xref: /linux/kernel/sched/cpupri.c (revision bf76f23aa1c178e9115eba17f699fa726aed669b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/cpupri.c
4  *
5  *  CPU priority management
6  *
7  *  Copyright (C) 2007-2008 Novell
8  *
9  *  Author: Gregory Haskins <ghaskins@novell.com>
10  *
11  *  This code tracks the priority of each CPU so that global migration
12  *  decisions are easy to calculate.  Each CPU can be in a state as follows:
13  *
14  *                 (INVALID), NORMAL, RT1, ... RT99, HIGHER
15  *
16  *  going from the lowest priority to the highest.  CPUs in the INVALID state
17  *  are not eligible for routing.  The system maintains this state with
18  *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
19  *  in that class).  Therefore a typical application without affinity
20  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21  *  searches).  For tasks with affinity restrictions, the algorithm has a
22  *  worst case complexity of O(min(101, nr_domcpus)), though the scenario that
23  *  yields the worst case search is fairly contrived.
24  */
25 #include "sched.h"
26 
27 /*
28  * p->rt_priority   p->prio   newpri   cpupri
29  *
30  *				  -1       -1 (CPUPRI_INVALID)
31  *
32  *				  99        0 (CPUPRI_NORMAL)
33  *
34  *		1        98       98        1
35  *	      ...
36  *	       49        50       50       49
37  *	       50        49       49       50
38  *	      ...
39  *	       99         0        0       99
40  *
41  *				 100	  100 (CPUPRI_HIGHER)
42  */
convert_prio(int prio)43 static int convert_prio(int prio)
44 {
45 	int cpupri;
46 
47 	switch (prio) {
48 	case CPUPRI_INVALID:
49 		cpupri = CPUPRI_INVALID;	/* -1 */
50 		break;
51 
52 	case 0 ... 98:
53 		cpupri = MAX_RT_PRIO-1 - prio;	/* 1 ... 99 */
54 		break;
55 
56 	case MAX_RT_PRIO-1:
57 		cpupri = CPUPRI_NORMAL;		/*  0 */
58 		break;
59 
60 	case MAX_RT_PRIO:
61 		cpupri = CPUPRI_HIGHER;		/* 100 */
62 		break;
63 	}
64 
65 	return cpupri;
66 }
67 
__cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,int idx)68 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
69 				struct cpumask *lowest_mask, int idx)
70 {
71 	struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
72 	int skip = 0;
73 
74 	if (!atomic_read(&(vec)->count))
75 		skip = 1;
76 	/*
77 	 * When looking at the vector, we need to read the counter,
78 	 * do a memory barrier, then read the mask.
79 	 *
80 	 * Note: This is still all racy, but we can deal with it.
81 	 *  Ideally, we only want to look at masks that are set.
82 	 *
83 	 *  If a mask is not set, then the only thing wrong is that we
84 	 *  did a little more work than necessary.
85 	 *
86 	 *  If we read a zero count but the mask is set, because of the
87 	 *  memory barriers, that can only happen when the highest prio
88 	 *  task for a run queue has left the run queue, in which case,
89 	 *  it will be followed by a pull. If the task we are processing
90 	 *  fails to find a proper place to go, that pull request will
91 	 *  pull this task if the run queue is running at a lower
92 	 *  priority.
93 	 */
94 	smp_rmb();
95 
96 	/* Need to do the rmb for every iteration */
97 	if (skip)
98 		return 0;
99 
100 	if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
101 		return 0;
102 
103 	if (lowest_mask) {
104 		cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
105 		cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
106 
107 		/*
108 		 * We have to ensure that we have at least one bit
109 		 * still set in the array, since the map could have
110 		 * been concurrently emptied between the first and
111 		 * second reads of vec->mask.  If we hit this
112 		 * condition, simply act as though we never hit this
113 		 * priority level and continue on.
114 		 */
115 		if (cpumask_empty(lowest_mask))
116 			return 0;
117 	}
118 
119 	return 1;
120 }
121 
cpupri_find(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask)122 int cpupri_find(struct cpupri *cp, struct task_struct *p,
123 		struct cpumask *lowest_mask)
124 {
125 	return cpupri_find_fitness(cp, p, lowest_mask, NULL);
126 }
127 
128 /**
129  * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
130  * @cp: The cpupri context
131  * @p: The task
132  * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
133  * @fitness_fn: A pointer to a function to do custom checks whether the CPU
134  *              fits a specific criteria so that we only return those CPUs.
135  *
136  * Note: This function returns the recommended CPUs as calculated during the
137  * current invocation.  By the time the call returns, the CPUs may have in
138  * fact changed priorities any number of times.  While not ideal, it is not
139  * an issue of correctness since the normal rebalancer logic will correct
140  * any discrepancies created by racing against the uncertainty of the current
141  * priority configuration.
