1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44 #include "swap.h"
45
46 /*
47 * Sleep at most 200ms at a time in balance_dirty_pages().
48 */
49 #define MAX_PAUSE max(HZ/5, 1)
50
51 /*
52 * Try to keep balance_dirty_pages() call intervals higher than this many pages
53 * by raising pause time to max_pause when falls below it.
54 */
55 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56
57 /*
58 * Estimate write bandwidth or update dirty limit at 200ms intervals.
59 */
60 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61
62 #define RATELIMIT_CALC_SHIFT 10
63
64 /*
65 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
66 * will look to see if it needs to force writeback or throttling.
67 */
68 static long ratelimit_pages = 32;
69
70 /* The following parameters are exported via /proc/sys/vm */
71
72 /*
73 * Start background writeback (via writeback threads) at this percentage
74 */
75 static int dirty_background_ratio = 10;
76
77 /*
78 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
79 * dirty_background_ratio * the amount of dirtyable memory
80 */
81 static unsigned long dirty_background_bytes;
82
83 /*
84 * free highmem will not be subtracted from the total free memory
85 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 */
87 static int vm_highmem_is_dirtyable;
88
89 /*
90 * The generator of dirty data starts writeback at this percentage
91 */
92 static int vm_dirty_ratio = 20;
93
94 /*
95 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
96 * vm_dirty_ratio * the amount of dirtyable memory
97 */
98 static unsigned long vm_dirty_bytes;
99
100 /*
101 * The interval between `kupdate'-style writebacks
102 */
103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104
105 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106
107 /*
108 * The longest time for which data is allowed to remain dirty
109 */
110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111
112 /*
113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114 * a full sync is triggered after this time elapses without any disk activity.
115 */
116 int laptop_mode;
117
118 EXPORT_SYMBOL(laptop_mode);
119
120 /* End of sysctl-exported parameters */
121
122 struct wb_domain global_wb_domain;
123
124 /*
125 * Length of period for aging writeout fractions of bdis. This is an
126 * arbitrarily chosen number. The longer the period, the slower fractions will
127 * reflect changes in current writeout rate.
128 */
129 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
130
131 #ifdef CONFIG_CGROUP_WRITEBACK
132
133 #define GDTC_INIT(__wb) .wb = (__wb), \
134 .dom = &global_wb_domain, \
135 .wb_completions = &(__wb)->completions
136
137 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
138
139 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
140 .dom = mem_cgroup_wb_domain(__wb), \
141 .wb_completions = &(__wb)->memcg_completions, \
142 .gdtc = __gdtc
143
mdtc_valid(struct dirty_throttle_control * dtc)144 static bool mdtc_valid(struct dirty_throttle_control *dtc)
145 {
146 return dtc->dom;
147 }
148
dtc_dom(struct dirty_throttle_control * dtc)149 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
150 {
151 return dtc->dom;
152 }
153
mdtc_gdtc(struct dirty_throttle_control * mdtc)154 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
155 {
156 return mdtc->gdtc;
157 }
158
wb_memcg_completions(struct bdi_writeback * wb)159 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
160 {
161 return &wb->memcg_completions;
162 }
163
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)164 static void wb_min_max_ratio(struct bdi_writeback *wb,
165 unsigned long *minp, unsigned long *maxp)
166 {
167 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
168 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
169 unsigned long long min = wb->bdi->min_ratio;
170 unsigned long long max = wb->bdi->max_ratio;
171
172 /*
173 * @wb may already be clean by the time control reaches here and
174 * the total may not include its bw.
175 */
176 if (this_bw < tot_bw) {
177 if (min) {
178 min *= this_bw;
179 min = div64_ul(min, tot_bw);
180 }
181 if (max < 100 * BDI_RATIO_SCALE) {
182 max *= this_bw;
183 max = div64_ul(max, tot_bw);
184 }
185 }
186
187 *minp = min;
188 *maxp = max;
189 }
190
191 #else /* CONFIG_CGROUP_WRITEBACK */
192
193 #define GDTC_INIT(__wb) .wb = (__wb), \
194 .wb_completions = &(__wb)->completions
195 #define GDTC_INIT_NO_WB
196 #define MDTC_INIT(__wb, __gdtc)
197
mdtc_valid(struct dirty_throttle_control * dtc)198 static bool mdtc_valid(struct dirty_throttle_control *dtc)
199 {
200 return false;
201 }
202
dtc_dom(struct dirty_throttle_control * dtc)203 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
204 {
205 return &global_wb_domain;
206 }
207
mdtc_gdtc(struct dirty_throttle_control * mdtc)208 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
209 {
210 return NULL;
211 }
212
wb_memcg_completions(struct bdi_writeback * wb)213 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
214 {
215 return NULL;
216 }
217
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)218 static void wb_min_max_ratio(struct bdi_writeback *wb,
219 unsigned long *minp, unsigned long *maxp)
220 {
221 *minp = wb->bdi->min_ratio;
222 *maxp = wb->bdi->max_ratio;
223 }
224
225 #endif /* CONFIG_CGROUP_WRITEBACK */
226
227 /*
228 * In a memory zone, there is a certain amount of pages we consider
229 * available for the page cache, which is essentially the number of
230 * free and reclaimable pages, minus some zone reserves to protect
231 * lowmem and the ability to uphold the zone's watermarks without
232 * requiring writeback.
233 *
234 * This number of dirtyable pages is the base value of which the
235 * user-configurable dirty ratio is the effective number of pages that
236 * are allowed to be actually dirtied. Per individual zone, or
237 * globally by using the sum of dirtyable pages over all zones.
238 *
239 * Because the user is allowed to specify the dirty limit globally as
240 * absolute number of bytes, calculating the per-zone dirty limit can
241 * require translating the configured limit into a percentage of
242 * global dirtyable memory first.
243 */
244
245 /**
246 * node_dirtyable_memory - number of dirtyable pages in a node
247 * @pgdat: the node
248 *
249 * Return: the node's number of pages potentially available for dirty
250 * page cache. This is the base value for the per-node dirty limits.
251 */
node_dirtyable_memory(struct pglist_data * pgdat)252 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
253 {
254 unsigned long nr_pages = 0;
255 int z;
256
257 for (z = 0; z < MAX_NR_ZONES; z++) {
258 struct zone *zone = pgdat->node_zones + z;
259
260 if (!populated_zone(zone))
261 continue;
262
263 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
264 }
265
266 /*
267 * Pages reserved for the kernel should not be considered
268 * dirtyable, to prevent a situation where reclaim has to
269 * clean pages in order to balance the zones.
270 */
271 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
272
273 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
274 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
275
276 return nr_pages;
277 }
278
highmem_dirtyable_memory(unsigned long total)279 static unsigned long highmem_dirtyable_memory(unsigned long total)
280 {
281 #ifdef CONFIG_HIGHMEM
282 int node;
283 unsigned long x = 0;
284 int i;
285
286 for_each_node_state(node, N_HIGH_MEMORY) {
287 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
288 struct zone *z;
289 unsigned long nr_pages;
290
291 if (!is_highmem_idx(i))
292 continue;
293
294 z = &NODE_DATA(node)->node_zones[i];
295 if (!populated_zone(z))
296 continue;
297
298 nr_pages = zone_page_state(z, NR_FREE_PAGES);
299 /* watch for underflows */
300 nr_pages -= min(nr_pages, high_wmark_pages(z));
301 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
302 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
303 x += nr_pages;
304 }
305 }
306
307 /*
308 * Make sure that the number of highmem pages is never larger
309 * than the number of the total dirtyable memory. This can only
310 * occur in very strange VM situations but we want to make sure
311 * that this does not occur.
312 */
313 return min(x, total);
314 #else
315 return 0;
316 #endif
317 }
318
319 /**
320 * global_dirtyable_memory - number of globally dirtyable pages
321 *
322 * Return: the global number of pages potentially available for dirty
323 * page cache. This is the base value for the global dirty limits.
324 */
global_dirtyable_memory(void)325 static unsigned long global_dirtyable_memory(void)
326 {
327 unsigned long x;
328
329 x = global_zone_page_state(NR_FREE_PAGES);
330 /*
331 * Pages reserved for the kernel should not be considered
332 * dirtyable, to prevent a situation where reclaim has to
333 * clean pages in order to balance the zones.
334 */
335 x -= min(x, totalreserve_pages);
336
337 x += global_node_page_state(NR_INACTIVE_FILE);
338 x += global_node_page_state(NR_ACTIVE_FILE);
339
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
342
343 return x + 1; /* Ensure that we never return 0 */
344 }
345
346 /**
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
349 *
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for real-time tasks.
354 */
domain_dirty_limits(struct dirty_throttle_control * dtc)355 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
356 {
357 const unsigned long available_memory = dtc->avail;
358 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
359 unsigned long bytes = vm_dirty_bytes;
360 unsigned long bg_bytes = dirty_background_bytes;
361 /* convert ratios to per-PAGE_SIZE for higher precision */
362 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
363 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
364 unsigned long thresh;
365 unsigned long bg_thresh;
366 struct task_struct *tsk;
367
368 /* gdtc is !NULL iff @dtc is for memcg domain */
369 if (gdtc) {
370 unsigned long global_avail = gdtc->avail;
371
372 /*
373 * The byte settings can't be applied directly to memcg
374 * domains. Convert them to ratios by scaling against
375 * globally available memory. As the ratios are in
376 * per-PAGE_SIZE, they can be obtained by dividing bytes by
377 * number of pages.
378 */
379 if (bytes)
380 ratio = min(DIV_ROUND_UP(bytes, global_avail),
381 PAGE_SIZE);
382 if (bg_bytes)
383 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
384 PAGE_SIZE);
385 bytes = bg_bytes = 0;
386 }
387
388 if (bytes)
389 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
390 else
391 thresh = (ratio * available_memory) / PAGE_SIZE;
392
393 if (bg_bytes)
394 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
395 else
396 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
397
398 tsk = current;
399 if (rt_or_dl_task(tsk)) {
400 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
401 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
402 }
403 /*
404 * Dirty throttling logic assumes the limits in page units fit into
405 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
406 */
407 if (thresh > UINT_MAX)
408 thresh = UINT_MAX;
409 /* This makes sure bg_thresh is within 32-bits as well */
410 if (bg_thresh >= thresh)
411 bg_thresh = thresh / 2;
412 dtc->thresh = thresh;
413 dtc->bg_thresh = bg_thresh;
414
415 /* we should eventually report the domain in the TP */
416 if (!gdtc)
417 trace_global_dirty_state(bg_thresh, thresh);
418 }
419
420 /**
421 * global_dirty_limits - background-writeback and dirty-throttling thresholds
422 * @pbackground: out parameter for bg_thresh
423 * @pdirty: out parameter for thresh
424 *
425 * Calculate bg_thresh and thresh for global_wb_domain. See
426 * domain_dirty_limits() for details.
427 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
429 {
430 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
431
432 gdtc.avail = global_dirtyable_memory();
433 domain_dirty_limits(&gdtc);
434
435 *pbackground = gdtc.bg_thresh;
436 *pdirty = gdtc.thresh;
437 }
438
439 /**
440 * node_dirty_limit - maximum number of dirty pages allowed in a node
441 * @pgdat: the node
442 *
443 * Return: the maximum number of dirty pages allowed in a node, based
444 * on the node's dirtyable memory.
445 */
node_dirty_limit(struct pglist_data * pgdat)446 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
447 {
448 unsigned long node_memory = node_dirtyable_memory(pgdat);
449 struct task_struct *tsk = current;
450 unsigned long dirty;
451
452 if (vm_dirty_bytes)
453 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
454 node_memory / global_dirtyable_memory();
455 else
456 dirty = vm_dirty_ratio * node_memory / 100;
457
458 if (rt_or_dl_task(tsk))
459 dirty += dirty / 4;
460
461 /*
462 * Dirty throttling logic assumes the limits in page units fit into
463 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
464 */
465 return min_t(unsigned long, dirty, UINT_MAX);
466 }
467
468 /**
469 * node_dirty_ok - tells whether a node is within its dirty limits
470 * @pgdat: the node to check
471 *
472 * Return: %true when the dirty pages in @pgdat are within the node's
473 * dirty limit, %false if the limit is exceeded.
