xref: /linux/lib/maple_tree.c (revision 537d196186e0a0ce28e494ca1881885accc35a12)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 #define TP_FCT tracepoint_string(__func__)
68 
69 /*
70  * Kernel pointer hashing renders much of the maple tree dump useless as tagged
71  * pointers get hashed to arbitrary values.
72  *
73  * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
74  * permissible to bypass this. Otherwise remain cautious and retain the hashing.
75  *
76  * Userland doesn't know about %px so also use %p there.
77  */
78 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
79 #define PTR_FMT "%px"
80 #else
81 #define PTR_FMT "%p"
82 #endif
83 
84 #define MA_ROOT_PARENT 1
85 
86 /*
87  * Maple state flags
88  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
89  */
90 #define MA_STATE_PREALLOC	1
91 
92 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
93 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
94 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
95 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
96 static struct kmem_cache *maple_node_cache;
97 
98 #ifdef CONFIG_DEBUG_MAPLE_TREE
99 static const unsigned long mt_max[] = {
100 	[maple_dense]		= MAPLE_NODE_SLOTS,
101 	[maple_leaf_64]		= ULONG_MAX,
102 	[maple_range_64]	= ULONG_MAX,
103 	[maple_arange_64]	= ULONG_MAX,
104 };
105 #define mt_node_max(x) mt_max[mte_node_type(x)]
106 #endif
107 
108 static const unsigned char mt_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS,
110 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
111 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
112 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
113 };
114 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
115 
116 static const unsigned char mt_pivots[] = {
117 	[maple_dense]		= 0,
118 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
119 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
120 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
121 };
122 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
123 
124 static const unsigned char mt_min_slots[] = {
125 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
126 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
127 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
128 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
129 };
130 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
131 
132 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
133 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
134 
135 struct maple_big_node {
136 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
137 	union {
138 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
139 		struct {
140 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
141 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
142 		};
143 	};
144 	unsigned char b_end;
145 	enum maple_type type;
146 };
147 
148 /*
149  * The maple_subtree_state is used to build a tree to replace a segment of an
150  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
151  * dead node and restart on updates.
152  */
153 struct maple_subtree_state {
154 	struct ma_state *orig_l;	/* Original left side of subtree */
155 	struct ma_state *orig_r;	/* Original right side of subtree */
156 	struct ma_state *l;		/* New left side of subtree */
157 	struct ma_state *m;		/* New middle of subtree (rare) */
158 	struct ma_state *r;		/* New right side of subtree */
159 	struct ma_topiary *free;	/* nodes to be freed */
160 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
161 	struct maple_big_node *bn;
162 };
163 
164 #ifdef CONFIG_KASAN_STACK
165 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
166 #define noinline_for_kasan noinline_for_stack
167 #else
168 #define noinline_for_kasan inline
169 #endif
170 
171 /* Functions */
mt_alloc_one(gfp_t gfp)172 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
173 {
174 	return kmem_cache_alloc(maple_node_cache, gfp);
175 }
176 
mt_free_bulk(size_t size,void __rcu ** nodes)177 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
178 {
179 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
180 }
181 
mt_return_sheaf(struct slab_sheaf * sheaf)182 static void mt_return_sheaf(struct slab_sheaf *sheaf)
183 {
184 	kmem_cache_return_sheaf(maple_node_cache, GFP_NOWAIT, sheaf);
185 }
186 
mt_get_sheaf(gfp_t gfp,int count)187 static struct slab_sheaf *mt_get_sheaf(gfp_t gfp, int count)
188 {
189 	return kmem_cache_prefill_sheaf(maple_node_cache, gfp, count);
190 }
191 
mt_refill_sheaf(gfp_t gfp,struct slab_sheaf ** sheaf,unsigned int size)192 static int mt_refill_sheaf(gfp_t gfp, struct slab_sheaf **sheaf,
193 		unsigned int size)
194 {
195 	return kmem_cache_refill_sheaf(maple_node_cache, gfp, sheaf, size);
196 }
197 
198 /*
199  * ma_free_rcu() - Use rcu callback to free a maple node
200  * @node: The node to free
201  *
202  * The maple tree uses the parent pointer to indicate this node is no longer in
203  * use and will be freed.
