1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5 * Copyright (c) 2014-2025 Yandex LLC
6 * Copyright (c) 2014 Alexander V. Chernikov
7 *
8 * Supported by: Valeria Paoli
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 /*
34 * Control socket and rule management routines for ipfw.
35 * Control is currently implemented via IP_FW3 setsockopt() code.
36 */
37
38 #include "opt_ipfw.h"
39 #include "opt_inet.h"
40 #ifndef INET
41 #error IPFIREWALL requires INET.
42 #endif /* INET */
43 #include "opt_inet6.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h> /* struct m_tag used by nested headers */
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/rwlock.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/fnv_hash.h>
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65
66 #include <netinet/in.h>
67 #include <netinet/ip_var.h> /* hooks */
68 #include <netinet/ip_fw.h>
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71 #include <netpfil/ipfw/ip_fw_table.h>
72
73 #ifdef MAC
74 #include <security/mac/mac_framework.h>
75 #endif
76
77 static enum ipfw_opcheck_result
check_opcode_compat_nop(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)78 check_opcode_compat_nop(ipfw_insn **pcmd, int *plen,
79 struct rule_check_info *ci)
80 {
81 /* Compatibility code is not registered */
82 return (FAILED);
83 }
84
85 static ipfw_check_opcode_t check_opcode_f = check_opcode_compat_nop;
86
87 static int check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len,
88 struct rule_check_info *ci);
89 static int rewrite_rule_uidx(struct ip_fw_chain *chain,
90 struct rule_check_info *ci);
91
92 struct namedobj_instance {
93 struct namedobjects_head *names;
94 struct namedobjects_head *values;
95 uint32_t nn_size; /* names hash size */
96 uint32_t nv_size; /* number hash size */
97 u_long *idx_mask; /* used items bitmask */
98 uint32_t max_blocks; /* number of "long" blocks in bitmask */
99 uint32_t count; /* number of items */
100 uint16_t free_off[IPFW_MAX_SETS]; /* first possible free offset */
101 objhash_hash_f *hash_f;
102 objhash_cmp_f *cmp_f;
103 };
104 #define BLOCK_ITEMS (8 * sizeof(u_long)) /* Number of items for ffsl() */
105
106 static uint32_t objhash_hash_name(struct namedobj_instance *ni,
107 const void *key, uint32_t kopt);
108 static uint32_t objhash_hash_idx(struct namedobj_instance *ni, uint32_t val);
109 static int objhash_cmp_name(struct named_object *no, const void *name,
110 uint32_t set);
111
112 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
113
114 /* ctl3 handler data */
115 static struct mtx ctl3_lock;
116 #define CTL3_LOCK_INIT() mtx_init(&ctl3_lock, "ctl3_lock", NULL, MTX_DEF)
117 #define CTL3_LOCK_DESTROY() mtx_destroy(&ctl3_lock)
118 #define CTL3_LOCK() mtx_lock(&ctl3_lock)
119 #define CTL3_UNLOCK() mtx_unlock(&ctl3_lock)
120
121 static struct ipfw_sopt_handler *ctl3_handlers;
122 static size_t ctl3_hsize;
123 static uint64_t ctl3_refct, ctl3_gencnt;
124 #define CTL3_SMALLBUF 4096 /* small page-size write buffer */
125 #define CTL3_LARGEBUF (16 * 1024 * 1024) /* handle large rulesets */
126
127 static int ipfw_flush_sopt_data(struct sockopt_data *sd);
128
129 static sopt_handler_f dump_config, add_rules, del_rules, clear_rules,
130 move_rules, manage_sets, dump_soptcodes, dump_srvobjects,
131 manage_skiptocache;
132
133 static struct ipfw_sopt_handler scodes[] = {
134 { IP_FW_XGET, IP_FW3_OPVER, HDIR_GET, dump_config },
135 { IP_FW_XADD, IP_FW3_OPVER, HDIR_BOTH, add_rules },
136 { IP_FW_XDEL, IP_FW3_OPVER, HDIR_BOTH, del_rules },
137 { IP_FW_XZERO, IP_FW3_OPVER, HDIR_SET, clear_rules },
138 { IP_FW_XRESETLOG, IP_FW3_OPVER, HDIR_SET, clear_rules },
139 { IP_FW_XMOVE, IP_FW3_OPVER, HDIR_SET, move_rules },
140 { IP_FW_SET_SWAP, IP_FW3_OPVER, HDIR_SET, manage_sets },
141 { IP_FW_SET_MOVE, IP_FW3_OPVER, HDIR_SET, manage_sets },
142 { IP_FW_SET_ENABLE, IP_FW3_OPVER, HDIR_SET, manage_sets },
143 { IP_FW_DUMP_SOPTCODES, IP_FW3_OPVER, HDIR_GET, dump_soptcodes },
144 { IP_FW_DUMP_SRVOBJECTS, IP_FW3_OPVER, HDIR_GET, dump_srvobjects },
145 { IP_FW_SKIPTO_CACHE, IP_FW3_OPVER, HDIR_BOTH, manage_skiptocache },
146 };
147
148 static struct opcode_obj_rewrite *find_op_rw(ipfw_insn *cmd,
149 uint32_t *puidx, uint8_t *ptype);
150 static int ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
151 struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti);
152 static int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd,
153 struct tid_info *ti, struct obj_idx *pidx, int *unresolved);
154 static void unref_rule_objects(struct ip_fw_chain *chain, struct ip_fw *rule);
155 static void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd,
156 struct obj_idx *oib, struct obj_idx *end);
157 static int export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
158 struct sockopt_data *sd);
159
160 /*
161 * Opcode object rewriter variables
162 */
163 struct opcode_obj_rewrite *ctl3_rewriters;
164 static size_t ctl3_rsize;
165
166 /*
167 * static variables followed by global ones
168 */
169
170 VNET_DEFINE_STATIC(uma_zone_t, ipfw_cntr_zone);
171 #define V_ipfw_cntr_zone VNET(ipfw_cntr_zone)
172
173 void
ipfw_init_counters(void)174 ipfw_init_counters(void)
175 {
176
177 V_ipfw_cntr_zone = uma_zcreate("IPFW counters",
178 IPFW_RULE_CNTR_SIZE, NULL, NULL, NULL, NULL,
179 UMA_ALIGN_PTR, UMA_ZONE_PCPU);
180 }
181
182 void
ipfw_destroy_counters(void)183 ipfw_destroy_counters(void)
184 {
185
186 uma_zdestroy(V_ipfw_cntr_zone);
187 }
188
189 struct ip_fw *
ipfw_alloc_rule(struct ip_fw_chain * chain,size_t rulesize)190 ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize)
191 {
192 struct ip_fw *rule;
193
194 rule = malloc(rulesize, M_IPFW, M_WAITOK | M_ZERO);
195 rule->cntr = uma_zalloc_pcpu(V_ipfw_cntr_zone, M_WAITOK | M_ZERO);
196 rule->refcnt = 1;
197
198 return (rule);
199 }
200
201 void
ipfw_free_rule(struct ip_fw * rule)202 ipfw_free_rule(struct ip_fw *rule)
203 {
204
205 /*
206 * We don't release refcnt here, since this function
207 * can be called without any locks held. The caller
208 * must release reference under IPFW_UH_WLOCK, and then
209 * call this function if refcount becomes 1.
210 */
211 if (rule->refcnt > 1)
212 return;
213 uma_zfree_pcpu(V_ipfw_cntr_zone, rule->cntr);
214 free(rule, M_IPFW);
215 }
216
217 /*
218 * Find the smallest rule >= key, id.
219 * We could use bsearch but it is so simple that we code it directly
220 */
221 int
ipfw_find_rule(struct ip_fw_chain * chain,uint32_t key,uint32_t id)222 ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id)
223 {
224 int i, lo, hi;
225 struct ip_fw *r;
226
227 for (lo = 0, hi = chain->n_rules - 1; lo < hi;) {
228 i = (lo + hi) / 2;
229 r = chain->map[i];
230 if (r->rulenum < key)
231 lo = i + 1; /* continue from the next one */
232 else if (r->rulenum > key)
233 hi = i; /* this might be good */
234 else if (r->id < id)
235 lo = i + 1; /* continue from the next one */
236 else /* r->id >= id */
237 hi = i; /* this might be good */
238 }
239 return hi;
240 }
241
242 /*
243 * Builds skipto cache on rule set @map.
244 */
245 static void
update_skipto_cache(struct ip_fw_chain * chain,struct ip_fw ** map)246 update_skipto_cache(struct ip_fw_chain *chain, struct ip_fw **map)
247 {
248 uint32_t *smap, rulenum;
249 int i, mi;
250
251 IPFW_UH_WLOCK_ASSERT(chain);
252
253 mi = 0;
254 rulenum = map[mi]->rulenum;
255 smap = chain->idxmap_back;
256
257 if (smap == NULL)
258 return;
259
260 for (i = 0; i <= IPFW_DEFAULT_RULE; i++) {
261 smap[i] = mi;
262 /* Use the same rule index until i < rulenum */
263 if (i != rulenum || i == IPFW_DEFAULT_RULE)
264 continue;
265 /* Find next rule with num > i */
266 rulenum = map[++mi]->rulenum;
267 while (rulenum == i)
268 rulenum = map[++mi]->rulenum;
269 }
270 }
271
272 /*
273 * Swaps prepared (backup) index with current one.
274 */
275 static void
swap_skipto_cache(struct ip_fw_chain * chain)276 swap_skipto_cache(struct ip_fw_chain *chain)
277 {
278 uint32_t *map;
279
280 IPFW_UH_WLOCK_ASSERT(chain);
281 IPFW_WLOCK_ASSERT(chain);
282
283 map = chain->idxmap;
284 chain->idxmap = chain->idxmap_back;
285 chain->idxmap_back = map;
286 }
287
288 /*
289 * Allocate and initialize skipto cache.
290 */
291 void
ipfw_init_skipto_cache(struct ip_fw_chain * chain)292 ipfw_init_skipto_cache(struct ip_fw_chain *chain)
293 {
294 uint32_t *idxmap, *idxmap_back;
295
296 idxmap = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
297 M_IPFW, M_WAITOK | M_ZERO);
298 idxmap_back = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
299 M_IPFW, M_WAITOK | M_ZERO);
300
301 /*
302 * Note we may be called at any time after initialization,
303 * for example, on first skipto rule, so we need to
304 * provide valid chain->idxmap on return
305 */
306
307 IPFW_UH_WLOCK(chain);
308 if (chain->idxmap != NULL) {
309 IPFW_UH_WUNLOCK(chain);
310 free(idxmap, M_IPFW);
311 free(idxmap_back, M_IPFW);
312 return;
313 }
314
315 /* Set backup pointer first to permit building cache */
316 chain->idxmap_back = idxmap_back;
317 if (V_skipto_cache != 0)
318 update_skipto_cache(chain, chain->map);
319 IPFW_WLOCK(chain);
320 /* It is now safe to set chain->idxmap ptr */
321 chain->idxmap = idxmap;
322 swap_skipto_cache(chain);
323 IPFW_WUNLOCK(chain);
324 IPFW_UH_WUNLOCK(chain);
325 }
326
327 /*
328 * Destroys skipto cache.
329 */
330 void
ipfw_destroy_skipto_cache(struct ip_fw_chain * chain)331 ipfw_destroy_skipto_cache(struct ip_fw_chain *chain)
332 {
333 free(chain->idxmap, M_IPFW);
334 free(chain->idxmap_back, M_IPFW);
335 }
336
337 /*
338 * swap the maps.
339 */
340 static struct ip_fw **
swap_map(struct ip_fw_chain * chain,struct ip_fw ** new_map,int new_len)341 swap_map(struct ip_fw_chain *chain, struct ip_fw **new_map, int new_len)
342 {
343 struct ip_fw **old_map;
344
345 IPFW_UH_WLOCK_ASSERT(chain);
346
347 IPFW_WLOCK(chain);
348 chain->id++;
349 chain->n_rules = new_len;
350 old_map = chain->map;
351 chain->map = new_map;
352 swap_skipto_cache(chain);
353 IPFW_WUNLOCK(chain);
354 return old_map;
355 }
356
357 static void
export_cntr1_base(struct ip_fw * krule,struct ip_fw_bcounter * cntr)358 export_cntr1_base(struct ip_fw *krule, struct ip_fw_bcounter *cntr)
359 {
360 struct timeval boottime;
361
362 cntr->size = sizeof(*cntr);
363
364 if (krule->cntr != NULL) {
365 cntr->pcnt = counter_u64_fetch(krule->cntr);
366 cntr->bcnt = counter_u64_fetch(krule->cntr + 1);
367 cntr->timestamp = krule->timestamp;
368 }
369 if (cntr->timestamp > 0) {
370 getboottime(&boottime);
371 cntr->timestamp += boottime.tv_sec;
372 }
373 }
374
375 /*
376 * Export rule into v1 format (Current).
377 * Layout:
378 * [ ipfw_obj_tlv(IPFW_TLV_RULE_ENT)
379 * [ ip_fw_rule ] OR
380 * [ ip_fw_bcounter ip_fw_rule] (depends on rcntrs).
381 * ]
382 * Assume @data is zeroed.
383 */
384 static void
export_rule1(struct ip_fw * krule,caddr_t data,int len,int rcntrs)385 export_rule1(struct ip_fw *krule, caddr_t data, int len, int rcntrs)
386 {
387 struct ip_fw_bcounter *cntr;
388 struct ip_fw_rule *urule;
389 ipfw_obj_tlv *tlv;
390
391 /* Fill in TLV header */
392 tlv = (ipfw_obj_tlv *)data;
393 tlv->type = IPFW_TLV_RULE_ENT;
394 tlv->length = len;
395
396 if (rcntrs != 0) {
397 /* Copy counters */
398 cntr = (struct ip_fw_bcounter *)(tlv + 1);
399 urule = (struct ip_fw_rule *)(cntr + 1);
400 export_cntr1_base(krule, cntr);
401 } else
402 urule = (struct ip_fw_rule *)(tlv + 1);
403
404 /* copy header */
405 urule->act_ofs = krule->act_ofs;
406 urule->cmd_len = krule->cmd_len;
407 urule->rulenum = krule->rulenum;
408 urule->set = krule->set;
409 urule->flags = krule->flags;
410 urule->id = krule->id;
411
412 /* Copy opcodes */
413 memcpy(urule->cmd, krule->cmd, krule->cmd_len * sizeof(uint32_t));
414 }
415
416 /*
417 * Add new rule(s) to the list possibly creating rule number for each.
418 * Update the rule_number in the input struct so the caller knows it as well.
419 * Must be called without IPFW_UH held
420 */
421 int
ipfw_commit_rules(struct ip_fw_chain * chain,struct rule_check_info * rci,int count)422 ipfw_commit_rules(struct ip_fw_chain *chain, struct rule_check_info *rci,
423 int count)
424 {
425 int error, i, insert_before, tcount, rule_idx, last_rule_idx;
426 uint32_t rulenum;
427 struct rule_check_info *ci;
428 struct ip_fw *krule;
429 struct ip_fw **map; /* the new array of pointers */
430
431 IPFW_UH_WLOCK(chain);
432 /* Check if we need to do table/obj index remap */
433 tcount = 0;
434 for (ci = rci, i = 0; i < count; ci++, i++) {
435 if (ci->object_opcodes == 0)
436 continue;
437
438 /*
439 * Rule has some object opcodes.
440 * We need to find (and create non-existing)
441 * kernel objects, and reference existing ones.
442 */
443 error = rewrite_rule_uidx(chain, ci);
444 if (error != 0) {
445
446 /*
447 * rewrite failed, state for current rule
448 * has been reverted. Check if we need to
449 * revert more.
450 */
451 if (tcount > 0) {
452
453 /*
454 * We have some more table rules
455 * we need to rollback.
