xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 9e269eafebfca6c876be76a78e4bda621a921e45)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011, 2025 Chelsio Communications.
5  * Written by: Navdeep Parhar <np@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_kern_tls.h"
33 #include "opt_ratelimit.h"
34 
35 #include <sys/types.h>
36 #include <sys/eventhandler.h>
37 #include <sys/mbuf.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/ktls.h>
41 #include <sys/malloc.h>
42 #include <sys/msan.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/socketvar.h>
51 #include <sys/counter.h>
52 #include <net/bpf.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_vlan_var.h>
56 #include <net/if_vxlan.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip6.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <machine/in_cksum.h>
63 #include <machine/md_var.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #ifdef DEV_NETMAP
67 #include <machine/bus.h>
68 #include <sys/selinfo.h>
69 #include <net/if_var.h>
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #endif
73 
74 #include "common/common.h"
75 #include "common/t4_regs.h"
76 #include "common/t4_regs_values.h"
77 #include "common/t4_msg.h"
78 #include "t4_l2t.h"
79 #include "t4_mp_ring.h"
80 
81 #define RX_COPY_THRESHOLD MINCLSIZE
82 
83 /*
84  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
85  * 0-7 are valid values.
86  */
87 static int fl_pktshift = 0;
88 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
89     "payload DMA offset in rx buffer (bytes)");
90 
91 /*
92  * Pad ethernet payload up to this boundary.
93  * -1: driver should figure out a good value.
94  *  0: disable padding.
95  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
96  */
97 int fl_pad = -1;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
99     "payload pad boundary (bytes)");
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
108     "status page size (bytes)");
109 
110 /*
111  * Congestion drops.
112  * -1: no congestion feedback (not recommended).
113  *  0: backpressure the channel instead of dropping packets right away.
114  *  1: no backpressure, drop packets for the congested queue immediately.
115  *  2: both backpressure and drop.
116  */
117 static int cong_drop = 0;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
119     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
120 #ifdef TCP_OFFLOAD
121 static int ofld_cong_drop = 0;
122 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
123     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
124 #endif
125 
126 /*
127  * Deliver multiple frames in the same free list buffer if they fit.
128  * -1: let the driver decide whether to enable buffer packing or not.
129  *  0: disable buffer packing.
130  *  1: enable buffer packing.
131  */
132 static int buffer_packing = -1;
133 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
134     0, "Enable buffer packing");
135 
136 /*
137  * Start next frame in a packed buffer at this boundary.
138  * -1: driver should figure out a good value.
139  * T4: driver will ignore this and use the same value as fl_pad above.
140  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
141  */
142 static int fl_pack = -1;
143 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
144     "payload pack boundary (bytes)");
145 
146 /*
147  * Largest rx cluster size that the driver is allowed to allocate.
148  */
149 static int largest_rx_cluster = MJUM16BYTES;
150 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
151     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
152 
153 /*
154  * Size of cluster allocation that's most likely to succeed.  The driver will
155  * fall back to this size if it fails to allocate clusters larger than this.
156  */
157 static int safest_rx_cluster = PAGE_SIZE;
158 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
159     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
160 
161 #ifdef RATELIMIT
162 /*
163  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
164  * for rewriting.  -1 and 0-3 are all valid values.
165  * -1: hardware should leave the TCP timestamps alone.
166  * 0: 1ms
167  * 1: 100us
168  * 2: 10us
169  * 3: 1us
170  */
171 static int tsclk = -1;
172 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
173     "Control TCP timestamp rewriting when using pacing");
174 
175 static int eo_max_backlog = 1024 * 1024;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
177     0, "Maximum backlog of ratelimited data per flow");
178 #endif
179 
180 /*
181  * The interrupt holdoff timers are multiplied by this value on T6+.
182  * 1 and 3-17 (both inclusive) are legal values.
183  */
184 static int tscale = 1;
185 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
186     "Interrupt holdoff timer scale on T6+");
187 
188 /*
189  * Number of LRO entries in the lro_ctrl structure per rx queue.
190  */
191 static int lro_entries = TCP_LRO_ENTRIES;
192 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
193     "Number of LRO entries per RX queue");
194 
195 /*
196  * This enables presorting of frames before they're fed into tcp_lro_rx.
197  */
198 static int lro_mbufs = 0;
199 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
200     "Enable presorting of LRO frames");
201 
202 static counter_u64_t pullups;
203 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
204     "Number of mbuf pullups performed");
205 
206 static counter_u64_t defrags;
207 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
208     "Number of mbuf defrags performed");
209 
210 static int t4_tx_coalesce = 1;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
212     "tx coalescing allowed");
213 
214 /*
215  * The driver will make aggressive attempts at tx coalescing if it sees these
216  * many packets eligible for coalescing in quick succession, with no more than
217  * the specified gap in between the eth_tx calls that delivered the packets.
218  */
219 static int t4_tx_coalesce_pkts = 32;
220 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
221     &t4_tx_coalesce_pkts, 0,
222     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
223 static int t4_tx_coalesce_gap = 5;
224 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
225     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
226 
227 static int service_iq(struct sge_iq *, int);
228 static int service_iq_fl(struct sge_iq *, int);
229 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
230 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
231     u_int);
232 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
233     int, int, int);
234 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
235 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
236     struct sge_iq *, char *);
237 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
238     struct sysctl_ctx_list *, struct sysctl_oid *);
239 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
240 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
241     struct sge_iq *);
242 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
243     struct sysctl_oid *, struct sge_fl *);
244 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
245 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
246 static int alloc_fwq(struct adapter *);
247 static void free_fwq(struct adapter *);
248 static int alloc_ctrlq(struct adapter *, int);
249 static void free_ctrlq(struct adapter *, int);
250 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
251 static void free_rxq(struct vi_info *, struct sge_rxq *);
252 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253     struct sge_rxq *);
254 #ifdef TCP_OFFLOAD
255 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
256     int);
257 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
258 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
259     struct sge_ofld_rxq *);
260 #endif
261 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *, int);
262 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
263     int);
264 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
265 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
266     int);
267 #endif
268 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
269     struct sysctl_oid *);
270 static void free_eq(struct adapter *, struct sge_eq *);
271 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
272     struct sysctl_oid *, struct sge_eq *);
273 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *,
274     int);
275 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
276 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
277     struct sysctl_ctx_list *, struct sysctl_oid *);
278 static void free_wrq(struct adapter *, struct sge_wrq *);
279 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
280     struct sge_wrq *);
281 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
282 static void free_txq(struct vi_info *, struct sge_txq *);
283 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
284     struct sysctl_oid *, struct sge_txq *);
285 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
286 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
287 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
288 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289     struct sge_ofld_txq *);
290 #endif
291 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
292 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
293 static int refill_fl(struct adapter *, struct sge_fl *, int);
294 static void refill_sfl(void *);
295 static int find_refill_source(struct adapter *, int, bool);
296 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
297 
298 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
299 static inline u_int txpkt_len16(u_int, const u_int);
300 static inline u_int txpkt_vm_len16(u_int, const u_int);
301 static inline void calculate_mbuf_len16(struct mbuf *, bool);
302 static inline u_int txpkts0_len16(u_int);
303 static inline u_int txpkts1_len16(void);
304 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
305 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
306     u_int);
307 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
308     struct mbuf *);
309 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
310     int, bool *);
311 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
312     int, bool *);
313 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
314 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
315 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
316 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
317 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
318 static inline uint16_t read_hw_cidx(struct sge_eq *);
319 static inline u_int reclaimable_tx_desc(struct sge_eq *);
320 static inline u_int total_available_tx_desc(struct sge_eq *);
321 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
322 static void tx_reclaim(void *, int);
323 static __be64 get_flit(struct sglist_seg *, int, int);
324 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
325     struct mbuf *);
326 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
327     struct mbuf *);
328 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
329 static void wrq_tx_drain(void *, int);
330 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
331 
332 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
333 #ifdef RATELIMIT
334 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
335     struct mbuf *);
336 #if defined(INET) || defined(INET6)
337 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
338 static int ethofld_transmit(if_t, struct mbuf *);
339 #endif
340 #endif
341 
342 static counter_u64_t extfree_refs;
343 static counter_u64_t extfree_rels;
344 
345 an_handler_t t4_an_handler;
346 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
347 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
348 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
349 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
350 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
352 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
353 cpl_handler_t fw6_pld_handlers[NUM_CPL_FW6_COOKIES];
354 
355 void
356 t4_register_an_handler(an_handler_t h)
357 {
358 	uintptr_t *loc;
359 
360 	MPASS(h == NULL || t4_an_handler == NULL);
361 
362 	loc = (uintptr_t *)&t4_an_handler;
363 	atomic_store_rel_ptr(loc, (uintptr_t)h);
364 }
365 
366 void
367 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
368 {
369 	uintptr_t *loc;
370 
371 	MPASS(type < nitems(t4_fw_msg_handler));
372 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
373 	/*
374 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
375 	 * handler dispatch table.  Reject any attempt to install a handler for
376 	 * this subtype.
377 	 */
378 	MPASS(type != FW_TYPE_RSSCPL);
379 	MPASS(type != FW6_TYPE_RSSCPL);
380 
381 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
382 	atomic_store_rel_ptr(loc, (uintptr_t)h);
383 }
384 
385 void
386 t4_register_cpl_handler(int opcode, cpl_handler_t h)
387 {
388 	uintptr_t *loc;
389 
390 	MPASS(opcode < nitems(t4_cpl_handler));
391 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
392 
393 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
394 	atomic_store_rel_ptr(loc, (uintptr_t)h);
395 }
396 
397 static int
398 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
399     struct mbuf *m)
400 {
401 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
402 	u_int tid;
403 	int cookie;
404 
405 	MPASS(m == NULL);
406 
407 	tid = GET_TID(cpl);
408 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
409 		/*
410 		 * The return code for filter-write is put in the CPL cookie so
411 		 * we have to rely on the hardware tid (is_ftid) to determine
412 		 * that this is a response to a filter.
413 		 */
414 		cookie = CPL_COOKIE_FILTER;
415 	} else {
416 		cookie = G_COOKIE(cpl->cookie);
417 	}
418 	MPASS(cookie > CPL_COOKIE_RESERVED);
419 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
420 
421 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
422 }
423 
424 static int
425 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
426     struct mbuf *m)
427 {
428 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
429 	unsigned int cookie;
430 
431 	MPASS(m == NULL);
432 
433 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
434 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
435 }
436 
437 static int
438 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
439     struct mbuf *m)
440 {
441 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
442 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
443 
444 	MPASS(m == NULL);
445 	MPASS(cookie != CPL_COOKIE_RESERVED);
446 
447 	return (act_open_rpl_handlers[cookie](iq, rss, m));
448 }
449 
450 static int
451 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
452     struct mbuf *m)
453 {
454 	struct adapter *sc = iq->adapter;
455 	u_int cookie;
456 
457 	MPASS(m == NULL);
458 	if (is_hashfilter(sc))
459 		cookie = CPL_COOKIE_HASHFILTER;
460 	else
461 		cookie = CPL_COOKIE_TOM;
462 
463 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
464 }
465 
466 static int
467 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
468 {
469 	struct adapter *sc = iq->adapter;
470 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
471 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
472 	u_int cookie;
473 
474 	MPASS(m == NULL);
475 	if (is_etid(sc, tid))
476 		cookie = CPL_COOKIE_ETHOFLD;
477 	else
478 		cookie = CPL_COOKIE_TOM;
479 
480 	return (fw4_ack_handlers[cookie](iq, rss, m));
481 }
482 
483 static int
484 fw6_pld_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
485 {
486 	const struct cpl_fw6_pld *cpl;
487 	uint64_t cookie;
488 
489 	if (m != NULL)
490 		cpl = mtod(m, const void *);
491 	else
492 		cpl = (const void *)(rss + 1);
493 	cookie = be64toh(cpl->data[1]) & CPL_FW6_COOKIE_MASK;
494 
495 	return (fw6_pld_handlers[cookie](iq, rss, m));
496 }
497 
498 static void
499 t4_init_shared_cpl_handlers(void)
500 {
501 
502 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
503 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
504 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
505 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
506 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
507 	t4_register_cpl_handler(CPL_FW6_PLD, fw6_pld_handler);
508 }
509 
510 void
511 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
512 {
513 	uintptr_t *loc;
514 
515 	MPASS(opcode < nitems(t4_cpl_handler));
516 	if (opcode == CPL_FW6_PLD) {
517 		MPASS(cookie < NUM_CPL_FW6_COOKIES);
518 	} else {
519 		MPASS(cookie > CPL_COOKIE_RESERVED);
520 		MPASS(cookie < NUM_CPL_COOKIES);
521 	}
522 	MPASS(t4_cpl_handler[opcode] != NULL);
523 
524 	switch (opcode) {
525 	case CPL_SET_TCB_RPL:
526 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
527 		break;
528 	case CPL_L2T_WRITE_RPL:
529 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
530 		break;
531 	case CPL_ACT_OPEN_RPL:
532 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
533 		break;
534 	case CPL_ABORT_RPL_RSS:
535 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
536 		break;
537 	case CPL_FW4_ACK:
538 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
539 		break;
540 	case CPL_FW6_PLD:
541 		loc = (uintptr_t *)&fw6_pld_handlers[cookie];
542 		break;
543 	default:
544 		MPASS(0);
545 		return;
546 	}
547 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
548 	atomic_store_rel_ptr(loc, (uintptr_t)h);
549 }
550 
551 /*
552  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
553  */
554 void
555 t4_sge_modload(void)
556 {
557 
558 	if (fl_pktshift < 0 || fl_pktshift > 7) {
559 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
560 		    " using 0 instead.\n", fl_pktshift);
561 		fl_pktshift = 0;
562 	}
563 
564 	if (spg_len != 64 && spg_len != 128) {
565 		int len;
566 
567 #if defined(__i386__) || defined(__amd64__)
568 		len = cpu_clflush_line_size > 64 ? 128 : 64;
569 #else
570 		len = 64;
571 #endif
572 		if (spg_len != -1) {
573 			printf("Invalid hw.cxgbe.spg_len value (%d),"
574 			    " using %d instead.\n", spg_len, len);
575 		}
576 		spg_len = len;
577 	}
578 
579 	if (cong_drop < -1 || cong_drop > 2) {
580 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
581 		    " using 0 instead.\n", cong_drop);
582 		cong_drop = 0;
583 	}
584 #ifdef TCP_OFFLOAD
585 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
586 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
587 		    " using 0 instead.\n", ofld_cong_drop);
588 		ofld_cong_drop = 0;
589 	}
590 #endif
591 
592 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
593 		printf("Invalid hw.cxgbe.tscale value (%d),"
594 		    " using 1 instead.\n", tscale);
595 		tscale = 1;
596 	}
597 
598 	if (largest_rx_cluster != MCLBYTES &&
599 #if MJUMPAGESIZE != MCLBYTES
600 	    largest_rx_cluster != MJUMPAGESIZE &&
601 #endif
602 	    largest_rx_cluster != MJUM9BYTES &&
603 	    largest_rx_cluster != MJUM16BYTES) {
604 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
605 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
606 		largest_rx_cluster = MJUM16BYTES;
607 	}
608 
609 	if (safest_rx_cluster != MCLBYTES &&
610 #if MJUMPAGESIZE != MCLBYTES
611 	    safest_rx_cluster != MJUMPAGESIZE &&
612 #endif
613 	    safest_rx_cluster != MJUM9BYTES &&
614 	    safest_rx_cluster != MJUM16BYTES) {
615 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
616 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
617 		safest_rx_cluster = MJUMPAGESIZE;
618 	}
619 
620 	extfree_refs = counter_u64_alloc(M_WAITOK);
621 	extfree_rels = counter_u64_alloc(M_WAITOK);
622 	pullups = counter_u64_alloc(M_WAITOK);
623 	defrags = counter_u64_alloc(M_WAITOK);
624 	counter_u64_zero(extfree_refs);
625 	counter_u64_zero(extfree_rels);
626 	counter_u64_zero(pullups);
627 	counter_u64_zero(defrags);
628 
629 	t4_init_shared_cpl_handlers();
630 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
631 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
632 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
633 #ifdef RATELIMIT
634 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
635 	    CPL_COOKIE_ETHOFLD);
636 #endif
637 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
638 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
639 }
640 
641 void
642 t4_sge_modunload(void)
643 {
644 
645 	counter_u64_free(extfree_refs);
646 	counter_u64_free(extfree_rels);
647 	counter_u64_free(pullups);
648 	counter_u64_free(defrags);
649 }
650 
651 uint64_t
652 t4_sge_extfree_refs(void)
653 {
654 	uint64_t refs, rels;
655 
656 	rels = counter_u64_fetch(extfree_rels);
657 	refs = counter_u64_fetch(extfree_refs);
658 
659 	return (refs - rels);
660 }
661 
662 /* max 4096 */
663 #define MAX_PACK_BOUNDARY 512
664 
665 static inline void
666 setup_pad_and_pack_boundaries(struct adapter *sc)
667 {
668 	uint32_t v, m;
669 	int pad, pack, pad_shift;
670 
671 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
672 	    X_INGPADBOUNDARY_SHIFT;
673 	pad = fl_pad;
674 	if (fl_pad < (1 << pad_shift) ||
675 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
676 	    !powerof2(fl_pad)) {
677 		/*
678 		 * If there is any chance that we might use buffer packing and
679 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
680 		 * it to the minimum allowed in all other cases.
681 		 */
682 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
683 
684 		/*
685 		 * For fl_pad = 0 we'll still write a reasonable value to the
686 		 * register but all the freelists will opt out of padding.
687 		 * We'll complain here only if the user tried to set it to a
688 		 * value greater than 0 that was invalid.
689 		 */
690 		if (fl_pad > 0) {
691 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
692 			    " (%d), using %d instead.\n", fl_pad, pad);
693 		}
694 	}
695 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
696 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
697 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
698 
699 	if (is_t4(sc)) {
700 		if (fl_pack != -1 && fl_pack != pad) {
701 			/* Complain but carry on. */
702 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
703 			    " using %d instead.\n", fl_pack, pad);
704 		}
705 		return;
706 	}
707 
708 	pack = fl_pack;
709 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
710 	    !powerof2(fl_pack)) {
711 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
712 			pack = MAX_PACK_BOUNDARY;
713 		else
714 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
715 		MPASS(powerof2(pack));
716 		if (pack < 16)
717 			pack = 16;
718 		if (pack == 32)
719 			pack = 64;
720 		if (pack > 4096)
721 			pack = 4096;
722 		if (fl_pack != -1) {
723 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
724 			    " (%d), using %d instead.\n", fl_pack, pack);
725 		}
726 	}
727 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
728 	if (pack == 16)
729 		v = V_INGPACKBOUNDARY(0);
730 	else
731 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
732 
733 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
734 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
735 }
736 
737 /*
738  * adap->params.vpd.cclk must be set up before this is called.
739  */
740 void
741 t4_tweak_chip_settings(struct adapter *sc)
742 {
743 	int i, reg;
744 	uint32_t v, m;
745 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
746 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
747 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
748 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
749 	static int sw_buf_sizes[] = {
750 		MCLBYTES,
751 #if MJUMPAGESIZE != MCLBYTES
752 		MJUMPAGESIZE,
753 #endif
754 		MJUM9BYTES,
755 		MJUM16BYTES
756 	};
757 
758 	KASSERT(sc->flags & MASTER_PF,
759 	    ("%s: trying to change chip settings when not master.", __func__));
760 
761 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
762 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
763 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
764 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
765 
766 	setup_pad_and_pack_boundaries(sc);
767 
768 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
769 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
770 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
771 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
772 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
773 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
774 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
775 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
776 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
777 
778 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
779 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
780 	reg = A_SGE_FL_BUFFER_SIZE2;
781 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
782 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
783 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
784 		reg += 4;
785 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
786 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
787 		reg += 4;
788 	}
789 
790 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
791 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
792 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
793 
794 	KASSERT(intr_timer[0] <= timer_max,
795 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
796 	    timer_max));
797 	for (i = 1; i < nitems(intr_timer); i++) {
798 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
799 		    ("%s: timers not listed in increasing order (%d)",
800 		    __func__, i));
801 
802 		while (intr_timer[i] > timer_max) {
803 			if (i == nitems(intr_timer) - 1) {
804 				intr_timer[i] = timer_max;
805 				break;
806 			}
807 			intr_timer[i] += intr_timer[i - 1];
808 			intr_timer[i] /= 2;
809 		}
810 	}
811 
812 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
813 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
814 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
815 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
816 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
817 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
818 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
819 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
820 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
821 
822 	if (chip_id(sc) >= CHELSIO_T6) {
823 		m = V_TSCALE(M_TSCALE);
824 		if (tscale == 1)
825 			v = 0;
826 		else
827 			v = V_TSCALE(tscale - 2);
828 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
829 
830 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
831 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
832 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
833 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
834 			v &= ~m;
835 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
836 			    V_WRTHRTHRESH(16);
837 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
838 		}
839 	}
840 
841 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
842 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
843 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
844 
845 	/*
846 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
847 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
848 	 * may have to deal with is MAXPHYS + 1 page.
849 	 */
850 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
851 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
852 
853 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
854 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
855 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
856 
857 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
858 	    F_RESETDDPOFFSET;
859 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
860 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
861 }
862 
863 /*
864  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
865  * address mut be 16B aligned.  If padding is in use the buffer's start and end
866  * need to be aligned to the pad boundary as well.  We'll just make sure that
867  * the size is a multiple of the pad boundary here, it is up to the buffer
868  * allocation code to make sure the start of the buffer is aligned.
869  */
870 static inline int
871 hwsz_ok(struct adapter *sc, int hwsz)
872 {
873 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
874 
875 	return (hwsz >= 64 && (hwsz & mask) == 0);
876 }
877 
878 /*
879  * Initialize the rx buffer sizes and figure out which zones the buffers will
880  * be allocated from.
881  */
882 void
883 t4_init_rx_buf_info(struct adapter *sc)
884 {
885 	struct sge *s = &sc->sge;
886 	struct sge_params *sp = &sc->params.sge;
887 	int i, j, n;
888 	static int sw_buf_sizes[] = {	/* Sorted by size */
889 		MCLBYTES,
890 #if MJUMPAGESIZE != MCLBYTES
891 		MJUMPAGESIZE,
892 #endif
893 		MJUM9BYTES,
894 		MJUM16BYTES
895 	};
896 	struct rx_buf_info *rxb;
897 
898 	s->safe_zidx = -1;
899 	rxb = &s->rx_buf_info[0];
900 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
901 		rxb->size1 = sw_buf_sizes[i];
902 		rxb->zone = m_getzone(rxb->size1);
903 		rxb->type = m_gettype(rxb->size1);
904 		rxb->size2 = 0;
905 		rxb->hwidx1 = -1;
906 		rxb->hwidx2 = -1;
907 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
908 			int hwsize = sp->sge_fl_buffer_size[j];
909 
910 			if (!hwsz_ok(sc, hwsize))
911 				continue;
912 
913 			/* hwidx for size1 */
914 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
915 				rxb->hwidx1 = j;
916 
917 			/* hwidx for size2 (buffer packing) */
918 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
919 				continue;
920 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
921 			if (n == 0) {
922 				rxb->hwidx2 = j;
923 				rxb->size2 = hwsize;
924 				break;	/* stop looking */
925 			}
926 			if (rxb->hwidx2 != -1) {
927 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
928 				    hwsize - CL_METADATA_SIZE) {
929 					rxb->hwidx2 = j;
930 					rxb->size2 = hwsize;
931 				}
932 			} else if (n <= 2 * CL_METADATA_SIZE) {
933 				rxb->hwidx2 = j;
934 				rxb->size2 = hwsize;
935 			}
936 		}
937 		if (rxb->hwidx2 != -1)
938 			sc->flags |= BUF_PACKING_OK;
939 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
940 			s->safe_zidx = i;
941 	}
942 }
943 
944 /*
945  * Verify some basic SGE settings for the PF and VF driver, and other
946  * miscellaneous settings for the PF driver.
947  */
948 int
949 t4_verify_chip_settings(struct adapter *sc)
950 {
951 	struct sge_params *sp = &sc->params.sge;
952 	uint32_t m, v, r;
953 	int rc = 0;
954 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
955 
956 	m = F_RXPKTCPLMODE;
957 	v = F_RXPKTCPLMODE;
958 	r = sp->sge_control;
959 	if ((r & m) != v) {
960 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
961 		rc = EINVAL;
962 	}
963 
964 	/*
965 	 * If this changes then every single use of PAGE_SHIFT in the driver
966 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
967 	 */
968 	if (sp->page_shift != PAGE_SHIFT) {
969 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
970 		rc = EINVAL;
971 	}
972 
973 	if (sc->flags & IS_VF)
974 		return (0);
975 
976 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
977 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
978 	if (r != v) {
979 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
980 		if (sc->vres.ddp.size != 0)
981 			rc = EINVAL;
982 	}
983 
984 	m = v = F_TDDPTAGTCB;
985 	r = t4_read_reg(sc, A_ULP_RX_CTL);
986 	if ((r & m) != v) {
987 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
988 		if (sc->vres.ddp.size != 0)
989 			rc = EINVAL;
990 	}
991 
992 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
993 	    F_RESETDDPOFFSET;
994 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
995 	r = t4_read_reg(sc, A_TP_PARA_REG5);
996 	if ((r & m) != v) {
997 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
998 		if (sc->vres.ddp.size != 0)
999 			rc = EINVAL;
1000 	}
1001 
1002 	return (rc);
1003 }
1004 
1005 int
1006 t4_create_dma_tag(struct adapter *sc)
1007 {
1008 	int rc;
1009 
1010 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
1011 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
1012 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
1013 	    NULL, &sc->dmat);
1014 	if (rc != 0) {
1015 		device_printf(sc->dev,
1016 		    "failed to create main DMA tag: %d\n", rc);
1017 	}
1018 
1019 	return (rc);
1020 }
1021 
1022 void
1023 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1024     struct sysctl_oid_list *children)
1025 {
1026 	struct sge_params *sp = &sc->params.sge;
1027 
1028 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1029 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1030 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1031 
1032 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1033 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1034 
1035 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1036 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1037 
1038 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1039 	    NULL, sp->spg_len, "status page size (bytes)");
1040 
1041 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1042 	    NULL, cong_drop, "congestion drop setting");
1043 #ifdef TCP_OFFLOAD
1044 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1045 	    NULL, ofld_cong_drop, "congestion drop setting");
1046 #endif
1047 
1048 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1049 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1050 }
1051 
1052 int
1053 t4_destroy_dma_tag(struct adapter *sc)
1054 {
1055 	if (sc->dmat)
1056 		bus_dma_tag_destroy(sc->dmat);
1057 
1058 	return (0);
1059 }
1060 
1061 /*
1062  * Allocate and initialize the firmware event queue, control queues, and special
1063  * purpose rx queues owned by the adapter.
