xref: /linux/arch/arm64/kvm/mmu.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_pkvm.h>
19 #include <asm/kvm_ras.h>
20 #include <asm/kvm_asm.h>
21 #include <asm/kvm_emulate.h>
22 #include <asm/virt.h>
23 
24 #include "trace.h"
25 
26 static struct kvm_pgtable *hyp_pgtable;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28 
29 static unsigned long __ro_after_init hyp_idmap_start;
30 static unsigned long __ro_after_init hyp_idmap_end;
31 static phys_addr_t __ro_after_init hyp_idmap_vector;
32 
33 u32 __ro_after_init __hyp_va_bits;
34 
35 static unsigned long __ro_after_init io_map_base;
36 
37 #define KVM_PGT_FN(fn)		(!is_protected_kvm_enabled() ? fn : p ## fn)
38 
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)39 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
40 					   phys_addr_t size)
41 {
42 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
43 
44 	return (boundary - 1 < end - 1) ? boundary : end;
45 }
46 
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)47 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
48 {
49 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
50 
51 	return __stage2_range_addr_end(addr, end, size);
52 }
53 
54 /*
55  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
56  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
57  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
58  * long will also starve other vCPUs. We have to also make sure that the page
59  * tables are not freed while we released the lock.
60  */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)61 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
62 			      phys_addr_t end,
63 			      int (*fn)(struct kvm_pgtable *, u64, u64),
64 			      bool resched)
65 {
66 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
67 	int ret;
68 	u64 next;
69 
70 	do {
71 		struct kvm_pgtable *pgt = mmu->pgt;
72 		if (!pgt)
73 			return -EINVAL;
74 
75 		next = stage2_range_addr_end(addr, end);
76 		ret = fn(pgt, addr, next - addr);
77 		if (ret)
78 			break;
79 
80 		if (resched && next != end)
81 			cond_resched_rwlock_write(&kvm->mmu_lock);
82 	} while (addr = next, addr != end);
83 
84 	return ret;
85 }
86 
87 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
88 	stage2_apply_range(mmu, addr, end, fn, true)
89 
90 /*
91  * Get the maximum number of page-tables pages needed to split a range
92  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
93  * mapped at level 2, or at level 1 if allowed.
94  */
kvm_mmu_split_nr_page_tables(u64 range)95 static int kvm_mmu_split_nr_page_tables(u64 range)
96 {
97 	int n = 0;
98 
99 	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
100 		n += DIV_ROUND_UP(range, PUD_SIZE);
101 	n += DIV_ROUND_UP(range, PMD_SIZE);
102 	return n;
103 }
104 
need_split_memcache_topup_or_resched(struct kvm * kvm)105 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
106 {
107 	struct kvm_mmu_memory_cache *cache;
108 	u64 chunk_size, min;
109 
110 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
111 		return true;
112 
113 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
114 	min = kvm_mmu_split_nr_page_tables(chunk_size);
115 	cache = &kvm->arch.mmu.split_page_cache;
116 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
117 }
118 
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)119 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
120 				    phys_addr_t end)
121 {
122 	struct kvm_mmu_memory_cache *cache;
123 	struct kvm_pgtable *pgt;
124 	int ret, cache_capacity;
125 	u64 next, chunk_size;
126 
127 	lockdep_assert_held_write(&kvm->mmu_lock);
128 
129 	chunk_size = kvm->arch.mmu.split_page_chunk_size;
130 	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
131 
132 	if (chunk_size == 0)
133 		return 0;
134 
135 	cache = &kvm->arch.mmu.split_page_cache;
136 
137 	do {
138 		if (need_split_memcache_topup_or_resched(kvm)) {
139 			write_unlock(&kvm->mmu_lock);
140 			cond_resched();
141 			/* Eager page splitting is best-effort. */
142 			ret = __kvm_mmu_topup_memory_cache(cache,
143 							   cache_capacity,
144 							   cache_capacity);
145 			write_lock(&kvm->mmu_lock);
146 			if (ret)
147 				break;
148 		}
149 
150 		pgt = kvm->arch.mmu.pgt;
151 		if (!pgt)
152 			return -EINVAL;
153 
154 		next = __stage2_range_addr_end(addr, end, chunk_size);
155 		ret = KVM_PGT_FN(kvm_pgtable_stage2_split)(pgt, addr, next - addr, cache);
156 		if (ret)
157 			break;
158 	} while (addr = next, addr != end);
159 
160 	return ret;
161 }
162 
memslot_is_logging(struct kvm_memory_slot * memslot)163 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
164 {
165 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
166 }
167 
168 /**
169  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
170  * @kvm:	pointer to kvm structure.
171  *
172  * Interface to HYP function to flush all VM TLB entries
173  */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)174 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
175 {
176 	if (is_protected_kvm_enabled())
177 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
178 	else
179 		kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
180 	return 0;
181 }
182 
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)183 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
184 				      gfn_t gfn, u64 nr_pages)
185 {
186 	u64 size = nr_pages << PAGE_SHIFT;
187 	u64 addr = gfn << PAGE_SHIFT;
188 
189 	if (is_protected_kvm_enabled())
190 		kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
191 	else
192 		kvm_tlb_flush_vmid_range(&kvm->arch.mmu, addr, size);
193 	return 0;
194 }
195 
stage2_memcache_zalloc_page(void * arg)196 static void *stage2_memcache_zalloc_page(void *arg)
197 {
198 	struct kvm_mmu_memory_cache *mc = arg;
199 	void *virt;
200 
201 	/* Allocated with __GFP_ZERO, so no need to zero */
202 	virt = kvm_mmu_memory_cache_alloc(mc);
203 	if (virt)
204 		kvm_account_pgtable_pages(virt, 1);
205 	return virt;
206 }
207 
kvm_host_zalloc_pages_exact(size_t size)208 static void *kvm_host_zalloc_pages_exact(size_t size)
209 {
210 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
211 }
212 
kvm_s2_zalloc_pages_exact(size_t size)213 static void *kvm_s2_zalloc_pages_exact(size_t size)
214 {
215 	void *virt = kvm_host_zalloc_pages_exact(size);
216 
217 	if (virt)
218 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
219 	return virt;
220 }
221 
kvm_s2_free_pages_exact(void * virt,size_t size)222 static void kvm_s2_free_pages_exact(void *virt, size_t size)
223 {
224 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
225 	free_pages_exact(virt, size);
226 }
227 
228 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
229 
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)230 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
231 {
232 	struct page *page = container_of(head, struct page, rcu_head);
233 	void *pgtable = page_to_virt(page);
234 	s8 level = page_private(page);
235 
236 	KVM_PGT_FN(kvm_pgtable_stage2_free_unlinked)(&kvm_s2_mm_ops, pgtable, level);
237 }
238 
stage2_free_unlinked_table(void * addr,s8 level)239 static void stage2_free_unlinked_table(void *addr, s8 level)
240 {
241 	struct page *page = virt_to_page(addr);
242 
243 	set_page_private(page, (unsigned long)level);
244 	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
245 }
246 
kvm_host_get_page(void * addr)247 static void kvm_host_get_page(void *addr)
248 {
249 	get_page(virt_to_page(addr));
250 }
251 
kvm_host_put_page(void * addr)252 static void kvm_host_put_page(void *addr)
253 {
254 	put_page(virt_to_page(addr));
255 }
256 
kvm_s2_put_page(void * addr)257 static void kvm_s2_put_page(void *addr)
258 {
259 	struct page *p = virt_to_page(addr);
260 	/* Dropping last refcount, the page will be freed */
261 	if (page_count(p) == 1)
262 		kvm_account_pgtable_pages(addr, -1);
263 	put_page(p);
264 }
265 
kvm_host_page_count(void * addr)266 static int kvm_host_page_count(void *addr)
267 {
268 	return page_count(virt_to_page(addr));
269 }
270 
kvm_host_pa(void * addr)271 static phys_addr_t kvm_host_pa(void *addr)
272 {
273 	return __pa(addr);
274 }
275 
kvm_host_va(phys_addr_t phys)276 static void *kvm_host_va(phys_addr_t phys)
277 {
278 	return __va(phys);
279 }
280 
clean_dcache_guest_page(void * va,size_t size)281 static void clean_dcache_guest_page(void *va, size_t size)
282 {
283 	__clean_dcache_guest_page(va, size);
284 }
285 
invalidate_icache_guest_page(void * va,size_t size)286 static void invalidate_icache_guest_page(void *va, size_t size)
287 {
288 	__invalidate_icache_guest_page(va, size);
289 }
290 
291 /*
292  * Unmapping vs dcache management:
293  *
294  * If a guest maps certain memory pages as uncached, all writes will
295  * bypass the data cache and go directly to RAM.  However, the CPUs
296  * can still speculate reads (not writes) and fill cache lines with
297  * data.
298  *
299  * Those cache lines will be *clean* cache lines though, so a
300  * clean+invalidate operation is equivalent to an invalidate
301  * operation, because no cache lines are marked dirty.
302  *
303  * Those clean cache lines could be filled prior to an uncached write
304  * by the guest, and the cache coherent IO subsystem would therefore
305  * end up writing old data to disk.
306  *
307  * This is why right after unmapping a page/section and invalidating
308  * the corresponding TLBs, we flush to make sure the IO subsystem will
309  * never hit in the cache.
310  *
311  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
312  * we then fully enforce cacheability of RAM, no matter what the guest
313  * does.
