1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc.
28 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
29 * Copyright (c) 2015, 2017, Intel Corporation.
30 * Copyright (c) 2020 Datto Inc.
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
35 * Copyright (c) 2021 Allan Jude
36 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
37 * Copyright (c) 2023, 2024, Klara Inc.
38 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
39 */
40
41 #include <stdio.h>
42 #include <unistd.h>
43 #include <stdlib.h>
44 #include <ctype.h>
45 #include <getopt.h>
46 #include <openssl/evp.h>
47 #include <sys/zfs_context.h>
48 #include <sys/spa.h>
49 #include <sys/spa_impl.h>
50 #include <sys/dmu.h>
51 #include <sys/zap.h>
52 #include <sys/zap_impl.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/zfs_znode.h>
55 #include <sys/zfs_sa.h>
56 #include <sys/sa.h>
57 #include <sys/sa_impl.h>
58 #include <sys/vdev.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/dsl_dir.h>
63 #include <sys/dsl_dataset.h>
64 #include <sys/dsl_pool.h>
65 #include <sys/dsl_bookmark.h>
66 #include <sys/dbuf.h>
67 #include <sys/zil.h>
68 #include <sys/zil_impl.h>
69 #include <sys/stat.h>
70 #include <sys/resource.h>
71 #include <sys/dmu_send.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/zio_checksum.h>
74 #include <sys/zio_compress.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/arc.h>
77 #include <sys/arc_impl.h>
78 #include <sys/ddt.h>
79 #include <sys/ddt_impl.h>
80 #include <sys/zfeature.h>
81 #include <sys/abd.h>
82 #include <sys/blkptr.h>
83 #include <sys/dsl_crypt.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/btree.h>
86 #include <sys/brt.h>
87 #include <sys/brt_impl.h>
88 #include <zfs_comutil.h>
89 #include <sys/zstd/zstd.h>
90 #include <sys/backtrace.h>
91
92 #include <libnvpair.h>
93 #include <libzutil.h>
94 #include <libzfs_core.h>
95
96 #include <libzdb.h>
97
98 #include "zdb.h"
99
100
101 extern int reference_tracking_enable;
102 extern int zfs_recover;
103 extern uint_t zfs_vdev_async_read_max_active;
104 extern boolean_t spa_load_verify_dryrun;
105 extern boolean_t spa_mode_readable_spacemaps;
106 extern uint_t zfs_reconstruct_indirect_combinations_max;
107 extern uint_t zfs_btree_verify_intensity;
108
109 static const char cmdname[] = "zdb";
110 uint8_t dump_opt[512];
111
112 #define ALLOCATED_OPT 256
113
114 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
115
116 static uint64_t *zopt_metaslab = NULL;
117 static unsigned zopt_metaslab_args = 0;
118
119
120 static zopt_object_range_t *zopt_object_ranges = NULL;
121 static unsigned zopt_object_args = 0;
122
123 static int flagbits[256];
124
125
126 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
127 static int leaked_objects = 0;
128 static zfs_range_tree_t *mos_refd_objs;
129 static spa_t *spa;
130 static objset_t *os;
131 static boolean_t kernel_init_done;
132 static boolean_t corruption_found = B_FALSE;
133
134 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
135 boolean_t);
136 static void mos_obj_refd(uint64_t);
137 static void mos_obj_refd_multiple(uint64_t);
138 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
139 dmu_tx_t *tx);
140
141
142
143 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
144 static void zdb_exit(int reason);
145
146 typedef struct sublivelist_verify_block_refcnt {
147 /* block pointer entry in livelist being verified */
148 blkptr_t svbr_blk;
149
150 /*
151 * Refcount gets incremented to 1 when we encounter the first
152 * FREE entry for the svfbr block pointer and a node for it
153 * is created in our ZDB verification/tracking metadata.
154 *
155 * As we encounter more FREE entries we increment this counter
156 * and similarly decrement it whenever we find the respective
157 * ALLOC entries for this block.
158 *
159 * When the refcount gets to 0 it means that all the FREE and
160 * ALLOC entries of this block have paired up and we no longer
161 * need to track it in our verification logic (e.g. the node
162 * containing this struct in our verification data structure
163 * should be freed).
164 *
165 * [refer to sublivelist_verify_blkptr() for the actual code]
166 */
167 uint32_t svbr_refcnt;
168 } sublivelist_verify_block_refcnt_t;
169
170 static int
sublivelist_block_refcnt_compare(const void * larg,const void * rarg)171 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
172 {
173 const sublivelist_verify_block_refcnt_t *l = larg;
174 const sublivelist_verify_block_refcnt_t *r = rarg;
175 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
176 }
177
178 static int
sublivelist_verify_blkptr(void * arg,const blkptr_t * bp,boolean_t free,dmu_tx_t * tx)179 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
180 dmu_tx_t *tx)
181 {
182 ASSERT0P(tx);
183 struct sublivelist_verify *sv = arg;
184 sublivelist_verify_block_refcnt_t current = {
185 .svbr_blk = *bp,
186
187 /*
188 * Start with 1 in case this is the first free entry.
189 * This field is not used for our B-Tree comparisons
190 * anyway.
191 */
192 .svbr_refcnt = 1,
193 };
194
195 zfs_btree_index_t where;
196 sublivelist_verify_block_refcnt_t *pair =
197 zfs_btree_find(&sv->sv_pair, ¤t, &where);
198 if (free) {
199 if (pair == NULL) {
200 /* first free entry for this block pointer */
201 zfs_btree_add(&sv->sv_pair, ¤t);
202 } else {
203 pair->svbr_refcnt++;
204 }
205 } else {
206 if (pair == NULL) {
207 /* block that is currently marked as allocated */
208 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
209 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
210 break;
211 sublivelist_verify_block_t svb = {
212 .svb_dva = bp->blk_dva[i],
213 .svb_allocated_txg =
214 BP_GET_BIRTH(bp)
215 };
216
217 if (zfs_btree_find(&sv->sv_leftover, &svb,
218 &where) == NULL) {
219 zfs_btree_add_idx(&sv->sv_leftover,
220 &svb, &where);
221 }
222 }
223 } else {
224 /* alloc matches a free entry */
225 pair->svbr_refcnt--;
226 if (pair->svbr_refcnt == 0) {
227 /* all allocs and frees have been matched */
228 zfs_btree_remove_idx(&sv->sv_pair, &where);
229 }
230 }
231 }
232
233 return (0);
234 }
235
236 static int
sublivelist_verify_func(void * args,dsl_deadlist_entry_t * dle)237 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
238 {
239 int err;
240 struct sublivelist_verify *sv = args;
241
242 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
243 sizeof (sublivelist_verify_block_refcnt_t));
244
245 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
246 sv, NULL);
247
248 sublivelist_verify_block_refcnt_t *e;
249 zfs_btree_index_t *cookie = NULL;
250 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
251 char blkbuf[BP_SPRINTF_LEN];
252 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
253 &e->svbr_blk, B_TRUE);
254 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
255 e->svbr_refcnt, blkbuf);
256 corruption_found = B_TRUE;
257 }
258 zfs_btree_destroy(&sv->sv_pair);
259
260 return (err);
261 }
262
263 static int
livelist_block_compare(const void * larg,const void * rarg)264 livelist_block_compare(const void *larg, const void *rarg)
265 {
266 const sublivelist_verify_block_t *l = larg;
267 const sublivelist_verify_block_t *r = rarg;
268
269 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
270 return (-1);
271 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
272 return (+1);
273
274 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
275 return (-1);
276 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
277 return (+1);
278
279 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
280 return (-1);
281 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
282 return (+1);
283
284 return (0);
285 }
286
287 /*
288 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
289 * sublivelist_verify_t: sv->sv_leftover
290 */
291 static void
livelist_verify(dsl_deadlist_t * dl,void * arg)292 livelist_verify(dsl_deadlist_t *dl, void *arg)
293 {
294 sublivelist_verify_t *sv = arg;
295 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
296 }
297
298 /*
299 * Check for errors in the livelist entry and discard the intermediary
300 * data structures
301 */
302 static int
sublivelist_verify_lightweight(void * args,dsl_deadlist_entry_t * dle)303 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
304 {
305 (void) args;
306 sublivelist_verify_t sv;
307 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
308 sizeof (sublivelist_verify_block_t));
309 int err = sublivelist_verify_func(&sv, dle);
310 zfs_btree_clear(&sv.sv_leftover);
311 zfs_btree_destroy(&sv.sv_leftover);
312 return (err);
313 }
314
315 typedef struct metaslab_verify {
316 /*
317 * Tree containing all the leftover ALLOCs from the livelists
318 * that are part of this metaslab.
319 */
320 zfs_btree_t mv_livelist_allocs;
321
322 /*
323 * Metaslab information.
324 */
325 uint64_t mv_vdid;
326 uint64_t mv_msid;
327 uint64_t mv_start;
328 uint64_t mv_end;
329
330 /*
331 * What's currently allocated for this metaslab.
332 */
333 zfs_range_tree_t *mv_allocated;
334 } metaslab_verify_t;
335
336 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
337
338 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
339 void *arg);
340
341 typedef struct unflushed_iter_cb_arg {
342 spa_t *uic_spa;
343 uint64_t uic_txg;
344 void *uic_arg;
345 zdb_log_sm_cb_t uic_cb;
346 } unflushed_iter_cb_arg_t;
347
348 static int
iterate_through_spacemap_logs_cb(space_map_entry_t * sme,void * arg)349 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
350 {
351 unflushed_iter_cb_arg_t *uic = arg;
352 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
353 }
354
355 static void
iterate_through_spacemap_logs(spa_t * spa,zdb_log_sm_cb_t cb,void * arg)356 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
357 {
358 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
359 return;
360
361 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
362 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
363 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
364 space_map_t *sm = NULL;
365 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
366 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
367
368 unflushed_iter_cb_arg_t uic = {
369 .uic_spa = spa,
370 .uic_txg = sls->sls_txg,
371 .uic_arg = arg,
372 .uic_cb = cb
373 };
374 VERIFY0(space_map_iterate(sm, space_map_length(sm),
375 iterate_through_spacemap_logs_cb, &uic));
376 space_map_close(sm);
377 }
378 spa_config_exit(spa, SCL_CONFIG, FTAG);
379 }
380
381 static void
verify_livelist_allocs(metaslab_verify_t * mv,uint64_t txg,uint64_t offset,uint64_t size)382 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
383 uint64_t offset, uint64_t size)
384 {
385 sublivelist_verify_block_t svb = {{{0}}};
386 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
387 DVA_SET_OFFSET(&svb.svb_dva, offset);
388 DVA_SET_ASIZE(&svb.svb_dva, 0);
389 zfs_btree_index_t where;
390 uint64_t end_offset = offset + size;
391
392 /*
393 * Look for an exact match for spacemap entry in the livelist entries.
394 * Then, look for other livelist entries that fall within the range
395 * of the spacemap entry as it may have been condensed
396 */
397 sublivelist_verify_block_t *found =
398 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
399 if (found == NULL) {
400 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
401 }
402 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
403 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
404 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
405 if (found->svb_allocated_txg <= txg) {
406 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
407 "from TXG %llx FREED at TXG %llx\n",
408 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
409 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
410 (u_longlong_t)found->svb_allocated_txg,
411 (u_longlong_t)txg);
412 corruption_found = B_TRUE;
413 }
414 }
415 }
416
417 static int
metaslab_spacemap_validation_cb(space_map_entry_t * sme,void * arg)418 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
419 {
420 metaslab_verify_t *mv = arg;
421 uint64_t offset = sme->sme_offset;
422 uint64_t size = sme->sme_run;
423 uint64_t txg = sme->sme_txg;
424
425 if (sme->sme_type == SM_ALLOC) {
426 if (zfs_range_tree_contains(mv->mv_allocated,
427 offset, size)) {
428 (void) printf("ERROR: DOUBLE ALLOC: "
429 "%llu [%llx:%llx] "
430 "%llu:%llu LOG_SM\n",
431 (u_longlong_t)txg, (u_longlong_t)offset,
432 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
433 (u_longlong_t)mv->mv_msid);
434 corruption_found = B_TRUE;
435 } else {
436 zfs_range_tree_add(mv->mv_allocated,
437 offset, size);
438 }
439 } else {
440 if (!zfs_range_tree_contains(mv->mv_allocated,
441 offset, size)) {
442 (void) printf("ERROR: DOUBLE FREE: "
443 "%llu [%llx:%llx] "
444 "%llu:%llu LOG_SM\n",
445 (u_longlong_t)txg, (u_longlong_t)offset,
446 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
447 (u_longlong_t)mv->mv_msid);
448 corruption_found = B_TRUE;
449 } else {
450 zfs_range_tree_remove(mv->mv_allocated,
451 offset, size);
452 }
453 }
454
455 if (sme->sme_type != SM_ALLOC) {
456 /*
457 * If something is freed in the spacemap, verify that
458 * it is not listed as allocated in the livelist.
459 */
460 verify_livelist_allocs(mv, txg, offset, size);
461 }
462 return (0);
463 }
464
465 static int
spacemap_check_sm_log_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)466 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
467 uint64_t txg, void *arg)
468 {
469 metaslab_verify_t *mv = arg;
470 uint64_t offset = sme->sme_offset;
471 uint64_t vdev_id = sme->sme_vdev;
472
473 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
474
475 /* skip indirect vdevs */
476 if (!vdev_is_concrete(vd))
477 return (0);
478
479 if (vdev_id != mv->mv_vdid)
480 return (0);
481
482 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
483 if (ms->ms_id != mv->mv_msid)
484 return (0);
485
486 if (txg < metaslab_unflushed_txg(ms))
487 return (0);
488
489
490 ASSERT3U(txg, ==, sme->sme_txg);
491 return (metaslab_spacemap_validation_cb(sme, mv));
492 }
493
494 static void
spacemap_check_sm_log(spa_t * spa,metaslab_verify_t * mv)495 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
496 {
497 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
498 }
499
500 static void
spacemap_check_ms_sm(space_map_t * sm,metaslab_verify_t * mv)501 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
502 {
503 if (sm == NULL)
504 return;
505
506 VERIFY0(space_map_iterate(sm, space_map_length(sm),
507 metaslab_spacemap_validation_cb, mv));
508 }
509
510 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
511
512 /*
513 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
514 * they are part of that metaslab (mv_msid).
515 */
516 static void
mv_populate_livelist_allocs(metaslab_verify_t * mv,sublivelist_verify_t * sv)517 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
518 {
519 zfs_btree_index_t where;
520 sublivelist_verify_block_t *svb;
521 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
522 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
523 svb != NULL;
524 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
525 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
526 continue;
527
528 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
529 (DVA_GET_OFFSET(&svb->svb_dva) +
530 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
531 (void) printf("ERROR: Found block that crosses "
532 "metaslab boundary: <%llu:%llx:%llx>\n",
533 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
534 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
535 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
536 corruption_found = B_TRUE;
537 continue;
538 }
539
540 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
541 continue;
542
543 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
544 continue;
545
546 if ((DVA_GET_OFFSET(&svb->svb_dva) +
547 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
548 (void) printf("ERROR: Found block that crosses "
549 "metaslab boundary: <%llu:%llx:%llx>\n",
550 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
551 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
552 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
553 corruption_found = B_TRUE;
554 continue;
555 }
556
557 zfs_btree_add(&mv->mv_livelist_allocs, svb);
558 }
559
560 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
561 svb != NULL;
562 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
563 zfs_btree_remove(&sv->sv_leftover, svb);
564 }
565 }
566
567 /*
568 * [Livelist Check]
569 * Iterate through all the sublivelists and:
570 * - report leftover frees (**)
571 * - record leftover ALLOCs together with their TXG [see Cross Check]
572 *
573 * (**) Note: Double ALLOCs are valid in datasets that have dedup
574 * enabled. Similarly double FREEs are allowed as well but
575 * only if they pair up with a corresponding ALLOC entry once
576 * we our done with our sublivelist iteration.
577 *
578 * [Spacemap Check]
579 * for each metaslab:
580 * - iterate over spacemap and then the metaslab's entries in the
581 * spacemap log, then report any double FREEs and ALLOCs (do not
582 * blow up).
583 *
584 * [Cross Check]
585 * After finishing the Livelist Check phase and while being in the
586 * Spacemap Check phase, we find all the recorded leftover ALLOCs
587 * of the livelist check that are part of the metaslab that we are
588 * currently looking at in the Spacemap Check. We report any entries
589 * that are marked as ALLOCs in the livelists but have been actually
590 * freed (and potentially allocated again) after their TXG stamp in
591 * the spacemaps. Also report any ALLOCs from the livelists that
592 * belong to indirect vdevs (e.g. their vdev completed removal).
593 *
594 * Note that this will miss Log Spacemap entries that cancelled each other
595 * out before being flushed to the metaslab, so we are not guaranteed
596 * to match all erroneous ALLOCs.
597 */
598 static void
livelist_metaslab_validate(spa_t * spa)599 livelist_metaslab_validate(spa_t *spa)
600 {
601 (void) printf("Verifying deleted livelist entries\n");
602
603 sublivelist_verify_t sv;
604 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
605 sizeof (sublivelist_verify_block_t));
606 iterate_deleted_livelists(spa, livelist_verify, &sv);
607
608 (void) printf("Verifying metaslab entries\n");
609 vdev_t *rvd = spa->spa_root_vdev;
610 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
611 vdev_t *vd = rvd->vdev_child[c];
612
613 if (!vdev_is_concrete(vd))
614 continue;
615
616 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
617 metaslab_t *m = vd->vdev_ms[mid];
618
619 (void) fprintf(stderr,
620 "\rverifying concrete vdev %llu, "
621 "metaslab %llu of %llu ...",
622 (longlong_t)vd->vdev_id,
623 (longlong_t)mid,
624 (longlong_t)vd->vdev_ms_count);
625
626 uint64_t shift, start;
627 zfs_range_seg_type_t type =
628 metaslab_calculate_range_tree_type(vd, m,
629 &start, &shift);
630 metaslab_verify_t mv;
631 mv.mv_allocated = zfs_range_tree_create_flags(
632 NULL, type, NULL, start, shift,
633 0, "livelist_metaslab_validate:mv_allocated");
634 mv.mv_vdid = vd->vdev_id;
635 mv.mv_msid = m->ms_id;
636 mv.mv_start = m->ms_start;
637 mv.mv_end = m->ms_start + m->ms_size;
638 zfs_btree_create(&mv.mv_livelist_allocs,
639 livelist_block_compare, NULL,
640 sizeof (sublivelist_verify_block_t));
641
642 mv_populate_livelist_allocs(&mv, &sv);
643
644 spacemap_check_ms_sm(m->ms_sm, &mv);
645 spacemap_check_sm_log(spa, &mv);
646
647 zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL);
648 zfs_range_tree_destroy(mv.mv_allocated);
649 zfs_btree_clear(&mv.mv_livelist_allocs);
650 zfs_btree_destroy(&mv.mv_livelist_allocs);
651 }
652 }
653 (void) fprintf(stderr, "\n");
654
655 /*
656 * If there are any segments in the leftover tree after we walked
657 * through all the metaslabs in the concrete vdevs then this means
658 * that we have segments in the livelists that belong to indirect
659 * vdevs and are marked as allocated.
660 */
661 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
662 zfs_btree_destroy(&sv.sv_leftover);
663 return;
664 }
665 (void) printf("ERROR: Found livelist blocks marked as allocated "
666 "for indirect vdevs:\n");
667 corruption_found = B_TRUE;
668
669 zfs_btree_index_t *where = NULL;
670 sublivelist_verify_block_t *svb;
671 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
672 NULL) {
673 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
674 ASSERT3U(vdev_id, <, rvd->vdev_children);
675 vdev_t *vd = rvd->vdev_child[vdev_id];
676 ASSERT(!vdev_is_concrete(vd));
677 (void) printf("<%d:%llx:%llx> TXG %llx\n",
678 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
679 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
680 (u_longlong_t)svb->svb_allocated_txg);
681 }
682 (void) printf("\n");
683 zfs_btree_destroy(&sv.sv_leftover);
684 }
685
686 /*
687 * These libumem hooks provide a reasonable set of defaults for the allocator's
688 * debugging facilities.
689 */
690 const char *
_umem_debug_init(void)691 _umem_debug_init(void)
692 {
693 return ("default,verbose"); /* $UMEM_DEBUG setting */
694 }
695
696 const char *
_umem_logging_init(void)697 _umem_logging_init(void)
698 {
699 return ("fail,contents"); /* $UMEM_LOGGING setting */
700 }
701
702 static void
usage(void)703 usage(void)
704 {
705 (void) fprintf(stderr,
706 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
707 "[-I <inflight I/Os>]\n"
708 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
709 "\t\t[-K <key>]\n"
710 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
711 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
712 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
713 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
714 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
715 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
716 "\t%s [-v] <bookmark>\n"
717 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
718 "\t%s -l [-Aqu] <device>\n"
719 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
720 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
721 "\t%s -O [-K <key>] <dataset> <path>\n"
722 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
723 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
724 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
725 "\t%s -E [-A] word0:word1:...:word15\n"
726 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
727 "<poolname>\n\n",
728 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
729 cmdname, cmdname, cmdname, cmdname, cmdname);
730
731 (void) fprintf(stderr, " Dataset name must include at least one "
732 "separator character '/' or '@'\n");
733 (void) fprintf(stderr, " If dataset name is specified, only that "
734 "dataset is dumped\n");
735 (void) fprintf(stderr, " If object numbers or object number "
736 "ranges are specified, only those\n"
737 " objects or ranges are dumped.\n\n");
738 (void) fprintf(stderr,
739 " Object ranges take the form <start>:<end>[:<flags>]\n"
740 " start Starting object number\n"
741 " end Ending object number, or -1 for no upper bound\n"
742 " flags Optional flags to select object types:\n"
743 " A All objects (this is the default)\n"
744 " d ZFS directories\n"
745 " f ZFS files \n"
746 " m SPA space maps\n"
747 " z ZAPs\n"
748 " - Negate effect of next flag\n\n");
749 (void) fprintf(stderr, " Options to control amount of output:\n");
750 (void) fprintf(stderr, " -b --block-stats "
751 "block statistics\n");
752 (void) fprintf(stderr, " -B --backup "
753 "backup stream\n");
754 (void) fprintf(stderr, " -c --checksum "
755 "checksum all metadata (twice for all data) blocks\n");
756 (void) fprintf(stderr, " -C --config "
757 "config (or cachefile if alone)\n");
758 (void) fprintf(stderr, " -d --datasets "
759 "dataset(s)\n");
760 (void) fprintf(stderr, " -D --dedup-stats "
761 "dedup statistics\n");
762 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
763 " decode and display block "
764 "from an embedded block pointer\n");
765 (void) fprintf(stderr, " -h --history "
766 "pool history\n");
767 (void) fprintf(stderr, " -i --intent-logs "
768 "intent logs\n");
769 (void) fprintf(stderr, " -l --label "
770 "read label contents\n");
771 (void) fprintf(stderr, " -k --checkpointed-state "
772 "examine the checkpointed state of the pool\n");
773 (void) fprintf(stderr, " -L --disable-leak-tracking "
774 "disable leak tracking (do not load spacemaps)\n");
775 (void) fprintf(stderr, " -m --metaslabs "
776 "metaslabs\n");
777 (void) fprintf(stderr, " -M --metaslab-groups "
778 "metaslab groups\n");
779 (void) fprintf(stderr, " -O --object-lookups "
780 "perform object lookups by path\n");
781 (void) fprintf(stderr, " -r --copy-object "
782 "copy an object by path to file\n");
783 (void) fprintf(stderr, " -R --read-block "
784 "read and display block from a device\n");
785 (void) fprintf(stderr, " -s --io-stats "
786 "report stats on zdb's I/O\n");
787 (void) fprintf(stderr, " -S --simulate-dedup "
788 "simulate dedup to measure effect\n");
789 (void) fprintf(stderr, " -v --verbose "
790 "verbose (applies to all others)\n");
791 (void) fprintf(stderr, " -y --livelist "
792 "perform livelist and metaslab validation on any livelists being "
793 "deleted\n\n");
794 (void) fprintf(stderr, " Below options are intended for use "
795 "with other options:\n");
796 (void) fprintf(stderr, " -A --ignore-assertions "
797 "ignore assertions (-A), enable panic recovery (-AA) or both "
798 "(-AAA)\n");
799 (void) fprintf(stderr, " -e --exported "
800 "pool is exported/destroyed/has altroot/not in a cachefile\n");
801 (void) fprintf(stderr, " -F --automatic-rewind "
802 "attempt automatic rewind within safe range of transaction "
803 "groups\n");
804 (void) fprintf(stderr, " -G --dump-debug-msg "
805 "dump zfs_dbgmsg buffer before exiting\n");
806 (void) fprintf(stderr, " -I --inflight=INTEGER "
807 "specify the maximum number of checksumming I/Os "
808 "[default is 200]\n");
809 (void) fprintf(stderr, " -K --key=KEY "
810 "decryption key for encrypted dataset\n");
811 (void) fprintf(stderr, " -o --option=\"NAME=VALUE\" "
812 "set the named tunable to the given value\n");
813 (void) fprintf(stderr, " -p --path==PATH "
814 "use one or more with -e to specify path to vdev dir\n");
815 (void) fprintf(stderr, " -P --parseable "
816 "print numbers in parseable form\n");
817 (void) fprintf(stderr, " -q --skip-label "
818 "don't print label contents\n");
819 (void) fprintf(stderr, " -t --txg=INTEGER "
820 "highest txg to use when searching for uberblocks\n");
821 (void) fprintf(stderr, " -T --brt-stats "
822 "BRT statistics\n");
823 (void) fprintf(stderr, " -u --uberblock "
824 "uberblock\n");
825 (void) fprintf(stderr, " -U --cachefile=PATH "
826 "use alternate cachefile\n");
827 (void) fprintf(stderr, " -V --verbatim "
828 "do verbatim import\n");
829 (void) fprintf(stderr, " -x --dump-blocks=PATH "
830 "dump all read blocks into specified directory\n");
831 (void) fprintf(stderr, " -X --extreme-rewind "
832 "attempt extreme rewind (does not work with dataset)\n");
833 (void) fprintf(stderr, " -Y --all-reconstruction "
834 "attempt all reconstruction combinations for split blocks\n");
835 (void) fprintf(stderr, " -Z --zstd-headers "
836 "show ZSTD headers \n");
837 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
838 "to make only that option verbose\n");
839 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
840 zdb_exit(2);
841 }
842
843 static void
dump_debug_buffer(void)844 dump_debug_buffer(void)
845 {
846 ssize_t ret __attribute__((unused));
847
848 if (!dump_opt['G'])
849 return;
850 /*
851 * We use write() instead of printf() so that this function
852 * is safe to call from a signal handler.
853 */
854 ret = write(STDERR_FILENO, "\n", 1);
855 zfs_dbgmsg_print(STDERR_FILENO, "zdb");
856 }
857
sig_handler(int signo)858 static void sig_handler(int signo)
859 {
860 struct sigaction action;
861
862 libspl_backtrace(STDERR_FILENO);
863 dump_debug_buffer();
864
865 /*
866 * Restore default action and re-raise signal so SIGSEGV and
867 * SIGABRT can trigger a core dump.
868 */
869 action.sa_handler = SIG_DFL;
870 sigemptyset(&action.sa_mask);
871 action.sa_flags = 0;
872 (void) sigaction(signo, &action, NULL);
873 raise(signo);
874 }
875
876 /*
877 * Called for usage errors that are discovered after a call to spa_open(),
878 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
879 */
880
881 static void
fatal(const char * fmt,...)882 fatal(const char *fmt, ...)
883 {
884 va_list ap;
885
886 va_start(ap, fmt);
887 (void) fprintf(stderr, "%s: ", cmdname);
888 (void) vfprintf(stderr, fmt, ap);
889 va_end(ap);
890 (void) fprintf(stderr, "\n");
891
892 dump_debug_buffer();
893
894 zdb_exit(1);
895 }
896
897 static void
dump_packed_nvlist(objset_t * os,uint64_t object,void * data,size_t size)898 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
899 {
900 (void) size;
901 nvlist_t *nv;
902 size_t nvsize = *(uint64_t *)data;
903 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
904
905 VERIFY0(dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
906
907 VERIFY0(nvlist_unpack(packed, nvsize, &nv, 0));
908
909 umem_free(packed, nvsize);
910
911 dump_nvlist(nv, 8);
912
913 nvlist_free(nv);
914 }
915
916 static void
dump_history_offsets(objset_t * os,uint64_t object,void * data,size_t size)917 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
918 {
919 (void) os, (void) object, (void) size;
920 spa_history_phys_t *shp = data;
921
922 if (shp == NULL)
923 return;
924
925 (void) printf("\t\tpool_create_len = %llu\n",
926 (u_longlong_t)shp->sh_pool_create_len);
927 (void) printf("\t\tphys_max_off = %llu\n",
928 (u_longlong_t)shp->sh_phys_max_off);
929 (void) printf("\t\tbof = %llu\n",
930 (u_longlong_t)shp->sh_bof);
931 (void) printf("\t\teof = %llu\n",
932 (u_longlong_t)shp->sh_eof);
933 (void) printf("\t\trecords_lost = %llu\n",
934 (u_longlong_t)shp->sh_records_lost);
935 }
936
937 static void
zdb_nicenum(uint64_t num,char * buf,size_t buflen)938 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
939 {
940 if (dump_opt['P'])
941 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
942 else
943 nicenum(num, buf, buflen);
944 }
945
946 static void
zdb_nicebytes(uint64_t bytes,char * buf,size_t buflen)947 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
948 {
949 if (dump_opt['P'])
950 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
951 else
952 zfs_nicebytes(bytes, buf, buflen);
953 }
954
955 static const char histo_stars[] = "****************************************";
956 static const uint64_t histo_width = sizeof (histo_stars) - 1;
957
958 static void
dump_histogram(const uint64_t * histo,int size,int offset)959 dump_histogram(const uint64_t *histo, int size, int offset)
960 {
961 int i;
962 int minidx = size - 1;
963 int maxidx = 0;
964 uint64_t max = 0;
965
966 for (i = 0; i < size; i++) {
967 if (histo[i] == 0)
968 continue;
969 if (histo[i] > max)
970 max = histo[i];
971 if (i > maxidx)
972 maxidx = i;
973 if (i < minidx)
974 minidx = i;
975 }
976
977 if (max < histo_width)
978 max = histo_width;
979
980 for (i = minidx; i <= maxidx; i++) {
981 (void) printf("\t\t\t%3u: %6llu %s\n",
982 i + offset, (u_longlong_t)histo[i],
983 &histo_stars[(max - histo[i]) * histo_width / max]);
984 }
985 }
986
987 static void
dump_zap_stats(objset_t * os,uint64_t object)988 dump_zap_stats(objset_t *os, uint64_t object)
989 {
990 int error;
991 zap_stats_t zs;
992
993 error = zap_get_stats(os, object, &zs);
994 if (error)
995 return;
996
997 if (zs.zs_ptrtbl_len == 0) {
998 ASSERT(zs.zs_num_blocks == 1);
999 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1000 (u_longlong_t)zs.zs_blocksize,
1001 (u_longlong_t)zs.zs_num_entries);
1002 return;
1003 }
1004
1005 (void) printf("\tFat ZAP stats:\n");
1006
1007 (void) printf("\t\tPointer table:\n");
1008 (void) printf("\t\t\t%llu elements\n",
1009 (u_longlong_t)zs.zs_ptrtbl_len);
1010 (void) printf("\t\t\tzt_blk: %llu\n",
1011 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1012 (void) printf("\t\t\tzt_numblks: %llu\n",
1013 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1014 (void) printf("\t\t\tzt_shift: %llu\n",
1015 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1016 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1017 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1018 (void) printf("\t\t\tzt_nextblk: %llu\n",
1019 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1020
1021 (void) printf("\t\tZAP entries: %llu\n",
1022 (u_longlong_t)zs.zs_num_entries);
1023 (void) printf("\t\tLeaf blocks: %llu\n",
1024 (u_longlong_t)zs.zs_num_leafs);
1025 (void) printf("\t\tTotal blocks: %llu\n",
1026 (u_longlong_t)zs.zs_num_blocks);
1027 (void) printf("\t\tzap_block_type: 0x%llx\n",
1028 (u_longlong_t)zs.zs_block_type);
1029 (void) printf("\t\tzap_magic: 0x%llx\n",
1030 (u_longlong_t)zs.zs_magic);
1031 (void) printf("\t\tzap_salt: 0x%llx\n",
1032 (u_longlong_t)zs.zs_salt);
1033
1034 (void) printf("\t\tLeafs with 2^n pointers:\n");
1035 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1036
1037 (void) printf("\t\tBlocks with n*5 entries:\n");
1038 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1039
1040 (void) printf("\t\tBlocks n/10 full:\n");
1041 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1042
1043 (void) printf("\t\tEntries with n chunks:\n");
1044 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1045
1046 (void) printf("\t\tBuckets with n entries:\n");
1047 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1048 }
1049
1050 static void
dump_none(objset_t * os,uint64_t object,void * data,size_t size)1051 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1052 {
1053 (void) os, (void) object, (void) data, (void) size;
1054 }
1055
1056 static void
dump_unknown(objset_t * os,uint64_t object,void * data,size_t size)1057 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1058 {
1059 (void) os, (void) object, (void) data, (void) size;
1060 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1061 }
1062
1063 static void
dump_uint8(objset_t * os,uint64_t object,void * data,size_t size)1064 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1065 {
1066 (void) os, (void) object, (void) data, (void) size;
1067 }
1068
1069 static void
dump_uint64(objset_t * os,uint64_t object,void * data,size_t size)1070 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1071 {
1072 uint64_t *arr;
1073 uint64_t oursize;
1074 if (dump_opt['d'] < 6)
1075 return;
1076
1077 if (data == NULL) {
1078 dmu_object_info_t doi;
1079
1080 VERIFY0(dmu_object_info(os, object, &doi));
1081 size = doi.doi_max_offset;
1082 /*
1083 * We cap the size at 1 mebibyte here to prevent
1084 * allocation failures and nigh-infinite printing if the
1085 * object is extremely large.
1086 */
1087 oursize = MIN(size, 1 << 20);
1088 arr = kmem_alloc(oursize, KM_SLEEP);
1089
1090 int err = dmu_read(os, object, 0, oursize, arr, 0);
1091 if (err != 0) {
1092 (void) printf("got error %u from dmu_read\n", err);
1093 kmem_free(arr, oursize);
1094 return;
1095 }
1096 } else {
1097 /*
1098 * Even though the allocation is already done in this code path,
1099 * we still cap the size to prevent excessive printing.
