xref: /linux/drivers/cpufreq/cpufreq.c (revision 53edfecef66bfa65882ae065ed1a52f466c88979)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/string_choices.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <linux/units.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active)			 \
39 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 		if ((__active) == !policy_is_inactive(__policy))
41 
42 #define for_each_active_policy(__policy)		\
43 	for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy)		\
45 	for_each_suitable_policy(__policy, false)
46 
47 /* Iterate over governors */
48 static LIST_HEAD(cpufreq_governor_list);
49 #define for_each_governor(__governor)				\
50 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51 
52 static char default_governor[CPUFREQ_NAME_LEN];
53 
54 /*
55  * The "cpufreq driver" - the arch- or hardware-dependent low
56  * level driver of CPUFreq support, and its spinlock. This lock
57  * also protects the cpufreq_cpu_data array.
58  */
59 static struct cpufreq_driver *cpufreq_driver;
60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61 static DEFINE_RWLOCK(cpufreq_driver_lock);
62 
63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)64 bool cpufreq_supports_freq_invariance(void)
65 {
66 	return static_branch_likely(&cpufreq_freq_invariance);
67 }
68 
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71 
has_target(void)72 static inline bool has_target(void)
73 {
74 	return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76 
has_target_index(void)77 bool has_target_index(void)
78 {
79 	return !!cpufreq_driver->target_index;
80 }
81 
82 /* internal prototypes */
83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
84 static int cpufreq_init_governor(struct cpufreq_policy *policy);
85 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
86 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
87 static int cpufreq_set_policy(struct cpufreq_policy *policy,
88 			      struct cpufreq_governor *new_gov,
89 			      unsigned int new_pol);
90 static bool cpufreq_boost_supported(void);
91 static int cpufreq_boost_trigger_state(int state);
92 
93 /*
94  * Two notifier lists: the "policy" list is involved in the
95  * validation process for a new CPU frequency policy; the
96  * "transition" list for kernel code that needs to handle
97  * changes to devices when the CPU clock speed changes.
98  * The mutex locks both lists.
99  */
100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
cpufreq_disabled(void)104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
disable_cpufreq(void)108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 EXPORT_SYMBOL_GPL(disable_cpufreq);
113 
114 static DEFINE_MUTEX(cpufreq_governor_mutex);
115 
have_governor_per_policy(void)116 bool have_governor_per_policy(void)
117 {
118 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
119 }
120 EXPORT_SYMBOL_GPL(have_governor_per_policy);
121 
122 static struct kobject *cpufreq_global_kobject;
123 
get_governor_parent_kobj(struct cpufreq_policy * policy)124 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
125 {
126 	if (have_governor_per_policy())
127 		return &policy->kobj;
128 	else
129 		return cpufreq_global_kobject;
130 }
131 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
132 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)133 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
134 {
135 	struct kernel_cpustat kcpustat;
136 	u64 cur_wall_time;
137 	u64 idle_time;
138 	u64 busy_time;
139 
140 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
141 
142 	kcpustat_cpu_fetch(&kcpustat, cpu);
143 
144 	busy_time = kcpustat.cpustat[CPUTIME_USER];
145 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
146 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
147 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
148 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
149 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
150 
151 	idle_time = cur_wall_time - busy_time;
152 	if (wall)
153 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
154 
155 	return div_u64(idle_time, NSEC_PER_USEC);
156 }
157 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)158 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
159 {
160 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
161 
162 	if (idle_time == -1ULL)
163 		return get_cpu_idle_time_jiffy(cpu, wall);
164 	else if (!io_busy)
165 		idle_time += get_cpu_iowait_time_us(cpu, wall);
166 
167 	return idle_time;
168 }
169 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
170 
171 /*
172  * This is a generic cpufreq init() routine which can be used by cpufreq
173  * drivers of SMP systems. It will do following:
174  * - validate & show freq table passed
175  * - set policies transition latency
176  * - policy->cpus with all possible CPUs
177  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)178 void cpufreq_generic_init(struct cpufreq_policy *policy,
179 		struct cpufreq_frequency_table *table,
180 		unsigned int transition_latency)
181 {
182 	policy->freq_table = table;
183 	policy->cpuinfo.transition_latency = transition_latency;
184 
185 	/*
186 	 * The driver only supports the SMP configuration where all processors
187 	 * share the clock and voltage and clock.
188 	 */
189 	cpumask_setall(policy->cpus);
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
192 
cpufreq_cpu_get_raw(unsigned int cpu)193 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
196 
197 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
200 
cpufreq_generic_get(unsigned int cpu)201 unsigned int cpufreq_generic_get(unsigned int cpu)
202 {
203 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
204 
205 	if (!policy || IS_ERR(policy->clk)) {
206 		pr_err("%s: No %s associated to cpu: %d\n",
207 		       __func__, policy ? "clk" : "policy", cpu);
208 		return 0;
209 	}
210 
211 	return clk_get_rate(policy->clk) / 1000;
212 }
213 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
214 
215 /**
216  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
217  * @cpu: CPU to find the policy for.
218  *
219  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
220  * the kobject reference counter of that policy.  Return a valid policy on
221  * success or NULL on failure.
222  *
223  * The policy returned by this function has to be released with the help of
224  * cpufreq_cpu_put() to balance its kobject reference counter properly.
225  */
cpufreq_cpu_get(unsigned int cpu)226 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
227 {
228 	struct cpufreq_policy *policy = NULL;
229 	unsigned long flags;
230 
231 	if (WARN_ON(cpu >= nr_cpu_ids))
232 		return NULL;
233 
234 	/* get the cpufreq driver */
235 	read_lock_irqsave(&cpufreq_driver_lock, flags);
236 
237 	if (cpufreq_driver) {
238 		/* get the CPU */
239 		policy = cpufreq_cpu_get_raw(cpu);
240 		if (policy)
241 			kobject_get(&policy->kobj);
242 	}
243 
244 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
245 
246 	return policy;
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
249 
250 /**
251  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
252  * @policy: cpufreq policy returned by cpufreq_cpu_get().
253  */
cpufreq_cpu_put(struct cpufreq_policy * policy)254 void cpufreq_cpu_put(struct cpufreq_policy *policy)
255 {
256 	kobject_put(&policy->kobj);
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
259 
260 /*********************************************************************
261  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
262  *********************************************************************/
263 
264 /**
265  * adjust_jiffies - Adjust the system "loops_per_jiffy".
266  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
267  * @ci: Frequency change information.
268  *
269  * This function alters the system "loops_per_jiffy" for the clock
270  * speed change. Note that loops_per_jiffy cannot be updated on SMP
271  * systems as each CPU might be scaled differently. So, use the arch
272  * per-CPU loops_per_jiffy value wherever possible.
273  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
275 {
276 #ifndef CONFIG_SMP
277 	static unsigned long l_p_j_ref;
278 	static unsigned int l_p_j_ref_freq;
279 
280 	if (ci->flags & CPUFREQ_CONST_LOOPS)
281 		return;
282 
283 	if (!l_p_j_ref_freq) {
284 		l_p_j_ref = loops_per_jiffy;
285 		l_p_j_ref_freq = ci->old;
286 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
287 			 l_p_j_ref, l_p_j_ref_freq);
288 	}
289 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
290 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
291 								ci->new);
292 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
293 			 loops_per_jiffy, ci->new);
294 	}
295 #endif
296 }
297 
298 /**
299  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
300  * @policy: cpufreq policy to enable fast frequency switching for.
301  * @freqs: contain details of the frequency update.
302  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
303  *
304  * This function calls the transition notifiers and adjust_jiffies().
305  *
306  * It is called twice on all CPU frequency changes that have external effects.
307  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)308 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
309 				      struct cpufreq_freqs *freqs,
310 				      unsigned int state)
311 {
312 	int cpu;
313 
314 	BUG_ON(irqs_disabled());
315 
316 	if (cpufreq_disabled())
317 		return;
318 
319 	freqs->policy = policy;
320 	freqs->flags = cpufreq_driver->flags;
321 	pr_debug("notification %u of frequency transition to %u kHz\n",
322 		 state, freqs->new);
323 
324 	switch (state) {
325 	case CPUFREQ_PRECHANGE:
326 		/*
327 		 * Detect if the driver reported a value as "old frequency"
328 		 * which is not equal to what the cpufreq core thinks is
329 		 * "old frequency".
330 		 */
331 		if (policy->cur && policy->cur != freqs->old) {
332 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 				 freqs->old, policy->cur);
334 			freqs->old = policy->cur;
335 		}
336 
337 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 					 CPUFREQ_PRECHANGE, freqs);
339 
340 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
341 		break;
342 
343 	case CPUFREQ_POSTCHANGE:
344 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
345 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
346 			 cpumask_pr_args(policy->cpus));
347 
348 		for_each_cpu(cpu, policy->cpus)
349 			trace_cpu_frequency(freqs->new, cpu);
350 
351 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
352 					 CPUFREQ_POSTCHANGE, freqs);
353 
354 		cpufreq_stats_record_transition(policy, freqs->new);
355 		policy->cur = freqs->new;
356 	}
357 }
358 
359 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)360 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
361 		struct cpufreq_freqs *freqs, int transition_failed)
362 {
363 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
364 	if (!transition_failed)
365 		return;
366 
367 	swap(freqs->old, freqs->new);
368 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
369 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 }
371 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)372 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
373 		struct cpufreq_freqs *freqs)
374 {
375 
376 	/*
377 	 * Catch double invocations of _begin() which lead to self-deadlock.
378 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
379 	 * doesn't invoke _begin() on their behalf, and hence the chances of
380 	 * double invocations are very low. Moreover, there are scenarios
381 	 * where these checks can emit false-positive warnings in these
382 	 * drivers; so we avoid that by skipping them altogether.
383 	 */
384 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
385 				&& current == policy->transition_task);
386 
387 wait:
388 	wait_event(policy->transition_wait, !policy->transition_ongoing);
389 
390 	spin_lock(&policy->transition_lock);
391 
392 	if (unlikely(policy->transition_ongoing)) {
393 		spin_unlock(&policy->transition_lock);
394 		goto wait;
395 	}
396 
397 	policy->transition_ongoing = true;
398 	policy->transition_task = current;
399 
400 	spin_unlock(&policy->transition_lock);
401 
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 }
404 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
405 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)406 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
407 		struct cpufreq_freqs *freqs, int transition_failed)
408 {
409 	if (WARN_ON(!policy->transition_ongoing))
410 		return;
411 
412 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
413 
414 	arch_set_freq_scale(policy->related_cpus,
415 			    policy->cur,
416 			    arch_scale_freq_ref(policy->cpu));
417 
418 	spin_lock(&policy->transition_lock);
419 	policy->transition_ongoing = false;
420 	policy->transition_task = NULL;
421 	spin_unlock(&policy->transition_lock);
422 
423 	wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426 
427 /*
428  * Fast frequency switching status count.  Positive means "enabled", negative
429  * means "disabled" and 0 means "not decided yet".
430  */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433 
cpufreq_list_transition_notifiers(void)434 static void cpufreq_list_transition_notifiers(void)
435 {
436 	struct notifier_block *nb;
437 
438 	pr_info("Registered transition notifiers:\n");
439 
440 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
441 
442 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 		pr_info("%pS\n", nb->notifier_call);
444 
445 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447 
448 /**
449  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450  * @policy: cpufreq policy to enable fast frequency switching for.
451  *
452  * Try to enable fast frequency switching for @policy.