1064  *
1065  * Returns errno on failure.  Resources allocated up to that point may still be
1066  * allocated.  Caller is responsible for cleanup in case this function fails.
1067  */
1068 int
1069 t4_setup_adapter_queues(struct adapter *sc)
1070 {
1071 	int rc, i;
1072 
1073 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1074 
1075 	/*
1076 	 * Firmware event queue
1077 	 */
1078 	rc = alloc_fwq(sc);
1079 	if (rc != 0)
1080 		return (rc);
1081 
1082 	/*
1083 	 * That's all for the VF driver.
1084 	 */
1085 	if (sc->flags & IS_VF)
1086 		return (rc);
1087 
1088 	/*
1089 	 * XXX: General purpose rx queues, one per port.
1090 	 */
1091 
1092 	/*
1093 	 * Control queues.  At least one per port and per internal core.
1094 	 */
1095 	for (i = 0; i < sc->sge.nctrlq; i++) {
1096 		rc = alloc_ctrlq(sc, i);
1097 		if (rc != 0)
1098 			return (rc);
1099 	}
1100 
1101 	return (rc);
1102 }
1103 
1104 /*
1105  * Idempotent
1106  */
1107 int
1108 t4_teardown_adapter_queues(struct adapter *sc)
1109 {
1110 	int i;
1111 
1112 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1113 
1114 	if (sc->sge.ctrlq != NULL) {
1115 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1116 		for (i = 0; i < sc->sge.nctrlq; i++)
1117 			free_ctrlq(sc, i);
1118 	}
1119 	free_fwq(sc);
1120 
1121 	return (0);
1122 }
1123 
1124 /* Maximum payload that could arrive with a single iq descriptor. */
1125 static inline int
1126 max_rx_payload(struct adapter *sc, if_t ifp, const bool ofld)
1127 {
1128 	int maxp;
1129 
1130 	/* large enough even when hw VLAN extraction is disabled */
1131 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1132 	    ETHER_VLAN_ENCAP_LEN + if_getmtu(ifp);
1133 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1134 	    maxp < sc->params.tp.max_rx_pdu)
1135 		maxp = sc->params.tp.max_rx_pdu;
1136 	return (maxp);
1137 }
1138 
1139 int
1140 t4_setup_vi_queues(struct vi_info *vi)
1141 {
1142 	int rc = 0, i, intr_idx;
1143 	struct sge_rxq *rxq;
1144 	struct sge_txq *txq;
1145 #ifdef TCP_OFFLOAD
1146 	struct sge_ofld_rxq *ofld_rxq;
1147 #endif
1148 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1149 	struct sge_ofld_txq *ofld_txq;
1150 #endif
1151 #ifdef DEV_NETMAP
1152 	int saved_idx, iqidx;
1153 	struct sge_nm_rxq *nm_rxq;
1154 	struct sge_nm_txq *nm_txq;
1155 #endif
1156 	struct adapter *sc = vi->adapter;
1157 	if_t ifp = vi->ifp;
1158 	int maxp;
1159 
1160 	/* Interrupt vector to start from (when using multiple vectors) */
1161 	intr_idx = vi->first_intr;
1162 
1163 #ifdef DEV_NETMAP
1164 	saved_idx = intr_idx;
1165 	if (if_getcapabilities(ifp) & IFCAP_NETMAP) {
1166 
1167 		/* netmap is supported with direct interrupts only. */
1168 		MPASS(!forwarding_intr_to_fwq(sc));
1169 		MPASS(vi->first_intr >= 0);
1170 
1171 		/*
1172 		 * We don't have buffers to back the netmap rx queues
1173 		 * right now so we create the queues in a way that
1174 		 * doesn't set off any congestion signal in the chip.
1175 		 */
1176 		for_each_nm_rxq(vi, i, nm_rxq) {
1177 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1178 			if (rc != 0)
1179 				goto done;
1180 			intr_idx++;
1181 		}
1182 
1183 		for_each_nm_txq(vi, i, nm_txq) {
1184 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1185 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1186 			if (rc != 0)
1187 				goto done;
1188 		}
1189 	}
1190 
1191 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1192 	intr_idx = saved_idx;
1193 #endif
1194 
1195 	/*
1196 	 * Allocate rx queues first because a default iqid is required when
1197 	 * creating a tx queue.
1198 	 */
1199 	maxp = max_rx_payload(sc, ifp, false);
1200 	for_each_rxq(vi, i, rxq) {
1201 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1202 		if (rc != 0)
1203 			goto done;
1204 		if (!forwarding_intr_to_fwq(sc))
1205 			intr_idx++;
1206 	}
1207 #ifdef DEV_NETMAP
1208 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
1209 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1210 #endif
1211 #ifdef TCP_OFFLOAD
1212 	maxp = max_rx_payload(sc, ifp, true);
1213 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1214 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1215 		if (rc != 0)
1216 			goto done;
1217 		if (!forwarding_intr_to_fwq(sc))
1218 			intr_idx++;
1219 	}
1220 #endif
1221 
1222 	/*
1223 	 * Now the tx queues.
1224 	 */
1225 	for_each_txq(vi, i, txq) {
1226 		rc = alloc_txq(vi, txq, i);
1227 		if (rc != 0)
1228 			goto done;
1229 	}
1230 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1231 	for_each_ofld_txq(vi, i, ofld_txq) {
1232 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1233 		if (rc != 0)
1234 			goto done;
1235 	}
1236 #endif
1237 done:
1238 	if (rc)
1239 		t4_teardown_vi_queues(vi);
1240 
1241 	return (rc);
1242 }
1243 
1244 /*
1245  * Idempotent
1246  */
1247 int
1248 t4_teardown_vi_queues(struct vi_info *vi)
1249 {
1250 	int i;
1251 	struct sge_rxq *rxq;
1252 	struct sge_txq *txq;
1253 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1254 	struct sge_ofld_txq *ofld_txq;
1255 #endif
1256 #ifdef TCP_OFFLOAD
1257 	struct sge_ofld_rxq *ofld_rxq;
1258 #endif
1259 #ifdef DEV_NETMAP
1260 	struct sge_nm_rxq *nm_rxq;
1261 	struct sge_nm_txq *nm_txq;
1262 #endif
1263 
1264 #ifdef DEV_NETMAP
1265 	if (if_getcapabilities(vi->ifp) & IFCAP_NETMAP) {
1266 		for_each_nm_txq(vi, i, nm_txq) {
1267 			free_nm_txq(vi, nm_txq);
1268 		}
1269 
1270 		for_each_nm_rxq(vi, i, nm_rxq) {
1271 			free_nm_rxq(vi, nm_rxq);
1272 		}
1273 	}
1274 #endif
1275 
1276 	/*
1277 	 * Take down all the tx queues first, as they reference the rx queues
1278 	 * (for egress updates, etc.).
1279 	 */
1280 
1281 	for_each_txq(vi, i, txq) {
1282 		free_txq(vi, txq);
1283 	}
1284 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1285 	for_each_ofld_txq(vi, i, ofld_txq) {
1286 		free_ofld_txq(vi, ofld_txq);
1287 	}
1288 #endif
1289 
1290 	/*
1291 	 * Then take down the rx queues.
1292 	 */
1293 
1294 	for_each_rxq(vi, i, rxq) {
1295 		free_rxq(vi, rxq);
1296 	}
1297 #ifdef TCP_OFFLOAD
1298 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1299 		free_ofld_rxq(vi, ofld_rxq);
1300 	}
1301 #endif
1302 
1303 	return (0);
1304 }
1305 
1306 /*
1307  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1308  * unusual scenario.
1309  *
1310  * a) Deals with errors, if any.
1311  * b) Services firmware event queue, which is taking interrupts for all other
1312  *    queues.
1313  */
1314 void
1315 t4_intr_all(void *arg)
1316 {
1317 	struct adapter *sc = arg;
1318 	struct sge_iq *fwq = &sc->sge.fwq;
1319 
1320 	MPASS(sc->intr_count == 1);
1321 
1322 	if (sc->intr_type == INTR_INTX)
1323 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1324 
1325 	t4_intr_err(arg);
1326 	t4_intr_evt(fwq);
1327 }
1328 
1329 /*
1330  * Interrupt handler for errors (installed directly when multiple interrupts are
1331  * being used, or called by t4_intr_all).
1332  */
1333 void
1334 t4_intr_err(void *arg)
1335 {
1336 	struct adapter *sc = arg;
1337 	uint32_t v;
1338 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1339 
1340 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1341 		return;
1342 
1343 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1344 	if (v & F_PFSW) {
1345 		sc->swintr++;
1346 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1347 	}
1348 
1349 	if (t4_slow_intr_handler(sc, verbose))
1350 		t4_fatal_err(sc, false);
1351 }
1352 
1353 /*
1354  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1355  * such queue right now.
1356  */
1357 void
1358 t4_intr_evt(void *arg)
1359 {
1360 	struct sge_iq *iq = arg;
1361 
1362 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1363 		service_iq(iq, 0);
1364 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1365 	}
1366 }
1367 
1368 /*
1369  * Interrupt handler for iq+fl queues.
1370  */
1371 void
1372 t4_intr(void *arg)
1373 {
1374 	struct sge_iq *iq = arg;
1375 
1376 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1377 		service_iq_fl(iq, 0);
1378 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1379 	}
1380 }
1381 
1382 #ifdef DEV_NETMAP
1383 /*
1384  * Interrupt handler for netmap rx queues.
1385  */
1386 void
1387 t4_nm_intr(void *arg)
1388 {
1389 	struct sge_nm_rxq *nm_rxq = arg;
1390 
1391 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1392 		service_nm_rxq(nm_rxq);
1393 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1394 	}
1395 }
1396 
1397 /*
1398  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1399  */
1400 void
1401 t4_vi_intr(void *arg)
1402 {
1403 	struct irq *irq = arg;
1404 
1405 	MPASS(irq->nm_rxq != NULL);
1406 	t4_nm_intr(irq->nm_rxq);
1407 
1408 	MPASS(irq->rxq != NULL);
1409 	t4_intr(irq->rxq);
1410 }
1411 #endif
1412 
1413 /*
1414  * Deals with interrupts on an iq-only (no freelist) queue.
1415  */
1416 static int
1417 service_iq(struct sge_iq *iq, int budget)
1418 {
1419 	struct sge_iq *q;
1420 	struct adapter *sc = iq->adapter;
1421 	struct iq_desc *d = &iq->desc[iq->cidx];
1422 	int ndescs = 0, limit;
1423 	int rsp_type;
1424 	uint32_t lq;
1425 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1426 
1427 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1428 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1429 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1430 	    iq->flags));
1431 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1432 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1433 
1434 	limit = budget ? budget : iq->qsize / 16;
1435 
1436 	/*
1437 	 * We always come back and check the descriptor ring for new indirect
1438 	 * interrupts and other responses after running a single handler.
1439 	 */
1440 	for (;;) {
1441 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1442 
1443 			rmb();
1444 
1445 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1446 			lq = be32toh(d->rsp.pldbuflen_qid);
1447 
1448 			switch (rsp_type) {
1449 			case X_RSPD_TYPE_FLBUF:
1450 				panic("%s: data for an iq (%p) with no freelist",
1451 				    __func__, iq);
1452 
1453 				/* NOTREACHED */
1454 
1455 			case X_RSPD_TYPE_CPL:
1456 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1457 				    ("%s: bad opcode %02x.", __func__,
1458 				    d->rss.opcode));
1459 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1460 				break;
1461 
1462 			case X_RSPD_TYPE_INTR:
1463 				/*
1464 				 * There are 1K interrupt-capable queues (qids 0
1465 				 * through 1023).  A response type indicating a
1466 				 * forwarded interrupt with a qid >= 1K is an
1467 				 * iWARP async notification.
1468 				 */
1469 				if (__predict_true(lq >= 1024)) {
1470 					t4_an_handler(iq, &d->rsp);
1471 					break;
1472 				}
1473 
1474 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1475 				    sc->sge.iq_base];
1476 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1477 				    IQS_BUSY)) {
1478 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1479 						(void) atomic_cmpset_int(&q->state,
1480 						    IQS_BUSY, IQS_IDLE);
1481 					} else {
1482 						STAILQ_INSERT_TAIL(&iql, q,
1483 						    link);
1484 					}
1485 				}
1486 				break;
1487 
1488 			default:
1489 				KASSERT(0,
1490 				    ("%s: illegal response type %d on iq %p",
1491 				    __func__, rsp_type, iq));
1492 				log(LOG_ERR,
1493 				    "%s: illegal response type %d on iq %p",
1494 				    device_get_nameunit(sc->dev), rsp_type, iq);
1495 				break;
1496 			}
1497 
1498 			d++;
1499 			if (__predict_false(++iq->cidx == iq->sidx)) {
1500 				iq->cidx = 0;
1501 				iq->gen ^= F_RSPD_GEN;
1502 				d = &iq->desc[0];
1503 			}
1504 			if (__predict_false(++ndescs == limit)) {
1505 				t4_write_reg(sc, sc->sge_gts_reg,
1506 				    V_CIDXINC(ndescs) |
1507 				    V_INGRESSQID(iq->cntxt_id) |
1508 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1509 				ndescs = 0;
1510 
1511 				if (budget) {
1512 					return (EINPROGRESS);
1513 				}
1514 			}
1515 		}
1516 
1517 		if (STAILQ_EMPTY(&iql))
1518 			break;
1519 
1520 		/*
1521 		 * Process the head only, and send it to the back of the list if
1522 		 * it's still not done.
1523 		 */
1524 		q = STAILQ_FIRST(&iql);
1525 		STAILQ_REMOVE_HEAD(&iql, link);
1526 		if (service_iq_fl(q, q->qsize / 8) == 0)
1527 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1528 		else
1529 			STAILQ_INSERT_TAIL(&iql, q, link);
1530 	}
1531 
1532 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1533 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1534 
1535 	return (0);
1536 }
1537 
1538 #if defined(INET) || defined(INET6)
1539 static inline int
1540 sort_before_lro(struct lro_ctrl *lro)
1541 {
1542 
1543 	return (lro->lro_mbuf_max != 0);
1544 }
1545 #endif
1546 
1547 #define CGBE_SHIFT_SCALE 10
1548 
1549 static inline uint64_t
1550 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1551 {
1552 	struct clock_sync *cur, dcur;
1553 	uint64_t hw_clocks;
1554 	uint64_t hw_clk_div;
1555 	sbintime_t sbt_cur_to_prev, sbt;
1556 	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1557 	seqc_t gen;
1558 
1559 	for (;;) {
1560 		cur = &sc->cal_info[sc->cal_current];
1561 		gen = seqc_read(&cur->gen);
1562 		if (gen == 0)
1563 			return (0);
1564 		dcur = *cur;
1565 		if (seqc_consistent(&cur->gen, gen))
1566 			break;
1567 	}
1568 
1569 	/*
1570 	 * Our goal here is to have a result that is:
1571 	 *
1572 	 * (                             (cur_time - prev_time)   )
1573 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1574 	 * (                             (hw_cur - hw_prev)       )
1575 	 *
1576 	 * With the constraints that we cannot use float and we
1577 	 * don't want to overflow the uint64_t numbers we are using.
1578 	 */
1579 	hw_clocks = hw_tstmp - dcur.hw_prev;
1580 	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1581 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1582 	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1583 	return (sbttons(sbt));
1584 }
1585 
1586 static inline void
1587 move_to_next_rxbuf(struct sge_fl *fl)
1588 {
1589 
1590 	fl->rx_offset = 0;
1591 	if (__predict_false((++fl->cidx & 7) == 0)) {
1592 		uint16_t cidx = fl->cidx >> 3;
1593 
1594 		if (__predict_false(cidx == fl->sidx))
1595 			fl->cidx = cidx = 0;
1596 		fl->hw_cidx = cidx;
1597 	}
1598 }
1599 
1600 /*
1601  * Deals with interrupts on an iq+fl queue.
1602  */
1603 static int
1604 service_iq_fl(struct sge_iq *iq, int budget)
1605 {
1606 	struct sge_rxq *rxq = iq_to_rxq(iq);
1607 	struct sge_fl *fl;
1608 	struct adapter *sc = iq->adapter;
1609 	struct iq_desc *d = &iq->desc[iq->cidx];
1610 	int ndescs, limit;
1611 	int rsp_type, starved;
1612 	uint32_t lq;
1613 	uint16_t fl_hw_cidx;
1614 	struct mbuf *m0;
1615 #if defined(INET) || defined(INET6)
1616 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1617 	struct lro_ctrl *lro = &rxq->lro;
1618 #endif
1619 
1620 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1621 	MPASS(iq->flags & IQ_HAS_FL);
1622 
1623 	ndescs = 0;
1624 #if defined(INET) || defined(INET6)
1625 	if (iq->flags & IQ_ADJ_CREDIT) {
1626 		MPASS(sort_before_lro(lro));
1627 		iq->flags &= ~IQ_ADJ_CREDIT;
1628 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1629 			tcp_lro_flush_all(lro);
1630 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1631 			    V_INGRESSQID((u32)iq->cntxt_id) |
1632 			    V_SEINTARM(iq->intr_params));
1633 			return (0);
1634 		}
1635 		ndescs = 1;
1636 	}
1637 #else
1638 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1639 #endif
1640 
1641 	limit = budget ? budget : iq->qsize / 16;
1642 	fl = &rxq->fl;
1643 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1644 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1645 
1646 		rmb();
1647 
1648 		m0 = NULL;
1649 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1650 		lq = be32toh(d->rsp.pldbuflen_qid);
1651 
1652 		switch (rsp_type) {
1653 		case X_RSPD_TYPE_FLBUF:
1654 			if (lq & F_RSPD_NEWBUF) {
1655 				if (fl->rx_offset > 0)
1656 					move_to_next_rxbuf(fl);
1657 				lq = G_RSPD_LEN(lq);
1658 			}
1659 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1660 				FL_LOCK(fl);
1661 				refill_fl(sc, fl, 64);
1662 				FL_UNLOCK(fl);
1663 				fl_hw_cidx = fl->hw_cidx;
1664 			}
1665 
1666 			if (d->rss.opcode == CPL_RX_PKT) {
1667 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1668 					break;
1669 				goto out;
1670 			}
1671 			m0 = get_fl_payload(sc, fl, lq);
1672 			if (__predict_false(m0 == NULL))
1673 				goto out;
1674 
1675 			/* fall through */
1676 
1677 		case X_RSPD_TYPE_CPL:
1678 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1679 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1680 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1681 			break;
1682 
1683 		case X_RSPD_TYPE_INTR:
1684 
1685 			/*
1686 			 * There are 1K interrupt-capable queues (qids 0
1687 			 * through 1023).  A response type indicating a
1688 			 * forwarded interrupt with a qid >= 1K is an
1689 			 * iWARP async notification.  That is the only
1690 			 * acceptable indirect interrupt on this queue.
1691 			 */
1692 			if (__predict_false(lq < 1024)) {
1693 				panic("%s: indirect interrupt on iq_fl %p "
1694 				    "with qid %u", __func__, iq, lq);
1695 			}
1696 
1697 			t4_an_handler(iq, &d->rsp);
1698 			break;
1699 
1700 		default:
1701 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1702 			    __func__, rsp_type, iq));
1703 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1704 			    device_get_nameunit(sc->dev), rsp_type, iq);
1705 			break;
1706 		}
1707 
1708 		d++;
1709 		if (__predict_false(++iq->cidx == iq->sidx)) {
1710 			iq->cidx = 0;
1711 			iq->gen ^= F_RSPD_GEN;
1712 			d = &iq->desc[0];
1713 		}
1714 		if (__predict_false(++ndescs == limit)) {
1715 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1716 			    V_INGRESSQID(iq->cntxt_id) |
1717 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1718 
1719 #if defined(INET) || defined(INET6)
1720 			if (iq->flags & IQ_LRO_ENABLED &&
1721 			    !sort_before_lro(lro) &&
1722 			    sc->lro_timeout != 0) {
1723 				tcp_lro_flush_inactive(lro, &lro_timeout);
1724 			}
1725 #endif
1726 			if (budget)
1727 				return (EINPROGRESS);
1728 			ndescs = 0;
1729 		}
1730 	}
1731 out:
1732 #if defined(INET) || defined(INET6)
1733 	if (iq->flags & IQ_LRO_ENABLED) {
1734 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1735 			MPASS(sort_before_lro(lro));
1736 			/* hold back one credit and don't flush LRO state */
1737 			iq->flags |= IQ_ADJ_CREDIT;
1738 			ndescs--;
1739 		} else {
1740 			tcp_lro_flush_all(lro);
1741 		}
1742 	}
1743 #endif
1744 
1745 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1746 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1747 
1748 	FL_LOCK(fl);
1749 	starved = refill_fl(sc, fl, 64);
1750 	FL_UNLOCK(fl);
1751 	if (__predict_false(starved != 0))
1752 		add_fl_to_sfl(sc, fl);
1753 
1754 	return (0);
1755 }
1756 
1757 static inline struct cluster_metadata *
1758 cl_metadata(struct fl_sdesc *sd)
1759 {
1760 
1761 	return ((void *)(sd->cl + sd->moff));
1762 }
1763 
1764 static void
1765 rxb_free(struct mbuf *m)
1766 {
1767 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1768 
1769 	uma_zfree(clm->zone, clm->cl);
1770 	counter_u64_add(extfree_rels, 1);
1771 }
1772 
1773 /*
1774  * The mbuf returned comes from zone_muf and carries the payload in one of these
1775  * ways
1776  * a) complete frame inside the mbuf
1777  * b) m_cljset (for clusters without metadata)
1778  * d) m_extaddref (cluster with metadata)
1779  */
1780 static struct mbuf *
1781 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1782     int remaining)
1783 {
1784 	struct mbuf *m;
1785 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1786 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1787 	struct cluster_metadata *clm;
1788 	int len, blen;
1789 	caddr_t payload;
1790 
1791 	if (fl->flags & FL_BUF_PACKING) {
1792 		u_int l, pad;
1793 
1794 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1795 		len = min(remaining, blen);
1796 		payload = sd->cl + fl->rx_offset;
1797 
1798 		l = fr_offset + len;
1799 		pad = roundup2(l, fl->buf_boundary) - l;
1800 		if (fl->rx_offset + len + pad < rxb->size2)
1801 			blen = len + pad;
1802 		MPASS(fl->rx_offset + blen <= rxb->size2);
1803 	} else {
1804 		MPASS(fl->rx_offset == 0);	/* not packing */
1805 		blen = rxb->size1;
1806 		len = min(remaining, blen);
1807 		payload = sd->cl;
1808 	}
1809 
1810 	if (fr_offset == 0) {
1811 		m = m_gethdr(M_NOWAIT, MT_DATA);
1812 		if (__predict_false(m == NULL))
1813 			return (NULL);
1814 		m->m_pkthdr.len = remaining;
1815 	} else {
1816 		m = m_get(M_NOWAIT, MT_DATA);
1817 		if (__predict_false(m == NULL))
1818 			return (NULL);
1819 	}
1820 	m->m_len = len;
1821 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1822 
1823 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1824 		/* copy data to mbuf */
1825 		bcopy(payload, mtod(m, caddr_t), len);
1826 		if (fl->flags & FL_BUF_PACKING) {
1827 			fl->rx_offset += blen;
1828 			MPASS(fl->rx_offset <= rxb->size2);
1829 			if (fl->rx_offset < rxb->size2)
1830 				return (m);	/* without advancing the cidx */
1831 		}
1832 	} else if (fl->flags & FL_BUF_PACKING) {
1833 		clm = cl_metadata(sd);
1834 		if (sd->nmbuf++ == 0) {
1835 			clm->refcount = 1;
1836 			clm->zone = rxb->zone;
1837 			clm->cl = sd->cl;
1838 			counter_u64_add(extfree_refs, 1);
1839 		}
1840 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1841 		    NULL);
1842 
1843 		fl->rx_offset += blen;
1844 		MPASS(fl->rx_offset <= rxb->size2);
1845 		if (fl->rx_offset < rxb->size2)
1846 			return (m);	/* without advancing the cidx */
1847 	} else {
1848 		m_cljset(m, sd->cl, rxb->type);
1849 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1850 	}
1851 
1852 	move_to_next_rxbuf(fl);
1853 
1854 	return (m);
1855 }
1856 
1857 static struct mbuf *
1858 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1859 {
1860 	struct mbuf *m0, *m, **pnext;
1861 	u_int remaining;
1862 
1863 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1864 		M_ASSERTPKTHDR(fl->m0);
1865 		MPASS(fl->m0->m_pkthdr.len == plen);
1866 		MPASS(fl->remaining < plen);
1867 
1868 		m0 = fl->m0;
1869 		pnext = fl->pnext;
1870 		remaining = fl->remaining;
1871 		fl->flags &= ~FL_BUF_RESUME;
1872 		goto get_segment;
1873 	}
1874 
1875 	/*
1876 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1877 	 * 'len' and it may span multiple hw buffers.