1100 */
1101 oursize = MIN(size, 1 << 20);
1102 arr = data;
1103 }
1104
1105 if (size == 0) {
1106 if (data == NULL)
1107 kmem_free(arr, oursize);
1108 (void) printf("\t\t[]\n");
1109 return;
1110 }
1111
1112 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1113 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1114 if (i % 4 != 0)
1115 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1116 else
1117 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1118 }
1119 if (oursize != size)
1120 (void) printf(", ... ");
1121 (void) printf("]\n");
1122
1123 if (data == NULL)
1124 kmem_free(arr, oursize);
1125 }
1126
1127 static void
dump_zap(objset_t * os,uint64_t object,void * data,size_t size)1128 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1129 {
1130 (void) data, (void) size;
1131 zap_cursor_t zc;
1132 zap_attribute_t *attrp = zap_attribute_long_alloc();
1133 void *prop;
1134 unsigned i;
1135
1136 dump_zap_stats(os, object);
1137 (void) printf("\n");
1138
1139 for (zap_cursor_init(&zc, os, object);
1140 zap_cursor_retrieve(&zc, attrp) == 0;
1141 zap_cursor_advance(&zc)) {
1142 boolean_t key64 =
1143 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1144
1145 if (key64)
1146 (void) printf("\t\t0x%010" PRIu64 "x = ",
1147 *(uint64_t *)attrp->za_name);
1148 else
1149 (void) printf("\t\t%s = ", attrp->za_name);
1150
1151 if (attrp->za_num_integers == 0) {
1152 (void) printf("\n");
1153 continue;
1154 }
1155 prop = umem_zalloc(attrp->za_num_integers *
1156 attrp->za_integer_length, UMEM_NOFAIL);
1157
1158 if (key64)
1159 (void) zap_lookup_uint64(os, object,
1160 (const uint64_t *)attrp->za_name, 1,
1161 attrp->za_integer_length, attrp->za_num_integers,
1162 prop);
1163 else
1164 (void) zap_lookup(os, object, attrp->za_name,
1165 attrp->za_integer_length, attrp->za_num_integers,
1166 prop);
1167
1168 if (attrp->za_integer_length == 1 && !key64) {
1169 if (strcmp(attrp->za_name,
1170 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1171 strcmp(attrp->za_name,
1172 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1173 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1174 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1175 strcmp(attrp->za_name,
1176 DMU_POOL_CHECKSUM_SALT) == 0) {
1177 uint8_t *u8 = prop;
1178
1179 for (i = 0; i < attrp->za_num_integers; i++) {
1180 (void) printf("%02x", u8[i]);
1181 }
1182 } else {
1183 (void) printf("%s", (char *)prop);
1184 }
1185 } else {
1186 for (i = 0; i < attrp->za_num_integers; i++) {
1187 switch (attrp->za_integer_length) {
1188 case 1:
1189 (void) printf("%u ",
1190 ((uint8_t *)prop)[i]);
1191 break;
1192 case 2:
1193 (void) printf("%u ",
1194 ((uint16_t *)prop)[i]);
1195 break;
1196 case 4:
1197 (void) printf("%u ",
1198 ((uint32_t *)prop)[i]);
1199 break;
1200 case 8:
1201 (void) printf("%lld ",
1202 (u_longlong_t)((int64_t *)prop)[i]);
1203 break;
1204 }
1205 }
1206 }
1207 (void) printf("\n");
1208 umem_free(prop,
1209 attrp->za_num_integers * attrp->za_integer_length);
1210 }
1211 zap_cursor_fini(&zc);
1212 zap_attribute_free(attrp);
1213 }
1214
1215 static void
dump_bpobj(objset_t * os,uint64_t object,void * data,size_t size)1216 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1217 {
1218 bpobj_phys_t *bpop = data;
1219 uint64_t i;
1220 char bytes[32], comp[32], uncomp[32];
1221
1222 /* make sure the output won't get truncated */
1223 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1224 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1225 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1226
1227 if (bpop == NULL)
1228 return;
1229
1230 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1231 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1232 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1233
1234 (void) printf("\t\tnum_blkptrs = %llu\n",
1235 (u_longlong_t)bpop->bpo_num_blkptrs);
1236 (void) printf("\t\tbytes = %s\n", bytes);
1237 if (size >= BPOBJ_SIZE_V1) {
1238 (void) printf("\t\tcomp = %s\n", comp);
1239 (void) printf("\t\tuncomp = %s\n", uncomp);
1240 }
1241 if (size >= BPOBJ_SIZE_V2) {
1242 (void) printf("\t\tsubobjs = %llu\n",
1243 (u_longlong_t)bpop->bpo_subobjs);
1244 (void) printf("\t\tnum_subobjs = %llu\n",
1245 (u_longlong_t)bpop->bpo_num_subobjs);
1246 }
1247 if (size >= sizeof (*bpop)) {
1248 (void) printf("\t\tnum_freed = %llu\n",
1249 (u_longlong_t)bpop->bpo_num_freed);
1250 }
1251
1252 if (dump_opt['d'] < 5)
1253 return;
1254
1255 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1256 char blkbuf[BP_SPRINTF_LEN];
1257 blkptr_t bp;
1258
1259 int err = dmu_read(os, object,
1260 i * sizeof (bp), sizeof (bp), &bp, 0);
1261 if (err != 0) {
1262 (void) printf("got error %u from dmu_read\n", err);
1263 break;
1264 }
1265 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1266 BP_GET_FREE(&bp));
1267 (void) printf("\t%s\n", blkbuf);
1268 }
1269 }
1270
1271 static void
dump_bpobj_subobjs(objset_t * os,uint64_t object,void * data,size_t size)1272 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1273 {
1274 (void) data, (void) size;
1275 dmu_object_info_t doi;
1276 int64_t i;
1277
1278 VERIFY0(dmu_object_info(os, object, &doi));
1279 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1280
1281 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1282 if (err != 0) {
1283 (void) printf("got error %u from dmu_read\n", err);
1284 kmem_free(subobjs, doi.doi_max_offset);
1285 return;
1286 }
1287
1288 int64_t last_nonzero = -1;
1289 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1290 if (subobjs[i] != 0)
1291 last_nonzero = i;
1292 }
1293
1294 for (i = 0; i <= last_nonzero; i++) {
1295 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1296 }
1297 kmem_free(subobjs, doi.doi_max_offset);
1298 }
1299
1300 static void
dump_ddt_zap(objset_t * os,uint64_t object,void * data,size_t size)1301 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1302 {
1303 (void) data, (void) size;
1304 dump_zap_stats(os, object);
1305 /* contents are printed elsewhere, properly decoded */
1306 }
1307
1308 static void
dump_sa_attrs(objset_t * os,uint64_t object,void * data,size_t size)1309 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1310 {
1311 (void) data, (void) size;
1312 zap_cursor_t zc;
1313 zap_attribute_t *attrp = zap_attribute_alloc();
1314
1315 dump_zap_stats(os, object);
1316 (void) printf("\n");
1317
1318 for (zap_cursor_init(&zc, os, object);
1319 zap_cursor_retrieve(&zc, attrp) == 0;
1320 zap_cursor_advance(&zc)) {
1321 (void) printf("\t\t%s = ", attrp->za_name);
1322 if (attrp->za_num_integers == 0) {
1323 (void) printf("\n");
1324 continue;
1325 }
1326 (void) printf(" %llx : [%d:%d:%d]\n",
1327 (u_longlong_t)attrp->za_first_integer,
1328 (int)ATTR_LENGTH(attrp->za_first_integer),
1329 (int)ATTR_BSWAP(attrp->za_first_integer),
1330 (int)ATTR_NUM(attrp->za_first_integer));
1331 }
1332 zap_cursor_fini(&zc);
1333 zap_attribute_free(attrp);
1334 }
1335
1336 static void
dump_sa_layouts(objset_t * os,uint64_t object,void * data,size_t size)1337 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1338 {
1339 (void) data, (void) size;
1340 zap_cursor_t zc;
1341 zap_attribute_t *attrp = zap_attribute_alloc();
1342 uint16_t *layout_attrs;
1343 unsigned i;
1344
1345 dump_zap_stats(os, object);
1346 (void) printf("\n");
1347
1348 for (zap_cursor_init(&zc, os, object);
1349 zap_cursor_retrieve(&zc, attrp) == 0;
1350 zap_cursor_advance(&zc)) {
1351 (void) printf("\t\t%s = [", attrp->za_name);
1352 if (attrp->za_num_integers == 0) {
1353 (void) printf("\n");
1354 continue;
1355 }
1356
1357 VERIFY(attrp->za_integer_length == 2);
1358 layout_attrs = umem_zalloc(attrp->za_num_integers *
1359 attrp->za_integer_length, UMEM_NOFAIL);
1360
1361 VERIFY(zap_lookup(os, object, attrp->za_name,
1362 attrp->za_integer_length,
1363 attrp->za_num_integers, layout_attrs) == 0);
1364
1365 for (i = 0; i != attrp->za_num_integers; i++)
1366 (void) printf(" %d ", (int)layout_attrs[i]);
1367 (void) printf("]\n");
1368 umem_free(layout_attrs,
1369 attrp->za_num_integers * attrp->za_integer_length);
1370 }
1371 zap_cursor_fini(&zc);
1372 zap_attribute_free(attrp);
1373 }
1374
1375 static void
dump_zpldir(objset_t * os,uint64_t object,void * data,size_t size)1376 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1377 {
1378 (void) data, (void) size;
1379 zap_cursor_t zc;
1380 zap_attribute_t *attrp = zap_attribute_long_alloc();
1381 const char *typenames[] = {
1382 /* 0 */ "not specified",
1383 /* 1 */ "FIFO",
1384 /* 2 */ "Character Device",
1385 /* 3 */ "3 (invalid)",
1386 /* 4 */ "Directory",
1387 /* 5 */ "5 (invalid)",
1388 /* 6 */ "Block Device",
1389 /* 7 */ "7 (invalid)",
1390 /* 8 */ "Regular File",
1391 /* 9 */ "9 (invalid)",
1392 /* 10 */ "Symbolic Link",
1393 /* 11 */ "11 (invalid)",
1394 /* 12 */ "Socket",
1395 /* 13 */ "Door",
1396 /* 14 */ "Event Port",
1397 /* 15 */ "15 (invalid)",
1398 };
1399
1400 dump_zap_stats(os, object);
1401 (void) printf("\n");
1402
1403 for (zap_cursor_init(&zc, os, object);
1404 zap_cursor_retrieve(&zc, attrp) == 0;
1405 zap_cursor_advance(&zc)) {
1406 (void) printf("\t\t%s = %lld (type: %s)\n",
1407 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1408 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1409 }
1410 zap_cursor_fini(&zc);
1411 zap_attribute_free(attrp);
1412 }
1413
1414 static int
get_dtl_refcount(vdev_t * vd)1415 get_dtl_refcount(vdev_t *vd)
1416 {
1417 int refcount = 0;
1418
1419 if (vd->vdev_ops->vdev_op_leaf) {
1420 space_map_t *sm = vd->vdev_dtl_sm;
1421
1422 if (sm != NULL &&
1423 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1424 return (1);
1425 return (0);
1426 }
1427
1428 for (unsigned c = 0; c < vd->vdev_children; c++)
1429 refcount += get_dtl_refcount(vd->vdev_child[c]);
1430 return (refcount);
1431 }
1432
1433 static int
get_metaslab_refcount(vdev_t * vd)1434 get_metaslab_refcount(vdev_t *vd)
1435 {
1436 int refcount = 0;
1437
1438 if (vd->vdev_top == vd) {
1439 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1440 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1441
1442 if (sm != NULL &&
1443 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1444 refcount++;
1445 }
1446 }
1447 for (unsigned c = 0; c < vd->vdev_children; c++)
1448 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1449
1450 return (refcount);
1451 }
1452
1453 static int
get_obsolete_refcount(vdev_t * vd)1454 get_obsolete_refcount(vdev_t *vd)
1455 {
1456 uint64_t obsolete_sm_object;
1457 int refcount = 0;
1458
1459 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1460 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1461 dmu_object_info_t doi;
1462 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1463 obsolete_sm_object, &doi));
1464 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1465 refcount++;
1466 }
1467 } else {
1468 ASSERT0P(vd->vdev_obsolete_sm);
1469 ASSERT0(obsolete_sm_object);
1470 }
1471 for (unsigned c = 0; c < vd->vdev_children; c++) {
1472 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1473 }
1474
1475 return (refcount);
1476 }
1477
1478 static int
get_prev_obsolete_spacemap_refcount(spa_t * spa)1479 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1480 {
1481 uint64_t prev_obj =
1482 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1483 if (prev_obj != 0) {
1484 dmu_object_info_t doi;
1485 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1486 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1487 return (1);
1488 }
1489 }
1490 return (0);
1491 }
1492
1493 static int
get_checkpoint_refcount(vdev_t * vd)1494 get_checkpoint_refcount(vdev_t *vd)
1495 {
1496 int refcount = 0;
1497
1498 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1499 zap_contains(spa_meta_objset(vd->vdev_spa),
1500 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1501 refcount++;
1502
1503 for (uint64_t c = 0; c < vd->vdev_children; c++)
1504 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1505
1506 return (refcount);
1507 }
1508
1509 static int
get_log_spacemap_refcount(spa_t * spa)1510 get_log_spacemap_refcount(spa_t *spa)
1511 {
1512 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1513 }
1514
1515 static int
verify_spacemap_refcounts(spa_t * spa)1516 verify_spacemap_refcounts(spa_t *spa)
1517 {
1518 uint64_t expected_refcount = 0;
1519 uint64_t actual_refcount;
1520
1521 (void) feature_get_refcount(spa,
1522 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1523 &expected_refcount);
1524 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1525 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1526 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1527 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1528 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1529 actual_refcount += get_log_spacemap_refcount(spa);
1530
1531 if (expected_refcount != actual_refcount) {
1532 (void) printf("space map refcount mismatch: expected %lld != "
1533 "actual %lld\n",
1534 (longlong_t)expected_refcount,
1535 (longlong_t)actual_refcount);
1536 return (2);
1537 }
1538 return (0);
1539 }
1540
1541 static void
dump_spacemap(objset_t * os,space_map_t * sm)1542 dump_spacemap(objset_t *os, space_map_t *sm)
1543 {
1544 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1545 "INVALID", "INVALID", "INVALID", "INVALID" };
1546
1547 if (sm == NULL)
1548 return;
1549
1550 (void) printf("space map object %llu:\n",
1551 (longlong_t)sm->sm_object);
1552 (void) printf(" smp_length = 0x%llx\n",
1553 (longlong_t)sm->sm_phys->smp_length);
1554 (void) printf(" smp_alloc = 0x%llx\n",
1555 (longlong_t)sm->sm_phys->smp_alloc);
1556
1557 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1558 return;
1559
1560 /*
1561 * Print out the freelist entries in both encoded and decoded form.
1562 */
1563 uint8_t mapshift = sm->sm_shift;
1564 int64_t alloc = 0;
1565 uint64_t word, entry_id = 0;
1566 for (uint64_t offset = 0; offset < space_map_length(sm);
1567 offset += sizeof (word)) {
1568
1569 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1570 sizeof (word), &word, DMU_READ_PREFETCH));
1571
1572 if (sm_entry_is_debug(word)) {
1573 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1574 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1575 if (de_txg == 0) {
1576 (void) printf(
1577 "\t [%6llu] PADDING\n",
1578 (u_longlong_t)entry_id);
1579 } else {
1580 (void) printf(
1581 "\t [%6llu] %s: txg %llu pass %llu\n",
1582 (u_longlong_t)entry_id,
1583 ddata[SM_DEBUG_ACTION_DECODE(word)],
1584 (u_longlong_t)de_txg,
1585 (u_longlong_t)de_sync_pass);
1586 }
1587 entry_id++;
1588 continue;
1589 }
1590
1591 char entry_type;
1592 uint64_t entry_off, entry_run, entry_vdev;
1593
1594 if (sm_entry_is_single_word(word)) {
1595 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1596 'A' : 'F';
1597 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1598 sm->sm_start;
1599 entry_run = SM_RUN_DECODE(word) << mapshift;
1600
1601 (void) printf("\t [%6llu] %c "
1602 "range: %012llx-%012llx size: %08llx\n",
1603 (u_longlong_t)entry_id, entry_type,
1604 (u_longlong_t)entry_off,
1605 (u_longlong_t)(entry_off + entry_run - 1),
1606 (u_longlong_t)entry_run);
1607 } else {
1608 /* it is a two-word entry so we read another word */
1609 ASSERT(sm_entry_is_double_word(word));
1610
1611 uint64_t extra_word;
1612 offset += sizeof (extra_word);
1613 ASSERT3U(offset, <, space_map_length(sm));
1614 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1615 sizeof (extra_word), &extra_word,
1616 DMU_READ_PREFETCH));
1617
1618 entry_run = SM2_RUN_DECODE(word) << mapshift;
1619 entry_vdev = SM2_VDEV_DECODE(word);
1620 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1621 'A' : 'F';
1622 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1623 mapshift) + sm->sm_start;
1624
1625 if (zopt_metaslab_args == 0 ||
1626 zopt_metaslab[0] == entry_vdev) {
1627 (void) printf("\t [%6llu] %c "
1628 "range: %012llx-%012llx size: %08llx "
1629 "vdev: %llu\n",
1630 (u_longlong_t)entry_id, entry_type,
1631 (u_longlong_t)entry_off,
1632 (u_longlong_t)(entry_off + entry_run - 1),
1633 (u_longlong_t)entry_run,
1634 (u_longlong_t)entry_vdev);
1635 }
1636 }
1637
1638 if (entry_type == 'A')
1639 alloc += entry_run;
1640 else
1641 alloc -= entry_run;
1642 entry_id++;
1643 }
1644 if (alloc != space_map_allocated(sm)) {
1645 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1646 "with space map summary (%lld)\n",
1647 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1648 }
1649 }
1650
1651 static void
dump_metaslab_stats(metaslab_t * msp)1652 dump_metaslab_stats(metaslab_t *msp)
1653 {
1654 char maxbuf[32];
1655 zfs_range_tree_t *rt = msp->ms_allocatable;
1656 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1657 int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1658
1659 /* max sure nicenum has enough space */
1660 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1661
1662 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1663
1664 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1665 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1666 "freepct", free_pct);
1667 (void) printf("\tIn-memory histogram:\n");
1668 dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1669 }
1670
1671 static void
dump_allocated(void * arg,uint64_t start,uint64_t size)1672 dump_allocated(void *arg, uint64_t start, uint64_t size)
1673 {
1674 uint64_t *off = arg;
1675 if (*off != start)
1676 (void) printf("ALLOC: %"PRIu64" %"PRIu64"\n", *off,
1677 start - *off);
1678 *off = start + size;
1679 }
1680
1681 static void
dump_metaslab(metaslab_t * msp)1682 dump_metaslab(metaslab_t *msp)
1683 {
1684 vdev_t *vd = msp->ms_group->mg_vd;
1685 spa_t *spa = vd->vdev_spa;
1686 space_map_t *sm = msp->ms_sm;
1687 char freebuf[32];
1688
1689 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1690 sizeof (freebuf));
1691
1692 (void) printf(
1693 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1694 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1695 (u_longlong_t)space_map_object(sm), freebuf);
1696
1697 if (dump_opt[ALLOCATED_OPT] ||
1698 (dump_opt['m'] > 2 && !dump_opt['L'])) {
1699 mutex_enter(&msp->ms_lock);
1700 VERIFY0(metaslab_load(msp));
1701 }
1702
1703 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1704 zfs_range_tree_stat_verify(msp->ms_allocatable);
1705 dump_metaslab_stats(msp);
1706 }
1707
1708 if (dump_opt[ALLOCATED_OPT]) {
1709 uint64_t off = msp->ms_start;
1710 zfs_range_tree_walk(msp->ms_allocatable, dump_allocated,
1711 &off);
1712 if (off != msp->ms_start + msp->ms_size)
1713 (void) printf("ALLOC: %"PRIu64" %"PRIu64"\n", off,
1714 msp->ms_size - off);
1715 }
1716
1717 if (dump_opt['m'] > 1 && sm != NULL &&
1718 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1719 /*
1720 * The space map histogram represents free space in chunks
1721 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1722 */
1723 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1724 (u_longlong_t)msp->ms_fragmentation);
1725 dump_histogram(sm->sm_phys->smp_histogram,
1726 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1727 }
1728
1729 if (dump_opt[ALLOCATED_OPT] ||
1730 (dump_opt['m'] > 2 && !dump_opt['L'])) {
1731 metaslab_unload(msp);
1732 mutex_exit(&msp->ms_lock);
1733 }
1734
1735 if (vd->vdev_ops == &vdev_draid_ops)
1736 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1737 else
1738 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1739
1740 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1741
1742 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1743 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1744 (u_longlong_t)metaslab_unflushed_txg(msp));
1745 }
1746 }
1747
1748 static void
print_vdev_metaslab_header(vdev_t * vd)1749 print_vdev_metaslab_header(vdev_t *vd)
1750 {
1751 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1752 const char *bias_str = "";
1753 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1754 bias_str = VDEV_ALLOC_BIAS_LOG;
1755 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1756 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1757 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1758 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1759 }
1760
1761 uint64_t ms_flush_data_obj = 0;
1762 if (vd->vdev_top_zap != 0) {
1763 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1764 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1765 sizeof (uint64_t), 1, &ms_flush_data_obj);
1766 if (error != ENOENT) {
1767 ASSERT0(error);
1768 }
1769 }
1770
1771 (void) printf("\tvdev %10llu\t%s metaslab shift %4llu",
1772 (u_longlong_t)vd->vdev_id, bias_str,
1773 (u_longlong_t)vd->vdev_ms_shift);
1774
1775 if (ms_flush_data_obj != 0) {
1776 (void) printf(" ms_unflushed_phys object %llu",
1777 (u_longlong_t)ms_flush_data_obj);
1778 }
1779
1780 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1781 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1782 "offset", "spacemap", "free");
1783 (void) printf("\t%15s %19s %15s %12s\n",
1784 "---------------", "-------------------",
1785 "---------------", "------------");
1786 }
1787
1788 static void
dump_metaslab_groups(spa_t * spa,boolean_t show_special)1789 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1790 {
1791 vdev_t *rvd = spa->spa_root_vdev;
1792 metaslab_class_t *mc = spa_normal_class(spa);
1793 metaslab_class_t *smc = spa_special_class(spa);
1794 uint64_t fragmentation;
1795
1796 metaslab_class_histogram_verify(mc);
1797
1798 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1799 vdev_t *tvd = rvd->vdev_child[c];
1800 metaslab_group_t *mg = tvd->vdev_mg;
1801
1802 if (mg == NULL || (mg->mg_class != mc &&
1803 (!show_special || mg->mg_class != smc)))
1804 continue;
1805
1806 metaslab_group_histogram_verify(mg);
1807 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1808
1809 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1810 "fragmentation",
1811 (u_longlong_t)tvd->vdev_id,
1812 (u_longlong_t)tvd->vdev_ms_count);
1813 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1814 (void) printf("%3s\n", "-");
1815 } else {
1816 (void) printf("%3llu%%\n",
1817 (u_longlong_t)mg->mg_fragmentation);
1818 }
1819 dump_histogram(mg->mg_histogram,
1820 ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1821 }
1822
1823 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1824 fragmentation = metaslab_class_fragmentation(mc);
1825 if (fragmentation == ZFS_FRAG_INVALID)
1826 (void) printf("\t%3s\n", "-");
1827 else
1828 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1829 dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1830 }
1831
1832 static void
print_vdev_indirect(vdev_t * vd)1833 print_vdev_indirect(vdev_t *vd)
1834 {
1835 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1836 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1837 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1838
1839 if (vim == NULL) {
1840 ASSERT0P(vib);
1841 return;
1842 }
1843
1844 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1845 vic->vic_mapping_object);
1846 ASSERT3U(vdev_indirect_births_object(vib), ==,
1847 vic->vic_births_object);
1848
1849 (void) printf("indirect births obj %llu:\n",
1850 (longlong_t)vic->vic_births_object);
1851 (void) printf(" vib_count = %llu\n",
1852 (longlong_t)vdev_indirect_births_count(vib));
1853 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1854 vdev_indirect_birth_entry_phys_t *cur_vibe =
1855 &vib->vib_entries[i];
1856 (void) printf("\toffset %llx -> txg %llu\n",
1857 (longlong_t)cur_vibe->vibe_offset,
1858 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1859 }
1860 (void) printf("\n");
1861
1862 (void) printf("indirect mapping obj %llu:\n",
1863 (longlong_t)vic->vic_mapping_object);
1864 (void) printf(" vim_max_offset = 0x%llx\n",
1865 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1866 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1867 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1868 (void) printf(" vim_count = %llu\n",
1869 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1870
1871 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1872 return;
1873
1874 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1875
1876 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1877 vdev_indirect_mapping_entry_phys_t *vimep =
1878 &vim->vim_entries[i];
1879 (void) printf("\t<%llx:%llx:%llx> -> "
1880 "<%llx:%llx:%llx> (%x obsolete)\n",
1881 (longlong_t)vd->vdev_id,
1882 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1883 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1884 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1885 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1886 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1887 counts[i]);
1888 }
1889 (void) printf("\n");
1890
1891 uint64_t obsolete_sm_object;
1892 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1893 if (obsolete_sm_object != 0) {
1894 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1895 (void) printf("obsolete space map object %llu:\n",
1896 (u_longlong_t)obsolete_sm_object);
1897 ASSERT(vd->vdev_obsolete_sm != NULL);
1898 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1899 obsolete_sm_object);
1900 dump_spacemap(mos, vd->vdev_obsolete_sm);
1901 (void) printf("\n");
1902 }
1903 }
1904
1905 static void
dump_metaslabs(spa_t * spa)1906 dump_metaslabs(spa_t *spa)
1907 {
1908 vdev_t *vd, *rvd = spa->spa_root_vdev;
1909 uint64_t m, c = 0, children = rvd->vdev_children;
1910
1911 (void) printf("\nMetaslabs:\n");
1912
1913 if (zopt_metaslab_args > 0) {
1914 c = zopt_metaslab[0];
1915
1916 if (c >= children)
1917 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1918
1919 if (zopt_metaslab_args > 1) {
1920 vd = rvd->vdev_child[c];
1921 print_vdev_metaslab_header(vd);
1922
1923 for (m = 1; m < zopt_metaslab_args; m++) {
1924 if (zopt_metaslab[m] < vd->vdev_ms_count)
1925 dump_metaslab(
1926 vd->vdev_ms[zopt_metaslab[m]]);
1927 else
1928 (void) fprintf(stderr, "bad metaslab "
1929 "number %llu\n",
1930 (u_longlong_t)zopt_metaslab[m]);
1931 }
1932 (void) printf("\n");
1933 return;
1934 }
1935 children = c + 1;
1936 }
1937 for (; c < children; c++) {
1938 vd = rvd->vdev_child[c];
1939 print_vdev_metaslab_header(vd);
1940
1941 print_vdev_indirect(vd);
1942
1943 for (m = 0; m < vd->vdev_ms_count; m++)
1944 dump_metaslab(vd->vdev_ms[m]);
1945 (void) printf("\n");
1946 }
1947 }
1948
1949 static void
dump_log_spacemaps(spa_t * spa)1950 dump_log_spacemaps(spa_t *spa)
1951 {
1952 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1953 return;
1954
1955 (void) printf("\nLog Space Maps in Pool:\n");
1956 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1957 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1958 space_map_t *sm = NULL;
1959 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1960 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1961
1962 (void) printf("Log Spacemap object %llu txg %llu\n",
1963 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1964 dump_spacemap(spa->spa_meta_objset, sm);
1965 space_map_close(sm);
1966 }
1967 (void) printf("\n");
1968 }
1969
1970 static void
dump_ddt_entry(const ddt_t * ddt,const ddt_lightweight_entry_t * ddlwe,uint64_t index)1971 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1972 uint64_t index)
1973 {
1974 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1975 char blkbuf[BP_SPRINTF_LEN];
1976 blkptr_t blk;
1977 int p;
1978
1979 for (p = 0; p < DDT_NPHYS(ddt); p++) {
1980 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1981 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1982
1983 if (ddt_phys_birth(ddp, v) == 0)
1984 continue;
1985 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1986 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1987 (void) printf("index %llx refcnt %llu phys %d %s\n",
1988 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
1989 p, blkbuf);
1990 }
1991 }
1992
1993 static void
dump_dedup_ratio(const ddt_stat_t * dds)1994 dump_dedup_ratio(const ddt_stat_t *dds)
1995 {
1996 double rL, rP, rD, D, dedup, compress, copies;
1997
1998 if (dds->dds_blocks == 0)
1999 return;
2000
2001 rL = (double)dds->dds_ref_lsize;
2002 rP = (double)dds->dds_ref_psize;
2003 rD = (double)dds->dds_ref_dsize;
2004 D = (double)dds->dds_dsize;
2005
2006 dedup = rD / D;
2007 compress = rL / rP;
2008 copies = rD / rP;
2009
2010 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
2011 "dedup * compress / copies = %.2f\n\n",
2012 dedup, compress, copies, dedup * compress / copies);
2013 }
2014
2015 static void
dump_ddt_log(ddt_t * ddt)2016 dump_ddt_log(ddt_t *ddt)
2017 {
2018 if (ddt->ddt_version != DDT_VERSION_FDT ||
2019 !(ddt->ddt_flags & DDT_FLAG_LOG))
2020 return;
2021
2022 for (int n = 0; n < 2; n++) {
2023 ddt_log_t *ddl = &ddt->ddt_log[n];
2024
2025 char flagstr[64] = {0};
2026 if (ddl->ddl_flags > 0) {
2027 flagstr[0] = ' ';
2028 int c = 1;
2029 if (ddl->ddl_flags & DDL_FLAG_FLUSHING)
2030 c += strlcpy(&flagstr[c], " FLUSHING",
2031 sizeof (flagstr) - c);
2032 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT)
2033 c += strlcpy(&flagstr[c], " CHECKPOINT",
2034 sizeof (flagstr) - c);
2035 if (ddl->ddl_flags &
2036 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT))
2037 c += strlcpy(&flagstr[c], " UNKNOWN",
2038 sizeof (flagstr) - c);
2039 flagstr[1] = '[';
2040 flagstr[c] = ']';
2041 }
2042
2043 uint64_t count = avl_numnodes(&ddl->ddl_tree);
2044
2045 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; "
2046 "len=%llu; txg=%llu; entries=%llu\n",
2047 zio_checksum_table[ddt->ddt_checksum].ci_name, n,
2048 ddl->ddl_flags, flagstr,
2049 (u_longlong_t)ddl->ddl_object,
2050 (u_longlong_t)ddl->ddl_length,
2051 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count);
2052
2053 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) {
2054 const ddt_key_t *ddk = &ddl->ddl_checkpoint;
2055 printf(" checkpoint: "
2056 "%016llx:%016llx:%016llx:%016llx:%016llx\n",
2057 (u_longlong_t)ddk->ddk_cksum.zc_word[0],
2058 (u_longlong_t)ddk->ddk_cksum.zc_word[1],
2059 (u_longlong_t)ddk->ddk_cksum.zc_word[2],
2060 (u_longlong_t)ddk->ddk_cksum.zc_word[3],
2061 (u_longlong_t)ddk->ddk_prop);
2062 }
2063
2064 if (count == 0 || dump_opt['D'] < 4)
2065 continue;
2066
2067 ddt_lightweight_entry_t ddlwe;
2068 uint64_t index = 0;
2069 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
2070 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
2071 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
2072 dump_ddt_entry(ddt, &ddlwe, index++);
2073 }
2074 }
2075 }
2076
2077 static void
dump_ddt_object(ddt_t * ddt,ddt_type_t type,ddt_class_t class)2078 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
2079 {
2080 char name[DDT_NAMELEN];
2081 ddt_lightweight_entry_t ddlwe;
2082 uint64_t walk = 0;
2083 dmu_object_info_t doi;
2084 uint64_t count, dspace, mspace;
2085 int error;
2086
2087 error = ddt_object_info(ddt, type, class, &doi);
2088
2089 if (error == ENOENT)
2090 return;
2091 ASSERT0(error);
2092
2093 error = ddt_object_count(ddt, type, class, &count);
2094 ASSERT0(error);
2095 if (count == 0)
2096 return;
2097
2098 dspace = doi.doi_physical_blocks_512 << 9;
2099 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2100
2101 ddt_object_name(ddt, type, class, name);
2102
2103 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name,
2104 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count);
2105
2106 if (dump_opt['D'] < 3)
2107 return;
2108
2109 (void) printf("%s: object=%llu\n", name,
2110 (u_longlong_t)ddt->ddt_object[type][class]);
2111 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2112
2113 if (dump_opt['D'] < 4)
2114 return;
2115
2116 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2117 return;
2118
2119 (void) printf("%s contents:\n\n", name);
2120
2121 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2122 dump_ddt_entry(ddt, &ddlwe, walk);
2123
2124 ASSERT3U(error, ==, ENOENT);
2125
2126 (void) printf("\n");
2127 }
2128
2129 static void
dump_ddt(ddt_t * ddt)2130 dump_ddt(ddt_t *ddt)
2131 {
2132 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2133 return;
2134
2135 char flagstr[64] = {0};
2136 if (ddt->ddt_flags > 0) {
2137 flagstr[0] = ' ';
2138 int c = 1;
2139 if (ddt->ddt_flags & DDT_FLAG_FLAT)
2140 c += strlcpy(&flagstr[c], " FLAT",
2141 sizeof (flagstr) - c);
2142 if (ddt->ddt_flags & DDT_FLAG_LOG)
2143 c += strlcpy(&flagstr[c], " LOG",
2144 sizeof (flagstr) - c);
2145 if (ddt->ddt_flags & ~DDT_FLAG_MASK)
2146 c += strlcpy(&flagstr[c], " UNKNOWN",
2147 sizeof (flagstr) - c);
2148 flagstr[1] = '[';
2149 flagstr[c] = ']';
2150 }
2151
2152 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n",
2153 zio_checksum_table[ddt->ddt_checksum].ci_name,
2154 (u_longlong_t)ddt->ddt_version,
2155 (ddt->ddt_version == 0) ? "LEGACY" :
2156 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN",
2157 (u_longlong_t)ddt->ddt_flags, flagstr,
2158 (u_longlong_t)ddt->ddt_dir_object);
2159
2160 for (ddt_type_t type = 0; type < DDT_TYPES; type++)
2161 for (ddt_class_t class = 0; class < DDT_CLASSES; class++)
2162 dump_ddt_object(ddt, type, class);
2163
2164 dump_ddt_log(ddt);
2165 }
2166
2167 static void
dump_all_ddts(spa_t * spa)2168 dump_all_ddts(spa_t *spa)
2169 {
2170 ddt_histogram_t ddh_total = {{{0}}};
2171 ddt_stat_t dds_total = {0};
2172
2173 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++)
2174 dump_ddt(spa->spa_ddt[c]);
2175
2176 ddt_get_dedup_stats(spa, &dds_total);
2177
2178 if (dds_total.dds_blocks == 0) {
2179 (void) printf("All DDTs are empty\n");
2180 return;
2181 }
2182
2183 (void) printf("\n");
2184
2185 if (dump_opt['D'] > 1) {
2186 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2187 ddt_get_dedup_histogram(spa, &ddh_total);
2188 zpool_dump_ddt(&dds_total, &ddh_total);
2189 }
2190
2191 dump_dedup_ratio(&dds_total);
2192
2193 /*
2194 * Dump a histogram of unique class entry age
2195 */
2196 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2197 ddt_age_histo_t histogram;
2198
2199 (void) printf("DDT walk unique, building age histogram...\n");
2200 ddt_prune_walk(spa, 0, &histogram);
2201
2202 /*
2203 * print out histogram for unique entry class birth
2204 */
2205 if (histogram.dah_entries > 0) {
2206 (void) printf("%5s %9s %4s\n",
2207 "age", "blocks", "amnt");
2208 (void) printf("%5s %9s %4s\n",
2209 "-----", "---------", "----");
2210 for (int i = 0; i < HIST_BINS; i++) {
2211 (void) printf("%5d %9d %4d%%\n", 1 << i,
2212 (int)histogram.dah_age_histo[i],
2213 (int)((histogram.dah_age_histo[i] * 100) /
2214 histogram.dah_entries));
2215 }
2216 }
2217 }
2218 }
2219
2220 static void
dump_brt(spa_t * spa)2221 dump_brt(spa_t *spa)
2222 {
2223 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2224 printf("BRT: unsupported on this pool\n");
2225 return;
2226 }
2227
2228 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2229 printf("BRT: empty\n");
2230 return;
2231 }
2232
2233 char count[32], used[32], saved[32];
2234 zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2235 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2236 uint64_t ratio = brt_get_ratio(spa);
2237 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2238 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2239
2240 if (dump_opt['T'] < 2)
2241 return;
2242
2243 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2244 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2245 if (!brtvd->bv_initiated) {
2246 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2247 continue;
2248 }
2249
2250 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2251 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2252 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2253 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2254 vdevid, count, used, saved);
2255 }
2256
2257 if (dump_opt['T'] < 3)
2258 return;
2259
2260 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2261 boolean_t do_histo = dump_opt['T'] == 3;
2262
2263 char dva[64];
2264
2265 if (!do_histo)
2266 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2267
2268 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2269 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2270 if (!brtvd->bv_initiated)
2271 continue;
2272
2273 uint64_t counts[64] = {};
2274
2275 zap_cursor_t zc;
2276 zap_attribute_t *za = zap_attribute_alloc();
2277 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2278 brtvd->bv_mos_entries);
2279 zap_cursor_retrieve(&zc, za) == 0;
2280 zap_cursor_advance(&zc)) {
2281 uint64_t refcnt;
2282 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset,
2283 brtvd->bv_mos_entries,
2284 (const uint64_t *)za->za_name, 1,
2285 za->za_integer_length, za->za_num_integers,
2286 &refcnt));
2287
2288 if (do_histo)
2289 counts[highbit64(refcnt)]++;
2290 else {
2291 uint64_t offset =
2292 *(const uint64_t *)za->za_name;
2293
2294 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx",
2295 vdevid, (u_longlong_t)offset);
2296 printf("%-16s %-10llu\n", dva,
2297 (u_longlong_t)refcnt);
2298 }
2299 }
2300 zap_cursor_fini(&zc);
2301 zap_attribute_free(za);
2302
2303 if (do_histo) {
2304 printf("\nBRT: vdev %" PRIu64
2305 ": DVAs with 2^n refcnts:\n", vdevid);
2306 dump_histogram(counts, 64, 0);
2307 }
2308 }
2309 }
2310
2311 static void
dump_dtl_seg(void * arg,uint64_t start,uint64_t size)2312 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2313 {
2314 char *prefix = arg;
2315
2316 (void) printf("%s [%llu,%llu) length %llu\n",
2317 prefix,
2318 (u_longlong_t)start,
2319 (u_longlong_t)(start + size),
2320 (u_longlong_t)(size));
2321 }
2322
2323 static void
dump_dtl(vdev_t * vd,int indent)2324 dump_dtl(vdev_t *vd, int indent)
2325 {
2326 spa_t *spa = vd->vdev_spa;
2327 boolean_t required;
2328 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2329 "outage" };
2330 char prefix[256];
2331
2332 spa_vdev_state_enter(spa, SCL_NONE);
2333 required = vdev_dtl_required(vd);
2334 (void) spa_vdev_state_exit(spa, NULL, 0);
2335
2336 if (indent == 0)
2337 (void) printf("\nDirty time logs:\n\n");
2338
2339 (void) printf("\t%*s%s [%s]\n", indent, "",
2340 vd->vdev_path ? vd->vdev_path :
2341 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2342 required ? "DTL-required" : "DTL-expendable");
2343
2344 for (int t = 0; t < DTL_TYPES; t++) {
2345 zfs_range_tree_t *rt = vd->vdev_dtl[t];
2346 if (zfs_range_tree_space(rt) == 0)
2347 continue;
2348 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2349 indent + 2, "", name[t]);
2350 zfs_range_tree_walk(rt, dump_dtl_seg, prefix);
2351 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2352 dump_spacemap(spa->spa_meta_objset,
2353 vd->vdev_dtl_sm);
2354 }
2355
2356 for (unsigned c = 0; c < vd->vdev_children; c++)
2357 dump_dtl(vd->vdev_child[c], indent + 4);
2358 }
2359
2360 static void
dump_history(spa_t * spa)2361 dump_history(spa_t *spa)
2362 {
2363 nvlist_t **events = NULL;
2364 char *buf;
2365 uint64_t resid, len, off = 0;
2366 uint_t num = 0;
2367 int error;
2368 char tbuf[30];
2369
2370 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2371 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2372 __func__);
2373 return;
2374 }
2375
2376 do {
2377 len = SPA_OLD_MAXBLOCKSIZE;
2378
2379 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2380 (void) fprintf(stderr, "Unable to read history: "
2381 "error %d\n", error);
2382 free(buf);
2383 return;
2384 }
2385
2386 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2387 break;
2388
2389 off -= resid;
2390 } while (len != 0);
2391
2392 (void) printf("\nHistory:\n");
2393 for (unsigned i = 0; i < num; i++) {
2394 boolean_t printed = B_FALSE;
2395
2396 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2397 time_t tsec;
2398 struct tm t;
2399
2400 tsec = fnvlist_lookup_uint64(events[i],
2401 ZPOOL_HIST_TIME);
2402 (void) localtime_r(&tsec, &t);
2403 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2404 } else {
2405 tbuf[0] = '\0';
2406 }
2407
2408 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2409 (void) printf("%s %s\n", tbuf,
2410 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2411 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2412 uint64_t ievent;
2413
2414 ievent = fnvlist_lookup_uint64(events[i],
2415 ZPOOL_HIST_INT_EVENT);
2416 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2417 goto next;
2418
2419 (void) printf(" %s [internal %s txg:%ju] %s\n",
2420 tbuf,
2421 zfs_history_event_names[ievent],
2422 fnvlist_lookup_uint64(events[i],
2423 ZPOOL_HIST_TXG),
2424 fnvlist_lookup_string(events[i],
2425 ZPOOL_HIST_INT_STR));
2426 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2427 (void) printf("%s [txg:%ju] %s", tbuf,
2428 fnvlist_lookup_uint64(events[i],
2429 ZPOOL_HIST_TXG),
2430 fnvlist_lookup_string(events[i],
2431 ZPOOL_HIST_INT_NAME));
2432
2433 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2434 (void) printf(" %s (%llu)",
2435 fnvlist_lookup_string(events[i],
2436 ZPOOL_HIST_DSNAME),
2437 (u_longlong_t)fnvlist_lookup_uint64(
2438 events[i],
2439 ZPOOL_HIST_DSID));
2440 }
2441
2442 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2443 ZPOOL_HIST_INT_STR));
2444 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2445 (void) printf("%s ioctl %s\n", tbuf,
2446 fnvlist_lookup_string(events[i],
2447 ZPOOL_HIST_IOCTL));
2448
2449 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2450 (void) printf(" input:\n");
2451 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2452 ZPOOL_HIST_INPUT_NVL), 8);
2453 }
2454 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2455 (void) printf(" output:\n");
2456 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2457 ZPOOL_HIST_OUTPUT_NVL), 8);
2458 }
2459 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2460 (void) printf(" errno: %lld\n",
2461 (longlong_t)fnvlist_lookup_int64(events[i],
2462 ZPOOL_HIST_ERRNO));
2463 }
2464 } else {
2465 goto next;
2466 }
2467
2468 printed = B_TRUE;
2469 next:
2470 if (dump_opt['h'] > 1) {
2471 if (!printed)
2472 (void) printf("unrecognized record:\n");
2473 dump_nvlist(events[i], 2);
2474 }
2475 }
2476 free(buf);
2477 }
2478
2479 static void
dump_dnode(objset_t * os,uint64_t object,void * data,size_t size)2480 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2481 {
2482 (void) os, (void) object, (void) data, (void) size;
2483 }
2484
2485 static uint64_t
blkid2offset(const dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb)2486 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2487 const zbookmark_phys_t *zb)
2488 {
2489 if (dnp == NULL) {
2490 ASSERT(zb->zb_level < 0);
2491 if (zb->zb_object == 0)
2492 return (zb->zb_blkid);
2493 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2494 }
2495
2496 ASSERT(zb->zb_level >= 0);
2497
2498 return ((zb->zb_blkid <<
2499 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2500 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2501 }
2502
2503 static void
snprintf_zstd_header(spa_t * spa,char * blkbuf,size_t buflen,const blkptr_t * bp)2504 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2505 const blkptr_t *bp)
2506 {
2507 static abd_t *pabd = NULL;
2508 void *buf;
2509 zio_t *zio;
2510 zfs_zstdhdr_t zstd_hdr;
2511 int error;
2512
2513 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2514 return;
2515
2516 if (BP_IS_HOLE(bp))
2517 return;
2518
2519 if (BP_IS_EMBEDDED(bp)) {
2520 buf = malloc(SPA_MAXBLOCKSIZE);
2521 if (buf == NULL) {
2522 (void) fprintf(stderr, "out of memory\n");
2523 zdb_exit(1);
2524 }
2525 decode_embedded_bp_compressed(bp, buf);
2526 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2527 free(buf);
2528 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2529 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2530 (void) snprintf(blkbuf + strlen(blkbuf),
2531 buflen - strlen(blkbuf),
2532 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2533 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2534 zfs_get_hdrlevel(&zstd_hdr));
2535 return;
2536 }
2537
2538 if (!pabd)
2539 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2540 zio = zio_root(spa, NULL, NULL, 0);
2541
