dev:
11948 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11949 device_del(pmu->dev);
11950 put_device(pmu->dev);
11951 }
11952
11953 free_idr:
11954 idr_remove(&pmu_idr, pmu->type);
11955
11956 free_pdc:
11957 free_percpu(pmu->pmu_disable_count);
11958 goto unlock;
11959 }
11960 EXPORT_SYMBOL_GPL(perf_pmu_register);
11961
perf_pmu_unregister(struct pmu * pmu)11962 void perf_pmu_unregister(struct pmu *pmu)
11963 {
11964 mutex_lock(&pmus_lock);
11965 list_del_rcu(&pmu->entry);
11966 idr_remove(&pmu_idr, pmu->type);
11967 mutex_unlock(&pmus_lock);
11968
11969 /*
11970 * We dereference the pmu list under both SRCU and regular RCU, so
11971 * synchronize against both of those.
11972 */
11973 synchronize_srcu(&pmus_srcu);
11974 synchronize_rcu();
11975
11976 free_percpu(pmu->pmu_disable_count);
11977 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11978 if (pmu->nr_addr_filters)
11979 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11980 device_del(pmu->dev);
11981 put_device(pmu->dev);
11982 }
11983 free_pmu_context(pmu);
11984 }
11985 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11986
has_extended_regs(struct perf_event * event)11987 static inline bool has_extended_regs(struct perf_event *event)
11988 {
11989 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11990 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11991 }
11992
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11993 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11994 {
11995 struct perf_event_context *ctx = NULL;
11996 int ret;
11997
11998 if (!try_module_get(pmu->module))
11999 return -ENODEV;
12000
12001 /*
12002 * A number of pmu->event_init() methods iterate the sibling_list to,
12003 * for example, validate if the group fits on the PMU. Therefore,
12004 * if this is a sibling event, acquire the ctx->mutex to protect
12005 * the sibling_list.
12006 */
12007 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12008 /*
12009 * This ctx->mutex can nest when we're called through
12010 * inheritance. See the perf_event_ctx_lock_nested() comment.
12011 */
12012 ctx = perf_event_ctx_lock_nested(event->group_leader,
12013 SINGLE_DEPTH_NESTING);
12014 BUG_ON(!ctx);
12015 }
12016
12017 event->pmu = pmu;
12018 ret = pmu->event_init(event);
12019
12020 if (ctx)
12021 perf_event_ctx_unlock(event->group_leader, ctx);
12022
12023 if (!ret) {
12024 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12025 has_extended_regs(event))
12026 ret = -EOPNOTSUPP;
12027
12028 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12029 event_has_any_exclude_flag(event))
12030 ret = -EINVAL;
12031
12032 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12033 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12034 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
12035 int cpu;
12036
12037 if (pmu_cpumask && cpumask) {
12038 cpu = cpumask_any_and(pmu_cpumask, cpumask);
12039 if (cpu >= nr_cpu_ids)
12040 ret = -ENODEV;
12041 else
12042 event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12043 } else {
12044 ret = -ENODEV;
12045 }
12046 }
12047
12048 if (ret && event->destroy)
12049 event->destroy(event);
12050 }
12051
12052 if (ret)
12053 module_put(pmu->module);
12054
12055 return ret;
12056 }
12057
perf_init_event(struct perf_event * event)12058 static struct pmu *perf_init_event(struct perf_event *event)
12059 {
12060 bool extended_type = false;
12061 int idx, type, ret;
12062 struct pmu *pmu;
12063
12064 idx = srcu_read_lock(&pmus_srcu);
12065
12066 /*
12067 * Save original type before calling pmu->event_init() since certain
12068 * pmus overwrites event->attr.type to forward event to another pmu.
12069 */
12070 event->orig_type = event->attr.type;
12071
12072 /* Try parent's PMU first: */
12073 if (event->parent && event->parent->pmu) {
12074 pmu = event->parent->pmu;
12075 ret = perf_try_init_event(pmu, event);
12076 if (!ret)
12077 goto unlock;
12078 }
12079
12080 /*
12081 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12082 * are often aliases for PERF_TYPE_RAW.
12083 */
12084 type = event->attr.type;
12085 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12086 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12087 if (!type) {
12088 type = PERF_TYPE_RAW;
12089 } else {
12090 extended_type = true;
12091 event->attr.config &= PERF_HW_EVENT_MASK;
12092 }
12093 }
12094
12095 again:
12096 rcu_read_lock();
12097 pmu = idr_find(&pmu_idr, type);
12098 rcu_read_unlock();
12099 if (pmu) {
12100 if (event->attr.type != type && type != PERF_TYPE_RAW &&
12101 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12102 goto fail;
12103
12104 ret = perf_try_init_event(pmu, event);
12105 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12106 type = event->attr.type;
12107 goto again;
12108 }
12109
12110 if (ret)
12111 pmu = ERR_PTR(ret);
12112
12113 goto unlock;
12114 }
12115
12116 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12117 ret = perf_try_init_event(pmu, event);
12118 if (!ret)
12119 goto unlock;
12120
12121 if (ret != -ENOENT) {
12122 pmu = ERR_PTR(ret);
12123 goto unlock;
12124 }
12125 }
12126 fail:
12127 pmu = ERR_PTR(-ENOENT);
12128 unlock:
12129 srcu_read_unlock(&pmus_srcu, idx);
12130
12131 return pmu;
12132 }
12133
attach_sb_event(struct perf_event * event)12134 static void attach_sb_event(struct perf_event *event)
12135 {
12136 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12137
12138 raw_spin_lock(&pel->lock);
12139 list_add_rcu(&event->sb_list, &pel->list);
12140 raw_spin_unlock(&pel->lock);
12141 }
12142
12143 /*
12144 * We keep a list of all !task (and therefore per-cpu) events
12145 * that need to receive side-band records.
12146 *
12147 * This avoids having to scan all the various PMU per-cpu contexts
12148 * looking for them.
12149 */
account_pmu_sb_event(struct perf_event * event)12150 static void account_pmu_sb_event(struct perf_event *event)
12151 {
12152 if (is_sb_event(event))
12153 attach_sb_event(event);
12154 }
12155
12156 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12157 static void account_freq_event_nohz(void)
12158 {
12159 #ifdef CONFIG_NO_HZ_FULL
12160 /* Lock so we don't race with concurrent unaccount */
12161 spin_lock(&nr_freq_lock);
12162 if (atomic_inc_return(&nr_freq_events) == 1)
12163 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12164 spin_unlock(&nr_freq_lock);
12165 #endif
12166 }
12167
account_freq_event(void)12168 static void account_freq_event(void)
12169 {
12170 if (tick_nohz_full_enabled())
12171 account_freq_event_nohz();
12172 else
12173 atomic_inc(&nr_freq_events);
12174 }
12175
12176
account_event(struct perf_event * event)12177 static void account_event(struct perf_event *event)
12178 {
12179 bool inc = false;
12180
12181 if (event->parent)
12182 return;
12183
12184 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12185 inc = true;
12186 if (event->attr.mmap || event->attr.mmap_data)
12187 atomic_inc(&nr_mmap_events);
12188 if (event->attr.build_id)
12189 atomic_inc(&nr_build_id_events);
12190 if (event->attr.comm)
12191 atomic_inc(&nr_comm_events);
12192 if (event->attr.namespaces)
12193 atomic_inc(&nr_namespaces_events);
12194 if (event->attr.cgroup)
12195 atomic_inc(&nr_cgroup_events);
12196 if (event->attr.task)
12197 atomic_inc(&nr_task_events);
12198 if (event->attr.freq)
12199 account_freq_event();
12200 if (event->attr.context_switch) {
12201 atomic_inc(&nr_switch_events);
12202 inc = true;
12203 }
12204 if (has_branch_stack(event))
12205 inc = true;
12206 if (is_cgroup_event(event))
12207 inc = true;
12208 if (event->attr.ksymbol)
12209 atomic_inc(&nr_ksymbol_events);
12210 if (event->attr.bpf_event)
12211 atomic_inc(&nr_bpf_events);
12212 if (event->attr.text_poke)
12213 atomic_inc(&nr_text_poke_events);
12214
12215 if (inc) {
12216 /*
12217 * We need the mutex here because static_branch_enable()
12218 * must complete *before* the perf_sched_count increment
12219 * becomes visible.
12220 */
12221 if (atomic_inc_not_zero(&perf_sched_count))
12222 goto enabled;
12223
12224 mutex_lock(&perf_sched_mutex);
12225 if (!atomic_read(&perf_sched_count)) {
12226 static_branch_enable(&perf_sched_events);
12227 /*
12228 * Guarantee that all CPUs observe they key change and
12229 * call the perf scheduling hooks before proceeding to
12230 * install events that need them.
12231 */
12232 synchronize_rcu();
12233 }
12234 /*
12235 * Now that we have waited for the sync_sched(), allow further
12236 * increments to by-pass the mutex.
