1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/string_choices.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <linux/units.h>
33 #include <trace/events/power.h>
34
35 static LIST_HEAD(cpufreq_policy_list);
36
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active) \
39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 if ((__active) == !policy_is_inactive(__policy))
41
42 #define for_each_active_policy(__policy) \
43 for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy) \
45 for_each_suitable_policy(__policy, false)
46
47 /* Iterate over governors */
48 static LIST_HEAD(cpufreq_governor_list);
49 #define for_each_governor(__governor) \
50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51
52 static char default_governor[CPUFREQ_NAME_LEN];
53
54 /*
55 * The "cpufreq driver" - the arch- or hardware-dependent low
56 * level driver of CPUFreq support, and its spinlock. This lock
57 * also protects the cpufreq_cpu_data array.
58 */
59 static struct cpufreq_driver *cpufreq_driver;
60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61 static DEFINE_RWLOCK(cpufreq_driver_lock);
62
63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)64 bool cpufreq_supports_freq_invariance(void)
65 {
66 return static_branch_likely(&cpufreq_freq_invariance);
67 }
68
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71
has_target(void)72 static inline bool has_target(void)
73 {
74 return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76
has_target_index(void)77 bool has_target_index(void)
78 {
79 return !!cpufreq_driver->target_index;
80 }
81
82 /* internal prototypes */
83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
84 static int cpufreq_init_governor(struct cpufreq_policy *policy);
85 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
86 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
87 static int cpufreq_set_policy(struct cpufreq_policy *policy,
88 struct cpufreq_governor *new_gov,
89 unsigned int new_pol);
90 static bool cpufreq_boost_supported(void);
91 static int cpufreq_boost_trigger_state(int state);
92
93 /*
94 * Two notifier lists: the "policy" list is involved in the
95 * validation process for a new CPU frequency policy; the
96 * "transition" list for kernel code that needs to handle
97 * changes to devices when the CPU clock speed changes.
98 * The mutex locks both lists.
99 */
100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
cpufreq_disabled(void)104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
disable_cpufreq(void)108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 EXPORT_SYMBOL_GPL(disable_cpufreq);
113
114 static DEFINE_MUTEX(cpufreq_governor_mutex);
115
have_governor_per_policy(void)116 bool have_governor_per_policy(void)
117 {
118 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
119 }
120 EXPORT_SYMBOL_GPL(have_governor_per_policy);
121
122 static struct kobject *cpufreq_global_kobject;
123
get_governor_parent_kobj(struct cpufreq_policy * policy)124 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
125 {
126 if (have_governor_per_policy())
127 return &policy->kobj;
128 else
129 return cpufreq_global_kobject;
130 }
131 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
132
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)133 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
134 {
135 struct kernel_cpustat kcpustat;
136 u64 cur_wall_time;
137 u64 idle_time;
138 u64 busy_time;
139
140 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
141
142 kcpustat_cpu_fetch(&kcpustat, cpu);
143
144 busy_time = kcpustat.cpustat[CPUTIME_USER];
145 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
146 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
147 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
148 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
149 busy_time += kcpustat.cpustat[CPUTIME_NICE];
150
151 idle_time = cur_wall_time - busy_time;
152 if (wall)
153 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
154
155 return div_u64(idle_time, NSEC_PER_USEC);
156 }
157
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)158 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
159 {
160 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
161
162 if (idle_time == -1ULL)
163 return get_cpu_idle_time_jiffy(cpu, wall);
164 else if (!io_busy)
165 idle_time += get_cpu_iowait_time_us(cpu, wall);
166
167 return idle_time;
168 }
169 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
170
171 /*
172 * This is a generic cpufreq init() routine which can be used by cpufreq
173 * drivers of SMP systems. It will do following:
174 * - validate & show freq table passed
175 * - set policies transition latency
176 * - policy->cpus with all possible CPUs
177 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)178 void cpufreq_generic_init(struct cpufreq_policy *policy,
179 struct cpufreq_frequency_table *table,
180 unsigned int transition_latency)
181 {
182 policy->freq_table = table;
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
192
cpufreq_cpu_get_raw(unsigned int cpu)193 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
196
197 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
200
cpufreq_generic_get(unsigned int cpu)201 unsigned int cpufreq_generic_get(unsigned int cpu)
202 {
203 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
204
205 if (!policy || IS_ERR(policy->clk)) {
206 pr_err("%s: No %s associated to cpu: %d\n",
207 __func__, policy ? "clk" : "policy", cpu);
208 return 0;
209 }
210
211 return clk_get_rate(policy->clk) / 1000;
212 }
213 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
214
215 /**
216 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
217 * @cpu: CPU to find the policy for.
218 *
219 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
220 * the kobject reference counter of that policy. Return a valid policy on
221 * success or NULL on failure.
222 *
223 * The policy returned by this function has to be released with the help of
224 * cpufreq_cpu_put() to balance its kobject reference counter properly.
225 */
cpufreq_cpu_get(unsigned int cpu)226 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
227 {
228 struct cpufreq_policy *policy = NULL;
229 unsigned long flags;
230
231 if (WARN_ON(cpu >= nr_cpu_ids))
232 return NULL;
233
234 /* get the cpufreq driver */
235 read_lock_irqsave(&cpufreq_driver_lock, flags);
236
237 if (cpufreq_driver) {
238 /* get the CPU */
239 policy = cpufreq_cpu_get_raw(cpu);
240 if (policy)
241 kobject_get(&policy->kobj);
242 }
243
244 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
245
246 return policy;
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
249
250 /**
251 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
252 * @policy: cpufreq policy returned by cpufreq_cpu_get().
253 */
cpufreq_cpu_put(struct cpufreq_policy * policy)254 void cpufreq_cpu_put(struct cpufreq_policy *policy)
255 {
256 kobject_put(&policy->kobj);
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
259
260 /*********************************************************************
261 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
262 *********************************************************************/
263
264 /**
265 * adjust_jiffies - Adjust the system "loops_per_jiffy".
266 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
267 * @ci: Frequency change information.
268 *
269 * This function alters the system "loops_per_jiffy" for the clock
270 * speed change. Note that loops_per_jiffy cannot be updated on SMP
271 * systems as each CPU might be scaled differently. So, use the arch
272 * per-CPU loops_per_jiffy value wherever possible.
273 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
275 {
276 #ifndef CONFIG_SMP
277 static unsigned long l_p_j_ref;
278 static unsigned int l_p_j_ref_freq;
279
280 if (ci->flags & CPUFREQ_CONST_LOOPS)
281 return;
282
283 if (!l_p_j_ref_freq) {
284 l_p_j_ref = loops_per_jiffy;
285 l_p_j_ref_freq = ci->old;
286 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
287 l_p_j_ref, l_p_j_ref_freq);
288 }
289 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
290 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
291 ci->new);
292 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
293 loops_per_jiffy, ci->new);
294 }
295 #endif
296 }
297
298 /**
299 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
300 * @policy: cpufreq policy to enable fast frequency switching for.
301 * @freqs: contain details of the frequency update.
302 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
303 *
304 * This function calls the transition notifiers and adjust_jiffies().
305 *
306 * It is called twice on all CPU frequency changes that have external effects.
307 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)308 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
309 struct cpufreq_freqs *freqs,
310 unsigned int state)
311 {
312 int cpu;
313
314 BUG_ON(irqs_disabled());
315
316 if (cpufreq_disabled())
317 return;
318
319 freqs->policy = policy;
320 freqs->flags = cpufreq_driver->flags;
321 pr_debug("notification %u of frequency transition to %u kHz\n",
322 state, freqs->new);
323
324 switch (state) {
325 case CPUFREQ_PRECHANGE:
326 /*
327 * Detect if the driver reported a value as "old frequency"
328 * which is not equal to what the cpufreq core thinks is
329 * "old frequency".
330 */
331 if (policy->cur && policy->cur != freqs->old) {
332 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 freqs->old, policy->cur);
334 freqs->old = policy->cur;
335 }
336
337 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 CPUFREQ_PRECHANGE, freqs);
339
340 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
341 break;
342
343 case CPUFREQ_POSTCHANGE:
344 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
345 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
346 cpumask_pr_args(policy->cpus));
347
348 for_each_cpu(cpu, policy->cpus)
349 trace_cpu_frequency(freqs->new, cpu);
350
351 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
352 CPUFREQ_POSTCHANGE, freqs);
353
354 cpufreq_stats_record_transition(policy, freqs->new);
355 policy->cur = freqs->new;
356 }
357 }
358
359 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)360 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
361 struct cpufreq_freqs *freqs, int transition_failed)
362 {
363 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
364 if (!transition_failed)
365 return;
366
367 swap(freqs->old, freqs->new);
368 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 }
371
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)372 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
373 struct cpufreq_freqs *freqs)
374 {
375
376 /*
377 * Catch double invocations of _begin() which lead to self-deadlock.
378 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
379 * doesn't invoke _begin() on their behalf, and hence the chances of
380 * double invocations are very low. Moreover, there are scenarios
381 * where these checks can emit false-positive warnings in these
382 * drivers; so we avoid that by skipping them altogether.
383 */
384 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
385 && current == policy->transition_task);
386
387 wait:
388 wait_event(policy->transition_wait, !policy->transition_ongoing);
389
390 spin_lock(&policy->transition_lock);
391
392 if (unlikely(policy->transition_ongoing)) {
393 spin_unlock(&policy->transition_lock);
394 goto wait;
395 }
396
397 policy->transition_ongoing = true;
398 policy->transition_task = current;
399
400 spin_unlock(&policy->transition_lock);
401
402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 }
404 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
405
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)406 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
407 struct cpufreq_freqs *freqs, int transition_failed)
408 {
409 if (WARN_ON(!policy->transition_ongoing))
410 return;
411
412 cpufreq_notify_post_transition(policy, freqs, transition_failed);
413
414 arch_set_freq_scale(policy->related_cpus,
415 policy->cur,
416 arch_scale_freq_ref(policy->cpu));
417
418 spin_lock(&policy->transition_lock);
419 policy->transition_ongoing = false;
420 policy->transition_task = NULL;
421 spin_unlock(&policy->transition_lock);
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
cpufreq_list_transition_notifiers(void)434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pS\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int min,unsigned int max,unsigned int relation)495 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
496 unsigned int target_freq,
497 unsigned int min, unsigned int max,
498 unsigned int relation)
499 {
500 unsigned int idx;
501
502 target_freq = clamp_val(target_freq, min, max);
503
504 if (!policy->freq_table)
505 return target_freq;
506
507 idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
508 policy->cached_resolved_idx = idx;
509 policy->cached_target_freq = target_freq;
510 return policy->freq_table[idx].frequency;
511 }
512
513 /**
514 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
515 * one.
516 * @policy: associated policy to interrogate
517 * @target_freq: target frequency to resolve.
518 *
519 * The target to driver frequency mapping is cached in the policy.