2542 /* Decrypt but don't decompress so we can read the compression header */
2543 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2544 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2545 NULL));
2546 error = zio_wait(zio);
2547 if (error) {
2548 (void) fprintf(stderr, "read failed: %d\n", error);
2549 return;
2550 }
2551 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2552 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2553 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2554 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2555
2556 (void) snprintf(blkbuf + strlen(blkbuf),
2557 buflen - strlen(blkbuf),
2558 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2559 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2560 zfs_get_hdrlevel(&zstd_hdr));
2561
2562 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2563 }
2564
2565 static void
snprintf_blkptr_compact(char * blkbuf,size_t buflen,const blkptr_t * bp,boolean_t bp_freed)2566 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2567 boolean_t bp_freed)
2568 {
2569 const dva_t *dva = bp->blk_dva;
2570 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2571 int i;
2572
2573 if (dump_opt['b'] >= 6) {
2574 snprintf_blkptr(blkbuf, buflen, bp);
2575 if (bp_freed) {
2576 (void) snprintf(blkbuf + strlen(blkbuf),
2577 buflen - strlen(blkbuf), " %s", "FREE");
2578 }
2579 return;
2580 }
2581
2582 if (BP_IS_EMBEDDED(bp)) {
2583 (void) sprintf(blkbuf,
2584 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2585 (int)BPE_GET_ETYPE(bp),
2586 (u_longlong_t)BPE_GET_LSIZE(bp),
2587 (u_longlong_t)BPE_GET_PSIZE(bp),
2588 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2589 return;
2590 }
2591
2592 blkbuf[0] = '\0';
2593
2594 for (i = 0; i < ndvas; i++) {
2595 (void) snprintf(blkbuf + strlen(blkbuf),
2596 buflen - strlen(blkbuf), "%llu:%llx:%llx%s ",
2597 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2598 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2599 (u_longlong_t)DVA_GET_ASIZE(&dva[i]),
2600 (DVA_GET_GANG(&dva[i]) ? "G" : ""));
2601 }
2602
2603 if (BP_IS_HOLE(bp)) {
2604 (void) snprintf(blkbuf + strlen(blkbuf),
2605 buflen - strlen(blkbuf),
2606 "%llxL B=%llu",
2607 (u_longlong_t)BP_GET_LSIZE(bp),
2608 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2609 } else {
2610 (void) snprintf(blkbuf + strlen(blkbuf),
2611 buflen - strlen(blkbuf),
2612 "%llxL/%llxP F=%llu B=%llu/%llu",
2613 (u_longlong_t)BP_GET_LSIZE(bp),
2614 (u_longlong_t)BP_GET_PSIZE(bp),
2615 (u_longlong_t)BP_GET_FILL(bp),
2616 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2617 (u_longlong_t)BP_GET_PHYSICAL_BIRTH(bp));
2618 if (bp_freed)
2619 (void) snprintf(blkbuf + strlen(blkbuf),
2620 buflen - strlen(blkbuf), " %s", "FREE");
2621 (void) snprintf(blkbuf + strlen(blkbuf),
2622 buflen - strlen(blkbuf),
2623 " cksum=%016llx:%016llx:%016llx:%016llx",
2624 (u_longlong_t)bp->blk_cksum.zc_word[0],
2625 (u_longlong_t)bp->blk_cksum.zc_word[1],
2626 (u_longlong_t)bp->blk_cksum.zc_word[2],
2627 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2628 }
2629 }
2630
2631 static u_longlong_t
print_indirect(spa_t * spa,blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp)2632 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2633 const dnode_phys_t *dnp)
2634 {
2635 char blkbuf[BP_SPRINTF_LEN];
2636 u_longlong_t offset;
2637 int l;
2638
2639 offset = (u_longlong_t)blkid2offset(dnp, bp, zb);
2640
2641 (void) printf("%16llx ", offset);
2642
2643 ASSERT(zb->zb_level >= 0);
2644
2645 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2646 if (l == zb->zb_level) {
2647 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2648 } else {
2649 (void) printf(" ");
2650 }
2651 }
2652
2653 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2654 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2655 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2656 (void) printf("%s", blkbuf);
2657
2658 if (!BP_IS_EMBEDDED(bp)) {
2659 if (BP_GET_TYPE(bp) != dnp->dn_type) {
2660 (void) printf(" (ERROR: Block pointer type "
2661 "(%llu) does not match dnode type (%hhu))",
2662 BP_GET_TYPE(bp), dnp->dn_type);
2663 corruption_found = B_TRUE;
2664 }
2665 if (BP_GET_LEVEL(bp) != zb->zb_level) {
2666 (void) printf(" (ERROR: Block pointer level "
2667 "(%llu) does not match bookmark level (%lld))",
2668 BP_GET_LEVEL(bp), (longlong_t)zb->zb_level);
2669 corruption_found = B_TRUE;
2670 }
2671 }
2672 (void) printf("\n");
2673
2674 return (offset);
2675 }
2676
2677 static int
visit_indirect(spa_t * spa,const dnode_phys_t * dnp,blkptr_t * bp,const zbookmark_phys_t * zb)2678 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2679 blkptr_t *bp, const zbookmark_phys_t *zb)
2680 {
2681 u_longlong_t offset;
2682 int err = 0;
2683
2684 if (BP_GET_BIRTH(bp) == 0)
2685 return (0);
2686
2687 offset = print_indirect(spa, bp, zb, dnp);
2688
2689 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2690 arc_flags_t flags = ARC_FLAG_WAIT;
2691 int i;
2692 blkptr_t *cbp;
2693 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2694 arc_buf_t *buf;
2695 uint64_t fill = 0;
2696 ASSERT(!BP_IS_REDACTED(bp));
2697
2698 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2699 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2700 if (err)
2701 return (err);
2702 ASSERT(buf->b_data);
2703
2704 /* recursively visit blocks below this */
2705 cbp = buf->b_data;
2706 for (i = 0; i < epb; i++, cbp++) {
2707 zbookmark_phys_t czb;
2708
2709 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2710 zb->zb_level - 1,
2711 zb->zb_blkid * epb + i);
2712 err = visit_indirect(spa, dnp, cbp, &czb);
2713 if (err)
2714 break;
2715 fill += BP_GET_FILL(cbp);
2716 }
2717 if (!err) {
2718 if (fill != BP_GET_FILL(bp)) {
2719 (void) printf("%16llx: Block pointer "
2720 "fill (%llu) does not match calculated "
2721 "value (%llu)\n", offset, BP_GET_FILL(bp),
2722 (u_longlong_t)fill);
2723 corruption_found = B_TRUE;
2724 }
2725 }
2726 arc_buf_destroy(buf, &buf);
2727 }
2728
2729 return (err);
2730 }
2731
2732 static void
dump_indirect(dnode_t * dn)2733 dump_indirect(dnode_t *dn)
2734 {
2735 dnode_phys_t *dnp = dn->dn_phys;
2736 zbookmark_phys_t czb;
2737
2738 (void) printf("Indirect blocks:\n");
2739
2740 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2741 dn->dn_object, dnp->dn_nlevels - 1, 0);
2742 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2743 czb.zb_blkid = j;
2744 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2745 &dnp->dn_blkptr[j], &czb);
2746 }
2747
2748 (void) printf("\n");
2749 }
2750
2751 static void
dump_dsl_dir(objset_t * os,uint64_t object,void * data,size_t size)2752 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2753 {
2754 (void) os, (void) object;
2755 dsl_dir_phys_t *dd = data;
2756 time_t crtime;
2757 char nice[32];
2758
2759 /* make sure nicenum has enough space */
2760 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2761
2762 if (dd == NULL)
2763 return;
2764
2765 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2766
2767 crtime = dd->dd_creation_time;
2768 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2769 (void) printf("\t\thead_dataset_obj = %llu\n",
2770 (u_longlong_t)dd->dd_head_dataset_obj);
2771 (void) printf("\t\tparent_dir_obj = %llu\n",
2772 (u_longlong_t)dd->dd_parent_obj);
2773 (void) printf("\t\torigin_obj = %llu\n",
2774 (u_longlong_t)dd->dd_origin_obj);
2775 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2776 (u_longlong_t)dd->dd_child_dir_zapobj);
2777 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2778 (void) printf("\t\tused_bytes = %s\n", nice);
2779 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2780 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2781 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2782 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2783 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2784 (void) printf("\t\tquota = %s\n", nice);
2785 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2786 (void) printf("\t\treserved = %s\n", nice);
2787 (void) printf("\t\tprops_zapobj = %llu\n",
2788 (u_longlong_t)dd->dd_props_zapobj);
2789 (void) printf("\t\tdeleg_zapobj = %llu\n",
2790 (u_longlong_t)dd->dd_deleg_zapobj);
2791 (void) printf("\t\tflags = %llx\n",
2792 (u_longlong_t)dd->dd_flags);
2793
2794 #define DO(which) \
2795 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2796 sizeof (nice)); \
2797 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2798 DO(HEAD);
2799 DO(SNAP);
2800 DO(CHILD);
2801 DO(CHILD_RSRV);
2802 DO(REFRSRV);
2803 #undef DO
2804 (void) printf("\t\tclones = %llu\n",
2805 (u_longlong_t)dd->dd_clones);
2806 }
2807
2808 static void
dump_dsl_dataset(objset_t * os,uint64_t object,void * data,size_t size)2809 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2810 {
2811 (void) os, (void) object;
2812 dsl_dataset_phys_t *ds = data;
2813 time_t crtime;
2814 char used[32], compressed[32], uncompressed[32], unique[32];
2815 char blkbuf[BP_SPRINTF_LEN];
2816
2817 /* make sure nicenum has enough space */
2818 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2819 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2820 "compressed truncated");
2821 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2822 "uncompressed truncated");
2823 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2824
2825 if (ds == NULL)
2826 return;
2827
2828 ASSERT(size == sizeof (*ds));
2829 crtime = ds->ds_creation_time;
2830 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2831 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2832 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2833 sizeof (uncompressed));
2834 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2835 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2836
2837 (void) printf("\t\tdir_obj = %llu\n",
2838 (u_longlong_t)ds->ds_dir_obj);
2839 (void) printf("\t\tprev_snap_obj = %llu\n",
2840 (u_longlong_t)ds->ds_prev_snap_obj);
2841 (void) printf("\t\tprev_snap_txg = %llu\n",
2842 (u_longlong_t)ds->ds_prev_snap_txg);
2843 (void) printf("\t\tnext_snap_obj = %llu\n",
2844 (u_longlong_t)ds->ds_next_snap_obj);
2845 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2846 (u_longlong_t)ds->ds_snapnames_zapobj);
2847 (void) printf("\t\tnum_children = %llu\n",
2848 (u_longlong_t)ds->ds_num_children);
2849 (void) printf("\t\tuserrefs_obj = %llu\n",
2850 (u_longlong_t)ds->ds_userrefs_obj);
2851 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2852 (void) printf("\t\tcreation_txg = %llu\n",
2853 (u_longlong_t)ds->ds_creation_txg);
2854 (void) printf("\t\tdeadlist_obj = %llu\n",
2855 (u_longlong_t)ds->ds_deadlist_obj);
2856 (void) printf("\t\tused_bytes = %s\n", used);
2857 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2858 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2859 (void) printf("\t\tunique = %s\n", unique);
2860 (void) printf("\t\tfsid_guid = %llu\n",
2861 (u_longlong_t)ds->ds_fsid_guid);
2862 (void) printf("\t\tguid = %llu\n",
2863 (u_longlong_t)ds->ds_guid);
2864 (void) printf("\t\tflags = %llx\n",
2865 (u_longlong_t)ds->ds_flags);
2866 (void) printf("\t\tnext_clones_obj = %llu\n",
2867 (u_longlong_t)ds->ds_next_clones_obj);
2868 (void) printf("\t\tprops_obj = %llu\n",
2869 (u_longlong_t)ds->ds_props_obj);
2870 (void) printf("\t\tbp = %s\n", blkbuf);
2871 }
2872
2873 static int
dump_bptree_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2874 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2875 {
2876 (void) arg, (void) tx;
2877 char blkbuf[BP_SPRINTF_LEN];
2878
2879 if (BP_GET_BIRTH(bp) != 0) {
2880 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2881 (void) printf("\t%s\n", blkbuf);
2882 }
2883 return (0);
2884 }
2885
2886 static void
dump_bptree(objset_t * os,uint64_t obj,const char * name)2887 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2888 {
2889 char bytes[32];
2890 bptree_phys_t *bt;
2891 dmu_buf_t *db;
2892
2893 /* make sure nicenum has enough space */
2894 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2895
2896 if (dump_opt['d'] < 3)
2897 return;
2898
2899 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2900 bt = db->db_data;
2901 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2902 (void) printf("\n %s: %llu datasets, %s\n",
2903 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2904 dmu_buf_rele(db, FTAG);
2905
2906 if (dump_opt['d'] < 5)
2907 return;
2908
2909 (void) printf("\n");
2910
2911 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2912 }
2913
2914 static int
dump_bpobj_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)2915 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2916 {
2917 (void) arg, (void) tx;
2918 char blkbuf[BP_SPRINTF_LEN];
2919
2920 ASSERT(BP_GET_BIRTH(bp) != 0);
2921 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2922 (void) printf("\t%s\n", blkbuf);
2923 return (0);
2924 }
2925
2926 static void
dump_full_bpobj(bpobj_t * bpo,const char * name,int indent)2927 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2928 {
2929 char bytes[32];
2930 char comp[32];
2931 char uncomp[32];
2932 uint64_t i;
2933
2934 /* make sure nicenum has enough space */
2935 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2936 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2937 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2938
2939 if (dump_opt['d'] < 3)
2940 return;
2941
2942 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2943 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2944 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2945 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2946 if (bpo->bpo_havefreed) {
2947 (void) printf(" %*s: object %llu, %llu local "
2948 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2949 "%s (%s/%s comp)\n",
2950 indent * 8, name,
2951 (u_longlong_t)bpo->bpo_object,
2952 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2953 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2954 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2955 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2956 bytes, comp, uncomp);
2957 } else {
2958 (void) printf(" %*s: object %llu, %llu local "
2959 "blkptrs, %llu subobjs in object %llu, "
2960 "%s (%s/%s comp)\n",
2961 indent * 8, name,
2962 (u_longlong_t)bpo->bpo_object,
2963 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2964 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2965 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2966 bytes, comp, uncomp);
2967 }
2968
2969 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2970 uint64_t subobj;
2971 bpobj_t subbpo;
2972 int error;
2973 VERIFY0(dmu_read(bpo->bpo_os,
2974 bpo->bpo_phys->bpo_subobjs,
2975 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2976 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2977 if (error != 0) {
2978 (void) printf("ERROR %u while trying to open "
2979 "subobj id %llu\n",
2980 error, (u_longlong_t)subobj);
2981 corruption_found = B_TRUE;
2982 continue;
2983 }
2984 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2985 bpobj_close(&subbpo);
2986 }
2987 } else {
2988 if (bpo->bpo_havefreed) {
2989 (void) printf(" %*s: object %llu, %llu blkptrs, "
2990 "%llu freed, %s\n",
2991 indent * 8, name,
2992 (u_longlong_t)bpo->bpo_object,
2993 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2994 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2995 bytes);
2996 } else {
2997 (void) printf(" %*s: object %llu, %llu blkptrs, "
2998 "%s\n",
2999 indent * 8, name,
3000 (u_longlong_t)bpo->bpo_object,
3001 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
3002 bytes);
3003 }
3004 }
3005
3006 if (dump_opt['d'] < 5)
3007 return;
3008
3009
3010 if (indent == 0) {
3011 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
3012 (void) printf("\n");
3013 }
3014 }
3015
3016 static int
dump_bookmark(dsl_pool_t * dp,char * name,boolean_t print_redact,boolean_t print_list)3017 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
3018 boolean_t print_list)
3019 {
3020 int err = 0;
3021 zfs_bookmark_phys_t prop;
3022 objset_t *mos = dp->dp_spa->spa_meta_objset;
3023 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
3024
3025 if (err != 0) {
3026 return (err);
3027 }
3028
3029 (void) printf("\t#%s: ", strchr(name, '#') + 1);
3030 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
3031 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
3032 (u_longlong_t)prop.zbm_creation_txg,
3033 (u_longlong_t)prop.zbm_creation_time,
3034 (u_longlong_t)prop.zbm_redaction_obj);
3035
3036 IMPLY(print_list, print_redact);
3037 if (!print_redact || prop.zbm_redaction_obj == 0)
3038 return (0);
3039
3040 redaction_list_t *rl;
3041 VERIFY0(dsl_redaction_list_hold_obj(dp,
3042 prop.zbm_redaction_obj, FTAG, &rl));
3043
3044 redaction_list_phys_t *rlp = rl->rl_phys;
3045 (void) printf("\tRedacted:\n\t\tProgress: ");
3046 if (rlp->rlp_last_object != UINT64_MAX ||
3047 rlp->rlp_last_blkid != UINT64_MAX) {
3048 (void) printf("%llu %llu (incomplete)\n",
3049 (u_longlong_t)rlp->rlp_last_object,
3050 (u_longlong_t)rlp->rlp_last_blkid);
3051 } else {
3052 (void) printf("complete\n");
3053 }
3054 (void) printf("\t\tSnapshots: [");
3055 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
3056 if (i > 0)
3057 (void) printf(", ");
3058 (void) printf("%0llu",
3059 (u_longlong_t)rlp->rlp_snaps[i]);
3060 }
3061 (void) printf("]\n\t\tLength: %llu\n",
3062 (u_longlong_t)rlp->rlp_num_entries);
3063
3064 if (!print_list) {
3065 dsl_redaction_list_rele(rl, FTAG);
3066 return (0);
3067 }
3068
3069 if (rlp->rlp_num_entries == 0) {
3070 dsl_redaction_list_rele(rl, FTAG);
3071 (void) printf("\t\tRedaction List: []\n\n");
3072 return (0);
3073 }
3074
3075 redact_block_phys_t *rbp_buf;
3076 uint64_t size;
3077 dmu_object_info_t doi;
3078
3079 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
3080 size = doi.doi_max_offset;
3081 rbp_buf = kmem_alloc(size, KM_SLEEP);
3082
3083 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
3084 rbp_buf, 0);
3085 if (err != 0) {
3086 dsl_redaction_list_rele(rl, FTAG);
3087 kmem_free(rbp_buf, size);
3088 return (err);
3089 }
3090
3091 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
3092 "%llx, blksz: %x, count: %llx}",
3093 (u_longlong_t)rbp_buf[0].rbp_object,
3094 (u_longlong_t)rbp_buf[0].rbp_blkid,
3095 (uint_t)(redact_block_get_size(&rbp_buf[0])),
3096 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
3097
3098 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
3099 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
3100 "blksz: %x, count: %llx}",
3101 (u_longlong_t)rbp_buf[i].rbp_object,
3102 (u_longlong_t)rbp_buf[i].rbp_blkid,
3103 (uint_t)(redact_block_get_size(&rbp_buf[i])),
3104 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
3105 }
3106 dsl_redaction_list_rele(rl, FTAG);
3107 kmem_free(rbp_buf, size);
3108 (void) printf("]\n\n");
3109 return (0);
3110 }
3111
3112 static void
dump_bookmarks(objset_t * os,int verbosity)3113 dump_bookmarks(objset_t *os, int verbosity)
3114 {
3115 zap_cursor_t zc;
3116 zap_attribute_t *attrp;
3117 dsl_dataset_t *ds = dmu_objset_ds(os);
3118 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3119 objset_t *mos = os->os_spa->spa_meta_objset;
3120 if (verbosity < 4)
3121 return;
3122 attrp = zap_attribute_alloc();
3123 dsl_pool_config_enter(dp, FTAG);
3124
3125 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
3126 zap_cursor_retrieve(&zc, attrp) == 0;
3127 zap_cursor_advance(&zc)) {
3128 char osname[ZFS_MAX_DATASET_NAME_LEN];
3129 char buf[ZFS_MAX_DATASET_NAME_LEN];
3130 int len;
3131 dmu_objset_name(os, osname);
3132 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
3133 attrp->za_name);
3134 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
3135 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
3136 }
3137 zap_cursor_fini(&zc);
3138 dsl_pool_config_exit(dp, FTAG);
3139 zap_attribute_free(attrp);
3140 }
3141
3142 static void
bpobj_count_refd(bpobj_t * bpo)3143 bpobj_count_refd(bpobj_t *bpo)
3144 {
3145 mos_obj_refd(bpo->bpo_object);
3146
3147 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
3148 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
3149 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
3150 uint64_t subobj;
3151 bpobj_t subbpo;
3152 int error;
3153 VERIFY0(dmu_read(bpo->bpo_os,
3154 bpo->bpo_phys->bpo_subobjs,
3155 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3156 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3157 if (error != 0) {
3158 (void) printf("ERROR %u while trying to open "
3159 "subobj id %llu\n",
3160 error, (u_longlong_t)subobj);
3161 corruption_found = B_TRUE;
3162 continue;
3163 }
3164 bpobj_count_refd(&subbpo);
3165 bpobj_close(&subbpo);
3166 }
3167 }
3168 }
3169
3170 static int
dsl_deadlist_entry_count_refd(void * arg,dsl_deadlist_entry_t * dle)3171 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3172 {
3173 spa_t *spa = arg;
3174 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3175 if (dle->dle_bpobj.bpo_object != empty_bpobj)
3176 bpobj_count_refd(&dle->dle_bpobj);
3177 return (0);
3178 }
3179
3180 static int
dsl_deadlist_entry_dump(void * arg,dsl_deadlist_entry_t * dle)3181 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3182 {
3183 ASSERT0P(arg);
3184 if (dump_opt['d'] >= 5) {
3185 char buf[128];
3186 (void) snprintf(buf, sizeof (buf),
3187 "mintxg %llu -> obj %llu",
3188 (longlong_t)dle->dle_mintxg,
3189 (longlong_t)dle->dle_bpobj.bpo_object);
3190
3191 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3192 } else {
3193 (void) printf("mintxg %llu -> obj %llu\n",
3194 (longlong_t)dle->dle_mintxg,
3195 (longlong_t)dle->dle_bpobj.bpo_object);
3196 }
3197 return (0);
3198 }
3199
3200 static void
dump_blkptr_list(dsl_deadlist_t * dl,const char * name)3201 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3202 {
3203 char bytes[32];
3204 char comp[32];
3205 char uncomp[32];
3206 char entries[32];
3207 spa_t *spa = dmu_objset_spa(dl->dl_os);
3208 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3209
3210 if (dl->dl_oldfmt) {
3211 if (dl->dl_bpobj.bpo_object != empty_bpobj)
3212 bpobj_count_refd(&dl->dl_bpobj);
3213 } else {
3214 mos_obj_refd(dl->dl_object);
3215 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3216 }
3217
3218 /* make sure nicenum has enough space */
3219 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3220 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3221 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3222 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3223
3224 if (dump_opt['d'] < 3)
3225 return;
3226
3227 if (dl->dl_oldfmt) {
3228 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3229 return;
3230 }
3231
3232 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3233 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3234 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3235 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3236 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3237 name, bytes, comp, uncomp, entries);
3238
3239 if (dump_opt['d'] < 4)
3240 return;
3241
3242 (void) putchar('\n');
3243
3244 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3245 }
3246
3247 static int
verify_dd_livelist(objset_t * os)3248 verify_dd_livelist(objset_t *os)
3249 {
3250 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3251 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3252 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
3253
3254 ASSERT(!dmu_objset_is_snapshot(os));
3255 if (!dsl_deadlist_is_open(&dd->dd_livelist))
3256 return (0);
3257
3258 /* Iterate through the livelist to check for duplicates */
3259 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3260 NULL);
3261
3262 dsl_pool_config_enter(dp, FTAG);
3263 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3264 &ll_comp, &ll_uncomp);
3265
3266 dsl_dataset_t *origin_ds;
3267 ASSERT(dsl_pool_config_held(dp));
3268 VERIFY0(dsl_dataset_hold_obj(dp,
3269 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3270 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3271 &used, &comp, &uncomp));
3272 dsl_dataset_rele(origin_ds, FTAG);
3273 dsl_pool_config_exit(dp, FTAG);
3274 /*
3275 * It's possible that the dataset's uncomp space is larger than the
3276 * livelist's because livelists do not track embedded block pointers
3277 */
3278 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3279 char nice_used[32], nice_comp[32], nice_uncomp[32];
3280 (void) printf("Discrepancy in space accounting:\n");
3281 zdb_nicenum(used, nice_used, sizeof (nice_used));
3282 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3283 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3284 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3285 nice_used, nice_comp, nice_uncomp);
3286 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3287 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3288 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3289 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3290 nice_used, nice_comp, nice_uncomp);
3291 return (1);
3292 }
3293 return (0);
3294 }
3295
3296 static char *key_material = NULL;
3297
3298 static boolean_t
zdb_derive_key(dsl_dir_t * dd,uint8_t * key_out)3299 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3300 {
3301 uint64_t keyformat, salt, iters;
3302 int i;
3303 unsigned char c;
3304 FILE *f;
3305
3306 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3307 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3308 1, &keyformat));
3309
3310 switch (keyformat) {
3311 case ZFS_KEYFORMAT_HEX:
3312 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3313 if (!isxdigit(key_material[i]) ||
3314 !isxdigit(key_material[i+1]))
3315 return (B_FALSE);
3316 if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3317 return (B_FALSE);
3318 key_out[i / 2] = c;
3319 }
3320 break;
3321
3322 case ZFS_KEYFORMAT_PASSPHRASE:
3323 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3324 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3325 sizeof (uint64_t), 1, &salt));
3326 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3327 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3328 sizeof (uint64_t), 1, &iters));
3329
3330 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3331 ((uint8_t *)&salt), sizeof (uint64_t), iters,
3332 WRAPPING_KEY_LEN, key_out) != 1)
3333 return (B_FALSE);
3334
3335 break;
3336
3337 case ZFS_KEYFORMAT_RAW:
3338 if ((f = fopen(key_material, "r")) == NULL)
3339 return (B_FALSE);
3340
3341 if (fread(key_out, 1, WRAPPING_KEY_LEN, f) !=
3342 WRAPPING_KEY_LEN) {
3343 (void) fclose(f);
3344 return (B_FALSE);
3345 }
3346
3347 /* Check the key length */
3348 if (fgetc(f) != EOF) {
3349 (void) fclose(f);
3350 return (B_FALSE);
3351 }
3352
3353 (void) fclose(f);
3354 break;
3355
3356 default:
3357 fatal("no support for key format %u\n",
3358 (unsigned int) keyformat);
3359 }
3360
3361 return (B_TRUE);
3362 }
3363
3364 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3365 static boolean_t key_loaded = B_FALSE;
3366
3367 static void
zdb_load_key(objset_t * os)3368 zdb_load_key(objset_t *os)
3369 {
3370 dsl_pool_t *dp;
3371 dsl_dir_t *dd, *rdd;
3372 uint8_t key[WRAPPING_KEY_LEN];
3373 uint64_t rddobj;
3374 int err;
3375
3376 dp = spa_get_dsl(os->os_spa);
3377 dd = os->os_dsl_dataset->ds_dir;
3378
3379 dsl_pool_config_enter(dp, FTAG);
3380 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3381 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3382 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3383 dsl_dir_name(rdd, encroot);
3384 dsl_dir_rele(rdd, FTAG);
3385
3386 if (!zdb_derive_key(dd, key))
3387 fatal("couldn't derive encryption key");
3388
3389 dsl_pool_config_exit(dp, FTAG);
3390
3391 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3392
3393 dsl_crypto_params_t *dcp;
3394 nvlist_t *crypto_args;
3395
3396 crypto_args = fnvlist_alloc();
3397 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3398 (uint8_t *)key, WRAPPING_KEY_LEN);
3399 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3400 NULL, crypto_args, &dcp));
3401 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3402
3403 dsl_crypto_params_free(dcp, (err != 0));
3404 fnvlist_free(crypto_args);
3405
3406 if (err != 0)
3407 fatal(
3408 "couldn't load encryption key for %s: %s",
3409 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3410 "crypto params not supported" : strerror(err));
3411
3412 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3413
3414 printf("Unlocked encryption root: %s\n", encroot);
3415 key_loaded = B_TRUE;
3416 }
3417
3418 static void
zdb_unload_key(void)3419 zdb_unload_key(void)
3420 {
3421 if (!key_loaded)
3422 return;
3423
3424 VERIFY0(spa_keystore_unload_wkey(encroot));
3425 key_loaded = B_FALSE;
3426 }
3427
3428 static avl_tree_t idx_tree;
3429 static avl_tree_t domain_tree;
3430 static boolean_t fuid_table_loaded;
3431 static objset_t *sa_os = NULL;
3432 static sa_attr_type_t *sa_attr_table = NULL;
3433
3434 static int
open_objset(const char * path,const void * tag,objset_t ** osp)3435 open_objset(const char *path, const void *tag, objset_t **osp)
3436 {
3437 int err;
3438 uint64_t sa_attrs = 0;
3439 uint64_t version = 0;
3440
3441 VERIFY0P(sa_os);
3442
3443 /*
3444 * We can't own an objset if it's redacted. Therefore, we do this
3445 * dance: hold the objset, then acquire a long hold on its dataset, then
3446 * release the pool (which is held as part of holding the objset).
3447 */
3448
3449 if (dump_opt['K']) {
3450 /* decryption requested, try to load keys */
3451 err = dmu_objset_hold(path, tag, osp);
3452 if (err != 0) {
3453 (void) fprintf(stderr, "failed to hold dataset "
3454 "'%s': %s\n",
3455 path, strerror(err));
3456 return (err);
3457 }
3458 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3459 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3460
3461 /* succeeds or dies */
3462 zdb_load_key(*osp);
3463
3464 /* release it all */
3465 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3466 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3467 }
3468
3469 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3470
3471 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3472 if (err != 0) {
3473 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3474 path, strerror(err));
3475 return (err);
3476 }
3477 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3478 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3479
3480 if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3481 (key_loaded || !(*osp)->os_encrypted)) {
3482 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3483 8, 1, &version);
3484 if (version >= ZPL_VERSION_SA) {
3485 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3486 8, 1, &sa_attrs);
3487 }
3488 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3489 &sa_attr_table);
3490 if (err != 0) {
3491 (void) fprintf(stderr, "sa_setup failed: %s\n",
3492 strerror(err));
3493 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3494 dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3495 ds_hold_flags, tag);
3496 *osp = NULL;
3497 }
3498 }
3499 sa_os = *osp;
3500
3501 return (err);
3502 }
3503
3504 static void
close_objset(objset_t * os,const void * tag)3505 close_objset(objset_t *os, const void *tag)
3506 {
3507 VERIFY3P(os, ==, sa_os);
3508 if (os->os_sa != NULL)
3509 sa_tear_down(os);
3510 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3511 dsl_dataset_rele_flags(dmu_objset_ds(os),
3512 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3513 sa_attr_table = NULL;
3514 sa_os = NULL;
3515
3516 zdb_unload_key();
3517 }
3518
3519 static void
fuid_table_destroy(void)3520 fuid_table_destroy(void)
3521 {
3522 if (fuid_table_loaded) {
3523 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3524 fuid_table_loaded = B_FALSE;
3525 }
3526 }
3527
3528 /*
3529 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3530 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3531 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3532 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3533 *
3534 * Note that this is not a particularly efficient way to do this, but
3535 * ddt_remove() is the only public method that can do the work we need, and it
3536 * requires the right locks and etc to do the job. This is only ever called
3537 * during zdb shutdown so efficiency is not especially important.
3538 */
3539 static void
zdb_ddt_cleanup(spa_t * spa)3540 zdb_ddt_cleanup(spa_t *spa)
3541 {
3542 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3543 ddt_t *ddt = spa->spa_ddt[c];
3544 if (!ddt)
3545 continue;
3546
3547 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3548 ddt_enter(ddt);
3549 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3550 while (dde) {
3551 next = AVL_NEXT(&ddt->ddt_tree, dde);
3552 dde->dde_io = NULL;
3553 ddt_remove(ddt, dde);
3554 dde = next;
3555 }
3556 ddt_exit(ddt);
3557 spa_config_exit(spa, SCL_CONFIG, FTAG);
3558 }
3559 }
3560
3561 static void
zdb_exit(int reason)3562 zdb_exit(int reason)
3563 {
3564 if (spa != NULL)
3565 zdb_ddt_cleanup(spa);
3566
3567 if (os != NULL) {
3568 close_objset(os, FTAG);
3569 } else if (spa != NULL) {
3570 spa_close(spa, FTAG);
3571 }
3572
3573 fuid_table_destroy();
3574
3575 if (kernel_init_done)
3576 kernel_fini();
3577
3578 exit(reason);
3579 }
3580
3581 /*
3582 * print uid or gid information.
3583 * For normal POSIX id just the id is printed in decimal format.
3584 * For CIFS files with FUID the fuid is printed in hex followed by
3585 * the domain-rid string.
3586 */
3587 static void
print_idstr(uint64_t id,const char * id_type)3588 print_idstr(uint64_t id, const char *id_type)
3589 {
3590 if (FUID_INDEX(id)) {
3591 const char *domain =
3592 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3593 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3594 (u_longlong_t)id, domain, (int)FUID_RID(id));
3595 } else {
3596 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3597 }
3598
3599 }
3600
3601 static void
dump_uidgid(objset_t * os,uint64_t uid,uint64_t gid)3602 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3603 {
3604 uint32_t uid_idx, gid_idx;
3605
3606 uid_idx = FUID_INDEX(uid);
3607 gid_idx = FUID_INDEX(gid);
3608
3609 /* Load domain table, if not already loaded */
3610 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3611 uint64_t fuid_obj;
3612
3613 /* first find the fuid object. It lives in the master node */
3614 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3615 8, 1, &fuid_obj));
3616 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3617 (void) zfs_fuid_table_load(os, fuid_obj,
3618 &idx_tree, &domain_tree);
3619 fuid_table_loaded = B_TRUE;
3620 }
3621
3622 print_idstr(uid, "uid");
3623 print_idstr(gid, "gid");
3624 }
3625
3626 static void
dump_znode_sa_xattr(sa_handle_t * hdl)3627 dump_znode_sa_xattr(sa_handle_t *hdl)
3628 {
3629 nvlist_t *sa_xattr;
3630 nvpair_t *elem = NULL;
3631 int sa_xattr_size = 0;
3632 int sa_xattr_entries = 0;
3633 int error;
3634 char *sa_xattr_packed;
3635
3636 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3637 if (error || sa_xattr_size == 0)
3638 return;
3639
3640 sa_xattr_packed = malloc(sa_xattr_size);
3641 if (sa_xattr_packed == NULL)
3642 return;
3643
3644 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3645 sa_xattr_packed, sa_xattr_size);
3646 if (error) {
3647 free(sa_xattr_packed);
3648 return;
3649 }
3650
3651 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3652 if (error) {
3653 free(sa_xattr_packed);
3654 return;
3655 }
3656
3657 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3658 sa_xattr_entries++;
3659
3660 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3661 sa_xattr_size, sa_xattr_entries);
3662 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3663 boolean_t can_print = !dump_opt['P'];
3664 uchar_t *value;
3665 uint_t cnt, idx;
3666
3667 (void) printf("\t\t%s = ", nvpair_name(elem));
3668 nvpair_value_byte_array(elem, &value, &cnt);
3669
3670 for (idx = 0; idx < cnt; ++idx) {
3671 if (!isprint(value[idx])) {
3672 can_print = B_FALSE;
3673 break;
3674 }
3675 }
3676
3677 for (idx = 0; idx < cnt; ++idx) {
3678 if (can_print)
3679 (void) putchar(value[idx]);
3680 else
3681 (void) printf("\\%3.3o", value[idx]);
3682 }
3683 (void) putchar('\n');
3684 }
3685
3686 nvlist_free(sa_xattr);
3687 free(sa_xattr_packed);
3688 }
3689
3690 static void
dump_znode_symlink(sa_handle_t * hdl)3691 dump_znode_symlink(sa_handle_t *hdl)
3692 {
3693 int sa_symlink_size = 0;
3694 char linktarget[MAXPATHLEN];
3695 int error;
3696
3697 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3698 if (error || sa_symlink_size == 0) {
3699 return;
3700 }
3701 if (sa_symlink_size >= sizeof (linktarget)) {
3702 (void) printf("symlink size %d is too large\n",
3703 sa_symlink_size);
3704 return;
3705 }
3706 linktarget[sa_symlink_size] = '\0';
3707 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3708 &linktarget, sa_symlink_size) == 0)
3709 (void) printf("\ttarget %s\n", linktarget);
3710 }
3711
3712 static void
dump_znode(objset_t * os,uint64_t object,void * data,size_t size)3713 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3714 {
3715 (void) data, (void) size;
3716 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3717 sa_handle_t *hdl;
3718 uint64_t xattr, rdev, gen;
3719 uint64_t uid, gid, mode, fsize, parent, links;
3720 uint64_t pflags;
3721 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3722 time_t z_crtime, z_atime, z_mtime, z_ctime;
3723 sa_bulk_attr_t bulk[12];
3724 int idx = 0;
3725 int error;
3726
3727 VERIFY3P(os, ==, sa_os);
3728 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3729 (void) printf("Failed to get handle for SA znode\n");
3730 return;
3731 }
3732
3733 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3734 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3735 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3736 &links, 8);
3737 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3738 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3739 &mode, 8);
3740 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3741 NULL, &parent, 8);
3742 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3743 &fsize, 8);
3744 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3745 acctm, 16);
3746 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3747 modtm, 16);
3748 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3749 crtm, 16);
3750 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3751 chgtm, 16);
3752 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3753 &pflags, 8);
3754
3755 if (sa_bulk_lookup(hdl, bulk, idx)) {
3756 (void) sa_handle_destroy(hdl);
3757 return;
3758 }
3759
3760 z_crtime = (time_t)crtm[0];
3761 z_atime = (time_t)acctm[0];
3762 z_mtime = (time_t)modtm[0];
3763 z_ctime = (time_t)chgtm[0];
3764
3765 if (dump_opt['d'] > 4) {
3766 error = zfs_obj_to_path(os, object, path, sizeof (path));
3767 if (error == ESTALE) {
3768 (void) snprintf(path, sizeof (path), "on delete queue");
3769 } else if (error != 0) {
3770 leaked_objects++;
3771 (void) snprintf(path, sizeof (path),
3772 "path not found, possibly leaked");
3773 }
3774 (void) printf("\tpath %s\n", path);
3775 }
3776
3777 if (S_ISLNK(mode))
3778 dump_znode_symlink(hdl);
3779 dump_uidgid(os, uid, gid);
3780 (void) printf("\tatime %s", ctime(&z_atime));
3781 (void) printf("\tmtime %s", ctime(&z_mtime));
3782 (void) printf("\tctime %s", ctime(&z_ctime));
3783 (void) printf("\tcrtime %s", ctime(&z_crtime));
3784 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3785 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3786 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3787 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3788 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3789 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3790 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3791 uint64_t projid;
3792
3793 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3794 sizeof (uint64_t)) == 0)
3795 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3796 }
3797 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3798 sizeof (uint64_t)) == 0)
3799 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3800 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3801 sizeof (uint64_t)) == 0)
3802 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3803 dump_znode_sa_xattr(hdl);
3804 sa_handle_destroy(hdl);
3805 }
3806
3807 static void
dump_acl(objset_t * os,uint64_t object,void * data,size_t size)3808 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3809 {
3810 (void) os, (void) object, (void) data, (void) size;
3811 }
3812
3813 static void
dump_dmu_objset(objset_t * os,uint64_t object,void * data,size_t size)3814 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3815 {
3816 (void) os, (void) object, (void) data, (void) size;
3817 }
3818
3819 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3820 dump_none, /* unallocated */
3821 dump_zap, /* object directory */
3822 dump_uint64, /* object array */
3823 dump_none, /* packed nvlist */
3824 dump_packed_nvlist, /* packed nvlist size */
3825 dump_none, /* bpobj */
3826 dump_bpobj, /* bpobj header */
3827 dump_none, /* SPA space map header */
3828 dump_none, /* SPA space map */
3829 dump_none, /* ZIL intent log */
3830 dump_dnode, /* DMU dnode */
3831 dump_dmu_objset, /* DMU objset */
3832 dump_dsl_dir, /* DSL directory */
3833 dump_zap, /* DSL directory child map */
3834 dump_zap, /* DSL dataset snap map */
3835 dump_zap, /* DSL props */
3836 dump_dsl_dataset, /* DSL dataset */
3837 dump_znode, /* ZFS znode */
3838 dump_acl, /* ZFS V0 ACL */
3839 dump_uint8, /* ZFS plain file */
3840 dump_zpldir, /* ZFS directory */
3841 dump_zap, /* ZFS master node */
3842 dump_zap, /* ZFS delete queue */
3843 dump_uint8, /* zvol object */
3844 dump_zap, /* zvol prop */
3845 dump_uint8, /* other uint8[] */
3846 dump_uint64, /* other uint64[] */
3847 dump_zap, /* other ZAP */
3848 dump_zap, /* persistent error log */
3849 dump_uint8, /* SPA history */
3850 dump_history_offsets, /* SPA history offsets */
3851 dump_zap, /* Pool properties */
3852 dump_zap, /* DSL permissions */
3853 dump_acl, /* ZFS ACL */
3854 dump_uint8, /* ZFS SYSACL */
3855 dump_none, /* FUID nvlist */
3856 dump_packed_nvlist, /* FUID nvlist size */
3857 dump_zap, /* DSL dataset next clones */
3858 dump_zap, /* DSL scrub queue */
3859 dump_zap, /* ZFS user/group/project used */
3860 dump_zap, /* ZFS user/group/project quota */
3861 dump_zap, /* snapshot refcount tags */
3862 dump_ddt_zap, /* DDT ZAP object */
3863 dump_zap, /* DDT statistics */
3864 dump_znode, /* SA object */
3865 dump_zap, /* SA Master Node */
3866 dump_sa_attrs, /* SA attribute registration */
3867 dump_sa_layouts, /* SA attribute layouts */
3868 dump_zap, /* DSL scrub translations */
3869 dump_none, /* fake dedup BP */
3870 dump_zap, /* deadlist */
3871 dump_none, /* deadlist hdr */
3872 dump_zap, /* dsl clones */
3873 dump_bpobj_subobjs, /* bpobj subobjs */
3874 dump_unknown, /* Unknown type, must be last */
3875 };
3876
3877 static boolean_t
match_object_type(dmu_object_type_t obj_type,uint64_t flags)3878 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3879 {
3880 boolean_t match = B_TRUE;
3881
3882 switch (obj_type) {
3883 case DMU_OT_DIRECTORY_CONTENTS:
3884 if (!(flags & ZOR_FLAG_DIRECTORY))
3885 match = B_FALSE;
3886 break;
3887 case DMU_OT_PLAIN_FILE_CONTENTS:
3888 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3889 match = B_FALSE;
3890 break;
3891 case DMU_OT_SPACE_MAP:
3892 if (!(flags & ZOR_FLAG_SPACE_MAP))
3893 match = B_FALSE;
3894 break;
3895 default:
3896 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3897 if (!(flags & ZOR_FLAG_ZAP))
3898 match = B_FALSE;
3899 break;
3900 }
3901
3902 /*
3903 * If all bits except some of the supported flags are
3904 * set, the user combined the all-types flag (A) with
3905 * a negated flag to exclude some types (e.g. A-f to
3906 * show all object types except plain files).