453  *
454  * The attempt will fail if there is at least one transition notifier registered
455  * at this point, as fast frequency switching is quite fundamentally at odds
456  * with transition notifiers.  Thus if successful, it will make registration of
457  * transition notifiers fail going forward.
458  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 	lockdep_assert_held(&policy->rwsem);
462 
463 	if (!policy->fast_switch_possible)
464 		return;
465 
466 	mutex_lock(&cpufreq_fast_switch_lock);
467 	if (cpufreq_fast_switch_count >= 0) {
468 		cpufreq_fast_switch_count++;
469 		policy->fast_switch_enabled = true;
470 	} else {
471 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 			policy->cpu);
473 		cpufreq_list_transition_notifiers();
474 	}
475 	mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478 
479 /**
480  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481  * @policy: cpufreq policy to disable fast frequency switching for.
482  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 	mutex_lock(&cpufreq_fast_switch_lock);
486 	if (policy->fast_switch_enabled) {
487 		policy->fast_switch_enabled = false;
488 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 			cpufreq_fast_switch_count--;
490 	}
491 	mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494 
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int min,unsigned int max,unsigned int relation)495 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
496 				   unsigned int target_freq,
497 				   unsigned int min, unsigned int max,
498 				   unsigned int relation)
499 {
500 	unsigned int idx;
501 
502 	target_freq = clamp_val(target_freq, min, max);
503 
504 	if (!policy->freq_table)
505 		return target_freq;
506 
507 	idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
508 	policy->cached_resolved_idx = idx;
509 	policy->cached_target_freq = target_freq;
510 	return policy->freq_table[idx].frequency;
511 }
512 
513 /**
514  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
515  * one.
516  * @policy: associated policy to interrogate
517  * @target_freq: target frequency to resolve.
518  *
519  * The target to driver frequency mapping is cached in the policy.
520  *
521  * Return: Lowest driver-supported frequency greater than or equal to the
522  * given target_freq, subject to policy (min/max) and driver limitations.
523  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)524 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
525 					 unsigned int target_freq)
526 {
527 	unsigned int min = READ_ONCE(policy->min);
528 	unsigned int max = READ_ONCE(policy->max);
529 
530 	/*
531 	 * If this function runs in parallel with cpufreq_set_policy(), it may
532 	 * read policy->min before the update and policy->max after the update
533 	 * or the other way around, so there is no ordering guarantee.
534 	 *
535 	 * Resolve this by always honoring the max (in case it comes from
536 	 * thermal throttling or similar).
537 	 */
538 	if (unlikely(min > max))
539 		min = max;
540 
541 	return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
542 }
543 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
544 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)545 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
546 {
547 	unsigned int latency;
548 
549 	if (policy->transition_delay_us)
550 		return policy->transition_delay_us;
551 
552 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
553 	if (latency)
554 		/* Give a 50% breathing room between updates */
555 		return latency + (latency >> 1);
556 
557 	return USEC_PER_MSEC;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
560 
561 /*********************************************************************
562  *                          SYSFS INTERFACE                          *
563  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)564 static ssize_t show_boost(struct kobject *kobj,
565 			  struct kobj_attribute *attr, char *buf)
566 {
567 	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
568 }
569 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)570 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
571 			   const char *buf, size_t count)
572 {
573 	bool enable;
574 
575 	if (kstrtobool(buf, &enable))
576 		return -EINVAL;
577 
578 	if (cpufreq_boost_trigger_state(enable)) {
579 		pr_err("%s: Cannot %s BOOST!\n",
580 		       __func__, str_enable_disable(enable));
581 		return -EINVAL;
582 	}
583 
584 	pr_debug("%s: cpufreq BOOST %s\n",
585 		 __func__, str_enabled_disabled(enable));
586 
587 	return count;
588 }
589 define_one_global_rw(boost);
590 
show_local_boost(struct cpufreq_policy * policy,char * buf)591 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
592 {
593 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
594 }
595 
policy_set_boost(struct cpufreq_policy * policy,bool enable)596 static int policy_set_boost(struct cpufreq_policy *policy, bool enable)
597 {
598 	int ret;
599 
600 	if (policy->boost_enabled == enable)
601 		return 0;
602 
603 	policy->boost_enabled = enable;
604 
605 	ret = cpufreq_driver->set_boost(policy, enable);
606 	if (ret)
607 		policy->boost_enabled = !policy->boost_enabled;
608 
609 	return ret;
610 }
611 
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)612 static ssize_t store_local_boost(struct cpufreq_policy *policy,
613 				 const char *buf, size_t count)
614 {
615 	int ret;
616 	bool enable;
617 
618 	if (kstrtobool(buf, &enable))
619 		return -EINVAL;
620 
621 	if (!cpufreq_driver->boost_enabled)
622 		return -EINVAL;
623 
624 	if (!policy->boost_supported)
625 		return -EINVAL;
626 
627 	ret = policy_set_boost(policy, enable);
628 	if (!ret)
629 		return count;
630 
631 	return ret;
632 }
633 
634 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
635 
find_governor(const char * str_governor)636 static struct cpufreq_governor *find_governor(const char *str_governor)
637 {
638 	struct cpufreq_governor *t;
639 
640 	for_each_governor(t)
641 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
642 			return t;
643 
644 	return NULL;
645 }
646 
get_governor(const char * str_governor)647 static struct cpufreq_governor *get_governor(const char *str_governor)
648 {
649 	struct cpufreq_governor *t;
650 
651 	mutex_lock(&cpufreq_governor_mutex);
652 	t = find_governor(str_governor);
653 	if (!t)
654 		goto unlock;
655 
656 	if (!try_module_get(t->owner))
657 		t = NULL;
658 
659 unlock:
660 	mutex_unlock(&cpufreq_governor_mutex);
661 
662 	return t;
663 }
664 
cpufreq_parse_policy(char * str_governor)665 static unsigned int cpufreq_parse_policy(char *str_governor)
666 {
667 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
668 		return CPUFREQ_POLICY_PERFORMANCE;
669 
670 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
671 		return CPUFREQ_POLICY_POWERSAVE;
672 
673 	return CPUFREQ_POLICY_UNKNOWN;
674 }
675 
676 /**
677  * cpufreq_parse_governor - parse a governor string only for has_target()
678  * @str_governor: Governor name.
679  */
cpufreq_parse_governor(char * str_governor)680 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
681 {
682 	struct cpufreq_governor *t;
683 
684 	t = get_governor(str_governor);
685 	if (t)
686 		return t;
687 
688 	if (request_module("cpufreq_%s", str_governor))
689 		return NULL;
690 
691 	return get_governor(str_governor);
692 }
693 
694 /*
695  * cpufreq_per_cpu_attr_read() / show_##file_name() -
696  * print out cpufreq information
697  *
698  * Write out information from cpufreq_driver->policy[cpu]; object must be
699  * "unsigned int".
700  */
701 
702 #define show_one(file_name, object)			\
703 static ssize_t show_##file_name				\
704 (struct cpufreq_policy *policy, char *buf)		\
705 {							\
706 	return sysfs_emit(buf, "%u\n", policy->object);	\
707 }
708 
709 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
710 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
711 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
712 show_one(scaling_min_freq, min);
713 show_one(scaling_max_freq, max);
714 
arch_freq_get_on_cpu(int cpu)715 __weak int arch_freq_get_on_cpu(int cpu)
716 {
717 	return -EOPNOTSUPP;
718 }
719 
cpufreq_avg_freq_supported(struct cpufreq_policy * policy)720 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy)
721 {
722 	return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP;
723 }
724 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)725 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
726 {
727 	ssize_t ret;
728 	int freq;
729 
730 	freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ)
731 		? arch_freq_get_on_cpu(policy->cpu)
732 		: 0;
733 
734 	if (freq > 0)
735 		ret = sysfs_emit(buf, "%u\n", freq);
736 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
737 		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
738 	else
739 		ret = sysfs_emit(buf, "%u\n", policy->cur);
740 	return ret;
741 }
742 
743 /*
744  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
745  */
746 #define store_one(file_name, object)			\
747 static ssize_t store_##file_name					\
748 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
749 {									\
750 	unsigned long val;						\
751 	int ret;							\
752 									\
753 	ret = kstrtoul(buf, 0, &val);					\
754 	if (ret)							\
755 		return ret;						\
756 									\
757 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
758 	return ret >= 0 ? count : ret;					\
759 }
760 
761 store_one(scaling_min_freq, min);
762 store_one(scaling_max_freq, max);
763 
764 /*
765  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
766  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)767 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
768 					char *buf)
769 {
770 	unsigned int cur_freq = __cpufreq_get(policy);
771 
772 	if (cur_freq)
773 		return sysfs_emit(buf, "%u\n", cur_freq);
774 
775 	return sysfs_emit(buf, "<unknown>\n");
776 }
777 
778 /*
779  * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware
780  */
show_cpuinfo_avg_freq(struct cpufreq_policy * policy,char * buf)781 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy,
782 				     char *buf)
783 {
784 	int avg_freq = arch_freq_get_on_cpu(policy->cpu);
785 
786 	if (avg_freq > 0)
787 		return sysfs_emit(buf, "%u\n", avg_freq);
788 	return avg_freq != 0 ? avg_freq : -EINVAL;
789 }
790 
791 /*
792  * show_scaling_governor - show the current policy for the specified CPU
793  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)794 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
795 {
796 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
797 		return sysfs_emit(buf, "powersave\n");
798 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
799 		return sysfs_emit(buf, "performance\n");
800 	else if (policy->governor)
801 		return sysfs_emit(buf, "%s\n", policy->governor->name);
802 	return -EINVAL;
803 }
804 
805 /*
806  * store_scaling_governor - store policy for the specified CPU
807  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)808 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
809 					const char *buf, size_t count)
810 {
811 	char str_governor[CPUFREQ_NAME_LEN];
812 	int ret;
813 
814 	ret = sscanf(buf, "%15s", str_governor);
815 	if (ret != 1)
816 		return -EINVAL;
817 
818 	if (cpufreq_driver->setpolicy) {
819 		unsigned int new_pol;
820 
821 		new_pol = cpufreq_parse_policy(str_governor);
822 		if (!new_pol)
823 			return -EINVAL;
824 
825 		ret = cpufreq_set_policy(policy, NULL, new_pol);
826 	} else {
827 		struct cpufreq_governor *new_gov;
828 
829 		new_gov = cpufreq_parse_governor(str_governor);
830 		if (!new_gov)
831 			return -EINVAL;
832 
833 		ret = cpufreq_set_policy(policy, new_gov,
834 					 CPUFREQ_POLICY_UNKNOWN);
835 
836 		module_put(new_gov->owner);
837 	}
838 
839 	return ret ? ret : count;
840 }
841 
842 /*
843  * show_scaling_driver - show the cpufreq driver currently loaded
844  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)845 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
