1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/compiler.h> 16 #include <linux/mm_types.h> 17 #include <linux/mmap_lock.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page-flags.h> 27 #include <linux/page_ref.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 #include <linux/sched.h> 31 #include <linux/pgtable.h> 32 #include <linux/kasan.h> 33 #include <linux/memremap.h> 34 #include <linux/slab.h> 35 #include <linux/cacheinfo.h> 36 #include <linux/rcuwait.h> 37 38 struct mempolicy; 39 struct anon_vma; 40 struct anon_vma_chain; 41 struct user_struct; 42 struct pt_regs; 43 struct folio_batch; 44 45 void arch_mm_preinit(void); 46 void mm_core_init(void); 47 void init_mm_internals(void); 48 49 extern atomic_long_t _totalram_pages; 50 static inline unsigned long totalram_pages(void) 51 { 52 return (unsigned long)atomic_long_read(&_totalram_pages); 53 } 54 55 static inline void totalram_pages_inc(void) 56 { 57 atomic_long_inc(&_totalram_pages); 58 } 59 60 static inline void totalram_pages_dec(void) 61 { 62 atomic_long_dec(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_add(long count) 66 { 67 atomic_long_add(count, &_totalram_pages); 68 } 69 70 extern void * high_memory; 71 72 #ifdef CONFIG_SYSCTL 73 extern int sysctl_legacy_va_layout; 74 #else 75 #define sysctl_legacy_va_layout 0 76 #endif 77 78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 79 extern const int mmap_rnd_bits_min; 80 extern int mmap_rnd_bits_max __ro_after_init; 81 extern int mmap_rnd_bits __read_mostly; 82 #endif 83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 84 extern const int mmap_rnd_compat_bits_min; 85 extern const int mmap_rnd_compat_bits_max; 86 extern int mmap_rnd_compat_bits __read_mostly; 87 #endif 88 89 #ifndef DIRECT_MAP_PHYSMEM_END 90 # ifdef MAX_PHYSMEM_BITS 91 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 92 # else 93 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 94 # endif 95 #endif 96 97 #include <asm/page.h> 98 #include <asm/processor.h> 99 100 #ifndef __pa_symbol 101 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 102 #endif 103 104 #ifndef page_to_virt 105 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 106 #endif 107 108 #ifndef lm_alias 109 #define lm_alias(x) __va(__pa_symbol(x)) 110 #endif 111 112 /* 113 * To prevent common memory management code establishing 114 * a zero page mapping on a read fault. 115 * This macro should be defined within <asm/pgtable.h>. 116 * s390 does this to prevent multiplexing of hardware bits 117 * related to the physical page in case of virtualization. 118 */ 119 #ifndef mm_forbids_zeropage 120 #define mm_forbids_zeropage(X) (0) 121 #endif 122 123 /* 124 * On some architectures it is expensive to call memset() for small sizes. 125 * If an architecture decides to implement their own version of 126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 127 * define their own version of this macro in <asm/pgtable.h> 128 */ 129 #if BITS_PER_LONG == 64 130 /* This function must be updated when the size of struct page grows above 96 131 * or reduces below 56. The idea that compiler optimizes out switch() 132 * statement, and only leaves move/store instructions. Also the compiler can 133 * combine write statements if they are both assignments and can be reordered, 134 * this can result in several of the writes here being dropped. 135 */ 136 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 137 static inline void __mm_zero_struct_page(struct page *page) 138 { 139 unsigned long *_pp = (void *)page; 140 141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 142 BUILD_BUG_ON(sizeof(struct page) & 7); 143 BUILD_BUG_ON(sizeof(struct page) < 56); 144 BUILD_BUG_ON(sizeof(struct page) > 96); 145 146 switch (sizeof(struct page)) { 147 case 96: 148 _pp[11] = 0; 149 fallthrough; 150 case 88: 151 _pp[10] = 0; 152 fallthrough; 153 case 80: 154 _pp[9] = 0; 155 fallthrough; 156 case 72: 157 _pp[8] = 0; 158 fallthrough; 159 case 64: 160 _pp[7] = 0; 161 fallthrough; 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171 } 172 #else 173 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174 #endif 175 176 /* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192 #define MAPCOUNT_ELF_CORE_MARGIN (5) 193 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195 extern int sysctl_max_map_count; 196 197 extern unsigned long sysctl_user_reserve_kbytes; 198 extern unsigned long sysctl_admin_reserve_kbytes; 199 200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 202 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 203 #else 204 #define nth_page(page,n) ((page) + (n)) 205 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 206 #endif 207 208 /* to align the pointer to the (next) page boundary */ 209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 210 211 /* to align the pointer to the (prev) page boundary */ 212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 213 214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217 static inline struct folio *lru_to_folio(struct list_head *head) 218 { 219 return list_entry((head)->prev, struct folio, lru); 220 } 221 222 void setup_initial_init_mm(void *start_code, void *end_code, 223 void *end_data, void *brk); 224 225 /* 226 * Linux kernel virtual memory manager primitives. 227 * The idea being to have a "virtual" mm in the same way 228 * we have a virtual fs - giving a cleaner interface to the 229 * mm details, and allowing different kinds of memory mappings 230 * (from shared memory to executable loading to arbitrary 231 * mmap() functions). 232 */ 233 234 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 236 void vm_area_free(struct vm_area_struct *); 237 238 #ifndef CONFIG_MMU 239 extern struct rb_root nommu_region_tree; 240 extern struct rw_semaphore nommu_region_sem; 241 242 extern unsigned int kobjsize(const void *objp); 243 #endif 244 245 /* 246 * vm_flags in vm_area_struct, see mm_types.h. 247 * When changing, update also include/trace/events/mmflags.h 248 */ 249 #define VM_NONE 0x00000000 250 251 #define VM_READ 0x00000001 /* currently active flags */ 252 #define VM_WRITE 0x00000002 253 #define VM_EXEC 0x00000004 254 #define VM_SHARED 0x00000008 255 256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 257 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 258 #define VM_MAYWRITE 0x00000020 259 #define VM_MAYEXEC 0x00000040 260 #define VM_MAYSHARE 0x00000080 261 262 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 263 #ifdef CONFIG_MMU 264 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 265 #else /* CONFIG_MMU */ 266 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 267 #define VM_UFFD_MISSING 0 268 #endif /* CONFIG_MMU */ 269 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272 #define VM_LOCKED 0x00002000 273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290 #ifdef CONFIG_MEM_SOFT_DIRTY 291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292 #else 293 # define VM_SOFTDIRTY 0 294 #endif 295 296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 308 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 309 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 310 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 311 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 312 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 313 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 314 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 315 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 317 318 #ifdef CONFIG_ARCH_HAS_PKEYS 319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 323 #if CONFIG_ARCH_PKEY_BITS > 3 324 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 325 #else 326 # define VM_PKEY_BIT3 0 327 #endif 328 #if CONFIG_ARCH_PKEY_BITS > 4 329 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 330 #else 331 # define VM_PKEY_BIT4 0 332 #endif 333 #endif /* CONFIG_ARCH_HAS_PKEYS */ 334 335 #ifdef CONFIG_X86_USER_SHADOW_STACK 336 /* 337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 338 * support core mm. 339 * 340 * These VMAs will get a single end guard page. This helps userspace protect 341 * itself from attacks. A single page is enough for current shadow stack archs 342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 343 * for more details on the guard size. 344 */ 345 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 346 #endif 347 348 #if defined(CONFIG_ARM64_GCS) 349 /* 350 * arm64's Guarded Control Stack implements similar functionality and 351 * has similar constraints to shadow stacks. 352 */ 353 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 354 #endif 355 356 #ifndef VM_SHADOW_STACK 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_PPC64) 361 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 362 #elif defined(CONFIG_PARISC) 363 # define VM_GROWSUP VM_ARCH_1 364 #elif defined(CONFIG_SPARC64) 365 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 366 # define VM_ARCH_CLEAR VM_SPARC_ADI 367 #elif defined(CONFIG_ARM64) 368 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 369 # define VM_ARCH_CLEAR VM_ARM64_BTI 370 #elif !defined(CONFIG_MMU) 371 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 372 #endif 373 374 #if defined(CONFIG_ARM64_MTE) 375 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 376 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 377 #else 378 # define VM_MTE VM_NONE 379 # define VM_MTE_ALLOWED VM_NONE 380 #endif 381 382 #ifndef VM_GROWSUP 383 # define VM_GROWSUP VM_NONE 384 #endif 385 386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 387 # define VM_UFFD_MINOR_BIT 41 388 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 390 # define VM_UFFD_MINOR VM_NONE 391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 393 /* 394 * This flag is used to connect VFIO to arch specific KVM code. It 395 * indicates that the memory under this VMA is safe for use with any 396 * non-cachable memory type inside KVM. Some VFIO devices, on some 397 * platforms, are thought to be unsafe and can cause machine crashes 398 * if KVM does not lock down the memory type. 399 */ 400 #ifdef CONFIG_64BIT 401 #define VM_ALLOW_ANY_UNCACHED_BIT 39 402 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 403 #else 404 #define VM_ALLOW_ANY_UNCACHED VM_NONE 405 #endif 406 407 #ifdef CONFIG_64BIT 408 #define VM_DROPPABLE_BIT 40 409 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 410 #elif defined(CONFIG_PPC32) 411 #define VM_DROPPABLE VM_ARCH_1 412 #else 413 #define VM_DROPPABLE VM_NONE 414 #endif 415 416 #ifdef CONFIG_64BIT 417 /* VM is sealed, in vm_flags */ 418 #define VM_SEALED _BITUL(63) 419 #endif 420 421 /* Bits set in the VMA until the stack is in its final location */ 422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 423 424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 425 426 /* Common data flag combinations */ 427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 430 VM_MAYWRITE | VM_MAYEXEC) 431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 433 434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 436 #endif 437 438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 440 #endif 441 442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 443 444 #ifdef CONFIG_STACK_GROWSUP 445 #define VM_STACK VM_GROWSUP 446 #define VM_STACK_EARLY VM_GROWSDOWN 447 #else 448 #define VM_STACK VM_GROWSDOWN 449 #define VM_STACK_EARLY 0 450 #endif 451 452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 453 454 /* VMA basic access permission flags */ 455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 456 457 458 /* 459 * Special vmas that are non-mergable, non-mlock()able. 460 */ 461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 462 463 /* This mask prevents VMA from being scanned with khugepaged */ 464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 465 466 /* This mask defines which mm->def_flags a process can inherit its parent */ 467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 468 469 /* This mask represents all the VMA flag bits used by mlock */ 470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 471 472 /* Arch-specific flags to clear when updating VM flags on protection change */ 473 #ifndef VM_ARCH_CLEAR 474 # define VM_ARCH_CLEAR VM_NONE 475 #endif 476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 477 478 /* 479 * mapping from the currently active vm_flags protection bits (the 480 * low four bits) to a page protection mask.. 481 */ 482 483 /* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491 /** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505 { 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508 } 509 510 #define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 522 523 /* 524 * vm_fault is filled by the pagefault handler and passed to the vma's 525 * ->fault function. The vma's ->fault is responsible for returning a bitmask 526 * of VM_FAULT_xxx flags that give details about how the fault was handled. 527 * 528 * MM layer fills up gfp_mask for page allocations but fault handler might 529 * alter it if its implementation requires a different allocation context. 530 * 531 * pgoff should be used in favour of virtual_address, if possible. 532 */ 533 struct vm_fault { 534 const struct { 535 struct vm_area_struct *vma; /* Target VMA */ 536 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 537 pgoff_t pgoff; /* Logical page offset based on vma */ 538 unsigned long address; /* Faulting virtual address - masked */ 539 unsigned long real_address; /* Faulting virtual address - unmasked */ 540 }; 541 enum fault_flag flags; /* FAULT_FLAG_xxx flags 542 * XXX: should really be 'const' */ 543 pmd_t *pmd; /* Pointer to pmd entry matching 544 * the 'address' */ 545 pud_t *pud; /* Pointer to pud entry matching 546 * the 'address' 547 */ 548 union { 549 pte_t orig_pte; /* Value of PTE at the time of fault */ 550 pmd_t orig_pmd; /* Value of PMD at the time of fault, 551 * used by PMD fault only. 552 */ 553 }; 554 555 struct page *cow_page; /* Page handler may use for COW fault */ 556 struct page *page; /* ->fault handlers should return a 557 * page here, unless VM_FAULT_NOPAGE 558 * is set (which is also implied by 559 * VM_FAULT_ERROR). 560 */ 561 /* These three entries are valid only while holding ptl lock */ 562 pte_t *pte; /* Pointer to pte entry matching 563 * the 'address'. NULL if the page 564 * table hasn't been allocated. 565 */ 566 spinlock_t *ptl; /* Page table lock. 567 * Protects pte page table if 'pte' 568 * is not NULL, otherwise pmd. 569 */ 570 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 571 * vm_ops->map_pages() sets up a page 572 * table from atomic context. 573 * do_fault_around() pre-allocates 574 * page table to avoid allocation from 575 * atomic context. 576 */ 577 }; 578 579 /* 580 * These are the virtual MM functions - opening of an area, closing and 581 * unmapping it (needed to keep files on disk up-to-date etc), pointer 582 * to the functions called when a no-page or a wp-page exception occurs. 583 */ 584 struct vm_operations_struct { 585 void (*open)(struct vm_area_struct * area); 586 /** 587 * @close: Called when the VMA is being removed from the MM. 588 * Context: User context. May sleep. Caller holds mmap_lock. 589 */ 590 void (*close)(struct vm_area_struct * area); 591 /* Called any time before splitting to check if it's allowed */ 592 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 593 int (*mremap)(struct vm_area_struct *area); 594 /* 595 * Called by mprotect() to make driver-specific permission 596 * checks before mprotect() is finalised. The VMA must not 597 * be modified. Returns 0 if mprotect() can proceed. 598 */ 599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 600 unsigned long end, unsigned long newflags); 601 vm_fault_t (*fault)(struct vm_fault *vmf); 602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 603 vm_fault_t (*map_pages)(struct vm_fault *vmf, 604 pgoff_t start_pgoff, pgoff_t end_pgoff); 605 unsigned long (*pagesize)(struct vm_area_struct * area); 606 607 /* notification that a previously read-only page is about to become 608 * writable, if an error is returned it will cause a SIGBUS */ 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 610 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 613 614 /* called by access_process_vm when get_user_pages() fails, typically 615 * for use by special VMAs. See also generic_access_phys() for a generic 616 * implementation useful for any iomem mapping. 