xref: /linux/mm/migrate.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/ksm.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/backing-dev.h>
33 #include <linux/compaction.h>
34 #include <linux/syscalls.h>
35 #include <linux/compat.h>
36 #include <linux/hugetlb.h>
37 #include <linux/gfp.h>
38 #include <linux/page_idle.h>
39 #include <linux/page_owner.h>
40 #include <linux/sched/mm.h>
41 #include <linux/ptrace.h>
42 #include <linux/memory.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/pagewalk.h>
46 #include <linux/balloon_compaction.h>
47 #include <linux/zsmalloc.h>
48 
49 #include <asm/tlbflush.h>
50 
51 #include <trace/events/migrate.h>
52 
53 #include "internal.h"
54 #include "swap.h"
55 
56 static const struct movable_operations *page_movable_ops(struct page *page)
57 {
58 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
59 
60 	/*
61 	 * If we enable page migration for a page of a certain type by marking
62 	 * it as movable, the page type must be sticky until the page gets freed
63 	 * back to the buddy.
64 	 */
65 #ifdef CONFIG_BALLOON_COMPACTION
66 	if (PageOffline(page))
67 		/* Only balloon compaction sets PageOffline pages movable. */
68 		return &balloon_mops;
69 #endif /* CONFIG_BALLOON_COMPACTION */
70 #if defined(CONFIG_ZSMALLOC) && defined(CONFIG_COMPACTION)
71 	if (PageZsmalloc(page))
72 		return &zsmalloc_mops;
73 #endif /* defined(CONFIG_ZSMALLOC) && defined(CONFIG_COMPACTION) */
74 	return NULL;
75 }
76 
77 /**
78  * isolate_movable_ops_page - isolate a movable_ops page for migration
79  * @page: The page.
80  * @mode: The isolation mode.
81  *
82  * Try to isolate a movable_ops page for migration. Will fail if the page is
83  * not a movable_ops page, if the page is already isolated for migration
84  * or if the page was just was released by its owner.
85  *
86  * Once isolated, the page cannot get freed until it is either putback
87  * or migrated.
88  *
89  * Returns true if isolation succeeded, otherwise false.
90  */
91 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode)
92 {
93 	/*
94 	 * TODO: these pages will not be folios in the future. All
95 	 * folio dependencies will have to be removed.
96 	 */
97 	struct folio *folio = folio_get_nontail_page(page);
98 	const struct movable_operations *mops;
99 
100 	/*
101 	 * Avoid burning cycles with pages that are yet under __free_pages(),
102 	 * or just got freed under us.
103 	 *
104 	 * In case we 'win' a race for a movable page being freed under us and
105 	 * raise its refcount preventing __free_pages() from doing its job
106 	 * the put_page() at the end of this block will take care of
107 	 * release this page, thus avoiding a nasty leakage.
108 	 */
109 	if (!folio)
110 		goto out;
111 
112 	/*
113 	 * Check for movable_ops pages before taking the page lock because
114 	 * we use non-atomic bitops on newly allocated page flags so
115 	 * unconditionally grabbing the lock ruins page's owner side.
116 	 *
117 	 * Note that once a page has movable_ops, it will stay that way
118 	 * until the page was freed.
119 	 */
120 	if (unlikely(!page_has_movable_ops(page)))
121 		goto out_putfolio;
122 
123 	/*
124 	 * As movable pages are not isolated from LRU lists, concurrent
125 	 * compaction threads can race against page migration functions
126 	 * as well as race against the releasing a page.
127 	 *
128 	 * In order to avoid having an already isolated movable page
129 	 * being (wrongly) re-isolated while it is under migration,
130 	 * or to avoid attempting to isolate pages being released,
131 	 * lets be sure we have the page lock
132 	 * before proceeding with the movable page isolation steps.
133 	 */
134 	if (unlikely(!folio_trylock(folio)))
135 		goto out_putfolio;
136 
137 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
138 	if (PageMovableOpsIsolated(page))
139 		goto out_no_isolated;
140 
141 	mops = page_movable_ops(page);
142 	if (WARN_ON_ONCE(!mops))
143 		goto out_no_isolated;
144 
145 	if (!mops->isolate_page(page, mode))
146 		goto out_no_isolated;
147 
148 	/* Driver shouldn't use the isolated flag */
149 	VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page);
150 	SetPageMovableOpsIsolated(page);
151 	folio_unlock(folio);
152 
153 	return true;
154 
155 out_no_isolated:
156 	folio_unlock(folio);
157 out_putfolio:
158 	folio_put(folio);
159 out:
160 	return false;
161 }
162 
163 /**
164  * putback_movable_ops_page - putback an isolated movable_ops page
165  * @page: The isolated page.
166  *
167  * Putback an isolated movable_ops page.
168  *
169  * After the page was putback, it might get freed instantly.
170  */
171 static void putback_movable_ops_page(struct page *page)
172 {
173 	/*
174 	 * TODO: these pages will not be folios in the future. All
175 	 * folio dependencies will have to be removed.
176 	 */
177 	struct folio *folio = page_folio(page);
178 
179 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
180 	VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page);
181 	folio_lock(folio);
182 	page_movable_ops(page)->putback_page(page);
183 	ClearPageMovableOpsIsolated(page);
184 	folio_unlock(folio);
185 	folio_put(folio);
186 }
187 
188 /**
189  * migrate_movable_ops_page - migrate an isolated movable_ops page
190  * @dst: The destination page.
191  * @src: The source page.
192  * @mode: The migration mode.
193  *
194  * Migrate an isolated movable_ops page.
195  *
196  * If the src page was already released by its owner, the src page is
197  * un-isolated (putback) and migration succeeds; the migration core will be the
198  * owner of both pages.
199  *
200  * If the src page was not released by its owner and the migration was
201  * successful, the owner of the src page and the dst page are swapped and
202  * the src page is un-isolated.
203  *
204  * If migration fails, the ownership stays unmodified and the src page
205  * remains isolated: migration may be retried later or the page can be putback.
206  *
207  * TODO: migration core will treat both pages as folios and lock them before
208  * this call to unlock them after this call. Further, the folio refcounts on
209  * src and dst are also released by migration core. These pages will not be
210  * folios in the future, so that must be reworked.
211  *
212  * Returns MIGRATEPAGE_SUCCESS on success, otherwise a negative error
213  * code.
214  */
215 static int migrate_movable_ops_page(struct page *dst, struct page *src,
216 		enum migrate_mode mode)
217 {
218 	int rc = MIGRATEPAGE_SUCCESS;
219 
220 	VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src);
221 	VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src);
222 	rc = page_movable_ops(src)->migrate_page(dst, src, mode);
223 	if (rc == MIGRATEPAGE_SUCCESS)
224 		ClearPageMovableOpsIsolated(src);
225 	return rc;
226 }
227 
228 /*
229  * Put previously isolated pages back onto the appropriate lists
230  * from where they were once taken off for compaction/migration.
231  *
232  * This function shall be used whenever the isolated pageset has been
233  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
234  * and folio_isolate_hugetlb().
235  */
236 void putback_movable_pages(struct list_head *l)
237 {
238 	struct folio *folio;
239 	struct folio *folio2;
240 
241 	list_for_each_entry_safe(folio, folio2, l, lru) {
242 		if (unlikely(folio_test_hugetlb(folio))) {
243 			folio_putback_hugetlb(folio);
244 			continue;
245 		}
246 		list_del(&folio->lru);
247 		if (unlikely(page_has_movable_ops(&folio->page))) {
248 			putback_movable_ops_page(&folio->page);
249 		} else {
250 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
251 					folio_is_file_lru(folio), -folio_nr_pages(folio));
252 			folio_putback_lru(folio);
253 		}
254 	}
255 }
256 
257 /* Must be called with an elevated refcount on the non-hugetlb folio */
258 bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
259 {
260 	if (folio_test_hugetlb(folio))
261 		return folio_isolate_hugetlb(folio, list);
262 
263 	if (page_has_movable_ops(&folio->page)) {
264 		if (!isolate_movable_ops_page(&folio->page,
265 					      ISOLATE_UNEVICTABLE))
266 			return false;
267 	} else {
268 		if (!folio_isolate_lru(folio))
269 			return false;
270 		node_stat_add_folio(folio, NR_ISOLATED_ANON +
271 				    folio_is_file_lru(folio));
272 	}
273 	list_add(&folio->lru, list);
274 	return true;
275 }
276 
277 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
278 					  struct folio *folio,
279 					  unsigned long idx)
280 {
281 	struct page *page = folio_page(folio, idx);
282 	bool contains_data;
283 	pte_t newpte;
284 	void *addr;
285 
286 	if (PageCompound(page))
287 		return false;
288 	VM_BUG_ON_PAGE(!PageAnon(page), page);
289 	VM_BUG_ON_PAGE(!PageLocked(page), page);
290 	VM_BUG_ON_PAGE(pte_present(ptep_get(pvmw->pte)), page);
291 
292 	if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
293 	    mm_forbids_zeropage(pvmw->vma->vm_mm))
294 		return false;
295 
296 	/*
297 	 * The pmd entry mapping the old thp was flushed and the pte mapping
298 	 * this subpage has been non present. If the subpage is only zero-filled
299 	 * then map it to the shared zeropage.