1878 	 */
1879 
1880 	m0 = get_scatter_segment(sc, fl, 0, plen);
1881 	if (m0 == NULL)
1882 		return (NULL);
1883 	remaining = plen - m0->m_len;
1884 	pnext = &m0->m_next;
1885 	while (remaining > 0) {
1886 get_segment:
1887 		MPASS(fl->rx_offset == 0);
1888 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1889 		if (__predict_false(m == NULL)) {
1890 			fl->m0 = m0;
1891 			fl->pnext = pnext;
1892 			fl->remaining = remaining;
1893 			fl->flags |= FL_BUF_RESUME;
1894 			return (NULL);
1895 		}
1896 		*pnext = m;
1897 		pnext = &m->m_next;
1898 		remaining -= m->m_len;
1899 	}
1900 	*pnext = NULL;
1901 
1902 	M_ASSERTPKTHDR(m0);
1903 	return (m0);
1904 }
1905 
1906 static int
1907 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1908     int remaining)
1909 {
1910 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1911 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1912 	int len, blen;
1913 
1914 	if (fl->flags & FL_BUF_PACKING) {
1915 		u_int l, pad;
1916 
1917 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1918 		len = min(remaining, blen);
1919 
1920 		l = fr_offset + len;
1921 		pad = roundup2(l, fl->buf_boundary) - l;
1922 		if (fl->rx_offset + len + pad < rxb->size2)
1923 			blen = len + pad;
1924 		fl->rx_offset += blen;
1925 		MPASS(fl->rx_offset <= rxb->size2);
1926 		if (fl->rx_offset < rxb->size2)
1927 			return (len);	/* without advancing the cidx */
1928 	} else {
1929 		MPASS(fl->rx_offset == 0);	/* not packing */
1930 		blen = rxb->size1;
1931 		len = min(remaining, blen);
1932 	}
1933 	move_to_next_rxbuf(fl);
1934 	return (len);
1935 }
1936 
1937 static inline void
1938 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1939 {
1940 	int remaining, fr_offset, len;
1941 
1942 	fr_offset = 0;
1943 	remaining = plen;
1944 	while (remaining > 0) {
1945 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1946 		fr_offset += len;
1947 		remaining -= len;
1948 	}
1949 }
1950 
1951 static inline int
1952 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1953 {
1954 	int len;
1955 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1956 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1957 
1958 	if (fl->flags & FL_BUF_PACKING)
1959 		len = rxb->size2 - fl->rx_offset;
1960 	else
1961 		len = rxb->size1;
1962 
1963 	return (min(plen, len));
1964 }
1965 
1966 static int
1967 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1968     u_int plen)
1969 {
1970 	struct mbuf *m0;
1971 	if_t ifp = rxq->ifp;
1972 	struct sge_fl *fl = &rxq->fl;
1973 	struct vi_info *vi = if_getsoftc(ifp);
1974 	const struct cpl_rx_pkt *cpl;
1975 #if defined(INET) || defined(INET6)
1976 	struct lro_ctrl *lro = &rxq->lro;
1977 #endif
1978 	uint16_t err_vec, tnl_type, tnlhdr_len;
1979 	static const int sw_hashtype[4][2] = {
1980 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1981 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1982 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1983 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1984 	};
1985 	static const int sw_csum_flags[2][2] = {
1986 		{
1987 			/* IP, inner IP */
1988 			CSUM_ENCAP_VXLAN |
1989 			    CSUM_L3_CALC | CSUM_L3_VALID |
1990 			    CSUM_L4_CALC | CSUM_L4_VALID |
1991 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1992 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1993 
1994 			/* IP, inner IP6 */
1995 			CSUM_ENCAP_VXLAN |
1996 			    CSUM_L3_CALC | CSUM_L3_VALID |
1997 			    CSUM_L4_CALC | CSUM_L4_VALID |
1998 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1999 		},
2000 		{
2001 			/* IP6, inner IP */
2002 			CSUM_ENCAP_VXLAN |
2003 			    CSUM_L4_CALC | CSUM_L4_VALID |
2004 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
2005 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2006 
2007 			/* IP6, inner IP6 */
2008 			CSUM_ENCAP_VXLAN |
2009 			    CSUM_L4_CALC | CSUM_L4_VALID |
2010 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2011 		},
2012 	};
2013 
2014 	MPASS(plen > sc->params.sge.fl_pktshift);
2015 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
2016 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
2017 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
2018 		caddr_t frame;
2019 		int rc, slen;
2020 
2021 		slen = get_segment_len(sc, fl, plen) -
2022 		    sc->params.sge.fl_pktshift;
2023 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2024 		CURVNET_SET_QUIET(if_getvnet(ifp));
2025 		rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0);
2026 		CURVNET_RESTORE();
2027 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2028 			skip_fl_payload(sc, fl, plen);
2029 			return (0);
2030 		}
2031 		if (rc == PFIL_REALLOCED) {
2032 			skip_fl_payload(sc, fl, plen);
2033 			goto have_mbuf;
2034 		}
2035 	}
2036 
2037 	m0 = get_fl_payload(sc, fl, plen);
2038 	if (__predict_false(m0 == NULL))
2039 		return (ENOMEM);
2040 
2041 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2042 	m0->m_len -= sc->params.sge.fl_pktshift;
2043 	m0->m_data += sc->params.sge.fl_pktshift;
2044 
2045 have_mbuf:
2046 	m0->m_pkthdr.rcvif = ifp;
2047 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2048 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2049 
2050 	cpl = (const void *)(&d->rss + 1);
2051 	if (sc->params.tp.rx_pkt_encap) {
2052 		const uint16_t ev = be16toh(cpl->err_vec);
2053 
2054 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2055 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2056 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2057 	} else {
2058 		err_vec = be16toh(cpl->err_vec);
2059 		tnl_type = 0;
2060 		tnlhdr_len = 0;
2061 	}
2062 	if (cpl->csum_calc && err_vec == 0) {
2063 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2064 
2065 		/* checksum(s) calculated and found to be correct. */
2066 
2067 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2068 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2069 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2070 		if (tnl_type == 0) {
2071 			if (!ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM) {
2072 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2073 				    CSUM_L3_VALID | CSUM_L4_CALC |
2074 				    CSUM_L4_VALID;
2075 			} else if (ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) {
2076 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2077 				    CSUM_L4_VALID;
2078 			}
2079 			rxq->rxcsum++;
2080 		} else {
2081 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2082 
2083 			M_HASHTYPE_SETINNER(m0);
2084 			if (__predict_false(cpl->ip_frag)) {
2085 				/*
2086 				 * csum_data is for the inner frame (which is an
2087 				 * IP fragment) and is not 0xffff.  There is no
2088 				 * way to pass the inner csum_data to the stack.
2089 				 * We don't want the stack to use the inner
2090 				 * csum_data to validate the outer frame or it
2091 				 * will get rejected.  So we fix csum_data here
2092 				 * and let sw do the checksum of inner IP
2093 				 * fragments.
2094 				 *
2095 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2096 				 * Maybe stuff it into rcv_tstmp?
2097 				 */
2098 				m0->m_pkthdr.csum_data = 0xffff;
2099 				if (ipv6) {
2100 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2101 					    CSUM_L4_VALID;
2102 				} else {
2103 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2104 					    CSUM_L3_VALID | CSUM_L4_CALC |
2105 					    CSUM_L4_VALID;
2106 				}
2107 			} else {
2108 				int outer_ipv6;
2109 
2110 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2111 
2112 				outer_ipv6 = tnlhdr_len >=
2113 				    sizeof(struct ether_header) +
2114 				    sizeof(struct ip6_hdr);
2115 				m0->m_pkthdr.csum_flags =
2116 				    sw_csum_flags[outer_ipv6][ipv6];
2117 			}
2118 			rxq->vxlan_rxcsum++;
2119 		}
2120 	}
2121 
2122 	if (cpl->vlan_ex) {
2123 		if (sc->flags & IS_VF && sc->vlan_id) {
2124 			/*
2125 			 * HW is not setup correctly if extracted vlan_id does
2126 			 * not match the VF's setting.
2127 			 */
2128 			MPASS(be16toh(cpl->vlan) == sc->vlan_id);
2129 		} else {
2130 			m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2131 			m0->m_flags |= M_VLANTAG;
2132 			rxq->vlan_extraction++;
2133 		}
2134 	}
2135 
2136 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2137 		/*
2138 		 * Fill up rcv_tstmp but do not set M_TSTMP as
2139 		 * long as we get a non-zero back from t4_tstmp_to_ns().
2140 		 */
2141 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2142 		    be64toh(d->rsp.u.last_flit));
2143 		if (m0->m_pkthdr.rcv_tstmp != 0)
2144 			m0->m_flags |= M_TSTMP;
2145 	}
2146 
2147 #ifdef NUMA
2148 	m0->m_pkthdr.numa_domain = if_getnumadomain(ifp);
2149 #endif
2150 #if defined(INET) || defined(INET6)
2151 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2152 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2153 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2154 		if (sort_before_lro(lro)) {
2155 			tcp_lro_queue_mbuf(lro, m0);
2156 			return (0); /* queued for sort, then LRO */
2157 		}
2158 		if (tcp_lro_rx(lro, m0, 0) == 0)
2159 			return (0); /* queued for LRO */
2160 	}
2161 #endif
2162 	if_input(ifp, m0);
2163 
2164 	return (0);
2165 }
2166 
2167 /*
2168  * Must drain the wrq or make sure that someone else will.
2169  */
2170 static void
2171 wrq_tx_drain(void *arg, int n)
2172 {
2173 	struct sge_wrq *wrq = arg;
2174 	struct sge_eq *eq = &wrq->eq;
2175 
2176 	EQ_LOCK(eq);
2177 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2178 		drain_wrq_wr_list(wrq->adapter, wrq);
2179 	EQ_UNLOCK(eq);
2180 }
2181 
2182 static void
2183 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2184 {
2185 	struct sge_eq *eq = &wrq->eq;
2186 	u_int available, dbdiff;	/* # of hardware descriptors */
2187 	u_int n;
2188 	struct wrqe *wr;
2189 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2190 
2191 	EQ_LOCK_ASSERT_OWNED(eq);
2192 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2193 	wr = STAILQ_FIRST(&wrq->wr_list);
2194 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2195 	MPASS(eq->pidx == eq->dbidx);
2196 	dbdiff = 0;
2197 
2198 	do {
2199 		eq->cidx = read_hw_cidx(eq);
2200 		if (eq->pidx == eq->cidx)
2201 			available = eq->sidx - 1;
2202 		else
2203 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2204 
2205 		MPASS(wr->wrq == wrq);
2206 		n = howmany(wr->wr_len, EQ_ESIZE);
2207 		if (available < n)
2208 			break;
2209 
2210 		dst = (void *)&eq->desc[eq->pidx];
2211 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2212 			/* Won't wrap, won't end exactly at the status page. */
2213 			bcopy(&wr->wr[0], dst, wr->wr_len);
2214 			eq->pidx += n;
2215 		} else {
2216 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2217 
2218 			bcopy(&wr->wr[0], dst, first_portion);
2219 			if (wr->wr_len > first_portion) {
2220 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2221 				    wr->wr_len - first_portion);
2222 			}
2223 			eq->pidx = n - (eq->sidx - eq->pidx);
2224 		}
2225 		wrq->tx_wrs_copied++;
2226 
2227 		if (available < eq->sidx / 4 &&
2228 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2229 				/*
2230 				 * XXX: This is not 100% reliable with some
2231 				 * types of WRs.  But this is a very unusual
2232 				 * situation for an ofld/ctrl queue anyway.
2233 				 */
2234 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2235 			    F_FW_WR_EQUEQ);
2236 		}
2237 
2238 		dbdiff += n;
2239 		if (dbdiff >= 16) {
2240 			ring_eq_db(sc, eq, dbdiff);
2241 			dbdiff = 0;
2242 		}
2243 
2244 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2245 		free_wrqe(wr);
2246 		MPASS(wrq->nwr_pending > 0);
2247 		wrq->nwr_pending--;
2248 		MPASS(wrq->ndesc_needed >= n);
2249 		wrq->ndesc_needed -= n;
2250 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2251 
2252 	if (dbdiff)
2253 		ring_eq_db(sc, eq, dbdiff);
2254 }
2255 
2256 /*
2257  * Doesn't fail.  Holds on to work requests it can't send right away.
2258  */
2259 void
2260 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2261 {
2262 #ifdef INVARIANTS
2263 	struct sge_eq *eq = &wrq->eq;
2264 #endif
2265 
2266 	EQ_LOCK_ASSERT_OWNED(eq);
2267 	MPASS(wr != NULL);
2268 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2269 	MPASS((wr->wr_len & 0x7) == 0);
2270 
2271 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2272 	wrq->nwr_pending++;
2273 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2274 
2275 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2276 		return;	/* commit_wrq_wr will drain wr_list as well. */
2277 
2278 	drain_wrq_wr_list(sc, wrq);
2279 
2280 	/* Doorbell must have caught up to the pidx. */
2281 	MPASS(eq->pidx == eq->dbidx);
2282 }
2283 
2284 void
2285 t4_update_fl_bufsize(if_t ifp)
2286 {
2287 	struct vi_info *vi = if_getsoftc(ifp);
2288 	struct adapter *sc = vi->adapter;
2289 	struct sge_rxq *rxq;
2290 #ifdef TCP_OFFLOAD
2291 	struct sge_ofld_rxq *ofld_rxq;
2292 #endif
2293 	struct sge_fl *fl;
2294 	int i, maxp;
2295 
2296 	maxp = max_rx_payload(sc, ifp, false);
2297 	for_each_rxq(vi, i, rxq) {
2298 		fl = &rxq->fl;
2299 
2300 		FL_LOCK(fl);
2301 		fl->zidx = find_refill_source(sc, maxp,
2302 		    fl->flags & FL_BUF_PACKING);
2303 		FL_UNLOCK(fl);
2304 	}
2305 #ifdef TCP_OFFLOAD
2306 	maxp = max_rx_payload(sc, ifp, true);
2307 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2308 		fl = &ofld_rxq->fl;
2309 
2310 		FL_LOCK(fl);
2311 		fl->zidx = find_refill_source(sc, maxp,
2312 		    fl->flags & FL_BUF_PACKING);
2313 		FL_UNLOCK(fl);
2314 	}
2315 #endif
2316 }
2317 
2318 #ifdef RATELIMIT
2319 static inline int
2320 mbuf_eo_nsegs(struct mbuf *m)
2321 {
2322 
2323 	M_ASSERTPKTHDR(m);
2324 	return (m->m_pkthdr.PH_loc.eight[1]);
2325 }
2326 
2327 #if defined(INET) || defined(INET6)
2328 static inline void
2329 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2330 {
2331 
2332 	M_ASSERTPKTHDR(m);
2333 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2334 }
2335 #endif
2336 
2337 static inline int
2338 mbuf_eo_len16(struct mbuf *m)
2339 {
2340 	int n;
2341 
2342 	M_ASSERTPKTHDR(m);
2343 	n = m->m_pkthdr.PH_loc.eight[2];
2344 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2345 
2346 	return (n);
2347 }
2348 
2349 #if defined(INET) || defined(INET6)
2350 static inline void
2351 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2352 {
2353 
2354 	M_ASSERTPKTHDR(m);
2355 	m->m_pkthdr.PH_loc.eight[2] = len16;
2356 }
2357 #endif
2358 
2359 static inline int
2360 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2361 {
2362 
2363 	M_ASSERTPKTHDR(m);
2364 	return (m->m_pkthdr.PH_loc.eight[3]);
2365 }
2366 
2367 #if defined(INET) || defined(INET6)
2368 static inline void
2369 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2370 {
2371 
2372 	M_ASSERTPKTHDR(m);
2373 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2374 }
2375 #endif
2376 
2377 static inline int
2378 needs_eo(struct m_snd_tag *mst)
2379 {
2380 
2381 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2382 }
2383 #endif
2384 
2385 /*
2386  * Try to allocate an mbuf to contain a raw work request.  To make it
2387  * easy to construct the work request, don't allocate a chain but a
2388  * single mbuf.
2389  */
2390 struct mbuf *
2391 alloc_wr_mbuf(int len, int how)
2392 {
2393 	struct mbuf *m;
2394 
2395 	if (len <= MHLEN)
2396 		m = m_gethdr(how, MT_DATA);
2397 	else if (len <= MCLBYTES)
2398 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2399 	else
2400 		m = NULL;
2401 	if (m == NULL)
2402 		return (NULL);
2403 	m->m_pkthdr.len = len;
2404 	m->m_len = len;
2405 	set_mbuf_cflags(m, MC_RAW_WR);
2406 	set_mbuf_len16(m, howmany(len, 16));
2407 	return (m);
2408 }
2409 
2410 static inline bool
2411 needs_hwcsum(struct mbuf *m)
2412 {
2413 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2414 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2415 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2416 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2417 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2418 
2419 	M_ASSERTPKTHDR(m);
2420 
2421 	return (m->m_pkthdr.csum_flags & csum_flags);
2422 }
2423 
2424 static inline bool
2425 needs_tso(struct mbuf *m)
2426 {
2427 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2428 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2429 
2430 	M_ASSERTPKTHDR(m);
2431 
2432 	return (m->m_pkthdr.csum_flags & csum_flags);
2433 }
2434 
2435 static inline bool
2436 needs_vxlan_csum(struct mbuf *m)
2437 {
2438 
2439 	M_ASSERTPKTHDR(m);
2440 
2441 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2442 }
2443 
2444 static inline bool
2445 needs_vxlan_tso(struct mbuf *m)
2446 {
2447 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2448 	    CSUM_INNER_IP6_TSO;
2449 
2450 	M_ASSERTPKTHDR(m);
2451 
2452 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2453 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2454 }
2455 
2456 #if defined(INET) || defined(INET6)
2457 static inline bool
2458 needs_inner_tcp_csum(struct mbuf *m)
2459 {
2460 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2461 
2462 	M_ASSERTPKTHDR(m);
2463 
2464 	return (m->m_pkthdr.csum_flags & csum_flags);
2465 }
2466 #endif
2467 
2468 static inline bool
2469 needs_l3_csum(struct mbuf *m)
2470 {
2471 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2472 	    CSUM_INNER_IP_TSO;
2473 
2474 	M_ASSERTPKTHDR(m);
2475 
2476 	return (m->m_pkthdr.csum_flags & csum_flags);
2477 }
2478 
2479 static inline bool
2480 needs_outer_tcp_csum(struct mbuf *m)
2481 {
2482 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2483 	    CSUM_IP6_TSO;
2484 
2485 	M_ASSERTPKTHDR(m);
2486 
2487 	return (m->m_pkthdr.csum_flags & csum_flags);
2488 }
2489 
2490 #ifdef RATELIMIT
2491 static inline bool
2492 needs_outer_l4_csum(struct mbuf *m)
2493 {
2494 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2495 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2496 
2497 	M_ASSERTPKTHDR(m);
2498 
2499 	return (m->m_pkthdr.csum_flags & csum_flags);
2500 }
2501 
2502 static inline bool
2503 needs_outer_udp_csum(struct mbuf *m)
2504 {
2505 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2506 
2507 	M_ASSERTPKTHDR(m);
2508 
2509 	return (m->m_pkthdr.csum_flags & csum_flags);
2510 }
2511 #endif
2512 
2513 static inline bool
2514 needs_vlan_insertion(struct mbuf *m)
2515 {
2516 
2517 	M_ASSERTPKTHDR(m);
2518 
2519 	return (m->m_flags & M_VLANTAG);
2520 }
2521 
2522 #if defined(INET) || defined(INET6)
2523 static void *
2524 m_advance(struct mbuf **pm, int *poffset, int len)
2525 {
2526 	struct mbuf *m = *pm;
2527 	int offset = *poffset;
2528 	uintptr_t p = 0;
2529 
2530 	MPASS(len > 0);
2531 
2532 	for (;;) {
2533 		if (offset + len < m->m_len) {
2534 			offset += len;
2535 			p = mtod(m, uintptr_t) + offset;
2536 			break;
2537 		}
2538 		len -= m->m_len - offset;
2539 		m = m->m_next;
2540 		offset = 0;
2541 		MPASS(m != NULL);
2542 	}
2543 	*poffset = offset;
2544 	*pm = m;
2545 	return ((void *)p);
2546 }
2547 #endif
2548 
2549 static inline int
2550 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2551 {
2552 	vm_paddr_t paddr;
2553 	int i, len, off, pglen, pgoff, seglen, segoff;
2554 	int nsegs = 0;
2555 
2556 	M_ASSERTEXTPG(m);
2557 	off = mtod(m, vm_offset_t);
2558 	len = m->m_len;
2559 	off += skip;
2560 	len -= skip;
2561 
2562 	if (m->m_epg_hdrlen != 0) {
2563 		if (off >= m->m_epg_hdrlen) {
2564 			off -= m->m_epg_hdrlen;
2565 		} else {
2566 			seglen = m->m_epg_hdrlen - off;
2567 			segoff = off;
2568 			seglen = min(seglen, len);
2569 			off = 0;
2570 			len -= seglen;
2571 			paddr = pmap_kextract(
2572 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2573 			if (*nextaddr != paddr)
2574 				nsegs++;
2575 			*nextaddr = paddr + seglen;
2576 		}
2577 	}
2578 	pgoff = m->m_epg_1st_off;
2579 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2580 		pglen = m_epg_pagelen(m, i, pgoff);
2581 		if (off >= pglen) {
2582 			off -= pglen;
2583 			pgoff = 0;
2584 			continue;
2585 		}
2586 		seglen = pglen - off;
2587 		segoff = pgoff + off;
2588 		off = 0;
2589 		seglen = min(seglen, len);
2590 		len -= seglen;
2591 		paddr = m->m_epg_pa[i] + segoff;
2592 		if (*nextaddr != paddr)
2593 			nsegs++;
2594 		*nextaddr = paddr + seglen;
2595 		pgoff = 0;
2596 	};
2597 	if (len != 0) {
2598 		seglen = min(len, m->m_epg_trllen - off);
2599 		len -= seglen;
2600 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2601 		if (*nextaddr != paddr)
2602 			nsegs++;
2603 		*nextaddr = paddr + seglen;
2604 	}
2605 
2606 	return (nsegs);
2607 }
2608 
2609 
2610 /*
2611  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2612  * must have at least one mbuf that's not empty.  It is possible for this
2613  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2614  */
2615 static inline int
2616 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2617 {
2618 	vm_paddr_t nextaddr, paddr;
2619 	vm_offset_t va;
2620 	int len, nsegs;
2621 
2622 	M_ASSERTPKTHDR(m);
2623 	MPASS(m->m_pkthdr.len > 0);
2624 	MPASS(m->m_pkthdr.len >= skip);
2625 
2626 	nsegs = 0;
2627 	nextaddr = 0;
2628 	for (; m; m = m->m_next) {
2629 		len = m->m_len;
2630 		if (__predict_false(len == 0))
2631 			continue;
2632 		if (skip >= len) {
2633 			skip -= len;
2634 			continue;
2635 		}
2636 		if ((m->m_flags & M_EXTPG) != 0) {
2637 			*cflags |= MC_NOMAP;
2638 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2639 			skip = 0;
2640 			continue;
2641 		}
2642 		va = mtod(m, vm_offset_t) + skip;
2643 		len -= skip;
2644 		skip = 0;
2645 		paddr = pmap_kextract(va);
2646 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2647 		if (paddr == nextaddr)
2648 			nsegs--;
2649 		nextaddr = pmap_kextract(va + len - 1) + 1;
2650 	}
2651 
2652 	return (nsegs);
2653 }
2654 
2655 /*
2656  * The maximum number of segments that can fit in a WR.
2657  */
2658 static int
2659 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2660 {
2661 
2662 	if (vm_wr) {
2663 		if (needs_tso(m))
2664 			return (TX_SGL_SEGS_VM_TSO);
2665 		return (TX_SGL_SEGS_VM);
2666 	}
2667 
2668 	if (needs_tso(m)) {
2669 		if (needs_vxlan_tso(m))
2670 			return (TX_SGL_SEGS_VXLAN_TSO);
2671 		else
2672 			return (TX_SGL_SEGS_TSO);
2673 	}
2674 
2675 	return (TX_SGL_SEGS);
2676 }
2677 
2678 static struct timeval txerr_ratecheck = {0};
2679 static const struct timeval txerr_interval = {3, 0};
2680 
2681 /*
2682  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2683  * a) caller can assume it's been freed if this function returns with an error.
2684  * b) it may get defragged up if the gather list is too long for the hardware.