314  */
315 /**
316  * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
317  * @mmu:   The KVM stage-2 MMU pointer
318  * @start: The intermediate physical base address of the range to unmap
319  * @size:  The size of the area to unmap
320  * @may_block: Whether or not we are permitted to block
321  *
322  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
323  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
324  * destroying the VM), otherwise another faulting VCPU may come in and mess
325  * with things behind our backs.
326  */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)327 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
328 				 bool may_block)
329 {
330 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
331 	phys_addr_t end = start + size;
332 
333 	lockdep_assert_held_write(&kvm->mmu_lock);
334 	WARN_ON(size & ~PAGE_MASK);
335 	WARN_ON(stage2_apply_range(mmu, start, end, KVM_PGT_FN(kvm_pgtable_stage2_unmap),
336 				   may_block));
337 }
338 
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)339 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
340 			    u64 size, bool may_block)
341 {
342 	__unmap_stage2_range(mmu, start, size, may_block);
343 }
344 
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)345 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
346 {
347 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_flush));
348 }
349 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)350 static void stage2_flush_memslot(struct kvm *kvm,
351 				 struct kvm_memory_slot *memslot)
352 {
353 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
354 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
355 
356 	kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
357 }
358 
359 /**
360  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
361  * @kvm: The struct kvm pointer
362  *
363  * Go through the stage 2 page tables and invalidate any cache lines
364  * backing memory already mapped to the VM.
365  */
stage2_flush_vm(struct kvm * kvm)366 static void stage2_flush_vm(struct kvm *kvm)
367 {
368 	struct kvm_memslots *slots;
369 	struct kvm_memory_slot *memslot;
370 	int idx, bkt;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	write_lock(&kvm->mmu_lock);
374 
375 	slots = kvm_memslots(kvm);
376 	kvm_for_each_memslot(memslot, bkt, slots)
377 		stage2_flush_memslot(kvm, memslot);
378 
379 	kvm_nested_s2_flush(kvm);
380 
381 	write_unlock(&kvm->mmu_lock);
382 	srcu_read_unlock(&kvm->srcu, idx);
383 }
384 
385 /**
386  * free_hyp_pgds - free Hyp-mode page tables
387  */
free_hyp_pgds(void)388 void __init free_hyp_pgds(void)
389 {
390 	mutex_lock(&kvm_hyp_pgd_mutex);
391 	if (hyp_pgtable) {
392 		kvm_pgtable_hyp_destroy(hyp_pgtable);
393 		kfree(hyp_pgtable);
394 		hyp_pgtable = NULL;
395 	}
396 	mutex_unlock(&kvm_hyp_pgd_mutex);
397 }
398 
kvm_host_owns_hyp_mappings(void)399 static bool kvm_host_owns_hyp_mappings(void)
400 {
401 	if (is_kernel_in_hyp_mode())
402 		return false;
403 
404 	if (static_branch_likely(&kvm_protected_mode_initialized))
405 		return false;
406 
407 	/*
408 	 * This can happen at boot time when __create_hyp_mappings() is called
409 	 * after the hyp protection has been enabled, but the static key has
410 	 * not been flipped yet.
411 	 */
412 	if (!hyp_pgtable && is_protected_kvm_enabled())
413 		return false;
414 
415 	WARN_ON(!hyp_pgtable);
416 
417 	return true;
418 }
419 
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)420 int __create_hyp_mappings(unsigned long start, unsigned long size,
421 			  unsigned long phys, enum kvm_pgtable_prot prot)
422 {
423 	int err;
424 
425 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
426 		return -EINVAL;
427 
428 	mutex_lock(&kvm_hyp_pgd_mutex);
429 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
430 	mutex_unlock(&kvm_hyp_pgd_mutex);
431 
432 	return err;
433 }
434 
kvm_kaddr_to_phys(void * kaddr)435 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
436 {
437 	if (!is_vmalloc_addr(kaddr)) {
438 		BUG_ON(!virt_addr_valid(kaddr));
439 		return __pa(kaddr);
440 	} else {
441 		return page_to_phys(vmalloc_to_page(kaddr)) +
442 		       offset_in_page(kaddr);
443 	}
444 }
445 
446 struct hyp_shared_pfn {
447 	u64 pfn;
448 	int count;
449 	struct rb_node node;
450 };
451 
452 static DEFINE_MUTEX(hyp_shared_pfns_lock);
453 static struct rb_root hyp_shared_pfns = RB_ROOT;
454 
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)455 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
456 					      struct rb_node **parent)
457 {
458 	struct hyp_shared_pfn *this;
459 
460 	*node = &hyp_shared_pfns.rb_node;
461 	*parent = NULL;
462 	while (**node) {
463 		this = container_of(**node, struct hyp_shared_pfn, node);
464 		*parent = **node;
465 		if (this->pfn < pfn)
466 			*node = &((**node)->rb_left);
467 		else if (this->pfn > pfn)
468 			*node = &((**node)->rb_right);
469 		else
470 			return this;
471 	}
472 
473 	return NULL;
474 }
475 
share_pfn_hyp(u64 pfn)476 static int share_pfn_hyp(u64 pfn)
477 {
478 	struct rb_node **node, *parent;
479 	struct hyp_shared_pfn *this;
480 	int ret = 0;
481 
482 	mutex_lock(&hyp_shared_pfns_lock);
483 	this = find_shared_pfn(pfn, &node, &parent);
484 	if (this) {
485 		this->count++;
486 		goto unlock;
487 	}
488 
489 	this = kzalloc(sizeof(*this), GFP_KERNEL);
490 	if (!this) {
491 		ret = -ENOMEM;
492 		goto unlock;
493 	}
494 
495 	this->pfn = pfn;
496 	this->count = 1;
497 	rb_link_node(&this->node, parent, node);
498 	rb_insert_color(&this->node, &hyp_shared_pfns);
499 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
500 unlock:
501 	mutex_unlock(&hyp_shared_pfns_lock);
502 
503 	return ret;
504 }
505 
unshare_pfn_hyp(u64 pfn)506 static int unshare_pfn_hyp(u64 pfn)
507 {
508 	struct rb_node **node, *parent;
509 	struct hyp_shared_pfn *this;
510 	int ret = 0;
511 
512 	mutex_lock(&hyp_shared_pfns_lock);
513 	this = find_shared_pfn(pfn, &node, &parent);
514 	if (WARN_ON(!this)) {
515 		ret = -ENOENT;
516 		goto unlock;
517 	}
518 
519 	this->count--;
520 	if (this->count)
521 		goto unlock;
522 
523 	rb_erase(&this->node, &hyp_shared_pfns);
524 	kfree(this);
525 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
526 unlock:
527 	mutex_unlock(&hyp_shared_pfns_lock);
528 
529 	return ret;
530 }
531 
kvm_share_hyp(void * from,void * to)532 int kvm_share_hyp(void *from, void *to)
533 {
534 	phys_addr_t start, end, cur;
535 	u64 pfn;
536 	int ret;
537 
538 	if (is_kernel_in_hyp_mode())
539 		return 0;
540 
541 	/*
542 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
543 	 * VA space, so we can only share physically contiguous data-structures
544 	 * for now.
545 	 */
546 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
547 		return -EINVAL;
548 
549 	if (kvm_host_owns_hyp_mappings())
550 		return create_hyp_mappings(from, to, PAGE_HYP);
551 
552 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
553 	end = PAGE_ALIGN(__pa(to));
554 	for (cur = start; cur < end; cur += PAGE_SIZE) {
555 		pfn = __phys_to_pfn(cur);
556 		ret = share_pfn_hyp(pfn);
557 		if (ret)
558 			return ret;
559 	}
560 
561 	return 0;
562 }
563 
kvm_unshare_hyp(void * from,void * to)564 void kvm_unshare_hyp(void *from, void *to)
565 {
566 	phys_addr_t start, end, cur;
567 	u64 pfn;
568 
569 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
570 		return;
571 
572 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
573 	end = PAGE_ALIGN(__pa(to));
574 	for (cur = start; cur < end; cur += PAGE_SIZE) {
575 		pfn = __phys_to_pfn(cur);
576 		WARN_ON(unshare_pfn_hyp(pfn));
577 	}
578 }
579 
580 /**
581  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
582  * @from:	The virtual kernel start address of the range
583  * @to:		The virtual kernel end address of the range (exclusive)
584  * @prot:	The protection to be applied to this range
585  *
586  * The same virtual address as the kernel virtual address is also used
587  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
588  * physical pages.
589  */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)590 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
591 {
592 	phys_addr_t phys_addr;
593 	unsigned long virt_addr;
594 	unsigned long start = kern_hyp_va((unsigned long)from);
595 	unsigned long end = kern_hyp_va((unsigned long)to);
596 
597 	if (is_kernel_in_hyp_mode())
598 		return 0;
599 
600 	if (!kvm_host_owns_hyp_mappings())
601 		return -EPERM;
602 
603 	start = start & PAGE_MASK;
604 	end = PAGE_ALIGN(end);
605 
606 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
607 		int err;
608 
609 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
610 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
611 					    prot);
612 		if (err)
613 			return err;
614 	}
615 
616 	return 0;
617 }
618 
__hyp_alloc_private_va_range(unsigned long base)619 static int __hyp_alloc_private_va_range(unsigned long base)
620 {
621 	lockdep_assert_held(&kvm_hyp_pgd_mutex);
622 
623 	if (!PAGE_ALIGNED(base))
624 		return -EINVAL;
625 
626 	/*
627 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
628 	 * allocating the new area, as it would indicate we've
629 	 * overflowed the idmap/IO address range.