300 	 */
301 	addr = kmap_local_page(page);
302 	contains_data = memchr_inv(addr, 0, PAGE_SIZE);
303 	kunmap_local(addr);
304 
305 	if (contains_data)
306 		return false;
307 
308 	newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
309 					pvmw->vma->vm_page_prot));
310 	set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
311 
312 	dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
313 	return true;
314 }
315 
316 struct rmap_walk_arg {
317 	struct folio *folio;
318 	bool map_unused_to_zeropage;
319 };
320 
321 /*
322  * Restore a potential migration pte to a working pte entry
323  */
324 static bool remove_migration_pte(struct folio *folio,
325 		struct vm_area_struct *vma, unsigned long addr, void *arg)
326 {
327 	struct rmap_walk_arg *rmap_walk_arg = arg;
328 	DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
329 
330 	while (page_vma_mapped_walk(&pvmw)) {
331 		rmap_t rmap_flags = RMAP_NONE;
332 		pte_t old_pte;
333 		pte_t pte;
334 		swp_entry_t entry;
335 		struct page *new;
336 		unsigned long idx = 0;
337 
338 		/* pgoff is invalid for ksm pages, but they are never large */
339 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
340 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
341 		new = folio_page(folio, idx);
342 
343 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
344 		/* PMD-mapped THP migration entry */
345 		if (!pvmw.pte) {
346 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
347 					!folio_test_pmd_mappable(folio), folio);
348 			remove_migration_pmd(&pvmw, new);
349 			continue;
350 		}
351 #endif
352 		if (rmap_walk_arg->map_unused_to_zeropage &&
353 		    try_to_map_unused_to_zeropage(&pvmw, folio, idx))
354 			continue;
355 
356 		folio_get(folio);
357 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
358 		old_pte = ptep_get(pvmw.pte);
359 
360 		entry = pte_to_swp_entry(old_pte);
361 		if (!is_migration_entry_young(entry))
362 			pte = pte_mkold(pte);
363 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
364 			pte = pte_mkdirty(pte);
365 		if (pte_swp_soft_dirty(old_pte))
366 			pte = pte_mksoft_dirty(pte);
367 		else
368 			pte = pte_clear_soft_dirty(pte);
369 
370 		if (is_writable_migration_entry(entry))
371 			pte = pte_mkwrite(pte, vma);
372 		else if (pte_swp_uffd_wp(old_pte))
373 			pte = pte_mkuffd_wp(pte);
374 
375 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
376 			rmap_flags |= RMAP_EXCLUSIVE;
377 
378 		if (unlikely(is_device_private_page(new))) {
379 			if (pte_write(pte))
380 				entry = make_writable_device_private_entry(
381 							page_to_pfn(new));
382 			else
383 				entry = make_readable_device_private_entry(
384 							page_to_pfn(new));
385 			pte = swp_entry_to_pte(entry);
386 			if (pte_swp_soft_dirty(old_pte))
387 				pte = pte_swp_mksoft_dirty(pte);
388 			if (pte_swp_uffd_wp(old_pte))
389 				pte = pte_swp_mkuffd_wp(pte);
390 		}
391 
392 #ifdef CONFIG_HUGETLB_PAGE
393 		if (folio_test_hugetlb(folio)) {
394 			struct hstate *h = hstate_vma(vma);
395 			unsigned int shift = huge_page_shift(h);
396 			unsigned long psize = huge_page_size(h);
397 
398 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
399 			if (folio_test_anon(folio))
400 				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
401 						      rmap_flags);
402 			else
403 				hugetlb_add_file_rmap(folio);
404 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
405 					psize);
406 		} else
407 #endif
408 		{
409 			if (folio_test_anon(folio))
410 				folio_add_anon_rmap_pte(folio, new, vma,
411 							pvmw.address, rmap_flags);
412 			else
413 				folio_add_file_rmap_pte(folio, new, vma);
414 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
415 		}
416 		if (READ_ONCE(vma->vm_flags) & VM_LOCKED)
417 			mlock_drain_local();
418 
419 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
420 					   compound_order(new));
421 
422 		/* No need to invalidate - it was non-present before */
423 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
424 	}
425 
426 	return true;
427 }
428 
429 /*
430  * Get rid of all migration entries and replace them by
431  * references to the indicated page.
432  */
433 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
434 {
435 	struct rmap_walk_arg rmap_walk_arg = {
436 		.folio = src,
437 		.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
438 	};
439 
440 	struct rmap_walk_control rwc = {
441 		.rmap_one = remove_migration_pte,
442 		.arg = &rmap_walk_arg,
443 	};
444 
445 	VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
446 
447 	if (flags & RMP_LOCKED)
448 		rmap_walk_locked(dst, &rwc);
449 	else
450 		rmap_walk(dst, &rwc);
451 }
452 
453 /*
454  * Something used the pte of a page under migration. We need to
455  * get to the page and wait until migration is finished.
456  * When we return from this function the fault will be retried.
457  */
458 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
459 			  unsigned long address)
460 {
461 	spinlock_t *ptl;
462 	pte_t *ptep;
463 	pte_t pte;
464 	swp_entry_t entry;
465 
466 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
467 	if (!ptep)
468 		return;
469 
470 	pte = ptep_get(ptep);
471 	pte_unmap(ptep);
472 
473 	if (!is_swap_pte(pte))
474 		goto out;
475 
476 	entry = pte_to_swp_entry(pte);
477 	if (!is_migration_entry(entry))
478 		goto out;
479 
480 	migration_entry_wait_on_locked(entry, ptl);
481 	return;
482 out:
483 	spin_unlock(ptl);
484 }
485 
486 #ifdef CONFIG_HUGETLB_PAGE
487 /*
488  * The vma read lock must be held upon entry. Holding that lock prevents either
489  * the pte or the ptl from being freed.
490  *
491  * This function will release the vma lock before returning.
492  */
493 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
494 {
495 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
496 	pte_t pte;
497 
498 	hugetlb_vma_assert_locked(vma);
499 	spin_lock(ptl);
500 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
501 
502 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
503 		spin_unlock(ptl);
504 		hugetlb_vma_unlock_read(vma);
505 	} else {
506 		/*
507 		 * If migration entry existed, safe to release vma lock
508 		 * here because the pgtable page won't be freed without the
509 		 * pgtable lock released.  See comment right above pgtable
510 		 * lock release in migration_entry_wait_on_locked().
511 		 */
512 		hugetlb_vma_unlock_read(vma);
513 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
514 	}
515 }
516 #endif
517 
518 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
519 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
520 {
521 	spinlock_t *ptl;
522 
523 	ptl = pmd_lock(mm, pmd);
524 	if (!is_pmd_migration_entry(*pmd))
525 		goto unlock;
526 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
527 	return;
528 unlock:
529 	spin_unlock(ptl);
530 }
531 #endif
532 
533 /*
534  * Replace the folio in the mapping.
535  *
536  * The number of remaining references must be:
537  * 1 for anonymous folios without a mapping
538  * 2 for folios with a mapping
539  * 3 for folios with a mapping and the private flag set.
540  */
541 static int __folio_migrate_mapping(struct address_space *mapping,
542 		struct folio *newfolio, struct folio *folio, int expected_count)
543 {
544 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
545 	struct zone *oldzone, *newzone;
546 	int dirty;
547 	long nr = folio_nr_pages(folio);
548 	long entries, i;
549 
550 	if (!mapping) {
551 		/* Take off deferred split queue while frozen and memcg set */
552 		if (folio_test_large(folio) &&
553 		    folio_test_large_rmappable(folio)) {
554 			if (!folio_ref_freeze(folio, expected_count))
555 				return -EAGAIN;
556 			folio_unqueue_deferred_split(folio);
557 			folio_ref_unfreeze(folio, expected_count);
558 		}
559 
560 		/* No turning back from here */
561 		newfolio->index = folio->index;
562 		newfolio->mapping = folio->mapping;
563 		if (folio_test_anon(folio) && folio_test_large(folio))
564 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
565 		if (folio_test_swapbacked(folio))
566 			__folio_set_swapbacked(newfolio);
567 
568 		return MIGRATEPAGE_SUCCESS;
569 	}
570 
571 	oldzone = folio_zone(folio);
572 	newzone = folio_zone(newfolio);
573 
574 	xas_lock_irq(&xas);
575 	if (!folio_ref_freeze(folio, expected_count)) {
576 		xas_unlock_irq(&xas);
577 		return -EAGAIN;
578 	}
579 
580 	/* Take off deferred split queue while frozen and memcg set */
581 	folio_unqueue_deferred_split(folio);
582 
583 	/*
584 	 * Now we know that no one else is looking at the folio:
585 	 * no turning back from here.
586 	 */
587 	newfolio->index = folio->index;
588 	newfolio->mapping = folio->mapping;
589 	if (folio_test_anon(folio) && folio_test_large(folio))
590 		mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
591 	folio_ref_add(newfolio, nr); /* add cache reference */
592 	if (folio_test_swapbacked(folio))
593 		__folio_set_swapbacked(newfolio);
594 	if (folio_test_swapcache(folio)) {
595 		folio_set_swapcache(newfolio);
596 		newfolio->private = folio_get_private(folio);
597 		entries = nr;
598 	} else {
599 		entries = 1;
600 	}
601 
602 	/* Move dirty while folio refs frozen and newfolio not yet exposed */
603 	dirty = folio_test_dirty(folio);
604 	if (dirty) {
605 		folio_clear_dirty(folio);
606 		folio_set_dirty(newfolio);
607 	}
608 
609 	/* Swap cache still stores N entries instead of a high-order entry */
610 	for (i = 0; i < entries; i++) {
611 		xas_store(&xas, newfolio);
612 		xas_next(&xas);
613 	}
614 
615 	/*
616 	 * Drop cache reference from old folio by unfreezing
617 	 * to one less reference.
618 	 * We know this isn't the last reference.
619 	 */
620 	folio_ref_unfreeze(folio, expected_count - nr);
621 
622 	xas_unlock(&xas);
623 	/* Leave irq disabled to prevent preemption while updating stats */
624 
625 	/*
626 	 * If moved to a different zone then also account
627 	 * the folio for that zone. Other VM counters will be
628 	 * taken care of when we establish references to the
629 	 * new folio and drop references to the old folio.
630 	 *
631 	 * Note that anonymous folios are accounted for
632 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
633 	 * are mapped to swap space.
634 	 */
635 	if (newzone != oldzone) {
636 		struct lruvec *old_lruvec, *new_lruvec;
637 		struct mem_cgroup *memcg;
638 
639 		memcg = folio_memcg(folio);
640 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
641 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
642 
643 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
644 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
645 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
646 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
647 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
648 
649 			if (folio_test_pmd_mappable(folio)) {
650 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
651 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
652 			}
653 		}
654 #ifdef CONFIG_SWAP
655 		if (folio_test_swapcache(folio)) {
656 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
657 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
658 		}
659 #endif
660 		if (dirty && mapping_can_writeback(mapping)) {
661 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
662 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
663 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
664 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
665 		}
666 	}
667 	local_irq_enable();
668 
669 	return MIGRATEPAGE_SUCCESS;
670 }
671 
672 int folio_migrate_mapping(struct address_space *mapping,
673 		struct folio *newfolio, struct folio *folio, int extra_count)
674 {
675 	int expected_count = folio_expected_ref_count(folio) + extra_count + 1;
676 
677 	if (folio_ref_count(folio) != expected_count)
678 		return -EAGAIN;
679 
680 	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
681 }
682 EXPORT_SYMBOL(folio_migrate_mapping);
683 
684 /*
685  * The expected number of remaining references is the same as that
686  * of folio_migrate_mapping().
687  */
688 int migrate_huge_page_move_mapping(struct address_space *mapping,
689 				   struct folio *dst, struct folio *src)
690 {
691 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
692 	int rc, expected_count = folio_expected_ref_count(src) + 1;
693 
694 	if (folio_ref_count(src) != expected_count)
695 		return -EAGAIN;
696 
697 	rc = folio_mc_copy(dst, src);
698 	if (unlikely(rc))
699 		return rc;
700 
701 	xas_lock_irq(&xas);
702 	if (!folio_ref_freeze(src, expected_count)) {
703 		xas_unlock_irq(&xas);
704 		return -EAGAIN;
705 	}
706 
707 	dst->index = src->index;
708 	dst->mapping = src->mapping;
709 
710 	folio_ref_add(dst, folio_nr_pages(dst));
711 
712 	xas_store(&xas, dst);
713 
714 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
715 
716 	xas_unlock_irq(&xas);
717 
718 	return MIGRATEPAGE_SUCCESS;
719 }
720 
721 /*
722  * Copy the flags and some other ancillary information
723  */
724 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
725 {
726 	int cpupid;
727 
728 	if (folio_test_referenced(folio))
729 		folio_set_referenced(newfolio);
730 	if (folio_test_uptodate(folio))
731 		folio_mark_uptodate(newfolio);
732 	if (folio_test_clear_active(folio)) {
733 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
734 		folio_set_active(newfolio);
735 	} else if (folio_test_clear_unevictable(folio))
736 		folio_set_unevictable(newfolio);
737 	if (folio_test_workingset(folio))
738 		folio_set_workingset(newfolio);
739 	if (folio_test_checked(folio))
740 		folio_set_checked(newfolio);
741 	/*
742 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
743 	 * migration entries. We can still have PG_anon_exclusive set on an
744 	 * effectively unmapped and unreferenced first sub-pages of an
745 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
746 	 */
747 	if (folio_test_mappedtodisk(folio))
748 		folio_set_mappedtodisk(newfolio);
749 
750 	/* Move dirty on pages not done by folio_migrate_mapping() */
751 	if (folio_test_dirty(folio))
752 		folio_set_dirty(newfolio);
753 
754 	if (folio_test_young(folio))
755 		folio_set_young(newfolio);
756 	if (folio_test_idle(folio))
757 		folio_set_idle(newfolio);
758 
759 	folio_migrate_refs(newfolio, folio);
760 	/*
761 	 * Copy NUMA information to the new page, to prevent over-eager
762 	 * future migrations of this same page.