846 {
847 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
848 }
849 
850 /*
851  * show_scaling_available_governors - show the available CPUfreq governors
852  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)853 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
854 						char *buf)
855 {
856 	ssize_t i = 0;
857 	struct cpufreq_governor *t;
858 
859 	if (!has_target()) {
860 		i += sysfs_emit(buf, "performance powersave");
861 		goto out;
862 	}
863 
864 	mutex_lock(&cpufreq_governor_mutex);
865 	for_each_governor(t) {
866 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
867 		    - (CPUFREQ_NAME_LEN + 2)))
868 			break;
869 		i += sysfs_emit_at(buf, i, "%s ", t->name);
870 	}
871 	mutex_unlock(&cpufreq_governor_mutex);
872 out:
873 	i += sysfs_emit_at(buf, i, "\n");
874 	return i;
875 }
876 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)877 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
878 {
879 	ssize_t i = 0;
880 	unsigned int cpu;
881 
882 	for_each_cpu(cpu, mask) {
883 		i += sysfs_emit_at(buf, i, "%u ", cpu);
884 		if (i >= (PAGE_SIZE - 5))
885 			break;
886 	}
887 
888 	/* Remove the extra space at the end */
889 	i--;
890 
891 	i += sysfs_emit_at(buf, i, "\n");
892 	return i;
893 }
894 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
895 
896 /*
897  * show_related_cpus - show the CPUs affected by each transition even if
898  * hw coordination is in use
899  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)900 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
901 {
902 	return cpufreq_show_cpus(policy->related_cpus, buf);
903 }
904 
905 /*
906  * show_affected_cpus - show the CPUs affected by each transition
907  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)908 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
909 {
910 	return cpufreq_show_cpus(policy->cpus, buf);
911 }
912 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)913 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
914 					const char *buf, size_t count)
915 {
916 	unsigned int freq = 0;
917 	unsigned int ret;
918 
919 	if (!policy->governor || !policy->governor->store_setspeed)
920 		return -EINVAL;
921 
922 	ret = kstrtouint(buf, 0, &freq);
923 	if (ret)
924 		return ret;
925 
926 	policy->governor->store_setspeed(policy, freq);
927 
928 	return count;
929 }
930 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)931 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
932 {
933 	if (!policy->governor || !policy->governor->show_setspeed)
934 		return sysfs_emit(buf, "<unsupported>\n");
935 
936 	return policy->governor->show_setspeed(policy, buf);
937 }
938 
939 /*
940  * show_bios_limit - show the current cpufreq HW/BIOS limitation
941  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)942 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
943 {
944 	unsigned int limit;
945 	int ret;
946 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
947 	if (!ret)
948 		return sysfs_emit(buf, "%u\n", limit);
949 	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
950 }
951 
952 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
953 cpufreq_freq_attr_ro(cpuinfo_avg_freq);
954 cpufreq_freq_attr_ro(cpuinfo_min_freq);
955 cpufreq_freq_attr_ro(cpuinfo_max_freq);
956 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
957 cpufreq_freq_attr_ro(scaling_available_governors);
958 cpufreq_freq_attr_ro(scaling_driver);
959 cpufreq_freq_attr_ro(scaling_cur_freq);
960 cpufreq_freq_attr_ro(bios_limit);
961 cpufreq_freq_attr_ro(related_cpus);
962 cpufreq_freq_attr_ro(affected_cpus);
963 cpufreq_freq_attr_rw(scaling_min_freq);
964 cpufreq_freq_attr_rw(scaling_max_freq);
965 cpufreq_freq_attr_rw(scaling_governor);
966 cpufreq_freq_attr_rw(scaling_setspeed);
967 
968 static struct attribute *cpufreq_attrs[] = {
969 	&cpuinfo_min_freq.attr,
970 	&cpuinfo_max_freq.attr,
971 	&cpuinfo_transition_latency.attr,
972 	&scaling_cur_freq.attr,
973 	&scaling_min_freq.attr,
974 	&scaling_max_freq.attr,
975 	&affected_cpus.attr,
976 	&related_cpus.attr,
977 	&scaling_governor.attr,
978 	&scaling_driver.attr,
979 	&scaling_available_governors.attr,
980 	&scaling_setspeed.attr,
981 	NULL
982 };
983 ATTRIBUTE_GROUPS(cpufreq);
984 
985 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
986 #define to_attr(a) container_of(a, struct freq_attr, attr)
987 
show(struct kobject * kobj,struct attribute * attr,char * buf)988 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
989 {
990 	struct cpufreq_policy *policy = to_policy(kobj);
991 	struct freq_attr *fattr = to_attr(attr);
992 
993 	if (!fattr->show)
994 		return -EIO;
995 
996 	guard(cpufreq_policy_read)(policy);
997 
998 	if (likely(!policy_is_inactive(policy)))
999 		return fattr->show(policy, buf);
1000 
1001 	return -EBUSY;
1002 }
1003 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1004 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1005 		     const char *buf, size_t count)
1006 {
1007 	struct cpufreq_policy *policy = to_policy(kobj);
1008 	struct freq_attr *fattr = to_attr(attr);
1009 
1010 	if (!fattr->store)
1011 		return -EIO;
1012 
1013 	guard(cpufreq_policy_write)(policy);
1014 
1015 	if (likely(!policy_is_inactive(policy)))
1016 		return fattr->store(policy, buf, count);
1017 
1018 	return -EBUSY;
1019 }
1020 
cpufreq_sysfs_release(struct kobject * kobj)1021 static void cpufreq_sysfs_release(struct kobject *kobj)
1022 {
1023 	struct cpufreq_policy *policy = to_policy(kobj);
1024 	pr_debug("last reference is dropped\n");
1025 	complete(&policy->kobj_unregister);
1026 }
1027 
1028 static const struct sysfs_ops sysfs_ops = {
1029 	.show	= show,
1030 	.store	= store,
1031 };
1032 
1033 static const struct kobj_type ktype_cpufreq = {
1034 	.sysfs_ops	= &sysfs_ops,
1035 	.default_groups	= cpufreq_groups,
1036 	.release	= cpufreq_sysfs_release,
1037 };
1038 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1039 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1040 				struct device *dev)
1041 {
1042 	if (unlikely(!dev))
1043 		return;
1044 
1045 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1046 		return;
1047 
1048 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1049 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1050 		dev_err(dev, "cpufreq symlink creation failed\n");
1051 }
1052 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1053 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1054 				   struct device *dev)
1055 {
1056 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1057 	sysfs_remove_link(&dev->kobj, "cpufreq");
1058 	cpumask_clear_cpu(cpu, policy->real_cpus);
1059 }
1060 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1061 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1062 {
1063 	struct freq_attr **drv_attr;
1064 	int ret = 0;
1065 
1066 	/* Attributes that need freq_table */
1067 	if (policy->freq_table) {
1068 		ret = sysfs_create_file(&policy->kobj,
1069 				&cpufreq_freq_attr_scaling_available_freqs.attr);
1070 		if (ret)
1071 			return ret;
1072 
1073 		if (cpufreq_boost_supported()) {
1074 			ret = sysfs_create_file(&policy->kobj,
1075 				&cpufreq_freq_attr_scaling_boost_freqs.attr);
1076 			if (ret)
1077 				return ret;
1078 		}
1079 	}
1080 
1081 	/* set up files for this cpu device */
1082 	drv_attr = cpufreq_driver->attr;
1083 	while (drv_attr && *drv_attr) {
1084 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1085 		if (ret)
1086 			return ret;
1087 		drv_attr++;
1088 	}
1089 	if (cpufreq_driver->get) {
1090 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1091 		if (ret)
1092 			return ret;
1093 	}
1094 
1095 	if (cpufreq_avg_freq_supported(policy)) {
1096 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr);
1097 		if (ret)
1098 			return ret;
1099 	}
1100 
1101 	if (cpufreq_driver->bios_limit) {
1102 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1103 		if (ret)
1104 			return ret;
1105 	}
1106 
1107 	if (cpufreq_boost_supported()) {
1108 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1109 		if (ret)
1110 			return ret;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
cpufreq_init_policy(struct cpufreq_policy * policy)1116 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1117 {
1118 	struct cpufreq_governor *gov = NULL;
1119 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1120 	int ret;
1121 
1122 	if (has_target()) {
1123 		/* Update policy governor to the one used before hotplug. */
1124 		gov = get_governor(policy->last_governor);
1125 		if (gov) {
1126 			pr_debug("Restoring governor %s for cpu %d\n",
1127 				 gov->name, policy->cpu);
1128 		} else {
1129 			gov = get_governor(default_governor);
1130 		}
1131 
1132 		if (!gov) {
1133 			gov = cpufreq_default_governor();
1134 			__module_get(gov->owner);
1135 		}
1136 
1137 	} else {
1138 
1139 		/* Use the default policy if there is no last_policy. */
1140 		if (policy->last_policy) {
1141 			pol = policy->last_policy;
1142 		} else {
1143 			pol = cpufreq_parse_policy(default_governor);
1144 			/*
1145 			 * In case the default governor is neither "performance"
1146 			 * nor "powersave", fall back to the initial policy
1147 			 * value set by the driver.
1148 			 */
1149 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1150 				pol = policy->policy;
1151 		}
1152 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1153 		    pol != CPUFREQ_POLICY_POWERSAVE)
1154 			return -ENODATA;
1155 	}
1156 
1157 	ret = cpufreq_set_policy(policy, gov, pol);
1158 	if (gov)
1159 		module_put(gov->owner);
1160 
1161 	return ret;
1162 }
1163 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1164 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1165 {
1166 	int ret = 0;
1167 
1168 	/* Has this CPU been taken care of already? */
1169 	if (cpumask_test_cpu(cpu, policy->cpus))
1170 		return 0;
1171 
1172 	guard(cpufreq_policy_write)(policy);
1173 
1174 	if (has_target())
1175 		cpufreq_stop_governor(policy);
1176 
1177 	cpumask_set_cpu(cpu, policy->cpus);
1178 
1179 	if (has_target()) {
1180 		ret = cpufreq_start_governor(policy);
1181 		if (ret)
1182 			pr_err("%s: Failed to start governor\n", __func__);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
refresh_frequency_limits(struct cpufreq_policy * policy)1188 void refresh_frequency_limits(struct cpufreq_policy *policy)
1189 {
1190 	if (!policy_is_inactive(policy)) {
1191 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1192 
1193 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1194 	}
1195 }
1196 EXPORT_SYMBOL(refresh_frequency_limits);
1197 
handle_update(struct work_struct * work)1198 static void handle_update(struct work_struct *work)
1199 {
1200 	struct cpufreq_policy *policy =
1201 		container_of(work, struct cpufreq_policy, update);
1202 
1203 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1204 
1205 	guard(cpufreq_policy_write)(policy);
1206 
1207 	refresh_frequency_limits(policy);
1208 }
1209 
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1210 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1211 				void *data)
1212 {
1213 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1214 
1215 	schedule_work(&policy->update);
1216 	return 0;
1217 }
1218 
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1219 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1220 				void *data)
1221 {
1222 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1223 
1224 	schedule_work(&policy->update);
1225 	return 0;
1226 }
1227 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1228 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1229 {
1230 	struct kobject *kobj;
1231 	struct completion *cmp;
1232 
1233 	scoped_guard(cpufreq_policy_write, policy) {
1234 		cpufreq_stats_free_table(policy);
1235 		kobj = &policy->kobj;
1236 		cmp = &policy->kobj_unregister;
1237 	}
1238 	kobject_put(kobj);
1239 
1240 	/*
1241 	 * We need to make sure that the underlying kobj is
1242 	 * actually not referenced anymore by anybody before we
1243 	 * proceed with unloading.