456 */
457 while (ci != rci) {
458 ci--;
459 if (ci->object_opcodes == 0)
460 continue;
461 unref_rule_objects(chain,ci->krule);
462
463 }
464 }
465 IPFW_UH_WUNLOCK(chain);
466 return (error);
467 }
468
469 tcount++;
470 }
471
472 map = malloc((chain->n_rules + count) * sizeof(struct ip_fw *),
473 M_IPFW, M_ZERO | M_WAITOK);
474
475 if (V_autoinc_step < 1)
476 V_autoinc_step = 1;
477 else if (V_autoinc_step > 1000)
478 V_autoinc_step = 1000;
479
480 last_rule_idx = 0;
481 for (ci = rci, i = 0; i < count; ci++, i++) {
482 krule = ci->krule;
483 rulenum = krule->rulenum;
484
485 krule->id = chain->id + 1;
486
487 /* find the insertion point, we will insert before */
488 insert_before = rulenum ? rulenum + 1 : IPFW_DEFAULT_RULE;
489 rule_idx = ipfw_find_rule(chain, insert_before, 0);
490 /* duplicate the previous part */
491 if (last_rule_idx < rule_idx)
492 bcopy(chain->map + last_rule_idx, map + last_rule_idx + i,
493 (rule_idx - last_rule_idx) * sizeof(struct ip_fw *));
494 last_rule_idx = rule_idx;
495 map[rule_idx + i] = krule;
496 if (rulenum == 0) {
497 /* Compute rule number and write it back */
498 rulenum = rule_idx + i > 0 ? map[rule_idx + i - 1]->rulenum : 0;
499 if (rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
500 rulenum += V_autoinc_step;
501 krule->rulenum = rulenum;
502 /* Save number to userland rule */
503 memcpy((char *)ci->urule + ci->urule_numoff, &rulenum,
504 sizeof(rulenum));
505 }
506 if (ACTION_PTR(krule)->opcode == O_LOG)
507 ipfw_tap_alloc(chain, krule->rulenum);
508 }
509
510 /* duplicate the remaining part, we always have the default rule */
511 bcopy(chain->map + last_rule_idx, map + last_rule_idx + count,
512 (chain->n_rules - last_rule_idx) * sizeof(struct ip_fw *));
513
514 if (V_skipto_cache != 0)
515 update_skipto_cache(chain, map);
516 map = swap_map(chain, map, chain->n_rules + count);
517 IPFW_UH_WUNLOCK(chain);
518 if (map)
519 free(map, M_IPFW);
520 return (0);
521 }
522
523 int
ipfw_add_protected_rule(struct ip_fw_chain * chain,struct ip_fw * rule)524 ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule)
525 {
526 struct ip_fw **map;
527
528 IPFW_UH_WLOCK(chain);
529 map = malloc((chain->n_rules + 1) * sizeof(struct ip_fw *),
530 M_IPFW, M_ZERO | M_WAITOK);
531 if (chain->n_rules > 0)
532 bcopy(chain->map, map,
533 chain->n_rules * sizeof(struct ip_fw *));
534 map[chain->n_rules] = rule;
535 rule->rulenum = IPFW_DEFAULT_RULE;
536 rule->set = RESVD_SET;
537 rule->id = chain->id + 1;
538 /* We add rule in the end of chain, no need to update skipto cache */
539 map = swap_map(chain, map, chain->n_rules + 1);
540 IPFW_UH_WUNLOCK(chain);
541 free(map, M_IPFW);
542 return (0);
543 }
544
545 /*
546 * Adds @rule to the list of rules to reap
547 */
548 void
ipfw_reap_add(struct ip_fw_chain * chain,struct ip_fw ** head,struct ip_fw * rule)549 ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head,
550 struct ip_fw *rule)
551 {
552
553 IPFW_UH_WLOCK_ASSERT(chain);
554
555 /* Unlink rule from everywhere */
556 unref_rule_objects(chain, rule);
557
558 rule->next = *head;
559 *head = rule;
560 }
561
562 /*
563 * Reclaim storage associated with a list of rules. This is
564 * typically the list created using remove_rule.
565 * A NULL pointer on input is handled correctly.
566 */
567 void
ipfw_reap_rules(struct ip_fw * head)568 ipfw_reap_rules(struct ip_fw *head)
569 {
570 struct ip_fw *rule;
571
572 while ((rule = head) != NULL) {
573 head = head->next;
574 ipfw_free_rule(rule);
575 }
576 }
577
578 /*
579 * Rules to keep are
580 * (default || reserved || !match_set || !match_number)
581 * where
582 * default ::= (rule->rulenum == IPFW_DEFAULT_RULE)
583 * // the default rule is always protected
584 *
585 * reserved ::= (cmd == 0 && n == 0 && rule->set == RESVD_SET)
586 * // RESVD_SET is protected only if cmd == 0 and n == 0 ("ipfw flush")
587 *
588 * match_set ::= (cmd == 0 || rule->set == set)
589 * // set number is ignored for cmd == 0
590 *
591 * match_number ::= (cmd == 1 || n == 0 || n == rule->rulenum)
592 * // number is ignored for cmd == 1 or n == 0
593 *
594 */
595 int
ipfw_match_range(struct ip_fw * rule,ipfw_range_tlv * rt)596 ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt)
597 {
598
599 /* Don't match default rule for modification queries */
600 if (rule->rulenum == IPFW_DEFAULT_RULE &&
601 (rt->flags & IPFW_RCFLAG_DEFAULT) == 0)
602 return (0);
603
604 /* Don't match rules in reserved set for flush requests */
605 if ((rt->flags & IPFW_RCFLAG_ALL) != 0 && rule->set == RESVD_SET)
606 return (0);
607
608 /* If we're filtering by set, don't match other sets */
609 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && rule->set != rt->set)
610 return (0);
611
612 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
613 (rule->rulenum < rt->start_rule || rule->rulenum > rt->end_rule))
614 return (0);
615
616 return (1);
617 }
618
619 struct manage_sets_args {
620 uint32_t set;
621 uint8_t new_set;
622 };
623
624 static int
swap_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)625 swap_sets_cb(struct namedobj_instance *ni, struct named_object *no,
626 void *arg)
627 {
628 struct manage_sets_args *args;
629
630 args = (struct manage_sets_args *)arg;
631 if (no->set == (uint8_t)args->set)
632 no->set = args->new_set;
633 else if (no->set == args->new_set)
634 no->set = (uint8_t)args->set;
635 return (0);
636 }
637
638 static int
move_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)639 move_sets_cb(struct namedobj_instance *ni, struct named_object *no,
640 void *arg)
641 {
642 struct manage_sets_args *args;
643
644 args = (struct manage_sets_args *)arg;
645 if (no->set == (uint8_t)args->set)
646 no->set = args->new_set;
647 return (0);
648 }
649
650 static int
test_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)651 test_sets_cb(struct namedobj_instance *ni, struct named_object *no,
652 void *arg)
653 {
654 struct manage_sets_args *args;
655
656 args = (struct manage_sets_args *)arg;
657 if (no->set != (uint8_t)args->set)
658 return (0);
659 if (ipfw_objhash_lookup_name_type(ni, args->new_set,
660 no->etlv, no->name) != NULL)
661 return (EEXIST);
662 return (0);
663 }
664
665 /*
666 * Generic function to handler moving and swapping sets.
667 */
668 int
ipfw_obj_manage_sets(struct namedobj_instance * ni,uint16_t type,uint32_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)669 ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type,
670 uint32_t set, uint8_t new_set, enum ipfw_sets_cmd cmd)
671 {
672 struct manage_sets_args args;
673 struct named_object *no;
674
675 args.set = set;
676 args.new_set = new_set;
677 switch (cmd) {
678 case SWAP_ALL:
679 return (ipfw_objhash_foreach_type(ni, swap_sets_cb,
680 &args, type));
681 case TEST_ALL:
682 return (ipfw_objhash_foreach_type(ni, test_sets_cb,
683 &args, type));
684 case MOVE_ALL:
685 return (ipfw_objhash_foreach_type(ni, move_sets_cb,
686 &args, type));
687 case COUNT_ONE:
688 /*
689 * @set used to pass kidx.
690 * When @new_set is zero - reset object counter,
691 * otherwise increment it.
692 */
693 no = ipfw_objhash_lookup_kidx(ni, set);
694 if (new_set != 0)
695 no->ocnt++;
696 else
697 no->ocnt = 0;
698 return (0);
699 case TEST_ONE:
700 /* @set used to pass kidx */
701 no = ipfw_objhash_lookup_kidx(ni, set);
702 /*
703 * First check number of references:
704 * when it differs, this mean other rules are holding
705 * reference to given object, so it is not possible to
706 * change its set. Note that refcnt may account references
707 * to some going-to-be-added rules. Since we don't know
708 * their numbers (and even if they will be added) it is
709 * perfectly OK to return error here.
710 */
711 if (no->ocnt != no->refcnt)
712 return (EBUSY);
713 if (ipfw_objhash_lookup_name_type(ni, new_set, type,
714 no->name) != NULL)
715 return (EEXIST);
716 return (0);
717 case MOVE_ONE:
718 /* @set used to pass kidx */
719 no = ipfw_objhash_lookup_kidx(ni, set);
720 no->set = new_set;
721 return (0);
722 }
723 return (EINVAL);
724 }
725
726 /*
727 * Delete rules matching range @rt.
728 * Saves number of deleted rules in @ndel.
729 *
730 * Returns 0 on success.
731 */
732 int
delete_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int * ndel)733 delete_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int *ndel)
734 {
735 struct ip_fw *reap, *rule, **map;
736 uint32_t end, start;
737 int i, n, ndyn, ofs;
738
739 reap = NULL;
740 IPFW_UH_WLOCK(chain); /* arbitrate writers */
741
742 /*
743 * Stage 1: Determine range to inspect.
744 * Range is half-inclusive, e.g [start, end).
745 */
746 start = 0;
747 end = chain->n_rules - 1;
748
749 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0) {
750 start = ipfw_find_rule(chain, rt->start_rule, 0);
751
752 if (rt->end_rule >= IPFW_DEFAULT_RULE)
753 rt->end_rule = IPFW_DEFAULT_RULE - 1;
754 end = ipfw_find_rule(chain, rt->end_rule, UINT32_MAX);
755 }
756
757 if (rt->flags & IPFW_RCFLAG_DYNAMIC) {
758 /*
759 * Requested deleting only for dynamic states.
760 */
761 *ndel = 0;
762 ipfw_expire_dyn_states(chain, rt);
763 IPFW_UH_WUNLOCK(chain);
764 return (0);
765 }
766
767 /* Allocate new map of the same size */
768 map = malloc(chain->n_rules * sizeof(struct ip_fw *),
769 M_IPFW, M_ZERO | M_WAITOK);
770 n = 0;
771 ndyn = 0;
772 ofs = start;
773 /* 1. bcopy the initial part of the map */
774 if (start > 0)
775 bcopy(chain->map, map, start * sizeof(struct ip_fw *));
776 /* 2. copy active rules between start and end */
777 for (i = start; i < end; i++) {
778 rule = chain->map[i];
779 if (ipfw_match_range(rule, rt) == 0) {
780 map[ofs++] = rule;
781 continue;
782 }
783
784 n++;
785 if (ipfw_is_dyn_rule(rule) != 0)
786 ndyn++;
787 }
788 /* 3. copy the final part of the map */
789 bcopy(chain->map + end, map + ofs,
790 (chain->n_rules - end) * sizeof(struct ip_fw *));
791 /* 4. recalculate skipto cache */
792 update_skipto_cache(chain, map);
793 /* 5. swap the maps (under UH_WLOCK + WHLOCK) */
794 map = swap_map(chain, map, chain->n_rules - n);
795 /* 6. Remove all dynamic states originated by deleted rules */
796 if (ndyn > 0)
797 ipfw_expire_dyn_states(chain, rt);
798 /* 7. now remove the rules deleted from the old map */
799 for (i = start; i < end; i++) {
800 rule = map[i];
801 if (ipfw_match_range(rule, rt) == 0)
802 continue;
803 ipfw_reap_add(chain, &reap, rule);
804 }
805 IPFW_UH_WUNLOCK(chain);
806
807 ipfw_reap_rules(reap);
808 if (map != NULL)
809 free(map, M_IPFW);
810 *ndel = n;
811 return (0);
812 }
813
814 static int
move_objects(struct ip_fw_chain * ch,ipfw_range_tlv * rt)815 move_objects(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
816 {
817 struct opcode_obj_rewrite *rw;
818 struct ip_fw *rule;
819 ipfw_insn *cmd;
820 uint32_t kidx;
821 int cmdlen, i, l, c;
822
823 IPFW_UH_WLOCK_ASSERT(ch);
824
825 /* Stage 1: count number of references by given rules */
826 for (c = 0, i = 0; i < ch->n_rules - 1; i++) {
827 rule = ch->map[i];
828 if (ipfw_match_range(rule, rt) == 0)
829 continue;
830 if (rule->set == rt->new_set) /* nothing to do */
831 continue;
832 /* Search opcodes with named objects */
833 for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
834 l > 0; l -= cmdlen, cmd += cmdlen) {
835 cmdlen = F_LEN(cmd);
836 rw = find_op_rw(cmd, &kidx, NULL);
837 if (rw == NULL || rw->manage_sets == NULL)
838 continue;
839 /*
840 * When manage_sets() returns non-zero value to
841 * COUNT_ONE command, consider this as an object
842 * doesn't support sets (e.g. disabled with sysctl).
843 * So, skip checks for this object.
844 */
845 if (rw->manage_sets(ch, kidx, 1, COUNT_ONE) != 0)
846 continue;
847 c++;
848 }
849 }
850 if (c == 0) /* No objects found */
851 return (0);
852 /* Stage 2: verify "ownership" */
853 for (c = 0, i = 0; (i < ch->n_rules - 1) && c == 0; i++) {
854 rule = ch->map[i];
855 if (ipfw_match_range(rule, rt) == 0)
856 continue;
857 if (rule->set == rt->new_set) /* nothing to do */
858 continue;
859 /* Search opcodes with named objects */
860 for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
861 l > 0 && c == 0; l -= cmdlen, cmd += cmdlen) {
862 cmdlen = F_LEN(cmd);
863 rw = find_op_rw(cmd, &kidx, NULL);
864 if (rw == NULL || rw->manage_sets == NULL)
865 continue;
866 /* Test for ownership and conflicting names */
867 c = rw->manage_sets(ch, kidx,
868 (uint8_t)rt->new_set, TEST_ONE);
869 }
870 }
871 /* Stage 3: change set and cleanup */
872 for (i = 0; i < ch->n_rules - 1; i++) {
873 rule = ch->map[i];
874 if (ipfw_match_range(rule, rt) == 0)
875 continue;
876 if (rule->set == rt->new_set) /* nothing to do */
877 continue;
878 /* Search opcodes with named objects */
879 for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
880 l > 0; l -= cmdlen, cmd += cmdlen) {
881 cmdlen = F_LEN(cmd);
882 rw = find_op_rw(cmd, &kidx, NULL);
883 if (rw == NULL || rw->manage_sets == NULL)
884 continue;
885 /* cleanup object counter */
886 rw->manage_sets(ch, kidx,
887 0 /* reset counter */, COUNT_ONE);
888 if (c != 0)
889 continue;
890 /* change set */
891 rw->manage_sets(ch, kidx,
892 (uint8_t)rt->new_set, MOVE_ONE);
893 }
894 }
895 return (c);
896 }
897
898 /*
899 * Changes set of given rule rannge @rt
900 * with each other.
901 *
902 * Returns 0 on success.
903 */
904 static int
move_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt)905 move_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
906 {
907 struct ip_fw *rule;
908 int i;
909
910 IPFW_UH_WLOCK(chain);
911
912 /*
913 * Move rules with matching paramenerts to a new set.
914 * This one is much more complex. We have to ensure
915 * that all referenced tables (if any) are referenced
916 * by given rule subset only. Otherwise, we can't move
917 * them to new set and have to return error.