204  */
ma_free_rcu(struct maple_node * node)205 static void ma_free_rcu(struct maple_node *node)
206 {
207 	WARN_ON(node->parent != ma_parent_ptr(node));
208 	kfree_rcu(node, rcu);
209 }
210 
mt_set_height(struct maple_tree * mt,unsigned char height)211 static void mt_set_height(struct maple_tree *mt, unsigned char height)
212 {
213 	unsigned int new_flags = mt->ma_flags;
214 
215 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
216 	MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX);
217 	new_flags |= height << MT_FLAGS_HEIGHT_OFFSET;
218 	mt->ma_flags = new_flags;
219 }
220 
mas_mt_height(struct ma_state * mas)221 static unsigned int mas_mt_height(struct ma_state *mas)
222 {
223 	return mt_height(mas->tree);
224 }
225 
mt_attr(struct maple_tree * mt)226 static inline unsigned int mt_attr(struct maple_tree *mt)
227 {
228 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
229 }
230 
mte_node_type(const struct maple_enode * entry)231 static __always_inline enum maple_type mte_node_type(
232 		const struct maple_enode *entry)
233 {
234 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
235 		MAPLE_NODE_TYPE_MASK;
236 }
237 
ma_is_dense(const enum maple_type type)238 static __always_inline bool ma_is_dense(const enum maple_type type)
239 {
240 	return type < maple_leaf_64;
241 }
242 
ma_is_leaf(const enum maple_type type)243 static __always_inline bool ma_is_leaf(const enum maple_type type)
244 {
245 	return type < maple_range_64;
246 }
247 
mte_is_leaf(const struct maple_enode * entry)248 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
249 {
250 	return ma_is_leaf(mte_node_type(entry));
251 }
252 
253 /*
254  * We also reserve values with the bottom two bits set to '10' which are
255  * below 4096
256  */
mt_is_reserved(const void * entry)257 static __always_inline bool mt_is_reserved(const void *entry)
258 {
259 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
260 		xa_is_internal(entry);
261 }
262 
mas_set_err(struct ma_state * mas,long err)263 static __always_inline void mas_set_err(struct ma_state *mas, long err)
264 {
265 	mas->node = MA_ERROR(err);
266 	mas->status = ma_error;
267 }
268 
mas_is_ptr(const struct ma_state * mas)269 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
270 {
271 	return mas->status == ma_root;
272 }
273 
mas_is_start(const struct ma_state * mas)274 static __always_inline bool mas_is_start(const struct ma_state *mas)
275 {
276 	return mas->status == ma_start;
277 }
278 
mas_is_none(const struct ma_state * mas)279 static __always_inline bool mas_is_none(const struct ma_state *mas)
280 {
281 	return mas->status == ma_none;
282 }
283 
mas_is_paused(const struct ma_state * mas)284 static __always_inline bool mas_is_paused(const struct ma_state *mas)
285 {
286 	return mas->status == ma_pause;
287 }
288 
mas_is_overflow(struct ma_state * mas)289 static __always_inline bool mas_is_overflow(struct ma_state *mas)
290 {
291 	return mas->status == ma_overflow;
292 }
293 
mas_is_underflow(struct ma_state * mas)294 static inline bool mas_is_underflow(struct ma_state *mas)
295 {
296 	return mas->status == ma_underflow;
297 }
298 
mte_to_node(const struct maple_enode * entry)299 static __always_inline struct maple_node *mte_to_node(
300 		const struct maple_enode *entry)
301 {
302 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
303 }
304 
305 /*
306  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
307  * @entry: The maple encoded node
308  *
309  * Return: a maple topiary pointer
310  */
mte_to_mat(const struct maple_enode * entry)311 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
312 {
313 	return (struct maple_topiary *)
314 		((unsigned long)entry & ~MAPLE_NODE_MASK);
315 }
316 
317 /*
318  * mas_mn() - Get the maple state node.
319  * @mas: The maple state
320  *
321  * Return: the maple node (not encoded - bare pointer).
322  */
mas_mn(const struct ma_state * mas)323 static inline struct maple_node *mas_mn(const struct ma_state *mas)
324 {
325 	return mte_to_node(mas->node);
326 }
327 
328 /*
329  * mte_set_node_dead() - Set a maple encoded node as dead.
330  * @mn: The maple encoded node.