474 */
node_dirty_ok(struct pglist_data * pgdat)475 bool node_dirty_ok(struct pglist_data *pgdat)
476 {
477 unsigned long limit = node_dirty_limit(pgdat);
478 unsigned long nr_pages = 0;
479
480 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
481 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
482
483 return nr_pages <= limit;
484 }
485
486 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
488 void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 int ret;
491
492 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
493 if (ret == 0 && write)
494 dirty_background_bytes = 0;
495 return ret;
496 }
497
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)498 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
499 void *buffer, size_t *lenp, loff_t *ppos)
500 {
501 int ret;
502 unsigned long old_bytes = dirty_background_bytes;
503
504 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
505 if (ret == 0 && write) {
506 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
507 UINT_MAX) {
508 dirty_background_bytes = old_bytes;
509 return -ERANGE;
510 }
511 dirty_background_ratio = 0;
512 }
513 return ret;
514 }
515
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)516 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
517 size_t *lenp, loff_t *ppos)
518 {
519 int old_ratio = vm_dirty_ratio;
520 int ret;
521
522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524 vm_dirty_bytes = 0;
525 writeback_set_ratelimit();
526 }
527 return ret;
528 }
529
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)530 static int dirty_bytes_handler(const struct ctl_table *table, int write,
531 void *buffer, size_t *lenp, loff_t *ppos)
532 {
533 unsigned long old_bytes = vm_dirty_bytes;
534 int ret;
535
536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
539 vm_dirty_bytes = old_bytes;
540 return -ERANGE;
541 }
542 writeback_set_ratelimit();
543 vm_dirty_ratio = 0;
544 }
545 return ret;
546 }
547 #endif
548
wp_next_time(unsigned long cur_time)549 static unsigned long wp_next_time(unsigned long cur_time)
550 {
551 cur_time += VM_COMPLETIONS_PERIOD_LEN;
552 /* 0 has a special meaning... */
553 if (!cur_time)
554 return 1;
555 return cur_time;
556 }
557
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)558 static void wb_domain_writeout_add(struct wb_domain *dom,
559 struct fprop_local_percpu *completions,
560 unsigned int max_prop_frac, long nr)
561 {
562 __fprop_add_percpu_max(&dom->completions, completions,
563 max_prop_frac, nr);
564 /* First event after period switching was turned off? */
565 if (unlikely(!dom->period_time)) {
566 /*
567 * We can race with other wb_domain_writeout_add calls here but
568 * it does not cause any harm since the resulting time when
569 * timer will fire and what is in writeout_period_time will be
570 * roughly the same.
571 */
572 dom->period_time = wp_next_time(jiffies);
573 mod_timer(&dom->period_timer, dom->period_time);
574 }
575 }
576
577 /*
578 * Increment @wb's writeout completion count and the global writeout
579 * completion count. Called from __folio_end_writeback().
580 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
582 {
583 struct wb_domain *cgdom;
584
585 wb_stat_mod(wb, WB_WRITTEN, nr);
586 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
587 wb->bdi->max_prop_frac, nr);
588
589 cgdom = mem_cgroup_wb_domain(wb);
590 if (cgdom)
591 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
592 wb->bdi->max_prop_frac, nr);
593 }
594
wb_writeout_inc(struct bdi_writeback * wb)595 void wb_writeout_inc(struct bdi_writeback *wb)
596 {
597 unsigned long flags;
598
599 local_irq_save(flags);
600 __wb_writeout_add(wb, 1);
601 local_irq_restore(flags);
602 }
603 EXPORT_SYMBOL_GPL(wb_writeout_inc);
604
605 /*
606 * On idle system, we can be called long after we scheduled because we use
607 * deferred timers so count with missed periods.
608 */
writeout_period(struct timer_list * t)609 static void writeout_period(struct timer_list *t)
610 {
611 struct wb_domain *dom = timer_container_of(dom, t, period_timer);
612 int miss_periods = (jiffies - dom->period_time) /
613 VM_COMPLETIONS_PERIOD_LEN;
614
615 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
616 dom->period_time = wp_next_time(dom->period_time +
617 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
618 mod_timer(&dom->period_timer, dom->period_time);
619 } else {
620 /*
621 * Aging has zeroed all fractions. Stop wasting CPU on period
622 * updates.
623 */
624 dom->period_time = 0;
625 }
626 }
627
wb_domain_init(struct wb_domain * dom,gfp_t gfp)628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
629 {
630 memset(dom, 0, sizeof(*dom));
631
632 spin_lock_init(&dom->lock);
633
634 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
635
636 dom->dirty_limit_tstamp = jiffies;
637
638 return fprop_global_init(&dom->completions, gfp);
639 }
640
641 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)642 void wb_domain_exit(struct wb_domain *dom)
643 {
644 timer_delete_sync(&dom->period_timer);
645 fprop_global_destroy(&dom->completions);
646 }
647 #endif
648
649 /*
650 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
651 * registered backing devices, which, for obvious reasons, can not
652 * exceed 100%.
653 */
654 static unsigned int bdi_min_ratio;
655
bdi_check_pages_limit(unsigned long pages)656 static int bdi_check_pages_limit(unsigned long pages)
657 {
658 unsigned long max_dirty_pages = global_dirtyable_memory();
659
660 if (pages > max_dirty_pages)
661 return -EINVAL;
662
663 return 0;
664 }
665
bdi_ratio_from_pages(unsigned long pages)666 static unsigned long bdi_ratio_from_pages(unsigned long pages)
667 {
668 unsigned long background_thresh;
669 unsigned long dirty_thresh;
670 unsigned long ratio;
671
672 global_dirty_limits(&background_thresh, &dirty_thresh);
673 if (!dirty_thresh)
674 return -EINVAL;
675 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
676
677 return ratio;
678 }
679
bdi_get_bytes(unsigned int ratio)680 static u64 bdi_get_bytes(unsigned int ratio)
681 {
682 unsigned long background_thresh;
683 unsigned long dirty_thresh;
684 u64 bytes;
685
686 global_dirty_limits(&background_thresh, &dirty_thresh);
687 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
688
689 return bytes;
690 }
691
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)692 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
693 {
694 unsigned int delta;
695 int ret = 0;
696
697 if (min_ratio > 100 * BDI_RATIO_SCALE)
698 return -EINVAL;
699
700 spin_lock_bh(&bdi_lock);
701 if (min_ratio > bdi->max_ratio) {
702 ret = -EINVAL;
703 } else {
704 if (min_ratio < bdi->min_ratio) {
705 delta = bdi->min_ratio - min_ratio;
706 bdi_min_ratio -= delta;
707 bdi->min_ratio = min_ratio;
708 } else {
709 delta = min_ratio - bdi->min_ratio;
710 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
711 bdi_min_ratio += delta;
712 bdi->min_ratio = min_ratio;
713 } else {
714 ret = -EINVAL;
715 }
716 }
717 }
718 spin_unlock_bh(&bdi_lock);
719
720 return ret;
721 }
722
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)723 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
724 {
725 int ret = 0;
726
727 if (max_ratio > 100 * BDI_RATIO_SCALE)
728 return -EINVAL;
729
730 spin_lock_bh(&bdi_lock);
731 if (bdi->min_ratio > max_ratio) {
732 ret = -EINVAL;
733 } else {
734 bdi->max_ratio = max_ratio;
735 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
736 (100 * BDI_RATIO_SCALE);
737 }
738 spin_unlock_bh(&bdi_lock);
739
740 return ret;
741 }
742
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)743 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
744 {
745 return __bdi_set_min_ratio(bdi, min_ratio);
746 }
747
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)748 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
749 {
750 return __bdi_set_max_ratio(bdi, max_ratio);
751 }
752
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)753 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
754 {
755 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
756 }
757
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)758 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
759 {
760 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
761 }
762 EXPORT_SYMBOL(bdi_set_max_ratio);
763
bdi_get_min_bytes(struct backing_dev_info * bdi)764 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
765 {
766 return bdi_get_bytes(bdi->min_ratio);
767 }
768
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)769 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
770 {
771 int ret;
772 unsigned long pages = min_bytes >> PAGE_SHIFT;
773 long min_ratio;
774
775 ret = bdi_check_pages_limit(pages);
776 if (ret)
777 return ret;
778
779 min_ratio = bdi_ratio_from_pages(pages);
780 if (min_ratio < 0)
781 return min_ratio;
782 return __bdi_set_min_ratio(bdi, min_ratio);
783 }
784
bdi_get_max_bytes(struct backing_dev_info * bdi)785 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
786 {
787 return bdi_get_bytes(bdi->max_ratio);
788 }
789
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)790 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
791 {
792 int ret;
793 unsigned long pages = max_bytes >> PAGE_SHIFT;
794 long max_ratio;
795
796 ret = bdi_check_pages_limit(pages);
797 if (ret)
798 return ret;
799
800 max_ratio = bdi_ratio_from_pages(pages);
801 if (max_ratio < 0)
802 return max_ratio;
803 return __bdi_set_max_ratio(bdi, max_ratio);
804 }
805
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)806 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
807 {
808 if (strict_limit > 1)
809 return -EINVAL;
810
811 spin_lock_bh(&bdi_lock);
812 if (strict_limit)
813 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
814 else
815 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
816 spin_unlock_bh(&bdi_lock);
817
818 return 0;
819 }
820
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)821 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
822 unsigned long bg_thresh)
823 {
824 return (thresh + bg_thresh) / 2;
825 }
826
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)827 static unsigned long hard_dirty_limit(struct wb_domain *dom,
828 unsigned long thresh)
829 {
830 return max(thresh, dom->dirty_limit);
831 }
832
833 /*
834 * Memory which can be further allocated to a memcg domain is capped by
835 * system-wide clean memory excluding the amount being used in the domain.
836 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)837 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
838 unsigned long filepages, unsigned long headroom)
839 {
840 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
841 unsigned long clean = filepages - min(filepages, mdtc->dirty);
842 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
843 unsigned long other_clean = global_clean - min(global_clean, clean);
844
845 mdtc->avail = filepages + min(headroom, other_clean);
846 }
847
dtc_is_global(struct dirty_throttle_control * dtc)848 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
849 {
850 return mdtc_gdtc(dtc) == NULL;
851 }
852
853 /*
854 * Dirty background will ignore pages being written as we're trying to
855 * decide whether to put more under writeback.
856 */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)857 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
858 bool include_writeback)
859 {
860 if (dtc_is_global(dtc)) {
861 dtc->avail = global_dirtyable_memory();
862 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
863 if (include_writeback)
864 dtc->dirty += global_node_page_state(NR_WRITEBACK);
865 } else {
866 unsigned long filepages = 0, headroom = 0, writeback = 0;
867
868 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
869 &writeback);
870 if (include_writeback)
871 dtc->dirty += writeback;
872 mdtc_calc_avail(dtc, filepages, headroom);
873 }
874 }
875
876 /**
877 * __wb_calc_thresh - @wb's share of dirty threshold
878 * @dtc: dirty_throttle_context of interest
879 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
880 *
881 * Note that balance_dirty_pages() will only seriously take dirty throttling
882 * threshold as a hard limit when sleeping max_pause per page is not enough
883 * to keep the dirty pages under control. For example, when the device is
884 * completely stalled due to some error conditions, or when there are 1000
885 * dd tasks writing to a slow 10MB/s USB key.
886 * In the other normal situations, it acts more gently by throttling the tasks
887 * more (rather than completely block them) when the wb dirty pages go high.
888 *
889 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
890 * - starving fast devices
891 * - piling up dirty pages (that will take long time to sync) on slow devices
892 *
893 * The wb's share of dirty limit will be adapting to its throughput and
894 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
895 *
896 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
897 * "dirty" in the context of dirty balancing includes all PG_dirty and
898 * PG_writeback pages.
899 */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)900 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
901 unsigned long thresh)
902 {
903 struct wb_domain *dom = dtc_dom(dtc);
904 struct bdi_writeback *wb = dtc->wb;
905 u64 wb_thresh;
906 u64 wb_max_thresh;
907 unsigned long numerator, denominator;
908 unsigned long wb_min_ratio, wb_max_ratio;
909
910 /*
911 * Calculate this wb's share of the thresh ratio.