2685  */
2686 int
2687 parse_pkt(struct mbuf **mp, bool vm_wr)
2688 {
2689 	struct mbuf *m0 = *mp, *m;
2690 	int rc, nsegs, defragged = 0;
2691 	struct ether_header *eh;
2692 #ifdef INET
2693 	void *l3hdr;
2694 #endif
2695 #if defined(INET) || defined(INET6)
2696 	int offset;
2697 	struct tcphdr *tcp;
2698 #endif
2699 #if defined(KERN_TLS) || defined(RATELIMIT)
2700 	struct m_snd_tag *mst;
2701 #endif
2702 	uint16_t eh_type;
2703 	uint8_t cflags;
2704 
2705 	cflags = 0;
2706 	M_ASSERTPKTHDR(m0);
2707 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2708 		rc = EINVAL;
2709 fail:
2710 		m_freem(m0);
2711 		*mp = NULL;
2712 		return (rc);
2713 	}
2714 restart:
2715 	/*
2716 	 * First count the number of gather list segments in the payload.
2717 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2718 	 */
2719 	M_ASSERTPKTHDR(m0);
2720 	MPASS(m0->m_pkthdr.len > 0);
2721 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2722 #if defined(KERN_TLS) || defined(RATELIMIT)
2723 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2724 		mst = m0->m_pkthdr.snd_tag;
2725 	else
2726 		mst = NULL;
2727 #endif
2728 #ifdef KERN_TLS
2729 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2730 		struct vi_info *vi = if_getsoftc(mst->ifp);
2731 
2732 		cflags |= MC_TLS;
2733 		set_mbuf_cflags(m0, cflags);
2734 		if (is_t6(vi->pi->adapter))
2735 			rc = t6_ktls_parse_pkt(m0);
2736 		else
2737 			rc = t7_ktls_parse_pkt(m0);
2738 		if (rc != 0)
2739 			goto fail;
2740 		return (EINPROGRESS);
2741 	}
2742 #endif
2743 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2744 		if (defragged++ > 0) {
2745 			rc = EFBIG;
2746 			goto fail;
2747 		}
2748 		counter_u64_add(defrags, 1);
2749 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2750 			rc = ENOMEM;
2751 			goto fail;
2752 		}
2753 		*mp = m0 = m;	/* update caller's copy after defrag */
2754 		goto restart;
2755 	}
2756 
2757 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2758 	    !(cflags & MC_NOMAP))) {
2759 		counter_u64_add(pullups, 1);
2760 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2761 		if (m0 == NULL) {
2762 			/* Should have left well enough alone. */
2763 			rc = EFBIG;
2764 			goto fail;
2765 		}
2766 		*mp = m0;	/* update caller's copy after pullup */
2767 		goto restart;
2768 	}
2769 	set_mbuf_nsegs(m0, nsegs);
2770 	set_mbuf_cflags(m0, cflags);
2771 	calculate_mbuf_len16(m0, vm_wr);
2772 
2773 #ifdef RATELIMIT
2774 	/*
2775 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2776 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2777 	 * all the right things.
2778 	 */
2779 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2780 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2781 		m0->m_pkthdr.snd_tag = NULL;
2782 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2783 		mst = NULL;
2784 	}
2785 #endif
2786 
2787 	if (!needs_hwcsum(m0)
2788 #ifdef RATELIMIT
2789 		 && !needs_eo(mst)
2790 #endif
2791 	)
2792 		return (0);
2793 
2794 	m = m0;
2795 	eh = mtod(m, struct ether_header *);
2796 	eh_type = ntohs(eh->ether_type);
2797 	if (eh_type == ETHERTYPE_VLAN) {
2798 		struct ether_vlan_header *evh = (void *)eh;
2799 
2800 		eh_type = ntohs(evh->evl_proto);
2801 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2802 	} else
2803 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2804 
2805 #if defined(INET) || defined(INET6)
2806 	offset = 0;
2807 #ifdef INET
2808 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2809 #else
2810 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2811 #endif
2812 #endif
2813 
2814 	switch (eh_type) {
2815 #ifdef INET6
2816 	case ETHERTYPE_IPV6:
2817 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2818 		break;
2819 #endif
2820 #ifdef INET
2821 	case ETHERTYPE_IP:
2822 	{
2823 		struct ip *ip = l3hdr;
2824 
2825 		if (needs_vxlan_csum(m0)) {
2826 			/* Driver will do the outer IP hdr checksum. */
2827 			ip->ip_sum = 0;
2828 			if (needs_vxlan_tso(m0)) {
2829 				const uint16_t ipl = ip->ip_len;
2830 
2831 				ip->ip_len = 0;
2832 				ip->ip_sum = ~in_cksum_hdr(ip);
2833 				ip->ip_len = ipl;
2834 			} else
2835 				ip->ip_sum = in_cksum_hdr(ip);
2836 		}
2837 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2838 		break;
2839 	}
2840 #endif
2841 	default:
2842 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2843 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2844 			    "if_cxgbe must be compiled with the same "
2845 			    "INET/INET6 options as the kernel.\n", __func__,
2846 			    eh_type);
2847 		}
2848 		rc = EINVAL;
2849 		goto fail;
2850 	}
2851 
2852 #if defined(INET) || defined(INET6)
2853 	if (needs_vxlan_csum(m0)) {
2854 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2855 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2856 
2857 		/* Inner headers. */
2858 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2859 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2860 		eh_type = ntohs(eh->ether_type);
2861 		if (eh_type == ETHERTYPE_VLAN) {
2862 			struct ether_vlan_header *evh = (void *)eh;
2863 
2864 			eh_type = ntohs(evh->evl_proto);
2865 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2866 		} else
2867 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2868 #ifdef INET
2869 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2870 #else
2871 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2872 #endif
2873 
2874 		switch (eh_type) {
2875 #ifdef INET6
2876 		case ETHERTYPE_IPV6:
2877 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2878 			break;
2879 #endif
2880 #ifdef INET
2881 		case ETHERTYPE_IP:
2882 		{
2883 			struct ip *ip = l3hdr;
2884 
2885 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2886 			break;
2887 		}
2888 #endif
2889 		default:
2890 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2891 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2892 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2893 				    "must be compiled with the same INET/INET6 "
2894 				    "options as the kernel.\n", __func__,
2895 				    eh_type);
2896 			}
2897 			rc = EINVAL;
2898 			goto fail;
2899 		}
2900 		if (needs_inner_tcp_csum(m0)) {
2901 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2902 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2903 		}
2904 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2905 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2906 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2907 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2908 		    CSUM_ENCAP_VXLAN;
2909 	}
2910 
2911 	if (needs_outer_tcp_csum(m0)) {
2912 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2913 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2914 #ifdef RATELIMIT
2915 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2916 			set_mbuf_eo_tsclk_tsoff(m0,
2917 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2918 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2919 		} else
2920 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2921 	} else if (needs_outer_udp_csum(m0)) {
2922 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2923 #endif
2924 	}
2925 #ifdef RATELIMIT
2926 	if (needs_eo(mst)) {
2927 		u_int immhdrs;
2928 
2929 		/* EO WRs have the headers in the WR and not the GL. */
2930 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2931 		    m0->m_pkthdr.l4hlen;
2932 		cflags = 0;
2933 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2934 		MPASS(cflags == mbuf_cflags(m0));
2935 		set_mbuf_eo_nsegs(m0, nsegs);
2936 		set_mbuf_eo_len16(m0,
2937 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2938 		rc = ethofld_transmit(mst->ifp, m0);
2939 		if (rc != 0)
2940 			goto fail;
2941 		return (EINPROGRESS);
2942 	}
2943 #endif
2944 #endif
2945 	MPASS(m0 == *mp);
2946 	return (0);
2947 }
2948 
2949 void *
2950 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2951 {
2952 	struct sge_eq *eq = &wrq->eq;
2953 	struct adapter *sc = wrq->adapter;
2954 	int ndesc, available;
2955 	struct wrqe *wr;
2956 	void *w;
2957 
2958 	MPASS(len16 > 0);
2959 	ndesc = tx_len16_to_desc(len16);
2960 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2961 
2962 	EQ_LOCK(eq);
2963 	if (__predict_false((eq->flags & EQ_HW_ALLOCATED) == 0)) {
2964 		EQ_UNLOCK(eq);
2965 		return (NULL);
2966 	}
2967 
2968 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2969 		drain_wrq_wr_list(sc, wrq);
2970 
2971 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2972 slowpath:
2973 		EQ_UNLOCK(eq);
2974 		wr = alloc_wrqe(len16 * 16, wrq);
2975 		if (__predict_false(wr == NULL))
2976 			return (NULL);
2977 		cookie->pidx = -1;
2978 		cookie->ndesc = ndesc;
2979 		return (&wr->wr);
2980 	}
2981 
2982 	eq->cidx = read_hw_cidx(eq);
2983 	if (eq->pidx == eq->cidx)
2984 		available = eq->sidx - 1;
2985 	else
2986 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2987 	if (available < ndesc)
2988 		goto slowpath;
2989 
2990 	cookie->pidx = eq->pidx;
2991 	cookie->ndesc = ndesc;
2992 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2993 
2994 	w = &eq->desc[eq->pidx];
2995 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2996 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2997 		w = &wrq->ss[0];
2998 		wrq->ss_pidx = cookie->pidx;
2999 		wrq->ss_len = len16 * 16;
3000 	}
3001 
3002 	EQ_UNLOCK(eq);
3003 
3004 	return (w);
3005 }
3006 
3007 void
3008 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3009 {
3010 	struct sge_eq *eq = &wrq->eq;
3011 	struct adapter *sc = wrq->adapter;
3012 	int ndesc, pidx;
3013 	struct wrq_cookie *prev, *next;
3014 
3015 	if (cookie->pidx == -1) {
3016 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3017 
3018 		t4_wrq_tx(sc, wr);
3019 		return;
3020 	}
3021 
3022 	if (__predict_false(w == &wrq->ss[0])) {
3023 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3024 
3025 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3026 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3027 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3028 		wrq->tx_wrs_ss++;
3029 	} else
3030 		wrq->tx_wrs_direct++;
3031 
3032 	EQ_LOCK(eq);
3033 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3034 	pidx = cookie->pidx;
3035 	MPASS(pidx >= 0 && pidx < eq->sidx);
3036 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3037 	next = TAILQ_NEXT(cookie, link);
3038 	if (prev == NULL) {
3039 		MPASS(pidx == eq->dbidx);
3040 		if (next == NULL || ndesc >= 16) {
3041 			int available;
3042 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3043 
3044 			/*
3045 			 * Note that the WR via which we'll request tx updates
3046 			 * is at pidx and not eq->pidx, which has moved on
3047 			 * already.
3048 			 */
3049 			dst = (void *)&eq->desc[pidx];
3050 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3051 			if (available < eq->sidx / 4 &&
3052 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3053 				/*
3054 				 * XXX: This is not 100% reliable with some
3055 				 * types of WRs.  But this is a very unusual
3056 				 * situation for an ofld/ctrl queue anyway.
3057 				 */
3058 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3059 				    F_FW_WR_EQUEQ);
3060 			}
3061 
3062 			if (__predict_true(eq->flags & EQ_HW_ALLOCATED))
3063 				ring_eq_db(wrq->adapter, eq, ndesc);
3064 			else
3065 				IDXINCR(eq->dbidx, ndesc, eq->sidx);
3066 		} else {
3067 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3068 			next->pidx = pidx;
3069 			next->ndesc += ndesc;
3070 		}
3071 	} else {
3072 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3073 		prev->ndesc += ndesc;
3074 	}
3075 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3076 
3077 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3078 		drain_wrq_wr_list(sc, wrq);
3079 
3080 #ifdef INVARIANTS
3081 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3082 		/* Doorbell must have caught up to the pidx. */
3083 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3084 	}
3085 #endif
3086 	EQ_UNLOCK(eq);
3087 }
3088 
3089 static u_int
3090 can_resume_eth_tx(struct mp_ring *r)
3091 {
3092 	struct sge_eq *eq = r->cookie;
3093 
3094 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3095 }
3096 
3097 static inline bool
3098 cannot_use_txpkts(struct mbuf *m)
3099 {
3100 	/* maybe put a GL limit too, to avoid silliness? */
3101 
3102 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3103 }
3104 
3105 static inline int
3106 discard_tx(struct sge_eq *eq)
3107 {
3108 
3109 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3110 }
3111 
3112 static inline int
3113 wr_can_update_eq(void *p)
3114 {
3115 	struct fw_eth_tx_pkts_wr *wr = p;
3116 
3117 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3118 	case FW_ULPTX_WR:
3119 	case FW_ETH_TX_PKT_WR:
3120 	case FW_ETH_TX_PKTS_WR:
3121 	case FW_ETH_TX_PKTS2_WR:
3122 	case FW_ETH_TX_PKT_VM_WR:
3123 	case FW_ETH_TX_PKTS_VM_WR:
3124 		return (1);
3125 	default:
3126 		return (0);
3127 	}
3128 }
3129 
3130 static inline void
3131 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3132     struct fw_eth_tx_pkt_wr *wr)
3133 {
3134 	struct sge_eq *eq = &txq->eq;
3135 	struct txpkts *txp = &txq->txp;
3136 
3137 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3138 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3139 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3140 		eq->equeqidx = eq->pidx;
3141 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3142 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3143 		eq->equeqidx = eq->pidx;
3144 	}
3145 }
3146 
3147 #if defined(__i386__) || defined(__amd64__)
3148 extern uint64_t tsc_freq;
3149 #endif
3150 
3151 static inline bool
3152 record_eth_tx_time(struct sge_txq *txq)
3153 {
3154 	const uint64_t cycles = get_cyclecount();
3155 	const uint64_t last_tx = txq->last_tx;
3156 #if defined(__i386__) || defined(__amd64__)
3157 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3158 #else
3159 	const uint64_t itg = 0;
3160 #endif
3161 
3162 	MPASS(cycles >= last_tx);
3163 	txq->last_tx = cycles;
3164 	return (cycles - last_tx < itg);
3165 }
3166 
3167 /*
3168  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3169  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3170  */
3171 static u_int
3172 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3173 {
3174 	struct sge_txq *txq = r->cookie;
3175 	if_t ifp = txq->ifp;
3176 	struct sge_eq *eq = &txq->eq;
3177 	struct txpkts *txp = &txq->txp;
3178 	struct vi_info *vi = if_getsoftc(ifp);
3179 	struct adapter *sc = vi->adapter;
3180 	u_int total, remaining;		/* # of packets */
3181 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3182 	int i, rc;
3183 	struct mbuf *m0;
3184 	bool snd, recent_tx;
3185 	void *wr;	/* start of the last WR written to the ring */
3186 
3187 	TXQ_LOCK_ASSERT_OWNED(txq);
3188 	recent_tx = record_eth_tx_time(txq);
3189 
3190 	remaining = IDXDIFF(pidx, cidx, r->size);
3191 	if (__predict_false(discard_tx(eq))) {
3192 		for (i = 0; i < txp->npkt; i++)
3193 			m_freem(txp->mb[i]);
3194 		txp->npkt = 0;
3195 		while (cidx != pidx) {
3196 			m0 = r->items[cidx];
3197 			m_freem(m0);
3198 			if (++cidx == r->size)
3199 				cidx = 0;
3200 		}
3201 		reclaim_tx_descs(txq, eq->sidx);
3202 		*coalescing = false;
3203 		return (remaining);	/* emptied */
3204 	}
3205 
3206 	/* How many hardware descriptors do we have readily available. */
3207 	if (eq->pidx == eq->cidx)
3208 		avail = eq->sidx - 1;
3209 	else
3210 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3211 
3212 	total = 0;
3213 	if (remaining == 0) {
3214 		txp->score = 0;
3215 		txq->txpkts_flush++;
3216 		goto send_txpkts;
3217 	}
3218 
3219 	dbdiff = 0;
3220 	MPASS(remaining > 0);
3221 	while (remaining > 0) {
3222 		m0 = r->items[cidx];
3223 		M_ASSERTPKTHDR(m0);
3224 		MPASS(m0->m_nextpkt == NULL);
3225 
3226 		if (avail < 2 * SGE_MAX_WR_NDESC)
3227 			avail += reclaim_tx_descs(txq, 64);
3228 
3229 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3230 			goto skip_coalescing;
3231 		if (cannot_use_txpkts(m0))
3232 			txp->score = 0;
3233 		else if (recent_tx) {
3234 			if (++txp->score == 0)
3235 				txp->score = UINT8_MAX;
3236 		} else
3237 			txp->score = 1;
3238 		if (txp->npkt > 0 || remaining > 1 ||
3239 		    txp->score >= t4_tx_coalesce_pkts ||
3240 		    atomic_load_int(&txq->eq.equiq) != 0) {
3241 			if (vi->flags & TX_USES_VM_WR)
3242 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3243 			else
3244 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3245 		} else {
3246 			snd = false;
3247 			rc = EINVAL;
3248 		}
3249 		if (snd) {
3250 			MPASS(txp->npkt > 0);
3251 			for (i = 0; i < txp->npkt; i++)
3252 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3253 			if (txp->npkt > 1) {
3254 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3255 				if (vi->flags & TX_USES_VM_WR)
3256 					n = write_txpkts_vm_wr(sc, txq);
3257 				else
3258 					n = write_txpkts_wr(sc, txq);
3259 			} else {
3260 				MPASS(avail >=
3261 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3262 				if (vi->flags & TX_USES_VM_WR)
3263 					n = write_txpkt_vm_wr(sc, txq,
3264 					    txp->mb[0]);
3265 				else
3266 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3267 					    avail);
3268 			}
3269 			MPASS(n <= SGE_MAX_WR_NDESC);
3270 			avail -= n;
3271 			dbdiff += n;
3272 			wr = &eq->desc[eq->pidx];
3273 			IDXINCR(eq->pidx, n, eq->sidx);
3274 			txp->npkt = 0;	/* emptied */
3275 		}
3276 		if (rc == 0) {
3277 			/* m0 was coalesced into txq->txpkts. */
3278 			goto next_mbuf;
3279 		}
3280 		if (rc == EAGAIN) {
3281 			/*
3282 			 * m0 is suitable for tx coalescing but could not be
3283 			 * combined with the existing txq->txpkts, which has now
3284 			 * been transmitted.  Start a new txpkts with m0.
3285 			 */
3286 			MPASS(snd);
3287 			MPASS(txp->npkt == 0);
3288 			continue;
3289 		}
3290 
3291 		MPASS(rc != 0 && rc != EAGAIN);
3292 		MPASS(txp->npkt == 0);
3293 skip_coalescing:
3294 		n = tx_len16_to_desc(mbuf_len16(m0));
3295 		if (__predict_false(avail < n)) {
3296 			avail += reclaim_tx_descs(txq, min(n, 32));
3297 			if (avail < n)
3298 				break;	/* out of descriptors */
3299 		}
3300 
3301 		wr = &eq->desc[eq->pidx];
3302 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3303 			n = write_raw_wr(txq, wr, m0, avail);
3304 #ifdef KERN_TLS
3305 		} else if (mbuf_cflags(m0) & MC_TLS) {
3306 			ETHER_BPF_MTAP(ifp, m0);
3307 			if (is_t6(sc))
3308 				n = t6_ktls_write_wr(txq, wr, m0, avail);
3309 			else
3310 				n = t7_ktls_write_wr(txq, wr, m0, avail);
3311 #endif
3312 		} else {
3313 			ETHER_BPF_MTAP(ifp, m0);
3314 			if (vi->flags & TX_USES_VM_WR)
3315 				n = write_txpkt_vm_wr(sc, txq, m0);
3316 			else
3317 				n = write_txpkt_wr(sc, txq, m0, avail);
3318 		}
3319 		MPASS(n >= 1 && n <= avail);
3320 		if (!(mbuf_cflags(m0) & MC_TLS))
3321 			MPASS(n <= SGE_MAX_WR_NDESC);
3322 
3323 		avail -= n;
3324 		dbdiff += n;
3325 		IDXINCR(eq->pidx, n, eq->sidx);
3326 
3327 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3328 			if (wr_can_update_eq(wr))
3329 				set_txupdate_flags(txq, avail, wr);
3330 			ring_eq_db(sc, eq, dbdiff);
3331 			avail += reclaim_tx_descs(txq, 32);
3332 			dbdiff = 0;
3333 		}
3334 next_mbuf:
3335 		total++;
3336 		remaining--;
3337 		if (__predict_false(++cidx == r->size))
3338 			cidx = 0;
3339 	}
3340 	if (dbdiff != 0) {
3341 		if (wr_can_update_eq(wr))
3342 			set_txupdate_flags(txq, avail, wr);
3343 		ring_eq_db(sc, eq, dbdiff);
3344 		reclaim_tx_descs(txq, 32);
3345 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3346 	    atomic_load_int(&txq->eq.equiq) == 0) {
3347 		/*
3348 		 * If nothing was submitted to the chip for tx (it was coalesced
3349 		 * into txpkts instead) and there is no tx update outstanding
3350 		 * then we need to send txpkts now.
3351 		 */
3352 send_txpkts:
3353 		MPASS(txp->npkt > 0);
3354 		for (i = 0; i < txp->npkt; i++)
3355 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3356 		if (txp->npkt > 1) {
3357 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3358 			if (vi->flags & TX_USES_VM_WR)
3359 				n = write_txpkts_vm_wr(sc, txq);
3360 			else
3361 				n = write_txpkts_wr(sc, txq);
3362 		} else {
3363 			MPASS(avail >=
3364 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3365 			if (vi->flags & TX_USES_VM_WR)
3366 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3367 			else
3368 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3369 		}
3370 		MPASS(n <= SGE_MAX_WR_NDESC);
3371 		wr = &eq->desc[eq->pidx];
3372 		IDXINCR(eq->pidx, n, eq->sidx);
3373 		txp->npkt = 0;	/* emptied */
3374 
3375 		MPASS(wr_can_update_eq(wr));
3376 		set_txupdate_flags(txq, avail - n, wr);
3377 		ring_eq_db(sc, eq, n);
3378 		reclaim_tx_descs(txq, 32);
3379 	}
3380 	*coalescing = txp->npkt > 0;
3381 
3382 	return (total);
3383 }
3384 
3385 static inline void
3386 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3387     int qsize, int intr_idx, int cong, int qtype)
3388 {
3389 
3390 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3391 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3392 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3393 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3394 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3395 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3396 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3397 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3398 
3399 	iq->flags = 0;
3400 	iq->state = IQS_DISABLED;
3401 	iq->adapter = sc;
3402 	iq->qtype = qtype;
3403 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3404 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3405 	if (pktc_idx >= 0) {
3406 		iq->intr_params |= F_QINTR_CNT_EN;
3407 		iq->intr_pktc_idx = pktc_idx;
3408 	}
3409 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3410 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3411 	iq->intr_idx = intr_idx;
3412 	iq->cong_drop = cong;
3413 }
3414 
3415 static inline void
3416 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3417 {
3418 	struct sge_params *sp = &sc->params.sge;
3419 
3420 	fl->qsize = qsize;
3421 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3422 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3423 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3424 	if (sc->flags & BUF_PACKING_OK &&
3425 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3426 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3427 		fl->flags |= FL_BUF_PACKING;
3428 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3429 	fl->safe_zidx = sc->sge.safe_zidx;
3430 	if (fl->flags & FL_BUF_PACKING) {
3431 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3432 		fl->buf_boundary = sp->pack_boundary;
3433 	} else {
3434 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3435 		fl->buf_boundary = 16;
3436 	}
3437 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3438 		fl->buf_boundary = sp->pad_boundary;
3439 }
3440 
3441 static inline void
3442 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3443     uint8_t port_id, struct sge_iq *iq, char *name)
3444 {
3445 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3446 	    ("%s: bad qtype %d", __func__, eqtype));
3447 
3448 	eq->type = eqtype;
3449 	eq->port_id = port_id;
3450 	eq->tx_chan = sc->port[port_id]->tx_chan;
3451 	eq->hw_port = sc->port[port_id]->hw_port;
3452 	eq->iq = iq;
3453 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3454 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3455 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3456 }
3457 
3458 int
3459 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3460     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3461 {
3462 	int rc;
3463 
3464 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3465 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3466 	if (rc != 0) {
3467 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3468 		goto done;
3469 	}
3470 
3471 	rc = bus_dmamem_alloc(*tag, va,
3472 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3473 	if (rc != 0) {
3474 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3475 		goto done;
3476 	}
3477 
3478 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3479 	if (rc != 0) {
3480 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3481 		goto done;
3482 	}
3483 done:
3484 	if (rc)
3485 		free_ring(sc, *tag, *map, *pa, *va);
3486 
3487 	return (rc);
3488 }
3489 
3490 int
3491 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3492     bus_addr_t pa, void *va)
3493 {
3494 	if (pa)
3495 		bus_dmamap_unload(tag, map);
3496 	if (va)
3497 		bus_dmamem_free(tag, va, map);
3498 	if (tag)
3499 		bus_dma_tag_destroy(tag);
3500 
3501 	return (0);
3502 }
3503 
3504 /*
3505  * Allocates the software resources (mainly memory and sysctl nodes) for an
3506  * ingress queue and an optional freelist.
3507  *
3508  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3509  */
3510 static int
3511 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3512     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3513 {
3514 	int rc;
3515 	size_t len;
3516 	struct adapter *sc = vi->adapter;
3517 
3518 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3519 
3520 	len = iq->qsize * IQ_ESIZE;
3521 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3522 	    (void **)&iq->desc);
3523 	if (rc != 0)
3524 		return (rc);
3525 
3526 	if (fl) {
3527 		len = fl->qsize * EQ_ESIZE;
3528 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3529 		    &fl->ba, (void **)&fl->desc);
3530 		if (rc) {
3531 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3532 			    iq->desc);
3533 			return (rc);
3534 		}
3535 
3536 		/* Allocate space for one software descriptor per buffer. */
3537 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3538 		    M_CXGBE, M_ZERO | M_WAITOK);
3539 
3540 		add_fl_sysctls(sc, ctx, oid, fl);
3541 		iq->flags |= IQ_HAS_FL;
3542 	}
3543 	add_iq_sysctls(ctx, oid, iq);
3544 	iq->flags |= IQ_SW_ALLOCATED;
3545 
3546 	return (0);
3547 }
3548 
3549 /*
3550  * Frees all software resources (memory and locks) associated with an ingress
3551  * queue and an optional freelist.