617 */ 618 int (*access)(struct vm_area_struct *vma, unsigned long addr, 619 void *buf, int len, int write); 620 621 /* Called by the /proc/PID/maps code to ask the vma whether it 622 * has a special name. Returning non-NULL will also cause this 623 * vma to be dumped unconditionally. */ 624 const char *(*name)(struct vm_area_struct *vma); 625 626 #ifdef CONFIG_NUMA 627 /* 628 * set_policy() op must add a reference to any non-NULL @new mempolicy 629 * to hold the policy upon return. Caller should pass NULL @new to 630 * remove a policy and fall back to surrounding context--i.e. do not 631 * install a MPOL_DEFAULT policy, nor the task or system default 632 * mempolicy. 633 */ 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 635 636 /* 637 * get_policy() op must add reference [mpol_get()] to any policy at 638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 639 * in mm/mempolicy.c will do this automatically. 640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 643 * must return NULL--i.e., do not "fallback" to task or system default 644 * policy. 645 */ 646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 647 unsigned long addr, pgoff_t *ilx); 648 #endif 649 /* 650 * Called by vm_normal_page() for special PTEs to find the 651 * page for @addr. This is useful if the default behavior 652 * (using pte_page()) would not find the correct page. 653 */ 654 struct page *(*find_special_page)(struct vm_area_struct *vma, 655 unsigned long addr); 656 }; 657 658 #ifdef CONFIG_NUMA_BALANCING 659 static inline void vma_numab_state_init(struct vm_area_struct *vma) 660 { 661 vma->numab_state = NULL; 662 } 663 static inline void vma_numab_state_free(struct vm_area_struct *vma) 664 { 665 kfree(vma->numab_state); 666 } 667 #else 668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 670 #endif /* CONFIG_NUMA_BALANCING */ 671 672 /* 673 * These must be here rather than mmap_lock.h as dependent on vm_fault type, 674 * declared in this header. 675 */ 676 #ifdef CONFIG_PER_VMA_LOCK 677 static inline void release_fault_lock(struct vm_fault *vmf) 678 { 679 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 680 vma_end_read(vmf->vma); 681 else 682 mmap_read_unlock(vmf->vma->vm_mm); 683 } 684 685 static inline void assert_fault_locked(struct vm_fault *vmf) 686 { 687 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 688 vma_assert_locked(vmf->vma); 689 else 690 mmap_assert_locked(vmf->vma->vm_mm); 691 } 692 #else 693 static inline void release_fault_lock(struct vm_fault *vmf) 694 { 695 mmap_read_unlock(vmf->vma->vm_mm); 696 } 697 698 static inline void assert_fault_locked(struct vm_fault *vmf) 699 { 700 mmap_assert_locked(vmf->vma->vm_mm); 701 } 702 #endif /* CONFIG_PER_VMA_LOCK */ 703 704 extern const struct vm_operations_struct vma_dummy_vm_ops; 705 706 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 707 { 708 memset(vma, 0, sizeof(*vma)); 709 vma->vm_mm = mm; 710 vma->vm_ops = &vma_dummy_vm_ops; 711 INIT_LIST_HEAD(&vma->anon_vma_chain); 712 vma_lock_init(vma, false); 713 } 714 715 /* Use when VMA is not part of the VMA tree and needs no locking */ 716 static inline void vm_flags_init(struct vm_area_struct *vma, 717 vm_flags_t flags) 718 { 719 ACCESS_PRIVATE(vma, __vm_flags) = flags; 720 } 721 722 /* 723 * Use when VMA is part of the VMA tree and modifications need coordination 724 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 725 * it should be locked explicitly beforehand. 726 */ 727 static inline void vm_flags_reset(struct vm_area_struct *vma, 728 vm_flags_t flags) 729 { 730 vma_assert_write_locked(vma); 731 vm_flags_init(vma, flags); 732 } 733 734 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 735 vm_flags_t flags) 736 { 737 vma_assert_write_locked(vma); 738 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 739 } 740 741 static inline void vm_flags_set(struct vm_area_struct *vma, 742 vm_flags_t flags) 743 { 744 vma_start_write(vma); 745 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 746 } 747 748 static inline void vm_flags_clear(struct vm_area_struct *vma, 749 vm_flags_t flags) 750 { 751 vma_start_write(vma); 752 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 753 } 754 755 /* 756 * Use only if VMA is not part of the VMA tree or has no other users and 757 * therefore needs no locking. 758 */ 759 static inline void __vm_flags_mod(struct vm_area_struct *vma, 760 vm_flags_t set, vm_flags_t clear) 761 { 762 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 763 } 764 765 /* 766 * Use only when the order of set/clear operations is unimportant, otherwise 767 * use vm_flags_{set|clear} explicitly. 768 */ 769 static inline void vm_flags_mod(struct vm_area_struct *vma, 770 vm_flags_t set, vm_flags_t clear) 771 { 772 vma_start_write(vma); 773 __vm_flags_mod(vma, set, clear); 774 } 775 776 static inline void vma_set_anonymous(struct vm_area_struct *vma) 777 { 778 vma->vm_ops = NULL; 779 } 780 781 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 782 { 783 return !vma->vm_ops; 784 } 785 786 /* 787 * Indicate if the VMA is a heap for the given task; for 788 * /proc/PID/maps that is the heap of the main task. 789 */ 790 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 791 { 792 return vma->vm_start < vma->vm_mm->brk && 793 vma->vm_end > vma->vm_mm->start_brk; 794 } 795 796 /* 797 * Indicate if the VMA is a stack for the given task; for 798 * /proc/PID/maps that is the stack of the main task. 799 */ 800 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 801 { 802 /* 803 * We make no effort to guess what a given thread considers to be 804 * its "stack". It's not even well-defined for programs written 805 * languages like Go. 806 */ 807 return vma->vm_start <= vma->vm_mm->start_stack && 808 vma->vm_end >= vma->vm_mm->start_stack; 809 } 810 811 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 812 { 813 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 814 815 if (!maybe_stack) 816 return false; 817 818 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 819 VM_STACK_INCOMPLETE_SETUP) 820 return true; 821 822 return false; 823 } 824 825 static inline bool vma_is_foreign(struct vm_area_struct *vma) 826 { 827 if (!current->mm) 828 return true; 829 830 if (current->mm != vma->vm_mm) 831 return true; 832 833 return false; 834 } 835 836 static inline bool vma_is_accessible(struct vm_area_struct *vma) 837 { 838 return vma->vm_flags & VM_ACCESS_FLAGS; 839 } 840 841 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 842 { 843 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 844 (VM_SHARED | VM_MAYWRITE); 845 } 846 847 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 848 { 849 return is_shared_maywrite(vma->vm_flags); 850 } 851 852 static inline 853 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 854 { 855 return mas_find(&vmi->mas, max - 1); 856 } 857 858 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 859 { 860 /* 861 * Uses mas_find() to get the first VMA when the iterator starts. 862 * Calling mas_next() could skip the first entry. 863 */ 864 return mas_find(&vmi->mas, ULONG_MAX); 865 } 866 867 static inline 868 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 869 { 870 return mas_next_range(&vmi->mas, ULONG_MAX); 871 } 872 873 874 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 875 { 876 return mas_prev(&vmi->mas, 0); 877 } 878 879 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 880 unsigned long start, unsigned long end, gfp_t gfp) 881 { 882 __mas_set_range(&vmi->mas, start, end - 1); 883 mas_store_gfp(&vmi->mas, NULL, gfp); 884 if (unlikely(mas_is_err(&vmi->mas))) 885 return -ENOMEM; 886 887 return 0; 888 } 889 890 /* Free any unused preallocations */ 891 static inline void vma_iter_free(struct vma_iterator *vmi) 892 { 893 mas_destroy(&vmi->mas); 894 } 895 896 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 897 struct vm_area_struct *vma) 898 { 899 vmi->mas.index = vma->vm_start; 900 vmi->mas.last = vma->vm_end - 1; 901 mas_store(&vmi->mas, vma); 902 if (unlikely(mas_is_err(&vmi->mas))) 903 return -ENOMEM; 904 905 vma_mark_attached(vma); 906 return 0; 907 } 908 909 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 910 { 911 mas_pause(&vmi->mas); 912 } 913 914 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 915 { 916 mas_set(&vmi->mas, addr); 917 } 918 919 #define for_each_vma(__vmi, __vma) \ 920 while (((__vma) = vma_next(&(__vmi))) != NULL) 921 922 /* The MM code likes to work with exclusive end addresses */ 923 #define for_each_vma_range(__vmi, __vma, __end) \ 924 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 925 926 #ifdef CONFIG_SHMEM 927 /* 928 * The vma_is_shmem is not inline because it is used only by slow 929 * paths in userfault. 930 */ 931 bool vma_is_shmem(struct vm_area_struct *vma); 932 bool vma_is_anon_shmem(struct vm_area_struct *vma); 933 #else 934 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 935 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 936 #endif 937 938 int vma_is_stack_for_current(struct vm_area_struct *vma); 939 940 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 941 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 942 943 struct mmu_gather; 944 struct inode; 945 946 extern void prep_compound_page(struct page *page, unsigned int order); 947 948 static inline unsigned int folio_large_order(const struct folio *folio) 949 { 950 return folio->_flags_1 & 0xff; 951 } 952 953 #ifdef NR_PAGES_IN_LARGE_FOLIO 954 static inline long folio_large_nr_pages(const struct folio *folio) 955 { 956 return folio->_nr_pages; 957 } 958 #else 959 static inline long folio_large_nr_pages(const struct folio *folio) 960 { 961 return 1L << folio_large_order(folio); 962 } 963 #endif 964 965 /* 966 * compound_order() can be called without holding a reference, which means 967 * that niceties like page_folio() don't work. These callers should be 968 * prepared to handle wild return values. For example, PG_head may be 969 * set before the order is initialised, or this may be a tail page. 970 * See compaction.c for some good examples. 971 */ 972 static inline unsigned int compound_order(struct page *page) 973 { 974 struct folio *folio = (struct folio *)page; 975 976 if (!test_bit(PG_head, &folio->flags)) 977 return 0; 978 return folio_large_order(folio); 979 } 980 981 /** 982 * folio_order - The allocation order of a folio. 983 * @folio: The folio. 984 * 985 * A folio is composed of 2^order pages. See get_order() for the definition 986 * of order. 987 * 988 * Return: The order of the folio. 989 */ 990 static inline unsigned int folio_order(const struct folio *folio) 991 { 992 if (!folio_test_large(folio)) 993 return 0; 994 return folio_large_order(folio); 995 } 996 997 /** 998 * folio_reset_order - Reset the folio order and derived _nr_pages 999 * @folio: The folio. 1000 * 1001 * Reset the order and derived _nr_pages to 0. Must only be used in the 1002 * process of splitting large folios. 1003 */ 1004 static inline void folio_reset_order(struct folio *folio) 1005 { 1006 if (WARN_ON_ONCE(!folio_test_large(folio))) 1007 return; 1008 folio->_flags_1 &= ~0xffUL; 1009 #ifdef NR_PAGES_IN_LARGE_FOLIO 1010 folio->_nr_pages = 0; 1011 #endif 1012 } 1013 1014 #include <linux/huge_mm.h> 1015 1016 /* 1017 * Methods to modify the page usage count. 1018 * 1019 * What counts for a page usage: 1020 * - cache mapping (page->mapping) 1021 * - private data (page->private) 1022 * - page mapped in a task's page tables, each mapping 1023 * is counted separately 1024 * 1025 * Also, many kernel routines increase the page count before a critical 1026 * routine so they can be sure the page doesn't go away from under them. 1027 */ 1028 1029 /* 1030 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1031 */ 1032 static inline int put_page_testzero(struct page *page) 1033 { 1034 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1035 return page_ref_dec_and_test(page); 1036 } 1037 1038 static inline int folio_put_testzero(struct folio *folio) 1039 { 1040 return put_page_testzero(&folio->page); 1041 } 1042 1043 /* 1044 * Try to grab a ref unless the page has a refcount of zero, return false if 1045 * that is the case. 1046 * This can be called when MMU is off so it must not access 1047 * any of the virtual mappings. 1048 */ 1049 static inline bool get_page_unless_zero(struct page *page) 1050 { 1051 return page_ref_add_unless(page, 1, 0); 1052 } 1053 1054 static inline struct folio *folio_get_nontail_page(struct page *page) 1055 { 1056 if (unlikely(!get_page_unless_zero(page))) 1057 return NULL; 1058 return (struct folio *)page; 1059 } 1060 1061 extern int page_is_ram(unsigned long pfn); 1062 1063 enum { 1064 REGION_INTERSECTS, 1065 REGION_DISJOINT, 1066 REGION_MIXED, 1067 }; 1068 1069 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1070 unsigned long desc); 1071 1072 /* Support for virtually mapped pages */ 1073 struct page *vmalloc_to_page(const void *addr); 1074 unsigned long vmalloc_to_pfn(const void *addr); 1075 1076 /* 1077 * Determine if an address is within the vmalloc range 1078 * 1079 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1080 * is no special casing required. 1081 */ 1082 #ifdef CONFIG_MMU 1083 extern bool is_vmalloc_addr(const void *x); 1084 extern int is_vmalloc_or_module_addr(const void *x); 1085 #else 1086 static inline bool is_vmalloc_addr(const void *x) 1087 { 1088 return false; 1089 } 1090 static inline int is_vmalloc_or_module_addr(const void *x) 1091 { 1092 return 0; 1093 } 1094 #endif 1095 1096 /* 1097 * How many times the entire folio is mapped as a single unit (eg by a 1098 * PMD or PUD entry). This is probably not what you want, except for 1099 * debugging purposes or implementation of other core folio_*() primitives. 1100 */ 1101 static inline int folio_entire_mapcount(const struct folio *folio) 1102 { 1103 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1104 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1105 return 0; 1106 return atomic_read(&folio->_entire_mapcount) + 1; 1107 } 1108 1109 static inline int folio_large_mapcount(const struct folio *folio) 1110 { 1111 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1112 return atomic_read(&folio->_large_mapcount) + 1; 1113 } 1114 1115 /** 1116 * folio_mapcount() - Number of mappings of this folio. 1117 * @folio: The folio. 1118 * 1119 * The folio mapcount corresponds to the number of present user page table 1120 * entries that reference any part of a folio. Each such present user page 1121 * table entry must be paired with exactly on folio reference. 1122 * 1123 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1124 * exactly once. 1125 * 1126 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1127 * references the entire folio counts exactly once, even when such special 1128 * page table entries are comprised of multiple ordinary page table entries. 1129 * 1130 * Will report 0 for pages which cannot be mapped into userspace, such as 1131 * slab, page tables and similar. 1132 * 1133 * Return: The number of times this folio is mapped. 1134 */ 1135 static inline int folio_mapcount(const struct folio *folio) 1136 { 1137 int mapcount; 1138 1139 if (likely(!folio_test_large(folio))) { 1140 mapcount = atomic_read(&folio->_mapcount) + 1; 1141 if (page_mapcount_is_type(mapcount)) 1142 mapcount = 0; 1143 return mapcount; 1144 } 1145 return folio_large_mapcount(folio); 1146 } 1147 1148 /** 1149 * folio_mapped - Is this folio mapped into userspace? 1150 * @folio: The folio. 1151 * 1152 * Return: True if any page in this folio is referenced by user page tables. 1153 */ 1154 static inline bool folio_mapped(const struct folio *folio) 1155 { 1156 return folio_mapcount(folio) >= 1; 1157 } 1158 1159 /* 1160 * Return true if this page is mapped into pagetables. 