12237 */
12238 atomic_inc(&perf_sched_count);
12239 mutex_unlock(&perf_sched_mutex);
12240 }
12241 enabled:
12242
12243 account_pmu_sb_event(event);
12244 }
12245
12246 /*
12247 * Allocate and initialize an event structure
12248 */
12249 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12250 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12251 struct task_struct *task,
12252 struct perf_event *group_leader,
12253 struct perf_event *parent_event,
12254 perf_overflow_handler_t overflow_handler,
12255 void *context, int cgroup_fd)
12256 {
12257 struct pmu *pmu;
12258 struct perf_event *event;
12259 struct hw_perf_event *hwc;
12260 long err = -EINVAL;
12261 int node;
12262
12263 if ((unsigned)cpu >= nr_cpu_ids) {
12264 if (!task || cpu != -1)
12265 return ERR_PTR(-EINVAL);
12266 }
12267 if (attr->sigtrap && !task) {
12268 /* Requires a task: avoid signalling random tasks. */
12269 return ERR_PTR(-EINVAL);
12270 }
12271
12272 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12273 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12274 node);
12275 if (!event)
12276 return ERR_PTR(-ENOMEM);
12277
12278 /*
12279 * Single events are their own group leaders, with an
12280 * empty sibling list:
12281 */
12282 if (!group_leader)
12283 group_leader = event;
12284
12285 mutex_init(&event->child_mutex);
12286 INIT_LIST_HEAD(&event->child_list);
12287
12288 INIT_LIST_HEAD(&event->event_entry);
12289 INIT_LIST_HEAD(&event->sibling_list);
12290 INIT_LIST_HEAD(&event->active_list);
12291 init_event_group(event);
12292 INIT_LIST_HEAD(&event->rb_entry);
12293 INIT_LIST_HEAD(&event->active_entry);
12294 INIT_LIST_HEAD(&event->addr_filters.list);
12295 INIT_HLIST_NODE(&event->hlist_entry);
12296
12297
12298 init_waitqueue_head(&event->waitq);
12299 init_irq_work(&event->pending_irq, perf_pending_irq);
12300 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12301 init_task_work(&event->pending_task, perf_pending_task);
12302 rcuwait_init(&event->pending_work_wait);
12303
12304 mutex_init(&event->mmap_mutex);
12305 raw_spin_lock_init(&event->addr_filters.lock);
12306
12307 atomic_long_set(&event->refcount, 1);
12308 event->cpu = cpu;
12309 event->attr = *attr;
12310 event->group_leader = group_leader;
12311 event->pmu = NULL;
12312 event->oncpu = -1;
12313
12314 event->parent = parent_event;
12315
12316 event->ns = get_pid_ns(task_active_pid_ns(current));
12317 event->id = atomic64_inc_return(&perf_event_id);
12318
12319 event->state = PERF_EVENT_STATE_INACTIVE;
12320
12321 if (parent_event)
12322 event->event_caps = parent_event->event_caps;
12323
12324 if (task) {
12325 event->attach_state = PERF_ATTACH_TASK;
12326 /*
12327 * XXX pmu::event_init needs to know what task to account to
12328 * and we cannot use the ctx information because we need the
12329 * pmu before we get a ctx.
12330 */
12331 event->hw.target = get_task_struct(task);
12332 }
12333
12334 event->clock = &local_clock;
12335 if (parent_event)
12336 event->clock = parent_event->clock;
12337
12338 if (!overflow_handler && parent_event) {
12339 overflow_handler = parent_event->overflow_handler;
12340 context = parent_event->overflow_handler_context;
12341 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12342 if (parent_event->prog) {
12343 struct bpf_prog *prog = parent_event->prog;
12344
12345 bpf_prog_inc(prog);
12346 event->prog = prog;
12347 }
12348 #endif
12349 }
12350
12351 if (overflow_handler) {
12352 event->overflow_handler = overflow_handler;
12353 event->overflow_handler_context = context;
12354 } else if (is_write_backward(event)){
12355 event->overflow_handler = perf_event_output_backward;
12356 event->overflow_handler_context = NULL;
12357 } else {
12358 event->overflow_handler = perf_event_output_forward;
12359 event->overflow_handler_context = NULL;
12360 }
12361
12362 perf_event__state_init(event);
12363
12364 pmu = NULL;
12365
12366 hwc = &event->hw;
12367 hwc->sample_period = attr->sample_period;
12368 if (attr->freq && attr->sample_freq)
12369 hwc->sample_period = 1;
12370 hwc->last_period = hwc->sample_period;
12371
12372 local64_set(&hwc->period_left, hwc->sample_period);
12373
12374 /*
12375 * We do not support PERF_SAMPLE_READ on inherited events unless
12376 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12377 * collect per-thread samples.
12378 * See perf_output_read().
12379 */
12380 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12381 goto err_ns;
12382
12383 if (!has_branch_stack(event))
12384 event->attr.branch_sample_type = 0;
12385
12386 pmu = perf_init_event(event);
12387 if (IS_ERR(pmu)) {
12388 err = PTR_ERR(pmu);
12389 goto err_ns;
12390 }
12391
12392 /*
12393 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12394 * events (they don't make sense as the cgroup will be different
12395 * on other CPUs in the uncore mask).
12396 */
12397 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12398 err = -EINVAL;
12399 goto err_pmu;
12400 }
12401
12402 if (event->attr.aux_output &&
12403 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12404 event->attr.aux_pause || event->attr.aux_resume)) {
12405 err = -EOPNOTSUPP;
12406 goto err_pmu;
12407 }
12408
12409 if (event->attr.aux_pause && event->attr.aux_resume) {
12410 err = -EINVAL;
12411 goto err_pmu;
12412 }
12413
12414 if (event->attr.aux_start_paused) {
12415 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12416 err = -EOPNOTSUPP;
12417 goto err_pmu;
12418 }
12419 event->hw.aux_paused = 1;
12420 }
12421
12422 if (cgroup_fd != -1) {
12423 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12424 if (err)
12425 goto err_pmu;
12426 }
12427
12428 err = exclusive_event_init(event);
12429 if (err)
12430 goto err_pmu;
12431
12432 if (has_addr_filter(event)) {
12433 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12434 sizeof(struct perf_addr_filter_range),
12435 GFP_KERNEL);
12436 if (!event->addr_filter_ranges) {
12437 err = -ENOMEM;
12438 goto err_per_task;
12439 }
12440
12441 /*
12442 * Clone the parent's vma offsets: they are valid until exec()
12443 * even if the mm is not shared with the parent.
12444 */
12445 if (event->parent) {
12446 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12447
12448 raw_spin_lock_irq(&ifh->lock);
12449 memcpy(event->addr_filter_ranges,
12450 event->parent->addr_filter_ranges,
12451 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12452 raw_spin_unlock_irq(&ifh->lock);
12453 }
12454
12455 /* force hw sync on the address filters */
12456 event->addr_filters_gen = 1;
12457 }
12458
12459 if (!event->parent) {
12460 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12461 err = get_callchain_buffers(attr->sample_max_stack);
12462 if (err)
12463 goto err_addr_filters;
12464 }
12465 }
12466
12467 err = security_perf_event_alloc(event);
12468 if (err)
12469 goto err_callchain_buffer;
12470
12471 /* symmetric to unaccount_event() in _free_event() */
12472 account_event(event);
12473
12474 return event;
12475
12476 err_callchain_buffer:
12477 if (!event->parent) {
12478 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12479 put_callchain_buffers();
12480 }
12481 err_addr_filters:
12482 kfree(event->addr_filter_ranges);
12483
12484 err_per_task:
12485 exclusive_event_destroy(event);
12486
12487 err_pmu:
12488 if (is_cgroup_event(event))
12489 perf_detach_cgroup(event);
12490 if (event->destroy)
12491 event->destroy(event);
12492 module_put(pmu->module);
12493 err_ns:
12494 if (event->hw.target)
12495 put_task_struct(event->hw.target);
12496 call_rcu(&event->rcu_head, free_event_rcu);
12497
12498 return ERR_PTR(err);
12499 }
12500
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12501 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12502 struct perf_event_attr *attr)
12503 {
12504 u32 size;
12505 int ret;
12506
12507 /* Zero the full structure, so that a short copy will be nice. */
12508 memset(attr, 0, sizeof(*attr));
12509
12510 ret = get_user(size, &uattr->size);
12511 if (ret)
12512 return ret;
12513
12514 /* ABI compatibility quirk: */
12515 if (!size)
12516 size = PERF_ATTR_SIZE_VER0;
12517 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12518 goto err_size;
12519
12520 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12521 if (ret) {
12522 if (ret == -E2BIG)
12523 goto err_size;
12524 return ret;
12525 }
12526
12527 attr->size = size;
12528
12529 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12530 return -EINVAL;
12531
12532 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12533 return -EINVAL;
12534
12535 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12536 return -EINVAL;
12537
12538 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12539 u64 mask = attr->branch_sample_type;
12540
12541 /* only using defined bits */
12542 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12543 return -EINVAL;
12544
12545 /* at least one branch bit must be set */
12546 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12547 return -EINVAL;
12548
12549 /* propagate priv level, when not set for branch */
12550 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12551
12552 /* exclude_kernel checked on syscall entry */
12553 if (!attr->exclude_kernel)
12554 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12555
12556 if (!attr->exclude_user)
12557 mask |= PERF_SAMPLE_BRANCH_USER;
12558
12559 if (!attr->exclude_hv)
12560 mask |= PERF_SAMPLE_BRANCH_HV;
12561 /*
12562 * adjust user setting (for HW filter setup)
12563 */
12564 attr->branch_sample_type = mask;
12565 }
12566 /* privileged levels capture (kernel, hv): check permissions */
12567 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12568 ret = perf_allow_kernel(attr);
12569 if (ret)
12570 return ret;
12571 }
12572 }
12573
12574 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12575 ret = perf_reg_validate(attr->sample_regs_user);
12576 if (ret)
12577 return ret;
12578 }
12579
12580 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12581 if (!arch_perf_have_user_stack_dump())
12582 return -ENOSYS;
12583
12584 /*
12585 * We have __u32 type for the size, but so far
12586 * we can only use __u16 as maximum due to the
12587 * __u16 sample size limit.