630 	 */
631 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
632 		return -ENOMEM;
633 
634 	io_map_base = base;
635 
636 	return 0;
637 }
638 
639 /**
640  * hyp_alloc_private_va_range - Allocates a private VA range.
641  * @size:	The size of the VA range to reserve.
642  * @haddr:	The hypervisor virtual start address of the allocation.
643  *
644  * The private virtual address (VA) range is allocated below io_map_base
645  * and aligned based on the order of @size.
646  *
647  * Return: 0 on success or negative error code on failure.
648  */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)649 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
650 {
651 	unsigned long base;
652 	int ret = 0;
653 
654 	mutex_lock(&kvm_hyp_pgd_mutex);
655 
656 	/*
657 	 * This assumes that we have enough space below the idmap
658 	 * page to allocate our VAs. If not, the check in
659 	 * __hyp_alloc_private_va_range() will kick. A potential
660 	 * alternative would be to detect that overflow and switch
661 	 * to an allocation above the idmap.
662 	 *
663 	 * The allocated size is always a multiple of PAGE_SIZE.
664 	 */
665 	size = PAGE_ALIGN(size);
666 	base = io_map_base - size;
667 	ret = __hyp_alloc_private_va_range(base);
668 
669 	mutex_unlock(&kvm_hyp_pgd_mutex);
670 
671 	if (!ret)
672 		*haddr = base;
673 
674 	return ret;
675 }
676 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)677 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
678 					unsigned long *haddr,
679 					enum kvm_pgtable_prot prot)
680 {
681 	unsigned long addr;
682 	int ret = 0;
683 
684 	if (!kvm_host_owns_hyp_mappings()) {
685 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
686 					 phys_addr, size, prot);
687 		if (IS_ERR_VALUE(addr))
688 			return addr;
689 		*haddr = addr;
690 
691 		return 0;
692 	}
693 
694 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
695 	ret = hyp_alloc_private_va_range(size, &addr);
696 	if (ret)
697 		return ret;
698 
699 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
700 	if (ret)
701 		return ret;
702 
703 	*haddr = addr + offset_in_page(phys_addr);
704 	return ret;
705 }
706 
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)707 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
708 {
709 	unsigned long base;
710 	size_t size;
711 	int ret;
712 
713 	mutex_lock(&kvm_hyp_pgd_mutex);
714 	/*
715 	 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
716 	 * an alignment of our allocation on the order of the size.
717 	 */
718 	size = NVHE_STACK_SIZE * 2;
719 	base = ALIGN_DOWN(io_map_base - size, size);
720 
721 	ret = __hyp_alloc_private_va_range(base);
722 
723 	mutex_unlock(&kvm_hyp_pgd_mutex);
724 
725 	if (ret) {
726 		kvm_err("Cannot allocate hyp stack guard page\n");
727 		return ret;
728 	}
729 
730 	/*
731 	 * Since the stack grows downwards, map the stack to the page
732 	 * at the higher address and leave the lower guard page
733 	 * unbacked.
734 	 *
735 	 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
736 	 * and addresses corresponding to the guard page have the
737 	 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
738 	 */
739 	ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
740 				    phys_addr, PAGE_HYP);
741 	if (ret)
742 		kvm_err("Cannot map hyp stack\n");
743 
744 	*haddr = base + size;
745 
746 	return ret;
747 }
748 
749 /**
750  * create_hyp_io_mappings - Map IO into both kernel and HYP
751  * @phys_addr:	The physical start address which gets mapped
752  * @size:	Size of the region being mapped
753  * @kaddr:	Kernel VA for this mapping
754  * @haddr:	HYP VA for this mapping
755  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)756 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
757 			   void __iomem **kaddr,
758 			   void __iomem **haddr)
759 {
760 	unsigned long addr;
761 	int ret;
762 
763 	if (is_protected_kvm_enabled())
764 		return -EPERM;
765 
766 	*kaddr = ioremap(phys_addr, size);
767 	if (!*kaddr)
768 		return -ENOMEM;
769 
770 	if (is_kernel_in_hyp_mode()) {
771 		*haddr = *kaddr;
772 		return 0;
773 	}
774 
775 	ret = __create_hyp_private_mapping(phys_addr, size,
776 					   &addr, PAGE_HYP_DEVICE);
777 	if (ret) {
778 		iounmap(*kaddr);
779 		*kaddr = NULL;
780 		*haddr = NULL;
781 		return ret;
782 	}
783 
784 	*haddr = (void __iomem *)addr;
785 	return 0;
786 }
787 
788 /**
789  * create_hyp_exec_mappings - Map an executable range into HYP
790  * @phys_addr:	The physical start address which gets mapped
791  * @size:	Size of the region being mapped
792  * @haddr:	HYP VA for this mapping
793  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)794 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
795 			     void **haddr)
796 {
797 	unsigned long addr;
798 	int ret;
799 
800 	BUG_ON(is_kernel_in_hyp_mode());
801 
802 	ret = __create_hyp_private_mapping(phys_addr, size,
803 					   &addr, PAGE_HYP_EXEC);
804 	if (ret) {
805 		*haddr = NULL;
806 		return ret;
807 	}
808 
809 	*haddr = (void *)addr;
810 	return 0;
811 }
812 
813 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
814 	/* We shouldn't need any other callback to walk the PT */
815 	.phys_to_virt		= kvm_host_va,
816 };
817 
get_user_mapping_size(struct kvm * kvm,u64 addr)818 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
819 {
820 	struct kvm_pgtable pgt = {
821 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
822 		.ia_bits	= vabits_actual,
823 		.start_level	= (KVM_PGTABLE_LAST_LEVEL -
824 				   ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
825 		.mm_ops		= &kvm_user_mm_ops,
826 	};
827 	unsigned long flags;
828 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
829 	s8 level = S8_MAX;
830 	int ret;
831 
832 	/*
833 	 * Disable IRQs so that we hazard against a concurrent
834 	 * teardown of the userspace page tables (which relies on
835 	 * IPI-ing threads).
836 	 */
837 	local_irq_save(flags);
838 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
839 	local_irq_restore(flags);
840 
841 	if (ret)
842 		return ret;
843 
844 	/*
845 	 * Not seeing an error, but not updating level? Something went
846 	 * deeply wrong...
847 	 */
848 	if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
849 		return -EFAULT;
850 	if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
851 		return -EFAULT;
852 
853 	/* Oops, the userspace PTs are gone... Replay the fault */
854 	if (!kvm_pte_valid(pte))
855 		return -EAGAIN;
856 
857 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
858 }
859 
860 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
861 	.zalloc_page		= stage2_memcache_zalloc_page,
862 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
863 	.free_pages_exact	= kvm_s2_free_pages_exact,
864 	.free_unlinked_table	= stage2_free_unlinked_table,
865 	.get_page		= kvm_host_get_page,
866 	.put_page		= kvm_s2_put_page,
867 	.page_count		= kvm_host_page_count,
868 	.phys_to_virt		= kvm_host_va,
869 	.virt_to_phys		= kvm_host_pa,
870 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
871 	.icache_inval_pou	= invalidate_icache_guest_page,
872 };
873 
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)874 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
875 {
876 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
877 	u64 mmfr0, mmfr1;
878 	u32 phys_shift;
879 
880 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
881 		return -EINVAL;
882 
883 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
884 	if (is_protected_kvm_enabled()) {
885 		phys_shift = kvm_ipa_limit;
886 	} else if (phys_shift) {
887 		if (phys_shift > kvm_ipa_limit ||
888 		    phys_shift < ARM64_MIN_PARANGE_BITS)
889 			return -EINVAL;
890 	} else {
891 		phys_shift = KVM_PHYS_SHIFT;
892 		if (phys_shift > kvm_ipa_limit) {
893 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
894 				     current->comm);
895 			return -EINVAL;
896 		}
897 	}
898 
899 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
900 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
901 	mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
902 
903 	return 0;
904 }
905 
906 /**
907  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
908  * @kvm:	The pointer to the KVM structure
909  * @mmu:	The pointer to the s2 MMU structure
910  * @type:	The machine type of the virtual machine
911  *
912  * Allocates only the stage-2 HW PGD level table(s).
913  * Note we don't need locking here as this is only called in two cases:
914  *
915  * - when the VM is created, which can't race against anything
916  *
917  * - when secondary kvm_s2_mmu structures are initialised for NV
918  *   guests, and the caller must hold kvm->lock as this is called on a
919  *   per-vcpu basis.
920  */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)921 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
922 {
923 	int cpu, err;
924 	struct kvm_pgtable *pgt;
925 
926 	/*
927 	 * If we already have our page tables in place, and that the
928 	 * MMU context is the canonical one, we have a bug somewhere,
929 	 * as this is only supposed to ever happen once per VM.
930 	 *
931 	 * Otherwise, we're building nested page tables, and that's
932 	 * probably because userspace called KVM_ARM_VCPU_INIT more
933 	 * than once on the same vcpu. Since that's actually legal,
934 	 * don't kick a fuss and leave gracefully.