918 */
919 if ((i = move_objects(chain, rt)) != 0) {
920 IPFW_UH_WUNLOCK(chain);
921 return (i);
922 }
923
924 /* XXX: We have to do swap holding WLOCK */
925 for (i = 0; i < chain->n_rules; i++) {
926 rule = chain->map[i];
927 if (ipfw_match_range(rule, rt) == 0)
928 continue;
929 rule->set = rt->new_set;
930 }
931
932 IPFW_UH_WUNLOCK(chain);
933
934 return (0);
935 }
936
937 /*
938 * Returns pointer to action instruction, skips all possible rule
939 * modifiers like O_LOG, O_TAG, O_ALTQ.
940 */
941 ipfw_insn *
ipfw_get_action(struct ip_fw * rule)942 ipfw_get_action(struct ip_fw *rule)
943 {
944 ipfw_insn *cmd;
945 int l, cmdlen;
946
947 cmd = ACTION_PTR(rule);
948 l = rule->cmd_len - rule->act_ofs;
949 while (l > 0) {
950 switch (cmd->opcode) {
951 case O_ALTQ:
952 case O_LOG:
953 case O_TAG:
954 break;
955 default:
956 return (cmd);
957 }
958 cmdlen = F_LEN(cmd);
959 l -= cmdlen;
960 cmd += cmdlen;
961 }
962 panic("%s: rule (%p) has not action opcode", __func__, rule);
963 return (NULL);
964 }
965
966 /*
967 * Clear counters for a specific rule.
968 * Normally run under IPFW_UH_RLOCK, but these are idempotent ops
969 * so we only care that rules do not disappear.
970 */
971 static void
clear_counters(struct ip_fw * rule,int log_only)972 clear_counters(struct ip_fw *rule, int log_only)
973 {
974 ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
975
976 if (log_only == 0)
977 IPFW_ZERO_RULE_COUNTER(rule);
978 if (l->o.opcode == O_LOG)
979 l->log_left = l->max_log;
980 }
981
982 /*
983 * Flushes rules counters and/or log values on matching range.
984 *
985 * Returns number of items cleared.
986 */
987 static int
clear_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int log_only)988 clear_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int log_only)
989 {
990 struct ip_fw *rule;
991 int num;
992 int i;
993
994 num = 0;
995 rt->flags |= IPFW_RCFLAG_DEFAULT;
996
997 IPFW_UH_WLOCK(chain); /* arbitrate writers */
998 for (i = 0; i < chain->n_rules; i++) {
999 rule = chain->map[i];
1000 if (ipfw_match_range(rule, rt) == 0)
1001 continue;
1002 clear_counters(rule, log_only);
1003 num++;
1004 }
1005 IPFW_UH_WUNLOCK(chain);
1006
1007 return (num);
1008 }
1009
1010 static int
check_range_tlv(ipfw_range_tlv * rt)1011 check_range_tlv(ipfw_range_tlv *rt)
1012 {
1013
1014 if (rt->head.length != sizeof(*rt))
1015 return (1);
1016 if (rt->start_rule > rt->end_rule)
1017 return (1);
1018 if (rt->set >= IPFW_MAX_SETS || rt->new_set >= IPFW_MAX_SETS)
1019 return (1);
1020
1021 if ((rt->flags & IPFW_RCFLAG_USER) != rt->flags)
1022 return (1);
1023
1024 return (0);
1025 }
1026
1027 /*
1028 * Delete rules matching specified parameters
1029 * Data layout (v0)(current):
1030 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1031 * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1032 *
1033 * Saves number of deleted rules in ipfw_range_tlv->new_set.
1034 *
1035 * Returns 0 on success.
1036 */
1037 static int
del_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1038 del_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1039 struct sockopt_data *sd)
1040 {
1041 ipfw_range_header *rh;
1042 int error, ndel;
1043
1044 if (sd->valsize != sizeof(*rh))
1045 return (EINVAL);
1046
1047 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1048
1049 if (check_range_tlv(&rh->range) != 0)
1050 return (EINVAL);
1051
1052 ndel = 0;
1053 if ((error = delete_range(chain, &rh->range, &ndel)) != 0)
1054 return (error);
1055
1056 /* Save number of rules deleted */
1057 rh->range.new_set = ndel;
1058 return (0);
1059 }
1060
1061 /*
1062 * Move rules/sets matching specified parameters
1063 * Data layout (v0)(current):
1064 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1065 *
1066 * Returns 0 on success.
1067 */
1068 static int
move_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1069 move_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1070 struct sockopt_data *sd)
1071 {
1072 ipfw_range_header *rh;
1073
1074 if (sd->valsize != sizeof(*rh))
1075 return (EINVAL);
1076
1077 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1078
1079 if (check_range_tlv(&rh->range) != 0)
1080 return (EINVAL);
1081
1082 return (move_range(chain, &rh->range));
1083 }
1084
1085 /*
1086 * Clear rule accounting data matching specified parameters
1087 * Data layout (v0)(current):
1088 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1089 * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1090 *
1091 * Saves number of cleared rules in ipfw_range_tlv->new_set.
1092 *
1093 * Returns 0 on success.
1094 */
1095 static int
clear_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1096 clear_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1097 struct sockopt_data *sd)
1098 {
1099 ipfw_range_header *rh;
1100 int log_only, num;
1101 char *msg;
1102
1103 if (sd->valsize != sizeof(*rh))
1104 return (EINVAL);
1105
1106 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1107
1108 if (check_range_tlv(&rh->range) != 0)
1109 return (EINVAL);
1110
1111 log_only = (op3->opcode == IP_FW_XRESETLOG);
1112
1113 num = clear_range(chain, &rh->range, log_only);
1114
1115 if (rh->range.flags & IPFW_RCFLAG_ALL)
1116 msg = log_only ? "All logging counts reset" :
1117 "Accounting cleared";
1118 else
1119 msg = log_only ? "logging count reset" : "cleared";
1120
1121 if (V_fw_verbose) {
1122 int lev = LOG_SECURITY | LOG_NOTICE;
1123 log(lev, "ipfw: %s.\n", msg);
1124 }
1125
1126 /* Save number of rules cleared */
1127 rh->range.new_set = num;
1128 return (0);
1129 }
1130
1131 static void
enable_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt)1132 enable_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1133 {
1134 uint32_t v_set;
1135
1136 IPFW_UH_WLOCK_ASSERT(chain);
1137
1138 /* Change enabled/disabled sets mask */
1139 v_set = (V_set_disable | rt->set) & ~rt->new_set;
1140 v_set &= ~(1 << RESVD_SET); /* set RESVD_SET always enabled */
1141 IPFW_WLOCK(chain);
1142 V_set_disable = v_set;
1143 IPFW_WUNLOCK(chain);
1144 }
1145
1146 static int
swap_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int mv)1147 swap_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int mv)
1148 {
1149 struct opcode_obj_rewrite *rw;
1150 struct ip_fw *rule;
1151 int i;
1152
1153 IPFW_UH_WLOCK_ASSERT(chain);
1154
1155 if (rt->set == rt->new_set) /* nothing to do */
1156 return (0);
1157
1158 if (mv != 0) {
1159 /*
1160 * Berfore moving the rules we need to check that
1161 * there aren't any conflicting named objects.
1162 */
1163 for (rw = ctl3_rewriters;
1164 rw < ctl3_rewriters + ctl3_rsize; rw++) {
1165 if (rw->manage_sets == NULL)
1166 continue;
1167 i = rw->manage_sets(chain, (uint8_t)rt->set,
1168 (uint8_t)rt->new_set, TEST_ALL);
1169 if (i != 0)
1170 return (EEXIST);
1171 }
1172 }
1173 /* Swap or move two sets */
1174 for (i = 0; i < chain->n_rules - 1; i++) {
1175 rule = chain->map[i];
1176 if (rule->set == (uint8_t)rt->set)
1177 rule->set = (uint8_t)rt->new_set;
1178 else if (rule->set == (uint8_t)rt->new_set && mv == 0)
1179 rule->set = (uint8_t)rt->set;
1180 }
1181 for (rw = ctl3_rewriters; rw < ctl3_rewriters + ctl3_rsize; rw++) {
1182 if (rw->manage_sets == NULL)
1183 continue;
1184 rw->manage_sets(chain, (uint8_t)rt->set,
1185 (uint8_t)rt->new_set, mv != 0 ? MOVE_ALL: SWAP_ALL);
1186 }
1187 return (0);
1188 }
1189
1190 /*
1191 * Swaps or moves set
1192 * Data layout (v0)(current):
1193 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1194 *
1195 * Returns 0 on success.
1196 */
1197 static int
manage_sets(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1198 manage_sets(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1199 struct sockopt_data *sd)
1200 {
1201 ipfw_range_header *rh;
1202 int ret;
1203
1204 if (sd->valsize != sizeof(*rh))
1205 return (EINVAL);
1206
1207 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1208
1209 if (rh->range.head.length != sizeof(ipfw_range_tlv))
1210 return (1);
1211 /* enable_sets() expects bitmasks. */
1212 if (op3->opcode != IP_FW_SET_ENABLE &&
1213 (rh->range.set >= IPFW_MAX_SETS ||
1214 rh->range.new_set >= IPFW_MAX_SETS))
1215 return (EINVAL);
1216
1217 ret = 0;
1218 IPFW_UH_WLOCK(chain);
1219 switch (op3->opcode) {
1220 case IP_FW_SET_SWAP:
1221 case IP_FW_SET_MOVE:
1222 ret = swap_sets(chain, &rh->range,
1223 op3->opcode == IP_FW_SET_MOVE);
1224 break;
1225 case IP_FW_SET_ENABLE:
1226 enable_sets(chain, &rh->range);
1227 break;
1228 }
1229 IPFW_UH_WUNLOCK(chain);
1230
1231 return (ret);
1232 }
1233
1234 /* Check rule format */
1235 int
ipfw_check_rule(struct ip_fw_rule * rule,size_t size,struct rule_check_info * ci)1236 ipfw_check_rule(struct ip_fw_rule *rule, size_t size,
1237 struct rule_check_info *ci)
1238 {
1239 int l;
1240
1241 if (size < sizeof(*rule)) {
1242 printf("ipfw: rule too short\n");
1243 return (EINVAL);
1244 }
1245
1246 /* Check for valid cmd_len */
1247 l = roundup2(RULESIZE(rule), sizeof(uint64_t));
1248 if (l != size) {
1249 printf("ipfw: size mismatch (have %zu want %d)\n", size, l);
1250 return (EINVAL);
1251 }
1252 if (rule->act_ofs >= rule->cmd_len) {
1253 printf("ipfw: bogus action offset (%u > %u)\n",
1254 rule->act_ofs, rule->cmd_len - 1);
1255 return (EINVAL);
1256 }
1257
1258 if (rule->rulenum > IPFW_DEFAULT_RULE - 1)
1259 return (EINVAL);
1260
1261 return (check_ipfw_rule_body(rule->cmd, rule->cmd_len, ci));
1262 }
1263
1264 #define CHECK_TARG(a, c) \
1265 ((a) == IP_FW_TARG && ((c)->flags & IPFW_RCIFLAG_HAS_STATE))
1266
1267 enum ipfw_opcheck_result
ipfw_check_opcode(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)1268 ipfw_check_opcode(ipfw_insn **pcmd, int *plen, struct rule_check_info *ci)
1269 {
1270 ipfw_insn *cmd;
1271 size_t cmdlen;
1272
1273 cmd = *pcmd;
1274 cmdlen = F_LEN(cmd);
1275
1276 switch (cmd->opcode) {
1277 case O_PROBE_STATE:
1278 case O_KEEP_STATE:
1279 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1280 return (BAD_SIZE);
1281 ci->object_opcodes++;
1282 ci->flags |= IPFW_RCIFLAG_HAS_STATE;
1283 break;
1284 case O_PROTO:
1285 case O_IP_SRC_ME:
1286 case O_IP_DST_ME:
1287 case O_LAYER2:
1288 case O_IN:
1289 case O_FRAG:
1290 case O_DIVERTED:
1291 case O_IPOPT:
1292 case O_IPTOS:
1293 case O_IPPRECEDENCE:
1294 case O_IPVER:
1295 case O_SOCKARG:
1296 case O_TCPFLAGS:
1297 case O_TCPOPTS:
1298 case O_ESTAB:
1299 case O_VERREVPATH:
1300 case O_VERSRCREACH:
1301 case O_ANTISPOOF:
1302 case O_IPSEC:
1303 #ifdef INET6
1304 case O_IP6_SRC_ME:
1305 case O_IP6_DST_ME:
1306 case O_EXT_HDR:
1307 case O_IP6:
1308 #endif
1309 case O_IP4:
1310 case O_TAG:
1311 case O_SKIP_ACTION:
1312 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1313 return (BAD_SIZE);
1314 break;
1315
1316 case O_EXTERNAL_ACTION:
1317 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1318 return (BAD_SIZE);
1319
1320 if (insntod(cmd, kidx)->kidx == 0)
1321 return (FAILED);
1322 ci->object_opcodes++;
1323 /*
1324 * Do we have O_EXTERNAL_INSTANCE or O_EXTERNAL_DATA
1325 * opcode?