1161 * For compound page it returns true if any sub-page of compound page is mapped, 1162 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1163 */ 1164 static inline bool page_mapped(const struct page *page) 1165 { 1166 return folio_mapped(page_folio(page)); 1167 } 1168 1169 static inline struct page *virt_to_head_page(const void *x) 1170 { 1171 struct page *page = virt_to_page(x); 1172 1173 return compound_head(page); 1174 } 1175 1176 static inline struct folio *virt_to_folio(const void *x) 1177 { 1178 struct page *page = virt_to_page(x); 1179 1180 return page_folio(page); 1181 } 1182 1183 void __folio_put(struct folio *folio); 1184 1185 void split_page(struct page *page, unsigned int order); 1186 void folio_copy(struct folio *dst, struct folio *src); 1187 int folio_mc_copy(struct folio *dst, struct folio *src); 1188 1189 unsigned long nr_free_buffer_pages(void); 1190 1191 /* Returns the number of bytes in this potentially compound page. */ 1192 static inline unsigned long page_size(struct page *page) 1193 { 1194 return PAGE_SIZE << compound_order(page); 1195 } 1196 1197 /* Returns the number of bits needed for the number of bytes in a page */ 1198 static inline unsigned int page_shift(struct page *page) 1199 { 1200 return PAGE_SHIFT + compound_order(page); 1201 } 1202 1203 /** 1204 * thp_order - Order of a transparent huge page. 1205 * @page: Head page of a transparent huge page. 1206 */ 1207 static inline unsigned int thp_order(struct page *page) 1208 { 1209 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1210 return compound_order(page); 1211 } 1212 1213 /** 1214 * thp_size - Size of a transparent huge page. 1215 * @page: Head page of a transparent huge page. 1216 * 1217 * Return: Number of bytes in this page. 1218 */ 1219 static inline unsigned long thp_size(struct page *page) 1220 { 1221 return PAGE_SIZE << thp_order(page); 1222 } 1223 1224 #ifdef CONFIG_MMU 1225 /* 1226 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1227 * servicing faults for write access. In the normal case, do always want 1228 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1229 * that do not have writing enabled, when used by access_process_vm. 1230 */ 1231 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1232 { 1233 if (likely(vma->vm_flags & VM_WRITE)) 1234 pte = pte_mkwrite(pte, vma); 1235 return pte; 1236 } 1237 1238 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); 1239 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1240 struct page *page, unsigned int nr, unsigned long addr); 1241 1242 vm_fault_t finish_fault(struct vm_fault *vmf); 1243 #endif 1244 1245 /* 1246 * Multiple processes may "see" the same page. E.g. for untouched 1247 * mappings of /dev/null, all processes see the same page full of 1248 * zeroes, and text pages of executables and shared libraries have 1249 * only one copy in memory, at most, normally. 1250 * 1251 * For the non-reserved pages, page_count(page) denotes a reference count. 1252 * page_count() == 0 means the page is free. page->lru is then used for 1253 * freelist management in the buddy allocator. 1254 * page_count() > 0 means the page has been allocated. 1255 * 1256 * Pages are allocated by the slab allocator in order to provide memory 1257 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1258 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1259 * unless a particular usage is carefully commented. (the responsibility of 1260 * freeing the kmalloc memory is the caller's, of course). 1261 * 1262 * A page may be used by anyone else who does a __get_free_page(). 1263 * In this case, page_count still tracks the references, and should only 1264 * be used through the normal accessor functions. The top bits of page->flags 1265 * and page->virtual store page management information, but all other fields 1266 * are unused and could be used privately, carefully. The management of this 1267 * page is the responsibility of the one who allocated it, and those who have 1268 * subsequently been given references to it. 1269 * 1270 * The other pages (we may call them "pagecache pages") are completely 1271 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1272 * The following discussion applies only to them. 1273 * 1274 * A pagecache page contains an opaque `private' member, which belongs to the 1275 * page's address_space. Usually, this is the address of a circular list of 1276 * the page's disk buffers. PG_private must be set to tell the VM to call 1277 * into the filesystem to release these pages. 1278 * 1279 * A folio may belong to an inode's memory mapping. In this case, 1280 * folio->mapping points to the inode, and folio->index is the file 1281 * offset of the folio, in units of PAGE_SIZE. 1282 * 1283 * If pagecache pages are not associated with an inode, they are said to be 1284 * anonymous pages. These may become associated with the swapcache, and in that 1285 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1286 * 1287 * In either case (swapcache or inode backed), the pagecache itself holds one 1288 * reference to the page. Setting PG_private should also increment the 1289 * refcount. The each user mapping also has a reference to the page. 1290 * 1291 * The pagecache pages are stored in a per-mapping radix tree, which is 1292 * rooted at mapping->i_pages, and indexed by offset. 1293 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1294 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1295 * 1296 * All pagecache pages may be subject to I/O: 1297 * - inode pages may need to be read from disk, 1298 * - inode pages which have been modified and are MAP_SHARED may need 1299 * to be written back to the inode on disk, 1300 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1301 * modified may need to be swapped out to swap space and (later) to be read 1302 * back into memory. 1303 */ 1304 1305 /* 127: arbitrary random number, small enough to assemble well */ 1306 #define folio_ref_zero_or_close_to_overflow(folio) \ 1307 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1308 1309 /** 1310 * folio_get - Increment the reference count on a folio. 1311 * @folio: The folio. 1312 * 1313 * Context: May be called in any context, as long as you know that 1314 * you have a refcount on the folio. If you do not already have one, 1315 * folio_try_get() may be the right interface for you to use. 1316 */ 1317 static inline void folio_get(struct folio *folio) 1318 { 1319 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1320 folio_ref_inc(folio); 1321 } 1322 1323 static inline void get_page(struct page *page) 1324 { 1325 struct folio *folio = page_folio(page); 1326 if (WARN_ON_ONCE(folio_test_slab(folio))) 1327 return; 1328 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio))) 1329 return; 1330 folio_get(folio); 1331 } 1332 1333 static inline __must_check bool try_get_page(struct page *page) 1334 { 1335 page = compound_head(page); 1336 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1337 return false; 1338 page_ref_inc(page); 1339 return true; 1340 } 1341 1342 /** 1343 * folio_put - Decrement the reference count on a folio. 1344 * @folio: The folio. 1345 * 1346 * If the folio's reference count reaches zero, the memory will be 1347 * released back to the page allocator and may be used by another 1348 * allocation immediately. Do not access the memory or the struct folio 1349 * after calling folio_put() unless you can be sure that it wasn't the 1350 * last reference. 1351 * 1352 * Context: May be called in process or interrupt context, but not in NMI 1353 * context. May be called while holding a spinlock. 1354 */ 1355 static inline void folio_put(struct folio *folio) 1356 { 1357 if (folio_put_testzero(folio)) 1358 __folio_put(folio); 1359 } 1360 1361 /** 1362 * folio_put_refs - Reduce the reference count on a folio. 1363 * @folio: The folio. 1364 * @refs: The amount to subtract from the folio's reference count. 1365 * 1366 * If the folio's reference count reaches zero, the memory will be 1367 * released back to the page allocator and may be used by another 1368 * allocation immediately. Do not access the memory or the struct folio 1369 * after calling folio_put_refs() unless you can be sure that these weren't 1370 * the last references. 1371 * 1372 * Context: May be called in process or interrupt context, but not in NMI 1373 * context. May be called while holding a spinlock. 1374 */ 1375 static inline void folio_put_refs(struct folio *folio, int refs) 1376 { 1377 if (folio_ref_sub_and_test(folio, refs)) 1378 __folio_put(folio); 1379 } 1380 1381 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1382 1383 /* 1384 * union release_pages_arg - an array of pages or folios 1385 * 1386 * release_pages() releases a simple array of multiple pages, and 1387 * accepts various different forms of said page array: either 1388 * a regular old boring array of pages, an array of folios, or 1389 * an array of encoded page pointers. 1390 * 1391 * The transparent union syntax for this kind of "any of these 1392 * argument types" is all kinds of ugly, so look away. 1393 */ 1394 typedef union { 1395 struct page **pages; 1396 struct folio **folios; 1397 struct encoded_page **encoded_pages; 1398 } release_pages_arg __attribute__ ((__transparent_union__)); 1399 1400 void release_pages(release_pages_arg, int nr); 1401 1402 /** 1403 * folios_put - Decrement the reference count on an array of folios. 1404 * @folios: The folios. 1405 * 1406 * Like folio_put(), but for a batch of folios. This is more efficient 1407 * than writing the loop yourself as it will optimise the locks which need 1408 * to be taken if the folios are freed. The folios batch is returned 1409 * empty and ready to be reused for another batch; there is no need to 1410 * reinitialise it. 1411 * 1412 * Context: May be called in process or interrupt context, but not in NMI 1413 * context. May be called while holding a spinlock. 1414 */ 1415 static inline void folios_put(struct folio_batch *folios) 1416 { 1417 folios_put_refs(folios, NULL); 1418 } 1419 1420 static inline void put_page(struct page *page) 1421 { 1422 struct folio *folio = page_folio(page); 1423 1424 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio)) 1425 return; 1426 1427 folio_put(folio); 1428 } 1429 1430 /* 1431 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1432 * the page's refcount so that two separate items are tracked: the original page 1433 * reference count, and also a new count of how many pin_user_pages() calls were 1434 * made against the page. ("gup-pinned" is another term for the latter). 1435 * 1436 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1437 * distinct from normal pages. As such, the unpin_user_page() call (and its 1438 * variants) must be used in order to release gup-pinned pages. 1439 * 1440 * Choice of value: 1441 * 1442 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1443 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1444 * simpler, due to the fact that adding an even power of two to the page 1445 * refcount has the effect of using only the upper N bits, for the code that 1446 * counts up using the bias value. This means that the lower bits are left for 1447 * the exclusive use of the original code that increments and decrements by one 1448 * (or at least, by much smaller values than the bias value). 1449 * 1450 * Of course, once the lower bits overflow into the upper bits (and this is 1451 * OK, because subtraction recovers the original values), then visual inspection 1452 * no longer suffices to directly view the separate counts. However, for normal 1453 * applications that don't have huge page reference counts, this won't be an 1454 * issue. 1455 * 1456 * Locking: the lockless algorithm described in folio_try_get_rcu() 1457 * provides safe operation for get_user_pages(), folio_mkclean() and 1458 * other calls that race to set up page table entries. 1459 */ 1460 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1461 1462 void unpin_user_page(struct page *page); 1463 void unpin_folio(struct folio *folio); 1464 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1465 bool make_dirty); 1466 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1467 bool make_dirty); 1468 void unpin_user_pages(struct page **pages, unsigned long npages); 1469 void unpin_user_folio(struct folio *folio, unsigned long npages); 1470 void unpin_folios(struct folio **folios, unsigned long nfolios); 1471 1472 static inline bool is_cow_mapping(vm_flags_t flags) 1473 { 1474 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1475 } 1476 1477 #ifndef CONFIG_MMU 1478 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1479 { 1480 /* 1481 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1482 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1483 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1484 * underlying memory if ptrace is active, so this is only possible if 1485 * ptrace does not apply. Note that there is no mprotect() to upgrade 1486 * write permissions later. 1487 */ 1488 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1489 } 1490 #endif 1491 1492 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1493 #define SECTION_IN_PAGE_FLAGS 1494 #endif 1495 1496 /* 1497 * The identification function is mainly used by the buddy allocator for 1498 * determining if two pages could be buddies. We are not really identifying 1499 * the zone since we could be using the section number id if we do not have 1500 * node id available in page flags. 1501 * We only guarantee that it will return the same value for two combinable 1502 * pages in a zone. 1503 */ 1504 static inline int page_zone_id(struct page *page) 1505 { 1506 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1507 } 1508 1509 #ifdef NODE_NOT_IN_PAGE_FLAGS 1510 int page_to_nid(const struct page *page); 1511 #else 1512 static inline int page_to_nid(const struct page *page) 1513 { 1514 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1515 } 1516 #endif 1517 1518 static inline int folio_nid(const struct folio *folio) 1519 { 1520 return page_to_nid(&folio->page); 1521 } 1522 1523 #ifdef CONFIG_NUMA_BALANCING 1524 /* page access time bits needs to hold at least 4 seconds */ 1525 #define PAGE_ACCESS_TIME_MIN_BITS 12 1526 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1527 #define PAGE_ACCESS_TIME_BUCKETS \ 1528 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1529 #else 1530 #define PAGE_ACCESS_TIME_BUCKETS 0 1531 #endif 1532 1533 #define PAGE_ACCESS_TIME_MASK \ 1534 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1535 1536 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1537 { 1538 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1539 } 1540 1541 static inline int cpupid_to_pid(int cpupid) 1542 { 1543 return cpupid & LAST__PID_MASK; 1544 } 1545 1546 static inline int cpupid_to_cpu(int cpupid) 1547 { 1548 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1549 } 1550 1551 static inline int cpupid_to_nid(int cpupid) 1552 { 1553 return cpu_to_node(cpupid_to_cpu(cpupid)); 1554 } 1555 1556 static inline bool cpupid_pid_unset(int cpupid) 1557 { 1558 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1559 } 1560 1561 static inline bool cpupid_cpu_unset(int cpupid) 1562 { 1563 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1564 } 1565 1566 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1567 { 1568 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1569 } 1570 1571 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1572 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1573 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1574 { 1575 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1576 } 1577 1578 static inline int folio_last_cpupid(struct folio *folio) 1579 { 1580 return folio->_last_cpupid; 1581 } 1582 static inline void page_cpupid_reset_last(struct page *page) 1583 { 1584 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1585 } 1586 #else 1587 static inline int folio_last_cpupid(struct folio *folio) 1588 { 1589 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1590 } 1591 1592 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1593 1594 static inline void page_cpupid_reset_last(struct page *page) 1595 { 1596 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1597 } 1598 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1599 1600 static inline int folio_xchg_access_time(struct folio *folio, int time) 1601 { 1602 int last_time; 1603 1604 last_time = folio_xchg_last_cpupid(folio, 1605 time >> PAGE_ACCESS_TIME_BUCKETS); 1606 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1607 } 1608 1609 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1610 { 1611 unsigned int pid_bit; 1612 1613 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1614 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1615 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1616 } 1617 } 1618 1619 bool folio_use_access_time(struct folio *folio); 1620 #else /* !CONFIG_NUMA_BALANCING */ 1621 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1622 { 1623 return folio_nid(folio); /* XXX */ 1624 } 1625 1626 static inline int folio_xchg_access_time(struct folio *folio, int time) 1627 { 1628 return 0; 1629 } 1630 1631 static inline int folio_last_cpupid(struct folio *folio) 1632 { 1633 return folio_nid(folio); /* XXX */ 1634 } 1635 1636 static inline int cpupid_to_nid(int cpupid) 1637 { 1638 return -1; 1639 } 1640 1641 