1 /* 2 * Copyright © 2009 Keith Packard 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/backlight.h> 24 #include <linux/delay.h> 25 #include <linux/dynamic_debug.h> 26 #include <linux/errno.h> 27 #include <linux/i2c.h> 28 #include <linux/init.h> 29 #include <linux/iopoll.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/seq_file.h> 34 #include <linux/string_helpers.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_dp_mst_helper.h> 38 #include <drm/drm_edid.h> 39 #include <drm/drm_fixed.h> 40 #include <drm/drm_print.h> 41 #include <drm/drm_vblank.h> 42 #include <drm/drm_panel.h> 43 44 #include "drm_dp_helper_internal.h" 45 46 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0, 47 "DRM_UT_CORE", 48 "DRM_UT_DRIVER", 49 "DRM_UT_KMS", 50 "DRM_UT_PRIME", 51 "DRM_UT_ATOMIC", 52 "DRM_UT_VBL", 53 "DRM_UT_STATE", 54 "DRM_UT_LEASE", 55 "DRM_UT_DP", 56 "DRM_UT_DRMRES"); 57 58 struct dp_aux_backlight { 59 struct backlight_device *base; 60 struct drm_dp_aux *aux; 61 struct drm_edp_backlight_info info; 62 bool enabled; 63 }; 64 65 /** 66 * DOC: dp helpers 67 * 68 * These functions contain some common logic and helpers at various abstraction 69 * levels to deal with Display Port sink devices and related things like DP aux 70 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD 71 * blocks, ... 72 */ 73 74 /* Helpers for DP link training */ 75 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r) 76 { 77 return link_status[r - DP_LANE0_1_STATUS]; 78 } 79 80 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE], 81 int lane) 82 { 83 int i = DP_LANE0_1_STATUS + (lane >> 1); 84 int s = (lane & 1) * 4; 85 u8 l = dp_link_status(link_status, i); 86 87 return (l >> s) & 0xf; 88 } 89 90 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 91 int lane_count) 92 { 93 u8 lane_align; 94 u8 lane_status; 95 int lane; 96 97 lane_align = dp_link_status(link_status, 98 DP_LANE_ALIGN_STATUS_UPDATED); 99 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) 100 return false; 101 for (lane = 0; lane < lane_count; lane++) { 102 lane_status = dp_get_lane_status(link_status, lane); 103 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) 104 return false; 105 } 106 return true; 107 } 108 EXPORT_SYMBOL(drm_dp_channel_eq_ok); 109 110 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 111 int lane_count) 112 { 113 int lane; 114 u8 lane_status; 115 116 for (lane = 0; lane < lane_count; lane++) { 117 lane_status = dp_get_lane_status(link_status, lane); 118 if ((lane_status & DP_LANE_CR_DONE) == 0) 119 return false; 120 } 121 return true; 122 } 123 EXPORT_SYMBOL(drm_dp_clock_recovery_ok); 124 125 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE], 126 int lane) 127 { 128 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 129 int s = ((lane & 1) ? 130 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : 131 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); 132 u8 l = dp_link_status(link_status, i); 133 134 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; 135 } 136 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage); 137 138 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE], 139 int lane) 140 { 141 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 142 int s = ((lane & 1) ? 143 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : 144 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); 145 u8 l = dp_link_status(link_status, i); 146 147 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; 148 } 149 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis); 150 151 /* DP 2.0 128b/132b */ 152 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE], 153 int lane) 154 { 155 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 156 int s = ((lane & 1) ? 157 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT : 158 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT); 159 u8 l = dp_link_status(link_status, i); 160 161 return (l >> s) & 0xf; 162 } 163 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset); 164 165 /* DP 2.0 errata for 128b/132b */ 166 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE], 167 int lane_count) 168 { 169 u8 lane_align, lane_status; 170 int lane; 171 172 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 173 if (!(lane_align & DP_INTERLANE_ALIGN_DONE)) 174 return false; 175 176 for (lane = 0; lane < lane_count; lane++) { 177 lane_status = dp_get_lane_status(link_status, lane); 178 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE)) 179 return false; 180 } 181 return true; 182 } 183 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done); 184 185 /* DP 2.0 errata for 128b/132b */ 186 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE], 187 int lane_count) 188 { 189 u8 lane_status; 190 int lane; 191 192 for (lane = 0; lane < lane_count; lane++) { 193 lane_status = dp_get_lane_status(link_status, lane); 194 if (!(lane_status & DP_LANE_SYMBOL_LOCKED)) 195 return false; 196 } 197 return true; 198 } 199 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked); 200 201 /* DP 2.0 errata for 128b/132b */ 202 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE]) 203 { 204 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 205 206 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE; 207 } 208 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done); 209 210 /* DP 2.0 errata for 128b/132b */ 211 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE]) 212 { 213 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 214 215 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE; 216 } 217 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done); 218 219 /* DP 2.0 errata for 128b/132b */ 220 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE]) 221 { 222 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 223 224 return status & DP_128B132B_LT_FAILED; 225 } 226 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed); 227 228 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 229 { 230 if (rd_interval > 4) 231 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n", 232 aux->name, rd_interval); 233 234 if (rd_interval == 0) 235 return 100; 236 237 return rd_interval * 4 * USEC_PER_MSEC; 238 } 239 240 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 241 { 242 if (rd_interval > 4) 243 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n", 244 aux->name, rd_interval); 245 246 if (rd_interval == 0) 247 return 400; 248 249 return rd_interval * 4 * USEC_PER_MSEC; 250 } 251 252 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 253 { 254 switch (rd_interval) { 255 default: 256 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n", 257 aux->name, rd_interval); 258 fallthrough; 259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US: 260 return 400; 261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS: 262 return 4000; 263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS: 264 return 8000; 265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS: 266 return 12000; 267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS: 268 return 16000; 269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS: 270 return 32000; 271 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS: 272 return 64000; 273 } 274 } 275 276 /* 277 * The link training delays are different for: 278 * 279 * - Clock recovery vs. channel equalization 280 * - DPRX vs. LTTPR 281 * - 128b/132b vs. 8b/10b 282 * - DPCD rev 1.3 vs. later 283 * 284 * Get the correct delay in us, reading DPCD if necessary. 285 */ 286 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 287 enum drm_dp_phy dp_phy, bool uhbr, bool cr) 288 { 289 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval); 290 unsigned int offset; 291 u8 rd_interval, mask; 292 293 if (dp_phy == DP_PHY_DPRX) { 294 if (uhbr) { 295 if (cr) 296 return 100; 297 298 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL; 299 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 300 parse = __128b132b_channel_eq_delay_us; 301 } else { 302 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 303 return 100; 304 305 offset = DP_TRAINING_AUX_RD_INTERVAL; 306 mask = DP_TRAINING_AUX_RD_MASK; 307 if (cr) 308 parse = __8b10b_clock_recovery_delay_us; 309 else 310 parse = __8b10b_channel_eq_delay_us; 311 } 312 } else { 313 if (uhbr) { 314 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy); 315 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 316 parse = __128b132b_channel_eq_delay_us; 317 } else { 318 if (cr) 319 return 100; 320 321 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy); 322 mask = DP_TRAINING_AUX_RD_MASK; 323 parse = __8b10b_channel_eq_delay_us; 324 } 325 } 326 327 if (offset < DP_RECEIVER_CAP_SIZE) { 328 rd_interval = dpcd[offset]; 329 } else { 330 if (drm_dp_dpcd_read_byte(aux, offset, &rd_interval) < 0) { 331 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n", 332 aux->name); 333 /* arbitrary default delay */ 334 return 400; 335 } 336 } 337 338 return parse(aux, rd_interval & mask); 339 } 340 341 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 342 enum drm_dp_phy dp_phy, bool uhbr) 343 { 344 return __read_delay(aux, dpcd, dp_phy, uhbr, true); 345 } 346 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay); 347 348 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 349 enum drm_dp_phy dp_phy, bool uhbr) 350 { 351 return __read_delay(aux, dpcd, dp_phy, uhbr, false); 352 } 353 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay); 354 355 /* Per DP 2.0 Errata */ 356 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux) 357 { 358 int unit; 359 u8 val; 360 361 if (drm_dp_dpcd_read_byte(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) < 0) { 362 drm_err(aux->drm_dev, "%s: failed rd interval read\n", 363 aux->name); 364 /* default to max */ 365 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 366 } 367 368 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2; 369 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 370 371 return (val + 1) * unit * 1000; 372 } 373 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval); 374 375 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux, 376 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 377 { 378 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 379 DP_TRAINING_AUX_RD_MASK; 380 int delay_us; 381 382 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 383 delay_us = 100; 384 else 385 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval); 386 387 usleep_range(delay_us, delay_us * 2); 388 } 389 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay); 390 391 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 392 u8 rd_interval) 393 { 394 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval); 395 396 usleep_range(delay_us, delay_us * 2); 397 } 398 399 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 400 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 401 { 402 __drm_dp_link_train_channel_eq_delay(aux, 403 dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 404 DP_TRAINING_AUX_RD_MASK); 405 } 406 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay); 407 408 /** 409 * drm_dp_phy_name() - Get the name of the given DP PHY 410 * @dp_phy: The DP PHY identifier 411 * 412 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or 413 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always 414 * non-NULL and valid. 415 * 416 * Returns: Name of the DP PHY. 417 */ 418 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy) 419 { 420 static const char * const phy_names[] = { 421 [DP_PHY_DPRX] = "DPRX", 422 [DP_PHY_LTTPR1] = "LTTPR 1", 423 [DP_PHY_LTTPR2] = "LTTPR 2", 424 [DP_PHY_LTTPR3] = "LTTPR 3", 425 [DP_PHY_LTTPR4] = "LTTPR 4", 426 [DP_PHY_LTTPR5] = "LTTPR 5", 427 [DP_PHY_LTTPR6] = "LTTPR 6", 428 [DP_PHY_LTTPR7] = "LTTPR 7", 429 [DP_PHY_LTTPR8] = "LTTPR 8", 430 }; 431 432 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) || 433 WARN_ON(!phy_names[dp_phy])) 434 return "<INVALID DP PHY>"; 435 436 return phy_names[dp_phy]; 437 } 438 EXPORT_SYMBOL(drm_dp_phy_name); 439 440 void drm_dp_lttpr_link_train_clock_recovery_delay(void) 441 { 442 usleep_range(100, 200); 443 } 444 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay); 445 446 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r) 447 { 448 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1]; 449 } 450 451 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 452 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE]) 453 { 454 u8 interval = dp_lttpr_phy_cap(phy_cap, 455 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) & 456 DP_TRAINING_AUX_RD_MASK; 457 458 __drm_dp_link_train_channel_eq_delay(aux, interval); 459 } 460 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay); 461 462 /** 463 * drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up 464 * @aux: The DP AUX channel to use 465 * @transparent_mode: This is true if lttpr is in transparent mode 466 * 467 * This function checks if the sink needs any extended wake time, if it does 468 * it grants this request. Post this setup the source device can keep trying 469 * the Aux transaction till the granted wake timeout. 470 * If this function is not called all Aux transactions are expected to take 471 * a default of 1ms before they throw an error. 472 */ 473 void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode) 474 { 475 u8 val = 1; 476 int ret; 477 478 if (transparent_mode) { 479 static const u8 timeout_mapping[] = { 480 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1, 481 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20, 482 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40, 483 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60, 484 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80, 485 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100, 486 }; 487 488 ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val); 489 if (ret != 1) { 490 drm_dbg_kms(aux->drm_dev, 491 "Failed to read Extended sleep wake timeout request\n"); 492 return; 493 } 494 495 val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ? 496 timeout_mapping[val] : 1; 497 498 if (val > 1) 499 drm_dp_dpcd_writeb(aux, 500 DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT, 501 DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED); 502 } else { 503 ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val); 504 if (ret != 1) { 505 drm_dbg_kms(aux->drm_dev, 506 "Failed to read Extended sleep wake timeout request\n"); 507 return; 508 } 509 510 val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ? 511 (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1; 512 513 if (val > 1) 514 drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, 515 DP_EXTENDED_WAKE_TIMEOUT_GRANT); 516 } 517 } 518 EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup); 519 520 u8 drm_dp_link_rate_to_bw_code(int link_rate) 521 { 522 switch (link_rate) { 523 case 1000000: 524 return DP_LINK_BW_10; 525 case 1350000: 526 return DP_LINK_BW_13_5; 527 case 2000000: 528 return DP_LINK_BW_20; 529 default: 530 /* Spec says link_bw = link_rate / 0.27Gbps */ 531 return link_rate / 27000; 532 } 533 } 534 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code); 535 536 int drm_dp_bw_code_to_link_rate(u8 link_bw) 537 { 538 switch (link_bw) { 539 case DP_LINK_BW_10: 540 return 1000000; 541 case DP_LINK_BW_13_5: 542 return 1350000; 543 case DP_LINK_BW_20: 544 return 2000000; 545 default: 546 /* Spec says link_rate = link_bw * 0.27Gbps */ 547 return link_bw * 27000; 548 } 549 } 550 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate); 551 552 #define AUX_RETRY_INTERVAL 500 /* us */ 553 554 static inline void 555 drm_dp_dump_access(const struct drm_dp_aux *aux, 556 u8 request, uint offset, void *buffer, int ret) 557 { 558 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-"; 559 560 if (ret > 0) 561 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n", 562 aux->name, offset, arrow, ret, min(ret, 20), buffer); 563 else 564 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n", 565 aux->name, offset, arrow, ret); 566 } 567 568 /** 569 * DOC: dp helpers 570 * 571 * The DisplayPort AUX channel is an abstraction to allow generic, driver- 572 * independent access to AUX functionality. Drivers can take advantage of 573 * this by filling in the fields of the drm_dp_aux structure. 574 * 575 * Transactions are described using a hardware-independent drm_dp_aux_msg 576 * structure, which is passed into a driver's .transfer() implementation. 577 * Both native and I2C-over-AUX transactions are supported. 578 */ 579 580 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request, 581 unsigned int offset, void *buffer, size_t size) 582 { 583 struct drm_dp_aux_msg msg; 584 unsigned int retry, native_reply; 585 int err = 0, ret = 0; 586 587 memset(&msg, 0, sizeof(msg)); 588 msg.address = offset; 589 msg.request = request; 590 msg.buffer = buffer; 591 msg.size = size; 592 593 mutex_lock(&aux->hw_mutex); 594 595 /* 596 * If the device attached to the aux bus is powered down then there's 597 * no reason to attempt a transfer. Error out immediately. 598 */ 599 if (aux->powered_down) { 600 ret = -EBUSY; 601 goto unlock; 602 } 603 604 /* 605 * The specification doesn't give any recommendation on how often to 606 * retry native transactions. We used to retry 7 times like for 607 * aux i2c transactions but real world devices this wasn't 608 * sufficient, bump to 32 which makes Dell 4k monitors happier. 