1326 */
1327 if (*plen != cmdlen) {
1328 *plen -= cmdlen;
1329 cmd += cmdlen;
1330 *pcmd = cmd;
1331 cmdlen = F_LEN(cmd);
1332 if (cmd->opcode == O_EXTERNAL_DATA)
1333 return (CHECK_ACTION);
1334 if (cmd->opcode != O_EXTERNAL_INSTANCE) {
1335 printf("ipfw: invalid opcode "
1336 "next to external action %u\n",
1337 cmd->opcode);
1338 return (FAILED);
1339 }
1340 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1341 return (BAD_SIZE);
1342 if (insntod(cmd, kidx)->kidx == 0)
1343 return (FAILED);
1344 ci->object_opcodes++;
1345 }
1346 return (CHECK_ACTION);
1347
1348 case O_FIB:
1349 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1350 return (BAD_SIZE);
1351 if (cmd->arg1 >= rt_numfibs) {
1352 printf("ipfw: invalid fib number %d\n",
1353 cmd->arg1);
1354 return (FAILED);
1355 }
1356 break;
1357
1358 case O_SETFIB:
1359 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1360 return (BAD_SIZE);
1361 if ((cmd->arg1 != IP_FW_TARG) &&
1362 ((cmd->arg1 & 0x7FFF) >= rt_numfibs)) {
1363 printf("ipfw: invalid fib number %d\n",
1364 cmd->arg1 & 0x7FFF);
1365 return (FAILED);
1366 }
1367 if (CHECK_TARG(cmd->arg1, ci))
1368 goto bad_targ;
1369 return (CHECK_ACTION);
1370
1371 case O_UID:
1372 case O_GID:
1373 case O_JAIL:
1374 case O_IP_SRC:
1375 case O_IP_DST:
1376 case O_TCPSEQ:
1377 case O_TCPACK:
1378 case O_PROB:
1379 case O_ICMPTYPE:
1380 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1381 return (BAD_SIZE);
1382 break;
1383
1384 case O_LIMIT:
1385 if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
1386 return (BAD_SIZE);
1387 ci->object_opcodes++;
1388 break;
1389
1390 case O_LOG:
1391 if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
1392 return (BAD_SIZE);
1393 insntod(cmd, log)->log_left = insntod(cmd, log)->max_log;
1394 break;
1395
1396 case O_IP_SRC_MASK:
1397 case O_IP_DST_MASK:
1398 /* only odd command lengths */
1399 if ((cmdlen & 1) == 0)
1400 return (BAD_SIZE);
1401 break;
1402
1403 case O_IP_SRC_SET:
1404 case O_IP_DST_SET:
1405 if (cmd->arg1 == 0 || cmd->arg1 > 256) {
1406 printf("ipfw: invalid set size %d\n",
1407 cmd->arg1);
1408 return (FAILED);
1409 }
1410 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1411 (cmd->arg1+31)/32 )
1412 return (BAD_SIZE);
1413 break;
1414
1415 case O_IP_SRC_LOOKUP:
1416 case O_IP_DST_LOOKUP:
1417 case O_IP_FLOW_LOOKUP:
1418 case O_MAC_SRC_LOOKUP:
1419 case O_MAC_DST_LOOKUP:
1420 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx) &&
1421 cmdlen != F_INSN_SIZE(ipfw_insn_table))
1422 return (BAD_SIZE);
1423 if (insntod(cmd, kidx)->kidx >= V_fw_tables_max) {
1424 printf("ipfw: invalid table index %u\n",
1425 insntod(cmd, kidx)->kidx);
1426 return (FAILED);
1427 }
1428 ci->object_opcodes++;
1429 break;
1430 case O_MACADDR2:
1431 if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
1432 return (BAD_SIZE);
1433 break;
1434
1435 case O_NOP:
1436 case O_IPID:
1437 case O_IPTTL:
1438 case O_IPLEN:
1439 case O_TCPDATALEN:
1440 case O_TCPMSS:
1441 case O_TCPWIN:
1442 case O_TAGGED:
1443 if (cmdlen < 1 || cmdlen > 31)
1444 return (BAD_SIZE);
1445 break;
1446
1447 case O_DSCP:
1448 case O_MARK:
1449 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + 1)
1450 return (BAD_SIZE);
1451 break;
1452
1453 case O_MAC_TYPE:
1454 case O_IP_SRCPORT:
1455 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
1456 if (cmdlen < 2 || cmdlen > 31)
1457 return (BAD_SIZE);
1458 break;
1459
1460 case O_RECV:
1461 case O_XMIT:
1462 case O_VIA:
1463 if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
1464 return (BAD_SIZE);
1465 ci->object_opcodes++;
1466 break;
1467
1468 case O_ALTQ:
1469 if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
1470 return (BAD_SIZE);
1471 break;
1472
1473 case O_PIPE:
1474 case O_QUEUE:
1475 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1476 return (BAD_SIZE);
1477 if (CHECK_TARG(cmd->arg1, ci))
1478 goto bad_targ;
1479 return (CHECK_ACTION);
1480
1481 case O_FORWARD_IP:
1482 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
1483 return (BAD_SIZE);
1484 if (insntoc(cmd, sa)->sa.sin_addr.s_addr == INADDR_ANY &&
1485 (ci->flags & IPFW_RCIFLAG_HAS_STATE))
1486 goto bad_targ;
1487 return (CHECK_ACTION);
1488 #ifdef INET6
1489 case O_FORWARD_IP6:
1490 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa6))
1491 return (BAD_SIZE);
1492 return (CHECK_ACTION);
1493 #endif /* INET6 */
1494
1495 case O_DIVERT:
1496 case O_TEE:
1497 if (ip_divert_ptr == NULL)
1498 return (FAILED);
1499 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1500 return (BAD_SIZE);
1501 if (CHECK_TARG(cmd->arg1, ci))
1502 goto bad_targ;
1503 return (CHECK_ACTION);
1504 case O_NETGRAPH:
1505 case O_NGTEE:
1506 if (ng_ipfw_input_p == NULL)
1507 return (FAILED);
1508 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1509 return (BAD_SIZE);
1510 if (CHECK_TARG(cmd->arg1, ci))
1511 goto bad_targ;
1512 return (CHECK_ACTION);
1513 case O_NAT:
1514 if (!IPFW_NAT_LOADED)
1515 return (FAILED);
1516 if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
1517 return (BAD_SIZE);
1518 if (CHECK_TARG(cmd->arg1, ci))
1519 goto bad_targ;
1520 return (CHECK_ACTION);
1521
1522 case O_SKIPTO:
1523 case O_CALLRETURN:
1524 case O_SETMARK:
1525 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1526 return (BAD_SIZE);
1527 /* O_CALLRETURN + F_NOT means 'return' opcode. */
1528 if (cmd->opcode != O_CALLRETURN || (cmd->len & F_NOT) == 0) {
1529 if (CHECK_TARG(insntoc(cmd, u32)->d[0], ci))
1530 goto bad_targ;
1531 }
1532 return (CHECK_ACTION);
1533
1534 case O_CHECK_STATE:
1535 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1536 return (BAD_SIZE);
1537 ci->object_opcodes++;
1538 return (CHECK_ACTION);
1539
1540 case O_FORWARD_MAC: /* XXX not implemented yet */
1541 case O_COUNT:
1542 case O_ACCEPT:
1543 case O_DENY:
1544 case O_REJECT:
1545 case O_SETDSCP:
1546 #ifdef INET6
1547 case O_UNREACH6:
1548 #endif
1549 case O_REASS:
1550 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1551 return (BAD_SIZE);
1552 if (cmd->opcode == O_SETDSCP && CHECK_TARG(cmd->arg1, ci))
1553 goto bad_targ;
1554 return (CHECK_ACTION);
1555 #ifdef INET6
1556 case O_IP6_SRC:
1557 case O_IP6_DST:
1558 if (cmdlen != F_INSN_SIZE(struct in6_addr) +
1559 F_INSN_SIZE(ipfw_insn))
1560 return (BAD_SIZE);
1561 break;
1562
1563 case O_FLOW6ID:
1564 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1565 ((ipfw_insn_u32 *)cmd)->o.arg1)
1566 return (BAD_SIZE);
1567 break;
1568
1569 case O_IP6_SRC_MASK:
1570 case O_IP6_DST_MASK:
1571 if ( !(cmdlen & 1) || cmdlen > 127)
1572 return (BAD_SIZE);
1573 break;
1574 case O_ICMP6TYPE:
1575 if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
1576 return (BAD_SIZE);
1577 break;
1578 #endif
1579
1580 default:
1581 switch (cmd->opcode) {
1582 #ifndef INET6
1583 case O_IP6_SRC_ME:
1584 case O_IP6_DST_ME:
1585 case O_EXT_HDR:
1586 case O_IP6:
1587 case O_UNREACH6:
1588 case O_IP6_SRC:
1589 case O_IP6_DST:
1590 case O_FLOW6ID:
1591 case O_IP6_SRC_MASK:
1592 case O_IP6_DST_MASK:
1593 case O_ICMP6TYPE:
1594 printf("ipfw: no IPv6 support in kernel\n");
1595 return (FAILED);
1596 #endif
1597 default:
1598 printf("ipfw: opcode %d: unknown opcode\n",
1599 cmd->opcode);
1600 return (FAILED);
1601 }
1602 }
1603 return (SUCCESS);
1604 bad_targ:
1605 /*
1606 * For dynamic states we can not correctly initialize tablearg value,
1607 * because we don't go through rule's opcodes except rule action.
1608 */
1609 printf("ipfw: tablearg is not allowed with dynamic states\n");
1610 return (FAILED);
1611 }
1612
1613 static __noinline int
check_ipfw_rule_body(ipfw_insn * cmd,int cmd_len,struct rule_check_info * ci)1614 check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len, struct rule_check_info *ci)
1615 {
1616 int cmdlen, l;
1617 int have_action, ret;
1618
1619 /*
1620 * Now go for the individual checks. Very simple ones, basically only
1621 * instruction sizes.
1622 */
1623 have_action = 0;
1624 for (l = cmd_len; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1625 cmdlen = F_LEN(cmd);
1626 if (cmdlen > l) {
1627 printf("ipfw: opcode %d: size truncated\n",
1628 cmd->opcode);
1629 return (EINVAL);
1630 }
1631 if (ci->version != IP_FW3_OPVER)
1632 ret = (*check_opcode_f)(&cmd, &l, ci);
1633 else
1634 ret = ipfw_check_opcode(&cmd, &l, ci);
1635
1636 if (ret == CHECK_ACTION) {
1637 if (have_action != 0) {
1638 printf("ipfw: opcode %d: multiple actions"
1639 " not allowed\n", cmd->opcode);
1640 ret = FAILED;
1641 } else
1642 have_action = 1;
1643
1644 if (l != F_LEN(cmd)) {
1645 printf("ipfw: opcode %d: action must be"
1646 " last opcode\n", cmd->opcode);
1647 ret = FAILED;
1648 }
1649 }
1650 switch (ret) {
1651 case SUCCESS:
1652 continue;
1653 case BAD_SIZE:
1654 printf("ipfw: opcode %d: wrong size %d\n",
1655 cmd->opcode, cmdlen);
1656 /* FALLTHROUGH */
1657 case FAILED:
1658 return (EINVAL);
1659 }
1660 }
1661 if (have_action == 0) {
1662 printf("ipfw: missing action\n");
1663 return (EINVAL);
1664 }
1665 return (0);
1666 }
1667
1668 struct dump_args {
1669 uint32_t b; /* start rule */
1670 uint32_t e; /* end rule */
1671 uint32_t rcount; /* number of rules */
1672 uint32_t rsize; /* rules size */
1673 uint32_t tcount; /* number of tables */
1674 int rcounters; /* counters */
1675 uint32_t *bmask; /* index bitmask of used named objects */
1676 };
1677
1678 void
ipfw_export_obj_ntlv(struct named_object * no,ipfw_obj_ntlv * ntlv)1679 ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv)
1680 {
1681
1682 ntlv->head.type = no->etlv;
1683 ntlv->head.length = sizeof(*ntlv);
1684 ntlv->idx = no->kidx;
1685 strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1686 }
1687
1688 /*
1689 * Export named object info in instance @ni, identified by @kidx
1690 * to ipfw_obj_ntlv. TLV is allocated from @sd space.
1691 *
1692 * Returns 0 on success.
1693 */
1694 static int
export_objhash_ntlv(struct namedobj_instance * ni,uint32_t kidx,struct sockopt_data * sd)1695 export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
1696 struct sockopt_data *sd)
1697 {
1698 struct named_object *no;
1699 ipfw_obj_ntlv *ntlv;
1700
1701 no = ipfw_objhash_lookup_kidx(ni, kidx);
1702 KASSERT(no != NULL, ("invalid object kernel index passed"));
1703
1704 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1705 if (ntlv == NULL)
1706 return (ENOMEM);
1707
1708 ipfw_export_obj_ntlv(no, ntlv);
1709 return (0);
1710 }
1711
1712 static int
export_named_objects(struct namedobj_instance * ni,struct dump_args * da,struct sockopt_data * sd)1713 export_named_objects(struct namedobj_instance *ni, struct dump_args *da,
1714 struct sockopt_data *sd)
1715 {
1716 uint32_t i;
1717 int error;
1718
1719 for (i = 0; i < IPFW_TABLES_MAX && da->tcount > 0; i++) {
1720 if ((da->bmask[i / 32] & (1 << (i % 32))) == 0)
1721 continue;
1722 if ((error = export_objhash_ntlv(ni, i, sd)) != 0)
1723 return (error);
1724 da->tcount--;
1725 }
1726 return (0);
1727 }
1728
1729 static int
dump_named_objects(struct ip_fw_chain * ch,struct dump_args * da,struct sockopt_data * sd)1730 dump_named_objects(struct ip_fw_chain *ch, struct dump_args *da,
1731 struct sockopt_data *sd)
1732 {
1733 ipfw_obj_ctlv *ctlv;
1734 int error;
1735
1736 MPASS(da->tcount > 0);
1737 /* Header first */
1738 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1739 if (ctlv == NULL)
1740 return (ENOMEM);
1741 ctlv->head.type = IPFW_TLV_TBLNAME_LIST;
1742 ctlv->head.length = da->tcount * sizeof(ipfw_obj_ntlv) +
1743 sizeof(*ctlv);
1744 ctlv->count = da->tcount;
1745 ctlv->objsize = sizeof(ipfw_obj_ntlv);
1746
1747 /* Dump table names first (if any) */
1748 error = export_named_objects(ipfw_get_table_objhash(ch), da, sd);
1749 if (error != 0)
1750 return (error);
1751 /* Then dump another named objects */
1752 da->bmask += IPFW_TABLES_MAX / 32;
1753 return (export_named_objects(CHAIN_TO_SRV(ch), da, sd));
1754 }
1755
1756 /*
1757 * Dumps static rules with table TLVs in buffer @sd.
1758 *
1759 * Returns 0 on success.
1760 */
1761 static int
dump_static_rules(struct ip_fw_chain * chain,struct dump_args * da,struct sockopt_data * sd)1762 dump_static_rules(struct ip_fw_chain *chain, struct dump_args *da,
1763 struct sockopt_data *sd)
1764 {
1765 ipfw_obj_ctlv *ctlv;
1766 struct ip_fw *krule;
1767 caddr_t dst;
1768 int i, l;
1769
1770 /* Dump rules */
1771 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1772 if (ctlv == NULL)
1773 return (ENOMEM);
1774 ctlv->head.type = IPFW_TLV_RULE_LIST;
1775 ctlv->head.length = da->rsize + sizeof(*ctlv);
1776 ctlv->count = da->rcount;
1777
1778 for (i = da->b; i < da->e; i++) {
1779 krule = chain->map[i];
1780
1781 l = RULEUSIZE1(krule) + sizeof(ipfw_obj_tlv);
1782 if (da->rcounters != 0)
1783 l += sizeof(struct ip_fw_bcounter);
1784 dst = (caddr_t)ipfw_get_sopt_space(sd, l);
1785 if (dst == NULL)
1786 return (ENOMEM);
1787
1788 export_rule1(krule, dst, l, da->rcounters);
1789 }
1790
1791 return (0);
1792 }
1793
1794 int
ipfw_mark_object_kidx(uint32_t * bmask,uint16_t etlv,uint32_t kidx)1795 ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint32_t kidx)
1796 {
1797 uint32_t bidx;
1798
1799 /*
1800 * Maintain separate bitmasks for table and non-table objects.
1801 */
1802 bidx = (etlv == IPFW_TLV_TBL_NAME) ? 0: IPFW_TABLES_MAX / 32;
1803 bidx += kidx / 32;
1804 if ((bmask[bidx] & (1 << (kidx % 32))) != 0)
1805 return (0);
1806
1807 bmask[bidx] |= 1 << (kidx % 32);
1808 return (1);
1809 }
1810
1811 /*
1812 * Marks every object index used in @rule with bit in @bmask.
1813 * Used to generate bitmask of referenced tables/objects for given ruleset
1814 * or its part.
1815 */
1816 static void
mark_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct dump_args * da)1817 mark_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
1818 struct dump_args *da)
1819 {
1820 struct opcode_obj_rewrite *rw;
1821 ipfw_insn *cmd;
1822 uint32_t kidx;
1823 int cmdlen, l;
1824 uint8_t subtype;
1825
1826 l = rule->cmd_len;
1827 cmd = rule->cmd;
1828 cmdlen = 0;
1829 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1830 cmdlen = F_LEN(cmd);
1831
1832 rw = find_op_rw(cmd, &kidx, &subtype);
1833 if (rw == NULL)
1834 continue;
1835
1836 if (ipfw_mark_object_kidx(da->bmask, rw->etlv, kidx))
1837 da->tcount++;
1838 }
1839 }
1840
1841 /*
1842 * Dumps requested objects data
1843 * Data layout (version 0)(current):
1844 * Request: [ ipfw_cfg_lheader ] + IPFW_CFG_GET_* flags
1845 * size = ipfw_cfg_lheader.size
1846 * Reply: [ ipfw_cfg_lheader
1847 * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
1848 * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST)
1849 * ipfw_obj_tlv(IPFW_TLV_RULE_ENT) [ ip_fw_bcounter (optional) ip_fw_rule ]
1850 * ] (optional)
1851 * [ ipfw_obj_ctlv(IPFW_TLV_STATE_LIST) ipfw_obj_dyntlv x N ] (optional)
1852 * ]
1853 * * NOTE IPFW_TLV_STATE_LIST has the single valid field: objsize.
1854 * The rest (size, count) are set to zero and needs to be ignored.
1855 *
1856 * Returns 0 on success.
1857 */
1858 static int
dump_config(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1859 dump_config(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1860 struct sockopt_data *sd)
1861 {
1862 struct dump_args da;
1863 ipfw_cfg_lheader *hdr;
1864 struct ip_fw *rule;
1865 size_t sz, rnum;
1866 uint32_t hdr_flags, *bmask;
1867 int error, i;
1868
1869 hdr = (ipfw_cfg_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
1870 if (hdr == NULL)
1871 return (EINVAL);
1872
1873 error = 0;
1874 bmask = NULL;
1875 memset(&da, 0, sizeof(da));
1876 /*
1877 * Allocate needed state.
