xref: /linux/include/linux/mm.h (revision beace86e61e465dba204a268ab3f3377153a4973)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct user_struct;
42 struct pt_regs;
43 struct folio_batch;
44 
45 void arch_mm_preinit(void);
46 void mm_core_init(void);
47 void init_mm_internals(void);
48 
49 extern atomic_long_t _totalram_pages;
50 static inline unsigned long totalram_pages(void)
51 {
52 	return (unsigned long)atomic_long_read(&_totalram_pages);
53 }
54 
55 static inline void totalram_pages_inc(void)
56 {
57 	atomic_long_inc(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_dec(void)
61 {
62 	atomic_long_dec(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_add(long count)
66 {
67 	atomic_long_add(count, &_totalram_pages);
68 }
69 
70 extern void * high_memory;
71 
72 #ifdef CONFIG_SYSCTL
73 extern int sysctl_legacy_va_layout;
74 #else
75 #define sysctl_legacy_va_layout 0
76 #endif
77 
78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79 extern const int mmap_rnd_bits_min;
80 extern int mmap_rnd_bits_max __ro_after_init;
81 extern int mmap_rnd_bits __read_mostly;
82 #endif
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84 extern const int mmap_rnd_compat_bits_min;
85 extern const int mmap_rnd_compat_bits_max;
86 extern int mmap_rnd_compat_bits __read_mostly;
87 #endif
88 
89 #ifndef DIRECT_MAP_PHYSMEM_END
90 # ifdef MAX_PHYSMEM_BITS
91 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
92 # else
93 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
94 # endif
95 #endif
96 
97 #include <asm/page.h>
98 #include <asm/processor.h>
99 
100 #ifndef __pa_symbol
101 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
102 #endif
103 
104 #ifndef page_to_virt
105 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
106 #endif
107 
108 #ifndef lm_alias
109 #define lm_alias(x)	__va(__pa_symbol(x))
110 #endif
111 
112 /*
113  * To prevent common memory management code establishing
114  * a zero page mapping on a read fault.
115  * This macro should be defined within <asm/pgtable.h>.
116  * s390 does this to prevent multiplexing of hardware bits
117  * related to the physical page in case of virtualization.
118  */
119 #ifndef mm_forbids_zeropage
120 #define mm_forbids_zeropage(X)	(0)
121 #endif
122 
123 /*
124  * On some architectures it is expensive to call memset() for small sizes.
125  * If an architecture decides to implement their own version of
126  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127  * define their own version of this macro in <asm/pgtable.h>
128  */
129 #if BITS_PER_LONG == 64
130 /* This function must be updated when the size of struct page grows above 96
131  * or reduces below 56. The idea that compiler optimizes out switch()
132  * statement, and only leaves move/store instructions. Also the compiler can
133  * combine write statements if they are both assignments and can be reordered,
134  * this can result in several of the writes here being dropped.
135  */
136 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
137 static inline void __mm_zero_struct_page(struct page *page)
138 {
139 	unsigned long *_pp = (void *)page;
140 
141 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 	BUILD_BUG_ON(sizeof(struct page) & 7);
143 	BUILD_BUG_ON(sizeof(struct page) < 56);
144 	BUILD_BUG_ON(sizeof(struct page) > 96);
145 
146 	switch (sizeof(struct page)) {
147 	case 96:
148 		_pp[11] = 0;
149 		fallthrough;
150 	case 88:
151 		_pp[10] = 0;
152 		fallthrough;
153 	case 80:
154 		_pp[9] = 0;
155 		fallthrough;
156 	case 72:
157 		_pp[8] = 0;
158 		fallthrough;
159 	case 64:
160 		_pp[7] = 0;
161 		fallthrough;
162 	case 56:
163 		_pp[6] = 0;
164 		_pp[5] = 0;
165 		_pp[4] = 0;
166 		_pp[3] = 0;
167 		_pp[2] = 0;
168 		_pp[1] = 0;
169 		_pp[0] = 0;
170 	}
171 }
172 #else
173 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175 
176 /*
177  * Default maximum number of active map areas, this limits the number of vmas
178  * per mm struct. Users can overwrite this number by sysctl but there is a
179  * problem.
180  *
181  * When a program's coredump is generated as ELF format, a section is created
182  * per a vma. In ELF, the number of sections is represented in unsigned short.
183  * This means the number of sections should be smaller than 65535 at coredump.
184  * Because the kernel adds some informative sections to a image of program at
185  * generating coredump, we need some margin. The number of extra sections is
186  * 1-3 now and depends on arch. We use "5" as safe margin, here.
187  *
188  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189  * not a hard limit any more. Although some userspace tools can be surprised by
190  * that.
191  */
192 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
193 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194 
195 extern int sysctl_max_map_count;
196 
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199 
200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
203 #else
204 #define nth_page(page,n) ((page) + (n))
205 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
206 #endif
207 
208 /* to align the pointer to the (next) page boundary */
209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210 
211 /* to align the pointer to the (prev) page boundary */
212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213 
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216 
217 static inline struct folio *lru_to_folio(struct list_head *head)
218 {
219 	return list_entry((head)->prev, struct folio, lru);
220 }
221 
222 void setup_initial_init_mm(void *start_code, void *end_code,
223 			   void *end_data, void *brk);
224 
225 /*
226  * Linux kernel virtual memory manager primitives.
227  * The idea being to have a "virtual" mm in the same way
228  * we have a virtual fs - giving a cleaner interface to the
229  * mm details, and allowing different kinds of memory mappings
230  * (from shared memory to executable loading to arbitrary
231  * mmap() functions).
232  */
233 
234 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236 void vm_area_free(struct vm_area_struct *);
237 
238 #ifndef CONFIG_MMU
239 extern struct rb_root nommu_region_tree;
240 extern struct rw_semaphore nommu_region_sem;
241 
242 extern unsigned int kobjsize(const void *objp);
243 #endif
244 
245 /*
246  * vm_flags in vm_area_struct, see mm_types.h.
247  * When changing, update also include/trace/events/mmflags.h
248  */
249 #define VM_NONE		0x00000000
250 
251 #define VM_READ		0x00000001	/* currently active flags */
252 #define VM_WRITE	0x00000002
253 #define VM_EXEC		0x00000004
254 #define VM_SHARED	0x00000008
255 
256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
258 #define VM_MAYWRITE	0x00000020
259 #define VM_MAYEXEC	0x00000040
260 #define VM_MAYSHARE	0x00000080
261 
262 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
263 #ifdef CONFIG_MMU
264 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
265 #else /* CONFIG_MMU */
266 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267 #define VM_UFFD_MISSING	0
268 #endif /* CONFIG_MMU */
269 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
271 
272 #define VM_LOCKED	0x00002000
273 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
274 
275 					/* Used by sys_madvise() */
276 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
277 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
278 
279 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
283 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
284 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
285 #define VM_SYNC		0x00800000	/* Synchronous page faults */
286 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
287 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
288 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY	0
294 #endif
295 
296 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
300 
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
310 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
311 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
312 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
313 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
314 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
315 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317 
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
321 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
322 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
323 #if CONFIG_ARCH_PKEY_BITS > 3
324 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
325 #else
326 # define VM_PKEY_BIT3  0
327 #endif
328 #if CONFIG_ARCH_PKEY_BITS > 4
329 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4  0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334 
335 #ifdef CONFIG_X86_USER_SHADOW_STACK
336 /*
337  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338  * support core mm.
339  *
340  * These VMAs will get a single end guard page. This helps userspace protect
341  * itself from attacks. A single page is enough for current shadow stack archs
342  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343  * for more details on the guard size.
344  */
345 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
346 #endif
347 
348 #if defined(CONFIG_ARM64_GCS)
349 /*
350  * arm64's Guarded Control Stack implements similar functionality and
351  * has similar constraints to shadow stacks.
352  */
353 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
354 #endif
355 
356 #ifndef VM_SHADOW_STACK
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_PPC64)
361 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
362 #elif defined(CONFIG_PARISC)
363 # define VM_GROWSUP	VM_ARCH_1
364 #elif defined(CONFIG_SPARC64)
365 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
366 # define VM_ARCH_CLEAR	VM_SPARC_ADI
367 #elif defined(CONFIG_ARM64)
368 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
369 # define VM_ARCH_CLEAR	VM_ARM64_BTI
370 #elif !defined(CONFIG_MMU)
371 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
372 #endif
373 
374 #if defined(CONFIG_ARM64_MTE)
375 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
376 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
377 #else
378 # define VM_MTE		VM_NONE
379 # define VM_MTE_ALLOWED	VM_NONE
380 #endif
381 
382 #ifndef VM_GROWSUP
383 # define VM_GROWSUP	VM_NONE
384 #endif
385 
386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387 # define VM_UFFD_MINOR_BIT	41
388 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390 # define VM_UFFD_MINOR		VM_NONE
391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 
393 /*
394  * This flag is used to connect VFIO to arch specific KVM code. It
395  * indicates that the memory under this VMA is safe for use with any
396  * non-cachable memory type inside KVM. Some VFIO devices, on some
397  * platforms, are thought to be unsafe and can cause machine crashes
398  * if KVM does not lock down the memory type.
399  */
400 #ifdef CONFIG_64BIT
401 #define VM_ALLOW_ANY_UNCACHED_BIT	39
402 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403 #else
404 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
405 #endif
406 
407 #ifdef CONFIG_64BIT
408 #define VM_DROPPABLE_BIT	40
409 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
410 #elif defined(CONFIG_PPC32)
411 #define VM_DROPPABLE		VM_ARCH_1
412 #else
413 #define VM_DROPPABLE		VM_NONE
414 #endif
415 
416 #ifdef CONFIG_64BIT
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED	_BITUL(63)
419 #endif
420 
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423 
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425 
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
428 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
430 				 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
432 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433 
434 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
436 #endif
437 
438 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440 #endif
441 
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443 
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK	VM_GROWSUP
446 #define VM_STACK_EARLY	VM_GROWSDOWN
447 #else
448 #define VM_STACK	VM_GROWSDOWN
449 #define VM_STACK_EARLY	0
450 #endif
451 
452 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453 
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456 
457 
458 /*
459  * Special vmas that are non-mergable, non-mlock()able.
460  */
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462 
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465 
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
468 
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
471 
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR	VM_NONE
475 #endif
476 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477 
478 /*
479  * mapping from the currently active vm_flags protection bits (the
480  * low four bits) to a page protection mask..
481  */
482 
483 /*
484  * The default fault flags that should be used by most of the
485  * arch-specific page fault handlers.
486  */
487 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
488 			     FAULT_FLAG_KILLABLE | \
489 			     FAULT_FLAG_INTERRUPTIBLE)
490 
491 /**
492  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493  * @flags: Fault flags.
494  *
495  * This is mostly used for places where we want to try to avoid taking
496  * the mmap_lock for too long a time when waiting for another condition
497  * to change, in which case we can try to be polite to release the
498  * mmap_lock in the first round to avoid potential starvation of other
499  * processes that would also want the mmap_lock.
500  *
501  * Return: true if the page fault allows retry and this is the first
502  * attempt of the fault handling; false otherwise.
503  */
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 	    (!(flags & FAULT_FLAG_TRIED));
508 }
509 
510 #define FAULT_FLAG_TRACE \
511 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
512 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
513 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
514 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
515 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
516 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
517 	{ FAULT_FLAG_USER,		"USER" }, \
518 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
519 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
520 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
521 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
522 
523 /*
524  * vm_fault is filled by the pagefault handler and passed to the vma's
525  * ->fault function. The vma's ->fault is responsible for returning a bitmask
526  * of VM_FAULT_xxx flags that give details about how the fault was handled.
527  *
528  * MM layer fills up gfp_mask for page allocations but fault handler might
529  * alter it if its implementation requires a different allocation context.
530  *
531  * pgoff should be used in favour of virtual_address, if possible.
532  */
533 struct vm_fault {
534 	const struct {
535 		struct vm_area_struct *vma;	/* Target VMA */
536 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
537 		pgoff_t pgoff;			/* Logical page offset based on vma */
538 		unsigned long address;		/* Faulting virtual address - masked */
539 		unsigned long real_address;	/* Faulting virtual address - unmasked */
540 	};
541 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
542 					 * XXX: should really be 'const' */
543 	pmd_t *pmd;			/* Pointer to pmd entry matching
544 					 * the 'address' */
545 	pud_t *pud;			/* Pointer to pud entry matching
546 					 * the 'address'
547 					 */
548 	union {
549 		pte_t orig_pte;		/* Value of PTE at the time of fault */
550 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
551 					 * used by PMD fault only.
552 					 */
553 	};
554 
555 	struct page *cow_page;		/* Page handler may use for COW fault */
556 	struct page *page;		/* ->fault handlers should return a
557 					 * page here, unless VM_FAULT_NOPAGE
558 					 * is set (which is also implied by
559 					 * VM_FAULT_ERROR).
560 					 */
561 	/* These three entries are valid only while holding ptl lock */
562 	pte_t *pte;			/* Pointer to pte entry matching
563 					 * the 'address'. NULL if the page
564 					 * table hasn't been allocated.
565 					 */
566 	spinlock_t *ptl;		/* Page table lock.
567 					 * Protects pte page table if 'pte'
568 					 * is not NULL, otherwise pmd.
569 					 */
570 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
571 					 * vm_ops->map_pages() sets up a page
572 					 * table from atomic context.
573 					 * do_fault_around() pre-allocates
574 					 * page table to avoid allocation from
575 					 * atomic context.
576 					 */
577 };
578 
579 /*
580  * These are the virtual MM functions - opening of an area, closing and
581  * unmapping it (needed to keep files on disk up-to-date etc), pointer
582  * to the functions called when a no-page or a wp-page exception occurs.
583  */
584 struct vm_operations_struct {
585 	void (*open)(struct vm_area_struct * area);
586 	/**
587 	 * @close: Called when the VMA is being removed from the MM.
588 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
589 	 */
590 	void (*close)(struct vm_area_struct * area);
591 	/* Called any time before splitting to check if it's allowed */
592 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 	int (*mremap)(struct vm_area_struct *area);
594 	/*
595 	 * Called by mprotect() to make driver-specific permission
596 	 * checks before mprotect() is finalised.   The VMA must not
597 	 * be modified.  Returns 0 if mprotect() can proceed.
598 	 */
599 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 			unsigned long end, unsigned long newflags);
601 	vm_fault_t (*fault)(struct vm_fault *vmf);
602 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr, pgoff_t *ilx);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 #ifdef CONFIG_NUMA_BALANCING
659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
660 {
661 	vma->numab_state = NULL;
662 }
663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
664 {
665 	kfree(vma->numab_state);
666 }
667 #else
668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
671 
672 /*
673  * These must be here rather than mmap_lock.h as dependent on vm_fault type,
674  * declared in this header.