609 */ 610 for (retry = 0; retry < 32; retry++) { 611 if (ret != 0 && ret != -ETIMEDOUT) { 612 usleep_range(AUX_RETRY_INTERVAL, 613 AUX_RETRY_INTERVAL + 100); 614 } 615 616 ret = aux->transfer(aux, &msg); 617 if (ret >= 0) { 618 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK; 619 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) { 620 if (ret == size) 621 goto unlock; 622 623 ret = -EPROTO; 624 } else 625 ret = -EIO; 626 } 627 628 /* 629 * We want the error we return to be the error we received on 630 * the first transaction, since we may get a different error the 631 * next time we retry 632 */ 633 if (!err) 634 err = ret; 635 } 636 637 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n", 638 aux->name, err); 639 ret = err; 640 641 unlock: 642 mutex_unlock(&aux->hw_mutex); 643 return ret; 644 } 645 646 /** 647 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access 648 * @aux: DisplayPort AUX channel (SST) 649 * @offset: address of the register to probe 650 * 651 * Probe the provided DPCD address by reading 1 byte from it. The function can 652 * be used to trigger some side-effect the read access has, like waking up the 653 * sink, without the need for the read-out value. 654 * 655 * Returns 0 if the read access suceeded, or a negative error code on failure. 656 */ 657 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset) 658 { 659 u8 buffer; 660 int ret; 661 662 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1); 663 WARN_ON(ret == 0); 664 665 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret); 666 667 return ret < 0 ? ret : 0; 668 } 669 EXPORT_SYMBOL(drm_dp_dpcd_probe); 670 671 /** 672 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered 673 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here 674 * and the function will be a no-op. 675 * @powered: true if powered; false if not 676 * 677 * If the endpoint device on the DP AUX bus is known to be powered down 678 * then this function can be called to make future transfers fail immediately 679 * instead of needing to time out. 680 * 681 * If this function is never called then a device defaults to being powered. 682 */ 683 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered) 684 { 685 if (!aux) 686 return; 687 688 mutex_lock(&aux->hw_mutex); 689 aux->powered_down = !powered; 690 mutex_unlock(&aux->hw_mutex); 691 } 692 EXPORT_SYMBOL(drm_dp_dpcd_set_powered); 693 694 /** 695 * drm_dp_dpcd_read() - read a series of bytes from the DPCD 696 * @aux: DisplayPort AUX channel (SST or MST) 697 * @offset: address of the (first) register to read 698 * @buffer: buffer to store the register values 699 * @size: number of bytes in @buffer 700 * 701 * Returns the number of bytes transferred on success, or a negative error 702 * code on failure. -EIO is returned if the request was NAKed by the sink or 703 * if the retry count was exceeded. If not all bytes were transferred, this 704 * function returns -EPROTO. Errors from the underlying AUX channel transfer 705 * function, with the exception of -EBUSY (which causes the transaction to 706 * be retried), are propagated to the caller. 707 * 708 * In most of the cases you want to use drm_dp_dpcd_read_data() instead. 709 */ 710 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset, 711 void *buffer, size_t size) 712 { 713 int ret; 714 715 /* 716 * HP ZR24w corrupts the first DPCD access after entering power save 717 * mode. Eg. on a read, the entire buffer will be filled with the same 718 * byte. Do a throw away read to avoid corrupting anything we care 719 * about. Afterwards things will work correctly until the monitor 720 * gets woken up and subsequently re-enters power save mode. 721 * 722 * The user pressing any button on the monitor is enough to wake it 723 * up, so there is no particularly good place to do the workaround. 724 * We just have to do it before any DPCD access and hope that the 725 * monitor doesn't power down exactly after the throw away read. 726 */ 727 if (!aux->is_remote) { 728 ret = drm_dp_dpcd_probe(aux, DP_TRAINING_PATTERN_SET); 729 if (ret < 0) 730 return ret; 731 } 732 733 if (aux->is_remote) 734 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size); 735 else 736 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, 737 buffer, size); 738 739 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret); 740 return ret; 741 } 742 EXPORT_SYMBOL(drm_dp_dpcd_read); 743 744 /** 745 * drm_dp_dpcd_write() - write a series of bytes to the DPCD 746 * @aux: DisplayPort AUX channel (SST or MST) 747 * @offset: address of the (first) register to write 748 * @buffer: buffer containing the values to write 749 * @size: number of bytes in @buffer 750 * 751 * Returns the number of bytes transferred on success, or a negative error 752 * code on failure. -EIO is returned if the request was NAKed by the sink or 753 * if the retry count was exceeded. If not all bytes were transferred, this 754 * function returns -EPROTO. Errors from the underlying AUX channel transfer 755 * function, with the exception of -EBUSY (which causes the transaction to 756 * be retried), are propagated to the caller. 757 * 758 * In most of the cases you want to use drm_dp_dpcd_write_data() instead. 759 */ 760 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset, 761 void *buffer, size_t size) 762 { 763 int ret; 764 765 if (aux->is_remote) 766 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size); 767 else 768 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset, 769 buffer, size); 770 771 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret); 772 return ret; 773 } 774 EXPORT_SYMBOL(drm_dp_dpcd_write); 775 776 /** 777 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207) 778 * @aux: DisplayPort AUX channel 779 * @status: buffer to store the link status in (must be at least 6 bytes) 780 * 781 * Returns a negative error code on failure or 0 on success. 782 */ 783 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux, 784 u8 status[DP_LINK_STATUS_SIZE]) 785 { 786 return drm_dp_dpcd_read_data(aux, DP_LANE0_1_STATUS, status, 787 DP_LINK_STATUS_SIZE); 788 } 789 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status); 790 791 /** 792 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY 793 * @aux: DisplayPort AUX channel 794 * @dp_phy: the DP PHY to get the link status for 795 * @link_status: buffer to return the status in 796 * 797 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The 798 * layout of the returned @link_status matches the DPCD register layout of the 799 * DPRX PHY link status. 800 * 801 * Returns 0 if the information was read successfully or a negative error code 802 * on failure. 803 */ 804 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux, 805 enum drm_dp_phy dp_phy, 806 u8 link_status[DP_LINK_STATUS_SIZE]) 807 { 808 int ret; 809 810 if (dp_phy == DP_PHY_DPRX) 811 return drm_dp_dpcd_read_data(aux, 812 DP_LANE0_1_STATUS, 813 link_status, 814 DP_LINK_STATUS_SIZE); 815 816 ret = drm_dp_dpcd_read_data(aux, 817 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy), 818 link_status, 819 DP_LINK_STATUS_SIZE - 1); 820 821 if (ret < 0) 822 return ret; 823 824 /* Convert the LTTPR to the sink PHY link status layout */ 825 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1], 826 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS], 827 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1); 828 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0; 829 830 return 0; 831 } 832 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status); 833 834 /** 835 * drm_dp_link_power_up() - power up a DisplayPort link 836 * @aux: DisplayPort AUX channel 837 * @revision: DPCD revision supported on the link 838 * 839 * Returns 0 on success or a negative error code on failure. 840 */ 841 int drm_dp_link_power_up(struct drm_dp_aux *aux, unsigned char revision) 842 { 843 u8 value; 844 int err; 845 846 /* DP_SET_POWER register is only available on DPCD v1.1 and later */ 847 if (revision < DP_DPCD_REV_11) 848 return 0; 849 850 err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value); 851 if (err < 0) 852 return err; 853 854 value &= ~DP_SET_POWER_MASK; 855 value |= DP_SET_POWER_D0; 856 857 err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value); 858 if (err < 0) 859 return err; 860 861 /* 862 * According to the DP 1.1 specification, a "Sink Device must exit the 863 * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink 864 * Control Field" (register 0x600). 865 */ 866 usleep_range(1000, 2000); 867 868 return 0; 869 } 870 EXPORT_SYMBOL(drm_dp_link_power_up); 871 872 /** 873 * drm_dp_link_power_down() - power down a DisplayPort link 874 * @aux: DisplayPort AUX channel 875 * @revision: DPCD revision supported on the link 876 * 877 * Returns 0 on success or a negative error code on failure. 878 */ 879 int drm_dp_link_power_down(struct drm_dp_aux *aux, unsigned char revision) 880 { 881 u8 value; 882 int err; 883 884 /* DP_SET_POWER register is only available on DPCD v1.1 and later */ 885 if (revision < DP_DPCD_REV_11) 886 return 0; 887 888 err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value); 889 if (err < 0) 890 return err; 891 892 value &= ~DP_SET_POWER_MASK; 893 value |= DP_SET_POWER_D3; 894 895 err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value); 896 if (err < 0) 897 return err; 898 899 return 0; 900 } 901 EXPORT_SYMBOL(drm_dp_link_power_down); 902 903 static int read_payload_update_status(struct drm_dp_aux *aux) 904 { 905 int ret; 906 u8 status; 907 908 ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 909 if (ret < 0) 910 return ret; 911 912 return status; 913 } 914 915 /** 916 * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table 917 * @aux: DisplayPort AUX channel 918 * @vcpid: Virtual Channel Payload ID 919 * @start_time_slot: Starting time slot 920 * @time_slot_count: Time slot count 921 * 922 * Write the Virtual Channel payload allocation table, checking the payload 923 * update status and retrying as necessary. 924 * 925 * Returns: 926 * 0 on success, negative error otherwise 927 */ 928 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux, 929 int vcpid, u8 start_time_slot, u8 time_slot_count) 930 { 931 u8 payload_alloc[3], status; 932 int ret; 933 int retries = 0; 934 935 drm_dp_dpcd_write_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, 936 DP_PAYLOAD_TABLE_UPDATED); 937 938 payload_alloc[0] = vcpid; 939 payload_alloc[1] = start_time_slot; 940 payload_alloc[2] = time_slot_count; 941 942 ret = drm_dp_dpcd_write_data(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3); 943 if (ret < 0) { 944 drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret); 945 goto fail; 946 } 947 948 retry: 949 ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 950 if (ret < 0) { 951 drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret); 952 goto fail; 953 } 954 955 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) { 956 retries++; 957 if (retries < 20) { 958 usleep_range(10000, 20000); 959 goto retry; 960 } 961 drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n", 962 status); 963 ret = -EINVAL; 964 goto fail; 965 } 966 ret = 0; 967 fail: 968 return ret; 969 } 970 EXPORT_SYMBOL(drm_dp_dpcd_write_payload); 971 972 /** 973 * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table 974 * @aux: DisplayPort AUX channel 975 * 976 * Clear the entire VC Payload ID table. 977 * 978 * Returns: 0 on success, negative error code on errors. 979 */ 980 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux) 981 { 982 return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f); 983 } 984 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload); 985 986 /** 987 * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status 988 * @aux: DisplayPort AUX channel 989 * @timeout_ms: Timeout in ms 990 * 991 * Try waiting for the sink to finish updating its payload table by polling for 992 * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms 993 * milliseconds, defaulting to 3000 ms if 0. 994 * 995 * Returns: 996 * 0 if the ACT was handled in time, negative error code on failure. 997 */ 998 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms) 999 { 1000 int ret, status; 1001 1002 /* default to 3 seconds, this is arbitrary */ 1003 timeout_ms = timeout_ms ?: 3000; 1004 1005 ret = readx_poll_timeout(read_payload_update_status, aux, status, 1006 status & DP_PAYLOAD_ACT_HANDLED || status < 0, 1007 200, timeout_ms * USEC_PER_MSEC); 1008 if (ret < 0 && status >= 0) { 1009 drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n", 1010 timeout_ms, status); 1011 return -EINVAL; 1012 } else if (status < 0) { 1013 /* 1014 * Failure here isn't unexpected - the hub may have 1015 * just been unplugged 1016 */ 1017 drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status); 1018 return status; 1019 } 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled); 1024 1025 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid) 1026 { 1027 /* FIXME: get rid of drm_edid_raw() */ 1028 const struct edid *edid = drm_edid_raw(drm_edid); 1029 1030 return edid && edid->revision >= 4 && 1031 edid->input & DRM_EDID_INPUT_DIGITAL && 1032 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP; 1033 } 1034 1035 /** 1036 * drm_dp_downstream_is_type() - is the downstream facing port of certain type? 1037 * @dpcd: DisplayPort configuration data 1038 * @port_cap: port capabilities 1039 * @type: port type to be checked. Can be: 1040 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI, 1041 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID, 1042 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS. 1043 * 1044 * Caveat: Only works with DPCD 1.1+ port caps. 1045 * 1046 * Returns: whether the downstream facing port matches the type. 1047 */ 1048 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1049 const u8 port_cap[4], u8 type) 1050 { 1051 return drm_dp_is_branch(dpcd) && 1052 dpcd[DP_DPCD_REV] >= 0x11 && 1053 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type; 1054 } 1055 EXPORT_SYMBOL(drm_dp_downstream_is_type); 1056 1057 /** 1058 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS? 1059 * @dpcd: DisplayPort configuration data 1060 * @port_cap: port capabilities 1061 * @drm_edid: EDID 1062 * 1063 * Returns: whether the downstream facing port is TMDS (HDMI/DVI). 1064 */ 1065 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1066 const u8 port_cap[4], 1067 const struct drm_edid *drm_edid) 1068 { 1069 if (dpcd[DP_DPCD_REV] < 0x11) { 1070 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1071 case DP_DWN_STRM_PORT_TYPE_TMDS: 1072 return true; 1073 default: 1074 return false; 1075 } 1076 } 1077 1078 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1079 case DP_DS_PORT_TYPE_DP_DUALMODE: 1080 if (is_edid_digital_input_dp(drm_edid)) 1081 return false; 1082 fallthrough; 1083 case DP_DS_PORT_TYPE_DVI: 1084 case DP_DS_PORT_TYPE_HDMI: 1085 return true; 1086 default: 1087 return false; 1088 } 1089 } 1090 EXPORT_SYMBOL(drm_dp_downstream_is_tmds); 1091 1092 /** 1093 * drm_dp_send_real_edid_checksum() - send back real edid checksum value 1094 * @aux: DisplayPort AUX channel 1095 * @real_edid_checksum: real edid checksum for the last block 1096 * 1097 * Returns: 1098 * True on success 1099 */ 1100 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux, 1101 u8 real_edid_checksum) 1102 { 1103 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0; 1104 1105 if (drm_dp_dpcd_read_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, 1106 &auto_test_req) < 0) { 1107 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n", 1108 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); 1109 return false; 1110 } 1111 auto_test_req &= DP_AUTOMATED_TEST_REQUEST; 1112 1113 if (drm_dp_dpcd_read_byte(aux, DP_TEST_REQUEST, &link_edid_read) < 0) { 1114 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n", 1115 aux->name, DP_TEST_REQUEST); 1116 return false; 1117 } 1118 link_edid_read &= DP_TEST_LINK_EDID_READ; 1119 1120 if (!auto_test_req || !link_edid_read) { 1121 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n", 1122 aux->name); 1123 return false; 1124 } 1125 1126 if (drm_dp_dpcd_write_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, 1127 auto_test_req) < 0) { 1128 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 1129 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); 1130 return false; 1131 } 1132 1133 /* send back checksum for the last edid extension block data */ 1134 if (drm_dp_dpcd_write_byte(aux, DP_TEST_EDID_CHECKSUM, 1135 real_edid_checksum) < 0) { 1136 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 1137 aux->name, DP_TEST_EDID_CHECKSUM); 1138 return false; 1139 } 1140 1141 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE; 1142 if (drm_dp_dpcd_write_byte(aux, DP_TEST_RESPONSE, test_resp) < 0) { 1143 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 1144 aux->name, DP_TEST_RESPONSE); 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum); 1151 1152 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 1153 { 1154 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK; 1155 1156 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4) 1157 port_count = 4; 1158 1159 return port_count; 1160 } 1161 1162 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux, 1163 u8 dpcd[DP_RECEIVER_CAP_SIZE]) 1164 { 1165 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 1166 int ret; 1167 1168 /* 1169 * Prior to DP1.3 the bit represented by 1170 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 1171 * If it is set DP_DPCD_REV at 0000h could be at a value less than 1172 * the true capability of the panel. The only way to check is to 1173 * then compare 0000h and 2200h. 1174 */ 1175 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 1176 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 1177 return 0; 1178 1179 ret = drm_dp_dpcd_read_data(aux, DP_DP13_DPCD_REV, &dpcd_ext, 1180 sizeof(dpcd_ext)); 1181 if (ret < 0) 1182 return ret; 1183 1184 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 1185 drm_dbg_kms(aux->drm_dev, 1186 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n", 1187 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]); 1188 return 0; 1189 } 1190 1191 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext))) 1192 return 0; 1193 1194 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); 1195 1196 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext)); 1197 1198 return 0; 1199 } 1200 1201 /** 1202 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if 1203 * available 1204 * @aux: DisplayPort AUX channel 1205 * @dpcd: Buffer to store the resulting DPCD in 1206 * 1207 * Attempts to read the base DPCD caps for @aux. Additionally, this function 1208 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if 1209 * present. 