935 	 */
936 	if (mmu->pgt != NULL) {
937 		if (kvm_is_nested_s2_mmu(kvm, mmu))
938 			return 0;
939 
940 		kvm_err("kvm_arch already initialized?\n");
941 		return -EINVAL;
942 	}
943 
944 	err = kvm_init_ipa_range(mmu, type);
945 	if (err)
946 		return err;
947 
948 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
949 	if (!pgt)
950 		return -ENOMEM;
951 
952 	mmu->arch = &kvm->arch;
953 	err = KVM_PGT_FN(kvm_pgtable_stage2_init)(pgt, mmu, &kvm_s2_mm_ops);
954 	if (err)
955 		goto out_free_pgtable;
956 
957 	mmu->pgt = pgt;
958 	if (is_protected_kvm_enabled())
959 		return 0;
960 
961 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
962 	if (!mmu->last_vcpu_ran) {
963 		err = -ENOMEM;
964 		goto out_destroy_pgtable;
965 	}
966 
967 	for_each_possible_cpu(cpu)
968 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
969 
970 	 /* The eager page splitting is disabled by default */
971 	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
972 	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
973 
974 	mmu->pgd_phys = __pa(pgt->pgd);
975 
976 	if (kvm_is_nested_s2_mmu(kvm, mmu))
977 		kvm_init_nested_s2_mmu(mmu);
978 
979 	return 0;
980 
981 out_destroy_pgtable:
982 	KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
983 out_free_pgtable:
984 	kfree(pgt);
985 	return err;
986 }
987 
kvm_uninit_stage2_mmu(struct kvm * kvm)988 void kvm_uninit_stage2_mmu(struct kvm *kvm)
989 {
990 	kvm_free_stage2_pgd(&kvm->arch.mmu);
991 	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
992 }
993 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)994 static void stage2_unmap_memslot(struct kvm *kvm,
995 				 struct kvm_memory_slot *memslot)
996 {
997 	hva_t hva = memslot->userspace_addr;
998 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
999 	phys_addr_t size = PAGE_SIZE * memslot->npages;
1000 	hva_t reg_end = hva + size;
1001 
1002 	/*
1003 	 * A memory region could potentially cover multiple VMAs, and any holes
1004 	 * between them, so iterate over all of them to find out if we should
1005 	 * unmap any of them.
1006 	 *
1007 	 *     +--------------------------------------------+
1008 	 * +---------------+----------------+   +----------------+
1009 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1010 	 * +---------------+----------------+   +----------------+
1011 	 *     |               memory region                |
1012 	 *     +--------------------------------------------+
1013 	 */
1014 	do {
1015 		struct vm_area_struct *vma;
1016 		hva_t vm_start, vm_end;
1017 
1018 		vma = find_vma_intersection(current->mm, hva, reg_end);
1019 		if (!vma)
1020 			break;
1021 
1022 		/*
1023 		 * Take the intersection of this VMA with the memory region
1024 		 */
1025 		vm_start = max(hva, vma->vm_start);
1026 		vm_end = min(reg_end, vma->vm_end);
1027 
1028 		if (!(vma->vm_flags & VM_PFNMAP)) {
1029 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1030 			kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1031 		}
1032 		hva = vm_end;
1033 	} while (hva < reg_end);
1034 }
1035 
1036 /**
1037  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1038  * @kvm: The struct kvm pointer
1039  *
1040  * Go through the memregions and unmap any regular RAM
1041  * backing memory already mapped to the VM.
1042  */
stage2_unmap_vm(struct kvm * kvm)1043 void stage2_unmap_vm(struct kvm *kvm)
1044 {
1045 	struct kvm_memslots *slots;
1046 	struct kvm_memory_slot *memslot;
1047 	int idx, bkt;
1048 
1049 	idx = srcu_read_lock(&kvm->srcu);
1050 	mmap_read_lock(current->mm);
1051 	write_lock(&kvm->mmu_lock);
1052 
1053 	slots = kvm_memslots(kvm);
1054 	kvm_for_each_memslot(memslot, bkt, slots)
1055 		stage2_unmap_memslot(kvm, memslot);
1056 
1057 	kvm_nested_s2_unmap(kvm, true);
1058 
1059 	write_unlock(&kvm->mmu_lock);
1060 	mmap_read_unlock(current->mm);
1061 	srcu_read_unlock(&kvm->srcu, idx);
1062 }
1063 
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1064 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1065 {
1066 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1067 	struct kvm_pgtable *pgt = NULL;
1068 
1069 	write_lock(&kvm->mmu_lock);
1070 	pgt = mmu->pgt;
1071 	if (pgt) {
1072 		mmu->pgd_phys = 0;
1073 		mmu->pgt = NULL;
1074 		free_percpu(mmu->last_vcpu_ran);
1075 	}
1076 	write_unlock(&kvm->mmu_lock);
1077 
1078 	if (pgt) {
1079 		KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
1080 		kfree(pgt);
1081 	}
1082 }
1083 
hyp_mc_free_fn(void * addr,void * mc)1084 static void hyp_mc_free_fn(void *addr, void *mc)
1085 {
1086 	struct kvm_hyp_memcache *memcache = mc;
1087 
1088 	if (memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1089 		kvm_account_pgtable_pages(addr, -1);
1090 
1091 	free_page((unsigned long)addr);
1092 }
1093 
hyp_mc_alloc_fn(void * mc)1094 static void *hyp_mc_alloc_fn(void *mc)
1095 {
1096 	struct kvm_hyp_memcache *memcache = mc;
1097 	void *addr;
1098 
1099 	addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1100 	if (addr && memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1101 		kvm_account_pgtable_pages(addr, 1);
1102 
1103 	return addr;
1104 }
1105 
free_hyp_memcache(struct kvm_hyp_memcache * mc)1106 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1107 {
1108 	if (!is_protected_kvm_enabled())
1109 		return;
1110 
1111 	kfree(mc->mapping);
1112 	__free_hyp_memcache(mc, hyp_mc_free_fn, kvm_host_va, mc);
1113 }
1114 
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1115 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1116 {
1117 	if (!is_protected_kvm_enabled())
1118 		return 0;
1119 
1120 	if (!mc->mapping) {
1121 		mc->mapping = kzalloc(sizeof(struct pkvm_mapping), GFP_KERNEL_ACCOUNT);
1122 		if (!mc->mapping)
1123 			return -ENOMEM;
1124 	}
1125 
1126 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1127 				    kvm_host_pa, mc);
1128 }
1129 
1130 /**
1131  * kvm_phys_addr_ioremap - map a device range to guest IPA
1132  *
1133  * @kvm:	The KVM pointer
1134  * @guest_ipa:	The IPA at which to insert the mapping
1135  * @pa:		The physical address of the device
1136  * @size:	The size of the mapping
1137  * @writable:   Whether or not to create a writable mapping
1138  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1139 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1140 			  phys_addr_t pa, unsigned long size, bool writable)
1141 {
1142 	phys_addr_t addr;
1143 	int ret = 0;
1144 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1145 	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1146 	struct kvm_pgtable *pgt = mmu->pgt;
1147 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1148 				     KVM_PGTABLE_PROT_R |
1149 				     (writable ? KVM_PGTABLE_PROT_W : 0);
1150 
1151 	if (is_protected_kvm_enabled())
1152 		return -EPERM;
1153 
1154 	size += offset_in_page(guest_ipa);
1155 	guest_ipa &= PAGE_MASK;
1156 
1157 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1158 		ret = kvm_mmu_topup_memory_cache(&cache,
1159 						 kvm_mmu_cache_min_pages(mmu));
1160 		if (ret)
1161 			break;
1162 
1163 		write_lock(&kvm->mmu_lock);
1164 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, addr, PAGE_SIZE,
1165 				 pa, prot, &cache, 0);
1166 		write_unlock(&kvm->mmu_lock);
1167 		if (ret)
1168 			break;
1169 
1170 		pa += PAGE_SIZE;
1171 	}
1172 
1173 	kvm_mmu_free_memory_cache(&cache);
1174 	return ret;
1175 }
1176 
1177 /**
1178  * kvm_stage2_wp_range() - write protect stage2 memory region range
1179  * @mmu:        The KVM stage-2 MMU pointer
1180  * @addr:	Start address of range
1181  * @end:	End address of range
1182  */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1183 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1184 {
1185 	stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_wrprotect));
1186 }
1187 
1188 /**
1189  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1190  * @kvm:	The KVM pointer
1191  * @slot:	The memory slot to write protect
1192  *
1193  * Called to start logging dirty pages after memory region
1194  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1195  * all present PUD, PMD and PTEs are write protected in the memory region.
1196  * Afterwards read of dirty page log can be called.
1197  *
1198  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1199  * serializing operations for VM memory regions.
1200  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1201 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1202 {
1203 	struct kvm_memslots *slots = kvm_memslots(kvm);
1204 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1205 	phys_addr_t start, end;
1206 
1207 	if (WARN_ON_ONCE(!memslot))
1208 		return;
1209 
1210 	start = memslot->base_gfn << PAGE_SHIFT;
1211 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1212 
1213 	write_lock(&kvm->mmu_lock);
1214 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1215 	kvm_nested_s2_wp(kvm);
1216 	write_unlock(&kvm->mmu_lock);
1217 	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1218 }
1219 
1220 /**
1221  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1222  *				   pages for memory slot
1223  * @kvm:	The KVM pointer
1224  * @slot:	The memory slot to split
1225  *
1226  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1227  * serializing operations for VM memory regions.