static inline int cpupid_to_pid(int cpupid) 1642 { 1643 return -1; 1644 } 1645 1646 static inline int cpupid_to_cpu(int cpupid) 1647 { 1648 return -1; 1649 } 1650 1651 static inline int cpu_pid_to_cpupid(int nid, int pid) 1652 { 1653 return -1; 1654 } 1655 1656 static inline bool cpupid_pid_unset(int cpupid) 1657 { 1658 return true; 1659 } 1660 1661 static inline void page_cpupid_reset_last(struct page *page) 1662 { 1663 } 1664 1665 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1666 { 1667 return false; 1668 } 1669 1670 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1671 { 1672 } 1673 static inline bool folio_use_access_time(struct folio *folio) 1674 { 1675 return false; 1676 } 1677 #endif /* CONFIG_NUMA_BALANCING */ 1678 1679 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1680 1681 /* 1682 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1683 * setting tags for all pages to native kernel tag value 0xff, as the default 1684 * value 0x00 maps to 0xff. 1685 */ 1686 1687 static inline u8 page_kasan_tag(const struct page *page) 1688 { 1689 u8 tag = KASAN_TAG_KERNEL; 1690 1691 if (kasan_enabled()) { 1692 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1693 tag ^= 0xff; 1694 } 1695 1696 return tag; 1697 } 1698 1699 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1700 { 1701 unsigned long old_flags, flags; 1702 1703 if (!kasan_enabled()) 1704 return; 1705 1706 tag ^= 0xff; 1707 old_flags = READ_ONCE(page->flags); 1708 do { 1709 flags = old_flags; 1710 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1711 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1712 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1713 } 1714 1715 static inline void page_kasan_tag_reset(struct page *page) 1716 { 1717 if (kasan_enabled()) 1718 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1719 } 1720 1721 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1722 1723 static inline u8 page_kasan_tag(const struct page *page) 1724 { 1725 return 0xff; 1726 } 1727 1728 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1729 static inline void page_kasan_tag_reset(struct page *page) { } 1730 1731 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1732 1733 static inline struct zone *page_zone(const struct page *page) 1734 { 1735 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1736 } 1737 1738 static inline pg_data_t *page_pgdat(const struct page *page) 1739 { 1740 return NODE_DATA(page_to_nid(page)); 1741 } 1742 1743 static inline struct zone *folio_zone(const struct folio *folio) 1744 { 1745 return page_zone(&folio->page); 1746 } 1747 1748 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1749 { 1750 return page_pgdat(&folio->page); 1751 } 1752 1753 #ifdef SECTION_IN_PAGE_FLAGS 1754 static inline void set_page_section(struct page *page, unsigned long section) 1755 { 1756 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1757 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1758 } 1759 1760 static inline unsigned long page_to_section(const struct page *page) 1761 { 1762 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1763 } 1764 #endif 1765 1766 /** 1767 * folio_pfn - Return the Page Frame Number of a folio. 1768 * @folio: The folio. 1769 * 1770 * A folio may contain multiple pages. The pages have consecutive 1771 * Page Frame Numbers. 1772 * 1773 * Return: The Page Frame Number of the first page in the folio. 1774 */ 1775 static inline unsigned long folio_pfn(const struct folio *folio) 1776 { 1777 return page_to_pfn(&folio->page); 1778 } 1779 1780 static inline struct folio *pfn_folio(unsigned long pfn) 1781 { 1782 return page_folio(pfn_to_page(pfn)); 1783 } 1784 1785 #ifdef CONFIG_MMU 1786 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1787 { 1788 return pfn_pte(page_to_pfn(page), pgprot); 1789 } 1790 1791 /** 1792 * folio_mk_pte - Create a PTE for this folio 1793 * @folio: The folio to create a PTE for 1794 * @pgprot: The page protection bits to use 1795 * 1796 * Create a page table entry for the first page of this folio. 1797 * This is suitable for passing to set_ptes(). 1798 * 1799 * Return: A page table entry suitable for mapping this folio. 1800 */ 1801 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot) 1802 { 1803 return pfn_pte(folio_pfn(folio), pgprot); 1804 } 1805 1806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1807 /** 1808 * folio_mk_pmd - Create a PMD for this folio 1809 * @folio: The folio to create a PMD for 1810 * @pgprot: The page protection bits to use 1811 * 1812 * Create a page table entry for the first page of this folio. 1813 * This is suitable for passing to set_pmd_at(). 1814 * 1815 * Return: A page table entry suitable for mapping this folio. 1816 */ 1817 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot) 1818 { 1819 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); 1820 } 1821 1822 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1823 /** 1824 * folio_mk_pud - Create a PUD for this folio 1825 * @folio: The folio to create a PUD for 1826 * @pgprot: The page protection bits to use 1827 * 1828 * Create a page table entry for the first page of this folio. 1829 * This is suitable for passing to set_pud_at(). 1830 * 1831 * Return: A page table entry suitable for mapping this folio. 1832 */ 1833 static inline pud_t folio_mk_pud(struct folio *folio, pgprot_t pgprot) 1834 { 1835 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot)); 1836 } 1837 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1838 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1839 #endif /* CONFIG_MMU */ 1840 1841 static inline bool folio_has_pincount(const struct folio *folio) 1842 { 1843 if (IS_ENABLED(CONFIG_64BIT)) 1844 return folio_test_large(folio); 1845 return folio_order(folio) > 1; 1846 } 1847 1848 /** 1849 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1850 * @folio: The folio. 1851 * 1852 * This function checks if a folio has been pinned via a call to 1853 * a function in the pin_user_pages() family. 1854 * 1855 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1856 * because it means "definitely not pinned for DMA", but true means "probably 1857 * pinned for DMA, but possibly a false positive due to having at least 1858 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1859 * 1860 * False positives are OK, because: a) it's unlikely for a folio to 1861 * get that many refcounts, and b) all the callers of this routine are 1862 * expected to be able to deal gracefully with a false positive. 1863 * 1864 * For most large folios, the result will be exactly correct. That's because 1865 * we have more tracking data available: the _pincount field is used 1866 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1867 * 1868 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1869 * 1870 * Return: True, if it is likely that the folio has been "dma-pinned". 1871 * False, if the folio is definitely not dma-pinned. 1872 */ 1873 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1874 { 1875 if (folio_has_pincount(folio)) 1876 return atomic_read(&folio->_pincount) > 0; 1877 1878 /* 1879 * folio_ref_count() is signed. If that refcount overflows, then 1880 * folio_ref_count() returns a negative value, and callers will avoid 1881 * further incrementing the refcount. 1882 * 1883 * Here, for that overflow case, use the sign bit to count a little 1884 * bit higher via unsigned math, and thus still get an accurate result. 1885 */ 1886 return ((unsigned int)folio_ref_count(folio)) >= 1887 GUP_PIN_COUNTING_BIAS; 1888 } 1889 1890 /* 1891 * This should most likely only be called during fork() to see whether we 1892 * should break the cow immediately for an anon page on the src mm. 1893 * 1894 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1895 */ 1896 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1897 struct folio *folio) 1898 { 1899 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1900 1901 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1902 return false; 1903 1904 return folio_maybe_dma_pinned(folio); 1905 } 1906 1907 /** 1908 * is_zero_page - Query if a page is a zero page 1909 * @page: The page to query 1910 * 1911 * This returns true if @page is one of the permanent zero pages. 1912 */ 1913 static inline bool is_zero_page(const struct page *page) 1914 { 1915 return is_zero_pfn(page_to_pfn(page)); 1916 } 1917 1918 /** 1919 * is_zero_folio - Query if a folio is a zero page 1920 * @folio: The folio to query 1921 * 1922 * This returns true if @folio is one of the permanent zero pages. 1923 */ 1924 static inline bool is_zero_folio(const struct folio *folio) 1925 { 1926 return is_zero_page(&folio->page); 1927 } 1928 1929 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1930 #ifdef CONFIG_MIGRATION 1931 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1932 { 1933 #ifdef CONFIG_CMA 1934 int mt = folio_migratetype(folio); 1935 1936 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1937 return false; 1938 #endif 1939 /* The zero page can be "pinned" but gets special handling. */ 1940 if (is_zero_folio(folio)) 1941 return true; 1942 1943 /* Coherent device memory must always allow eviction. */ 1944 if (folio_is_device_coherent(folio)) 1945 return false; 1946 1947 /* 1948 * Filesystems can only tolerate transient delays to truncate and 1949 * hole-punch operations 1950 */ 1951 if (folio_is_fsdax(folio)) 1952 return false; 1953 1954 /* Otherwise, non-movable zone folios can be pinned. */ 1955 return !folio_is_zone_movable(folio); 1956 1957 } 1958 #else 1959 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1960 { 1961 return true; 1962 } 1963 #endif 1964 1965 static inline void set_page_zone(struct page *page, enum zone_type zone) 1966 { 1967 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1968 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1969 } 1970 1971 static inline void set_page_node(struct page *page, unsigned long node) 1972 { 1973 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1974 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1975 } 1976 1977 static inline void set_page_links(struct page *page, enum zone_type zone, 1978 unsigned long node, unsigned long pfn) 1979 { 1980 set_page_zone(page, zone); 1981 set_page_node(page, node); 1982 #ifdef SECTION_IN_PAGE_FLAGS 1983 set_page_section(page, pfn_to_section_nr(pfn)); 1984 #endif 1985 } 1986 1987 /** 1988 * folio_nr_pages - The number of pages in the folio. 1989 * @folio: The folio. 1990 * 1991 * Return: A positive power of two. 1992 */ 1993 static inline long folio_nr_pages(const struct folio *folio) 1994 { 1995 if (!folio_test_large(folio)) 1996 return 1; 1997 return folio_large_nr_pages(folio); 1998 } 1999 2000 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2001 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2002 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2003 #else 2004 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2005 #endif 2006 2007 /* 2008 * compound_nr() returns the number of pages in this potentially compound 2009 * page. compound_nr() can be called on a tail page, and is defined to 2010 * return 1 in that case. 2011 */ 2012 static inline long compound_nr(struct page *page) 2013 { 2014 struct folio *folio = (struct folio *)page; 2015 2016 if (!test_bit(PG_head, &folio->flags)) 2017 return 1; 2018 return folio_large_nr_pages(folio); 2019 } 2020 2021 /** 2022 * folio_next - Move to the next physical folio. 2023 * @folio: The folio we're currently operating on. 2024 * 2025 * If you have physically contiguous memory which may span more than 2026 * one folio (eg a &struct bio_vec), use this function to move from one 2027 * folio to the next. Do not use it if the memory is only virtually 2028 * contiguous as the folios are almost certainly not adjacent to each 2029 * other. This is the folio equivalent to writing ``page++``. 2030 * 2031 * Context: We assume that the folios are refcounted and/or locked at a 2032 * higher level and do not adjust the reference counts. 2033 * Return: The next struct folio. 2034 */ 2035 static inline struct folio *folio_next(struct folio *folio) 2036 { 2037 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2038 } 2039 2040 /** 2041 * folio_shift - The size of the memory described by this folio. 2042 * @folio: The folio. 2043 * 2044 * A folio represents a number of bytes which is a power-of-two in size. 2045 * This function tells you which power-of-two the folio is. See also 2046 * folio_size() and folio_order(). 2047 * 2048 * Context: The caller should have a reference on the folio to prevent 2049 * it from being split. It is not necessary for the folio to be locked. 2050 * Return: The base-2 logarithm of the size of this folio. 2051 */ 2052 static inline unsigned int folio_shift(const struct folio *folio) 2053 { 2054 return PAGE_SHIFT + folio_order(folio); 2055 } 2056 2057 /** 2058 * folio_size - The number of bytes in a folio. 2059 * @folio: The folio. 2060 * 2061 * Context: The caller should have a reference on the folio to prevent 2062 * it from being split. It is not necessary for the folio to be locked. 2063 * Return: The number of bytes in this folio. 2064 */ 2065 static inline size_t folio_size(const struct folio *folio) 2066 { 2067 return PAGE_SIZE << folio_order(folio); 2068 } 2069 2070 /** 2071 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2072 * tables of more than one MM 2073 * @folio: The folio. 2074 * 2075 * This function checks if the folio maybe currently mapped into more than one 2076 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2077 * MM ("mapped exclusively"). 2078 * 2079 * For KSM folios, this function also returns "mapped shared" when a folio is 2080 * mapped multiple times into the same MM, because the individual page mappings 2081 * are independent. 2082 * 2083 * For small anonymous folios and anonymous hugetlb folios, the return 2084 * value will be exactly correct: non-KSM folios can only be mapped at most once 2085 * into an MM, and they cannot be partially mapped. KSM folios are 2086 * considered shared even if mapped multiple times into the same MM. 2087 * 2088 * For other folios, the result can be fuzzy: 2089 * #. For partially-mappable large folios (THP), the return value can wrongly 2090 * indicate "mapped shared" (false positive) if a folio was mapped by 2091 * more than two MMs at one point in time. 2092 * #. For pagecache folios (including hugetlb), the return value can wrongly 2093 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2094 * cover the same file range. 2095 * 2096 * Further, this function only considers current page table mappings that 2097 * are tracked using the folio mapcount(s). 2098 * 2099 * This function does not consider: 2100 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2101 * pagecache, temporary unmapping for migration). 2102 * #. If the folio is mapped differently (VM_PFNMAP). 2103 * #. If hugetlb page table sharing applies. Callers might want to check 2104 * hugetlb_pmd_shared(). 2105 * 2106 * Return: Whether the folio is estimated to be mapped into more than one MM. 2107 */ 2108 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2109 { 2110 int mapcount = folio_mapcount(folio); 2111 2112 /* Only partially-mappable folios require more care. */ 2113 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2114 return mapcount > 1; 2115 2116 /* 2117 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2118 * simply assume "mapped shared", nobody should really care 2119 * about this for arbitrary kernel allocations. 2120 */ 2121 if (!IS_ENABLED(CONFIG_MM_ID)) 2122 return true; 2123 2124 /* 2125 * A single mapping implies "mapped exclusively", even if the 2126 * folio flag says something different: it's easier to handle this 2127 * case here instead of on the RMAP hot path. 2128 */ 2129 if (mapcount <= 1) 2130 return false; 2131 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 2132 } 2133 2134 /** 2135 * folio_expected_ref_count - calculate the expected folio refcount 2136 * @folio: the folio 2137 * 2138 * Calculate the expected folio refcount, taking references from the pagecache, 2139 * swapcache, PG_private and page table mappings into account. Useful in 2140 * combination with folio_ref_count() to detect unexpected references (e.g., 2141 * GUP or other temporary references). 2142 * 2143 * Does currently not consider references from the LRU cache. If the folio 2144 * was isolated from the LRU (which is the case during migration or split), 2145 * the LRU cache does not apply. 