3907 */
3908 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3909 match = B_FALSE;
3910
3911 break;
3912 }
3913
3914 return (match);
3915 }
3916
3917 static void
dump_object(objset_t * os,uint64_t object,int verbosity,boolean_t * print_header,uint64_t * dnode_slots_used,uint64_t flags)3918 dump_object(objset_t *os, uint64_t object, int verbosity,
3919 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3920 {
3921 dmu_buf_t *db = NULL;
3922 dmu_object_info_t doi;
3923 dnode_t *dn;
3924 boolean_t dnode_held = B_FALSE;
3925 void *bonus = NULL;
3926 size_t bsize = 0;
3927 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3928 char bonus_size[32];
3929 char aux[50];
3930 int error;
3931
3932 /* make sure nicenum has enough space */
3933 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3934 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3935 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3936 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3937 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3938 "bonus_size truncated");
3939
3940 if (*print_header) {
3941 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3942 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3943 "lsize", "%full", "type");
3944 *print_header = 0;
3945 }
3946
3947 if (object == 0) {
3948 dn = DMU_META_DNODE(os);
3949 dmu_object_info_from_dnode(dn, &doi);
3950 } else {
3951 /*
3952 * Encrypted datasets will have sensitive bonus buffers
3953 * encrypted. Therefore we cannot hold the bonus buffer and
3954 * must hold the dnode itself instead.
3955 */
3956 error = dmu_object_info(os, object, &doi);
3957 if (error)
3958 fatal("dmu_object_info() failed, errno %u", error);
3959
3960 if (!key_loaded && os->os_encrypted &&
3961 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3962 error = dnode_hold(os, object, FTAG, &dn);
3963 if (error)
3964 fatal("dnode_hold() failed, errno %u", error);
3965 dnode_held = B_TRUE;
3966 } else {
3967 error = dmu_bonus_hold(os, object, FTAG, &db);
3968 if (error)
3969 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3970 object, error);
3971 bonus = db->db_data;
3972 bsize = db->db_size;
3973 dn = DB_DNODE((dmu_buf_impl_t *)db);
3974 }
3975 }
3976
3977 /*
3978 * Default to showing all object types if no flags were specified.
3979 */
3980 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3981 !match_object_type(doi.doi_type, flags))
3982 goto out;
3983
3984 if (dnode_slots_used)
3985 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3986
3987 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3988 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3989 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3990 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3991 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3992 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3993 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3994 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3995 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3996
3997 aux[0] = '\0';
3998
3999 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
4000 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
4001 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
4002 }
4003
4004 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
4005 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
4006 const char *compname = NULL;
4007 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
4008 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
4009 &compname) == 0) {
4010 (void) snprintf(aux + strlen(aux),
4011 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
4012 compname);
4013 } else {
4014 (void) snprintf(aux + strlen(aux),
4015 sizeof (aux) - strlen(aux),
4016 " (Z=inherit=%s-unknown)",
4017 ZDB_COMPRESS_NAME(os->os_compress));
4018 }
4019 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
4020 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
4021 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
4022 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
4023 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
4024 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
4025 }
4026
4027 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
4028 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
4029 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
4030
4031 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
4032 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
4033 "", "", "", "", "", "", bonus_size, "bonus",
4034 zdb_ot_name(doi.doi_bonus_type));
4035 }
4036
4037 if (verbosity >= 4) {
4038 (void) printf("\tdnode flags: %s%s%s%s\n",
4039 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
4040 "USED_BYTES " : "",
4041 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
4042 "USERUSED_ACCOUNTED " : "",
4043 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
4044 "USEROBJUSED_ACCOUNTED " : "",
4045 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
4046 "SPILL_BLKPTR" : "");
4047 (void) printf("\tdnode maxblkid: %llu\n",
4048 (longlong_t)dn->dn_phys->dn_maxblkid);
4049
4050 if (!dnode_held) {
4051 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
4052 object, bonus, bsize);
4053 } else {
4054 (void) printf("\t\t(bonus encrypted)\n");
4055 }
4056
4057 if (key_loaded ||
4058 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
4059 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
4060 NULL, 0);
4061 } else {
4062 (void) printf("\t\t(object encrypted)\n");
4063 }
4064
4065 *print_header = B_TRUE;
4066 }
4067
4068 if (verbosity >= 5) {
4069 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
4070 char blkbuf[BP_SPRINTF_LEN];
4071 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
4072 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
4073 (void) printf("\nSpill block: %s\n", blkbuf);
4074 }
4075 dump_indirect(dn);
4076 }
4077
4078 if (verbosity >= 5) {
4079 /*
4080 * Report the list of segments that comprise the object.
4081 */
4082 uint64_t start = 0;
4083 uint64_t end;
4084 uint64_t blkfill = 1;
4085 int minlvl = 1;
4086
4087 if (dn->dn_type == DMU_OT_DNODE) {
4088 minlvl = 0;
4089 blkfill = DNODES_PER_BLOCK;
4090 }
4091
4092 for (;;) {
4093 char segsize[32];
4094 /* make sure nicenum has enough space */
4095 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
4096 "segsize truncated");
4097 error = dnode_next_offset(dn,
4098 0, &start, minlvl, blkfill, 0);
4099 if (error)
4100 break;
4101 end = start;
4102 error = dnode_next_offset(dn,
4103 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
4104 zdb_nicenum(end - start, segsize, sizeof (segsize));
4105 (void) printf("\t\tsegment [%016llx, %016llx)"
4106 " size %5s\n", (u_longlong_t)start,
4107 (u_longlong_t)end, segsize);
4108 if (error)
4109 break;
4110 start = end;
4111 }
4112 }
4113
4114 out:
4115 if (db != NULL)
4116 dmu_buf_rele(db, FTAG);
4117 if (dnode_held)
4118 dnode_rele(dn, FTAG);
4119 }
4120
4121 static void
count_dir_mos_objects(dsl_dir_t * dd)4122 count_dir_mos_objects(dsl_dir_t *dd)
4123 {
4124 mos_obj_refd(dd->dd_object);
4125 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
4126 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
4127 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
4128 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
4129
4130 /*
4131 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
4132 * Ignore the references after the first one.
4133 */
4134 mos_obj_refd_multiple(dd->dd_crypto_obj);
4135 }
4136
4137 static void
count_ds_mos_objects(dsl_dataset_t * ds)4138 count_ds_mos_objects(dsl_dataset_t *ds)
4139 {
4140 mos_obj_refd(ds->ds_object);
4141 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
4142 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
4143 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
4144 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
4145 mos_obj_refd(ds->ds_bookmarks_obj);
4146
4147 if (!dsl_dataset_is_snapshot(ds)) {
4148 count_dir_mos_objects(ds->ds_dir);
4149 }
4150 }
4151
4152 static const char *const objset_types[DMU_OST_NUMTYPES] = {
4153 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
4154
4155 /*
4156 * Parse a string denoting a range of object IDs of the form
4157 * <start>[:<end>[:flags]], and store the results in zor.
4158 * Return 0 on success. On error, return 1 and update the msg
4159 * pointer to point to a descriptive error message.
4160 */
4161 static int
parse_object_range(char * range,zopt_object_range_t * zor,const char ** msg)4162 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
4163 {
4164 uint64_t flags = 0;
4165 char *p, *s, *dup, *flagstr, *tmp = NULL;
4166 size_t len;
4167 int i;
4168 int rc = 0;
4169
4170 if (strchr(range, ':') == NULL) {
4171 zor->zor_obj_start = strtoull(range, &p, 0);
4172 if (*p != '\0') {
4173 *msg = "Invalid characters in object ID";
4174 rc = 1;
4175 }
4176 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4177 zor->zor_obj_end = zor->zor_obj_start;
4178 return (rc);
4179 }
4180
4181 if (strchr(range, ':') == range) {
4182 *msg = "Invalid leading colon";
4183 rc = 1;
4184 return (rc);
4185 }
4186
4187 len = strlen(range);
4188 if (range[len - 1] == ':') {
4189 *msg = "Invalid trailing colon";
4190 rc = 1;
4191 return (rc);
4192 }
4193
4194 dup = strdup(range);
4195 s = strtok_r(dup, ":", &tmp);
4196 zor->zor_obj_start = strtoull(s, &p, 0);
4197
4198 if (*p != '\0') {
4199 *msg = "Invalid characters in start object ID";
4200 rc = 1;
4201 goto out;
4202 }
4203
4204 s = strtok_r(NULL, ":", &tmp);
4205 zor->zor_obj_end = strtoull(s, &p, 0);
4206
4207 if (*p != '\0') {
4208 *msg = "Invalid characters in end object ID";
4209 rc = 1;
4210 goto out;
4211 }
4212
4213 if (zor->zor_obj_start > zor->zor_obj_end) {
4214 *msg = "Start object ID may not exceed end object ID";
4215 rc = 1;
4216 goto out;
4217 }
4218
4219 s = strtok_r(NULL, ":", &tmp);
4220 if (s == NULL) {
4221 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4222 goto out;
4223 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
4224 *msg = "Invalid colon-delimited field after flags";
4225 rc = 1;
4226 goto out;
4227 }
4228
4229 flagstr = s;
4230 for (i = 0; flagstr[i]; i++) {
4231 int bit;
4232 boolean_t negation = (flagstr[i] == '-');
4233
4234 if (negation) {
4235 i++;
4236 if (flagstr[i] == '\0') {
4237 *msg = "Invalid trailing negation operator";
4238 rc = 1;
4239 goto out;
4240 }
4241 }
4242 bit = flagbits[(uchar_t)flagstr[i]];
4243 if (bit == 0) {
4244 *msg = "Invalid flag";
4245 rc = 1;
4246 goto out;
4247 }
4248 if (negation)
4249 flags &= ~bit;
4250 else
4251 flags |= bit;
4252 }
4253 zor->zor_flags = flags;
4254
4255 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4256 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4257
4258 out:
4259 free(dup);
4260 return (rc);
4261 }
4262
4263 static void
dump_objset(objset_t * os)4264 dump_objset(objset_t *os)
4265 {
4266 dmu_objset_stats_t dds = { 0 };
4267 uint64_t object, object_count;
4268 uint64_t refdbytes, usedobjs, scratch;
4269 char numbuf[32];
4270 char blkbuf[BP_SPRINTF_LEN + 20];
4271 char osname[ZFS_MAX_DATASET_NAME_LEN];
4272 const char *type = "UNKNOWN";
4273 int verbosity = dump_opt['d'];
4274 boolean_t print_header;
4275 unsigned i;
4276 int error;
4277 uint64_t total_slots_used = 0;
4278 uint64_t max_slot_used = 0;
4279 uint64_t dnode_slots;
4280 uint64_t obj_start;
4281 uint64_t obj_end;
4282 uint64_t flags;
4283
4284 /* make sure nicenum has enough space */
4285 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4286
4287 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4288 dmu_objset_fast_stat(os, &dds);
4289 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4290
4291 print_header = B_TRUE;
4292
4293 if (dds.dds_type < DMU_OST_NUMTYPES)
4294 type = objset_types[dds.dds_type];
4295
4296 if (dds.dds_type == DMU_OST_META) {
4297 dds.dds_creation_txg = TXG_INITIAL;
4298 usedobjs = BP_GET_FILL(os->os_rootbp);
4299 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4300 dd_used_bytes;
4301 } else {
4302 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4303 }
4304
4305 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4306
4307 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4308
4309 if (verbosity >= 4) {
4310 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4311 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4312 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4313 } else {
4314 blkbuf[0] = '\0';
4315 }
4316
4317 dmu_objset_name(os, osname);
4318
4319 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4320 "%s, %llu objects%s%s\n",
4321 osname, type, (u_longlong_t)dmu_objset_id(os),
4322 (u_longlong_t)dds.dds_creation_txg,
4323 numbuf, (u_longlong_t)usedobjs, blkbuf,
4324 (dds.dds_inconsistent) ? " (inconsistent)" : "");
4325
4326 for (i = 0; i < zopt_object_args; i++) {
4327 obj_start = zopt_object_ranges[i].zor_obj_start;
4328 obj_end = zopt_object_ranges[i].zor_obj_end;
4329 flags = zopt_object_ranges[i].zor_flags;
4330
4331 object = obj_start;
4332 if (object == 0 || obj_start == obj_end)
4333 dump_object(os, object, verbosity, &print_header, NULL,
4334 flags);
4335 else
4336 object--;
4337
4338 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4339 object <= obj_end) {
4340 dump_object(os, object, verbosity, &print_header, NULL,
4341 flags);
4342 }
4343 }
4344
4345 if (zopt_object_args > 0) {
4346 (void) printf("\n");
4347 return;
4348 }
4349
4350 if (dump_opt['i'] != 0 || verbosity >= 2)
4351 dump_intent_log(dmu_objset_zil(os));
4352
4353 if (dmu_objset_ds(os) != NULL) {
4354 dsl_dataset_t *ds = dmu_objset_ds(os);
4355 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4356 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4357 !dmu_objset_is_snapshot(os)) {
4358 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4359 if (verify_dd_livelist(os) != 0)
4360 fatal("livelist is incorrect");
4361 }
4362
4363 if (dsl_dataset_remap_deadlist_exists(ds)) {
4364 (void) printf("ds_remap_deadlist:\n");
4365 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4366 }
4367 count_ds_mos_objects(ds);
4368 }
4369
4370 if (dmu_objset_ds(os) != NULL)
4371 dump_bookmarks(os, verbosity);
4372
4373 if (verbosity < 2)
4374 return;
4375
4376 if (BP_IS_HOLE(os->os_rootbp))
4377 return;
4378
4379 dump_object(os, 0, verbosity, &print_header, NULL, 0);
4380 object_count = 0;
4381 if (DMU_USERUSED_DNODE(os) != NULL &&
4382 DMU_USERUSED_DNODE(os)->dn_type != 0) {
4383 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4384 NULL, 0);
4385 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4386 NULL, 0);
4387 }
4388
4389 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4390 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4391 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4392 &print_header, NULL, 0);
4393
4394 object = 0;
4395 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4396 dump_object(os, object, verbosity, &print_header, &dnode_slots,
4397 0);
4398 object_count++;
4399 total_slots_used += dnode_slots;
4400 max_slot_used = object + dnode_slots - 1;
4401 }
4402
4403 (void) printf("\n");
4404
4405 (void) printf(" Dnode slots:\n");
4406 (void) printf("\tTotal used: %10llu\n",
4407 (u_longlong_t)total_slots_used);
4408 (void) printf("\tMax used: %10llu\n",
4409 (u_longlong_t)max_slot_used);
4410 (void) printf("\tPercent empty: %10lf\n",
4411 (double)(max_slot_used - total_slots_used)*100 /
4412 (double)max_slot_used);
4413 (void) printf("\n");
4414
4415 if (error != ESRCH) {
4416 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4417 abort();
4418 }
4419
4420 ASSERT3U(object_count, ==, usedobjs);
4421
4422 if (leaked_objects != 0) {
4423 (void) printf("%d potentially leaked objects detected\n",
4424 leaked_objects);
4425 leaked_objects = 0;
4426 }
4427 }
4428
4429 static void
dump_uberblock(uberblock_t * ub,const char * header,const char * footer)4430 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4431 {
4432 time_t timestamp = ub->ub_timestamp;
4433
4434 (void) printf("%s", header ? header : "");
4435 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4436 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4437 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4438 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4439 (void) printf("\ttimestamp = %llu UTC = %s",
4440 (u_longlong_t)ub->ub_timestamp, ctime(×tamp));
4441
4442 char blkbuf[BP_SPRINTF_LEN];
4443 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4444 (void) printf("\tbp = %s\n", blkbuf);
4445
4446 (void) printf("\tmmp_magic = %016llx\n",
4447 (u_longlong_t)ub->ub_mmp_magic);
4448 if (MMP_VALID(ub)) {
4449 (void) printf("\tmmp_delay = %0llu\n",
4450 (u_longlong_t)ub->ub_mmp_delay);
4451 if (MMP_SEQ_VALID(ub))
4452 (void) printf("\tmmp_seq = %u\n",
4453 (unsigned int) MMP_SEQ(ub));
4454 if (MMP_FAIL_INT_VALID(ub))
4455 (void) printf("\tmmp_fail = %u\n",
4456 (unsigned int) MMP_FAIL_INT(ub));
4457 if (MMP_INTERVAL_VALID(ub))
4458 (void) printf("\tmmp_write = %u\n",
4459 (unsigned int) MMP_INTERVAL(ub));
4460 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4461 (void) printf("\tmmp_valid = %x\n",
4462 (unsigned int) ub->ub_mmp_config & 0xFF);
4463 }
4464
4465 if (dump_opt['u'] >= 4) {
4466 char blkbuf[BP_SPRINTF_LEN];
4467 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4468 (void) printf("\trootbp = %s\n", blkbuf);
4469 }
4470 (void) printf("\tcheckpoint_txg = %llu\n",
4471 (u_longlong_t)ub->ub_checkpoint_txg);
4472
4473 (void) printf("\traidz_reflow state=%u off=%llu\n",
4474 (int)RRSS_GET_STATE(ub),
4475 (u_longlong_t)RRSS_GET_OFFSET(ub));
4476
4477 (void) printf("%s", footer ? footer : "");
4478 }
4479
4480 static void
dump_config(spa_t * spa)4481 dump_config(spa_t *spa)
4482 {
4483 dmu_buf_t *db;
4484 size_t nvsize = 0;
4485 int error = 0;
4486
4487
4488 error = dmu_bonus_hold(spa->spa_meta_objset,
4489 spa->spa_config_object, FTAG, &db);
4490
4491 if (error == 0) {
4492 nvsize = *(uint64_t *)db->db_data;
4493 dmu_buf_rele(db, FTAG);
4494
4495 (void) printf("\nMOS Configuration:\n");
4496 dump_packed_nvlist(spa->spa_meta_objset,
4497 spa->spa_config_object, (void *)&nvsize, 1);
4498 } else {
4499 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4500 (u_longlong_t)spa->spa_config_object, error);
4501 }
4502 }
4503
4504 static void
dump_cachefile(const char * cachefile)4505 dump_cachefile(const char *cachefile)
4506 {
4507 int fd;
4508 struct stat64 statbuf;
4509 char *buf;
4510 nvlist_t *config;
4511
4512 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4513 (void) printf("cannot open '%s': %s\n", cachefile,
4514 strerror(errno));
4515 zdb_exit(1);
4516 }
4517
4518 if (fstat64(fd, &statbuf) != 0) {
4519 (void) printf("failed to stat '%s': %s\n", cachefile,
4520 strerror(errno));
4521 zdb_exit(1);
4522 }
4523
4524 if ((buf = malloc(statbuf.st_size)) == NULL) {
4525 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4526 (u_longlong_t)statbuf.st_size);
4527 zdb_exit(1);
4528 }
4529
4530 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4531 (void) fprintf(stderr, "failed to read %llu bytes\n",
4532 (u_longlong_t)statbuf.st_size);
4533 zdb_exit(1);
4534 }
4535
4536 (void) close(fd);
4537
4538 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4539 (void) fprintf(stderr, "failed to unpack nvlist\n");
4540 zdb_exit(1);
4541 }
4542
4543 free(buf);
4544
4545 dump_nvlist(config, 0);
4546
4547 nvlist_free(config);
4548 }
4549
4550 /*
4551 * ZFS label nvlist stats
4552 */
4553 typedef struct zdb_nvl_stats {
4554 int zns_list_count;
4555 int zns_leaf_count;
4556 size_t zns_leaf_largest;
4557 size_t zns_leaf_total;
4558 nvlist_t *zns_string;
4559 nvlist_t *zns_uint64;
4560 nvlist_t *zns_boolean;
4561 } zdb_nvl_stats_t;
4562
4563 static void
collect_nvlist_stats(nvlist_t * nvl,zdb_nvl_stats_t * stats)4564 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4565 {
4566 nvlist_t *list, **array;
4567 nvpair_t *nvp = NULL;
4568 const char *name;
4569 uint_t i, items;
4570
4571 stats->zns_list_count++;
4572
4573 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4574 name = nvpair_name(nvp);
4575
4576 switch (nvpair_type(nvp)) {
4577 case DATA_TYPE_STRING:
4578 fnvlist_add_string(stats->zns_string, name,
4579 fnvpair_value_string(nvp));
4580 break;
4581 case DATA_TYPE_UINT64:
4582 fnvlist_add_uint64(stats->zns_uint64, name,
4583 fnvpair_value_uint64(nvp));
4584 break;
4585 case DATA_TYPE_BOOLEAN:
4586 fnvlist_add_boolean(stats->zns_boolean, name);
4587 break;
4588 case DATA_TYPE_NVLIST:
4589 if (nvpair_value_nvlist(nvp, &list) == 0)
4590 collect_nvlist_stats(list, stats);
4591 break;
4592 case DATA_TYPE_NVLIST_ARRAY:
4593 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4594 break;
4595
4596 for (i = 0; i < items; i++) {
4597 collect_nvlist_stats(array[i], stats);
4598
4599 /* collect stats on leaf vdev */
4600 if (strcmp(name, "children") == 0) {
4601 size_t size;
4602
4603 (void) nvlist_size(array[i], &size,
4604 NV_ENCODE_XDR);
4605 stats->zns_leaf_total += size;
4606 if (size > stats->zns_leaf_largest)
4607 stats->zns_leaf_largest = size;
4608 stats->zns_leaf_count++;
4609 }
4610 }
4611 break;
4612 default:
4613 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4614 }
4615 }
4616 }
4617
4618 static void
dump_nvlist_stats(nvlist_t * nvl,size_t cap)4619 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4620 {
4621 zdb_nvl_stats_t stats = { 0 };
4622 size_t size, sum = 0, total;
4623 size_t noise;
4624
4625 /* requires nvlist with non-unique names for stat collection */
4626 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4627 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4628 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4629 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4630
4631 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4632
4633 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4634 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4635 (int)total, (int)(cap - total), 100.0 * total / cap);
4636
4637 collect_nvlist_stats(nvl, &stats);
4638
4639 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4640 size -= noise;
4641 sum += size;
4642 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4643 (int)fnvlist_num_pairs(stats.zns_uint64),
4644 (int)size, 100.0 * size / total);
4645
4646 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4647 size -= noise;
4648 sum += size;
4649 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4650 (int)fnvlist_num_pairs(stats.zns_string),
4651 (int)size, 100.0 * size / total);
4652
4653 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4654 size -= noise;
4655 sum += size;
4656 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4657 (int)fnvlist_num_pairs(stats.zns_boolean),
4658 (int)size, 100.0 * size / total);
4659
4660 size = total - sum; /* treat remainder as nvlist overhead */
4661 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4662 stats.zns_list_count, (int)size, 100.0 * size / total);
4663
4664 if (stats.zns_leaf_count > 0) {
4665 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4666
4667 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4668 stats.zns_leaf_count, (int)average);
4669 (void) printf("%24d bytes largest\n",
4670 (int)stats.zns_leaf_largest);
4671
4672 if (dump_opt['l'] >= 3 && average > 0)
4673 (void) printf(" space for %d additional leaf vdevs\n",
4674 (int)((cap - total) / average));
4675 }
4676 (void) printf("\n");
4677
4678 nvlist_free(stats.zns_string);
4679 nvlist_free(stats.zns_uint64);
4680 nvlist_free(stats.zns_boolean);
4681 }
4682
4683 typedef struct cksum_record {
4684 zio_cksum_t cksum;
4685 boolean_t labels[VDEV_LABELS];
4686 avl_node_t link;
4687 } cksum_record_t;
4688
4689 static int
cksum_record_compare(const void * x1,const void * x2)4690 cksum_record_compare(const void *x1, const void *x2)
4691 {
4692 const cksum_record_t *l = (cksum_record_t *)x1;
4693 const cksum_record_t *r = (cksum_record_t *)x2;
4694 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4695 int difference = 0;
4696
4697 for (int i = 0; i < arraysize; i++) {
4698 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4699 if (difference)
4700 break;
4701 }
4702
4703 return (difference);
4704 }
4705
4706 static cksum_record_t *
cksum_record_alloc(zio_cksum_t * cksum,int l)4707 cksum_record_alloc(zio_cksum_t *cksum, int l)
4708 {
4709 cksum_record_t *rec;
4710
4711 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4712 rec->cksum = *cksum;
4713 rec->labels[l] = B_TRUE;
4714
4715 return (rec);
4716 }
4717
4718 static cksum_record_t *
cksum_record_lookup(avl_tree_t * tree,zio_cksum_t * cksum)4719 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4720 {
4721 cksum_record_t lookup = { .cksum = *cksum };
4722 avl_index_t where;
4723
4724 return (avl_find(tree, &lookup, &where));
4725 }
4726
4727 static cksum_record_t *
cksum_record_insert(avl_tree_t * tree,zio_cksum_t * cksum,int l)4728 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4729 {
4730 cksum_record_t *rec;
4731
4732 rec = cksum_record_lookup(tree, cksum);
4733 if (rec) {
4734 rec->labels[l] = B_TRUE;
4735 } else {
4736 rec = cksum_record_alloc(cksum, l);
4737 avl_add(tree, rec);
4738 }
4739
4740 return (rec);
4741 }
4742
4743 static int
first_label(cksum_record_t * rec)4744 first_label(cksum_record_t *rec)
4745 {
4746 for (int i = 0; i < VDEV_LABELS; i++)
4747 if (rec->labels[i])
4748 return (i);
4749
4750 return (-1);
4751 }
4752
4753 static void
print_label_numbers(const char * prefix,const cksum_record_t * rec)4754 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4755 {
4756 fputs(prefix, stdout);
4757 for (int i = 0; i < VDEV_LABELS; i++)
4758 if (rec->labels[i] == B_TRUE)
4759 printf("%d ", i);
4760 putchar('\n');
4761 }
4762
4763 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4764
4765 typedef struct zdb_label {
4766 vdev_label_t label;
4767 uint64_t label_offset;
4768 nvlist_t *config_nv;
4769 cksum_record_t *config;
4770 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4771 boolean_t header_printed;
4772 boolean_t read_failed;
4773 boolean_t cksum_valid;
4774 } zdb_label_t;
4775
4776 static void
print_label_header(zdb_label_t * label,int l)4777 print_label_header(zdb_label_t *label, int l)
4778 {
4779
4780 if (dump_opt['q'])
4781 return;
4782
4783 if (label->header_printed == B_TRUE)
4784 return;
4785
4786 (void) printf("------------------------------------\n");
4787 (void) printf("LABEL %d %s\n", l,
4788 label->cksum_valid ? "" : "(Bad label cksum)");
4789 (void) printf("------------------------------------\n");
4790
4791 label->header_printed = B_TRUE;
4792 }
4793
4794 static void
print_l2arc_header(void)4795 print_l2arc_header(void)
4796 {
4797 (void) printf("------------------------------------\n");
4798 (void) printf("L2ARC device header\n");
4799 (void) printf("------------------------------------\n");
4800 }
4801
4802 static void
print_l2arc_log_blocks(void)4803 print_l2arc_log_blocks(void)
4804 {
4805 (void) printf("------------------------------------\n");
4806 (void) printf("L2ARC device log blocks\n");
4807 (void) printf("------------------------------------\n");
4808 }
4809
4810 static void
dump_l2arc_log_entries(uint64_t log_entries,l2arc_log_ent_phys_t * le,uint64_t i)4811 dump_l2arc_log_entries(uint64_t log_entries,
4812 l2arc_log_ent_phys_t *le, uint64_t i)
4813 {
4814 for (int j = 0; j < log_entries; j++) {
4815 dva_t dva = le[j].le_dva;
4816 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4817 "vdev: %llu, offset: %llu\n",
4818 (u_longlong_t)i, j + 1,
4819 (u_longlong_t)DVA_GET_ASIZE(&dva),
4820 (u_longlong_t)DVA_GET_VDEV(&dva),
4821 (u_longlong_t)DVA_GET_OFFSET(&dva));
4822 (void) printf("|\t\t\t\tbirth: %llu\n",
4823 (u_longlong_t)le[j].le_birth);
4824 (void) printf("|\t\t\t\tlsize: %llu\n",
4825 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4826 (void) printf("|\t\t\t\tpsize: %llu\n",
4827 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4828 (void) printf("|\t\t\t\tcompr: %llu\n",
4829 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4830 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4831 (u_longlong_t)(&le[j])->le_complevel);
4832 (void) printf("|\t\t\t\ttype: %llu\n",
4833 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4834 (void) printf("|\t\t\t\tprotected: %llu\n",
4835 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4836 (void) printf("|\t\t\t\tprefetch: %llu\n",
4837 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4838 (void) printf("|\t\t\t\taddress: %llu\n",
4839 (u_longlong_t)le[j].le_daddr);
4840 (void) printf("|\t\t\t\tARC state: %llu\n",
4841 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4842 (void) printf("|\n");
4843 }
4844 (void) printf("\n");
4845 }
4846
4847 static void
dump_l2arc_log_blkptr(const l2arc_log_blkptr_t * lbps)4848 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4849 {
4850 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4851 (void) printf("|\t\tpayload_asize: %llu\n",
4852 (u_longlong_t)lbps->lbp_payload_asize);
4853 (void) printf("|\t\tpayload_start: %llu\n",
4854 (u_longlong_t)lbps->lbp_payload_start);
4855 (void) printf("|\t\tlsize: %llu\n",
4856 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4857 (void) printf("|\t\tasize: %llu\n",
4858 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4859 (void) printf("|\t\tcompralgo: %llu\n",
4860 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4861 (void) printf("|\t\tcksumalgo: %llu\n",
4862 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4863 (void) printf("|\n\n");
4864 }
4865
4866 static void
dump_l2arc_log_blocks(int fd,const l2arc_dev_hdr_phys_t * l2dhdr,l2arc_dev_hdr_phys_t * rebuild)4867 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4868 l2arc_dev_hdr_phys_t *rebuild)
4869 {
4870 l2arc_log_blk_phys_t this_lb;
4871 uint64_t asize;
4872 l2arc_log_blkptr_t lbps[2];
4873 zio_cksum_t cksum;
4874 int failed = 0;
4875 l2arc_dev_t dev;
4876
4877 if (!dump_opt['q'])
4878 print_l2arc_log_blocks();
4879 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4880
4881 dev.l2ad_evict = l2dhdr->dh_evict;
4882 dev.l2ad_start = l2dhdr->dh_start;
4883 dev.l2ad_end = l2dhdr->dh_end;
4884
4885 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4886 /* no log blocks to read */
4887 if (!dump_opt['q']) {
4888 (void) printf("No log blocks to read\n");
4889 (void) printf("\n");
4890 }
4891 return;
4892 } else {
4893 dev.l2ad_hand = lbps[0].lbp_daddr +
4894 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4895 }
4896
4897 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4898
4899 for (;;) {
4900 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4901 break;
4902
4903 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4904 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4905 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4906 if (!dump_opt['q']) {
4907 (void) printf("Error while reading next log "
4908 "block\n\n");
4909 }
4910 break;
4911 }
4912
4913 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4914 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4915 failed++;
4916 if (!dump_opt['q']) {
4917 (void) printf("Invalid cksum\n");
4918 dump_l2arc_log_blkptr(&lbps[0]);
4919 }
4920 break;
4921 }
4922
4923 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4924 case ZIO_COMPRESS_OFF:
4925 break;
4926 default: {
4927 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4928 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4929 abd_t dabd;
4930 abd_get_from_buf_struct(&dabd, &this_lb,
4931 sizeof (this_lb));
4932 int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4933 (&lbps[0])->lbp_prop), abd, &dabd,
4934 asize, sizeof (this_lb), NULL);
4935 abd_free(&dabd);
4936 abd_free(abd);
4937 if (err != 0) {
4938 (void) printf("L2ARC block decompression "
4939 "failed\n");
4940 goto out;
4941 }
4942 break;
4943 }
4944 }
4945
4946 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4947 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4948 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4949 if (!dump_opt['q'])
4950 (void) printf("Invalid log block magic\n\n");
4951 break;
4952 }
4953
4954 rebuild->dh_lb_count++;
4955 rebuild->dh_lb_asize += asize;
4956 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4957 (void) printf("lb[%4llu]\tmagic: %llu\n",
4958 (u_longlong_t)rebuild->dh_lb_count,
4959 (u_longlong_t)this_lb.lb_magic);
4960 dump_l2arc_log_blkptr(&lbps[0]);
4961 }
4962
4963 if (dump_opt['l'] > 2 && !dump_opt['q'])
4964 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4965 this_lb.lb_entries,
4966 rebuild->dh_lb_count);
4967
4968 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4969 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4970 !dev.l2ad_first)
4971 break;
4972
4973 lbps[0] = lbps[1];
4974 lbps[1] = this_lb.lb_prev_lbp;
4975 }
4976 out:
4977 if (!dump_opt['q']) {
4978 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4979 (u_longlong_t)rebuild->dh_lb_count);
4980 (void) printf("\t\t %d with invalid cksum\n", failed);
4981 (void) printf("log_blk_asize:\t %llu\n\n",
4982 (u_longlong_t)rebuild->dh_lb_asize);
4983 }
4984 }
4985
4986 static int
dump_l2arc_header(int fd)4987 dump_l2arc_header(int fd)
4988 {
4989 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4990 int error = B_FALSE;
4991
4992 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4993 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4994 error = B_TRUE;
4995 } else {
4996 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4997 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4998
4999 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
5000 error = B_TRUE;
5001 }
5002
5003 if (error) {
5004 (void) printf("L2ARC device header not found\n\n");
5005 /* Do not return an error here for backward compatibility */
5006 return (0);
5007 } else if (!dump_opt['q']) {
5008 print_l2arc_header();
5009
5010 (void) printf(" magic: %llu\n",
5011 (u_longlong_t)l2dhdr.dh_magic);
5012 (void) printf(" version: %llu\n",
5013 (u_longlong_t)l2dhdr.dh_version);
5014 (void) printf(" pool_guid: %llu\n",
5015 (u_longlong_t)l2dhdr.dh_spa_guid);
5016 (void) printf(" flags: %llu\n",
5017 (u_longlong_t)l2dhdr.dh_flags);
5018 (void) printf(" start_lbps[0]: %llu\n",
5019 (u_longlong_t)
5020 l2dhdr.dh_start_lbps[0].lbp_daddr);
5021 (void) printf(" start_lbps[1]: %llu\n",
5022 (u_longlong_t)
5023 l2dhdr.dh_start_lbps[1].lbp_daddr);
5024 (void) printf(" log_blk_ent: %llu\n",
5025 (u_longlong_t)l2dhdr.dh_log_entries);
5026 (void) printf(" start: %llu\n",
5027 (u_longlong_t)l2dhdr.dh_start);
5028 (void) printf(" end: %llu\n",
5029 (u_longlong_t)l2dhdr.dh_end);
5030 (void) printf(" evict: %llu\n",
5031 (u_longlong_t)l2dhdr.dh_evict);
5032 (void) printf(" lb_asize_refcount: %llu\n",
5033 (u_longlong_t)l2dhdr.dh_lb_asize);
5034 (void) printf(" lb_count_refcount: %llu\n",
5035 (u_longlong_t)l2dhdr.dh_lb_count);
5036 (void) printf(" trim_action_time: %llu\n",
5037 (u_longlong_t)l2dhdr.dh_trim_action_time);
5038 (void) printf(" trim_state: %llu\n\n",
5039 (u_longlong_t)l2dhdr.dh_trim_state);
5040 }
5041
5042 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
5043 /*
5044 * The total aligned size of log blocks and the number of log blocks
5045 * reported in the header of the device may be less than what zdb
5046 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
5047 * This happens because dump_l2arc_log_blocks() lacks the memory
5048 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
5049 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
5050 * and dh_lb_count will be lower to begin with than what exists on the
5051 * device. This is normal and zdb should not exit with an error. The
5052 * opposite case should never happen though, the values reported in the
5053 * header should never be higher than what dump_l2arc_log_blocks() and
5054 * l2arc_rebuild() report. If this happens there is a leak in the
5055 * accounting of log blocks.