520 *
521 * Return: Lowest driver-supported frequency greater than or equal to the
522 * given target_freq, subject to policy (min/max) and driver limitations.
523 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)524 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
525 unsigned int target_freq)
526 {
527 unsigned int min = READ_ONCE(policy->min);
528 unsigned int max = READ_ONCE(policy->max);
529
530 /*
531 * If this function runs in parallel with cpufreq_set_policy(), it may
532 * read policy->min before the update and policy->max after the update
533 * or the other way around, so there is no ordering guarantee.
534 *
535 * Resolve this by always honoring the max (in case it comes from
536 * thermal throttling or similar).
537 */
538 if (unlikely(min > max))
539 min = max;
540
541 return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
542 }
543 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
544
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)545 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
546 {
547 unsigned int latency;
548
549 if (policy->transition_delay_us)
550 return policy->transition_delay_us;
551
552 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
553 if (latency)
554 /* Give a 50% breathing room between updates */
555 return latency + (latency >> 1);
556
557 return USEC_PER_MSEC;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
560
561 /*********************************************************************
562 * SYSFS INTERFACE *
563 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)564 static ssize_t show_boost(struct kobject *kobj,
565 struct kobj_attribute *attr, char *buf)
566 {
567 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
568 }
569
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)570 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
571 const char *buf, size_t count)
572 {
573 bool enable;
574
575 if (kstrtobool(buf, &enable))
576 return -EINVAL;
577
578 if (cpufreq_boost_trigger_state(enable)) {
579 pr_err("%s: Cannot %s BOOST!\n",
580 __func__, str_enable_disable(enable));
581 return -EINVAL;
582 }
583
584 pr_debug("%s: cpufreq BOOST %s\n",
585 __func__, str_enabled_disabled(enable));
586
587 return count;
588 }
589 define_one_global_rw(boost);
590
show_local_boost(struct cpufreq_policy * policy,char * buf)591 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
592 {
593 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
594 }
595
policy_set_boost(struct cpufreq_policy * policy,bool enable)596 static int policy_set_boost(struct cpufreq_policy *policy, bool enable)
597 {
598 int ret;
599
600 if (policy->boost_enabled == enable)
601 return 0;
602
603 policy->boost_enabled = enable;
604
605 ret = cpufreq_driver->set_boost(policy, enable);
606 if (ret)
607 policy->boost_enabled = !policy->boost_enabled;
608
609 return ret;
610 }
611
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)612 static ssize_t store_local_boost(struct cpufreq_policy *policy,
613 const char *buf, size_t count)
614 {
615 int ret;
616 bool enable;
617
618 if (kstrtobool(buf, &enable))
619 return -EINVAL;
620
621 if (!cpufreq_driver->boost_enabled)
622 return -EINVAL;
623
624 if (!policy->boost_supported)
625 return -EINVAL;
626
627 ret = policy_set_boost(policy, enable);
628 if (!ret)
629 return count;
630
631 return ret;
632 }
633
634 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
635
find_governor(const char * str_governor)636 static struct cpufreq_governor *find_governor(const char *str_governor)
637 {
638 struct cpufreq_governor *t;
639
640 for_each_governor(t)
641 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
642 return t;
643
644 return NULL;
645 }
646
get_governor(const char * str_governor)647 static struct cpufreq_governor *get_governor(const char *str_governor)
648 {
649 struct cpufreq_governor *t;
650
651 mutex_lock(&cpufreq_governor_mutex);
652 t = find_governor(str_governor);
653 if (!t)
654 goto unlock;
655
656 if (!try_module_get(t->owner))
657 t = NULL;
658
659 unlock:
660 mutex_unlock(&cpufreq_governor_mutex);
661
662 return t;
663 }
664
cpufreq_parse_policy(char * str_governor)665 static unsigned int cpufreq_parse_policy(char *str_governor)
666 {
667 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
668 return CPUFREQ_POLICY_PERFORMANCE;
669
670 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
671 return CPUFREQ_POLICY_POWERSAVE;
672
673 return CPUFREQ_POLICY_UNKNOWN;
674 }
675
676 /**
677 * cpufreq_parse_governor - parse a governor string only for has_target()
678 * @str_governor: Governor name.
679 */
cpufreq_parse_governor(char * str_governor)680 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
681 {
682 struct cpufreq_governor *t;
683
684 t = get_governor(str_governor);
685 if (t)
686 return t;
687
688 if (request_module("cpufreq_%s", str_governor))
689 return NULL;
690
691 return get_governor(str_governor);
692 }
693
694 /*
695 * cpufreq_per_cpu_attr_read() / show_##file_name() -
696 * print out cpufreq information
697 *
698 * Write out information from cpufreq_driver->policy[cpu]; object must be
699 * "unsigned int".
700 */
701
702 #define show_one(file_name, object) \
703 static ssize_t show_##file_name \
704 (struct cpufreq_policy *policy, char *buf) \
705 { \
706 return sysfs_emit(buf, "%u\n", policy->object); \
707 }
708
709 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
710 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
711 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
712 show_one(scaling_min_freq, min);
713 show_one(scaling_max_freq, max);
714
arch_freq_get_on_cpu(int cpu)715 __weak int arch_freq_get_on_cpu(int cpu)
716 {
717 return -EOPNOTSUPP;
718 }
719
cpufreq_avg_freq_supported(struct cpufreq_policy * policy)720 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy)
721 {
722 return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP;
723 }
724
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)725 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
726 {
727 ssize_t ret;
728 int freq;
729
730 freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ)
731 ? arch_freq_get_on_cpu(policy->cpu)
732 : 0;
733
734 if (freq > 0)
735 ret = sysfs_emit(buf, "%u\n", freq);
736 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
737 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
738 else
739 ret = sysfs_emit(buf, "%u\n", policy->cur);
740 return ret;
741 }
742
743 /*
744 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
745 */
746 #define store_one(file_name, object) \
747 static ssize_t store_##file_name \
748 (struct cpufreq_policy *policy, const char *buf, size_t count) \
749 { \
750 unsigned long val; \
751 int ret; \
752 \
753 ret = kstrtoul(buf, 0, &val); \
754 if (ret) \
755 return ret; \
756 \
757 ret = freq_qos_update_request(policy->object##_freq_req, val);\
758 return ret >= 0 ? count : ret; \
759 }
760
761 store_one(scaling_min_freq, min);
762 store_one(scaling_max_freq, max);
763
764 /*
765 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
766 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)767 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
768 char *buf)
769 {
770 unsigned int cur_freq = __cpufreq_get(policy);
771
772 if (cur_freq)
773 return sysfs_emit(buf, "%u\n", cur_freq);
774
775 return sysfs_emit(buf, "<unknown>\n");
776 }
777
778 /*
779 * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware
780 */
show_cpuinfo_avg_freq(struct cpufreq_policy * policy,char * buf)781 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy,
782 char *buf)
783 {
784 int avg_freq = arch_freq_get_on_cpu(policy->cpu);
785
786 if (avg_freq > 0)
787 return sysfs_emit(buf, "%u\n", avg_freq);
788 return avg_freq != 0 ? avg_freq : -EINVAL;
789 }
790
791 /*
792 * show_scaling_governor - show the current policy for the specified CPU
793 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)794 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
795 {
796 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
797 return sysfs_emit(buf, "powersave\n");
798 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
799 return sysfs_emit(buf, "performance\n");
800 else if (policy->governor)
801 return sysfs_emit(buf, "%s\n", policy->governor->name);
802 return -EINVAL;
803 }
804
805 /*
806 * store_scaling_governor - store policy for the specified CPU
807 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)808 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
809 const char *buf, size_t count)
810 {
811 char str_governor[CPUFREQ_NAME_LEN];
812 int ret;
813
814 ret = sscanf(buf, "%15s", str_governor);
815 if (ret != 1)
816 return -EINVAL;
817
818 if (cpufreq_driver->setpolicy) {
819 unsigned int new_pol;
820
821 new_pol = cpufreq_parse_policy(str_governor);
822 if (!new_pol)
823 return -EINVAL;
824
825 ret = cpufreq_set_policy(policy, NULL, new_pol);
826 } else {
827 struct cpufreq_governor *new_gov;
828
829 new_gov = cpufreq_parse_governor(str_governor);
830 if (!new_gov)
831 return -EINVAL;
832
833 ret = cpufreq_set_policy(policy, new_gov,
834 CPUFREQ_POLICY_UNKNOWN);
835
836 module_put(new_gov->owner);
837 }
838
839 return ret ? ret : count;
840 }
841
842 /*
843 * show_scaling_driver - show the cpufreq driver currently loaded
844 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)845 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
846 {
847 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
848 }
849
850 /*
851 * show_scaling_available_governors - show the available CPUfreq governors
852 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)853 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
854 char *buf)
855 {
856 ssize_t i = 0;
857 struct cpufreq_governor *t;
858
859 if (!has_target()) {
860 i += sysfs_emit(buf, "performance powersave");
861 goto out;
862 }
863
864 mutex_lock(&cpufreq_governor_mutex);
865 for_each_governor(t) {
866 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
867 - (CPUFREQ_NAME_LEN + 2)))
868 break;
869 i += sysfs_emit_at(buf, i, "%s ", t->name);
870 }
871 mutex_unlock(&cpufreq_governor_mutex);
872 out:
873 i += sysfs_emit_at(buf, i, "\n");
874 return i;
875 }
876
cpufreq_show_cpus(const struct cpumask * mask,char * buf)877 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
878 {
879 ssize_t i = 0;
880 unsigned int cpu;
881
882 for_each_cpu(cpu, mask) {
883 i += sysfs_emit_at(buf, i, "%u ", cpu);
884 if (i >= (PAGE_SIZE - 5))
885 break;
886 }
887
888 /* Remove the extra space at the end */
889 i--;
890
891 i += sysfs_emit_at(buf, i, "\n");
892 return i;
893 }
894 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
895
896 /*
897 * show_related_cpus - show the CPUs affected by each transition even if
898 * hw coordination is in use
899 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)900 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
901 {
902 return cpufreq_show_cpus(policy->related_cpus, buf);
903 }
904
905 /*
906 * show_affected_cpus - show the CPUs affected by each transition