1228  */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1229 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1230 {
1231 	struct kvm_memslots *slots;
1232 	struct kvm_memory_slot *memslot;
1233 	phys_addr_t start, end;
1234 
1235 	lockdep_assert_held(&kvm->slots_lock);
1236 
1237 	slots = kvm_memslots(kvm);
1238 	memslot = id_to_memslot(slots, slot);
1239 
1240 	start = memslot->base_gfn << PAGE_SHIFT;
1241 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1242 
1243 	write_lock(&kvm->mmu_lock);
1244 	kvm_mmu_split_huge_pages(kvm, start, end);
1245 	write_unlock(&kvm->mmu_lock);
1246 }
1247 
1248 /*
1249  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1250  * @kvm:	The KVM pointer
1251  * @slot:	The memory slot associated with mask
1252  * @gfn_offset:	The gfn offset in memory slot
1253  * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1254  *		slot to enable dirty logging on
1255  *
1256  * Writes protect selected pages to enable dirty logging, and then
1257  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1258  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1259 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1260 		struct kvm_memory_slot *slot,
1261 		gfn_t gfn_offset, unsigned long mask)
1262 {
1263 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1264 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1265 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1266 
1267 	lockdep_assert_held_write(&kvm->mmu_lock);
1268 
1269 	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1270 
1271 	/*
1272 	 * Eager-splitting is done when manual-protect is set.  We
1273 	 * also check for initially-all-set because we can avoid
1274 	 * eager-splitting if initially-all-set is false.
1275 	 * Initially-all-set equal false implies that huge-pages were
1276 	 * already split when enabling dirty logging: no need to do it
1277 	 * again.
1278 	 */
1279 	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1280 		kvm_mmu_split_huge_pages(kvm, start, end);
1281 
1282 	kvm_nested_s2_wp(kvm);
1283 }
1284 
kvm_send_hwpoison_signal(unsigned long address,short lsb)1285 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1286 {
1287 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1288 }
1289 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1290 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1291 					       unsigned long hva,
1292 					       unsigned long map_size)
1293 {
1294 	gpa_t gpa_start;
1295 	hva_t uaddr_start, uaddr_end;
1296 	size_t size;
1297 
1298 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1299 	if (map_size == PAGE_SIZE)
1300 		return true;
1301 
1302 	/* pKVM only supports PMD_SIZE huge-mappings */
1303 	if (is_protected_kvm_enabled() && map_size != PMD_SIZE)
1304 		return false;
1305 
1306 	size = memslot->npages * PAGE_SIZE;
1307 
1308 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1309 
1310 	uaddr_start = memslot->userspace_addr;
1311 	uaddr_end = uaddr_start + size;
1312 
1313 	/*
1314 	 * Pages belonging to memslots that don't have the same alignment
1315 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1316 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1317 	 *
1318 	 * Consider a layout like the following:
1319 	 *
1320 	 *    memslot->userspace_addr:
1321 	 *    +-----+--------------------+--------------------+---+
1322 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1323 	 *    +-----+--------------------+--------------------+---+
1324 	 *
1325 	 *    memslot->base_gfn << PAGE_SHIFT:
1326 	 *      +---+--------------------+--------------------+-----+
1327 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1328 	 *      +---+--------------------+--------------------+-----+
1329 	 *
1330 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1331 	 * mapping:
1332 	 *   d -> f
1333 	 *   e -> g
1334 	 *   f -> h
1335 	 */
1336 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1337 		return false;
1338 
1339 	/*
1340 	 * Next, let's make sure we're not trying to map anything not covered
1341 	 * by the memslot. This means we have to prohibit block size mappings
1342 	 * for the beginning and end of a non-block aligned and non-block sized
1343 	 * memory slot (illustrated by the head and tail parts of the
1344 	 * userspace view above containing pages 'abcde' and 'xyz',
1345 	 * respectively).
1346 	 *
1347 	 * Note that it doesn't matter if we do the check using the
1348 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1349 	 * the check above) and equally sized.
1350 	 */
1351 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1352 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1353 }
1354 
1355 /*
1356  * Check if the given hva is backed by a transparent huge page (THP) and
1357  * whether it can be mapped using block mapping in stage2. If so, adjust
1358  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1359  * supported. This will need to be updated to support other THP sizes.
1360  *
1361  * Returns the size of the mapping.
1362  */
1363 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1364 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1365 			    unsigned long hva, kvm_pfn_t *pfnp,
1366 			    phys_addr_t *ipap)
1367 {
1368 	kvm_pfn_t pfn = *pfnp;
1369 
1370 	/*
1371 	 * Make sure the adjustment is done only for THP pages. Also make
1372 	 * sure that the HVA and IPA are sufficiently aligned and that the
1373 	 * block map is contained within the memslot.
1374 	 */
1375 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1376 		int sz = get_user_mapping_size(kvm, hva);
1377 
1378 		if (sz < 0)
1379 			return sz;
1380 
1381 		if (sz < PMD_SIZE)
1382 			return PAGE_SIZE;
1383 
1384 		*ipap &= PMD_MASK;
1385 		pfn &= ~(PTRS_PER_PMD - 1);
1386 		*pfnp = pfn;
1387 
1388 		return PMD_SIZE;
1389 	}
1390 
1391 	/* Use page mapping if we cannot use block mapping. */
1392 	return PAGE_SIZE;
1393 }
1394 
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1395 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1396 {
1397 	unsigned long pa;
1398 
1399 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1400 		return huge_page_shift(hstate_vma(vma));
1401 
1402 	if (!(vma->vm_flags & VM_PFNMAP))
1403 		return PAGE_SHIFT;
1404 
1405 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1406 
1407 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1408 
1409 #ifndef __PAGETABLE_PMD_FOLDED
1410 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1411 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1412 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1413 		return PUD_SHIFT;
1414 #endif
1415 
1416 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1417 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1418 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1419 		return PMD_SHIFT;
1420 
1421 	return PAGE_SHIFT;
1422 }
1423 
1424 /*
1425  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1426  * able to see the page's tags and therefore they must be initialised first. If
1427  * PG_mte_tagged is set, tags have already been initialised.
1428  *
1429  * The race in the test/set of the PG_mte_tagged flag is handled by:
1430  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1431  *   racing to santise the same page
1432  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1433  *   an mprotect() to add VM_MTE
1434  */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1435 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1436 			      unsigned long size)
1437 {
1438 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1439 	struct page *page = pfn_to_page(pfn);
1440 	struct folio *folio = page_folio(page);
1441 
1442 	if (!kvm_has_mte(kvm))
1443 		return;
1444 
1445 	if (folio_test_hugetlb(folio)) {
1446 		/* Hugetlb has MTE flags set on head page only */
1447 		if (folio_try_hugetlb_mte_tagging(folio)) {
1448 			for (i = 0; i < nr_pages; i++, page++)
1449 				mte_clear_page_tags(page_address(page));
1450 			folio_set_hugetlb_mte_tagged(folio);
1451 		}
1452 		return;
1453 	}
1454 
1455 	for (i = 0; i < nr_pages; i++, page++) {
1456 		if (try_page_mte_tagging(page)) {
1457 			mte_clear_page_tags(page_address(page));
1458 			set_page_mte_tagged(page);
1459 		}
1460 	}
1461 }
1462 
kvm_vma_mte_allowed(struct vm_area_struct * vma)1463 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1464 {
1465 	return vma->vm_flags & VM_MTE_ALLOWED;
1466 }
1467 
kvm_vma_is_cacheable(struct vm_area_struct * vma)1468 static bool kvm_vma_is_cacheable(struct vm_area_struct *vma)
1469 {
1470 	switch (FIELD_GET(PTE_ATTRINDX_MASK, pgprot_val(vma->vm_page_prot))) {
1471 	case MT_NORMAL_NC:
1472 	case MT_DEVICE_nGnRnE:
1473 	case MT_DEVICE_nGnRE:
1474 		return false;
1475 	default:
1476 		return true;
1477 	}
1478 }
1479 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1480 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1481 			  struct kvm_s2_trans *nested,
1482 			  struct kvm_memory_slot *memslot, unsigned long hva,
1483 			  bool fault_is_perm)
1484 {
1485 	int ret = 0;
1486 	bool write_fault, writable, force_pte = false;
1487 	bool exec_fault, mte_allowed, is_vma_cacheable;
1488 	bool s2_force_noncacheable = false, vfio_allow_any_uc = false;
1489 	unsigned long mmu_seq;
1490 	phys_addr_t ipa = fault_ipa;
1491 	struct kvm *kvm = vcpu->kvm;
1492 	struct vm_area_struct *vma;
1493 	short vma_shift;
1494 	void *memcache;
1495 	gfn_t gfn;
1496 	kvm_pfn_t pfn;
1497 	bool logging_active = memslot_is_logging(memslot);
1498 	long vma_pagesize, fault_granule;
1499 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1500 	struct kvm_pgtable *pgt;
1501 	struct page *page;
1502 	vm_flags_t vm_flags;
1503 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1504 
1505 	if (fault_is_perm)
1506 		fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1507 	write_fault = kvm_is_write_fault(vcpu);
1508 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1509 	VM_BUG_ON(write_fault && exec_fault);
1510 
1511 	if (fault_is_perm && !write_fault && !exec_fault) {
1512 		kvm_err("Unexpected L2 read permission error\n");
1513 		return -EFAULT;
1514 	}
1515 
1516 	if (!is_protected_kvm_enabled())
1517 		memcache = &vcpu->arch.mmu_page_cache;
1518 	else
1519 		memcache = &vcpu->arch.pkvm_memcache;
1520 
1521 	/*
1522 	 * Permission faults just need to update the existing leaf entry,
1523 	 * and so normally don't require allocations from the memcache. The
1524 	 * only exception to this is when dirty logging is enabled at runtime
1525 	 * and a write fault needs to collapse a block entry into a table.