5056 */
5057 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
5058 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
5059 return (1);
5060
5061 return (0);
5062 }
5063
5064 static void
dump_config_from_label(zdb_label_t * label,size_t buflen,int l)5065 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
5066 {
5067 if (dump_opt['q'])
5068 return;
5069
5070 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
5071 return;
5072
5073 print_label_header(label, l);
5074 dump_nvlist(label->config_nv, 4);
5075 print_label_numbers(" labels = ", label->config);
5076
5077 if (dump_opt['l'] >= 2)
5078 dump_nvlist_stats(label->config_nv, buflen);
5079 }
5080
5081 #define ZDB_MAX_UB_HEADER_SIZE 32
5082
5083 static void
dump_label_uberblocks(zdb_label_t * label,uint64_t ashift,int label_num)5084 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
5085 {
5086
5087 vdev_t vd;
5088 char header[ZDB_MAX_UB_HEADER_SIZE];
5089
5090 vd.vdev_ashift = ashift;
5091 vd.vdev_top = &vd;
5092
5093 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5094 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5095 uberblock_t *ub = (void *)((char *)&label->label + uoff);
5096 cksum_record_t *rec = label->uberblocks[i];
5097
5098 if (rec == NULL) {
5099 if (dump_opt['u'] >= 2) {
5100 print_label_header(label, label_num);
5101 (void) printf(" Uberblock[%d] invalid\n", i);
5102 }
5103 continue;
5104 }
5105
5106 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
5107 continue;
5108
5109 if ((dump_opt['u'] < 4) &&
5110 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
5111 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
5112 continue;
5113
5114 print_label_header(label, label_num);
5115 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
5116 " Uberblock[%d]\n", i);
5117 dump_uberblock(ub, header, "");
5118 print_label_numbers(" labels = ", rec);
5119 }
5120 }
5121
5122 static char curpath[PATH_MAX];
5123
5124 /*
5125 * Iterate through the path components, recursively passing
5126 * current one's obj and remaining path until we find the obj
5127 * for the last one.
5128 */
5129 static int
dump_path_impl(objset_t * os,uint64_t obj,char * name,uint64_t * retobj)5130 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
5131 {
5132 int err;
5133 boolean_t header = B_TRUE;
5134 uint64_t child_obj;
5135 char *s;
5136 dmu_buf_t *db;
5137 dmu_object_info_t doi;
5138
5139 if ((s = strchr(name, '/')) != NULL)
5140 *s = '\0';
5141 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
5142
5143 (void) strlcat(curpath, name, sizeof (curpath));
5144
5145 if (err != 0) {
5146 (void) fprintf(stderr, "failed to lookup %s: %s\n",
5147 curpath, strerror(err));
5148 return (err);
5149 }
5150
5151 child_obj = ZFS_DIRENT_OBJ(child_obj);
5152 err = sa_buf_hold(os, child_obj, FTAG, &db);
5153 if (err != 0) {
5154 (void) fprintf(stderr,
5155 "failed to get SA dbuf for obj %llu: %s\n",
5156 (u_longlong_t)child_obj, strerror(err));
5157 return (EINVAL);
5158 }
5159 dmu_object_info_from_db(db, &doi);
5160 sa_buf_rele(db, FTAG);
5161
5162 if (doi.doi_bonus_type != DMU_OT_SA &&
5163 doi.doi_bonus_type != DMU_OT_ZNODE) {
5164 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
5165 doi.doi_bonus_type, (u_longlong_t)child_obj);
5166 return (EINVAL);
5167 }
5168
5169 if (dump_opt['v'] > 6) {
5170 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
5171 (u_longlong_t)child_obj, curpath, doi.doi_type,
5172 doi.doi_bonus_type);
5173 }
5174
5175 (void) strlcat(curpath, "/", sizeof (curpath));
5176
5177 switch (doi.doi_type) {
5178 case DMU_OT_DIRECTORY_CONTENTS:
5179 if (s != NULL && *(s + 1) != '\0')
5180 return (dump_path_impl(os, child_obj, s + 1, retobj));
5181 zfs_fallthrough;
5182 case DMU_OT_PLAIN_FILE_CONTENTS:
5183 if (retobj != NULL) {
5184 *retobj = child_obj;
5185 } else {
5186 dump_object(os, child_obj, dump_opt['v'], &header,
5187 NULL, 0);
5188 }
5189 return (0);
5190 default:
5191 (void) fprintf(stderr, "object %llu has non-file/directory "
5192 "type %d\n", (u_longlong_t)obj, doi.doi_type);
5193 break;
5194 }
5195
5196 return (EINVAL);
5197 }
5198
5199 /*
5200 * Dump the blocks for the object specified by path inside the dataset.
5201 */
5202 static int
dump_path(char * ds,char * path,uint64_t * retobj)5203 dump_path(char *ds, char *path, uint64_t *retobj)
5204 {
5205 int err;
5206 objset_t *os;
5207 uint64_t root_obj;
5208
5209 err = open_objset(ds, FTAG, &os);
5210 if (err != 0)
5211 return (err);
5212
5213 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5214 if (err != 0) {
5215 (void) fprintf(stderr, "can't lookup root znode: %s\n",
5216 strerror(err));
5217 close_objset(os, FTAG);
5218 return (EINVAL);
5219 }
5220
5221 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5222
5223 err = dump_path_impl(os, root_obj, path, retobj);
5224
5225 close_objset(os, FTAG);
5226 return (err);
5227 }
5228
5229 static int
dump_backup_bytes(objset_t * os,void * buf,int len,void * arg)5230 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5231 {
5232 const char *p = (const char *)buf;
5233 ssize_t nwritten;
5234
5235 (void) os;
5236 (void) arg;
5237
5238 /* Write the data out, handling short writes and signals. */
5239 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5240 if (nwritten < 0) {
5241 if (errno == EINTR)
5242 continue;
5243 return (errno);
5244 }
5245 p += nwritten;
5246 len -= nwritten;
5247 }
5248
5249 return (0);
5250 }
5251
5252 static void
dump_backup(const char * pool,uint64_t objset_id,const char * flagstr)5253 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5254 {
5255 boolean_t embed = B_FALSE;
5256 boolean_t large_block = B_FALSE;
5257 boolean_t compress = B_FALSE;
5258 boolean_t raw = B_FALSE;
5259
5260 const char *c;
5261 for (c = flagstr; c != NULL && *c != '\0'; c++) {
5262 switch (*c) {
5263 case 'e':
5264 embed = B_TRUE;
5265 break;
5266 case 'L':
5267 large_block = B_TRUE;
5268 break;
5269 case 'c':
5270 compress = B_TRUE;
5271 break;
5272 case 'w':
5273 raw = B_TRUE;
5274 break;
5275 default:
5276 fprintf(stderr, "dump_backup: invalid flag "
5277 "'%c'\n", *c);
5278 return;
5279 }
5280 }
5281
5282 if (isatty(STDOUT_FILENO)) {
5283 fprintf(stderr, "dump_backup: stream cannot be written "
5284 "to a terminal\n");
5285 return;
5286 }
5287
5288 offset_t off = 0;
5289 dmu_send_outparams_t out = {
5290 .dso_outfunc = dump_backup_bytes,
5291 .dso_dryrun = B_FALSE,
5292 };
5293
5294 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5295 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5296 &off, &out);
5297 if (err != 0) {
5298 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5299 strerror(err));
5300 return;
5301 }
5302 }
5303
5304 static int
zdb_copy_object(objset_t * os,uint64_t srcobj,char * destfile)5305 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5306 {
5307 int err = 0;
5308 uint64_t size, readsize, oursize, offset;
5309 ssize_t writesize;
5310 sa_handle_t *hdl;
5311
5312 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5313 destfile);
5314
5315 VERIFY3P(os, ==, sa_os);
5316 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5317 (void) printf("Failed to get handle for SA znode\n");
5318 return (err);
5319 }
5320 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5321 (void) sa_handle_destroy(hdl);
5322 return (err);
5323 }
5324 (void) sa_handle_destroy(hdl);
5325
5326 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5327 size);
5328 if (size == 0) {
5329 return (EINVAL);
5330 }
5331
5332 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5333 if (fd == -1)
5334 return (errno);
5335 /*
5336 * We cap the size at 1 mebibyte here to prevent
5337 * allocation failures and nigh-infinite printing if the
5338 * object is extremely large.
5339 */
5340 oursize = MIN(size, 1 << 20);
5341 offset = 0;
5342 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5343 if (buf == NULL) {
5344 (void) close(fd);
5345 return (ENOMEM);
5346 }
5347
5348 while (offset < size) {
5349 readsize = MIN(size - offset, 1 << 20);
5350 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5351 if (err != 0) {
5352 (void) printf("got error %u from dmu_read\n", err);
5353 kmem_free(buf, oursize);
5354 (void) close(fd);
5355 return (err);
5356 }
5357 if (dump_opt['v'] > 3) {
5358 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5359 " error=%d\n", offset, readsize, err);
5360 }
5361
5362 writesize = write(fd, buf, readsize);
5363 if (writesize < 0) {
5364 err = errno;
5365 break;
5366 } else if (writesize != readsize) {
5367 /* Incomplete write */
5368 (void) fprintf(stderr, "Short write, only wrote %llu of"
5369 " %" PRIu64 " bytes, exiting...\n",
5370 (u_longlong_t)writesize, readsize);
5371 break;
5372 }
5373
5374 offset += readsize;
5375 }
5376
5377 (void) close(fd);
5378
5379 if (buf != NULL)
5380 kmem_free(buf, oursize);
5381
5382 return (err);
5383 }
5384
5385 static boolean_t
label_cksum_valid(vdev_label_t * label,uint64_t offset)5386 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5387 {
5388 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5389 zio_cksum_t expected_cksum;
5390 zio_cksum_t actual_cksum;
5391 zio_cksum_t verifier;
5392 zio_eck_t *eck;
5393 int byteswap;
5394
5395 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5396 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5397
5398 offset += offsetof(vdev_label_t, vl_vdev_phys);
5399 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5400
5401 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5402 if (byteswap)
5403 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5404
5405 expected_cksum = eck->zec_cksum;
5406 eck->zec_cksum = verifier;
5407
5408 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5409 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5410 abd_free(abd);
5411
5412 if (byteswap)
5413 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5414
5415 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5416 return (B_TRUE);
5417
5418 return (B_FALSE);
5419 }
5420
5421 static int
dump_label(const char * dev)5422 dump_label(const char *dev)
5423 {
5424 char path[MAXPATHLEN];
5425 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5426 uint64_t psize, ashift, l2cache;
5427 struct stat64 statbuf;
5428 boolean_t config_found = B_FALSE;
5429 boolean_t error = B_FALSE;
5430 boolean_t read_l2arc_header = B_FALSE;
5431 avl_tree_t config_tree;
5432 avl_tree_t uberblock_tree;
5433 void *node, *cookie;
5434 int fd;
5435
5436 /*
5437 * Check if we were given absolute path and use it as is.
5438 * Otherwise if the provided vdev name doesn't point to a file,
5439 * try prepending expected disk paths and partition numbers.
5440 */
5441 (void) strlcpy(path, dev, sizeof (path));
5442 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5443 int error;
5444
5445 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5446 if (error == 0 && zfs_dev_is_whole_disk(path)) {
5447 if (zfs_append_partition(path, MAXPATHLEN) == -1)
5448 error = ENOENT;
5449 }
5450
5451 if (error || (stat64(path, &statbuf) != 0)) {
5452 (void) printf("failed to find device %s, try "
5453 "specifying absolute path instead\n", dev);
5454 return (1);
5455 }
5456 }
5457
5458 if ((fd = open64(path, O_RDONLY)) < 0) {
5459 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
5460 zdb_exit(1);
5461 }
5462
5463 if (fstat64_blk(fd, &statbuf) != 0) {
5464 (void) printf("failed to stat '%s': %s\n", path,
5465 strerror(errno));
5466 (void) close(fd);
5467 zdb_exit(1);
5468 }
5469
5470 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5471 (void) printf("failed to invalidate cache '%s' : %s\n", path,
5472 strerror(errno));
5473
5474 avl_create(&config_tree, cksum_record_compare,
5475 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5476 avl_create(&uberblock_tree, cksum_record_compare,
5477 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5478
5479 psize = statbuf.st_size;
5480 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5481 ashift = SPA_MINBLOCKSHIFT;
5482
5483 /*
5484 * 1. Read the label from disk
5485 * 2. Verify label cksum
5486 * 3. Unpack the configuration and insert in config tree.
5487 * 4. Traverse all uberblocks and insert in uberblock tree.
5488 */
5489 for (int l = 0; l < VDEV_LABELS; l++) {
5490 zdb_label_t *label = &labels[l];
5491 char *buf = label->label.vl_vdev_phys.vp_nvlist;
5492 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5493 nvlist_t *config;
5494 cksum_record_t *rec;
5495 zio_cksum_t cksum;
5496 vdev_t vd;
5497
5498 label->label_offset = vdev_label_offset(psize, l, 0);
5499
5500 if (pread64(fd, &label->label, sizeof (label->label),
5501 label->label_offset) != sizeof (label->label)) {
5502 if (!dump_opt['q'])
5503 (void) printf("failed to read label %d\n", l);
5504 label->read_failed = B_TRUE;
5505 error = B_TRUE;
5506 continue;
5507 }
5508
5509 label->read_failed = B_FALSE;
5510 label->cksum_valid = label_cksum_valid(&label->label,
5511 label->label_offset);
5512
5513 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5514 nvlist_t *vdev_tree = NULL;
5515 size_t size;
5516
5517 if ((nvlist_lookup_nvlist(config,
5518 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5519 (nvlist_lookup_uint64(vdev_tree,
5520 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5521 ashift = SPA_MINBLOCKSHIFT;
5522
5523 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5524 size = buflen;
5525
5526 /* If the device is a cache device read the header. */
5527 if (!read_l2arc_header) {
5528 if (nvlist_lookup_uint64(config,
5529 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5530 l2cache == POOL_STATE_L2CACHE) {
5531 read_l2arc_header = B_TRUE;
5532 }
5533 }
5534
5535 fletcher_4_native_varsize(buf, size, &cksum);
5536 rec = cksum_record_insert(&config_tree, &cksum, l);
5537
5538 label->config = rec;
5539 label->config_nv = config;
5540 config_found = B_TRUE;
5541 } else {
5542 error = B_TRUE;
5543 }
5544
5545 vd.vdev_ashift = ashift;
5546 vd.vdev_top = &vd;
5547
5548 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5549 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5550 uberblock_t *ub = (void *)((char *)label + uoff);
5551
5552 if (uberblock_verify(ub))
5553 continue;
5554
5555 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5556 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5557
5558 label->uberblocks[i] = rec;
5559 }
5560 }
5561
5562 /*
5563 * Dump the label and uberblocks.
5564 */
5565 for (int l = 0; l < VDEV_LABELS; l++) {
5566 zdb_label_t *label = &labels[l];
5567 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5568
5569 if (label->read_failed == B_TRUE)
5570 continue;
5571
5572 if (label->config_nv) {
5573 dump_config_from_label(label, buflen, l);
5574 } else {
5575 if (!dump_opt['q'])
5576 (void) printf("failed to unpack label %d\n", l);
5577 }
5578
5579 if (dump_opt['u'])
5580 dump_label_uberblocks(label, ashift, l);
5581
5582 nvlist_free(label->config_nv);
5583 }
5584
5585 /*
5586 * Dump the L2ARC header, if existent.
5587 */
5588 if (read_l2arc_header)
5589 error |= dump_l2arc_header(fd);
5590
5591 cookie = NULL;
5592 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5593 umem_free(node, sizeof (cksum_record_t));
5594
5595 cookie = NULL;
5596 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5597 umem_free(node, sizeof (cksum_record_t));
5598
5599 avl_destroy(&config_tree);
5600 avl_destroy(&uberblock_tree);
5601
5602 (void) close(fd);
5603
5604 return (config_found == B_FALSE ? 2 :
5605 (error == B_TRUE ? 1 : 0));
5606 }
5607
5608 static uint64_t dataset_feature_count[SPA_FEATURES];
5609 static uint64_t global_feature_count[SPA_FEATURES];
5610 static uint64_t remap_deadlist_count = 0;
5611
5612 static int
dump_one_objset(const char * dsname,void * arg)5613 dump_one_objset(const char *dsname, void *arg)
5614 {
5615 (void) arg;
5616 int error;
5617 objset_t *os;
5618 spa_feature_t f;
5619
5620 error = open_objset(dsname, FTAG, &os);
5621 if (error != 0)
5622 return (0);
5623
5624 for (f = 0; f < SPA_FEATURES; f++) {
5625 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5626 continue;
5627 ASSERT(spa_feature_table[f].fi_flags &
5628 ZFEATURE_FLAG_PER_DATASET);
5629 dataset_feature_count[f]++;
5630 }
5631
5632 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5633 remap_deadlist_count++;
5634 }
5635
5636 for (dsl_bookmark_node_t *dbn =
5637 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5638 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5639 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5640 if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5641 global_feature_count[
5642 SPA_FEATURE_REDACTION_BOOKMARKS]++;
5643 objset_t *mos = os->os_spa->spa_meta_objset;
5644 dnode_t *rl;
5645 VERIFY0(dnode_hold(mos,
5646 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5647 if (rl->dn_have_spill) {
5648 global_feature_count[
5649 SPA_FEATURE_REDACTION_LIST_SPILL]++;
5650 }
5651 }
5652 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5653 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5654 }
5655
5656 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5657 !dmu_objset_is_snapshot(os)) {
5658 global_feature_count[SPA_FEATURE_LIVELIST]++;
5659 }
5660
5661 dump_objset(os);
5662 close_objset(os, FTAG);
5663 fuid_table_destroy();
5664 return (0);
5665 }
5666
5667 /*
5668 * Block statistics.
5669 */
5670 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5671 typedef struct zdb_blkstats {
5672 uint64_t zb_asize;
5673 uint64_t zb_lsize;
5674 uint64_t zb_psize;
5675 uint64_t zb_count;
5676 uint64_t zb_gangs;
5677 uint64_t zb_ditto_samevdev;
5678 uint64_t zb_ditto_same_ms;
5679 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5680 } zdb_blkstats_t;
5681
5682 /*
5683 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5684 */
5685 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5686 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5687 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5688 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5689
5690 static const char *zdb_ot_extname[] = {
5691 "deferred free",
5692 "dedup ditto",
5693 "other",
5694 "Total",
5695 };
5696
5697 #define ZB_TOTAL DN_MAX_LEVELS
5698 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5699
5700 typedef struct zdb_brt_entry {
5701 dva_t zbre_dva;
5702 uint64_t zbre_refcount;
5703 avl_node_t zbre_node;
5704 } zdb_brt_entry_t;
5705
5706 typedef struct zdb_cb {
5707 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5708 uint64_t zcb_removing_size;
5709 uint64_t zcb_checkpoint_size;
5710 uint64_t zcb_dedup_asize;
5711 uint64_t zcb_dedup_blocks;
5712 uint64_t zcb_clone_asize;
5713 uint64_t zcb_clone_blocks;
5714 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5715 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5716 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5717 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5718 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5719 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5720 uint64_t zcb_psize_total;
5721 uint64_t zcb_lsize_total;
5722 uint64_t zcb_asize_total;
5723 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5724 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5725 [BPE_PAYLOAD_SIZE + 1];
5726 uint64_t zcb_start;
5727 hrtime_t zcb_lastprint;
5728 uint64_t zcb_totalasize;
5729 uint64_t zcb_errors[256];
5730 int zcb_readfails;
5731 int zcb_haderrors;
5732 spa_t *zcb_spa;
5733 uint32_t **zcb_vd_obsolete_counts;
5734 avl_tree_t zcb_brt;
5735 boolean_t zcb_brt_is_active;
5736 } zdb_cb_t;
5737
5738 /* test if two DVA offsets from same vdev are within the same metaslab */
5739 static boolean_t
same_metaslab(spa_t * spa,uint64_t vdev,uint64_t off1,uint64_t off2)5740 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5741 {
5742 vdev_t *vd = vdev_lookup_top(spa, vdev);
5743 uint64_t ms_shift = vd->vdev_ms_shift;
5744
5745 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5746 }
5747
5748 /*
5749 * Used to simplify reporting of the histogram data.
5750 */
5751 typedef struct one_histo {
5752 const char *name;
5753 uint64_t *count;
5754 uint64_t *len;
5755 uint64_t cumulative;
5756 } one_histo_t;
5757
5758 /*
5759 * The number of separate histograms processed for psize, lsize and asize.
5760 */
5761 #define NUM_HISTO 3
5762
5763 /*
5764 * This routine will create a fixed column size output of three different
5765 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5766 * the count, length and cumulative length of the psize, lsize and
5767 * asize blocks.
5768 *
5769 * All three types of blocks are listed on a single line
5770 *
5771 * By default the table is printed in nicenumber format (e.g. 123K) but
5772 * if the '-P' parameter is specified then the full raw number (parseable)
5773 * is printed out.
5774 */
5775 static void
dump_size_histograms(zdb_cb_t * zcb)5776 dump_size_histograms(zdb_cb_t *zcb)
5777 {
5778 /*
5779 * A temporary buffer that allows us to convert a number into
5780 * a string using zdb_nicenumber to allow either raw or human
5781 * readable numbers to be output.
5782 */
5783 char numbuf[32];
5784
5785 /*
5786 * Define titles which are used in the headers of the tables
5787 * printed by this routine.
5788 */
5789 const char blocksize_title1[] = "block";
5790 const char blocksize_title2[] = "size";
5791 const char count_title[] = "Count";
5792 const char length_title[] = "Size";
5793 const char cumulative_title[] = "Cum.";
5794
5795 /*
5796 * Setup the histogram arrays (psize, lsize, and asize).
5797 */
5798 one_histo_t parm_histo[NUM_HISTO];
5799
5800 parm_histo[0].name = "psize";
5801 parm_histo[0].count = zcb->zcb_psize_count;
5802 parm_histo[0].len = zcb->zcb_psize_len;
5803 parm_histo[0].cumulative = 0;
5804
5805 parm_histo[1].name = "lsize";
5806 parm_histo[1].count = zcb->zcb_lsize_count;
5807 parm_histo[1].len = zcb->zcb_lsize_len;
5808 parm_histo[1].cumulative = 0;
5809
5810 parm_histo[2].name = "asize";
5811 parm_histo[2].count = zcb->zcb_asize_count;
5812 parm_histo[2].len = zcb->zcb_asize_len;
5813 parm_histo[2].cumulative = 0;
5814
5815
5816 (void) printf("\nBlock Size Histogram\n");
5817 /*
5818 * Print the first line titles
5819 */
5820 if (dump_opt['P'])
5821 (void) printf("\n%s\t", blocksize_title1);
5822 else
5823 (void) printf("\n%7s ", blocksize_title1);
5824
5825 for (int j = 0; j < NUM_HISTO; j++) {
5826 if (dump_opt['P']) {
5827 if (j < NUM_HISTO - 1) {
5828 (void) printf("%s\t\t\t", parm_histo[j].name);
5829 } else {
5830 /* Don't print trailing spaces */
5831 (void) printf(" %s", parm_histo[j].name);
5832 }
5833 } else {
5834 if (j < NUM_HISTO - 1) {
5835 /* Left aligned strings in the output */
5836 (void) printf("%-7s ",
5837 parm_histo[j].name);
5838 } else {
5839 /* Don't print trailing spaces */
5840 (void) printf("%s", parm_histo[j].name);
5841 }
5842 }
5843 }
5844 (void) printf("\n");
5845
5846 /*
5847 * Print the second line titles
5848 */
5849 if (dump_opt['P']) {
5850 (void) printf("%s\t", blocksize_title2);
5851 } else {
5852 (void) printf("%7s ", blocksize_title2);
5853 }
5854
5855 for (int i = 0; i < NUM_HISTO; i++) {
5856 if (dump_opt['P']) {
5857 (void) printf("%s\t%s\t%s\t",
5858 count_title, length_title, cumulative_title);
5859 } else {
5860 (void) printf("%7s%7s%7s",
5861 count_title, length_title, cumulative_title);
5862 }
5863 }
5864 (void) printf("\n");
5865
5866 /*
5867 * Print the rows
5868 */
5869 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5870
5871 /*
5872 * Print the first column showing the blocksize
5873 */
5874 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5875
5876 if (dump_opt['P']) {
5877 printf("%s", numbuf);
5878 } else {
5879 printf("%7s:", numbuf);
5880 }
5881
5882 /*
5883 * Print the remaining set of 3 columns per size:
5884 * for psize, lsize and asize
5885 */
5886 for (int j = 0; j < NUM_HISTO; j++) {
5887 parm_histo[j].cumulative += parm_histo[j].len[i];
5888
5889 zdb_nicenum(parm_histo[j].count[i],
5890 numbuf, sizeof (numbuf));
5891 if (dump_opt['P'])
5892 (void) printf("\t%s", numbuf);
5893 else
5894 (void) printf("%7s", numbuf);
5895
5896 zdb_nicenum(parm_histo[j].len[i],
5897 numbuf, sizeof (numbuf));
5898 if (dump_opt['P'])
5899 (void) printf("\t%s", numbuf);
5900 else
5901 (void) printf("%7s", numbuf);
5902
5903 zdb_nicenum(parm_histo[j].cumulative,
5904 numbuf, sizeof (numbuf));
5905 if (dump_opt['P'])
5906 (void) printf("\t%s", numbuf);
5907 else
5908 (void) printf("%7s", numbuf);
5909 }
5910 (void) printf("\n");
5911 }
5912 }
5913
5914 static void
zdb_count_block(zdb_cb_t * zcb,zilog_t * zilog,const blkptr_t * bp,dmu_object_type_t type)5915 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5916 dmu_object_type_t type)
5917 {
5918 int i;
5919
5920 ASSERT(type < ZDB_OT_TOTAL);
5921
5922 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5923 return;
5924
5925 /*
5926 * This flag controls if we will issue a claim for the block while
5927 * counting it, to ensure that all blocks are referenced in space maps.
5928 * We don't issue claims if we're not doing leak tracking, because it's
5929 * expensive if the user isn't interested. We also don't claim the
5930 * second or later occurences of cloned or dedup'd blocks, because we
5931 * already claimed them the first time.
5932 */
5933 boolean_t do_claim = !dump_opt['L'];
5934
5935 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5936
5937 blkptr_t tempbp;
5938 if (BP_GET_DEDUP(bp)) {
5939 /*
5940 * Dedup'd blocks are special. We need to count them, so we can
5941 * later uncount them when reporting leaked space, and we must
5942 * only claim them once.
5943 *
5944 * We use the existing dedup system to track what we've seen.
5945 * The first time we see a block, we do a ddt_lookup() to see
5946 * if it exists in the DDT. If we're doing leak tracking, we
5947 * claim the block at this time.
5948 *
5949 * Each time we see a block, we reduce the refcount in the
5950 * entry by one, and add to the size and count of dedup'd
5951 * blocks to report at the end.
5952 */
5953
5954 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
5955
5956 ddt_enter(ddt);
5957
5958 /*
5959 * Find the block. This will create the entry in memory, but
5960 * we'll know if that happened by its refcount.
5961 */
5962 ddt_entry_t *dde = ddt_lookup(ddt, bp, B_TRUE);
5963
5964 /*
5965 * ddt_lookup() can return NULL if this block didn't exist
5966 * in the DDT and creating it would take the DDT over its
5967 * quota. Since we got the block from disk, it must exist in
5968 * the DDT, so this can't happen. However, when unique entries
5969 * are pruned, the dedup bit can be set with no corresponding
5970 * entry in the DDT.
5971 */
5972 if (dde == NULL) {
5973 ddt_exit(ddt);
5974 goto skipped;
5975 }
5976
5977 /* Get the phys for this variant */
5978 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
5979
5980 /*
5981 * This entry may have multiple sets of DVAs. We must claim
5982 * each set the first time we see them in a real block on disk,
5983 * or count them on subsequent occurences. We don't have a
5984 * convenient way to track the first time we see each variant,
5985 * so we repurpose dde_io as a set of "seen" flag bits. We can
5986 * do this safely in zdb because it never writes, so it will
5987 * never have a writing zio for this block in that pointer.
5988 */
5989 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
5990 if (!seen)
5991 dde->dde_io =
5992 (void *)(((uintptr_t)dde->dde_io) | (1 << v));
5993
5994 /* Consume a reference for this block. */
5995 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
5996 ddt_phys_decref(dde->dde_phys, v);
5997
5998 /*
5999 * If this entry has a single flat phys, it may have been
6000 * extended with additional DVAs at some time in its life.
6001 * This block might be from before it was fully extended, and
6002 * so have fewer DVAs.
6003 *
6004 * If this is the first time we've seen this block, and we
6005 * claimed it as-is, then we would miss the claim on some
6006 * number of DVAs, which would then be seen as leaked.
6007 *
6008 * In all cases, if we've had fewer DVAs, then the asize would
6009 * be too small, and would lead to the pool apparently using
6010 * more space than allocated.
6011 *
6012 * To handle this, we copy the canonical set of DVAs from the
6013 * entry back to the block pointer before we claim it.
6014 */
6015 if (v == DDT_PHYS_FLAT) {
6016 ASSERT3U(BP_GET_PHYSICAL_BIRTH(bp), ==,
6017 ddt_phys_birth(dde->dde_phys, v));
6018 tempbp = *bp;
6019 ddt_bp_fill(dde->dde_phys, v, &tempbp,
6020 BP_GET_PHYSICAL_BIRTH(bp));
6021 bp = &tempbp;
6022 }
6023
6024 if (seen) {
6025 /*
6026 * The second or later time we see this block,
6027 * it's a duplicate and we count it.
6028 */
6029 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
6030 zcb->zcb_dedup_blocks++;
6031
6032 /* Already claimed, don't do it again. */
6033 do_claim = B_FALSE;
6034 }
6035
6036 ddt_exit(ddt);
6037 } else if (zcb->zcb_brt_is_active &&
6038 brt_maybe_exists(zcb->zcb_spa, bp)) {
6039 /*
6040 * Cloned blocks are special. We need to count them, so we can
6041 * later uncount them when reporting leaked space, and we must
6042 * only claim them once.
6043 *
6044 * To do this, we keep our own in-memory BRT. For each block
6045 * we haven't seen before, we look it up in the real BRT and
6046 * if its there, we note it and its refcount then proceed as
6047 * normal. If we see the block again, we count it as a clone
6048 * and then give it no further consideration.
6049 */
6050 zdb_brt_entry_t zbre_search, *zbre;
6051 avl_index_t where;
6052
6053 zbre_search.zbre_dva = bp->blk_dva[0];
6054 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
6055 if (zbre == NULL) {
6056 /* Not seen before; track it */
6057 uint64_t refcnt =
6058 brt_entry_get_refcount(zcb->zcb_spa, bp);
6059 if (refcnt > 0) {
6060 zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
6061 UMEM_NOFAIL);
6062 zbre->zbre_dva = bp->blk_dva[0];
6063 zbre->zbre_refcount = refcnt;
6064 avl_insert(&zcb->zcb_brt, zbre, where);
6065 }
6066 } else {
6067 /*
6068 * Second or later occurrence, count it and take a
6069 * refcount.
6070 */
6071 zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
6072 zcb->zcb_clone_blocks++;
6073
6074 zbre->zbre_refcount--;
6075 if (zbre->zbre_refcount == 0) {
6076 avl_remove(&zcb->zcb_brt, zbre);
6077 umem_free(zbre, sizeof (zdb_brt_entry_t));
6078 }
6079
6080 /* Already claimed, don't do it again. */
6081 do_claim = B_FALSE;
6082 }
6083 }
6084
6085 skipped:
6086 for (i = 0; i < 4; i++) {
6087 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
6088 int t = (i & 1) ? type : ZDB_OT_TOTAL;
6089 int equal;
6090 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
6091
6092 zb->zb_asize += BP_GET_ASIZE(bp);
6093 zb->zb_lsize += BP_GET_LSIZE(bp);
6094 zb->zb_psize += BP_GET_PSIZE(bp);
6095 zb->zb_count++;
6096
6097 /*
6098 * The histogram is only big enough to record blocks up to
6099 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
6100 * "other", bucket.
6101 */
6102 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
6103 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
6104 zb->zb_psize_histogram[idx]++;
6105
6106 zb->zb_gangs += BP_COUNT_GANG(bp);
6107
6108 switch (BP_GET_NDVAS(bp)) {
6109 case 2:
6110 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6111 DVA_GET_VDEV(&bp->blk_dva[1])) {
6112 zb->zb_ditto_samevdev++;
6113
6114 if (same_metaslab(zcb->zcb_spa,
6115 DVA_GET_VDEV(&bp->blk_dva[0]),
6116 DVA_GET_OFFSET(&bp->blk_dva[0]),
6117 DVA_GET_OFFSET(&bp->blk_dva[1])))
6118 zb->zb_ditto_same_ms++;
6119 }
6120 break;
6121 case 3:
6122 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6123 DVA_GET_VDEV(&bp->blk_dva[1])) +
6124 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6125 DVA_GET_VDEV(&bp->blk_dva[2])) +
6126 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6127 DVA_GET_VDEV(&bp->blk_dva[2]));
6128 if (equal != 0) {
6129 zb->zb_ditto_samevdev++;
6130
6131 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6132 DVA_GET_VDEV(&bp->blk_dva[1]) &&
6133 same_metaslab(zcb->zcb_spa,
6134 DVA_GET_VDEV(&bp->blk_dva[0]),
6135 DVA_GET_OFFSET(&bp->blk_dva[0]),
6136 DVA_GET_OFFSET(&bp->blk_dva[1])))
6137 zb->zb_ditto_same_ms++;
6138 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6139 DVA_GET_VDEV(&bp->blk_dva[2]) &&
6140 same_metaslab(zcb->zcb_spa,
6141 DVA_GET_VDEV(&bp->blk_dva[0]),
6142 DVA_GET_OFFSET(&bp->blk_dva[0]),
6143 DVA_GET_OFFSET(&bp->blk_dva[2])))
6144 zb->zb_ditto_same_ms++;
6145 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6146 DVA_GET_VDEV(&bp->blk_dva[2]) &&
6147 same_metaslab(zcb->zcb_spa,
6148 DVA_GET_VDEV(&bp->blk_dva[1]),
6149 DVA_GET_OFFSET(&bp->blk_dva[1]),
6150 DVA_GET_OFFSET(&bp->blk_dva[2])))
6151 zb->zb_ditto_same_ms++;
6152 }
6153 break;
6154 }
6155 }
6156
6157 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
6158
6159 if (BP_IS_EMBEDDED(bp)) {
6160 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
6161 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
6162 [BPE_GET_PSIZE(bp)]++;
6163 return;
6164 }
6165 /*
6166 * The binning histogram bins by powers of two up to
6167 * SPA_MAXBLOCKSIZE rather than creating bins for
6168 * every possible blocksize found in the pool.
6169 */
6170 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
6171
6172 zcb->zcb_psize_count[bin]++;
6173 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
6174 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
6175
6176 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
6177
6178 zcb->zcb_lsize_count[bin]++;
6179 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6180 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6181
6182 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
6183
6184 zcb->zcb_asize_count[bin]++;
6185 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6186 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6187
6188 if (!do_claim)
6189 return;
6190
6191 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6192 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6193 ZIO_FLAG_CANFAIL)));
6194 }
6195
6196 static void
zdb_blkptr_done(zio_t * zio)6197 zdb_blkptr_done(zio_t *zio)
6198 {
6199 spa_t *spa = zio->io_spa;
6200 blkptr_t *bp = zio->io_bp;
6201 int ioerr = zio->io_error;
6202 zdb_cb_t *zcb = zio->io_private;
6203 zbookmark_phys_t *zb = &zio->io_bookmark;
6204
6205 mutex_enter(&spa->spa_scrub_lock);
6206 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6207 cv_broadcast(&spa->spa_scrub_io_cv);
6208
6209 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6210 char blkbuf[BP_SPRINTF_LEN];
6211
6212 zcb->zcb_haderrors = 1;
6213 zcb->zcb_errors[ioerr]++;
6214
6215 if (dump_opt['b'] >= 2)
6216 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6217 else
6218 blkbuf[0] = '\0';
6219
6220 (void) printf("zdb_blkptr_cb: "
6221 "Got error %d reading "
6222 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6223 ioerr,
6224 (u_longlong_t)zb->zb_objset,
6225 (u_longlong_t)zb->zb_object,
6226 (u_longlong_t)zb->zb_level,
6227 (u_longlong_t)zb->zb_blkid,
6228 blkbuf);
6229 }
6230 mutex_exit(&spa->spa_scrub_lock);
6231
6232 abd_free(zio->io_abd);
6233 }
6234
6235 static int
zdb_blkptr_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)6236 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6237 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6238 {
6239 zdb_cb_t *zcb = arg;
6240 dmu_object_type_t type;
6241 boolean_t is_metadata;
6242
6243 if (zb->zb_level == ZB_DNODE_LEVEL)
6244 return (0);
6245
6246 if (dump_opt['b'] >= 5 && BP_GET_BIRTH(bp) > 0) {
6247 char blkbuf[BP_SPRINTF_LEN];
6248 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6249 (void) printf("objset %llu object %llu "
6250 "level %lld offset 0x%llx %s\n",
6251 (u_longlong_t)zb->zb_objset,
6252 (u_longlong_t)zb->zb_object,
6253 (longlong_t)zb->zb_level,
6254 (u_longlong_t)blkid2offset(dnp, bp, zb),
6255 blkbuf);
6256 }
6257
6258 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6259 return (0);
6260
6261 type = BP_GET_TYPE(bp);
6262
6263 zdb_count_block(zcb, zilog, bp,
6264 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6265
6266 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6267
6268 if (!BP_IS_EMBEDDED(bp) &&
6269 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6270 size_t size = BP_GET_PSIZE(bp);
6271 abd_t *abd = abd_alloc(size, B_FALSE);
6272 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6273
6274 /* If it's an intent log block, failure is expected. */
6275 if (zb->zb_level == ZB_ZIL_LEVEL)
6276 flags |= ZIO_FLAG_SPECULATIVE;
6277
6278 mutex_enter(&spa->spa_scrub_lock);
6279 while (spa->spa_load_verify_bytes > max_inflight_bytes)
6280 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6281 spa->spa_load_verify_bytes += size;
6282 mutex_exit(&spa->spa_scrub_lock);
6283
6284 zio_nowait(zio_read(NULL, spa, bp, abd, size,
6285 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6286 }
6287
6288 zcb->zcb_readfails = 0;
6289
6290 /* only call gethrtime() every 100 blocks */
6291 static int iters;
6292 if (++iters > 100)
6293 iters = 0;
6294 else
6295 return (0);
6296
6297 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6298 uint64_t now = gethrtime();
6299 char buf[10];
6300 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6301 uint64_t kb_per_sec =
6302 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6303 uint64_t sec_remaining =
6304 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6305
6306 /* make sure nicenum has enough space */
6307 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6308
6309 zfs_nicebytes(bytes, buf, sizeof (buf));
6310 (void) fprintf(stderr,
6311 "\r%5s completed (%4"PRIu64"MB/s) "
6312 "estimated time remaining: "
6313 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
6314 buf, kb_per_sec / 1024,
6315 sec_remaining / 60 / 60,
6316 sec_remaining / 60 % 60,
6317 sec_remaining % 60);
6318
6319 zcb->zcb_lastprint = now;
6320 }
6321
6322 return (0);
6323 }
6324
6325 static void
zdb_leak(void * arg,uint64_t start,uint64_t size)6326 zdb_leak(void *arg, uint64_t start, uint64_t size)
6327 {
6328 vdev_t *vd = arg;
6329
6330 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6331 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6332 }
6333
6334 static metaslab_ops_t zdb_metaslab_ops = {
6335 NULL /* alloc */
6336 };
6337
6338 static int
load_unflushed_svr_segs_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6339 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6340 uint64_t txg, void *arg)
6341 {
6342 spa_vdev_removal_t *svr = arg;
6343
6344 uint64_t offset = sme->sme_offset;
6345 uint64_t size = sme->sme_run;
6346
6347 /* skip vdevs we don't care about */
6348 if (sme->sme_vdev != svr->svr_vdev_id)
6349 return (0);
6350
6351 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6352 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6353 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6354
6355 if (txg < metaslab_unflushed_txg(ms))
6356 return (0);
6357
6358 if (sme->sme_type == SM_ALLOC)
6359 zfs_range_tree_add(svr->svr_allocd_segs, offset, size);
6360 else
6361 zfs_range_tree_remove(svr->svr_allocd_segs, offset, size);
6362
6363 return (0);
6364 }
6365
6366 static void
claim_segment_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6367 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6368 uint64_t size, void *arg)
6369 {
6370 (void) inner_offset, (void) arg;
6371
6372 /*
6373 * This callback was called through a remap from
6374 * a device being removed. Therefore, the vdev that
6375 * this callback is applied to is a concrete
6376 * vdev.