1210 * 1211 * Returns: %0 if the DPCD was read successfully, negative error code 1212 * otherwise. 1213 */ 1214 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux, 1215 u8 dpcd[DP_RECEIVER_CAP_SIZE]) 1216 { 1217 int ret; 1218 1219 ret = drm_dp_dpcd_read_data(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE); 1220 if (ret < 0) 1221 return ret; 1222 if (dpcd[DP_DPCD_REV] == 0) 1223 return -EIO; 1224 1225 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd); 1226 if (ret < 0) 1227 return ret; 1228 1229 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); 1230 1231 return ret; 1232 } 1233 EXPORT_SYMBOL(drm_dp_read_dpcd_caps); 1234 1235 /** 1236 * drm_dp_read_downstream_info() - read DPCD downstream port info if available 1237 * @aux: DisplayPort AUX channel 1238 * @dpcd: A cached copy of the port's DPCD 1239 * @downstream_ports: buffer to store the downstream port info in 1240 * 1241 * See also: 1242 * drm_dp_downstream_max_clock() 1243 * drm_dp_downstream_max_bpc() 1244 * 1245 * Returns: 0 if either the downstream port info was read successfully or 1246 * there was no downstream info to read, or a negative error code otherwise. 1247 */ 1248 int drm_dp_read_downstream_info(struct drm_dp_aux *aux, 1249 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1250 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS]) 1251 { 1252 int ret; 1253 u8 len; 1254 1255 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS); 1256 1257 /* No downstream info to read */ 1258 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) 1259 return 0; 1260 1261 /* Some branches advertise having 0 downstream ports, despite also advertising they have a 1262 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since 1263 * some branches do it we need to handle it regardless. 1264 */ 1265 len = drm_dp_downstream_port_count(dpcd); 1266 if (!len) 1267 return 0; 1268 1269 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) 1270 len *= 4; 1271 1272 ret = drm_dp_dpcd_read_data(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len); 1273 if (ret < 0) 1274 return ret; 1275 1276 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports); 1277 1278 return 0; 1279 } 1280 EXPORT_SYMBOL(drm_dp_read_downstream_info); 1281 1282 /** 1283 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock 1284 * @dpcd: DisplayPort configuration data 1285 * @port_cap: port capabilities 1286 * 1287 * Returns: Downstream facing port max dot clock in kHz on success, 1288 * or 0 if max clock not defined 1289 */ 1290 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1291 const u8 port_cap[4]) 1292 { 1293 if (!drm_dp_is_branch(dpcd)) 1294 return 0; 1295 1296 if (dpcd[DP_DPCD_REV] < 0x11) 1297 return 0; 1298 1299 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1300 case DP_DS_PORT_TYPE_VGA: 1301 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1302 return 0; 1303 return port_cap[1] * 8000; 1304 default: 1305 return 0; 1306 } 1307 } 1308 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock); 1309 1310 /** 1311 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock 1312 * @dpcd: DisplayPort configuration data 1313 * @port_cap: port capabilities 1314 * @drm_edid: EDID 1315 * 1316 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success, 1317 * or 0 if max TMDS clock not defined 1318 */ 1319 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1320 const u8 port_cap[4], 1321 const struct drm_edid *drm_edid) 1322 { 1323 if (!drm_dp_is_branch(dpcd)) 1324 return 0; 1325 1326 if (dpcd[DP_DPCD_REV] < 0x11) { 1327 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1328 case DP_DWN_STRM_PORT_TYPE_TMDS: 1329 return 165000; 1330 default: 1331 return 0; 1332 } 1333 } 1334 1335 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1336 case DP_DS_PORT_TYPE_DP_DUALMODE: 1337 if (is_edid_digital_input_dp(drm_edid)) 1338 return 0; 1339 /* 1340 * It's left up to the driver to check the 1341 * DP dual mode adapter's max TMDS clock. 1342 * 1343 * Unfortunately it looks like branch devices 1344 * may not fordward that the DP dual mode i2c 1345 * access so we just usually get i2c nak :( 1346 */ 1347 fallthrough; 1348 case DP_DS_PORT_TYPE_HDMI: 1349 /* 1350 * We should perhaps assume 165 MHz when detailed cap 1351 * info is not available. But looks like many typical 1352 * branch devices fall into that category and so we'd 1353 * probably end up with users complaining that they can't 1354 * get high resolution modes with their favorite dongle. 1355 * 1356 * So let's limit to 300 MHz instead since DPCD 1.4 1357 * HDMI 2.0 DFPs are required to have the detailed cap 1358 * info. So it's more likely we're dealing with a HDMI 1.4 1359 * compatible* device here. 1360 */ 1361 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1362 return 300000; 1363 return port_cap[1] * 2500; 1364 case DP_DS_PORT_TYPE_DVI: 1365 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1366 return 165000; 1367 /* FIXME what to do about DVI dual link? */ 1368 return port_cap[1] * 2500; 1369 default: 1370 return 0; 1371 } 1372 } 1373 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock); 1374 1375 /** 1376 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock 1377 * @dpcd: DisplayPort configuration data 1378 * @port_cap: port capabilities 1379 * @drm_edid: EDID 1380 * 1381 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success, 1382 * or 0 if max TMDS clock not defined 1383 */ 1384 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1385 const u8 port_cap[4], 1386 const struct drm_edid *drm_edid) 1387 { 1388 if (!drm_dp_is_branch(dpcd)) 1389 return 0; 1390 1391 if (dpcd[DP_DPCD_REV] < 0x11) { 1392 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1393 case DP_DWN_STRM_PORT_TYPE_TMDS: 1394 return 25000; 1395 default: 1396 return 0; 1397 } 1398 } 1399 1400 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1401 case DP_DS_PORT_TYPE_DP_DUALMODE: 1402 if (is_edid_digital_input_dp(drm_edid)) 1403 return 0; 1404 fallthrough; 1405 case DP_DS_PORT_TYPE_DVI: 1406 case DP_DS_PORT_TYPE_HDMI: 1407 /* 1408 * Unclear whether the protocol converter could 1409 * utilize pixel replication. Assume it won't. 1410 */ 1411 return 25000; 1412 default: 1413 return 0; 1414 } 1415 } 1416 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock); 1417 1418 /** 1419 * drm_dp_downstream_max_bpc() - extract downstream facing port max 1420 * bits per component 1421 * @dpcd: DisplayPort configuration data 1422 * @port_cap: downstream facing port capabilities 1423 * @drm_edid: EDID 1424 * 1425 * Returns: Max bpc on success or 0 if max bpc not defined 1426 */ 1427 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1428 const u8 port_cap[4], 1429 const struct drm_edid *drm_edid) 1430 { 1431 if (!drm_dp_is_branch(dpcd)) 1432 return 0; 1433 1434 if (dpcd[DP_DPCD_REV] < 0x11) { 1435 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1436 case DP_DWN_STRM_PORT_TYPE_DP: 1437 return 0; 1438 default: 1439 return 8; 1440 } 1441 } 1442 1443 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1444 case DP_DS_PORT_TYPE_DP: 1445 return 0; 1446 case DP_DS_PORT_TYPE_DP_DUALMODE: 1447 if (is_edid_digital_input_dp(drm_edid)) 1448 return 0; 1449 fallthrough; 1450 case DP_DS_PORT_TYPE_HDMI: 1451 case DP_DS_PORT_TYPE_DVI: 1452 case DP_DS_PORT_TYPE_VGA: 1453 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1454 return 8; 1455 1456 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) { 1457 case DP_DS_8BPC: 1458 return 8; 1459 case DP_DS_10BPC: 1460 return 10; 1461 case DP_DS_12BPC: 1462 return 12; 1463 case DP_DS_16BPC: 1464 return 16; 1465 default: 1466 return 8; 1467 } 1468 break; 1469 default: 1470 return 8; 1471 } 1472 } 1473 EXPORT_SYMBOL(drm_dp_downstream_max_bpc); 1474 1475 /** 1476 * drm_dp_downstream_420_passthrough() - determine downstream facing port 1477 * YCbCr 4:2:0 pass-through capability 1478 * @dpcd: DisplayPort configuration data 1479 * @port_cap: downstream facing port capabilities 1480 * 1481 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0 1482 */ 1483 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1484 const u8 port_cap[4]) 1485 { 1486 if (!drm_dp_is_branch(dpcd)) 1487 return false; 1488 1489 if (dpcd[DP_DPCD_REV] < 0x13) 1490 return false; 1491 1492 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1493 case DP_DS_PORT_TYPE_DP: 1494 return true; 1495 case DP_DS_PORT_TYPE_HDMI: 1496 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1497 return false; 1498 1499 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH; 1500 default: 1501 return false; 1502 } 1503 } 1504 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough); 1505 1506 /** 1507 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port 1508 * YCbCr 4:4:4->4:2:0 conversion capability 1509 * @dpcd: DisplayPort configuration data 1510 * @port_cap: downstream facing port capabilities 1511 * 1512 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0 1513 */ 1514 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1515 const u8 port_cap[4]) 1516 { 1517 if (!drm_dp_is_branch(dpcd)) 1518 return false; 1519 1520 if (dpcd[DP_DPCD_REV] < 0x13) 1521 return false; 1522 1523 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1524 case DP_DS_PORT_TYPE_HDMI: 1525 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1526 return false; 1527 1528 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV; 1529 default: 1530 return false; 1531 } 1532 } 1533 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion); 1534 1535 /** 1536 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port 1537 * RGB->YCbCr conversion capability 1538 * @dpcd: DisplayPort configuration data 1539 * @port_cap: downstream facing port capabilities 1540 * @color_spc: Colorspace for which conversion cap is sought 1541 * 1542 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given 1543 * colorspace. 1544 */ 1545 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1546 const u8 port_cap[4], 1547 u8 color_spc) 1548 { 1549 if (!drm_dp_is_branch(dpcd)) 1550 return false; 1551 1552 if (dpcd[DP_DPCD_REV] < 0x13) 1553 return false; 1554 1555 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1556 case DP_DS_PORT_TYPE_HDMI: 1557 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1558 return false; 1559 1560 return port_cap[3] & color_spc; 1561 default: 1562 return false; 1563 } 1564 } 1565 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion); 1566 1567 /** 1568 * drm_dp_downstream_mode() - return a mode for downstream facing port 1569 * @dev: DRM device 1570 * @dpcd: DisplayPort configuration data 1571 * @port_cap: port capabilities 1572 * 1573 * Provides a suitable mode for downstream facing ports without EDID. 1574 * 1575 * Returns: A new drm_display_mode on success or NULL on failure 1576 */ 1577 struct drm_display_mode * 1578 drm_dp_downstream_mode(struct drm_device *dev, 1579 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1580 const u8 port_cap[4]) 1581 1582 { 1583 u8 vic; 1584 1585 if (!drm_dp_is_branch(dpcd)) 1586 return NULL; 1587 1588 if (dpcd[DP_DPCD_REV] < 0x11) 1589 return NULL; 1590 1591 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1592 case DP_DS_PORT_TYPE_NON_EDID: 1593 switch (port_cap[0] & DP_DS_NON_EDID_MASK) { 1594 case DP_DS_NON_EDID_720x480i_60: 1595 vic = 6; 1596 break; 1597 case DP_DS_NON_EDID_720x480i_50: 1598 vic = 21; 1599 break; 1600 case DP_DS_NON_EDID_1920x1080i_60: 1601 vic = 5; 1602 break; 1603 case DP_DS_NON_EDID_1920x1080i_50: 1604 vic = 20; 1605 break; 1606 case DP_DS_NON_EDID_1280x720_60: 1607 vic = 4; 1608 break; 1609 case DP_DS_NON_EDID_1280x720_50: 1610 vic = 19; 1611 break; 1612 default: 1613 return NULL; 1614 } 1615 return drm_display_mode_from_cea_vic(dev, vic); 1616 default: 1617 return NULL; 1618 } 1619 } 1620 EXPORT_SYMBOL(drm_dp_downstream_mode); 1621 1622 /** 1623 * drm_dp_downstream_id() - identify branch device 1624 * @aux: DisplayPort AUX channel 1625 * @id: DisplayPort branch device id 1626 * 1627 * Returns branch device id on success or NULL on failure 1628 */ 1629 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6]) 1630 { 1631 return drm_dp_dpcd_read_data(aux, DP_BRANCH_ID, id, 6); 1632 } 1633 EXPORT_SYMBOL(drm_dp_downstream_id); 1634 1635 /** 1636 * drm_dp_downstream_debug() - debug DP branch devices 1637 * @m: pointer for debugfs file 1638 * @dpcd: DisplayPort configuration data 1639 * @port_cap: port capabilities 1640 * @drm_edid: EDID 1641 * @aux: DisplayPort AUX channel 1642 * 1643 */ 1644 void drm_dp_downstream_debug(struct seq_file *m, 1645 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1646 const u8 port_cap[4], 1647 const struct drm_edid *drm_edid, 1648 struct drm_dp_aux *aux) 1649 { 1650 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 1651 DP_DETAILED_CAP_INFO_AVAILABLE; 1652 int clk; 1653 int bpc; 1654 char id[7]; 1655 int len; 1656 uint8_t rev[2]; 1657 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 1658 bool branch_device = drm_dp_is_branch(dpcd); 1659 1660 seq_printf(m, "\tDP branch device present: %s\n", 1661 str_yes_no(branch_device)); 1662 1663 if (!branch_device) 1664 return; 1665 1666 switch (type) { 1667 case DP_DS_PORT_TYPE_DP: 1668 seq_puts(m, "\t\tType: DisplayPort\n"); 1669 break; 1670 case DP_DS_PORT_TYPE_VGA: 1671 seq_puts(m, "\t\tType: VGA\n"); 1672 break; 1673 case DP_DS_PORT_TYPE_DVI: 1674 seq_puts(m, "\t\tType: DVI\n"); 1675 break; 1676 case DP_DS_PORT_TYPE_HDMI: 1677 seq_puts(m, "\t\tType: HDMI\n"); 1678 break; 1679 case DP_DS_PORT_TYPE_NON_EDID: 1680 seq_puts(m, "\t\tType: others without EDID support\n"); 1681 break; 1682 case DP_DS_PORT_TYPE_DP_DUALMODE: 1683 seq_puts(m, "\t\tType: DP++\n"); 1684 break; 1685 case DP_DS_PORT_TYPE_WIRELESS: 1686 seq_puts(m, "\t\tType: Wireless\n"); 1687 break; 1688 default: 1689 seq_puts(m, "\t\tType: N/A\n"); 1690 } 1691 1692 memset(id, 0, sizeof(id)); 1693 drm_dp_downstream_id(aux, id); 1694 seq_printf(m, "\t\tID: %s\n", id); 1695 1696 len = drm_dp_dpcd_read_data(aux, DP_BRANCH_HW_REV, &rev[0], 1); 1697 if (!len) 1698 seq_printf(m, "\t\tHW: %d.%d\n", 1699 (rev[0] & 0xf0) >> 4, rev[0] & 0xf); 1700 1701 len = drm_dp_dpcd_read_data(aux, DP_BRANCH_SW_REV, rev, 2); 1702 if (!len) 1703 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]); 1704 1705 if (detailed_cap_info) { 1706 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap); 1707 if (clk > 0) 1708 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk); 1709 1710 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid); 1711 if (clk > 0) 1712 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk); 1713 1714 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid); 1715 if (clk > 0) 1716 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk); 1717 1718 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid); 1719 1720 if (bpc > 0) 1721 seq_printf(m, "\t\tMax bpc: %d\n", bpc); 1722 } 1723 } 1724 EXPORT_SYMBOL(drm_dp_downstream_debug); 1725 1726 /** 1727 * drm_dp_subconnector_type() - get DP branch device type 1728 * @dpcd: DisplayPort configuration data 1729 * @port_cap: port capabilities 1730 */ 1731 enum drm_mode_subconnector 1732 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1733 const u8 port_cap[4]) 1734 { 1735 int type; 1736 if (!drm_dp_is_branch(dpcd)) 1737 return DRM_MODE_SUBCONNECTOR_Native; 1738 /* DP 1.0 approach */ 1739 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) { 1740 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 1741 DP_DWN_STRM_PORT_TYPE_MASK; 1742 1743 switch (type) { 1744 case DP_DWN_STRM_PORT_TYPE_TMDS: 1745 /* Can be HDMI or DVI-D, DVI-D is a safer option */ 1746 return DRM_MODE_SUBCONNECTOR_DVID; 1747 case DP_DWN_STRM_PORT_TYPE_ANALOG: 1748 /* Can be VGA or DVI-A, VGA is more popular */ 1749 return DRM_MODE_SUBCONNECTOR_VGA; 1750 case DP_DWN_STRM_PORT_TYPE_DP: 1751 return DRM_MODE_SUBCONNECTOR_DisplayPort; 1752 case DP_DWN_STRM_PORT_TYPE_OTHER: 1753 default: 1754 return DRM_MODE_SUBCONNECTOR_Unknown; 1755 } 1756 } 1757 type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 1758 1759 switch (type) { 1760 case DP_DS_PORT_TYPE_DP: 1761 case DP_DS_PORT_TYPE_DP_DUALMODE: 1762 return DRM_MODE_SUBCONNECTOR_DisplayPort; 1763 case DP_DS_PORT_TYPE_VGA: 1764 return DRM_MODE_SUBCONNECTOR_VGA; 1765 case DP_DS_PORT_TYPE_DVI: 1766 return DRM_MODE_SUBCONNECTOR_DVID; 1767 case DP_DS_PORT_TYPE_HDMI: 1768 return DRM_MODE_SUBCONNECTOR_HDMIA; 1769 case DP_DS_PORT_TYPE_WIRELESS: 1770 return DRM_MODE_SUBCONNECTOR_Wireless; 1771 case DP_DS_PORT_TYPE_NON_EDID: 1772 default: 1773 return DRM_MODE_SUBCONNECTOR_Unknown; 1774 } 1775 } 1776 EXPORT_SYMBOL(drm_dp_subconnector_type); 1777 1778 /** 1779 * drm_dp_set_subconnector_property - set subconnector for DP connector 1780 * @connector: connector to set property on 1781 * @status: connector status 1782 * @dpcd: DisplayPort configuration data 1783 * @port_cap: port capabilities 1784 * 1785 * Called by a driver on every detect event. 