907 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)908 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
909 {
910 return cpufreq_show_cpus(policy->cpus, buf);
911 }
912
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)913 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
914 const char *buf, size_t count)
915 {
916 unsigned int freq = 0;
917 unsigned int ret;
918
919 if (!policy->governor || !policy->governor->store_setspeed)
920 return -EINVAL;
921
922 ret = kstrtouint(buf, 0, &freq);
923 if (ret)
924 return ret;
925
926 policy->governor->store_setspeed(policy, freq);
927
928 return count;
929 }
930
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)931 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
932 {
933 if (!policy->governor || !policy->governor->show_setspeed)
934 return sysfs_emit(buf, "<unsupported>\n");
935
936 return policy->governor->show_setspeed(policy, buf);
937 }
938
939 /*
940 * show_bios_limit - show the current cpufreq HW/BIOS limitation
941 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)942 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
943 {
944 unsigned int limit;
945 int ret;
946 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
947 if (!ret)
948 return sysfs_emit(buf, "%u\n", limit);
949 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
950 }
951
952 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
953 cpufreq_freq_attr_ro(cpuinfo_avg_freq);
954 cpufreq_freq_attr_ro(cpuinfo_min_freq);
955 cpufreq_freq_attr_ro(cpuinfo_max_freq);
956 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
957 cpufreq_freq_attr_ro(scaling_available_governors);
958 cpufreq_freq_attr_ro(scaling_driver);
959 cpufreq_freq_attr_ro(scaling_cur_freq);
960 cpufreq_freq_attr_ro(bios_limit);
961 cpufreq_freq_attr_ro(related_cpus);
962 cpufreq_freq_attr_ro(affected_cpus);
963 cpufreq_freq_attr_rw(scaling_min_freq);
964 cpufreq_freq_attr_rw(scaling_max_freq);
965 cpufreq_freq_attr_rw(scaling_governor);
966 cpufreq_freq_attr_rw(scaling_setspeed);
967
968 static struct attribute *cpufreq_attrs[] = {
969 &cpuinfo_min_freq.attr,
970 &cpuinfo_max_freq.attr,
971 &cpuinfo_transition_latency.attr,
972 &scaling_cur_freq.attr,
973 &scaling_min_freq.attr,
974 &scaling_max_freq.attr,
975 &affected_cpus.attr,
976 &related_cpus.attr,
977 &scaling_governor.attr,
978 &scaling_driver.attr,
979 &scaling_available_governors.attr,
980 &scaling_setspeed.attr,
981 NULL
982 };
983 ATTRIBUTE_GROUPS(cpufreq);
984
985 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
986 #define to_attr(a) container_of(a, struct freq_attr, attr)
987
show(struct kobject * kobj,struct attribute * attr,char * buf)988 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
989 {
990 struct cpufreq_policy *policy = to_policy(kobj);
991 struct freq_attr *fattr = to_attr(attr);
992
993 if (!fattr->show)
994 return -EIO;
995
996 guard(cpufreq_policy_read)(policy);
997
998 if (likely(!policy_is_inactive(policy)))
999 return fattr->show(policy, buf);
1000
1001 return -EBUSY;
1002 }
1003
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1004 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1005 const char *buf, size_t count)
1006 {
1007 struct cpufreq_policy *policy = to_policy(kobj);
1008 struct freq_attr *fattr = to_attr(attr);
1009
1010 if (!fattr->store)
1011 return -EIO;
1012
1013 guard(cpufreq_policy_write)(policy);
1014
1015 if (likely(!policy_is_inactive(policy)))
1016 return fattr->store(policy, buf, count);
1017
1018 return -EBUSY;
1019 }
1020
cpufreq_sysfs_release(struct kobject * kobj)1021 static void cpufreq_sysfs_release(struct kobject *kobj)
1022 {
1023 struct cpufreq_policy *policy = to_policy(kobj);
1024 pr_debug("last reference is dropped\n");
1025 complete(&policy->kobj_unregister);
1026 }
1027
1028 static const struct sysfs_ops sysfs_ops = {
1029 .show = show,
1030 .store = store,
1031 };
1032
1033 static const struct kobj_type ktype_cpufreq = {
1034 .sysfs_ops = &sysfs_ops,
1035 .default_groups = cpufreq_groups,
1036 .release = cpufreq_sysfs_release,
1037 };
1038
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1039 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1040 struct device *dev)
1041 {
1042 if (unlikely(!dev))
1043 return;
1044
1045 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1046 return;
1047
1048 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1049 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1050 dev_err(dev, "cpufreq symlink creation failed\n");
1051 }
1052
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1053 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1054 struct device *dev)
1055 {
1056 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1057 sysfs_remove_link(&dev->kobj, "cpufreq");
1058 cpumask_clear_cpu(cpu, policy->real_cpus);
1059 }
1060
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1061 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1062 {
1063 struct freq_attr **drv_attr;
1064 int ret = 0;
1065
1066 /* Attributes that need freq_table */
1067 if (policy->freq_table) {
1068 ret = sysfs_create_file(&policy->kobj,
1069 &cpufreq_freq_attr_scaling_available_freqs.attr);
1070 if (ret)
1071 return ret;
1072
1073 if (cpufreq_boost_supported()) {
1074 ret = sysfs_create_file(&policy->kobj,
1075 &cpufreq_freq_attr_scaling_boost_freqs.attr);
1076 if (ret)
1077 return ret;
1078 }
1079 }
1080
1081 /* set up files for this cpu device */
1082 drv_attr = cpufreq_driver->attr;
1083 while (drv_attr && *drv_attr) {
1084 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1085 if (ret)
1086 return ret;
1087 drv_attr++;
1088 }
1089 if (cpufreq_driver->get) {
1090 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1091 if (ret)
1092 return ret;
1093 }
1094
1095 if (cpufreq_avg_freq_supported(policy)) {
1096 ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr);
1097 if (ret)
1098 return ret;
1099 }
1100
1101 if (cpufreq_driver->bios_limit) {
1102 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1103 if (ret)
1104 return ret;
1105 }
1106
1107 if (cpufreq_boost_supported()) {
1108 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1109 if (ret)
1110 return ret;
1111 }
1112
1113 return 0;
1114 }
1115
cpufreq_init_policy(struct cpufreq_policy * policy)1116 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1117 {
1118 struct cpufreq_governor *gov = NULL;
1119 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1120 int ret;
1121
1122 if (has_target()) {
1123 /* Update policy governor to the one used before hotplug. */
1124 gov = get_governor(policy->last_governor);
1125 if (gov) {
1126 pr_debug("Restoring governor %s for cpu %d\n",
1127 gov->name, policy->cpu);
1128 } else {
1129 gov = get_governor(default_governor);
1130 }
1131
1132 if (!gov) {
1133 gov = cpufreq_default_governor();
1134 __module_get(gov->owner);
1135 }
1136
1137 } else {
1138
1139 /* Use the default policy if there is no last_policy. */
1140 if (policy->last_policy) {
1141 pol = policy->last_policy;
1142 } else {
1143 pol = cpufreq_parse_policy(default_governor);
1144 /*
1145 * In case the default governor is neither "performance"
1146 * nor "powersave", fall back to the initial policy
1147 * value set by the driver.
1148 */
1149 if (pol == CPUFREQ_POLICY_UNKNOWN)
1150 pol = policy->policy;
1151 }
1152 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1153 pol != CPUFREQ_POLICY_POWERSAVE)
1154 return -ENODATA;
1155 }
1156
1157 ret = cpufreq_set_policy(policy, gov, pol);
1158 if (gov)
1159 module_put(gov->owner);
1160
1161 return ret;
1162 }
1163
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1164 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1165 {
1166 int ret = 0;
1167
1168 /* Has this CPU been taken care of already? */
1169 if (cpumask_test_cpu(cpu, policy->cpus))
1170 return 0;
1171
1172 guard(cpufreq_policy_write)(policy);
1173
1174 if (has_target())
1175 cpufreq_stop_governor(policy);
1176
1177 cpumask_set_cpu(cpu, policy->cpus);
1178
1179 if (has_target()) {
1180 ret = cpufreq_start_governor(policy);
1181 if (ret)
1182 pr_err("%s: Failed to start governor\n", __func__);
1183 }
1184
1185 return ret;
1186 }
1187
refresh_frequency_limits(struct cpufreq_policy * policy)1188 void refresh_frequency_limits(struct cpufreq_policy *policy)
1189 {
1190 if (!policy_is_inactive(policy)) {
1191 pr_debug("updating policy for CPU %u\n", policy->cpu);
1192
1193 cpufreq_set_policy(policy, policy->governor, policy->policy);
1194 }
1195 }
1196 EXPORT_SYMBOL(refresh_frequency_limits);
1197
handle_update(struct work_struct * work)1198 static void handle_update(struct work_struct *work)
1199 {
1200 struct cpufreq_policy *policy =
1201 container_of(work, struct cpufreq_policy, update);
1202
1203 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1204
1205 guard(cpufreq_policy_write)(policy);
1206
1207 refresh_frequency_limits(policy);
1208 }
1209
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1210 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1211 void *data)
1212 {
1213 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1214
1215 schedule_work(&policy->update);
1216 return 0;
1217 }
1218
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1219 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1220 void *data)
1221 {
1222 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1223
1224 schedule_work(&policy->update);
1225 return 0;
1226 }
1227
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1228 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1229 {
1230 struct kobject *kobj;
1231 struct completion *cmp;
1232
1233 scoped_guard(cpufreq_policy_write, policy) {
1234 cpufreq_stats_free_table(policy);
1235 kobj = &policy->kobj;
1236 cmp = &policy->kobj_unregister;
1237 }
1238 kobject_put(kobj);
1239
1240 /*
1241 * We need to make sure that the underlying kobj is
1242 * actually not referenced anymore by anybody before we
1243 * proceed with unloading.
1244 */
1245 pr_debug("waiting for dropping of refcount\n");
1246 wait_for_completion(cmp);
1247 pr_debug("wait complete\n");
1248 }
1249
cpufreq_policy_alloc(unsigned int cpu)1250 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1251 {
1252 struct cpufreq_policy *policy;
1253 struct device *dev = get_cpu_device(cpu);
1254 int ret;
1255
1256 if (!dev)
1257 return NULL;
1258
1259 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1260 if (!policy)
1261 return NULL;
1262
1263 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1264 goto err_free_policy;
1265
1266 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1267 goto err_free_cpumask;
1268
1269 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1270 goto err_free_rcpumask;
1271
1272 init_completion(&policy->kobj_unregister);
1273 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1274 cpufreq_global_kobject, "policy%u", cpu);
1275 if (ret) {
1276 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1277 /*
1278 * The entire policy object will be freed below, but the extra
1279 * memory allocated for the kobject name needs to be freed by
1280 * releasing the kobject.