6377 */
6378 ASSERT(vdev_is_concrete(vd));
6379
6380 VERIFY0(metaslab_claim_impl(vd, offset, size,
6381 spa_min_claim_txg(vd->vdev_spa)));
6382 }
6383
6384 static void
claim_segment_cb(void * arg,uint64_t offset,uint64_t size)6385 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6386 {
6387 vdev_t *vd = arg;
6388
6389 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6390 claim_segment_impl_cb, NULL);
6391 }
6392
6393 /*
6394 * After accounting for all allocated blocks that are directly referenced,
6395 * we might have missed a reference to a block from a partially complete
6396 * (and thus unused) indirect mapping object. We perform a secondary pass
6397 * through the metaslabs we have already mapped and claim the destination
6398 * blocks.
6399 */
6400 static void
zdb_claim_removing(spa_t * spa,zdb_cb_t * zcb)6401 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6402 {
6403 if (dump_opt['L'])
6404 return;
6405
6406 if (spa->spa_vdev_removal == NULL)
6407 return;
6408
6409 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6410
6411 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6412 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6413 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6414
6415 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
6416
6417 zfs_range_tree_t *allocs = zfs_range_tree_create_flags(
6418 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
6419 0, "zdb_claim_removing:allocs");
6420 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6421 metaslab_t *msp = vd->vdev_ms[msi];
6422
6423 ASSERT0(zfs_range_tree_space(allocs));
6424 if (msp->ms_sm != NULL)
6425 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6426 zfs_range_tree_vacate(allocs, zfs_range_tree_add,
6427 svr->svr_allocd_segs);
6428 }
6429 zfs_range_tree_destroy(allocs);
6430
6431 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6432
6433 /*
6434 * Clear everything past what has been synced,
6435 * because we have not allocated mappings for
6436 * it yet.
6437 */
6438 zfs_range_tree_clear(svr->svr_allocd_segs,
6439 vdev_indirect_mapping_max_offset(vim),
6440 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6441
6442 zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs);
6443 zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6444
6445 spa_config_exit(spa, SCL_CONFIG, FTAG);
6446 }
6447
6448 static int
increment_indirect_mapping_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)6449 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6450 dmu_tx_t *tx)
6451 {
6452 (void) tx;
6453 zdb_cb_t *zcb = arg;
6454 spa_t *spa = zcb->zcb_spa;
6455 vdev_t *vd;
6456 const dva_t *dva = &bp->blk_dva[0];
6457
6458 ASSERT(!bp_freed);
6459 ASSERT(!dump_opt['L']);
6460 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6461
6462 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6463 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6464 ASSERT3P(vd, !=, NULL);
6465 spa_config_exit(spa, SCL_VDEV, FTAG);
6466
6467 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6468 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6469
6470 vdev_indirect_mapping_increment_obsolete_count(
6471 vd->vdev_indirect_mapping,
6472 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6473 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6474
6475 return (0);
6476 }
6477
6478 static uint32_t *
zdb_load_obsolete_counts(vdev_t * vd)6479 zdb_load_obsolete_counts(vdev_t *vd)
6480 {
6481 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6482 spa_t *spa = vd->vdev_spa;
6483 spa_condensing_indirect_phys_t *scip =
6484 &spa->spa_condensing_indirect_phys;
6485 uint64_t obsolete_sm_object;
6486 uint32_t *counts;
6487
6488 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6489 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6490 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6491 if (vd->vdev_obsolete_sm != NULL) {
6492 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6493 vd->vdev_obsolete_sm);
6494 }
6495 if (scip->scip_vdev == vd->vdev_id &&
6496 scip->scip_prev_obsolete_sm_object != 0) {
6497 space_map_t *prev_obsolete_sm = NULL;
6498 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6499 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6500 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6501 prev_obsolete_sm);
6502 space_map_close(prev_obsolete_sm);
6503 }
6504 return (counts);
6505 }
6506
6507 typedef struct checkpoint_sm_exclude_entry_arg {
6508 vdev_t *cseea_vd;
6509 uint64_t cseea_checkpoint_size;
6510 } checkpoint_sm_exclude_entry_arg_t;
6511
6512 static int
checkpoint_sm_exclude_entry_cb(space_map_entry_t * sme,void * arg)6513 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6514 {
6515 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6516 vdev_t *vd = cseea->cseea_vd;
6517 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6518 uint64_t end = sme->sme_offset + sme->sme_run;
6519
6520 ASSERT(sme->sme_type == SM_FREE);
6521
6522 /*
6523 * Since the vdev_checkpoint_sm exists in the vdev level
6524 * and the ms_sm space maps exist in the metaslab level,
6525 * an entry in the checkpoint space map could theoretically
6526 * cross the boundaries of the metaslab that it belongs.
6527 *
6528 * In reality, because of the way that we populate and
6529 * manipulate the checkpoint's space maps currently,
6530 * there shouldn't be any entries that cross metaslabs.
6531 * Hence the assertion below.
6532 *
6533 * That said, there is no fundamental requirement that
6534 * the checkpoint's space map entries should not cross
6535 * metaslab boundaries. So if needed we could add code
6536 * that handles metaslab-crossing segments in the future.
6537 */
6538 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6539 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6540
6541 /*
6542 * By removing the entry from the allocated segments we
6543 * also verify that the entry is there to begin with.
6544 */
6545 mutex_enter(&ms->ms_lock);
6546 zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset,
6547 sme->sme_run);
6548 mutex_exit(&ms->ms_lock);
6549
6550 cseea->cseea_checkpoint_size += sme->sme_run;
6551 return (0);
6552 }
6553
6554 static void
zdb_leak_init_vdev_exclude_checkpoint(vdev_t * vd,zdb_cb_t * zcb)6555 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6556 {
6557 spa_t *spa = vd->vdev_spa;
6558 space_map_t *checkpoint_sm = NULL;
6559 uint64_t checkpoint_sm_obj;
6560
6561 /*
6562 * If there is no vdev_top_zap, we are in a pool whose
6563 * version predates the pool checkpoint feature.
6564 */
6565 if (vd->vdev_top_zap == 0)
6566 return;
6567
6568 /*
6569 * If there is no reference of the vdev_checkpoint_sm in
6570 * the vdev_top_zap, then one of the following scenarios
6571 * is true:
6572 *
6573 * 1] There is no checkpoint
6574 * 2] There is a checkpoint, but no checkpointed blocks
6575 * have been freed yet
6576 * 3] The current vdev is indirect
6577 *
6578 * In these cases we return immediately.
6579 */
6580 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6581 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6582 return;
6583
6584 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6585 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6586 &checkpoint_sm_obj));
6587
6588 checkpoint_sm_exclude_entry_arg_t cseea;
6589 cseea.cseea_vd = vd;
6590 cseea.cseea_checkpoint_size = 0;
6591
6592 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6593 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6594
6595 VERIFY0(space_map_iterate(checkpoint_sm,
6596 space_map_length(checkpoint_sm),
6597 checkpoint_sm_exclude_entry_cb, &cseea));
6598 space_map_close(checkpoint_sm);
6599
6600 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6601 }
6602
6603 static void
zdb_leak_init_exclude_checkpoint(spa_t * spa,zdb_cb_t * zcb)6604 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6605 {
6606 ASSERT(!dump_opt['L']);
6607
6608 vdev_t *rvd = spa->spa_root_vdev;
6609 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6610 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6611 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6612 }
6613 }
6614
6615 static int
count_unflushed_space_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6616 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6617 uint64_t txg, void *arg)
6618 {
6619 int64_t *ualloc_space = arg;
6620
6621 uint64_t offset = sme->sme_offset;
6622 uint64_t vdev_id = sme->sme_vdev;
6623
6624 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6625 if (!vdev_is_concrete(vd))
6626 return (0);
6627
6628 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6629 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6630
6631 if (txg < metaslab_unflushed_txg(ms))
6632 return (0);
6633
6634 if (sme->sme_type == SM_ALLOC)
6635 *ualloc_space += sme->sme_run;
6636 else
6637 *ualloc_space -= sme->sme_run;
6638
6639 return (0);
6640 }
6641
6642 static int64_t
get_unflushed_alloc_space(spa_t * spa)6643 get_unflushed_alloc_space(spa_t *spa)
6644 {
6645 if (dump_opt['L'])
6646 return (0);
6647
6648 int64_t ualloc_space = 0;
6649 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6650 &ualloc_space);
6651 return (ualloc_space);
6652 }
6653
6654 static int
load_unflushed_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6655 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6656 {
6657 maptype_t *uic_maptype = arg;
6658
6659 uint64_t offset = sme->sme_offset;
6660 uint64_t size = sme->sme_run;
6661 uint64_t vdev_id = sme->sme_vdev;
6662
6663 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6664
6665 /* skip indirect vdevs */
6666 if (!vdev_is_concrete(vd))
6667 return (0);
6668
6669 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6670
6671 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6672 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6673
6674 if (txg < metaslab_unflushed_txg(ms))
6675 return (0);
6676
6677 if (*uic_maptype == sme->sme_type)
6678 zfs_range_tree_add(ms->ms_allocatable, offset, size);
6679 else
6680 zfs_range_tree_remove(ms->ms_allocatable, offset, size);
6681
6682 return (0);
6683 }
6684
6685 static void
load_unflushed_to_ms_allocatables(spa_t * spa,maptype_t maptype)6686 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6687 {
6688 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6689 }
6690
6691 static void
load_concrete_ms_allocatable_trees(spa_t * spa,maptype_t maptype)6692 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6693 {
6694 vdev_t *rvd = spa->spa_root_vdev;
6695 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6696 vdev_t *vd = rvd->vdev_child[i];
6697
6698 ASSERT3U(i, ==, vd->vdev_id);
6699
6700 if (vd->vdev_ops == &vdev_indirect_ops)
6701 continue;
6702
6703 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6704 metaslab_t *msp = vd->vdev_ms[m];
6705
6706 (void) fprintf(stderr,
6707 "\rloading concrete vdev %llu, "
6708 "metaslab %llu of %llu ...",
6709 (longlong_t)vd->vdev_id,
6710 (longlong_t)msp->ms_id,
6711 (longlong_t)vd->vdev_ms_count);
6712
6713 mutex_enter(&msp->ms_lock);
6714 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6715
6716 /*
6717 * We don't want to spend the CPU manipulating the
6718 * size-ordered tree, so clear the range_tree ops.
6719 */
6720 msp->ms_allocatable->rt_ops = NULL;
6721
6722 if (msp->ms_sm != NULL) {
6723 VERIFY0(space_map_load(msp->ms_sm,
6724 msp->ms_allocatable, maptype));
6725 }
6726 if (!msp->ms_loaded)
6727 msp->ms_loaded = B_TRUE;
6728 mutex_exit(&msp->ms_lock);
6729 }
6730 }
6731
6732 load_unflushed_to_ms_allocatables(spa, maptype);
6733 }
6734
6735 /*
6736 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6737 * index in vim_entries that has the first entry in this metaslab.
6738 * On return, it will be set to the first entry after this metaslab.
6739 */
6740 static void
load_indirect_ms_allocatable_tree(vdev_t * vd,metaslab_t * msp,uint64_t * vim_idxp)6741 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6742 uint64_t *vim_idxp)
6743 {
6744 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6745
6746 mutex_enter(&msp->ms_lock);
6747 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6748
6749 /*
6750 * We don't want to spend the CPU manipulating the
6751 * size-ordered tree, so clear the range_tree ops.
6752 */
6753 msp->ms_allocatable->rt_ops = NULL;
6754
6755 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6756 (*vim_idxp)++) {
6757 vdev_indirect_mapping_entry_phys_t *vimep =
6758 &vim->vim_entries[*vim_idxp];
6759 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6760 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6761 ASSERT3U(ent_offset, >=, msp->ms_start);
6762 if (ent_offset >= msp->ms_start + msp->ms_size)
6763 break;
6764
6765 /*
6766 * Mappings do not cross metaslab boundaries,
6767 * because we create them by walking the metaslabs.
6768 */
6769 ASSERT3U(ent_offset + ent_len, <=,
6770 msp->ms_start + msp->ms_size);
6771 zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6772 }
6773
6774 if (!msp->ms_loaded)
6775 msp->ms_loaded = B_TRUE;
6776 mutex_exit(&msp->ms_lock);
6777 }
6778
6779 static void
zdb_leak_init_prepare_indirect_vdevs(spa_t * spa,zdb_cb_t * zcb)6780 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6781 {
6782 ASSERT(!dump_opt['L']);
6783
6784 vdev_t *rvd = spa->spa_root_vdev;
6785 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6786 vdev_t *vd = rvd->vdev_child[c];
6787
6788 ASSERT3U(c, ==, vd->vdev_id);
6789
6790 if (vd->vdev_ops != &vdev_indirect_ops)
6791 continue;
6792
6793 /*
6794 * Note: we don't check for mapping leaks on
6795 * removing vdevs because their ms_allocatable's
6796 * are used to look for leaks in allocated space.
6797 */
6798 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6799
6800 /*
6801 * Normally, indirect vdevs don't have any
6802 * metaslabs. We want to set them up for
6803 * zio_claim().
6804 */
6805 vdev_metaslab_group_create(vd);
6806 VERIFY0(vdev_metaslab_init(vd, 0));
6807
6808 vdev_indirect_mapping_t *vim __maybe_unused =
6809 vd->vdev_indirect_mapping;
6810 uint64_t vim_idx = 0;
6811 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6812
6813 (void) fprintf(stderr,
6814 "\rloading indirect vdev %llu, "
6815 "metaslab %llu of %llu ...",
6816 (longlong_t)vd->vdev_id,
6817 (longlong_t)vd->vdev_ms[m]->ms_id,
6818 (longlong_t)vd->vdev_ms_count);
6819
6820 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6821 &vim_idx);
6822 }
6823 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6824 }
6825 }
6826
6827 static void
zdb_leak_init(spa_t * spa,zdb_cb_t * zcb)6828 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6829 {
6830 zcb->zcb_spa = spa;
6831
6832 if (dump_opt['L'])
6833 return;
6834
6835 dsl_pool_t *dp = spa->spa_dsl_pool;
6836 vdev_t *rvd = spa->spa_root_vdev;
6837
6838 /*
6839 * We are going to be changing the meaning of the metaslab's
6840 * ms_allocatable. Ensure that the allocator doesn't try to
6841 * use the tree.
6842 */
6843 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6844 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6845 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6846 spa->spa_special_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6847
6848 zcb->zcb_vd_obsolete_counts =
6849 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6850 UMEM_NOFAIL);
6851
6852 /*
6853 * For leak detection, we overload the ms_allocatable trees
6854 * to contain allocated segments instead of free segments.
6855 * As a result, we can't use the normal metaslab_load/unload
6856 * interfaces.
6857 */
6858 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6859 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6860
6861 /*
6862 * On load_concrete_ms_allocatable_trees() we loaded all the
6863 * allocated entries from the ms_sm to the ms_allocatable for
6864 * each metaslab. If the pool has a checkpoint or is in the
6865 * middle of discarding a checkpoint, some of these blocks
6866 * may have been freed but their ms_sm may not have been
6867 * updated because they are referenced by the checkpoint. In
6868 * order to avoid false-positives during leak-detection, we
6869 * go through the vdev's checkpoint space map and exclude all
6870 * its entries from their relevant ms_allocatable.
6871 *
6872 * We also aggregate the space held by the checkpoint and add
6873 * it to zcb_checkpoint_size.
6874 *
6875 * Note that at this point we are also verifying that all the
6876 * entries on the checkpoint_sm are marked as allocated in
6877 * the ms_sm of their relevant metaslab.
6878 * [see comment in checkpoint_sm_exclude_entry_cb()]
6879 */
6880 zdb_leak_init_exclude_checkpoint(spa, zcb);
6881 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6882
6883 /* for cleaner progress output */
6884 (void) fprintf(stderr, "\n");
6885
6886 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6887 ASSERT(spa_feature_is_enabled(spa,
6888 SPA_FEATURE_DEVICE_REMOVAL));
6889 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6890 increment_indirect_mapping_cb, zcb, NULL);
6891 }
6892 }
6893
6894 static boolean_t
zdb_check_for_obsolete_leaks(vdev_t * vd,zdb_cb_t * zcb)6895 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6896 {
6897 boolean_t leaks = B_FALSE;
6898 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6899 uint64_t total_leaked = 0;
6900 boolean_t are_precise = B_FALSE;
6901
6902 ASSERT(vim != NULL);
6903
6904 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6905 vdev_indirect_mapping_entry_phys_t *vimep =
6906 &vim->vim_entries[i];
6907 uint64_t obsolete_bytes = 0;
6908 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6909 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6910
6911 /*
6912 * This is not very efficient but it's easy to
6913 * verify correctness.
6914 */
6915 for (uint64_t inner_offset = 0;
6916 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6917 inner_offset += 1ULL << vd->vdev_ashift) {
6918 if (zfs_range_tree_contains(msp->ms_allocatable,
6919 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6920 obsolete_bytes += 1ULL << vd->vdev_ashift;
6921 }
6922 }
6923
6924 int64_t bytes_leaked = obsolete_bytes -
6925 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6926 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6927 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6928
6929 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6930 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6931 (void) printf("obsolete indirect mapping count "
6932 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6933 (u_longlong_t)vd->vdev_id,
6934 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6935 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6936 (u_longlong_t)bytes_leaked);
6937 }
6938 total_leaked += ABS(bytes_leaked);
6939 }
6940
6941 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6942 if (!are_precise && total_leaked > 0) {
6943 int pct_leaked = total_leaked * 100 /
6944 vdev_indirect_mapping_bytes_mapped(vim);
6945 (void) printf("cannot verify obsolete indirect mapping "
6946 "counts of vdev %llu because precise feature was not "
6947 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6948 "unreferenced\n",
6949 (u_longlong_t)vd->vdev_id, pct_leaked,
6950 (u_longlong_t)total_leaked);
6951 } else if (total_leaked > 0) {
6952 (void) printf("obsolete indirect mapping count mismatch "
6953 "for vdev %llu -- %llx total bytes mismatched\n",
6954 (u_longlong_t)vd->vdev_id,
6955 (u_longlong_t)total_leaked);
6956 leaks |= B_TRUE;
6957 }
6958
6959 vdev_indirect_mapping_free_obsolete_counts(vim,
6960 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6961 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6962
6963 return (leaks);
6964 }
6965
6966 static boolean_t
zdb_leak_fini(spa_t * spa,zdb_cb_t * zcb)6967 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6968 {
6969 if (dump_opt['L'])
6970 return (B_FALSE);
6971
6972 boolean_t leaks = B_FALSE;
6973 vdev_t *rvd = spa->spa_root_vdev;
6974 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6975 vdev_t *vd = rvd->vdev_child[c];
6976
6977 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6978 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6979 }
6980
6981 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6982 metaslab_t *msp = vd->vdev_ms[m];
6983 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6984 spa_embedded_log_class(spa) ||
6985 msp->ms_group->mg_class ==
6986 spa_special_embedded_log_class(spa)) ?
6987 vd->vdev_log_mg : vd->vdev_mg);
6988
6989 /*
6990 * ms_allocatable has been overloaded
6991 * to contain allocated segments. Now that
6992 * we finished traversing all blocks, any
6993 * block that remains in the ms_allocatable
6994 * represents an allocated block that we
6995 * did not claim during the traversal.
6996 * Claimed blocks would have been removed
6997 * from the ms_allocatable. For indirect
6998 * vdevs, space remaining in the tree
6999 * represents parts of the mapping that are
7000 * not referenced, which is not a bug.
7001 */
7002 if (vd->vdev_ops == &vdev_indirect_ops) {
7003 zfs_range_tree_vacate(msp->ms_allocatable,
7004 NULL, NULL);
7005 } else {
7006 zfs_range_tree_vacate(msp->ms_allocatable,
7007 zdb_leak, vd);
7008 }
7009 if (msp->ms_loaded) {
7010 msp->ms_loaded = B_FALSE;
7011 }
7012 }
7013 }
7014
7015 umem_free(zcb->zcb_vd_obsolete_counts,
7016 rvd->vdev_children * sizeof (uint32_t *));
7017 zcb->zcb_vd_obsolete_counts = NULL;
7018
7019 return (leaks);
7020 }
7021
7022 static int
count_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)7023 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7024 {
7025 (void) tx;
7026 zdb_cb_t *zcb = arg;
7027
7028 if (dump_opt['b'] >= 5) {
7029 char blkbuf[BP_SPRINTF_LEN];
7030 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
7031 (void) printf("[%s] %s\n",
7032 "deferred free", blkbuf);
7033 }
7034 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
7035 return (0);
7036 }
7037
7038 /*
7039 * Iterate over livelists which have been destroyed by the user but
7040 * are still present in the MOS, waiting to be freed
7041 */
7042 static void
iterate_deleted_livelists(spa_t * spa,ll_iter_t func,void * arg)7043 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
7044 {
7045 objset_t *mos = spa->spa_meta_objset;
7046 uint64_t zap_obj;
7047 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
7048 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
7049 if (err == ENOENT)
7050 return;
7051 ASSERT0(err);
7052
7053 zap_cursor_t zc;
7054 zap_attribute_t *attrp = zap_attribute_alloc();
7055 dsl_deadlist_t ll;
7056 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
7057 ll.dl_os = NULL;
7058 for (zap_cursor_init(&zc, mos, zap_obj);
7059 zap_cursor_retrieve(&zc, attrp) == 0;
7060 (void) zap_cursor_advance(&zc)) {
7061 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer));
7062 func(&ll, arg);
7063 dsl_deadlist_close(&ll);
7064 }
7065 zap_cursor_fini(&zc);
7066 zap_attribute_free(attrp);
7067 }
7068
7069 static int
bpobj_count_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)7070 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
7071 dmu_tx_t *tx)
7072 {
7073 ASSERT(!bp_freed);
7074 return (count_block_cb(arg, bp, tx));
7075 }
7076
7077 static int
livelist_entry_count_blocks_cb(void * args,dsl_deadlist_entry_t * dle)7078 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
7079 {
7080 zdb_cb_t *zbc = args;
7081 bplist_t blks;
7082 bplist_create(&blks);
7083 /* determine which blocks have been alloc'd but not freed */
7084 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
7085 /* count those blocks */
7086 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
7087 bplist_destroy(&blks);
7088 return (0);
7089 }
7090
7091 static void
livelist_count_blocks(dsl_deadlist_t * ll,void * arg)7092 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
7093 {
7094 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
7095 }
7096
7097 /*
7098 * Count the blocks in the livelists that have been destroyed by the user
7099 * but haven't yet been freed.
7100 */
7101 static void
deleted_livelists_count_blocks(spa_t * spa,zdb_cb_t * zbc)7102 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
7103 {
7104 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
7105 }
7106
7107 static void
dump_livelist_cb(dsl_deadlist_t * ll,void * arg)7108 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
7109 {
7110 ASSERT0P(arg);
7111 global_feature_count[SPA_FEATURE_LIVELIST]++;
7112 dump_blkptr_list(ll, "Deleted Livelist");
7113 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
7114 }
7115
7116 /*
7117 * Print out, register object references to, and increment feature counts for
7118 * livelists that have been destroyed by the user but haven't yet been freed.
7119 */
7120 static void
deleted_livelists_dump_mos(spa_t * spa)7121 deleted_livelists_dump_mos(spa_t *spa)
7122 {
7123 uint64_t zap_obj;
7124 objset_t *mos = spa->spa_meta_objset;
7125 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
7126 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
7127 if (err == ENOENT)
7128 return;
7129 mos_obj_refd(zap_obj);
7130 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
7131 }
7132
7133 static int
zdb_brt_entry_compare(const void * zcn1,const void * zcn2)7134 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
7135 {
7136 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
7137 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
7138 int cmp;
7139
7140 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
7141 if (cmp == 0)
7142 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
7143
7144 return (cmp);
7145 }
7146
7147 static int
dump_block_stats(spa_t * spa)7148 dump_block_stats(spa_t *spa)
7149 {
7150 zdb_cb_t *zcb;
7151 zdb_blkstats_t *zb, *tzb;
7152 uint64_t norm_alloc, norm_space, total_alloc, total_found;
7153 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7154 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
7155 boolean_t leaks = B_FALSE;
7156 int e, c, err;
7157 bp_embedded_type_t i;
7158
7159 ddt_prefetch_all(spa);
7160
7161 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
7162
7163 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
7164 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
7165 sizeof (zdb_brt_entry_t),
7166 offsetof(zdb_brt_entry_t, zbre_node));
7167 zcb->zcb_brt_is_active = B_TRUE;
7168 }
7169
7170 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7171 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
7172 (dump_opt['c'] == 1) ? "metadata " : "",
7173 dump_opt['c'] ? "checksums " : "",
7174 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
7175 !dump_opt['L'] ? "nothing leaked " : "");
7176
7177 /*
7178 * When leak detection is enabled we load all space maps as SM_ALLOC
7179 * maps, then traverse the pool claiming each block we discover. If
7180 * the pool is perfectly consistent, the segment trees will be empty
7181 * when we're done. Anything left over is a leak; any block we can't
7182 * claim (because it's not part of any space map) is a double
7183 * allocation, reference to a freed block, or an unclaimed log block.
7184 *
7185 * When leak detection is disabled (-L option) we still traverse the
7186 * pool claiming each block we discover, but we skip opening any space
7187 * maps.
7188 */
7189 zdb_leak_init(spa, zcb);
7190
7191 /*
7192 * If there's a deferred-free bplist, process that first.
7193 */
7194 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7195 bpobj_count_block_cb, zcb, NULL);
7196
7197 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7198 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7199 bpobj_count_block_cb, zcb, NULL);
7200 }
7201
7202 zdb_claim_removing(spa, zcb);
7203
7204 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7205 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7206 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7207 zcb, NULL));
7208 }
7209
7210 deleted_livelists_count_blocks(spa, zcb);
7211
7212 if (dump_opt['c'] > 1)
7213 flags |= TRAVERSE_PREFETCH_DATA;
7214
7215 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7216 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7217 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7218 zcb->zcb_totalasize +=
7219 metaslab_class_get_alloc(spa_embedded_log_class(spa));
7220 zcb->zcb_totalasize +=
7221 metaslab_class_get_alloc(spa_special_embedded_log_class(spa));
7222 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7223 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7224
7225 /*
7226 * If we've traversed the data blocks then we need to wait for those
7227 * I/Os to complete. We leverage "The Godfather" zio to wait on
7228 * all async I/Os to complete.
7229 */
7230 if (dump_opt['c']) {
7231 for (c = 0; c < max_ncpus; c++) {
7232 (void) zio_wait(spa->spa_async_zio_root[c]);
7233 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7234 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7235 ZIO_FLAG_GODFATHER);
7236 }
7237 }
7238 ASSERT0(spa->spa_load_verify_bytes);
7239
7240 /*
7241 * Done after zio_wait() since zcb_haderrors is modified in
7242 * zdb_blkptr_done()
7243 */
7244 zcb->zcb_haderrors |= err;
7245
7246 if (zcb->zcb_haderrors) {
7247 (void) printf("\nError counts:\n\n");
7248 (void) printf("\t%5s %s\n", "errno", "count");
7249 for (e = 0; e < 256; e++) {
7250 if (zcb->zcb_errors[e] != 0) {
7251 (void) printf("\t%5d %llu\n",
7252 e, (u_longlong_t)zcb->zcb_errors[e]);
7253 }
7254 }
7255 }
7256
7257 /*
7258 * Report any leaked segments.
7259 */
7260 leaks |= zdb_leak_fini(spa, zcb);
7261
7262 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7263
7264 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7265 norm_space = metaslab_class_get_space(spa_normal_class(spa));
7266
7267 total_alloc = norm_alloc +
7268 metaslab_class_get_alloc(spa_log_class(spa)) +
7269 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7270 metaslab_class_get_alloc(spa_special_embedded_log_class(spa)) +
7271 metaslab_class_get_alloc(spa_special_class(spa)) +
7272 metaslab_class_get_alloc(spa_dedup_class(spa)) +
7273 get_unflushed_alloc_space(spa);
7274 total_found =
7275 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7276 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7277
7278 if (total_found == total_alloc && !dump_opt['L']) {
7279 (void) printf("\n\tNo leaks (block sum matches space"
7280 " maps exactly)\n");
7281 } else if (!dump_opt['L']) {
7282 (void) printf("block traversal size %llu != alloc %llu "
7283 "(%s %lld)\n",
7284 (u_longlong_t)total_found,
7285 (u_longlong_t)total_alloc,
7286 (dump_opt['L']) ? "unreachable" : "leaked",
7287 (longlong_t)(total_alloc - total_found));
7288 }
7289
7290 if (tzb->zb_count == 0) {
7291 umem_free(zcb, sizeof (zdb_cb_t));
7292 return (2);
7293 }
7294
7295 (void) printf("\n");
7296 (void) printf("\t%-16s %14llu\n", "bp count:",
7297 (u_longlong_t)tzb->zb_count);
7298 (void) printf("\t%-16s %14llu\n", "ganged count:",
7299 (longlong_t)tzb->zb_gangs);
7300 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7301 (u_longlong_t)tzb->zb_lsize,
7302 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7303 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7304 "bp physical:", (u_longlong_t)tzb->zb_psize,
7305 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7306 (double)tzb->zb_lsize / tzb->zb_psize);
7307 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7308 "bp allocated:", (u_longlong_t)tzb->zb_asize,
7309 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7310 (double)tzb->zb_lsize / tzb->zb_asize);
7311 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7312 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7313 (u_longlong_t)zcb->zcb_dedup_blocks,
7314 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7315 (void) printf("\t%-16s %14llu count: %6llu\n",
7316 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7317 (u_longlong_t)zcb->zcb_clone_blocks);
7318 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7319 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7320
7321 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7322 uint64_t alloc = metaslab_class_get_alloc(
7323 spa_special_class(spa));
7324 uint64_t space = metaslab_class_get_space(
7325 spa_special_class(spa));
7326
7327 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7328 "Special class", (u_longlong_t)alloc,
7329 100.0 * alloc / space);
7330 }
7331
7332 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7333 uint64_t alloc = metaslab_class_get_alloc(
7334 spa_dedup_class(spa));
7335 uint64_t space = metaslab_class_get_space(
7336 spa_dedup_class(spa));
7337
7338 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7339 "Dedup class", (u_longlong_t)alloc,
7340 100.0 * alloc / space);
7341 }
7342
7343 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7344 uint64_t alloc = metaslab_class_get_alloc(
7345 spa_embedded_log_class(spa));
7346 uint64_t space = metaslab_class_get_space(
7347 spa_embedded_log_class(spa));
7348
7349 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7350 "Embedded log class", (u_longlong_t)alloc,
7351 100.0 * alloc / space);
7352 }
7353
7354 if (spa_special_embedded_log_class(spa)->mc_allocator[0].mca_rotor
7355 != NULL) {
7356 uint64_t alloc = metaslab_class_get_alloc(
7357 spa_special_embedded_log_class(spa));
7358 uint64_t space = metaslab_class_get_space(
7359 spa_special_embedded_log_class(spa));
7360
7361 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7362 "Special embedded log", (u_longlong_t)alloc,
7363 100.0 * alloc / space);
7364 }
7365
7366 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7367 if (zcb->zcb_embedded_blocks[i] == 0)
7368 continue;
7369 (void) printf("\n");
7370 (void) printf("\tadditional, non-pointer bps of type %u: "
7371 "%10llu\n",
7372 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7373
7374 if (dump_opt['b'] >= 3) {
7375 (void) printf("\t number of (compressed) bytes: "
7376 "number of bps\n");
7377 dump_histogram(zcb->zcb_embedded_histogram[i],
7378 sizeof (zcb->zcb_embedded_histogram[i]) /
7379 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7380 }
7381 }
7382
7383 if (tzb->zb_ditto_samevdev != 0) {
7384 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7385 (longlong_t)tzb->zb_ditto_samevdev);
7386 }
7387 if (tzb->zb_ditto_same_ms != 0) {
7388 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7389 (longlong_t)tzb->zb_ditto_same_ms);
7390 }
7391
7392 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7393 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7395
7396 if (vim == NULL) {
7397 continue;
7398 }
7399
7400 char mem[32];
7401 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7402 mem, vdev_indirect_mapping_size(vim));
7403
7404 (void) printf("\tindirect vdev id %llu has %llu segments "
7405 "(%s in memory)\n",
7406 (longlong_t)vd->vdev_id,
7407 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7408 }
7409
7410 if (dump_opt['b'] >= 2) {
7411 int l, t, level;
7412 char csize[32], lsize[32], psize[32], asize[32];
7413 char avg[32], gang[32];
7414 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7415 "\t avg\t comp\t%%Total\tType\n");
7416
7417 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7418 UMEM_NOFAIL);
7419
7420 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7421 const char *typename;
7422
7423 /* make sure nicenum has enough space */
7424 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7425 "csize truncated");
7426 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7427 "lsize truncated");
7428 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7429 "psize truncated");
7430 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7431 "asize truncated");
7432 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7433 "avg truncated");
7434 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7435 "gang truncated");
7436
7437 if (t < DMU_OT_NUMTYPES)
7438 typename = dmu_ot[t].ot_name;
7439 else
7440 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7441
7442 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7443 (void) printf("%6s\t%5s\t%5s\t%5s"
7444 "\t%5s\t%5s\t%6s\t%s\n",
7445 "-",
7446 "-",
7447 "-",
7448 "-",
7449 "-",
7450 "-",
7451 "-",
7452 typename);
7453 continue;
7454 }
7455
7456 for (l = ZB_TOTAL - 1; l >= -1; l--) {
7457 level = (l == -1 ? ZB_TOTAL : l);
7458 zb = &zcb->zcb_type[level][t];
7459
7460 if (zb->zb_asize == 0)
7461 continue;
7462
7463 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7464 (level > 0 || DMU_OT_IS_METADATA(t))) {
7465 mdstats->zb_count += zb->zb_count;
7466 mdstats->zb_lsize += zb->zb_lsize;
7467 mdstats->zb_psize += zb->zb_psize;
7468 mdstats->zb_asize += zb->zb_asize;
7469 mdstats->zb_gangs += zb->zb_gangs;
7470 }
7471
7472 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7473 continue;
7474
7475 if (level == 0 && zb->zb_asize ==
7476 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7477 continue;
7478
7479 zdb_nicenum(zb->zb_count, csize,
7480 sizeof (csize));
7481 zdb_nicenum(zb->zb_lsize, lsize,
7482 sizeof (lsize));
7483 zdb_nicenum(zb->zb_psize, psize,
7484 sizeof (psize));
7485 zdb_nicenum(zb->zb_asize, asize,
7486 sizeof (asize));
7487 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7488 sizeof (avg));
7489 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7490
7491 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7492 "\t%5.2f\t%6.2f\t",
7493 csize, lsize, psize, asize, avg,
7494 (double)zb->zb_lsize / zb->zb_psize,
7495 100.0 * zb->zb_asize / tzb->zb_asize);
7496
7497 if (level == ZB_TOTAL)
7498 (void) printf("%s\n", typename);
7499 else
7500 (void) printf(" L%d %s\n",
7501 level, typename);
7502
7503 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7504 (void) printf("\t number of ganged "
7505 "blocks: %s\n", gang);
7506 }
7507
7508 if (dump_opt['b'] >= 4) {
7509 (void) printf("psize "
7510 "(in 512-byte sectors): "
7511 "number of blocks\n");
7512 dump_histogram(zb->zb_psize_histogram,
7513 PSIZE_HISTO_SIZE, 0);
7514 }
7515 }
7516 }
7517 zdb_nicenum(mdstats->zb_count, csize,
7518 sizeof (csize));
7519 zdb_nicenum(mdstats->zb_lsize, lsize,
7520 sizeof (lsize));
7521 zdb_nicenum(mdstats->zb_psize, psize,
7522 sizeof (psize));
7523 zdb_nicenum(mdstats->zb_asize, asize,
7524 sizeof (asize));
7525 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7526 sizeof (avg));
7527 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7528
7529 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7530 "\t%5.2f\t%6.2f\t",
7531 csize, lsize, psize, asize, avg,
7532 (double)mdstats->zb_lsize / mdstats->zb_psize,
7533 100.0 * mdstats->zb_asize / tzb->zb_asize);
7534 (void) printf("%s\n", "Metadata Total");
7535
7536 /* Output a table summarizing block sizes in the pool */
7537 if (dump_opt['b'] >= 2) {
7538 dump_size_histograms(zcb);
7539 }
7540
7541 umem_free(mdstats, sizeof (zfs_blkstat_t));
7542 }
7543
7544 (void) printf("\n");
7545
7546 if (leaks) {
7547 umem_free(zcb, sizeof (zdb_cb_t));
7548 return (2);
7549 }
7550
7551 if (zcb->zcb_haderrors) {
7552 umem_free(zcb, sizeof (zdb_cb_t));
7553 return (3);
7554 }
7555
7556 umem_free(zcb, sizeof (zdb_cb_t));
7557 return (0);
7558 }
7559
7560 typedef struct zdb_ddt_entry {
7561 /* key must be first for ddt_key_compare */
7562 ddt_key_t zdde_key;
7563 uint64_t zdde_ref_blocks;
7564 uint64_t zdde_ref_lsize;
7565 uint64_t zdde_ref_psize;
7566 uint64_t zdde_ref_dsize;
7567 avl_node_t zdde_node;
7568 } zdb_ddt_entry_t;
7569
7570 static int
zdb_ddt_add_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)7571 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7572 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7573 {
7574 (void) zilog, (void) dnp;
7575 avl_tree_t *t = arg;
7576 avl_index_t where;
7577 zdb_ddt_entry_t *zdde, zdde_search;
7578
7579 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7580 BP_IS_EMBEDDED(bp))
7581 return (0);
7582
7583 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7584 (void) printf("traversing objset %llu, %llu objects, "
7585 "%lu blocks so far\n",
7586 (u_longlong_t)zb->zb_objset,
7587 (u_longlong_t)BP_GET_FILL(bp),
7588 avl_numnodes(t));
7589 }
7590
7591 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7592 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7593 return (0);
7594
7595 ddt_key_fill(&zdde_search.zdde_key, bp);
7596
7597 zdde = avl_find(t, &zdde_search, &where);
7598
7599 if (zdde == NULL) {
7600 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7601 zdde->zdde_key = zdde_search.zdde_key;
7602 avl_insert(t, zdde, where);
7603 }
7604
7605 zdde->zdde_ref_blocks += 1;
7606 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7607 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7608 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7609
7610 return (0);
7611 }
7612
7613 static void
dump_simulated_ddt(spa_t * spa)7614 dump_simulated_ddt(spa_t *spa)
7615 {
7616 avl_tree_t t;
7617 void *cookie = NULL;
7618 zdb_ddt_entry_t *zdde;
7619 ddt_histogram_t ddh_total = {{{0}}};
7620 ddt_stat_t dds_total = {0};
7621
7622 avl_create(&t, ddt_key_compare,
7623 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7624
7625 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7626
7627 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7628 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7629
7630 spa_config_exit(spa, SCL_CONFIG, FTAG);
7631
7632 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7633 uint64_t refcnt = zdde->zdde_ref_blocks;
7634 ASSERT(refcnt != 0);
7635
7636 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7637
7638 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7639 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7640 dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7641 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7642
7643 dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7644 dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7645 dds->dds_ref_psize += zdde->zdde_ref_psize;
7646 dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7647
7648 umem_free(zdde, sizeof (*zdde));
7649 }
7650
7651 avl_destroy(&t);
7652
7653 ddt_histogram_total(&dds_total, &ddh_total);
7654
7655 (void) printf("Simulated DDT histogram:\n");
7656
7657 zpool_dump_ddt(&dds_total, &ddh_total);
7658
7659 dump_dedup_ratio(&dds_total);
7660 }
7661
7662 static int
verify_device_removal_feature_counts(spa_t * spa)7663 verify_device_removal_feature_counts(spa_t *spa)
7664 {
7665 uint64_t dr_feature_refcount = 0;
7666 uint64_t oc_feature_refcount = 0;
7667 uint64_t indirect_vdev_count = 0;
7668 uint64_t precise_vdev_count = 0;
7669 uint64_t obsolete_counts_object_count = 0;
7670 uint64_t obsolete_sm_count = 0;
7671 uint64_t obsolete_counts_count = 0;
7672 uint64_t scip_count = 0;
7673 uint64_t obsolete_bpobj_count = 0;
7674 int ret = 0;
7675
7676 spa_condensing_indirect_phys_t *scip =
7677 &spa->spa_condensing_indirect_phys;
7678 if (scip->scip_next_mapping_object != 0) {
7679 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7680 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7681 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7682
7683 (void) printf("Condensing indirect vdev %llu: new mapping "
7684 "object %llu, prev obsolete sm %llu\n",
7685 (u_longlong_t)scip->scip_vdev,
7686 (u_longlong_t)scip->scip_next_mapping_object,
7687 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7688 if (scip->scip_prev_obsolete_sm_object != 0) {
7689 space_map_t *prev_obsolete_sm = NULL;
7690 VERIFY0(space_map_open(&prev_obsolete_sm,
7691 spa->spa_meta_objset,
7692 scip->scip_prev_obsolete_sm_object,
7693 0, vd->vdev_asize, 0));
7694 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7695 (void) printf("\n");
7696 space_map_close(prev_obsolete_sm);
7697 }
7698
7699 scip_count += 2;
7700 }
7701
7702 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7703 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7704 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7705
7706 if (vic->vic_mapping_object != 0) {
7707 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7708 vd->vdev_removing);
7709 indirect_vdev_count++;
7710
7711 if (vd->vdev_indirect_mapping->vim_havecounts) {
7712 obsolete_counts_count++;
7713 }
7714 }
7715
7716 boolean_t are_precise;
7717 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7718 if (are_precise) {
7719 ASSERT(vic->vic_mapping_object != 0);
7720 precise_vdev_count++;
7721 }
7722
7723 uint64_t obsolete_sm_object;
7724 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7725 if (obsolete_sm_object != 0) {
7726 ASSERT(vic->vic_mapping_object != 0);
7727 obsolete_sm_count++;
7728 }
7729 }
7730
7731 (void) feature_get_refcount(spa,
7732 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7733 &dr_feature_refcount);
7734 (void) feature_get_refcount(spa,
7735 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7736 &oc_feature_refcount);
7737
7738 if (dr_feature_refcount != indirect_vdev_count) {
7739 ret = 1;
7740 (void) printf("Number of indirect vdevs (%llu) " \
7741 "does not match feature count (%llu)\n",
7742 (u_longlong_t)indirect_vdev_count,
7743 (u_longlong_t)dr_feature_refcount);
7744 } else {
7745 (void) printf("Verified device_removal feature refcount " \
7746 "of %llu is correct\n",
7747 (u_longlong_t)dr_feature_refcount);
7748 }
7749
7750 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7751 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7752 obsolete_bpobj_count++;
7753 }
7754
7755
7756 obsolete_counts_object_count = precise_vdev_count;
7757 obsolete_counts_object_count += obsolete_sm_count;
7758 obsolete_counts_object_count += obsolete_counts_count;
7759 obsolete_counts_object_count += scip_count;
7760 obsolete_counts_object_count += obsolete_bpobj_count;
7761 obsolete_counts_object_count += remap_deadlist_count;
7762
7763 if (oc_feature_refcount != obsolete_counts_object_count) {
7764 ret = 1;
7765 (void) printf("Number of obsolete counts objects (%llu) " \
7766 "does not match feature count (%llu)\n",
7767 (u_longlong_t)obsolete_counts_object_count,
7768 (u_longlong_t)oc_feature_refcount);
7769 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7770 "ob:%llu rd:%llu\n",
7771 (u_longlong_t)precise_vdev_count,
7772 (u_longlong_t)obsolete_sm_count,
7773 (u_longlong_t)obsolete_counts_count,
7774 (u_longlong_t)scip_count,
7775 (u_longlong_t)obsolete_bpobj_count,
7776 (u_longlong_t)remap_deadlist_count);
7777 } else {
7778 (void) printf("Verified indirect_refcount feature refcount " \
7779 "of %llu is correct\n",
7780 (u_longlong_t)oc_feature_refcount);
7781 }
7782 return (ret);
7783 }
7784
7785 static void
zdb_set_skip_mmp(char * target)7786 zdb_set_skip_mmp(char *target)
7787 {
7788 spa_t *spa;
7789
7790 /*
7791 * Disable the activity check to allow examination of
7792 * active pools.