3552  */
3553 static void
3554 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3555 {
3556 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3557 
3558 	if (fl) {
3559 		MPASS(iq->flags & IQ_HAS_FL);
3560 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3561 		free_fl_buffers(sc, fl);
3562 		free(fl->sdesc, M_CXGBE);
3563 		mtx_destroy(&fl->fl_lock);
3564 		bzero(fl, sizeof(*fl));
3565 	}
3566 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3567 	bzero(iq, sizeof(*iq));
3568 }
3569 
3570 /*
3571  * Allocates a hardware ingress queue and an optional freelist that will be
3572  * associated with it.
3573  *
3574  * Returns errno on failure.  Resources allocated up to that point may still be
3575  * allocated.  Caller is responsible for cleanup in case this function fails.
3576  */
3577 static int
3578 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3579 {
3580 	int rc, cntxt_id, cong_map;
3581 	struct fw_iq_cmd c;
3582 	struct adapter *sc = vi->adapter;
3583 	struct port_info *pi = vi->pi;
3584 	__be32 v = 0;
3585 
3586 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3587 
3588 	bzero(&c, sizeof(c));
3589 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3590 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3591 	    V_FW_IQ_CMD_VFN(0));
3592 
3593 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3594 	    FW_LEN16(c));
3595 
3596 	/* Special handling for firmware event queue */
3597 	if (iq == &sc->sge.fwq)
3598 		v |= F_FW_IQ_CMD_IQASYNCH;
3599 
3600 	if (iq->intr_idx < 0) {
3601 		/* Forwarded interrupts, all headed to fwq */
3602 		v |= F_FW_IQ_CMD_IQANDST;
3603 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3604 	} else {
3605 		KASSERT(iq->intr_idx < sc->intr_count,
3606 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3607 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3608 	}
3609 
3610 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3611 	c.type_to_iqandstindex = htobe32(v |
3612 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3613 	    V_FW_IQ_CMD_VIID(vi->viid) |
3614 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3615 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->hw_port) |
3616 	    F_FW_IQ_CMD_IQGTSMODE |
3617 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3618 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3619 	c.iqsize = htobe16(iq->qsize);
3620 	c.iqaddr = htobe64(iq->ba);
3621 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3622 	if (iq->cong_drop != -1) {
3623 		if (iq->qtype == IQ_ETH) {
3624 			if (chip_id(sc) >= CHELSIO_T7)
3625 				cong_map = 1 << pi->hw_port;
3626 			else
3627 				cong_map = pi->rx_e_chan_map;
3628 		} else
3629 			cong_map = 0;
3630 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3631 	}
3632 
3633 	if (fl) {
3634 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3635 		c.iqns_to_fl0congen |=
3636 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3637 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3638 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3639 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3640 			    0));
3641 		if (iq->cong_drop != -1) {
3642 			c.iqns_to_fl0congen |=
3643 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3644 				    F_FW_IQ_CMD_FL0CONGCIF |
3645 				    F_FW_IQ_CMD_FL0CONGEN);
3646 		}
3647 		c.fl0dcaen_to_fl0cidxfthresh =
3648 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3649 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3650 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3651 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3652 		c.fl0size = htobe16(fl->qsize);
3653 		c.fl0addr = htobe64(fl->ba);
3654 	}
3655 
3656 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3657 	if (rc != 0) {
3658 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3659 		return (rc);
3660 	}
3661 
3662 	iq->cidx = 0;
3663 	iq->gen = F_RSPD_GEN;
3664 	iq->cntxt_id = be16toh(c.iqid);
3665 	iq->abs_id = be16toh(c.physiqid);
3666 
3667 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3668 	if (cntxt_id >= sc->sge.iqmap_sz) {
3669 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3670 		    cntxt_id, sc->sge.iqmap_sz - 1);
3671 	}
3672 	sc->sge.iqmap[cntxt_id] = iq;
3673 
3674 	if (fl) {
3675 		u_int qid;
3676 #ifdef INVARIANTS
3677 		int i;
3678 
3679 		MPASS(!(fl->flags & FL_BUF_RESUME));
3680 		for (i = 0; i < fl->sidx * 8; i++)
3681 			MPASS(fl->sdesc[i].cl == NULL);
3682 #endif
3683 		fl->cntxt_id = be16toh(c.fl0id);
3684 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3685 		fl->rx_offset = 0;
3686 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3687 
3688 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3689 		if (cntxt_id >= sc->sge.eqmap_sz) {
3690 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3691 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3692 		}
3693 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3694 
3695 		qid = fl->cntxt_id;
3696 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3697 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3698 			uint32_t mask = (1 << s_qpp) - 1;
3699 			volatile uint8_t *udb;
3700 
3701 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3702 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3703 			qid &= mask;
3704 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3705 				udb += qid << UDBS_SEG_SHIFT;
3706 				qid = 0;
3707 			}
3708 			fl->udb = (volatile void *)udb;
3709 		}
3710 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3711 
3712 		FL_LOCK(fl);
3713 		/* Enough to make sure the SGE doesn't think it's starved */
3714 		refill_fl(sc, fl, fl->lowat);
3715 		FL_UNLOCK(fl);
3716 	}
3717 
3718 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3719 	    iq->cong_drop != -1) {
3720 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3721 		    cong_map);
3722 	}
3723 
3724 	/* Enable IQ interrupts */
3725 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3726 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3727 	    V_INGRESSQID(iq->cntxt_id));
3728 
3729 	iq->flags |= IQ_HW_ALLOCATED;
3730 
3731 	return (0);
3732 }
3733 
3734 static int
3735 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3736 {
3737 	int rc;
3738 
3739 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3740 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3741 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3742 	if (rc != 0) {
3743 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3744 		return (rc);
3745 	}
3746 	iq->flags &= ~IQ_HW_ALLOCATED;
3747 
3748 	return (0);
3749 }
3750 
3751 static void
3752 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3753     struct sge_iq *iq)
3754 {
3755 	struct sysctl_oid_list *children;
3756 
3757 	if (ctx == NULL || oid == NULL)
3758 		return;
3759 
3760 	children = SYSCTL_CHILDREN(oid);
3761 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3762 	    "bus address of descriptor ring");
3763 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3764 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3765 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3766 	    &iq->abs_id, 0, "absolute id of the queue");
3767 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3768 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3769 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3770 	    0, "consumer index");
3771 }
3772 
3773 static void
3774 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3775     struct sysctl_oid *oid, struct sge_fl *fl)
3776 {
3777 	struct sysctl_oid_list *children;
3778 
3779 	if (ctx == NULL || oid == NULL)
3780 		return;
3781 
3782 	children = SYSCTL_CHILDREN(oid);
3783 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3784 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3785 	children = SYSCTL_CHILDREN(oid);
3786 
3787 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3788 	    &fl->ba, "bus address of descriptor ring");
3789 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3790 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3791 	    "desc ring size in bytes");
3792 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3793 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3794 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3795 	    fl_pad ? 1 : 0, "padding enabled");
3796 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3797 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3798 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3799 	    0, "consumer index");
3800 	if (fl->flags & FL_BUF_PACKING) {
3801 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3802 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3803 	}
3804 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3805 	    0, "producer index");
3806 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3807 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3808 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3809 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3810 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3811 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3812 }
3813 
3814 /*
3815  * Idempotent.
3816  */
3817 static int
3818 alloc_fwq(struct adapter *sc)
3819 {
3820 	int rc, intr_idx;
3821 	struct sge_iq *fwq = &sc->sge.fwq;
3822 	struct vi_info *vi = &sc->port[0]->vi[0];
3823 
3824 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3825 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3826 
3827 		if (sc->flags & IS_VF)
3828 			intr_idx = 0;
3829 		else
3830 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3831 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3832 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3833 		if (rc != 0) {
3834 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3835 			return (rc);
3836 		}
3837 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3838 	}
3839 
3840 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3841 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3842 
3843 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3844 		if (rc != 0) {
3845 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3846 			return (rc);
3847 		}
3848 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3849 	}
3850 
3851 	return (0);
3852 }
3853 
3854 /*
3855  * Idempotent.
3856  */
3857 static void
3858 free_fwq(struct adapter *sc)
3859 {
3860 	struct sge_iq *fwq = &sc->sge.fwq;
3861 
3862 	if (fwq->flags & IQ_HW_ALLOCATED) {
3863 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3864 		free_iq_fl_hwq(sc, fwq, NULL);
3865 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3866 	}
3867 
3868 	if (fwq->flags & IQ_SW_ALLOCATED) {
3869 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3870 		free_iq_fl(sc, fwq, NULL);
3871 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3872 	}
3873 }
3874 
3875 /*
3876  * Idempotent.
3877  */
3878 static int
3879 alloc_ctrlq(struct adapter *sc, int idx)
3880 {
3881 	int rc;
3882 	char name[16];
3883 	struct sysctl_oid *oid;
3884 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3885 
3886 	MPASS(idx < sc->sge.nctrlq);
3887 
3888 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3889 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3890 
3891 		snprintf(name, sizeof(name), "%d", idx);
3892 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3893 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3894 		    "ctrl queue");
3895 
3896 		snprintf(name, sizeof(name), "%s ctrlq%d",
3897 		    device_get_nameunit(sc->dev), idx);
3898 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3899 		    idx % sc->params.nports, &sc->sge.fwq, name);
3900 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3901 		if (rc != 0) {
3902 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3903 			sysctl_remove_oid(oid, 1, 1);
3904 			return (rc);
3905 		}
3906 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3907 	}
3908 
3909 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3910 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3911 		MPASS(ctrlq->nwr_pending == 0);
3912 		MPASS(ctrlq->ndesc_needed == 0);
3913 
3914 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq, idx);
3915 		if (rc != 0) {
3916 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3917 			return (rc);
3918 		}
3919 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3920 	}
3921 
3922 	return (0);
3923 }
3924 
3925 /*
3926  * Idempotent.
3927  */
3928 static void
3929 free_ctrlq(struct adapter *sc, int idx)
3930 {
3931 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3932 
3933 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3934 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3935 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3936 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3937 	}
3938 
3939 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3940 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3941 		free_wrq(sc, ctrlq);
3942 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3943 	}
3944 }
3945 
3946 int
3947 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3948     int cong_map)
3949 {
3950 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3951 	uint32_t param, val;
3952 	uint16_t ch_map;
3953 	int cong_mode, rc, i;
3954 
3955 	if (chip_id(sc) < CHELSIO_T5)
3956 		return (ENOTSUP);
3957 
3958 	/* Convert the driver knob to the mode understood by the firmware. */
3959 	switch (cong_drop) {
3960 	case -1:
3961 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3962 		break;
3963 	case 0:
3964 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3965 		break;
3966 	case 1:
3967 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3968 		break;
3969 	case 2:
3970 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3971 		break;
3972 	default:
3973 		MPASS(0);
3974 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3975 		    cong_drop, cntxt_id);
3976 		return (EINVAL);
3977 	}
3978 
3979 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3980 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3981 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3982 	if (chip_id(sc) >= CHELSIO_T7) {
3983 		val = V_T7_DMAQ_CONM_CTXT_CNGTPMODE(cong_mode) |
3984 		    V_T7_DMAQ_CONM_CTXT_CH_VEC(cong_map);
3985 	} else {
3986 		val = V_CONMCTXT_CNGTPMODE(cong_mode);
3987 		if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3988 		    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3989 			for (i = 0, ch_map = 0; i < 4; i++) {
3990 				if (cong_map & (1 << i))
3991 					ch_map |= 1 << (i << cng_ch_bits_log);
3992 			}
3993 			val |= V_CONMCTXT_CNGCHMAP(ch_map);
3994 		}
3995 	}
3996 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3997 	if (rc != 0) {
3998 		CH_ERR(sc, "failed to set congestion manager context "
3999 		    "for ingress queue %d: %d\n", cntxt_id, rc);
4000 	}
4001 
4002 	return (rc);
4003 }
4004 
4005 /*
4006  * Idempotent.
4007  */
4008 static int
4009 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4010     int maxp)
4011 {
4012 	int rc;
4013 	struct adapter *sc = vi->adapter;
4014 	if_t ifp = vi->ifp;
4015 	struct sysctl_oid *oid;
4016 	char name[16];
4017 
4018 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4019 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4020 #if defined(INET) || defined(INET6)
4021 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4022 		if (rc != 0)
4023 			return (rc);
4024 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
4025 #endif
4026 		rxq->ifp = ifp;
4027 
4028 		snprintf(name, sizeof(name), "%d", idx);
4029 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4030 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4031 		    "rx queue");
4032 
4033 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4034 		    intr_idx, cong_drop, IQ_ETH);
4035 #if defined(INET) || defined(INET6)
4036 		if (if_getcapenable(ifp) & IFCAP_LRO)
4037 			rxq->iq.flags |= IQ_LRO_ENABLED;
4038 #endif
4039 		if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
4040 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
4041 		snprintf(name, sizeof(name), "%s rxq%d-fl",
4042 		    device_get_nameunit(vi->dev), idx);
4043 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4044 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4045 		if (rc != 0) {
4046 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4047 			sysctl_remove_oid(oid, 1, 1);
4048 #if defined(INET) || defined(INET6)
4049 			tcp_lro_free(&rxq->lro);
4050 			rxq->lro.ifp = NULL;
4051 #endif
4052 			return (rc);
4053 		}
4054 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4055 		add_rxq_sysctls(&vi->ctx, oid, rxq);
4056 	}
4057 
4058 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4059 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4060 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4061 		if (rc != 0) {
4062 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4063 			return (rc);
4064 		}
4065 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4066 
4067 		if (idx == 0)
4068 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4069 		else
4070 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4071 			    ("iq_base mismatch"));
4072 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4073 		    ("PF with non-zero iq_base"));
4074 
4075 		/*
4076 		 * The freelist is just barely above the starvation threshold
4077 		 * right now, fill it up a bit more.
4078 		 */
4079 		FL_LOCK(&rxq->fl);
4080 		refill_fl(sc, &rxq->fl, 128);
4081 		FL_UNLOCK(&rxq->fl);
4082 	}
4083 
4084 	return (0);
4085 }
4086 
4087 /*
4088  * Idempotent.
4089  */
4090 static void
4091 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4092 {
4093 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4094 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4095 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4096 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4097 	}
4098 
4099 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4100 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4101 #if defined(INET) || defined(INET6)
4102 		tcp_lro_free(&rxq->lro);
4103 #endif
4104 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4105 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4106 		bzero(rxq, sizeof(*rxq));
4107 	}
4108 }
4109 
4110 static void
4111 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4112     struct sge_rxq *rxq)
4113 {
4114 	struct sysctl_oid_list *children;
4115 
4116 	if (ctx == NULL || oid == NULL)
4117 		return;
4118 
4119 	children = SYSCTL_CHILDREN(oid);
4120 #if defined(INET) || defined(INET6)
4121 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4122 	    &rxq->lro.lro_queued, 0, NULL);
4123 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4124 	    &rxq->lro.lro_flushed, 0, NULL);
4125 #endif
4126 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4127 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4128 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4129 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4130 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4131 	    &rxq->vxlan_rxcsum,
4132 	    "# of times hardware assisted with inner checksum (VXLAN)");
4133 }
4134 
4135 #ifdef TCP_OFFLOAD
4136 /*
4137  * Idempotent.
4138  */
4139 static int
4140 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4141     int intr_idx, int maxp)
4142 {
4143 	int rc;
4144 	struct adapter *sc = vi->adapter;
4145 	struct sysctl_oid *oid;
4146 	char name[16];
4147 
4148 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4149 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4150 
4151 		snprintf(name, sizeof(name), "%d", idx);
4152 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4153 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4154 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4155 
4156 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4157 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4158 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4159 		    device_get_nameunit(vi->dev), idx);
4160 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4161 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4162 		    oid);
4163 		if (rc != 0) {
4164 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4165 			    rc);
4166 			sysctl_remove_oid(oid, 1, 1);
4167 			return (rc);
4168 		}
4169 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4170 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4171 		ofld_rxq->rx_iscsi_ddp_setup_error =
4172 		    counter_u64_alloc(M_WAITOK);
4173 		ofld_rxq->ddp_buffer_alloc = counter_u64_alloc(M_WAITOK);
4174 		ofld_rxq->ddp_buffer_reuse = counter_u64_alloc(M_WAITOK);
4175 		ofld_rxq->ddp_buffer_free = counter_u64_alloc(M_WAITOK);
4176 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4177 	}
4178 
4179 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4180 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4181 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4182 		if (rc != 0) {
4183 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4184 			    rc);
4185 			return (rc);
4186 		}
4187 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4188 	}
4189 	return (rc);
4190 }
4191 
4192 /*
4193  * Idempotent.
4194  */
4195 static void
4196 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4197 {
4198 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4199 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4200 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4201 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4202 	}
4203 
4204 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4205 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4206 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4207 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4208 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4209 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4210 		counter_u64_free(ofld_rxq->ddp_buffer_alloc);
4211 		counter_u64_free(ofld_rxq->ddp_buffer_reuse);
4212 		counter_u64_free(ofld_rxq->ddp_buffer_free);
4213 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4214 	}
4215 }
4216 
4217 static void
4218 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4219     struct sge_ofld_rxq *ofld_rxq)
4220 {
4221 	struct sysctl_oid_list *children;
4222 
4223 	if (ctx == NULL || oid == NULL)
4224 		return;
4225 
4226 	children = SYSCTL_CHILDREN(oid);
4227 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_jobs",
4228 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_jobs, 0,
4229 	    "# of aio_read(2) jobs completed via DDP");
4230 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_octets",
4231 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_octets, 0,
4232 	    "# of octets placed directly for aio_read(2) jobs");
4233 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4234 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4235 	    "# of TOE TLS records received");
4236 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4237 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4238 	    "# of payload octets in received TOE TLS records");
4239 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4240 	    "rx_toe_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_ddp_octets,
4241 	    "# of payload octets received via TCP DDP");
4242 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4243 	    "ddp_buffer_alloc", CTLFLAG_RD, &ofld_rxq->ddp_buffer_alloc,
4244 	    "# of DDP RCV buffers allocated");
4245 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4246 	    "ddp_buffer_reuse", CTLFLAG_RD, &ofld_rxq->ddp_buffer_reuse,
4247 	    "# of DDP RCV buffers reused");
4248 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4249 	    "ddp_buffer_free", CTLFLAG_RD, &ofld_rxq->ddp_buffer_free,
4250 	    "# of DDP RCV buffers freed");
4251 
4252 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4253 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4254 	children = SYSCTL_CHILDREN(oid);
4255 
4256 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4257 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4258 	    "# of times DDP buffer was setup successfully.");
4259 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4260 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4261 	    "# of times DDP buffer setup failed.");
4262 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4263 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4264 	    "# of octets placed directly");
4265 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4266 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4267 	    "# of PDUs with data placed directly.");
4268 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4269 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4270 	    "# of data octets delivered in freelist");
4271 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4272 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4273 	    "# of PDUs with data delivered in freelist");
4274 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4275 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4276 	    "# of PDUs with invalid padding");
4277 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4278 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4279 	    "# of PDUs with invalid header digests");
4280 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4281 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4282 	    "# of PDUs with invalid data digests");
4283 }
4284 #endif
4285 
4286 /*
4287  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4288  */
4289 static u_int
4290 qsize_to_fthresh(int qsize)
4291 {
4292 	u_int fthresh;
4293 
4294 	fthresh = qsize == 0 ? 0 : order_base_2(qsize);
4295 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4296 		fthresh = X_CIDXFLUSHTHRESH_128;
4297 
4298 	return (fthresh);
4299 }
4300 
4301 static int
4302 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq, int idx)
4303 {
4304 	int rc, cntxt_id, core;
4305 	struct fw_eq_ctrl_cmd c;
4306 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4307 
4308 	core = sc->params.tid_qid_sel_mask != 0 ? idx % sc->params.ncores : 0;
4309 	bzero(&c, sizeof(c));
4310 
4311 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4312 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4313 	    V_FW_EQ_CTRL_CMD_VFN(0));
4314 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4315 	    V_FW_EQ_CTRL_CMD_COREGROUP(core) |
4316 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4317 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4318 	c.physeqid_pkd = htobe32(0);
4319 	c.fetchszm_to_iqid =
4320 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4321 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->hw_port) |
4322 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4323 	c.dcaen_to_eqsize =
4324 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4325 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4326 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4327 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4328 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4329 	c.eqaddr = htobe64(eq->ba);
4330 
4331 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4332 	if (rc != 0) {
4333 		CH_ERR(sc, "failed to create hw ctrlq for port %d: %d\n",
4334 		    eq->port_id, rc);
4335 		return (rc);
4336 	}
4337 
4338 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4339 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4340 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4341 	if (cntxt_id >= sc->sge.eqmap_sz)
4342 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4343 		cntxt_id, sc->sge.eqmap_sz - 1);
4344 	sc->sge.eqmap[cntxt_id] = eq;
4345 
4346 	return (rc);
4347 }
4348 
4349 static int
4350 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4351 {
4352 	int rc, cntxt_id, core;
4353 	struct fw_eq_eth_cmd c;
4354 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4355 
4356 	core = sc->params.ncores > 1 ? idx % sc->params.ncores : 0;
4357 	bzero(&c, sizeof(c));
4358 
4359 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4360 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4361 	    V_FW_EQ_ETH_CMD_VFN(0));
4362 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4363 	    V_FW_EQ_ETH_CMD_COREGROUP(core) |
4364 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4365 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4366 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4367 	c.fetchszm_to_iqid =
4368 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4369 		V_FW_EQ_ETH_CMD_PCIECHN(eq->hw_port) | F_FW_EQ_ETH_CMD_FETCHRO |
4370 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4371 	c.dcaen_to_eqsize =
4372 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4373 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4374 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4375 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4376 	c.eqaddr = htobe64(eq->ba);
4377 
4378 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4379 	if (rc != 0) {
4380 		device_printf(vi->dev,
4381 		    "failed to create Ethernet egress queue: %d\n", rc);
4382 		return (rc);
4383 	}
4384 
4385 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4386 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4387 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4388 	if (cntxt_id >= sc->sge.eqmap_sz)
4389 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4390 		cntxt_id, sc->sge.eqmap_sz - 1);
4391 	sc->sge.eqmap[cntxt_id] = eq;
4392 
4393 	return (rc);
4394 }
4395 
4396 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4397 /*
4398  * ncores	number of uP cores.