1281 */
1282 kobject_put(&policy->kobj);
1283 goto err_free_real_cpus;
1284 }
1285
1286 init_rwsem(&policy->rwsem);
1287
1288 freq_constraints_init(&policy->constraints);
1289
1290 policy->nb_min.notifier_call = cpufreq_notifier_min;
1291 policy->nb_max.notifier_call = cpufreq_notifier_max;
1292
1293 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 &policy->nb_min);
1295 if (ret) {
1296 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1297 ret, cpu);
1298 goto err_kobj_remove;
1299 }
1300
1301 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1302 &policy->nb_max);
1303 if (ret) {
1304 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1305 ret, cpu);
1306 goto err_min_qos_notifier;
1307 }
1308
1309 INIT_LIST_HEAD(&policy->policy_list);
1310 spin_lock_init(&policy->transition_lock);
1311 init_waitqueue_head(&policy->transition_wait);
1312 INIT_WORK(&policy->update, handle_update);
1313
1314 return policy;
1315
1316 err_min_qos_notifier:
1317 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1318 &policy->nb_min);
1319 err_kobj_remove:
1320 cpufreq_policy_put_kobj(policy);
1321 err_free_real_cpus:
1322 free_cpumask_var(policy->real_cpus);
1323 err_free_rcpumask:
1324 free_cpumask_var(policy->related_cpus);
1325 err_free_cpumask:
1326 free_cpumask_var(policy->cpus);
1327 err_free_policy:
1328 kfree(policy);
1329
1330 return NULL;
1331 }
1332
cpufreq_policy_free(struct cpufreq_policy * policy)1333 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1334 {
1335 unsigned long flags;
1336 int cpu;
1337
1338 /*
1339 * The callers must ensure the policy is inactive by now, to avoid any
1340 * races with show()/store() callbacks.
1341 */
1342 if (unlikely(!policy_is_inactive(policy)))
1343 pr_warn("%s: Freeing active policy\n", __func__);
1344
1345 /* Remove policy from list */
1346 write_lock_irqsave(&cpufreq_driver_lock, flags);
1347 list_del(&policy->policy_list);
1348
1349 for_each_cpu(cpu, policy->related_cpus)
1350 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1351 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1352
1353 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1354 &policy->nb_max);
1355 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1356 &policy->nb_min);
1357
1358 /* Cancel any pending policy->update work before freeing the policy. */
1359 cancel_work_sync(&policy->update);
1360
1361 if (policy->max_freq_req) {
1362 /*
1363 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1364 * notification, since CPUFREQ_CREATE_POLICY notification was
1365 * sent after adding max_freq_req earlier.
1366 */
1367 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1368 CPUFREQ_REMOVE_POLICY, policy);
1369 freq_qos_remove_request(policy->max_freq_req);
1370 }
1371
1372 freq_qos_remove_request(policy->min_freq_req);
1373 kfree(policy->min_freq_req);
1374
1375 cpufreq_policy_put_kobj(policy);
1376 free_cpumask_var(policy->real_cpus);
1377 free_cpumask_var(policy->related_cpus);
1378 free_cpumask_var(policy->cpus);
1379 kfree(policy);
1380 }
1381
cpufreq_policy_online(struct cpufreq_policy * policy,unsigned int cpu,bool new_policy)1382 static int cpufreq_policy_online(struct cpufreq_policy *policy,
1383 unsigned int cpu, bool new_policy)
1384 {
1385 unsigned long flags;
1386 unsigned int j;
1387 int ret;
1388
1389 guard(cpufreq_policy_write)(policy);
1390
1391 policy->cpu = cpu;
1392 policy->governor = NULL;
1393
1394 if (!new_policy && cpufreq_driver->online) {
1395 /* Recover policy->cpus using related_cpus */
1396 cpumask_copy(policy->cpus, policy->related_cpus);
1397
1398 ret = cpufreq_driver->online(policy);
1399 if (ret) {
1400 pr_debug("%s: %d: initialization failed\n", __func__,
1401 __LINE__);
1402 goto out_exit_policy;
1403 }
1404 } else {
1405 cpumask_copy(policy->cpus, cpumask_of(cpu));
1406
1407 /*
1408 * Call driver. From then on the cpufreq must be able
1409 * to accept all calls to ->verify and ->setpolicy for this CPU.
1410 */
1411 ret = cpufreq_driver->init(policy);
1412 if (ret) {
1413 pr_debug("%s: %d: initialization failed\n", __func__,
1414 __LINE__);
1415 goto out_clear_policy;
1416 }
1417
1418 /*
1419 * The initialization has succeeded and the policy is online.
1420 * If there is a problem with its frequency table, take it
1421 * offline and drop it.
1422 */
1423 ret = cpufreq_table_validate_and_sort(policy);
1424 if (ret)
1425 goto out_offline_policy;
1426
1427 /* related_cpus should at least include policy->cpus. */
1428 cpumask_copy(policy->related_cpus, policy->cpus);
1429 }
1430
1431 /*
1432 * affected cpus must always be the one, which are online. We aren't
1433 * managing offline cpus here.
1434 */
1435 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1436
1437 if (new_policy) {
1438 for_each_cpu(j, policy->related_cpus) {
1439 per_cpu(cpufreq_cpu_data, j) = policy;
1440 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1441 }
1442
1443 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1444 GFP_KERNEL);
1445 if (!policy->min_freq_req) {
1446 ret = -ENOMEM;
1447 goto out_destroy_policy;
1448 }
1449
1450 ret = freq_qos_add_request(&policy->constraints,
1451 policy->min_freq_req, FREQ_QOS_MIN,
1452 FREQ_QOS_MIN_DEFAULT_VALUE);
1453 if (ret < 0) {
1454 /*
1455 * So we don't call freq_qos_remove_request() for an
1456 * uninitialized request.
1457 */
1458 kfree(policy->min_freq_req);
1459 policy->min_freq_req = NULL;
1460 goto out_destroy_policy;
1461 }
1462
1463 /*
1464 * This must be initialized right here to avoid calling
1465 * freq_qos_remove_request() on uninitialized request in case
1466 * of errors.
1467 */
1468 policy->max_freq_req = policy->min_freq_req + 1;
1469
1470 ret = freq_qos_add_request(&policy->constraints,
1471 policy->max_freq_req, FREQ_QOS_MAX,
1472 FREQ_QOS_MAX_DEFAULT_VALUE);
1473 if (ret < 0) {
1474 policy->max_freq_req = NULL;
1475 goto out_destroy_policy;
1476 }
1477
1478 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1479 CPUFREQ_CREATE_POLICY, policy);
1480 } else {
1481 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
1482 if (ret < 0)
1483 goto out_destroy_policy;
1484 }
1485
1486 if (cpufreq_driver->get && has_target()) {
1487 policy->cur = cpufreq_driver->get(policy->cpu);
1488 if (!policy->cur) {
1489 ret = -EIO;
1490 pr_err("%s: ->get() failed\n", __func__);
1491 goto out_destroy_policy;
1492 }
1493 }
1494
1495 /*
1496 * Sometimes boot loaders set CPU frequency to a value outside of
1497 * frequency table present with cpufreq core. In such cases CPU might be
1498 * unstable if it has to run on that frequency for long duration of time
1499 * and so its better to set it to a frequency which is specified in
1500 * freq-table. This also makes cpufreq stats inconsistent as
1501 * cpufreq-stats would fail to register because current frequency of CPU
1502 * isn't found in freq-table.
1503 *
1504 * Because we don't want this change to effect boot process badly, we go
1505 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507 * is initialized to zero).
1508 *
1509 * We are passing target-freq as "policy->cur - 1" otherwise
1510 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511 * equal to target-freq.
1512 */
1513 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514 && has_target()) {
1515 unsigned int old_freq = policy->cur;
1516
1517 /* Are we running at unknown frequency ? */
1518 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519 if (ret == -EINVAL) {
1520 ret = __cpufreq_driver_target(policy, old_freq - 1,
1521 CPUFREQ_RELATION_L);
1522
1523 /*
1524 * Reaching here after boot in a few seconds may not
1525 * mean that system will remain stable at "unknown"
1526 * frequency for longer duration. Hence, a BUG_ON().
1527 */
1528 BUG_ON(ret);
1529 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1530 __func__, policy->cpu, old_freq, policy->cur);
1531 }
1532 }
1533
1534 if (new_policy) {
1535 ret = cpufreq_add_dev_interface(policy);
1536 if (ret)
1537 goto out_destroy_policy;
1538
1539 cpufreq_stats_create_table(policy);
1540
1541 write_lock_irqsave(&cpufreq_driver_lock, flags);
1542 list_add(&policy->policy_list, &cpufreq_policy_list);
1543 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545 /*
1546 * Register with the energy model before
1547 * em_rebuild_sched_domains() is called, which will result
1548 * in rebuilding of the sched domains, which should only be done
1549 * once the energy model is properly initialized for the policy
1550 * first.
1551 *
1552 * Also, this should be called before the policy is registered
1553 * with cooling framework.
1554 */
1555 if (cpufreq_driver->register_em)
1556 cpufreq_driver->register_em(policy);
1557 }
1558
1559 ret = cpufreq_init_policy(policy);
1560 if (ret) {
1561 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562 __func__, cpu, ret);
1563 goto out_destroy_policy;
1564 }
1565
1566 return 0;
1567
1568 out_destroy_policy:
1569 for_each_cpu(j, policy->real_cpus)
1570 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1571
1572 out_offline_policy:
1573 if (cpufreq_driver->offline)
1574 cpufreq_driver->offline(policy);
1575
1576 out_exit_policy:
1577 if (cpufreq_driver->exit)
1578 cpufreq_driver->exit(policy);
1579
1580 out_clear_policy:
1581 cpumask_clear(policy->cpus);
1582
1583 return ret;
1584 }
1585
cpufreq_online(unsigned int cpu)1586 static int cpufreq_online(unsigned int cpu)
1587 {
1588 struct cpufreq_policy *policy;
1589 bool new_policy;
1590 int ret;
1591
1592 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1593
1594 /* Check if this CPU already has a policy to manage it */
1595 policy = per_cpu(cpufreq_cpu_data, cpu);
1596 if (policy) {
1597 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1598 if (!policy_is_inactive(policy))
1599 return cpufreq_add_policy_cpu(policy, cpu);
1600
1601 /* This is the only online CPU for the policy. Start over. */
1602 new_policy = false;
1603 } else {
1604 new_policy = true;
1605 policy = cpufreq_policy_alloc(cpu);
1606 if (!policy)
1607 return -ENOMEM;
1608 }
1609
1610 ret = cpufreq_policy_online(policy, cpu, new_policy);
1611 if (ret) {
1612 cpufreq_policy_free(policy);
1613 return ret;
1614 }
1615
1616 kobject_uevent(&policy->kobj, KOBJ_ADD);
1617
1618 /* Callback for handling stuff after policy is ready */
1619 if (cpufreq_driver->ready)
1620 cpufreq_driver->ready(policy);
1621
1622 /* Register cpufreq cooling only for a new policy */
1623 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1624 policy->cdev = of_cpufreq_cooling_register(policy);
1625
1626 /*
1627 * Let the per-policy boost flag mirror the cpufreq_driver boost during
1628 * initialization for a new policy. For an existing policy, maintain the
1629 * previous boost value unless global boost is disabled.
1630 */
1631 if (cpufreq_driver->set_boost && policy->boost_supported &&
1632 (new_policy || !cpufreq_boost_enabled())) {
1633 ret = policy_set_boost(policy, cpufreq_boost_enabled());
1634 if (ret) {
1635 /* If the set_boost fails, the online operation is not affected */
1636 pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu,
1637 str_enable_disable(cpufreq_boost_enabled()));
1638 }
1639 }
1640
1641 pr_debug("initialization complete\n");
1642
1643 return 0;
1644 }
1645
1646 /**
1647 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1648 * @dev: CPU device.