1786 */ 1787 void drm_dp_set_subconnector_property(struct drm_connector *connector, 1788 enum drm_connector_status status, 1789 const u8 *dpcd, 1790 const u8 port_cap[4]) 1791 { 1792 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown; 1793 1794 if (status == connector_status_connected) 1795 subconnector = drm_dp_subconnector_type(dpcd, port_cap); 1796 drm_object_property_set_value(&connector->base, 1797 connector->dev->mode_config.dp_subconnector_property, 1798 subconnector); 1799 } 1800 EXPORT_SYMBOL(drm_dp_set_subconnector_property); 1801 1802 /** 1803 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink 1804 * count 1805 * @connector: The DRM connector to check 1806 * @dpcd: A cached copy of the connector's DPCD RX capabilities 1807 * @desc: A cached copy of the connector's DP descriptor 1808 * 1809 * See also: drm_dp_read_sink_count() 1810 * 1811 * Returns: %True if the (e)DP connector has a valid sink count that should 1812 * be probed, %false otherwise. 1813 */ 1814 bool drm_dp_read_sink_count_cap(struct drm_connector *connector, 1815 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1816 const struct drm_dp_desc *desc) 1817 { 1818 /* Some eDP panels don't set a valid value for the sink count */ 1819 return connector->connector_type != DRM_MODE_CONNECTOR_eDP && 1820 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 && 1821 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 1822 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT); 1823 } 1824 EXPORT_SYMBOL(drm_dp_read_sink_count_cap); 1825 1826 /** 1827 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink 1828 * @aux: The DP AUX channel to use 1829 * 1830 * See also: drm_dp_read_sink_count_cap() 1831 * 1832 * Returns: The current sink count reported by @aux, or a negative error code 1833 * otherwise. 1834 */ 1835 int drm_dp_read_sink_count(struct drm_dp_aux *aux) 1836 { 1837 u8 count; 1838 int ret; 1839 1840 ret = drm_dp_dpcd_read_byte(aux, DP_SINK_COUNT, &count); 1841 if (ret < 0) 1842 return ret; 1843 1844 return DP_GET_SINK_COUNT(count); 1845 } 1846 EXPORT_SYMBOL(drm_dp_read_sink_count); 1847 1848 /* 1849 * I2C-over-AUX implementation 1850 */ 1851 1852 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter) 1853 { 1854 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 1855 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 1856 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 1857 I2C_FUNC_10BIT_ADDR; 1858 } 1859 1860 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg) 1861 { 1862 /* 1863 * In case of i2c defer or short i2c ack reply to a write, 1864 * we need to switch to WRITE_STATUS_UPDATE to drain the 1865 * rest of the message 1866 */ 1867 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) { 1868 msg->request &= DP_AUX_I2C_MOT; 1869 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE; 1870 } 1871 } 1872 1873 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */ 1874 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */ 1875 #define AUX_STOP_LEN 4 1876 #define AUX_CMD_LEN 4 1877 #define AUX_ADDRESS_LEN 20 1878 #define AUX_REPLY_PAD_LEN 4 1879 #define AUX_LENGTH_LEN 8 1880 1881 /* 1882 * Calculate the duration of the AUX request/reply in usec. Gives the 1883 * "best" case estimate, ie. successful while as short as possible. 1884 */ 1885 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg) 1886 { 1887 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 1888 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN; 1889 1890 if ((msg->request & DP_AUX_I2C_READ) == 0) 1891 len += msg->size * 8; 1892 1893 return len; 1894 } 1895 1896 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg) 1897 { 1898 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 1899 AUX_CMD_LEN + AUX_REPLY_PAD_LEN; 1900 1901 /* 1902 * For read we expect what was asked. For writes there will 1903 * be 0 or 1 data bytes. Assume 0 for the "best" case. 1904 */ 1905 if (msg->request & DP_AUX_I2C_READ) 1906 len += msg->size * 8; 1907 1908 return len; 1909 } 1910 1911 #define I2C_START_LEN 1 1912 #define I2C_STOP_LEN 1 1913 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */ 1914 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */ 1915 1916 /* 1917 * Calculate the length of the i2c transfer in usec, assuming 1918 * the i2c bus speed is as specified. Gives the "worst" 1919 * case estimate, ie. successful while as long as possible. 1920 * Doesn't account the "MOT" bit, and instead assumes each 1921 * message includes a START, ADDRESS and STOP. Neither does it 1922 * account for additional random variables such as clock stretching. 1923 */ 1924 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg, 1925 int i2c_speed_khz) 1926 { 1927 /* AUX bitrate is 1MHz, i2c bitrate as specified */ 1928 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN + 1929 msg->size * I2C_DATA_LEN + 1930 I2C_STOP_LEN) * 1000, i2c_speed_khz); 1931 } 1932 1933 /* 1934 * Determine how many retries should be attempted to successfully transfer 1935 * the specified message, based on the estimated durations of the 1936 * i2c and AUX transfers. 1937 */ 1938 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg, 1939 int i2c_speed_khz) 1940 { 1941 int aux_time_us = drm_dp_aux_req_duration(msg) + 1942 drm_dp_aux_reply_duration(msg); 1943 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz); 1944 1945 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL); 1946 } 1947 1948 /* 1949 * FIXME currently assumes 10 kHz as some real world devices seem 1950 * to require it. We should query/set the speed via DPCD if supported. 1951 */ 1952 static int dp_aux_i2c_speed_khz __read_mostly = 10; 1953 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644); 1954 MODULE_PARM_DESC(dp_aux_i2c_speed_khz, 1955 "Assumed speed of the i2c bus in kHz, (1-400, default 10)"); 1956 1957 /* 1958 * Transfer a single I2C-over-AUX message and handle various error conditions, 1959 * retrying the transaction as appropriate. It is assumed that the 1960 * &drm_dp_aux.transfer function does not modify anything in the msg other than the 1961 * reply field. 1962 * 1963 * Returns bytes transferred on success, or a negative error code on failure. 1964 */ 1965 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1966 { 1967 unsigned int retry, defer_i2c; 1968 int ret; 1969 /* 1970 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device 1971 * is required to retry at least seven times upon receiving AUX_DEFER 1972 * before giving up the AUX transaction. 1973 * 1974 * We also try to account for the i2c bus speed. 1975 */ 1976 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)); 1977 1978 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) { 1979 ret = aux->transfer(aux, msg); 1980 if (ret < 0) { 1981 if (ret == -EBUSY) 1982 continue; 1983 1984 /* 1985 * While timeouts can be errors, they're usually normal 1986 * behavior (for instance, when a driver tries to 1987 * communicate with a non-existent DisplayPort device). 1988 * Avoid spamming the kernel log with timeout errors. 1989 */ 1990 if (ret == -ETIMEDOUT) 1991 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n", 1992 aux->name); 1993 else 1994 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n", 1995 aux->name, ret); 1996 return ret; 1997 } 1998 1999 2000 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) { 2001 case DP_AUX_NATIVE_REPLY_ACK: 2002 /* 2003 * For I2C-over-AUX transactions this isn't enough, we 2004 * need to check for the I2C ACK reply. 2005 */ 2006 break; 2007 2008 case DP_AUX_NATIVE_REPLY_NACK: 2009 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n", 2010 aux->name, ret, msg->size); 2011 return -EREMOTEIO; 2012 2013 case DP_AUX_NATIVE_REPLY_DEFER: 2014 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name); 2015 /* 2016 * We could check for I2C bit rate capabilities and if 2017 * available adjust this interval. We could also be 2018 * more careful with DP-to-legacy adapters where a 2019 * long legacy cable may force very low I2C bit rates. 2020 * 2021 * For now just defer for long enough to hopefully be 2022 * safe for all use-cases. 2023 */ 2024 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 2025 continue; 2026 2027 default: 2028 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n", 2029 aux->name, msg->reply); 2030 return -EREMOTEIO; 2031 } 2032 2033 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) { 2034 case DP_AUX_I2C_REPLY_ACK: 2035 /* 2036 * Both native ACK and I2C ACK replies received. We 2037 * can assume the transfer was successful. 2038 */ 2039 if (ret != msg->size) 2040 drm_dp_i2c_msg_write_status_update(msg); 2041 return ret; 2042 2043 case DP_AUX_I2C_REPLY_NACK: 2044 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n", 2045 aux->name, ret, msg->size); 2046 aux->i2c_nack_count++; 2047 return -EREMOTEIO; 2048 2049 case DP_AUX_I2C_REPLY_DEFER: 2050 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name); 2051 /* DP Compliance Test 4.2.2.5 Requirement: 2052 * Must have at least 7 retries for I2C defers on the 2053 * transaction to pass this test 2054 */ 2055 aux->i2c_defer_count++; 2056 if (defer_i2c < 7) 2057 defer_i2c++; 2058 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 2059 drm_dp_i2c_msg_write_status_update(msg); 2060 2061 continue; 2062 2063 default: 2064 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n", 2065 aux->name, msg->reply); 2066 return -EREMOTEIO; 2067 } 2068 } 2069 2070 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name); 2071 return -EREMOTEIO; 2072 } 2073 2074 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg, 2075 const struct i2c_msg *i2c_msg) 2076 { 2077 msg->request = (i2c_msg->flags & I2C_M_RD) ? 2078 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE; 2079 if (!(i2c_msg->flags & I2C_M_STOP)) 2080 msg->request |= DP_AUX_I2C_MOT; 2081 } 2082 2083 /* 2084 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred. 2085 * 2086 * Returns an error code on failure, or a recommended transfer size on success. 2087 */ 2088 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg) 2089 { 2090 int err, ret = orig_msg->size; 2091 struct drm_dp_aux_msg msg = *orig_msg; 2092 2093 while (msg.size > 0) { 2094 err = drm_dp_i2c_do_msg(aux, &msg); 2095 if (err <= 0) 2096 return err == 0 ? -EPROTO : err; 2097 2098 if (err < msg.size && err < ret) { 2099 drm_dbg_kms(aux->drm_dev, 2100 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n", 2101 aux->name, msg.size, err); 2102 ret = err; 2103 } 2104 2105 msg.size -= err; 2106 msg.buffer += err; 2107 } 2108 2109 return ret; 2110 } 2111 2112 /* 2113 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX 2114 * packets to be as large as possible. If not, the I2C transactions never 2115 * succeed. Hence the default is maximum. 2116 */ 2117 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES; 2118 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644); 2119 MODULE_PARM_DESC(dp_aux_i2c_transfer_size, 2120 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)"); 2121 2122 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, 2123 int num) 2124 { 2125 struct drm_dp_aux *aux = adapter->algo_data; 2126 unsigned int i, j; 2127 unsigned transfer_size; 2128 struct drm_dp_aux_msg msg; 2129 int err = 0; 2130 2131 if (aux->powered_down) 2132 return -EBUSY; 2133 2134 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES); 2135 2136 memset(&msg, 0, sizeof(msg)); 2137 2138 for (i = 0; i < num; i++) { 2139 msg.address = msgs[i].addr; 2140 2141 if (!aux->no_zero_sized) { 2142 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 2143 /* Send a bare address packet to start the transaction. 2144 * Zero sized messages specify an address only (bare 2145 * address) transaction. 2146 */ 2147 msg.buffer = NULL; 2148 msg.size = 0; 2149 err = drm_dp_i2c_do_msg(aux, &msg); 2150 } 2151 2152 /* 2153 * Reset msg.request in case in case it got 2154 * changed into a WRITE_STATUS_UPDATE. 2155 */ 2156 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 2157 2158 if (err < 0) 2159 break; 2160 /* We want each transaction to be as large as possible, but 2161 * we'll go to smaller sizes if the hardware gives us a 2162 * short reply. 2163 */ 2164 transfer_size = dp_aux_i2c_transfer_size; 2165 for (j = 0; j < msgs[i].len; j += msg.size) { 2166 msg.buffer = msgs[i].buf + j; 2167 msg.size = min(transfer_size, msgs[i].len - j); 2168 2169 if (j + msg.size == msgs[i].len && aux->no_zero_sized) 2170 msg.request &= ~DP_AUX_I2C_MOT; 2171 err = drm_dp_i2c_drain_msg(aux, &msg); 2172 2173 /* 2174 * Reset msg.request in case in case it got 2175 * changed into a WRITE_STATUS_UPDATE. 2176 */ 2177 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 2178 2179 if (err < 0) 2180 break; 2181 transfer_size = err; 2182 } 2183 if (err < 0) 2184 break; 2185 } 2186 if (err >= 0) 2187 err = num; 2188 2189 if (!aux->no_zero_sized) { 2190 /* Send a bare address packet to close out the transaction. 2191 * Zero sized messages specify an address only (bare 2192 * address) transaction. 2193 */ 2194 msg.request &= ~DP_AUX_I2C_MOT; 2195 msg.buffer = NULL; 2196 msg.size = 0; 2197 (void)drm_dp_i2c_do_msg(aux, &msg); 2198 } 2199 return err; 2200 } 2201 2202 static const struct i2c_algorithm drm_dp_i2c_algo = { 2203 .functionality = drm_dp_i2c_functionality, 2204 .master_xfer = drm_dp_i2c_xfer, 2205 }; 2206 2207 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c) 2208 { 2209 return container_of(i2c, struct drm_dp_aux, ddc); 2210 } 2211 2212 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags) 2213 { 2214 mutex_lock(&i2c_to_aux(i2c)->hw_mutex); 2215 } 2216 2217 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags) 2218 { 2219 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex); 2220 } 2221 2222 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags) 2223 { 2224 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex); 2225 } 2226 2227 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = { 2228 .lock_bus = lock_bus, 2229 .trylock_bus = trylock_bus, 2230 .unlock_bus = unlock_bus, 2231 }; 2232 2233 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc) 2234 { 2235 u8 buf, count; 2236 int ret; 2237 2238 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf); 2239 if (ret < 0) 2240 return ret; 2241 2242 WARN_ON(!(buf & DP_TEST_SINK_START)); 2243 2244 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK_MISC, &buf); 2245 if (ret < 0) 2246 return ret; 2247 2248 count = buf & DP_TEST_COUNT_MASK; 2249 if (count == aux->crc_count) 2250 return -EAGAIN; /* No CRC yet */ 2251 2252 aux->crc_count = count; 2253 2254 /* 2255 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes 2256 * per component (RGB or CrYCb). 2257 */ 2258 return drm_dp_dpcd_read_data(aux, DP_TEST_CRC_R_CR, crc, 6); 2259 } 2260 2261 static void drm_dp_aux_crc_work(struct work_struct *work) 2262 { 2263 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux, 2264 crc_work); 2265 struct drm_crtc *crtc; 2266 u8 crc_bytes[6]; 2267 uint32_t crcs[3]; 2268 int ret; 2269 2270 if (WARN_ON(!aux->crtc)) 2271 return; 2272 2273 crtc = aux->crtc; 2274 while (crtc->crc.opened) { 2275 drm_crtc_wait_one_vblank(crtc); 2276 if (!crtc->crc.opened) 2277 break; 2278 2279 ret = drm_dp_aux_get_crc(aux, crc_bytes); 2280 if (ret == -EAGAIN) { 2281 usleep_range(1000, 2000); 2282 ret = drm_dp_aux_get_crc(aux, crc_bytes); 2283 } 2284 2285 if (ret == -EAGAIN) { 2286 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n", 2287 aux->name, ret); 2288 continue; 2289 } else if (ret) { 2290 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret); 2291 continue; 2292 } 2293 2294 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8; 2295 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8; 2296 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8; 2297 drm_crtc_add_crc_entry(crtc, false, 0, crcs); 2298 } 2299 } 2300 2301 /** 2302 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel 2303 * @aux: DisplayPort AUX channel 2304 * 2305 * Used for remote aux channel in general. Merely initialize the crc work 2306 * struct. 2307 */ 2308 void drm_dp_remote_aux_init(struct drm_dp_aux *aux) 2309 { 2310 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 2311 } 2312 EXPORT_SYMBOL(drm_dp_remote_aux_init); 2313 2314 /** 2315 * drm_dp_aux_init() - minimally initialise an aux channel 2316 * @aux: DisplayPort AUX channel 2317 * 2318 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with 2319 * the outside world, call drm_dp_aux_init() first. For drivers which are 2320 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a 2321 * &drm_connector), you must still call drm_dp_aux_register() once the connector 2322 * has been registered to allow userspace access to the auxiliary DP channel. 2323 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as 2324 * early as possible so that the &drm_device that corresponds to the AUX adapter 2325 * may be mentioned in debugging output from the DRM DP helpers. 2326 * 2327 * For devices which use a separate platform device for their AUX adapters, this 2328 * may be called as early as required by the driver. 