4399  * nq		number of queues for this VI
4400  * idx		queue index
4401  */
4402 static inline int
4403 qidx_to_core(int ncores, int nq, int idx)
4404 {
4405 	MPASS(nq % ncores == 0);
4406 	MPASS(idx >= 0 && idx < nq);
4407 
4408 	return (idx * ncores / nq);
4409 }
4410 
4411 static int
4412 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq,
4413     int idx)
4414 {
4415 	int rc, cntxt_id, core;
4416 	struct fw_eq_ofld_cmd c;
4417 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4418 
4419 	if (sc->params.tid_qid_sel_mask != 0)
4420 		core = qidx_to_core(sc->params.ncores, vi->nofldtxq, idx);
4421 	else
4422 		core = 0;
4423 
4424 	bzero(&c, sizeof(c));
4425 
4426 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4427 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4428 	    V_FW_EQ_OFLD_CMD_VFN(0));
4429 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4430 	    V_FW_EQ_OFLD_CMD_COREGROUP(core) |
4431 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4432 	c.fetchszm_to_iqid =
4433 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4434 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->hw_port) |
4435 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4436 	c.dcaen_to_eqsize =
4437 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4438 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4439 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4440 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4441 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4442 	c.eqaddr = htobe64(eq->ba);
4443 
4444 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4445 	if (rc != 0) {
4446 		device_printf(vi->dev,
4447 		    "failed to create egress queue for TCP offload: %d\n", rc);
4448 		return (rc);
4449 	}
4450 
4451 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4452 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4453 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4454 	if (cntxt_id >= sc->sge.eqmap_sz)
4455 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4456 		cntxt_id, sc->sge.eqmap_sz - 1);
4457 	sc->sge.eqmap[cntxt_id] = eq;
4458 
4459 	return (rc);
4460 }
4461 #endif
4462 
4463 /* SW only */
4464 static int
4465 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4466     struct sysctl_oid *oid)
4467 {
4468 	int rc, qsize;
4469 	size_t len;
4470 
4471 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4472 
4473 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4474 	len = qsize * EQ_ESIZE;
4475 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4476 	    (void **)&eq->desc);
4477 	if (rc)
4478 		return (rc);
4479 	if (ctx != NULL && oid != NULL)
4480 		add_eq_sysctls(sc, ctx, oid, eq);
4481 	eq->flags |= EQ_SW_ALLOCATED;
4482 
4483 	return (0);
4484 }
4485 
4486 /* SW only */
4487 static void
4488 free_eq(struct adapter *sc, struct sge_eq *eq)
4489 {
4490 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4491 	if (eq->type == EQ_ETH)
4492 		MPASS(eq->pidx == eq->cidx);
4493 
4494 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4495 	mtx_destroy(&eq->eq_lock);
4496 	bzero(eq, sizeof(*eq));
4497 }
4498 
4499 static void
4500 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4501     struct sysctl_oid *oid, struct sge_eq *eq)
4502 {
4503 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4504 
4505 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4506 	    "bus address of descriptor ring");
4507 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4508 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4509 	    "desc ring size in bytes");
4510 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4511 	    &eq->abs_id, 0, "absolute id of the queue");
4512 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4513 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4514 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4515 	    0, "consumer index");
4516 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4517 	    0, "producer index");
4518 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4519 	    eq->sidx, "status page index");
4520 }
4521 
4522 static int
4523 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4524 {
4525 	int rc;
4526 
4527 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4528 
4529 	eq->iqid = eq->iq->cntxt_id;
4530 	eq->pidx = eq->cidx = eq->dbidx = 0;
4531 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4532 	eq->equeqidx = 0;
4533 	eq->doorbells = sc->doorbells;
4534 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4535 
4536 	switch (eq->type) {
4537 	case EQ_CTRL:
4538 		rc = ctrl_eq_alloc(sc, eq, idx);
4539 		break;
4540 
4541 	case EQ_ETH:
4542 		rc = eth_eq_alloc(sc, vi, eq, idx);
4543 		break;
4544 
4545 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4546 	case EQ_OFLD:
4547 		rc = ofld_eq_alloc(sc, vi, eq, idx);
4548 		break;
4549 #endif
4550 
4551 	default:
4552 		panic("%s: invalid eq type %d.", __func__, eq->type);
4553 	}
4554 	if (rc != 0) {
4555 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4556 		    eq->type, rc);
4557 		return (rc);
4558 	}
4559 
4560 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4561 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4562 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4563 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4564 		uint32_t mask = (1 << s_qpp) - 1;
4565 		volatile uint8_t *udb;
4566 
4567 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4568 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4569 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4570 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4571 			clrbit(&eq->doorbells, DOORBELL_WCWR);
4572 		else {
4573 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4574 			eq->udb_qid = 0;
4575 		}
4576 		eq->udb = (volatile void *)udb;
4577 	}
4578 
4579 	eq->flags |= EQ_HW_ALLOCATED;
4580 	return (0);
4581 }
4582 
4583 static int
4584 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4585 {
4586 	int rc;
4587 
4588 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4589 
4590 	switch (eq->type) {
4591 	case EQ_CTRL:
4592 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4593 		break;
4594 	case EQ_ETH:
4595 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4596 		break;
4597 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4598 	case EQ_OFLD:
4599 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4600 		break;
4601 #endif
4602 	default:
4603 		panic("%s: invalid eq type %d.", __func__, eq->type);
4604 	}
4605 	if (rc != 0) {
4606 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4607 		return (rc);
4608 	}
4609 	eq->flags &= ~EQ_HW_ALLOCATED;
4610 
4611 	return (0);
4612 }
4613 
4614 static int
4615 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4616     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4617 {
4618 	struct sge_eq *eq = &wrq->eq;
4619 	int rc;
4620 
4621 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4622 
4623 	rc = alloc_eq(sc, eq, ctx, oid);
4624 	if (rc)
4625 		return (rc);
4626 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4627 	/* Can't fail after this. */
4628 
4629 	wrq->adapter = sc;
4630 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4631 	TAILQ_INIT(&wrq->incomplete_wrs);
4632 	STAILQ_INIT(&wrq->wr_list);
4633 	wrq->nwr_pending = 0;
4634 	wrq->ndesc_needed = 0;
4635 	add_wrq_sysctls(ctx, oid, wrq);
4636 
4637 	return (0);
4638 }
4639 
4640 static void
4641 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4642 {
4643 	free_eq(sc, &wrq->eq);
4644 	MPASS(wrq->nwr_pending == 0);
4645 	MPASS(wrq->ndesc_needed == 0);
4646 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4647 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4648 	bzero(wrq, sizeof(*wrq));
4649 }
4650 
4651 static void
4652 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4653     struct sge_wrq *wrq)
4654 {
4655 	struct sysctl_oid_list *children;
4656 
4657 	if (ctx == NULL || oid == NULL)
4658 		return;
4659 
4660 	children = SYSCTL_CHILDREN(oid);
4661 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4662 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4663 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4664 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4665 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4666 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4667 }
4668 
4669 /*
4670  * Idempotent.
4671  */
4672 static int
4673 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4674 {
4675 	int rc, iqidx;
4676 	struct port_info *pi = vi->pi;
4677 	struct adapter *sc = vi->adapter;
4678 	struct sge_eq *eq = &txq->eq;
4679 	struct txpkts *txp;
4680 	char name[16];
4681 	struct sysctl_oid *oid;
4682 
4683 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4684 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4685 
4686 		snprintf(name, sizeof(name), "%d", idx);
4687 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4688 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4689 		    "tx queue");
4690 
4691 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4692 		snprintf(name, sizeof(name), "%s txq%d",
4693 		    device_get_nameunit(vi->dev), idx);
4694 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->port_id,
4695 		    &sc->sge.rxq[iqidx].iq, name);
4696 
4697 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4698 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4699 		if (rc != 0) {
4700 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4701 			    idx, rc);
4702 failed:
4703 			sysctl_remove_oid(oid, 1, 1);
4704 			return (rc);
4705 		}
4706 
4707 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4708 		if (rc) {
4709 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4710 			mp_ring_free(txq->r);
4711 			goto failed;
4712 		}
4713 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4714 		/* Can't fail after this point. */
4715 
4716 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4717 		txq->ifp = vi->ifp;
4718 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4719 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4720 		    M_ZERO | M_WAITOK);
4721 
4722 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4723 	}
4724 
4725 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4726 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4727 		rc = alloc_eq_hwq(sc, vi, eq, idx);
4728 		if (rc != 0) {
4729 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4730 			return (rc);
4731 		}
4732 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4733 		/* Can't fail after this point. */
4734 
4735 		if (idx == 0)
4736 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4737 		else
4738 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4739 			    ("eq_base mismatch"));
4740 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4741 		    ("PF with non-zero eq_base"));
4742 
4743 		txp = &txq->txp;
4744 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4745 		txq->txp.max_npkt = min(nitems(txp->mb),
4746 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4747 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4748 			txq->txp.max_npkt--;
4749 
4750 		if (vi->flags & TX_USES_VM_WR)
4751 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4752 			    V_TXPKT_INTF(pi->hw_port));
4753 		else
4754 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4755 			    V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
4756 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4757 
4758 		txq->tc_idx = -1;
4759 	}
4760 
4761 	return (0);
4762 }
4763 
4764 /*
4765  * Idempotent.
4766  */
4767 static void
4768 free_txq(struct vi_info *vi, struct sge_txq *txq)
4769 {
4770 	struct adapter *sc = vi->adapter;
4771 	struct sge_eq *eq = &txq->eq;
4772 
4773 	if (eq->flags & EQ_HW_ALLOCATED) {
4774 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4775 		free_eq_hwq(sc, NULL, eq);
4776 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4777 	}
4778 
4779 	if (eq->flags & EQ_SW_ALLOCATED) {
4780 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4781 		sglist_free(txq->gl);
4782 		free(txq->sdesc, M_CXGBE);
4783 		mp_ring_free(txq->r);
4784 		free_eq(sc, eq);
4785 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4786 		bzero(txq, sizeof(*txq));
4787 	}
4788 }
4789 
4790 static void
4791 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4792     struct sysctl_oid *oid, struct sge_txq *txq)
4793 {
4794 	struct adapter *sc;
4795 	struct sysctl_oid_list *children;
4796 
4797 	if (ctx == NULL || oid == NULL)
4798 		return;
4799 
4800 	sc = vi->adapter;
4801 	children = SYSCTL_CHILDREN(oid);
4802 
4803 	mp_ring_sysctls(txq->r, ctx, children);
4804 
4805 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4806 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4807 	    sysctl_tc, "I", "traffic class (-1 means none)");
4808 
4809 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4810 	    &txq->txcsum, "# of times hardware assisted with checksum");
4811 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4812 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4813 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4814 	    &txq->tso_wrs, "# of TSO work requests");
4815 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4816 	    &txq->imm_wrs, "# of work requests with immediate data");
4817 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4818 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4819 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4820 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4821 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4822 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4823 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4824 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4825 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4826 	    &txq->txpkts0_pkts,
4827 	    "# of frames tx'd using type0 txpkts work requests");
4828 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4829 	    &txq->txpkts1_pkts,
4830 	    "# of frames tx'd using type1 txpkts work requests");
4831 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4832 	    &txq->txpkts_flush,
4833 	    "# of times txpkts had to be flushed out by an egress-update");
4834 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4835 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4836 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4837 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4838 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4839 	    &txq->vxlan_txcsum,
4840 	    "# of times hardware assisted with inner checksums (VXLAN)");
4841 
4842 #ifdef KERN_TLS
4843 	if (is_ktls(sc)) {
4844 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4845 		    CTLFLAG_RD, &txq->kern_tls_records,
4846 		    "# of NIC TLS records transmitted");
4847 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4848 		    CTLFLAG_RD, &txq->kern_tls_short,
4849 		    "# of short NIC TLS records transmitted");
4850 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4851 		    CTLFLAG_RD, &txq->kern_tls_partial,
4852 		    "# of partial NIC TLS records transmitted");
4853 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4854 		    CTLFLAG_RD, &txq->kern_tls_full,
4855 		    "# of full NIC TLS records transmitted");
4856 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4857 		    CTLFLAG_RD, &txq->kern_tls_octets,
4858 		    "# of payload octets in transmitted NIC TLS records");
4859 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4860 		    CTLFLAG_RD, &txq->kern_tls_waste,
4861 		    "# of octets DMAd but not transmitted in NIC TLS records");
4862 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4863 		    CTLFLAG_RD, &txq->kern_tls_header,
4864 		    "# of NIC TLS header-only packets transmitted");
4865 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4866 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4867 		    "# of NIC TLS padded FIN packets on short TLS records");
4868 		if (is_t6(sc)) {
4869 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4870 			    "kern_tls_options", CTLFLAG_RD,
4871 			    &txq->kern_tls_options,
4872 			    "# of NIC TLS options-only packets transmitted");
4873 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4874 			    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4875 			    "# of NIC TLS FIN-only packets transmitted");
4876 		} else {
4877 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4878 			    "kern_tls_ghash_received", CTLFLAG_RD,
4879 			    &txq->kern_tls_ghash_received,
4880 			    "# of NIC TLS GHASHes received");
4881 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4882 			    "kern_tls_ghash_requested", CTLFLAG_RD,
4883 			    &txq->kern_tls_ghash_requested,
4884 			    "# of NIC TLS GHASHes requested");
4885 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4886 			    "kern_tls_lso", CTLFLAG_RD,
4887 			    &txq->kern_tls_lso,
4888 			    "# of NIC TLS records transmitted using LSO");
4889 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4890 			    "kern_tls_partial_ghash", CTLFLAG_RD,
4891 			    &txq->kern_tls_partial_ghash,
4892 			    "# of NIC TLS records encrypted using a partial GHASH");
4893 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4894 			    "kern_tls_splitmode", CTLFLAG_RD,
4895 			    &txq->kern_tls_splitmode,
4896 			    "# of NIC TLS records using SplitMode");
4897 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4898 			    "kern_tls_trailer", CTLFLAG_RD,
4899 			    &txq->kern_tls_trailer,
4900 			    "# of NIC TLS trailer-only packets transmitted");
4901 		}
4902 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4903 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4904 		    "# of NIC TLS sessions using AES-CBC");
4905 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4906 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4907 		    "# of NIC TLS sessions using AES-GCM");
4908 	}
4909 #endif
4910 }
4911 
4912 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4913 /*
4914  * Idempotent.
4915  */
4916 static int
4917 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4918 {
4919 	struct sysctl_oid *oid;
4920 	struct port_info *pi = vi->pi;
4921 	struct adapter *sc = vi->adapter;
4922 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4923 	int rc, iqidx;
4924 	char name[16];
4925 
4926 	MPASS(idx >= 0);
4927 	MPASS(idx < vi->nofldtxq);
4928 
4929 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4930 		snprintf(name, sizeof(name), "%d", idx);
4931 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4932 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4933 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4934 
4935 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4936 		    device_get_nameunit(vi->dev), idx);
4937 		if (vi->nofldrxq > 0) {
4938 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4939 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
4940 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4941 		} else {
4942 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4943 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
4944 			    &sc->sge.rxq[iqidx].iq, name);
4945 		}
4946 
4947 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4948 		if (rc != 0) {
4949 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4950 			    rc);
4951 			sysctl_remove_oid(oid, 1, 1);
4952 			return (rc);
4953 		}
4954 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4955 		/* Can't fail after this point. */
4956 
4957 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4958 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4959 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4960 		ofld_txq->tx_aio_jobs = counter_u64_alloc(M_WAITOK);
4961 		ofld_txq->tx_aio_octets = counter_u64_alloc(M_WAITOK);
4962 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4963 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4964 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4965 	}
4966 
4967 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4968 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4969 		MPASS(ofld_txq->wrq.nwr_pending == 0);
4970 		MPASS(ofld_txq->wrq.ndesc_needed == 0);
4971 		rc = alloc_eq_hwq(sc, vi, eq, idx);
4972 		if (rc != 0) {
4973 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4974 			    rc);
4975 			return (rc);
4976 		}
4977 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4978 	}
4979 
4980 	return (0);
4981 }
4982 
4983 /*
4984  * Idempotent.
4985  */
4986 static void
4987 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4988 {
4989 	struct adapter *sc = vi->adapter;
4990 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4991 
4992 	if (eq->flags & EQ_HW_ALLOCATED) {
4993 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4994 		free_eq_hwq(sc, NULL, eq);
4995 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4996 	}
4997 
4998 	if (eq->flags & EQ_SW_ALLOCATED) {
4999 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5000 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
5001 		counter_u64_free(ofld_txq->tx_iscsi_octets);
5002 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
5003 		counter_u64_free(ofld_txq->tx_aio_jobs);
5004 		counter_u64_free(ofld_txq->tx_aio_octets);
5005 		counter_u64_free(ofld_txq->tx_toe_tls_records);
5006 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
5007 		free_wrq(sc, &ofld_txq->wrq);
5008 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
5009 		bzero(ofld_txq, sizeof(*ofld_txq));
5010 	}
5011 }
5012 
5013 static void
5014 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
5015     struct sge_ofld_txq *ofld_txq)
5016 {
5017 	struct sysctl_oid_list *children;
5018 
5019 	if (ctx == NULL || oid == NULL)
5020 		return;
5021 
5022 	children = SYSCTL_CHILDREN(oid);
5023 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
5024 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
5025 	    "# of iSCSI PDUs transmitted");
5026 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
5027 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
5028 	    "# of payload octets in transmitted iSCSI PDUs");
5029 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
5030 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
5031 	    "# of iSCSI segmentation offload work requests");
5032 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_jobs",
5033 	    CTLFLAG_RD, &ofld_txq->tx_aio_jobs,
5034 	    "# of zero-copy aio_write(2) jobs transmitted");
5035 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_octets",
5036 	    CTLFLAG_RD, &ofld_txq->tx_aio_octets,
5037 	    "# of payload octets in transmitted zero-copy aio_write(2) jobs");
5038 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
5039 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
5040 	    "# of TOE TLS records transmitted");
5041 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
5042 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
5043 	    "# of payload octets in transmitted TOE TLS records");
5044 }
5045 #endif
5046 
5047 static void
5048 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
5049 {
5050 	bus_addr_t *ba = arg;
5051 
5052 	KASSERT(nseg == 1,
5053 	    ("%s meant for single segment mappings only.", __func__));
5054 
5055 	*ba = error ? 0 : segs->ds_addr;
5056 }
5057 
5058 static inline void
5059 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
5060 {
5061 	uint32_t n, v;
5062 
5063 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
5064 	MPASS(n > 0);
5065 
5066 	wmb();
5067 	v = fl->dbval | V_PIDX(n);
5068 	if (fl->udb)
5069 		*fl->udb = htole32(v);
5070 	else
5071 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
5072 	IDXINCR(fl->dbidx, n, fl->sidx);
5073 }
5074 
5075 /*
5076  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
5077  * recycled do not count towards this allocation budget.
5078  *
5079  * Returns non-zero to indicate that this freelist should be added to the list
5080  * of starving freelists.
5081  */
5082 static int
5083 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
5084 {
5085 	__be64 *d;
5086 	struct fl_sdesc *sd;
5087 	uintptr_t pa;
5088 	caddr_t cl;
5089 	struct rx_buf_info *rxb;
5090 	struct cluster_metadata *clm;
5091 	uint16_t max_pidx, zidx = fl->zidx;
5092 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
5093 
5094 	FL_LOCK_ASSERT_OWNED(fl);
5095 
5096 	/*
5097 	 * We always stop at the beginning of the hardware descriptor that's just
5098 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
5099 	 * which would mean an empty freelist to the chip.
5100 	 */
5101 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5102 	if (fl->pidx == max_pidx * 8)
5103 		return (0);
5104 
5105 	d = &fl->desc[fl->pidx];
5106 	sd = &fl->sdesc[fl->pidx];
5107 	rxb = &sc->sge.rx_buf_info[zidx];
5108 
5109 	while (n > 0) {
5110 
5111 		if (sd->cl != NULL) {
5112 
5113 			if (sd->nmbuf == 0) {
5114 				/*
5115 				 * Fast recycle without involving any atomics on
5116 				 * the cluster's metadata (if the cluster has
5117 				 * metadata).  This happens when all frames
5118 				 * received in the cluster were small enough to
5119 				 * fit within a single mbuf each.
5120 				 */
5121 				fl->cl_fast_recycled++;
5122 				goto recycled;
5123 			}
5124 
5125 			/*
5126 			 * Cluster is guaranteed to have metadata.  Clusters
5127 			 * without metadata always take the fast recycle path
5128 			 * when they're recycled.
5129 			 */
5130 			clm = cl_metadata(sd);
5131 			MPASS(clm != NULL);
5132 
5133 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5134 				fl->cl_recycled++;
5135 				counter_u64_add(extfree_rels, 1);
5136 				goto recycled;
5137 			}
5138 			sd->cl = NULL;	/* gave up my reference */
5139 		}
5140 		MPASS(sd->cl == NULL);
5141 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5142 		if (__predict_false(cl == NULL)) {
5143 			if (zidx != fl->safe_zidx) {
5144 				zidx = fl->safe_zidx;
5145 				rxb = &sc->sge.rx_buf_info[zidx];
5146 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5147 			}
5148 			if (cl == NULL)
5149 				break;
5150 		}
5151 		fl->cl_allocated++;
5152 		n--;
5153 
5154 		pa = pmap_kextract((vm_offset_t)cl);
5155 		sd->cl = cl;
5156 		sd->zidx = zidx;
5157 
5158 		if (fl->flags & FL_BUF_PACKING) {
5159 			*d = htobe64(pa | rxb->hwidx2);
5160 			sd->moff = rxb->size2;
5161 		} else {
5162 			*d = htobe64(pa | rxb->hwidx1);
5163 			sd->moff = 0;
5164 		}
5165 recycled:
5166 		sd->nmbuf = 0;
5167 		d++;
5168 		sd++;
5169 		if (__predict_false((++fl->pidx & 7) == 0)) {
5170 			uint16_t pidx = fl->pidx >> 3;
5171 
5172 			if (__predict_false(pidx == fl->sidx)) {
5173 				fl->pidx = 0;
5174 				pidx = 0;
5175 				sd = fl->sdesc;
5176 				d = fl->desc;
5177 			}
5178 			if (n < 8 || pidx == max_pidx)
5179 				break;
5180 
5181 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5182 				ring_fl_db(sc, fl);
5183 		}
5184 	}
5185 
5186 	if ((fl->pidx >> 3) != fl->dbidx)
5187 		ring_fl_db(sc, fl);
5188 
5189 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5190 }
5191 
5192 /*
5193  * Attempt to refill all starving freelists.
5194  */
5195 static void
5196 refill_sfl(void *arg)
5197 {
5198 	struct adapter *sc = arg;
5199 	struct sge_fl *fl, *fl_temp;
5200 
5201 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5202 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5203 		FL_LOCK(fl);
5204 		refill_fl(sc, fl, 64);
5205 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5206 			TAILQ_REMOVE(&sc->sfl, fl, link);
5207 			fl->flags &= ~FL_STARVING;
5208 		}
5209 		FL_UNLOCK(fl);
5210 	}
5211 
5212 	if (!TAILQ_EMPTY(&sc->sfl))
5213 		callout_schedule(&sc->sfl_callout, hz / 5);
5214 }
5215 
5216 /*
5217  * Release the driver's reference on all buffers in the given freelist.  Buffers
5218  * with kernel references cannot be freed and will prevent the driver from being
5219  * unloaded safely.
5220  */
5221 void
5222 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5223 {
5224 	struct fl_sdesc *sd;
5225 	struct cluster_metadata *clm;
5226 	int i;
5227 
5228 	sd = fl->sdesc;
5229 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5230 		if (sd->cl == NULL)
5231 			continue;
5232 
5233 		if (sd->nmbuf == 0)
5234 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5235 		else if (fl->flags & FL_BUF_PACKING) {
5236 			clm = cl_metadata(sd);
5237 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5238 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5239 				    sd->cl);
5240 				counter_u64_add(extfree_rels, 1);
5241 			}
5242 		}
5243 		sd->cl = NULL;
5244 	}
5245 
5246 	if (fl->flags & FL_BUF_RESUME) {
5247 		m_freem(fl->m0);
5248 		fl->flags &= ~FL_BUF_RESUME;
5249 	}
5250 }
5251 
5252 static inline void
5253 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5254 {
5255 	int rc;
5256 
5257 	M_ASSERTPKTHDR(m);
5258 
5259 	sglist_reset(gl);
5260 	rc = sglist_append_mbuf(gl, m);
5261 	if (__predict_false(rc != 0)) {
5262 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5263 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5264 	}
5265 
5266 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5267 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5268 	    mbuf_nsegs(m), gl->sg_nseg));
5269 #if 0	/* vm_wr not readily available here. */
5270 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5271 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5272 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5273 #endif
5274 }
5275 
5276 /*
5277  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5278  */
5279 static inline u_int
5280 txpkt_len16(u_int nsegs, const u_int extra)
5281 {
5282 	u_int n;
5283 
5284 	MPASS(nsegs > 0);
5285 
5286 	nsegs--; /* first segment is part of ulptx_sgl */
5287 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5288 	    sizeof(struct cpl_tx_pkt_core) +
5289 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5290 
5291 	return (howmany(n, 16));
5292 }
5293 
5294 /*
5295  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5296  * request header.
5297  */
5298 static inline u_int
5299 txpkt_vm_len16(u_int nsegs, const u_int extra)
5300 {
5301 	u_int n;
5302 
5303 	MPASS(nsegs > 0);
5304 
5305 	nsegs--; /* first segment is part of ulptx_sgl */
5306 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5307 	    sizeof(struct cpl_tx_pkt_core) +
5308 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5309 
5310 	return (howmany(n, 16));
5311 }
5312 
5313 static inline void
5314 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5315 {
5316 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5317 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5318 
5319 	if (vm_wr) {
5320 		if (needs_tso(m))
5321 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5322 		else
5323 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5324 		return;
5325 	}
5326 
5327 	if (needs_tso(m)) {
5328 		if (needs_vxlan_tso(m))
5329 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5330 		else
5331 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5332 	} else
5333 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5334 }
5335 
5336 /*
5337  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5338  * request header.
5339  */
5340 static inline u_int
5341 txpkts0_len16(u_int nsegs)
5342 {
5343 	u_int n;
5344 
5345 	MPASS(nsegs > 0);
5346 
5347 	nsegs--; /* first segment is part of ulptx_sgl */
5348 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5349 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5350 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5351 
5352 	return (howmany(n, 16));
5353 }
5354 
5355 /*
5356  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5357  * request header.
5358  */
5359 static inline u_int
5360 txpkts1_len16(void)
5361 {
5362 	u_int n;
5363 
5364 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5365 
5366 	return (howmany(n, 16));
5367 }
5368 
5369 static inline u_int
5370 imm_payload(u_int ndesc)
5371 {
5372 	u_int n;
5373 
5374 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5375 	    sizeof(struct cpl_tx_pkt_core);
5376 
5377 	return (n);
5378 }
5379 
5380 static inline uint64_t
5381 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5382 {
5383 	uint64_t ctrl;
5384 	int csum_type, l2hlen, l3hlen;
5385 	int x, y;
5386 	static const int csum_types[3][2] = {
5387 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5388 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5389 		{TX_CSUM_IP, 0}
5390 	};
5391 
5392 	M_ASSERTPKTHDR(m);
5393 
5394 	if (!needs_hwcsum(m))
5395 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5396 
5397 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5398 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5399 
5400 	if (needs_vxlan_csum(m)) {
5401 		MPASS(m->m_pkthdr.l4hlen > 0);
5402 		MPASS(m->m_pkthdr.l5hlen > 0);
5403 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5404 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5405 
5406 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5407 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5408 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5409 		l3hlen = m->m_pkthdr.inner_l3hlen;
5410 	} else {
5411 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5412 		l3hlen = m->m_pkthdr.l3hlen;
5413 	}
5414 
5415 	ctrl = 0;
5416 	if (!needs_l3_csum(m))
5417 		ctrl |= F_TXPKT_IPCSUM_DIS;
5418 
5419 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5420 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5421 		x = 0;	/* TCP */
5422 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5423 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5424 		x = 1;	/* UDP */
5425 	else
5426 		x = 2;
5427 
5428 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5429 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5430 		y = 0;	/* IPv4 */
5431 	else {
5432 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5433 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5434 		y = 1;	/* IPv6 */
5435 	}
5436 	/*
5437 	 * needs_hwcsum returned true earlier so there must be some kind of
5438 	 * checksum to calculate.