1244 	 */
1245 	pr_debug("waiting for dropping of refcount\n");
1246 	wait_for_completion(cmp);
1247 	pr_debug("wait complete\n");
1248 }
1249 
cpufreq_policy_alloc(unsigned int cpu)1250 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1251 {
1252 	struct cpufreq_policy *policy;
1253 	struct device *dev = get_cpu_device(cpu);
1254 	int ret;
1255 
1256 	if (!dev)
1257 		return NULL;
1258 
1259 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1260 	if (!policy)
1261 		return NULL;
1262 
1263 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1264 		goto err_free_policy;
1265 
1266 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1267 		goto err_free_cpumask;
1268 
1269 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1270 		goto err_free_rcpumask;
1271 
1272 	init_completion(&policy->kobj_unregister);
1273 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1274 				   cpufreq_global_kobject, "policy%u", cpu);
1275 	if (ret) {
1276 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1277 		/*
1278 		 * The entire policy object will be freed below, but the extra
1279 		 * memory allocated for the kobject name needs to be freed by
1280 		 * releasing the kobject.
1281 		 */
1282 		kobject_put(&policy->kobj);
1283 		goto err_free_real_cpus;
1284 	}
1285 
1286 	init_rwsem(&policy->rwsem);
1287 
1288 	freq_constraints_init(&policy->constraints);
1289 
1290 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1291 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1292 
1293 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 				    &policy->nb_min);
1295 	if (ret) {
1296 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1297 			ret, cpu);
1298 		goto err_kobj_remove;
1299 	}
1300 
1301 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1302 				    &policy->nb_max);
1303 	if (ret) {
1304 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1305 			ret, cpu);
1306 		goto err_min_qos_notifier;
1307 	}
1308 
1309 	INIT_LIST_HEAD(&policy->policy_list);
1310 	spin_lock_init(&policy->transition_lock);
1311 	init_waitqueue_head(&policy->transition_wait);
1312 	INIT_WORK(&policy->update, handle_update);
1313 
1314 	return policy;
1315 
1316 err_min_qos_notifier:
1317 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1318 				 &policy->nb_min);
1319 err_kobj_remove:
1320 	cpufreq_policy_put_kobj(policy);
1321 err_free_real_cpus:
1322 	free_cpumask_var(policy->real_cpus);
1323 err_free_rcpumask:
1324 	free_cpumask_var(policy->related_cpus);
1325 err_free_cpumask:
1326 	free_cpumask_var(policy->cpus);
1327 err_free_policy:
1328 	kfree(policy);
1329 
1330 	return NULL;
1331 }
1332 
cpufreq_policy_free(struct cpufreq_policy * policy)1333 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1334 {
1335 	unsigned long flags;
1336 	int cpu;
1337 
1338 	/*
1339 	 * The callers must ensure the policy is inactive by now, to avoid any
1340 	 * races with show()/store() callbacks.
1341 	 */
1342 	if (unlikely(!policy_is_inactive(policy)))
1343 		pr_warn("%s: Freeing active policy\n", __func__);
1344 
1345 	/* Remove policy from list */
1346 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1347 	list_del(&policy->policy_list);
1348 
1349 	for_each_cpu(cpu, policy->related_cpus)
1350 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1351 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1352 
1353 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1354 				 &policy->nb_max);
1355 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1356 				 &policy->nb_min);
1357 
1358 	/* Cancel any pending policy->update work before freeing the policy. */
1359 	cancel_work_sync(&policy->update);
1360 
1361 	if (policy->max_freq_req) {
1362 		/*
1363 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1364 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1365 		 * sent after adding max_freq_req earlier.
1366 		 */
1367 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1368 					     CPUFREQ_REMOVE_POLICY, policy);
1369 		freq_qos_remove_request(policy->max_freq_req);
1370 	}
1371 
1372 	freq_qos_remove_request(policy->min_freq_req);
1373 	kfree(policy->min_freq_req);
1374 
1375 	cpufreq_policy_put_kobj(policy);
1376 	free_cpumask_var(policy->real_cpus);
1377 	free_cpumask_var(policy->related_cpus);
1378 	free_cpumask_var(policy->cpus);
1379 	kfree(policy);
1380 }
1381 
cpufreq_policy_online(struct cpufreq_policy * policy,unsigned int cpu,bool new_policy)1382 static int cpufreq_policy_online(struct cpufreq_policy *policy,
1383 				 unsigned int cpu, bool new_policy)
1384 {
1385 	unsigned long flags;
1386 	unsigned int j;
1387 	int ret;
1388 
1389 	guard(cpufreq_policy_write)(policy);
1390 
1391 	policy->cpu = cpu;
1392 	policy->governor = NULL;
1393 
1394 	if (!new_policy && cpufreq_driver->online) {
1395 		/* Recover policy->cpus using related_cpus */
1396 		cpumask_copy(policy->cpus, policy->related_cpus);
1397 
1398 		ret = cpufreq_driver->online(policy);
1399 		if (ret) {
1400 			pr_debug("%s: %d: initialization failed\n", __func__,
1401 				 __LINE__);
1402 			goto out_exit_policy;
1403 		}
1404 	} else {
1405 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1406 
1407 		/*
1408 		 * Call driver. From then on the cpufreq must be able
1409 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1410 		 */
1411 		ret = cpufreq_driver->init(policy);
1412 		if (ret) {
1413 			pr_debug("%s: %d: initialization failed\n", __func__,
1414 				 __LINE__);
1415 			goto out_clear_policy;
1416 		}
1417 
1418 		/*
1419 		 * The initialization has succeeded and the policy is online.
1420 		 * If there is a problem with its frequency table, take it
1421 		 * offline and drop it.
1422 		 */
1423 		ret = cpufreq_table_validate_and_sort(policy);
1424 		if (ret)
1425 			goto out_offline_policy;
1426 
1427 		/* related_cpus should at least include policy->cpus. */
1428 		cpumask_copy(policy->related_cpus, policy->cpus);
1429 	}
1430 
1431 	/*
1432 	 * affected cpus must always be the one, which are online. We aren't
1433 	 * managing offline cpus here.
1434 	 */
1435 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1436 
1437 	if (new_policy) {
1438 		for_each_cpu(j, policy->related_cpus) {
1439 			per_cpu(cpufreq_cpu_data, j) = policy;
1440 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1441 		}
1442 
1443 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1444 					       GFP_KERNEL);
1445 		if (!policy->min_freq_req) {
1446 			ret = -ENOMEM;
1447 			goto out_destroy_policy;
1448 		}
1449 
1450 		ret = freq_qos_add_request(&policy->constraints,
1451 					   policy->min_freq_req, FREQ_QOS_MIN,
1452 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1453 		if (ret < 0) {
1454 			/*
1455 			 * So we don't call freq_qos_remove_request() for an
1456 			 * uninitialized request.
1457 			 */
1458 			kfree(policy->min_freq_req);
1459 			policy->min_freq_req = NULL;
1460 			goto out_destroy_policy;
1461 		}
1462 
1463 		/*
1464 		 * This must be initialized right here to avoid calling
1465 		 * freq_qos_remove_request() on uninitialized request in case
1466 		 * of errors.
1467 		 */
1468 		policy->max_freq_req = policy->min_freq_req + 1;
1469 
1470 		ret = freq_qos_add_request(&policy->constraints,
1471 					   policy->max_freq_req, FREQ_QOS_MAX,
1472 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1473 		if (ret < 0) {
1474 			policy->max_freq_req = NULL;
1475 			goto out_destroy_policy;
1476 		}
1477 
1478 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1479 				CPUFREQ_CREATE_POLICY, policy);
1480 	} else {
1481 		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
1482 		if (ret < 0)
1483 			goto out_destroy_policy;
1484 	}
1485 
1486 	if (cpufreq_driver->get && has_target()) {
1487 		policy->cur = cpufreq_driver->get(policy->cpu);
1488 		if (!policy->cur) {
1489 			ret = -EIO;
1490 			pr_err("%s: ->get() failed\n", __func__);
1491 			goto out_destroy_policy;
1492 		}
1493 	}
1494 
1495 	/*
1496 	 * Sometimes boot loaders set CPU frequency to a value outside of
1497 	 * frequency table present with cpufreq core. In such cases CPU might be
1498 	 * unstable if it has to run on that frequency for long duration of time
1499 	 * and so its better to set it to a frequency which is specified in
1500 	 * freq-table. This also makes cpufreq stats inconsistent as
1501 	 * cpufreq-stats would fail to register because current frequency of CPU
1502 	 * isn't found in freq-table.
1503 	 *
1504 	 * Because we don't want this change to effect boot process badly, we go
1505 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507 	 * is initialized to zero).
1508 	 *
1509 	 * We are passing target-freq as "policy->cur - 1" otherwise
1510 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511 	 * equal to target-freq.
1512 	 */
1513 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514 	    && has_target()) {
1515 		unsigned int old_freq = policy->cur;
1516 
1517 		/* Are we running at unknown frequency ? */
1518 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519 		if (ret == -EINVAL) {
1520 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521 						      CPUFREQ_RELATION_L);
1522 
1523 			/*
1524 			 * Reaching here after boot in a few seconds may not
1525 			 * mean that system will remain stable at "unknown"
1526 			 * frequency for longer duration. Hence, a BUG_ON().
1527 			 */
1528 			BUG_ON(ret);
1529 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1530 				__func__, policy->cpu, old_freq, policy->cur);
1531 		}
1532 	}
1533 
1534 	if (new_policy) {
1535 		ret = cpufreq_add_dev_interface(policy);
1536 		if (ret)
1537 			goto out_destroy_policy;
1538 
1539 		cpufreq_stats_create_table(policy);
1540 
1541 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542 		list_add(&policy->policy_list, &cpufreq_policy_list);
1543 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544 
1545 		/*
1546 		 * Register with the energy model before
1547 		 * em_rebuild_sched_domains() is called, which will result
1548 		 * in rebuilding of the sched domains, which should only be done
1549 		 * once the energy model is properly initialized for the policy
1550 		 * first.
1551 		 *
1552 		 * Also, this should be called before the policy is registered
1553 		 * with cooling framework.
1554 		 */
1555 		if (cpufreq_driver->register_em)
1556 			cpufreq_driver->register_em(policy);
1557 	}
1558 
1559 	ret = cpufreq_init_policy(policy);
1560 	if (ret) {
1561 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562 		       __func__, cpu, ret);
1563 		goto out_destroy_policy;
1564 	}
1565 
1566 	return 0;
1567 
1568 out_destroy_policy:
1569 	for_each_cpu(j, policy->real_cpus)
1570 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1571 
1572 out_offline_policy:
1573 	if (cpufreq_driver->offline)
1574 		cpufreq_driver->offline(policy);
1575 
1576 out_exit_policy:
1577 	if (cpufreq_driver->exit)
1578 		cpufreq_driver->exit(policy);
1579 
1580 out_clear_policy:
1581 	cpumask_clear(policy->cpus);
1582 
1583 	return ret;
1584 }
1585 
cpufreq_online(unsigned int cpu)1586 static int cpufreq_online(unsigned int cpu)
1587 {
1588 	struct cpufreq_policy *policy;
1589 	bool new_policy;
1590 	int ret;
1591 
1592 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1593 
1594 	/* Check if this CPU already has a policy to manage it */
1595 	policy = per_cpu(cpufreq_cpu_data, cpu);
1596 	if (policy) {
1597 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1598 		if (!policy_is_inactive(policy))
1599 			return cpufreq_add_policy_cpu(policy, cpu);
1600 
1601 		/* This is the only online CPU for the policy.  Start over. */
1602 		new_policy = false;
1603 	} else {
1604 		new_policy = true;
1605 		policy = cpufreq_policy_alloc(cpu);
1606 		if (!policy)
1607 			return -ENOMEM;
1608 	}
1609 
1610 	ret = cpufreq_policy_online(policy, cpu, new_policy);
1611 	if (ret) {
1612 		cpufreq_policy_free(policy);
1613 		return ret;
1614 	}
1615 
1616 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1617 
1618 	/* Callback for handling stuff after policy is ready */
1619 	if (cpufreq_driver->ready)
1620 		cpufreq_driver->ready(policy);
1621 
1622 	/* Register cpufreq cooling only for a new policy */
1623 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1624 		policy->cdev = of_cpufreq_cooling_register(policy);
1625 
1626 	/*
1627 	 * Let the per-policy boost flag mirror the cpufreq_driver boost during
1628 	 * initialization for a new policy. For an existing policy, maintain the
1629 	 * previous boost value unless global boost is disabled.