1526 	 */
1527 	if (!fault_is_perm || (logging_active && write_fault)) {
1528 		int min_pages = kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu);
1529 
1530 		if (!is_protected_kvm_enabled())
1531 			ret = kvm_mmu_topup_memory_cache(memcache, min_pages);
1532 		else
1533 			ret = topup_hyp_memcache(memcache, min_pages);
1534 
1535 		if (ret)
1536 			return ret;
1537 	}
1538 
1539 	/*
1540 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1541 	 * get block mapping for device MMIO region.
1542 	 */
1543 	mmap_read_lock(current->mm);
1544 	vma = vma_lookup(current->mm, hva);
1545 	if (unlikely(!vma)) {
1546 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1547 		mmap_read_unlock(current->mm);
1548 		return -EFAULT;
1549 	}
1550 
1551 	/*
1552 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1553 	 * memslots.
1554 	 */
1555 	if (logging_active) {
1556 		force_pte = true;
1557 		vma_shift = PAGE_SHIFT;
1558 	} else {
1559 		vma_shift = get_vma_page_shift(vma, hva);
1560 	}
1561 
1562 	switch (vma_shift) {
1563 #ifndef __PAGETABLE_PMD_FOLDED
1564 	case PUD_SHIFT:
1565 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1566 			break;
1567 		fallthrough;
1568 #endif
1569 	case CONT_PMD_SHIFT:
1570 		vma_shift = PMD_SHIFT;
1571 		fallthrough;
1572 	case PMD_SHIFT:
1573 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1574 			break;
1575 		fallthrough;
1576 	case CONT_PTE_SHIFT:
1577 		vma_shift = PAGE_SHIFT;
1578 		force_pte = true;
1579 		fallthrough;
1580 	case PAGE_SHIFT:
1581 		break;
1582 	default:
1583 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1584 	}
1585 
1586 	vma_pagesize = 1UL << vma_shift;
1587 
1588 	if (nested) {
1589 		unsigned long max_map_size;
1590 
1591 		max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1592 
1593 		ipa = kvm_s2_trans_output(nested);
1594 
1595 		/*
1596 		 * If we're about to create a shadow stage 2 entry, then we
1597 		 * can only create a block mapping if the guest stage 2 page
1598 		 * table uses at least as big a mapping.
1599 		 */
1600 		max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1601 
1602 		/*
1603 		 * Be careful that if the mapping size falls between
1604 		 * two host sizes, take the smallest of the two.
1605 		 */
1606 		if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1607 			max_map_size = PMD_SIZE;
1608 		else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1609 			max_map_size = PAGE_SIZE;
1610 
1611 		force_pte = (max_map_size == PAGE_SIZE);
1612 		vma_pagesize = min(vma_pagesize, (long)max_map_size);
1613 	}
1614 
1615 	/*
1616 	 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1617 	 * ensure we find the right PFN and lay down the mapping in the right
1618 	 * place.
1619 	 */
1620 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1621 		fault_ipa &= ~(vma_pagesize - 1);
1622 		ipa &= ~(vma_pagesize - 1);
1623 	}
1624 
1625 	gfn = ipa >> PAGE_SHIFT;
1626 	mte_allowed = kvm_vma_mte_allowed(vma);
1627 
1628 	vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1629 
1630 	vm_flags = vma->vm_flags;
1631 
1632 	is_vma_cacheable = kvm_vma_is_cacheable(vma);
1633 
1634 	/* Don't use the VMA after the unlock -- it may have vanished */
1635 	vma = NULL;
1636 
1637 	/*
1638 	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1639 	 * vma_lookup() or __kvm_faultin_pfn() become stale prior to
1640 	 * acquiring kvm->mmu_lock.
1641 	 *
1642 	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1643 	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1644 	 */
1645 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1646 	mmap_read_unlock(current->mm);
1647 
1648 	pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
1649 				&writable, &page);
1650 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1651 		kvm_send_hwpoison_signal(hva, vma_shift);
1652 		return 0;
1653 	}
1654 	if (is_error_noslot_pfn(pfn))
1655 		return -EFAULT;
1656 
1657 	/*
1658 	 * Check if this is non-struct page memory PFN, and cannot support
1659 	 * CMOs. It could potentially be unsafe to access as cachable.
1660 	 */
1661 	if (vm_flags & (VM_PFNMAP | VM_MIXEDMAP) && !pfn_is_map_memory(pfn)) {
1662 		if (is_vma_cacheable) {
1663 			/*
1664 			 * Whilst the VMA owner expects cacheable mapping to this
1665 			 * PFN, hardware also has to support the FWB and CACHE DIC
1666 			 * features.
1667 			 *
1668 			 * ARM64 KVM relies on kernel VA mapping to the PFN to
1669 			 * perform cache maintenance as the CMO instructions work on
1670 			 * virtual addresses. VM_PFNMAP region are not necessarily
1671 			 * mapped to a KVA and hence the presence of hardware features
1672 			 * S2FWB and CACHE DIC are mandatory to avoid the need for
1673 			 * cache maintenance.
1674 			 */
1675 			if (!kvm_supports_cacheable_pfnmap())
1676 				return -EFAULT;
1677 		} else {
1678 			/*
1679 			 * If the page was identified as device early by looking at
1680 			 * the VMA flags, vma_pagesize is already representing the
1681 			 * largest quantity we can map.  If instead it was mapped
1682 			 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE
1683 			 * and must not be upgraded.
1684 			 *
1685 			 * In both cases, we don't let transparent_hugepage_adjust()
1686 			 * change things at the last minute.
1687 			 */
1688 			s2_force_noncacheable = true;
1689 		}
1690 	} else if (logging_active && !write_fault) {
1691 		/*
1692 		 * Only actually map the page as writable if this was a write
1693 		 * fault.
1694 		 */
1695 		writable = false;
1696 	}
1697 
1698 	if (exec_fault && s2_force_noncacheable)
1699 		return -ENOEXEC;
1700 
1701 	/*
1702 	 * Potentially reduce shadow S2 permissions to match the guest's own
1703 	 * S2. For exec faults, we'd only reach this point if the guest
1704 	 * actually allowed it (see kvm_s2_handle_perm_fault).
1705 	 *
1706 	 * Also encode the level of the original translation in the SW bits
1707 	 * of the leaf entry as a proxy for the span of that translation.
1708 	 * This will be retrieved on TLB invalidation from the guest and
1709 	 * used to limit the invalidation scope if a TTL hint or a range
1710 	 * isn't provided.
1711 	 */
1712 	if (nested) {
1713 		writable &= kvm_s2_trans_writable(nested);
1714 		if (!kvm_s2_trans_readable(nested))
1715 			prot &= ~KVM_PGTABLE_PROT_R;
1716 
1717 		prot |= kvm_encode_nested_level(nested);
1718 	}
1719 
1720 	kvm_fault_lock(kvm);
1721 	pgt = vcpu->arch.hw_mmu->pgt;
1722 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1723 		ret = -EAGAIN;
1724 		goto out_unlock;
1725 	}
1726 
1727 	/*
1728 	 * If we are not forced to use page mapping, check if we are
1729 	 * backed by a THP and thus use block mapping if possible.
1730 	 */
1731 	if (vma_pagesize == PAGE_SIZE && !(force_pte || s2_force_noncacheable)) {
1732 		if (fault_is_perm && fault_granule > PAGE_SIZE)
1733 			vma_pagesize = fault_granule;
1734 		else
1735 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1736 								   hva, &pfn,
1737 								   &fault_ipa);
1738 
1739 		if (vma_pagesize < 0) {
1740 			ret = vma_pagesize;
1741 			goto out_unlock;
1742 		}
1743 	}
1744 
1745 	if (!fault_is_perm && !s2_force_noncacheable && kvm_has_mte(kvm)) {
1746 		/* Check the VMM hasn't introduced a new disallowed VMA */
1747 		if (mte_allowed) {
1748 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1749 		} else {
1750 			ret = -EFAULT;
1751 			goto out_unlock;
1752 		}
1753 	}
1754 
1755 	if (writable)
1756 		prot |= KVM_PGTABLE_PROT_W;
1757 
1758 	if (exec_fault)
1759 		prot |= KVM_PGTABLE_PROT_X;
1760 
1761 	if (s2_force_noncacheable) {
1762 		if (vfio_allow_any_uc)
1763 			prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1764 		else
1765 			prot |= KVM_PGTABLE_PROT_DEVICE;
1766 	} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1767 		   (!nested || kvm_s2_trans_executable(nested))) {
1768 		prot |= KVM_PGTABLE_PROT_X;
1769 	}
1770 
1771 	/*
1772 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1773 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1774 	 * kvm_pgtable_stage2_map() should be called to change block size.
1775 	 */
1776 	if (fault_is_perm && vma_pagesize == fault_granule) {
1777 		/*
1778 		 * Drop the SW bits in favour of those stored in the
1779 		 * PTE, which will be preserved.