12588 */
12589 if (attr->sample_stack_user >= USHRT_MAX)
12590 return -EINVAL;
12591 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12592 return -EINVAL;
12593 }
12594
12595 if (!attr->sample_max_stack)
12596 attr->sample_max_stack = sysctl_perf_event_max_stack;
12597
12598 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12599 ret = perf_reg_validate(attr->sample_regs_intr);
12600
12601 #ifndef CONFIG_CGROUP_PERF
12602 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12603 return -EINVAL;
12604 #endif
12605 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12606 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12607 return -EINVAL;
12608
12609 if (!attr->inherit && attr->inherit_thread)
12610 return -EINVAL;
12611
12612 if (attr->remove_on_exec && attr->enable_on_exec)
12613 return -EINVAL;
12614
12615 if (attr->sigtrap && !attr->remove_on_exec)
12616 return -EINVAL;
12617
12618 out:
12619 return ret;
12620
12621 err_size:
12622 put_user(sizeof(*attr), &uattr->size);
12623 ret = -E2BIG;
12624 goto out;
12625 }
12626
mutex_lock_double(struct mutex * a,struct mutex * b)12627 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12628 {
12629 if (b < a)
12630 swap(a, b);
12631
12632 mutex_lock(a);
12633 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12634 }
12635
12636 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12637 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12638 {
12639 struct perf_buffer *rb = NULL;
12640 int ret = -EINVAL;
12641
12642 if (!output_event) {
12643 mutex_lock(&event->mmap_mutex);
12644 goto set;
12645 }
12646
12647 /* don't allow circular references */
12648 if (event == output_event)
12649 goto out;
12650
12651 /*
12652 * Don't allow cross-cpu buffers
12653 */
12654 if (output_event->cpu != event->cpu)
12655 goto out;
12656
12657 /*
12658 * If its not a per-cpu rb, it must be the same task.
12659 */
12660 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12661 goto out;
12662
12663 /*
12664 * Mixing clocks in the same buffer is trouble you don't need.
12665 */
12666 if (output_event->clock != event->clock)
12667 goto out;
12668
12669 /*
12670 * Either writing ring buffer from beginning or from end.
12671 * Mixing is not allowed.
12672 */
12673 if (is_write_backward(output_event) != is_write_backward(event))
12674 goto out;
12675
12676 /*
12677 * If both events generate aux data, they must be on the same PMU
12678 */
12679 if (has_aux(event) && has_aux(output_event) &&
12680 event->pmu != output_event->pmu)
12681 goto out;
12682
12683 /*
12684 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12685 * output_event is already on rb->event_list, and the list iteration
12686 * restarts after every removal, it is guaranteed this new event is
12687 * observed *OR* if output_event is already removed, it's guaranteed we
12688 * observe !rb->mmap_count.
12689 */
12690 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12691 set:
12692 /* Can't redirect output if we've got an active mmap() */
12693 if (atomic_read(&event->mmap_count))
12694 goto unlock;
12695
12696 if (output_event) {
12697 /* get the rb we want to redirect to */
12698 rb = ring_buffer_get(output_event);
12699 if (!rb)
12700 goto unlock;
12701
12702 /* did we race against perf_mmap_close() */
12703 if (!atomic_read(&rb->mmap_count)) {
12704 ring_buffer_put(rb);
12705 goto unlock;
12706 }
12707 }
12708
12709 ring_buffer_attach(event, rb);
12710
12711 ret = 0;
12712 unlock:
12713 mutex_unlock(&event->mmap_mutex);
12714 if (output_event)
12715 mutex_unlock(&output_event->mmap_mutex);
12716
12717 out:
12718 return ret;
12719 }
12720
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12721 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12722 {
12723 bool nmi_safe = false;
12724
12725 switch (clk_id) {
12726 case CLOCK_MONOTONIC:
12727 event->clock = &ktime_get_mono_fast_ns;
12728 nmi_safe = true;
12729 break;
12730
12731 case CLOCK_MONOTONIC_RAW:
12732 event->clock = &ktime_get_raw_fast_ns;
12733 nmi_safe = true;
12734 break;
12735
12736 case CLOCK_REALTIME:
12737 event->clock = &ktime_get_real_ns;
12738 break;
12739
12740 case CLOCK_BOOTTIME:
12741 event->clock = &ktime_get_boottime_ns;
12742 break;
12743
12744 case CLOCK_TAI:
12745 event->clock = &ktime_get_clocktai_ns;
12746 break;
12747
12748 default:
12749 return -EINVAL;
12750 }
12751
12752 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12753 return -EINVAL;
12754
12755 return 0;
12756 }
12757
12758 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12759 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12760 {
12761 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12762 bool is_capable = perfmon_capable();
12763
12764 if (attr->sigtrap) {
12765 /*
12766 * perf_event_attr::sigtrap sends signals to the other task.
12767 * Require the current task to also have CAP_KILL.
12768 */
12769 rcu_read_lock();
12770 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12771 rcu_read_unlock();
12772
12773 /*
12774 * If the required capabilities aren't available, checks for
12775 * ptrace permissions: upgrade to ATTACH, since sending signals
12776 * can effectively change the target task.
12777 */
12778 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12779 }
12780
12781 /*
12782 * Preserve ptrace permission check for backwards compatibility. The
12783 * ptrace check also includes checks that the current task and other
12784 * task have matching uids, and is therefore not done here explicitly.
12785 */
12786 return is_capable || ptrace_may_access(task, ptrace_mode);
12787 }
12788
12789 /**
12790 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12791 *
12792 * @attr_uptr: event_id type attributes for monitoring/sampling
12793 * @pid: target pid
12794 * @cpu: target cpu
12795 * @group_fd: group leader event fd
12796 * @flags: perf event open flags
12797 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12798 SYSCALL_DEFINE5(perf_event_open,
12799 struct perf_event_attr __user *, attr_uptr,
12800 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12801 {
12802 struct perf_event *group_leader = NULL, *output_event = NULL;
12803 struct perf_event_pmu_context *pmu_ctx;
12804 struct perf_event *event, *sibling;
12805 struct perf_event_attr attr;
12806 struct perf_event_context *ctx;
12807 struct file *event_file = NULL;
12808 struct task_struct *task = NULL;
12809 struct pmu *pmu;
12810 int event_fd;
12811 int move_group = 0;
12812 int err;
12813 int f_flags = O_RDWR;
12814 int cgroup_fd = -1;
12815
12816 /* for future expandability... */
12817 if (flags & ~PERF_FLAG_ALL)
12818 return -EINVAL;
12819
12820 err = perf_copy_attr(attr_uptr, &attr);
12821 if (err)
12822 return err;
12823
12824 /* Do we allow access to perf_event_open(2) ? */
12825 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12826 if (err)
12827 return err;
12828
12829 if (!attr.exclude_kernel) {
12830 err = perf_allow_kernel(&attr);
12831 if (err)
12832 return err;
12833 }
12834
12835 if (attr.namespaces) {
12836 if (!perfmon_capable())
12837 return -EACCES;
12838 }
12839
12840 if (attr.freq) {
12841 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12842 return -EINVAL;
12843 } else {
12844 if (attr.sample_period & (1ULL << 63))
12845 return -EINVAL;
12846 }
12847
12848 /* Only privileged users can get physical addresses */
12849 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12850 err = perf_allow_kernel(&attr);
12851 if (err)
12852 return err;
12853 }
12854
12855 /* REGS_INTR can leak data, lockdown must prevent this */
12856 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12857 err = security_locked_down(LOCKDOWN_PERF);
12858 if (err)
12859 return err;
12860 }
12861
12862 /*
12863 * In cgroup mode, the pid argument is used to pass the fd
12864 * opened to the cgroup directory in cgroupfs. The cpu argument
12865 * designates the cpu on which to monitor threads from that
12866 * cgroup.