1649 * @sif: Subsystem interface structure pointer (not used)
1650 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1651 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1652 {
1653 struct cpufreq_policy *policy;
1654 unsigned cpu = dev->id;
1655 int ret;
1656
1657 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1658
1659 if (cpu_online(cpu)) {
1660 ret = cpufreq_online(cpu);
1661 if (ret)
1662 return ret;
1663 }
1664
1665 /* Create sysfs link on CPU registration */
1666 policy = per_cpu(cpufreq_cpu_data, cpu);
1667 if (policy)
1668 add_cpu_dev_symlink(policy, cpu, dev);
1669
1670 return 0;
1671 }
1672
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1673 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1674 {
1675 int ret;
1676
1677 if (has_target())
1678 cpufreq_stop_governor(policy);
1679
1680 cpumask_clear_cpu(cpu, policy->cpus);
1681
1682 if (!policy_is_inactive(policy)) {
1683 /* Nominate a new CPU if necessary. */
1684 if (cpu == policy->cpu)
1685 policy->cpu = cpumask_any(policy->cpus);
1686
1687 /* Start the governor again for the active policy. */
1688 if (has_target()) {
1689 ret = cpufreq_start_governor(policy);
1690 if (ret)
1691 pr_err("%s: Failed to start governor\n", __func__);
1692 }
1693
1694 return;
1695 }
1696
1697 if (has_target()) {
1698 strscpy(policy->last_governor, policy->governor->name,
1699 CPUFREQ_NAME_LEN);
1700 cpufreq_exit_governor(policy);
1701 } else {
1702 policy->last_policy = policy->policy;
1703 }
1704
1705 /*
1706 * Perform the ->offline() during light-weight tear-down, as
1707 * that allows fast recovery when the CPU comes back.
1708 */
1709 if (cpufreq_driver->offline) {
1710 cpufreq_driver->offline(policy);
1711 return;
1712 }
1713
1714 if (cpufreq_driver->exit)
1715 cpufreq_driver->exit(policy);
1716
1717 policy->freq_table = NULL;
1718 }
1719
cpufreq_offline(unsigned int cpu)1720 static int cpufreq_offline(unsigned int cpu)
1721 {
1722 struct cpufreq_policy *policy;
1723
1724 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1725
1726 policy = cpufreq_cpu_get_raw(cpu);
1727 if (!policy) {
1728 pr_debug("%s: No cpu_data found\n", __func__);
1729 return 0;
1730 }
1731
1732 guard(cpufreq_policy_write)(policy);
1733
1734 __cpufreq_offline(cpu, policy);
1735
1736 return 0;
1737 }
1738
1739 /*
1740 * cpufreq_remove_dev - remove a CPU device
1741 *
1742 * Removes the cpufreq interface for a CPU device.
1743 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1744 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1745 {
1746 unsigned int cpu = dev->id;
1747 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1748
1749 if (!policy)
1750 return;
1751
1752 scoped_guard(cpufreq_policy_write, policy) {
1753 if (cpu_online(cpu))
1754 __cpufreq_offline(cpu, policy);
1755
1756 remove_cpu_dev_symlink(policy, cpu, dev);
1757
1758 if (!cpumask_empty(policy->real_cpus))
1759 return;
1760
1761 /*
1762 * Unregister cpufreq cooling once all the CPUs of the policy
1763 * are removed.
1764 */
1765 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1766 cpufreq_cooling_unregister(policy->cdev);
1767 policy->cdev = NULL;
1768 }
1769
1770 /* We did light-weight exit earlier, do full tear down now */
1771 if (cpufreq_driver->offline && cpufreq_driver->exit)
1772 cpufreq_driver->exit(policy);
1773 }
1774
1775 cpufreq_policy_free(policy);
1776 }
1777
1778 /**
1779 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1780 * @policy: Policy managing CPUs.
1781 * @new_freq: New CPU frequency.
1782 *
1783 * Adjust to the current frequency first and clean up later by either calling
1784 * cpufreq_update_policy(), or scheduling handle_update().
1785 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1786 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1787 unsigned int new_freq)
1788 {
1789 struct cpufreq_freqs freqs;
1790
1791 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1792 policy->cur, new_freq);
1793
1794 freqs.old = policy->cur;
1795 freqs.new = new_freq;
1796
1797 cpufreq_freq_transition_begin(policy, &freqs);
1798 cpufreq_freq_transition_end(policy, &freqs, 0);
1799 }
1800
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1801 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1802 {
1803 unsigned int new_freq;
1804
1805 if (!cpufreq_driver->get)
1806 return 0;
1807
1808 new_freq = cpufreq_driver->get(policy->cpu);
1809 if (!new_freq)
1810 return 0;
1811
1812 /*
1813 * If fast frequency switching is used with the given policy, the check
1814 * against policy->cur is pointless, so skip it in that case.
1815 */
1816 if (policy->fast_switch_enabled || !has_target())
1817 return new_freq;
1818
1819 if (policy->cur != new_freq) {
1820 /*
1821 * For some platforms, the frequency returned by hardware may be
1822 * slightly different from what is provided in the frequency
1823 * table, for example hardware may return 499 MHz instead of 500
1824 * MHz. In such cases it is better to avoid getting into
1825 * unnecessary frequency updates.
1826 */
1827 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1828 return policy->cur;
1829
1830 cpufreq_out_of_sync(policy, new_freq);
1831 if (update)
1832 schedule_work(&policy->update);
1833 }
1834
1835 return new_freq;
1836 }
1837
1838 /**
1839 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1840 * @cpu: CPU number
1841 *
1842 * This is the last known freq, without actually getting it from the driver.
1843 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1844 */
cpufreq_quick_get(unsigned int cpu)1845 unsigned int cpufreq_quick_get(unsigned int cpu)
1846 {
1847 struct cpufreq_policy *policy __free(put_cpufreq_policy) = NULL;
1848 unsigned long flags;
1849
1850 read_lock_irqsave(&cpufreq_driver_lock, flags);
1851
1852 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1853 unsigned int ret_freq = cpufreq_driver->get(cpu);
1854
1855 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1856
1857 return ret_freq;
1858 }
1859
1860 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1861
1862 policy = cpufreq_cpu_get(cpu);
1863 if (policy)
1864 return policy->cur;
1865
1866 return 0;
1867 }
1868 EXPORT_SYMBOL(cpufreq_quick_get);
1869
1870 /**
1871 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1872 * @cpu: CPU number
1873 *
1874 * Just return the max possible frequency for a given CPU.
1875 */
cpufreq_quick_get_max(unsigned int cpu)1876 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1877 {
1878 struct cpufreq_policy *policy __free(put_cpufreq_policy);
1879
1880 policy = cpufreq_cpu_get(cpu);
1881 if (policy)
1882 return policy->max;
1883
1884 return 0;
1885 }
1886 EXPORT_SYMBOL(cpufreq_quick_get_max);
1887
1888 /**
1889 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1890 * @cpu: CPU number
1891 *
1892 * The default return value is the max_freq field of cpuinfo.
1893 */
cpufreq_get_hw_max_freq(unsigned int cpu)1894 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1895 {
1896 struct cpufreq_policy *policy __free(put_cpufreq_policy);
1897
1898 policy = cpufreq_cpu_get(cpu);
1899 if (policy)
1900 return policy->cpuinfo.max_freq;
1901
1902 return 0;
1903 }
1904 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1905
__cpufreq_get(struct cpufreq_policy * policy)1906 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1907 {
1908 if (unlikely(policy_is_inactive(policy)))
1909 return 0;
1910
1911 return cpufreq_verify_current_freq(policy, true);
1912 }
1913
1914 /**
1915 * cpufreq_get - get the current CPU frequency (in kHz)
1916 * @cpu: CPU number
1917 *
1918 * Get the CPU current (static) CPU frequency
1919 */
cpufreq_get(unsigned int cpu)1920 unsigned int cpufreq_get(unsigned int cpu)
1921 {
1922 struct cpufreq_policy *policy __free(put_cpufreq_policy);
1923
1924 policy = cpufreq_cpu_get(cpu);
1925 if (!policy)
1926 return 0;
1927
1928 guard(cpufreq_policy_read)(policy);
1929
1930 return __cpufreq_get(policy);
1931 }
1932 EXPORT_SYMBOL(cpufreq_get);
1933
1934 static struct subsys_interface cpufreq_interface = {
1935 .name = "cpufreq",
1936 .subsys = &cpu_subsys,
1937 .add_dev = cpufreq_add_dev,
1938 .remove_dev = cpufreq_remove_dev,
1939 };
1940
1941 /*
1942 * In case platform wants some specific frequency to be configured
1943 * during suspend..
1944 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1945 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1946 {
1947 int ret;
1948
1949 if (!policy->suspend_freq) {
1950 pr_debug("%s: suspend_freq not defined\n", __func__);
1951 return 0;
1952 }
1953
1954 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1955 policy->suspend_freq);
1956
1957 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1958 CPUFREQ_RELATION_H);
1959 if (ret)
1960 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1961 __func__, policy->suspend_freq, ret);
1962
1963 return ret;
1964 }
1965 EXPORT_SYMBOL(cpufreq_generic_suspend);
1966
1967 /**
1968 * cpufreq_suspend() - Suspend CPUFreq governors.
1969 *
1970 * Called during system wide Suspend/Hibernate cycles for suspending governors
1971 * as some platforms can't change frequency after this point in suspend cycle.
1972 * Because some of the devices (like: i2c, regulators, etc) they use for
1973 * changing frequency are suspended quickly after this point.
1974 */
cpufreq_suspend(void)1975 void cpufreq_suspend(void)
1976 {
1977 struct cpufreq_policy *policy;
1978
1979 if (!cpufreq_driver)
1980 return;
1981
1982 if (!has_target() && !cpufreq_driver->suspend)
1983 goto suspend;
1984
1985 pr_debug("%s: Suspending Governors\n", __func__);
1986
1987 for_each_active_policy(policy) {
1988 if (has_target()) {
1989 scoped_guard(cpufreq_policy_write, policy) {
1990 cpufreq_stop_governor(policy);
1991 }
1992 }
1993
1994 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1995 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1996 cpufreq_driver->name);
1997 }
1998
1999 suspend:
2000 cpufreq_suspended = true;
2001 }
2002
2003 /**
2004 * cpufreq_resume() - Resume CPUFreq governors.
2005 *
2006 * Called during system wide Suspend/Hibernate cycle for resuming governors that
2007 * are suspended with cpufreq_suspend().