675  */
676 #ifdef CONFIG_PER_VMA_LOCK
677 static inline void release_fault_lock(struct vm_fault *vmf)
678 {
679 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
680 		vma_end_read(vmf->vma);
681 	else
682 		mmap_read_unlock(vmf->vma->vm_mm);
683 }
684 
685 static inline void assert_fault_locked(struct vm_fault *vmf)
686 {
687 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
688 		vma_assert_locked(vmf->vma);
689 	else
690 		mmap_assert_locked(vmf->vma->vm_mm);
691 }
692 #else
693 static inline void release_fault_lock(struct vm_fault *vmf)
694 {
695 	mmap_read_unlock(vmf->vma->vm_mm);
696 }
697 
698 static inline void assert_fault_locked(struct vm_fault *vmf)
699 {
700 	mmap_assert_locked(vmf->vma->vm_mm);
701 }
702 #endif /* CONFIG_PER_VMA_LOCK */
703 
704 extern const struct vm_operations_struct vma_dummy_vm_ops;
705 
706 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
707 {
708 	memset(vma, 0, sizeof(*vma));
709 	vma->vm_mm = mm;
710 	vma->vm_ops = &vma_dummy_vm_ops;
711 	INIT_LIST_HEAD(&vma->anon_vma_chain);
712 	vma_lock_init(vma, false);
713 }
714 
715 /* Use when VMA is not part of the VMA tree and needs no locking */
716 static inline void vm_flags_init(struct vm_area_struct *vma,
717 				 vm_flags_t flags)
718 {
719 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
720 }
721 
722 /*
723  * Use when VMA is part of the VMA tree and modifications need coordination
724  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
725  * it should be locked explicitly beforehand.
726  */
727 static inline void vm_flags_reset(struct vm_area_struct *vma,
728 				  vm_flags_t flags)
729 {
730 	vma_assert_write_locked(vma);
731 	vm_flags_init(vma, flags);
732 }
733 
734 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
735 				       vm_flags_t flags)
736 {
737 	vma_assert_write_locked(vma);
738 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
739 }
740 
741 static inline void vm_flags_set(struct vm_area_struct *vma,
742 				vm_flags_t flags)
743 {
744 	vma_start_write(vma);
745 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
746 }
747 
748 static inline void vm_flags_clear(struct vm_area_struct *vma,
749 				  vm_flags_t flags)
750 {
751 	vma_start_write(vma);
752 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
753 }
754 
755 /*
756  * Use only if VMA is not part of the VMA tree or has no other users and
757  * therefore needs no locking.
758  */
759 static inline void __vm_flags_mod(struct vm_area_struct *vma,
760 				  vm_flags_t set, vm_flags_t clear)
761 {
762 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
763 }
764 
765 /*
766  * Use only when the order of set/clear operations is unimportant, otherwise
767  * use vm_flags_{set|clear} explicitly.
768  */
769 static inline void vm_flags_mod(struct vm_area_struct *vma,
770 				vm_flags_t set, vm_flags_t clear)
771 {
772 	vma_start_write(vma);
773 	__vm_flags_mod(vma, set, clear);
774 }
775 
776 static inline void vma_set_anonymous(struct vm_area_struct *vma)
777 {
778 	vma->vm_ops = NULL;
779 }
780 
781 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
782 {
783 	return !vma->vm_ops;
784 }
785 
786 /*
787  * Indicate if the VMA is a heap for the given task; for
788  * /proc/PID/maps that is the heap of the main task.
789  */
790 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
791 {
792 	return vma->vm_start < vma->vm_mm->brk &&
793 		vma->vm_end > vma->vm_mm->start_brk;
794 }
795 
796 /*
797  * Indicate if the VMA is a stack for the given task; for
798  * /proc/PID/maps that is the stack of the main task.
799  */
800 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
801 {
802 	/*
803 	 * We make no effort to guess what a given thread considers to be
804 	 * its "stack".  It's not even well-defined for programs written
805 	 * languages like Go.
806 	 */
807 	return vma->vm_start <= vma->vm_mm->start_stack &&
808 		vma->vm_end >= vma->vm_mm->start_stack;
809 }
810 
811 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
812 {
813 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
814 
815 	if (!maybe_stack)
816 		return false;
817 
818 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
819 						VM_STACK_INCOMPLETE_SETUP)
820 		return true;
821 
822 	return false;
823 }
824 
825 static inline bool vma_is_foreign(struct vm_area_struct *vma)
826 {
827 	if (!current->mm)
828 		return true;
829 
830 	if (current->mm != vma->vm_mm)
831 		return true;
832 
833 	return false;
834 }
835 
836 static inline bool vma_is_accessible(struct vm_area_struct *vma)
837 {
838 	return vma->vm_flags & VM_ACCESS_FLAGS;
839 }
840 
841 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
842 {
843 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
844 		(VM_SHARED | VM_MAYWRITE);
845 }
846 
847 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
848 {
849 	return is_shared_maywrite(vma->vm_flags);
850 }
851 
852 static inline
853 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
854 {
855 	return mas_find(&vmi->mas, max - 1);
856 }
857 
858 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
859 {
860 	/*
861 	 * Uses mas_find() to get the first VMA when the iterator starts.
862 	 * Calling mas_next() could skip the first entry.
863 	 */
864 	return mas_find(&vmi->mas, ULONG_MAX);
865 }
866 
867 static inline
868 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
869 {
870 	return mas_next_range(&vmi->mas, ULONG_MAX);
871 }
872 
873 
874 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
875 {
876 	return mas_prev(&vmi->mas, 0);
877 }
878 
879 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
880 			unsigned long start, unsigned long end, gfp_t gfp)
881 {
882 	__mas_set_range(&vmi->mas, start, end - 1);
883 	mas_store_gfp(&vmi->mas, NULL, gfp);
884 	if (unlikely(mas_is_err(&vmi->mas)))
885 		return -ENOMEM;
886 
887 	return 0;
888 }
889 
890 /* Free any unused preallocations */
891 static inline void vma_iter_free(struct vma_iterator *vmi)
892 {
893 	mas_destroy(&vmi->mas);
894 }
895 
896 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
897 				      struct vm_area_struct *vma)
898 {
899 	vmi->mas.index = vma->vm_start;
900 	vmi->mas.last = vma->vm_end - 1;
901 	mas_store(&vmi->mas, vma);
902 	if (unlikely(mas_is_err(&vmi->mas)))
903 		return -ENOMEM;
904 
905 	vma_mark_attached(vma);
906 	return 0;
907 }
908 
909 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
910 {
911 	mas_pause(&vmi->mas);
912 }
913 
914 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
915 {
916 	mas_set(&vmi->mas, addr);
917 }
918 
919 #define for_each_vma(__vmi, __vma)					\
920 	while (((__vma) = vma_next(&(__vmi))) != NULL)
921 
922 /* The MM code likes to work with exclusive end addresses */
923 #define for_each_vma_range(__vmi, __vma, __end)				\
924 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
925 
926 #ifdef CONFIG_SHMEM
927 /*
928  * The vma_is_shmem is not inline because it is used only by slow
929  * paths in userfault.
930  */
931 bool vma_is_shmem(struct vm_area_struct *vma);
932 bool vma_is_anon_shmem(struct vm_area_struct *vma);
933 #else
934 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
935 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
936 #endif
937 
938 int vma_is_stack_for_current(struct vm_area_struct *vma);
939 
940 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
941 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
942 
943 struct mmu_gather;
944 struct inode;
945 
946 extern void prep_compound_page(struct page *page, unsigned int order);
947 
948 static inline unsigned int folio_large_order(const struct folio *folio)
949 {
950 	return folio->_flags_1 & 0xff;
951 }
952 
953 #ifdef NR_PAGES_IN_LARGE_FOLIO
954 static inline long folio_large_nr_pages(const struct folio *folio)
955 {
956 	return folio->_nr_pages;
957 }
958 #else
959 static inline long folio_large_nr_pages(const struct folio *folio)
960 {
961 	return 1L << folio_large_order(folio);
962 }
963 #endif
964 
965 /*
966  * compound_order() can be called without holding a reference, which means
967  * that niceties like page_folio() don't work.  These callers should be
968  * prepared to handle wild return values.  For example, PG_head may be
969  * set before the order is initialised, or this may be a tail page.
970  * See compaction.c for some good examples.
971  */
972 static inline unsigned int compound_order(struct page *page)
973 {
974 	struct folio *folio = (struct folio *)page;
975 
976 	if (!test_bit(PG_head, &folio->flags))
977 		return 0;
978 	return folio_large_order(folio);
979 }
980 
981 /**
982  * folio_order - The allocation order of a folio.
983  * @folio: The folio.
984  *
985  * A folio is composed of 2^order pages.  See get_order() for the definition
986  * of order.
987  *
988  * Return: The order of the folio.
989  */
990 static inline unsigned int folio_order(const struct folio *folio)
991 {
992 	if (!folio_test_large(folio))
993 		return 0;
994 	return folio_large_order(folio);
995 }
996 
997 /**
998  * folio_reset_order - Reset the folio order and derived _nr_pages
999  * @folio: The folio.
1000  *
1001  * Reset the order and derived _nr_pages to 0. Must only be used in the
1002  * process of splitting large folios.
1003  */
1004 static inline void folio_reset_order(struct folio *folio)
1005 {
1006 	if (WARN_ON_ONCE(!folio_test_large(folio)))
1007 		return;
1008 	folio->_flags_1 &= ~0xffUL;
1009 #ifdef NR_PAGES_IN_LARGE_FOLIO
1010 	folio->_nr_pages = 0;
1011 #endif
1012 }
1013 
1014 #include <linux/huge_mm.h>
1015 
1016 /*
1017  * Methods to modify the page usage count.
1018  *
1019  * What counts for a page usage:
1020  * - cache mapping   (page->mapping)
1021  * - private data    (page->private)
1022  * - page mapped in a task's page tables, each mapping
1023  *   is counted separately
1024  *
1025  * Also, many kernel routines increase the page count before a critical
1026  * routine so they can be sure the page doesn't go away from under them.
1027  */
1028 
1029 /*
1030  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1031  */
1032 static inline int put_page_testzero(struct page *page)
1033 {
1034 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1035 	return page_ref_dec_and_test(page);
1036 }
1037 
1038 static inline int folio_put_testzero(struct folio *folio)
1039 {
1040 	return put_page_testzero(&folio->page);
1041 }
1042 
1043 /*
1044  * Try to grab a ref unless the page has a refcount of zero, return false if
1045  * that is the case.
1046  * This can be called when MMU is off so it must not access
1047  * any of the virtual mappings.
1048  */
1049 static inline bool get_page_unless_zero(struct page *page)
1050 {
1051 	return page_ref_add_unless(page, 1, 0);
1052 }
1053 
1054 static inline struct folio *folio_get_nontail_page(struct page *page)
1055 {
1056 	if (unlikely(!get_page_unless_zero(page)))
1057 		return NULL;
1058 	return (struct folio *)page;
1059 }
1060 
1061 extern int page_is_ram(unsigned long pfn);
1062 
1063 enum {
1064 	REGION_INTERSECTS,
1065 	REGION_DISJOINT,
1066 	REGION_MIXED,
1067 };
1068 
1069 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1070 		      unsigned long desc);
1071 
1072 /* Support for virtually mapped pages */
1073 struct page *vmalloc_to_page(const void *addr);
1074 unsigned long vmalloc_to_pfn(const void *addr);
1075 
1076 /*
1077  * Determine if an address is within the vmalloc range
1078  *
1079  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1080  * is no special casing required.
1081  */
1082 #ifdef CONFIG_MMU
1083 extern bool is_vmalloc_addr(const void *x);
1084 extern int is_vmalloc_or_module_addr(const void *x);
1085 #else
1086 static inline bool is_vmalloc_addr(const void *x)
1087 {
1088 	return false;
1089 }
1090 static inline int is_vmalloc_or_module_addr(const void *x)
1091 {
1092 	return 0;
1093 }
1094 #endif
1095 
1096 /*
1097  * How many times the entire folio is mapped as a single unit (eg by a
1098  * PMD or PUD entry).  This is probably not what you want, except for
1099  * debugging purposes or implementation of other core folio_*() primitives.
1100  */
1101 static inline int folio_entire_mapcount(const struct folio *folio)
1102 {
1103 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1104 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1105 		return 0;
1106 	return atomic_read(&folio->_entire_mapcount) + 1;
1107 }
1108 
1109 static inline int folio_large_mapcount(const struct folio *folio)
1110 {
1111 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1112 	return atomic_read(&folio->_large_mapcount) + 1;
1113 }
1114 
1115 /**
1116  * folio_mapcount() - Number of mappings of this folio.
1117  * @folio: The folio.
1118  *
1119  * The folio mapcount corresponds to the number of present user page table
1120  * entries that reference any part of a folio. Each such present user page
1121  * table entry must be paired with exactly on folio reference.
1122  *
1123  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1124  * exactly once.
1125  *
1126  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1127  * references the entire folio counts exactly once, even when such special
1128  * page table entries are comprised of multiple ordinary page table entries.
1129  *
1130  * Will report 0 for pages which cannot be mapped into userspace, such as
1131  * slab, page tables and similar.
1132  *
1133  * Return: The number of times this folio is mapped.
1134  */
1135 static inline int folio_mapcount(const struct folio *folio)
1136 {
1137 	int mapcount;
1138 
1139 	if (likely(!folio_test_large(folio))) {
1140 		mapcount = atomic_read(&folio->_mapcount) + 1;
1141 		if (page_mapcount_is_type(mapcount))
1142 			mapcount = 0;
1143 		return mapcount;
1144 	}
1145 	return folio_large_mapcount(folio);
1146 }
1147 
1148 /**
1149  * folio_mapped - Is this folio mapped into userspace?
1150  * @folio: The folio.
1151  *
1152  * Return: True if any page in this folio is referenced by user page tables.
1153  */
1154 static inline bool folio_mapped(const struct folio *folio)
1155 {
1156 	return folio_mapcount(folio) >= 1;
1157 }
1158 
1159 /*
1160  * Return true if this page is mapped into pagetables.