912 */
913 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
914 &numerator, &denominator);
915
916 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
917 wb_thresh *= numerator;
918 wb_thresh = div64_ul(wb_thresh, denominator);
919
920 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
921
922 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
923
924 /*
925 * It's very possible that wb_thresh is close to 0 not because the
926 * device is slow, but that it has remained inactive for long time.
927 * Honour such devices a reasonable good (hopefully IO efficient)
928 * threshold, so that the occasional writes won't be blocked and active
929 * writes can rampup the threshold quickly.
930 */
931 if (thresh > dtc->dirty) {
932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
933 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
934 else
935 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
936 }
937
938 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939 if (wb_thresh > wb_max_thresh)
940 wb_thresh = wb_max_thresh;
941
942 return wb_thresh;
943 }
944
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
946 {
947 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
948
949 domain_dirty_avail(&gdtc, true);
950 return __wb_calc_thresh(&gdtc, thresh);
951 }
952
cgwb_calc_thresh(struct bdi_writeback * wb)953 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
954 {
955 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
956 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
957
958 domain_dirty_avail(&gdtc, true);
959 domain_dirty_avail(&mdtc, true);
960 domain_dirty_limits(&mdtc);
961
962 return __wb_calc_thresh(&mdtc, mdtc.thresh);
963 }
964
965 /*
966 * setpoint - dirty 3
967 * f(dirty) := 1.0 + (----------------)
968 * limit - setpoint
969 *
970 * it's a 3rd order polynomial that subjects to
971 *
972 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
973 * (2) f(setpoint) = 1.0 => the balance point
974 * (3) f(limit) = 0 => the hard limit
975 * (4) df/dx <= 0 => negative feedback control
976 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
977 * => fast response on large errors; small oscillation near setpoint
978 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)979 static long long pos_ratio_polynom(unsigned long setpoint,
980 unsigned long dirty,
981 unsigned long limit)
982 {
983 long long pos_ratio;
984 long x;
985
986 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
987 (limit - setpoint) | 1);
988 pos_ratio = x;
989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
991 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
992
993 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
994 }
995
996 /*
997 * Dirty position control.
998 *
999 * (o) global/bdi setpoints
1000 *
1001 * We want the dirty pages be balanced around the global/wb setpoints.
1002 * When the number of dirty pages is higher/lower than the setpoint, the
1003 * dirty position control ratio (and hence task dirty ratelimit) will be
1004 * decreased/increased to bring the dirty pages back to the setpoint.
1005 *
1006 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1007 *
1008 * if (dirty < setpoint) scale up pos_ratio
1009 * if (dirty > setpoint) scale down pos_ratio
1010 *
1011 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1012 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1013 *
1014 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1015 *
1016 * (o) global control line
1017 *
1018 * ^ pos_ratio
1019 * |
1020 * | |<===== global dirty control scope ======>|
1021 * 2.0 * * * * * * *
1022 * | .*
1023 * | . *
1024 * | . *
1025 * | . *
1026 * | . *
1027 * | . *
1028 * 1.0 ................................*
1029 * | . . *
1030 * | . . *
1031 * | . . *
1032 * | . . *
1033 * | . . *
1034 * 0 +------------.------------------.----------------------*------------->
1035 * freerun^ setpoint^ limit^ dirty pages
1036 *
1037 * (o) wb control line
1038 *
1039 * ^ pos_ratio
1040 * |
1041 * | *
1042 * | *
1043 * | *
1044 * | *
1045 * | * |<=========== span ============>|
1046 * 1.0 .......................*
1047 * | . *
1048 * | . *
1049 * | . *
1050 * | . *
1051 * | . *
1052 * | . *
1053 * | . *
1054 * | . *
1055 * | . *
1056 * | . *
1057 * | . *
1058 * 1/4 ...............................................* * * * * * * * * * * *
1059 * | . .
1060 * | . .
1061 * | . .
1062 * 0 +----------------------.-------------------------------.------------->
1063 * wb_setpoint^ x_intercept^
1064 *
1065 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1066 * be smoothly throttled down to normal if it starts high in situations like
1067 * - start writing to a slow SD card and a fast disk at the same time. The SD
1068 * card's wb_dirty may rush to many times higher than wb_setpoint.
1069 * - the wb dirty thresh drops quickly due to change of JBOD workload
1070 */
wb_position_ratio(struct dirty_throttle_control * dtc)1071 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1072 {
1073 struct bdi_writeback *wb = dtc->wb;
1074 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1075 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1076 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1077 unsigned long wb_thresh = dtc->wb_thresh;
1078 unsigned long x_intercept;
1079 unsigned long setpoint; /* dirty pages' target balance point */
1080 unsigned long wb_setpoint;
1081 unsigned long span;
1082 long long pos_ratio; /* for scaling up/down the rate limit */
1083 long x;
1084
1085 dtc->pos_ratio = 0;
1086
1087 if (unlikely(dtc->dirty >= limit))
1088 return;
1089
1090 /*
1091 * global setpoint
1092 *
1093 * See comment for pos_ratio_polynom().
1094 */
1095 setpoint = (freerun + limit) / 2;
1096 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1097
1098 /*
1099 * The strictlimit feature is a tool preventing mistrusted filesystems
1100 * from growing a large number of dirty pages before throttling. For
1101 * such filesystems balance_dirty_pages always checks wb counters
1102 * against wb limits. Even if global "nr_dirty" is under "freerun".
1103 * This is especially important for fuse which sets bdi->max_ratio to
1104 * 1% by default. Without strictlimit feature, fuse writeback may
1105 * consume arbitrary amount of RAM because it is accounted in
1106 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1107 *
1108 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1109 * two values: wb_dirty and wb_thresh. Let's consider an example:
1110 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1111 * limits are set by default to 10% and 20% (background and throttle).
1112 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1113 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1114 * about ~6K pages (as the average of background and throttle wb
1115 * limits). The 3rd order polynomial will provide positive feedback if
1116 * wb_dirty is under wb_setpoint and vice versa.
1117 *
1118 * Note, that we cannot use global counters in these calculations
1119 * because we want to throttle process writing to a strictlimit wb
1120 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1121 * in the example above).
1122 */
1123 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1124 long long wb_pos_ratio;
1125
1126 if (dtc->wb_dirty >= wb_thresh)
1127 return;
1128
1129 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1130 dtc->wb_bg_thresh);
1131
1132 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1133 return;
1134
1135 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1136 wb_thresh);
1137
1138 /*
1139 * Typically, for strictlimit case, wb_setpoint << setpoint
1140 * and pos_ratio >> wb_pos_ratio. In the other words global
1141 * state ("dirty") is not limiting factor and we have to
1142 * make decision based on wb counters. But there is an
1143 * important case when global pos_ratio should get precedence:
1144 * global limits are exceeded (e.g. due to activities on other
1145 * wb's) while given strictlimit wb is below limit.
1146 *
1147 * "pos_ratio * wb_pos_ratio" would work for the case above,
1148 * but it would look too non-natural for the case of all
1149 * activity in the system coming from a single strictlimit wb
1150 * with bdi->max_ratio == 100%.
1151 *
1152 * Note that min() below somewhat changes the dynamics of the
1153 * control system. Normally, pos_ratio value can be well over 3
1154 * (when globally we are at freerun and wb is well below wb
1155 * setpoint). Now the maximum pos_ratio in the same situation
1156 * is 2. We might want to tweak this if we observe the control
1157 * system is too slow to adapt.
1158 */
1159 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1160 return;
1161 }
1162
1163 /*
1164 * We have computed basic pos_ratio above based on global situation. If
1165 * the wb is over/under its share of dirty pages, we want to scale
1166 * pos_ratio further down/up. That is done by the following mechanism.
1167 */
1168
1169 /*
1170 * wb setpoint
1171 *
1172 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1173 *
1174 * x_intercept - wb_dirty
1175 * := --------------------------
1176 * x_intercept - wb_setpoint
1177 *
1178 * The main wb control line is a linear function that subjects to
1179 *
1180 * (1) f(wb_setpoint) = 1.0
1181 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1182 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1183 *
1184 * For single wb case, the dirty pages are observed to fluctuate
1185 * regularly within range
1186 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1187 * for various filesystems, where (2) can yield in a reasonable 12.5%
1188 * fluctuation range for pos_ratio.
1189 *
1190 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1191 * own size, so move the slope over accordingly and choose a slope that
1192 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1193 */
1194 if (unlikely(wb_thresh > dtc->thresh))
1195 wb_thresh = dtc->thresh;
1196 /*
1197 * scale global setpoint to wb's:
1198 * wb_setpoint = setpoint * wb_thresh / thresh
1199 */
1200 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1201 wb_setpoint = setpoint * (u64)x >> 16;
1202 /*
1203 * Use span=(8*write_bw) in single wb case as indicated by
1204 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1205 *
1206 * wb_thresh thresh - wb_thresh
1207 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1208 * thresh thresh
1209 */
1210 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1211 x_intercept = wb_setpoint + span;
1212
1213 if (dtc->wb_dirty < x_intercept - span / 4) {
1214 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1215 (x_intercept - wb_setpoint) | 1);
1216 } else
1217 pos_ratio /= 4;
1218
1219 /*
1220 * wb reserve area, safeguard against dirty pool underrun and disk idle
1221 * It may push the desired control point of global dirty pages higher
1222 * than setpoint.
1223 */
1224 x_intercept = wb_thresh / 2;
1225 if (dtc->wb_dirty < x_intercept) {
1226 if (dtc->wb_dirty > x_intercept / 8)
1227 pos_ratio = div_u64(pos_ratio * x_intercept,
1228 dtc->wb_dirty);
1229 else
1230 pos_ratio *= 8;
1231 }
1232
1233 dtc->pos_ratio = pos_ratio;
1234 }
1235
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1236 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1237 unsigned long elapsed,
1238 unsigned long written)
1239 {
1240 const unsigned long period = roundup_pow_of_two(3 * HZ);
1241 unsigned long avg = wb->avg_write_bandwidth;
1242 unsigned long old = wb->write_bandwidth;
1243 u64 bw;
1244
1245 /*
1246 * bw = written * HZ / elapsed
1247 *
1248 * bw * elapsed + write_bandwidth * (period - elapsed)
1249 * write_bandwidth = ---------------------------------------------------
1250 * period
1251 *
1252 * @written may have decreased due to folio_redirty_for_writepage().
1253 * Avoid underflowing @bw calculation.
1254 */
1255 bw = written - min(written, wb->written_stamp);
1256 bw *= HZ;
1257 if (unlikely(elapsed > period)) {
1258 bw = div64_ul(bw, elapsed);
1259 avg = bw;
1260 goto out;
1261 }
1262 bw += (u64)wb->write_bandwidth * (period - elapsed);
1263 bw >>= ilog2(period);
1264
1265 /*
1266 * one more level of smoothing, for filtering out sudden spikes
1267 */
1268 if (avg > old && old >= (unsigned long)bw)
1269 avg -= (avg - old) >> 3;
1270
1271 if (avg < old && old <= (unsigned long)bw)
1272 avg += (old - avg) >> 3;
1273
1274 out:
1275 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1276 avg = max(avg, 1LU);
1277 if (wb_has_dirty_io(wb)) {
1278 long delta = avg - wb->avg_write_bandwidth;
1279 WARN_ON_ONCE(atomic_long_add_return(delta,
1280 &wb->bdi->tot_write_bandwidth) <= 0);
1281 }
1282 wb->write_bandwidth = bw;
1283 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1284 }
1285
update_dirty_limit(struct dirty_throttle_control * dtc)1286 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1287 {
1288 struct wb_domain *dom = dtc_dom(dtc);
1289 unsigned long thresh = dtc->thresh;
1290 unsigned long limit = dom->dirty_limit;
1291
1292 /*
1293 * Follow up in one step.
1294 */
1295 if (limit < thresh) {
1296 limit = thresh;
1297 goto update;
1298 }
1299
1300 /*
1301 * Follow down slowly. Use the higher one as the target, because thresh
1302 * may drop below dirty. This is exactly the reason to introduce
1303 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1304 */
1305 thresh = max(thresh, dtc->dirty);
1306 if (limit > thresh) {
1307 limit -= (limit - thresh) >> 5;
1308 goto update;
1309 }
1310 return;
1311 update:
1312 dom->dirty_limit = limit;
1313 }
1314
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1315 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1316 unsigned long now)
1317 {
1318 struct wb_domain *dom = dtc_dom(dtc);
1319
1320 /*
1321 * check locklessly first to optimize away locking for the most time
1322 */
1323 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1324 return;
1325
1326 spin_lock(&dom->lock);
1327 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1328 update_dirty_limit(dtc);
1329 dom->dirty_limit_tstamp = now;
1330 }
1331 spin_unlock(&dom->lock);
1332 }
1333
1334 /*
1335 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1336 *
1337 * Normal wb tasks will be curbed at or below it in long term.