2008 */
cpufreq_resume(void)2009 void cpufreq_resume(void)
2010 {
2011 struct cpufreq_policy *policy;
2012 int ret;
2013
2014 if (!cpufreq_driver)
2015 return;
2016
2017 if (unlikely(!cpufreq_suspended))
2018 return;
2019
2020 cpufreq_suspended = false;
2021
2022 if (!has_target() && !cpufreq_driver->resume)
2023 return;
2024
2025 pr_debug("%s: Resuming Governors\n", __func__);
2026
2027 for_each_active_policy(policy) {
2028 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2029 pr_err("%s: Failed to resume driver: %s\n", __func__,
2030 cpufreq_driver->name);
2031 } else if (has_target()) {
2032 scoped_guard(cpufreq_policy_write, policy) {
2033 ret = cpufreq_start_governor(policy);
2034 }
2035
2036 if (ret)
2037 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2038 __func__, policy->cpu);
2039 }
2040 }
2041 }
2042
2043 /**
2044 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2045 * @flags: Flags to test against the current cpufreq driver's flags.
2046 *
2047 * Assumes that the driver is there, so callers must ensure that this is the
2048 * case.
2049 */
cpufreq_driver_test_flags(u16 flags)2050 bool cpufreq_driver_test_flags(u16 flags)
2051 {
2052 return !!(cpufreq_driver->flags & flags);
2053 }
2054
2055 /**
2056 * cpufreq_get_current_driver - Return the current driver's name.
2057 *
2058 * Return the name string of the currently registered cpufreq driver or NULL if
2059 * none.
2060 */
cpufreq_get_current_driver(void)2061 const char *cpufreq_get_current_driver(void)
2062 {
2063 if (cpufreq_driver)
2064 return cpufreq_driver->name;
2065
2066 return NULL;
2067 }
2068 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2069
2070 /**
2071 * cpufreq_get_driver_data - Return current driver data.
2072 *
2073 * Return the private data of the currently registered cpufreq driver, or NULL
2074 * if no cpufreq driver has been registered.
2075 */
cpufreq_get_driver_data(void)2076 void *cpufreq_get_driver_data(void)
2077 {
2078 if (cpufreq_driver)
2079 return cpufreq_driver->driver_data;
2080
2081 return NULL;
2082 }
2083 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2084
2085 /*********************************************************************
2086 * NOTIFIER LISTS INTERFACE *
2087 *********************************************************************/
2088
2089 /**
2090 * cpufreq_register_notifier - Register a notifier with cpufreq.
2091 * @nb: notifier function to register.
2092 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2093 *
2094 * Add a notifier to one of two lists: either a list of notifiers that run on
2095 * clock rate changes (once before and once after every transition), or a list
2096 * of notifiers that ron on cpufreq policy changes.
2097 *
2098 * This function may sleep and it has the same return values as
2099 * blocking_notifier_chain_register().
2100 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2101 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2102 {
2103 int ret;
2104
2105 if (cpufreq_disabled())
2106 return -EINVAL;
2107
2108 switch (list) {
2109 case CPUFREQ_TRANSITION_NOTIFIER:
2110 mutex_lock(&cpufreq_fast_switch_lock);
2111
2112 if (cpufreq_fast_switch_count > 0) {
2113 mutex_unlock(&cpufreq_fast_switch_lock);
2114 return -EBUSY;
2115 }
2116 ret = srcu_notifier_chain_register(
2117 &cpufreq_transition_notifier_list, nb);
2118 if (!ret)
2119 cpufreq_fast_switch_count--;
2120
2121 mutex_unlock(&cpufreq_fast_switch_lock);
2122 break;
2123 case CPUFREQ_POLICY_NOTIFIER:
2124 ret = blocking_notifier_chain_register(
2125 &cpufreq_policy_notifier_list, nb);
2126 break;
2127 default:
2128 ret = -EINVAL;
2129 }
2130
2131 return ret;
2132 }
2133 EXPORT_SYMBOL(cpufreq_register_notifier);
2134
2135 /**
2136 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2137 * @nb: notifier block to be unregistered.
2138 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2139 *
2140 * Remove a notifier from one of the cpufreq notifier lists.
2141 *
2142 * This function may sleep and it has the same return values as
2143 * blocking_notifier_chain_unregister().
2144 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2145 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2146 {
2147 int ret;
2148
2149 if (cpufreq_disabled())
2150 return -EINVAL;
2151
2152 switch (list) {
2153 case CPUFREQ_TRANSITION_NOTIFIER:
2154 mutex_lock(&cpufreq_fast_switch_lock);
2155
2156 ret = srcu_notifier_chain_unregister(
2157 &cpufreq_transition_notifier_list, nb);
2158 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2159 cpufreq_fast_switch_count++;
2160
2161 mutex_unlock(&cpufreq_fast_switch_lock);
2162 break;
2163 case CPUFREQ_POLICY_NOTIFIER:
2164 ret = blocking_notifier_chain_unregister(
2165 &cpufreq_policy_notifier_list, nb);
2166 break;
2167 default:
2168 ret = -EINVAL;
2169 }
2170
2171 return ret;
2172 }
2173 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2174
2175
2176 /*********************************************************************
2177 * GOVERNORS *
2178 *********************************************************************/
2179
2180 /**
2181 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2182 * @policy: cpufreq policy to switch the frequency for.
2183 * @target_freq: New frequency to set (may be approximate).
2184 *
2185 * Carry out a fast frequency switch without sleeping.
2186 *
2187 * The driver's ->fast_switch() callback invoked by this function must be
2188 * suitable for being called from within RCU-sched read-side critical sections
2189 * and it is expected to select the minimum available frequency greater than or
2190 * equal to @target_freq (CPUFREQ_RELATION_L).
2191 *
2192 * This function must not be called if policy->fast_switch_enabled is unset.
2193 *
2194 * Governors calling this function must guarantee that it will never be invoked
2195 * twice in parallel for the same policy and that it will never be called in
2196 * parallel with either ->target() or ->target_index() for the same policy.
2197 *
2198 * Returns the actual frequency set for the CPU.
2199 *
2200 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2201 * error condition, the hardware configuration must be preserved.
2202 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2203 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2204 unsigned int target_freq)
2205 {
2206 unsigned int freq;
2207 int cpu;
2208
2209 target_freq = clamp_val(target_freq, policy->min, policy->max);
2210 freq = cpufreq_driver->fast_switch(policy, target_freq);
2211
2212 if (!freq)
2213 return 0;
2214
2215 policy->cur = freq;
2216 arch_set_freq_scale(policy->related_cpus, freq,
2217 arch_scale_freq_ref(policy->cpu));
2218 cpufreq_stats_record_transition(policy, freq);
2219
2220 if (trace_cpu_frequency_enabled()) {
2221 for_each_cpu(cpu, policy->cpus)
2222 trace_cpu_frequency(freq, cpu);
2223 }
2224
2225 return freq;
2226 }
2227 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2228
2229 /**
2230 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2231 * @cpu: Target CPU.
2232 * @min_perf: Minimum (required) performance level (units of @capacity).
2233 * @target_perf: Target (desired) performance level (units of @capacity).
2234 * @capacity: Capacity of the target CPU.
2235 *
2236 * Carry out a fast performance level switch of @cpu without sleeping.
2237 *
2238 * The driver's ->adjust_perf() callback invoked by this function must be
2239 * suitable for being called from within RCU-sched read-side critical sections
2240 * and it is expected to select a suitable performance level equal to or above
2241 * @min_perf and preferably equal to or below @target_perf.
2242 *
2243 * This function must not be called if policy->fast_switch_enabled is unset.
2244 *
2245 * Governors calling this function must guarantee that it will never be invoked
2246 * twice in parallel for the same CPU and that it will never be called in
2247 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2248 * the same CPU.
2249 */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2250 void cpufreq_driver_adjust_perf(unsigned int cpu,
2251 unsigned long min_perf,
2252 unsigned long target_perf,
2253 unsigned long capacity)
2254 {
2255 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2256 }
2257
2258 /**
2259 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2260 *
2261 * Return 'true' if the ->adjust_perf callback is present for the
2262 * current driver or 'false' otherwise.
2263 */
cpufreq_driver_has_adjust_perf(void)2264 bool cpufreq_driver_has_adjust_perf(void)
2265 {
2266 return !!cpufreq_driver->adjust_perf;
2267 }
2268
2269 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2270 static int __target_intermediate(struct cpufreq_policy *policy,
2271 struct cpufreq_freqs *freqs, int index)
2272 {
2273 int ret;
2274
2275 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2276
2277 /* We don't need to switch to intermediate freq */
2278 if (!freqs->new)
2279 return 0;
2280
2281 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2282 __func__, policy->cpu, freqs->old, freqs->new);
2283
2284 cpufreq_freq_transition_begin(policy, freqs);
2285 ret = cpufreq_driver->target_intermediate(policy, index);
2286 cpufreq_freq_transition_end(policy, freqs, ret);
2287
2288 if (ret)
2289 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2290 __func__, ret);
2291
2292 return ret;
2293 }
2294
__target_index(struct cpufreq_policy * policy,int index)2295 static int __target_index(struct cpufreq_policy *policy, int index)
2296 {
2297 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2298 unsigned int restore_freq, intermediate_freq = 0;
2299 unsigned int newfreq = policy->freq_table[index].frequency;
2300 int retval = -EINVAL;
2301 bool notify;
2302
2303 if (newfreq == policy->cur)
2304 return 0;
2305
2306 /* Save last value to restore later on errors */
2307 restore_freq = policy->cur;
2308
2309 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2310 if (notify) {
2311 /* Handle switching to intermediate frequency */
2312 if (cpufreq_driver->get_intermediate) {
2313 retval = __target_intermediate(policy, &freqs, index);
2314 if (retval)
2315 return retval;
2316
2317 intermediate_freq = freqs.new;
2318 /* Set old freq to intermediate */
2319 if (intermediate_freq)
2320 freqs.old = freqs.new;
2321 }
2322
2323 freqs.new = newfreq;
2324 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2325 __func__, policy->cpu, freqs.old, freqs.new);
2326
2327 cpufreq_freq_transition_begin(policy, &freqs);
2328 }
2329
2330 retval = cpufreq_driver->target_index(policy, index);
2331 if (retval)
2332 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2333 retval);
2334
2335 if (notify) {
2336 cpufreq_freq_transition_end(policy, &freqs, retval);
2337
2338 /*
2339 * Failed after setting to intermediate freq? Driver should have
2340 * reverted back to initial frequency and so should we. Check
2341 * here for intermediate_freq instead of get_intermediate, in
2342 * case we haven't switched to intermediate freq at all.
2343 */
2344 if (unlikely(retval && intermediate_freq)) {
2345 freqs.old = intermediate_freq;
2346 freqs.new = restore_freq;
2347 cpufreq_freq_transition_begin(policy, &freqs);
2348 cpufreq_freq_transition_end(policy, &freqs, 0);
2349 }
2350 }
2351
2352 return retval;
2353 }
2354
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2355 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2356 unsigned int target_freq,
2357 unsigned int relation)
2358 {
2359 unsigned int old_target_freq = target_freq;
2360
2361 if (cpufreq_disabled())
2362 return -ENODEV;
2363
2364 target_freq = __resolve_freq(policy, target_freq, policy->min,
2365 policy->max, relation);
2366
2367 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2368 policy->cpu, target_freq, relation, old_target_freq);
2369
2370 /*
2371 * This might look like a redundant call as we are checking it again
2372 * after finding index. But it is left intentionally for cases where
2373 * exactly same freq is called again and so we can save on few function
2374 * calls.