1161  * For compound page it returns true if any sub-page of compound page is mapped,
1162  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1163  */
1164 static inline bool page_mapped(const struct page *page)
1165 {
1166 	return folio_mapped(page_folio(page));
1167 }
1168 
1169 static inline struct page *virt_to_head_page(const void *x)
1170 {
1171 	struct page *page = virt_to_page(x);
1172 
1173 	return compound_head(page);
1174 }
1175 
1176 static inline struct folio *virt_to_folio(const void *x)
1177 {
1178 	struct page *page = virt_to_page(x);
1179 
1180 	return page_folio(page);
1181 }
1182 
1183 void __folio_put(struct folio *folio);
1184 
1185 void split_page(struct page *page, unsigned int order);
1186 void folio_copy(struct folio *dst, struct folio *src);
1187 int folio_mc_copy(struct folio *dst, struct folio *src);
1188 
1189 unsigned long nr_free_buffer_pages(void);
1190 
1191 /* Returns the number of bytes in this potentially compound page. */
1192 static inline unsigned long page_size(struct page *page)
1193 {
1194 	return PAGE_SIZE << compound_order(page);
1195 }
1196 
1197 /* Returns the number of bits needed for the number of bytes in a page */
1198 static inline unsigned int page_shift(struct page *page)
1199 {
1200 	return PAGE_SHIFT + compound_order(page);
1201 }
1202 
1203 /**
1204  * thp_order - Order of a transparent huge page.
1205  * @page: Head page of a transparent huge page.
1206  */
1207 static inline unsigned int thp_order(struct page *page)
1208 {
1209 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1210 	return compound_order(page);
1211 }
1212 
1213 /**
1214  * thp_size - Size of a transparent huge page.
1215  * @page: Head page of a transparent huge page.
1216  *
1217  * Return: Number of bytes in this page.
1218  */
1219 static inline unsigned long thp_size(struct page *page)
1220 {
1221 	return PAGE_SIZE << thp_order(page);
1222 }
1223 
1224 #ifdef CONFIG_MMU
1225 /*
1226  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1227  * servicing faults for write access.  In the normal case, do always want
1228  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1229  * that do not have writing enabled, when used by access_process_vm.
1230  */
1231 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1232 {
1233 	if (likely(vma->vm_flags & VM_WRITE))
1234 		pte = pte_mkwrite(pte, vma);
1235 	return pte;
1236 }
1237 
1238 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1239 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1240 		struct page *page, unsigned int nr, unsigned long addr);
1241 
1242 vm_fault_t finish_fault(struct vm_fault *vmf);
1243 #endif
1244 
1245 /*
1246  * Multiple processes may "see" the same page. E.g. for untouched
1247  * mappings of /dev/null, all processes see the same page full of
1248  * zeroes, and text pages of executables and shared libraries have
1249  * only one copy in memory, at most, normally.
1250  *
1251  * For the non-reserved pages, page_count(page) denotes a reference count.
1252  *   page_count() == 0 means the page is free. page->lru is then used for
1253  *   freelist management in the buddy allocator.
1254  *   page_count() > 0  means the page has been allocated.
1255  *
1256  * Pages are allocated by the slab allocator in order to provide memory
1257  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1258  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1259  * unless a particular usage is carefully commented. (the responsibility of
1260  * freeing the kmalloc memory is the caller's, of course).
1261  *
1262  * A page may be used by anyone else who does a __get_free_page().
1263  * In this case, page_count still tracks the references, and should only
1264  * be used through the normal accessor functions. The top bits of page->flags
1265  * and page->virtual store page management information, but all other fields
1266  * are unused and could be used privately, carefully. The management of this
1267  * page is the responsibility of the one who allocated it, and those who have
1268  * subsequently been given references to it.
1269  *
1270  * The other pages (we may call them "pagecache pages") are completely
1271  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1272  * The following discussion applies only to them.
1273  *
1274  * A pagecache page contains an opaque `private' member, which belongs to the
1275  * page's address_space. Usually, this is the address of a circular list of
1276  * the page's disk buffers. PG_private must be set to tell the VM to call
1277  * into the filesystem to release these pages.
1278  *
1279  * A folio may belong to an inode's memory mapping. In this case,
1280  * folio->mapping points to the inode, and folio->index is the file
1281  * offset of the folio, in units of PAGE_SIZE.
1282  *
1283  * If pagecache pages are not associated with an inode, they are said to be
1284  * anonymous pages. These may become associated with the swapcache, and in that
1285  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1286  *
1287  * In either case (swapcache or inode backed), the pagecache itself holds one
1288  * reference to the page. Setting PG_private should also increment the
1289  * refcount. The each user mapping also has a reference to the page.
1290  *
1291  * The pagecache pages are stored in a per-mapping radix tree, which is
1292  * rooted at mapping->i_pages, and indexed by offset.
1293  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1294  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1295  *
1296  * All pagecache pages may be subject to I/O:
1297  * - inode pages may need to be read from disk,
1298  * - inode pages which have been modified and are MAP_SHARED may need
1299  *   to be written back to the inode on disk,
1300  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1301  *   modified may need to be swapped out to swap space and (later) to be read
1302  *   back into memory.
1303  */
1304 
1305 /* 127: arbitrary random number, small enough to assemble well */
1306 #define folio_ref_zero_or_close_to_overflow(folio) \
1307 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1308 
1309 /**
1310  * folio_get - Increment the reference count on a folio.
1311  * @folio: The folio.
1312  *
1313  * Context: May be called in any context, as long as you know that
1314  * you have a refcount on the folio.  If you do not already have one,
1315  * folio_try_get() may be the right interface for you to use.
1316  */
1317 static inline void folio_get(struct folio *folio)
1318 {
1319 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1320 	folio_ref_inc(folio);
1321 }
1322 
1323 static inline void get_page(struct page *page)
1324 {
1325 	struct folio *folio = page_folio(page);
1326 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1327 		return;
1328 	if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1329 		return;
1330 	folio_get(folio);
1331 }
1332 
1333 static inline __must_check bool try_get_page(struct page *page)
1334 {
1335 	page = compound_head(page);
1336 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1337 		return false;
1338 	page_ref_inc(page);
1339 	return true;
1340 }
1341 
1342 /**
1343  * folio_put - Decrement the reference count on a folio.
1344  * @folio: The folio.
1345  *
1346  * If the folio's reference count reaches zero, the memory will be
1347  * released back to the page allocator and may be used by another
1348  * allocation immediately.  Do not access the memory or the struct folio
1349  * after calling folio_put() unless you can be sure that it wasn't the
1350  * last reference.
1351  *
1352  * Context: May be called in process or interrupt context, but not in NMI
1353  * context.  May be called while holding a spinlock.
1354  */
1355 static inline void folio_put(struct folio *folio)
1356 {
1357 	if (folio_put_testzero(folio))
1358 		__folio_put(folio);
1359 }
1360 
1361 /**
1362  * folio_put_refs - Reduce the reference count on a folio.
1363  * @folio: The folio.
1364  * @refs: The amount to subtract from the folio's reference count.
1365  *
1366  * If the folio's reference count reaches zero, the memory will be
1367  * released back to the page allocator and may be used by another
1368  * allocation immediately.  Do not access the memory or the struct folio
1369  * after calling folio_put_refs() unless you can be sure that these weren't
1370  * the last references.
1371  *
1372  * Context: May be called in process or interrupt context, but not in NMI
1373  * context.  May be called while holding a spinlock.
1374  */
1375 static inline void folio_put_refs(struct folio *folio, int refs)
1376 {
1377 	if (folio_ref_sub_and_test(folio, refs))
1378 		__folio_put(folio);
1379 }
1380 
1381 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1382 
1383 /*
1384  * union release_pages_arg - an array of pages or folios
1385  *
1386  * release_pages() releases a simple array of multiple pages, and
1387  * accepts various different forms of said page array: either
1388  * a regular old boring array of pages, an array of folios, or
1389  * an array of encoded page pointers.
1390  *
1391  * The transparent union syntax for this kind of "any of these
1392  * argument types" is all kinds of ugly, so look away.
1393  */
1394 typedef union {
1395 	struct page **pages;
1396 	struct folio **folios;
1397 	struct encoded_page **encoded_pages;
1398 } release_pages_arg __attribute__ ((__transparent_union__));
1399 
1400 void release_pages(release_pages_arg, int nr);
1401 
1402 /**
1403  * folios_put - Decrement the reference count on an array of folios.
1404  * @folios: The folios.
1405  *
1406  * Like folio_put(), but for a batch of folios.  This is more efficient
1407  * than writing the loop yourself as it will optimise the locks which need
1408  * to be taken if the folios are freed.  The folios batch is returned
1409  * empty and ready to be reused for another batch; there is no need to
1410  * reinitialise it.
1411  *
1412  * Context: May be called in process or interrupt context, but not in NMI
1413  * context.  May be called while holding a spinlock.
1414  */
1415 static inline void folios_put(struct folio_batch *folios)
1416 {
1417 	folios_put_refs(folios, NULL);
1418 }
1419 
1420 static inline void put_page(struct page *page)
1421 {
1422 	struct folio *folio = page_folio(page);
1423 
1424 	if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1425 		return;
1426 
1427 	folio_put(folio);
1428 }
1429 
1430 /*
1431  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1432  * the page's refcount so that two separate items are tracked: the original page
1433  * reference count, and also a new count of how many pin_user_pages() calls were
1434  * made against the page. ("gup-pinned" is another term for the latter).
1435  *
1436  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1437  * distinct from normal pages. As such, the unpin_user_page() call (and its
1438  * variants) must be used in order to release gup-pinned pages.
1439  *
1440  * Choice of value:
1441  *
1442  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1443  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1444  * simpler, due to the fact that adding an even power of two to the page
1445  * refcount has the effect of using only the upper N bits, for the code that
1446  * counts up using the bias value. This means that the lower bits are left for
1447  * the exclusive use of the original code that increments and decrements by one
1448  * (or at least, by much smaller values than the bias value).
1449  *
1450  * Of course, once the lower bits overflow into the upper bits (and this is
1451  * OK, because subtraction recovers the original values), then visual inspection
1452  * no longer suffices to directly view the separate counts. However, for normal
1453  * applications that don't have huge page reference counts, this won't be an
1454  * issue.
1455  *
1456  * Locking: the lockless algorithm described in folio_try_get_rcu()
1457  * provides safe operation for get_user_pages(), folio_mkclean() and
1458  * other calls that race to set up page table entries.
1459  */
1460 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1461 
1462 void unpin_user_page(struct page *page);
1463 void unpin_folio(struct folio *folio);
1464 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1465 				 bool make_dirty);
1466 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1467 				      bool make_dirty);
1468 void unpin_user_pages(struct page **pages, unsigned long npages);
1469 void unpin_user_folio(struct folio *folio, unsigned long npages);
1470 void unpin_folios(struct folio **folios, unsigned long nfolios);
1471 
1472 static inline bool is_cow_mapping(vm_flags_t flags)
1473 {
1474 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1475 }
1476 
1477 #ifndef CONFIG_MMU
1478 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1479 {
1480 	/*
1481 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1482 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1483 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1484 	 * underlying memory if ptrace is active, so this is only possible if
1485 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1486 	 * write permissions later.
1487 	 */
1488 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1489 }
1490 #endif
1491 
1492 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1493 #define SECTION_IN_PAGE_FLAGS
1494 #endif
1495 
1496 /*
1497  * The identification function is mainly used by the buddy allocator for
1498  * determining if two pages could be buddies. We are not really identifying
1499  * the zone since we could be using the section number id if we do not have
1500  * node id available in page flags.
1501  * We only guarantee that it will return the same value for two combinable
1502  * pages in a zone.
1503  */
1504 static inline int page_zone_id(struct page *page)
1505 {
1506 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1507 }
1508 
1509 #ifdef NODE_NOT_IN_PAGE_FLAGS
1510 int page_to_nid(const struct page *page);
1511 #else
1512 static inline int page_to_nid(const struct page *page)
1513 {
1514 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1515 }
1516 #endif
1517 
1518 static inline int folio_nid(const struct folio *folio)
1519 {
1520 	return page_to_nid(&folio->page);
1521 }
1522 
1523 #ifdef CONFIG_NUMA_BALANCING
1524 /* page access time bits needs to hold at least 4 seconds */
1525 #define PAGE_ACCESS_TIME_MIN_BITS	12
1526 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1527 #define PAGE_ACCESS_TIME_BUCKETS				\
1528 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1529 #else
1530 #define PAGE_ACCESS_TIME_BUCKETS	0
1531 #endif
1532 
1533 #define PAGE_ACCESS_TIME_MASK				\
1534 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1535 
1536 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1537 {
1538 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1539 }
1540 
1541 static inline int cpupid_to_pid(int cpupid)
1542 {
1543 	return cpupid & LAST__PID_MASK;
1544 }
1545 
1546 static inline int cpupid_to_cpu(int cpupid)
1547 {
1548 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1549 }
1550 
1551 static inline int cpupid_to_nid(int cpupid)
1552 {
1553 	return cpu_to_node(cpupid_to_cpu(cpupid));
1554 }
1555 
1556 static inline bool cpupid_pid_unset(int cpupid)
1557 {
1558 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1559 }
1560 
1561 static inline bool cpupid_cpu_unset(int cpupid)
1562 {
1563 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1564 }
1565 
1566 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1567 {
1568 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1569 }
1570 
1571 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1572 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1573 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1574 {
1575 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1576 }
1577 
1578 static inline int folio_last_cpupid(struct folio *folio)
1579 {
1580 	return folio->_last_cpupid;
1581 }
1582 static inline void page_cpupid_reset_last(struct page *page)
1583 {
1584 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1585 }
1586 #else
1587 static inline int folio_last_cpupid(struct folio *folio)
1588 {
1589 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1590 }
1591 
1592 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1593 
1594 static inline void page_cpupid_reset_last(struct page *page)
1595 {
1596 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1597 }
1598 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1599 
1600 static inline int folio_xchg_access_time(struct folio *folio, int time)
1601 {
1602 	int last_time;
1603 
1604 	last_time = folio_xchg_last_cpupid(folio,
1605 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1606 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1607 }
1608 
1609 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1610 {
1611 	unsigned int pid_bit;
1612 
1613 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1614 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1615 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1616 	}
1617 }
1618 
1619 bool folio_use_access_time(struct folio *folio);
1620 #else /* !CONFIG_NUMA_BALANCING */
1621 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1622 {
1623 	return folio_nid(folio); /* XXX */
1624 }
1625 
1626 static inline int folio_xchg_access_time(struct folio *folio, int time)
1627 {
1628 	return 0;
1629 }
1630 
1631 static inline int folio_last_cpupid(struct folio *folio)
1632 {
1633 	return folio_nid(folio); /* XXX */
1634 }
1635 
1636 static inline int cpupid_to_nid(int cpupid)
1637 {
1638 	return -1;
1639 }
1640 
1641 static inline int cpupid_to_pid(int cpupid)
1642 {
1643 	return -1;
1644 }
1645 
1646 static inline int cpupid_to_cpu(int cpupid)
1647 {
1648 	return -1;
1649 }
1650 
1651 static inline int cpu_pid_to_cpupid(int nid, int pid)
1652 {
1653 	return -1;
1654 }
1655 
1656 static inline bool cpupid_pid_unset(int cpupid)
1657 {
1658 	return true;
1659 }
1660 
1661 static inline void page_cpupid_reset_last(struct page *page)
1662 {
1663 }
1664 
1665 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1666 {
1667 	return false;
1668 }
1669 
1670 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1671 {
1672 }
1673 static inline bool folio_use_access_time(struct folio *folio)
1674 {
1675 	return false;
1676 }
1677 #endif /* CONFIG_NUMA_BALANCING */
1678 
1679 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1680 
1681 /*
1682  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1683  * setting tags for all pages to native kernel tag value 0xff, as the default
1684  * value 0x00 maps to 0xff.