1338 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1339 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1340 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1341 unsigned long dirtied,
1342 unsigned long elapsed)
1343 {
1344 struct bdi_writeback *wb = dtc->wb;
1345 unsigned long dirty = dtc->dirty;
1346 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1347 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1348 unsigned long setpoint = (freerun + limit) / 2;
1349 unsigned long write_bw = wb->avg_write_bandwidth;
1350 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1351 unsigned long dirty_rate;
1352 unsigned long task_ratelimit;
1353 unsigned long balanced_dirty_ratelimit;
1354 unsigned long step;
1355 unsigned long x;
1356 unsigned long shift;
1357
1358 /*
1359 * The dirty rate will match the writeout rate in long term, except
1360 * when dirty pages are truncated by userspace or re-dirtied by FS.
1361 */
1362 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1363
1364 /*
1365 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1366 */
1367 task_ratelimit = (u64)dirty_ratelimit *
1368 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1369 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1370
1371 /*
1372 * A linear estimation of the "balanced" throttle rate. The theory is,
1373 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1374 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1375 * formula will yield the balanced rate limit (write_bw / N).
1376 *
1377 * Note that the expanded form is not a pure rate feedback:
1378 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1379 * but also takes pos_ratio into account:
1380 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1381 *
1382 * (1) is not realistic because pos_ratio also takes part in balancing
1383 * the dirty rate. Consider the state
1384 * pos_ratio = 0.5 (3)
1385 * rate = 2 * (write_bw / N) (4)
1386 * If (1) is used, it will stuck in that state! Because each dd will
1387 * be throttled at
1388 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1389 * yielding
1390 * dirty_rate = N * task_ratelimit = write_bw (6)
1391 * put (6) into (1) we get
1392 * rate_(i+1) = rate_(i) (7)
1393 *
1394 * So we end up using (2) to always keep
1395 * rate_(i+1) ~= (write_bw / N) (8)
1396 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1397 * pos_ratio is able to drive itself to 1.0, which is not only where
1398 * the dirty count meet the setpoint, but also where the slope of
1399 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1400 */
1401 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1402 dirty_rate | 1);
1403 /*
1404 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1405 */
1406 if (unlikely(balanced_dirty_ratelimit > write_bw))
1407 balanced_dirty_ratelimit = write_bw;
1408
1409 /*
1410 * We could safely do this and return immediately:
1411 *
1412 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1413 *
1414 * However to get a more stable dirty_ratelimit, the below elaborated
1415 * code makes use of task_ratelimit to filter out singular points and
1416 * limit the step size.
1417 *
1418 * The below code essentially only uses the relative value of
1419 *
1420 * task_ratelimit - dirty_ratelimit
1421 * = (pos_ratio - 1) * dirty_ratelimit
1422 *
1423 * which reflects the direction and size of dirty position error.
1424 */
1425
1426 /*
1427 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1428 * task_ratelimit is on the same side of dirty_ratelimit, too.
1429 * For example, when
1430 * - dirty_ratelimit > balanced_dirty_ratelimit
1431 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1432 * lowering dirty_ratelimit will help meet both the position and rate
1433 * control targets. Otherwise, don't update dirty_ratelimit if it will
1434 * only help meet the rate target. After all, what the users ultimately
1435 * feel and care are stable dirty rate and small position error.
1436 *
1437 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1438 * and filter out the singular points of balanced_dirty_ratelimit. Which
1439 * keeps jumping around randomly and can even leap far away at times
1440 * due to the small 200ms estimation period of dirty_rate (we want to
1441 * keep that period small to reduce time lags).
1442 */
1443 step = 0;
1444
1445 /*
1446 * For strictlimit case, calculations above were based on wb counters
1447 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1448 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1449 * Hence, to calculate "step" properly, we have to use wb_dirty as
1450 * "dirty" and wb_setpoint as "setpoint".
1451 */
1452 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1453 dirty = dtc->wb_dirty;
1454 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1455 }
1456
1457 if (dirty < setpoint) {
1458 x = min3(wb->balanced_dirty_ratelimit,
1459 balanced_dirty_ratelimit, task_ratelimit);
1460 if (dirty_ratelimit < x)
1461 step = x - dirty_ratelimit;
1462 } else {
1463 x = max3(wb->balanced_dirty_ratelimit,
1464 balanced_dirty_ratelimit, task_ratelimit);
1465 if (dirty_ratelimit > x)
1466 step = dirty_ratelimit - x;
1467 }
1468
1469 /*
1470 * Don't pursue 100% rate matching. It's impossible since the balanced
1471 * rate itself is constantly fluctuating. So decrease the track speed
1472 * when it gets close to the target. Helps eliminate pointless tremors.
1473 */
1474 shift = dirty_ratelimit / (2 * step + 1);
1475 if (shift < BITS_PER_LONG)
1476 step = DIV_ROUND_UP(step >> shift, 8);
1477 else
1478 step = 0;
1479
1480 if (dirty_ratelimit < balanced_dirty_ratelimit)
1481 dirty_ratelimit += step;
1482 else
1483 dirty_ratelimit -= step;
1484
1485 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1486 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1487
1488 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1489 }
1490
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1491 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1492 struct dirty_throttle_control *mdtc,
1493 bool update_ratelimit)
1494 {
1495 struct bdi_writeback *wb = gdtc->wb;
1496 unsigned long now = jiffies;
1497 unsigned long elapsed;
1498 unsigned long dirtied;
1499 unsigned long written;
1500
1501 spin_lock(&wb->list_lock);
1502
1503 /*
1504 * Lockless checks for elapsed time are racy and delayed update after
1505 * IO completion doesn't do it at all (to make sure written pages are
1506 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1507 * division errors.
1508 */
1509 elapsed = max(now - wb->bw_time_stamp, 1UL);
1510 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1511 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1512
1513 if (update_ratelimit) {
1514 domain_update_dirty_limit(gdtc, now);
1515 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1516
1517 /*
1518 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1519 * compiler has no way to figure that out. Help it.
1520 */
1521 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1522 domain_update_dirty_limit(mdtc, now);
1523 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1524 }
1525 }
1526 wb_update_write_bandwidth(wb, elapsed, written);
1527
1528 wb->dirtied_stamp = dirtied;
1529 wb->written_stamp = written;
1530 WRITE_ONCE(wb->bw_time_stamp, now);
1531 spin_unlock(&wb->list_lock);
1532 }
1533
wb_update_bandwidth(struct bdi_writeback * wb)1534 void wb_update_bandwidth(struct bdi_writeback *wb)
1535 {
1536 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1537
1538 __wb_update_bandwidth(&gdtc, NULL, false);
1539 }
1540
1541 /* Interval after which we consider wb idle and don't estimate bandwidth */
1542 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1543
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1544 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1545 {
1546 unsigned long now = jiffies;
1547 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1548
1549 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1550 !atomic_read(&wb->writeback_inodes)) {
1551 spin_lock(&wb->list_lock);
1552 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1553 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1554 WRITE_ONCE(wb->bw_time_stamp, now);
1555 spin_unlock(&wb->list_lock);
1556 }
1557 }
1558
1559 /*
1560 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1561 * will look to see if it needs to start dirty throttling.
1562 *
1563 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1564 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1565 * (the number of pages we may dirty without exceeding the dirty limits).
1566 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1567 static unsigned long dirty_poll_interval(unsigned long dirty,
1568 unsigned long thresh)
1569 {
1570 if (thresh > dirty)
1571 return 1UL << (ilog2(thresh - dirty) >> 1);
1572
1573 return 1;
1574 }
1575
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1576 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1577 unsigned long wb_dirty)
1578 {
1579 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1580 unsigned long t;
1581
1582 /*
1583 * Limit pause time for small memory systems. If sleeping for too long
1584 * time, a small pool of dirty/writeback pages may go empty and disk go
1585 * idle.
1586 *
1587 * 8 serves as the safety ratio.
1588 */
1589 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1590 t++;
1591
1592 return min_t(unsigned long, t, MAX_PAUSE);
1593 }
1594
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1595 static long wb_min_pause(struct bdi_writeback *wb,
1596 long max_pause,
1597 unsigned long task_ratelimit,
1598 unsigned long dirty_ratelimit,
1599 int *nr_dirtied_pause)
1600 {
1601 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1602 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1603 long t; /* target pause */
1604 long pause; /* estimated next pause */
1605 int pages; /* target nr_dirtied_pause */
1606
1607 /* target for 10ms pause on 1-dd case */
1608 t = max(1, HZ / 100);
1609
1610 /*
1611 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1612 * overheads.
1613 *
1614 * (N * 10ms) on 2^N concurrent tasks.
1615 */
1616 if (hi > lo)
1617 t += (hi - lo) * (10 * HZ) / 1024;
1618
1619 /*
1620 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1621 * on the much more stable dirty_ratelimit. However the next pause time
1622 * will be computed based on task_ratelimit and the two rate limits may
1623 * depart considerably at some time. Especially if task_ratelimit goes
1624 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1625 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1626 * result task_ratelimit won't be executed faithfully, which could
1627 * eventually bring down dirty_ratelimit.
1628 *
1629 * We apply two rules to fix it up:
1630 * 1) try to estimate the next pause time and if necessary, use a lower
1631 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1632 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1633 * 2) limit the target pause time to max_pause/2, so that the normal
1634 * small fluctuations of task_ratelimit won't trigger rule (1) and
1635 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1636 */
1637 t = min(t, 1 + max_pause / 2);
1638 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1639
1640 /*
1641 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1642 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1643 * When the 16 consecutive reads are often interrupted by some dirty
1644 * throttling pause during the async writes, cfq will go into idles
1645 * (deadline is fine). So push nr_dirtied_pause as high as possible
1646 * until reaches DIRTY_POLL_THRESH=32 pages.
1647 */
1648 if (pages < DIRTY_POLL_THRESH) {
1649 t = max_pause;
1650 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1651 if (pages > DIRTY_POLL_THRESH) {
1652 pages = DIRTY_POLL_THRESH;
1653 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1654 }
1655 }
1656
1657 pause = HZ * pages / (task_ratelimit + 1);
1658 if (pause > max_pause) {
1659 t = max_pause;
1660 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1661 }
1662
1663 *nr_dirtied_pause = pages;
1664 /*
1665 * The minimal pause time will normally be half the target pause time.
1666 */
1667 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1668 }
1669
wb_dirty_limits(struct dirty_throttle_control * dtc)1670 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1671 {
1672 struct bdi_writeback *wb = dtc->wb;
1673 unsigned long wb_reclaimable;
1674
1675 /*
1676 * wb_thresh is not treated as some limiting factor as
1677 * dirty_thresh, due to reasons
1678 * - in JBOD setup, wb_thresh can fluctuate a lot
1679 * - in a system with HDD and USB key, the USB key may somehow
1680 * go into state (wb_dirty >> wb_thresh) either because
1681 * wb_dirty starts high, or because wb_thresh drops low.
1682 * In this case we don't want to hard throttle the USB key
1683 * dirtiers for 100 seconds until wb_dirty drops under
1684 * wb_thresh. Instead the auxiliary wb control line in
1685 * wb_position_ratio() will let the dirtier task progress
1686 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1687 */
1688 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1689 dtc->wb_bg_thresh = dtc->thresh ?
1690 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1691
1692 /*
1693 * In order to avoid the stacked BDI deadlock we need
1694 * to ensure we accurately count the 'dirty' pages when
1695 * the threshold is low.
1696 *
1697 * Otherwise it would be possible to get thresh+n pages
1698 * reported dirty, even though there are thresh-m pages
1699 * actually dirty; with m+n sitting in the percpu
1700 * deltas.