2375 */
2376 if (target_freq == policy->cur &&
2377 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2378 return 0;
2379
2380 if (cpufreq_driver->target) {
2381 /*
2382 * If the driver hasn't setup a single inefficient frequency,
2383 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2384 */
2385 if (!policy->efficiencies_available)
2386 relation &= ~CPUFREQ_RELATION_E;
2387
2388 return cpufreq_driver->target(policy, target_freq, relation);
2389 }
2390
2391 if (!cpufreq_driver->target_index)
2392 return -EINVAL;
2393
2394 return __target_index(policy, policy->cached_resolved_idx);
2395 }
2396 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2397
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2398 int cpufreq_driver_target(struct cpufreq_policy *policy,
2399 unsigned int target_freq,
2400 unsigned int relation)
2401 {
2402 guard(cpufreq_policy_write)(policy);
2403
2404 return __cpufreq_driver_target(policy, target_freq, relation);
2405 }
2406 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2407
cpufreq_fallback_governor(void)2408 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2409 {
2410 return NULL;
2411 }
2412
cpufreq_init_governor(struct cpufreq_policy * policy)2413 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2414 {
2415 int ret;
2416
2417 /* Don't start any governor operations if we are entering suspend */
2418 if (cpufreq_suspended)
2419 return 0;
2420 /*
2421 * Governor might not be initiated here if ACPI _PPC changed
2422 * notification happened, so check it.
2423 */
2424 if (!policy->governor)
2425 return -EINVAL;
2426
2427 /* Platform doesn't want dynamic frequency switching ? */
2428 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2429 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2430 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2431
2432 if (gov) {
2433 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2434 policy->governor->name, gov->name);
2435 policy->governor = gov;
2436 } else {
2437 return -EINVAL;
2438 }
2439 }
2440
2441 if (!try_module_get(policy->governor->owner))
2442 return -EINVAL;
2443
2444 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2445
2446 if (policy->governor->init) {
2447 ret = policy->governor->init(policy);
2448 if (ret) {
2449 module_put(policy->governor->owner);
2450 return ret;
2451 }
2452 }
2453
2454 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2455
2456 return 0;
2457 }
2458
cpufreq_exit_governor(struct cpufreq_policy * policy)2459 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2460 {
2461 if (cpufreq_suspended || !policy->governor)
2462 return;
2463
2464 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2465
2466 if (policy->governor->exit)
2467 policy->governor->exit(policy);
2468
2469 module_put(policy->governor->owner);
2470 }
2471
cpufreq_start_governor(struct cpufreq_policy * policy)2472 int cpufreq_start_governor(struct cpufreq_policy *policy)
2473 {
2474 int ret;
2475
2476 if (cpufreq_suspended)
2477 return 0;
2478
2479 if (!policy->governor)
2480 return -EINVAL;
2481
2482 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483
2484 cpufreq_verify_current_freq(policy, false);
2485
2486 if (policy->governor->start) {
2487 ret = policy->governor->start(policy);
2488 if (ret)
2489 return ret;
2490 }
2491
2492 if (policy->governor->limits)
2493 policy->governor->limits(policy);
2494
2495 return 0;
2496 }
2497
cpufreq_stop_governor(struct cpufreq_policy * policy)2498 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2499 {
2500 if (cpufreq_suspended || !policy->governor)
2501 return;
2502
2503 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2504
2505 if (policy->governor->stop)
2506 policy->governor->stop(policy);
2507 }
2508
cpufreq_governor_limits(struct cpufreq_policy * policy)2509 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2510 {
2511 if (cpufreq_suspended || !policy->governor)
2512 return;
2513
2514 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2515
2516 if (policy->governor->limits)
2517 policy->governor->limits(policy);
2518 }
2519
cpufreq_register_governor(struct cpufreq_governor * governor)2520 int cpufreq_register_governor(struct cpufreq_governor *governor)
2521 {
2522 int err;
2523
2524 if (!governor)
2525 return -EINVAL;
2526
2527 if (cpufreq_disabled())
2528 return -ENODEV;
2529
2530 mutex_lock(&cpufreq_governor_mutex);
2531
2532 err = -EBUSY;
2533 if (!find_governor(governor->name)) {
2534 err = 0;
2535 list_add(&governor->governor_list, &cpufreq_governor_list);
2536 }
2537
2538 mutex_unlock(&cpufreq_governor_mutex);
2539 return err;
2540 }
2541 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2542
cpufreq_unregister_governor(struct cpufreq_governor * governor)2543 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2544 {
2545 struct cpufreq_policy *policy;
2546 unsigned long flags;
2547
2548 if (!governor)
2549 return;
2550
2551 if (cpufreq_disabled())
2552 return;
2553
2554 /* clear last_governor for all inactive policies */
2555 read_lock_irqsave(&cpufreq_driver_lock, flags);
2556 for_each_inactive_policy(policy) {
2557 if (!strcmp(policy->last_governor, governor->name)) {
2558 policy->governor = NULL;
2559 strcpy(policy->last_governor, "\0");
2560 }
2561 }
2562 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2563
2564 mutex_lock(&cpufreq_governor_mutex);
2565 list_del(&governor->governor_list);
2566 mutex_unlock(&cpufreq_governor_mutex);
2567 }
2568 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2569
2570
2571 /*********************************************************************
2572 * POLICY INTERFACE *
2573 *********************************************************************/
2574
2575 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2576
2577 /**
2578 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2579 * @policy: cpufreq policy of the CPUs.
2580 *
2581 * Update the value of cpufreq pressure for all @cpus in the policy.
2582 */
cpufreq_update_pressure(struct cpufreq_policy * policy)2583 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2584 {
2585 unsigned long max_capacity, capped_freq, pressure;
2586 u32 max_freq;
2587 int cpu;
2588
2589 cpu = cpumask_first(policy->related_cpus);
2590 max_freq = arch_scale_freq_ref(cpu);
2591 capped_freq = policy->max;
2592
2593 /*
2594 * Handle properly the boost frequencies, which should simply clean
2595 * the cpufreq pressure value.
2596 */
2597 if (max_freq <= capped_freq) {
2598 pressure = 0;
2599 } else {
2600 max_capacity = arch_scale_cpu_capacity(cpu);
2601 pressure = max_capacity -
2602 mult_frac(max_capacity, capped_freq, max_freq);
2603 }
2604
2605 for_each_cpu(cpu, policy->related_cpus)
2606 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2607 }
2608
2609 /**
2610 * cpufreq_set_policy - Modify cpufreq policy parameters.
2611 * @policy: Policy object to modify.
2612 * @new_gov: Policy governor pointer.
2613 * @new_pol: Policy value (for drivers with built-in governors).
2614 *
2615 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2616 * limits to be set for the policy, update @policy with the verified limits
2617 * values and either invoke the driver's ->setpolicy() callback (if present) or
2618 * carry out a governor update for @policy. That is, run the current governor's
2619 * ->limits() callback (if @new_gov points to the same object as the one in
2620 * @policy) or replace the governor for @policy with @new_gov.
2621 *
2622 * The cpuinfo part of @policy is not updated by this function.
2623 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2624 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2625 struct cpufreq_governor *new_gov,
2626 unsigned int new_pol)
2627 {
2628 struct cpufreq_policy_data new_data;
2629 struct cpufreq_governor *old_gov;
2630 int ret;
2631
2632 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2633 new_data.freq_table = policy->freq_table;
2634 new_data.cpu = policy->cpu;
2635 /*
2636 * PM QoS framework collects all the requests from users and provide us
2637 * the final aggregated value here.
2638 */
2639 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2640 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2641
2642 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2643 new_data.cpu, new_data.min, new_data.max);
2644
2645 /*
2646 * Verify that the CPU speed can be set within these limits and make sure
2647 * that min <= max.
2648 */
2649 ret = cpufreq_driver->verify(&new_data);
2650 if (ret)
2651 return ret;
2652
2653 /*
2654 * Resolve policy min/max to available frequencies. It ensures
2655 * no frequency resolution will neither overshoot the requested maximum
2656 * nor undershoot the requested minimum.
2657 *
2658 * Avoid storing intermediate values in policy->max or policy->min and
2659 * compiler optimizations around them because they may be accessed
2660 * concurrently by cpufreq_driver_resolve_freq() during the update.
2661 */
2662 WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2663 new_data.min, new_data.max,
2664 CPUFREQ_RELATION_H));
2665 new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2666 new_data.max, CPUFREQ_RELATION_L);
2667 WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2668
2669 trace_cpu_frequency_limits(policy);
2670
2671 cpufreq_update_pressure(policy);
2672
2673 policy->cached_target_freq = UINT_MAX;
2674
2675 pr_debug("new min and max freqs are %u - %u kHz\n",
2676 policy->min, policy->max);
2677
2678 if (cpufreq_driver->setpolicy) {
2679 policy->policy = new_pol;
2680 pr_debug("setting range\n");
2681 return cpufreq_driver->setpolicy(policy);
2682 }
2683
2684 if (new_gov == policy->governor) {
2685 pr_debug("governor limits update\n");
2686 cpufreq_governor_limits(policy);
2687 return 0;
2688 }
2689
2690 pr_debug("governor switch\n");
2691
2692 /* save old, working values */
2693 old_gov = policy->governor;
2694 /* end old governor */
2695 if (old_gov) {
2696 cpufreq_stop_governor(policy);
2697 cpufreq_exit_governor(policy);
2698 }
2699
2700 /* start new governor */
2701 policy->governor = new_gov;
2702 ret = cpufreq_init_governor(policy);
2703 if (!ret) {
2704 ret = cpufreq_start_governor(policy);
2705 if (!ret) {
2706 pr_debug("governor change\n");
2707 return 0;
2708 }
2709 cpufreq_exit_governor(policy);
2710 }
2711
2712 /* new governor failed, so re-start old one */
2713 pr_debug("starting governor %s failed\n", policy->governor->name);
2714 if (old_gov) {
2715 policy->governor = old_gov;
2716 if (cpufreq_init_governor(policy)) {
2717 policy->governor = NULL;
2718 } else if (cpufreq_start_governor(policy)) {
2719 cpufreq_exit_governor(policy);
2720 policy->governor = NULL;
2721 }
2722 }
2723
2724 return ret;
2725 }
2726
cpufreq_policy_refresh(struct cpufreq_policy * policy)2727 static void cpufreq_policy_refresh(struct cpufreq_policy *policy)
2728 {
2729 guard(cpufreq_policy_write)(policy);
2730
2731 /*
2732 * BIOS might change freq behind our back
2733 * -> ask driver for current freq and notify governors about a change
2734 */
2735 if (cpufreq_driver->get && has_target() &&
2736 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2737 return;
2738
2739 refresh_frequency_limits(policy);
2740 }
2741
2742 /**
2743 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2744 * @cpu: CPU to re-evaluate the policy for.