1630 	 */
1631 	if (cpufreq_driver->set_boost && policy->boost_supported &&
1632 	    (new_policy || !cpufreq_boost_enabled())) {
1633 		ret = policy_set_boost(policy, cpufreq_boost_enabled());
1634 		if (ret) {
1635 			/* If the set_boost fails, the online operation is not affected */
1636 			pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu,
1637 				str_enable_disable(cpufreq_boost_enabled()));
1638 		}
1639 	}
1640 
1641 	pr_debug("initialization complete\n");
1642 
1643 	return 0;
1644 }
1645 
1646 /**
1647  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1648  * @dev: CPU device.
1649  * @sif: Subsystem interface structure pointer (not used)
1650  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1651 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1652 {
1653 	struct cpufreq_policy *policy;
1654 	unsigned cpu = dev->id;
1655 	int ret;
1656 
1657 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1658 
1659 	if (cpu_online(cpu)) {
1660 		ret = cpufreq_online(cpu);
1661 		if (ret)
1662 			return ret;
1663 	}
1664 
1665 	/* Create sysfs link on CPU registration */
1666 	policy = per_cpu(cpufreq_cpu_data, cpu);
1667 	if (policy)
1668 		add_cpu_dev_symlink(policy, cpu, dev);
1669 
1670 	return 0;
1671 }
1672 
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1673 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1674 {
1675 	int ret;
1676 
1677 	if (has_target())
1678 		cpufreq_stop_governor(policy);
1679 
1680 	cpumask_clear_cpu(cpu, policy->cpus);
1681 
1682 	if (!policy_is_inactive(policy)) {
1683 		/* Nominate a new CPU if necessary. */
1684 		if (cpu == policy->cpu)
1685 			policy->cpu = cpumask_any(policy->cpus);
1686 
1687 		/* Start the governor again for the active policy. */
1688 		if (has_target()) {
1689 			ret = cpufreq_start_governor(policy);
1690 			if (ret)
1691 				pr_err("%s: Failed to start governor\n", __func__);
1692 		}
1693 
1694 		return;
1695 	}
1696 
1697 	if (has_target()) {
1698 		strscpy(policy->last_governor, policy->governor->name,
1699 			CPUFREQ_NAME_LEN);
1700 		cpufreq_exit_governor(policy);
1701 	} else {
1702 		policy->last_policy = policy->policy;
1703 	}
1704 
1705 	/*
1706 	 * Perform the ->offline() during light-weight tear-down, as
1707 	 * that allows fast recovery when the CPU comes back.
1708 	 */
1709 	if (cpufreq_driver->offline) {
1710 		cpufreq_driver->offline(policy);
1711 		return;
1712 	}
1713 
1714 	if (cpufreq_driver->exit)
1715 		cpufreq_driver->exit(policy);
1716 
1717 	policy->freq_table = NULL;
1718 }
1719 
cpufreq_offline(unsigned int cpu)1720 static int cpufreq_offline(unsigned int cpu)
1721 {
1722 	struct cpufreq_policy *policy;
1723 
1724 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1725 
1726 	policy = cpufreq_cpu_get_raw(cpu);
1727 	if (!policy) {
1728 		pr_debug("%s: No cpu_data found\n", __func__);
1729 		return 0;
1730 	}
1731 
1732 	guard(cpufreq_policy_write)(policy);
1733 
1734 	__cpufreq_offline(cpu, policy);
1735 
1736 	return 0;
1737 }
1738 
1739 /*
1740  * cpufreq_remove_dev - remove a CPU device
1741  *
1742  * Removes the cpufreq interface for a CPU device.
1743  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1744 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1745 {
1746 	unsigned int cpu = dev->id;
1747 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1748 
1749 	if (!policy)
1750 		return;
1751 
1752 	scoped_guard(cpufreq_policy_write, policy) {
1753 		if (cpu_online(cpu))
1754 			__cpufreq_offline(cpu, policy);
1755 
1756 		remove_cpu_dev_symlink(policy, cpu, dev);
1757 
1758 		if (!cpumask_empty(policy->real_cpus))
1759 			return;
1760 
1761 		/*
1762 		 * Unregister cpufreq cooling once all the CPUs of the policy
1763 		 * are removed.
1764 		 */
1765 		if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1766 			cpufreq_cooling_unregister(policy->cdev);
1767 			policy->cdev = NULL;
1768 		}
1769 
1770 		/* We did light-weight exit earlier, do full tear down now */
1771 		if (cpufreq_driver->offline && cpufreq_driver->exit)
1772 			cpufreq_driver->exit(policy);
1773 	}
1774 
1775 	cpufreq_policy_free(policy);
1776 }
1777 
1778 /**
1779  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1780  * @policy: Policy managing CPUs.
1781  * @new_freq: New CPU frequency.
1782  *
1783  * Adjust to the current frequency first and clean up later by either calling
1784  * cpufreq_update_policy(), or scheduling handle_update().
1785  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1786 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1787 				unsigned int new_freq)
1788 {
1789 	struct cpufreq_freqs freqs;
1790 
1791 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1792 		 policy->cur, new_freq);
1793 
1794 	freqs.old = policy->cur;
1795 	freqs.new = new_freq;
1796 
1797 	cpufreq_freq_transition_begin(policy, &freqs);
1798 	cpufreq_freq_transition_end(policy, &freqs, 0);
1799 }
1800 
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1801 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1802 {
1803 	unsigned int new_freq;
1804 
1805 	if (!cpufreq_driver->get)
1806 		return 0;
1807 
1808 	new_freq = cpufreq_driver->get(policy->cpu);
1809 	if (!new_freq)
1810 		return 0;
1811 
1812 	/*
1813 	 * If fast frequency switching is used with the given policy, the check
1814 	 * against policy->cur is pointless, so skip it in that case.
1815 	 */
1816 	if (policy->fast_switch_enabled || !has_target())
1817 		return new_freq;
1818 
1819 	if (policy->cur != new_freq) {
1820 		/*
1821 		 * For some platforms, the frequency returned by hardware may be
1822 		 * slightly different from what is provided in the frequency
1823 		 * table, for example hardware may return 499 MHz instead of 500
1824 		 * MHz. In such cases it is better to avoid getting into
1825 		 * unnecessary frequency updates.
1826 		 */
1827 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1828 			return policy->cur;
1829 
1830 		cpufreq_out_of_sync(policy, new_freq);
1831 		if (update)
1832 			schedule_work(&policy->update);
1833 	}
1834 
1835 	return new_freq;
1836 }
1837 
1838 /**
1839  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1840  * @cpu: CPU number
1841  *
1842  * This is the last known freq, without actually getting it from the driver.
1843  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1844  */
cpufreq_quick_get(unsigned int cpu)1845 unsigned int cpufreq_quick_get(unsigned int cpu)
1846 {
1847 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = NULL;
1848 	unsigned long flags;
1849 
1850 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1851 
1852 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1853 		unsigned int ret_freq = cpufreq_driver->get(cpu);
1854 
1855 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1856 
1857 		return ret_freq;
1858 	}
1859 
1860 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1861 
1862 	policy = cpufreq_cpu_get(cpu);
1863 	if (policy)
1864 		return policy->cur;
1865 
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL(cpufreq_quick_get);
1869 
1870 /**
1871  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1872  * @cpu: CPU number
1873  *
1874  * Just return the max possible frequency for a given CPU.
1875  */
cpufreq_quick_get_max(unsigned int cpu)1876 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1877 {
1878 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
1879 
1880 	policy = cpufreq_cpu_get(cpu);
1881 	if (policy)
1882 		return policy->max;
1883 
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL(cpufreq_quick_get_max);
1887 
1888 /**
1889  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1890  * @cpu: CPU number
1891  *
1892  * The default return value is the max_freq field of cpuinfo.
1893  */
cpufreq_get_hw_max_freq(unsigned int cpu)1894 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1895 {
1896 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
1897 
1898 	policy = cpufreq_cpu_get(cpu);
1899 	if (policy)
1900 		return policy->cpuinfo.max_freq;
1901 
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1905 
__cpufreq_get(struct cpufreq_policy * policy)1906 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1907 {
1908 	if (unlikely(policy_is_inactive(policy)))
1909 		return 0;
1910 
1911 	return cpufreq_verify_current_freq(policy, true);
1912 }
1913 
1914 /**
1915  * cpufreq_get - get the current CPU frequency (in kHz)
1916  * @cpu: CPU number
1917  *
1918  * Get the CPU current (static) CPU frequency
1919  */
cpufreq_get(unsigned int cpu)1920 unsigned int cpufreq_get(unsigned int cpu)
1921 {
1922 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
1923 
1924 	policy = cpufreq_cpu_get(cpu);
1925 	if (!policy)
1926 		return 0;
1927 
1928 	guard(cpufreq_policy_read)(policy);
1929 
1930 	return __cpufreq_get(policy);
1931 }
1932 EXPORT_SYMBOL(cpufreq_get);
1933 
1934 static struct subsys_interface cpufreq_interface = {
1935 	.name		= "cpufreq",
1936 	.subsys		= &cpu_subsys,
1937 	.add_dev	= cpufreq_add_dev,
1938 	.remove_dev	= cpufreq_remove_dev,
1939 };
1940 
1941 /*
1942  * In case platform wants some specific frequency to be configured
1943  * during suspend..
1944  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1945 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1946 {
1947 	int ret;
1948 
1949 	if (!policy->suspend_freq) {
1950 		pr_debug("%s: suspend_freq not defined\n", __func__);
1951 		return 0;
1952 	}
1953 
1954 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1955 			policy->suspend_freq);
1956 
1957 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1958 			CPUFREQ_RELATION_H);
1959 	if (ret)
1960 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1961 				__func__, policy->suspend_freq, ret);
1962 
1963 	return ret;
1964 }
1965 EXPORT_SYMBOL(cpufreq_generic_suspend);
1966 
1967 /**
1968  * cpufreq_suspend() - Suspend CPUFreq governors.
1969  *
1970  * Called during system wide Suspend/Hibernate cycles for suspending governors
1971  * as some platforms can't change frequency after this point in suspend cycle.
1972  * Because some of the devices (like: i2c, regulators, etc) they use for
1973  * changing frequency are suspended quickly after this point.
1974  */
cpufreq_suspend(void)1975 void cpufreq_suspend(void)
1976 {
1977 	struct cpufreq_policy *policy;
1978 
1979 	if (!cpufreq_driver)
1980 		return;
1981 
1982 	if (!has_target() && !cpufreq_driver->suspend)
1983 		goto suspend;
1984 
1985 	pr_debug("%s: Suspending Governors\n", __func__);
1986 
1987 	for_each_active_policy(policy) {
1988 		if (has_target()) {
1989 			scoped_guard(cpufreq_policy_write, policy) {
1990 				cpufreq_stop_governor(policy);
1991 			}
1992 		}
1993 
1994 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1995 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1996 				cpufreq_driver->name);
1997 	}
1998 
1999 suspend:
2000 	cpufreq_suspended = true;
2001 }
2002 
2003 /**
2004  * cpufreq_resume() - Resume CPUFreq governors.