1685  */
1686 
1687 static inline u8 page_kasan_tag(const struct page *page)
1688 {
1689 	u8 tag = KASAN_TAG_KERNEL;
1690 
1691 	if (kasan_enabled()) {
1692 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1693 		tag ^= 0xff;
1694 	}
1695 
1696 	return tag;
1697 }
1698 
1699 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1700 {
1701 	unsigned long old_flags, flags;
1702 
1703 	if (!kasan_enabled())
1704 		return;
1705 
1706 	tag ^= 0xff;
1707 	old_flags = READ_ONCE(page->flags);
1708 	do {
1709 		flags = old_flags;
1710 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1711 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1712 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1713 }
1714 
1715 static inline void page_kasan_tag_reset(struct page *page)
1716 {
1717 	if (kasan_enabled())
1718 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1719 }
1720 
1721 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1722 
1723 static inline u8 page_kasan_tag(const struct page *page)
1724 {
1725 	return 0xff;
1726 }
1727 
1728 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1729 static inline void page_kasan_tag_reset(struct page *page) { }
1730 
1731 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1732 
1733 static inline struct zone *page_zone(const struct page *page)
1734 {
1735 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1736 }
1737 
1738 static inline pg_data_t *page_pgdat(const struct page *page)
1739 {
1740 	return NODE_DATA(page_to_nid(page));
1741 }
1742 
1743 static inline struct zone *folio_zone(const struct folio *folio)
1744 {
1745 	return page_zone(&folio->page);
1746 }
1747 
1748 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1749 {
1750 	return page_pgdat(&folio->page);
1751 }
1752 
1753 #ifdef SECTION_IN_PAGE_FLAGS
1754 static inline void set_page_section(struct page *page, unsigned long section)
1755 {
1756 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1757 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1758 }
1759 
1760 static inline unsigned long page_to_section(const struct page *page)
1761 {
1762 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1763 }
1764 #endif
1765 
1766 /**
1767  * folio_pfn - Return the Page Frame Number of a folio.
1768  * @folio: The folio.
1769  *
1770  * A folio may contain multiple pages.  The pages have consecutive
1771  * Page Frame Numbers.
1772  *
1773  * Return: The Page Frame Number of the first page in the folio.
1774  */
1775 static inline unsigned long folio_pfn(const struct folio *folio)
1776 {
1777 	return page_to_pfn(&folio->page);
1778 }
1779 
1780 static inline struct folio *pfn_folio(unsigned long pfn)
1781 {
1782 	return page_folio(pfn_to_page(pfn));
1783 }
1784 
1785 #ifdef CONFIG_MMU
1786 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1787 {
1788 	return pfn_pte(page_to_pfn(page), pgprot);
1789 }
1790 
1791 /**
1792  * folio_mk_pte - Create a PTE for this folio
1793  * @folio: The folio to create a PTE for
1794  * @pgprot: The page protection bits to use
1795  *
1796  * Create a page table entry for the first page of this folio.
1797  * This is suitable for passing to set_ptes().
1798  *
1799  * Return: A page table entry suitable for mapping this folio.
1800  */
1801 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1802 {
1803 	return pfn_pte(folio_pfn(folio), pgprot);
1804 }
1805 
1806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1807 /**
1808  * folio_mk_pmd - Create a PMD for this folio
1809  * @folio: The folio to create a PMD for
1810  * @pgprot: The page protection bits to use
1811  *
1812  * Create a page table entry for the first page of this folio.
1813  * This is suitable for passing to set_pmd_at().
1814  *
1815  * Return: A page table entry suitable for mapping this folio.
1816  */
1817 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1818 {
1819 	return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1820 }
1821 
1822 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1823 /**
1824  * folio_mk_pud - Create a PUD for this folio
1825  * @folio: The folio to create a PUD for
1826  * @pgprot: The page protection bits to use
1827  *
1828  * Create a page table entry for the first page of this folio.
1829  * This is suitable for passing to set_pud_at().
1830  *
1831  * Return: A page table entry suitable for mapping this folio.
1832  */
1833 static inline pud_t folio_mk_pud(struct folio *folio, pgprot_t pgprot)
1834 {
1835 	return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
1836 }
1837 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1838 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1839 #endif /* CONFIG_MMU */
1840 
1841 static inline bool folio_has_pincount(const struct folio *folio)
1842 {
1843 	if (IS_ENABLED(CONFIG_64BIT))
1844 		return folio_test_large(folio);
1845 	return folio_order(folio) > 1;
1846 }
1847 
1848 /**
1849  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1850  * @folio: The folio.
1851  *
1852  * This function checks if a folio has been pinned via a call to
1853  * a function in the pin_user_pages() family.
1854  *
1855  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1856  * because it means "definitely not pinned for DMA", but true means "probably
1857  * pinned for DMA, but possibly a false positive due to having at least
1858  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1859  *
1860  * False positives are OK, because: a) it's unlikely for a folio to
1861  * get that many refcounts, and b) all the callers of this routine are
1862  * expected to be able to deal gracefully with a false positive.
1863  *
1864  * For most large folios, the result will be exactly correct. That's because
1865  * we have more tracking data available: the _pincount field is used
1866  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1867  *
1868  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1869  *
1870  * Return: True, if it is likely that the folio has been "dma-pinned".
1871  * False, if the folio is definitely not dma-pinned.
1872  */
1873 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1874 {
1875 	if (folio_has_pincount(folio))
1876 		return atomic_read(&folio->_pincount) > 0;
1877 
1878 	/*
1879 	 * folio_ref_count() is signed. If that refcount overflows, then
1880 	 * folio_ref_count() returns a negative value, and callers will avoid
1881 	 * further incrementing the refcount.
1882 	 *
1883 	 * Here, for that overflow case, use the sign bit to count a little
1884 	 * bit higher via unsigned math, and thus still get an accurate result.
1885 	 */
1886 	return ((unsigned int)folio_ref_count(folio)) >=
1887 		GUP_PIN_COUNTING_BIAS;
1888 }
1889 
1890 /*
1891  * This should most likely only be called during fork() to see whether we
1892  * should break the cow immediately for an anon page on the src mm.
1893  *
1894  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1895  */
1896 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1897 					  struct folio *folio)
1898 {
1899 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1900 
1901 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1902 		return false;
1903 
1904 	return folio_maybe_dma_pinned(folio);
1905 }
1906 
1907 /**
1908  * is_zero_page - Query if a page is a zero page
1909  * @page: The page to query
1910  *
1911  * This returns true if @page is one of the permanent zero pages.
1912  */
1913 static inline bool is_zero_page(const struct page *page)
1914 {
1915 	return is_zero_pfn(page_to_pfn(page));
1916 }
1917 
1918 /**
1919  * is_zero_folio - Query if a folio is a zero page
1920  * @folio: The folio to query
1921  *
1922  * This returns true if @folio is one of the permanent zero pages.
1923  */
1924 static inline bool is_zero_folio(const struct folio *folio)
1925 {
1926 	return is_zero_page(&folio->page);
1927 }
1928 
1929 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1930 #ifdef CONFIG_MIGRATION
1931 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1932 {
1933 #ifdef CONFIG_CMA
1934 	int mt = folio_migratetype(folio);
1935 
1936 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1937 		return false;
1938 #endif
1939 	/* The zero page can be "pinned" but gets special handling. */
1940 	if (is_zero_folio(folio))
1941 		return true;
1942 
1943 	/* Coherent device memory must always allow eviction. */
1944 	if (folio_is_device_coherent(folio))
1945 		return false;
1946 
1947 	/*
1948 	 * Filesystems can only tolerate transient delays to truncate and
1949 	 * hole-punch operations
1950 	 */
1951 	if (folio_is_fsdax(folio))
1952 		return false;
1953 
1954 	/* Otherwise, non-movable zone folios can be pinned. */
1955 	return !folio_is_zone_movable(folio);
1956 
1957 }
1958 #else
1959 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1960 {
1961 	return true;
1962 }
1963 #endif
1964 
1965 static inline void set_page_zone(struct page *page, enum zone_type zone)
1966 {
1967 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1968 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1969 }
1970 
1971 static inline void set_page_node(struct page *page, unsigned long node)
1972 {
1973 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1974 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1975 }
1976 
1977 static inline void set_page_links(struct page *page, enum zone_type zone,
1978 	unsigned long node, unsigned long pfn)
1979 {
1980 	set_page_zone(page, zone);
1981 	set_page_node(page, node);
1982 #ifdef SECTION_IN_PAGE_FLAGS
1983 	set_page_section(page, pfn_to_section_nr(pfn));
1984 #endif
1985 }
1986 
1987 /**
1988  * folio_nr_pages - The number of pages in the folio.
1989  * @folio: The folio.
1990  *
1991  * Return: A positive power of two.
1992  */
1993 static inline long folio_nr_pages(const struct folio *folio)
1994 {
1995 	if (!folio_test_large(folio))
1996 		return 1;
1997 	return folio_large_nr_pages(folio);
1998 }
1999 
2000 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2001 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2002 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2003 #else
2004 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2005 #endif
2006 
2007 /*
2008  * compound_nr() returns the number of pages in this potentially compound
2009  * page.  compound_nr() can be called on a tail page, and is defined to
2010  * return 1 in that case.
2011  */
2012 static inline long compound_nr(struct page *page)
2013 {
2014 	struct folio *folio = (struct folio *)page;
2015 
2016 	if (!test_bit(PG_head, &folio->flags))
2017 		return 1;
2018 	return folio_large_nr_pages(folio);
2019 }
2020 
2021 /**
2022  * folio_next - Move to the next physical folio.
2023  * @folio: The folio we're currently operating on.
2024  *
2025  * If you have physically contiguous memory which may span more than
2026  * one folio (eg a &struct bio_vec), use this function to move from one
2027  * folio to the next.  Do not use it if the memory is only virtually
2028  * contiguous as the folios are almost certainly not adjacent to each
2029  * other.  This is the folio equivalent to writing ``page++``.
2030  *
2031  * Context: We assume that the folios are refcounted and/or locked at a
2032  * higher level and do not adjust the reference counts.
2033  * Return: The next struct folio.
2034  */
2035 static inline struct folio *folio_next(struct folio *folio)
2036 {
2037 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2038 }
2039 
2040 /**
2041  * folio_shift - The size of the memory described by this folio.
2042  * @folio: The folio.
2043  *
2044  * A folio represents a number of bytes which is a power-of-two in size.
2045  * This function tells you which power-of-two the folio is.  See also
2046  * folio_size() and folio_order().
2047  *
2048  * Context: The caller should have a reference on the folio to prevent
2049  * it from being split.  It is not necessary for the folio to be locked.
2050  * Return: The base-2 logarithm of the size of this folio.
2051  */
2052 static inline unsigned int folio_shift(const struct folio *folio)
2053 {
2054 	return PAGE_SHIFT + folio_order(folio);
2055 }
2056 
2057 /**
2058  * folio_size - The number of bytes in a folio.
2059  * @folio: The folio.
2060  *
2061  * Context: The caller should have a reference on the folio to prevent
2062  * it from being split.  It is not necessary for the folio to be locked.
2063  * Return: The number of bytes in this folio.
2064  */
2065 static inline size_t folio_size(const struct folio *folio)
2066 {
2067 	return PAGE_SIZE << folio_order(folio);
2068 }
2069 
2070 /**
2071  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2072  *			       tables of more than one MM
2073  * @folio: The folio.
2074  *
2075  * This function checks if the folio maybe currently mapped into more than one
2076  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2077  * MM ("mapped exclusively").
2078  *
2079  * For KSM folios, this function also returns "mapped shared" when a folio is
2080  * mapped multiple times into the same MM, because the individual page mappings
2081  * are independent.
2082  *
2083  * For small anonymous folios and anonymous hugetlb folios, the return
2084  * value will be exactly correct: non-KSM folios can only be mapped at most once
2085  * into an MM, and they cannot be partially mapped. KSM folios are
2086  * considered shared even if mapped multiple times into the same MM.
2087  *
2088  * For other folios, the result can be fuzzy:
2089  *    #. For partially-mappable large folios (THP), the return value can wrongly
2090  *       indicate "mapped shared" (false positive) if a folio was mapped by
2091  *       more than two MMs at one point in time.
2092  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2093  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2094  *       cover the same file range.
2095  *
2096  * Further, this function only considers current page table mappings that
2097  * are tracked using the folio mapcount(s).
2098  *
2099  * This function does not consider:
2100  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2101  *       pagecache, temporary unmapping for migration).
2102  *    #. If the folio is mapped differently (VM_PFNMAP).
2103  *    #. If hugetlb page table sharing applies. Callers might want to check
2104  *       hugetlb_pmd_shared().
2105  *
2106  * Return: Whether the folio is estimated to be mapped into more than one MM.
2107  */
2108 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2109 {
2110 	int mapcount = folio_mapcount(folio);
2111 
2112 	/* Only partially-mappable folios require more care. */
2113 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2114 		return mapcount > 1;
2115 
2116 	/*
2117 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2118 	 * simply assume "mapped shared", nobody should really care
2119 	 * about this for arbitrary kernel allocations.
2120 	 */
2121 	if (!IS_ENABLED(CONFIG_MM_ID))
2122 		return true;
2123 
2124 	/*
2125 	 * A single mapping implies "mapped exclusively", even if the
2126 	 * folio flag says something different: it's easier to handle this
2127 	 * case here instead of on the RMAP hot path.