763 	 */
764 	cpupid = folio_xchg_last_cpupid(folio, -1);
765 	/*
766 	 * For memory tiering mode, when migrate between slow and fast
767 	 * memory node, reset cpupid, because that is used to record
768 	 * page access time in slow memory node.
769 	 */
770 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
771 		bool f_toptier = node_is_toptier(folio_nid(folio));
772 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
773 
774 		if (f_toptier != t_toptier)
775 			cpupid = -1;
776 	}
777 	folio_xchg_last_cpupid(newfolio, cpupid);
778 
779 	folio_migrate_ksm(newfolio, folio);
780 	/*
781 	 * Please do not reorder this without considering how mm/ksm.c's
782 	 * ksm_get_folio() depends upon ksm_migrate_page() and the
783 	 * swapcache flag.
784 	 */
785 	if (folio_test_swapcache(folio))
786 		folio_clear_swapcache(folio);
787 	folio_clear_private(folio);
788 
789 	/* page->private contains hugetlb specific flags */
790 	if (!folio_test_hugetlb(folio))
791 		folio->private = NULL;
792 
793 	/*
794 	 * If any waiters have accumulated on the new page then
795 	 * wake them up.
796 	 */
797 	if (folio_test_writeback(newfolio))
798 		folio_end_writeback(newfolio);
799 
800 	/*
801 	 * PG_readahead shares the same bit with PG_reclaim.  The above
802 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
803 	 * bit after that.
804 	 */
805 	if (folio_test_readahead(folio))
806 		folio_set_readahead(newfolio);
807 
808 	folio_copy_owner(newfolio, folio);
809 	pgalloc_tag_swap(newfolio, folio);
810 
811 	mem_cgroup_migrate(folio, newfolio);
812 }
813 EXPORT_SYMBOL(folio_migrate_flags);
814 
815 /************************************************************
816  *                    Migration functions
817  ***********************************************************/
818 
819 static int __migrate_folio(struct address_space *mapping, struct folio *dst,
820 			   struct folio *src, void *src_private,
821 			   enum migrate_mode mode)
822 {
823 	int rc, expected_count = folio_expected_ref_count(src) + 1;
824 
825 	/* Check whether src does not have extra refs before we do more work */
826 	if (folio_ref_count(src) != expected_count)
827 		return -EAGAIN;
828 
829 	rc = folio_mc_copy(dst, src);
830 	if (unlikely(rc))
831 		return rc;
832 
833 	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
834 	if (rc != MIGRATEPAGE_SUCCESS)
835 		return rc;
836 
837 	if (src_private)
838 		folio_attach_private(dst, folio_detach_private(src));
839 
840 	folio_migrate_flags(dst, src);
841 	return MIGRATEPAGE_SUCCESS;
842 }
843 
844 /**
845  * migrate_folio() - Simple folio migration.
846  * @mapping: The address_space containing the folio.
847  * @dst: The folio to migrate the data to.
848  * @src: The folio containing the current data.
849  * @mode: How to migrate the page.
850  *
851  * Common logic to directly migrate a single LRU folio suitable for
852  * folios that do not have private data.
853  *
854  * Folios are locked upon entry and exit.
855  */
856 int migrate_folio(struct address_space *mapping, struct folio *dst,
857 		  struct folio *src, enum migrate_mode mode)
858 {
859 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
860 	return __migrate_folio(mapping, dst, src, NULL, mode);
861 }
862 EXPORT_SYMBOL(migrate_folio);
863 
864 #ifdef CONFIG_BUFFER_HEAD
865 /* Returns true if all buffers are successfully locked */
866 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
867 							enum migrate_mode mode)
868 {
869 	struct buffer_head *bh = head;
870 	struct buffer_head *failed_bh;
871 
872 	do {
873 		if (!trylock_buffer(bh)) {
874 			if (mode == MIGRATE_ASYNC)
875 				goto unlock;
876 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
877 				goto unlock;
878 			lock_buffer(bh);
879 		}
880 
881 		bh = bh->b_this_page;
882 	} while (bh != head);
883 
884 	return true;
885 
886 unlock:
887 	/* We failed to lock the buffer and cannot stall. */
888 	failed_bh = bh;
889 	bh = head;
890 	while (bh != failed_bh) {
891 		unlock_buffer(bh);
892 		bh = bh->b_this_page;
893 	}
894 
895 	return false;
896 }
897 
898 static int __buffer_migrate_folio(struct address_space *mapping,
899 		struct folio *dst, struct folio *src, enum migrate_mode mode,
900 		bool check_refs)
901 {
902 	struct buffer_head *bh, *head;
903 	int rc;
904 	int expected_count;
905 
906 	head = folio_buffers(src);
907 	if (!head)
908 		return migrate_folio(mapping, dst, src, mode);
909 
910 	/* Check whether page does not have extra refs before we do more work */
911 	expected_count = folio_expected_ref_count(src) + 1;
912 	if (folio_ref_count(src) != expected_count)
913 		return -EAGAIN;
914 
915 	if (!buffer_migrate_lock_buffers(head, mode))
916 		return -EAGAIN;
917 
918 	if (check_refs) {
919 		bool busy, migrating;
920 		bool invalidated = false;
921 
922 		migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state);
923 		VM_WARN_ON_ONCE(migrating);
924 recheck_buffers:
925 		busy = false;
926 		spin_lock(&mapping->i_private_lock);
927 		bh = head;
928 		do {
929 			if (atomic_read(&bh->b_count)) {
930 				busy = true;
931 				break;
932 			}
933 			bh = bh->b_this_page;
934 		} while (bh != head);
935 		spin_unlock(&mapping->i_private_lock);
936 		if (busy) {
937 			if (invalidated) {
938 				rc = -EAGAIN;
939 				goto unlock_buffers;
940 			}
941 			invalidate_bh_lrus();
942 			invalidated = true;
943 			goto recheck_buffers;
944 		}
945 	}
946 
947 	rc = filemap_migrate_folio(mapping, dst, src, mode);
948 	if (rc != MIGRATEPAGE_SUCCESS)
949 		goto unlock_buffers;
950 
951 	bh = head;
952 	do {
953 		folio_set_bh(bh, dst, bh_offset(bh));
954 		bh = bh->b_this_page;
955 	} while (bh != head);
956 
957 unlock_buffers:
958 	if (check_refs)
959 		clear_bit_unlock(BH_Migrate, &head->b_state);
960 	bh = head;
961 	do {
962 		unlock_buffer(bh);
963 		bh = bh->b_this_page;
964 	} while (bh != head);
965 
966 	return rc;
967 }
968 
969 /**
970  * buffer_migrate_folio() - Migration function for folios with buffers.
971  * @mapping: The address space containing @src.
972  * @dst: The folio to migrate to.
973  * @src: The folio to migrate from.
974  * @mode: How to migrate the folio.
975  *
976  * This function can only be used if the underlying filesystem guarantees
977  * that no other references to @src exist. For example attached buffer
978  * heads are accessed only under the folio lock.  If your filesystem cannot
979  * provide this guarantee, buffer_migrate_folio_norefs() may be more
980  * appropriate.
981  *
982  * Return: 0 on success or a negative errno on failure.
983  */
984 int buffer_migrate_folio(struct address_space *mapping,
985 		struct folio *dst, struct folio *src, enum migrate_mode mode)
986 {
987 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
988 }
989 EXPORT_SYMBOL(buffer_migrate_folio);
990 
991 /**
992  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
993  * @mapping: The address space containing @src.
994  * @dst: The folio to migrate to.
995  * @src: The folio to migrate from.
996  * @mode: How to migrate the folio.
997  *
998  * Like buffer_migrate_folio() except that this variant is more careful
999  * and checks that there are also no buffer head references. This function
1000  * is the right one for mappings where buffer heads are directly looked
1001  * up and referenced (such as block device mappings).
1002  *
1003  * Return: 0 on success or a negative errno on failure.
1004  */
1005 int buffer_migrate_folio_norefs(struct address_space *mapping,
1006 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1007 {
1008 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
1009 }
1010 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
1011 #endif /* CONFIG_BUFFER_HEAD */
1012 
1013 int filemap_migrate_folio(struct address_space *mapping,
1014 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1015 {
1016 	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
1017 }
1018 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
1019 
1020 /*
1021  * Default handling if a filesystem does not provide a migration function.
1022  */
1023 static int fallback_migrate_folio(struct address_space *mapping,
1024 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1025 {
1026 	WARN_ONCE(mapping->a_ops->writepages,
1027 			"%ps does not implement migrate_folio\n",
1028 			mapping->a_ops);
1029 	if (folio_test_dirty(src))
1030 		return -EBUSY;
1031 
1032 	/*
1033 	 * Filesystem may have private data at folio->private that we
1034 	 * can't migrate automatically.
1035 	 */
1036 	if (!filemap_release_folio(src, GFP_KERNEL))
1037 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
1038 
1039 	return migrate_folio(mapping, dst, src, mode);
1040 }
1041 
1042 /*
1043  * Move a src folio to a newly allocated dst folio.
1044  *
1045  * The src and dst folios are locked and the src folios was unmapped from
1046  * the page tables.
1047  *
1048  * On success, the src folio was replaced by the dst folio.
1049  *
1050  * Return value:
1051  *   < 0 - error code
1052  *  MIGRATEPAGE_SUCCESS - success
1053  */
1054 static int move_to_new_folio(struct folio *dst, struct folio *src,
1055 				enum migrate_mode mode)
1056 {
1057 	struct address_space *mapping = folio_mapping(src);
1058 	int rc = -EAGAIN;
1059 
1060 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1061 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1062 
1063 	if (!mapping)
1064 		rc = migrate_folio(mapping, dst, src, mode);
1065 	else if (mapping_inaccessible(mapping))
1066 		rc = -EOPNOTSUPP;
1067 	else if (mapping->a_ops->migrate_folio)
1068 		/*
1069 		 * Most folios have a mapping and most filesystems
1070 		 * provide a migrate_folio callback. Anonymous folios
1071 		 * are part of swap space which also has its own
1072 		 * migrate_folio callback. This is the most common path
1073 		 * for page migration.