142  *
143  * Return: (int)bool - CPUs were found
144  */
cpupri_find_fitness(struct cpupri * cp,struct task_struct * p,struct cpumask * lowest_mask,bool (* fitness_fn)(struct task_struct * p,int cpu))145 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
146 		struct cpumask *lowest_mask,
147 		bool (*fitness_fn)(struct task_struct *p, int cpu))
148 {
149 	int task_pri = convert_prio(p->prio);
150 	int idx, cpu;
151 
152 	WARN_ON_ONCE(task_pri >= CPUPRI_NR_PRIORITIES);
153 
154 	for (idx = 0; idx < task_pri; idx++) {
155 
156 		if (!__cpupri_find(cp, p, lowest_mask, idx))
157 			continue;
158 
159 		if (!lowest_mask || !fitness_fn)
160 			return 1;
161 
162 		/* Ensure the capacity of the CPUs fit the task */
163 		for_each_cpu(cpu, lowest_mask) {
164 			if (!fitness_fn(p, cpu))
165 				cpumask_clear_cpu(cpu, lowest_mask);
166 		}
167 
168 		/*
169 		 * If no CPU at the current priority can fit the task
170 		 * continue looking
171 		 */
172 		if (cpumask_empty(lowest_mask))
173 			continue;
174 
175 		return 1;
176 	}
177 
178 	/*
179 	 * If we failed to find a fitting lowest_mask, kick off a new search
180 	 * but without taking into account any fitness criteria this time.
181 	 *
182 	 * This rule favours honouring priority over fitting the task in the
183 	 * correct CPU (Capacity Awareness being the only user now).
184 	 * The idea is that if a higher priority task can run, then it should
185 	 * run even if this ends up being on unfitting CPU.
186 	 *
187 	 * The cost of this trade-off is not entirely clear and will probably
188 	 * be good for some workloads and bad for others.
189 	 *
190 	 * The main idea here is that if some CPUs were over-committed, we try
191 	 * to spread which is what the scheduler traditionally did. Sys admins
192 	 * must do proper RT planning to avoid overloading the system if they
193 	 * really care.
194 	 */
195 	if (fitness_fn)
196 		return cpupri_find(cp, p, lowest_mask);
197 
198 	return 0;
199 }
200 
201 /**
202  * cpupri_set - update the CPU priority setting
203  * @cp: The cpupri context
204  * @cpu: The target CPU
205  * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
206  *
207  * Note: Assumes cpu_rq(cpu)->lock is locked
208  *
209  * Returns: (void)
210  */
cpupri_set(struct cpupri * cp,int cpu,int newpri)211 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
212 {
213 	int *currpri = &cp->cpu_to_pri[cpu];
214 	int oldpri = *currpri;
215 	int do_mb = 0;
216 
217 	newpri = convert_prio(newpri);
218 
219 	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
220 
221 	if (newpri == oldpri)
222 		return;
223 
224 	/*
225 	 * If the CPU was currently mapped to a different value, we
226 	 * need to map it to the new value then remove the old value.
227 	 * Note, we must add the new value first, otherwise we risk the
228 	 * cpu being missed by the priority loop in cpupri_find.
229 	 */
230 	if (likely(newpri != CPUPRI_INVALID)) {
231 		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
232 
233 		cpumask_set_cpu(cpu, vec->mask);
234 		/*
235 		 * When adding a new vector, we update the mask first,
236 		 * do a write memory barrier, and then update the count, to
237 		 * make sure the vector is visible when count is set.
238 		 */
239 		smp_mb__before_atomic();
240 		atomic_inc(&(vec)->count);
241 		do_mb = 1;
242 	}
243 	if (likely(oldpri != CPUPRI_INVALID)) {
244 		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
245 
246 		/*
247 		 * Because the order of modification of the vec->count
248 		 * is important, we must make sure that the update
249 		 * of the new prio is seen before we decrement the
250 		 * old prio. This makes sure that the loop sees
251 		 * one or the other when we raise the priority of
252 		 * the run queue. We don't care about when we lower the
253 		 * priority, as that will trigger an rt pull anyway.
254 		 *
255 		 * We only need to do a memory barrier if we updated
256 		 * the new priority vec.
257 		 */
258 		if (do_mb)
259 			smp_mb__after_atomic();
260 
261 		/*
262 		 * When removing from the vector, we decrement the counter first
263 		 * do a memory barrier and then clear the mask.
264 		 */
265 		atomic_dec(&(vec)->count);
266 		smp_mb__after_atomic();
267 		cpumask_clear_cpu(cpu, vec->mask);
268 	}
269 
270 	*currpri = newpri;
271 }
272 
273 /**
274  * cpupri_init - initialize the cpupri structure
275  * @cp: The cpupri context
276  *
277  * Return: -ENOMEM on memory allocation failure.
278  */
cpupri_init(struct cpupri * cp)279 int cpupri_init(struct cpupri *cp)
280 {
281 	int i;
282 
283 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
284 		struct cpupri_vec *vec = &cp->pri_to_cpu[i];
285 
286 		atomic_set(&vec->count, 0);
287 		if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
288 			goto cleanup;
289 	}
290 
291 	cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
292 	if (!cp->cpu_to_pri)
293 		goto cleanup;
294 
295 	for_each_possible_cpu(i)
296 		cp->cpu_to_pri[i] = CPUPRI_INVALID;
297 
298 	return 0;
299 
300 cleanup:
301 	for (i--; i >= 0; i--)
302 		free_cpumask_var(cp->pri_to_cpu[i].mask);
303 	return -ENOMEM;
304 }
305 
306 /**
307  * cpupri_cleanup - clean up the cpupri structure
308  * @cp: The cpupri context
309  */
cpupri_cleanup(struct cpupri * cp)310 void cpupri_cleanup(struct cpupri *cp)
311 {
312 	int i;
313 
314 	kfree(cp->cpu_to_pri);
315 	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
316 		free_cpumask_var(cp->pri_to_cpu[i].mask);
317 }
318