2146 * 2147 * Calling this function on an unmapped folio -- !folio_mapped() -- that is 2148 * locked will return a stable result. 2149 * 2150 * Calling this function on a mapped folio will not result in a stable result, 2151 * because nothing stops additional page table mappings from coming (e.g., 2152 * fork()) or going (e.g., munmap()). 2153 * 2154 * Calling this function without the folio lock will also not result in a 2155 * stable result: for example, the folio might get dropped from the swapcache 2156 * concurrently. 2157 * 2158 * However, even when called without the folio lock or on a mapped folio, 2159 * this function can be used to detect unexpected references early (for example, 2160 * if it makes sense to even lock the folio and unmap it). 2161 * 2162 * The caller must add any reference (e.g., from folio_try_get()) it might be 2163 * holding itself to the result. 2164 * 2165 * Returns the expected folio refcount. 2166 */ 2167 static inline int folio_expected_ref_count(const struct folio *folio) 2168 { 2169 const int order = folio_order(folio); 2170 int ref_count = 0; 2171 2172 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio))) 2173 return 0; 2174 2175 if (folio_test_anon(folio)) { 2176 /* One reference per page from the swapcache. */ 2177 ref_count += folio_test_swapcache(folio) << order; 2178 } else { 2179 /* One reference per page from the pagecache. */ 2180 ref_count += !!folio->mapping << order; 2181 /* One reference from PG_private. */ 2182 ref_count += folio_test_private(folio); 2183 } 2184 2185 /* One reference per page table mapping. */ 2186 return ref_count + folio_mapcount(folio); 2187 } 2188 2189 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2190 static inline int arch_make_folio_accessible(struct folio *folio) 2191 { 2192 return 0; 2193 } 2194 #endif 2195 2196 /* 2197 * Some inline functions in vmstat.h depend on page_zone() 2198 */ 2199 #include <linux/vmstat.h> 2200 2201 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2202 #define HASHED_PAGE_VIRTUAL 2203 #endif 2204 2205 #if defined(WANT_PAGE_VIRTUAL) 2206 static inline void *page_address(const struct page *page) 2207 { 2208 return page->virtual; 2209 } 2210 static inline void set_page_address(struct page *page, void *address) 2211 { 2212 page->virtual = address; 2213 } 2214 #define page_address_init() do { } while(0) 2215 #endif 2216 2217 #if defined(HASHED_PAGE_VIRTUAL) 2218 void *page_address(const struct page *page); 2219 void set_page_address(struct page *page, void *virtual); 2220 void page_address_init(void); 2221 #endif 2222 2223 static __always_inline void *lowmem_page_address(const struct page *page) 2224 { 2225 return page_to_virt(page); 2226 } 2227 2228 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2229 #define page_address(page) lowmem_page_address(page) 2230 #define set_page_address(page, address) do { } while(0) 2231 #define page_address_init() do { } while(0) 2232 #endif 2233 2234 static inline void *folio_address(const struct folio *folio) 2235 { 2236 return page_address(&folio->page); 2237 } 2238 2239 /* 2240 * Return true only if the page has been allocated with 2241 * ALLOC_NO_WATERMARKS and the low watermark was not 2242 * met implying that the system is under some pressure. 2243 */ 2244 static inline bool page_is_pfmemalloc(const struct page *page) 2245 { 2246 /* 2247 * lru.next has bit 1 set if the page is allocated from the 2248 * pfmemalloc reserves. Callers may simply overwrite it if 2249 * they do not need to preserve that information. 2250 */ 2251 return (uintptr_t)page->lru.next & BIT(1); 2252 } 2253 2254 /* 2255 * Return true only if the folio has been allocated with 2256 * ALLOC_NO_WATERMARKS and the low watermark was not 2257 * met implying that the system is under some pressure. 2258 */ 2259 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2260 { 2261 /* 2262 * lru.next has bit 1 set if the page is allocated from the 2263 * pfmemalloc reserves. Callers may simply overwrite it if 2264 * they do not need to preserve that information. 2265 */ 2266 return (uintptr_t)folio->lru.next & BIT(1); 2267 } 2268 2269 /* 2270 * Only to be called by the page allocator on a freshly allocated 2271 * page. 2272 */ 2273 static inline void set_page_pfmemalloc(struct page *page) 2274 { 2275 page->lru.next = (void *)BIT(1); 2276 } 2277 2278 static inline void clear_page_pfmemalloc(struct page *page) 2279 { 2280 page->lru.next = NULL; 2281 } 2282 2283 /* 2284 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2285 */ 2286 extern void pagefault_out_of_memory(void); 2287 2288 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2289 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2290 2291 /* 2292 * Parameter block passed down to zap_pte_range in exceptional cases. 2293 */ 2294 struct zap_details { 2295 struct folio *single_folio; /* Locked folio to be unmapped */ 2296 bool even_cows; /* Zap COWed private pages too? */ 2297 bool reclaim_pt; /* Need reclaim page tables? */ 2298 zap_flags_t zap_flags; /* Extra flags for zapping */ 2299 }; 2300 2301 /* 2302 * Whether to drop the pte markers, for example, the uffd-wp information for 2303 * file-backed memory. This should only be specified when we will completely 2304 * drop the page in the mm, either by truncation or unmapping of the vma. By 2305 * default, the flag is not set. 2306 */ 2307 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2308 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2309 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2310 2311 #ifdef CONFIG_SCHED_MM_CID 2312 void sched_mm_cid_before_execve(struct task_struct *t); 2313 void sched_mm_cid_after_execve(struct task_struct *t); 2314 void sched_mm_cid_fork(struct task_struct *t); 2315 void sched_mm_cid_exit_signals(struct task_struct *t); 2316 static inline int task_mm_cid(struct task_struct *t) 2317 { 2318 return t->mm_cid; 2319 } 2320 #else 2321 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2322 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2323 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2324 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2325 static inline int task_mm_cid(struct task_struct *t) 2326 { 2327 /* 2328 * Use the processor id as a fall-back when the mm cid feature is 2329 * disabled. This provides functional per-cpu data structure accesses 2330 * in user-space, althrough it won't provide the memory usage benefits. 2331 */ 2332 return raw_smp_processor_id(); 2333 } 2334 #endif 2335 2336 #ifdef CONFIG_MMU 2337 extern bool can_do_mlock(void); 2338 #else 2339 static inline bool can_do_mlock(void) { return false; } 2340 #endif 2341 extern int user_shm_lock(size_t, struct ucounts *); 2342 extern void user_shm_unlock(size_t, struct ucounts *); 2343 2344 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2345 pte_t pte); 2346 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2347 pte_t pte); 2348 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2349 unsigned long addr, pmd_t pmd); 2350 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2351 pmd_t pmd); 2352 2353 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2354 unsigned long size); 2355 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2356 unsigned long size, struct zap_details *details); 2357 static inline void zap_vma_pages(struct vm_area_struct *vma) 2358 { 2359 zap_page_range_single(vma, vma->vm_start, 2360 vma->vm_end - vma->vm_start, NULL); 2361 } 2362 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2363 struct vm_area_struct *start_vma, unsigned long start, 2364 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2365 2366 struct mmu_notifier_range; 2367 2368 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2369 unsigned long end, unsigned long floor, unsigned long ceiling); 2370 int 2371 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2372 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2373 void *buf, int len, int write); 2374 2375 struct follow_pfnmap_args { 2376 /** 2377 * Inputs: 2378 * @vma: Pointer to @vm_area_struct struct 2379 * @address: the virtual address to walk 2380 */ 2381 struct vm_area_struct *vma; 2382 unsigned long address; 2383 /** 2384 * Internals: 2385 * 2386 * The caller shouldn't touch any of these. 2387 */ 2388 spinlock_t *lock; 2389 pte_t *ptep; 2390 /** 2391 * Outputs: 2392 * 2393 * @pfn: the PFN of the address 2394 * @addr_mask: address mask covering pfn 2395 * @pgprot: the pgprot_t of the mapping 2396 * @writable: whether the mapping is writable 2397 * @special: whether the mapping is a special mapping (real PFN maps) 2398 */ 2399 unsigned long pfn; 2400 unsigned long addr_mask; 2401 pgprot_t pgprot; 2402 bool writable; 2403 bool special; 2404 }; 2405 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2406 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2407 2408 extern void truncate_pagecache(struct inode *inode, loff_t new); 2409 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2410 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2411 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2412 int generic_error_remove_folio(struct address_space *mapping, 2413 struct folio *folio); 2414 2415 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2416 unsigned long address, struct pt_regs *regs); 2417 2418 #ifdef CONFIG_MMU 2419 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2420 unsigned long address, unsigned int flags, 2421 struct pt_regs *regs); 2422 extern int fixup_user_fault(struct mm_struct *mm, 2423 unsigned long address, unsigned int fault_flags, 2424 bool *unlocked); 2425 void unmap_mapping_pages(struct address_space *mapping, 2426 pgoff_t start, pgoff_t nr, bool even_cows); 2427 void unmap_mapping_range(struct address_space *mapping, 2428 loff_t const holebegin, loff_t const holelen, int even_cows); 2429 #else 2430 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2431 unsigned long address, unsigned int flags, 2432 struct pt_regs *regs) 2433 { 2434 /* should never happen if there's no MMU */ 2435 BUG(); 2436 return VM_FAULT_SIGBUS; 2437 } 2438 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2439 unsigned int fault_flags, bool *unlocked) 2440 { 2441 /* should never happen if there's no MMU */ 2442 BUG(); 2443 return -EFAULT; 2444 } 2445 static inline void unmap_mapping_pages(struct address_space *mapping, 2446 pgoff_t start, pgoff_t nr, bool even_cows) { } 2447 static inline void unmap_mapping_range(struct address_space *mapping, 2448 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2449 #endif 2450 2451 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2452 loff_t const holebegin, loff_t const holelen) 2453 { 2454 unmap_mapping_range(mapping, holebegin, holelen, 0); 2455 } 2456 2457 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2458 unsigned long addr); 2459 2460 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2461 void *buf, int len, unsigned int gup_flags); 2462 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2463 void *buf, int len, unsigned int gup_flags); 2464 2465 #ifdef CONFIG_BPF_SYSCALL 2466 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2467 void *buf, int len, unsigned int gup_flags); 2468 #endif 2469 2470 long get_user_pages_remote(struct mm_struct *mm, 2471 unsigned long start, unsigned long nr_pages, 2472 unsigned int gup_flags, struct page **pages, 2473 int *locked); 2474 long pin_user_pages_remote(struct mm_struct *mm, 2475 unsigned long start, unsigned long nr_pages, 2476 unsigned int gup_flags, struct page **pages, 2477 int *locked); 2478 2479 /* 2480 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2481 */ 2482 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2483 unsigned long addr, 2484 int gup_flags, 2485 struct vm_area_struct **vmap) 2486 { 2487 struct page *page; 2488 struct vm_area_struct *vma; 2489 int got; 2490 2491 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2492 return ERR_PTR(-EINVAL); 2493 2494 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2495 2496 if (got < 0) 2497 return ERR_PTR(got); 2498 2499 vma = vma_lookup(mm, addr); 2500 if (WARN_ON_ONCE(!vma)) { 2501 put_page(page); 2502 return ERR_PTR(-EINVAL); 2503 } 2504 2505 *vmap = vma; 2506 return page; 2507 } 2508 2509 long get_user_pages(unsigned long start, unsigned long nr_pages, 2510 unsigned int gup_flags, struct page **pages); 2511 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2512 unsigned int gup_flags, struct page **pages); 2513 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2514 struct page **pages, unsigned int gup_flags); 2515 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2516 struct page **pages, unsigned int gup_flags); 2517 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2518 struct folio **folios, unsigned int max_folios, 2519 pgoff_t *offset); 2520 int folio_add_pins(struct folio *folio, unsigned int pins); 2521 2522 int get_user_pages_fast(unsigned long start, int nr_pages, 2523 unsigned int gup_flags, struct page **pages); 2524 int pin_user_pages_fast(unsigned long start, int nr_pages, 2525 unsigned int gup_flags, struct page **pages); 2526 void folio_add_pin(struct folio *folio); 2527 2528 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2529 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2530 struct task_struct *task, bool bypass_rlim); 2531 2532 struct kvec; 2533 struct page *get_dump_page(unsigned long addr, int *locked); 2534 2535 bool folio_mark_dirty(struct folio *folio); 2536 bool folio_mark_dirty_lock(struct folio *folio); 2537 bool set_page_dirty(struct page *page); 2538 int set_page_dirty_lock(struct page *page); 2539 2540 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2541 2542 /* 2543 * Flags used by change_protection(). For now we make it a bitmap so 2544 * that we can pass in multiple flags just like parameters. However 2545 * for now all the callers are only use one of the flags at the same 2546 * time. 2547 */ 2548 /* 2549 * Whether we should manually check if we can map individual PTEs writable, 2550 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2551 * PTEs automatically in a writable mapping. 2552 */ 2553 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2554 /* Whether this protection change is for NUMA hints */ 2555 #define MM_CP_PROT_NUMA (1UL << 1) 2556 /* Whether this change is for write protecting */ 2557 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2558 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2559 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2560 MM_CP_UFFD_WP_RESOLVE) 2561 2562 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2563 pte_t pte); 2564 extern long change_protection(struct mmu_gather *tlb, 2565 struct vm_area_struct *vma, unsigned long start, 2566 unsigned long end, unsigned long cp_flags); 2567 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2568 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2569 unsigned long start, unsigned long end, vm_flags_t newflags); 2570 2571 /* 2572 * doesn't attempt to fault and will return short. 2573 */ 2574 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2575 unsigned int gup_flags, struct page **pages); 2576 2577 static inline bool get_user_page_fast_only(unsigned long addr, 2578 unsigned int gup_flags, struct page **pagep) 2579 { 2580 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2581 } 2582 /* 2583 * per-process(per-mm_struct) statistics. 