331  */
mte_set_node_dead(struct maple_enode * mn)332 static inline void mte_set_node_dead(struct maple_enode *mn)
333 {
334 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
335 	smp_wmb(); /* Needed for RCU */
336 }
337 
338 /* Bit 1 indicates the root is a node */
339 #define MAPLE_ROOT_NODE			0x02
340 /* maple_type stored bit 3-6 */
341 #define MAPLE_ENODE_TYPE_SHIFT		0x03
342 /* Bit 2 means a NULL somewhere below */
343 #define MAPLE_ENODE_NULL		0x04
344 
mt_mk_node(const struct maple_node * node,enum maple_type type)345 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
346 					     enum maple_type type)
347 {
348 	return (void *)((unsigned long)node |
349 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
350 }
351 
mte_mk_root(const struct maple_enode * node)352 static inline void *mte_mk_root(const struct maple_enode *node)
353 {
354 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
355 }
356 
mte_safe_root(const struct maple_enode * node)357 static inline void *mte_safe_root(const struct maple_enode *node)
358 {
359 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
360 }
361 
mte_set_full(const struct maple_enode * node)362 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
363 {
364 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
365 }
366 
mte_clear_full(const struct maple_enode * node)367 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
368 {
369 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
370 }
371 
mte_has_null(const struct maple_enode * node)372 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
373 {
374 	return (unsigned long)node & MAPLE_ENODE_NULL;
375 }
376 
ma_is_root(struct maple_node * node)377 static __always_inline bool ma_is_root(struct maple_node *node)
378 {
379 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
380 }
381 
mte_is_root(const struct maple_enode * node)382 static __always_inline bool mte_is_root(const struct maple_enode *node)
383 {
384 	return ma_is_root(mte_to_node(node));
385 }
386 
mas_is_root_limits(const struct ma_state * mas)387 static inline bool mas_is_root_limits(const struct ma_state *mas)
388 {
389 	return !mas->min && mas->max == ULONG_MAX;
390 }
391 
mt_is_alloc(struct maple_tree * mt)392 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
393 {
394 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
395 }
396 
397 /*
398  * The Parent Pointer
399  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
400  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
401  * bit values need an extra bit to store the offset.  This extra bit comes from
402  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
403  * indicate if bit 2 is part of the type or the slot.
404  *
405  * Node types:
406  *  0b??1 = Root
407  *  0b?00 = 16 bit nodes
408  *  0b010 = 32 bit nodes
409  *  0b110 = 64 bit nodes
410  *
411  * Slot size and alignment
412  *  0b??1 : Root
413  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
414  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
415  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
416  */
417 
418 #define MAPLE_PARENT_ROOT		0x01
419 
420 #define MAPLE_PARENT_SLOT_SHIFT		0x03
421 #define MAPLE_PARENT_SLOT_MASK		0xF8
422 
423 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
424 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
425 
426 #define MAPLE_PARENT_RANGE64		0x06
427 #define MAPLE_PARENT_RANGE32		0x02
428 #define MAPLE_PARENT_NOT_RANGE16	0x02
429 
430 /*
431  * mte_parent_shift() - Get the parent shift for the slot storage.
432  * @parent: The parent pointer cast as an unsigned long
433  * Return: The shift into that pointer to the star to of the slot
434  */
mte_parent_shift(unsigned long parent)435 static inline unsigned long mte_parent_shift(unsigned long parent)
436 {
437 	/* Note bit 1 == 0 means 16B */
438 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
439 		return MAPLE_PARENT_SLOT_SHIFT;
440 
441 	return MAPLE_PARENT_16B_SLOT_SHIFT;
442 }
443 
444 /*
445  * mte_parent_slot_mask() - Get the slot mask for the parent.
446  * @parent: The parent pointer cast as an unsigned long.
447  * Return: The slot mask for that parent.
448  */
mte_parent_slot_mask(unsigned long parent)449 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
450 {
451 	/* Note bit 1 == 0 means 16B */
452 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
453 		return MAPLE_PARENT_SLOT_MASK;
454 
455 	return MAPLE_PARENT_16B_SLOT_MASK;
456 }
457 
458 /*
459  * mas_parent_type() - Return the maple_type of the parent from the stored
460  * parent type.