12867 */
12868 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12869 return -EINVAL;
12870
12871 if (flags & PERF_FLAG_FD_CLOEXEC)
12872 f_flags |= O_CLOEXEC;
12873
12874 event_fd = get_unused_fd_flags(f_flags);
12875 if (event_fd < 0)
12876 return event_fd;
12877
12878 CLASS(fd, group)(group_fd); // group_fd == -1 => empty
12879 if (group_fd != -1) {
12880 if (!is_perf_file(group)) {
12881 err = -EBADF;
12882 goto err_fd;
12883 }
12884 group_leader = fd_file(group)->private_data;
12885 if (flags & PERF_FLAG_FD_OUTPUT)
12886 output_event = group_leader;
12887 if (flags & PERF_FLAG_FD_NO_GROUP)
12888 group_leader = NULL;
12889 }
12890
12891 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12892 task = find_lively_task_by_vpid(pid);
12893 if (IS_ERR(task)) {
12894 err = PTR_ERR(task);
12895 goto err_fd;
12896 }
12897 }
12898
12899 if (task && group_leader &&
12900 group_leader->attr.inherit != attr.inherit) {
12901 err = -EINVAL;
12902 goto err_task;
12903 }
12904
12905 if (flags & PERF_FLAG_PID_CGROUP)
12906 cgroup_fd = pid;
12907
12908 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12909 NULL, NULL, cgroup_fd);
12910 if (IS_ERR(event)) {
12911 err = PTR_ERR(event);
12912 goto err_task;
12913 }
12914
12915 if (is_sampling_event(event)) {
12916 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12917 err = -EOPNOTSUPP;
12918 goto err_alloc;
12919 }
12920 }
12921
12922 /*
12923 * Special case software events and allow them to be part of
12924 * any hardware group.
12925 */
12926 pmu = event->pmu;
12927
12928 if (attr.use_clockid) {
12929 err = perf_event_set_clock(event, attr.clockid);
12930 if (err)
12931 goto err_alloc;
12932 }
12933
12934 if (pmu->task_ctx_nr == perf_sw_context)
12935 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12936
12937 if (task) {
12938 err = down_read_interruptible(&task->signal->exec_update_lock);
12939 if (err)
12940 goto err_alloc;
12941
12942 /*
12943 * We must hold exec_update_lock across this and any potential
12944 * perf_install_in_context() call for this new event to
12945 * serialize against exec() altering our credentials (and the
12946 * perf_event_exit_task() that could imply).
12947 */
12948 err = -EACCES;
12949 if (!perf_check_permission(&attr, task))
12950 goto err_cred;
12951 }
12952
12953 /*
12954 * Get the target context (task or percpu):
12955 */
12956 ctx = find_get_context(task, event);
12957 if (IS_ERR(ctx)) {
12958 err = PTR_ERR(ctx);
12959 goto err_cred;
12960 }
12961
12962 mutex_lock(&ctx->mutex);
12963
12964 if (ctx->task == TASK_TOMBSTONE) {
12965 err = -ESRCH;
12966 goto err_locked;
12967 }
12968
12969 if (!task) {
12970 /*
12971 * Check if the @cpu we're creating an event for is online.
12972 *
12973 * We use the perf_cpu_context::ctx::mutex to serialize against
12974 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12975 */
12976 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12977
12978 if (!cpuctx->online) {
12979 err = -ENODEV;
12980 goto err_locked;
12981 }
12982 }
12983
12984 if (group_leader) {
12985 err = -EINVAL;
12986
12987 /*
12988 * Do not allow a recursive hierarchy (this new sibling
12989 * becoming part of another group-sibling):
12990 */
12991 if (group_leader->group_leader != group_leader)
12992 goto err_locked;
12993
12994 /* All events in a group should have the same clock */
12995 if (group_leader->clock != event->clock)
12996 goto err_locked;
12997
12998 /*
12999 * Make sure we're both events for the same CPU;
13000 * grouping events for different CPUs is broken; since
13001 * you can never concurrently schedule them anyhow.
13002 */
13003 if (group_leader->cpu != event->cpu)
13004 goto err_locked;
13005
13006 /*
13007 * Make sure we're both on the same context; either task or cpu.
13008 */
13009 if (group_leader->ctx != ctx)
13010 goto err_locked;
13011
13012 /*
13013 * Only a group leader can be exclusive or pinned
13014 */
13015 if (attr.exclusive || attr.pinned)
13016 goto err_locked;
13017
13018 if (is_software_event(event) &&
13019 !in_software_context(group_leader)) {
13020 /*
13021 * If the event is a sw event, but the group_leader
13022 * is on hw context.
13023 *
13024 * Allow the addition of software events to hw
13025 * groups, this is safe because software events
13026 * never fail to schedule.
13027 *
13028 * Note the comment that goes with struct
13029 * perf_event_pmu_context.
13030 */
13031 pmu = group_leader->pmu_ctx->pmu;
13032 } else if (!is_software_event(event)) {
13033 if (is_software_event(group_leader) &&
13034 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13035 /*
13036 * In case the group is a pure software group, and we
13037 * try to add a hardware event, move the whole group to
13038 * the hardware context.
13039 */
13040 move_group = 1;
13041 }
13042
13043 /* Don't allow group of multiple hw events from different pmus */
13044 if (!in_software_context(group_leader) &&
13045 group_leader->pmu_ctx->pmu != pmu)
13046 goto err_locked;
13047 }
13048 }
13049
13050 /*
13051 * Now that we're certain of the pmu; find the pmu_ctx.
13052 */
13053 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13054 if (IS_ERR(pmu_ctx)) {
13055 err = PTR_ERR(pmu_ctx);
13056 goto err_locked;
13057 }
13058 event->pmu_ctx = pmu_ctx;
13059
13060 if (output_event) {
13061 err = perf_event_set_output(event, output_event);
13062 if (err)
13063 goto err_context;
13064 }
13065
13066 if (!perf_event_validate_size(event)) {
13067 err = -E2BIG;
13068 goto err_context;
13069 }
13070
13071 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13072 err = -EINVAL;
13073 goto err_context;
13074 }
13075
13076 /*
13077 * Must be under the same ctx::mutex as perf_install_in_context(),
13078 * because we need to serialize with concurrent event creation.
13079 */
13080 if (!exclusive_event_installable(event, ctx)) {
13081 err = -EBUSY;
13082 goto err_context;
13083 }
13084
13085 WARN_ON_ONCE(ctx->parent_ctx);
13086
13087 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13088 if (IS_ERR(event_file)) {
13089 err = PTR_ERR(event_file);
13090 event_file = NULL;
13091 goto err_context;
13092 }
13093
13094 /*
13095 * This is the point on no return; we cannot fail hereafter. This is
13096 * where we start modifying current state.
13097 */
13098
13099 if (move_group) {
13100 perf_remove_from_context(group_leader, 0);
13101 put_pmu_ctx(group_leader->pmu_ctx);
13102
13103 for_each_sibling_event(sibling, group_leader) {
13104 perf_remove_from_context(sibling, 0);
13105 put_pmu_ctx(sibling->pmu_ctx);
13106 }
13107
13108 /*
13109 * Install the group siblings before the group leader.
13110 *
13111 * Because a group leader will try and install the entire group
13112 * (through the sibling list, which is still in-tact), we can
13113 * end up with siblings installed in the wrong context.
13114 *
13115 * By installing siblings first we NO-OP because they're not
13116 * reachable through the group lists.
13117 */
13118 for_each_sibling_event(sibling, group_leader) {
13119 sibling->pmu_ctx = pmu_ctx;
13120 get_pmu_ctx(pmu_ctx);
13121 perf_event__state_init(sibling);
13122 perf_install_in_context(ctx, sibling, sibling->cpu);
13123 }
13124
13125 /*
13126 * Removing from the context ends up with disabled
13127 * event. What we want here is event in the initial
13128 * startup state, ready to be add into new context.
13129 */
13130 group_leader->pmu_ctx = pmu_ctx;
13131 get_pmu_ctx(pmu_ctx);
13132 perf_event__state_init(group_leader);
13133 perf_install_in_context(ctx, group_leader, group_leader->cpu);
13134 }
13135
13136 /*
13137 * Precalculate sample_data sizes; do while holding ctx::mutex such
13138 * that we're serialized against further additions and before
13139 * perf_install_in_context() which is the point the event is active and
13140 * can use these values.
13141 */
13142 perf_event__header_size(event);
13143 perf_event__id_header_size(event);
13144
13145 event->owner = current;
13146
13147 perf_install_in_context(ctx, event, event->cpu);
13148 perf_unpin_context(ctx);
13149
13150 mutex_unlock(&ctx->mutex);
13151
13152 if (task) {
13153 up_read(&task->signal->exec_update_lock);
13154 put_task_struct(task);
13155 }
13156
13157 mutex_lock(¤t->perf_event_mutex);
13158 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
13159 mutex_unlock(¤t->perf_event_mutex);
13160
13161 /*
13162 * File reference in group guarantees that group_leader has been
13163 * kept alive until we place the new event on the sibling_list.
13164 * This ensures destruction of the group leader will find
13165 * the pointer to itself in perf_group_detach().