1878 * Note we allocate 2xspace mask, for table & srv
1879 */
1880 if (hdr->flags & (IPFW_CFG_GET_STATIC | IPFW_CFG_GET_STATES))
1881 da.bmask = bmask = malloc(
1882 sizeof(uint32_t) * IPFW_TABLES_MAX * 2 / 32, M_TEMP,
1883 M_WAITOK | M_ZERO);
1884 IPFW_UH_RLOCK(chain);
1885
1886 /*
1887 * STAGE 1: Determine size/count for objects in range.
1888 * Prepare used tables bitmask.
1889 */
1890 sz = sizeof(ipfw_cfg_lheader);
1891 da.e = chain->n_rules;
1892
1893 if (hdr->end_rule != 0) {
1894 /* Handle custom range */
1895 if ((rnum = hdr->start_rule) > IPFW_DEFAULT_RULE)
1896 rnum = IPFW_DEFAULT_RULE;
1897 da.b = ipfw_find_rule(chain, rnum, 0);
1898 rnum = (hdr->end_rule < IPFW_DEFAULT_RULE) ?
1899 hdr->end_rule + 1: IPFW_DEFAULT_RULE;
1900 da.e = ipfw_find_rule(chain, rnum, UINT32_MAX) + 1;
1901 }
1902
1903 if (hdr->flags & IPFW_CFG_GET_STATIC) {
1904 for (i = da.b; i < da.e; i++) {
1905 rule = chain->map[i];
1906 da.rsize += RULEUSIZE1(rule) + sizeof(ipfw_obj_tlv);
1907 da.rcount++;
1908 /* Update bitmask of used objects for given range */
1909 mark_rule_objects(chain, rule, &da);
1910 }
1911 /* Add counters if requested */
1912 if (hdr->flags & IPFW_CFG_GET_COUNTERS) {
1913 da.rsize += sizeof(struct ip_fw_bcounter) * da.rcount;
1914 da.rcounters = 1;
1915 }
1916 sz += da.rsize + sizeof(ipfw_obj_ctlv);
1917 }
1918
1919 if (hdr->flags & IPFW_CFG_GET_STATES) {
1920 sz += sizeof(ipfw_obj_ctlv) +
1921 ipfw_dyn_get_count(bmask, &i) * sizeof(ipfw_obj_dyntlv);
1922 da.tcount += i;
1923 }
1924
1925 if (da.tcount > 0)
1926 sz += da.tcount * sizeof(ipfw_obj_ntlv) +
1927 sizeof(ipfw_obj_ctlv);
1928
1929 /*
1930 * Fill header anyway.
1931 * Note we have to save header fields to stable storage
1932 * buffer inside @sd can be flushed after dumping rules
1933 */
1934 hdr->size = sz;
1935 hdr->set_mask = ~V_set_disable;
1936 hdr_flags = hdr->flags;
1937 hdr = NULL;
1938
1939 if (sd->valsize < sz) {
1940 error = ENOMEM;
1941 goto cleanup;
1942 }
1943
1944 /* STAGE2: Store actual data */
1945 if (da.tcount > 0) {
1946 error = dump_named_objects(chain, &da, sd);
1947 if (error != 0)
1948 goto cleanup;
1949 }
1950
1951 if (hdr_flags & IPFW_CFG_GET_STATIC) {
1952 error = dump_static_rules(chain, &da, sd);
1953 if (error != 0)
1954 goto cleanup;
1955 }
1956
1957 if (hdr_flags & IPFW_CFG_GET_STATES)
1958 error = ipfw_dump_states(chain, sd);
1959
1960 cleanup:
1961 IPFW_UH_RUNLOCK(chain);
1962
1963 if (bmask != NULL)
1964 free(bmask, M_TEMP);
1965
1966 return (error);
1967 }
1968
1969 int
ipfw_check_object_name_generic(const char * name)1970 ipfw_check_object_name_generic(const char *name)
1971 {
1972 int nsize;
1973
1974 nsize = sizeof(((ipfw_obj_ntlv *)0)->name);
1975 if (strnlen(name, nsize) == nsize)
1976 return (EINVAL);
1977 if (name[0] == '\0')
1978 return (EINVAL);
1979 return (0);
1980 }
1981
1982 /*
1983 * Creates non-existent objects referenced by rule.
1984 *
1985 * Return 0 on success.
1986 */
1987 static int
create_objects_compat(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * pidx,struct tid_info * ti)1988 create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd,
1989 struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti)
1990 {
1991 struct opcode_obj_rewrite *rw;
1992 struct obj_idx *p;
1993 uint32_t kidx;
1994 int error;
1995
1996 /*
1997 * Compatibility stuff: do actual creation for non-existing,
1998 * but referenced objects.
1999 */
2000 for (p = oib; p < pidx; p++) {
2001 if (p->kidx != 0)
2002 continue;
2003
2004 ti->uidx = p->uidx;
2005 ti->type = p->type;
2006 ti->atype = 0;
2007
2008 rw = find_op_rw(cmd + p->off, NULL, NULL);
2009 KASSERT(rw != NULL, ("Unable to find handler for op %d",
2010 (cmd + p->off)->opcode));
2011
2012 if (rw->create_object == NULL)
2013 error = EOPNOTSUPP;
2014 else
2015 error = rw->create_object(ch, ti, &kidx);
2016 if (error == 0) {
2017 p->kidx = kidx;
2018 continue;
2019 }
2020
2021 /*
2022 * Error happened. We have to rollback everything.
2023 * Drop all already acquired references.
2024 */
2025 IPFW_UH_WLOCK(ch);
2026 unref_oib_objects(ch, cmd, oib, pidx);
2027 IPFW_UH_WUNLOCK(ch);
2028
2029 return (error);
2030 }
2031
2032 return (0);
2033 }
2034
2035 /*
2036 * Unreferences all already-referenced objects in given @cmd rule,
2037 * using information in @oib.
2038 *
2039 * Used to rollback partially converted rule on error.
2040 */
2041 static void
unref_oib_objects(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * end)2042 unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib,
2043 struct obj_idx *end)
2044 {
2045 struct opcode_obj_rewrite *rw;
2046 struct named_object *no;
2047 struct obj_idx *p;
2048
2049 IPFW_UH_WLOCK_ASSERT(ch);
2050
2051 for (p = oib; p < end; p++) {
2052 if (p->kidx == 0)
2053 continue;
2054
2055 rw = find_op_rw(cmd + p->off, NULL, NULL);
2056 KASSERT(rw != NULL, ("Unable to find handler for op %d",
2057 (cmd + p->off)->opcode));
2058
2059 /* Find & unref by existing idx */
2060 no = rw->find_bykidx(ch, p->kidx);
2061 KASSERT(no != NULL, ("Ref'd object %d disappeared", p->kidx));
2062 no->refcnt--;
2063 }
2064 }
2065
2066 /*
2067 * Remove references from every object used in @rule.
2068 * Used at rule removal code.
2069 */
2070 static void
unref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule)2071 unref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule)
2072 {
2073 struct opcode_obj_rewrite *rw;
2074 struct named_object *no;
2075 ipfw_insn *cmd;
2076 uint32_t kidx;
2077 int cmdlen, l;
2078 uint8_t subtype;
2079
2080 IPFW_UH_WLOCK_ASSERT(ch);
2081
2082 l = rule->cmd_len;
2083 cmd = rule->cmd;
2084 cmdlen = 0;
2085 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2086 cmdlen = F_LEN(cmd);
2087
2088 rw = find_op_rw(cmd, &kidx, &subtype);
2089 if (rw == NULL)
2090 continue;
2091 no = rw->find_bykidx(ch, kidx);
2092
2093 KASSERT(no != NULL, ("object id %d not found", kidx));
2094 KASSERT(no->subtype == subtype,
2095 ("wrong type %d (%d) for object id %d",
2096 no->subtype, subtype, kidx));
2097 KASSERT(no->refcnt > 0, ("refcount for object %d is %d",
2098 kidx, no->refcnt));
2099
2100 if (no->refcnt == 1 && rw->destroy_object != NULL)
2101 rw->destroy_object(ch, no);
2102 else
2103 no->refcnt--;
2104 }
2105 if (ACTION_PTR(rule)->opcode == O_LOG)
2106 ipfw_tap_free(ch, rule->rulenum);
2107 }
2108
2109 /*
2110 * Find and reference object (if any) stored in instruction @cmd.
2111 *
2112 * Saves object info in @pidx, sets
2113 * - @unresolved to 1 if object should exists but not found
2114 *
2115 * Returns non-zero value in case of error.
2116 */
2117 static int
ref_opcode_object(struct ip_fw_chain * ch,ipfw_insn * cmd,struct tid_info * ti,struct obj_idx * pidx,int * unresolved)2118 ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti,
2119 struct obj_idx *pidx, int *unresolved)
2120 {
2121 struct named_object *no;
2122 struct opcode_obj_rewrite *rw;
2123 int error;
2124
2125 /* Check if this opcode is candidate for rewrite */
2126 rw = find_op_rw(cmd, &ti->uidx, &ti->type);
2127 if (rw == NULL)
2128 return (0);
2129
2130 /* Need to rewrite. Save necessary fields */
2131 pidx->uidx = ti->uidx;
2132 pidx->type = ti->type;
2133
2134 /* Try to find referenced kernel object */
2135 error = rw->find_byname(ch, ti, &no);
2136 if (error != 0)
2137 return (error);
2138 if (no == NULL) {
2139 /*
2140 * Report about unresolved object for automaic
2141 * creation.
2142 */
2143 *unresolved = 1;
2144 return (0);
2145 }
2146
2147 /*
2148 * Object is already exist.
2149 * Its subtype should match with expected value.
2150 */
2151 if (ti->type != no->subtype)
2152 return (EINVAL);
2153
2154 /* Bump refcount and update kidx. */
2155 no->refcnt++;
2156 rw->update(cmd, no->kidx);
2157 return (0);
2158 }
2159
2160 /*
2161 * Finds and bumps refcount for objects referenced by given @rule.
2162 * Auto-creates non-existing tables.
2163 * Fills in @oib array with userland/kernel indexes.
2164 *
2165 * Returns 0 on success.
2166 */
2167 static int
ref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct rule_check_info * ci,struct obj_idx * oib,struct tid_info * ti)2168 ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
2169 struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti)
2170 {
2171 struct obj_idx *pidx;
2172 ipfw_insn *cmd;
2173 int cmdlen, error, l, unresolved;
2174
2175 pidx = oib;
2176 l = rule->cmd_len;
2177 cmd = rule->cmd;
2178 cmdlen = 0;
2179 error = 0;
2180
2181 IPFW_UH_WLOCK_ASSERT(ch);
2182
2183 /* Increase refcount on each existing referenced table. */
2184 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2185 cmdlen = F_LEN(cmd);
2186 unresolved = 0;
2187
2188 error = ref_opcode_object(ch, cmd, ti, pidx, &unresolved);
2189 if (error != 0)
2190 break;
2191 /*
2192 * Compatibility stuff for old clients:
2193 * prepare to automaitcally create non-existing objects.
2194 */
2195 if (unresolved != 0) {
2196 pidx->off = rule->cmd_len - l;
2197 pidx++;
2198 }
2199 }
2200
2201 if (error != 0) {
2202 /* Unref everything we have already done */
2203 unref_oib_objects(ch, rule->cmd, oib, pidx);
2204 return (error);
2205 }
2206
2207 /* Perform auto-creation for non-existing objects */
2208 if (pidx != oib)
2209 error = create_objects_compat(ch, rule->cmd, oib, pidx, ti);
2210
2211 /* Calculate real number of dynamic objects */
2212 ci->object_opcodes = (uint16_t)(pidx - oib);
2213
2214 return (error);
2215 }
2216
2217 /*
2218 * Checks is opcode is referencing table of appropriate type.
2219 * Adds reference count for found table if true.
2220 * Rewrites user-supplied opcode values with kernel ones.
2221 *
2222 * Returns 0 on success and appropriate error code otherwise.
2223 */
2224 static int
rewrite_rule_uidx(struct ip_fw_chain * chain,struct rule_check_info * ci)2225 rewrite_rule_uidx(struct ip_fw_chain *chain, struct rule_check_info *ci)
2226 {
2227 int error;
2228 ipfw_insn *cmd;
2229 struct obj_idx *p, *pidx_first, *pidx_last;
2230 struct tid_info ti;
2231
2232 /*
2233 * Prepare an array for storing opcode indices.
2234 * Use stack allocation by default.
2235 */
2236 if (ci->object_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) {
2237 /* Stack */
2238 pidx_first = ci->obuf;
2239 } else
2240 pidx_first = malloc(
2241 ci->object_opcodes * sizeof(struct obj_idx),
2242 M_IPFW, M_WAITOK | M_ZERO);
2243
2244 error = 0;
2245 memset(&ti, 0, sizeof(ti));
2246
2247 /* Use set rule is assigned to. */
2248 ti.set = ci->krule->set;
2249 if (ci->ctlv != NULL) {
2250 ti.tlvs = (void *)(ci->ctlv + 1);
2251 ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv);
2252 }
2253
2254 /* Reference all used tables and other objects */
2255 error = ref_rule_objects(chain, ci->krule, ci, pidx_first, &ti);
2256 if (error != 0)
2257 goto free;
2258 /*
2259 * Note that ref_rule_objects() might have updated ci->object_opcodes
2260 * to reflect actual number of object opcodes.
2261 */
2262
2263 /* Perform rewrite of remaining opcodes */
2264 p = pidx_first;
2265 pidx_last = pidx_first + ci->object_opcodes;
2266 for (p = pidx_first; p < pidx_last; p++) {
2267 cmd = ci->krule->cmd + p->off;
2268 update_opcode_kidx(cmd, p->kidx);
2269 }
2270
2271 free:
2272 if (pidx_first != ci->obuf)
2273 free(pidx_first, M_IPFW);
2274
2275 return (error);
2276 }
2277
2278 /*
2279 * Parses one or more rules from userland.
2280 * Data layout (version 1)(current):
2281 * Request:
2282 * [
2283 * ip_fw3_opheader
2284 * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1)
2285 * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ] (*2) (*3)
2286 * ]
2287 * Reply:
2288 * [
2289 * ip_fw3_opheader
2290 * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
2291 * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ]
2292 * ]
2293 *
2294 * Rules in reply are modified to store their actual ruleset number.
2295 *
2296 * (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending
2297 * according to their idx field and there has to be no duplicates.
2298 * (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending.
2299 * (*3) Each ip_fw structure needs to be aligned to u64 boundary.
2300 *
2301 * Returns 0 on success.
2302 */
2303 static __noinline int
parse_rules_v1(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd,ipfw_obj_ctlv ** prtlv,struct rule_check_info ** pci)2304 parse_rules_v1(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2305 struct sockopt_data *sd, ipfw_obj_ctlv **prtlv,
2306 struct rule_check_info **pci)
2307 {
2308 ipfw_obj_ctlv *ctlv, *rtlv, *tstate;
2309 ipfw_obj_ntlv *ntlv;
2310 struct rule_check_info *ci, *cbuf;
2311 struct ip_fw_rule *r;
2312 size_t count, clen, read, rsize;
2313 uint32_t idx, rulenum;
2314 int error;
2315
2316 op3 = (ip_fw3_opheader *)ipfw_get_sopt_space(sd, sd->valsize);
2317 ctlv = (ipfw_obj_ctlv *)(op3 + 1);
2318 read = sizeof(ip_fw3_opheader);
2319 if (read + sizeof(*ctlv) > sd->valsize)
2320 return (EINVAL);
2321
2322 rtlv = NULL;
2323 tstate = NULL;
2324 cbuf = NULL;
2325 /* Table names or other named objects. */
2326 if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) {
2327 /* Check size and alignment. */
2328 clen = ctlv->head.length;
2329 if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2330 (clen % sizeof(uint64_t)) != 0)
2331 return (EINVAL);
2332 /* Check for validness. */
2333 count = (ctlv->head.length - sizeof(*ctlv)) / sizeof(*ntlv);
2334 if (ctlv->count != count || ctlv->objsize != sizeof(*ntlv))
2335 return (EINVAL);
2336 /*
2337 * Check each TLV.