2584 */ 2585 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2586 { 2587 return percpu_counter_read_positive(&mm->rss_stat[member]); 2588 } 2589 2590 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) 2591 { 2592 return percpu_counter_sum_positive(&mm->rss_stat[member]); 2593 } 2594 2595 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2596 2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2598 { 2599 percpu_counter_add(&mm->rss_stat[member], value); 2600 2601 mm_trace_rss_stat(mm, member); 2602 } 2603 2604 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2605 { 2606 percpu_counter_inc(&mm->rss_stat[member]); 2607 2608 mm_trace_rss_stat(mm, member); 2609 } 2610 2611 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2612 { 2613 percpu_counter_dec(&mm->rss_stat[member]); 2614 2615 mm_trace_rss_stat(mm, member); 2616 } 2617 2618 /* Optimized variant when folio is already known not to be anon */ 2619 static inline int mm_counter_file(struct folio *folio) 2620 { 2621 if (folio_test_swapbacked(folio)) 2622 return MM_SHMEMPAGES; 2623 return MM_FILEPAGES; 2624 } 2625 2626 static inline int mm_counter(struct folio *folio) 2627 { 2628 if (folio_test_anon(folio)) 2629 return MM_ANONPAGES; 2630 return mm_counter_file(folio); 2631 } 2632 2633 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2634 { 2635 return get_mm_counter(mm, MM_FILEPAGES) + 2636 get_mm_counter(mm, MM_ANONPAGES) + 2637 get_mm_counter(mm, MM_SHMEMPAGES); 2638 } 2639 2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2641 { 2642 return max(mm->hiwater_rss, get_mm_rss(mm)); 2643 } 2644 2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2646 { 2647 return max(mm->hiwater_vm, mm->total_vm); 2648 } 2649 2650 static inline void update_hiwater_rss(struct mm_struct *mm) 2651 { 2652 unsigned long _rss = get_mm_rss(mm); 2653 2654 if (data_race(mm->hiwater_rss) < _rss) 2655 (mm)->hiwater_rss = _rss; 2656 } 2657 2658 static inline void update_hiwater_vm(struct mm_struct *mm) 2659 { 2660 if (mm->hiwater_vm < mm->total_vm) 2661 mm->hiwater_vm = mm->total_vm; 2662 } 2663 2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2665 { 2666 mm->hiwater_rss = get_mm_rss(mm); 2667 } 2668 2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2670 struct mm_struct *mm) 2671 { 2672 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2673 2674 if (*maxrss < hiwater_rss) 2675 *maxrss = hiwater_rss; 2676 } 2677 2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2679 static inline int pte_special(pte_t pte) 2680 { 2681 return 0; 2682 } 2683 2684 static inline pte_t pte_mkspecial(pte_t pte) 2685 { 2686 return pte; 2687 } 2688 #endif 2689 2690 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2691 static inline bool pmd_special(pmd_t pmd) 2692 { 2693 return false; 2694 } 2695 2696 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2697 { 2698 return pmd; 2699 } 2700 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2701 2702 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2703 static inline bool pud_special(pud_t pud) 2704 { 2705 return false; 2706 } 2707 2708 static inline pud_t pud_mkspecial(pud_t pud) 2709 { 2710 return pud; 2711 } 2712 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2713 2714 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2715 spinlock_t **ptl); 2716 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2717 spinlock_t **ptl) 2718 { 2719 pte_t *ptep; 2720 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2721 return ptep; 2722 } 2723 2724 #ifdef __PAGETABLE_P4D_FOLDED 2725 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2726 unsigned long address) 2727 { 2728 return 0; 2729 } 2730 #else 2731 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2732 #endif 2733 2734 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2735 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2736 unsigned long address) 2737 { 2738 return 0; 2739 } 2740 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2741 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2742 2743 #else 2744 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2745 2746 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2747 { 2748 if (mm_pud_folded(mm)) 2749 return; 2750 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2751 } 2752 2753 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2754 { 2755 if (mm_pud_folded(mm)) 2756 return; 2757 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2758 } 2759 #endif 2760 2761 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2762 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2763 unsigned long address) 2764 { 2765 return 0; 2766 } 2767 2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2770 2771 #else 2772 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2773 2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2775 { 2776 if (mm_pmd_folded(mm)) 2777 return; 2778 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2779 } 2780 2781 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2782 { 2783 if (mm_pmd_folded(mm)) 2784 return; 2785 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2786 } 2787 #endif 2788 2789 #ifdef CONFIG_MMU 2790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2791 { 2792 atomic_long_set(&mm->pgtables_bytes, 0); 2793 } 2794 2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2796 { 2797 return atomic_long_read(&mm->pgtables_bytes); 2798 } 2799 2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2801 { 2802 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2803 } 2804 2805 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2806 { 2807 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2808 } 2809 #else 2810 2811 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2813 { 2814 return 0; 2815 } 2816 2817 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2818 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2819 #endif 2820 2821 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2822 int __pte_alloc_kernel(pmd_t *pmd); 2823 2824 #if defined(CONFIG_MMU) 2825 2826 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2827 unsigned long address) 2828 { 2829 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2830 NULL : p4d_offset(pgd, address); 2831 } 2832 2833 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2834 unsigned long address) 2835 { 2836 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2837 NULL : pud_offset(p4d, address); 2838 } 2839 2840 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2841 { 2842 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2843 NULL: pmd_offset(pud, address); 2844 } 2845 #endif /* CONFIG_MMU */ 2846 2847 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2848 { 2849 return page_ptdesc(virt_to_page(x)); 2850 } 2851 2852 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2853 { 2854 return page_to_virt(ptdesc_page(pt)); 2855 } 2856 2857 static inline void *ptdesc_address(const struct ptdesc *pt) 2858 { 2859 return folio_address(ptdesc_folio(pt)); 2860 } 2861 2862 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2863 { 2864 return folio_test_reserved(ptdesc_folio(pt)); 2865 } 2866 2867 /** 2868 * pagetable_alloc - Allocate pagetables 2869 * @gfp: GFP flags 2870 * @order: desired pagetable order 2871 * 2872 * pagetable_alloc allocates memory for page tables as well as a page table 2873 * descriptor to describe that memory. 2874 * 2875 * Return: The ptdesc describing the allocated page tables. 2876 */ 2877 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2878 { 2879 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2880 2881 return page_ptdesc(page); 2882 } 2883 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2884 2885 /** 2886 * pagetable_free - Free pagetables 2887 * @pt: The page table descriptor 2888 * 2889 * pagetable_free frees the memory of all page tables described by a page 2890 * table descriptor and the memory for the descriptor itself. 2891 */ 2892 static inline void pagetable_free(struct ptdesc *pt) 2893 { 2894 struct page *page = ptdesc_page(pt); 2895 2896 __free_pages(page, compound_order(page)); 2897 } 2898 2899 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2900 #if ALLOC_SPLIT_PTLOCKS 2901 void __init ptlock_cache_init(void); 2902 bool ptlock_alloc(struct ptdesc *ptdesc); 2903 void ptlock_free(struct ptdesc *ptdesc); 2904 2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2906 { 2907 return ptdesc->ptl; 2908 } 2909 #else /* ALLOC_SPLIT_PTLOCKS */ 2910 static inline void ptlock_cache_init(void) 2911 { 2912 } 2913 2914 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2915 { 2916 return true; 2917 } 2918 2919 static inline void ptlock_free(struct ptdesc *ptdesc) 2920 { 2921 } 2922 2923 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2924 { 2925 return &ptdesc->ptl; 2926 } 2927 #endif /* ALLOC_SPLIT_PTLOCKS */ 2928 2929 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2930 { 2931 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2932 } 2933 2934 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2935 { 2936 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2937 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2938 return ptlock_ptr(virt_to_ptdesc(pte)); 2939 } 2940 2941 static inline bool ptlock_init(struct ptdesc *ptdesc) 2942 { 2943 /* 2944 * prep_new_page() initialize page->private (and therefore page->ptl) 2945 * with 0. Make sure nobody took it in use in between. 2946 * 2947 * It can happen if arch try to use slab for page table allocation: 2948 * slab code uses page->slab_cache, which share storage with page->ptl. 2949 */ 2950 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2951 if (!ptlock_alloc(ptdesc)) 2952 return false; 2953 spin_lock_init(ptlock_ptr(ptdesc)); 2954 return true; 2955 } 2956 2957 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2958 /* 2959 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2960 */ 2961 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2962 { 2963 return &mm->page_table_lock; 2964 } 2965 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2966 { 2967 return &mm->page_table_lock; 2968 } 2969 static inline void ptlock_cache_init(void) {} 2970 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2971 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2972 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2973 2974 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 2975 { 2976 struct folio *folio = ptdesc_folio(ptdesc); 2977 2978 __folio_set_pgtable(folio); 2979 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2980 } 2981 2982 static inline void pagetable_dtor(struct ptdesc *ptdesc) 2983 { 2984 struct folio *folio = ptdesc_folio(ptdesc); 2985 2986 ptlock_free(ptdesc); 2987 __folio_clear_pgtable(folio); 2988 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2989 } 2990 2991 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 2992 { 2993 pagetable_dtor(ptdesc); 2994 pagetable_free(ptdesc); 2995 } 2996 2997 static inline bool pagetable_pte_ctor(struct mm_struct *mm, 2998 struct ptdesc *ptdesc) 2999 { 3000 if (mm != &init_mm && !ptlock_init(ptdesc)) 3001 return false; 3002 __pagetable_ctor(ptdesc); 3003 return true; 3004 } 3005 3006 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3007 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3008 pmd_t *pmdvalp) 3009 { 3010 pte_t *pte; 3011 3012 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3013 return pte; 3014 } 3015 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3016 { 3017 return __pte_offset_map(pmd, addr, NULL); 3018 } 3019 3020 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3021 unsigned long addr, spinlock_t **ptlp); 3022 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3023 unsigned long addr, spinlock_t **ptlp) 3024 { 3025 pte_t *pte; 3026 3027 __cond_lock(RCU, __cond_lock(*ptlp, 3028 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3029 return pte; 3030 } 3031 3032 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3033 unsigned long addr, spinlock_t **ptlp); 3034 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3035 unsigned long addr, pmd_t *pmdvalp, 3036 spinlock_t **ptlp); 3037 3038 #define pte_unmap_unlock(pte, ptl) do { \ 3039 spin_unlock(ptl); \ 3040 pte_unmap(pte); \ 3041 } while (0) 3042 3043 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3044 3045 #define pte_alloc_map(mm, pmd, address) \ 3046 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3047 3048 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3049 (pte_alloc(mm, pmd) ? \ 3050 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3051 3052 #define pte_alloc_kernel(pmd, address) \ 3053 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3054 NULL: pte_offset_kernel(pmd, address)) 3055 3056 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3057 3058 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3059 { 3060 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3061 return virt_to_page((void *)((unsigned long) pmd & mask)); 3062 } 3063 3064 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3065 { 3066 return page_ptdesc(pmd_pgtable_page(pmd)); 3067 } 3068 3069 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3070 { 3071 return ptlock_ptr(pmd_ptdesc(pmd)); 3072 } 3073 3074 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3075 { 3076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3077 ptdesc->pmd_huge_pte = NULL; 3078 #endif 3079 return ptlock_init(ptdesc); 3080 } 3081 3082 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3083 3084 #else 3085 3086 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3087 { 3088 return &mm->page_table_lock; 3089 } 3090 3091 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3092 3093 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3094 3095 #endif 3096 3097 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3098 { 3099 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3100 spin_lock(ptl); 3101 return ptl; 3102 } 3103 3104 static inline bool pagetable_pmd_ctor(struct mm_struct *mm, 3105 struct ptdesc *ptdesc) 3106 { 3107 if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) 3108 return false; 3109 ptdesc_pmd_pts_init(ptdesc); 3110 __pagetable_ctor(ptdesc); 3111 return true; 3112 } 3113 3114 /* 3115 * No scalability reason to split PUD locks yet, but follow the same pattern 3116 * as the PMD locks to make it easier if we decide to. The VM should not be 3117 * considered ready to switch to split PUD locks yet; there may be places 3118 * which need to be converted from page_table_lock. 3119 */ 3120 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3121 { 3122 return &mm->page_table_lock; 3123 } 3124 3125 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3126 { 3127 spinlock_t *ptl = pud_lockptr(mm, pud); 3128 3129 spin_lock(ptl); 3130 return ptl; 3131 } 3132 3133 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3134 { 3135 __pagetable_ctor(ptdesc); 3136 } 3137 3138 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3139 { 3140 __pagetable_ctor(ptdesc); 3141 } 3142 3143 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3144 { 3145 __pagetable_ctor(ptdesc); 3146 } 3147 3148 extern void __init pagecache_init(void); 3149 extern void free_initmem(void); 3150 3151 /* 3152 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3153 * into the buddy system. The freed pages will be poisoned with pattern 3154 * "poison" if it's within range [0, UCHAR_MAX]. 3155 * Return pages freed into the buddy system. 3156 */ 3157 extern unsigned long free_reserved_area(void *start, void *end, 3158 int poison, const char *s); 3159 3160 extern void adjust_managed_page_count(struct page *page, long count); 3161 3162 extern void reserve_bootmem_region(phys_addr_t start, 3163 phys_addr_t end, int nid); 3164 3165 /* Free the reserved page into the buddy system, so it gets managed. */ 3166 void free_reserved_page(struct page *page); 3167 3168 static inline void mark_page_reserved(struct page *page) 3169 { 3170 SetPageReserved(page); 3171 adjust_managed_page_count(page, -1); 3172 } 3173 3174 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3175 { 3176 free_reserved_page(ptdesc_page(pt)); 3177 } 3178 3179 /* 3180 * Default method to free all the __init memory into the buddy system. 3181 * The freed pages will be poisoned with pattern "poison" if it's within 3182 * range [0, UCHAR_MAX]. 3183 * Return pages freed into the buddy system. 3184 */ 3185 static inline unsigned long free_initmem_default(int poison) 3186 { 3187 extern char __init_begin[], __init_end[]; 3188 3189 return free_reserved_area(&__init_begin, &__init_end, 3190 poison, "unused kernel image (initmem)"); 3191 } 3192 3193 static inline unsigned long get_num_physpages(void) 3194 { 3195 int nid; 3196 unsigned long phys_pages = 0; 3197 3198 for_each_online_node(nid) 3199 phys_pages += node_present_pages(nid); 3200 3201 return phys_pages; 3202 } 3203 3204 /* 3205 * Using memblock node mappings, an architecture may initialise its 3206 * zones, allocate the backing mem_map and account for memory holes in an 3207 * architecture independent manner. 