2329 * 2330 */ 2331 void drm_dp_aux_init(struct drm_dp_aux *aux) 2332 { 2333 mutex_init(&aux->hw_mutex); 2334 mutex_init(&aux->cec.lock); 2335 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 2336 2337 aux->ddc.algo = &drm_dp_i2c_algo; 2338 aux->ddc.algo_data = aux; 2339 aux->ddc.retries = 3; 2340 2341 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops; 2342 } 2343 EXPORT_SYMBOL(drm_dp_aux_init); 2344 2345 /** 2346 * drm_dp_aux_register() - initialise and register aux channel 2347 * @aux: DisplayPort AUX channel 2348 * 2349 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This 2350 * should only be called once the parent of @aux, &drm_dp_aux.dev, is 2351 * initialized. For devices which are grandparents of their AUX channels, 2352 * &drm_dp_aux.dev will typically be the &drm_connector &device which 2353 * corresponds to @aux. For these devices, it's advised to call 2354 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to 2355 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister. 2356 * Functions which don't follow this will likely Oops when 2357 * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled. 2358 * 2359 * For devices where the AUX channel is a device that exists independently of 2360 * the &drm_device that uses it, such as SoCs and bridge devices, it is 2361 * recommended to call drm_dp_aux_register() after a &drm_device has been 2362 * assigned to &drm_dp_aux.drm_dev, and likewise to call 2363 * drm_dp_aux_unregister() once the &drm_device should no longer be associated 2364 * with the AUX channel (e.g. on bridge detach). 2365 * 2366 * Drivers which need to use the aux channel before either of the two points 2367 * mentioned above need to call drm_dp_aux_init() in order to use the AUX 2368 * channel before registration. 2369 * 2370 * Returns 0 on success or a negative error code on failure. 2371 */ 2372 int drm_dp_aux_register(struct drm_dp_aux *aux) 2373 { 2374 int ret; 2375 2376 WARN_ON_ONCE(!aux->drm_dev); 2377 2378 if (!aux->ddc.algo) 2379 drm_dp_aux_init(aux); 2380 2381 aux->ddc.owner = THIS_MODULE; 2382 aux->ddc.dev.parent = aux->dev; 2383 2384 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev), 2385 sizeof(aux->ddc.name)); 2386 2387 ret = drm_dp_aux_register_devnode(aux); 2388 if (ret) 2389 return ret; 2390 2391 ret = i2c_add_adapter(&aux->ddc); 2392 if (ret) { 2393 drm_dp_aux_unregister_devnode(aux); 2394 return ret; 2395 } 2396 2397 return 0; 2398 } 2399 EXPORT_SYMBOL(drm_dp_aux_register); 2400 2401 /** 2402 * drm_dp_aux_unregister() - unregister an AUX adapter 2403 * @aux: DisplayPort AUX channel 2404 */ 2405 void drm_dp_aux_unregister(struct drm_dp_aux *aux) 2406 { 2407 drm_dp_aux_unregister_devnode(aux); 2408 i2c_del_adapter(&aux->ddc); 2409 } 2410 EXPORT_SYMBOL(drm_dp_aux_unregister); 2411 2412 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x) 2413 2414 /** 2415 * drm_dp_psr_setup_time() - PSR setup in time usec 2416 * @psr_cap: PSR capabilities from DPCD 2417 * 2418 * Returns: 2419 * PSR setup time for the panel in microseconds, negative 2420 * error code on failure. 2421 */ 2422 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE]) 2423 { 2424 static const u16 psr_setup_time_us[] = { 2425 PSR_SETUP_TIME(330), 2426 PSR_SETUP_TIME(275), 2427 PSR_SETUP_TIME(220), 2428 PSR_SETUP_TIME(165), 2429 PSR_SETUP_TIME(110), 2430 PSR_SETUP_TIME(55), 2431 PSR_SETUP_TIME(0), 2432 }; 2433 int i; 2434 2435 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT; 2436 if (i >= ARRAY_SIZE(psr_setup_time_us)) 2437 return -EINVAL; 2438 2439 return psr_setup_time_us[i]; 2440 } 2441 EXPORT_SYMBOL(drm_dp_psr_setup_time); 2442 2443 #undef PSR_SETUP_TIME 2444 2445 /** 2446 * drm_dp_start_crc() - start capture of frame CRCs 2447 * @aux: DisplayPort AUX channel 2448 * @crtc: CRTC displaying the frames whose CRCs are to be captured 2449 * 2450 * Returns 0 on success or a negative error code on failure. 2451 */ 2452 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc) 2453 { 2454 u8 buf; 2455 int ret; 2456 2457 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf); 2458 if (ret < 0) 2459 return ret; 2460 2461 ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START); 2462 if (ret < 0) 2463 return ret; 2464 2465 aux->crc_count = 0; 2466 aux->crtc = crtc; 2467 schedule_work(&aux->crc_work); 2468 2469 return 0; 2470 } 2471 EXPORT_SYMBOL(drm_dp_start_crc); 2472 2473 /** 2474 * drm_dp_stop_crc() - stop capture of frame CRCs 2475 * @aux: DisplayPort AUX channel 2476 * 2477 * Returns 0 on success or a negative error code on failure. 2478 */ 2479 int drm_dp_stop_crc(struct drm_dp_aux *aux) 2480 { 2481 u8 buf; 2482 int ret; 2483 2484 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf); 2485 if (ret < 0) 2486 return ret; 2487 2488 ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START); 2489 if (ret < 0) 2490 return ret; 2491 2492 flush_work(&aux->crc_work); 2493 aux->crtc = NULL; 2494 2495 return 0; 2496 } 2497 EXPORT_SYMBOL(drm_dp_stop_crc); 2498 2499 struct dpcd_quirk { 2500 u8 oui[3]; 2501 u8 device_id[6]; 2502 bool is_branch; 2503 u32 quirks; 2504 }; 2505 2506 #define OUI(first, second, third) { (first), (second), (third) } 2507 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \ 2508 { (first), (second), (third), (fourth), (fifth), (sixth) } 2509 2510 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0) 2511 2512 static const struct dpcd_quirk dpcd_quirk_list[] = { 2513 /* Analogix 7737 needs reduced M and N at HBR2 link rates */ 2514 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 2515 /* LG LP140WF6-SPM1 eDP panel */ 2516 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 2517 /* Apple panels need some additional handling to support PSR */ 2518 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) }, 2519 /* CH7511 seems to leave SINK_COUNT zeroed */ 2520 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) }, 2521 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */ 2522 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) }, 2523 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */ 2524 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) }, 2525 /* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */ 2526 { OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) }, 2527 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */ 2528 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) }, 2529 }; 2530 2531 #undef OUI 2532 2533 /* 2534 * Get a bit mask of DPCD quirks for the sink/branch device identified by 2535 * ident. The quirk data is shared but it's up to the drivers to act on the 2536 * data. 2537 * 2538 * For now, only the OUI (first three bytes) is used, but this may be extended 2539 * to device identification string and hardware/firmware revisions later. 2540 */ 2541 static u32 2542 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch) 2543 { 2544 const struct dpcd_quirk *quirk; 2545 u32 quirks = 0; 2546 int i; 2547 u8 any_device[] = DEVICE_ID_ANY; 2548 2549 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) { 2550 quirk = &dpcd_quirk_list[i]; 2551 2552 if (quirk->is_branch != is_branch) 2553 continue; 2554 2555 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0) 2556 continue; 2557 2558 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 && 2559 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0) 2560 continue; 2561 2562 quirks |= quirk->quirks; 2563 } 2564 2565 return quirks; 2566 } 2567 2568 #undef DEVICE_ID_ANY 2569 #undef DEVICE_ID 2570 2571 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset, 2572 struct drm_dp_dpcd_ident *ident) 2573 { 2574 return drm_dp_dpcd_read_data(aux, offset, ident, sizeof(*ident)); 2575 } 2576 2577 static void drm_dp_dump_desc(struct drm_dp_aux *aux, 2578 const char *device_name, const struct drm_dp_desc *desc) 2579 { 2580 const struct drm_dp_dpcd_ident *ident = &desc->ident; 2581 2582 drm_dbg_kms(aux->drm_dev, 2583 "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n", 2584 aux->name, device_name, 2585 (int)sizeof(ident->oui), ident->oui, 2586 (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id, 2587 ident->hw_rev >> 4, ident->hw_rev & 0xf, 2588 ident->sw_major_rev, ident->sw_minor_rev, 2589 desc->quirks); 2590 } 2591 2592 /** 2593 * drm_dp_read_desc - read sink/branch descriptor from DPCD 2594 * @aux: DisplayPort AUX channel 2595 * @desc: Device descriptor to fill from DPCD 2596 * @is_branch: true for branch devices, false for sink devices 2597 * 2598 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the 2599 * identification. 2600 * 2601 * Returns 0 on success or a negative error code on failure. 2602 */ 2603 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc, 2604 bool is_branch) 2605 { 2606 struct drm_dp_dpcd_ident *ident = &desc->ident; 2607 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI; 2608 int ret; 2609 2610 ret = drm_dp_read_ident(aux, offset, ident); 2611 if (ret < 0) 2612 return ret; 2613 2614 desc->quirks = drm_dp_get_quirks(ident, is_branch); 2615 2616 drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc); 2617 2618 return 0; 2619 } 2620 EXPORT_SYMBOL(drm_dp_read_desc); 2621 2622 /** 2623 * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY 2624 * @aux: DisplayPort AUX channel 2625 * @dp_phy: LTTPR PHY instance 2626 * 2627 * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message 2628 * with its details to dmesg. 2629 * 2630 * Returns 0 on success or a negative error code on failure. 2631 */ 2632 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy) 2633 { 2634 struct drm_dp_desc desc = {}; 2635 int ret; 2636 2637 if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT)) 2638 return -EINVAL; 2639 2640 ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident); 2641 if (ret < 0) 2642 return ret; 2643 2644 drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc); 2645 2646 return 0; 2647 } 2648 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc); 2649 2650 /** 2651 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment 2652 * @dsc_dpcd: DSC capabilities from DPCD 2653 * 2654 * Returns the bpp precision supported by the DP sink. 2655 */ 2656 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 2657 { 2658 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT]; 2659 2660 switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) { 2661 case DP_DSC_BITS_PER_PIXEL_1_16: 2662 return 16; 2663 case DP_DSC_BITS_PER_PIXEL_1_8: 2664 return 8; 2665 case DP_DSC_BITS_PER_PIXEL_1_4: 2666 return 4; 2667 case DP_DSC_BITS_PER_PIXEL_1_2: 2668 return 2; 2669 case DP_DSC_BITS_PER_PIXEL_1_1: 2670 return 1; 2671 } 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr); 2676 2677 /** 2678 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count 2679 * supported by the DSC sink. 2680 * @dsc_dpcd: DSC capabilities from DPCD 2681 * @is_edp: true if its eDP, false for DP 2682 * 2683 * Read the slice capabilities DPCD register from DSC sink to get 2684 * the maximum slice count supported. This is used to populate 2685 * the DSC parameters in the &struct drm_dsc_config by the driver. 2686 * Driver creates an infoframe using these parameters to populate 2687 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2688 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2689 * 2690 * Returns: 2691 * Maximum slice count supported by DSC sink or 0 its invalid 2692 */ 2693 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 2694 bool is_edp) 2695 { 2696 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT]; 2697 2698 if (is_edp) { 2699 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */ 2700 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 2701 return 4; 2702 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 2703 return 2; 2704 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 2705 return 1; 2706 } else { 2707 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */ 2708 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT]; 2709 2710 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK) 2711 return 24; 2712 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK) 2713 return 20; 2714 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK) 2715 return 16; 2716 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK) 2717 return 12; 2718 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK) 2719 return 10; 2720 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK) 2721 return 8; 2722 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK) 2723 return 6; 2724 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 2725 return 4; 2726 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 2727 return 2; 2728 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 2729 return 1; 2730 } 2731 2732 return 0; 2733 } 2734 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count); 2735 2736 /** 2737 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits 2738 * @dsc_dpcd: DSC capabilities from DPCD 2739 * 2740 * Read the DSC DPCD register to parse the line buffer depth in bits which is 2741 * number of bits of precision within the decoder line buffer supported by 2742 * the DSC sink. This is used to populate the DSC parameters in the 2743 * &struct drm_dsc_config by the driver. 2744 * Driver creates an infoframe using these parameters to populate 2745 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2746 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2747 * 2748 * Returns: 2749 * Line buffer depth supported by DSC panel or 0 its invalid 2750 */ 2751 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 2752 { 2753 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT]; 2754 2755 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) { 2756 case DP_DSC_LINE_BUF_BIT_DEPTH_9: 2757 return 9; 2758 case DP_DSC_LINE_BUF_BIT_DEPTH_10: 2759 return 10; 2760 case DP_DSC_LINE_BUF_BIT_DEPTH_11: 2761 return 11; 2762 case DP_DSC_LINE_BUF_BIT_DEPTH_12: 2763 return 12; 2764 case DP_DSC_LINE_BUF_BIT_DEPTH_13: 2765 return 13; 2766 case DP_DSC_LINE_BUF_BIT_DEPTH_14: 2767 return 14; 2768 case DP_DSC_LINE_BUF_BIT_DEPTH_15: 2769 return 15; 2770 case DP_DSC_LINE_BUF_BIT_DEPTH_16: 2771 return 16; 2772 case DP_DSC_LINE_BUF_BIT_DEPTH_8: 2773 return 8; 2774 } 2775 2776 return 0; 2777 } 2778 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth); 2779 2780 /** 2781 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component 2782 * values supported by the DSC sink. 2783 * @dsc_dpcd: DSC capabilities from DPCD 2784 * @dsc_bpc: An array to be filled by this helper with supported 2785 * input bpcs. 2786 * 2787 * Read the DSC DPCD from the sink device to parse the supported bits per 2788 * component values. This is used to populate the DSC parameters 2789 * in the &struct drm_dsc_config by the driver. 2790 * Driver creates an infoframe using these parameters to populate 2791 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2792 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2793 * 2794 * Returns: 2795 * Number of input BPC values parsed from the DPCD 2796 */ 2797 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 2798 u8 dsc_bpc[3]) 2799 { 2800 int num_bpc = 0; 2801 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT]; 2802 2803 if (!drm_dp_sink_supports_dsc(dsc_dpcd)) 2804 return 0; 2805 2806 if (color_depth & DP_DSC_12_BPC) 2807 dsc_bpc[num_bpc++] = 12; 2808 if (color_depth & DP_DSC_10_BPC) 2809 dsc_bpc[num_bpc++] = 10; 2810 2811 /* A DP DSC Sink device shall support 8 bpc. */ 2812 dsc_bpc[num_bpc++] = 8; 2813 2814 return num_bpc; 2815 } 2816 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs); 2817 2818 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux, 2819 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address, 2820 u8 *buf, int buf_size) 2821 { 2822 /* 2823 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns 2824 * corrupted values when reading from the 0xF0000- range with a block 2825 * size bigger than 1. 2826 */ 2827 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size; 2828 int offset; 2829 int ret; 2830 2831 for (offset = 0; offset < buf_size; offset += block_size) { 2832 ret = drm_dp_dpcd_read_data(aux, 2833 address + offset, 2834 &buf[offset], block_size); 2835 if (ret < 0) 2836 return ret; 2837 } 2838 2839 return 0; 2840 } 2841 2842 /** 2843 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities 2844 * @aux: DisplayPort AUX channel 2845 * @dpcd: DisplayPort configuration data 2846 * @caps: buffer to return the capability info in 2847 * 2848 * Read capabilities common to all LTTPRs. 2849 * 2850 * Returns 0 on success or a negative error code on failure. 2851 */ 2852 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux, 2853 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2854 u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2855 { 2856 return drm_dp_read_lttpr_regs(aux, dpcd, 2857 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, 2858 caps, DP_LTTPR_COMMON_CAP_SIZE); 2859 } 2860 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps); 2861 2862 /** 2863 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY 2864 * @aux: DisplayPort AUX channel 2865 * @dpcd: DisplayPort configuration data 2866 * @dp_phy: LTTPR PHY to read the capabilities for 2867 * @caps: buffer to return the capability info in 2868 * 2869 * Read the capabilities for the given LTTPR PHY. 2870 * 2871 * Returns 0 on success or a negative error code on failure. 