2338 * Ensure TLVs are sorted ascending and
2339 * there are no duplicates.
2340 */
2341 idx = 0;
2342 ntlv = (ipfw_obj_ntlv *)(ctlv + 1);
2343 while (count > 0) {
2344 if (ntlv->head.length != sizeof(ipfw_obj_ntlv))
2345 return (EINVAL);
2346
2347 error = ipfw_check_object_name_generic(ntlv->name);
2348 if (error != 0)
2349 return (error);
2350
2351 if (ntlv->idx <= idx)
2352 return (EINVAL);
2353
2354 idx = ntlv->idx;
2355 count--;
2356 ntlv++;
2357 }
2358
2359 tstate = ctlv;
2360 read += ctlv->head.length;
2361 ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2362
2363 if (read + sizeof(*ctlv) > sd->valsize)
2364 return (EINVAL);
2365 }
2366
2367 /* List of rules. */
2368 if (ctlv->head.type == IPFW_TLV_RULE_LIST) {
2369 clen = ctlv->head.length;
2370 if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2371 (clen % sizeof(uint64_t)) != 0)
2372 return (EINVAL);
2373
2374 clen -= sizeof(*ctlv);
2375 if (ctlv->count == 0 ||
2376 ctlv->count > clen / sizeof(struct ip_fw_rule))
2377 return (EINVAL);
2378
2379 /* Allocate state for each rule */
2380 cbuf = malloc(ctlv->count * sizeof(struct rule_check_info),
2381 M_TEMP, M_WAITOK | M_ZERO);
2382
2383 /*
2384 * Check each rule for validness.
2385 * Ensure numbered rules are sorted ascending
2386 * and properly aligned
2387 */
2388 rulenum = 0;
2389 count = 0;
2390 error = 0;
2391 ci = cbuf;
2392 r = (struct ip_fw_rule *)(ctlv + 1);
2393 while (clen > 0) {
2394 rsize = RULEUSIZE1(r);
2395 if (rsize > clen || count > ctlv->count) {
2396 error = EINVAL;
2397 break;
2398 }
2399 ci->ctlv = tstate;
2400 ci->version = IP_FW3_OPVER;
2401 error = ipfw_check_rule(r, rsize, ci);
2402 if (error != 0)
2403 break;
2404
2405 /* Check sorting */
2406 if (count != 0 && ((rulenum == 0) != (r->rulenum == 0) ||
2407 r->rulenum < rulenum)) {
2408 printf("ipfw: wrong order: rulenum %u"
2409 " vs %u\n", r->rulenum, rulenum);
2410 error = EINVAL;
2411 break;
2412 }
2413 rulenum = r->rulenum;
2414 ci->urule = (caddr_t)r;
2415 clen -= rsize;
2416 r = (struct ip_fw_rule *)((caddr_t)r + rsize);
2417 count++;
2418 ci++;
2419 }
2420
2421 if (ctlv->count != count || error != 0) {
2422 free(cbuf, M_TEMP);
2423 return (EINVAL);
2424 }
2425
2426 rtlv = ctlv;
2427 read += ctlv->head.length;
2428 ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2429 }
2430
2431 if (read != sd->valsize || rtlv == NULL) {
2432 free(cbuf, M_TEMP);
2433 return (EINVAL);
2434 }
2435
2436 *prtlv = rtlv;
2437 *pci = cbuf;
2438 return (0);
2439 }
2440
2441 /*
2442 * Copy rule @urule from v1 userland format (current) to kernel @krule.
2443 */
2444 static void
import_rule_v1(struct ip_fw_chain * chain,struct rule_check_info * ci)2445 import_rule_v1(struct ip_fw_chain *chain, struct rule_check_info *ci)
2446 {
2447 struct ip_fw_rule *urule;
2448 struct ip_fw *krule;
2449
2450 urule = (struct ip_fw_rule *)ci->urule;
2451 krule = ci->krule = ipfw_alloc_rule(chain, RULEKSIZE1(urule));
2452
2453 krule->act_ofs = urule->act_ofs;
2454 krule->cmd_len = urule->cmd_len;
2455 krule->rulenum = urule->rulenum;
2456 krule->set = urule->set;
2457 krule->flags = urule->flags;
2458
2459 /* Save rulenum offset */
2460 ci->urule_numoff = offsetof(struct ip_fw_rule, rulenum);
2461
2462 /* Copy opcodes */
2463 memcpy(krule->cmd, urule->cmd, krule->cmd_len * sizeof(uint32_t));
2464 }
2465
2466 /*
2467 * Adds one or more rules to ipfw @chain.
2468 */
2469 static int
add_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2470 add_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2471 struct sockopt_data *sd)
2472 {
2473 ipfw_obj_ctlv *rtlv;
2474 struct rule_check_info *ci, *nci;
2475 int i, ret;
2476
2477 /*
2478 * Check rules buffer for validness.
2479 */
2480 ret = parse_rules_v1(chain, op3, sd, &rtlv, &nci);
2481 if (ret != 0)
2482 return (ret);
2483 /*
2484 * Allocate storage for the kernel representation of rules.
2485 */
2486 for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2487 import_rule_v1(chain, ci);
2488 /*
2489 * Try to add new rules to the chain.
2490 */
2491 if ((ret = ipfw_commit_rules(chain, nci, rtlv->count)) != 0) {
2492 for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2493 ipfw_free_rule(ci->krule);
2494 }
2495 /* Cleanup after parse_rules() */
2496 free(nci, M_TEMP);
2497 return (ret);
2498 }
2499
2500 /*
2501 * Lists all sopts currently registered.
2502 * Data layout (v1)(current):
2503 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2504 * Reply: [ ipfw_obj_lheader ipfw_sopt_info x N ]
2505 *
2506 * Returns 0 on success
2507 */
2508 static int
dump_soptcodes(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2509 dump_soptcodes(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2510 struct sockopt_data *sd)
2511 {
2512 struct _ipfw_obj_lheader *olh;
2513 ipfw_sopt_info *i;
2514 struct ipfw_sopt_handler *sh;
2515 uint32_t count, n, size;
2516
2517 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,
2518 sizeof(*olh));
2519 if (olh == NULL)
2520 return (EINVAL);
2521 if (sd->valsize < olh->size)
2522 return (EINVAL);
2523
2524 CTL3_LOCK();
2525 count = ctl3_hsize;
2526 size = count * sizeof(ipfw_sopt_info) + sizeof(ipfw_obj_lheader);
2527
2528 /* Fill in header regadless of buffer size */
2529 olh->count = count;
2530 olh->objsize = sizeof(ipfw_sopt_info);
2531
2532 if (size > olh->size) {
2533 olh->size = size;
2534 CTL3_UNLOCK();
2535 return (ENOMEM);
2536 }
2537 olh->size = size;
2538
2539 for (n = 0; n < count; n++) {
2540 i = (ipfw_sopt_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2541 KASSERT(i != NULL, ("previously checked buffer is not enough"));
2542 sh = &ctl3_handlers[n];
2543 i->opcode = sh->opcode;
2544 i->version = sh->version;
2545 i->refcnt = sh->refcnt;
2546 }
2547 CTL3_UNLOCK();
2548
2549 return (0);
2550 }
2551
2552 /*
2553 * Compares two opcodes.
2554 * Used both in qsort() and bsearch().
2555 *
2556 * Returns 0 if match is found.
2557 */
2558 static int
compare_opcodes(const void * _a,const void * _b)2559 compare_opcodes(const void *_a, const void *_b)
2560 {
2561 const struct opcode_obj_rewrite *a, *b;
2562
2563 a = (const struct opcode_obj_rewrite *)_a;
2564 b = (const struct opcode_obj_rewrite *)_b;
2565
2566 if (a->opcode < b->opcode)
2567 return (-1);
2568 else if (a->opcode > b->opcode)
2569 return (1);
2570
2571 return (0);
2572 }
2573
2574 /*
2575 * XXX: Rewrite bsearch()
2576 */
2577 static int
find_op_rw_range(uint16_t op,struct opcode_obj_rewrite ** plo,struct opcode_obj_rewrite ** phi)2578 find_op_rw_range(uint16_t op, struct opcode_obj_rewrite **plo,
2579 struct opcode_obj_rewrite **phi)
2580 {
2581 struct opcode_obj_rewrite *ctl3_max, *lo, *hi, h, *rw;
2582
2583 memset(&h, 0, sizeof(h));
2584 h.opcode = op;
2585
2586 rw = (struct opcode_obj_rewrite *)bsearch(&h, ctl3_rewriters,
2587 ctl3_rsize, sizeof(h), compare_opcodes);
2588 if (rw == NULL)
2589 return (1);
2590
2591 /* Find the first element matching the same opcode */
2592 lo = rw;
2593 for ( ; lo > ctl3_rewriters && (lo - 1)->opcode == op; lo--)
2594 ;
2595
2596 /* Find the last element matching the same opcode */
2597 hi = rw;
2598 ctl3_max = ctl3_rewriters + ctl3_rsize;
2599 for ( ; (hi + 1) < ctl3_max && (hi + 1)->opcode == op; hi++)
2600 ;
2601
2602 *plo = lo;
2603 *phi = hi;
2604
2605 return (0);
2606 }
2607
2608 /*
2609 * Finds opcode object rewriter based on @code.
2610 *
2611 * Returns pointer to handler or NULL.
2612 */
2613 static struct opcode_obj_rewrite *
find_op_rw(ipfw_insn * cmd,uint32_t * puidx,uint8_t * ptype)2614 find_op_rw(ipfw_insn *cmd, uint32_t *puidx, uint8_t *ptype)
2615 {
2616 struct opcode_obj_rewrite *rw, *lo, *hi;
2617 uint32_t uidx;
2618 uint8_t subtype;
2619
2620 if (find_op_rw_range(cmd->opcode, &lo, &hi) != 0)
2621 return (NULL);
2622
2623 for (rw = lo; rw <= hi; rw++) {
2624 if (rw->classifier(cmd, &uidx, &subtype) == 0) {
2625 if (puidx != NULL)
2626 *puidx = uidx;
2627 if (ptype != NULL)
2628 *ptype = subtype;
2629 return (rw);
2630 }
2631 }
2632
2633 return (NULL);
2634 }
2635 int
classify_opcode_kidx(ipfw_insn * cmd,uint32_t * puidx)2636 classify_opcode_kidx(ipfw_insn *cmd, uint32_t *puidx)
2637 {
2638
2639 if (find_op_rw(cmd, puidx, NULL) == NULL)
2640 return (1);
2641 return (0);
2642 }
2643
2644 void
update_opcode_kidx(ipfw_insn * cmd,uint32_t idx)2645 update_opcode_kidx(ipfw_insn *cmd, uint32_t idx)
2646 {
2647 struct opcode_obj_rewrite *rw;
2648
2649 rw = find_op_rw(cmd, NULL, NULL);
2650 KASSERT(rw != NULL, ("No handler to update opcode %d", cmd->opcode));
2651 rw->update(cmd, idx);
2652 }
2653
2654 void
ipfw_init_obj_rewriter(void)2655 ipfw_init_obj_rewriter(void)
2656 {
2657 ctl3_rewriters = NULL;
2658 ctl3_rsize = 0;
2659 }
2660
2661 void
ipfw_destroy_obj_rewriter(void)2662 ipfw_destroy_obj_rewriter(void)
2663 {
2664 if (ctl3_rewriters != NULL)
2665 free(ctl3_rewriters, M_IPFW);
2666 ctl3_rewriters = NULL;
2667 ctl3_rsize = 0;
2668 }
2669
2670 /*
2671 * Adds one or more opcode object rewrite handlers to the global array.
2672 * Function may sleep.
2673 */
2674 void
ipfw_add_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2675 ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2676 {
2677 size_t sz;
2678 struct opcode_obj_rewrite *tmp;
2679
2680 CTL3_LOCK();
2681
2682 for (;;) {
2683 sz = ctl3_rsize + count;
2684 CTL3_UNLOCK();
2685 tmp = malloc(sizeof(*rw) * sz, M_IPFW, M_WAITOK | M_ZERO);
2686 CTL3_LOCK();
2687 if (ctl3_rsize + count <= sz)
2688 break;
2689
2690 /* Retry */
2691 free(tmp, M_IPFW);
2692 }
2693
2694 /* Merge old & new arrays */
2695 sz = ctl3_rsize + count;
2696 memcpy(tmp, ctl3_rewriters, ctl3_rsize * sizeof(*rw));
2697 memcpy(&tmp[ctl3_rsize], rw, count * sizeof(*rw));
2698 qsort(tmp, sz, sizeof(*rw), compare_opcodes);
2699 /* Switch new and free old */
2700 if (ctl3_rewriters != NULL)
2701 free(ctl3_rewriters, M_IPFW);
2702 ctl3_rewriters = tmp;
2703 ctl3_rsize = sz;
2704
2705 CTL3_UNLOCK();
2706 }
2707
2708 /*
2709 * Removes one or more object rewrite handlers from the global array.
2710 */
2711 int
ipfw_del_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2712 ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2713 {
2714 size_t sz;
2715 struct opcode_obj_rewrite *ctl3_max, *ktmp, *lo, *hi;
2716 int i;
2717
2718 CTL3_LOCK();
2719
2720 for (i = 0; i < count; i++) {
2721 if (find_op_rw_range(rw[i].opcode, &lo, &hi) != 0)
2722 continue;
2723
2724 for (ktmp = lo; ktmp <= hi; ktmp++) {
2725 if (ktmp->classifier != rw[i].classifier)
2726 continue;
2727
2728 ctl3_max = ctl3_rewriters + ctl3_rsize;
2729 sz = (ctl3_max - (ktmp + 1)) * sizeof(*ktmp);
2730 memmove(ktmp, ktmp + 1, sz);
2731 ctl3_rsize--;
2732 break;
2733 }
2734 }
2735
2736 if (ctl3_rsize == 0) {
2737 if (ctl3_rewriters != NULL)
2738 free(ctl3_rewriters, M_IPFW);
2739 ctl3_rewriters = NULL;
2740 }
2741
2742 CTL3_UNLOCK();
2743
2744 return (0);
2745 }
2746
2747 static int
export_objhash_ntlv_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2748 export_objhash_ntlv_internal(struct namedobj_instance *ni,
2749 struct named_object *no, void *arg)
2750 {
2751 struct sockopt_data *sd;
2752 ipfw_obj_ntlv *ntlv;
2753
2754 sd = (struct sockopt_data *)arg;
2755 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
2756 if (ntlv == NULL)
2757 return (ENOMEM);
2758 ipfw_export_obj_ntlv(no, ntlv);
2759 return (0);
2760 }
2761
2762 /*
2763 * Lists all service objects.
2764 * Data layout (v0)(current):
2765 * Request: [ ipfw_obj_lheader ] size = ipfw_obj_lheader.size
2766 * Reply: [ ipfw_obj_lheader [ ipfw_obj_ntlv x N ] (optional) ]
2767 * Returns 0 on success
2768 */
2769 static int
dump_srvobjects(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2770 dump_srvobjects(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2771 struct sockopt_data *sd)
2772 {
2773 ipfw_obj_lheader *hdr;
2774 int count;
2775
2776 hdr = (ipfw_obj_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
2777 if (hdr == NULL)
2778 return (EINVAL);
2779
2780 IPFW_UH_RLOCK(chain);
2781 count = ipfw_objhash_count(CHAIN_TO_SRV(chain));
2782 hdr->size = sizeof(ipfw_obj_lheader) + count * sizeof(ipfw_obj_ntlv);
2783 if (sd->valsize < hdr->size) {
2784 IPFW_UH_RUNLOCK(chain);
2785 return (ENOMEM);
2786 }
2787 hdr->count = count;
2788 hdr->objsize = sizeof(ipfw_obj_ntlv);
2789 if (count > 0)
2790 ipfw_objhash_foreach(CHAIN_TO_SRV(chain),
2791 export_objhash_ntlv_internal, sd);
2792 IPFW_UH_RUNLOCK(chain);
2793 return (0);
2794 }
2795
2796 void
ipfw_enable_skipto_cache(struct ip_fw_chain * chain)2797 ipfw_enable_skipto_cache(struct ip_fw_chain *chain)
2798 {
2799
2800 IPFW_UH_WLOCK_ASSERT(chain);
2801 update_skipto_cache(chain, chain->map);
2802
2803 IPFW_WLOCK(chain);
2804 swap_skipto_cache(chain);
2805 V_skipto_cache = 1;
2806 IPFW_WUNLOCK(chain);
2807 }
2808
2809 /*
2810 * Enables or disable skipto cache.