3208 * 3209 * An architecture is expected to register range of page frames backed by 3210 * physical memory with memblock_add[_node]() before calling 3211 * free_area_init() passing in the PFN each zone ends at. At a basic 3212 * usage, an architecture is expected to do something like 3213 * 3214 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3215 * max_highmem_pfn}; 3216 * for_each_valid_physical_page_range() 3217 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3218 * free_area_init(max_zone_pfns); 3219 */ 3220 void free_area_init(unsigned long *max_zone_pfn); 3221 unsigned long node_map_pfn_alignment(void); 3222 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3223 unsigned long end_pfn); 3224 extern void get_pfn_range_for_nid(unsigned int nid, 3225 unsigned long *start_pfn, unsigned long *end_pfn); 3226 3227 #ifndef CONFIG_NUMA 3228 static inline int early_pfn_to_nid(unsigned long pfn) 3229 { 3230 return 0; 3231 } 3232 #else 3233 /* please see mm/page_alloc.c */ 3234 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3235 #endif 3236 3237 extern void mem_init(void); 3238 extern void __init mmap_init(void); 3239 3240 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3241 static inline void show_mem(void) 3242 { 3243 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3244 } 3245 extern long si_mem_available(void); 3246 extern void si_meminfo(struct sysinfo * val); 3247 extern void si_meminfo_node(struct sysinfo *val, int nid); 3248 3249 extern __printf(3, 4) 3250 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3251 3252 extern void setup_per_cpu_pageset(void); 3253 3254 /* nommu.c */ 3255 extern atomic_long_t mmap_pages_allocated; 3256 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3257 3258 /* interval_tree.c */ 3259 void vma_interval_tree_insert(struct vm_area_struct *node, 3260 struct rb_root_cached *root); 3261 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3262 struct vm_area_struct *prev, 3263 struct rb_root_cached *root); 3264 void vma_interval_tree_remove(struct vm_area_struct *node, 3265 struct rb_root_cached *root); 3266 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3267 unsigned long start, unsigned long last); 3268 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3269 unsigned long start, unsigned long last); 3270 3271 #define vma_interval_tree_foreach(vma, root, start, last) \ 3272 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3273 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3274 3275 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3276 struct rb_root_cached *root); 3277 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3278 struct rb_root_cached *root); 3279 struct anon_vma_chain * 3280 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3281 unsigned long start, unsigned long last); 3282 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3283 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3284 #ifdef CONFIG_DEBUG_VM_RB 3285 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3286 #endif 3287 3288 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3289 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3290 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3291 3292 /* mmap.c */ 3293 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3294 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3295 extern void exit_mmap(struct mm_struct *); 3296 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3297 unsigned long addr, bool write); 3298 3299 static inline int check_data_rlimit(unsigned long rlim, 3300 unsigned long new, 3301 unsigned long start, 3302 unsigned long end_data, 3303 unsigned long start_data) 3304 { 3305 if (rlim < RLIM_INFINITY) { 3306 if (((new - start) + (end_data - start_data)) > rlim) 3307 return -ENOSPC; 3308 } 3309 3310 return 0; 3311 } 3312 3313 extern int mm_take_all_locks(struct mm_struct *mm); 3314 extern void mm_drop_all_locks(struct mm_struct *mm); 3315 3316 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3317 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3318 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3319 extern struct file *get_task_exe_file(struct task_struct *task); 3320 3321 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3322 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3323 3324 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3325 const struct vm_special_mapping *sm); 3326 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3327 unsigned long addr, unsigned long len, 3328 vm_flags_t vm_flags, 3329 const struct vm_special_mapping *spec); 3330 3331 unsigned long randomize_stack_top(unsigned long stack_top); 3332 unsigned long randomize_page(unsigned long start, unsigned long range); 3333 3334 unsigned long 3335 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3336 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3337 3338 static inline unsigned long 3339 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3340 unsigned long pgoff, unsigned long flags) 3341 { 3342 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3343 } 3344 3345 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3346 unsigned long len, unsigned long prot, unsigned long flags, 3347 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3348 struct list_head *uf); 3349 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3350 unsigned long start, size_t len, struct list_head *uf, 3351 bool unlock); 3352 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3353 struct mm_struct *mm, unsigned long start, 3354 unsigned long end, struct list_head *uf, bool unlock); 3355 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3356 struct list_head *uf); 3357 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3358 3359 #ifdef CONFIG_MMU 3360 extern int __mm_populate(unsigned long addr, unsigned long len, 3361 int ignore_errors); 3362 static inline void mm_populate(unsigned long addr, unsigned long len) 3363 { 3364 /* Ignore errors */ 3365 (void) __mm_populate(addr, len, 1); 3366 } 3367 #else 3368 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3369 #endif 3370 3371 /* This takes the mm semaphore itself */ 3372 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3373 extern int vm_munmap(unsigned long, size_t); 3374 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3375 unsigned long, unsigned long, 3376 unsigned long, unsigned long); 3377 3378 struct vm_unmapped_area_info { 3379 #define VM_UNMAPPED_AREA_TOPDOWN 1 3380 unsigned long flags; 3381 unsigned long length; 3382 unsigned long low_limit; 3383 unsigned long high_limit; 3384 unsigned long align_mask; 3385 unsigned long align_offset; 3386 unsigned long start_gap; 3387 }; 3388 3389 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3390 3391 /* truncate.c */ 3392 extern void truncate_inode_pages(struct address_space *, loff_t); 3393 extern void truncate_inode_pages_range(struct address_space *, 3394 loff_t lstart, loff_t lend); 3395 extern void truncate_inode_pages_final(struct address_space *); 3396 3397 /* generic vm_area_ops exported for stackable file systems */ 3398 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3399 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3400 pgoff_t start_pgoff, pgoff_t end_pgoff); 3401 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3402 3403 extern unsigned long stack_guard_gap; 3404 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3405 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3406 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3407 3408 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3409 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3410 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3411 struct vm_area_struct **pprev); 3412 3413 /* 3414 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3415 * NULL if none. Assume start_addr < end_addr. 3416 */ 3417 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3418 unsigned long start_addr, unsigned long end_addr); 3419 3420 /** 3421 * vma_lookup() - Find a VMA at a specific address 3422 * @mm: The process address space. 3423 * @addr: The user address. 3424 * 3425 * Return: The vm_area_struct at the given address, %NULL otherwise. 3426 */ 3427 static inline 3428 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3429 { 3430 return mtree_load(&mm->mm_mt, addr); 3431 } 3432 3433 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3434 { 3435 if (vma->vm_flags & VM_GROWSDOWN) 3436 return stack_guard_gap; 3437 3438 /* See reasoning around the VM_SHADOW_STACK definition */ 3439 if (vma->vm_flags & VM_SHADOW_STACK) 3440 return PAGE_SIZE; 3441 3442 return 0; 3443 } 3444 3445 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3446 { 3447 unsigned long gap = stack_guard_start_gap(vma); 3448 unsigned long vm_start = vma->vm_start; 3449 3450 vm_start -= gap; 3451 if (vm_start > vma->vm_start) 3452 vm_start = 0; 3453 return vm_start; 3454 } 3455 3456 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3457 { 3458 unsigned long vm_end = vma->vm_end; 3459 3460 if (vma->vm_flags & VM_GROWSUP) { 3461 vm_end += stack_guard_gap; 3462 if (vm_end < vma->vm_end) 3463 vm_end = -PAGE_SIZE; 3464 } 3465 return vm_end; 3466 } 3467 3468 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3469 { 3470 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3471 } 3472 3473 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3474 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3475 unsigned long vm_start, unsigned long vm_end) 3476 { 3477 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3478 3479 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3480 vma = NULL; 3481 3482 return vma; 3483 } 3484 3485 static inline bool range_in_vma(struct vm_area_struct *vma, 3486 unsigned long start, unsigned long end) 3487 { 3488 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3489 } 3490 3491 #ifdef CONFIG_MMU 3492 pgprot_t vm_get_page_prot(vm_flags_t vm_flags); 3493 void vma_set_page_prot(struct vm_area_struct *vma); 3494 #else 3495 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 3496 { 3497 return __pgprot(0); 3498 } 3499 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3500 { 3501 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3502 } 3503 #endif 3504 3505 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3506 3507 #ifdef CONFIG_NUMA_BALANCING 3508 unsigned long change_prot_numa(struct vm_area_struct *vma, 3509 unsigned long start, unsigned long end); 3510 #endif 3511 3512 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3513 unsigned long addr); 3514 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3515 unsigned long pfn, unsigned long size, pgprot_t); 3516 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3517 unsigned long pfn, unsigned long size, pgprot_t prot); 3518 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3519 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3520 struct page **pages, unsigned long *num); 3521 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3522 unsigned long num); 3523 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3524 unsigned long num); 3525 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3526 bool write); 3527 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3528 unsigned long pfn); 3529 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3530 unsigned long pfn, pgprot_t pgprot); 3531 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3532 unsigned long pfn); 3533 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3534 unsigned long addr, unsigned long pfn); 3535 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3536 3537 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3538 unsigned long addr, struct page *page) 3539 { 3540 int err = vm_insert_page(vma, addr, page); 3541 3542 if (err == -ENOMEM) 3543 return VM_FAULT_OOM; 3544 if (err < 0 && err != -EBUSY) 3545 return VM_FAULT_SIGBUS; 3546 3547 return VM_FAULT_NOPAGE; 3548 } 3549 3550 #ifndef io_remap_pfn_range 3551 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3552 unsigned long addr, unsigned long pfn, 3553 unsigned long size, pgprot_t prot) 3554 { 3555 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3556 } 3557 #endif 3558 3559 static inline vm_fault_t vmf_error(int err) 3560 { 3561 if (err == -ENOMEM) 3562 return VM_FAULT_OOM; 3563 else if (err == -EHWPOISON) 3564 return VM_FAULT_HWPOISON; 3565 return VM_FAULT_SIGBUS; 3566 } 3567 3568 /* 3569 * Convert errno to return value for ->page_mkwrite() calls. 3570 * 3571 * This should eventually be merged with vmf_error() above, but will need a 3572 * careful audit of all vmf_error() callers. 3573 */ 3574 static inline vm_fault_t vmf_fs_error(int err) 3575 { 3576 if (err == 0) 3577 return VM_FAULT_LOCKED; 3578 if (err == -EFAULT || err == -EAGAIN) 3579 return VM_FAULT_NOPAGE; 3580 if (err == -ENOMEM) 3581 return VM_FAULT_OOM; 3582 /* -ENOSPC, -EDQUOT, -EIO ... */ 3583 return VM_FAULT_SIGBUS; 3584 } 3585 3586 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3587 { 3588 if (vm_fault & VM_FAULT_OOM) 3589 return -ENOMEM; 3590 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3591 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3592 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3593 return -EFAULT; 3594 return 0; 3595 } 3596 3597 /* 3598 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3599 * a (NUMA hinting) fault is required. 3600 */ 3601 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3602 unsigned int flags) 3603 { 3604 /* 3605 * If callers don't want to honor NUMA hinting faults, no need to 3606 * determine if we would actually have to trigger a NUMA hinting fault. 3607 */ 3608 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3609 return true; 3610 3611 /* 3612 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3613 * 3614 * Requiring a fault here even for inaccessible VMAs would mean that 3615 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3616 * refuses to process NUMA hinting faults in inaccessible VMAs. 3617 */ 3618 return !vma_is_accessible(vma); 3619 } 3620 3621 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3622 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3623 unsigned long size, pte_fn_t fn, void *data); 3624 extern int apply_to_existing_page_range(struct mm_struct *mm, 3625 unsigned long address, unsigned long size, 3626 pte_fn_t fn, void *data); 3627 3628 #ifdef CONFIG_PAGE_POISONING 3629 extern void __kernel_poison_pages(struct page *page, int numpages); 3630 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3631 extern bool _page_poisoning_enabled_early; 3632 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3633 static inline bool page_poisoning_enabled(void) 3634 { 3635 return _page_poisoning_enabled_early; 3636 } 3637 /* 3638 * For use in fast paths after init_mem_debugging() has run, or when a 3639 * false negative result is not harmful when called too early. 3640 */ 3641 static inline bool page_poisoning_enabled_static(void) 3642 { 3643 return static_branch_unlikely(&_page_poisoning_enabled); 3644 } 3645 static inline void kernel_poison_pages(struct page *page, int numpages) 3646 { 3647 if (page_poisoning_enabled_static()) 3648 __kernel_poison_pages(page, numpages); 3649 } 3650 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3651 { 3652 if (page_poisoning_enabled_static()) 3653 __kernel_unpoison_pages(page, numpages); 3654 } 3655 #else 3656 static inline bool page_poisoning_enabled(void) { return false; } 3657 static inline bool page_poisoning_enabled_static(void) { return false; } 3658 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3659 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3660 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3661 #endif 3662 3663 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3664 static inline bool want_init_on_alloc(gfp_t flags) 3665 { 3666 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3667 &init_on_alloc)) 3668 return true; 3669 return flags & __GFP_ZERO; 3670 } 3671 3672 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3673 static inline bool want_init_on_free(void) 3674 { 3675 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3676 &init_on_free); 3677 } 3678 3679 extern bool _debug_pagealloc_enabled_early; 3680 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3681 3682 static inline bool debug_pagealloc_enabled(void) 3683 { 3684 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3685 _debug_pagealloc_enabled_early; 3686 } 3687 3688 /* 3689 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3690 * or when a false negative result is not harmful when called too early. 