5439 	 */
5440 	csum_type = csum_types[x][y];
5441 	MPASS(csum_type != 0);
5442 	if (csum_type == TX_CSUM_IP)
5443 		ctrl |= F_TXPKT_L4CSUM_DIS;
5444 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5445 	if (chip_id(sc) <= CHELSIO_T5)
5446 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5447 	else
5448 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5449 
5450 	return (ctrl);
5451 }
5452 
5453 static inline void *
5454 write_lso_cpl(void *cpl, struct mbuf *m0)
5455 {
5456 	struct cpl_tx_pkt_lso_core *lso;
5457 	uint32_t ctrl;
5458 
5459 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5460 	    m0->m_pkthdr.l4hlen > 0,
5461 	    ("%s: mbuf %p needs TSO but missing header lengths",
5462 		__func__, m0));
5463 
5464 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5465 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5466 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5467 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5468 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5469 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5470 		ctrl |= F_LSO_IPV6;
5471 
5472 	lso = cpl;
5473 	lso->lso_ctrl = htobe32(ctrl);
5474 	lso->ipid_ofst = htobe16(0);
5475 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5476 	lso->seqno_offset = htobe32(0);
5477 	lso->len = htobe32(m0->m_pkthdr.len);
5478 
5479 	return (lso + 1);
5480 }
5481 
5482 static void *
5483 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5484 {
5485 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5486 	uint32_t ctrl;
5487 
5488 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5489 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5490 	    m0->m_pkthdr.inner_l5hlen > 0,
5491 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5492 		__func__, m0));
5493 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5494 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5495 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5496 		__func__, m0));
5497 
5498 	/* Outer headers. */
5499 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5500 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5501 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5502 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5503 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5504 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5505 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5506 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5507 	else {
5508 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5509 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5510 	}
5511 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5512 	tnl_lso->IpIdOffsetOut = 0;
5513 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5514 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5515 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5516 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5517 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5518 			m0->m_pkthdr.l5hlen) |
5519 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5520 	tnl_lso->ipsecen_to_rocev2 = 0;
5521 	tnl_lso->roce_eth = 0;
5522 
5523 	/* Inner headers. */
5524 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5525 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5526 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5527 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5528 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5529 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5530 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5531 	tnl_lso->IpIdOffset = 0;
5532 	tnl_lso->IpIdSplit_to_Mss =
5533 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5534 	tnl_lso->TCPSeqOffset = 0;
5535 	tnl_lso->EthLenOffset_Size =
5536 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5537 
5538 	return (tnl_lso + 1);
5539 }
5540 
5541 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5542 
5543 /*
5544  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5545  * software descriptor, and advance the pidx.  It is guaranteed that enough
5546  * descriptors are available.
5547  *
5548  * The return value is the # of hardware descriptors used.
5549  */
5550 static u_int
5551 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5552 {
5553 	struct sge_eq *eq;
5554 	struct fw_eth_tx_pkt_vm_wr *wr;
5555 	struct tx_sdesc *txsd;
5556 	struct cpl_tx_pkt_core *cpl;
5557 	uint32_t ctrl;	/* used in many unrelated places */
5558 	uint64_t ctrl1;
5559 	int len16, ndesc, pktlen;
5560 	caddr_t dst;
5561 
5562 	TXQ_LOCK_ASSERT_OWNED(txq);
5563 	M_ASSERTPKTHDR(m0);
5564 
5565 	len16 = mbuf_len16(m0);
5566 	pktlen = m0->m_pkthdr.len;
5567 	ctrl = sizeof(struct cpl_tx_pkt_core);
5568 	if (needs_tso(m0))
5569 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5570 	ndesc = tx_len16_to_desc(len16);
5571 
5572 	/* Firmware work request header */
5573 	eq = &txq->eq;
5574 	wr = (void *)&eq->desc[eq->pidx];
5575 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5576 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5577 
5578 	ctrl = V_FW_WR_LEN16(len16);
5579 	wr->equiq_to_len16 = htobe32(ctrl);
5580 	wr->r3[0] = 0;
5581 	wr->r3[1] = 0;
5582 
5583 	/*
5584 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5585 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5586 	 * simpler to always copy it rather than making it
5587 	 * conditional.  Also, it seems that we do not have to set
5588 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5589 	 */
5590 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5591 
5592 	if (needs_tso(m0)) {
5593 		cpl = write_lso_cpl(wr + 1, m0);
5594 		txq->tso_wrs++;
5595 	} else
5596 		cpl = (void *)(wr + 1);
5597 
5598 	/* Checksum offload */
5599 	ctrl1 = csum_to_ctrl(sc, m0);
5600 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5601 		txq->txcsum++;	/* some hardware assistance provided */
5602 
5603 	/* VLAN tag insertion */
5604 	if (needs_vlan_insertion(m0)) {
5605 		ctrl1 |= F_TXPKT_VLAN_VLD |
5606 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5607 		txq->vlan_insertion++;
5608 	} else if (sc->vlan_id)
5609 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
5610 
5611 	/* CPL header */
5612 	cpl->ctrl0 = txq->cpl_ctrl0;
5613 	cpl->pack = 0;
5614 	cpl->len = htobe16(pktlen);
5615 	cpl->ctrl1 = htobe64(ctrl1);
5616 
5617 	/* SGL */
5618 	dst = (void *)(cpl + 1);
5619 
5620 	/*
5621 	 * A packet using TSO will use up an entire descriptor for the
5622 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5623 	 * If this descriptor is the last descriptor in the ring, wrap
5624 	 * around to the front of the ring explicitly for the start of
5625 	 * the sgl.
5626 	 */
5627 	if (dst == (void *)&eq->desc[eq->sidx]) {
5628 		dst = (void *)&eq->desc[0];
5629 		write_gl_to_txd(txq, m0, &dst, 0);
5630 	} else
5631 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5632 	txq->sgl_wrs++;
5633 	txq->txpkt_wrs++;
5634 
5635 	txsd = &txq->sdesc[eq->pidx];
5636 	txsd->m = m0;
5637 	txsd->desc_used = ndesc;
5638 
5639 	return (ndesc);
5640 }
5641 
5642 /*
5643  * Write a raw WR to the hardware descriptors, update the software
5644  * descriptor, and advance the pidx.  It is guaranteed that enough
5645  * descriptors are available.
5646  *
5647  * The return value is the # of hardware descriptors used.
5648  */
5649 static u_int
5650 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5651 {
5652 	struct sge_eq *eq = &txq->eq;
5653 	struct tx_sdesc *txsd;
5654 	struct mbuf *m;
5655 	caddr_t dst;
5656 	int len16, ndesc;
5657 
5658 	len16 = mbuf_len16(m0);
5659 	ndesc = tx_len16_to_desc(len16);
5660 	MPASS(ndesc <= available);
5661 
5662 	dst = wr;
5663 	for (m = m0; m != NULL; m = m->m_next)
5664 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5665 
5666 	txq->raw_wrs++;
5667 
5668 	txsd = &txq->sdesc[eq->pidx];
5669 	txsd->m = m0;
5670 	txsd->desc_used = ndesc;
5671 
5672 	return (ndesc);
5673 }
5674 
5675 /*
5676  * Write a txpkt WR for this packet to the hardware descriptors, update the
5677  * software descriptor, and advance the pidx.  It is guaranteed that enough
5678  * descriptors are available.
5679  *
5680  * The return value is the # of hardware descriptors used.
5681  */
5682 static u_int
5683 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5684     u_int available)
5685 {
5686 	struct sge_eq *eq;
5687 	struct fw_eth_tx_pkt_wr *wr;
5688 	struct tx_sdesc *txsd;
5689 	struct cpl_tx_pkt_core *cpl;
5690 	uint32_t ctrl;	/* used in many unrelated places */
5691 	uint64_t ctrl1;
5692 	int len16, ndesc, pktlen, nsegs;
5693 	caddr_t dst;
5694 
5695 	TXQ_LOCK_ASSERT_OWNED(txq);
5696 	M_ASSERTPKTHDR(m0);
5697 
5698 	len16 = mbuf_len16(m0);
5699 	nsegs = mbuf_nsegs(m0);
5700 	pktlen = m0->m_pkthdr.len;
5701 	ctrl = sizeof(struct cpl_tx_pkt_core);
5702 	if (needs_tso(m0)) {
5703 		if (needs_vxlan_tso(m0))
5704 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5705 		else
5706 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5707 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5708 	    available >= 2) {
5709 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5710 		ctrl += pktlen;
5711 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5712 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5713 		nsegs = 0;
5714 	}
5715 	ndesc = tx_len16_to_desc(len16);
5716 	MPASS(ndesc <= available);
5717 
5718 	/* Firmware work request header */
5719 	eq = &txq->eq;
5720 	wr = (void *)&eq->desc[eq->pidx];
5721 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5722 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5723 
5724 	ctrl = V_FW_WR_LEN16(len16);
5725 	wr->equiq_to_len16 = htobe32(ctrl);
5726 	wr->r3 = 0;
5727 
5728 	if (needs_tso(m0)) {
5729 		if (needs_vxlan_tso(m0)) {
5730 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5731 			txq->vxlan_tso_wrs++;
5732 		} else {
5733 			cpl = write_lso_cpl(wr + 1, m0);
5734 			txq->tso_wrs++;
5735 		}
5736 	} else
5737 		cpl = (void *)(wr + 1);
5738 
5739 	/* Checksum offload */
5740 	ctrl1 = csum_to_ctrl(sc, m0);
5741 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5742 		/* some hardware assistance provided */
5743 		if (needs_vxlan_csum(m0))
5744 			txq->vxlan_txcsum++;
5745 		else
5746 			txq->txcsum++;
5747 	}
5748 
5749 	/* VLAN tag insertion */
5750 	if (needs_vlan_insertion(m0)) {
5751 		ctrl1 |= F_TXPKT_VLAN_VLD |
5752 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5753 		txq->vlan_insertion++;
5754 	}
5755 
5756 	/* CPL header */
5757 	cpl->ctrl0 = txq->cpl_ctrl0;
5758 	cpl->pack = 0;
5759 	cpl->len = htobe16(pktlen);
5760 	cpl->ctrl1 = htobe64(ctrl1);
5761 
5762 	/* SGL */
5763 	dst = (void *)(cpl + 1);
5764 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5765 		dst = (caddr_t)&eq->desc[0];
5766 	if (nsegs > 0) {
5767 
5768 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5769 		txq->sgl_wrs++;
5770 	} else {
5771 		struct mbuf *m;
5772 
5773 		for (m = m0; m != NULL; m = m->m_next) {
5774 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5775 #ifdef INVARIANTS
5776 			pktlen -= m->m_len;
5777 #endif
5778 		}
5779 #ifdef INVARIANTS
5780 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5781 #endif
5782 		txq->imm_wrs++;
5783 	}
5784 
5785 	txq->txpkt_wrs++;
5786 
5787 	txsd = &txq->sdesc[eq->pidx];
5788 	txsd->m = m0;
5789 	txsd->desc_used = ndesc;
5790 
5791 	return (ndesc);
5792 }
5793 
5794 static inline bool
5795 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5796 {
5797 	int len;
5798 
5799 	MPASS(txp->npkt > 0);
5800 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5801 
5802 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5803 		len = VM_TX_L2HDR_LEN;
5804 	else
5805 		len = sizeof(struct ether_header);
5806 
5807 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5808 }
5809 
5810 static inline void
5811 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5812 {
5813 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5814 
5815 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5816 }
5817 
5818 static int
5819 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5820     int avail, bool *send)
5821 {
5822 	struct txpkts *txp = &txq->txp;
5823 
5824 	/* Cannot have TSO and coalesce at the same time. */
5825 	if (cannot_use_txpkts(m)) {
5826 cannot_coalesce:
5827 		*send = txp->npkt > 0;
5828 		return (EINVAL);
5829 	}
5830 
5831 	/* VF allows coalescing of type 1 (1 GL) only */
5832 	if (mbuf_nsegs(m) > 1)
5833 		goto cannot_coalesce;
5834 
5835 	*send = false;
5836 	if (txp->npkt > 0) {
5837 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5838 		MPASS(txp->npkt < txp->max_npkt);
5839 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5840 
5841 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5842 retry_after_send:
5843 			*send = true;
5844 			return (EAGAIN);
5845 		}
5846 		if (m->m_pkthdr.len + txp->plen > 65535)
5847 			goto retry_after_send;
5848 		if (cmp_l2hdr(txp, m))
5849 			goto retry_after_send;
5850 
5851 		txp->len16 += txpkts1_len16();
5852 		txp->plen += m->m_pkthdr.len;
5853 		txp->mb[txp->npkt++] = m;
5854 		if (txp->npkt == txp->max_npkt)
5855 			*send = true;
5856 	} else {
5857 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5858 		    txpkts1_len16();
5859 		if (tx_len16_to_desc(txp->len16) > avail)
5860 			goto cannot_coalesce;
5861 		txp->npkt = 1;
5862 		txp->wr_type = 1;
5863 		txp->plen = m->m_pkthdr.len;
5864 		txp->mb[0] = m;
5865 		save_l2hdr(txp, m);
5866 	}
5867 	return (0);
5868 }
5869 
5870 static int
5871 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5872     int avail, bool *send)
5873 {
5874 	struct txpkts *txp = &txq->txp;
5875 	int nsegs;
5876 
5877 	MPASS(!(sc->flags & IS_VF));
5878 
5879 	/* Cannot have TSO and coalesce at the same time. */
5880 	if (cannot_use_txpkts(m)) {
5881 cannot_coalesce:
5882 		*send = txp->npkt > 0;
5883 		return (EINVAL);
5884 	}
5885 
5886 	*send = false;
5887 	nsegs = mbuf_nsegs(m);
5888 	if (txp->npkt == 0) {
5889 		if (m->m_pkthdr.len > 65535)
5890 			goto cannot_coalesce;
5891 		if (nsegs > 1) {
5892 			txp->wr_type = 0;
5893 			txp->len16 =
5894 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5895 			    txpkts0_len16(nsegs);
5896 		} else {
5897 			txp->wr_type = 1;
5898 			txp->len16 =
5899 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5900 			    txpkts1_len16();
5901 		}
5902 		if (tx_len16_to_desc(txp->len16) > avail)
5903 			goto cannot_coalesce;
5904 		txp->npkt = 1;
5905 		txp->plen = m->m_pkthdr.len;
5906 		txp->mb[0] = m;
5907 	} else {
5908 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5909 		MPASS(txp->npkt < txp->max_npkt);
5910 
5911 		if (m->m_pkthdr.len + txp->plen > 65535) {
5912 retry_after_send:
5913 			*send = true;
5914 			return (EAGAIN);
5915 		}
5916 
5917 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5918 		if (txp->wr_type == 0) {
5919 			if (tx_len16_to_desc(txp->len16 +
5920 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5921 				goto retry_after_send;
5922 			txp->len16 += txpkts0_len16(nsegs);
5923 		} else {
5924 			if (nsegs != 1)
5925 				goto retry_after_send;
5926 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5927 			    avail)
5928 				goto retry_after_send;
5929 			txp->len16 += txpkts1_len16();
5930 		}
5931 
5932 		txp->plen += m->m_pkthdr.len;
5933 		txp->mb[txp->npkt++] = m;
5934 		if (txp->npkt == txp->max_npkt)
5935 			*send = true;
5936 	}
5937 	return (0);
5938 }
5939 
5940 /*
5941  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5942  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5943  * descriptors are available.
5944  *
5945  * The return value is the # of hardware descriptors used.
5946  */
5947 static u_int
5948 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5949 {
5950 	const struct txpkts *txp = &txq->txp;
5951 	struct sge_eq *eq = &txq->eq;
5952 	struct fw_eth_tx_pkts_wr *wr;
5953 	struct tx_sdesc *txsd;
5954 	struct cpl_tx_pkt_core *cpl;
5955 	uint64_t ctrl1;
5956 	int ndesc, i, checkwrap;
5957 	struct mbuf *m, *last;
5958 	void *flitp;
5959 
5960 	TXQ_LOCK_ASSERT_OWNED(txq);
5961 	MPASS(txp->npkt > 0);
5962 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5963 
5964 	wr = (void *)&eq->desc[eq->pidx];
5965 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5966 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5967 	wr->plen = htobe16(txp->plen);
5968 	wr->npkt = txp->npkt;
5969 	wr->r3 = 0;
5970 	wr->type = txp->wr_type;
5971 	flitp = wr + 1;
5972 
5973 	/*
5974 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5975 	 * set then we know the WR is going to wrap around somewhere.  We'll
5976 	 * check for that at appropriate points.
5977 	 */
5978 	ndesc = tx_len16_to_desc(txp->len16);
5979 	last = NULL;
5980 	checkwrap = eq->sidx - ndesc < eq->pidx;
5981 	for (i = 0; i < txp->npkt; i++) {
5982 		m = txp->mb[i];
5983 		if (txp->wr_type == 0) {
5984 			struct ulp_txpkt *ulpmc;
5985 			struct ulptx_idata *ulpsc;
5986 
5987 			/* ULP master command */
5988 			ulpmc = flitp;
5989 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5990 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5991 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5992 
5993 			/* ULP subcommand */
5994 			ulpsc = (void *)(ulpmc + 1);
5995 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5996 			    F_ULP_TX_SC_MORE);
5997 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5998 
5999 			cpl = (void *)(ulpsc + 1);
6000 			if (checkwrap &&
6001 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
6002 				cpl = (void *)&eq->desc[0];
6003 		} else {
6004 			cpl = flitp;
6005 		}
6006 
6007 		/* Checksum offload */
6008 		ctrl1 = csum_to_ctrl(sc, m);
6009 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
6010 			/* some hardware assistance provided */
6011 			if (needs_vxlan_csum(m))
6012 				txq->vxlan_txcsum++;
6013 			else
6014 				txq->txcsum++;
6015 		}
6016 
6017 		/* VLAN tag insertion */
6018 		if (needs_vlan_insertion(m)) {
6019 			ctrl1 |= F_TXPKT_VLAN_VLD |
6020 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6021 			txq->vlan_insertion++;
6022 		}
6023 
6024 		/* CPL header */
6025 		cpl->ctrl0 = txq->cpl_ctrl0;
6026 		cpl->pack = 0;
6027 		cpl->len = htobe16(m->m_pkthdr.len);
6028 		cpl->ctrl1 = htobe64(ctrl1);
6029 
6030 		flitp = cpl + 1;
6031 		if (checkwrap &&
6032 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6033 			flitp = (void *)&eq->desc[0];
6034 
6035 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
6036 
6037 		if (last != NULL)
6038 			last->m_nextpkt = m;
6039 		last = m;
6040 	}
6041 
6042 	txq->sgl_wrs++;
6043 	if (txp->wr_type == 0) {
6044 		txq->txpkts0_pkts += txp->npkt;
6045 		txq->txpkts0_wrs++;
6046 	} else {
6047 		txq->txpkts1_pkts += txp->npkt;
6048 		txq->txpkts1_wrs++;
6049 	}
6050 
6051 	txsd = &txq->sdesc[eq->pidx];
6052 	txsd->m = txp->mb[0];
6053 	txsd->desc_used = ndesc;
6054 
6055 	return (ndesc);
6056 }
6057 
6058 static u_int
6059 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
6060 {
6061 	const struct txpkts *txp = &txq->txp;
6062 	struct sge_eq *eq = &txq->eq;
6063 	struct fw_eth_tx_pkts_vm_wr *wr;
6064 	struct tx_sdesc *txsd;
6065 	struct cpl_tx_pkt_core *cpl;
6066 	uint64_t ctrl1;
6067 	int ndesc, i;
6068 	struct mbuf *m, *last;
6069 	void *flitp;
6070 
6071 	TXQ_LOCK_ASSERT_OWNED(txq);
6072 	MPASS(txp->npkt > 0);
6073 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
6074 	MPASS(txp->mb[0] != NULL);
6075 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6076 
6077 	wr = (void *)&eq->desc[eq->pidx];
6078 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
6079 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6080 	wr->r3 = 0;
6081 	wr->plen = htobe16(txp->plen);
6082 	wr->npkt = txp->npkt;
6083 	wr->r4 = 0;
6084 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
6085 	flitp = wr + 1;
6086 
6087 	/*
6088 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
6089 	 * the WR will take 32B so we check for the end of the descriptor ring
6090 	 * before writing odd mbufs (mb[1], 3, 5, ..)
6091 	 */
6092 	ndesc = tx_len16_to_desc(txp->len16);
6093 	last = NULL;
6094 	for (i = 0; i < txp->npkt; i++) {
6095 		m = txp->mb[i];
6096 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6097 			flitp = &eq->desc[0];
6098 		cpl = flitp;
6099 
6100 		/* Checksum offload */
6101 		ctrl1 = csum_to_ctrl(sc, m);
6102 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6103 			txq->txcsum++;	/* some hardware assistance provided */
6104 
6105 		/* VLAN tag insertion */
6106 		if (needs_vlan_insertion(m)) {
6107 			ctrl1 |= F_TXPKT_VLAN_VLD |
6108 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6109 			txq->vlan_insertion++;
6110 		} else if (sc->vlan_id)
6111 			ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
6112 
6113 		/* CPL header */
6114 		cpl->ctrl0 = txq->cpl_ctrl0;
6115 		cpl->pack = 0;
6116 		cpl->len = htobe16(m->m_pkthdr.len);
6117 		cpl->ctrl1 = htobe64(ctrl1);
6118 
6119 		flitp = cpl + 1;
6120 		MPASS(mbuf_nsegs(m) == 1);
6121 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6122 
6123 		if (last != NULL)
6124 			last->m_nextpkt = m;
6125 		last = m;
6126 	}
6127 
6128 	txq->sgl_wrs++;
6129 	txq->txpkts1_pkts += txp->npkt;
6130 	txq->txpkts1_wrs++;
6131 
6132 	txsd = &txq->sdesc[eq->pidx];
6133 	txsd->m = txp->mb[0];
6134 	txsd->desc_used = ndesc;
6135 
6136 	return (ndesc);
6137 }
6138 
6139 /*
6140  * If the SGL ends on an address that is not 16 byte aligned, this function will
6141  * add a 0 filled flit at the end.
6142  */
6143 static void
6144 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6145 {
6146 	struct sge_eq *eq = &txq->eq;
6147 	struct sglist *gl = txq->gl;
6148 	struct sglist_seg *seg;
6149 	__be64 *flitp, *wrap;
6150 	struct ulptx_sgl *usgl;
6151 	int i, nflits, nsegs;
6152 
6153 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6154 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6155 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6156 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6157 
6158 	get_pkt_gl(m, gl);
6159 	nsegs = gl->sg_nseg;
6160 	MPASS(nsegs > 0);
6161 
6162 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6163 	flitp = (__be64 *)(*to);
6164 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6165 	seg = &gl->sg_segs[0];
6166 	usgl = (void *)flitp;
6167 
6168 	/*
6169 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6170 	 * ring, so we're at least 16 bytes away from the status page.  There is
6171 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6172 	 */
6173 
6174 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6175 	    V_ULPTX_NSGE(nsegs));
6176 	usgl->len0 = htobe32(seg->ss_len);
6177 	usgl->addr0 = htobe64(seg->ss_paddr);
6178 	seg++;
6179 
6180 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6181 
6182 		/* Won't wrap around at all */
6183 
6184 		for (i = 0; i < nsegs - 1; i++, seg++) {
6185 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6186 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6187 		}
6188 		if (i & 1)
6189 			usgl->sge[i / 2].len[1] = htobe32(0);
6190 		flitp += nflits;
6191 	} else {
6192 
6193 		/* Will wrap somewhere in the rest of the SGL */
6194 
6195 		/* 2 flits already written, write the rest flit by flit */
6196 		flitp = (void *)(usgl + 1);
6197 		for (i = 0; i < nflits - 2; i++) {
6198 			if (flitp == wrap)
6199 				flitp = (void *)eq->desc;
6200 			*flitp++ = get_flit(seg, nsegs - 1, i);
6201 		}
6202 	}
6203 
6204 	if (nflits & 1) {
6205 		MPASS(((uintptr_t)flitp) & 0xf);
6206 		*flitp++ = 0;
6207 	}
6208 
6209 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6210 	if (__predict_false(flitp == wrap))
6211 		*to = (void *)eq->desc;
6212 	else
6213 		*to = (void *)flitp;
6214 }
6215 
6216 static inline void
6217 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6218 {
6219 
6220 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6221 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6222 
6223 	if (__predict_true((uintptr_t)(*to) + len <=
6224 	    (uintptr_t)&eq->desc[eq->sidx])) {
6225 		bcopy(from, *to, len);
6226 		(*to) += len;
6227 	} else {
6228 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6229 
6230 		bcopy(from, *to, portion);
6231 		from += portion;
6232 		portion = len - portion;	/* remaining */
6233 		bcopy(from, (void *)eq->desc, portion);
6234 		(*to) = (caddr_t)eq->desc + portion;
6235 	}
6236 }
6237 
6238 static inline void
6239 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6240 {
6241 	u_int db;
6242 
6243 	MPASS(n > 0);
6244 
6245 	db = eq->doorbells;
6246 	if (n > 1)
6247 		clrbit(&db, DOORBELL_WCWR);
6248 	wmb();
6249 
6250 	switch (ffs(db) - 1) {
6251 	case DOORBELL_UDB:
6252 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6253 		break;
6254 
6255 	case DOORBELL_WCWR: {
6256 		volatile uint64_t *dst, *src;
6257 		int i;
6258 
6259 		/*
6260 		 * Queues whose 128B doorbell segment fits in the page do not
6261 		 * use relative qid (udb_qid is always 0).  Only queues with
6262 		 * doorbell segments can do WCWR.