1074 		 */
1075 		rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1076 							mode);
1077 	else
1078 		rc = fallback_migrate_folio(mapping, dst, src, mode);
1079 
1080 	if (rc == MIGRATEPAGE_SUCCESS) {
1081 		/*
1082 		 * For pagecache folios, src->mapping must be cleared before src
1083 		 * is freed. Anonymous folios must stay anonymous until freed.
1084 		 */
1085 		if (!folio_test_anon(src))
1086 			src->mapping = NULL;
1087 
1088 		if (likely(!folio_is_zone_device(dst)))
1089 			flush_dcache_folio(dst);
1090 	}
1091 	return rc;
1092 }
1093 
1094 /*
1095  * To record some information during migration, we use unused private
1096  * field of struct folio of the newly allocated destination folio.
1097  * This is safe because nobody is using it except us.
1098  */
1099 enum {
1100 	PAGE_WAS_MAPPED = BIT(0),
1101 	PAGE_WAS_MLOCKED = BIT(1),
1102 	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1103 };
1104 
1105 static void __migrate_folio_record(struct folio *dst,
1106 				   int old_page_state,
1107 				   struct anon_vma *anon_vma)
1108 {
1109 	dst->private = (void *)anon_vma + old_page_state;
1110 }
1111 
1112 static void __migrate_folio_extract(struct folio *dst,
1113 				   int *old_page_state,
1114 				   struct anon_vma **anon_vmap)
1115 {
1116 	unsigned long private = (unsigned long)dst->private;
1117 
1118 	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1119 	*old_page_state = private & PAGE_OLD_STATES;
1120 	dst->private = NULL;
1121 }
1122 
1123 /* Restore the source folio to the original state upon failure */
1124 static void migrate_folio_undo_src(struct folio *src,
1125 				   int page_was_mapped,
1126 				   struct anon_vma *anon_vma,
1127 				   bool locked,
1128 				   struct list_head *ret)
1129 {
1130 	if (page_was_mapped)
1131 		remove_migration_ptes(src, src, 0);
1132 	/* Drop an anon_vma reference if we took one */
1133 	if (anon_vma)
1134 		put_anon_vma(anon_vma);
1135 	if (locked)
1136 		folio_unlock(src);
1137 	if (ret)
1138 		list_move_tail(&src->lru, ret);
1139 }
1140 
1141 /* Restore the destination folio to the original state upon failure */
1142 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1143 		free_folio_t put_new_folio, unsigned long private)
1144 {
1145 	if (locked)
1146 		folio_unlock(dst);
1147 	if (put_new_folio)
1148 		put_new_folio(dst, private);
1149 	else
1150 		folio_put(dst);
1151 }
1152 
1153 /* Cleanup src folio upon migration success */
1154 static void migrate_folio_done(struct folio *src,
1155 			       enum migrate_reason reason)
1156 {
1157 	if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION)
1158 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1159 				    folio_is_file_lru(src), -folio_nr_pages(src));
1160 
1161 	if (reason != MR_MEMORY_FAILURE)
1162 		/* We release the page in page_handle_poison. */
1163 		folio_put(src);
1164 }
1165 
1166 /* Obtain the lock on page, remove all ptes. */
1167 static int migrate_folio_unmap(new_folio_t get_new_folio,
1168 		free_folio_t put_new_folio, unsigned long private,
1169 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1170 		enum migrate_reason reason, struct list_head *ret)
1171 {
1172 	struct folio *dst;
1173 	int rc = -EAGAIN;
1174 	int old_page_state = 0;
1175 	struct anon_vma *anon_vma = NULL;
1176 	bool locked = false;
1177 	bool dst_locked = false;
1178 
1179 	if (folio_ref_count(src) == 1) {
1180 		/* Folio was freed from under us. So we are done. */
1181 		folio_clear_active(src);
1182 		folio_clear_unevictable(src);
1183 		/* free_pages_prepare() will clear PG_isolated. */
1184 		list_del(&src->lru);
1185 		migrate_folio_done(src, reason);
1186 		return MIGRATEPAGE_SUCCESS;
1187 	}
1188 
1189 	dst = get_new_folio(src, private);
1190 	if (!dst)
1191 		return -ENOMEM;
1192 	*dstp = dst;
1193 
1194 	dst->private = NULL;
1195 
1196 	if (!folio_trylock(src)) {
1197 		if (mode == MIGRATE_ASYNC)
1198 			goto out;
1199 
1200 		/*
1201 		 * It's not safe for direct compaction to call lock_page.
1202 		 * For example, during page readahead pages are added locked
1203 		 * to the LRU. Later, when the IO completes the pages are
1204 		 * marked uptodate and unlocked. However, the queueing
1205 		 * could be merging multiple pages for one bio (e.g.
1206 		 * mpage_readahead). If an allocation happens for the
1207 		 * second or third page, the process can end up locking
1208 		 * the same page twice and deadlocking. Rather than
1209 		 * trying to be clever about what pages can be locked,
1210 		 * avoid the use of lock_page for direct compaction
1211 		 * altogether.
1212 		 */
1213 		if (current->flags & PF_MEMALLOC)
1214 			goto out;
1215 
1216 		/*
1217 		 * In "light" mode, we can wait for transient locks (eg
1218 		 * inserting a page into the page table), but it's not
1219 		 * worth waiting for I/O.
1220 		 */
1221 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1222 			goto out;
1223 
1224 		folio_lock(src);
1225 	}
1226 	locked = true;
1227 	if (folio_test_mlocked(src))
1228 		old_page_state |= PAGE_WAS_MLOCKED;
1229 
1230 	if (folio_test_writeback(src)) {
1231 		/*
1232 		 * Only in the case of a full synchronous migration is it
1233 		 * necessary to wait for PageWriteback. In the async case,
1234 		 * the retry loop is too short and in the sync-light case,
1235 		 * the overhead of stalling is too much
1236 		 */
1237 		switch (mode) {
1238 		case MIGRATE_SYNC:
1239 			break;
1240 		default:
1241 			rc = -EBUSY;
1242 			goto out;
1243 		}
1244 		folio_wait_writeback(src);
1245 	}
1246 
1247 	/*
1248 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1249 	 * we cannot notice that anon_vma is freed while we migrate a page.
1250 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1251 	 * of migration. File cache pages are no problem because of page_lock()
1252 	 * File Caches may use write_page() or lock_page() in migration, then,
1253 	 * just care Anon page here.
1254 	 *
1255 	 * Only folio_get_anon_vma() understands the subtleties of
1256 	 * getting a hold on an anon_vma from outside one of its mms.
1257 	 * But if we cannot get anon_vma, then we won't need it anyway,
1258 	 * because that implies that the anon page is no longer mapped
1259 	 * (and cannot be remapped so long as we hold the page lock).
1260 	 */
1261 	if (folio_test_anon(src) && !folio_test_ksm(src))
1262 		anon_vma = folio_get_anon_vma(src);
1263 
1264 	/*
1265 	 * Block others from accessing the new page when we get around to
1266 	 * establishing additional references. We are usually the only one
1267 	 * holding a reference to dst at this point. We used to have a BUG
1268 	 * here if folio_trylock(dst) fails, but would like to allow for
1269 	 * cases where there might be a race with the previous use of dst.
1270 	 * This is much like races on refcount of oldpage: just don't BUG().
1271 	 */
1272 	if (unlikely(!folio_trylock(dst)))
1273 		goto out;
1274 	dst_locked = true;
1275 
1276 	if (unlikely(page_has_movable_ops(&src->page))) {
1277 		__migrate_folio_record(dst, old_page_state, anon_vma);
1278 		return MIGRATEPAGE_UNMAP;
1279 	}
1280 
1281 	/*
1282 	 * Corner case handling:
1283 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1284 	 * and treated as swapcache but it has no rmap yet.
1285 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1286 	 * trigger a BUG.  So handle it here.
1287 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1288 	 * fs-private metadata. The page can be picked up due to memory
1289 	 * offlining.  Everywhere else except page reclaim, the page is
1290 	 * invisible to the vm, so the page can not be migrated.  So try to
1291 	 * free the metadata, so the page can be freed.
1292 	 */
1293 	if (!src->mapping) {
1294 		if (folio_test_private(src)) {
1295 			try_to_free_buffers(src);
1296 			goto out;
1297 		}
1298 	} else if (folio_mapped(src)) {
1299 		/* Establish migration ptes */
1300 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1301 			       !folio_test_ksm(src) && !anon_vma, src);
1302 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1303 		old_page_state |= PAGE_WAS_MAPPED;
1304 	}
1305 
1306 	if (!folio_mapped(src)) {
1307 		__migrate_folio_record(dst, old_page_state, anon_vma);
1308 		return MIGRATEPAGE_UNMAP;
1309 	}
1310 
1311 out:
1312 	/*
1313 	 * A folio that has not been unmapped will be restored to
1314 	 * right list unless we want to retry.
1315 	 */
1316 	if (rc == -EAGAIN)
1317 		ret = NULL;
1318 
1319 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1320 			       anon_vma, locked, ret);
1321 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1322 
1323 	return rc;
1324 }
1325 
1326 /* Migrate the folio to the newly allocated folio in dst. */
1327 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1328 			      struct folio *src, struct folio *dst,
1329 			      enum migrate_mode mode, enum migrate_reason reason,
1330 			      struct list_head *ret)
1331 {
1332 	int rc;
1333 	int old_page_state = 0;
1334 	struct anon_vma *anon_vma = NULL;
1335 	struct list_head *prev;
1336 
1337 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1338 	prev = dst->lru.prev;
1339 	list_del(&dst->lru);
1340 
1341 	if (unlikely(page_has_movable_ops(&src->page))) {
1342 		rc = migrate_movable_ops_page(&dst->page, &src->page, mode);
1343 		if (rc)
1344 			goto out;
1345 		goto out_unlock_both;
1346 	}
1347 
1348 	rc = move_to_new_folio(dst, src, mode);
1349 	if (rc)
1350 		goto out;
1351 
1352 	/*
1353 	 * When successful, push dst to LRU immediately: so that if it
1354 	 * turns out to be an mlocked page, remove_migration_ptes() will
1355 	 * automatically build up the correct dst->mlock_count for it.
1356 	 *
1357 	 * We would like to do something similar for the old page, when
1358 	 * unsuccessful, and other cases when a page has been temporarily
1359 	 * isolated from the unevictable LRU: but this case is the easiest.
1360 	 */
1361 	folio_add_lru(dst);
1362 	if (old_page_state & PAGE_WAS_MLOCKED)
1363 		lru_add_drain();
1364 
1365 	if (old_page_state & PAGE_WAS_MAPPED)
1366 		remove_migration_ptes(src, dst, 0);
1367 
1368 out_unlock_both:
1369 	folio_unlock(dst);
1370 	folio_set_owner_migrate_reason(dst, reason);
1371 	/*
1372 	 * If migration is successful, decrease refcount of dst,
1373 	 * which will not free the page because new page owner increased
1374 	 * refcounter.
1375 	 */
1376 	folio_put(dst);
1377 
1378 	/*
1379 	 * A folio that has been migrated has all references removed
1380 	 * and will be freed.