13166 */
13167 fd_install(event_fd, event_file);
13168 return event_fd;
13169
13170 err_context:
13171 put_pmu_ctx(event->pmu_ctx);
13172 event->pmu_ctx = NULL; /* _free_event() */
13173 err_locked:
13174 mutex_unlock(&ctx->mutex);
13175 perf_unpin_context(ctx);
13176 put_ctx(ctx);
13177 err_cred:
13178 if (task)
13179 up_read(&task->signal->exec_update_lock);
13180 err_alloc:
13181 free_event(event);
13182 err_task:
13183 if (task)
13184 put_task_struct(task);
13185 err_fd:
13186 put_unused_fd(event_fd);
13187 return err;
13188 }
13189
13190 /**
13191 * perf_event_create_kernel_counter
13192 *
13193 * @attr: attributes of the counter to create
13194 * @cpu: cpu in which the counter is bound
13195 * @task: task to profile (NULL for percpu)
13196 * @overflow_handler: callback to trigger when we hit the event
13197 * @context: context data could be used in overflow_handler callback
13198 */
13199 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13200 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13201 struct task_struct *task,
13202 perf_overflow_handler_t overflow_handler,
13203 void *context)
13204 {
13205 struct perf_event_pmu_context *pmu_ctx;
13206 struct perf_event_context *ctx;
13207 struct perf_event *event;
13208 struct pmu *pmu;
13209 int err;
13210
13211 /*
13212 * Grouping is not supported for kernel events, neither is 'AUX',
13213 * make sure the caller's intentions are adjusted.
13214 */
13215 if (attr->aux_output || attr->aux_action)
13216 return ERR_PTR(-EINVAL);
13217
13218 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13219 overflow_handler, context, -1);
13220 if (IS_ERR(event)) {
13221 err = PTR_ERR(event);
13222 goto err;
13223 }
13224
13225 /* Mark owner so we could distinguish it from user events. */
13226 event->owner = TASK_TOMBSTONE;
13227 pmu = event->pmu;
13228
13229 if (pmu->task_ctx_nr == perf_sw_context)
13230 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13231
13232 /*
13233 * Get the target context (task or percpu):
13234 */
13235 ctx = find_get_context(task, event);
13236 if (IS_ERR(ctx)) {
13237 err = PTR_ERR(ctx);
13238 goto err_alloc;
13239 }
13240
13241 WARN_ON_ONCE(ctx->parent_ctx);
13242 mutex_lock(&ctx->mutex);
13243 if (ctx->task == TASK_TOMBSTONE) {
13244 err = -ESRCH;
13245 goto err_unlock;
13246 }
13247
13248 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13249 if (IS_ERR(pmu_ctx)) {
13250 err = PTR_ERR(pmu_ctx);
13251 goto err_unlock;
13252 }
13253 event->pmu_ctx = pmu_ctx;
13254
13255 if (!task) {
13256 /*
13257 * Check if the @cpu we're creating an event for is online.
13258 *
13259 * We use the perf_cpu_context::ctx::mutex to serialize against
13260 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13261 */
13262 struct perf_cpu_context *cpuctx =
13263 container_of(ctx, struct perf_cpu_context, ctx);
13264 if (!cpuctx->online) {
13265 err = -ENODEV;
13266 goto err_pmu_ctx;
13267 }
13268 }
13269
13270 if (!exclusive_event_installable(event, ctx)) {
13271 err = -EBUSY;
13272 goto err_pmu_ctx;
13273 }
13274
13275 perf_install_in_context(ctx, event, event->cpu);
13276 perf_unpin_context(ctx);
13277 mutex_unlock(&ctx->mutex);
13278
13279 return event;
13280
13281 err_pmu_ctx:
13282 put_pmu_ctx(pmu_ctx);
13283 event->pmu_ctx = NULL; /* _free_event() */
13284 err_unlock:
13285 mutex_unlock(&ctx->mutex);
13286 perf_unpin_context(ctx);
13287 put_ctx(ctx);
13288 err_alloc:
13289 free_event(event);
13290 err:
13291 return ERR_PTR(err);
13292 }
13293 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13294
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13295 static void __perf_pmu_remove(struct perf_event_context *ctx,
13296 int cpu, struct pmu *pmu,
13297 struct perf_event_groups *groups,
13298 struct list_head *events)
13299 {
13300 struct perf_event *event, *sibling;
13301
13302 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13303 perf_remove_from_context(event, 0);
13304 put_pmu_ctx(event->pmu_ctx);
13305 list_add(&event->migrate_entry, events);
13306
13307 for_each_sibling_event(sibling, event) {
13308 perf_remove_from_context(sibling, 0);
13309 put_pmu_ctx(sibling->pmu_ctx);
13310 list_add(&sibling->migrate_entry, events);
13311 }
13312 }
13313 }
13314
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13315 static void __perf_pmu_install_event(struct pmu *pmu,
13316 struct perf_event_context *ctx,
13317 int cpu, struct perf_event *event)
13318 {
13319 struct perf_event_pmu_context *epc;
13320 struct perf_event_context *old_ctx = event->ctx;
13321
13322 get_ctx(ctx); /* normally find_get_context() */
13323
13324 event->cpu = cpu;
13325 epc = find_get_pmu_context(pmu, ctx, event);
13326 event->pmu_ctx = epc;
13327
13328 if (event->state >= PERF_EVENT_STATE_OFF)
13329 event->state = PERF_EVENT_STATE_INACTIVE;
13330 perf_install_in_context(ctx, event, cpu);
13331
13332 /*
13333 * Now that event->ctx is updated and visible, put the old ctx.
13334 */
13335 put_ctx(old_ctx);
13336 }
13337
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13338 static void __perf_pmu_install(struct perf_event_context *ctx,
13339 int cpu, struct pmu *pmu, struct list_head *events)
13340 {
13341 struct perf_event *event, *tmp;
13342
13343 /*
13344 * Re-instate events in 2 passes.
13345 *
13346 * Skip over group leaders and only install siblings on this first
13347 * pass, siblings will not get enabled without a leader, however a
13348 * leader will enable its siblings, even if those are still on the old
13349 * context.
13350 */
13351 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13352 if (event->group_leader == event)
13353 continue;
13354
13355 list_del(&event->migrate_entry);
13356 __perf_pmu_install_event(pmu, ctx, cpu, event);
13357 }
13358
13359 /*
13360 * Once all the siblings are setup properly, install the group leaders
13361 * to make it go.
13362 */
13363 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13364 list_del(&event->migrate_entry);
13365 __perf_pmu_install_event(pmu, ctx, cpu, event);
13366 }
13367 }
13368
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13369 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13370 {
13371 struct perf_event_context *src_ctx, *dst_ctx;
13372 LIST_HEAD(events);
13373
13374 /*
13375 * Since per-cpu context is persistent, no need to grab an extra
13376 * reference.
13377 */
13378 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13379 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13380
13381 /*
13382 * See perf_event_ctx_lock() for comments on the details
13383 * of swizzling perf_event::ctx.
13384 */
13385 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13386
13387 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13388 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13389
13390 if (!list_empty(&events)) {
13391 /*
13392 * Wait for the events to quiesce before re-instating them.
13393 */
13394 synchronize_rcu();
13395
13396 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13397 }
13398
13399 mutex_unlock(&dst_ctx->mutex);
13400 mutex_unlock(&src_ctx->mutex);
13401 }
13402 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13403
sync_child_event(struct perf_event * child_event)13404 static void sync_child_event(struct perf_event *child_event)
13405 {
13406 struct perf_event *parent_event = child_event->parent;
13407 u64 child_val;
13408
13409 if (child_event->attr.inherit_stat) {
13410 struct task_struct *task = child_event->ctx->task;
13411
13412 if (task && task != TASK_TOMBSTONE)
13413 perf_event_read_event(child_event, task);
13414 }
13415
13416 child_val = perf_event_count(child_event, false);
13417
13418 /*
13419 * Add back the child's count to the parent's count:
13420 */
13421 atomic64_add(child_val, &parent_event->child_count);
13422 atomic64_add(child_event->total_time_enabled,
13423 &parent_event->child_total_time_enabled);
13424 atomic64_add(child_event->total_time_running,
13425 &parent_event->child_total_time_running);
13426 }
13427
13428 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13429 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13430 {
13431 struct perf_event *parent_event = event->parent;
13432 unsigned long detach_flags = 0;
13433
13434 if (parent_event) {
13435 /*
13436 * Do not destroy the 'original' grouping; because of the
13437 * context switch optimization the original events could've
13438 * ended up in a random child task.
13439 *
13440 * If we were to destroy the original group, all group related
13441 * operations would cease to function properly after this
13442 * random child dies.
13443 *
13444 * Do destroy all inherited groups, we don't care about those
13445 * and being thorough is better.
13446 */
13447 detach_flags = DETACH_GROUP | DETACH_CHILD;
13448 mutex_lock(&parent_event->child_mutex);
13449 }
13450
13451 perf_remove_from_context(event, detach_flags);
13452
13453 raw_spin_lock_irq(&ctx->lock);
13454 if (event->state > PERF_EVENT_STATE_EXIT)
13455 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13456 raw_spin_unlock_irq(&ctx->lock);
13457
13458 /*
13459 * Child events can be freed.
13460 */
13461 if (parent_event) {
13462 mutex_unlock(&parent_event->child_mutex);
13463 /*
13464 * Kick perf_poll() for is_event_hup();
13465 */
13466 perf_event_wakeup(parent_event);
13467 free_event(event);
13468 put_event(parent_event);
13469 return;
13470 }
13471
13472 /*
13473 * Parent events are governed by their filedesc, retain them.