2811 * Request: [ ipfw_cmd_header ] size = ipfw_cmd_header.size
2812 * Reply: [ ipfw_cmd_header ]
2813 * Returns 0 on success
2814 */
2815 static int
manage_skiptocache(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2816 manage_skiptocache(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2817 struct sockopt_data *sd)
2818 {
2819 ipfw_cmd_header *hdr;
2820
2821 if (sd->valsize != sizeof(*hdr))
2822 return (EINVAL);
2823
2824 hdr = (ipfw_cmd_header *)ipfw_get_sopt_space(sd, sd->valsize);
2825 if (hdr->cmd != SKIPTO_CACHE_DISABLE &&
2826 hdr->cmd != SKIPTO_CACHE_ENABLE)
2827 return (EOPNOTSUPP);
2828
2829 IPFW_UH_WLOCK(chain);
2830 if (hdr->cmd != V_skipto_cache) {
2831 if (hdr->cmd == SKIPTO_CACHE_ENABLE)
2832 ipfw_enable_skipto_cache(chain);
2833 V_skipto_cache = hdr->cmd;
2834 }
2835 IPFW_UH_WUNLOCK(chain);
2836 return (0);
2837 }
2838
2839 /*
2840 * Compares two sopt handlers (code, version and handler ptr).
2841 * Used both as qsort() and bsearch().
2842 * Does not compare handler for latter case.
2843 *
2844 * Returns 0 if match is found.
2845 */
2846 static int
compare_sh(const void * _a,const void * _b)2847 compare_sh(const void *_a, const void *_b)
2848 {
2849 const struct ipfw_sopt_handler *a, *b;
2850
2851 a = (const struct ipfw_sopt_handler *)_a;
2852 b = (const struct ipfw_sopt_handler *)_b;
2853
2854 if (a->opcode < b->opcode)
2855 return (-1);
2856 else if (a->opcode > b->opcode)
2857 return (1);
2858
2859 if (a->version < b->version)
2860 return (-1);
2861 else if (a->version > b->version)
2862 return (1);
2863
2864 /* bsearch helper */
2865 if (a->handler == NULL)
2866 return (0);
2867
2868 if ((uintptr_t)a->handler < (uintptr_t)b->handler)
2869 return (-1);
2870 else if ((uintptr_t)a->handler > (uintptr_t)b->handler)
2871 return (1);
2872
2873 return (0);
2874 }
2875
2876 /*
2877 * Finds sopt handler based on @code and @version.
2878 *
2879 * Returns pointer to handler or NULL.
2880 */
2881 static struct ipfw_sopt_handler *
find_sh(uint16_t code,uint8_t version,sopt_handler_f * handler)2882 find_sh(uint16_t code, uint8_t version, sopt_handler_f *handler)
2883 {
2884 struct ipfw_sopt_handler *sh, h;
2885
2886 memset(&h, 0, sizeof(h));
2887 h.opcode = code;
2888 h.version = version;
2889 h.handler = handler;
2890
2891 sh = (struct ipfw_sopt_handler *)bsearch(&h, ctl3_handlers,
2892 ctl3_hsize, sizeof(h), compare_sh);
2893
2894 return (sh);
2895 }
2896
2897 static int
find_ref_sh(uint16_t opcode,uint8_t version,struct ipfw_sopt_handler * psh)2898 find_ref_sh(uint16_t opcode, uint8_t version, struct ipfw_sopt_handler *psh)
2899 {
2900 struct ipfw_sopt_handler *sh;
2901
2902 CTL3_LOCK();
2903 if ((sh = find_sh(opcode, version, NULL)) == NULL) {
2904 CTL3_UNLOCK();
2905 printf("ipfw: ipfw_ctl3 invalid option %d""v""%d\n",
2906 opcode, version);
2907 return (EINVAL);
2908 }
2909 sh->refcnt++;
2910 ctl3_refct++;
2911 /* Copy handler data to requested buffer */
2912 *psh = *sh;
2913 CTL3_UNLOCK();
2914
2915 return (0);
2916 }
2917
2918 static void
find_unref_sh(struct ipfw_sopt_handler * psh)2919 find_unref_sh(struct ipfw_sopt_handler *psh)
2920 {
2921 struct ipfw_sopt_handler *sh;
2922
2923 CTL3_LOCK();
2924 sh = find_sh(psh->opcode, psh->version, NULL);
2925 KASSERT(sh != NULL, ("ctl3 handler disappeared"));
2926 sh->refcnt--;
2927 ctl3_refct--;
2928 CTL3_UNLOCK();
2929 }
2930
2931 void
ipfw_init_sopt_handler(void)2932 ipfw_init_sopt_handler(void)
2933 {
2934 CTL3_LOCK_INIT();
2935 IPFW_ADD_SOPT_HANDLER(1, scodes);
2936 }
2937
2938 void
ipfw_destroy_sopt_handler(void)2939 ipfw_destroy_sopt_handler(void)
2940 {
2941 IPFW_DEL_SOPT_HANDLER(1, scodes);
2942 CTL3_LOCK_DESTROY();
2943 }
2944
2945 void
ipfw_register_compat(ipfw_check_opcode_t f)2946 ipfw_register_compat(ipfw_check_opcode_t f)
2947 {
2948 check_opcode_f = f;
2949 }
2950
2951 void
ipfw_unregister_compat(void)2952 ipfw_unregister_compat(void)
2953 {
2954 check_opcode_f = check_opcode_compat_nop;
2955 }
2956
2957 /*
2958 * Adds one or more sockopt handlers to the global array.
2959 * Function may sleep.
2960 */
2961 void
ipfw_add_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)2962 ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
2963 {
2964 size_t sz;
2965 struct ipfw_sopt_handler *tmp;
2966
2967 CTL3_LOCK();
2968
2969 for (;;) {
2970 sz = ctl3_hsize + count;
2971 CTL3_UNLOCK();
2972 tmp = malloc(sizeof(*sh) * sz, M_IPFW, M_WAITOK | M_ZERO);
2973 CTL3_LOCK();
2974 if (ctl3_hsize + count <= sz)
2975 break;
2976
2977 /* Retry */
2978 free(tmp, M_IPFW);
2979 }
2980
2981 /* Merge old & new arrays */
2982 sz = ctl3_hsize + count;
2983 memcpy(tmp, ctl3_handlers, ctl3_hsize * sizeof(*sh));
2984 memcpy(&tmp[ctl3_hsize], sh, count * sizeof(*sh));
2985 qsort(tmp, sz, sizeof(*sh), compare_sh);
2986 /* Switch new and free old */
2987 if (ctl3_handlers != NULL)
2988 free(ctl3_handlers, M_IPFW);
2989 ctl3_handlers = tmp;
2990 ctl3_hsize = sz;
2991 ctl3_gencnt++;
2992
2993 CTL3_UNLOCK();
2994 }
2995
2996 /*
2997 * Removes one or more sockopt handlers from the global array.
2998 */
2999 int
ipfw_del_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3000 ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3001 {
3002 size_t sz;
3003 struct ipfw_sopt_handler *tmp, *h;
3004 int i;
3005
3006 CTL3_LOCK();
3007
3008 for (i = 0; i < count; i++) {
3009 tmp = &sh[i];
3010 h = find_sh(tmp->opcode, tmp->version, tmp->handler);
3011 if (h == NULL)
3012 continue;
3013
3014 sz = (ctl3_handlers + ctl3_hsize - (h + 1)) * sizeof(*h);
3015 memmove(h, h + 1, sz);
3016 ctl3_hsize--;
3017 }
3018
3019 if (ctl3_hsize == 0) {
3020 if (ctl3_handlers != NULL)
3021 free(ctl3_handlers, M_IPFW);
3022 ctl3_handlers = NULL;
3023 }
3024
3025 ctl3_gencnt++;
3026
3027 CTL3_UNLOCK();
3028
3029 return (0);
3030 }
3031
3032 /*
3033 * Writes data accumulated in @sd to sockopt buffer.
3034 * Zeroes internal @sd buffer.
3035 */
3036 static int
ipfw_flush_sopt_data(struct sockopt_data * sd)3037 ipfw_flush_sopt_data(struct sockopt_data *sd)
3038 {
3039 struct sockopt *sopt;
3040 int error;
3041 size_t sz;
3042
3043 sz = sd->koff;
3044 if (sz == 0)
3045 return (0);
3046
3047 sopt = sd->sopt;
3048
3049 if (sopt->sopt_dir == SOPT_GET) {
3050 error = copyout(sd->kbuf, sopt->sopt_val, sz);
3051 if (error != 0)
3052 return (error);
3053 }
3054
3055 memset(sd->kbuf, 0, sd->ksize);
3056 sd->ktotal += sz;
3057 sd->koff = 0;
3058 if (sd->ktotal + sd->ksize < sd->valsize)
3059 sd->kavail = sd->ksize;
3060 else
3061 sd->kavail = sd->valsize - sd->ktotal;
3062
3063 /* Update sopt buffer data */
3064 sopt->sopt_valsize = sd->ktotal;
3065 sopt->sopt_val = sd->sopt_val + sd->ktotal;
3066
3067 return (0);
3068 }
3069
3070 /*
3071 * Ensures that @sd buffer has contiguous @neeeded number of
3072 * bytes.
3073 *
3074 * Returns pointer to requested space or NULL.
3075 */
3076 caddr_t
ipfw_get_sopt_space(struct sockopt_data * sd,size_t needed)3077 ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed)
3078 {
3079 int error;
3080 caddr_t addr;
3081
3082 if (sd->kavail < needed) {
3083 /*
3084 * Flush data and try another time.
3085 */
3086 error = ipfw_flush_sopt_data(sd);
3087
3088 if (sd->kavail < needed || error != 0)
3089 return (NULL);
3090 }
3091
3092 addr = sd->kbuf + sd->koff;
3093 sd->koff += needed;
3094 sd->kavail -= needed;
3095 return (addr);
3096 }
3097
3098 /*
3099 * Requests @needed contiguous bytes from @sd buffer.
3100 * Function is used to notify subsystem that we are
3101 * interesed in first @needed bytes (request header)
3102 * and the rest buffer can be safely zeroed.
3103 *
3104 * Returns pointer to requested space or NULL.
3105 */
3106 caddr_t
ipfw_get_sopt_header(struct sockopt_data * sd,size_t needed)3107 ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed)
3108 {
3109 caddr_t addr;
3110
3111 if ((addr = ipfw_get_sopt_space(sd, needed)) == NULL)
3112 return (NULL);
3113
3114 if (sd->kavail > 0)
3115 memset(sd->kbuf + sd->koff, 0, sd->kavail);
3116
3117 return (addr);
3118 }
3119
3120 /*
3121 * New sockopt handler.
3122 */
3123 int
ipfw_ctl3(struct sockopt * sopt)3124 ipfw_ctl3(struct sockopt *sopt)
3125 {
3126 int error, locked;
3127 size_t size, valsize;
3128 struct ip_fw_chain *chain;
3129 char xbuf[256];
3130 struct sockopt_data sdata;
3131 struct ipfw_sopt_handler h;
3132 ip_fw3_opheader *op3 = NULL;
3133
3134 error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
3135 if (error != 0)
3136 return (error);
3137
3138 if (sopt->sopt_name != IP_FW3)
3139 return (EOPNOTSUPP);
3140
3141 chain = &V_layer3_chain;
3142 error = 0;
3143
3144 /* Save original valsize before it is altered via sooptcopyin() */
3145 valsize = sopt->sopt_valsize;
3146 memset(&sdata, 0, sizeof(sdata));
3147 /* Read op3 header first to determine actual operation */
3148 op3 = (ip_fw3_opheader *)xbuf;
3149 error = sooptcopyin(sopt, op3, sizeof(*op3), sizeof(*op3));
3150 if (error != 0)
3151 return (error);
3152 sopt->sopt_valsize = valsize;
3153
3154 /*
3155 * Find and reference command.
3156 */
3157 error = find_ref_sh(op3->opcode, op3->version, &h);
3158 if (error != 0)
3159 return (error);
3160
3161 /*
3162 * Disallow modifications in really-really secure mode, but still allow
3163 * the logging counters to be reset.
3164 */
3165 if ((h.dir & HDIR_SET) != 0 && h.opcode != IP_FW_XRESETLOG) {
3166 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3167 if (error != 0) {
3168 find_unref_sh(&h);
3169 return (error);
3170 }
3171 }
3172
3173 /*
3174 * Fill in sockopt_data structure that may be useful for
3175 * IP_FW3 get requests.
3176 */
3177 locked = 0;
3178 if (valsize <= sizeof(xbuf)) {
3179 /* use on-stack buffer */
3180 sdata.kbuf = xbuf;
3181 sdata.ksize = sizeof(xbuf);
3182 sdata.kavail = valsize;
3183 } else {
3184 /*
3185 * Determine opcode type/buffer size:
3186 * allocate sliding-window buf for data export or
3187 * contiguous buffer for special ops.
3188 */
3189 if ((h.dir & HDIR_SET) != 0) {
3190 /* Set request. Allocate contigous buffer. */
3191 if (valsize > CTL3_LARGEBUF) {
3192 find_unref_sh(&h);
3193 return (EFBIG);
3194 }
3195
3196 size = valsize;
3197 } else {
3198 /* Get request. Allocate sliding window buffer */
3199 size = (valsize<CTL3_SMALLBUF) ? valsize:CTL3_SMALLBUF;
3200
3201 if (size < valsize) {
3202 /* We have to wire user buffer */
3203 error = vslock(sopt->sopt_val, valsize);
3204 if (error != 0)
3205 return (error);
3206 locked = 1;
3207 }
3208 }
3209
3210 sdata.kbuf = malloc(size, M_TEMP, M_WAITOK | M_ZERO);
3211 sdata.ksize = size;
3212 sdata.kavail = size;
3213 }
3214
3215 sdata.sopt = sopt;
3216 sdata.sopt_val = sopt->sopt_val;
3217 sdata.valsize = valsize;
3218
3219 /*
3220 * Copy either all request (if valsize < bsize_max)
3221 * or first bsize_max bytes to guarantee most consumers
3222 * that all necessary data has been copied).
3223 * Anyway, copy not less than sizeof(ip_fw3_opheader).
3224 */
3225 if ((error = sooptcopyin(sopt, sdata.kbuf, sdata.ksize,
3226 sizeof(ip_fw3_opheader))) != 0)
3227 return (error);
3228 op3 = (ip_fw3_opheader *)sdata.kbuf;
3229
3230 /* Finally, run handler */
3231 error = h.handler(chain, op3, &sdata);
3232 find_unref_sh(&h);
3233
3234 /* Flush state and free buffers */
3235 if (error == 0)
3236 error = ipfw_flush_sopt_data(&sdata);
3237 else
3238 ipfw_flush_sopt_data(&sdata);
3239
3240 if (locked != 0)
3241 vsunlock(sdata.sopt_val, valsize);
3242
3243 /* Restore original pointer and set number of bytes written */
3244 sopt->sopt_val = sdata.sopt_val;
3245 sopt->sopt_valsize = sdata.ktotal;
3246 if (sdata.kbuf != xbuf)
3247 free(sdata.kbuf, M_TEMP);
3248
3249 return (error);
3250 }
3251
3252 /*
3253 * Named object api
3254 *
3255 */
3256
3257 void
ipfw_init_srv(struct ip_fw_chain * ch)3258 ipfw_init_srv(struct ip_fw_chain *ch)
3259 {
3260 ch->srvmap = ipfw_objhash_create(IPFW_OBJECTS_DEFAULT,
3261 DEFAULT_OBJHASH_SIZE);
3262 ch->srvstate = malloc(sizeof(void *) * IPFW_OBJECTS_DEFAULT,
3263 M_IPFW, M_WAITOK | M_ZERO);
3264 }
3265
3266 void
ipfw_destroy_srv(struct ip_fw_chain * ch)3267 ipfw_destroy_srv(struct ip_fw_chain *ch)
3268 {
3269 free(ch->srvstate, M_IPFW);
3270 ipfw_objhash_destroy(ch->srvmap);
3271 }
3272
3273 /*
3274 * Allocate new bitmask which can be used to enlarge/shrink
3275 * named instance index.