2005  *
2006  * Called during system wide Suspend/Hibernate cycle for resuming governors that
2007  * are suspended with cpufreq_suspend().
2008  */
cpufreq_resume(void)2009 void cpufreq_resume(void)
2010 {
2011 	struct cpufreq_policy *policy;
2012 	int ret;
2013 
2014 	if (!cpufreq_driver)
2015 		return;
2016 
2017 	if (unlikely(!cpufreq_suspended))
2018 		return;
2019 
2020 	cpufreq_suspended = false;
2021 
2022 	if (!has_target() && !cpufreq_driver->resume)
2023 		return;
2024 
2025 	pr_debug("%s: Resuming Governors\n", __func__);
2026 
2027 	for_each_active_policy(policy) {
2028 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2029 			pr_err("%s: Failed to resume driver: %s\n", __func__,
2030 				cpufreq_driver->name);
2031 		} else if (has_target()) {
2032 			scoped_guard(cpufreq_policy_write, policy) {
2033 				ret = cpufreq_start_governor(policy);
2034 			}
2035 
2036 			if (ret)
2037 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2038 				       __func__, policy->cpu);
2039 		}
2040 	}
2041 }
2042 
2043 /**
2044  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2045  * @flags: Flags to test against the current cpufreq driver's flags.
2046  *
2047  * Assumes that the driver is there, so callers must ensure that this is the
2048  * case.
2049  */
cpufreq_driver_test_flags(u16 flags)2050 bool cpufreq_driver_test_flags(u16 flags)
2051 {
2052 	return !!(cpufreq_driver->flags & flags);
2053 }
2054 
2055 /**
2056  * cpufreq_get_current_driver - Return the current driver's name.
2057  *
2058  * Return the name string of the currently registered cpufreq driver or NULL if
2059  * none.
2060  */
cpufreq_get_current_driver(void)2061 const char *cpufreq_get_current_driver(void)
2062 {
2063 	if (cpufreq_driver)
2064 		return cpufreq_driver->name;
2065 
2066 	return NULL;
2067 }
2068 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2069 
2070 /**
2071  * cpufreq_get_driver_data - Return current driver data.
2072  *
2073  * Return the private data of the currently registered cpufreq driver, or NULL
2074  * if no cpufreq driver has been registered.
2075  */
cpufreq_get_driver_data(void)2076 void *cpufreq_get_driver_data(void)
2077 {
2078 	if (cpufreq_driver)
2079 		return cpufreq_driver->driver_data;
2080 
2081 	return NULL;
2082 }
2083 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2084 
2085 /*********************************************************************
2086  *                     NOTIFIER LISTS INTERFACE                      *
2087  *********************************************************************/
2088 
2089 /**
2090  * cpufreq_register_notifier - Register a notifier with cpufreq.
2091  * @nb: notifier function to register.
2092  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2093  *
2094  * Add a notifier to one of two lists: either a list of notifiers that run on
2095  * clock rate changes (once before and once after every transition), or a list
2096  * of notifiers that ron on cpufreq policy changes.
2097  *
2098  * This function may sleep and it has the same return values as
2099  * blocking_notifier_chain_register().
2100  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2101 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2102 {
2103 	int ret;
2104 
2105 	if (cpufreq_disabled())
2106 		return -EINVAL;
2107 
2108 	switch (list) {
2109 	case CPUFREQ_TRANSITION_NOTIFIER:
2110 		mutex_lock(&cpufreq_fast_switch_lock);
2111 
2112 		if (cpufreq_fast_switch_count > 0) {
2113 			mutex_unlock(&cpufreq_fast_switch_lock);
2114 			return -EBUSY;
2115 		}
2116 		ret = srcu_notifier_chain_register(
2117 				&cpufreq_transition_notifier_list, nb);
2118 		if (!ret)
2119 			cpufreq_fast_switch_count--;
2120 
2121 		mutex_unlock(&cpufreq_fast_switch_lock);
2122 		break;
2123 	case CPUFREQ_POLICY_NOTIFIER:
2124 		ret = blocking_notifier_chain_register(
2125 				&cpufreq_policy_notifier_list, nb);
2126 		break;
2127 	default:
2128 		ret = -EINVAL;
2129 	}
2130 
2131 	return ret;
2132 }
2133 EXPORT_SYMBOL(cpufreq_register_notifier);
2134 
2135 /**
2136  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2137  * @nb: notifier block to be unregistered.
2138  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2139  *
2140  * Remove a notifier from one of the cpufreq notifier lists.
2141  *
2142  * This function may sleep and it has the same return values as
2143  * blocking_notifier_chain_unregister().
2144  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2145 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2146 {
2147 	int ret;
2148 
2149 	if (cpufreq_disabled())
2150 		return -EINVAL;
2151 
2152 	switch (list) {
2153 	case CPUFREQ_TRANSITION_NOTIFIER:
2154 		mutex_lock(&cpufreq_fast_switch_lock);
2155 
2156 		ret = srcu_notifier_chain_unregister(
2157 				&cpufreq_transition_notifier_list, nb);
2158 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2159 			cpufreq_fast_switch_count++;
2160 
2161 		mutex_unlock(&cpufreq_fast_switch_lock);
2162 		break;
2163 	case CPUFREQ_POLICY_NOTIFIER:
2164 		ret = blocking_notifier_chain_unregister(
2165 				&cpufreq_policy_notifier_list, nb);
2166 		break;
2167 	default:
2168 		ret = -EINVAL;
2169 	}
2170 
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2174 
2175 
2176 /*********************************************************************
2177  *                              GOVERNORS                            *
2178  *********************************************************************/
2179 
2180 /**
2181  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2182  * @policy: cpufreq policy to switch the frequency for.
2183  * @target_freq: New frequency to set (may be approximate).
2184  *
2185  * Carry out a fast frequency switch without sleeping.
2186  *
2187  * The driver's ->fast_switch() callback invoked by this function must be
2188  * suitable for being called from within RCU-sched read-side critical sections
2189  * and it is expected to select the minimum available frequency greater than or
2190  * equal to @target_freq (CPUFREQ_RELATION_L).
2191  *
2192  * This function must not be called if policy->fast_switch_enabled is unset.
2193  *
2194  * Governors calling this function must guarantee that it will never be invoked
2195  * twice in parallel for the same policy and that it will never be called in
2196  * parallel with either ->target() or ->target_index() for the same policy.
2197  *
2198  * Returns the actual frequency set for the CPU.
2199  *
2200  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2201  * error condition, the hardware configuration must be preserved.
2202  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2203 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2204 					unsigned int target_freq)
2205 {
2206 	unsigned int freq;
2207 	int cpu;
2208 
2209 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2210 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2211 
2212 	if (!freq)
2213 		return 0;
2214 
2215 	policy->cur = freq;
2216 	arch_set_freq_scale(policy->related_cpus, freq,
2217 			    arch_scale_freq_ref(policy->cpu));
2218 	cpufreq_stats_record_transition(policy, freq);
2219 
2220 	if (trace_cpu_frequency_enabled()) {
2221 		for_each_cpu(cpu, policy->cpus)
2222 			trace_cpu_frequency(freq, cpu);
2223 	}
2224 
2225 	return freq;
2226 }
2227 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2228 
2229 /**
2230  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2231  * @cpu: Target CPU.
2232  * @min_perf: Minimum (required) performance level (units of @capacity).
2233  * @target_perf: Target (desired) performance level (units of @capacity).
2234  * @capacity: Capacity of the target CPU.
2235  *
2236  * Carry out a fast performance level switch of @cpu without sleeping.
2237  *
2238  * The driver's ->adjust_perf() callback invoked by this function must be
2239  * suitable for being called from within RCU-sched read-side critical sections
2240  * and it is expected to select a suitable performance level equal to or above
2241  * @min_perf and preferably equal to or below @target_perf.
2242  *
2243  * This function must not be called if policy->fast_switch_enabled is unset.
2244  *
2245  * Governors calling this function must guarantee that it will never be invoked
2246  * twice in parallel for the same CPU and that it will never be called in
2247  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2248  * the same CPU.
2249  */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2250 void cpufreq_driver_adjust_perf(unsigned int cpu,
2251 				 unsigned long min_perf,
2252 				 unsigned long target_perf,
2253 				 unsigned long capacity)
2254 {
2255 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2256 }
2257 
2258 /**
2259  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2260  *
2261  * Return 'true' if the ->adjust_perf callback is present for the
2262  * current driver or 'false' otherwise.
2263  */
cpufreq_driver_has_adjust_perf(void)2264 bool cpufreq_driver_has_adjust_perf(void)
2265 {
2266 	return !!cpufreq_driver->adjust_perf;
2267 }
2268 
2269 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2270 static int __target_intermediate(struct cpufreq_policy *policy,
2271 				 struct cpufreq_freqs *freqs, int index)
2272 {
2273 	int ret;
2274 
2275 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2276 
2277 	/* We don't need to switch to intermediate freq */
2278 	if (!freqs->new)
2279 		return 0;
2280 
2281 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2282 		 __func__, policy->cpu, freqs->old, freqs->new);
2283 
2284 	cpufreq_freq_transition_begin(policy, freqs);
2285 	ret = cpufreq_driver->target_intermediate(policy, index);
2286 	cpufreq_freq_transition_end(policy, freqs, ret);
2287 
2288 	if (ret)
2289 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2290 		       __func__, ret);
2291 
2292 	return ret;
2293 }
2294 
__target_index(struct cpufreq_policy * policy,int index)2295 static int __target_index(struct cpufreq_policy *policy, int index)
2296 {
2297 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2298 	unsigned int restore_freq, intermediate_freq = 0;
2299 	unsigned int newfreq = policy->freq_table[index].frequency;
2300 	int retval = -EINVAL;
2301 	bool notify;
2302 
2303 	if (newfreq == policy->cur)
2304 		return 0;
2305 
2306 	/* Save last value to restore later on errors */
2307 	restore_freq = policy->cur;
2308 
2309 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2310 	if (notify) {
2311 		/* Handle switching to intermediate frequency */
2312 		if (cpufreq_driver->get_intermediate) {
2313 			retval = __target_intermediate(policy, &freqs, index);
2314 			if (retval)
2315 				return retval;
2316 
2317 			intermediate_freq = freqs.new;
2318 			/* Set old freq to intermediate */
2319 			if (intermediate_freq)
2320 				freqs.old = freqs.new;
2321 		}
2322 
2323 		freqs.new = newfreq;
2324 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2325 			 __func__, policy->cpu, freqs.old, freqs.new);
2326 
2327 		cpufreq_freq_transition_begin(policy, &freqs);
2328 	}
2329 
2330 	retval = cpufreq_driver->target_index(policy, index);
2331 	if (retval)
2332 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2333 		       retval);
2334 
2335 	if (notify) {
2336 		cpufreq_freq_transition_end(policy, &freqs, retval);
2337 
2338 		/*
2339 		 * Failed after setting to intermediate freq? Driver should have
2340 		 * reverted back to initial frequency and so should we. Check
2341 		 * here for intermediate_freq instead of get_intermediate, in
2342 		 * case we haven't switched to intermediate freq at all.