13474 */
13475 perf_event_wakeup(event);
13476 }
13477
perf_event_exit_task_context(struct task_struct * child)13478 static void perf_event_exit_task_context(struct task_struct *child)
13479 {
13480 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13481 struct perf_event *child_event, *next;
13482
13483 WARN_ON_ONCE(child != current);
13484
13485 child_ctx = perf_pin_task_context(child);
13486 if (!child_ctx)
13487 return;
13488
13489 /*
13490 * In order to reduce the amount of tricky in ctx tear-down, we hold
13491 * ctx::mutex over the entire thing. This serializes against almost
13492 * everything that wants to access the ctx.
13493 *
13494 * The exception is sys_perf_event_open() /
13495 * perf_event_create_kernel_count() which does find_get_context()
13496 * without ctx::mutex (it cannot because of the move_group double mutex
13497 * lock thing). See the comments in perf_install_in_context().
13498 */
13499 mutex_lock(&child_ctx->mutex);
13500
13501 /*
13502 * In a single ctx::lock section, de-schedule the events and detach the
13503 * context from the task such that we cannot ever get it scheduled back
13504 * in.
13505 */
13506 raw_spin_lock_irq(&child_ctx->lock);
13507 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13508
13509 /*
13510 * Now that the context is inactive, destroy the task <-> ctx relation
13511 * and mark the context dead.
13512 */
13513 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13514 put_ctx(child_ctx); /* cannot be last */
13515 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13516 put_task_struct(current); /* cannot be last */
13517
13518 clone_ctx = unclone_ctx(child_ctx);
13519 raw_spin_unlock_irq(&child_ctx->lock);
13520
13521 if (clone_ctx)
13522 put_ctx(clone_ctx);
13523
13524 /*
13525 * Report the task dead after unscheduling the events so that we
13526 * won't get any samples after PERF_RECORD_EXIT. We can however still
13527 * get a few PERF_RECORD_READ events.
13528 */
13529 perf_event_task(child, child_ctx, 0);
13530
13531 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13532 perf_event_exit_event(child_event, child_ctx);
13533
13534 mutex_unlock(&child_ctx->mutex);
13535
13536 put_ctx(child_ctx);
13537 }
13538
13539 /*
13540 * When a child task exits, feed back event values to parent events.
13541 *
13542 * Can be called with exec_update_lock held when called from
13543 * setup_new_exec().
13544 */
perf_event_exit_task(struct task_struct * child)13545 void perf_event_exit_task(struct task_struct *child)
13546 {
13547 struct perf_event *event, *tmp;
13548
13549 mutex_lock(&child->perf_event_mutex);
13550 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13551 owner_entry) {
13552 list_del_init(&event->owner_entry);
13553
13554 /*
13555 * Ensure the list deletion is visible before we clear
13556 * the owner, closes a race against perf_release() where
13557 * we need to serialize on the owner->perf_event_mutex.
13558 */
13559 smp_store_release(&event->owner, NULL);
13560 }
13561 mutex_unlock(&child->perf_event_mutex);
13562
13563 perf_event_exit_task_context(child);
13564
13565 /*
13566 * The perf_event_exit_task_context calls perf_event_task
13567 * with child's task_ctx, which generates EXIT events for
13568 * child contexts and sets child->perf_event_ctxp[] to NULL.
13569 * At this point we need to send EXIT events to cpu contexts.
13570 */
13571 perf_event_task(child, NULL, 0);
13572 }
13573
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13574 static void perf_free_event(struct perf_event *event,
13575 struct perf_event_context *ctx)
13576 {
13577 struct perf_event *parent = event->parent;
13578
13579 if (WARN_ON_ONCE(!parent))
13580 return;
13581
13582 mutex_lock(&parent->child_mutex);
13583 list_del_init(&event->child_list);
13584 mutex_unlock(&parent->child_mutex);
13585
13586 put_event(parent);
13587
13588 raw_spin_lock_irq(&ctx->lock);
13589 perf_group_detach(event);
13590 list_del_event(event, ctx);
13591 raw_spin_unlock_irq(&ctx->lock);
13592 free_event(event);
13593 }
13594
13595 /*
13596 * Free a context as created by inheritance by perf_event_init_task() below,
13597 * used by fork() in case of fail.
13598 *
13599 * Even though the task has never lived, the context and events have been
13600 * exposed through the child_list, so we must take care tearing it all down.
13601 */
perf_event_free_task(struct task_struct * task)13602 void perf_event_free_task(struct task_struct *task)
13603 {
13604 struct perf_event_context *ctx;
13605 struct perf_event *event, *tmp;
13606
13607 ctx = rcu_access_pointer(task->perf_event_ctxp);
13608 if (!ctx)
13609 return;
13610
13611 mutex_lock(&ctx->mutex);
13612 raw_spin_lock_irq(&ctx->lock);
13613 /*
13614 * Destroy the task <-> ctx relation and mark the context dead.
13615 *
13616 * This is important because even though the task hasn't been
13617 * exposed yet the context has been (through child_list).
13618 */
13619 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13620 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13621 put_task_struct(task); /* cannot be last */
13622 raw_spin_unlock_irq(&ctx->lock);
13623
13624
13625 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13626 perf_free_event(event, ctx);
13627
13628 mutex_unlock(&ctx->mutex);
13629
13630 /*
13631 * perf_event_release_kernel() could've stolen some of our
13632 * child events and still have them on its free_list. In that
13633 * case we must wait for these events to have been freed (in
13634 * particular all their references to this task must've been
13635 * dropped).
13636 *
13637 * Without this copy_process() will unconditionally free this
13638 * task (irrespective of its reference count) and
13639 * _free_event()'s put_task_struct(event->hw.target) will be a
13640 * use-after-free.
13641 *
13642 * Wait for all events to drop their context reference.
13643 */
13644 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13645 put_ctx(ctx); /* must be last */
13646 }
13647
perf_event_delayed_put(struct task_struct * task)13648 void perf_event_delayed_put(struct task_struct *task)
13649 {
13650 WARN_ON_ONCE(task->perf_event_ctxp);
13651 }
13652
perf_event_get(unsigned int fd)13653 struct file *perf_event_get(unsigned int fd)
13654 {
13655 struct file *file = fget(fd);
13656 if (!file)
13657 return ERR_PTR(-EBADF);
13658
13659 if (file->f_op != &perf_fops) {
13660 fput(file);
13661 return ERR_PTR(-EBADF);
13662 }
13663
13664 return file;
13665 }
13666
perf_get_event(struct file * file)13667 const struct perf_event *perf_get_event(struct file *file)
13668 {
13669 if (file->f_op != &perf_fops)
13670 return ERR_PTR(-EINVAL);
13671
13672 return file->private_data;
13673 }
13674
perf_event_attrs(struct perf_event * event)13675 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13676 {
13677 if (!event)
13678 return ERR_PTR(-EINVAL);
13679
13680 return &event->attr;
13681 }
13682
perf_allow_kernel(struct perf_event_attr * attr)13683 int perf_allow_kernel(struct perf_event_attr *attr)
13684 {
13685 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13686 return -EACCES;
13687
13688 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13689 }
13690 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13691
13692 /*
13693 * Inherit an event from parent task to child task.
13694 *
13695 * Returns:
13696 * - valid pointer on success
13697 * - NULL for orphaned events
13698 * - IS_ERR() on error
13699 */
13700 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13701 inherit_event(struct perf_event *parent_event,
13702 struct task_struct *parent,
13703 struct perf_event_context *parent_ctx,
13704 struct task_struct *child,
13705 struct perf_event *group_leader,
13706 struct perf_event_context *child_ctx)
13707 {
13708 enum perf_event_state parent_state = parent_event->state;
13709 struct perf_event_pmu_context *pmu_ctx;
13710 struct perf_event *child_event;
13711 unsigned long flags;
13712
13713 /*
13714 * Instead of creating recursive hierarchies of events,
13715 * we link inherited events back to the original parent,
13716 * which has a filp for sure, which we use as the reference
13717 * count:
13718 */
13719 if (parent_event->parent)
13720 parent_event = parent_event->parent;
13721
13722 child_event = perf_event_alloc(&parent_event->attr,
13723 parent_event->cpu,
13724 child,
13725 group_leader, parent_event,
13726 NULL, NULL, -1);
13727 if (IS_ERR(child_event))
13728 return child_event;
13729
13730 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13731 if (IS_ERR(pmu_ctx)) {
13732 free_event(child_event);
13733 return ERR_CAST(pmu_ctx);
13734 }
13735 child_event->pmu_ctx = pmu_ctx;
13736
13737 /*
13738 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13739 * must be under the same lock in order to serialize against
13740 * perf_event_release_kernel(), such that either we must observe
13741 * is_orphaned_event() or they will observe us on the child_list.