3276 */
3277 void
ipfw_objhash_bitmap_alloc(uint32_t items,void ** idx,int * pblocks)3278 ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks)
3279 {
3280 size_t size;
3281 int max_blocks;
3282 u_long *idx_mask;
3283
3284 KASSERT((items % BLOCK_ITEMS) == 0,
3285 ("bitmask size needs to power of 2 and greater or equal to %zu",
3286 BLOCK_ITEMS));
3287
3288 max_blocks = items / BLOCK_ITEMS;
3289 size = items / 8;
3290 idx_mask = malloc(size * IPFW_MAX_SETS, M_IPFW, M_WAITOK);
3291 /* Mark all as free */
3292 memset(idx_mask, 0xFF, size * IPFW_MAX_SETS);
3293 *idx_mask &= ~(u_long)1; /* Skip index 0 */
3294
3295 *idx = idx_mask;
3296 *pblocks = max_blocks;
3297 }
3298
3299 /*
3300 * Copy current bitmask index to new one.
3301 */
3302 void
ipfw_objhash_bitmap_merge(struct namedobj_instance * ni,void ** idx,int * blocks)3303 ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, void **idx, int *blocks)
3304 {
3305 int old_blocks, new_blocks;
3306 u_long *old_idx, *new_idx;
3307 int i;
3308
3309 old_idx = ni->idx_mask;
3310 old_blocks = ni->max_blocks;
3311 new_idx = *idx;
3312 new_blocks = *blocks;
3313
3314 for (i = 0; i < IPFW_MAX_SETS; i++) {
3315 memcpy(&new_idx[new_blocks * i], &old_idx[old_blocks * i],
3316 old_blocks * sizeof(u_long));
3317 }
3318 }
3319
3320 /*
3321 * Swaps current @ni index with new one.
3322 */
3323 void
ipfw_objhash_bitmap_swap(struct namedobj_instance * ni,void ** idx,int * blocks)3324 ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, void **idx, int *blocks)
3325 {
3326 int old_blocks;
3327 u_long *old_idx;
3328
3329 old_idx = ni->idx_mask;
3330 old_blocks = ni->max_blocks;
3331
3332 ni->idx_mask = *idx;
3333 ni->max_blocks = *blocks;
3334
3335 /* Save old values */
3336 *idx = old_idx;
3337 *blocks = old_blocks;
3338 }
3339
3340 void
ipfw_objhash_bitmap_free(void * idx,int blocks)3341 ipfw_objhash_bitmap_free(void *idx, int blocks)
3342 {
3343 free(idx, M_IPFW);
3344 }
3345
3346 /*
3347 * Creates named hash instance.
3348 * Must be called without holding any locks.
3349 * Return pointer to new instance.
3350 */
3351 struct namedobj_instance *
ipfw_objhash_create(uint32_t items,size_t hash_size)3352 ipfw_objhash_create(uint32_t items, size_t hash_size)
3353 {
3354 struct namedobj_instance *ni;
3355 int i;
3356 size_t size;
3357
3358 size = sizeof(struct namedobj_instance) +
3359 sizeof(struct namedobjects_head) * hash_size +
3360 sizeof(struct namedobjects_head) * hash_size;
3361
3362 ni = malloc(size, M_IPFW, M_WAITOK | M_ZERO);
3363 ni->nn_size = hash_size;
3364 ni->nv_size = hash_size;
3365
3366 ni->names = (struct namedobjects_head *)(ni +1);
3367 ni->values = &ni->names[ni->nn_size];
3368
3369 for (i = 0; i < ni->nn_size; i++)
3370 TAILQ_INIT(&ni->names[i]);
3371
3372 for (i = 0; i < ni->nv_size; i++)
3373 TAILQ_INIT(&ni->values[i]);
3374
3375 /* Set default hashing/comparison functions */
3376 ni->hash_f = objhash_hash_name;
3377 ni->cmp_f = objhash_cmp_name;
3378
3379 /* Allocate bitmask separately due to possible resize */
3380 ipfw_objhash_bitmap_alloc(items, (void*)&ni->idx_mask, &ni->max_blocks);
3381
3382 return (ni);
3383 }
3384
3385 void
ipfw_objhash_destroy(struct namedobj_instance * ni)3386 ipfw_objhash_destroy(struct namedobj_instance *ni)
3387 {
3388 free(ni->idx_mask, M_IPFW);
3389 free(ni, M_IPFW);
3390 }
3391
3392 void
ipfw_objhash_set_funcs(struct namedobj_instance * ni,objhash_hash_f * hash_f,objhash_cmp_f * cmp_f)3393 ipfw_objhash_set_funcs(struct namedobj_instance *ni, objhash_hash_f *hash_f,
3394 objhash_cmp_f *cmp_f)
3395 {
3396
3397 ni->hash_f = hash_f;
3398 ni->cmp_f = cmp_f;
3399 }
3400
3401 static uint32_t
objhash_hash_name(struct namedobj_instance * ni,const void * name,uint32_t set)3402 objhash_hash_name(struct namedobj_instance *ni, const void *name, uint32_t set)
3403 {
3404
3405 return (fnv_32_str((const char *)name, FNV1_32_INIT));
3406 }
3407
3408 static int
objhash_cmp_name(struct named_object * no,const void * name,uint32_t set)3409 objhash_cmp_name(struct named_object *no, const void *name, uint32_t set)
3410 {
3411
3412 if ((strcmp(no->name, (const char *)name) == 0) && (no->set == set))
3413 return (0);
3414
3415 return (1);
3416 }
3417
3418 static uint32_t
objhash_hash_idx(struct namedobj_instance * ni,uint32_t val)3419 objhash_hash_idx(struct namedobj_instance *ni, uint32_t val)
3420 {
3421 uint32_t v;
3422
3423 v = val % (ni->nv_size - 1);
3424
3425 return (v);
3426 }
3427
3428 struct named_object *
ipfw_objhash_lookup_name(struct namedobj_instance * ni,uint32_t set,const char * name)3429 ipfw_objhash_lookup_name(struct namedobj_instance *ni, uint32_t set,
3430 const char *name)
3431 {
3432 struct named_object *no;
3433 uint32_t hash;
3434
3435 hash = ni->hash_f(ni, name, set) % ni->nn_size;
3436
3437 TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3438 if (ni->cmp_f(no, name, set) == 0)
3439 return (no);
3440 }
3441
3442 return (NULL);
3443 }
3444
3445 /*
3446 * Find named object by @uid.
3447 * Check @tlvs for valid data inside.
3448 *
3449 * Returns pointer to found TLV or NULL.
3450 */
3451 ipfw_obj_ntlv *
ipfw_find_name_tlv_type(void * tlvs,int len,uint32_t uidx,uint32_t etlv)3452 ipfw_find_name_tlv_type(void *tlvs, int len, uint32_t uidx, uint32_t etlv)
3453 {
3454 ipfw_obj_ntlv *ntlv;
3455 uintptr_t pa, pe;
3456 int l;
3457
3458 pa = (uintptr_t)tlvs;
3459 pe = pa + len;
3460 l = 0;
3461 for (; pa < pe; pa += l) {
3462 ntlv = (ipfw_obj_ntlv *)pa;
3463 l = ntlv->head.length;
3464
3465 if (l != sizeof(*ntlv))
3466 return (NULL);
3467
3468 if (ntlv->idx != uidx)
3469 continue;
3470 /*
3471 * When userland has specified zero TLV type, do
3472 * not compare it with eltv. In some cases userland
3473 * doesn't know what type should it have. Use only
3474 * uidx and name for search named_object.
3475 */
3476 if (ntlv->head.type != 0 &&
3477 ntlv->head.type != (uint16_t)etlv)
3478 continue;
3479
3480 if (ipfw_check_object_name_generic(ntlv->name) != 0)
3481 return (NULL);
3482
3483 return (ntlv);
3484 }
3485
3486 return (NULL);
3487 }
3488
3489 /*
3490 * Finds object config based on either legacy index
3491 * or name in ntlv.
3492 * Note @ti structure contains unchecked data from userland.
3493 *
3494 * Returns 0 in success and fills in @pno with found config
3495 */
3496 int
ipfw_objhash_find_type(struct namedobj_instance * ni,struct tid_info * ti,uint32_t etlv,struct named_object ** pno)3497 ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti,
3498 uint32_t etlv, struct named_object **pno)
3499 {
3500 char *name;
3501 ipfw_obj_ntlv *ntlv;
3502 uint32_t set;
3503
3504 if (ti->tlvs == NULL)
3505 return (EINVAL);
3506
3507 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, etlv);
3508 if (ntlv == NULL)
3509 return (EINVAL);
3510 name = ntlv->name;
3511
3512 /*
3513 * Use set provided by @ti instead of @ntlv one.
3514 * This is needed due to different sets behavior
3515 * controlled by V_fw_tables_sets.
3516 */
3517 set = ti->set;
3518 *pno = ipfw_objhash_lookup_name(ni, set, name);
3519 if (*pno == NULL)
3520 return (ESRCH);
3521 return (0);
3522 }
3523
3524 /*
3525 * Find named object by name, considering also its TLV type.
3526 */
3527 struct named_object *
ipfw_objhash_lookup_name_type(struct namedobj_instance * ni,uint32_t set,uint32_t type,const char * name)3528 ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, uint32_t set,
3529 uint32_t type, const char *name)
3530 {
3531 struct named_object *no;
3532 uint32_t hash;
3533
3534 hash = ni->hash_f(ni, name, set) % ni->nn_size;
3535
3536 TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3537 if (ni->cmp_f(no, name, set) == 0 &&
3538 no->etlv == (uint16_t)type)
3539 return (no);
3540 }
3541
3542 return (NULL);
3543 }
3544
3545 struct named_object *
ipfw_objhash_lookup_kidx(struct namedobj_instance * ni,uint32_t kidx)3546 ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, uint32_t kidx)
3547 {
3548 struct named_object *no;
3549 uint32_t hash;
3550
3551 hash = objhash_hash_idx(ni, kidx);
3552
3553 TAILQ_FOREACH(no, &ni->values[hash], nv_next) {
3554 if (no->kidx == kidx)
3555 return (no);
3556 }
3557
3558 return (NULL);
3559 }
3560
3561 int
ipfw_objhash_same_name(struct namedobj_instance * ni,struct named_object * a,struct named_object * b)3562 ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a,
3563 struct named_object *b)
3564 {
3565
3566 if ((strcmp(a->name, b->name) == 0) && a->set == b->set)
3567 return (1);
3568
3569 return (0);
3570 }
3571
3572 void
ipfw_objhash_add(struct namedobj_instance * ni,struct named_object * no)3573 ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no)
3574 {
3575 uint32_t hash;
3576
3577 hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3578 TAILQ_INSERT_HEAD(&ni->names[hash], no, nn_next);
3579
3580 hash = objhash_hash_idx(ni, no->kidx);
3581 TAILQ_INSERT_HEAD(&ni->values[hash], no, nv_next);
3582
3583 ni->count++;
3584 }
3585
3586 void
ipfw_objhash_del(struct namedobj_instance * ni,struct named_object * no)3587 ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no)
3588 {
3589 uint32_t hash;
3590
3591 hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3592 TAILQ_REMOVE(&ni->names[hash], no, nn_next);
3593
3594 hash = objhash_hash_idx(ni, no->kidx);
3595 TAILQ_REMOVE(&ni->values[hash], no, nv_next);
3596
3597 ni->count--;
3598 }
3599
3600 uint32_t
ipfw_objhash_count(struct namedobj_instance * ni)3601 ipfw_objhash_count(struct namedobj_instance *ni)
3602 {
3603
3604 return (ni->count);
3605 }
3606
3607 uint32_t
ipfw_objhash_count_type(struct namedobj_instance * ni,uint16_t type)3608 ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type)
3609 {
3610 struct named_object *no;
3611 uint32_t count;
3612 int i;
3613
3614 count = 0;
3615 for (i = 0; i < ni->nn_size; i++) {
3616 TAILQ_FOREACH(no, &ni->names[i], nn_next) {
3617 if (no->etlv == type)
3618 count++;
3619 }
3620 }
3621 return (count);
3622 }
3623
3624 /*
3625 * Runs @func for each found named object.
3626 * It is safe to delete objects from callback
3627 */
3628 int
ipfw_objhash_foreach(struct namedobj_instance * ni,objhash_cb_t * f,void * arg)3629 ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, void *arg)
3630 {
3631 struct named_object *no, *no_tmp;
3632 int i, ret;
3633
3634 for (i = 0; i < ni->nn_size; i++) {
3635 TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3636 ret = f(ni, no, arg);
3637 if (ret != 0)
3638 return (ret);
3639 }
3640 }
3641 return (0);
3642 }
3643
3644 /*
3645 * Runs @f for each found named object with type @type.
3646 * It is safe to delete objects from callback
3647 */
3648 int
ipfw_objhash_foreach_type(struct namedobj_instance * ni,objhash_cb_t * f,void * arg,uint16_t type)3649 ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f,
3650 void *arg, uint16_t type)
3651 {
3652 struct named_object *no, *no_tmp;
3653 int i, ret;
3654
3655 for (i = 0; i < ni->nn_size; i++) {
3656 TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3657 if (no->etlv != type)
3658 continue;
3659 ret = f(ni, no, arg);
3660 if (ret != 0)
3661 return (ret);
3662 }
3663 }
3664 return (0);
3665 }
3666
3667 /*
3668 * Removes index from given set.
3669 * Returns 0 on success.
3670 */
3671 int
ipfw_objhash_free_idx(struct namedobj_instance * ni,uint32_t idx)3672 ipfw_objhash_free_idx(struct namedobj_instance *ni, uint32_t idx)
3673 {
3674 u_long *mask;
3675 int i, v;
3676
3677 i = idx / BLOCK_ITEMS;
3678 v = idx % BLOCK_ITEMS;
3679
3680 if (i >= ni->max_blocks)
3681 return (1);
3682
3683 mask = &ni->idx_mask[i];
3684
3685 if ((*mask & ((u_long)1 << v)) != 0)
3686 return (1);
3687
3688 /* Mark as free */
3689 *mask |= (u_long)1 << v;
3690
3691 /* Update free offset */
3692 if (ni->free_off[0] > i)
3693 ni->free_off[0] = i;
3694
3695 return (0);
3696 }
3697
3698 /*
3699 * Allocate new index in given instance and stores in in @pidx.
3700 * Returns 0 on success.
3701 */
3702 int
ipfw_objhash_alloc_idx(void * n,uint32_t * pidx)3703 ipfw_objhash_alloc_idx(void *n, uint32_t *pidx)
3704 {
3705 struct namedobj_instance *ni;
3706 u_long *mask;
3707 int i, off, v;
3708
3709 ni = (struct namedobj_instance *)n;
3710
3711 off = ni->free_off[0];
3712 mask = &ni->idx_mask[off];
3713
3714 for (i = off; i < ni->max_blocks; i++, mask++) {
3715 if ((v = ffsl(*mask)) == 0)
3716 continue;
3717
3718 /* Mark as busy */
3719 *mask &= ~ ((u_long)1 << (v - 1));
3720
3721 ni->free_off[0] = i;
3722
3723 v = BLOCK_ITEMS * i + v - 1;
3724
3725 *pidx = v;
3726 return (0);
3727 }
3728
3729 return (1);
3730 }
3731
3732 /* end of file */
3733