2128 	 */
2129 	if (mapcount <= 1)
2130 		return false;
2131 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2132 }
2133 
2134 /**
2135  * folio_expected_ref_count - calculate the expected folio refcount
2136  * @folio: the folio
2137  *
2138  * Calculate the expected folio refcount, taking references from the pagecache,
2139  * swapcache, PG_private and page table mappings into account. Useful in
2140  * combination with folio_ref_count() to detect unexpected references (e.g.,
2141  * GUP or other temporary references).
2142  *
2143  * Does currently not consider references from the LRU cache. If the folio
2144  * was isolated from the LRU (which is the case during migration or split),
2145  * the LRU cache does not apply.
2146  *
2147  * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2148  * locked will return a stable result.
2149  *
2150  * Calling this function on a mapped folio will not result in a stable result,
2151  * because nothing stops additional page table mappings from coming (e.g.,
2152  * fork()) or going (e.g., munmap()).
2153  *
2154  * Calling this function without the folio lock will also not result in a
2155  * stable result: for example, the folio might get dropped from the swapcache
2156  * concurrently.
2157  *
2158  * However, even when called without the folio lock or on a mapped folio,
2159  * this function can be used to detect unexpected references early (for example,
2160  * if it makes sense to even lock the folio and unmap it).
2161  *
2162  * The caller must add any reference (e.g., from folio_try_get()) it might be
2163  * holding itself to the result.
2164  *
2165  * Returns the expected folio refcount.
2166  */
2167 static inline int folio_expected_ref_count(const struct folio *folio)
2168 {
2169 	const int order = folio_order(folio);
2170 	int ref_count = 0;
2171 
2172 	if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2173 		return 0;
2174 
2175 	if (folio_test_anon(folio)) {
2176 		/* One reference per page from the swapcache. */
2177 		ref_count += folio_test_swapcache(folio) << order;
2178 	} else {
2179 		/* One reference per page from the pagecache. */
2180 		ref_count += !!folio->mapping << order;
2181 		/* One reference from PG_private. */
2182 		ref_count += folio_test_private(folio);
2183 	}
2184 
2185 	/* One reference per page table mapping. */
2186 	return ref_count + folio_mapcount(folio);
2187 }
2188 
2189 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2190 static inline int arch_make_folio_accessible(struct folio *folio)
2191 {
2192 	return 0;
2193 }
2194 #endif
2195 
2196 /*
2197  * Some inline functions in vmstat.h depend on page_zone()
2198  */
2199 #include <linux/vmstat.h>
2200 
2201 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2202 #define HASHED_PAGE_VIRTUAL
2203 #endif
2204 
2205 #if defined(WANT_PAGE_VIRTUAL)
2206 static inline void *page_address(const struct page *page)
2207 {
2208 	return page->virtual;
2209 }
2210 static inline void set_page_address(struct page *page, void *address)
2211 {
2212 	page->virtual = address;
2213 }
2214 #define page_address_init()  do { } while(0)
2215 #endif
2216 
2217 #if defined(HASHED_PAGE_VIRTUAL)
2218 void *page_address(const struct page *page);
2219 void set_page_address(struct page *page, void *virtual);
2220 void page_address_init(void);
2221 #endif
2222 
2223 static __always_inline void *lowmem_page_address(const struct page *page)
2224 {
2225 	return page_to_virt(page);
2226 }
2227 
2228 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2229 #define page_address(page) lowmem_page_address(page)
2230 #define set_page_address(page, address)  do { } while(0)
2231 #define page_address_init()  do { } while(0)
2232 #endif
2233 
2234 static inline void *folio_address(const struct folio *folio)
2235 {
2236 	return page_address(&folio->page);
2237 }
2238 
2239 /*
2240  * Return true only if the page has been allocated with
2241  * ALLOC_NO_WATERMARKS and the low watermark was not
2242  * met implying that the system is under some pressure.
2243  */
2244 static inline bool page_is_pfmemalloc(const struct page *page)
2245 {
2246 	/*
2247 	 * lru.next has bit 1 set if the page is allocated from the
2248 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2249 	 * they do not need to preserve that information.
2250 	 */
2251 	return (uintptr_t)page->lru.next & BIT(1);
2252 }
2253 
2254 /*
2255  * Return true only if the folio has been allocated with
2256  * ALLOC_NO_WATERMARKS and the low watermark was not
2257  * met implying that the system is under some pressure.
2258  */
2259 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2260 {
2261 	/*
2262 	 * lru.next has bit 1 set if the page is allocated from the
2263 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2264 	 * they do not need to preserve that information.
2265 	 */
2266 	return (uintptr_t)folio->lru.next & BIT(1);
2267 }
2268 
2269 /*
2270  * Only to be called by the page allocator on a freshly allocated
2271  * page.
2272  */
2273 static inline void set_page_pfmemalloc(struct page *page)
2274 {
2275 	page->lru.next = (void *)BIT(1);
2276 }
2277 
2278 static inline void clear_page_pfmemalloc(struct page *page)
2279 {
2280 	page->lru.next = NULL;
2281 }
2282 
2283 /*
2284  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2285  */
2286 extern void pagefault_out_of_memory(void);
2287 
2288 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2289 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2290 
2291 /*
2292  * Parameter block passed down to zap_pte_range in exceptional cases.
2293  */
2294 struct zap_details {
2295 	struct folio *single_folio;	/* Locked folio to be unmapped */
2296 	bool even_cows;			/* Zap COWed private pages too? */
2297 	bool reclaim_pt;		/* Need reclaim page tables? */
2298 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2299 };
2300 
2301 /*
2302  * Whether to drop the pte markers, for example, the uffd-wp information for
2303  * file-backed memory.  This should only be specified when we will completely
2304  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2305  * default, the flag is not set.
2306  */
2307 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2308 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2309 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2310 
2311 #ifdef CONFIG_SCHED_MM_CID
2312 void sched_mm_cid_before_execve(struct task_struct *t);
2313 void sched_mm_cid_after_execve(struct task_struct *t);
2314 void sched_mm_cid_fork(struct task_struct *t);
2315 void sched_mm_cid_exit_signals(struct task_struct *t);
2316 static inline int task_mm_cid(struct task_struct *t)
2317 {
2318 	return t->mm_cid;
2319 }
2320 #else
2321 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2322 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2323 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2324 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2325 static inline int task_mm_cid(struct task_struct *t)
2326 {
2327 	/*
2328 	 * Use the processor id as a fall-back when the mm cid feature is
2329 	 * disabled. This provides functional per-cpu data structure accesses
2330 	 * in user-space, althrough it won't provide the memory usage benefits.
2331 	 */
2332 	return raw_smp_processor_id();
2333 }
2334 #endif
2335 
2336 #ifdef CONFIG_MMU
2337 extern bool can_do_mlock(void);
2338 #else
2339 static inline bool can_do_mlock(void) { return false; }
2340 #endif
2341 extern int user_shm_lock(size_t, struct ucounts *);
2342 extern void user_shm_unlock(size_t, struct ucounts *);
2343 
2344 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2345 			     pte_t pte);
2346 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2347 			     pte_t pte);
2348 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2349 				  unsigned long addr, pmd_t pmd);
2350 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2351 				pmd_t pmd);
2352 
2353 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2354 		  unsigned long size);
2355 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2356 			   unsigned long size, struct zap_details *details);
2357 static inline void zap_vma_pages(struct vm_area_struct *vma)
2358 {
2359 	zap_page_range_single(vma, vma->vm_start,
2360 			      vma->vm_end - vma->vm_start, NULL);
2361 }
2362 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2363 		struct vm_area_struct *start_vma, unsigned long start,
2364 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2365 
2366 struct mmu_notifier_range;
2367 
2368 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2369 		unsigned long end, unsigned long floor, unsigned long ceiling);
2370 int
2371 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2372 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2373 			void *buf, int len, int write);
2374 
2375 struct follow_pfnmap_args {
2376 	/**
2377 	 * Inputs:
2378 	 * @vma: Pointer to @vm_area_struct struct
2379 	 * @address: the virtual address to walk
2380 	 */
2381 	struct vm_area_struct *vma;
2382 	unsigned long address;
2383 	/**
2384 	 * Internals:
2385 	 *
2386 	 * The caller shouldn't touch any of these.
2387 	 */
2388 	spinlock_t *lock;
2389 	pte_t *ptep;
2390 	/**
2391 	 * Outputs:
2392 	 *
2393 	 * @pfn: the PFN of the address
2394 	 * @addr_mask: address mask covering pfn
2395 	 * @pgprot: the pgprot_t of the mapping
2396 	 * @writable: whether the mapping is writable
2397 	 * @special: whether the mapping is a special mapping (real PFN maps)
2398 	 */
2399 	unsigned long pfn;
2400 	unsigned long addr_mask;
2401 	pgprot_t pgprot;
2402 	bool writable;
2403 	bool special;
2404 };
2405 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2406 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2407 
2408 extern void truncate_pagecache(struct inode *inode, loff_t new);
2409 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2410 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2411 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2412 int generic_error_remove_folio(struct address_space *mapping,
2413 		struct folio *folio);
2414 
2415 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2416 		unsigned long address, struct pt_regs *regs);
2417 
2418 #ifdef CONFIG_MMU
2419 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2420 				  unsigned long address, unsigned int flags,
2421 				  struct pt_regs *regs);
2422 extern int fixup_user_fault(struct mm_struct *mm,
2423 			    unsigned long address, unsigned int fault_flags,
2424 			    bool *unlocked);
2425 void unmap_mapping_pages(struct address_space *mapping,
2426 		pgoff_t start, pgoff_t nr, bool even_cows);
2427 void unmap_mapping_range(struct address_space *mapping,
2428 		loff_t const holebegin, loff_t const holelen, int even_cows);
2429 #else
2430 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2431 					 unsigned long address, unsigned int flags,
2432 					 struct pt_regs *regs)
2433 {
2434 	/* should never happen if there's no MMU */
2435 	BUG();
2436 	return VM_FAULT_SIGBUS;
2437 }
2438 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2439 		unsigned int fault_flags, bool *unlocked)
2440 {
2441 	/* should never happen if there's no MMU */
2442 	BUG();
2443 	return -EFAULT;
2444 }
2445 static inline void unmap_mapping_pages(struct address_space *mapping,
2446 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2447 static inline void unmap_mapping_range(struct address_space *mapping,
2448 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2449 #endif
2450 
2451 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2452 		loff_t const holebegin, loff_t const holelen)
2453 {
2454 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2455 }
2456 
2457 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2458 						unsigned long addr);
2459 
2460 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2461 		void *buf, int len, unsigned int gup_flags);
2462 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2463 		void *buf, int len, unsigned int gup_flags);
2464 
2465 #ifdef CONFIG_BPF_SYSCALL
2466 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2467 			      void *buf, int len, unsigned int gup_flags);
2468 #endif
2469 
2470 long get_user_pages_remote(struct mm_struct *mm,
2471 			   unsigned long start, unsigned long nr_pages,
2472 			   unsigned int gup_flags, struct page **pages,
2473 			   int *locked);
2474 long pin_user_pages_remote(struct mm_struct *mm,
2475 			   unsigned long start, unsigned long nr_pages,
2476 			   unsigned int gup_flags, struct page **pages,
2477 			   int *locked);
2478 
2479 /*
2480  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2481  */
2482 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2483 						    unsigned long addr,
2484 						    int gup_flags,
2485 						    struct vm_area_struct **vmap)
2486 {
2487 	struct page *page;
2488 	struct vm_area_struct *vma;
2489 	int got;
2490 
2491 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2492 		return ERR_PTR(-EINVAL);
2493 
2494 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2495 
2496 	if (got < 0)
2497 		return ERR_PTR(got);
2498 
2499 	vma = vma_lookup(mm, addr);
2500 	if (WARN_ON_ONCE(!vma)) {
2501 		put_page(page);
2502 		return ERR_PTR(-EINVAL);
2503 	}
2504 
2505 	*vmap = vma;
2506 	return page;
2507 }
2508 
2509 long get_user_pages(unsigned long start, unsigned long nr_pages,
2510 		    unsigned int gup_flags, struct page **pages);
2511 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2512 		    unsigned int gup_flags, struct page **pages);
2513 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2514 		    struct page **pages, unsigned int gup_flags);
2515 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2516 		    struct page **pages, unsigned int gup_flags);
2517 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2518 		      struct folio **folios, unsigned int max_folios,
2519 		      pgoff_t *offset);
2520 int folio_add_pins(struct folio *folio, unsigned int pins);
2521 
2522 int get_user_pages_fast(unsigned long start, int nr_pages,
2523 			unsigned int gup_flags, struct page **pages);
2524 int pin_user_pages_fast(unsigned long start, int nr_pages,
2525 			unsigned int gup_flags, struct page **pages);
2526 void folio_add_pin(struct folio *folio);
2527 
2528 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2529 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2530 			struct task_struct *task, bool bypass_rlim);
2531 
2532 struct kvec;
2533 struct page *get_dump_page(unsigned long addr, int *locked);
2534 
2535 bool folio_mark_dirty(struct folio *folio);
2536 bool folio_mark_dirty_lock(struct folio *folio);
2537 bool set_page_dirty(struct page *page);
2538 int set_page_dirty_lock(struct page *page);
2539 
2540 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2541 
2542 /*
2543  * Flags used by change_protection().  For now we make it a bitmap so
2544  * that we can pass in multiple flags just like parameters.  However
2545  * for now all the callers are only use one of the flags at the same
2546  * time.
2547  */
2548 /*
2549  * Whether we should manually check if we can map individual PTEs writable,
2550  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2551  * PTEs automatically in a writable mapping.
2552  */
2553 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2554 /* Whether this protection change is for NUMA hints */
2555 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2556 /* Whether this change is for write protecting */
2557 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2558 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2559 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2560 					    MM_CP_UFFD_WP_RESOLVE)
2561 
2562 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2563 			     pte_t pte);
2564 extern long change_protection(struct mmu_gather *tlb,
2565 			      struct vm_area_struct *vma, unsigned long start,
2566 			      unsigned long end, unsigned long cp_flags);
2567 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2568 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2569 	  unsigned long start, unsigned long end, vm_flags_t newflags);
2570 
2571 /*
2572  * doesn't attempt to fault and will return short.
2573  */
2574 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2575 			     unsigned int gup_flags, struct page **pages);
2576 
2577 static inline bool get_user_page_fast_only(unsigned long addr,
2578 			unsigned int gup_flags, struct page **pagep)
2579 {
2580 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2581 }
2582 /*
2583  * per-process(per-mm_struct) statistics.