2343 		 */
2344 		if (unlikely(retval && intermediate_freq)) {
2345 			freqs.old = intermediate_freq;
2346 			freqs.new = restore_freq;
2347 			cpufreq_freq_transition_begin(policy, &freqs);
2348 			cpufreq_freq_transition_end(policy, &freqs, 0);
2349 		}
2350 	}
2351 
2352 	return retval;
2353 }
2354 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2355 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2356 			    unsigned int target_freq,
2357 			    unsigned int relation)
2358 {
2359 	unsigned int old_target_freq = target_freq;
2360 
2361 	if (cpufreq_disabled())
2362 		return -ENODEV;
2363 
2364 	target_freq = __resolve_freq(policy, target_freq, policy->min,
2365 				     policy->max, relation);
2366 
2367 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2368 		 policy->cpu, target_freq, relation, old_target_freq);
2369 
2370 	/*
2371 	 * This might look like a redundant call as we are checking it again
2372 	 * after finding index. But it is left intentionally for cases where
2373 	 * exactly same freq is called again and so we can save on few function
2374 	 * calls.
2375 	 */
2376 	if (target_freq == policy->cur &&
2377 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2378 		return 0;
2379 
2380 	if (cpufreq_driver->target) {
2381 		/*
2382 		 * If the driver hasn't setup a single inefficient frequency,
2383 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2384 		 */
2385 		if (!policy->efficiencies_available)
2386 			relation &= ~CPUFREQ_RELATION_E;
2387 
2388 		return cpufreq_driver->target(policy, target_freq, relation);
2389 	}
2390 
2391 	if (!cpufreq_driver->target_index)
2392 		return -EINVAL;
2393 
2394 	return __target_index(policy, policy->cached_resolved_idx);
2395 }
2396 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2397 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2398 int cpufreq_driver_target(struct cpufreq_policy *policy,
2399 			  unsigned int target_freq,
2400 			  unsigned int relation)
2401 {
2402 	guard(cpufreq_policy_write)(policy);
2403 
2404 	return __cpufreq_driver_target(policy, target_freq, relation);
2405 }
2406 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2407 
cpufreq_fallback_governor(void)2408 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2409 {
2410 	return NULL;
2411 }
2412 
cpufreq_init_governor(struct cpufreq_policy * policy)2413 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2414 {
2415 	int ret;
2416 
2417 	/* Don't start any governor operations if we are entering suspend */
2418 	if (cpufreq_suspended)
2419 		return 0;
2420 	/*
2421 	 * Governor might not be initiated here if ACPI _PPC changed
2422 	 * notification happened, so check it.
2423 	 */
2424 	if (!policy->governor)
2425 		return -EINVAL;
2426 
2427 	/* Platform doesn't want dynamic frequency switching ? */
2428 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2429 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2430 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2431 
2432 		if (gov) {
2433 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2434 				policy->governor->name, gov->name);
2435 			policy->governor = gov;
2436 		} else {
2437 			return -EINVAL;
2438 		}
2439 	}
2440 
2441 	if (!try_module_get(policy->governor->owner))
2442 		return -EINVAL;
2443 
2444 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2445 
2446 	if (policy->governor->init) {
2447 		ret = policy->governor->init(policy);
2448 		if (ret) {
2449 			module_put(policy->governor->owner);
2450 			return ret;
2451 		}
2452 	}
2453 
2454 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2455 
2456 	return 0;
2457 }
2458 
cpufreq_exit_governor(struct cpufreq_policy * policy)2459 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2460 {
2461 	if (cpufreq_suspended || !policy->governor)
2462 		return;
2463 
2464 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2465 
2466 	if (policy->governor->exit)
2467 		policy->governor->exit(policy);
2468 
2469 	module_put(policy->governor->owner);
2470 }
2471 
cpufreq_start_governor(struct cpufreq_policy * policy)2472 int cpufreq_start_governor(struct cpufreq_policy *policy)
2473 {
2474 	int ret;
2475 
2476 	if (cpufreq_suspended)
2477 		return 0;
2478 
2479 	if (!policy->governor)
2480 		return -EINVAL;
2481 
2482 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483 
2484 	cpufreq_verify_current_freq(policy, false);
2485 
2486 	if (policy->governor->start) {
2487 		ret = policy->governor->start(policy);
2488 		if (ret)
2489 			return ret;
2490 	}
2491 
2492 	if (policy->governor->limits)
2493 		policy->governor->limits(policy);
2494 
2495 	return 0;
2496 }
2497 
cpufreq_stop_governor(struct cpufreq_policy * policy)2498 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2499 {
2500 	if (cpufreq_suspended || !policy->governor)
2501 		return;
2502 
2503 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2504 
2505 	if (policy->governor->stop)
2506 		policy->governor->stop(policy);
2507 }
2508 
cpufreq_governor_limits(struct cpufreq_policy * policy)2509 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2510 {
2511 	if (cpufreq_suspended || !policy->governor)
2512 		return;
2513 
2514 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2515 
2516 	if (policy->governor->limits)
2517 		policy->governor->limits(policy);
2518 }
2519 
cpufreq_register_governor(struct cpufreq_governor * governor)2520 int cpufreq_register_governor(struct cpufreq_governor *governor)
2521 {
2522 	int err;
2523 
2524 	if (!governor)
2525 		return -EINVAL;
2526 
2527 	if (cpufreq_disabled())
2528 		return -ENODEV;
2529 
2530 	mutex_lock(&cpufreq_governor_mutex);
2531 
2532 	err = -EBUSY;
2533 	if (!find_governor(governor->name)) {
2534 		err = 0;
2535 		list_add(&governor->governor_list, &cpufreq_governor_list);
2536 	}
2537 
2538 	mutex_unlock(&cpufreq_governor_mutex);
2539 	return err;
2540 }
2541 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2542 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2543 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2544 {
2545 	struct cpufreq_policy *policy;
2546 	unsigned long flags;
2547 
2548 	if (!governor)
2549 		return;
2550 
2551 	if (cpufreq_disabled())
2552 		return;
2553 
2554 	/* clear last_governor for all inactive policies */
2555 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2556 	for_each_inactive_policy(policy) {
2557 		if (!strcmp(policy->last_governor, governor->name)) {
2558 			policy->governor = NULL;
2559 			strcpy(policy->last_governor, "\0");
2560 		}
2561 	}
2562 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2563 
2564 	mutex_lock(&cpufreq_governor_mutex);
2565 	list_del(&governor->governor_list);
2566 	mutex_unlock(&cpufreq_governor_mutex);
2567 }
2568 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2569 
2570 
2571 /*********************************************************************
2572  *                          POLICY INTERFACE                         *
2573  *********************************************************************/
2574 
2575 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2576 
2577 /**
2578  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2579  * @policy: cpufreq policy of the CPUs.
2580  *
2581  * Update the value of cpufreq pressure for all @cpus in the policy.
2582  */
cpufreq_update_pressure(struct cpufreq_policy * policy)2583 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2584 {
2585 	unsigned long max_capacity, capped_freq, pressure;
2586 	u32 max_freq;
2587 	int cpu;
2588 
2589 	cpu = cpumask_first(policy->related_cpus);
2590 	max_freq = arch_scale_freq_ref(cpu);
2591 	capped_freq = policy->max;
2592 
2593 	/*
2594 	 * Handle properly the boost frequencies, which should simply clean
2595 	 * the cpufreq pressure value.
2596 	 */
2597 	if (max_freq <= capped_freq) {
2598 		pressure = 0;
2599 	} else {
2600 		max_capacity = arch_scale_cpu_capacity(cpu);
2601 		pressure = max_capacity -
2602 			   mult_frac(max_capacity, capped_freq, max_freq);
2603 	}
2604 
2605 	for_each_cpu(cpu, policy->related_cpus)
2606 		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2607 }
2608 
2609 /**
2610  * cpufreq_set_policy - Modify cpufreq policy parameters.
2611  * @policy: Policy object to modify.
2612  * @new_gov: Policy governor pointer.
2613  * @new_pol: Policy value (for drivers with built-in governors).
2614  *
2615  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2616  * limits to be set for the policy, update @policy with the verified limits
2617  * values and either invoke the driver's ->setpolicy() callback (if present) or
2618  * carry out a governor update for @policy.  That is, run the current governor's
2619  * ->limits() callback (if @new_gov points to the same object as the one in
2620  * @policy) or replace the governor for @policy with @new_gov.
2621  *
2622  * The cpuinfo part of @policy is not updated by this function.
2623  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2624 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2625 			      struct cpufreq_governor *new_gov,
2626 			      unsigned int new_pol)
2627 {
2628 	struct cpufreq_policy_data new_data;
2629 	struct cpufreq_governor *old_gov;
2630 	int ret;
2631 
2632 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2633 	new_data.freq_table = policy->freq_table;
2634 	new_data.cpu = policy->cpu;
2635 	/*
2636 	 * PM QoS framework collects all the requests from users and provide us
2637 	 * the final aggregated value here.
2638 	 */
2639 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2640 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2641 
2642 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2643 		 new_data.cpu, new_data.min, new_data.max);
2644 
2645 	/*
2646 	 * Verify that the CPU speed can be set within these limits and make sure
2647 	 * that min <= max.
2648 	 */
2649 	ret = cpufreq_driver->verify(&new_data);
2650 	if (ret)
2651 		return ret;
2652 
2653 	/*
2654 	 * Resolve policy min/max to available frequencies. It ensures
2655 	 * no frequency resolution will neither overshoot the requested maximum
2656 	 * nor undershoot the requested minimum.
2657 	 *
2658 	 * Avoid storing intermediate values in policy->max or policy->min and
2659 	 * compiler optimizations around them because they may be accessed
2660 	 * concurrently by cpufreq_driver_resolve_freq() during the update.
2661 	 */
2662 	WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2663 					       new_data.min, new_data.max,
2664 					       CPUFREQ_RELATION_H));
2665 	new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2666 				      new_data.max, CPUFREQ_RELATION_L);
2667 	WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2668 
2669 	trace_cpu_frequency_limits(policy);
2670 
2671 	cpufreq_update_pressure(policy);
2672 
2673 	policy->cached_target_freq = UINT_MAX;
2674 
2675 	pr_debug("new min and max freqs are %u - %u kHz\n",
2676 		 policy->min, policy->max);
2677 
2678 	if (cpufreq_driver->setpolicy) {
2679 		policy->policy = new_pol;
2680 		pr_debug("setting range\n");
2681 		return cpufreq_driver->setpolicy(policy);
2682 	}
2683 
2684 	if (new_gov == policy->governor) {
2685 		pr_debug("governor limits update\n");
2686 		cpufreq_governor_limits(policy);
2687 		return 0;
2688 	}
2689 
2690 	pr_debug("governor switch\n");
2691 
2692 	/* save old, working values */
2693 	old_gov = policy->governor;
2694 	/* end old governor */
2695 	if (old_gov) {
2696 		cpufreq_stop_governor(policy);
2697 		cpufreq_exit_governor(policy);
2698 	}
2699 
2700 	/* start new governor */
2701 	policy->governor = new_gov;
2702 	ret = cpufreq_init_governor(policy);
2703 	if (!ret) {
2704 		ret = cpufreq_start_governor(policy);
2705 		if (!ret) {
2706 			pr_debug("governor change\n");
2707 			return 0;
2708 		}
2709 		cpufreq_exit_governor(policy);
2710 	}
2711 
2712 	/* new governor failed, so re-start old one */
2713 	pr_debug("starting governor %s failed\n", policy->governor->name);
2714 	if (old_gov) {
2715 		policy->governor = old_gov;
2716 		if (cpufreq_init_governor(policy)) {
2717 			policy->governor = NULL;
2718 		} else if (cpufreq_start_governor(policy)) {
2719 			cpufreq_exit_governor(policy);
2720 			policy->governor = NULL;
2721 		}
2722 	}
2723 
2724 	return ret;
2725 }
2726 
cpufreq_policy_refresh(struct cpufreq_policy * policy)2727 static void cpufreq_policy_refresh(struct cpufreq_policy *policy)
2728 {
2729 	guard(cpufreq_policy_write)(policy);
2730 
2731 	/*
2732 	 * BIOS might change freq behind our back
2733 	 * -> ask driver for current freq and notify governors about a change
2734 	 */
2735 	if (cpufreq_driver->get && has_target() &&
2736 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2737 		return;
2738 
2739 	refresh_frequency_limits(policy);
2740 }
2741 
2742 /**
2743  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2744  * @cpu: CPU to re-evaluate the policy for.