1701 */
1702 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1703 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1704 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1705 } else {
1706 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1707 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1708 }
1709 }
1710
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1711 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1712 bool strictlimit)
1713 {
1714 unsigned long dirty, thresh;
1715
1716 if (strictlimit) {
1717 dirty = dtc->wb_dirty;
1718 thresh = dtc->wb_thresh;
1719 } else {
1720 dirty = dtc->dirty;
1721 thresh = dtc->thresh;
1722 }
1723
1724 return dirty_poll_interval(dirty, thresh);
1725 }
1726
1727 /*
1728 * Throttle it only when the background writeback cannot catch-up. This avoids
1729 * (excessively) small writeouts when the wb limits are ramping up in case of
1730 * !strictlimit.
1731 *
1732 * In strictlimit case make decision based on the wb counters and limits. Small
1733 * writeouts when the wb limits are ramping up are the price we consciously pay
1734 * for strictlimit-ing.
1735 */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1736 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1737 bool strictlimit)
1738 {
1739 unsigned long dirty, thresh, bg_thresh;
1740
1741 if (unlikely(strictlimit)) {
1742 wb_dirty_limits(dtc);
1743 dirty = dtc->wb_dirty;
1744 thresh = dtc->wb_thresh;
1745 bg_thresh = dtc->wb_bg_thresh;
1746 } else {
1747 dirty = dtc->dirty;
1748 thresh = dtc->thresh;
1749 bg_thresh = dtc->bg_thresh;
1750 }
1751 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1752 }
1753
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1754 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1755 bool strictlimit)
1756 {
1757 domain_dirty_avail(dtc, true);
1758 domain_dirty_limits(dtc);
1759 domain_dirty_freerun(dtc, strictlimit);
1760 }
1761
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1762 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1763 bool strictlimit)
1764 {
1765 dtc->freerun = false;
1766
1767 /* was already handled in domain_dirty_freerun */
1768 if (strictlimit)
1769 return;
1770
1771 wb_dirty_limits(dtc);
1772 /*
1773 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1774 * freerun ceiling.
1775 */
1776 if (!(current->flags & PF_LOCAL_THROTTLE))
1777 return;
1778
1779 dtc->freerun = dtc->wb_dirty <
1780 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1781 }
1782
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1783 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1784 bool strictlimit)
1785 {
1786 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1787 ((dtc->dirty > dtc->thresh) || strictlimit);
1788 }
1789
1790 /*
1791 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1792 * in freerun state. Please don't use these invalid fields in freerun case.
1793 */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1794 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1795 bool strictlimit)
1796 {
1797 wb_dirty_freerun(dtc, strictlimit);
1798 if (dtc->freerun)
1799 return;
1800
1801 wb_dirty_exceeded(dtc, strictlimit);
1802 wb_position_ratio(dtc);
1803 }
1804
1805 /*
1806 * balance_dirty_pages() must be called by processes which are generating dirty
1807 * data. It looks at the number of dirty pages in the machine and will force
1808 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1809 * If we're over `background_thresh' then the writeback threads are woken to
1810 * perform some writeout.
1811 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1812 static int balance_dirty_pages(struct bdi_writeback *wb,
1813 unsigned long pages_dirtied, unsigned int flags)
1814 {
1815 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1816 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1817 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1818 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1819 &mdtc_stor : NULL;
1820 struct dirty_throttle_control *sdtc;
1821 unsigned long nr_dirty;
1822 long period;
1823 long pause;
1824 long max_pause;
1825 long min_pause;
1826 int nr_dirtied_pause;
1827 unsigned long task_ratelimit;
1828 unsigned long dirty_ratelimit;
1829 struct backing_dev_info *bdi = wb->bdi;
1830 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1831 unsigned long start_time = jiffies;
1832 int ret = 0;
1833
1834 for (;;) {
1835 unsigned long now = jiffies;
1836
1837 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1838
1839 balance_domain_limits(gdtc, strictlimit);
1840 if (mdtc) {
1841 /*
1842 * If @wb belongs to !root memcg, repeat the same
1843 * basic calculations for the memcg domain.
1844 */
1845 balance_domain_limits(mdtc, strictlimit);
1846 }
1847
1848 /*
1849 * In laptop mode, we wait until hitting the higher threshold
1850 * before starting background writeout, and then write out all
1851 * the way down to the lower threshold. So slow writers cause
1852 * minimal disk activity.
1853 *
1854 * In normal mode, we start background writeout at the lower
1855 * background_thresh, to keep the amount of dirty memory low.
1856 */
1857 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1858 !writeback_in_progress(wb))
1859 wb_start_background_writeback(wb);
1860
1861 /*
1862 * If memcg domain is in effect, @dirty should be under
1863 * both global and memcg freerun ceilings.
1864 */
1865 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1866 unsigned long intv;
1867 unsigned long m_intv;
1868
1869 free_running:
1870 intv = domain_poll_intv(gdtc, strictlimit);
1871 m_intv = ULONG_MAX;
1872
1873 current->dirty_paused_when = now;
1874 current->nr_dirtied = 0;
1875 if (mdtc)
1876 m_intv = domain_poll_intv(mdtc, strictlimit);
1877 current->nr_dirtied_pause = min(intv, m_intv);
1878 break;
1879 }
1880
1881 /* Start writeback even when in laptop mode */
1882 if (unlikely(!writeback_in_progress(wb)))
1883 wb_start_background_writeback(wb);
1884
1885 mem_cgroup_flush_foreign(wb);
1886
1887 /*
1888 * Calculate global domain's pos_ratio and select the
1889 * global dtc by default.
1890 */
1891 balance_wb_limits(gdtc, strictlimit);
1892 if (gdtc->freerun)
1893 goto free_running;
1894 sdtc = gdtc;
1895
1896 if (mdtc) {
1897 /*
1898 * If memcg domain is in effect, calculate its
1899 * pos_ratio. @wb should satisfy constraints from
1900 * both global and memcg domains. Choose the one
1901 * w/ lower pos_ratio.
1902 */
1903 balance_wb_limits(mdtc, strictlimit);
1904 if (mdtc->freerun)
1905 goto free_running;
1906 if (mdtc->pos_ratio < gdtc->pos_ratio)
1907 sdtc = mdtc;
1908 }
1909
1910 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1911 (mdtc && mdtc->dirty_exceeded);
1912 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1913 BANDWIDTH_INTERVAL))
1914 __wb_update_bandwidth(gdtc, mdtc, true);
1915
1916 /* throttle according to the chosen dtc */
1917 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1918 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1919 RATELIMIT_CALC_SHIFT;
1920 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1921 min_pause = wb_min_pause(wb, max_pause,
1922 task_ratelimit, dirty_ratelimit,
1923 &nr_dirtied_pause);
1924
1925 if (unlikely(task_ratelimit == 0)) {
1926 period = max_pause;
1927 pause = max_pause;
1928 goto pause;
1929 }
1930 period = HZ * pages_dirtied / task_ratelimit;
1931 pause = period;
1932 if (current->dirty_paused_when)
1933 pause -= now - current->dirty_paused_when;
1934 /*
1935 * For less than 1s think time (ext3/4 may block the dirtier
1936 * for up to 800ms from time to time on 1-HDD; so does xfs,
1937 * however at much less frequency), try to compensate it in
1938 * future periods by updating the virtual time; otherwise just
1939 * do a reset, as it may be a light dirtier.
1940 */
1941 if (pause < min_pause) {
1942 trace_balance_dirty_pages(wb,
1943 sdtc,
1944 dirty_ratelimit,
1945 task_ratelimit,
1946 pages_dirtied,
1947 period,
1948 min(pause, 0L),
1949 start_time);
1950 if (pause < -HZ) {
1951 current->dirty_paused_when = now;
1952 current->nr_dirtied = 0;
1953 } else if (period) {
1954 current->dirty_paused_when += period;
1955 current->nr_dirtied = 0;
1956 } else if (current->nr_dirtied_pause <= pages_dirtied)
1957 current->nr_dirtied_pause += pages_dirtied;
1958 break;
1959 }
1960 if (unlikely(pause > max_pause)) {
1961 /* for occasional dropped task_ratelimit */
1962 now += min(pause - max_pause, max_pause);
1963 pause = max_pause;
1964 }
1965
1966 pause:
1967 trace_balance_dirty_pages(wb,
1968 sdtc,
1969 dirty_ratelimit,
1970 task_ratelimit,
1971 pages_dirtied,
1972 period,
1973 pause,
1974 start_time);
1975 if (flags & BDP_ASYNC) {
1976 ret = -EAGAIN;
1977 break;
1978 }
1979 __set_current_state(TASK_KILLABLE);
1980 bdi->last_bdp_sleep = jiffies;
1981 io_schedule_timeout(pause);
1982
1983 current->dirty_paused_when = now + pause;
1984 current->nr_dirtied = 0;
1985 current->nr_dirtied_pause = nr_dirtied_pause;
1986
1987 /*
1988 * This is typically equal to (dirty < thresh) and can also
1989 * keep "1000+ dd on a slow USB stick" under control.
1990 */
1991 if (task_ratelimit)
1992 break;
1993
1994 /*
1995 * In the case of an unresponsive NFS server and the NFS dirty
1996 * pages exceeds dirty_thresh, give the other good wb's a pipe
1997 * to go through, so that tasks on them still remain responsive.
1998 *
1999 * In theory 1 page is enough to keep the consumer-producer
2000 * pipe going: the flusher cleans 1 page => the task dirties 1
2001 * more page. However wb_dirty has accounting errors. So use
2002 * the larger and more IO friendly wb_stat_error.
2003 */
2004 if (sdtc->wb_dirty <= wb_stat_error())
2005 break;
2006
2007 if (fatal_signal_pending(current))
2008 break;
2009 }
2010 return ret;
2011 }
2012
2013 static DEFINE_PER_CPU(int, bdp_ratelimits);
2014
2015 /*
2016 * Normal tasks are throttled by
2017 * loop {
2018 * dirty tsk->nr_dirtied_pause pages;
2019 * take a snap in balance_dirty_pages();
2020 * }
2021 * However there is a worst case. If every task exit immediately when dirtied
2022 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2023 * called to throttle the page dirties. The solution is to save the not yet
2024 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2025 * randomly into the running tasks. This works well for the above worst case,
2026 * as the new task will pick up and accumulate the old task's leaked dirty
2027 * count and eventually get throttled.
2028 */
2029 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2030
2031 /**
2032 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2033 * @mapping: address_space which was dirtied.
2034 * @flags: BDP flags.
2035 *
2036 * Processes which are dirtying memory should call in here once for each page
2037 * which was newly dirtied. The function will periodically check the system's
2038 * dirty state and will initiate writeback if needed.
2039 *
2040 * See balance_dirty_pages_ratelimited() for details.
2041 *
2042 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2043 * indicate that memory is out of balance and the caller must wait
2044 * for I/O to complete. Otherwise, it will return 0 to indicate
2045 * that either memory was already in balance, or it was able to sleep
2046 * until the amount of dirty memory returned to balance.
2047 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2048 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2049 unsigned int flags)
2050 {
2051 struct inode *inode = mapping->host;
2052 struct backing_dev_info *bdi = inode_to_bdi(inode);
2053 struct bdi_writeback *wb = NULL;
2054 int ratelimit;
2055 int ret = 0;
2056 int *p;
2057
2058 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2059 return ret;
2060
2061 if (inode_cgwb_enabled(inode))
2062 wb = wb_get_create_current(bdi, GFP_KERNEL);
2063 if (!wb)
2064 wb = &bdi->wb;
2065
2066 ratelimit = current->nr_dirtied_pause;
2067 if (wb->dirty_exceeded)
2068 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2069
2070 preempt_disable();
2071 /*
2072 * This prevents one CPU to accumulate too many dirtied pages without
2073 * calling into balance_dirty_pages(), which can happen when there are
2074 * 1000+ tasks, all of them start dirtying pages at exactly the same
2075 * time, hence all honoured too large initial task->nr_dirtied_pause.
2076 */
2077 p = this_cpu_ptr(&bdp_ratelimits);
2078 if (unlikely(current->nr_dirtied >= ratelimit))
2079 *p = 0;
2080 else if (unlikely(*p >= ratelimit_pages)) {
2081 *p = 0;
2082 ratelimit = 0;
2083 }
2084 /*
2085 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2086 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2087 * the dirty throttling and livelock other long-run dirtiers.