3691 */ 3692 static inline bool debug_pagealloc_enabled_static(void) 3693 { 3694 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3695 return false; 3696 3697 return static_branch_unlikely(&_debug_pagealloc_enabled); 3698 } 3699 3700 /* 3701 * To support DEBUG_PAGEALLOC architecture must ensure that 3702 * __kernel_map_pages() never fails 3703 */ 3704 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3705 #ifdef CONFIG_DEBUG_PAGEALLOC 3706 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3707 { 3708 if (debug_pagealloc_enabled_static()) 3709 __kernel_map_pages(page, numpages, 1); 3710 } 3711 3712 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3713 { 3714 if (debug_pagealloc_enabled_static()) 3715 __kernel_map_pages(page, numpages, 0); 3716 } 3717 3718 extern unsigned int _debug_guardpage_minorder; 3719 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3720 3721 static inline unsigned int debug_guardpage_minorder(void) 3722 { 3723 return _debug_guardpage_minorder; 3724 } 3725 3726 static inline bool debug_guardpage_enabled(void) 3727 { 3728 return static_branch_unlikely(&_debug_guardpage_enabled); 3729 } 3730 3731 static inline bool page_is_guard(struct page *page) 3732 { 3733 if (!debug_guardpage_enabled()) 3734 return false; 3735 3736 return PageGuard(page); 3737 } 3738 3739 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3740 static inline bool set_page_guard(struct zone *zone, struct page *page, 3741 unsigned int order) 3742 { 3743 if (!debug_guardpage_enabled()) 3744 return false; 3745 return __set_page_guard(zone, page, order); 3746 } 3747 3748 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3749 static inline void clear_page_guard(struct zone *zone, struct page *page, 3750 unsigned int order) 3751 { 3752 if (!debug_guardpage_enabled()) 3753 return; 3754 __clear_page_guard(zone, page, order); 3755 } 3756 3757 #else /* CONFIG_DEBUG_PAGEALLOC */ 3758 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3759 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3760 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3761 static inline bool debug_guardpage_enabled(void) { return false; } 3762 static inline bool page_is_guard(struct page *page) { return false; } 3763 static inline bool set_page_guard(struct zone *zone, struct page *page, 3764 unsigned int order) { return false; } 3765 static inline void clear_page_guard(struct zone *zone, struct page *page, 3766 unsigned int order) {} 3767 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3768 3769 #ifdef __HAVE_ARCH_GATE_AREA 3770 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3771 extern int in_gate_area_no_mm(unsigned long addr); 3772 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3773 #else 3774 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3775 { 3776 return NULL; 3777 } 3778 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3779 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3780 { 3781 return 0; 3782 } 3783 #endif /* __HAVE_ARCH_GATE_AREA */ 3784 3785 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3786 3787 void drop_slab(void); 3788 3789 #ifndef CONFIG_MMU 3790 #define randomize_va_space 0 3791 #else 3792 extern int randomize_va_space; 3793 #endif 3794 3795 const char * arch_vma_name(struct vm_area_struct *vma); 3796 #ifdef CONFIG_MMU 3797 void print_vma_addr(char *prefix, unsigned long rip); 3798 #else 3799 static inline void print_vma_addr(char *prefix, unsigned long rip) 3800 { 3801 } 3802 #endif 3803 3804 void *sparse_buffer_alloc(unsigned long size); 3805 unsigned long section_map_size(void); 3806 struct page * __populate_section_memmap(unsigned long pfn, 3807 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3808 struct dev_pagemap *pgmap); 3809 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3810 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3811 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3812 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3813 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3814 struct vmem_altmap *altmap, unsigned long ptpfn, 3815 unsigned long flags); 3816 void *vmemmap_alloc_block(unsigned long size, int node); 3817 struct vmem_altmap; 3818 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3819 struct vmem_altmap *altmap); 3820 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3821 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3822 unsigned long addr, unsigned long next); 3823 int vmemmap_check_pmd(pmd_t *pmd, int node, 3824 unsigned long addr, unsigned long next); 3825 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3826 int node, struct vmem_altmap *altmap); 3827 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3828 int node, struct vmem_altmap *altmap); 3829 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3830 struct vmem_altmap *altmap); 3831 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3832 unsigned long headsize); 3833 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3834 unsigned long headsize); 3835 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3836 unsigned long headsize); 3837 void vmemmap_populate_print_last(void); 3838 #ifdef CONFIG_MEMORY_HOTPLUG 3839 void vmemmap_free(unsigned long start, unsigned long end, 3840 struct vmem_altmap *altmap); 3841 #endif 3842 3843 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3844 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3845 { 3846 /* number of pfns from base where pfn_to_page() is valid */ 3847 if (altmap) 3848 return altmap->reserve + altmap->free; 3849 return 0; 3850 } 3851 3852 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3853 unsigned long nr_pfns) 3854 { 3855 altmap->alloc -= nr_pfns; 3856 } 3857 #else 3858 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3859 { 3860 return 0; 3861 } 3862 3863 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3864 unsigned long nr_pfns) 3865 { 3866 } 3867 #endif 3868 3869 #define VMEMMAP_RESERVE_NR 2 3870 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3871 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3872 struct dev_pagemap *pgmap) 3873 { 3874 unsigned long nr_pages; 3875 unsigned long nr_vmemmap_pages; 3876 3877 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3878 return false; 3879 3880 nr_pages = pgmap_vmemmap_nr(pgmap); 3881 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3882 /* 3883 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3884 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3885 */ 3886 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3887 } 3888 /* 3889 * If we don't have an architecture override, use the generic rule 3890 */ 3891 #ifndef vmemmap_can_optimize 3892 #define vmemmap_can_optimize __vmemmap_can_optimize 3893 #endif 3894 3895 #else 3896 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3897 struct dev_pagemap *pgmap) 3898 { 3899 return false; 3900 } 3901 #endif 3902 3903 enum mf_flags { 3904 MF_COUNT_INCREASED = 1 << 0, 3905 MF_ACTION_REQUIRED = 1 << 1, 3906 MF_MUST_KILL = 1 << 2, 3907 MF_SOFT_OFFLINE = 1 << 3, 3908 MF_UNPOISON = 1 << 4, 3909 MF_SW_SIMULATED = 1 << 5, 3910 MF_NO_RETRY = 1 << 6, 3911 MF_MEM_PRE_REMOVE = 1 << 7, 3912 }; 3913 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3914 unsigned long count, int mf_flags); 3915 extern int memory_failure(unsigned long pfn, int flags); 3916 extern int unpoison_memory(unsigned long pfn); 3917 extern atomic_long_t num_poisoned_pages __read_mostly; 3918 extern int soft_offline_page(unsigned long pfn, int flags); 3919 #ifdef CONFIG_MEMORY_FAILURE 3920 /* 3921 * Sysfs entries for memory failure handling statistics. 3922 */ 3923 extern const struct attribute_group memory_failure_attr_group; 3924 extern void memory_failure_queue(unsigned long pfn, int flags); 3925 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3926 bool *migratable_cleared); 3927 void num_poisoned_pages_inc(unsigned long pfn); 3928 void num_poisoned_pages_sub(unsigned long pfn, long i); 3929 #else 3930 static inline void memory_failure_queue(unsigned long pfn, int flags) 3931 { 3932 } 3933 3934 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3935 bool *migratable_cleared) 3936 { 3937 return 0; 3938 } 3939 3940 static inline void num_poisoned_pages_inc(unsigned long pfn) 3941 { 3942 } 3943 3944 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3945 { 3946 } 3947 #endif 3948 3949 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3950 extern void memblk_nr_poison_inc(unsigned long pfn); 3951 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3952 #else 3953 static inline void memblk_nr_poison_inc(unsigned long pfn) 3954 { 3955 } 3956 3957 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3958 { 3959 } 3960 #endif 3961 3962 #ifndef arch_memory_failure 3963 static inline int arch_memory_failure(unsigned long pfn, int flags) 3964 { 3965 return -ENXIO; 3966 } 3967 #endif 3968 3969 #ifndef arch_is_platform_page 3970 static inline bool arch_is_platform_page(u64 paddr) 3971 { 3972 return false; 3973 } 3974 #endif 3975 3976 /* 3977 * Error handlers for various types of pages. 3978 */ 3979 enum mf_result { 3980 MF_IGNORED, /* Error: cannot be handled */ 3981 MF_FAILED, /* Error: handling failed */ 3982 MF_DELAYED, /* Will be handled later */ 3983 MF_RECOVERED, /* Successfully recovered */ 3984 }; 3985 3986 enum mf_action_page_type { 3987 MF_MSG_KERNEL, 3988 MF_MSG_KERNEL_HIGH_ORDER, 3989 MF_MSG_DIFFERENT_COMPOUND, 3990 MF_MSG_HUGE, 3991 MF_MSG_FREE_HUGE, 3992 MF_MSG_GET_HWPOISON, 3993 MF_MSG_UNMAP_FAILED, 3994 MF_MSG_DIRTY_SWAPCACHE, 3995 MF_MSG_CLEAN_SWAPCACHE, 3996 MF_MSG_DIRTY_MLOCKED_LRU, 3997 MF_MSG_CLEAN_MLOCKED_LRU, 3998 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3999 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4000 MF_MSG_DIRTY_LRU, 4001 MF_MSG_CLEAN_LRU, 4002 MF_MSG_TRUNCATED_LRU, 4003 MF_MSG_BUDDY, 4004 MF_MSG_DAX, 4005 MF_MSG_UNSPLIT_THP, 4006 MF_MSG_ALREADY_POISONED, 4007 MF_MSG_UNKNOWN, 4008 }; 4009 4010 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4011 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4012 int copy_user_large_folio(struct folio *dst, struct folio *src, 4013 unsigned long addr_hint, 4014 struct vm_area_struct *vma); 4015 long copy_folio_from_user(struct folio *dst_folio, 4016 const void __user *usr_src, 4017 bool allow_pagefault); 4018 4019 /** 4020 * vma_is_special_huge - Are transhuge page-table entries considered special? 4021 * @vma: Pointer to the struct vm_area_struct to consider 4022 * 4023 * Whether transhuge page-table entries are considered "special" following 4024 * the definition in vm_normal_page(). 4025 * 4026 * Return: true if transhuge page-table entries should be considered special, 4027 * false otherwise. 4028 */ 4029 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4030 { 4031 return vma_is_dax(vma) || (vma->vm_file && 4032 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4033 } 4034 4035 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4036 4037 #if MAX_NUMNODES > 1 4038 void __init setup_nr_node_ids(void); 4039 #else 4040 static inline void setup_nr_node_ids(void) {} 4041 #endif 4042 4043 extern int memcmp_pages(struct page *page1, struct page *page2); 4044 4045 static inline int pages_identical(struct page *page1, struct page *page2) 4046 { 4047 return !memcmp_pages(page1, page2); 4048 } 4049 4050 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4051 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4052 pgoff_t first_index, pgoff_t nr, 4053 pgoff_t bitmap_pgoff, 4054 unsigned long *bitmap, 4055 pgoff_t *start, 4056 pgoff_t *end); 4057 4058 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4059 pgoff_t first_index, pgoff_t nr); 4060 #endif 4061 4062 #ifdef CONFIG_ANON_VMA_NAME 4063 int set_anon_vma_name(unsigned long addr, unsigned long size, 4064 const char __user *uname); 4065 #else 4066 static inline 4067 int set_anon_vma_name(unsigned long addr, unsigned long size, 4068 const char __user *uname) 4069 { 4070 return -EINVAL; 4071 } 4072 #endif 4073 4074 #ifdef CONFIG_UNACCEPTED_MEMORY 4075 4076 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4077 void accept_memory(phys_addr_t start, unsigned long size); 4078 4079 #else 4080 4081 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4082 unsigned long size) 4083 { 4084 return false; 4085 } 4086 4087 static inline void accept_memory(phys_addr_t start, unsigned long size) 4088 { 4089 } 4090 4091 #endif 4092 4093 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4094 { 4095 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4096 } 4097 4098 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4099 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4100 4101 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4102 int reserve_mem_release_by_name(const char *name); 4103 4104 #ifdef CONFIG_64BIT 4105 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4106 #else 4107 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4108 { 4109 /* noop on 32 bit */ 4110 return 0; 4111 } 4112 #endif 4113 4114 /* 4115 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4116 * be zeroed or not. 4117 */ 4118 static inline bool user_alloc_needs_zeroing(void) 4119 { 4120 /* 4121 * for user folios, arch with cache aliasing requires cache flush and 4122 * arc changes folio->flags to make icache coherent with dcache, so 4123 * always return false to make caller use 4124 * clear_user_page()/clear_user_highpage(). 4125 */ 4126 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4127 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4128 &init_on_alloc); 4129 } 4130 4131 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4132 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4133 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4134 4135 4136 /* 4137 * mseal of userspace process's system mappings. 4138 */ 4139 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 4140 #define VM_SEALED_SYSMAP VM_SEALED 4141 #else 4142 #define VM_SEALED_SYSMAP VM_NONE 4143 #endif 4144 4145 /* 4146 * DMA mapping IDs for page_pool 4147 * 4148 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and 4149 * stashes it in the upper bits of page->pp_magic. We always want to be able to 4150 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP 4151 * pages can have arbitrary kernel pointers stored in the same field as pp_magic 4152 * (since it overlaps with page->lru.next), so we must ensure that we cannot 4153 * mistake a valid kernel pointer with any of the values we write into this 4154 * field. 4155 * 4156 * On architectures that set POISON_POINTER_DELTA, this is already ensured, 4157 * since this value becomes part of PP_SIGNATURE; meaning we can just use the 4158 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the 4159 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is 4160 * 0, we make sure that we leave the two topmost bits empty, as that guarantees 4161 * we won't mistake a valid kernel pointer for a value we set, regardless of the 4162 * VMSPLIT setting. 4163 * 4164 * Altogether, this means that the number of bits available is constrained by 4165 * the size of an unsigned long (at the upper end, subtracting two bits per the 4166 * above), and the definition of PP_SIGNATURE (with or without 4167 * POISON_POINTER_DELTA). 4168 */ 4169 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) 4170 #if POISON_POINTER_DELTA > 0 4171 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA 4172 * index to not overlap with that if set 4173 */ 4174 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) 4175 #else 4176 /* Always leave out the topmost two; see above. */ 4177 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2) 4178 #endif 4179 4180 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ 4181 PP_DMA_INDEX_SHIFT) 4182 4183 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is 4184 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for 4185 * the head page of compound page and bit 1 for pfmemalloc page, as well as the 4186 * bits used for the DMA index. page_is_pfmemalloc() is checked in 4187 * __page_pool_put_page() to avoid recycling the pfmemalloc page. 4188 */ 4189 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) 4190 4191 #ifdef CONFIG_PAGE_POOL 4192 static inline bool page_pool_page_is_pp(const struct page *page) 4193 { 4194 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; 4195 } 4196 #else 4197 static inline bool page_pool_page_is_pp(const struct page *page) 4198 { 4199 return false; 4200 } 4201 #endif 4202 4203 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0) 4204 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1) 4205 #define PAGE_SNAPSHOT_PG_IDLE (1 << 2) 4206 4207 struct page_snapshot { 4208 struct folio folio_snapshot; 4209 struct page page_snapshot; 4210 unsigned long pfn; 4211 unsigned long idx; 4212 unsigned long flags; 4213 }; 4214 4215 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps) 4216 { 4217 return ps->flags & PAGE_SNAPSHOT_FAITHFUL; 4218 } 4219 4220 void snapshot_page(struct page_snapshot *ps, const struct page *page); 4221 4222 #endif /* _LINUX_MM_H */ 4223