2872 */ 2873 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux, 2874 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2875 enum drm_dp_phy dp_phy, 2876 u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2877 { 2878 return drm_dp_read_lttpr_regs(aux, dpcd, 2879 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy), 2880 caps, DP_LTTPR_PHY_CAP_SIZE); 2881 } 2882 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps); 2883 2884 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r) 2885 { 2886 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; 2887 } 2888 2889 /** 2890 * drm_dp_lttpr_count - get the number of detected LTTPRs 2891 * @caps: LTTPR common capabilities 2892 * 2893 * Get the number of detected LTTPRs from the LTTPR common capabilities info. 2894 * 2895 * Returns: 2896 * -ERANGE if more than supported number (8) of LTTPRs are detected 2897 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value 2898 * otherwise the number of detected LTTPRs 2899 */ 2900 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2901 { 2902 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT); 2903 2904 switch (hweight8(count)) { 2905 case 0: 2906 return 0; 2907 case 1: 2908 return 8 - ilog2(count); 2909 case 8: 2910 return -ERANGE; 2911 default: 2912 return -EINVAL; 2913 } 2914 } 2915 EXPORT_SYMBOL(drm_dp_lttpr_count); 2916 2917 /** 2918 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs 2919 * @caps: LTTPR common capabilities 2920 * 2921 * Returns the maximum link rate supported by all detected LTTPRs. 2922 */ 2923 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2924 { 2925 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER); 2926 2927 return drm_dp_bw_code_to_link_rate(rate); 2928 } 2929 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate); 2930 2931 /** 2932 * drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode 2933 * @aux: DisplayPort AUX channel 2934 * @enable: Enable or disable transparent mode 2935 * 2936 * Returns: 0 on success or a negative error code on failure. 2937 */ 2938 int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable) 2939 { 2940 u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT : 2941 DP_PHY_REPEATER_MODE_NON_TRANSPARENT; 2942 int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val); 2943 2944 if (ret < 0) 2945 return ret; 2946 2947 return (ret == 1) ? 0 : -EIO; 2948 } 2949 EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode); 2950 2951 /** 2952 * drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard 2953 * @aux: DisplayPort AUX channel 2954 * @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard. 2955 * Negative error code for any non-valid number. 2956 * See drm_dp_lttpr_count(). 2957 * 2958 * Returns: 0 on success or a negative error code on failure. 2959 */ 2960 int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count) 2961 { 2962 int ret; 2963 2964 if (!lttpr_count) 2965 return 0; 2966 2967 /* 2968 * See DP Standard v2.0 3.6.6.1 about the explicit disabling of 2969 * non-transparent mode and the disable->enable non-transparent mode 2970 * sequence. 2971 */ 2972 ret = drm_dp_lttpr_set_transparent_mode(aux, true); 2973 if (ret) 2974 return ret; 2975 2976 if (lttpr_count < 0) 2977 return -ENODEV; 2978 2979 if (drm_dp_lttpr_set_transparent_mode(aux, false)) { 2980 /* 2981 * Roll-back to transparent mode if setting non-transparent 2982 * mode has failed 2983 */ 2984 drm_dp_lttpr_set_transparent_mode(aux, true); 2985 return -EINVAL; 2986 } 2987 2988 return 0; 2989 } 2990 EXPORT_SYMBOL(drm_dp_lttpr_init); 2991 2992 /** 2993 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs 2994 * @caps: LTTPR common capabilities 2995 * 2996 * Returns the maximum lane count supported by all detected LTTPRs. 2997 */ 2998 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2999 { 3000 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER); 3001 3002 return max_lanes & DP_MAX_LANE_COUNT_MASK; 3003 } 3004 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count); 3005 3006 /** 3007 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support 3008 * @caps: LTTPR PHY capabilities 3009 * 3010 * Returns true if the @caps for an LTTPR TX PHY indicate support for 3011 * voltage swing level 3. 3012 */ 3013 bool 3014 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 3015 { 3016 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); 3017 3018 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED; 3019 } 3020 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported); 3021 3022 /** 3023 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support 3024 * @caps: LTTPR PHY capabilities 3025 * 3026 * Returns true if the @caps for an LTTPR TX PHY indicate support for 3027 * pre-emphasis level 3. 3028 */ 3029 bool 3030 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 3031 { 3032 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); 3033 3034 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED; 3035 } 3036 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported); 3037 3038 /** 3039 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink. 3040 * @aux: DisplayPort AUX channel 3041 * @data: DP phy compliance test parameters. 3042 * 3043 * Returns 0 on success or a negative error code on failure. 3044 */ 3045 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux, 3046 struct drm_dp_phy_test_params *data) 3047 { 3048 int err; 3049 u8 rate, lanes; 3050 3051 err = drm_dp_dpcd_read_byte(aux, DP_TEST_LINK_RATE, &rate); 3052 if (err < 0) 3053 return err; 3054 data->link_rate = drm_dp_bw_code_to_link_rate(rate); 3055 3056 err = drm_dp_dpcd_read_byte(aux, DP_TEST_LANE_COUNT, &lanes); 3057 if (err < 0) 3058 return err; 3059 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK; 3060 3061 if (lanes & DP_ENHANCED_FRAME_CAP) 3062 data->enhanced_frame_cap = true; 3063 3064 err = drm_dp_dpcd_read_byte(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern); 3065 if (err < 0) 3066 return err; 3067 3068 switch (data->phy_pattern) { 3069 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 3070 err = drm_dp_dpcd_read_data(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0, 3071 &data->custom80, sizeof(data->custom80)); 3072 if (err < 0) 3073 return err; 3074 3075 break; 3076 case DP_PHY_TEST_PATTERN_CP2520: 3077 err = drm_dp_dpcd_read_data(aux, DP_TEST_HBR2_SCRAMBLER_RESET, 3078 &data->hbr2_reset, 3079 sizeof(data->hbr2_reset)); 3080 if (err < 0) 3081 return err; 3082 } 3083 3084 return 0; 3085 } 3086 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern); 3087 3088 /** 3089 * drm_dp_set_phy_test_pattern() - set the pattern to the sink. 3090 * @aux: DisplayPort AUX channel 3091 * @data: DP phy compliance test parameters. 3092 * @dp_rev: DP revision to use for compliance testing 3093 * 3094 * Returns 0 on success or a negative error code on failure. 3095 */ 3096 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux, 3097 struct drm_dp_phy_test_params *data, u8 dp_rev) 3098 { 3099 int err, i; 3100 u8 test_pattern; 3101 3102 test_pattern = data->phy_pattern; 3103 if (dp_rev < 0x12) { 3104 test_pattern = (test_pattern << 2) & 3105 DP_LINK_QUAL_PATTERN_11_MASK; 3106 err = drm_dp_dpcd_write_byte(aux, DP_TRAINING_PATTERN_SET, 3107 test_pattern); 3108 if (err < 0) 3109 return err; 3110 } else { 3111 for (i = 0; i < data->num_lanes; i++) { 3112 err = drm_dp_dpcd_write_byte(aux, 3113 DP_LINK_QUAL_LANE0_SET + i, 3114 test_pattern); 3115 if (err < 0) 3116 return err; 3117 } 3118 } 3119 3120 return 0; 3121 } 3122 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern); 3123 3124 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat) 3125 { 3126 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) 3127 return "Invalid"; 3128 3129 switch (pixelformat) { 3130 case DP_PIXELFORMAT_RGB: 3131 return "RGB"; 3132 case DP_PIXELFORMAT_YUV444: 3133 return "YUV444"; 3134 case DP_PIXELFORMAT_YUV422: 3135 return "YUV422"; 3136 case DP_PIXELFORMAT_YUV420: 3137 return "YUV420"; 3138 case DP_PIXELFORMAT_Y_ONLY: 3139 return "Y_ONLY"; 3140 case DP_PIXELFORMAT_RAW: 3141 return "RAW"; 3142 default: 3143 return "Reserved"; 3144 } 3145 } 3146 3147 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat, 3148 enum dp_colorimetry colorimetry) 3149 { 3150 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) 3151 return "Invalid"; 3152 3153 switch (colorimetry) { 3154 case DP_COLORIMETRY_DEFAULT: 3155 switch (pixelformat) { 3156 case DP_PIXELFORMAT_RGB: 3157 return "sRGB"; 3158 case DP_PIXELFORMAT_YUV444: 3159 case DP_PIXELFORMAT_YUV422: 3160 case DP_PIXELFORMAT_YUV420: 3161 return "BT.601"; 3162 case DP_PIXELFORMAT_Y_ONLY: 3163 return "DICOM PS3.14"; 3164 case DP_PIXELFORMAT_RAW: 3165 return "Custom Color Profile"; 3166 default: 3167 return "Reserved"; 3168 } 3169 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */ 3170 switch (pixelformat) { 3171 case DP_PIXELFORMAT_RGB: 3172 return "Wide Fixed"; 3173 case DP_PIXELFORMAT_YUV444: 3174 case DP_PIXELFORMAT_YUV422: 3175 case DP_PIXELFORMAT_YUV420: 3176 return "BT.709"; 3177 default: 3178 return "Reserved"; 3179 } 3180 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */ 3181 switch (pixelformat) { 3182 case DP_PIXELFORMAT_RGB: 3183 return "Wide Float"; 3184 case DP_PIXELFORMAT_YUV444: 3185 case DP_PIXELFORMAT_YUV422: 3186 case DP_PIXELFORMAT_YUV420: 3187 return "xvYCC 601"; 3188 default: 3189 return "Reserved"; 3190 } 3191 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */ 3192 switch (pixelformat) { 3193 case DP_PIXELFORMAT_RGB: 3194 return "OpRGB"; 3195 case DP_PIXELFORMAT_YUV444: 3196 case DP_PIXELFORMAT_YUV422: 3197 case DP_PIXELFORMAT_YUV420: 3198 return "xvYCC 709"; 3199 default: 3200 return "Reserved"; 3201 } 3202 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */ 3203 switch (pixelformat) { 3204 case DP_PIXELFORMAT_RGB: 3205 return "DCI-P3"; 3206 case DP_PIXELFORMAT_YUV444: 3207 case DP_PIXELFORMAT_YUV422: 3208 case DP_PIXELFORMAT_YUV420: 3209 return "sYCC 601"; 3210 default: 3211 return "Reserved"; 3212 } 3213 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */ 3214 switch (pixelformat) { 3215 case DP_PIXELFORMAT_RGB: 3216 return "Custom Profile"; 3217 case DP_PIXELFORMAT_YUV444: 3218 case DP_PIXELFORMAT_YUV422: 3219 case DP_PIXELFORMAT_YUV420: 3220 return "OpYCC 601"; 3221 default: 3222 return "Reserved"; 3223 } 3224 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */ 3225 switch (pixelformat) { 3226 case DP_PIXELFORMAT_RGB: 3227 return "BT.2020 RGB"; 3228 case DP_PIXELFORMAT_YUV444: 3229 case DP_PIXELFORMAT_YUV422: 3230 case DP_PIXELFORMAT_YUV420: 3231 return "BT.2020 CYCC"; 3232 default: 3233 return "Reserved"; 3234 } 3235 case DP_COLORIMETRY_BT2020_YCC: 3236 switch (pixelformat) { 3237 case DP_PIXELFORMAT_YUV444: 3238 case DP_PIXELFORMAT_YUV422: 3239 case DP_PIXELFORMAT_YUV420: 3240 return "BT.2020 YCC"; 3241 default: 3242 return "Reserved"; 3243 } 3244 default: 3245 return "Invalid"; 3246 } 3247 } 3248 3249 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range) 3250 { 3251 switch (dynamic_range) { 3252 case DP_DYNAMIC_RANGE_VESA: 3253 return "VESA range"; 3254 case DP_DYNAMIC_RANGE_CTA: 3255 return "CTA range"; 3256 default: 3257 return "Invalid"; 3258 } 3259 } 3260 3261 static const char *dp_content_type_get_name(enum dp_content_type content_type) 3262 { 3263 switch (content_type) { 3264 case DP_CONTENT_TYPE_NOT_DEFINED: 3265 return "Not defined"; 3266 case DP_CONTENT_TYPE_GRAPHICS: 3267 return "Graphics"; 3268 case DP_CONTENT_TYPE_PHOTO: 3269 return "Photo"; 3270 case DP_CONTENT_TYPE_VIDEO: 3271 return "Video"; 3272 case DP_CONTENT_TYPE_GAME: 3273 return "Game"; 3274 default: 3275 return "Reserved"; 3276 } 3277 } 3278 3279 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc) 3280 { 3281 drm_printf(p, "DP SDP: VSC, revision %u, length %u\n", 3282 vsc->revision, vsc->length); 3283 drm_printf(p, " pixelformat: %s\n", 3284 dp_pixelformat_get_name(vsc->pixelformat)); 3285 drm_printf(p, " colorimetry: %s\n", 3286 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry)); 3287 drm_printf(p, " bpc: %u\n", vsc->bpc); 3288 drm_printf(p, " dynamic range: %s\n", 3289 dp_dynamic_range_get_name(vsc->dynamic_range)); 3290 drm_printf(p, " content type: %s\n", 3291 dp_content_type_get_name(vsc->content_type)); 3292 } 3293 EXPORT_SYMBOL(drm_dp_vsc_sdp_log); 3294 3295 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp) 3296 { 3297 drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n", 3298 as_sdp->revision, as_sdp->length); 3299 drm_printf(p, " vtotal: %d\n", as_sdp->vtotal); 3300 drm_printf(p, " target_rr: %d\n", as_sdp->target_rr); 3301 drm_printf(p, " duration_incr_ms: %d\n", as_sdp->duration_incr_ms); 3302 drm_printf(p, " duration_decr_ms: %d\n", as_sdp->duration_decr_ms); 3303 drm_printf(p, " operation_mode: %d\n", as_sdp->mode); 3304 } 3305 EXPORT_SYMBOL(drm_dp_as_sdp_log); 3306 3307 /** 3308 * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported 3309 * @aux: DisplayPort AUX channel 3310 * @dpcd: DisplayPort configuration data 3311 * 3312 * Returns true if adaptive sync sdp is supported, else returns false 3313 */ 3314 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3315 { 3316 u8 rx_feature; 3317 3318 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13) 3319 return false; 3320 3321 if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1, 3322 &rx_feature) < 0) { 3323 drm_dbg_dp(aux->drm_dev, 3324 "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n"); 3325 return false; 3326 } 3327 3328 return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED); 3329 } 3330 EXPORT_SYMBOL(drm_dp_as_sdp_supported); 3331 3332 /** 3333 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported 3334 * @aux: DisplayPort AUX channel 3335 * @dpcd: DisplayPort configuration data 3336 * 3337 * Returns true if vsc sdp is supported, else returns false 3338 */ 3339 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3340 { 3341 u8 rx_feature; 3342 3343 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13) 3344 return false; 3345 3346 if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) < 0) { 3347 drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n"); 3348 return false; 3349 } 3350 3351 return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED); 3352 } 3353 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported); 3354 3355 /** 3356 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp 3357 * @vsc: vsc sdp initialized according to its purpose as defined in 3358 * table 2-118 - table 2-120 in DP 1.4a specification 3359 * @sdp: valid handle to the generic dp_sdp which will be packed 3360 * 3361 * Returns length of sdp on success and error code on failure 3362 */ 3363 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, 3364 struct dp_sdp *sdp) 3365 { 3366 size_t length = sizeof(struct dp_sdp); 3367 3368 memset(sdp, 0, sizeof(struct dp_sdp)); 3369 3370 /* 3371 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 3372 * VSC SDP Header Bytes 3373 */ 3374 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ 3375 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ 3376 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ 3377 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ 3378 3379 if (vsc->revision == 0x6) { 3380 sdp->db[0] = 1; 3381 sdp->db[3] = 1; 3382 } 3383 3384 /* 3385 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry 3386 * Format as per DP 1.4a spec and DP 2.0 respectively. 3387 */ 3388 if (!(vsc->revision == 0x5 || vsc->revision == 0x7)) 3389 goto out; 3390 3391 /* VSC SDP Payload for DB16 through DB18 */ 3392 /* Pixel Encoding and Colorimetry Formats */ 3393 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ 3394 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ 3395 3396 switch (vsc->bpc) { 3397 case 6: 3398 /* 6bpc: 0x0 */ 3399 break; 3400 case 8: 3401 sdp->db[17] = 0x1; /* DB17[3:0] */ 3402 break; 3403 case 10: 3404 sdp->db[17] = 0x2; 3405 break; 3406 case 12: 3407 sdp->db[17] = 0x3; 3408 break; 3409 case 16: 3410 sdp->db[17] = 0x4; 3411 break; 3412 default: 3413 WARN(1, "Missing case %d\n", vsc->bpc); 3414 return -EINVAL; 3415 } 3416 3417 /* Dynamic Range and Component Bit Depth */ 3418 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) 3419 sdp->db[17] |= 0x80; /* DB17[7] */ 3420 3421 /* Content Type */ 3422 sdp->db[18] = vsc->content_type & 0x7; 3423 3424 out: 3425 return length; 3426 } 3427 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack); 3428 3429 /** 3430 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON 3431 * @dpcd: DisplayPort configuration data 3432 * @port_cap: port capabilities 3433 * 3434 * Returns maximum frl bandwidth supported by PCON in GBPS, 3435 * returns 0 if not supported. 3436 */ 3437 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 3438 const u8 port_cap[4]) 3439 { 3440 int bw; 3441 u8 buf; 3442 3443 buf = port_cap[2]; 3444 bw = buf & DP_PCON_MAX_FRL_BW; 3445 3446 switch (bw) { 3447 case DP_PCON_MAX_9GBPS: 3448 return 9; 3449 case DP_PCON_MAX_18GBPS: 3450 return 18; 3451 case DP_PCON_MAX_24GBPS: 3452 return 24; 3453 case DP_PCON_MAX_32GBPS: 3454 return 32; 3455 case DP_PCON_MAX_40GBPS: 3456 return 40; 3457 case DP_PCON_MAX_48GBPS: 3458 return 48; 3459 case DP_PCON_MAX_0GBPS: 3460 default: 3461 return 0; 3462 } 3463 3464 return 0; 3465 } 3466 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw); 3467 3468 /** 3469 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL. 3470 * @aux: DisplayPort AUX channel 3471 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY. 3472 * 3473 * Returns 0 if success, else returns negative error code. 3474 */ 3475 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd) 3476 { 3477 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE | 3478 DP_PCON_ENABLE_LINK_FRL_MODE; 3479 3480 if (enable_frl_ready_hpd) 3481 buf |= DP_PCON_ENABLE_HPD_READY; 3482 3483 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3484 } 3485 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare); 3486 3487 /** 3488 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL 3489 * @aux: DisplayPort AUX channel 3490 * 3491 * Returns true if success, else returns false. 