2088 */
2089 p = this_cpu_ptr(&dirty_throttle_leaks);
2090 if (*p > 0 && current->nr_dirtied < ratelimit) {
2091 unsigned long nr_pages_dirtied;
2092 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2093 *p -= nr_pages_dirtied;
2094 current->nr_dirtied += nr_pages_dirtied;
2095 }
2096 preempt_enable();
2097
2098 if (unlikely(current->nr_dirtied >= ratelimit))
2099 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2100
2101 wb_put(wb);
2102 return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2105
2106 /**
2107 * balance_dirty_pages_ratelimited - balance dirty memory state.
2108 * @mapping: address_space which was dirtied.
2109 *
2110 * Processes which are dirtying memory should call in here once for each page
2111 * which was newly dirtied. The function will periodically check the system's
2112 * dirty state and will initiate writeback if needed.
2113 *
2114 * Once we're over the dirty memory limit we decrease the ratelimiting
2115 * by a lot, to prevent individual processes from overshooting the limit
2116 * by (ratelimit_pages) each.
2117 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2118 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2119 {
2120 balance_dirty_pages_ratelimited_flags(mapping, 0);
2121 }
2122 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2123
2124 /*
2125 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2126 * and thresh, but it's for background writeback.
2127 */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2128 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2129 {
2130 struct bdi_writeback *wb = dtc->wb;
2131
2132 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2133 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2134 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2135 else
2136 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2137 }
2138
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2139 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2140 {
2141 domain_dirty_avail(dtc, false);
2142 domain_dirty_limits(dtc);
2143 if (dtc->dirty > dtc->bg_thresh)
2144 return true;
2145
2146 wb_bg_dirty_limits(dtc);
2147 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2148 return true;
2149
2150 return false;
2151 }
2152
2153 /**
2154 * wb_over_bg_thresh - does @wb need to be written back?
2155 * @wb: bdi_writeback of interest
2156 *
2157 * Determines whether background writeback should keep writing @wb or it's
2158 * clean enough.
2159 *
2160 * Return: %true if writeback should continue.
2161 */
wb_over_bg_thresh(struct bdi_writeback * wb)2162 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2163 {
2164 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2165 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2166
2167 if (domain_over_bg_thresh(&gdtc))
2168 return true;
2169
2170 if (mdtc_valid(&mdtc))
2171 return domain_over_bg_thresh(&mdtc);
2172
2173 return false;
2174 }
2175
2176 #ifdef CONFIG_SYSCTL
2177 /*
2178 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2179 */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2180 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2181 void *buffer, size_t *length, loff_t *ppos)
2182 {
2183 unsigned int old_interval = dirty_writeback_interval;
2184 int ret;
2185
2186 ret = proc_dointvec(table, write, buffer, length, ppos);
2187
2188 /*
2189 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2190 * and a different non-zero value will wakeup the writeback threads.
2191 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2192 * iterate over all bdis and wbs.
2193 * The reason we do this is to make the change take effect immediately.
2194 */
2195 if (!ret && write && dirty_writeback_interval &&
2196 dirty_writeback_interval != old_interval)
2197 wakeup_flusher_threads(WB_REASON_PERIODIC);
2198
2199 return ret;
2200 }
2201 #endif
2202
laptop_mode_timer_fn(struct timer_list * t)2203 void laptop_mode_timer_fn(struct timer_list *t)
2204 {
2205 struct backing_dev_info *backing_dev_info =
2206 timer_container_of(backing_dev_info, t, laptop_mode_wb_timer);
2207
2208 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2209 }
2210
2211 /*
2212 * We've spun up the disk and we're in laptop mode: schedule writeback
2213 * of all dirty data a few seconds from now. If the flush is already scheduled
2214 * then push it back - the user is still using the disk.
2215 */
laptop_io_completion(struct backing_dev_info * info)2216 void laptop_io_completion(struct backing_dev_info *info)
2217 {
2218 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2219 }
2220
2221 /*
2222 * We're in laptop mode and we've just synced. The sync's writes will have
2223 * caused another writeback to be scheduled by laptop_io_completion.
2224 * Nothing needs to be written back anymore, so we unschedule the writeback.
2225 */
laptop_sync_completion(void)2226 void laptop_sync_completion(void)
2227 {
2228 struct backing_dev_info *bdi;
2229
2230 rcu_read_lock();
2231
2232 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2233 timer_delete(&bdi->laptop_mode_wb_timer);
2234
2235 rcu_read_unlock();
2236 }
2237
2238 /*
2239 * If ratelimit_pages is too high then we can get into dirty-data overload
2240 * if a large number of processes all perform writes at the same time.
2241 *
2242 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2243 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2244 * thresholds.
2245 */
2246
writeback_set_ratelimit(void)2247 void writeback_set_ratelimit(void)
2248 {
2249 struct wb_domain *dom = &global_wb_domain;
2250 unsigned long background_thresh;
2251 unsigned long dirty_thresh;
2252
2253 global_dirty_limits(&background_thresh, &dirty_thresh);
2254 dom->dirty_limit = dirty_thresh;
2255 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2256 if (ratelimit_pages < 16)
2257 ratelimit_pages = 16;
2258 }
2259
page_writeback_cpu_online(unsigned int cpu)2260 static int page_writeback_cpu_online(unsigned int cpu)
2261 {
2262 writeback_set_ratelimit();
2263 return 0;
2264 }
2265
2266 #ifdef CONFIG_SYSCTL
2267
2268 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2269 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2270
2271 static const struct ctl_table vm_page_writeback_sysctls[] = {
2272 {
2273 .procname = "dirty_background_ratio",
2274 .data = &dirty_background_ratio,
2275 .maxlen = sizeof(dirty_background_ratio),
2276 .mode = 0644,
2277 .proc_handler = dirty_background_ratio_handler,
2278 .extra1 = SYSCTL_ZERO,
2279 .extra2 = SYSCTL_ONE_HUNDRED,
2280 },
2281 {
2282 .procname = "dirty_background_bytes",
2283 .data = &dirty_background_bytes,
2284 .maxlen = sizeof(dirty_background_bytes),
2285 .mode = 0644,
2286 .proc_handler = dirty_background_bytes_handler,
2287 .extra1 = SYSCTL_LONG_ONE,
2288 },
2289 {
2290 .procname = "dirty_ratio",
2291 .data = &vm_dirty_ratio,
2292 .maxlen = sizeof(vm_dirty_ratio),
2293 .mode = 0644,
2294 .proc_handler = dirty_ratio_handler,
2295 .extra1 = SYSCTL_ZERO,
2296 .extra2 = SYSCTL_ONE_HUNDRED,
2297 },
2298 {
2299 .procname = "dirty_bytes",
2300 .data = &vm_dirty_bytes,
2301 .maxlen = sizeof(vm_dirty_bytes),
2302 .mode = 0644,
2303 .proc_handler = dirty_bytes_handler,
2304 .extra1 = (void *)&dirty_bytes_min,
2305 },
2306 {
2307 .procname = "dirty_writeback_centisecs",
2308 .data = &dirty_writeback_interval,
2309 .maxlen = sizeof(dirty_writeback_interval),
2310 .mode = 0644,
2311 .proc_handler = dirty_writeback_centisecs_handler,
2312 },
2313 {
2314 .procname = "dirty_expire_centisecs",
2315 .data = &dirty_expire_interval,
2316 .maxlen = sizeof(dirty_expire_interval),
2317 .mode = 0644,
2318 .proc_handler = proc_dointvec_minmax,
2319 .extra1 = SYSCTL_ZERO,
2320 },
2321 #ifdef CONFIG_HIGHMEM
2322 {
2323 .procname = "highmem_is_dirtyable",
2324 .data = &vm_highmem_is_dirtyable,
2325 .maxlen = sizeof(vm_highmem_is_dirtyable),
2326 .mode = 0644,
2327 .proc_handler = proc_dointvec_minmax,
2328 .extra1 = SYSCTL_ZERO,
2329 .extra2 = SYSCTL_ONE,
2330 },
2331 #endif
2332 {
2333 .procname = "laptop_mode",
2334 .data = &laptop_mode,
2335 .maxlen = sizeof(laptop_mode),
2336 .mode = 0644,
2337 .proc_handler = proc_dointvec_jiffies,
2338 },
2339 };
2340 #endif
2341
2342 /*
2343 * Called early on to tune the page writeback dirty limits.
2344 *
2345 * We used to scale dirty pages according to how total memory
2346 * related to pages that could be allocated for buffers.
2347 *
2348 * However, that was when we used "dirty_ratio" to scale with
2349 * all memory, and we don't do that any more. "dirty_ratio"
2350 * is now applied to total non-HIGHPAGE memory, and as such we can't
2351 * get into the old insane situation any more where we had
2352 * large amounts of dirty pages compared to a small amount of
2353 * non-HIGHMEM memory.
2354 *
2355 * But we might still want to scale the dirty_ratio by how
2356 * much memory the box has..
2357 */
page_writeback_init(void)2358 void __init page_writeback_init(void)
2359 {
2360 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2361
2362 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2363 page_writeback_cpu_online, NULL);
2364 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2365 page_writeback_cpu_online);
2366 #ifdef CONFIG_SYSCTL
2367 register_sysctl_init("vm", vm_page_writeback_sysctls);
2368 #endif
2369 }
2370
2371 /**
2372 * tag_pages_for_writeback - tag pages to be written by writeback
2373 * @mapping: address space structure to write
2374 * @start: starting page index
2375 * @end: ending page index (inclusive)
2376 *
2377 * This function scans the page range from @start to @end (inclusive) and tags
2378 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2379 * can then use the TOWRITE tag to identify pages eligible for writeback.
2380 * This mechanism is used to avoid livelocking of writeback by a process
2381 * steadily creating new dirty pages in the file (thus it is important for this
2382 * function to be quick so that it can tag pages faster than a dirtying process
2383 * can create them).
2384 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2385 void tag_pages_for_writeback(struct address_space *mapping,
2386 pgoff_t start, pgoff_t end)
2387 {
2388 XA_STATE(xas, &mapping->i_pages, start);
2389 unsigned int tagged = 0;
2390 void *page;
2391
2392 xas_lock_irq(&xas);
2393 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2394 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2395 if (++tagged % XA_CHECK_SCHED)
2396 continue;
2397
2398 xas_pause(&xas);
2399 xas_unlock_irq(&xas);
2400 cond_resched();
2401 xas_lock_irq(&xas);
2402 }
2403 xas_unlock_irq(&xas);
2404 }
2405 EXPORT_SYMBOL(tag_pages_for_writeback);
2406
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2407 static bool folio_prepare_writeback(struct address_space *mapping,
2408 struct writeback_control *wbc, struct folio *folio)
2409 {
2410 /*
2411 * Folio truncated or invalidated. We can freely skip it then,
2412 * even for data integrity operations: the folio has disappeared
2413 * concurrently, so there could be no real expectation of this
2414 * data integrity operation even if there is now a new, dirty
2415 * folio at the same pagecache index.
2416 */
2417 if (unlikely(folio->mapping != mapping))
2418 return false;
2419
2420 /*
2421 * Did somebody else write it for us?
2422 */
2423 if (!folio_test_dirty(folio))
2424 return false;
2425
2426 if (folio_test_writeback(folio)) {
2427 if (wbc->sync_mode == WB_SYNC_NONE)
2428 return false;
2429 folio_wait_writeback(folio);
2430 }
2431 BUG_ON(folio_test_writeback(folio));
2432
2433 if (!folio_clear_dirty_for_io(folio))
2434 return false;
2435
2436 return true;
2437 }
2438
wbc_to_tag(struct writeback_control * wbc)2439 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2440 {
2441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2442 return PAGECACHE_TAG_TOWRITE;
2443 return PAGECACHE_TAG_DIRTY;
2444 }
2445
wbc_end(struct writeback_control * wbc)2446 static pgoff_t wbc_end(struct writeback_control *wbc)
2447 {
2448 if (wbc->range_cyclic)
2449 return -1;
2450 return wbc->range_end >> PAGE_SHIFT;
2451 }
2452
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2453 static struct folio *writeback_get_folio(struct address_space *mapping,
2454 struct writeback_control *wbc)
2455 {
2456 struct folio *folio;
2457
2458 retry:
2459 folio = folio_batch_next(&wbc->fbatch);
2460 if (!folio) {
2461 folio_batch_release(&wbc->fbatch);
2462 cond_resched();
2463 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2464 wbc_to_tag(wbc), &wbc->fbatch);
2465 folio = folio_batch_next(&wbc->fbatch);
2466 if (!folio)
2467 return NULL;
2468 }
2469
2470 folio_lock(folio);
2471 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2472 folio_unlock(folio);
2473 goto retry;
2474 }
2475
2476 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2477 return folio;
2478 }
2479
2480 /**
2481 * writeback_iter - iterate folio of a mapping for writeback
2482 * @mapping: address space structure to write
2483 * @wbc: writeback context
2484 * @folio: previously iterated folio (%NULL to start)
2485 * @error: in-out pointer for writeback errors (see below)
2486 *
2487 * This function returns the next folio for the writeback operation described by
2488 * @wbc on @mapping and should be called in a while loop in the ->writepages
2489 * implementation.