7793 */
7794 mutex_enter(&spa_namespace_lock);
7795 if ((spa = spa_lookup(target)) != NULL) {
7796 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7797 }
7798 mutex_exit(&spa_namespace_lock);
7799 }
7800
7801 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7802 /*
7803 * Import the checkpointed state of the pool specified by the target
7804 * parameter as readonly. The function also accepts a pool config
7805 * as an optional parameter, else it attempts to infer the config by
7806 * the name of the target pool.
7807 *
7808 * Note that the checkpointed state's pool name will be the name of
7809 * the original pool with the above suffix appended to it. In addition,
7810 * if the target is not a pool name (e.g. a path to a dataset) then
7811 * the new_path parameter is populated with the updated path to
7812 * reflect the fact that we are looking into the checkpointed state.
7813 *
7814 * The function returns a newly-allocated copy of the name of the
7815 * pool containing the checkpointed state. When this copy is no
7816 * longer needed it should be freed with free(3C). Same thing
7817 * applies to the new_path parameter if allocated.
7818 */
7819 static char *
import_checkpointed_state(char * target,nvlist_t * cfg,boolean_t target_is_spa,char ** new_path)7820 import_checkpointed_state(char *target, nvlist_t *cfg, boolean_t target_is_spa,
7821 char **new_path)
7822 {
7823 int error = 0;
7824 char *poolname, *bogus_name = NULL;
7825 boolean_t freecfg = B_FALSE;
7826
7827 /* If the target is not a pool, the extract the pool name */
7828 char *path_start = strchr(target, '/');
7829 if (target_is_spa || path_start == NULL) {
7830 poolname = target;
7831 } else {
7832 size_t poolname_len = path_start - target;
7833 poolname = strndup(target, poolname_len);
7834 }
7835
7836 if (cfg == NULL) {
7837 zdb_set_skip_mmp(poolname);
7838 error = spa_get_stats(poolname, &cfg, NULL, 0);
7839 if (error != 0) {
7840 fatal("Tried to read config of pool \"%s\" but "
7841 "spa_get_stats() failed with error %d\n",
7842 poolname, error);
7843 }
7844 freecfg = B_TRUE;
7845 }
7846
7847 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7848 if (target != poolname)
7849 free(poolname);
7850 return (NULL);
7851 }
7852 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7853
7854 error = spa_import(bogus_name, cfg, NULL,
7855 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7856 ZFS_IMPORT_SKIP_MMP);
7857 if (freecfg)
7858 nvlist_free(cfg);
7859 if (error != 0) {
7860 fatal("Tried to import pool \"%s\" but spa_import() failed "
7861 "with error %d\n", bogus_name, error);
7862 }
7863
7864 if (new_path != NULL && !target_is_spa) {
7865 if (asprintf(new_path, "%s%s", bogus_name,
7866 path_start != NULL ? path_start : "") == -1) {
7867 free(bogus_name);
7868 if (!target_is_spa && path_start != NULL)
7869 free(poolname);
7870 return (NULL);
7871 }
7872 }
7873
7874 if (target != poolname)
7875 free(poolname);
7876
7877 return (bogus_name);
7878 }
7879
7880 typedef struct verify_checkpoint_sm_entry_cb_arg {
7881 vdev_t *vcsec_vd;
7882
7883 /* the following fields are only used for printing progress */
7884 uint64_t vcsec_entryid;
7885 uint64_t vcsec_num_entries;
7886 } verify_checkpoint_sm_entry_cb_arg_t;
7887
7888 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7889
7890 static int
verify_checkpoint_sm_entry_cb(space_map_entry_t * sme,void * arg)7891 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7892 {
7893 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7894 vdev_t *vd = vcsec->vcsec_vd;
7895 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7896 uint64_t end = sme->sme_offset + sme->sme_run;
7897
7898 ASSERT(sme->sme_type == SM_FREE);
7899
7900 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7901 (void) fprintf(stderr,
7902 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7903 (longlong_t)vd->vdev_id,
7904 (longlong_t)vcsec->vcsec_entryid,
7905 (longlong_t)vcsec->vcsec_num_entries);
7906 }
7907 vcsec->vcsec_entryid++;
7908
7909 /*
7910 * See comment in checkpoint_sm_exclude_entry_cb()
7911 */
7912 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7913 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7914
7915 /*
7916 * The entries in the vdev_checkpoint_sm should be marked as
7917 * allocated in the checkpointed state of the pool, therefore
7918 * their respective ms_allocateable trees should not contain them.
7919 */
7920 mutex_enter(&ms->ms_lock);
7921 zfs_range_tree_verify_not_present(ms->ms_allocatable,
7922 sme->sme_offset, sme->sme_run);
7923 mutex_exit(&ms->ms_lock);
7924
7925 return (0);
7926 }
7927
7928 /*
7929 * Verify that all segments in the vdev_checkpoint_sm are allocated
7930 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7931 * ms_allocatable).
7932 *
7933 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7934 * each vdev in the current state of the pool to the metaslab space maps
7935 * (ms_sm) of the checkpointed state of the pool.
7936 *
7937 * Note that the function changes the state of the ms_allocatable
7938 * trees of the current spa_t. The entries of these ms_allocatable
7939 * trees are cleared out and then repopulated from with the free
7940 * entries of their respective ms_sm space maps.
7941 */
7942 static void
verify_checkpoint_vdev_spacemaps(spa_t * checkpoint,spa_t * current)7943 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7944 {
7945 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7946 vdev_t *current_rvd = current->spa_root_vdev;
7947
7948 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7949
7950 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7951 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7952 vdev_t *current_vd = current_rvd->vdev_child[c];
7953
7954 space_map_t *checkpoint_sm = NULL;
7955 uint64_t checkpoint_sm_obj;
7956
7957 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7958 /*
7959 * Since we don't allow device removal in a pool
7960 * that has a checkpoint, we expect that all removed
7961 * vdevs were removed from the pool before the
7962 * checkpoint.
7963 */
7964 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7965 continue;
7966 }
7967
7968 /*
7969 * If the checkpoint space map doesn't exist, then nothing
7970 * here is checkpointed so there's nothing to verify.
7971 */
7972 if (current_vd->vdev_top_zap == 0 ||
7973 zap_contains(spa_meta_objset(current),
7974 current_vd->vdev_top_zap,
7975 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7976 continue;
7977
7978 VERIFY0(zap_lookup(spa_meta_objset(current),
7979 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7980 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7981
7982 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7983 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7984 current_vd->vdev_ashift));
7985
7986 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7987 vcsec.vcsec_vd = ckpoint_vd;
7988 vcsec.vcsec_entryid = 0;
7989 vcsec.vcsec_num_entries =
7990 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7991 VERIFY0(space_map_iterate(checkpoint_sm,
7992 space_map_length(checkpoint_sm),
7993 verify_checkpoint_sm_entry_cb, &vcsec));
7994 if (dump_opt['m'] > 3)
7995 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7996 space_map_close(checkpoint_sm);
7997 }
7998
7999 /*
8000 * If we've added vdevs since we took the checkpoint, ensure
8001 * that their checkpoint space maps are empty.
8002 */
8003 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
8004 for (uint64_t c = ckpoint_rvd->vdev_children;
8005 c < current_rvd->vdev_children; c++) {
8006 vdev_t *current_vd = current_rvd->vdev_child[c];
8007 VERIFY0P(current_vd->vdev_checkpoint_sm);
8008 }
8009 }
8010
8011 /* for cleaner progress output */
8012 (void) fprintf(stderr, "\n");
8013 }
8014
8015 /*
8016 * Verifies that all space that's allocated in the checkpoint is
8017 * still allocated in the current version, by checking that everything
8018 * in checkpoint's ms_allocatable (which is actually allocated, not
8019 * allocatable/free) is not present in current's ms_allocatable.
8020 *
8021 * Note that the function changes the state of the ms_allocatable
8022 * trees of both spas when called. The entries of all ms_allocatable
8023 * trees are cleared out and then repopulated from their respective
8024 * ms_sm space maps. In the checkpointed state we load the allocated
8025 * entries, and in the current state we load the free entries.
8026 */
8027 static void
verify_checkpoint_ms_spacemaps(spa_t * checkpoint,spa_t * current)8028 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
8029 {
8030 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
8031 vdev_t *current_rvd = current->spa_root_vdev;
8032
8033 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
8034 load_concrete_ms_allocatable_trees(current, SM_FREE);
8035
8036 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
8037 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
8038 vdev_t *current_vd = current_rvd->vdev_child[i];
8039
8040 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
8041 /*
8042 * See comment in verify_checkpoint_vdev_spacemaps()
8043 */
8044 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
8045 continue;
8046 }
8047
8048 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
8049 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
8050 metaslab_t *current_msp = current_vd->vdev_ms[m];
8051
8052 (void) fprintf(stderr,
8053 "\rverifying vdev %llu of %llu, "
8054 "metaslab %llu of %llu ...",
8055 (longlong_t)current_vd->vdev_id,
8056 (longlong_t)current_rvd->vdev_children,
8057 (longlong_t)current_vd->vdev_ms[m]->ms_id,
8058 (longlong_t)current_vd->vdev_ms_count);
8059
8060 /*
8061 * We walk through the ms_allocatable trees that
8062 * are loaded with the allocated blocks from the
8063 * ms_sm spacemaps of the checkpoint. For each
8064 * one of these ranges we ensure that none of them
8065 * exists in the ms_allocatable trees of the
8066 * current state which are loaded with the ranges
8067 * that are currently free.
8068 *
8069 * This way we ensure that none of the blocks that
8070 * are part of the checkpoint were freed by mistake.
8071 */
8072 zfs_range_tree_walk(ckpoint_msp->ms_allocatable,
8073 (zfs_range_tree_func_t *)
8074 zfs_range_tree_verify_not_present,
8075 current_msp->ms_allocatable);
8076 }
8077 }
8078
8079 /* for cleaner progress output */
8080 (void) fprintf(stderr, "\n");
8081 }
8082
8083 static void
verify_checkpoint_blocks(spa_t * spa)8084 verify_checkpoint_blocks(spa_t *spa)
8085 {
8086 ASSERT(!dump_opt['L']);
8087
8088 spa_t *checkpoint_spa;
8089 char *checkpoint_pool;
8090 int error = 0;
8091
8092 /*
8093 * We import the checkpointed state of the pool (under a different
8094 * name) so we can do verification on it against the current state
8095 * of the pool.
8096 */
8097 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, B_TRUE,
8098 NULL);
8099 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
8100
8101 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
8102 if (error != 0) {
8103 fatal("Tried to open pool \"%s\" but spa_open() failed with "
8104 "error %d\n", checkpoint_pool, error);
8105 }
8106
8107 /*
8108 * Ensure that ranges in the checkpoint space maps of each vdev
8109 * are allocated according to the checkpointed state's metaslab
8110 * space maps.
8111 */
8112 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
8113
8114 /*
8115 * Ensure that allocated ranges in the checkpoint's metaslab
8116 * space maps remain allocated in the metaslab space maps of
8117 * the current state.
8118 */
8119 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
8120
8121 /*
8122 * Once we are done, we get rid of the checkpointed state.
8123 */
8124 spa_close(checkpoint_spa, FTAG);
8125 free(checkpoint_pool);
8126 }
8127
8128 static void
dump_leftover_checkpoint_blocks(spa_t * spa)8129 dump_leftover_checkpoint_blocks(spa_t *spa)
8130 {
8131 vdev_t *rvd = spa->spa_root_vdev;
8132
8133 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
8134 vdev_t *vd = rvd->vdev_child[i];
8135
8136 space_map_t *checkpoint_sm = NULL;
8137 uint64_t checkpoint_sm_obj;
8138
8139 if (vd->vdev_top_zap == 0)
8140 continue;
8141
8142 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
8143 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
8144 continue;
8145
8146 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
8147 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
8148 sizeof (uint64_t), 1, &checkpoint_sm_obj));
8149
8150 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
8151 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
8152 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
8153 space_map_close(checkpoint_sm);
8154 }
8155 }
8156
8157 static int
verify_checkpoint(spa_t * spa)8158 verify_checkpoint(spa_t *spa)
8159 {
8160 uberblock_t checkpoint;
8161 int error;
8162
8163 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
8164 return (0);
8165
8166 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8167 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
8168 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
8169
8170 if (error == ENOENT && !dump_opt['L']) {
8171 /*
8172 * If the feature is active but the uberblock is missing
8173 * then we must be in the middle of discarding the
8174 * checkpoint.
8175 */
8176 (void) printf("\nPartially discarded checkpoint "
8177 "state found:\n");
8178 if (dump_opt['m'] > 3)
8179 dump_leftover_checkpoint_blocks(spa);
8180 return (0);
8181 } else if (error != 0) {
8182 (void) printf("lookup error %d when looking for "
8183 "checkpointed uberblock in MOS\n", error);
8184 return (error);
8185 }
8186 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
8187
8188 if (checkpoint.ub_checkpoint_txg == 0) {
8189 (void) printf("\nub_checkpoint_txg not set in checkpointed "
8190 "uberblock\n");
8191 error = 3;
8192 }
8193
8194 if (error == 0 && !dump_opt['L'])
8195 verify_checkpoint_blocks(spa);
8196
8197 return (error);
8198 }
8199
8200 static void
mos_leaks_cb(void * arg,uint64_t start,uint64_t size)8201 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8202 {
8203 (void) arg;
8204 for (uint64_t i = start; i < size; i++) {
8205 (void) printf("MOS object %llu referenced but not allocated\n",
8206 (u_longlong_t)i);
8207 }
8208 }
8209
8210 static void
mos_obj_refd(uint64_t obj)8211 mos_obj_refd(uint64_t obj)
8212 {
8213 if (obj != 0 && mos_refd_objs != NULL)
8214 zfs_range_tree_add(mos_refd_objs, obj, 1);
8215 }
8216
8217 /*
8218 * Call on a MOS object that may already have been referenced.
8219 */
8220 static void
mos_obj_refd_multiple(uint64_t obj)8221 mos_obj_refd_multiple(uint64_t obj)
8222 {
8223 if (obj != 0 && mos_refd_objs != NULL &&
8224 !zfs_range_tree_contains(mos_refd_objs, obj, 1))
8225 zfs_range_tree_add(mos_refd_objs, obj, 1);
8226 }
8227
8228 static void
mos_leak_vdev_top_zap(vdev_t * vd)8229 mos_leak_vdev_top_zap(vdev_t *vd)
8230 {
8231 uint64_t ms_flush_data_obj;
8232 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8233 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8234 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8235 if (error == ENOENT)
8236 return;
8237 ASSERT0(error);
8238
8239 mos_obj_refd(ms_flush_data_obj);
8240 }
8241
8242 static void
mos_leak_vdev(vdev_t * vd)8243 mos_leak_vdev(vdev_t *vd)
8244 {
8245 mos_obj_refd(vd->vdev_dtl_object);
8246 mos_obj_refd(vd->vdev_ms_array);
8247 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8248 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8249 mos_obj_refd(vd->vdev_leaf_zap);
8250 if (vd->vdev_checkpoint_sm != NULL)
8251 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8252 if (vd->vdev_indirect_mapping != NULL) {
8253 mos_obj_refd(vd->vdev_indirect_mapping->
8254 vim_phys->vimp_counts_object);
8255 }
8256 if (vd->vdev_obsolete_sm != NULL)
8257 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8258
8259 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8260 metaslab_t *ms = vd->vdev_ms[m];
8261 mos_obj_refd(space_map_object(ms->ms_sm));
8262 }
8263
8264 if (vd->vdev_root_zap != 0)
8265 mos_obj_refd(vd->vdev_root_zap);
8266
8267 if (vd->vdev_top_zap != 0) {
8268 mos_obj_refd(vd->vdev_top_zap);
8269 mos_leak_vdev_top_zap(vd);
8270 }
8271
8272 for (uint64_t c = 0; c < vd->vdev_children; c++) {
8273 mos_leak_vdev(vd->vdev_child[c]);
8274 }
8275 }
8276
8277 static void
mos_leak_log_spacemaps(spa_t * spa)8278 mos_leak_log_spacemaps(spa_t *spa)
8279 {
8280 uint64_t spacemap_zap;
8281 int error = zap_lookup(spa_meta_objset(spa),
8282 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8283 sizeof (spacemap_zap), 1, &spacemap_zap);
8284 if (error == ENOENT)
8285 return;
8286 ASSERT0(error);
8287
8288 mos_obj_refd(spacemap_zap);
8289 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8290 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8291 mos_obj_refd(sls->sls_sm_obj);
8292 }
8293
8294 static void
errorlog_count_refd(objset_t * mos,uint64_t errlog)8295 errorlog_count_refd(objset_t *mos, uint64_t errlog)
8296 {
8297 zap_cursor_t zc;
8298 zap_attribute_t *za = zap_attribute_alloc();
8299 for (zap_cursor_init(&zc, mos, errlog);
8300 zap_cursor_retrieve(&zc, za) == 0;
8301 zap_cursor_advance(&zc)) {
8302 mos_obj_refd(za->za_first_integer);
8303 }
8304 zap_cursor_fini(&zc);
8305 zap_attribute_free(za);
8306 }
8307
8308 static int
dump_mos_leaks(spa_t * spa)8309 dump_mos_leaks(spa_t *spa)
8310 {
8311 int rv = 0;
8312 objset_t *mos = spa->spa_meta_objset;
8313 dsl_pool_t *dp = spa->spa_dsl_pool;
8314
8315 /* Visit and mark all referenced objects in the MOS */
8316
8317 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8318 mos_obj_refd(spa->spa_pool_props_object);
8319 mos_obj_refd(spa->spa_config_object);
8320 mos_obj_refd(spa->spa_ddt_stat_object);
8321 mos_obj_refd(spa->spa_feat_desc_obj);
8322 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8323 mos_obj_refd(spa->spa_feat_for_read_obj);
8324 mos_obj_refd(spa->spa_feat_for_write_obj);
8325 mos_obj_refd(spa->spa_history);
8326 mos_obj_refd(spa->spa_errlog_last);
8327 mos_obj_refd(spa->spa_errlog_scrub);
8328
8329 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8330 errorlog_count_refd(mos, spa->spa_errlog_last);
8331 errorlog_count_refd(mos, spa->spa_errlog_scrub);
8332 }
8333
8334 mos_obj_refd(spa->spa_all_vdev_zaps);
8335 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8336 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8337 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8338 bpobj_count_refd(&spa->spa_deferred_bpobj);
8339 mos_obj_refd(dp->dp_empty_bpobj);
8340 bpobj_count_refd(&dp->dp_obsolete_bpobj);
8341 bpobj_count_refd(&dp->dp_free_bpobj);
8342 mos_obj_refd(spa->spa_l2cache.sav_object);
8343 mos_obj_refd(spa->spa_spares.sav_object);
8344
8345 if (spa->spa_syncing_log_sm != NULL)
8346 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8347 mos_leak_log_spacemaps(spa);
8348
8349 mos_obj_refd(spa->spa_condensing_indirect_phys.
8350 scip_next_mapping_object);
8351 mos_obj_refd(spa->spa_condensing_indirect_phys.
8352 scip_prev_obsolete_sm_object);
8353 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8354 vdev_indirect_mapping_t *vim =
8355 vdev_indirect_mapping_open(mos,
8356 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8357 mos_obj_refd(vim->vim_phys->vimp_counts_object);
8358 vdev_indirect_mapping_close(vim);
8359 }
8360 deleted_livelists_dump_mos(spa);
8361
8362 if (dp->dp_origin_snap != NULL) {
8363 dsl_dataset_t *ds;
8364
8365 dsl_pool_config_enter(dp, FTAG);
8366 VERIFY0(dsl_dataset_hold_obj(dp,
8367 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8368 FTAG, &ds));
8369 count_ds_mos_objects(ds);
8370 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8371 dsl_dataset_rele(ds, FTAG);
8372 dsl_pool_config_exit(dp, FTAG);
8373
8374 count_ds_mos_objects(dp->dp_origin_snap);
8375 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8376 }
8377 count_dir_mos_objects(dp->dp_mos_dir);
8378 if (dp->dp_free_dir != NULL)
8379 count_dir_mos_objects(dp->dp_free_dir);
8380 if (dp->dp_leak_dir != NULL)
8381 count_dir_mos_objects(dp->dp_leak_dir);
8382
8383 mos_leak_vdev(spa->spa_root_vdev);
8384
8385 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8386 ddt_t *ddt = spa->spa_ddt[c];
8387 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8388 continue;
8389
8390 /* DDT store objects */
8391 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8392 for (ddt_class_t class = 0; class < DDT_CLASSES;
8393 class++) {
8394 mos_obj_refd(ddt->ddt_object[type][class]);
8395 }
8396 }
8397
8398 /* FDT container */
8399 if (ddt->ddt_version == DDT_VERSION_FDT)
8400 mos_obj_refd(ddt->ddt_dir_object);
8401
8402 /* FDT log objects */
8403 if (ddt->ddt_flags & DDT_FLAG_LOG) {
8404 mos_obj_refd(ddt->ddt_log[0].ddl_object);
8405 mos_obj_refd(ddt->ddt_log[1].ddl_object);
8406 }
8407 }
8408
8409 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
8410 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
8411 if (brtvd->bv_initiated) {
8412 mos_obj_refd(brtvd->bv_mos_brtvdev);
8413 mos_obj_refd(brtvd->bv_mos_entries);
8414 }
8415 }
8416
8417 /*
8418 * Visit all allocated objects and make sure they are referenced.
8419 */
8420 uint64_t object = 0;
8421 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8422 if (zfs_range_tree_contains(mos_refd_objs, object, 1)) {
8423 zfs_range_tree_remove(mos_refd_objs, object, 1);
8424 } else {
8425 dmu_object_info_t doi;
8426 const char *name;
8427 VERIFY0(dmu_object_info(mos, object, &doi));
8428 if (doi.doi_type & DMU_OT_NEWTYPE) {
8429 dmu_object_byteswap_t bswap =
8430 DMU_OT_BYTESWAP(doi.doi_type);
8431 name = dmu_ot_byteswap[bswap].ob_name;
8432 } else {
8433 name = dmu_ot[doi.doi_type].ot_name;
8434 }
8435
8436 (void) printf("MOS object %llu (%s) leaked\n",
8437 (u_longlong_t)object, name);
8438 rv = 2;
8439 }
8440 }
8441 (void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8442 if (!zfs_range_tree_is_empty(mos_refd_objs))
8443 rv = 2;
8444 zfs_range_tree_vacate(mos_refd_objs, NULL, NULL);
8445 zfs_range_tree_destroy(mos_refd_objs);
8446 return (rv);
8447 }
8448
8449 typedef struct log_sm_obsolete_stats_arg {
8450 uint64_t lsos_current_txg;
8451
8452 uint64_t lsos_total_entries;
8453 uint64_t lsos_valid_entries;
8454
8455 uint64_t lsos_sm_entries;
8456 uint64_t lsos_valid_sm_entries;
8457 } log_sm_obsolete_stats_arg_t;
8458
8459 static int
log_spacemap_obsolete_stats_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)8460 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8461 uint64_t txg, void *arg)
8462 {
8463 log_sm_obsolete_stats_arg_t *lsos = arg;
8464
8465 uint64_t offset = sme->sme_offset;
8466 uint64_t vdev_id = sme->sme_vdev;
8467
8468 if (lsos->lsos_current_txg == 0) {
8469 /* this is the first log */
8470 lsos->lsos_current_txg = txg;
8471 } else if (lsos->lsos_current_txg < txg) {
8472 /* we just changed log - print stats and reset */
8473 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8474 (u_longlong_t)lsos->lsos_valid_sm_entries,
8475 (u_longlong_t)lsos->lsos_sm_entries,
8476 (u_longlong_t)lsos->lsos_current_txg);
8477 lsos->lsos_valid_sm_entries = 0;
8478 lsos->lsos_sm_entries = 0;
8479 lsos->lsos_current_txg = txg;
8480 }
8481 ASSERT3U(lsos->lsos_current_txg, ==, txg);
8482
8483 lsos->lsos_sm_entries++;
8484 lsos->lsos_total_entries++;
8485
8486 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8487 if (!vdev_is_concrete(vd))
8488 return (0);
8489
8490 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8491 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8492
8493 if (txg < metaslab_unflushed_txg(ms))
8494 return (0);
8495 lsos->lsos_valid_sm_entries++;
8496 lsos->lsos_valid_entries++;
8497 return (0);
8498 }
8499
8500 static void
dump_log_spacemap_obsolete_stats(spa_t * spa)8501 dump_log_spacemap_obsolete_stats(spa_t *spa)
8502 {
8503 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8504 return;
8505
8506 log_sm_obsolete_stats_arg_t lsos = {0};
8507
8508 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8509
8510 iterate_through_spacemap_logs(spa,
8511 log_spacemap_obsolete_stats_cb, &lsos);
8512
8513 /* print stats for latest log */
8514 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8515 (u_longlong_t)lsos.lsos_valid_sm_entries,
8516 (u_longlong_t)lsos.lsos_sm_entries,
8517 (u_longlong_t)lsos.lsos_current_txg);
8518
8519 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8520 (u_longlong_t)lsos.lsos_valid_entries,
8521 (u_longlong_t)lsos.lsos_total_entries);
8522 }
8523
8524 static void
dump_zpool(spa_t * spa)8525 dump_zpool(spa_t *spa)
8526 {
8527 dsl_pool_t *dp = spa_get_dsl(spa);
8528 int rc = 0;
8529
8530 if (dump_opt['y']) {
8531 livelist_metaslab_validate(spa);
8532 }
8533
8534 if (dump_opt['S']) {
8535 dump_simulated_ddt(spa);
8536 return;
8537 }
8538
8539 if (!dump_opt['e'] && dump_opt['C'] > 1) {
8540 (void) printf("\nCached configuration:\n");
8541 dump_nvlist(spa->spa_config, 8);
8542 }
8543
8544 if (dump_opt['C'])
8545 dump_config(spa);
8546
8547 if (dump_opt['u'])
8548 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8549
8550 if (dump_opt['D'])
8551 dump_all_ddts(spa);
8552
8553 if (dump_opt['T'])
8554 dump_brt(spa);
8555
8556 if (dump_opt['d'] > 2 || dump_opt['m'])
8557 dump_metaslabs(spa);
8558 if (dump_opt['M'])
8559 dump_metaslab_groups(spa, dump_opt['M'] > 1);
8560 if (dump_opt['d'] > 2 || dump_opt['m']) {
8561 dump_log_spacemaps(spa);
8562 dump_log_spacemap_obsolete_stats(spa);
8563 }
8564
8565 if (dump_opt['d'] || dump_opt['i']) {
8566 spa_feature_t f;
8567 mos_refd_objs = zfs_range_tree_create_flags(
8568 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
8569 0, "dump_zpool:mos_refd_objs");
8570 dump_objset(dp->dp_meta_objset);
8571
8572 if (dump_opt['d'] >= 3) {
8573 dsl_pool_t *dp = spa->spa_dsl_pool;
8574 dump_full_bpobj(&spa->spa_deferred_bpobj,
8575 "Deferred frees", 0);
8576 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8577 dump_full_bpobj(&dp->dp_free_bpobj,
8578 "Pool snapshot frees", 0);
8579 }
8580 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8581 ASSERT(spa_feature_is_enabled(spa,
8582 SPA_FEATURE_DEVICE_REMOVAL));
8583 dump_full_bpobj(&dp->dp_obsolete_bpobj,
8584 "Pool obsolete blocks", 0);
8585 }
8586
8587 if (spa_feature_is_active(spa,
8588 SPA_FEATURE_ASYNC_DESTROY)) {
8589 dump_bptree(spa->spa_meta_objset,
8590 dp->dp_bptree_obj,
8591 "Pool dataset frees");
8592 }
8593 dump_dtl(spa->spa_root_vdev, 0);
8594 }
8595
8596 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8597 global_feature_count[f] = UINT64_MAX;
8598 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8599 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8600 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8601 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8602
8603 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
8604 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8605
8606 if (rc == 0 && !dump_opt['L'])
8607 rc = dump_mos_leaks(spa);
8608
8609 for (f = 0; f < SPA_FEATURES; f++) {
8610 uint64_t refcount;
8611
8612 uint64_t *arr;
8613 if (!(spa_feature_table[f].fi_flags &
8614 ZFEATURE_FLAG_PER_DATASET)) {
8615 if (global_feature_count[f] == UINT64_MAX)
8616 continue;
8617 if (!spa_feature_is_enabled(spa, f)) {
8618 ASSERT0(global_feature_count[f]);
8619 continue;
8620 }
8621 arr = global_feature_count;
8622 } else {
8623 if (!spa_feature_is_enabled(spa, f)) {
8624 ASSERT0(dataset_feature_count[f]);
8625 continue;
8626 }
8627 arr = dataset_feature_count;
8628 }
8629 if (feature_get_refcount(spa, &spa_feature_table[f],
8630 &refcount) == ENOTSUP)
8631 continue;
8632 if (arr[f] != refcount) {
8633 (void) printf("%s feature refcount mismatch: "
8634 "%lld consumers != %lld refcount\n",
8635 spa_feature_table[f].fi_uname,
8636 (longlong_t)arr[f], (longlong_t)refcount);
8637 rc = 2;
8638 } else {
8639 (void) printf("Verified %s feature refcount "
8640 "of %llu is correct\n",
8641 spa_feature_table[f].fi_uname,
8642 (longlong_t)refcount);
8643 }
8644 }
8645
8646 if (rc == 0)
8647 rc = verify_device_removal_feature_counts(spa);
8648 }
8649
8650 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8651 rc = dump_block_stats(spa);
8652
8653 if (rc == 0)
8654 rc = verify_spacemap_refcounts(spa);
8655
8656 if (dump_opt['s'])
8657 show_pool_stats(spa);
8658
8659 if (dump_opt['h'])
8660 dump_history(spa);
8661
8662 if (rc == 0)
8663 rc = verify_checkpoint(spa);
8664
8665 if (rc != 0) {
8666 dump_debug_buffer();
8667 zdb_exit(rc);
8668 }
8669 }
8670
8671 #define ZDB_FLAG_CHECKSUM 0x0001
8672 #define ZDB_FLAG_DECOMPRESS 0x0002
8673 #define ZDB_FLAG_BSWAP 0x0004
8674 #define ZDB_FLAG_GBH 0x0008
8675 #define ZDB_FLAG_INDIRECT 0x0010
8676 #define ZDB_FLAG_RAW 0x0020
8677 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8678 #define ZDB_FLAG_VERBOSE 0x0080
8679
8680 static int flagbits[256];
8681 static char flagbitstr[16];
8682
8683 static void
zdb_print_blkptr(const blkptr_t * bp,int flags)8684 zdb_print_blkptr(const blkptr_t *bp, int flags)
8685 {
8686 char blkbuf[BP_SPRINTF_LEN];
8687
8688 if (flags & ZDB_FLAG_BSWAP)
8689 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8690
8691 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8692 (void) printf("%s\n", blkbuf);
8693 }
8694
8695 static void
zdb_dump_indirect(blkptr_t * bp,int nbps,int flags)8696 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8697 {
8698 int i;
8699
8700 for (i = 0; i < nbps; i++)
8701 zdb_print_blkptr(&bp[i], flags);
8702 }
8703
8704 static void
zdb_dump_gbh(void * buf,uint64_t size,int flags)8705 zdb_dump_gbh(void *buf, uint64_t size, int flags)
8706 {
8707 zdb_dump_indirect((blkptr_t *)buf, gbh_nblkptrs(size), flags);
8708 }
8709
8710 static void
zdb_dump_block_raw(void * buf,uint64_t size,int flags)8711 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8712 {
8713 if (flags & ZDB_FLAG_BSWAP)
8714 byteswap_uint64_array(buf, size);
8715 VERIFY(write(fileno(stdout), buf, size) == size);
8716 }
8717
8718 static void
zdb_dump_block(char * label,void * buf,uint64_t size,int flags)8719 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8720 {
8721 uint64_t *d = (uint64_t *)buf;
8722 unsigned nwords = size / sizeof (uint64_t);
8723 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8724 unsigned i, j;
8725 const char *hdr;
8726 char *c;
8727
8728
8729 if (do_bswap)
8730 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8731 else
8732 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8733
8734 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8735
8736 #ifdef _ZFS_LITTLE_ENDIAN
8737 /* correct the endianness */
8738 do_bswap = !do_bswap;
8739 #endif
8740 for (i = 0; i < nwords; i += 2) {
8741 (void) printf("%06llx: %016llx %016llx ",
8742 (u_longlong_t)(i * sizeof (uint64_t)),
8743 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8744 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8745
8746 c = (char *)&d[i];
8747 for (j = 0; j < 2 * sizeof (uint64_t); j++)
8748 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
8749 (void) printf("\n");
8750 }
8751 }
8752
8753 /*
8754 * There are two acceptable formats:
8755 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8756 * child[.child]* - For example: 0.1.1
8757 *
8758 * The second form can be used to specify arbitrary vdevs anywhere
8759 * in the hierarchy. For example, in a pool with a mirror of
8760 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8761 */
8762 static vdev_t *
zdb_vdev_lookup(vdev_t * vdev,const char * path)8763 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8764 {
8765 char *s, *p, *q;
8766 unsigned i;
8767
8768 if (vdev == NULL)
8769 return (NULL);
8770
8771 /* First, assume the x.x.x.x format */
8772 i = strtoul(path, &s, 10);
8773 if (s == path || (s && *s != '.' && *s != '\0'))
8774 goto name;
8775 if (i >= vdev->vdev_children)
8776 return (NULL);
8777
8778 vdev = vdev->vdev_child[i];
8779 if (s && *s == '\0')
8780 return (vdev);
8781 return (zdb_vdev_lookup(vdev, s+1));
8782
8783 name:
8784 for (i = 0; i < vdev->vdev_children; i++) {
8785 vdev_t *vc = vdev->vdev_child[i];
8786
8787 if (vc->vdev_path == NULL) {
8788 vc = zdb_vdev_lookup(vc, path);
8789 if (vc == NULL)
8790 continue;
8791 else
8792 return (vc);
8793 }
8794
8795 p = strrchr(vc->vdev_path, '/');
8796 p = p ? p + 1 : vc->vdev_path;
8797 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8798
8799 if (strcmp(vc->vdev_path, path) == 0)
8800 return (vc);
8801 if (strcmp(p, path) == 0)
8802 return (vc);
8803 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8804 return (vc);
8805 }
8806
8807 return (NULL);
8808 }
8809
8810 static int
name_from_objset_id(spa_t * spa,uint64_t objset_id,char * outstr)8811 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8812 {
8813 dsl_dataset_t *ds;
8814
8815 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8816 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8817 NULL, &ds);
8818 if (error != 0) {
8819 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8820 (u_longlong_t)objset_id, strerror(error));
8821 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8822 return (error);
8823 }
8824 dsl_dataset_name(ds, outstr);
8825 dsl_dataset_rele(ds, NULL);
8826 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8827 return (0);
8828 }
8829
8830 static boolean_t
zdb_parse_block_sizes(char * sizes,uint64_t * lsize,uint64_t * psize)8831 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8832 {
8833 char *s0, *s1, *tmp = NULL;
8834
8835 if (sizes == NULL)
8836 return (B_FALSE);
8837
8838 s0 = strtok_r(sizes, "/", &tmp);
8839 if (s0 == NULL)
8840 return (B_FALSE);
8841 s1 = strtok_r(NULL, "/", &tmp);
8842 *lsize = strtoull(s0, NULL, 16);
8843 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8844 return (*lsize >= *psize && *psize > 0);
8845 }
8846
8847 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8848
8849 static boolean_t
try_decompress_block(abd_t * pabd,uint64_t lsize,uint64_t psize,int flags,int cfunc,void * lbuf,void * lbuf2)8850 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8851 int flags, int cfunc, void *lbuf, void *lbuf2)
8852 {
8853 if (flags & ZDB_FLAG_VERBOSE) {
8854 (void) fprintf(stderr,
8855 "Trying %05llx -> %05llx (%s)\n",
8856 (u_longlong_t)psize,
8857 (u_longlong_t)lsize,
8858 zio_compress_table[cfunc].ci_name);
8859 }
8860
8861 /*
8862 * We set lbuf to all zeros and lbuf2 to all
8863 * ones, then decompress to both buffers and
8864 * compare their contents. This way we can
8865 * know if decompression filled exactly to
8866 * lsize or if it left some bytes unwritten.