2584  */
2585 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2586 {
2587 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2588 }
2589 
2590 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2591 {
2592 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2593 }
2594 
2595 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2596 
2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2598 {
2599 	percpu_counter_add(&mm->rss_stat[member], value);
2600 
2601 	mm_trace_rss_stat(mm, member);
2602 }
2603 
2604 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2605 {
2606 	percpu_counter_inc(&mm->rss_stat[member]);
2607 
2608 	mm_trace_rss_stat(mm, member);
2609 }
2610 
2611 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2612 {
2613 	percpu_counter_dec(&mm->rss_stat[member]);
2614 
2615 	mm_trace_rss_stat(mm, member);
2616 }
2617 
2618 /* Optimized variant when folio is already known not to be anon */
2619 static inline int mm_counter_file(struct folio *folio)
2620 {
2621 	if (folio_test_swapbacked(folio))
2622 		return MM_SHMEMPAGES;
2623 	return MM_FILEPAGES;
2624 }
2625 
2626 static inline int mm_counter(struct folio *folio)
2627 {
2628 	if (folio_test_anon(folio))
2629 		return MM_ANONPAGES;
2630 	return mm_counter_file(folio);
2631 }
2632 
2633 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2634 {
2635 	return get_mm_counter(mm, MM_FILEPAGES) +
2636 		get_mm_counter(mm, MM_ANONPAGES) +
2637 		get_mm_counter(mm, MM_SHMEMPAGES);
2638 }
2639 
2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2641 {
2642 	return max(mm->hiwater_rss, get_mm_rss(mm));
2643 }
2644 
2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2646 {
2647 	return max(mm->hiwater_vm, mm->total_vm);
2648 }
2649 
2650 static inline void update_hiwater_rss(struct mm_struct *mm)
2651 {
2652 	unsigned long _rss = get_mm_rss(mm);
2653 
2654 	if (data_race(mm->hiwater_rss) < _rss)
2655 		(mm)->hiwater_rss = _rss;
2656 }
2657 
2658 static inline void update_hiwater_vm(struct mm_struct *mm)
2659 {
2660 	if (mm->hiwater_vm < mm->total_vm)
2661 		mm->hiwater_vm = mm->total_vm;
2662 }
2663 
2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2665 {
2666 	mm->hiwater_rss = get_mm_rss(mm);
2667 }
2668 
2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2670 					 struct mm_struct *mm)
2671 {
2672 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2673 
2674 	if (*maxrss < hiwater_rss)
2675 		*maxrss = hiwater_rss;
2676 }
2677 
2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2679 static inline int pte_special(pte_t pte)
2680 {
2681 	return 0;
2682 }
2683 
2684 static inline pte_t pte_mkspecial(pte_t pte)
2685 {
2686 	return pte;
2687 }
2688 #endif
2689 
2690 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2691 static inline bool pmd_special(pmd_t pmd)
2692 {
2693 	return false;
2694 }
2695 
2696 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2697 {
2698 	return pmd;
2699 }
2700 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2701 
2702 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2703 static inline bool pud_special(pud_t pud)
2704 {
2705 	return false;
2706 }
2707 
2708 static inline pud_t pud_mkspecial(pud_t pud)
2709 {
2710 	return pud;
2711 }
2712 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2713 
2714 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2715 			       spinlock_t **ptl);
2716 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2717 				    spinlock_t **ptl)
2718 {
2719 	pte_t *ptep;
2720 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2721 	return ptep;
2722 }
2723 
2724 #ifdef __PAGETABLE_P4D_FOLDED
2725 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2726 						unsigned long address)
2727 {
2728 	return 0;
2729 }
2730 #else
2731 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2732 #endif
2733 
2734 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2735 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2736 						unsigned long address)
2737 {
2738 	return 0;
2739 }
2740 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2741 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2742 
2743 #else
2744 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2745 
2746 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2747 {
2748 	if (mm_pud_folded(mm))
2749 		return;
2750 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2751 }
2752 
2753 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2754 {
2755 	if (mm_pud_folded(mm))
2756 		return;
2757 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2758 }
2759 #endif
2760 
2761 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2762 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2763 						unsigned long address)
2764 {
2765 	return 0;
2766 }
2767 
2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2770 
2771 #else
2772 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2773 
2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2775 {
2776 	if (mm_pmd_folded(mm))
2777 		return;
2778 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2779 }
2780 
2781 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2782 {
2783 	if (mm_pmd_folded(mm))
2784 		return;
2785 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2786 }
2787 #endif
2788 
2789 #ifdef CONFIG_MMU
2790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2791 {
2792 	atomic_long_set(&mm->pgtables_bytes, 0);
2793 }
2794 
2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2796 {
2797 	return atomic_long_read(&mm->pgtables_bytes);
2798 }
2799 
2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2801 {
2802 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2803 }
2804 
2805 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2806 {
2807 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2808 }
2809 #else
2810 
2811 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2813 {
2814 	return 0;
2815 }
2816 
2817 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2818 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2819 #endif
2820 
2821 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2822 int __pte_alloc_kernel(pmd_t *pmd);
2823 
2824 #if defined(CONFIG_MMU)
2825 
2826 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2827 		unsigned long address)
2828 {
2829 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2830 		NULL : p4d_offset(pgd, address);
2831 }
2832 
2833 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2834 		unsigned long address)
2835 {
2836 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2837 		NULL : pud_offset(p4d, address);
2838 }
2839 
2840 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2841 {
2842 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2843 		NULL: pmd_offset(pud, address);
2844 }
2845 #endif /* CONFIG_MMU */
2846 
2847 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2848 {
2849 	return page_ptdesc(virt_to_page(x));
2850 }
2851 
2852 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2853 {
2854 	return page_to_virt(ptdesc_page(pt));
2855 }
2856 
2857 static inline void *ptdesc_address(const struct ptdesc *pt)
2858 {
2859 	return folio_address(ptdesc_folio(pt));
2860 }
2861 
2862 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2863 {
2864 	return folio_test_reserved(ptdesc_folio(pt));
2865 }
2866 
2867 /**
2868  * pagetable_alloc - Allocate pagetables
2869  * @gfp:    GFP flags
2870  * @order:  desired pagetable order
2871  *
2872  * pagetable_alloc allocates memory for page tables as well as a page table
2873  * descriptor to describe that memory.
2874  *
2875  * Return: The ptdesc describing the allocated page tables.
2876  */
2877 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2878 {
2879 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2880 
2881 	return page_ptdesc(page);
2882 }
2883 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2884 
2885 /**
2886  * pagetable_free - Free pagetables
2887  * @pt:	The page table descriptor
2888  *
2889  * pagetable_free frees the memory of all page tables described by a page
2890  * table descriptor and the memory for the descriptor itself.
2891  */
2892 static inline void pagetable_free(struct ptdesc *pt)
2893 {
2894 	struct page *page = ptdesc_page(pt);
2895 
2896 	__free_pages(page, compound_order(page));
2897 }
2898 
2899 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2900 #if ALLOC_SPLIT_PTLOCKS
2901 void __init ptlock_cache_init(void);
2902 bool ptlock_alloc(struct ptdesc *ptdesc);
2903 void ptlock_free(struct ptdesc *ptdesc);
2904 
2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2906 {
2907 	return ptdesc->ptl;
2908 }
2909 #else /* ALLOC_SPLIT_PTLOCKS */
2910 static inline void ptlock_cache_init(void)
2911 {
2912 }
2913 
2914 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2915 {
2916 	return true;
2917 }
2918 
2919 static inline void ptlock_free(struct ptdesc *ptdesc)
2920 {
2921 }
2922 
2923 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2924 {
2925 	return &ptdesc->ptl;
2926 }
2927 #endif /* ALLOC_SPLIT_PTLOCKS */
2928 
2929 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2930 {
2931 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2932 }
2933 
2934 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2935 {
2936 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2937 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2938 	return ptlock_ptr(virt_to_ptdesc(pte));
2939 }
2940 
2941 static inline bool ptlock_init(struct ptdesc *ptdesc)
2942 {
2943 	/*
2944 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2945 	 * with 0. Make sure nobody took it in use in between.
2946 	 *
2947 	 * It can happen if arch try to use slab for page table allocation:
2948 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2949 	 */
2950 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2951 	if (!ptlock_alloc(ptdesc))
2952 		return false;
2953 	spin_lock_init(ptlock_ptr(ptdesc));
2954 	return true;
2955 }
2956 
2957 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2958 /*
2959  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2960  */
2961 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2962 {
2963 	return &mm->page_table_lock;
2964 }
2965 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2966 {
2967 	return &mm->page_table_lock;
2968 }
2969 static inline void ptlock_cache_init(void) {}
2970 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2971 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2972 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2973 
2974 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2975 {
2976 	struct folio *folio = ptdesc_folio(ptdesc);
2977 
2978 	__folio_set_pgtable(folio);
2979 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2980 }
2981 
2982 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2983 {
2984 	struct folio *folio = ptdesc_folio(ptdesc);
2985 
2986 	ptlock_free(ptdesc);
2987 	__folio_clear_pgtable(folio);
2988 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2989 }
2990 
2991 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2992 {
2993 	pagetable_dtor(ptdesc);
2994 	pagetable_free(ptdesc);
2995 }
2996 
2997 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
2998 				      struct ptdesc *ptdesc)
2999 {
3000 	if (mm != &init_mm && !ptlock_init(ptdesc))
3001 		return false;
3002 	__pagetable_ctor(ptdesc);
3003 	return true;
3004 }
3005 
3006 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3007 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3008 			pmd_t *pmdvalp)
3009 {
3010 	pte_t *pte;
3011 
3012 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3013 	return pte;
3014 }
3015 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3016 {
3017 	return __pte_offset_map(pmd, addr, NULL);
3018 }
3019 
3020 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3021 			unsigned long addr, spinlock_t **ptlp);
3022 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3023 			unsigned long addr, spinlock_t **ptlp)
3024 {
3025 	pte_t *pte;
3026 
3027 	__cond_lock(RCU, __cond_lock(*ptlp,
3028 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3029 	return pte;
3030 }
3031 
3032 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3033 				unsigned long addr, spinlock_t **ptlp);
3034 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3035 				unsigned long addr, pmd_t *pmdvalp,
3036 				spinlock_t **ptlp);
3037 
3038 #define pte_unmap_unlock(pte, ptl)	do {		\
3039 	spin_unlock(ptl);				\
3040 	pte_unmap(pte);					\
3041 } while (0)
3042 
3043 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3044 
3045 #define pte_alloc_map(mm, pmd, address)			\
3046 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3047 
3048 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3049 	(pte_alloc(mm, pmd) ?			\
3050 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3051 
3052 #define pte_alloc_kernel(pmd, address)			\
3053 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3054 		NULL: pte_offset_kernel(pmd, address))
3055 
3056 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3057 
3058 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3059 {
3060 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3061 	return virt_to_page((void *)((unsigned long) pmd & mask));
3062 }
3063 
3064 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3065 {
3066 	return page_ptdesc(pmd_pgtable_page(pmd));
3067 }
3068 
3069 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3070 {
3071 	return ptlock_ptr(pmd_ptdesc(pmd));
3072 }
3073 
3074 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3075 {
3076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3077 	ptdesc->pmd_huge_pte = NULL;
3078 #endif
3079 	return ptlock_init(ptdesc);
3080 }
3081 
3082 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3083 
3084 #else
3085 
3086 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3087 {
3088 	return &mm->page_table_lock;
3089 }
3090 
3091 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3092 
3093 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3094 
3095 #endif
3096 
3097 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3098 {
3099 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3100 	spin_lock(ptl);
3101 	return ptl;
3102 }
3103 
3104 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3105 				      struct ptdesc *ptdesc)
3106 {
3107 	if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3108 		return false;
3109 	ptdesc_pmd_pts_init(ptdesc);
3110 	__pagetable_ctor(ptdesc);
3111 	return true;
3112 }
3113 
3114 /*
3115  * No scalability reason to split PUD locks yet, but follow the same pattern
3116  * as the PMD locks to make it easier if we decide to.  The VM should not be
3117  * considered ready to switch to split PUD locks yet; there may be places
3118  * which need to be converted from page_table_lock.
3119  */
3120 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3121 {
3122 	return &mm->page_table_lock;
3123 }
3124 
3125 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3126 {
3127 	spinlock_t *ptl = pud_lockptr(mm, pud);
3128 
3129 	spin_lock(ptl);
3130 	return ptl;
3131 }
3132 
3133 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3134 {
3135 	__pagetable_ctor(ptdesc);
3136 }
3137 
3138 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3139 {
3140 	__pagetable_ctor(ptdesc);
3141 }
3142 
3143 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3144 {
3145 	__pagetable_ctor(ptdesc);
3146 }
3147 
3148 extern void __init pagecache_init(void);
3149 extern void free_initmem(void);
3150 
3151 /*
3152  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3153  * into the buddy system. The freed pages will be poisoned with pattern
3154  * "poison" if it's within range [0, UCHAR_MAX].
3155  * Return pages freed into the buddy system.
3156  */
3157 extern unsigned long free_reserved_area(void *start, void *end,
3158 					int poison, const char *s);
3159 
3160 extern void adjust_managed_page_count(struct page *page, long count);
3161 
3162 extern void reserve_bootmem_region(phys_addr_t start,
3163 				   phys_addr_t end, int nid);
3164 
3165 /* Free the reserved page into the buddy system, so it gets managed. */
3166 void free_reserved_page(struct page *page);
3167 
3168 static inline void mark_page_reserved(struct page *page)
3169 {
3170 	SetPageReserved(page);
3171 	adjust_managed_page_count(page, -1);
3172 }
3173 
3174 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3175 {
3176 	free_reserved_page(ptdesc_page(pt));
3177 }
3178 
3179 /*
3180  * Default method to free all the __init memory into the buddy system.
3181  * The freed pages will be poisoned with pattern "poison" if it's within
3182  * range [0, UCHAR_MAX].
3183  * Return pages freed into the buddy system.
3184  */
3185 static inline unsigned long free_initmem_default(int poison)
3186 {
3187 	extern char __init_begin[], __init_end[];
3188 
3189 	return free_reserved_area(&__init_begin, &__init_end,
3190 				  poison, "unused kernel image (initmem)");
3191 }
3192 
3193 static inline unsigned long get_num_physpages(void)
3194 {
3195 	int nid;
3196 	unsigned long phys_pages = 0;
3197 
3198 	for_each_online_node(nid)
3199 		phys_pages += node_present_pages(nid);
3200 
3201 	return phys_pages;
3202 }
3203 
3204 /*
3205  * Using memblock node mappings, an architecture may initialise its
3206  * zones, allocate the backing mem_map and account for memory holes in an
3207  * architecture independent manner.