2490 *
2491 * To start the writeback operation, %NULL is passed in the @folio argument, and
2492 * for every subsequent iteration the folio returned previously should be passed
2493 * back in.
2494 *
2495 * If there was an error in the per-folio writeback inside the writeback_iter()
2496 * loop, @error should be set to the error value.
2497 *
2498 * Once the writeback described in @wbc has finished, this function will return
2499 * %NULL and if there was an error in any iteration restore it to @error.
2500 *
2501 * Note: callers should not manually break out of the loop using break or goto
2502 * but must keep calling writeback_iter() until it returns %NULL.
2503 *
2504 * Return: the folio to write or %NULL if the loop is done.
2505 */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2506 struct folio *writeback_iter(struct address_space *mapping,
2507 struct writeback_control *wbc, struct folio *folio, int *error)
2508 {
2509 if (!folio) {
2510 folio_batch_init(&wbc->fbatch);
2511 wbc->saved_err = *error = 0;
2512
2513 /*
2514 * For range cyclic writeback we remember where we stopped so
2515 * that we can continue where we stopped.
2516 *
2517 * For non-cyclic writeback we always start at the beginning of
2518 * the passed in range.
2519 */
2520 if (wbc->range_cyclic)
2521 wbc->index = mapping->writeback_index;
2522 else
2523 wbc->index = wbc->range_start >> PAGE_SHIFT;
2524
2525 /*
2526 * To avoid livelocks when other processes dirty new pages, we
2527 * first tag pages which should be written back and only then
2528 * start writing them.
2529 *
2530 * For data-integrity writeback we have to be careful so that we
2531 * do not miss some pages (e.g., because some other process has
2532 * cleared the TOWRITE tag we set). The rule we follow is that
2533 * TOWRITE tag can be cleared only by the process clearing the
2534 * DIRTY tag (and submitting the page for I/O).
2535 */
2536 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2537 tag_pages_for_writeback(mapping, wbc->index,
2538 wbc_end(wbc));
2539 } else {
2540 wbc->nr_to_write -= folio_nr_pages(folio);
2541
2542 WARN_ON_ONCE(*error > 0);
2543
2544 /*
2545 * For integrity writeback we have to keep going until we have
2546 * written all the folios we tagged for writeback above, even if
2547 * we run past wbc->nr_to_write or encounter errors.
2548 * We stash away the first error we encounter in wbc->saved_err
2549 * so that it can be retrieved when we're done. This is because
2550 * the file system may still have state to clear for each folio.
2551 *
2552 * For background writeback we exit as soon as we run past
2553 * wbc->nr_to_write or encounter the first error.
2554 */
2555 if (wbc->sync_mode == WB_SYNC_ALL) {
2556 if (*error && !wbc->saved_err)
2557 wbc->saved_err = *error;
2558 } else {
2559 if (*error || wbc->nr_to_write <= 0)
2560 goto done;
2561 }
2562 }
2563
2564 folio = writeback_get_folio(mapping, wbc);
2565 if (!folio) {
2566 /*
2567 * To avoid deadlocks between range_cyclic writeback and callers
2568 * that hold folios in writeback to aggregate I/O until
2569 * the writeback iteration finishes, we do not loop back to the
2570 * start of the file. Doing so causes a folio lock/folio
2571 * writeback access order inversion - we should only ever lock
2572 * multiple folios in ascending folio->index order, and looping
2573 * back to the start of the file violates that rule and causes
2574 * deadlocks.
2575 */
2576 if (wbc->range_cyclic)
2577 mapping->writeback_index = 0;
2578
2579 /*
2580 * Return the first error we encountered (if there was any) to
2581 * the caller.
2582 */
2583 *error = wbc->saved_err;
2584 }
2585 return folio;
2586
2587 done:
2588 if (wbc->range_cyclic)
2589 mapping->writeback_index = folio_next_index(folio);
2590 folio_batch_release(&wbc->fbatch);
2591 return NULL;
2592 }
2593 EXPORT_SYMBOL_GPL(writeback_iter);
2594
2595 /**
2596 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2597 * @mapping: address space structure to write
2598 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2599 * @writepage: function called for each page
2600 * @data: data passed to writepage function
2601 *
2602 * Return: %0 on success, negative error code otherwise
2603 *
2604 * Note: please use writeback_iter() instead.
2605 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2606 int write_cache_pages(struct address_space *mapping,
2607 struct writeback_control *wbc, writepage_t writepage,
2608 void *data)
2609 {
2610 struct folio *folio = NULL;
2611 int error;
2612
2613 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2614 error = writepage(folio, wbc, data);
2615 if (error == AOP_WRITEPAGE_ACTIVATE) {
2616 folio_unlock(folio);
2617 error = 0;
2618 }
2619 }
2620
2621 return error;
2622 }
2623 EXPORT_SYMBOL(write_cache_pages);
2624
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2625 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2626 {
2627 int ret;
2628 struct bdi_writeback *wb;
2629
2630 if (wbc->nr_to_write <= 0)
2631 return 0;
2632 wb = inode_to_wb_wbc(mapping->host, wbc);
2633 wb_bandwidth_estimate_start(wb);
2634 while (1) {
2635 if (mapping->a_ops->writepages)
2636 ret = mapping->a_ops->writepages(mapping, wbc);
2637 else
2638 /* deal with chardevs and other special files */
2639 ret = 0;
2640 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2641 break;
2642
2643 /*
2644 * Lacking an allocation context or the locality or writeback
2645 * state of any of the inode's pages, throttle based on
2646 * writeback activity on the local node. It's as good a
2647 * guess as any.
2648 */
2649 reclaim_throttle(NODE_DATA(numa_node_id()),
2650 VMSCAN_THROTTLE_WRITEBACK);
2651 }
2652 /*
2653 * Usually few pages are written by now from those we've just submitted
2654 * but if there's constant writeback being submitted, this makes sure
2655 * writeback bandwidth is updated once in a while.
2656 */
2657 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2658 BANDWIDTH_INTERVAL))
2659 wb_update_bandwidth(wb);
2660 return ret;
2661 }
2662
2663 /*
2664 * For address_spaces which do not use buffers nor write back.
2665 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2666 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2667 {
2668 if (!folio_test_dirty(folio))
2669 return !folio_test_set_dirty(folio);
2670 return false;
2671 }
2672 EXPORT_SYMBOL(noop_dirty_folio);
2673
2674 /*
2675 * Helper function for set_page_dirty family.
2676 *
2677 * NOTE: This relies on being atomic wrt interrupts.
2678 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2679 static void folio_account_dirtied(struct folio *folio,
2680 struct address_space *mapping)
2681 {
2682 struct inode *inode = mapping->host;
2683
2684 trace_writeback_dirty_folio(folio, mapping);
2685
2686 if (mapping_can_writeback(mapping)) {
2687 struct bdi_writeback *wb;
2688 long nr = folio_nr_pages(folio);
2689
2690 inode_attach_wb(inode, folio);
2691 wb = inode_to_wb(inode);
2692
2693 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2694 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2695 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2696 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2697 wb_stat_mod(wb, WB_DIRTIED, nr);
2698 task_io_account_write(nr * PAGE_SIZE);
2699 current->nr_dirtied += nr;
2700 __this_cpu_add(bdp_ratelimits, nr);
2701
2702 mem_cgroup_track_foreign_dirty(folio, wb);
2703 }
2704 }
2705
2706 /*
2707 * Helper function for deaccounting dirty page without writeback.
2708 *
2709 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2710 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2711 {
2712 long nr = folio_nr_pages(folio);
2713
2714 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2715 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2716 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2717 task_io_account_cancelled_write(nr * PAGE_SIZE);
2718 }
2719
2720 /*
2721 * Mark the folio dirty, and set it dirty in the page cache.
2722 *
2723 * If warn is true, then emit a warning if the folio is not uptodate and has
2724 * not been truncated.
2725 *
2726 * It is the caller's responsibility to prevent the folio from being truncated
2727 * while this function is in progress, although it may have been truncated
2728 * before this function is called. Most callers have the folio locked.
2729 * A few have the folio blocked from truncation through other means (e.g.
2730 * zap_vma_pages() has it mapped and is holding the page table lock).
2731 * When called from mark_buffer_dirty(), the filesystem should hold a
2732 * reference to the buffer_head that is being marked dirty, which causes
2733 * try_to_free_buffers() to fail.
2734 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2735 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2736 int warn)
2737 {
2738 unsigned long flags;
2739
2740 xa_lock_irqsave(&mapping->i_pages, flags);
2741 if (folio->mapping) { /* Race with truncate? */
2742 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2743 folio_account_dirtied(folio, mapping);
2744 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2745 PAGECACHE_TAG_DIRTY);
2746 }
2747 xa_unlock_irqrestore(&mapping->i_pages, flags);
2748 }
2749
2750 /**
2751 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2752 * @mapping: Address space this folio belongs to.
2753 * @folio: Folio to be marked as dirty.
2754 *
2755 * Filesystems which do not use buffer heads should call this function
2756 * from their dirty_folio address space operation. It ignores the
2757 * contents of folio_get_private(), so if the filesystem marks individual
2758 * blocks as dirty, the filesystem should handle that itself.
2759 *
2760 * This is also sometimes used by filesystems which use buffer_heads when
2761 * a single buffer is being dirtied: we want to set the folio dirty in
2762 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2763 * whereas block_dirty_folio() is a "top-down" dirtying.
2764 *
2765 * The caller must ensure this doesn't race with truncation. Most will
2766 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2767 * folio mapped and the pte lock held, which also locks out truncation.
2768 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2769 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2770 {
2771 if (folio_test_set_dirty(folio))
2772 return false;
2773
2774 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2775
2776 if (mapping->host) {
2777 /* !PageAnon && !swapper_space */
2778 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2779 }
2780 return true;
2781 }
2782 EXPORT_SYMBOL(filemap_dirty_folio);
2783
2784 /**
2785 * folio_redirty_for_writepage - Decline to write a dirty folio.
2786 * @wbc: The writeback control.
2787 * @folio: The folio.
2788 *
2789 * When a writepage implementation decides that it doesn't want to write
2790 * @folio for some reason, it should call this function, unlock @folio and
2791 * return 0.
2792 *
2793 * Return: True if we redirtied the folio. False if someone else dirtied
2794 * it first.
2795 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2796 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2797 struct folio *folio)
2798 {
2799 struct address_space *mapping = folio->mapping;
2800 long nr = folio_nr_pages(folio);
2801 bool ret;
2802
2803 wbc->pages_skipped += nr;
2804 ret = filemap_dirty_folio(mapping, folio);
2805 if (mapping && mapping_can_writeback(mapping)) {
2806 struct inode *inode = mapping->host;
2807 struct bdi_writeback *wb;
2808 struct wb_lock_cookie cookie = {};
2809
2810 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2811 current->nr_dirtied -= nr;
2812 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2813 wb_stat_mod(wb, WB_DIRTIED, -nr);
2814 unlocked_inode_to_wb_end(inode, &cookie);
2815 }
2816 return ret;
2817 }
2818 EXPORT_SYMBOL(folio_redirty_for_writepage);
2819
2820 /**
2821 * folio_mark_dirty - Mark a folio as being modified.
2822 * @folio: The folio.
2823 *
2824 * The folio may not be truncated while this function is running.