2745  *
2746  * Update the current frequency for the cpufreq policy of @cpu and use
2747  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2748  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2749  * for the policy in question, among other things.
2750  */
cpufreq_update_policy(unsigned int cpu)2751 void cpufreq_update_policy(unsigned int cpu)
2752 {
2753 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
2754 
2755 	policy = cpufreq_cpu_get(cpu);
2756 	if (!policy)
2757 		return;
2758 
2759 	cpufreq_policy_refresh(policy);
2760 }
2761 EXPORT_SYMBOL(cpufreq_update_policy);
2762 
2763 /**
2764  * cpufreq_update_limits - Update policy limits for a given CPU.
2765  * @cpu: CPU to update the policy limits for.
2766  *
2767  * Invoke the driver's ->update_limits callback if present or call
2768  * cpufreq_policy_refresh() for @cpu.
2769  */
cpufreq_update_limits(unsigned int cpu)2770 void cpufreq_update_limits(unsigned int cpu)
2771 {
2772 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
2773 
2774 	policy = cpufreq_cpu_get(cpu);
2775 	if (!policy)
2776 		return;
2777 
2778 	if (cpufreq_driver->update_limits)
2779 		cpufreq_driver->update_limits(policy);
2780 	else
2781 		cpufreq_policy_refresh(policy);
2782 }
2783 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2784 
2785 /*********************************************************************
2786  *               BOOST						     *
2787  *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2788 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2789 {
2790 	int ret;
2791 
2792 	if (!policy->freq_table)
2793 		return -ENXIO;
2794 
2795 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2796 	if (ret) {
2797 		pr_err("%s: Policy frequency update failed\n", __func__);
2798 		return ret;
2799 	}
2800 
2801 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2802 	if (ret < 0)
2803 		return ret;
2804 
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw);
2808 
cpufreq_boost_trigger_state(int state)2809 static int cpufreq_boost_trigger_state(int state)
2810 {
2811 	struct cpufreq_policy *policy;
2812 	unsigned long flags;
2813 	int ret = 0;
2814 
2815 	/*
2816 	 * Don't compare 'cpufreq_driver->boost_enabled' with 'state' here to
2817 	 * make sure all policies are in sync with global boost flag.
2818 	 */
2819 
2820 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2821 	cpufreq_driver->boost_enabled = state;
2822 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2823 
2824 	cpus_read_lock();
2825 	for_each_active_policy(policy) {
2826 		if (!policy->boost_supported)
2827 			continue;
2828 
2829 		ret = policy_set_boost(policy, state);
2830 		if (ret)
2831 			goto err_reset_state;
2832 	}
2833 	cpus_read_unlock();
2834 
2835 	return 0;
2836 
2837 err_reset_state:
2838 	cpus_read_unlock();
2839 
2840 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2841 	cpufreq_driver->boost_enabled = !state;
2842 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2843 
2844 	pr_err("%s: Cannot %s BOOST\n",
2845 	       __func__, str_enable_disable(state));
2846 
2847 	return ret;
2848 }
2849 
cpufreq_boost_supported(void)2850 static bool cpufreq_boost_supported(void)
2851 {
2852 	return cpufreq_driver->set_boost;
2853 }
2854 
create_boost_sysfs_file(void)2855 static int create_boost_sysfs_file(void)
2856 {
2857 	int ret;
2858 
2859 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2860 	if (ret)
2861 		pr_err("%s: cannot register global BOOST sysfs file\n",
2862 		       __func__);
2863 
2864 	return ret;
2865 }
2866 
remove_boost_sysfs_file(void)2867 static void remove_boost_sysfs_file(void)
2868 {
2869 	if (cpufreq_boost_supported())
2870 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2871 }
2872 
cpufreq_boost_enabled(void)2873 bool cpufreq_boost_enabled(void)
2874 {
2875 	return cpufreq_driver->boost_enabled;
2876 }
2877 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2878 
2879 /*********************************************************************
2880  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2881  *********************************************************************/
2882 static enum cpuhp_state hp_online;
2883 
cpuhp_cpufreq_online(unsigned int cpu)2884 static int cpuhp_cpufreq_online(unsigned int cpu)
2885 {
2886 	cpufreq_online(cpu);
2887 
2888 	return 0;
2889 }
2890 
cpuhp_cpufreq_offline(unsigned int cpu)2891 static int cpuhp_cpufreq_offline(unsigned int cpu)
2892 {
2893 	cpufreq_offline(cpu);
2894 
2895 	return 0;
2896 }
2897 
2898 /**
2899  * cpufreq_register_driver - register a CPU Frequency driver
2900  * @driver_data: A struct cpufreq_driver containing the values#
2901  * submitted by the CPU Frequency driver.
2902  *
2903  * Registers a CPU Frequency driver to this core code. This code
2904  * returns zero on success, -EEXIST when another driver got here first
2905  * (and isn't unregistered in the meantime).
2906  *
2907  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2908 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2909 {
2910 	unsigned long flags;
2911 	int ret;
2912 
2913 	if (cpufreq_disabled())
2914 		return -ENODEV;
2915 
2916 	/*
2917 	 * The cpufreq core depends heavily on the availability of device
2918 	 * structure, make sure they are available before proceeding further.
2919 	 */
2920 	if (!get_cpu_device(0))
2921 		return -EPROBE_DEFER;
2922 
2923 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2924 	    !(driver_data->setpolicy || driver_data->target_index ||
2925 		    driver_data->target) ||
2926 	     (driver_data->setpolicy && (driver_data->target_index ||
2927 		    driver_data->target)) ||
2928 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2929 	     (!driver_data->online != !driver_data->offline) ||
2930 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2931 		return -EINVAL;
2932 
2933 	pr_debug("trying to register driver %s\n", driver_data->name);
2934 
2935 	/* Protect against concurrent CPU online/offline. */
2936 	cpus_read_lock();
2937 
2938 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2939 	if (cpufreq_driver) {
2940 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2941 		ret = -EEXIST;
2942 		goto out;
2943 	}
2944 	cpufreq_driver = driver_data;
2945 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2946 
2947 	if (driver_data->setpolicy)
2948 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2949 
2950 	if (cpufreq_boost_supported()) {
2951 		ret = create_boost_sysfs_file();
2952 		if (ret)
2953 			goto err_null_driver;
2954 	}
2955 
2956 	ret = subsys_interface_register(&cpufreq_interface);
2957 	if (ret)
2958 		goto err_boost_unreg;
2959 
2960 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2961 		/* if all ->init() calls failed, unregister */
2962 		ret = -ENODEV;
2963 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2964 			 driver_data->name);
2965 		goto err_if_unreg;
2966 	}
2967 
2968 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2969 						   "cpufreq:online",
2970 						   cpuhp_cpufreq_online,
2971 						   cpuhp_cpufreq_offline);
2972 	if (ret < 0)
2973 		goto err_if_unreg;
2974 	hp_online = ret;
2975 	ret = 0;
2976 
2977 	/*
2978 	 * Mark support for the scheduler's frequency invariance engine for
2979 	 * drivers that implement target(), target_index() or fast_switch().
2980 	 */
2981 	if (!cpufreq_driver->setpolicy) {
2982 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2983 		pr_debug("supports frequency invariance");
2984 	}
2985 
2986 	pr_debug("driver %s up and running\n", driver_data->name);
2987 	goto out;
2988 
2989 err_if_unreg:
2990 	subsys_interface_unregister(&cpufreq_interface);
2991 err_boost_unreg:
2992 	remove_boost_sysfs_file();
2993 err_null_driver:
2994 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2995 	cpufreq_driver = NULL;
2996 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2997 out:
2998 	cpus_read_unlock();
2999 	return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
3002 
3003 /*
3004  * cpufreq_unregister_driver - unregister the current CPUFreq driver
3005  *
3006  * Unregister the current CPUFreq driver. Only call this if you have
3007  * the right to do so, i.e. if you have succeeded in initialising before!
3008  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3009  * currently not initialised.
3010  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)3011 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3012 {
3013 	unsigned long flags;
3014 
3015 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3016 		return;
3017 
3018 	pr_debug("unregistering driver %s\n", driver->name);
3019 
3020 	/* Protect against concurrent cpu hotplug */
3021 	cpus_read_lock();
3022 	subsys_interface_unregister(&cpufreq_interface);
3023 	remove_boost_sysfs_file();
3024 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3025 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3026 
3027 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3028 
3029 	cpufreq_driver = NULL;
3030 
3031 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3032 	cpus_read_unlock();
3033 }
3034 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3035 
cpufreq_core_init(void)3036 static int __init cpufreq_core_init(void)
3037 {
3038 	struct cpufreq_governor *gov = cpufreq_default_governor();
3039 	struct device *dev_root;
3040 
3041 	if (cpufreq_disabled())
3042 		return -ENODEV;
3043 
3044 	dev_root = bus_get_dev_root(&cpu_subsys);
3045 	if (dev_root) {
3046 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3047 		put_device(dev_root);
3048 	}
3049 	BUG_ON(!cpufreq_global_kobject);
3050 
3051 	if (!strlen(default_governor))
3052 		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3053 
3054 	return 0;
3055 }
3056 
cpufreq_policy_is_good_for_eas(unsigned int cpu)3057 static bool cpufreq_policy_is_good_for_eas(unsigned int cpu)
3058 {
3059 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
3060 
3061 	policy = cpufreq_cpu_get(cpu);
3062 	if (!policy) {
3063 		pr_debug("cpufreq policy not set for CPU: %d\n", cpu);
3064 		return false;
3065 	}
3066 
3067 	return sugov_is_governor(policy);
3068 }
3069 
cpufreq_ready_for_eas(const struct cpumask * cpu_mask)3070 bool cpufreq_ready_for_eas(const struct cpumask *cpu_mask)
3071 {
3072 	unsigned int cpu;
3073 
3074 	/* Do not attempt EAS if schedutil is not being used. */
3075 	for_each_cpu(cpu, cpu_mask) {
3076 		if (!cpufreq_policy_is_good_for_eas(cpu)) {
3077 			pr_debug("rd %*pbl: schedutil is mandatory for EAS\n",
3078 				 cpumask_pr_args(cpu_mask));
3079 			return false;
3080 		}
3081 	}
3082 
3083 	return true;
3084 }
3085 
3086 module_param(off, int, 0444);
3087 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3088 core_initcall(cpufreq_core_init);
3089