3208  *
3209  * An architecture is expected to register range of page frames backed by
3210  * physical memory with memblock_add[_node]() before calling
3211  * free_area_init() passing in the PFN each zone ends at. At a basic
3212  * usage, an architecture is expected to do something like
3213  *
3214  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3215  * 							 max_highmem_pfn};
3216  * for_each_valid_physical_page_range()
3217  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3218  * free_area_init(max_zone_pfns);
3219  */
3220 void free_area_init(unsigned long *max_zone_pfn);
3221 unsigned long node_map_pfn_alignment(void);
3222 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3223 						unsigned long end_pfn);
3224 extern void get_pfn_range_for_nid(unsigned int nid,
3225 			unsigned long *start_pfn, unsigned long *end_pfn);
3226 
3227 #ifndef CONFIG_NUMA
3228 static inline int early_pfn_to_nid(unsigned long pfn)
3229 {
3230 	return 0;
3231 }
3232 #else
3233 /* please see mm/page_alloc.c */
3234 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3235 #endif
3236 
3237 extern void mem_init(void);
3238 extern void __init mmap_init(void);
3239 
3240 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3241 static inline void show_mem(void)
3242 {
3243 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3244 }
3245 extern long si_mem_available(void);
3246 extern void si_meminfo(struct sysinfo * val);
3247 extern void si_meminfo_node(struct sysinfo *val, int nid);
3248 
3249 extern __printf(3, 4)
3250 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3251 
3252 extern void setup_per_cpu_pageset(void);
3253 
3254 /* nommu.c */
3255 extern atomic_long_t mmap_pages_allocated;
3256 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3257 
3258 /* interval_tree.c */
3259 void vma_interval_tree_insert(struct vm_area_struct *node,
3260 			      struct rb_root_cached *root);
3261 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3262 				    struct vm_area_struct *prev,
3263 				    struct rb_root_cached *root);
3264 void vma_interval_tree_remove(struct vm_area_struct *node,
3265 			      struct rb_root_cached *root);
3266 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3267 				unsigned long start, unsigned long last);
3268 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3269 				unsigned long start, unsigned long last);
3270 
3271 #define vma_interval_tree_foreach(vma, root, start, last)		\
3272 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3273 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3274 
3275 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3276 				   struct rb_root_cached *root);
3277 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3278 				   struct rb_root_cached *root);
3279 struct anon_vma_chain *
3280 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3281 				  unsigned long start, unsigned long last);
3282 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3283 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3284 #ifdef CONFIG_DEBUG_VM_RB
3285 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3286 #endif
3287 
3288 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3289 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3290 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3291 
3292 /* mmap.c */
3293 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3294 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3295 extern void exit_mmap(struct mm_struct *);
3296 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3297 				 unsigned long addr, bool write);
3298 
3299 static inline int check_data_rlimit(unsigned long rlim,
3300 				    unsigned long new,
3301 				    unsigned long start,
3302 				    unsigned long end_data,
3303 				    unsigned long start_data)
3304 {
3305 	if (rlim < RLIM_INFINITY) {
3306 		if (((new - start) + (end_data - start_data)) > rlim)
3307 			return -ENOSPC;
3308 	}
3309 
3310 	return 0;
3311 }
3312 
3313 extern int mm_take_all_locks(struct mm_struct *mm);
3314 extern void mm_drop_all_locks(struct mm_struct *mm);
3315 
3316 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3317 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3318 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3319 extern struct file *get_task_exe_file(struct task_struct *task);
3320 
3321 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3322 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3323 
3324 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3325 				   const struct vm_special_mapping *sm);
3326 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3327 				   unsigned long addr, unsigned long len,
3328 				   vm_flags_t vm_flags,
3329 				   const struct vm_special_mapping *spec);
3330 
3331 unsigned long randomize_stack_top(unsigned long stack_top);
3332 unsigned long randomize_page(unsigned long start, unsigned long range);
3333 
3334 unsigned long
3335 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3336 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3337 
3338 static inline unsigned long
3339 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3340 		  unsigned long pgoff, unsigned long flags)
3341 {
3342 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3343 }
3344 
3345 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3346 	unsigned long len, unsigned long prot, unsigned long flags,
3347 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3348 	struct list_head *uf);
3349 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3350 			 unsigned long start, size_t len, struct list_head *uf,
3351 			 bool unlock);
3352 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3353 		    struct mm_struct *mm, unsigned long start,
3354 		    unsigned long end, struct list_head *uf, bool unlock);
3355 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3356 		     struct list_head *uf);
3357 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3358 
3359 #ifdef CONFIG_MMU
3360 extern int __mm_populate(unsigned long addr, unsigned long len,
3361 			 int ignore_errors);
3362 static inline void mm_populate(unsigned long addr, unsigned long len)
3363 {
3364 	/* Ignore errors */
3365 	(void) __mm_populate(addr, len, 1);
3366 }
3367 #else
3368 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3369 #endif
3370 
3371 /* This takes the mm semaphore itself */
3372 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3373 extern int vm_munmap(unsigned long, size_t);
3374 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3375         unsigned long, unsigned long,
3376         unsigned long, unsigned long);
3377 
3378 struct vm_unmapped_area_info {
3379 #define VM_UNMAPPED_AREA_TOPDOWN 1
3380 	unsigned long flags;
3381 	unsigned long length;
3382 	unsigned long low_limit;
3383 	unsigned long high_limit;
3384 	unsigned long align_mask;
3385 	unsigned long align_offset;
3386 	unsigned long start_gap;
3387 };
3388 
3389 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3390 
3391 /* truncate.c */
3392 extern void truncate_inode_pages(struct address_space *, loff_t);
3393 extern void truncate_inode_pages_range(struct address_space *,
3394 				       loff_t lstart, loff_t lend);
3395 extern void truncate_inode_pages_final(struct address_space *);
3396 
3397 /* generic vm_area_ops exported for stackable file systems */
3398 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3399 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3400 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3401 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3402 
3403 extern unsigned long stack_guard_gap;
3404 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3405 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3406 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3407 
3408 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3409 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3410 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3411 					     struct vm_area_struct **pprev);
3412 
3413 /*
3414  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3415  * NULL if none.  Assume start_addr < end_addr.
3416  */
3417 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3418 			unsigned long start_addr, unsigned long end_addr);
3419 
3420 /**
3421  * vma_lookup() - Find a VMA at a specific address
3422  * @mm: The process address space.
3423  * @addr: The user address.
3424  *
3425  * Return: The vm_area_struct at the given address, %NULL otherwise.
3426  */
3427 static inline
3428 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3429 {
3430 	return mtree_load(&mm->mm_mt, addr);
3431 }
3432 
3433 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3434 {
3435 	if (vma->vm_flags & VM_GROWSDOWN)
3436 		return stack_guard_gap;
3437 
3438 	/* See reasoning around the VM_SHADOW_STACK definition */
3439 	if (vma->vm_flags & VM_SHADOW_STACK)
3440 		return PAGE_SIZE;
3441 
3442 	return 0;
3443 }
3444 
3445 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3446 {
3447 	unsigned long gap = stack_guard_start_gap(vma);
3448 	unsigned long vm_start = vma->vm_start;
3449 
3450 	vm_start -= gap;
3451 	if (vm_start > vma->vm_start)
3452 		vm_start = 0;
3453 	return vm_start;
3454 }
3455 
3456 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3457 {
3458 	unsigned long vm_end = vma->vm_end;
3459 
3460 	if (vma->vm_flags & VM_GROWSUP) {
3461 		vm_end += stack_guard_gap;
3462 		if (vm_end < vma->vm_end)
3463 			vm_end = -PAGE_SIZE;
3464 	}
3465 	return vm_end;
3466 }
3467 
3468 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3469 {
3470 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3471 }
3472 
3473 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3474 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3475 				unsigned long vm_start, unsigned long vm_end)
3476 {
3477 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3478 
3479 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3480 		vma = NULL;
3481 
3482 	return vma;
3483 }
3484 
3485 static inline bool range_in_vma(struct vm_area_struct *vma,
3486 				unsigned long start, unsigned long end)
3487 {
3488 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3489 }
3490 
3491 #ifdef CONFIG_MMU
3492 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3493 void vma_set_page_prot(struct vm_area_struct *vma);
3494 #else
3495 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3496 {
3497 	return __pgprot(0);
3498 }
3499 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3500 {
3501 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3502 }
3503 #endif
3504 
3505 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3506 
3507 #ifdef CONFIG_NUMA_BALANCING
3508 unsigned long change_prot_numa(struct vm_area_struct *vma,
3509 			unsigned long start, unsigned long end);
3510 #endif
3511 
3512 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3513 		unsigned long addr);
3514 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3515 			unsigned long pfn, unsigned long size, pgprot_t);
3516 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3517 		unsigned long pfn, unsigned long size, pgprot_t prot);
3518 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3519 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3520 			struct page **pages, unsigned long *num);
3521 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3522 				unsigned long num);
3523 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3524 				unsigned long num);
3525 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3526 			bool write);
3527 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3528 			unsigned long pfn);
3529 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3530 			unsigned long pfn, pgprot_t pgprot);
3531 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3532 			unsigned long pfn);
3533 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3534 		unsigned long addr, unsigned long pfn);
3535 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3536 
3537 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3538 				unsigned long addr, struct page *page)
3539 {
3540 	int err = vm_insert_page(vma, addr, page);
3541 
3542 	if (err == -ENOMEM)
3543 		return VM_FAULT_OOM;
3544 	if (err < 0 && err != -EBUSY)
3545 		return VM_FAULT_SIGBUS;
3546 
3547 	return VM_FAULT_NOPAGE;
3548 }
3549 
3550 #ifndef io_remap_pfn_range
3551 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3552 				     unsigned long addr, unsigned long pfn,
3553 				     unsigned long size, pgprot_t prot)
3554 {
3555 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3556 }
3557 #endif
3558 
3559 static inline vm_fault_t vmf_error(int err)
3560 {
3561 	if (err == -ENOMEM)
3562 		return VM_FAULT_OOM;
3563 	else if (err == -EHWPOISON)
3564 		return VM_FAULT_HWPOISON;
3565 	return VM_FAULT_SIGBUS;
3566 }
3567 
3568 /*
3569  * Convert errno to return value for ->page_mkwrite() calls.
3570  *
3571  * This should eventually be merged with vmf_error() above, but will need a
3572  * careful audit of all vmf_error() callers.
3573  */
3574 static inline vm_fault_t vmf_fs_error(int err)
3575 {
3576 	if (err == 0)
3577 		return VM_FAULT_LOCKED;
3578 	if (err == -EFAULT || err == -EAGAIN)
3579 		return VM_FAULT_NOPAGE;
3580 	if (err == -ENOMEM)
3581 		return VM_FAULT_OOM;
3582 	/* -ENOSPC, -EDQUOT, -EIO ... */
3583 	return VM_FAULT_SIGBUS;
3584 }
3585 
3586 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3587 {
3588 	if (vm_fault & VM_FAULT_OOM)
3589 		return -ENOMEM;
3590 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3591 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3592 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3593 		return -EFAULT;
3594 	return 0;
3595 }
3596 
3597 /*
3598  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3599  * a (NUMA hinting) fault is required.
3600  */
3601 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3602 					   unsigned int flags)
3603 {
3604 	/*
3605 	 * If callers don't want to honor NUMA hinting faults, no need to
3606 	 * determine if we would actually have to trigger a NUMA hinting fault.
3607 	 */
3608 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3609 		return true;
3610 
3611 	/*
3612 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3613 	 *
3614 	 * Requiring a fault here even for inaccessible VMAs would mean that
3615 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3616 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3617 	 */
3618 	return !vma_is_accessible(vma);
3619 }
3620 
3621 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3622 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3623 			       unsigned long size, pte_fn_t fn, void *data);
3624 extern int apply_to_existing_page_range(struct mm_struct *mm,
3625 				   unsigned long address, unsigned long size,
3626 				   pte_fn_t fn, void *data);
3627 
3628 #ifdef CONFIG_PAGE_POISONING
3629 extern void __kernel_poison_pages(struct page *page, int numpages);
3630 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3631 extern bool _page_poisoning_enabled_early;
3632 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3633 static inline bool page_poisoning_enabled(void)
3634 {
3635 	return _page_poisoning_enabled_early;
3636 }
3637 /*
3638  * For use in fast paths after init_mem_debugging() has run, or when a
3639  * false negative result is not harmful when called too early.
3640  */
3641 static inline bool page_poisoning_enabled_static(void)
3642 {
3643 	return static_branch_unlikely(&_page_poisoning_enabled);
3644 }
3645 static inline void kernel_poison_pages(struct page *page, int numpages)
3646 {
3647 	if (page_poisoning_enabled_static())
3648 		__kernel_poison_pages(page, numpages);
3649 }
3650 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3651 {
3652 	if (page_poisoning_enabled_static())
3653 		__kernel_unpoison_pages(page, numpages);
3654 }
3655 #else
3656 static inline bool page_poisoning_enabled(void) { return false; }
3657 static inline bool page_poisoning_enabled_static(void) { return false; }
3658 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3659 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3660 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3661 #endif
3662 
3663 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3664 static inline bool want_init_on_alloc(gfp_t flags)
3665 {
3666 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3667 				&init_on_alloc))
3668 		return true;
3669 	return flags & __GFP_ZERO;
3670 }
3671 
3672 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3673 static inline bool want_init_on_free(void)
3674 {
3675 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3676 				   &init_on_free);
3677 }
3678 
3679 extern bool _debug_pagealloc_enabled_early;
3680 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3681 
3682 static inline bool debug_pagealloc_enabled(void)
3683 {
3684 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3685 		_debug_pagealloc_enabled_early;
3686 }
3687 
3688 /*
3689  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3690  * or when a false negative result is not harmful when called too early.