13742 */
13743 mutex_lock(&parent_event->child_mutex);
13744 if (is_orphaned_event(parent_event) ||
13745 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13746 mutex_unlock(&parent_event->child_mutex);
13747 /* task_ctx_data is freed with child_ctx */
13748 free_event(child_event);
13749 return NULL;
13750 }
13751
13752 get_ctx(child_ctx);
13753
13754 /*
13755 * Make the child state follow the state of the parent event,
13756 * not its attr.disabled bit. We hold the parent's mutex,
13757 * so we won't race with perf_event_{en, dis}able_family.
13758 */
13759 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13760 child_event->state = PERF_EVENT_STATE_INACTIVE;
13761 else
13762 child_event->state = PERF_EVENT_STATE_OFF;
13763
13764 if (parent_event->attr.freq) {
13765 u64 sample_period = parent_event->hw.sample_period;
13766 struct hw_perf_event *hwc = &child_event->hw;
13767
13768 hwc->sample_period = sample_period;
13769 hwc->last_period = sample_period;
13770
13771 local64_set(&hwc->period_left, sample_period);
13772 }
13773
13774 child_event->ctx = child_ctx;
13775 child_event->overflow_handler = parent_event->overflow_handler;
13776 child_event->overflow_handler_context
13777 = parent_event->overflow_handler_context;
13778
13779 /*
13780 * Precalculate sample_data sizes
13781 */
13782 perf_event__header_size(child_event);
13783 perf_event__id_header_size(child_event);
13784
13785 /*
13786 * Link it up in the child's context:
13787 */
13788 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13789 add_event_to_ctx(child_event, child_ctx);
13790 child_event->attach_state |= PERF_ATTACH_CHILD;
13791 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13792
13793 /*
13794 * Link this into the parent event's child list
13795 */
13796 list_add_tail(&child_event->child_list, &parent_event->child_list);
13797 mutex_unlock(&parent_event->child_mutex);
13798
13799 return child_event;
13800 }
13801
13802 /*
13803 * Inherits an event group.
13804 *
13805 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13806 * This matches with perf_event_release_kernel() removing all child events.
13807 *
13808 * Returns:
13809 * - 0 on success
13810 * - <0 on error
13811 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13812 static int inherit_group(struct perf_event *parent_event,
13813 struct task_struct *parent,
13814 struct perf_event_context *parent_ctx,
13815 struct task_struct *child,
13816 struct perf_event_context *child_ctx)
13817 {
13818 struct perf_event *leader;
13819 struct perf_event *sub;
13820 struct perf_event *child_ctr;
13821
13822 leader = inherit_event(parent_event, parent, parent_ctx,
13823 child, NULL, child_ctx);
13824 if (IS_ERR(leader))
13825 return PTR_ERR(leader);
13826 /*
13827 * @leader can be NULL here because of is_orphaned_event(). In this
13828 * case inherit_event() will create individual events, similar to what
13829 * perf_group_detach() would do anyway.
13830 */
13831 for_each_sibling_event(sub, parent_event) {
13832 child_ctr = inherit_event(sub, parent, parent_ctx,
13833 child, leader, child_ctx);
13834 if (IS_ERR(child_ctr))
13835 return PTR_ERR(child_ctr);
13836
13837 if (sub->aux_event == parent_event && child_ctr &&
13838 !perf_get_aux_event(child_ctr, leader))
13839 return -EINVAL;
13840 }
13841 if (leader)
13842 leader->group_generation = parent_event->group_generation;
13843 return 0;
13844 }
13845
13846 /*
13847 * Creates the child task context and tries to inherit the event-group.
13848 *
13849 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13850 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13851 * consistent with perf_event_release_kernel() removing all child events.
13852 *
13853 * Returns:
13854 * - 0 on success
13855 * - <0 on error
13856 */
13857 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13858 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13859 struct perf_event_context *parent_ctx,
13860 struct task_struct *child,
13861 u64 clone_flags, int *inherited_all)
13862 {
13863 struct perf_event_context *child_ctx;
13864 int ret;
13865
13866 if (!event->attr.inherit ||
13867 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13868 /* Do not inherit if sigtrap and signal handlers were cleared. */
13869 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13870 *inherited_all = 0;
13871 return 0;
13872 }
13873
13874 child_ctx = child->perf_event_ctxp;
13875 if (!child_ctx) {
13876 /*
13877 * This is executed from the parent task context, so
13878 * inherit events that have been marked for cloning.
13879 * First allocate and initialize a context for the
13880 * child.
13881 */
13882 child_ctx = alloc_perf_context(child);
13883 if (!child_ctx)
13884 return -ENOMEM;
13885
13886 child->perf_event_ctxp = child_ctx;
13887 }
13888
13889 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13890 if (ret)
13891 *inherited_all = 0;
13892
13893 return ret;
13894 }
13895
13896 /*
13897 * Initialize the perf_event context in task_struct
13898 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13899 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13900 {
13901 struct perf_event_context *child_ctx, *parent_ctx;
13902 struct perf_event_context *cloned_ctx;
13903 struct perf_event *event;
13904 struct task_struct *parent = current;
13905 int inherited_all = 1;
13906 unsigned long flags;
13907 int ret = 0;
13908
13909 if (likely(!parent->perf_event_ctxp))
13910 return 0;
13911
13912 /*
13913 * If the parent's context is a clone, pin it so it won't get
13914 * swapped under us.
13915 */
13916 parent_ctx = perf_pin_task_context(parent);
13917 if (!parent_ctx)
13918 return 0;
13919
13920 /*
13921 * No need to check if parent_ctx != NULL here; since we saw
13922 * it non-NULL earlier, the only reason for it to become NULL
13923 * is if we exit, and since we're currently in the middle of
13924 * a fork we can't be exiting at the same time.
13925 */
13926
13927 /*
13928 * Lock the parent list. No need to lock the child - not PID
13929 * hashed yet and not running, so nobody can access it.
13930 */
13931 mutex_lock(&parent_ctx->mutex);
13932
13933 /*
13934 * We dont have to disable NMIs - we are only looking at
13935 * the list, not manipulating it:
13936 */
13937 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13938 ret = inherit_task_group(event, parent, parent_ctx,
13939 child, clone_flags, &inherited_all);
13940 if (ret)
13941 goto out_unlock;
13942 }
13943
13944 /*
13945 * We can't hold ctx->lock when iterating the ->flexible_group list due
13946 * to allocations, but we need to prevent rotation because
13947 * rotate_ctx() will change the list from interrupt context.
13948 */
13949 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13950 parent_ctx->rotate_disable = 1;
13951 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13952
13953 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13954 ret = inherit_task_group(event, parent, parent_ctx,
13955 child, clone_flags, &inherited_all);
13956 if (ret)
13957 goto out_unlock;
13958 }
13959
13960 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13961 parent_ctx->rotate_disable = 0;
13962
13963 child_ctx = child->perf_event_ctxp;
13964
13965 if (child_ctx && inherited_all) {
13966 /*
13967 * Mark the child context as a clone of the parent
13968 * context, or of whatever the parent is a clone of.
13969 *
13970 * Note that if the parent is a clone, the holding of
13971 * parent_ctx->lock avoids it from being uncloned.
13972 */
13973 cloned_ctx = parent_ctx->parent_ctx;
13974 if (cloned_ctx) {
13975 child_ctx->parent_ctx = cloned_ctx;
13976 child_ctx->parent_gen = parent_ctx->parent_gen;
13977 } else {
13978 child_ctx->parent_ctx = parent_ctx;
13979 child_ctx->parent_gen = parent_ctx->generation;
13980 }
13981 get_ctx(child_ctx->parent_ctx);
13982 }
13983
13984 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13985 out_unlock:
13986 mutex_unlock(&parent_ctx->mutex);
13987
13988 perf_unpin_context(parent_ctx);
13989 put_ctx(parent_ctx);
13990
13991 return ret;
13992 }
13993
13994 /*
13995 * Initialize the perf_event context in task_struct
13996 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13997 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13998 {
13999 int ret;
14000
14001 memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14002 child->perf_event_ctxp = NULL;
14003 mutex_init(&child->perf_event_mutex);
14004 INIT_LIST_HEAD(&child->perf_event_list);
14005
14006 ret = perf_event_init_context(child, clone_flags);
14007 if (ret) {
14008 perf_event_free_task(child);
14009 return ret;
14010 }
14011
14012 return 0;
14013 }
14014
perf_event_init_all_cpus(void)14015 static void __init perf_event_init_all_cpus(void)
14016 {
14017 struct swevent_htable *swhash;
14018 struct perf_cpu_context *cpuctx;
14019 int cpu;
14020
14021 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14022 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14023 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14024 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14025 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14026 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14027
14028
14029 for_each_possible_cpu(cpu) {
14030 swhash = &per_cpu(swevent_htable, cpu);
14031 mutex_init(&swhash->hlist_mutex);
14032
14033 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14034 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14035
14036 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14037
14038 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14039 __perf_event_init_context(&cpuctx->ctx);
14040 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14041 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14042 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14043 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14044 cpuctx->heap = cpuctx->heap_default;
14045 }
14046 }
14047
perf_swevent_init_cpu(unsigned int cpu)14048 static void perf_swevent_init_cpu(unsigned int cpu)
14049 {
14050 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14051
14052 mutex_lock(&swhash->hlist_mutex);
14053 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14054 struct swevent_hlist *hlist;
14055
14056 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14057 WARN_ON(!hlist);
14058 rcu_assign_pointer(swhash->swevent_hlist, hlist);
14059 }
14060 mutex_unlock(&swhash->hlist_mutex);
14061 }
14062
14063 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14064 static void __perf_event_exit_context(void *__info)
14065 {
14066 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14067 struct perf_event_context *ctx = __info;
14068 struct perf_event *event;
14069
14070 raw_spin_lock(&ctx->lock);
14071 ctx_sched_out(ctx, NULL, EVENT_TIME);
14072 list_for_each_entry(event, &ctx->event_list, event_entry)
14073 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14074 raw_spin_unlock(&ctx->lock);
14075 }
14076
perf_event_clear_cpumask(unsigned int cpu)14077 static void perf_event_clear_cpumask(unsigned int cpu)
14078 {
14079 int target[PERF_PMU_MAX_SCOPE];
14080 unsigned int scope;
14081 struct pmu *pmu;
14082
14083 cpumask_clear_cpu(cpu, perf_online_mask);
14084
14085 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14086 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14087 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14088
14089 target[scope] = -1;
14090 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14091 continue;
14092
14093 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14094 continue;
14095 target[scope] = cpumask_any_but(cpumask, cpu);
14096 if (target[scope] < nr_cpu_ids)
14097 cpumask_set_cpu(target[scope], pmu_cpumask);
14098 }
14099
14100 /* migrate */
14101 list_for_each_entry(pmu, &pmus, entry) {
14102 if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14103 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14104 continue;
14105
14106 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14107 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14108 }
14109 }
14110
perf_event_exit_cpu_context(int cpu)14111 static void perf_event_exit_cpu_context(int cpu)
14112 {
14113 struct perf_cpu_context *cpuctx;
14114 struct perf_event_context *ctx;
14115
14116 // XXX simplify cpuctx->online
14117 mutex_lock(&pmus_lock);
14118 /*
14119 * Clear the cpumasks, and migrate to other CPUs if possible.