3492 */ 3493 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux) 3494 { 3495 int ret; 3496 u8 buf; 3497 3498 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf); 3499 if (ret < 0) 3500 return false; 3501 3502 if (buf & DP_PCON_FRL_READY) 3503 return true; 3504 3505 return false; 3506 } 3507 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready); 3508 3509 /** 3510 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1 3511 * @aux: DisplayPort AUX channel 3512 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink 3513 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential. 3514 * In Concurrent Mode, the FRL link bring up can be done along with 3515 * DP Link training. In Sequential mode, the FRL link bring up is done prior to 3516 * the DP Link training. 3517 * 3518 * Returns 0 if success, else returns negative error code. 3519 */ 3520 3521 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps, 3522 u8 frl_mode) 3523 { 3524 int ret; 3525 u8 buf; 3526 3527 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf); 3528 if (ret < 0) 3529 return ret; 3530 3531 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK) 3532 buf |= DP_PCON_ENABLE_CONCURRENT_LINK; 3533 else 3534 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK; 3535 3536 switch (max_frl_gbps) { 3537 case 9: 3538 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS; 3539 break; 3540 case 18: 3541 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS; 3542 break; 3543 case 24: 3544 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS; 3545 break; 3546 case 32: 3547 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS; 3548 break; 3549 case 40: 3550 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS; 3551 break; 3552 case 48: 3553 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS; 3554 break; 3555 case 0: 3556 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS; 3557 break; 3558 default: 3559 return -EINVAL; 3560 } 3561 3562 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3563 } 3564 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1); 3565 3566 /** 3567 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2 3568 * @aux: DisplayPort AUX channel 3569 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink 3570 * @frl_type : FRL training type, can be Extended, or Normal. 3571 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask 3572 * starting from min, and stops when link training is successful. In Extended 3573 * FRL training, all frl bw selected in the mask are trained by the PCON. 3574 * 3575 * Returns 0 if success, else returns negative error code. 3576 */ 3577 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask, 3578 u8 frl_type) 3579 { 3580 int ret; 3581 u8 buf = max_frl_mask; 3582 3583 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED) 3584 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED; 3585 else 3586 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED; 3587 3588 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf); 3589 if (ret < 0) 3590 return ret; 3591 3592 return 0; 3593 } 3594 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2); 3595 3596 /** 3597 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration. 3598 * @aux: DisplayPort AUX channel 3599 * 3600 * Returns 0 if success, else returns negative error code. 3601 */ 3602 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux) 3603 { 3604 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0); 3605 } 3606 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config); 3607 3608 /** 3609 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL 3610 * @aux: DisplayPort AUX channel 3611 * 3612 * Returns 0 if success, else returns negative error code. 3613 */ 3614 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux) 3615 { 3616 int ret; 3617 u8 buf = 0; 3618 3619 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf); 3620 if (ret < 0) 3621 return ret; 3622 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) { 3623 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n", 3624 aux->name); 3625 return -EINVAL; 3626 } 3627 buf |= DP_PCON_ENABLE_HDMI_LINK; 3628 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3629 } 3630 EXPORT_SYMBOL(drm_dp_pcon_frl_enable); 3631 3632 /** 3633 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active. 3634 * @aux: DisplayPort AUX channel 3635 * 3636 * Returns true if link is active else returns false. 3637 */ 3638 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux) 3639 { 3640 u8 buf; 3641 int ret; 3642 3643 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf); 3644 if (ret < 0) 3645 return false; 3646 3647 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE; 3648 } 3649 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active); 3650 3651 /** 3652 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE 3653 * @aux: DisplayPort AUX channel 3654 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration. 3655 * Valid only if the MODE returned is FRL. For Normal Link training mode 3656 * only 1 of the bits will be set, but in case of Extended mode, more than 3657 * one bits can be set. 3658 * 3659 * Returns the link mode : TMDS or FRL on success, else returns negative error 3660 * code. 3661 */ 3662 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask) 3663 { 3664 u8 buf; 3665 int mode; 3666 int ret; 3667 3668 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf); 3669 if (ret < 0) 3670 return ret; 3671 3672 mode = buf & DP_PCON_HDMI_LINK_MODE; 3673 3674 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode) 3675 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1; 3676 3677 return mode; 3678 } 3679 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode); 3680 3681 /** 3682 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane 3683 * during link failure between PCON and HDMI sink 3684 * @aux: DisplayPort AUX channel 3685 * @connector: DRM connector 3686 * code. 3687 **/ 3688 3689 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux, 3690 struct drm_connector *connector) 3691 { 3692 u8 buf, error_count; 3693 int i, num_error; 3694 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 3695 3696 for (i = 0; i < hdmi->max_lanes; i++) { 3697 if (drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0) 3698 return; 3699 3700 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK; 3701 switch (error_count) { 3702 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS: 3703 num_error = 100; 3704 break; 3705 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS: 3706 num_error = 10; 3707 break; 3708 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS: 3709 num_error = 3; 3710 break; 3711 default: 3712 num_error = 0; 3713 } 3714 3715 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d", 3716 aux->name, num_error, i); 3717 } 3718 } 3719 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count); 3720 3721 /* 3722 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2 3723 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3724 * 3725 * Returns true is PCON encoder is DSC 1.2 else returns false. 3726 */ 3727 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3728 { 3729 u8 buf; 3730 u8 major_v, minor_v; 3731 3732 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER]; 3733 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT; 3734 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT; 3735 3736 if (major_v == 1 && minor_v == 2) 3737 return true; 3738 3739 return false; 3740 } 3741 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2); 3742 3743 /* 3744 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder 3745 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3746 * 3747 * Returns maximum no. of slices supported by the PCON DSC Encoder. 3748 */ 3749 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3750 { 3751 u8 slice_cap1, slice_cap2; 3752 3753 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER]; 3754 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER]; 3755 3756 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC) 3757 return 24; 3758 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC) 3759 return 20; 3760 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC) 3761 return 16; 3762 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC) 3763 return 12; 3764 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC) 3765 return 10; 3766 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC) 3767 return 8; 3768 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC) 3769 return 6; 3770 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC) 3771 return 4; 3772 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC) 3773 return 2; 3774 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC) 3775 return 1; 3776 3777 return 0; 3778 } 3779 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices); 3780 3781 /* 3782 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder 3783 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3784 * 3785 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320. 3786 */ 3787 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3788 { 3789 u8 buf; 3790 3791 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER]; 3792 3793 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER; 3794 } 3795 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width); 3796 3797 /* 3798 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder 3799 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3800 * 3801 * Returns the bpp precision supported by the PCON encoder. 3802 */ 3803 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3804 { 3805 u8 buf; 3806 3807 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER]; 3808 3809 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) { 3810 case DP_PCON_DSC_ONE_16TH_BPP: 3811 return 16; 3812 case DP_PCON_DSC_ONE_8TH_BPP: 3813 return 8; 3814 case DP_PCON_DSC_ONE_4TH_BPP: 3815 return 4; 3816 case DP_PCON_DSC_ONE_HALF_BPP: 3817 return 2; 3818 case DP_PCON_DSC_ONE_BPP: 3819 return 1; 3820 } 3821 3822 return 0; 3823 } 3824 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr); 3825 3826 static 3827 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config) 3828 { 3829 u8 buf; 3830 int ret; 3831 3832 ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf); 3833 if (ret < 0) 3834 return ret; 3835 3836 buf |= DP_PCON_ENABLE_DSC_ENCODER; 3837 3838 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) { 3839 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK; 3840 buf |= pps_buf_config << 2; 3841 } 3842 3843 return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf); 3844 } 3845 3846 /** 3847 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters 3848 * for DSC1.2 between PCON & HDMI2.1 sink 3849 * @aux: DisplayPort AUX channel 3850 * 3851 * Returns 0 on success, else returns negative error code. 3852 */ 3853 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux) 3854 { 3855 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED); 3856 } 3857 EXPORT_SYMBOL(drm_dp_pcon_pps_default); 3858 3859 /** 3860 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for 3861 * HDMI sink 3862 * @aux: DisplayPort AUX channel 3863 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON. 3864 * 3865 * Returns 0 on success, else returns negative error code. 3866 */ 3867 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128]) 3868 { 3869 int ret; 3870 3871 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128); 3872 if (ret < 0) 3873 return ret; 3874 3875 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER); 3876 } 3877 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf); 3878 3879 /* 3880 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder 3881 * override registers 3882 * @aux: DisplayPort AUX channel 3883 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height, 3884 * bits_per_pixel. 3885 * 3886 * Returns 0 on success, else returns negative error code. 3887 */ 3888 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6]) 3889 { 3890 int ret; 3891 3892 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2); 3893 if (ret < 0) 3894 return ret; 3895 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2); 3896 if (ret < 0) 3897 return ret; 3898 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2); 3899 if (ret < 0) 3900 return ret; 3901 3902 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER); 3903 } 3904 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param); 3905 3906 /* 3907 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr 3908 * @aux: displayPort AUX channel 3909 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable. 3910 * 3911 * Returns 0 on success, else returns negative error code. 3912 */ 3913 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc) 3914 { 3915 int ret; 3916 u8 buf; 3917 3918 ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf); 3919 if (ret < 0) 3920 return ret; 3921 3922 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK) 3923 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK); 3924 else 3925 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK; 3926 3927 return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf); 3928 } 3929 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr); 3930 3931 /** 3932 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX 3933 * @aux: The DP AUX channel to use 3934 * @bl: Backlight capability info from drm_edp_backlight_init() 3935 * @level: The brightness level to set 3936 * 3937 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must 3938 * already have been enabled by the driver by calling drm_edp_backlight_enable(). 3939 * 3940 * Returns: %0 on success, negative error code on failure 3941 */ 3942 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3943 u16 level) 3944 { 3945 int ret; 3946 u8 buf[2] = { 0 }; 3947 3948 /* The panel uses the PWM for controlling brightness levels */ 3949 if (!bl->aux_set) 3950 return 0; 3951 3952 if (bl->lsb_reg_used) { 3953 buf[0] = (level & 0xff00) >> 8; 3954 buf[1] = (level & 0x00ff); 3955 } else { 3956 buf[0] = level; 3957 } 3958 3959 ret = drm_dp_dpcd_write_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf)); 3960 if (ret < 0) { 3961 drm_err(aux->drm_dev, 3962 "%s: Failed to write aux backlight level: %d\n", 3963 aux->name, ret); 3964 return ret; 3965 } 3966 3967 return 0; 3968 } 3969 EXPORT_SYMBOL(drm_edp_backlight_set_level); 3970 3971 static int 3972 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3973 bool enable) 3974 { 3975 int ret; 3976 u8 buf; 3977 3978 /* This panel uses the EDP_BL_PWR GPIO for enablement */ 3979 if (!bl->aux_enable) 3980 return 0; 3981 3982 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf); 3983 if (ret < 0) { 3984 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n", 3985 aux->name, ret); 3986 return ret; 3987 } 3988 if (enable) 3989 buf |= DP_EDP_BACKLIGHT_ENABLE; 3990 else 3991 buf &= ~DP_EDP_BACKLIGHT_ENABLE; 3992 3993 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf); 3994 if (ret < 0) { 3995 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n", 3996 aux->name, ret); 3997 return ret; 3998 } 3999 4000 return 0; 4001 } 4002 4003 /** 4004 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD 4005 * @aux: The DP AUX channel to use 4006 * @bl: Backlight capability info from drm_edp_backlight_init() 4007 * @level: The initial backlight level to set via AUX, if there is one 4008 * 4009 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally 4010 * restoring any important backlight state such as the given backlight level, the brightness byte 4011 * count, backlight frequency, etc. 4012 * 4013 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require 4014 * that the driver handle enabling/disabling the panel through implementation-specific means using 4015 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false, 4016 * this function becomes a no-op, and the driver is expected to handle powering the panel on using 4017 * the EDP_BL_PWR GPIO. 4018 * 4019 * Returns: %0 on success, negative error code on failure. 4020 */ 4021 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 4022 const u16 level) 4023 { 4024 int ret; 4025 u8 dpcd_buf; 4026 4027 if (bl->aux_set) 4028 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD; 4029 else 4030 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM; 4031 4032 if (bl->pwmgen_bit_count) { 4033 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count); 4034 if (ret < 0) 4035 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n", 4036 aux->name, ret); 4037 } 4038 4039 if (bl->pwm_freq_pre_divider) { 4040 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_FREQ_SET, 4041 bl->pwm_freq_pre_divider); 4042 if (ret < 0) 4043 drm_dbg_kms(aux->drm_dev, 4044 "%s: Failed to write aux backlight frequency: %d\n", 4045 aux->name, ret); 4046 else 4047 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE; 4048 } 4049 4050 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf); 4051 if (ret < 0) { 4052 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n", 4053 aux->name, ret); 4054 return ret < 0 ? ret : -EIO; 4055 } 4056 4057 ret = drm_edp_backlight_set_level(aux, bl, level); 4058 if (ret < 0) 4059 return ret; 4060 ret = drm_edp_backlight_set_enable(aux, bl, true); 4061 if (ret < 0) 4062 return ret; 4063 4064 return 0; 4065 } 4066 EXPORT_SYMBOL(drm_edp_backlight_enable); 4067 4068 /** 4069 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported 4070 * @aux: The DP AUX channel to use 4071 * @bl: Backlight capability info from drm_edp_backlight_init() 4072 * 4073 * This function handles disabling DPCD backlight controls on a panel over AUX. 4074 * 4075 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require 4076 * that the driver handle enabling/disabling the panel through implementation-specific means using 4077 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false, 4078 * this function becomes a no-op, and the driver is expected to handle powering the panel off using 4079 * the EDP_BL_PWR GPIO. 4080 * 4081 * Returns: %0 on success or no-op, negative error code on failure. 