3691  */
3692 static inline bool debug_pagealloc_enabled_static(void)
3693 {
3694 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3695 		return false;
3696 
3697 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3698 }
3699 
3700 /*
3701  * To support DEBUG_PAGEALLOC architecture must ensure that
3702  * __kernel_map_pages() never fails
3703  */
3704 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3705 #ifdef CONFIG_DEBUG_PAGEALLOC
3706 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3707 {
3708 	if (debug_pagealloc_enabled_static())
3709 		__kernel_map_pages(page, numpages, 1);
3710 }
3711 
3712 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3713 {
3714 	if (debug_pagealloc_enabled_static())
3715 		__kernel_map_pages(page, numpages, 0);
3716 }
3717 
3718 extern unsigned int _debug_guardpage_minorder;
3719 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3720 
3721 static inline unsigned int debug_guardpage_minorder(void)
3722 {
3723 	return _debug_guardpage_minorder;
3724 }
3725 
3726 static inline bool debug_guardpage_enabled(void)
3727 {
3728 	return static_branch_unlikely(&_debug_guardpage_enabled);
3729 }
3730 
3731 static inline bool page_is_guard(struct page *page)
3732 {
3733 	if (!debug_guardpage_enabled())
3734 		return false;
3735 
3736 	return PageGuard(page);
3737 }
3738 
3739 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3740 static inline bool set_page_guard(struct zone *zone, struct page *page,
3741 				  unsigned int order)
3742 {
3743 	if (!debug_guardpage_enabled())
3744 		return false;
3745 	return __set_page_guard(zone, page, order);
3746 }
3747 
3748 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3749 static inline void clear_page_guard(struct zone *zone, struct page *page,
3750 				    unsigned int order)
3751 {
3752 	if (!debug_guardpage_enabled())
3753 		return;
3754 	__clear_page_guard(zone, page, order);
3755 }
3756 
3757 #else	/* CONFIG_DEBUG_PAGEALLOC */
3758 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3759 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3760 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3761 static inline bool debug_guardpage_enabled(void) { return false; }
3762 static inline bool page_is_guard(struct page *page) { return false; }
3763 static inline bool set_page_guard(struct zone *zone, struct page *page,
3764 			unsigned int order) { return false; }
3765 static inline void clear_page_guard(struct zone *zone, struct page *page,
3766 				unsigned int order) {}
3767 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3768 
3769 #ifdef __HAVE_ARCH_GATE_AREA
3770 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3771 extern int in_gate_area_no_mm(unsigned long addr);
3772 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3773 #else
3774 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3775 {
3776 	return NULL;
3777 }
3778 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3779 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3780 {
3781 	return 0;
3782 }
3783 #endif	/* __HAVE_ARCH_GATE_AREA */
3784 
3785 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3786 
3787 void drop_slab(void);
3788 
3789 #ifndef CONFIG_MMU
3790 #define randomize_va_space 0
3791 #else
3792 extern int randomize_va_space;
3793 #endif
3794 
3795 const char * arch_vma_name(struct vm_area_struct *vma);
3796 #ifdef CONFIG_MMU
3797 void print_vma_addr(char *prefix, unsigned long rip);
3798 #else
3799 static inline void print_vma_addr(char *prefix, unsigned long rip)
3800 {
3801 }
3802 #endif
3803 
3804 void *sparse_buffer_alloc(unsigned long size);
3805 unsigned long section_map_size(void);
3806 struct page * __populate_section_memmap(unsigned long pfn,
3807 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3808 		struct dev_pagemap *pgmap);
3809 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3810 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3811 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3812 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3813 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3814 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3815 			    unsigned long flags);
3816 void *vmemmap_alloc_block(unsigned long size, int node);
3817 struct vmem_altmap;
3818 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3819 			      struct vmem_altmap *altmap);
3820 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3821 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3822 		     unsigned long addr, unsigned long next);
3823 int vmemmap_check_pmd(pmd_t *pmd, int node,
3824 		      unsigned long addr, unsigned long next);
3825 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3826 			       int node, struct vmem_altmap *altmap);
3827 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3828 			       int node, struct vmem_altmap *altmap);
3829 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3830 		struct vmem_altmap *altmap);
3831 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3832 			 unsigned long headsize);
3833 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3834 		     unsigned long headsize);
3835 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3836 			  unsigned long headsize);
3837 void vmemmap_populate_print_last(void);
3838 #ifdef CONFIG_MEMORY_HOTPLUG
3839 void vmemmap_free(unsigned long start, unsigned long end,
3840 		struct vmem_altmap *altmap);
3841 #endif
3842 
3843 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3844 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3845 {
3846 	/* number of pfns from base where pfn_to_page() is valid */
3847 	if (altmap)
3848 		return altmap->reserve + altmap->free;
3849 	return 0;
3850 }
3851 
3852 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3853 				    unsigned long nr_pfns)
3854 {
3855 	altmap->alloc -= nr_pfns;
3856 }
3857 #else
3858 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3859 {
3860 	return 0;
3861 }
3862 
3863 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3864 				    unsigned long nr_pfns)
3865 {
3866 }
3867 #endif
3868 
3869 #define VMEMMAP_RESERVE_NR	2
3870 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3871 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3872 					  struct dev_pagemap *pgmap)
3873 {
3874 	unsigned long nr_pages;
3875 	unsigned long nr_vmemmap_pages;
3876 
3877 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3878 		return false;
3879 
3880 	nr_pages = pgmap_vmemmap_nr(pgmap);
3881 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3882 	/*
3883 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3884 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3885 	 */
3886 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3887 }
3888 /*
3889  * If we don't have an architecture override, use the generic rule
3890  */
3891 #ifndef vmemmap_can_optimize
3892 #define vmemmap_can_optimize __vmemmap_can_optimize
3893 #endif
3894 
3895 #else
3896 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3897 					   struct dev_pagemap *pgmap)
3898 {
3899 	return false;
3900 }
3901 #endif
3902 
3903 enum mf_flags {
3904 	MF_COUNT_INCREASED = 1 << 0,
3905 	MF_ACTION_REQUIRED = 1 << 1,
3906 	MF_MUST_KILL = 1 << 2,
3907 	MF_SOFT_OFFLINE = 1 << 3,
3908 	MF_UNPOISON = 1 << 4,
3909 	MF_SW_SIMULATED = 1 << 5,
3910 	MF_NO_RETRY = 1 << 6,
3911 	MF_MEM_PRE_REMOVE = 1 << 7,
3912 };
3913 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3914 		      unsigned long count, int mf_flags);
3915 extern int memory_failure(unsigned long pfn, int flags);
3916 extern int unpoison_memory(unsigned long pfn);
3917 extern atomic_long_t num_poisoned_pages __read_mostly;
3918 extern int soft_offline_page(unsigned long pfn, int flags);
3919 #ifdef CONFIG_MEMORY_FAILURE
3920 /*
3921  * Sysfs entries for memory failure handling statistics.
3922  */
3923 extern const struct attribute_group memory_failure_attr_group;
3924 extern void memory_failure_queue(unsigned long pfn, int flags);
3925 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3926 					bool *migratable_cleared);
3927 void num_poisoned_pages_inc(unsigned long pfn);
3928 void num_poisoned_pages_sub(unsigned long pfn, long i);
3929 #else
3930 static inline void memory_failure_queue(unsigned long pfn, int flags)
3931 {
3932 }
3933 
3934 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3935 					bool *migratable_cleared)
3936 {
3937 	return 0;
3938 }
3939 
3940 static inline void num_poisoned_pages_inc(unsigned long pfn)
3941 {
3942 }
3943 
3944 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3945 {
3946 }
3947 #endif
3948 
3949 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3950 extern void memblk_nr_poison_inc(unsigned long pfn);
3951 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3952 #else
3953 static inline void memblk_nr_poison_inc(unsigned long pfn)
3954 {
3955 }
3956 
3957 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3958 {
3959 }
3960 #endif
3961 
3962 #ifndef arch_memory_failure
3963 static inline int arch_memory_failure(unsigned long pfn, int flags)
3964 {
3965 	return -ENXIO;
3966 }
3967 #endif
3968 
3969 #ifndef arch_is_platform_page
3970 static inline bool arch_is_platform_page(u64 paddr)
3971 {
3972 	return false;
3973 }
3974 #endif
3975 
3976 /*
3977  * Error handlers for various types of pages.
3978  */
3979 enum mf_result {
3980 	MF_IGNORED,	/* Error: cannot be handled */
3981 	MF_FAILED,	/* Error: handling failed */
3982 	MF_DELAYED,	/* Will be handled later */
3983 	MF_RECOVERED,	/* Successfully recovered */
3984 };
3985 
3986 enum mf_action_page_type {
3987 	MF_MSG_KERNEL,
3988 	MF_MSG_KERNEL_HIGH_ORDER,
3989 	MF_MSG_DIFFERENT_COMPOUND,
3990 	MF_MSG_HUGE,
3991 	MF_MSG_FREE_HUGE,
3992 	MF_MSG_GET_HWPOISON,
3993 	MF_MSG_UNMAP_FAILED,
3994 	MF_MSG_DIRTY_SWAPCACHE,
3995 	MF_MSG_CLEAN_SWAPCACHE,
3996 	MF_MSG_DIRTY_MLOCKED_LRU,
3997 	MF_MSG_CLEAN_MLOCKED_LRU,
3998 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3999 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4000 	MF_MSG_DIRTY_LRU,
4001 	MF_MSG_CLEAN_LRU,
4002 	MF_MSG_TRUNCATED_LRU,
4003 	MF_MSG_BUDDY,
4004 	MF_MSG_DAX,
4005 	MF_MSG_UNSPLIT_THP,
4006 	MF_MSG_ALREADY_POISONED,
4007 	MF_MSG_UNKNOWN,
4008 };
4009 
4010 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4011 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4012 int copy_user_large_folio(struct folio *dst, struct folio *src,
4013 			  unsigned long addr_hint,
4014 			  struct vm_area_struct *vma);
4015 long copy_folio_from_user(struct folio *dst_folio,
4016 			   const void __user *usr_src,
4017 			   bool allow_pagefault);
4018 
4019 /**
4020  * vma_is_special_huge - Are transhuge page-table entries considered special?
4021  * @vma: Pointer to the struct vm_area_struct to consider
4022  *
4023  * Whether transhuge page-table entries are considered "special" following
4024  * the definition in vm_normal_page().
4025  *
4026  * Return: true if transhuge page-table entries should be considered special,
4027  * false otherwise.
4028  */
4029 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4030 {
4031 	return vma_is_dax(vma) || (vma->vm_file &&
4032 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4033 }
4034 
4035 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4036 
4037 #if MAX_NUMNODES > 1
4038 void __init setup_nr_node_ids(void);
4039 #else
4040 static inline void setup_nr_node_ids(void) {}
4041 #endif
4042 
4043 extern int memcmp_pages(struct page *page1, struct page *page2);
4044 
4045 static inline int pages_identical(struct page *page1, struct page *page2)
4046 {
4047 	return !memcmp_pages(page1, page2);
4048 }
4049 
4050 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4051 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4052 						pgoff_t first_index, pgoff_t nr,
4053 						pgoff_t bitmap_pgoff,
4054 						unsigned long *bitmap,
4055 						pgoff_t *start,
4056 						pgoff_t *end);
4057 
4058 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4059 				      pgoff_t first_index, pgoff_t nr);
4060 #endif
4061 
4062 #ifdef CONFIG_ANON_VMA_NAME
4063 int set_anon_vma_name(unsigned long addr, unsigned long size,
4064 		      const char __user *uname);
4065 #else
4066 static inline
4067 int set_anon_vma_name(unsigned long addr, unsigned long size,
4068 		      const char __user *uname)
4069 {
4070 	return -EINVAL;
4071 }
4072 #endif
4073 
4074 #ifdef CONFIG_UNACCEPTED_MEMORY
4075 
4076 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4077 void accept_memory(phys_addr_t start, unsigned long size);
4078 
4079 #else
4080 
4081 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4082 						    unsigned long size)
4083 {
4084 	return false;
4085 }
4086 
4087 static inline void accept_memory(phys_addr_t start, unsigned long size)
4088 {
4089 }
4090 
4091 #endif
4092 
4093 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4094 {
4095 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4096 }
4097 
4098 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4099 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4100 
4101 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4102 int reserve_mem_release_by_name(const char *name);
4103 
4104 #ifdef CONFIG_64BIT
4105 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4106 #else
4107 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4108 {
4109 	/* noop on 32 bit */
4110 	return 0;
4111 }
4112 #endif
4113 
4114 /*
4115  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4116  * be zeroed or not.
4117  */
4118 static inline bool user_alloc_needs_zeroing(void)
4119 {
4120 	/*
4121 	 * for user folios, arch with cache aliasing requires cache flush and
4122 	 * arc changes folio->flags to make icache coherent with dcache, so
4123 	 * always return false to make caller use
4124 	 * clear_user_page()/clear_user_highpage().
4125 	 */
4126 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4127 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4128 				   &init_on_alloc);
4129 }
4130 
4131 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4132 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4133 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4134 
4135 
4136 /*
4137  * mseal of userspace process's system mappings.
4138  */
4139 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4140 #define VM_SEALED_SYSMAP	VM_SEALED
4141 #else
4142 #define VM_SEALED_SYSMAP	VM_NONE
4143 #endif
4144 
4145 /*
4146  * DMA mapping IDs for page_pool
4147  *
4148  * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4149  * stashes it in the upper bits of page->pp_magic. We always want to be able to
4150  * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4151  * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4152  * (since it overlaps with page->lru.next), so we must ensure that we cannot
4153  * mistake a valid kernel pointer with any of the values we write into this
4154  * field.
4155  *
4156  * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4157  * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4158  * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4159  * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4160  * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4161  * we won't mistake a valid kernel pointer for a value we set, regardless of the
4162  * VMSPLIT setting.
4163  *
4164  * Altogether, this means that the number of bits available is constrained by
4165  * the size of an unsigned long (at the upper end, subtracting two bits per the
4166  * above), and the definition of PP_SIGNATURE (with or without
4167  * POISON_POINTER_DELTA).
4168  */
4169 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4170 #if POISON_POINTER_DELTA > 0
4171 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4172  * index to not overlap with that if set
4173  */
4174 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4175 #else
4176 /* Always leave out the topmost two; see above. */
4177 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4178 #endif
4179 
4180 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4181 				  PP_DMA_INDEX_SHIFT)
4182 
4183 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4184  * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4185  * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4186  * bits used for the DMA index. page_is_pfmemalloc() is checked in
4187  * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4188  */
4189 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4190 
4191 #ifdef CONFIG_PAGE_POOL
4192 static inline bool page_pool_page_is_pp(const struct page *page)
4193 {
4194 	return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4195 }
4196 #else
4197 static inline bool page_pool_page_is_pp(const struct page *page)
4198 {
4199 	return false;
4200 }
4201 #endif
4202 
4203 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4204 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4205 #define PAGE_SNAPSHOT_PG_IDLE  (1 << 2)
4206 
4207 struct page_snapshot {
4208 	struct folio folio_snapshot;
4209 	struct page page_snapshot;
4210 	unsigned long pfn;
4211 	unsigned long idx;
4212 	unsigned long flags;
4213 };
4214 
4215 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4216 {
4217 	return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4218 }
4219 
4220 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4221 
4222 #endif /* _LINUX_MM_H */
4223