14120 * Must be invoked before the __perf_event_exit_context.
14121 */
14122 perf_event_clear_cpumask(cpu);
14123 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14124 ctx = &cpuctx->ctx;
14125
14126 mutex_lock(&ctx->mutex);
14127 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14128 cpuctx->online = 0;
14129 mutex_unlock(&ctx->mutex);
14130 mutex_unlock(&pmus_lock);
14131 }
14132 #else
14133
perf_event_exit_cpu_context(int cpu)14134 static void perf_event_exit_cpu_context(int cpu) { }
14135
14136 #endif
14137
perf_event_setup_cpumask(unsigned int cpu)14138 static void perf_event_setup_cpumask(unsigned int cpu)
14139 {
14140 struct cpumask *pmu_cpumask;
14141 unsigned int scope;
14142
14143 /*
14144 * Early boot stage, the cpumask hasn't been set yet.
14145 * The perf_online_<domain>_masks includes the first CPU of each domain.
14146 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14147 */
14148 if (cpumask_empty(perf_online_mask)) {
14149 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14150 pmu_cpumask = perf_scope_cpumask(scope);
14151 if (WARN_ON_ONCE(!pmu_cpumask))
14152 continue;
14153 cpumask_set_cpu(cpu, pmu_cpumask);
14154 }
14155 goto end;
14156 }
14157
14158 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14159 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14160
14161 pmu_cpumask = perf_scope_cpumask(scope);
14162
14163 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14164 continue;
14165
14166 if (!cpumask_empty(cpumask) &&
14167 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14168 cpumask_set_cpu(cpu, pmu_cpumask);
14169 }
14170 end:
14171 cpumask_set_cpu(cpu, perf_online_mask);
14172 }
14173
perf_event_init_cpu(unsigned int cpu)14174 int perf_event_init_cpu(unsigned int cpu)
14175 {
14176 struct perf_cpu_context *cpuctx;
14177 struct perf_event_context *ctx;
14178
14179 perf_swevent_init_cpu(cpu);
14180
14181 mutex_lock(&pmus_lock);
14182 perf_event_setup_cpumask(cpu);
14183 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14184 ctx = &cpuctx->ctx;
14185
14186 mutex_lock(&ctx->mutex);
14187 cpuctx->online = 1;
14188 mutex_unlock(&ctx->mutex);
14189 mutex_unlock(&pmus_lock);
14190
14191 return 0;
14192 }
14193
perf_event_exit_cpu(unsigned int cpu)14194 int perf_event_exit_cpu(unsigned int cpu)
14195 {
14196 perf_event_exit_cpu_context(cpu);
14197 return 0;
14198 }
14199
14200 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14201 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14202 {
14203 int cpu;
14204
14205 for_each_online_cpu(cpu)
14206 perf_event_exit_cpu(cpu);
14207
14208 return NOTIFY_OK;
14209 }
14210
14211 /*
14212 * Run the perf reboot notifier at the very last possible moment so that
14213 * the generic watchdog code runs as long as possible.
14214 */
14215 static struct notifier_block perf_reboot_notifier = {
14216 .notifier_call = perf_reboot,
14217 .priority = INT_MIN,
14218 };
14219
perf_event_init(void)14220 void __init perf_event_init(void)
14221 {
14222 int ret;
14223
14224 idr_init(&pmu_idr);
14225
14226 perf_event_init_all_cpus();
14227 init_srcu_struct(&pmus_srcu);
14228 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14229 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14230 perf_pmu_register(&perf_task_clock, "task_clock", -1);
14231 perf_tp_register();
14232 perf_event_init_cpu(smp_processor_id());
14233 register_reboot_notifier(&perf_reboot_notifier);
14234
14235 ret = init_hw_breakpoint();
14236 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14237
14238 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14239
14240 /*
14241 * Build time assertion that we keep the data_head at the intended
14242 * location. IOW, validation we got the __reserved[] size right.
14243 */
14244 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14245 != 1024);
14246 }
14247
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14248 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14249 char *page)
14250 {
14251 struct perf_pmu_events_attr *pmu_attr =
14252 container_of(attr, struct perf_pmu_events_attr, attr);
14253
14254 if (pmu_attr->event_str)
14255 return sprintf(page, "%s\n", pmu_attr->event_str);
14256
14257 return 0;
14258 }
14259 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14260
perf_event_sysfs_init(void)14261 static int __init perf_event_sysfs_init(void)
14262 {
14263 struct pmu *pmu;
14264 int ret;
14265
14266 mutex_lock(&pmus_lock);
14267
14268 ret = bus_register(&pmu_bus);
14269 if (ret)
14270 goto unlock;
14271
14272 list_for_each_entry(pmu, &pmus, entry) {
14273 if (pmu->dev)
14274 continue;
14275
14276 ret = pmu_dev_alloc(pmu);
14277 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14278 }
14279 pmu_bus_running = 1;
14280 ret = 0;
14281
14282 unlock:
14283 mutex_unlock(&pmus_lock);
14284
14285 return ret;
14286 }
14287 device_initcall(perf_event_sysfs_init);
14288
14289 #ifdef CONFIG_CGROUP_PERF
14290 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14291 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14292 {
14293 struct perf_cgroup *jc;
14294
14295 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14296 if (!jc)
14297 return ERR_PTR(-ENOMEM);
14298
14299 jc->info = alloc_percpu(struct perf_cgroup_info);
14300 if (!jc->info) {
14301 kfree(jc);
14302 return ERR_PTR(-ENOMEM);
14303 }
14304
14305 return &jc->css;
14306 }
14307
perf_cgroup_css_free(struct cgroup_subsys_state * css)14308 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14309 {
14310 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14311
14312 free_percpu(jc->info);
14313 kfree(jc);
14314 }
14315
perf_cgroup_css_online(struct cgroup_subsys_state * css)14316 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14317 {
14318 perf_event_cgroup(css->cgroup);
14319 return 0;
14320 }
14321
__perf_cgroup_move(void * info)14322 static int __perf_cgroup_move(void *info)
14323 {
14324 struct task_struct *task = info;
14325
14326 preempt_disable();
14327 perf_cgroup_switch(task);
14328 preempt_enable();
14329
14330 return 0;
14331 }
14332
perf_cgroup_attach(struct cgroup_taskset * tset)14333 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14334 {
14335 struct task_struct *task;
14336 struct cgroup_subsys_state *css;
14337
14338 cgroup_taskset_for_each(task, css, tset)
14339 task_function_call(task, __perf_cgroup_move, task);
14340 }
14341
14342 struct cgroup_subsys perf_event_cgrp_subsys = {
14343 .css_alloc = perf_cgroup_css_alloc,
14344 .css_free = perf_cgroup_css_free,
14345 .css_online = perf_cgroup_css_online,
14346 .attach = perf_cgroup_attach,
14347 /*
14348 * Implicitly enable on dfl hierarchy so that perf events can
14349 * always be filtered by cgroup2 path as long as perf_event
14350 * controller is not mounted on a legacy hierarchy.
14351 */
14352 .implicit_on_dfl = true,
14353 .threaded = true,
14354 };
14355 #endif /* CONFIG_CGROUP_PERF */
14356
14357 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14358