1381 	 */
1382 	list_del(&src->lru);
1383 	/* Drop an anon_vma reference if we took one */
1384 	if (anon_vma)
1385 		put_anon_vma(anon_vma);
1386 	folio_unlock(src);
1387 	migrate_folio_done(src, reason);
1388 
1389 	return rc;
1390 out:
1391 	/*
1392 	 * A folio that has not been migrated will be restored to
1393 	 * right list unless we want to retry.
1394 	 */
1395 	if (rc == -EAGAIN) {
1396 		list_add(&dst->lru, prev);
1397 		__migrate_folio_record(dst, old_page_state, anon_vma);
1398 		return rc;
1399 	}
1400 
1401 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1402 			       anon_vma, true, ret);
1403 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1404 
1405 	return rc;
1406 }
1407 
1408 /*
1409  * Counterpart of unmap_and_move_page() for hugepage migration.
1410  *
1411  * This function doesn't wait the completion of hugepage I/O
1412  * because there is no race between I/O and migration for hugepage.
1413  * Note that currently hugepage I/O occurs only in direct I/O
1414  * where no lock is held and PG_writeback is irrelevant,
1415  * and writeback status of all subpages are counted in the reference
1416  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1417  * under direct I/O, the reference of the head page is 512 and a bit more.)
1418  * This means that when we try to migrate hugepage whose subpages are
1419  * doing direct I/O, some references remain after try_to_unmap() and
1420  * hugepage migration fails without data corruption.
1421  *
1422  * There is also no race when direct I/O is issued on the page under migration,
1423  * because then pte is replaced with migration swap entry and direct I/O code
1424  * will wait in the page fault for migration to complete.
1425  */
1426 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1427 		free_folio_t put_new_folio, unsigned long private,
1428 		struct folio *src, int force, enum migrate_mode mode,
1429 		int reason, struct list_head *ret)
1430 {
1431 	struct folio *dst;
1432 	int rc = -EAGAIN;
1433 	int page_was_mapped = 0;
1434 	struct anon_vma *anon_vma = NULL;
1435 	struct address_space *mapping = NULL;
1436 
1437 	if (folio_ref_count(src) == 1) {
1438 		/* page was freed from under us. So we are done. */
1439 		folio_putback_hugetlb(src);
1440 		return MIGRATEPAGE_SUCCESS;
1441 	}
1442 
1443 	dst = get_new_folio(src, private);
1444 	if (!dst)
1445 		return -ENOMEM;
1446 
1447 	if (!folio_trylock(src)) {
1448 		if (!force)
1449 			goto out;
1450 		switch (mode) {
1451 		case MIGRATE_SYNC:
1452 			break;
1453 		default:
1454 			goto out;
1455 		}
1456 		folio_lock(src);
1457 	}
1458 
1459 	/*
1460 	 * Check for pages which are in the process of being freed.  Without
1461 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1462 	 * be called and we could leak usage counts for subpools.
1463 	 */
1464 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1465 		rc = -EBUSY;
1466 		goto out_unlock;
1467 	}
1468 
1469 	if (folio_test_anon(src))
1470 		anon_vma = folio_get_anon_vma(src);
1471 
1472 	if (unlikely(!folio_trylock(dst)))
1473 		goto put_anon;
1474 
1475 	if (folio_mapped(src)) {
1476 		enum ttu_flags ttu = 0;
1477 
1478 		if (!folio_test_anon(src)) {
1479 			/*
1480 			 * In shared mappings, try_to_unmap could potentially
1481 			 * call huge_pmd_unshare.  Because of this, take
1482 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1483 			 * to let lower levels know we have taken the lock.
1484 			 */
1485 			mapping = hugetlb_folio_mapping_lock_write(src);
1486 			if (unlikely(!mapping))
1487 				goto unlock_put_anon;
1488 
1489 			ttu = TTU_RMAP_LOCKED;
1490 		}
1491 
1492 		try_to_migrate(src, ttu);
1493 		page_was_mapped = 1;
1494 
1495 		if (ttu & TTU_RMAP_LOCKED)
1496 			i_mmap_unlock_write(mapping);
1497 	}
1498 
1499 	if (!folio_mapped(src))
1500 		rc = move_to_new_folio(dst, src, mode);
1501 
1502 	if (page_was_mapped)
1503 		remove_migration_ptes(src,
1504 			rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
1505 
1506 unlock_put_anon:
1507 	folio_unlock(dst);
1508 
1509 put_anon:
1510 	if (anon_vma)
1511 		put_anon_vma(anon_vma);
1512 
1513 	if (rc == MIGRATEPAGE_SUCCESS) {
1514 		move_hugetlb_state(src, dst, reason);
1515 		put_new_folio = NULL;
1516 	}
1517 
1518 out_unlock:
1519 	folio_unlock(src);
1520 out:
1521 	if (rc == MIGRATEPAGE_SUCCESS)
1522 		folio_putback_hugetlb(src);
1523 	else if (rc != -EAGAIN)
1524 		list_move_tail(&src->lru, ret);
1525 
1526 	/*
1527 	 * If migration was not successful and there's a freeing callback,
1528 	 * return the folio to that special allocator. Otherwise, simply drop
1529 	 * our additional reference.
1530 	 */
1531 	if (put_new_folio)
1532 		put_new_folio(dst, private);
1533 	else
1534 		folio_put(dst);
1535 
1536 	return rc;
1537 }
1538 
1539 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1540 				  enum migrate_mode mode)
1541 {
1542 	int rc;
1543 
1544 	if (mode == MIGRATE_ASYNC) {
1545 		if (!folio_trylock(folio))
1546 			return -EAGAIN;
1547 	} else {
1548 		folio_lock(folio);
1549 	}
1550 	rc = split_folio_to_list(folio, split_folios);
1551 	folio_unlock(folio);
1552 	if (!rc)
1553 		list_move_tail(&folio->lru, split_folios);
1554 
1555 	return rc;
1556 }
1557 
1558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1559 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1560 #else
1561 #define NR_MAX_BATCHED_MIGRATION	512
1562 #endif
1563 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1564 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1565 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1566 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1567 
1568 struct migrate_pages_stats {
1569 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1570 				   units of base pages */
1571 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1572 				   units of base pages.  Untried folios aren't counted */
1573 	int nr_thp_succeeded;	/* THP migrated successfully */
1574 	int nr_thp_failed;	/* THP failed to be migrated */
1575 	int nr_thp_split;	/* THP split before migrating */
1576 	int nr_split;	/* Large folio (include THP) split before migrating */
1577 };
1578 
1579 /*
1580  * Returns the number of hugetlb folios that were not migrated, or an error code
1581  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1582  * any more because the list has become empty or no retryable hugetlb folios
1583  * exist any more. It is caller's responsibility to call putback_movable_pages()
1584  * only if ret != 0.
1585  */
1586 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1587 			    free_folio_t put_new_folio, unsigned long private,
1588 			    enum migrate_mode mode, int reason,
1589 			    struct migrate_pages_stats *stats,
1590 			    struct list_head *ret_folios)
1591 {
1592 	int retry = 1;
1593 	int nr_failed = 0;
1594 	int nr_retry_pages = 0;
1595 	int pass = 0;
1596 	struct folio *folio, *folio2;
1597 	int rc, nr_pages;
1598 
1599 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1600 		retry = 0;
1601 		nr_retry_pages = 0;
1602 
1603 		list_for_each_entry_safe(folio, folio2, from, lru) {
1604 			if (!folio_test_hugetlb(folio))
1605 				continue;
1606 
1607 			nr_pages = folio_nr_pages(folio);
1608 
1609 			cond_resched();
1610 
1611 			/*
1612 			 * Migratability of hugepages depends on architectures and
1613 			 * their size.  This check is necessary because some callers
1614 			 * of hugepage migration like soft offline and memory
1615 			 * hotremove don't walk through page tables or check whether
1616 			 * the hugepage is pmd-based or not before kicking migration.
1617 			 */
1618 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1619 				nr_failed++;
1620 				stats->nr_failed_pages += nr_pages;
1621 				list_move_tail(&folio->lru, ret_folios);
1622 				continue;
1623 			}
1624 
1625 			rc = unmap_and_move_huge_page(get_new_folio,
1626 						      put_new_folio, private,
1627 						      folio, pass > 2, mode,
1628 						      reason, ret_folios);
1629 			/*
1630 			 * The rules are:
1631 			 *	Success: hugetlb folio will be put back
1632 			 *	-EAGAIN: stay on the from list
1633 			 *	-ENOMEM: stay on the from list
1634 			 *	Other errno: put on ret_folios list
1635 			 */
1636 			switch(rc) {
1637 			case -ENOMEM:
1638 				/*
1639 				 * When memory is low, don't bother to try to migrate
1640 				 * other folios, just exit.
1641 				 */
1642 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1643 				return -ENOMEM;
1644 			case -EAGAIN:
1645 				retry++;
1646 				nr_retry_pages += nr_pages;
1647 				break;
1648 			case MIGRATEPAGE_SUCCESS:
1649 				stats->nr_succeeded += nr_pages;
1650 				break;
1651 			default:
1652 				/*
1653 				 * Permanent failure (-EBUSY, etc.):
1654 				 * unlike -EAGAIN case, the failed folio is
1655 				 * removed from migration folio list and not
1656 				 * retried in the next outer loop.
1657 				 */
1658 				nr_failed++;
1659 				stats->nr_failed_pages += nr_pages;
1660 				break;
1661 			}
1662 		}
1663 	}
1664 	/*
1665 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1666 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1667 	 * folios as failed.
1668 	 */
1669 	nr_failed += retry;
1670 	stats->nr_failed_pages += nr_retry_pages;
1671 
1672 	return nr_failed;
1673 }
1674 
1675 static void migrate_folios_move(struct list_head *src_folios,
1676 		struct list_head *dst_folios,
1677 		free_folio_t put_new_folio, unsigned long private,
1678 		enum migrate_mode mode, int reason,
1679 		struct list_head *ret_folios,
1680 		struct migrate_pages_stats *stats,
1681 		int *retry, int *thp_retry, int *nr_failed,
1682 		int *nr_retry_pages)
1683 {
1684 	struct folio *folio, *folio2, *dst, *dst2;
1685 	bool is_thp;
1686 	int nr_pages;
1687 	int rc;
1688 
1689 	dst = list_first_entry(dst_folios, struct folio, lru);
1690 	dst2 = list_next_entry(dst, lru);
1691 	list_for_each_entry_safe(folio, folio2, src_folios, lru) {
1692 		is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1693 		nr_pages = folio_nr_pages(folio);
1694 
1695 		cond_resched();
1696 
1697 		rc = migrate_folio_move(put_new_folio, private,
1698 				folio, dst, mode,
1699 				reason, ret_folios);
1700 		/*
1701 		 * The rules are:
1702 		 *	Success: folio will be freed
1703 		 *	-EAGAIN: stay on the unmap_folios list
1704 		 *	Other errno: put on ret_folios list
1705 		 */
1706 		switch (rc) {
1707 		case -EAGAIN:
1708 			*retry += 1;
1709 			*thp_retry += is_thp;
1710 			*nr_retry_pages += nr_pages;
1711 			break;
1712 		case MIGRATEPAGE_SUCCESS:
1713 			stats->nr_succeeded += nr_pages;
1714 			stats->nr_thp_succeeded += is_thp;
1715 			break;
1716 		default:
1717 			*nr_failed += 1;
1718 			stats->nr_thp_failed += is_thp;
1719 			stats->nr_failed_pages += nr_pages;
1720 			break;
1721 		}
1722 		dst = dst2;
1723 		dst2 = list_next_entry(dst, lru);
1724 	}
1725 }
1726 
1727 static void migrate_folios_undo(struct list_head *src_folios,
1728 		struct list_head *dst_folios,
1729 		free_folio_t put_new_folio, unsigned long private,
1730 		struct list_head *ret_folios)
1731 {
1732 	struct folio *folio, *folio2, *dst, *dst2;
1733 
1734 	dst = list_first_entry(dst_folios, struct folio, lru);
1735 	dst2 = list_next_entry(dst, lru);
1736 	list_for_each_entry_safe(folio, folio2, src_folios, lru) {
1737 		int old_page_state = 0;
1738 		struct anon_vma *anon_vma = NULL;
1739 
1740 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1741 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1742 				anon_vma, true, ret_folios);
1743 		list_del(&dst->lru);
1744 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1745 		dst = dst2;
1746 		dst2 = list_next_entry(dst, lru);
1747 	}
1748 }
1749 
1750 /*
1751  * migrate_pages_batch() first unmaps folios in the from list as many as
1752  * possible, then move the unmapped folios.