8867 */
8868
8869 memset(lbuf, 0x00, lsize);
8870 memset(lbuf2, 0xff, lsize);
8871
8872 abd_t labd, labd2;
8873 abd_get_from_buf_struct(&labd, lbuf, lsize);
8874 abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8875
8876 boolean_t ret = B_FALSE;
8877 if (zio_decompress_data(cfunc, pabd,
8878 &labd, psize, lsize, NULL) == 0 &&
8879 zio_decompress_data(cfunc, pabd,
8880 &labd2, psize, lsize, NULL) == 0 &&
8881 memcmp(lbuf, lbuf2, lsize) == 0)
8882 ret = B_TRUE;
8883
8884 abd_free(&labd2);
8885 abd_free(&labd);
8886
8887 return (ret);
8888 }
8889
8890 static uint64_t
zdb_decompress_block(abd_t * pabd,void * buf,void * lbuf,uint64_t lsize,uint64_t psize,int flags)8891 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8892 uint64_t psize, int flags)
8893 {
8894 (void) buf;
8895 uint64_t orig_lsize = lsize;
8896 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
8897 /*
8898 * We don't know how the data was compressed, so just try
8899 * every decompress function at every inflated blocksize.
8900 */
8901 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8902 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8903 int *cfuncp = cfuncs;
8904 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8905 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8906 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8907 ZIO_COMPRESS_MASK(ZLE);
8908 *cfuncp++ = ZIO_COMPRESS_LZ4;
8909 *cfuncp++ = ZIO_COMPRESS_LZJB;
8910 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8911 /*
8912 * Every gzip level has the same decompressor, no need to
8913 * run it 9 times per bruteforce attempt.
8914 */
8915 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
8916 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
8917 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
8918 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
8919 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8920 if (((1ULL << c) & mask) == 0)
8921 *cfuncp++ = c;
8922
8923 /*
8924 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8925 * could take a while and we should let the user know
8926 * we are not stuck. On the other hand, printing progress
8927 * info gets old after a while. User can specify 'v' flag
8928 * to see the progression.
8929 */
8930 if (lsize == psize)
8931 lsize += SPA_MINBLOCKSIZE;
8932 else
8933 maxlsize = lsize;
8934
8935 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8936 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8937 if (try_decompress_block(pabd, lsize, psize, flags,
8938 *cfuncp, lbuf, lbuf2)) {
8939 tryzle = B_FALSE;
8940 break;
8941 }
8942 }
8943 if (*cfuncp != 0)
8944 break;
8945 }
8946 if (tryzle) {
8947 for (lsize = orig_lsize; lsize <= maxlsize;
8948 lsize += SPA_MINBLOCKSIZE) {
8949 if (try_decompress_block(pabd, lsize, psize, flags,
8950 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
8951 *cfuncp = ZIO_COMPRESS_ZLE;
8952 break;
8953 }
8954 }
8955 }
8956 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8957
8958 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8959 printf("\nZLE decompression was selected. If you "
8960 "suspect the results are wrong,\ntry avoiding ZLE "
8961 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8962 }
8963
8964 return (lsize > maxlsize ? -1 : lsize);
8965 }
8966
8967 /*
8968 * Read a block from a pool and print it out. The syntax of the
8969 * block descriptor is:
8970 *
8971 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8972 *
8973 * pool - The name of the pool you wish to read from
8974 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8975 * offset - offset, in hex, in bytes
8976 * size - Amount of data to read, in hex, in bytes
8977 * flags - A string of characters specifying options
8978 * b: Decode a blkptr at given offset within block
8979 * c: Calculate and display checksums
8980 * d: Decompress data before dumping
8981 * e: Byteswap data before dumping
8982 * g: Display data as a gang block header
8983 * i: Display as an indirect block
8984 * r: Dump raw data to stdout
8985 * v: Verbose
8986 *
8987 */
8988 static void
zdb_read_block(char * thing,spa_t * spa)8989 zdb_read_block(char *thing, spa_t *spa)
8990 {
8991 blkptr_t blk, *bp = &blk;
8992 dva_t *dva = bp->blk_dva;
8993 int flags = 0;
8994 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8995 zio_t *zio;
8996 vdev_t *vd;
8997 abd_t *pabd;
8998 void *lbuf, *buf;
8999 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
9000 const char *vdev, *errmsg = NULL;
9001 int i, len, error;
9002 boolean_t borrowed = B_FALSE, found = B_FALSE;
9003
9004 dup = strdup(thing);
9005 s = strtok_r(dup, ":", &tmp);
9006 vdev = s ?: "";
9007 s = strtok_r(NULL, ":", &tmp);
9008 offset = strtoull(s ? s : "", NULL, 16);
9009 sizes = strtok_r(NULL, ":", &tmp);
9010 s = strtok_r(NULL, ":", &tmp);
9011 flagstr = strdup(s ?: "");
9012
9013 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
9014 errmsg = "invalid size(s)";
9015 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
9016 errmsg = "size must be a multiple of sector size";
9017 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
9018 errmsg = "offset must be a multiple of sector size";
9019 if (errmsg) {
9020 (void) printf("Invalid block specifier: %s - %s\n",
9021 thing, errmsg);
9022 goto done;
9023 }
9024
9025 tmp = NULL;
9026 for (s = strtok_r(flagstr, ":", &tmp);
9027 s != NULL;
9028 s = strtok_r(NULL, ":", &tmp)) {
9029 len = strlen(flagstr);
9030 for (i = 0; i < len; i++) {
9031 int bit = flagbits[(uchar_t)flagstr[i]];
9032
9033 if (bit == 0) {
9034 (void) printf("***Ignoring flag: %c\n",
9035 (uchar_t)flagstr[i]);
9036 continue;
9037 }
9038 found = B_TRUE;
9039 flags |= bit;
9040
9041 p = &flagstr[i + 1];
9042 if (*p != ':' && *p != '\0') {
9043 int j = 0, nextbit = flagbits[(uchar_t)*p];
9044 char *end, offstr[8] = { 0 };
9045 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
9046 (nextbit == 0)) {
9047 /* look ahead to isolate the offset */
9048 while (nextbit == 0 &&
9049 strchr(flagbitstr, *p) == NULL) {
9050 offstr[j] = *p;
9051 j++;
9052 if (i + j > strlen(flagstr))
9053 break;
9054 p++;
9055 nextbit = flagbits[(uchar_t)*p];
9056 }
9057 blkptr_offset = strtoull(offstr, &end,
9058 16);
9059 i += j;
9060 } else if (nextbit == 0) {
9061 (void) printf("***Ignoring flag arg:"
9062 " '%c'\n", (uchar_t)*p);
9063 }
9064 }
9065 }
9066 }
9067 if (blkptr_offset % sizeof (blkptr_t)) {
9068 printf("Block pointer offset 0x%llx "
9069 "must be divisible by 0x%x\n",
9070 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
9071 goto done;
9072 }
9073 if (found == B_FALSE && strlen(flagstr) > 0) {
9074 printf("Invalid flag arg: '%s'\n", flagstr);
9075 goto done;
9076 }
9077
9078 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
9079 if (vd == NULL) {
9080 (void) printf("***Invalid vdev: %s\n", vdev);
9081 goto done;
9082 } else {
9083 if (vd->vdev_path)
9084 (void) fprintf(stderr, "Found vdev: %s\n",
9085 vd->vdev_path);
9086 else
9087 (void) fprintf(stderr, "Found vdev type: %s\n",
9088 vd->vdev_ops->vdev_op_type);
9089 }
9090
9091 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
9092 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
9093
9094 BP_ZERO(bp);
9095
9096 DVA_SET_VDEV(&dva[0], vd->vdev_id);
9097 DVA_SET_OFFSET(&dva[0], offset);
9098 DVA_SET_GANG(&dva[0], 0);
9099 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
9100
9101 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
9102
9103 BP_SET_LSIZE(bp, lsize);
9104 BP_SET_PSIZE(bp, psize);
9105 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
9106 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
9107 BP_SET_TYPE(bp, DMU_OT_NONE);
9108 BP_SET_LEVEL(bp, 0);
9109 BP_SET_DEDUP(bp, 0);
9110 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
9111
9112 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9113 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9114
9115 if (vd == vd->vdev_top) {
9116 /*
9117 * Treat this as a normal block read.
9118 */
9119 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
9120 ZIO_PRIORITY_SYNC_READ,
9121 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
9122 } else {
9123 /*
9124 * Treat this as a vdev child I/O.
9125 */
9126 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
9127 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
9128 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9129 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
9130 NULL, NULL));
9131 }
9132
9133 error = zio_wait(zio);
9134 spa_config_exit(spa, SCL_STATE, FTAG);
9135
9136 if (error) {
9137 (void) printf("Read of %s failed, error: %d\n", thing, error);
9138 goto out;
9139 }
9140
9141 uint64_t orig_lsize = lsize;
9142 buf = lbuf;
9143 if (flags & ZDB_FLAG_DECOMPRESS) {
9144 lsize = zdb_decompress_block(pabd, buf, lbuf,
9145 lsize, psize, flags);
9146 if (lsize == -1) {
9147 (void) printf("Decompress of %s failed\n", thing);
9148 goto out;
9149 }
9150 } else {
9151 buf = abd_borrow_buf_copy(pabd, lsize);
9152 borrowed = B_TRUE;
9153 }
9154 /*
9155 * Try to detect invalid block pointer. If invalid, try
9156 * decompressing.
9157 */
9158 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
9159 !(flags & ZDB_FLAG_DECOMPRESS)) {
9160 const blkptr_t *b = (const blkptr_t *)(void *)
9161 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
9162 if (zfs_blkptr_verify(spa, b,
9163 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY)) {
9164 abd_return_buf_copy(pabd, buf, lsize);
9165 borrowed = B_FALSE;
9166 buf = lbuf;
9167 lsize = zdb_decompress_block(pabd, buf,
9168 lbuf, lsize, psize, flags);
9169 b = (const blkptr_t *)(void *)
9170 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
9171 if (lsize == -1 || zfs_blkptr_verify(spa, b,
9172 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
9173 printf("invalid block pointer at this DVA\n");
9174 goto out;
9175 }
9176 }
9177 }
9178
9179 if (flags & ZDB_FLAG_PRINT_BLKPTR)
9180 zdb_print_blkptr((blkptr_t *)(void *)
9181 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
9182 else if (flags & ZDB_FLAG_RAW)
9183 zdb_dump_block_raw(buf, lsize, flags);
9184 else if (flags & ZDB_FLAG_INDIRECT)
9185 zdb_dump_indirect((blkptr_t *)buf,
9186 orig_lsize / sizeof (blkptr_t), flags);
9187 else if (flags & ZDB_FLAG_GBH)
9188 zdb_dump_gbh(buf, lsize, flags);
9189 else
9190 zdb_dump_block(thing, buf, lsize, flags);
9191
9192 /*
9193 * If :c was specified, iterate through the checksum table to
9194 * calculate and display each checksum for our specified
9195 * DVA and length.
9196 */
9197 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9198 !(flags & ZDB_FLAG_GBH)) {
9199 zio_t *czio;
9200 (void) printf("\n");
9201 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9202 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9203
9204 if ((zio_checksum_table[ck].ci_flags &
9205 ZCHECKSUM_FLAG_EMBEDDED) ||
9206 ck == ZIO_CHECKSUM_NOPARITY) {
9207 continue;
9208 }
9209 BP_SET_CHECKSUM(bp, ck);
9210 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9211 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9212 if (vd == vd->vdev_top) {
9213 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9214 NULL, NULL,
9215 ZIO_PRIORITY_SYNC_READ,
9216 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9217 ZIO_FLAG_DONT_RETRY, NULL));
9218 } else {
9219 zio_nowait(zio_vdev_child_io(czio, bp, vd,
9220 offset, pabd, psize, ZIO_TYPE_READ,
9221 ZIO_PRIORITY_SYNC_READ,
9222 ZIO_FLAG_DONT_PROPAGATE |
9223 ZIO_FLAG_DONT_RETRY |
9224 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9225 ZIO_FLAG_SPECULATIVE |
9226 ZIO_FLAG_OPTIONAL, NULL, NULL));
9227 }
9228 error = zio_wait(czio);
9229 if (error == 0 || error == ECKSUM) {
9230 zio_t *ck_zio = zio_null(NULL, spa, NULL,
9231 NULL, NULL, 0);
9232 ck_zio->io_offset =
9233 DVA_GET_OFFSET(&bp->blk_dva[0]);
9234 ck_zio->io_bp = bp;
9235 zio_checksum_compute(ck_zio, ck, pabd, psize);
9236 printf(
9237 "%12s\t"
9238 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9239 zio_checksum_table[ck].ci_name,
9240 (u_longlong_t)bp->blk_cksum.zc_word[0],
9241 (u_longlong_t)bp->blk_cksum.zc_word[1],
9242 (u_longlong_t)bp->blk_cksum.zc_word[2],
9243 (u_longlong_t)bp->blk_cksum.zc_word[3]);
9244 zio_wait(ck_zio);
9245 } else {
9246 printf("error %d reading block\n", error);
9247 }
9248 spa_config_exit(spa, SCL_STATE, FTAG);
9249 }
9250 }
9251
9252 if (borrowed)
9253 abd_return_buf_copy(pabd, buf, lsize);
9254
9255 out:
9256 abd_free(pabd);
9257 umem_free(lbuf, SPA_MAXBLOCKSIZE);
9258 done:
9259 free(flagstr);
9260 free(dup);
9261 }
9262
9263 static void
zdb_embedded_block(char * thing)9264 zdb_embedded_block(char *thing)
9265 {
9266 blkptr_t bp = {{{{0}}}};
9267 unsigned long long *words = (void *)&bp;
9268 char *buf;
9269 int err;
9270
9271 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9272 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9273 words + 0, words + 1, words + 2, words + 3,
9274 words + 4, words + 5, words + 6, words + 7,
9275 words + 8, words + 9, words + 10, words + 11,
9276 words + 12, words + 13, words + 14, words + 15);
9277 if (err != 16) {
9278 (void) fprintf(stderr, "invalid input format\n");
9279 zdb_exit(1);
9280 }
9281 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9282 buf = malloc(SPA_MAXBLOCKSIZE);
9283 if (buf == NULL) {
9284 (void) fprintf(stderr, "out of memory\n");
9285 zdb_exit(1);
9286 }
9287 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9288 if (err != 0) {
9289 (void) fprintf(stderr, "decode failed: %u\n", err);
9290 zdb_exit(1);
9291 }
9292 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9293 free(buf);
9294 }
9295
9296 /* check for valid hex or decimal numeric string */
9297 static boolean_t
zdb_numeric(char * str)9298 zdb_numeric(char *str)
9299 {
9300 int i = 0, len;
9301
9302 len = strlen(str);
9303 if (len == 0)
9304 return (B_FALSE);
9305 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9306 i = 2;
9307 for (; i < len; i++) {
9308 if (!isxdigit(str[i]))
9309 return (B_FALSE);
9310 }
9311 return (B_TRUE);
9312 }
9313
9314 static int
dummy_get_file_info(dmu_object_type_t bonustype,const void * data,zfs_file_info_t * zoi)9315 dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9316 zfs_file_info_t *zoi)
9317 {
9318 (void) data, (void) zoi;
9319
9320 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9321 return (ENOENT);
9322
9323 (void) fprintf(stderr, "dummy_get_file_info: not implemented");
9324 abort();
9325 }
9326
9327 int
main(int argc,char ** argv)9328 main(int argc, char **argv)
9329 {
9330 int c;
9331 int dump_all = 1;
9332 int verbose = 0;
9333 int error = 0;
9334 char **searchdirs = NULL;
9335 int nsearch = 0;
9336 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9337 nvlist_t *policy = NULL;
9338 uint64_t max_txg = UINT64_MAX;
9339 int64_t objset_id = -1;
9340 uint64_t object;
9341 int flags = ZFS_IMPORT_MISSING_LOG;
9342 int rewind = ZPOOL_NEVER_REWIND;
9343 char *spa_config_path_env, *objset_str;
9344 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9345 nvlist_t *cfg = NULL;
9346 struct sigaction action;
9347 boolean_t force_import = B_FALSE;
9348 boolean_t config_path_console = B_FALSE;
9349 char pbuf[MAXPATHLEN];
9350
9351 dprintf_setup(&argc, argv);
9352
9353 /*
9354 * Set up signal handlers, so if we crash due to bad on-disk data we
9355 * can get more info. Unlike ztest, we don't bail out if we can't set
9356 * up signal handlers, because zdb is very useful without them.
9357 */
9358 action.sa_handler = sig_handler;
9359 sigemptyset(&action.sa_mask);
9360 action.sa_flags = 0;
9361 if (sigaction(SIGSEGV, &action, NULL) < 0) {
9362 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9363 strerror(errno));
9364 }
9365 if (sigaction(SIGABRT, &action, NULL) < 0) {
9366 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9367 strerror(errno));
9368 }
9369
9370 /*
9371 * If there is an environment variable SPA_CONFIG_PATH it overrides
9372 * default spa_config_path setting. If -U flag is specified it will
9373 * override this environment variable settings once again.
9374 */
9375 spa_config_path_env = getenv("SPA_CONFIG_PATH");
9376 if (spa_config_path_env != NULL)
9377 spa_config_path = spa_config_path_env;
9378
9379 /*
9380 * For performance reasons, we set this tunable down. We do so before
9381 * the arg parsing section so that the user can override this value if
9382 * they choose.
9383 */
9384 zfs_btree_verify_intensity = 3;
9385
9386 struct option long_options[] = {
9387 {"ignore-assertions", no_argument, NULL, 'A'},
9388 {"block-stats", no_argument, NULL, 'b'},
9389 {"backup", no_argument, NULL, 'B'},
9390 {"checksum", no_argument, NULL, 'c'},
9391 {"config", no_argument, NULL, 'C'},
9392 {"datasets", no_argument, NULL, 'd'},
9393 {"dedup-stats", no_argument, NULL, 'D'},
9394 {"exported", no_argument, NULL, 'e'},
9395 {"embedded-block-pointer", no_argument, NULL, 'E'},
9396 {"automatic-rewind", no_argument, NULL, 'F'},
9397 {"dump-debug-msg", no_argument, NULL, 'G'},
9398 {"history", no_argument, NULL, 'h'},
9399 {"intent-logs", no_argument, NULL, 'i'},
9400 {"inflight", required_argument, NULL, 'I'},
9401 {"checkpointed-state", no_argument, NULL, 'k'},
9402 {"key", required_argument, NULL, 'K'},
9403 {"label", no_argument, NULL, 'l'},
9404 {"disable-leak-tracking", no_argument, NULL, 'L'},
9405 {"metaslabs", no_argument, NULL, 'm'},
9406 {"metaslab-groups", no_argument, NULL, 'M'},
9407 {"numeric", no_argument, NULL, 'N'},
9408 {"option", required_argument, NULL, 'o'},
9409 {"object-lookups", no_argument, NULL, 'O'},
9410 {"path", required_argument, NULL, 'p'},
9411 {"parseable", no_argument, NULL, 'P'},
9412 {"skip-label", no_argument, NULL, 'q'},
9413 {"copy-object", no_argument, NULL, 'r'},
9414 {"read-block", no_argument, NULL, 'R'},
9415 {"io-stats", no_argument, NULL, 's'},
9416 {"simulate-dedup", no_argument, NULL, 'S'},
9417 {"txg", required_argument, NULL, 't'},
9418 {"brt-stats", no_argument, NULL, 'T'},
9419 {"uberblock", no_argument, NULL, 'u'},
9420 {"cachefile", required_argument, NULL, 'U'},
9421 {"verbose", no_argument, NULL, 'v'},
9422 {"verbatim", no_argument, NULL, 'V'},
9423 {"dump-blocks", required_argument, NULL, 'x'},
9424 {"extreme-rewind", no_argument, NULL, 'X'},
9425 {"all-reconstruction", no_argument, NULL, 'Y'},
9426 {"livelist", no_argument, NULL, 'y'},
9427 {"zstd-headers", no_argument, NULL, 'Z'},
9428 {"allocated-map", no_argument, NULL,
9429 ALLOCATED_OPT},
9430 {0, 0, 0, 0}
9431 };
9432
9433 while ((c = getopt_long(argc, argv,
9434 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9435 long_options, NULL)) != -1) {
9436 switch (c) {
9437 case 'b':
9438 case 'B':
9439 case 'c':
9440 case 'C':
9441 case 'd':
9442 case 'D':
9443 case 'E':
9444 case 'G':
9445 case 'h':
9446 case 'i':
9447 case 'l':
9448 case 'm':
9449 case 'M':
9450 case 'N':
9451 case 'O':
9452 case 'r':
9453 case 'R':
9454 case 's':
9455 case 'S':
9456 case 'T':
9457 case 'u':
9458 case 'y':
9459 case 'Z':
9460 case ALLOCATED_OPT:
9461 dump_opt[c]++;
9462 dump_all = 0;
9463 break;
9464 case 'A':
9465 case 'e':
9466 case 'F':
9467 case 'k':
9468 case 'L':
9469 case 'P':
9470 case 'q':
9471 case 'X':
9472 dump_opt[c]++;
9473 break;
9474 case 'Y':
9475 zfs_reconstruct_indirect_combinations_max = INT_MAX;
9476 zfs_deadman_enabled = 0;
9477 break;
9478 /* NB: Sort single match options below. */
9479 case 'I':
9480 max_inflight_bytes = strtoull(optarg, NULL, 0);
9481 if (max_inflight_bytes == 0) {
9482 (void) fprintf(stderr, "maximum number "
9483 "of inflight bytes must be greater "
9484 "than 0\n");
9485 usage();
9486 }
9487 break;
9488 case 'K':
9489 dump_opt[c]++;
9490 key_material = strdup(optarg);
9491 /* redact key material in process table */
9492 while (*optarg != '\0') { *optarg++ = '*'; }
9493 break;
9494 case 'o':
9495 dump_opt[c]++;
9496 dump_all = 0;
9497 error = handle_tunable_option(optarg, B_FALSE);
9498 if (error != 0)
9499 zdb_exit(1);
9500 break;
9501 case 'p':
9502 if (searchdirs == NULL) {
9503 searchdirs = umem_alloc(sizeof (char *),
9504 UMEM_NOFAIL);
9505 } else {
9506 char **tmp = umem_alloc((nsearch + 1) *
9507 sizeof (char *), UMEM_NOFAIL);
9508 memcpy(tmp, searchdirs, nsearch *
9509 sizeof (char *));
9510 umem_free(searchdirs,
9511 nsearch * sizeof (char *));
9512 searchdirs = tmp;
9513 }
9514 searchdirs[nsearch++] = optarg;
9515 break;
9516 case 't':
9517 max_txg = strtoull(optarg, NULL, 0);
9518 if (max_txg < TXG_INITIAL) {
9519 (void) fprintf(stderr, "incorrect txg "
9520 "specified: %s\n", optarg);
9521 usage();
9522 }
9523 break;
9524 case 'U':
9525 config_path_console = B_TRUE;
9526 spa_config_path = optarg;
9527 if (spa_config_path[0] != '/') {
9528 (void) fprintf(stderr,
9529 "cachefile must be an absolute path "
9530 "(i.e. start with a slash)\n");
9531 usage();
9532 }
9533 break;
9534 case 'v':
9535 verbose++;
9536 break;
9537 case 'V':
9538 flags = ZFS_IMPORT_VERBATIM;
9539 break;
9540 case 'x':
9541 vn_dumpdir = optarg;
9542 break;
9543 default:
9544 usage();
9545 break;
9546 }
9547 }
9548
9549 if (!dump_opt['e'] && searchdirs != NULL) {
9550 (void) fprintf(stderr, "-p option requires use of -e\n");
9551 usage();
9552 }
9553 #if defined(_LP64)
9554 /*
9555 * ZDB does not typically re-read blocks; therefore limit the ARC
9556 * to 256 MB, which can be used entirely for metadata.
9557 */
9558 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9559 zfs_arc_max = 256 * 1024 * 1024;
9560 #endif
9561
9562 /*
9563 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9564 * "zdb -b" uses traversal prefetch which uses async reads.
9565 * For good performance, let several of them be active at once.
9566 */
9567 zfs_vdev_async_read_max_active = 10;
9568
9569 /*
9570 * Disable reference tracking for better performance.
9571 */
9572 reference_tracking_enable = B_FALSE;
9573
9574 /*
9575 * Do not fail spa_load when spa_load_verify fails. This is needed
9576 * to load non-idle pools.
9577 */
9578 spa_load_verify_dryrun = B_TRUE;
9579
9580 /*
9581 * ZDB should have ability to read spacemaps.
9582 */
9583 spa_mode_readable_spacemaps = B_TRUE;
9584
9585 if (dump_all)
9586 verbose = MAX(verbose, 1);
9587
9588 for (c = 0; c < 256; c++) {
9589 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9590 dump_opt[c] = 1;
9591 if (dump_opt[c])
9592 dump_opt[c] += verbose;
9593 }
9594
9595 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9596 zfs_recover = (dump_opt['A'] > 1);
9597
9598 argc -= optind;
9599 argv += optind;
9600 if (argc < 2 && dump_opt['R'])
9601 usage();
9602
9603 target = argv[0];
9604
9605 /*
9606 * Automate cachefile
9607 */
9608 if (!spa_config_path_env && !config_path_console && target &&
9609 libzfs_core_init() == 0) {
9610 char *pname = strdup(target);
9611 const char *value;
9612 nvlist_t *pnvl = NULL;
9613 nvlist_t *vnvl = NULL;
9614
9615 if (strpbrk(pname, "/@") != NULL)
9616 *strpbrk(pname, "/@") = '\0';
9617
9618 if (pname && lzc_get_props(pname, &pnvl) == 0) {
9619 if (nvlist_lookup_nvlist(pnvl, "cachefile",
9620 &vnvl) == 0) {
9621 value = fnvlist_lookup_string(vnvl,
9622 ZPROP_VALUE);
9623 } else {
9624 value = "-";
9625 }
9626 strlcpy(pbuf, value, sizeof (pbuf));
9627 if (pbuf[0] != '\0') {
9628 if (pbuf[0] == '/') {
9629 if (access(pbuf, F_OK) == 0)
9630 spa_config_path = pbuf;
9631 else
9632 force_import = B_TRUE;
9633 } else if ((strcmp(pbuf, "-") == 0 &&
9634 access(ZPOOL_CACHE, F_OK) != 0) ||
9635 strcmp(pbuf, "none") == 0) {
9636 force_import = B_TRUE;
9637 }
9638 }
9639 nvlist_free(vnvl);
9640 }
9641
9642 free(pname);
9643 nvlist_free(pnvl);
9644 libzfs_core_fini();
9645 }
9646
9647 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9648 kernel_init(SPA_MODE_READ);
9649 kernel_init_done = B_TRUE;
9650
9651 if (dump_opt['E']) {
9652 if (argc != 1)
9653 usage();
9654 zdb_embedded_block(argv[0]);
9655 error = 0;
9656 goto fini;
9657 }
9658
9659 if (argc < 1) {
9660 if (!dump_opt['e'] && dump_opt['C']) {
9661 dump_cachefile(spa_config_path);
9662 error = 0;
9663 goto fini;
9664 }
9665 if (dump_opt['o'])
9666 /*
9667 * Avoid blasting tunable options off the top of the
9668 * screen.
9669 */
9670 zdb_exit(1);
9671 usage();
9672 }
9673
9674 if (dump_opt['l']) {
9675 error = dump_label(argv[0]);
9676 goto fini;
9677 }
9678
9679 if (dump_opt['X'] || dump_opt['F'])
9680 rewind = ZPOOL_DO_REWIND |
9681 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9682
9683 /* -N implies -d */
9684 if (dump_opt['N'] && dump_opt['d'] == 0)
9685 dump_opt['d'] = dump_opt['N'];
9686
9687 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9688 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9689 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9690 fatal("internal error: %s", strerror(ENOMEM));
9691
9692 error = 0;
9693
9694 if (strpbrk(target, "/@") != NULL) {
9695 size_t targetlen;
9696
9697 target_pool = strdup(target);
9698 *strpbrk(target_pool, "/@") = '\0';
9699
9700 target_is_spa = B_FALSE;
9701 targetlen = strlen(target);
9702 if (targetlen && target[targetlen - 1] == '/')
9703 target[targetlen - 1] = '\0';
9704
9705 /*
9706 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9707 * To disambiguate tank/100, consider the 100 as objsetID
9708 * if -N was given, otherwise 100 is an objsetID iff
9709 * tank/100 as a named dataset fails on lookup.
9710 */
9711 objset_str = strchr(target, '/');
9712 if (objset_str && strlen(objset_str) > 1 &&
9713 zdb_numeric(objset_str + 1)) {
9714 char *endptr;
9715 errno = 0;
9716 objset_str++;
9717 objset_id = strtoull(objset_str, &endptr, 0);
9718 /* dataset 0 is the same as opening the pool */
9719 if (errno == 0 && endptr != objset_str &&
9720 objset_id != 0) {
9721 if (dump_opt['N'])
9722 dataset_lookup = B_TRUE;
9723 }
9724 /* normal dataset name not an objset ID */
9725 if (endptr == objset_str) {
9726 objset_id = -1;
9727 }
9728 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
9729 dump_opt['N']) {
9730 printf("Supply a numeric objset ID with -N\n");
9731 error = 2;
9732 goto fini;
9733 }
9734 } else {
9735 target_pool = target;
9736 }
9737
9738 if (dump_opt['e'] || force_import) {
9739 importargs_t args = { 0 };
9740
9741 /*
9742 * If path is not provided, search in /dev
9743 */
9744 if (searchdirs == NULL) {
9745 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9746 searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9747 }
9748
9749 args.paths = nsearch;
9750 args.path = searchdirs;
9751 args.can_be_active = B_TRUE;
9752
9753 libpc_handle_t lpch = {
9754 .lpc_lib_handle = NULL,
9755 .lpc_ops = &libzpool_config_ops,
9756 .lpc_printerr = B_TRUE
9757 };
9758 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9759
9760 if (error == 0) {
9761
9762 if (nvlist_add_nvlist(cfg,
9763 ZPOOL_LOAD_POLICY, policy) != 0) {
9764 fatal("can't open '%s': %s",
9765 target, strerror(ENOMEM));
9766 }
9767
9768 if (dump_opt['C'] > 1) {
9769 (void) printf("\nConfiguration for import:\n");
9770 dump_nvlist(cfg, 8);
9771 }
9772
9773 /*
9774 * Disable the activity check to allow examination of
9775 * active pools.
9776 */
9777 error = spa_import(target_pool, cfg, NULL,
9778 flags | ZFS_IMPORT_SKIP_MMP);
9779 }
9780 }
9781
9782 if (searchdirs != NULL) {
9783 umem_free(searchdirs, nsearch * sizeof (char *));
9784 searchdirs = NULL;
9785 }
9786
9787 /*
9788 * We need to make sure to process -O option or call
9789 * dump_path after the -e option has been processed,
9790 * which imports the pool to the namespace if it's
9791 * not in the cachefile.
9792 */
9793 if (dump_opt['O']) {
9794 if (argc != 2)
9795 usage();
9796 dump_opt['v'] = verbose + 3;
9797 error = dump_path(argv[0], argv[1], NULL);
9798 goto fini;
9799 }
9800
9801 if (dump_opt['r']) {
9802 target_is_spa = B_FALSE;
9803 if (argc != 3)
9804 usage();
9805 dump_opt['v'] = verbose;
9806 error = dump_path(argv[0], argv[1], &object);
9807 if (error != 0)
9808 fatal("internal error: %s", strerror(error));
9809 }
9810
9811 /*
9812 * import_checkpointed_state makes the assumption that the
9813 * target pool that we pass it is already part of the spa
9814 * namespace. Because of that we need to make sure to call
9815 * it always after the -e option has been processed, which
9816 * imports the pool to the namespace if it's not in the
9817 * cachefile.
9818 */
9819 char *checkpoint_pool = NULL;
9820 char *checkpoint_target = NULL;
9821 if (dump_opt['k']) {
9822 checkpoint_pool = import_checkpointed_state(target, cfg,
9823 target_is_spa, &checkpoint_target);
9824
9825 if (checkpoint_target != NULL)
9826 target = checkpoint_target;
9827 }
9828
9829 if (cfg != NULL) {
9830 nvlist_free(cfg);
9831 cfg = NULL;
9832 }
9833
9834 if (target_pool != target)
9835 free(target_pool);
9836
9837 if (error == 0) {
9838 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9839 ASSERT(checkpoint_pool != NULL);
9840 ASSERT0P(checkpoint_target);
9841
9842 error = spa_open(checkpoint_pool, &spa, FTAG);
9843 if (error != 0) {
9844 fatal("Tried to open pool \"%s\" but "
9845 "spa_open() failed with error %d\n",
9846 checkpoint_pool, error);
9847 }
9848
9849 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9850 objset_id == 0) {
9851 zdb_set_skip_mmp(target);
9852 error = spa_open_rewind(target, &spa, FTAG, policy,
9853 NULL);
9854 if (error) {
9855 /*
9856 * If we're missing the log device then
9857 * try opening the pool after clearing the
9858 * log state.
9859 */
9860 mutex_enter(&spa_namespace_lock);
9861 if ((spa = spa_lookup(target)) != NULL &&
9862 spa->spa_log_state == SPA_LOG_MISSING) {
9863 spa->spa_log_state = SPA_LOG_CLEAR;
9864 error = 0;
9865 }
9866 mutex_exit(&spa_namespace_lock);
9867
9868 if (!error) {
9869 error = spa_open_rewind(target, &spa,
9870 FTAG, policy, NULL);
9871 }
9872 }
9873 } else if (strpbrk(target, "#") != NULL) {
9874 dsl_pool_t *dp;
9875 error = dsl_pool_hold(target, FTAG, &dp);
9876 if (error != 0) {
9877 fatal("can't dump '%s': %s", target,
9878 strerror(error));
9879 }
9880 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9881 dsl_pool_rele(dp, FTAG);
9882 if (error != 0) {
9883 fatal("can't dump '%s': %s", target,
9884 strerror(error));
9885 }
9886 goto fini;
9887 } else {
9888 target_pool = strdup(target);
9889 if (strpbrk(target, "/@") != NULL)
9890 *strpbrk(target_pool, "/@") = '\0';
9891
9892 zdb_set_skip_mmp(target);
9893 /*
9894 * If -N was supplied, the user has indicated that
9895 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9896 * we first assume that the dataset string is the
9897 * dataset name. If dmu_objset_hold fails with the
9898 * dataset string, and we have an objset_id, retry the
9899 * lookup with the objsetID.
9900 */
9901 boolean_t retry = B_TRUE;
9902 retry_lookup:
9903 if (dataset_lookup == B_TRUE) {
9904 /*
9905 * Use the supplied id to get the name
9906 * for open_objset.
9907 */
9908 error = spa_open(target_pool, &spa, FTAG);
9909 if (error == 0) {
9910 error = name_from_objset_id(spa,
9911 objset_id, dsname);
9912 spa_close(spa, FTAG);
9913 if (error == 0)
9914 target = dsname;
9915 }
9916 }
9917 if (error == 0) {
9918 if (objset_id > 0 && retry) {
9919 int err = dmu_objset_hold(target, FTAG,
9920 &os);
9921 if (err) {
9922 dataset_lookup = B_TRUE;
9923 retry = B_FALSE;
9924 goto retry_lookup;
9925 } else {
9926 dmu_objset_rele(os, FTAG);
9927 }
9928 }
9929 error = open_objset(target, FTAG, &os);
9930 }
9931 if (error == 0)
9932 spa = dmu_objset_spa(os);
9933 free(target_pool);
9934 }
9935 }
9936 nvlist_free(policy);
9937
9938 if (error)
9939 fatal("can't open '%s': %s", target, strerror(error));
9940
9941 /*
9942 * Set the pool failure mode to panic in order to prevent the pool
9943 * from suspending. A suspended I/O will have no way to resume and
9944 * can prevent the zdb(8) command from terminating as expected.
9945 */
9946 if (spa != NULL)
9947 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9948
9949 argv++;
9950 argc--;
9951 if (dump_opt['r']) {
9952 error = zdb_copy_object(os, object, argv[1]);
9953 } else if (!dump_opt['R']) {
9954 flagbits['d'] = ZOR_FLAG_DIRECTORY;
9955 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9956 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9957 flagbits['z'] = ZOR_FLAG_ZAP;
9958 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9959
9960 if (argc > 0 && dump_opt['d']) {
9961 zopt_object_args = argc;
9962 zopt_object_ranges = calloc(zopt_object_args,
9963 sizeof (zopt_object_range_t));
9964 for (unsigned i = 0; i < zopt_object_args; i++) {
9965 int err;
9966 const char *msg = NULL;
9967
9968 err = parse_object_range(argv[i],
9969 &zopt_object_ranges[i], &msg);
9970 if (err != 0)
9971 fatal("Bad object or range: '%s': %s\n",
9972 argv[i], msg ?: "");
9973 }
9974 } else if (argc > 0 && dump_opt['m']) {
9975 zopt_metaslab_args = argc;
9976 zopt_metaslab = calloc(zopt_metaslab_args,
9977 sizeof (uint64_t));
9978 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9979 errno = 0;
9980 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9981 if (zopt_metaslab[i] == 0 && errno != 0)
9982 fatal("bad number %s: %s", argv[i],
9983 strerror(errno));
9984 }
9985 }
9986 if (dump_opt['B']) {
9987 dump_backup(target, objset_id,
9988 argc > 0 ? argv[0] : NULL);
9989 } else if (os != NULL) {
9990 dump_objset(os);
9991 } else if (zopt_object_args > 0 && !dump_opt['m']) {
9992 dump_objset(spa->spa_meta_objset);
9993 } else {
9994 dump_zpool(spa);
9995 }
9996 } else {
9997 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9998 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9999 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
10000 flagbits['e'] = ZDB_FLAG_BSWAP;
10001 flagbits['g'] = ZDB_FLAG_GBH;
10002 flagbits['i'] = ZDB_FLAG_INDIRECT;
10003 flagbits['r'] = ZDB_FLAG_RAW;
10004 flagbits['v'] = ZDB_FLAG_VERBOSE;
10005
10006 for (int i = 0; i < argc; i++)
10007 zdb_read_block(argv[i], spa);
10008 }
10009
10010 if (dump_opt['k']) {
10011 free(checkpoint_pool);
10012 if (!target_is_spa)
10013 free(checkpoint_target);
10014 }
10015
10016 fini:
10017 if (spa != NULL)
10018 zdb_ddt_cleanup(spa);
10019
10020 if (os != NULL) {
10021 close_objset(os, FTAG);
10022 } else if (spa != NULL) {
10023 spa_close(spa, FTAG);
10024 }
10025
10026 fuid_table_destroy();
10027
10028 dump_debug_buffer();
10029
10030 if (kernel_init_done)
10031 kernel_fini();
10032
10033 if (corruption_found && error == 0)
10034 error = 3;
10035
10036 return (error);
10037 }
10038