4082 */ 4083 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl) 4084 { 4085 int ret; 4086 4087 ret = drm_edp_backlight_set_enable(aux, bl, false); 4088 if (ret < 0) 4089 return ret; 4090 4091 return 0; 4092 } 4093 EXPORT_SYMBOL(drm_edp_backlight_disable); 4094 4095 static inline int 4096 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 4097 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]) 4098 { 4099 int fxp, fxp_min, fxp_max, fxp_actual, f = 1; 4100 int ret; 4101 u8 pn, pn_min, pn_max; 4102 4103 if (!bl->aux_set) 4104 return 0; 4105 4106 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn); 4107 if (ret < 0) { 4108 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n", 4109 aux->name, ret); 4110 return -ENODEV; 4111 } 4112 4113 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 4114 bl->max = (1 << pn) - 1; 4115 if (!driver_pwm_freq_hz) 4116 return 0; 4117 4118 /* 4119 * Set PWM Frequency divider to match desired frequency provided by the driver. 4120 * The PWM Frequency is calculated as 27Mhz / (F x P). 4121 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the 4122 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h) 4123 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the 4124 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h) 4125 */ 4126 4127 /* Find desired value of (F x P) 4128 * Note that, if F x P is out of supported range, the maximum value or minimum value will 4129 * applied automatically. So no need to check that. 4130 */ 4131 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz); 4132 4133 /* Use highest possible value of Pn for more granularity of brightness adjustment while 4134 * satisfying the conditions below. 4135 * - Pn is in the range of Pn_min and Pn_max 4136 * - F is in the range of 1 and 255 4137 * - FxP is within 25% of desired value. 4138 * Note: 25% is arbitrary value and may need some tweak. 4139 */ 4140 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min); 4141 if (ret < 0) { 4142 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n", 4143 aux->name, ret); 4144 return 0; 4145 } 4146 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max); 4147 if (ret < 0) { 4148 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n", 4149 aux->name, ret); 4150 return 0; 4151 } 4152 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 4153 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 4154 4155 /* Ensure frequency is within 25% of desired value */ 4156 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4); 4157 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4); 4158 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) { 4159 drm_dbg_kms(aux->drm_dev, 4160 "%s: Driver defined backlight frequency (%d) out of range\n", 4161 aux->name, driver_pwm_freq_hz); 4162 return 0; 4163 } 4164 4165 for (pn = pn_max; pn >= pn_min; pn--) { 4166 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255); 4167 fxp_actual = f << pn; 4168 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max) 4169 break; 4170 } 4171 4172 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, pn); 4173 if (ret < 0) { 4174 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n", 4175 aux->name, ret); 4176 return 0; 4177 } 4178 bl->pwmgen_bit_count = pn; 4179 bl->max = (1 << pn) - 1; 4180 4181 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) { 4182 bl->pwm_freq_pre_divider = f; 4183 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n", 4184 aux->name, driver_pwm_freq_hz); 4185 } 4186 4187 return 0; 4188 } 4189 4190 static inline int 4191 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 4192 u8 *current_mode) 4193 { 4194 int ret; 4195 u8 buf[2]; 4196 u8 mode_reg; 4197 4198 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg); 4199 if (ret < 0) { 4200 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n", 4201 aux->name, ret); 4202 return ret < 0 ? ret : -EIO; 4203 } 4204 4205 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK); 4206 if (!bl->aux_set) 4207 return 0; 4208 4209 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) { 4210 int size = 1 + bl->lsb_reg_used; 4211 4212 ret = drm_dp_dpcd_read_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size); 4213 if (ret < 0) { 4214 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n", 4215 aux->name, ret); 4216 return ret; 4217 } 4218 4219 if (bl->lsb_reg_used) 4220 return (buf[0] << 8) | buf[1]; 4221 else 4222 return buf[0]; 4223 } 4224 4225 /* 4226 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and 4227 * the driver should assume max brightness 4228 */ 4229 return bl->max; 4230 } 4231 4232 /** 4233 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight 4234 * interface. 4235 * @aux: The DP aux device to use for probing 4236 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight 4237 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz 4238 * @edp_dpcd: A cached copy of the eDP DPCD 4239 * @current_level: Where to store the probed brightness level, if any 4240 * @current_mode: Where to store the currently set backlight control mode 4241 * 4242 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities, 4243 * along with also probing the current and maximum supported brightness levels. 4244 * 4245 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the 4246 * default frequency from the panel is used. 4247 * 4248 * Returns: %0 on success, negative error code on failure. 4249 */ 4250 int 4251 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 4252 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE], 4253 u16 *current_level, u8 *current_mode) 4254 { 4255 int ret; 4256 4257 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP) 4258 bl->aux_enable = true; 4259 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP) 4260 bl->aux_set = true; 4261 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT) 4262 bl->lsb_reg_used = true; 4263 4264 /* Sanity check caps */ 4265 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) { 4266 drm_dbg_kms(aux->drm_dev, 4267 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n", 4268 aux->name); 4269 return -EINVAL; 4270 } 4271 4272 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd); 4273 if (ret < 0) 4274 return ret; 4275 4276 ret = drm_edp_backlight_probe_state(aux, bl, current_mode); 4277 if (ret < 0) 4278 return ret; 4279 *current_level = ret; 4280 4281 drm_dbg_kms(aux->drm_dev, 4282 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n", 4283 aux->name, bl->aux_set, bl->aux_enable, *current_mode); 4284 if (bl->aux_set) { 4285 drm_dbg_kms(aux->drm_dev, 4286 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n", 4287 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider, 4288 bl->lsb_reg_used); 4289 } 4290 4291 return 0; 4292 } 4293 EXPORT_SYMBOL(drm_edp_backlight_init); 4294 4295 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \ 4296 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE)) 4297 4298 static int dp_aux_backlight_update_status(struct backlight_device *bd) 4299 { 4300 struct dp_aux_backlight *bl = bl_get_data(bd); 4301 u16 brightness = backlight_get_brightness(bd); 4302 int ret = 0; 4303 4304 if (!backlight_is_blank(bd)) { 4305 if (!bl->enabled) { 4306 drm_edp_backlight_enable(bl->aux, &bl->info, brightness); 4307 bl->enabled = true; 4308 return 0; 4309 } 4310 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness); 4311 } else { 4312 if (bl->enabled) { 4313 drm_edp_backlight_disable(bl->aux, &bl->info); 4314 bl->enabled = false; 4315 } 4316 } 4317 4318 return ret; 4319 } 4320 4321 static const struct backlight_ops dp_aux_bl_ops = { 4322 .update_status = dp_aux_backlight_update_status, 4323 }; 4324 4325 /** 4326 * drm_panel_dp_aux_backlight - create and use DP AUX backlight 4327 * @panel: DRM panel 4328 * @aux: The DP AUX channel to use 4329 * 4330 * Use this function to create and handle backlight if your panel 4331 * supports backlight control over DP AUX channel using DPCD 4332 * registers as per VESA's standard backlight control interface. 4333 * 4334 * When the panel is enabled backlight will be enabled after a 4335 * successful call to &drm_panel_funcs.enable() 4336 * 4337 * When the panel is disabled backlight will be disabled before the 4338 * call to &drm_panel_funcs.disable(). 4339 * 4340 * A typical implementation for a panel driver supporting backlight 4341 * control over DP AUX will call this function at probe time. 4342 * Backlight will then be handled transparently without requiring 4343 * any intervention from the driver. 4344 * 4345 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init(). 4346 * 4347 * Return: 0 on success or a negative error code on failure. 4348 */ 4349 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux) 4350 { 4351 struct dp_aux_backlight *bl; 4352 struct backlight_properties props = { 0 }; 4353 u16 current_level; 4354 u8 current_mode; 4355 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]; 4356 int ret; 4357 4358 if (!panel || !panel->dev || !aux) 4359 return -EINVAL; 4360 4361 ret = drm_dp_dpcd_read_data(aux, DP_EDP_DPCD_REV, edp_dpcd, 4362 EDP_DISPLAY_CTL_CAP_SIZE); 4363 if (ret < 0) 4364 return ret; 4365 4366 if (!drm_edp_backlight_supported(edp_dpcd)) { 4367 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n"); 4368 return 0; 4369 } 4370 4371 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL); 4372 if (!bl) 4373 return -ENOMEM; 4374 4375 bl->aux = aux; 4376 4377 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd, 4378 ¤t_level, ¤t_mode); 4379 if (ret < 0) 4380 return ret; 4381 4382 props.type = BACKLIGHT_RAW; 4383 props.brightness = current_level; 4384 props.max_brightness = bl->info.max; 4385 4386 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight", 4387 panel->dev, bl, 4388 &dp_aux_bl_ops, &props); 4389 if (IS_ERR(bl->base)) 4390 return PTR_ERR(bl->base); 4391 4392 backlight_disable(bl->base); 4393 4394 panel->backlight = bl->base; 4395 4396 return 0; 4397 } 4398 EXPORT_SYMBOL(drm_panel_dp_aux_backlight); 4399 4400 #endif 4401 4402 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */ 4403 static int drm_dp_link_data_symbol_cycles(int lane_count, int pixels, 4404 int bpp_x16, int symbol_size, 4405 bool is_mst) 4406 { 4407 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count); 4408 int align = is_mst ? 4 / lane_count : 1; 4409 4410 return ALIGN(cycles, align); 4411 } 4412 4413 /** 4414 * drm_dp_link_symbol_cycles - calculate the link symbol count with/without dsc 4415 * @lane_count: DP link lane count 4416 * @pixels: number of pixels in a scanline 4417 * @dsc_slice_count: number of slices for DSC or '0' for non-DSC 4418 * @bpp_x16: bits per pixel in .4 binary fixed format 4419 * @symbol_size: DP symbol size 4420 * @is_mst: %true for MST and %false for SST 4421 * 4422 * Calculate the link symbol cycles for both DSC (@dsc_slice_count !=0) and 4423 * non-DSC case (@dsc_slice_count == 0) and return the count. 4424 */ 4425 int drm_dp_link_symbol_cycles(int lane_count, int pixels, int dsc_slice_count, 4426 int bpp_x16, int symbol_size, bool is_mst) 4427 { 4428 int slice_count = dsc_slice_count ? : 1; 4429 int slice_pixels = DIV_ROUND_UP(pixels, slice_count); 4430 int slice_data_cycles = drm_dp_link_data_symbol_cycles(lane_count, 4431 slice_pixels, 4432 bpp_x16, 4433 symbol_size, 4434 is_mst); 4435 int slice_eoc_cycles = 0; 4436 4437 if (dsc_slice_count) 4438 slice_eoc_cycles = is_mst ? 4 / lane_count : 1; 4439 4440 return slice_count * (slice_data_cycles + slice_eoc_cycles); 4441 } 4442 EXPORT_SYMBOL(drm_dp_link_symbol_cycles); 4443 4444 /** 4445 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream 4446 * @lane_count: DP link lane count 4447 * @hactive: pixel count of the active period in one scanline of the stream 4448 * @dsc_slice_count: number of slices for DSC or '0' for non-DSC 4449 * @bpp_x16: bits per pixel in .4 binary fixed point 4450 * @flags: DRM_DP_OVERHEAD_x flags 4451 * 4452 * Calculate the BW allocation overhead of a DP link stream, depending 4453 * on the link's 4454 * - @lane_count 4455 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST) 4456 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR) 4457 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC) 4458 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK) 4459 * as well as the stream's 4460 * - @hactive timing 4461 * - @bpp_x16 color depth 4462 * - compression mode (@dsc_slice_count != 0) 4463 * Note that this overhead doesn't account for the 8b/10b, 128b/132b 4464 * channel coding efficiency, for that see 4465 * @drm_dp_link_bw_channel_coding_efficiency(). 4466 * 4467 * Returns the overhead as 100% + overhead% in 1ppm units. 4468 */ 4469 int drm_dp_bw_overhead(int lane_count, int hactive, 4470 int dsc_slice_count, 4471 int bpp_x16, unsigned long flags) 4472 { 4473 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8; 4474 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST; 4475 u32 overhead = 1000000; 4476 int symbol_cycles; 4477 4478 if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) { 4479 DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n", 4480 lane_count, hactive, 4481 FXP_Q4_ARGS(bpp_x16)); 4482 return 0; 4483 } 4484 4485 /* 4486 * DP Standard v2.1 2.6.4.1 4487 * SSC downspread and ref clock variation margin: 4488 * 5300ppm + 300ppm ~ 0.6% 4489 */ 4490 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK) 4491 overhead += 6000; 4492 4493 /* 4494 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4: 4495 * FEC symbol insertions for 8b/10b channel coding: 4496 * After each 250 data symbols on 2-4 lanes: 4497 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block) 4498 * After each 2 x 250 data symbols on 1 lane: 4499 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block) 4500 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks: 4501 * 256 * 256 bytes + 1 FEC_PM 4502 * or 4503 * 128 * 512 bytes + 1 FEC_PM 4504 * (256 * 6 + 1) / (256 * 250) = 2.4015625 % 4505 */ 4506 if (flags & DRM_DP_BW_OVERHEAD_FEC) 4507 overhead += 24016; 4508 4509 /* 4510 * DP Standard v2.1 2.7.9, 5.9.7 4511 * The FEC overhead for UHBR is accounted for in its 96.71% channel 4512 * coding efficiency. 4513 */ 4514 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) && 4515 (flags & DRM_DP_BW_OVERHEAD_FEC)); 4516 4517 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive, 4518 dsc_slice_count, 4519 bpp_x16, symbol_size, 4520 is_mst); 4521 4522 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count, 4523 overhead * 16), 4524 hactive * bpp_x16); 4525 } 4526 EXPORT_SYMBOL(drm_dp_bw_overhead); 4527 4528 /** 4529 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency 4530 * @is_uhbr: Whether the link has a 128b/132b channel coding 4531 * 4532 * Return the channel coding efficiency of the given DP link type, which is 4533 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes 4534 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead 4535 * and for 128b/132b any link or PHY level control symbol insertion overhead 4536 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the 4537 * corresponding FEC overhead is BW allocation specific, included in the value 4538 * returned by drm_dp_bw_overhead(). 4539 * 4540 * Returns the efficiency in the 100%/coding-overhead% ratio in 4541 * 1ppm units. 4542 */ 4543 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr) 4544 { 4545 if (is_uhbr) 4546 return 967100; 4547 else 4548 /* 4549 * Note that on 8b/10b MST the efficiency is only 4550 * 78.75% due to the 1 out of 64 MTPH packet overhead, 4551 * not accounted for here. 4552 */ 4553 return 800000; 4554 } 4555 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency); 4556 4557 /** 4558 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink 4559 * @max_link_rate: max DPRX link rate in 10kbps units 4560 * @max_lanes: max DPRX lane count 4561 * 4562 * Given a link rate and lanes, get the data bandwidth. 4563 * 4564 * Data bandwidth is the actual payload rate, which depends on the data 4565 * bandwidth efficiency and the link rate. 4566 * 4567 * Note that protocol layers above the DPRX link level considered here can 4568 * further limit the maximum data rate. Such layers are the MST topology (with 4569 * limits on the link between the source and first branch device as well as on 4570 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels - 4571 * which in turn can encapsulate an MST link with its own limit - with each 4572 * SST or MST encapsulated tunnel sharing the BW of a tunnel group. 4573 * 4574 * Returns the maximum data rate in kBps units. 4575 */ 4576 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes) 4577 { 4578 int ch_coding_efficiency = 4579 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate)); 4580 4581 return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes, 4582 ch_coding_efficiency), 4583 1000000 * 8); 4584 } 4585 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate); 4586