2825 * Holding the folio lock is sufficient to prevent truncation, but some
2826 * callers cannot acquire a sleeping lock. These callers instead hold
2827 * the page table lock for a page table which contains at least one page
2828 * in this folio. Truncation will block on the page table lock as it
2829 * unmaps pages before removing the folio from its mapping.
2830 *
2831 * Return: True if the folio was newly dirtied, false if it was already dirty.
2832 */
folio_mark_dirty(struct folio * folio)2833 bool folio_mark_dirty(struct folio *folio)
2834 {
2835 struct address_space *mapping = folio_mapping(folio);
2836
2837 if (likely(mapping)) {
2838 /*
2839 * readahead/folio_deactivate could remain
2840 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2841 * About readahead, if the folio is written, the flags would be
2842 * reset. So no problem.
2843 * About folio_deactivate, if the folio is redirtied,
2844 * the flag will be reset. So no problem. but if the
2845 * folio is used by readahead it will confuse readahead
2846 * and make it restart the size rampup process. But it's
2847 * a trivial problem.
2848 */
2849 if (folio_test_reclaim(folio))
2850 folio_clear_reclaim(folio);
2851 return mapping->a_ops->dirty_folio(mapping, folio);
2852 }
2853
2854 return noop_dirty_folio(mapping, folio);
2855 }
2856 EXPORT_SYMBOL(folio_mark_dirty);
2857
2858 /*
2859 * folio_mark_dirty() is racy if the caller has no reference against
2860 * folio->mapping->host, and if the folio is unlocked. This is because another
2861 * CPU could truncate the folio off the mapping and then free the mapping.
2862 *
2863 * Usually, the folio _is_ locked, or the caller is a user-space process which
2864 * holds a reference on the inode by having an open file.
2865 *
2866 * In other cases, the folio should be locked before running folio_mark_dirty().
2867 */
folio_mark_dirty_lock(struct folio * folio)2868 bool folio_mark_dirty_lock(struct folio *folio)
2869 {
2870 bool ret;
2871
2872 folio_lock(folio);
2873 ret = folio_mark_dirty(folio);
2874 folio_unlock(folio);
2875 return ret;
2876 }
2877 EXPORT_SYMBOL(folio_mark_dirty_lock);
2878
2879 /*
2880 * This cancels just the dirty bit on the kernel page itself, it does NOT
2881 * actually remove dirty bits on any mmap's that may be around. It also
2882 * leaves the page tagged dirty, so any sync activity will still find it on
2883 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2884 * look at the dirty bits in the VM.
2885 *
2886 * Doing this should *normally* only ever be done when a page is truncated,
2887 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2888 * this when it notices that somebody has cleaned out all the buffers on a
2889 * page without actually doing it through the VM. Can you say "ext3 is
2890 * horribly ugly"? Thought you could.
2891 */
__folio_cancel_dirty(struct folio * folio)2892 void __folio_cancel_dirty(struct folio *folio)
2893 {
2894 struct address_space *mapping = folio_mapping(folio);
2895
2896 if (mapping_can_writeback(mapping)) {
2897 struct inode *inode = mapping->host;
2898 struct bdi_writeback *wb;
2899 struct wb_lock_cookie cookie = {};
2900
2901 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2902
2903 if (folio_test_clear_dirty(folio))
2904 folio_account_cleaned(folio, wb);
2905
2906 unlocked_inode_to_wb_end(inode, &cookie);
2907 } else {
2908 folio_clear_dirty(folio);
2909 }
2910 }
2911 EXPORT_SYMBOL(__folio_cancel_dirty);
2912
2913 /*
2914 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2915 * Returns true if the folio was previously dirty.
2916 *
2917 * This is for preparing to put the folio under writeout. We leave
2918 * the folio tagged as dirty in the xarray so that a concurrent
2919 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2920 * The ->writepage implementation will run either folio_start_writeback()
2921 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2922 * and xarray dirty tag back into sync.
2923 *
2924 * This incoherency between the folio's dirty flag and xarray tag is
2925 * unfortunate, but it only exists while the folio is locked.
2926 */
folio_clear_dirty_for_io(struct folio * folio)2927 bool folio_clear_dirty_for_io(struct folio *folio)
2928 {
2929 struct address_space *mapping = folio_mapping(folio);
2930 bool ret = false;
2931
2932 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2933
2934 if (mapping && mapping_can_writeback(mapping)) {
2935 struct inode *inode = mapping->host;
2936 struct bdi_writeback *wb;
2937 struct wb_lock_cookie cookie = {};
2938
2939 /*
2940 * Yes, Virginia, this is indeed insane.
2941 *
2942 * We use this sequence to make sure that
2943 * (a) we account for dirty stats properly
2944 * (b) we tell the low-level filesystem to
2945 * mark the whole folio dirty if it was
2946 * dirty in a pagetable. Only to then
2947 * (c) clean the folio again and return 1 to
2948 * cause the writeback.
2949 *
2950 * This way we avoid all nasty races with the
2951 * dirty bit in multiple places and clearing
2952 * them concurrently from different threads.
2953 *
2954 * Note! Normally the "folio_mark_dirty(folio)"
2955 * has no effect on the actual dirty bit - since
2956 * that will already usually be set. But we
2957 * need the side effects, and it can help us
2958 * avoid races.
2959 *
2960 * We basically use the folio "master dirty bit"
2961 * as a serialization point for all the different
2962 * threads doing their things.
2963 */
2964 if (folio_mkclean(folio))
2965 folio_mark_dirty(folio);
2966 /*
2967 * We carefully synchronise fault handlers against
2968 * installing a dirty pte and marking the folio dirty
2969 * at this point. We do this by having them hold the
2970 * page lock while dirtying the folio, and folios are
2971 * always locked coming in here, so we get the desired
2972 * exclusion.
2973 */
2974 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2975 if (folio_test_clear_dirty(folio)) {
2976 long nr = folio_nr_pages(folio);
2977 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2978 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2979 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2980 ret = true;
2981 }
2982 unlocked_inode_to_wb_end(inode, &cookie);
2983 return ret;
2984 }
2985 return folio_test_clear_dirty(folio);
2986 }
2987 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2988
wb_inode_writeback_start(struct bdi_writeback * wb)2989 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2990 {
2991 atomic_inc(&wb->writeback_inodes);
2992 }
2993
wb_inode_writeback_end(struct bdi_writeback * wb)2994 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2995 {
2996 unsigned long flags;
2997 atomic_dec(&wb->writeback_inodes);
2998 /*
2999 * Make sure estimate of writeback throughput gets updated after
3000 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3001 * (which is the interval other bandwidth updates use for batching) so
3002 * that if multiple inodes end writeback at a similar time, they get
3003 * batched into one bandwidth update.
3004 */
3005 spin_lock_irqsave(&wb->work_lock, flags);
3006 if (test_bit(WB_registered, &wb->state))
3007 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3008 spin_unlock_irqrestore(&wb->work_lock, flags);
3009 }
3010
__folio_end_writeback(struct folio * folio)3011 bool __folio_end_writeback(struct folio *folio)
3012 {
3013 long nr = folio_nr_pages(folio);
3014 struct address_space *mapping = folio_mapping(folio);
3015 bool ret;
3016
3017 if (mapping && mapping_use_writeback_tags(mapping)) {
3018 struct inode *inode = mapping->host;
3019 struct backing_dev_info *bdi = inode_to_bdi(inode);
3020 unsigned long flags;
3021
3022 xa_lock_irqsave(&mapping->i_pages, flags);
3023 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3024 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3025 PAGECACHE_TAG_WRITEBACK);
3026 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3027 struct bdi_writeback *wb = inode_to_wb(inode);
3028
3029 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3030 __wb_writeout_add(wb, nr);
3031 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3032 wb_inode_writeback_end(wb);
3033 }
3034
3035 if (mapping->host && !mapping_tagged(mapping,
3036 PAGECACHE_TAG_WRITEBACK))
3037 sb_clear_inode_writeback(mapping->host);
3038
3039 xa_unlock_irqrestore(&mapping->i_pages, flags);
3040 } else {
3041 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3042 }
3043
3044 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3045 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3046 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3047
3048 return ret;
3049 }
3050
__folio_start_writeback(struct folio * folio,bool keep_write)3051 void __folio_start_writeback(struct folio *folio, bool keep_write)
3052 {
3053 long nr = folio_nr_pages(folio);
3054 struct address_space *mapping = folio_mapping(folio);
3055 int access_ret;
3056
3057 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3058 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3059
3060 if (mapping && mapping_use_writeback_tags(mapping)) {
3061 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3062 struct inode *inode = mapping->host;
3063 struct backing_dev_info *bdi = inode_to_bdi(inode);
3064 unsigned long flags;
3065 bool on_wblist;
3066
3067 xas_lock_irqsave(&xas, flags);
3068 xas_load(&xas);
3069 folio_test_set_writeback(folio);
3070
3071 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3072
3073 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3074 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3075 struct bdi_writeback *wb = inode_to_wb(inode);
3076
3077 wb_stat_mod(wb, WB_WRITEBACK, nr);
3078 if (!on_wblist)
3079 wb_inode_writeback_start(wb);
3080 }
3081
3082 /*
3083 * We can come through here when swapping anonymous
3084 * folios, so we don't necessarily have an inode to
3085 * track for sync.
3086 */
3087 if (mapping->host && !on_wblist)
3088 sb_mark_inode_writeback(mapping->host);
3089 if (!folio_test_dirty(folio))
3090 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3091 if (!keep_write)
3092 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3093 xas_unlock_irqrestore(&xas, flags);
3094 } else {
3095 folio_test_set_writeback(folio);
3096 }
3097
3098 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3099 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3100
3101 access_ret = arch_make_folio_accessible(folio);
3102 /*
3103 * If writeback has been triggered on a page that cannot be made
3104 * accessible, it is too late to recover here.
3105 */
3106 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3107 }
3108 EXPORT_SYMBOL(__folio_start_writeback);
3109
3110 /**
3111 * folio_wait_writeback - Wait for a folio to finish writeback.
3112 * @folio: The folio to wait for.
3113 *
3114 * If the folio is currently being written back to storage, wait for the
3115 * I/O to complete.
3116 *
3117 * Context: Sleeps. Must be called in process context and with
3118 * no spinlocks held. Caller should hold a reference on the folio.
3119 * If the folio is not locked, writeback may start again after writeback
3120 * has finished.
3121 */
folio_wait_writeback(struct folio * folio)3122 void folio_wait_writeback(struct folio *folio)
3123 {
3124 while (folio_test_writeback(folio)) {
3125 trace_folio_wait_writeback(folio, folio_mapping(folio));
3126 folio_wait_bit(folio, PG_writeback);
3127 }
3128 }
3129 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3130
3131 /**
3132 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3133 * @folio: The folio to wait for.
3134 *
3135 * If the folio is currently being written back to storage, wait for the
3136 * I/O to complete or a fatal signal to arrive.
3137 *
3138 * Context: Sleeps. Must be called in process context and with
3139 * no spinlocks held. Caller should hold a reference on the folio.
3140 * If the folio is not locked, writeback may start again after writeback
3141 * has finished.
3142 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3143 */
folio_wait_writeback_killable(struct folio * folio)3144 int folio_wait_writeback_killable(struct folio *folio)
3145 {
3146 while (folio_test_writeback(folio)) {
3147 trace_folio_wait_writeback(folio, folio_mapping(folio));
3148 if (folio_wait_bit_killable(folio, PG_writeback))
3149 return -EINTR;
3150 }
3151
3152 return 0;
3153 }
3154 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3155
3156 /**
3157 * folio_wait_stable() - wait for writeback to finish, if necessary.
3158 * @folio: The folio to wait on.
3159 *
3160 * This function determines if the given folio is related to a backing
3161 * device that requires folio contents to be held stable during writeback.
3162 * If so, then it will wait for any pending writeback to complete.
3163 *
3164 * Context: Sleeps. Must be called in process context and with
3165 * no spinlocks held. Caller should hold a reference on the folio.
3166 * If the folio is not locked, writeback may start again after writeback
3167 * has finished.
3168 */
folio_wait_stable(struct folio * folio)3169 void folio_wait_stable(struct folio *folio)
3170 {
3171 if (mapping_stable_writes(folio_mapping(folio)))
3172 folio_wait_writeback(folio);
3173 }
3174 EXPORT_SYMBOL_GPL(folio_wait_stable);
3175