6263 		 */
6264 		KASSERT(eq->udb_qid == 0 && n == 1,
6265 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6266 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6267 
6268 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6269 		    UDBS_DB_OFFSET);
6270 		i = eq->dbidx;
6271 		src = (void *)&eq->desc[i];
6272 		while (src != (void *)&eq->desc[i + 1])
6273 			*dst++ = *src++;
6274 		wmb();
6275 		break;
6276 	}
6277 
6278 	case DOORBELL_UDBWC:
6279 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6280 		wmb();
6281 		break;
6282 
6283 	case DOORBELL_KDB:
6284 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6285 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6286 		break;
6287 	}
6288 
6289 	IDXINCR(eq->dbidx, n, eq->sidx);
6290 }
6291 
6292 static inline u_int
6293 reclaimable_tx_desc(struct sge_eq *eq)
6294 {
6295 	uint16_t hw_cidx;
6296 
6297 	hw_cidx = read_hw_cidx(eq);
6298 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6299 }
6300 
6301 static inline u_int
6302 total_available_tx_desc(struct sge_eq *eq)
6303 {
6304 	uint16_t hw_cidx, pidx;
6305 
6306 	hw_cidx = read_hw_cidx(eq);
6307 	pidx = eq->pidx;
6308 
6309 	if (pidx == hw_cidx)
6310 		return (eq->sidx - 1);
6311 	else
6312 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6313 }
6314 
6315 static inline uint16_t
6316 read_hw_cidx(struct sge_eq *eq)
6317 {
6318 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6319 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6320 
6321 	return (be16toh(cidx));
6322 }
6323 
6324 /*
6325  * Reclaim 'n' descriptors approximately.
6326  */
6327 static u_int
6328 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6329 {
6330 	struct tx_sdesc *txsd;
6331 	struct sge_eq *eq = &txq->eq;
6332 	u_int can_reclaim, reclaimed;
6333 
6334 	TXQ_LOCK_ASSERT_OWNED(txq);
6335 	MPASS(n > 0);
6336 
6337 	reclaimed = 0;
6338 	can_reclaim = reclaimable_tx_desc(eq);
6339 	while (can_reclaim && reclaimed < n) {
6340 		int ndesc;
6341 		struct mbuf *m, *nextpkt;
6342 
6343 		txsd = &txq->sdesc[eq->cidx];
6344 		ndesc = txsd->desc_used;
6345 
6346 		/* Firmware doesn't return "partial" credits. */
6347 		KASSERT(can_reclaim >= ndesc,
6348 		    ("%s: unexpected number of credits: %d, %d",
6349 		    __func__, can_reclaim, ndesc));
6350 		KASSERT(ndesc != 0,
6351 		    ("%s: descriptor with no credits: cidx %d",
6352 		    __func__, eq->cidx));
6353 
6354 		for (m = txsd->m; m != NULL; m = nextpkt) {
6355 			nextpkt = m->m_nextpkt;
6356 			m->m_nextpkt = NULL;
6357 			m_freem(m);
6358 		}
6359 		reclaimed += ndesc;
6360 		can_reclaim -= ndesc;
6361 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6362 	}
6363 
6364 	return (reclaimed);
6365 }
6366 
6367 static void
6368 tx_reclaim(void *arg, int n)
6369 {
6370 	struct sge_txq *txq = arg;
6371 	struct sge_eq *eq = &txq->eq;
6372 
6373 	do {
6374 		if (TXQ_TRYLOCK(txq) == 0)
6375 			break;
6376 		n = reclaim_tx_descs(txq, 32);
6377 		if (eq->cidx == eq->pidx)
6378 			eq->equeqidx = eq->pidx;
6379 		TXQ_UNLOCK(txq);
6380 	} while (n > 0);
6381 }
6382 
6383 static __be64
6384 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6385 {
6386 	int i = (idx / 3) * 2;
6387 
6388 	switch (idx % 3) {
6389 	case 0: {
6390 		uint64_t rc;
6391 
6392 		rc = (uint64_t)segs[i].ss_len << 32;
6393 		if (i + 1 < nsegs)
6394 			rc |= (uint64_t)(segs[i + 1].ss_len);
6395 
6396 		return (htobe64(rc));
6397 	}
6398 	case 1:
6399 		return (htobe64(segs[i].ss_paddr));
6400 	case 2:
6401 		return (htobe64(segs[i + 1].ss_paddr));
6402 	}
6403 
6404 	return (0);
6405 }
6406 
6407 static int
6408 find_refill_source(struct adapter *sc, int maxp, bool packing)
6409 {
6410 	int i, zidx = -1;
6411 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6412 
6413 	if (packing) {
6414 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6415 			if (rxb->hwidx2 == -1)
6416 				continue;
6417 			if (rxb->size1 < PAGE_SIZE &&
6418 			    rxb->size1 < largest_rx_cluster)
6419 				continue;
6420 			if (rxb->size1 > largest_rx_cluster)
6421 				break;
6422 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6423 			if (rxb->size2 >= maxp)
6424 				return (i);
6425 			zidx = i;
6426 		}
6427 	} else {
6428 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6429 			if (rxb->hwidx1 == -1)
6430 				continue;
6431 			if (rxb->size1 > largest_rx_cluster)
6432 				break;
6433 			if (rxb->size1 >= maxp)
6434 				return (i);
6435 			zidx = i;
6436 		}
6437 	}
6438 
6439 	return (zidx);
6440 }
6441 
6442 static void
6443 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6444 {
6445 	mtx_lock(&sc->sfl_lock);
6446 	FL_LOCK(fl);
6447 	if ((fl->flags & FL_DOOMED) == 0) {
6448 		fl->flags |= FL_STARVING;
6449 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6450 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6451 	}
6452 	FL_UNLOCK(fl);
6453 	mtx_unlock(&sc->sfl_lock);
6454 }
6455 
6456 static void
6457 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6458 {
6459 	struct sge_wrq *wrq = (void *)eq;
6460 
6461 	atomic_readandclear_int(&eq->equiq);
6462 	taskqueue_enqueue(sc->tq[eq->port_id], &wrq->wrq_tx_task);
6463 }
6464 
6465 static void
6466 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6467 {
6468 	struct sge_txq *txq = (void *)eq;
6469 
6470 	MPASS(eq->type == EQ_ETH);
6471 
6472 	atomic_readandclear_int(&eq->equiq);
6473 	if (mp_ring_is_idle(txq->r))
6474 		taskqueue_enqueue(sc->tq[eq->port_id], &txq->tx_reclaim_task);
6475 	else
6476 		mp_ring_check_drainage(txq->r, 64);
6477 }
6478 
6479 static int
6480 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6481     struct mbuf *m)
6482 {
6483 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6484 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6485 	struct adapter *sc = iq->adapter;
6486 	struct sge *s = &sc->sge;
6487 	struct sge_eq *eq;
6488 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6489 		&handle_wrq_egr_update, &handle_eth_egr_update,
6490 		&handle_wrq_egr_update};
6491 
6492 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6493 	    rss->opcode));
6494 
6495 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6496 	(*h[eq->type])(sc, eq);
6497 
6498 	return (0);
6499 }
6500 
6501 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6502 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6503     offsetof(struct cpl_fw6_msg, data));
6504 
6505 static int
6506 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6507 {
6508 	struct adapter *sc = iq->adapter;
6509 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6510 
6511 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6512 	    rss->opcode));
6513 
6514 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6515 		const struct rss_header *rss2;
6516 
6517 		rss2 = (const struct rss_header *)&cpl->data[0];
6518 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6519 	}
6520 
6521 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6522 }
6523 
6524 /**
6525  *	t4_handle_wrerr_rpl - process a FW work request error message
6526  *	@adap: the adapter
6527  *	@rpl: start of the FW message
6528  */
6529 static int
6530 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6531 {
6532 	u8 opcode = *(const u8 *)rpl;
6533 	const struct fw_error_cmd *e = (const void *)rpl;
6534 	unsigned int i;
6535 
6536 	if (opcode != FW_ERROR_CMD) {
6537 		log(LOG_ERR,
6538 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6539 		    device_get_nameunit(adap->dev), opcode);
6540 		return (EINVAL);
6541 	}
6542 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6543 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6544 	    "non-fatal");
6545 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6546 	case FW_ERROR_TYPE_EXCEPTION:
6547 		log(LOG_ERR, "exception info:\n");
6548 		for (i = 0; i < nitems(e->u.exception.info); i++)
6549 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6550 			    be32toh(e->u.exception.info[i]));
6551 		log(LOG_ERR, "\n");
6552 		break;
6553 	case FW_ERROR_TYPE_HWMODULE:
6554 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6555 		    be32toh(e->u.hwmodule.regaddr),
6556 		    be32toh(e->u.hwmodule.regval));
6557 		break;
6558 	case FW_ERROR_TYPE_WR:
6559 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6560 		    be16toh(e->u.wr.cidx),
6561 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6562 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6563 		    be32toh(e->u.wr.eqid));
6564 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6565 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6566 			    e->u.wr.wrhdr[i]);
6567 		log(LOG_ERR, "\n");
6568 		break;
6569 	case FW_ERROR_TYPE_ACL:
6570 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6571 		    be16toh(e->u.acl.cidx),
6572 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6573 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6574 		    be32toh(e->u.acl.eqid),
6575 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6576 		    "MAC");
6577 		for (i = 0; i < nitems(e->u.acl.val); i++)
6578 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6579 		log(LOG_ERR, "\n");
6580 		break;
6581 	default:
6582 		log(LOG_ERR, "type %#x\n",
6583 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6584 		return (EINVAL);
6585 	}
6586 	return (0);
6587 }
6588 
6589 static inline bool
6590 bufidx_used(struct adapter *sc, int idx)
6591 {
6592 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6593 	int i;
6594 
6595 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6596 		if (rxb->size1 > largest_rx_cluster)
6597 			continue;
6598 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6599 			return (true);
6600 	}
6601 
6602 	return (false);
6603 }
6604 
6605 static int
6606 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6607 {
6608 	struct adapter *sc = arg1;
6609 	struct sge_params *sp = &sc->params.sge;
6610 	int i, rc;
6611 	struct sbuf sb;
6612 	char c;
6613 
6614 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6615 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6616 		if (bufidx_used(sc, i))
6617 			c = '*';
6618 		else
6619 			c = '\0';
6620 
6621 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6622 	}
6623 	sbuf_trim(&sb);
6624 	sbuf_finish(&sb);
6625 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6626 	sbuf_delete(&sb);
6627 	return (rc);
6628 }
6629 
6630 #ifdef RATELIMIT
6631 #if defined(INET) || defined(INET6)
6632 /*
6633  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6634  */
6635 static inline u_int
6636 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6637 {
6638 	u_int n;
6639 
6640 	MPASS(immhdrs > 0);
6641 
6642 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6643 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6644 	if (__predict_false(nsegs == 0))
6645 		goto done;
6646 
6647 	nsegs--; /* first segment is part of ulptx_sgl */
6648 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6649 	if (tso)
6650 		n += sizeof(struct cpl_tx_pkt_lso_core);
6651 
6652 done:
6653 	return (howmany(n, 16));
6654 }
6655 #endif
6656 
6657 #define ETID_FLOWC_NPARAMS 6
6658 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6659     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6660 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6661 
6662 #if defined(INET) || defined(INET6)
6663 static int
6664 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6665     struct vi_info *vi)
6666 {
6667 	struct wrq_cookie cookie;
6668 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6669 	struct fw_flowc_wr *flowc;
6670 
6671 	mtx_assert(&cst->lock, MA_OWNED);
6672 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6673 	    EO_FLOWC_PENDING);
6674 
6675 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6676 	if (__predict_false(flowc == NULL))
6677 		return (ENOMEM);
6678 
6679 	bzero(flowc, ETID_FLOWC_LEN);
6680 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6681 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6682 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6683 	    V_FW_WR_FLOWID(cst->etid));
6684 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6685 	flowc->mnemval[0].val = htobe32(pfvf);
6686 	/* Firmware expects hw port and will translate to channel itself. */
6687 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6688 	flowc->mnemval[1].val = htobe32(pi->hw_port);
6689 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6690 	flowc->mnemval[2].val = htobe32(pi->hw_port);
6691 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6692 	flowc->mnemval[3].val = htobe32(cst->iqid);
6693 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6694 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6695 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6696 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6697 
6698 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6699 
6700 	cst->flags &= ~EO_FLOWC_PENDING;
6701 	cst->flags |= EO_FLOWC_RPL_PENDING;
6702 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6703 	cst->tx_credits -= ETID_FLOWC_LEN16;
6704 
6705 	return (0);
6706 }
6707 #endif
6708 
6709 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6710 
6711 void
6712 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6713 {
6714 	struct fw_flowc_wr *flowc;
6715 	struct wrq_cookie cookie;
6716 
6717 	mtx_assert(&cst->lock, MA_OWNED);
6718 
6719 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6720 	if (__predict_false(flowc == NULL))
6721 		CXGBE_UNIMPLEMENTED(__func__);
6722 
6723 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6724 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6725 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6726 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6727 	    V_FW_WR_FLOWID(cst->etid));
6728 
6729 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6730 
6731 	cst->flags |= EO_FLUSH_RPL_PENDING;
6732 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6733 	cst->tx_credits -= ETID_FLUSH_LEN16;
6734 	cst->ncompl++;
6735 }
6736 
6737 static void
6738 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6739     struct mbuf *m0, int compl)
6740 {
6741 	struct cpl_tx_pkt_core *cpl;
6742 	uint64_t ctrl1;
6743 	uint32_t ctrl;	/* used in many unrelated places */
6744 	int len16, pktlen, nsegs, immhdrs;
6745 	uintptr_t p;
6746 	struct ulptx_sgl *usgl;
6747 	struct sglist sg;
6748 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6749 
6750 	mtx_assert(&cst->lock, MA_OWNED);
6751 	M_ASSERTPKTHDR(m0);
6752 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6753 	    m0->m_pkthdr.l4hlen > 0,
6754 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6755 
6756 	len16 = mbuf_eo_len16(m0);
6757 	nsegs = mbuf_eo_nsegs(m0);
6758 	pktlen = m0->m_pkthdr.len;
6759 	ctrl = sizeof(struct cpl_tx_pkt_core);
6760 	if (needs_tso(m0))
6761 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6762 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6763 	ctrl += immhdrs;
6764 
6765 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6766 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6767 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6768 	    V_FW_WR_FLOWID(cst->etid));
6769 	wr->r3 = 0;
6770 	if (needs_outer_udp_csum(m0)) {
6771 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6772 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6773 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6774 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6775 		wr->u.udpseg.rtplen = 0;
6776 		wr->u.udpseg.r4 = 0;
6777 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6778 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6779 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6780 		cpl = (void *)(wr + 1);
6781 	} else {
6782 		MPASS(needs_outer_tcp_csum(m0));
6783 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6784 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6785 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6786 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6787 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6788 		wr->u.tcpseg.r4 = 0;
6789 		wr->u.tcpseg.r5 = 0;
6790 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6791 
6792 		if (needs_tso(m0)) {
6793 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6794 
6795 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6796 
6797 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6798 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6799 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6800 				ETHER_HDR_LEN) >> 2) |
6801 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6802 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6803 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6804 				ctrl |= F_LSO_IPV6;
6805 			lso->lso_ctrl = htobe32(ctrl);
6806 			lso->ipid_ofst = htobe16(0);
6807 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6808 			lso->seqno_offset = htobe32(0);
6809 			lso->len = htobe32(pktlen);
6810 
6811 			cpl = (void *)(lso + 1);
6812 		} else {
6813 			wr->u.tcpseg.mss = htobe16(0xffff);
6814 			cpl = (void *)(wr + 1);
6815 		}
6816 	}
6817 
6818 	/* Checksum offload must be requested for ethofld. */
6819 	MPASS(needs_outer_l4_csum(m0));
6820 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6821 
6822 	/* VLAN tag insertion */
6823 	if (needs_vlan_insertion(m0)) {
6824 		ctrl1 |= F_TXPKT_VLAN_VLD |
6825 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6826 	}
6827 
6828 	/* CPL header */
6829 	cpl->ctrl0 = cst->ctrl0;
6830 	cpl->pack = 0;
6831 	cpl->len = htobe16(pktlen);
6832 	cpl->ctrl1 = htobe64(ctrl1);
6833 
6834 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6835 	p = (uintptr_t)(cpl + 1);
6836 	m_copydata(m0, 0, immhdrs, (void *)p);
6837 
6838 	/* SGL */
6839 	if (nsegs > 0) {
6840 		int i, pad;
6841 
6842 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6843 		p += immhdrs;
6844 		pad = 16 - (immhdrs & 0xf);
6845 		bzero((void *)p, pad);
6846 
6847 		usgl = (void *)(p + pad);
6848 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6849 		    V_ULPTX_NSGE(nsegs));
6850 
6851 		sglist_init(&sg, nitems(segs), segs);
6852 		for (; m0 != NULL; m0 = m0->m_next) {
6853 			if (__predict_false(m0->m_len == 0))
6854 				continue;
6855 			if (immhdrs >= m0->m_len) {
6856 				immhdrs -= m0->m_len;
6857 				continue;
6858 			}
6859 			if (m0->m_flags & M_EXTPG)
6860 				sglist_append_mbuf_epg(&sg, m0,
6861 				    mtod(m0, vm_offset_t), m0->m_len);
6862                         else
6863 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6864 				    m0->m_len - immhdrs);
6865 			immhdrs = 0;
6866 		}
6867 		MPASS(sg.sg_nseg == nsegs);
6868 
6869 		/*
6870 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6871 		 * boundary.
6872 		 */
6873 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6874 
6875 		usgl->len0 = htobe32(segs[0].ss_len);
6876 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6877 		for (i = 0; i < nsegs - 1; i++) {
6878 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6879 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6880 		}
6881 		if (i & 1)
6882 			usgl->sge[i / 2].len[1] = htobe32(0);
6883 	}
6884 
6885 }
6886 
6887 static void
6888 ethofld_tx(struct cxgbe_rate_tag *cst)
6889 {
6890 	struct mbuf *m;
6891 	struct wrq_cookie cookie;
6892 	int next_credits, compl;
6893 	struct fw_eth_tx_eo_wr *wr;
6894 
6895 	mtx_assert(&cst->lock, MA_OWNED);
6896 
6897 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6898 		M_ASSERTPKTHDR(m);
6899 
6900 		/* How many len16 credits do we need to send this mbuf. */
6901 		next_credits = mbuf_eo_len16(m);
6902 		MPASS(next_credits > 0);
6903 		if (next_credits > cst->tx_credits) {
6904 			/*
6905 			 * Tx will make progress eventually because there is at
6906 			 * least one outstanding fw4_ack that will return
6907 			 * credits and kick the tx.
6908 			 */
6909 			MPASS(cst->ncompl > 0);
6910 			return;
6911 		}
6912 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6913 		if (__predict_false(wr == NULL)) {
6914 			/* XXX: wishful thinking, not a real assertion. */
6915 			MPASS(cst->ncompl > 0);
6916 			return;
6917 		}
6918 		cst->tx_credits -= next_credits;
6919 		cst->tx_nocompl += next_credits;
6920 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6921 		ETHER_BPF_MTAP(cst->com.ifp, m);
6922 		write_ethofld_wr(cst, wr, m, compl);
6923 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6924 		if (compl) {
6925 			cst->ncompl++;
6926 			cst->tx_nocompl	= 0;
6927 		}
6928 		(void) mbufq_dequeue(&cst->pending_tx);
6929 
6930 		/*
6931 		 * Drop the mbuf's reference on the tag now rather
6932 		 * than waiting until m_freem().  This ensures that
6933 		 * cxgbe_rate_tag_free gets called when the inp drops
6934 		 * its reference on the tag and there are no more
6935 		 * mbufs in the pending_tx queue and can flush any
6936 		 * pending requests.  Otherwise if the last mbuf
6937 		 * doesn't request a completion the etid will never be
6938 		 * released.
6939 		 */
6940 		m->m_pkthdr.snd_tag = NULL;
6941 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6942 		m_snd_tag_rele(&cst->com);
6943 
6944 		mbufq_enqueue(&cst->pending_fwack, m);
6945 	}
6946 }
6947 
6948 #if defined(INET) || defined(INET6)
6949 static int
6950 ethofld_transmit(if_t ifp, struct mbuf *m0)
6951 {
6952 	struct cxgbe_rate_tag *cst;
6953 	int rc;
6954 
6955 	MPASS(m0->m_nextpkt == NULL);
6956 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6957 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6958 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6959 
6960 	mtx_lock(&cst->lock);
6961 	MPASS(cst->flags & EO_SND_TAG_REF);
6962 
6963 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6964 		struct vi_info *vi = if_getsoftc(ifp);
6965 		struct port_info *pi = vi->pi;
6966 		struct adapter *sc = pi->adapter;
6967 		const uint32_t rss_mask = vi->rss_size - 1;
6968 		uint32_t rss_hash;
6969 
6970 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6971 		if (M_HASHTYPE_ISHASH(m0))
6972 			rss_hash = m0->m_pkthdr.flowid;
6973 		else
6974 			rss_hash = arc4random();
6975 		/* We assume RSS hashing */
6976 		cst->iqid = vi->rss[rss_hash & rss_mask];
6977 		cst->eo_txq += rss_hash % vi->nofldtxq;
6978 		rc = send_etid_flowc_wr(cst, pi, vi);
6979 		if (rc != 0)
6980 			goto done;
6981 	}
6982 
6983 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6984 		rc = ENOBUFS;
6985 		goto done;
6986 	}
6987 
6988 	mbufq_enqueue(&cst->pending_tx, m0);
6989 	cst->plen += m0->m_pkthdr.len;
6990 
6991 	/*
6992 	 * Hold an extra reference on the tag while generating work
6993 	 * requests to ensure that we don't try to free the tag during
6994 	 * ethofld_tx() in case we are sending the final mbuf after
6995 	 * the inp was freed.
6996 	 */
6997 	m_snd_tag_ref(&cst->com);
6998 	ethofld_tx(cst);
6999 	mtx_unlock(&cst->lock);
7000 	m_snd_tag_rele(&cst->com);
7001 	return (0);
7002 
7003 done:
7004 	mtx_unlock(&cst->lock);
7005 	return (rc);
7006 }
7007 #endif
7008 
7009 static int
7010 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
7011 {
7012 	struct adapter *sc = iq->adapter;
7013 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
7014 	struct mbuf *m;
7015 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
7016 	struct cxgbe_rate_tag *cst;
7017 	uint8_t credits = cpl->credits;
7018 
7019 	cst = lookup_etid(sc, etid);
7020 	mtx_lock(&cst->lock);
7021 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
7022 		MPASS(credits >= ETID_FLOWC_LEN16);
7023 		credits -= ETID_FLOWC_LEN16;
7024 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
7025 	}
7026 
7027 	KASSERT(cst->ncompl > 0,
7028 	    ("%s: etid %u (%p) wasn't expecting completion.",
7029 	    __func__, etid, cst));
7030 	cst->ncompl--;
7031 
7032 	while (credits > 0) {
7033 		m = mbufq_dequeue(&cst->pending_fwack);
7034 		if (__predict_false(m == NULL)) {
7035 			/*
7036 			 * The remaining credits are for the final flush that
7037 			 * was issued when the tag was freed by the kernel.
7038 			 */
7039 			MPASS((cst->flags &
7040 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
7041 			    EO_FLUSH_RPL_PENDING);
7042 			MPASS(credits == ETID_FLUSH_LEN16);
7043 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
7044 			MPASS(cst->ncompl == 0);
7045 
7046 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
7047 			cst->tx_credits += cpl->credits;
7048 			cxgbe_rate_tag_free_locked(cst);
7049 			return (0);	/* cst is gone. */
7050 		}
7051 		KASSERT(m != NULL,
7052 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
7053 		    credits));
7054 		KASSERT(credits >= mbuf_eo_len16(m),
7055 		    ("%s: too few credits (%u, %u, %u)", __func__,
7056 		    cpl->credits, credits, mbuf_eo_len16(m)));
7057 		credits -= mbuf_eo_len16(m);
7058 		cst->plen -= m->m_pkthdr.len;
7059 		m_freem(m);
7060 	}
7061 
7062 	cst->tx_credits += cpl->credits;
7063 	MPASS(cst->tx_credits <= cst->tx_total);
7064 
7065 	if (cst->flags & EO_SND_TAG_REF) {
7066 		/*
7067 		 * As with ethofld_transmit(), hold an extra reference
7068 		 * so that the tag is stable across ethold_tx().
7069 		 */
7070 		m_snd_tag_ref(&cst->com);
7071 		m = mbufq_first(&cst->pending_tx);
7072 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
7073 			ethofld_tx(cst);
7074 		mtx_unlock(&cst->lock);
7075 		m_snd_tag_rele(&cst->com);
7076 	} else {
7077 		/*
7078 		 * There shouldn't be any pending packets if the tag
7079 		 * was freed by the kernel since any pending packet
7080 		 * should hold a reference to the tag.
7081 		 */
7082 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
7083 		mtx_unlock(&cst->lock);
7084 	}
7085 
7086 	return (0);
7087 }
7088 #endif
7089