1780 		 */
1781 		prot &= ~KVM_NV_GUEST_MAP_SZ;
1782 		ret = KVM_PGT_FN(kvm_pgtable_stage2_relax_perms)(pgt, fault_ipa, prot, flags);
1783 	} else {
1784 		ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, vma_pagesize,
1785 					     __pfn_to_phys(pfn), prot,
1786 					     memcache, flags);
1787 	}
1788 
1789 out_unlock:
1790 	kvm_release_faultin_page(kvm, page, !!ret, writable);
1791 	kvm_fault_unlock(kvm);
1792 
1793 	/* Mark the page dirty only if the fault is handled successfully */
1794 	if (writable && !ret)
1795 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1796 
1797 	return ret != -EAGAIN ? ret : 0;
1798 }
1799 
1800 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1801 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1802 {
1803 	enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1804 	struct kvm_s2_mmu *mmu;
1805 
1806 	trace_kvm_access_fault(fault_ipa);
1807 
1808 	read_lock(&vcpu->kvm->mmu_lock);
1809 	mmu = vcpu->arch.hw_mmu;
1810 	KVM_PGT_FN(kvm_pgtable_stage2_mkyoung)(mmu->pgt, fault_ipa, flags);
1811 	read_unlock(&vcpu->kvm->mmu_lock);
1812 }
1813 
1814 /**
1815  * kvm_handle_guest_abort - handles all 2nd stage aborts
1816  * @vcpu:	the VCPU pointer
1817  *
1818  * Any abort that gets to the host is almost guaranteed to be caused by a
1819  * missing second stage translation table entry, which can mean that either the
1820  * guest simply needs more memory and we must allocate an appropriate page or it
1821  * can mean that the guest tried to access I/O memory, which is emulated by user
1822  * space. The distinction is based on the IPA causing the fault and whether this
1823  * memory region has been registered as standard RAM by user space.
1824  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1825 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1826 {
1827 	struct kvm_s2_trans nested_trans, *nested = NULL;
1828 	unsigned long esr;
1829 	phys_addr_t fault_ipa; /* The address we faulted on */
1830 	phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1831 	struct kvm_memory_slot *memslot;
1832 	unsigned long hva;
1833 	bool is_iabt, write_fault, writable;
1834 	gfn_t gfn;
1835 	int ret, idx;
1836 
1837 	/* Synchronous External Abort? */
1838 	if (kvm_vcpu_abt_issea(vcpu)) {
1839 		/*
1840 		 * For RAS the host kernel may handle this abort.
1841 		 * There is no need to pass the error into the guest.
1842 		 */
1843 		if (kvm_handle_guest_sea())
1844 			return kvm_inject_serror(vcpu);
1845 
1846 		return 1;
1847 	}
1848 
1849 	esr = kvm_vcpu_get_esr(vcpu);
1850 
1851 	/*
1852 	 * The fault IPA should be reliable at this point as we're not dealing
1853 	 * with an SEA.
1854 	 */
1855 	ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1856 	if (KVM_BUG_ON(ipa == INVALID_GPA, vcpu->kvm))
1857 		return -EFAULT;
1858 
1859 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1860 
1861 	if (esr_fsc_is_translation_fault(esr)) {
1862 		/* Beyond sanitised PARange (which is the IPA limit) */
1863 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1864 			kvm_inject_size_fault(vcpu);
1865 			return 1;
1866 		}
1867 
1868 		/* Falls between the IPA range and the PARange? */
1869 		if (fault_ipa >= BIT_ULL(VTCR_EL2_IPA(vcpu->arch.hw_mmu->vtcr))) {
1870 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1871 
1872 			return kvm_inject_sea(vcpu, is_iabt, fault_ipa);
1873 		}
1874 	}
1875 
1876 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1877 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1878 
1879 	/* Check the stage-2 fault is trans. fault or write fault */
1880 	if (!esr_fsc_is_translation_fault(esr) &&
1881 	    !esr_fsc_is_permission_fault(esr) &&
1882 	    !esr_fsc_is_access_flag_fault(esr)) {
1883 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1884 			kvm_vcpu_trap_get_class(vcpu),
1885 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1886 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1887 		return -EFAULT;
1888 	}
1889 
1890 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1891 
1892 	/*
1893 	 * We may have faulted on a shadow stage 2 page table if we are
1894 	 * running a nested guest.  In this case, we have to resolve the L2
1895 	 * IPA to the L1 IPA first, before knowing what kind of memory should
1896 	 * back the L1 IPA.
1897 	 *
1898 	 * If the shadow stage 2 page table walk faults, then we simply inject
1899 	 * this to the guest and carry on.
1900 	 *
1901 	 * If there are no shadow S2 PTs because S2 is disabled, there is
1902 	 * nothing to walk and we treat it as a 1:1 before going through the
1903 	 * canonical translation.
1904 	 */
1905 	if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1906 	    vcpu->arch.hw_mmu->nested_stage2_enabled) {
1907 		u32 esr;
1908 
1909 		ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1910 		if (ret) {
1911 			esr = kvm_s2_trans_esr(&nested_trans);
1912 			kvm_inject_s2_fault(vcpu, esr);
1913 			goto out_unlock;
1914 		}
1915 
1916 		ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1917 		if (ret) {
1918 			esr = kvm_s2_trans_esr(&nested_trans);
1919 			kvm_inject_s2_fault(vcpu, esr);
1920 			goto out_unlock;
1921 		}
1922 
1923 		ipa = kvm_s2_trans_output(&nested_trans);
1924 		nested = &nested_trans;
1925 	}
1926 
1927 	gfn = ipa >> PAGE_SHIFT;
1928 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1929 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1930 	write_fault = kvm_is_write_fault(vcpu);
1931 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1932 		/*
1933 		 * The guest has put either its instructions or its page-tables
1934 		 * somewhere it shouldn't have. Userspace won't be able to do
1935 		 * anything about this (there's no syndrome for a start), so
1936 		 * re-inject the abort back into the guest.
1937 		 */
1938 		if (is_iabt) {
1939 			ret = -ENOEXEC;
1940 			goto out;
1941 		}
1942 
1943 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1944 			ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1945 			goto out_unlock;
1946 		}
1947 
1948 		/*
1949 		 * Check for a cache maintenance operation. Since we
1950 		 * ended-up here, we know it is outside of any memory
1951 		 * slot. But we can't find out if that is for a device,
1952 		 * or if the guest is just being stupid. The only thing
1953 		 * we know for sure is that this range cannot be cached.
1954 		 *
1955 		 * So let's assume that the guest is just being
1956 		 * cautious, and skip the instruction.
1957 		 */
1958 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1959 			kvm_incr_pc(vcpu);
1960 			ret = 1;
1961 			goto out_unlock;
1962 		}
1963 
1964 		/*
1965 		 * The IPA is reported as [MAX:12], so we need to
1966 		 * complement it with the bottom 12 bits from the
1967 		 * faulting VA. This is always 12 bits, irrespective
1968 		 * of the page size.
1969 		 */
1970 		ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1971 		ret = io_mem_abort(vcpu, ipa);
1972 		goto out_unlock;
1973 	}
1974 
1975 	/* Userspace should not be able to register out-of-bounds IPAs */
1976 	VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1977 
1978 	if (esr_fsc_is_access_flag_fault(esr)) {
1979 		handle_access_fault(vcpu, fault_ipa);
1980 		ret = 1;
1981 		goto out_unlock;
1982 	}
1983 
1984 	ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
1985 			     esr_fsc_is_permission_fault(esr));
1986 	if (ret == 0)
1987 		ret = 1;
1988 out:
1989 	if (ret == -ENOEXEC)
1990 		ret = kvm_inject_sea_iabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1991 out_unlock:
1992 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1993 	return ret;
1994 }
1995 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1996 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1997 {
1998 	if (!kvm->arch.mmu.pgt)
1999 		return false;
2000 
2001 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
2002 			     (range->end - range->start) << PAGE_SHIFT,
2003 			     range->may_block);
2004 
2005 	kvm_nested_s2_unmap(kvm, range->may_block);
2006 	return false;
2007 }
2008 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2009 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2010 {
2011 	u64 size = (range->end - range->start) << PAGE_SHIFT;
2012 
2013 	if (!kvm->arch.mmu.pgt)
2014 		return false;
2015 
2016 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2017 						   range->start << PAGE_SHIFT,
2018 						   size, true);
2019 	/*
2020 	 * TODO: Handle nested_mmu structures here using the reverse mapping in
2021 	 * a later version of patch series.