1753  *
1754  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1755  * lock or bit when we have locked more than one folio.  Which may cause
1756  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1757  * length of the from list must be <= 1.
1758  */
1759 static int migrate_pages_batch(struct list_head *from,
1760 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1761 		unsigned long private, enum migrate_mode mode, int reason,
1762 		struct list_head *ret_folios, struct list_head *split_folios,
1763 		struct migrate_pages_stats *stats, int nr_pass)
1764 {
1765 	int retry = 1;
1766 	int thp_retry = 1;
1767 	int nr_failed = 0;
1768 	int nr_retry_pages = 0;
1769 	int pass = 0;
1770 	bool is_thp = false;
1771 	bool is_large = false;
1772 	struct folio *folio, *folio2, *dst = NULL;
1773 	int rc, rc_saved = 0, nr_pages;
1774 	LIST_HEAD(unmap_folios);
1775 	LIST_HEAD(dst_folios);
1776 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1777 
1778 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1779 			!list_empty(from) && !list_is_singular(from));
1780 
1781 	for (pass = 0; pass < nr_pass && retry; pass++) {
1782 		retry = 0;
1783 		thp_retry = 0;
1784 		nr_retry_pages = 0;
1785 
1786 		list_for_each_entry_safe(folio, folio2, from, lru) {
1787 			is_large = folio_test_large(folio);
1788 			is_thp = folio_test_pmd_mappable(folio);
1789 			nr_pages = folio_nr_pages(folio);
1790 
1791 			cond_resched();
1792 
1793 			/*
1794 			 * The rare folio on the deferred split list should
1795 			 * be split now. It should not count as a failure:
1796 			 * but increment nr_failed because, without doing so,
1797 			 * migrate_pages() may report success with (split but
1798 			 * unmigrated) pages still on its fromlist; whereas it
1799 			 * always reports success when its fromlist is empty.
1800 			 * stats->nr_thp_failed should be increased too,
1801 			 * otherwise stats inconsistency will happen when
1802 			 * migrate_pages_batch is called via migrate_pages()
1803 			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1804 			 *
1805 			 * Only check it without removing it from the list.
1806 			 * Since the folio can be on deferred_split_scan()
1807 			 * local list and removing it can cause the local list
1808 			 * corruption. Folio split process below can handle it
1809 			 * with the help of folio_ref_freeze().
1810 			 *
1811 			 * nr_pages > 2 is needed to avoid checking order-1
1812 			 * page cache folios. They exist, in contrast to
1813 			 * non-existent order-1 anonymous folios, and do not
1814 			 * use _deferred_list.
1815 			 */
1816 			if (nr_pages > 2 &&
1817 			   !list_empty(&folio->_deferred_list) &&
1818 			   folio_test_partially_mapped(folio)) {
1819 				if (!try_split_folio(folio, split_folios, mode)) {
1820 					nr_failed++;
1821 					stats->nr_thp_failed += is_thp;
1822 					stats->nr_thp_split += is_thp;
1823 					stats->nr_split++;
1824 					continue;
1825 				}
1826 			}
1827 
1828 			/*
1829 			 * Large folio migration might be unsupported or
1830 			 * the allocation might be failed so we should retry
1831 			 * on the same folio with the large folio split
1832 			 * to normal folios.
1833 			 *
1834 			 * Split folios are put in split_folios, and
1835 			 * we will migrate them after the rest of the
1836 			 * list is processed.
1837 			 */
1838 			if (!thp_migration_supported() && is_thp) {
1839 				nr_failed++;
1840 				stats->nr_thp_failed++;
1841 				if (!try_split_folio(folio, split_folios, mode)) {
1842 					stats->nr_thp_split++;
1843 					stats->nr_split++;
1844 					continue;
1845 				}
1846 				stats->nr_failed_pages += nr_pages;
1847 				list_move_tail(&folio->lru, ret_folios);
1848 				continue;
1849 			}
1850 
1851 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1852 					private, folio, &dst, mode, reason,
1853 					ret_folios);
1854 			/*
1855 			 * The rules are:
1856 			 *	Success: folio will be freed
1857 			 *	Unmap: folio will be put on unmap_folios list,
1858 			 *	       dst folio put on dst_folios list
1859 			 *	-EAGAIN: stay on the from list
1860 			 *	-ENOMEM: stay on the from list
1861 			 *	Other errno: put on ret_folios list
1862 			 */
1863 			switch(rc) {
1864 			case -ENOMEM:
1865 				/*
1866 				 * When memory is low, don't bother to try to migrate
1867 				 * other folios, move unmapped folios, then exit.
1868 				 */
1869 				nr_failed++;
1870 				stats->nr_thp_failed += is_thp;
1871 				/* Large folio NUMA faulting doesn't split to retry. */
1872 				if (is_large && !nosplit) {
1873 					int ret = try_split_folio(folio, split_folios, mode);
1874 
1875 					if (!ret) {
1876 						stats->nr_thp_split += is_thp;
1877 						stats->nr_split++;
1878 						break;
1879 					} else if (reason == MR_LONGTERM_PIN &&
1880 						   ret == -EAGAIN) {
1881 						/*
1882 						 * Try again to split large folio to
1883 						 * mitigate the failure of longterm pinning.
1884 						 */
1885 						retry++;
1886 						thp_retry += is_thp;
1887 						nr_retry_pages += nr_pages;
1888 						/* Undo duplicated failure counting. */
1889 						nr_failed--;
1890 						stats->nr_thp_failed -= is_thp;
1891 						break;
1892 					}
1893 				}
1894 
1895 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1896 				/* nr_failed isn't updated for not used */
1897 				stats->nr_thp_failed += thp_retry;
1898 				rc_saved = rc;
1899 				if (list_empty(&unmap_folios))
1900 					goto out;
1901 				else
1902 					goto move;
1903 			case -EAGAIN:
1904 				retry++;
1905 				thp_retry += is_thp;
1906 				nr_retry_pages += nr_pages;
1907 				break;
1908 			case MIGRATEPAGE_SUCCESS:
1909 				stats->nr_succeeded += nr_pages;
1910 				stats->nr_thp_succeeded += is_thp;
1911 				break;
1912 			case MIGRATEPAGE_UNMAP:
1913 				list_move_tail(&folio->lru, &unmap_folios);
1914 				list_add_tail(&dst->lru, &dst_folios);
1915 				break;
1916 			default:
1917 				/*
1918 				 * Permanent failure (-EBUSY, etc.):
1919 				 * unlike -EAGAIN case, the failed folio is
1920 				 * removed from migration folio list and not
1921 				 * retried in the next outer loop.
1922 				 */
1923 				nr_failed++;
1924 				stats->nr_thp_failed += is_thp;
1925 				stats->nr_failed_pages += nr_pages;
1926 				break;
1927 			}
1928 		}
1929 	}
1930 	nr_failed += retry;
1931 	stats->nr_thp_failed += thp_retry;
1932 	stats->nr_failed_pages += nr_retry_pages;
1933 move:
1934 	/* Flush TLBs for all unmapped folios */
1935 	try_to_unmap_flush();
1936 
1937 	retry = 1;
1938 	for (pass = 0; pass < nr_pass && retry; pass++) {
1939 		retry = 0;
1940 		thp_retry = 0;
1941 		nr_retry_pages = 0;
1942 
1943 		/* Move the unmapped folios */
1944 		migrate_folios_move(&unmap_folios, &dst_folios,
1945 				put_new_folio, private, mode, reason,
1946 				ret_folios, stats, &retry, &thp_retry,
1947 				&nr_failed, &nr_retry_pages);
1948 	}
1949 	nr_failed += retry;
1950 	stats->nr_thp_failed += thp_retry;
1951 	stats->nr_failed_pages += nr_retry_pages;
1952 
1953 	rc = rc_saved ? : nr_failed;
1954 out:
1955 	/* Cleanup remaining folios */
1956 	migrate_folios_undo(&unmap_folios, &dst_folios,
1957 			put_new_folio, private, ret_folios);
1958 
1959 	return rc;
1960 }
1961 
1962 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1963 		free_folio_t put_new_folio, unsigned long private,
1964 		enum migrate_mode mode, int reason,
1965 		struct list_head *ret_folios, struct list_head *split_folios,
1966 		struct migrate_pages_stats *stats)
1967 {
1968 	int rc, nr_failed = 0;
1969 	LIST_HEAD(folios);
1970 	struct migrate_pages_stats astats;
1971 
1972 	memset(&astats, 0, sizeof(astats));
1973 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1974 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1975 				 reason, &folios, split_folios, &astats,
1976 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1977 	stats->nr_succeeded += astats.nr_succeeded;
1978 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1979 	stats->nr_thp_split += astats.nr_thp_split;
1980 	stats->nr_split += astats.nr_split;
1981 	if (rc < 0) {
1982 		stats->nr_failed_pages += astats.nr_failed_pages;
1983 		stats->nr_thp_failed += astats.nr_thp_failed;
1984 		list_splice_tail(&folios, ret_folios);
1985 		return rc;
1986 	}
1987 	stats->nr_thp_failed += astats.nr_thp_split;
1988 	/*
1989 	 * Do not count rc, as pages will be retried below.
1990 	 * Count nr_split only, since it includes nr_thp_split.
1991 	 */
1992 	nr_failed += astats.nr_split;
1993 	/*
1994 	 * Fall back to migrate all failed folios one by one synchronously. All
1995 	 * failed folios except split THPs will be retried, so their failure
1996 	 * isn't counted
1997 	 */
1998 	list_splice_tail_init(&folios, from);
1999 	while (!list_empty(from)) {
2000 		list_move(from->next, &folios);
2001 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2002 					 private, mode, reason, ret_folios,
2003 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
2004 		list_splice_tail_init(&folios, ret_folios);
2005 		if (rc < 0)
2006 			return rc;
2007 		nr_failed += rc;
2008 	}
2009 
2010 	return nr_failed;
2011 }
2012 
2013 /*
2014  * migrate_pages - migrate the folios specified in a list, to the free folios
2015  *		   supplied as the target for the page migration
2016  *
2017  * @from:		The list of folios to be migrated.