2745 *
2746 * Update the current frequency for the cpufreq policy of @cpu and use
2747 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2748 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2749 * for the policy in question, among other things.
2750 */
cpufreq_update_policy(unsigned int cpu)2751 void cpufreq_update_policy(unsigned int cpu)
2752 {
2753 struct cpufreq_policy *policy __free(put_cpufreq_policy);
2754
2755 policy = cpufreq_cpu_get(cpu);
2756 if (!policy)
2757 return;
2758
2759 cpufreq_policy_refresh(policy);
2760 }
2761 EXPORT_SYMBOL(cpufreq_update_policy);
2762
2763 /**
2764 * cpufreq_update_limits - Update policy limits for a given CPU.
2765 * @cpu: CPU to update the policy limits for.
2766 *
2767 * Invoke the driver's ->update_limits callback if present or call
2768 * cpufreq_policy_refresh() for @cpu.
2769 */
cpufreq_update_limits(unsigned int cpu)2770 void cpufreq_update_limits(unsigned int cpu)
2771 {
2772 struct cpufreq_policy *policy __free(put_cpufreq_policy);
2773
2774 policy = cpufreq_cpu_get(cpu);
2775 if (!policy)
2776 return;
2777
2778 if (cpufreq_driver->update_limits)
2779 cpufreq_driver->update_limits(policy);
2780 else
2781 cpufreq_policy_refresh(policy);
2782 }
2783 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2784
2785 /*********************************************************************
2786 * BOOST *
2787 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2788 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2789 {
2790 int ret;
2791
2792 if (!policy->freq_table)
2793 return -ENXIO;
2794
2795 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2796 if (ret) {
2797 pr_err("%s: Policy frequency update failed\n", __func__);
2798 return ret;
2799 }
2800
2801 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2802 if (ret < 0)
2803 return ret;
2804
2805 return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw);
2808
cpufreq_boost_trigger_state(int state)2809 static int cpufreq_boost_trigger_state(int state)
2810 {
2811 struct cpufreq_policy *policy;
2812 unsigned long flags;
2813 int ret = 0;
2814
2815 /*
2816 * Don't compare 'cpufreq_driver->boost_enabled' with 'state' here to
2817 * make sure all policies are in sync with global boost flag.
2818 */
2819
2820 write_lock_irqsave(&cpufreq_driver_lock, flags);
2821 cpufreq_driver->boost_enabled = state;
2822 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2823
2824 cpus_read_lock();
2825 for_each_active_policy(policy) {
2826 if (!policy->boost_supported)
2827 continue;
2828
2829 ret = policy_set_boost(policy, state);
2830 if (ret)
2831 goto err_reset_state;
2832 }
2833 cpus_read_unlock();
2834
2835 return 0;
2836
2837 err_reset_state:
2838 cpus_read_unlock();
2839
2840 write_lock_irqsave(&cpufreq_driver_lock, flags);
2841 cpufreq_driver->boost_enabled = !state;
2842 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2843
2844 pr_err("%s: Cannot %s BOOST\n",
2845 __func__, str_enable_disable(state));
2846
2847 return ret;
2848 }
2849
cpufreq_boost_supported(void)2850 static bool cpufreq_boost_supported(void)
2851 {
2852 return cpufreq_driver->set_boost;
2853 }
2854
create_boost_sysfs_file(void)2855 static int create_boost_sysfs_file(void)
2856 {
2857 int ret;
2858
2859 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2860 if (ret)
2861 pr_err("%s: cannot register global BOOST sysfs file\n",
2862 __func__);
2863
2864 return ret;
2865 }
2866
remove_boost_sysfs_file(void)2867 static void remove_boost_sysfs_file(void)
2868 {
2869 if (cpufreq_boost_supported())
2870 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2871 }
2872
cpufreq_boost_enabled(void)2873 bool cpufreq_boost_enabled(void)
2874 {
2875 return cpufreq_driver->boost_enabled;
2876 }
2877 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2878
2879 /*********************************************************************
2880 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2881 *********************************************************************/
2882 static enum cpuhp_state hp_online;
2883
cpuhp_cpufreq_online(unsigned int cpu)2884 static int cpuhp_cpufreq_online(unsigned int cpu)
2885 {
2886 cpufreq_online(cpu);
2887
2888 return 0;
2889 }
2890
cpuhp_cpufreq_offline(unsigned int cpu)2891 static int cpuhp_cpufreq_offline(unsigned int cpu)
2892 {
2893 cpufreq_offline(cpu);
2894
2895 return 0;
2896 }
2897
2898 /**
2899 * cpufreq_register_driver - register a CPU Frequency driver
2900 * @driver_data: A struct cpufreq_driver containing the values#
2901 * submitted by the CPU Frequency driver.
2902 *
2903 * Registers a CPU Frequency driver to this core code. This code
2904 * returns zero on success, -EEXIST when another driver got here first
2905 * (and isn't unregistered in the meantime).
2906 *
2907 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2908 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2909 {
2910 unsigned long flags;
2911 int ret;
2912
2913 if (cpufreq_disabled())
2914 return -ENODEV;
2915
2916 /*
2917 * The cpufreq core depends heavily on the availability of device
2918 * structure, make sure they are available before proceeding further.
2919 */
2920 if (!get_cpu_device(0))
2921 return -EPROBE_DEFER;
2922
2923 if (!driver_data || !driver_data->verify || !driver_data->init ||
2924 !(driver_data->setpolicy || driver_data->target_index ||
2925 driver_data->target) ||
2926 (driver_data->setpolicy && (driver_data->target_index ||
2927 driver_data->target)) ||
2928 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2929 (!driver_data->online != !driver_data->offline) ||
2930 (driver_data->adjust_perf && !driver_data->fast_switch))
2931 return -EINVAL;
2932
2933 pr_debug("trying to register driver %s\n", driver_data->name);
2934
2935 /* Protect against concurrent CPU online/offline. */
2936 cpus_read_lock();
2937
2938 write_lock_irqsave(&cpufreq_driver_lock, flags);
2939 if (cpufreq_driver) {
2940 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2941 ret = -EEXIST;
2942 goto out;
2943 }
2944 cpufreq_driver = driver_data;
2945 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2946
2947 if (driver_data->setpolicy)
2948 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2949
2950 if (cpufreq_boost_supported()) {
2951 ret = create_boost_sysfs_file();
2952 if (ret)
2953 goto err_null_driver;
2954 }
2955
2956 ret = subsys_interface_register(&cpufreq_interface);
2957 if (ret)
2958 goto err_boost_unreg;
2959
2960 if (unlikely(list_empty(&cpufreq_policy_list))) {
2961 /* if all ->init() calls failed, unregister */
2962 ret = -ENODEV;
2963 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2964 driver_data->name);
2965 goto err_if_unreg;
2966 }
2967
2968 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2969 "cpufreq:online",
2970 cpuhp_cpufreq_online,
2971 cpuhp_cpufreq_offline);
2972 if (ret < 0)
2973 goto err_if_unreg;
2974 hp_online = ret;
2975 ret = 0;
2976
2977 /*
2978 * Mark support for the scheduler's frequency invariance engine for
2979 * drivers that implement target(), target_index() or fast_switch().
2980 */
2981 if (!cpufreq_driver->setpolicy) {
2982 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2983 pr_debug("supports frequency invariance");
2984 }
2985
2986 pr_debug("driver %s up and running\n", driver_data->name);
2987 goto out;
2988
2989 err_if_unreg:
2990 subsys_interface_unregister(&cpufreq_interface);
2991 err_boost_unreg:
2992 remove_boost_sysfs_file();
2993 err_null_driver:
2994 write_lock_irqsave(&cpufreq_driver_lock, flags);
2995 cpufreq_driver = NULL;
2996 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2997 out:
2998 cpus_read_unlock();
2999 return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
3002
3003 /*
3004 * cpufreq_unregister_driver - unregister the current CPUFreq driver
3005 *
3006 * Unregister the current CPUFreq driver. Only call this if you have
3007 * the right to do so, i.e. if you have succeeded in initialising before!
3008 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3009 * currently not initialised.
3010 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)3011 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3012 {
3013 unsigned long flags;
3014
3015 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3016 return;
3017
3018 pr_debug("unregistering driver %s\n", driver->name);
3019
3020 /* Protect against concurrent cpu hotplug */
3021 cpus_read_lock();
3022 subsys_interface_unregister(&cpufreq_interface);
3023 remove_boost_sysfs_file();
3024 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3025 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3026
3027 write_lock_irqsave(&cpufreq_driver_lock, flags);
3028
3029 cpufreq_driver = NULL;
3030
3031 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3032 cpus_read_unlock();
3033 }
3034 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3035
cpufreq_core_init(void)3036 static int __init cpufreq_core_init(void)
3037 {
3038 struct cpufreq_governor *gov = cpufreq_default_governor();
3039 struct device *dev_root;
3040
3041 if (cpufreq_disabled())
3042 return -ENODEV;
3043
3044 dev_root = bus_get_dev_root(&cpu_subsys);
3045 if (dev_root) {
3046 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3047 put_device(dev_root);
3048 }
3049 BUG_ON(!cpufreq_global_kobject);
3050
3051 if (!strlen(default_governor))
3052 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3053
3054 return 0;
3055 }
3056
cpufreq_policy_is_good_for_eas(unsigned int cpu)3057 static bool cpufreq_policy_is_good_for_eas(unsigned int cpu)
3058 {
3059 struct cpufreq_policy *policy __free(put_cpufreq_policy);
3060
3061 policy = cpufreq_cpu_get(cpu);
3062 if (!policy) {
3063 pr_debug("cpufreq policy not set for CPU: %d\n", cpu);
3064 return false;
3065 }
3066
3067 return sugov_is_governor(policy);
3068 }
3069
cpufreq_ready_for_eas(const struct cpumask * cpu_mask)3070 bool cpufreq_ready_for_eas(const struct cpumask *cpu_mask)
3071 {
3072 unsigned int cpu;
3073
3074 /* Do not attempt EAS if schedutil is not being used. */
3075 for_each_cpu(cpu, cpu_mask) {
3076 if (!cpufreq_policy_is_good_for_eas(cpu)) {
3077 pr_debug("rd %*pbl: schedutil is mandatory for EAS\n",
3078 cpumask_pr_args(cpu_mask));
3079 return false;
3080 }
3081 }
3082
3083 return true;
3084 }
3085
3086 module_param(off, int, 0444);
3087 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3088 core_initcall(cpufreq_core_init);
3089