2022 	 */
2023 }
2024 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2025 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2026 {
2027 	u64 size = (range->end - range->start) << PAGE_SHIFT;
2028 
2029 	if (!kvm->arch.mmu.pgt)
2030 		return false;
2031 
2032 	return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2033 						   range->start << PAGE_SHIFT,
2034 						   size, false);
2035 }
2036 
kvm_mmu_get_httbr(void)2037 phys_addr_t kvm_mmu_get_httbr(void)
2038 {
2039 	return __pa(hyp_pgtable->pgd);
2040 }
2041 
kvm_get_idmap_vector(void)2042 phys_addr_t kvm_get_idmap_vector(void)
2043 {
2044 	return hyp_idmap_vector;
2045 }
2046 
kvm_map_idmap_text(void)2047 static int kvm_map_idmap_text(void)
2048 {
2049 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
2050 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2051 					PAGE_HYP_EXEC);
2052 	if (err)
2053 		kvm_err("Failed to idmap %lx-%lx\n",
2054 			hyp_idmap_start, hyp_idmap_end);
2055 
2056 	return err;
2057 }
2058 
kvm_hyp_zalloc_page(void * arg)2059 static void *kvm_hyp_zalloc_page(void *arg)
2060 {
2061 	return (void *)get_zeroed_page(GFP_KERNEL);
2062 }
2063 
2064 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2065 	.zalloc_page		= kvm_hyp_zalloc_page,
2066 	.get_page		= kvm_host_get_page,
2067 	.put_page		= kvm_host_put_page,
2068 	.phys_to_virt		= kvm_host_va,
2069 	.virt_to_phys		= kvm_host_pa,
2070 };
2071 
kvm_mmu_init(u32 * hyp_va_bits)2072 int __init kvm_mmu_init(u32 *hyp_va_bits)
2073 {
2074 	int err;
2075 	u32 idmap_bits;
2076 	u32 kernel_bits;
2077 
2078 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2079 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2080 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2081 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2082 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2083 
2084 	/*
2085 	 * We rely on the linker script to ensure at build time that the HYP
2086 	 * init code does not cross a page boundary.
2087 	 */
2088 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2089 
2090 	/*
2091 	 * The ID map is always configured for 48 bits of translation, which
2092 	 * may be fewer than the number of VA bits used by the regular kernel
2093 	 * stage 1, when VA_BITS=52.
2094 	 *
2095 	 * At EL2, there is only one TTBR register, and we can't switch between
2096 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2097 	 * line: we need to use the extended range with *both* our translation
2098 	 * tables.
2099 	 *
2100 	 * So use the maximum of the idmap VA bits and the regular kernel stage
2101 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
2102 	 * and map any kernel memory.
2103 	 */
2104 	idmap_bits = IDMAP_VA_BITS;
2105 	kernel_bits = vabits_actual;
2106 	*hyp_va_bits = max(idmap_bits, kernel_bits);
2107 
2108 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2109 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2110 	kvm_debug("HYP VA range: %lx:%lx\n",
2111 		  kern_hyp_va(PAGE_OFFSET),
2112 		  kern_hyp_va((unsigned long)high_memory - 1));
2113 
2114 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2115 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2116 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2117 		/*
2118 		 * The idmap page is intersecting with the VA space,
2119 		 * it is not safe to continue further.
2120 		 */
2121 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2122 		err = -EINVAL;
2123 		goto out;
2124 	}
2125 
2126 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2127 	if (!hyp_pgtable) {
2128 		kvm_err("Hyp mode page-table not allocated\n");
2129 		err = -ENOMEM;
2130 		goto out;
2131 	}
2132 
2133 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2134 	if (err)
2135 		goto out_free_pgtable;
2136 
2137 	err = kvm_map_idmap_text();
2138 	if (err)
2139 		goto out_destroy_pgtable;
2140 
2141 	io_map_base = hyp_idmap_start;
2142 	__hyp_va_bits = *hyp_va_bits;
2143 	return 0;
2144 
2145 out_destroy_pgtable:
2146 	kvm_pgtable_hyp_destroy(hyp_pgtable);
2147 out_free_pgtable:
2148 	kfree(hyp_pgtable);
2149 	hyp_pgtable = NULL;
2150 out:
2151 	return err;
2152 }
2153 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2154 void kvm_arch_commit_memory_region(struct kvm *kvm,
2155 				   struct kvm_memory_slot *old,
2156 				   const struct kvm_memory_slot *new,
2157 				   enum kvm_mr_change change)
2158 {
2159 	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2160 
2161 	/*
2162 	 * At this point memslot has been committed and there is an
2163 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2164 	 * memory slot is write protected.
2165 	 */
2166 	if (log_dirty_pages) {
2167 
2168 		if (change == KVM_MR_DELETE)
2169 			return;
2170 
2171 		/*
2172 		 * Huge and normal pages are write-protected and split
2173 		 * on either of these two cases:
2174 		 *
2175 		 * 1. with initial-all-set: gradually with CLEAR ioctls,
2176 		 */
2177 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2178 			return;
2179 		/*
2180 		 * or
2181 		 * 2. without initial-all-set: all in one shot when
2182 		 *    enabling dirty logging.
2183 		 */
2184 		kvm_mmu_wp_memory_region(kvm, new->id);
2185 		kvm_mmu_split_memory_region(kvm, new->id);
2186 	} else {
2187 		/*
2188 		 * Free any leftovers from the eager page splitting cache. Do
2189 		 * this when deleting, moving, disabling dirty logging, or
2190 		 * creating the memslot (a nop). Doing it for deletes makes
2191 		 * sure we don't leak memory, and there's no need to keep the
2192 		 * cache around for any of the other cases.
2193 		 */
2194 		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2195 	}
2196 }
2197 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2198 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2199 				   const struct kvm_memory_slot *old,
2200 				   struct kvm_memory_slot *new,
2201 				   enum kvm_mr_change change)
2202 {
2203 	hva_t hva, reg_end;
2204 	int ret = 0;
2205 
2206 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2207 			change != KVM_MR_FLAGS_ONLY)
2208 		return 0;
2209 
2210 	/*
2211 	 * Prevent userspace from creating a memory region outside of the IPA
2212 	 * space addressable by the KVM guest IPA space.
2213 	 */
2214 	if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2215 		return -EFAULT;
2216 
2217 	hva = new->userspace_addr;
2218 	reg_end = hva + (new->npages << PAGE_SHIFT);
2219 
2220 	mmap_read_lock(current->mm);
2221 	/*
2222 	 * A memory region could potentially cover multiple VMAs, and any holes
2223 	 * between them, so iterate over all of them.
2224 	 *
2225 	 *     +--------------------------------------------+
2226 	 * +---------------+----------------+   +----------------+
2227 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2228 	 * +---------------+----------------+   +----------------+
2229 	 *     |               memory region                |
2230 	 *     +--------------------------------------------+
2231 	 */
2232 	do {
2233 		struct vm_area_struct *vma;
2234 
2235 		vma = find_vma_intersection(current->mm, hva, reg_end);
2236 		if (!vma)
2237 			break;
2238 
2239 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2240 			ret = -EINVAL;
2241 			break;
2242 		}
2243 
2244 		if (vma->vm_flags & VM_PFNMAP) {
2245 			/* IO region dirty page logging not allowed */
2246 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2247 				ret = -EINVAL;
2248 				break;
2249 			}
2250 
2251 			/*
2252 			 * Cacheable PFNMAP is allowed only if the hardware
2253 			 * supports it.
2254 			 */
2255 			if (kvm_vma_is_cacheable(vma) && !kvm_supports_cacheable_pfnmap()) {
2256 				ret = -EINVAL;
2257 				break;
2258 			}
2259 		}
2260 		hva = min(reg_end, vma->vm_end);
2261 	} while (hva < reg_end);
2262 
2263 	mmap_read_unlock(current->mm);
2264 	return ret;
2265 }
2266 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2267 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2268 {
2269 }
2270 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2271 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2272 {
2273 }
2274 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2275 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2276 				   struct kvm_memory_slot *slot)
2277 {
2278 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2279 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2280 
2281 	write_lock(&kvm->mmu_lock);
2282 	kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2283 	kvm_nested_s2_unmap(kvm, true);
2284 	write_unlock(&kvm->mmu_lock);
2285 }
2286 
2287 /*
2288  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2289  *
2290  * Main problems:
2291  * - S/W ops are local to a CPU (not broadcast)
2292  * - We have line migration behind our back (speculation)
2293  * - System caches don't support S/W at all (damn!)
2294  *
2295  * In the face of the above, the best we can do is to try and convert
2296  * S/W ops to VA ops. Because the guest is not allowed to infer the
2297  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2298  * which is a rather good thing for us.
2299  *
2300  * Also, it is only used when turning caches on/off ("The expected
2301  * usage of the cache maintenance instructions that operate by set/way
2302  * is associated with the cache maintenance instructions associated
2303  * with the powerdown and powerup of caches, if this is required by
2304  * the implementation.").
2305  *
2306  * We use the following policy:
2307  *
2308  * - If we trap a S/W operation, we enable VM trapping to detect
2309  *   caches being turned on/off, and do a full clean.
2310  *
2311  * - We flush the caches on both caches being turned on and off.
2312  *
2313  * - Once the caches are enabled, we stop trapping VM ops.
2314  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2315 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2316 {
2317 	unsigned long hcr = *vcpu_hcr(vcpu);
2318 
2319 	/*
2320 	 * If this is the first time we do a S/W operation
2321 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2322 	 * VM trapping.
2323 	 *
2324 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2325 	 * Caches to be turned off. At that point, we'll be able to
2326 	 * clean the caches again.
2327 	 */
2328 	if (!(hcr & HCR_TVM)) {
2329 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2330 					vcpu_has_cache_enabled(vcpu));
2331 		stage2_flush_vm(vcpu->kvm);
2332 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2333 	}
2334 }
2335 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2336 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2337 {
2338 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2339 
2340 	/*
2341 	 * If switching the MMU+caches on, need to invalidate the caches.
2342 	 * If switching it off, need to clean the caches.
2343 	 * Clean + invalidate does the trick always.
2344 	 */
2345 	if (now_enabled != was_enabled)
2346 		stage2_flush_vm(vcpu->kvm);
2347 
2348 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2349 	if (now_enabled)
2350 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2351 
2352 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2353 }
2354