2018  * @get_new_folio:	The function used to allocate free folios to be used
2019  *			as the target of the folio migration.
2020  * @put_new_folio:	The function used to free target folios if migration
2021  *			fails, or NULL if no special handling is necessary.
2022  * @private:		Private data to be passed on to get_new_folio()
2023  * @mode:		The migration mode that specifies the constraints for
2024  *			folio migration, if any.
2025  * @reason:		The reason for folio migration.
2026  * @ret_succeeded:	Set to the number of folios migrated successfully if
2027  *			the caller passes a non-NULL pointer.
2028  *
2029  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2030  * are movable any more because the list has become empty or no retryable folios
2031  * exist any more. It is caller's responsibility to call putback_movable_pages()
2032  * only if ret != 0.
2033  *
2034  * Returns the number of {normal folio, large folio, hugetlb} that were not
2035  * migrated, or an error code. The number of large folio splits will be
2036  * considered as the number of non-migrated large folio, no matter how many
2037  * split folios of the large folio are migrated successfully.
2038  */
2039 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2040 		free_folio_t put_new_folio, unsigned long private,
2041 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2042 {
2043 	int rc, rc_gather;
2044 	int nr_pages;
2045 	struct folio *folio, *folio2;
2046 	LIST_HEAD(folios);
2047 	LIST_HEAD(ret_folios);
2048 	LIST_HEAD(split_folios);
2049 	struct migrate_pages_stats stats;
2050 
2051 	trace_mm_migrate_pages_start(mode, reason);
2052 
2053 	memset(&stats, 0, sizeof(stats));
2054 
2055 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2056 				     mode, reason, &stats, &ret_folios);
2057 	if (rc_gather < 0)
2058 		goto out;
2059 
2060 again:
2061 	nr_pages = 0;
2062 	list_for_each_entry_safe(folio, folio2, from, lru) {
2063 		/* Retried hugetlb folios will be kept in list  */
2064 		if (folio_test_hugetlb(folio)) {
2065 			list_move_tail(&folio->lru, &ret_folios);
2066 			continue;
2067 		}
2068 
2069 		nr_pages += folio_nr_pages(folio);
2070 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2071 			break;
2072 	}
2073 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2074 		list_cut_before(&folios, from, &folio2->lru);
2075 	else
2076 		list_splice_init(from, &folios);
2077 	if (mode == MIGRATE_ASYNC)
2078 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2079 				private, mode, reason, &ret_folios,
2080 				&split_folios, &stats,
2081 				NR_MAX_MIGRATE_PAGES_RETRY);
2082 	else
2083 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2084 				private, mode, reason, &ret_folios,
2085 				&split_folios, &stats);
2086 	list_splice_tail_init(&folios, &ret_folios);
2087 	if (rc < 0) {
2088 		rc_gather = rc;
2089 		list_splice_tail(&split_folios, &ret_folios);
2090 		goto out;
2091 	}
2092 	if (!list_empty(&split_folios)) {
2093 		/*
2094 		 * Failure isn't counted since all split folios of a large folio
2095 		 * is counted as 1 failure already.  And, we only try to migrate
2096 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2097 		 */
2098 		migrate_pages_batch(&split_folios, get_new_folio,
2099 				put_new_folio, private, MIGRATE_ASYNC, reason,
2100 				&ret_folios, NULL, &stats, 1);
2101 		list_splice_tail_init(&split_folios, &ret_folios);
2102 	}
2103 	rc_gather += rc;
2104 	if (!list_empty(from))
2105 		goto again;
2106 out:
2107 	/*
2108 	 * Put the permanent failure folio back to migration list, they
2109 	 * will be put back to the right list by the caller.
2110 	 */
2111 	list_splice(&ret_folios, from);
2112 
2113 	/*
2114 	 * Return 0 in case all split folios of fail-to-migrate large folios
2115 	 * are migrated successfully.
2116 	 */
2117 	if (list_empty(from))
2118 		rc_gather = 0;
2119 
2120 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2121 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2122 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2123 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2124 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2125 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2126 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2127 			       stats.nr_thp_split, stats.nr_split, mode,
2128 			       reason);
2129 
2130 	if (ret_succeeded)
2131 		*ret_succeeded = stats.nr_succeeded;
2132 
2133 	return rc_gather;
2134 }
2135 
2136 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2137 {
2138 	struct migration_target_control *mtc;
2139 	gfp_t gfp_mask;
2140 	unsigned int order = 0;
2141 	int nid;
2142 	int zidx;
2143 
2144 	mtc = (struct migration_target_control *)private;
2145 	gfp_mask = mtc->gfp_mask;
2146 	nid = mtc->nid;
2147 	if (nid == NUMA_NO_NODE)
2148 		nid = folio_nid(src);
2149 
2150 	if (folio_test_hugetlb(src)) {
2151 		struct hstate *h = folio_hstate(src);
2152 
2153 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2154 		return alloc_hugetlb_folio_nodemask(h, nid,
2155 						mtc->nmask, gfp_mask,
2156 						htlb_allow_alloc_fallback(mtc->reason));
2157 	}
2158 
2159 	if (folio_test_large(src)) {
2160 		/*
2161 		 * clear __GFP_RECLAIM to make the migration callback
2162 		 * consistent with regular THP allocations.
2163 		 */
2164 		gfp_mask &= ~__GFP_RECLAIM;
2165 		gfp_mask |= GFP_TRANSHUGE;
2166 		order = folio_order(src);
2167 	}
2168 	zidx = zone_idx(folio_zone(src));
2169 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2170 		gfp_mask |= __GFP_HIGHMEM;
2171 
2172 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2173 }
2174 
2175 #ifdef CONFIG_NUMA
2176 
2177 static int store_status(int __user *status, int start, int value, int nr)
2178 {
2179 	while (nr-- > 0) {
2180 		if (put_user(value, status + start))
2181 			return -EFAULT;
2182 		start++;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2189 {
2190 	int err;
2191 	struct migration_target_control mtc = {
2192 		.nid = node,
2193 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2194 		.reason = MR_SYSCALL,
2195 	};
2196 
2197 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2198 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2199 	if (err)
2200 		putback_movable_pages(pagelist);
2201 	return err;
2202 }
2203 
2204 static int __add_folio_for_migration(struct folio *folio, int node,
2205 		struct list_head *pagelist, bool migrate_all)
2206 {
2207 	if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2208 		return -EFAULT;
2209 
2210 	if (folio_is_zone_device(folio))
2211 		return -ENOENT;
2212 
2213 	if (folio_nid(folio) == node)
2214 		return 0;
2215 
2216 	if (folio_maybe_mapped_shared(folio) && !migrate_all)
2217 		return -EACCES;
2218 
2219 	if (folio_test_hugetlb(folio)) {
2220 		if (folio_isolate_hugetlb(folio, pagelist))
2221 			return 1;
2222 	} else if (folio_isolate_lru(folio)) {
2223 		list_add_tail(&folio->lru, pagelist);
2224 		node_stat_mod_folio(folio,
2225 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2226 			folio_nr_pages(folio));
2227 		return 1;
2228 	}
2229 	return -EBUSY;
2230 }
2231 
2232 /*
2233  * Resolves the given address to a struct folio, isolates it from the LRU and
2234  * puts it to the given pagelist.
2235  * Returns:
2236  *     errno - if the folio cannot be found/isolated
2237  *     0 - when it doesn't have to be migrated because it is already on the
2238  *         target node
2239  *     1 - when it has been queued
2240  */
2241 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2242 		int node, struct list_head *pagelist, bool migrate_all)
2243 {
2244 	struct vm_area_struct *vma;
2245 	struct folio_walk fw;
2246 	struct folio *folio;
2247 	unsigned long addr;
2248 	int err = -EFAULT;
2249 
2250 	mmap_read_lock(mm);
2251 	addr = (unsigned long)untagged_addr_remote(mm, p);
2252 
2253 	vma = vma_lookup(mm, addr);
2254 	if (vma && vma_migratable(vma)) {
2255 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2256 		if (folio) {
2257 			err = __add_folio_for_migration(folio, node, pagelist,
2258 							migrate_all);
2259 			folio_walk_end(&fw, vma);
2260 		} else {
2261 			err = -ENOENT;
2262 		}
2263 	}
2264 	mmap_read_unlock(mm);
2265 	return err;
2266 }
2267 
2268 static int move_pages_and_store_status(int node,
2269 		struct list_head *pagelist, int __user *status,
2270 		int start, int i, unsigned long nr_pages)
2271 {
2272 	int err;
2273 
2274 	if (list_empty(pagelist))
2275 		return 0;
2276 
2277 	err = do_move_pages_to_node(pagelist, node);
2278 	if (err) {
2279 		/*
2280 		 * Positive err means the number of failed
2281 		 * pages to migrate.  Since we are going to
2282 		 * abort and return the number of non-migrated
2283 		 * pages, so need to include the rest of the
2284 		 * nr_pages that have not been attempted as
2285 		 * well.
2286 		 */
2287 		if (err > 0)
2288 			err += nr_pages - i;
2289 		return err;
2290 	}
2291 	return store_status(status, start, node, i - start);
2292 }
2293 
2294 /*
2295  * Migrate an array of page address onto an array of nodes and fill
2296  * the corresponding array of status.
2297  */
2298 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2299 			 unsigned long nr_pages,
2300 			 const void __user * __user *pages,
2301 			 const int __user *nodes,
2302 			 int __user *status, int flags)
2303 {
2304 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2305 	int current_node = NUMA_NO_NODE;
2306 	LIST_HEAD(pagelist);
2307 	int start, i;
2308 	int err = 0, err1;
2309 
2310 	lru_cache_disable();
2311 
2312 	for (i = start = 0; i < nr_pages; i++) {
2313 		const void __user *p;
2314 		int node;
2315 
2316 		err = -EFAULT;
2317 		if (in_compat_syscall()) {
2318 			compat_uptr_t cp;
2319 
2320 			if (get_user(cp, compat_pages + i))
2321 				goto out_flush;
2322 
2323 			p = compat_ptr(cp);
2324 		} else {
2325 			if (get_user(p, pages + i))
2326 				goto out_flush;
2327 		}
2328 		if (get_user(node, nodes + i))
2329 			goto out_flush;
2330 
2331 		err = -ENODEV;
2332 		if (node < 0 || node >= MAX_NUMNODES)
2333 			goto out_flush;
2334 		if (!node_state(node, N_MEMORY))
2335 			goto out_flush;
2336 
2337 		err = -EACCES;
2338 		if (!node_isset(node, task_nodes))
2339 			goto out_flush;
2340 
2341 		if (current_node == NUMA_NO_NODE) {
2342 			current_node = node;
2343 			start = i;
2344 		} else if (node != current_node) {
2345 			err = move_pages_and_store_status(current_node,
2346 					&pagelist, status, start, i, nr_pages);
2347 			if (err)
2348 				goto out;
2349 			start = i;
2350 			current_node = node;
2351 		}
2352 
2353 		/*
2354 		 * Errors in the page lookup or isolation are not fatal and we simply
2355 		 * report them via status
2356 		 */
2357 		err = add_folio_for_migration(mm, p, current_node, &pagelist,
2358 					      flags & MPOL_MF_MOVE_ALL);
2359 
2360 		if (err > 0) {
2361 			/* The page is successfully queued for migration */
2362 			continue;
2363 		}
2364 
2365 		/*
2366 		 * If the page is already on the target node (!err), store the
2367 		 * node, otherwise, store the err.
2368 		 */
2369 		err = store_status(status, i, err ? : current_node, 1);
2370 		if (err)
2371 			goto out_flush;
2372 
2373 		err = move_pages_and_store_status(current_node, &pagelist,
2374 				status, start, i, nr_pages);
2375 		if (err) {
2376 			/* We have accounted for page i */
2377 			if (err > 0)
2378 				err--;
2379 			goto out;
2380 		}
2381 		current_node = NUMA_NO_NODE;
2382 	}
2383 out_flush:
2384 	/* Make sure we do not overwrite the existing error */
2385 	err1 = move_pages_and_store_status(current_node, &pagelist,
2386 				status, start, i, nr_pages);
2387 	if (err >= 0)
2388 		err = err1;
2389 out:
2390 	lru_cache_enable();
2391 	return err;
2392 }
2393 
2394 /*
2395  * Determine the nodes of an array of pages and store it in an array of status.
2396  */
2397 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2398 				const void __user **pages, int *status)
2399 {
2400 	unsigned long i;
2401 
2402 	mmap_read_lock(mm);
2403 
2404 	for (i = 0; i < nr_pages; i++) {
2405 		unsigned long addr = (unsigned long)(*pages);
2406 		struct vm_area_struct *vma;
2407 		struct folio_walk fw;
2408 		struct folio *folio;
2409 		int err = -EFAULT;
2410 
2411 		vma = vma_lookup(mm, addr);
2412 		if (!vma)
2413 			goto set_status;
2414 
2415 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2416 		if (folio) {
2417 			if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2418 				err = -EFAULT;
2419 			else if (folio_is_zone_device(folio))
2420 				err = -ENOENT;
2421 			else
2422 				err = folio_nid(folio);
2423 			folio_walk_end(&fw, vma);
2424 		} else {
2425 			err = -ENOENT;
2426 		}
2427 set_status:
2428 		*status = err;
2429 
2430 		pages++;
2431 		status++;
2432 	}
2433 
2434 	mmap_read_unlock(mm);
2435 }
2436 
2437 static int get_compat_pages_array(const void __user *chunk_pages[],
2438 				  const void __user * __user *pages,
2439 				  unsigned long chunk_offset,
2440 				  unsigned long chunk_nr)
2441 {
2442 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2443 	compat_uptr_t p;
2444 	int i;
2445 
2446 	for (i = 0; i < chunk_nr; i++) {
2447 		if (get_user(p, pages32 + chunk_offset + i))
2448 			return -EFAULT;
2449 		chunk_pages[i] = compat_ptr(p);
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 /*
2456  * Determine the nodes of a user array of pages and store it in
2457  * a user array of status.
2458  */
2459 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2460 			 const void __user * __user *pages,
2461 			 int __user *status)
2462 {
2463 #define DO_PAGES_STAT_CHUNK_NR 16UL
2464 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2465 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2466 	unsigned long chunk_offset = 0;
2467 
2468 	while (nr_pages) {
2469 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2470 
2471 		if (in_compat_syscall()) {
2472 			if (get_compat_pages_array(chunk_pages, pages,
2473 						   chunk_offset, chunk_nr))
2474 				break;
2475 		} else {
2476 			if (copy_from_user(chunk_pages, pages + chunk_offset,
2477 				      chunk_nr * sizeof(*chunk_pages)))
2478 				break;
2479 		}
2480 
2481 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2482 
2483 		if (copy_to_user(status + chunk_offset, chunk_status,
2484 				 chunk_nr * sizeof(*status)))
2485 			break;
2486 
2487 		chunk_offset += chunk_nr;
2488 		nr_pages -= chunk_nr;
2489 	}
2490 	return nr_pages ? -EFAULT : 0;
2491 }
2492 
2493 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2494 {
2495 	struct task_struct *task;
2496 	struct mm_struct *mm;
2497 
2498 	/*
2499 	 * There is no need to check if current process has the right to modify
2500 	 * the specified process when they are same.
2501 	 */
2502 	if (!pid) {
2503 		mmget(current->mm);
2504 		*mem_nodes = cpuset_mems_allowed(current);
2505 		return current->mm;
2506 	}
2507 
2508 	task = find_get_task_by_vpid(pid);
2509 	if (!task) {
2510 		return ERR_PTR(-ESRCH);
2511 	}
2512 
2513 	/*
2514 	 * Check if this process has the right to modify the specified
2515 	 * process. Use the regular "ptrace_may_access()" checks.
2516 	 */
2517 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2518 		mm = ERR_PTR(-EPERM);
2519 		goto out;
2520 	}
2521 
2522 	mm = ERR_PTR(security_task_movememory(task));
2523 	if (IS_ERR(mm))
2524 		goto out;
2525 	*mem_nodes = cpuset_mems_allowed(task);
2526 	mm = get_task_mm(task);
2527 out:
2528 	put_task_struct(task);
2529 	if (!mm)
2530 		mm = ERR_PTR(-EINVAL);
2531 	return mm;
2532 }
2533 
2534 /*
2535  * Move a list of pages in the address space of the currently executing
2536  * process.
2537  */
2538 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2539 			     const void __user * __user *pages,
2540 			     const int __user *nodes,
2541 			     int __user *status, int flags)
2542 {
2543 	struct mm_struct *mm;
2544 	int err;
2545 	nodemask_t task_nodes;
2546 
2547 	/* Check flags */
2548 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2549 		return -EINVAL;
2550 
2551 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2552 		return -EPERM;
2553 
2554 	mm = find_mm_struct(pid, &task_nodes);
2555 	if (IS_ERR(mm))
2556 		return PTR_ERR(mm);
2557 
2558 	if (nodes)
2559 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2560 				    nodes, status, flags);
2561 	else
2562 		err = do_pages_stat(mm, nr_pages, pages, status);
2563 
2564 	mmput(mm);
2565 	return err;
2566 }
2567 
2568 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2569 		const void __user * __user *, pages,
2570 		const int __user *, nodes,
2571 		int __user *, status, int, flags)
2572 {
2573 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2574 }
2575 
2576 #ifdef CONFIG_NUMA_BALANCING
2577 /*
2578  * Returns true if this is a safe migration target node for misplaced NUMA
2579  * pages. Currently it only checks the watermarks which is crude.
2580  */
2581 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2582 				   unsigned long nr_migrate_pages)
2583 {
2584 	int z;
2585 
2586 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2587 		struct zone *zone = pgdat->node_zones + z;
2588 
2589 		if (!managed_zone(zone))
2590 			continue;
2591 
2592 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2593 		if (!zone_watermark_ok(zone, 0,
2594 				       high_wmark_pages(zone) +
2595 				       nr_migrate_pages,
2596 				       ZONE_MOVABLE, ALLOC_CMA))
2597 			continue;
2598 		return true;
2599 	}
2600 	return false;
2601 }
2602 
2603 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2604 					   unsigned long data)
2605 {
2606 	int nid = (int) data;
2607 	int order = folio_order(src);
2608 	gfp_t gfp = __GFP_THISNODE;
2609 
2610 	if (order > 0)
2611 		gfp |= GFP_TRANSHUGE_LIGHT;
2612 	else {
2613 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2614 			__GFP_NOWARN;
2615 		gfp &= ~__GFP_RECLAIM;
2616 	}
2617 	return __folio_alloc_node(gfp, order, nid);
2618 }
2619 
2620 /*
2621  * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2622  * permitted. Must be called with the PTL still held.
2623  */
2624 int migrate_misplaced_folio_prepare(struct folio *folio,
2625 		struct vm_area_struct *vma, int node)
2626 {
2627 	int nr_pages = folio_nr_pages(folio);
2628 	pg_data_t *pgdat = NODE_DATA(node);
2629 
2630 	if (folio_is_file_lru(folio)) {
2631 		/*
2632 		 * Do not migrate file folios that are mapped in multiple
2633 		 * processes with execute permissions as they are probably
2634 		 * shared libraries.
2635 		 *
2636 		 * See folio_maybe_mapped_shared() on possible imprecision
2637 		 * when we cannot easily detect if a folio is shared.
2638 		 */
2639 		if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio))
2640 			return -EACCES;
2641 
2642 		/*
2643 		 * Do not migrate dirty folios as not all filesystems can move
2644 		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2645 		 * cycles.
2646 		 */
2647 		if (folio_test_dirty(folio))
2648 			return -EAGAIN;
2649 	}
2650 
2651 	/* Avoid migrating to a node that is nearly full */
2652 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2653 		int z;
2654 
2655 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2656 			return -EAGAIN;
2657 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2658 			if (managed_zone(pgdat->node_zones + z))
2659 				break;
2660 		}
2661 
2662 		/*
2663 		 * If there are no managed zones, it should not proceed
2664 		 * further.
2665 		 */
2666 		if (z < 0)
2667 			return -EAGAIN;
2668 
2669 		wakeup_kswapd(pgdat->node_zones + z, 0,
2670 			      folio_order(folio), ZONE_MOVABLE);
2671 		return -EAGAIN;
2672 	}
2673 
2674 	if (!folio_isolate_lru(folio))
2675 		return -EAGAIN;
2676 
2677 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2678 			    nr_pages);
2679 	return 0;
2680 }
2681 
2682 /*
2683  * Attempt to migrate a misplaced folio to the specified destination
2684  * node. Caller is expected to have isolated the folio by calling
2685  * migrate_misplaced_folio_prepare(), which will result in an
2686  * elevated reference count on the folio. This function will un-isolate the
2687  * folio, dereferencing the folio before returning.
2688  */
2689 int migrate_misplaced_folio(struct folio *folio, int node)
2690 {
2691 	pg_data_t *pgdat = NODE_DATA(node);
2692 	int nr_remaining;
2693 	unsigned int nr_succeeded;
2694 	LIST_HEAD(migratepages);
2695 	struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2696 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2697 
2698 	list_add(&folio->lru, &migratepages);
2699 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2700 				     NULL, node, MIGRATE_ASYNC,
2701 				     MR_NUMA_MISPLACED, &nr_succeeded);
2702 	if (nr_remaining && !list_empty(&migratepages))
2703 		putback_movable_pages(&migratepages);
2704 	if (nr_succeeded) {
2705 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2706 		count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2707 		if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2708 		    && !node_is_toptier(folio_nid(folio))
2709 		    && node_is_toptier(node))
2710 			mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
2711 	}
2712 	mem_cgroup_put(memcg);
2713 	BUG_ON(!list_empty(&migratepages));
2714 	return nr_remaining ? -EAGAIN : 0;
2715 }
2716 #endif /* CONFIG_NUMA_BALANCING */
2717 #endif /* CONFIG_NUMA */
2718