461  * @mas: The maple state
462  * @enode: The maple_enode to extract the parent's enum
463  * Return: The node->parent maple_type
464  */
465 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)466 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
467 {
468 	unsigned long p_type;
469 
470 	p_type = (unsigned long)mte_to_node(enode)->parent;
471 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
472 		return 0;
473 
474 	p_type &= MAPLE_NODE_MASK;
475 	p_type &= ~mte_parent_slot_mask(p_type);
476 	switch (p_type) {
477 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
478 		if (mt_is_alloc(mas->tree))
479 			return maple_arange_64;
480 		return maple_range_64;
481 	}
482 
483 	return 0;
484 }
485 
486 /*
487  * mas_set_parent() - Set the parent node and encode the slot
488  * @mas: The maple state
489  * @enode: The encoded maple node.
490  * @parent: The encoded maple node that is the parent of @enode.
491  * @slot: The slot that @enode resides in @parent.
492  *
493  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
494  * parent type.
495  */
496 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)497 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
498 		    const struct maple_enode *parent, unsigned char slot)
499 {
500 	unsigned long val = (unsigned long)parent;
501 	unsigned long shift;
502 	unsigned long type;
503 	enum maple_type p_type = mte_node_type(parent);
504 
505 	MAS_BUG_ON(mas, p_type == maple_dense);
506 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
507 
508 	switch (p_type) {
509 	case maple_range_64:
510 	case maple_arange_64:
511 		shift = MAPLE_PARENT_SLOT_SHIFT;
512 		type = MAPLE_PARENT_RANGE64;
513 		break;
514 	default:
515 	case maple_dense:
516 	case maple_leaf_64:
517 		shift = type = 0;
518 		break;
519 	}
520 
521 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
522 	val |= (slot << shift) | type;
523 	mte_to_node(enode)->parent = ma_parent_ptr(val);
524 }
525 
526 /*
527  * mte_parent_slot() - get the parent slot of @enode.
528  * @enode: The encoded maple node.
529  *
530  * Return: The slot in the parent node where @enode resides.
531  */
532 static __always_inline
mte_parent_slot(const struct maple_enode * enode)533 unsigned int mte_parent_slot(const struct maple_enode *enode)
534 {
535 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
536 
537 	if (unlikely(val & MA_ROOT_PARENT))
538 		return 0;
539 
540 	/*
541 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
542 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
543 	 */
544 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
545 }
546 
547 /*
548  * mte_parent() - Get the parent of @node.
549  * @enode: The encoded maple node.
550  *
551  * Return: The parent maple node.
552  */
553 static __always_inline
mte_parent(const struct maple_enode * enode)554 struct maple_node *mte_parent(const struct maple_enode *enode)
555 {
556 	return (void *)((unsigned long)
557 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
558 }
559 
560 /*
561  * ma_dead_node() - check if the @enode is dead.
562  * @enode: The encoded maple node
563  *
564  * Return: true if dead, false otherwise.
565  */
ma_dead_node(const struct maple_node * node)566 static __always_inline bool ma_dead_node(const struct maple_node *node)
567 {
568 	struct maple_node *parent;
569 
570 	/* Do not reorder reads from the node prior to the parent check */
571 	smp_rmb();
572 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
573 	return (parent == node);
574 }
575 
576 /*
577  * mte_dead_node() - check if the @enode is dead.
578  * @enode: The encoded maple node
579  *
580  * Return: true if dead, false otherwise.
581  */
mte_dead_node(const struct maple_enode * enode)582 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
583 {
584 	struct maple_node *node;
585 
586 	node = mte_to_node(enode);
587 	return ma_dead_node(node);
588 }
589 
590 /*
591  * ma_pivots() - Get a pointer to the maple node pivots.
592  * @node: the maple node
593  * @type: the node type
594  *
595  * In the event of a dead node, this array may be %NULL
596  *
597  * Return: A pointer to the maple node pivots
598  */
ma_pivots(struct maple_node * node,enum maple_type type)599 static inline unsigned long *ma_pivots(struct maple_node *node,
600 					   enum maple_type type)
601 {
602 	switch (type) {
603 	case maple_arange_64:
604 		return node->ma64.pivot;
605 	case maple_range_64:
606 	case maple_leaf_64:
607 		return node->mr64.pivot;
608 	case maple_dense:
609 		return NULL;
610 	}
611 	return NULL;
612 }
613 
614 /*
615  * ma_gaps() - Get a pointer to the maple node gaps.
616  * @node: the maple node
617  * @type: the node type
618  *
619  * Return: A pointer to the maple node gaps
620  */
ma_gaps(struct maple_node * node,enum maple_type type)621 static inline unsigned long *ma_gaps(struct maple_node *node,
622 				     enum maple_type type)
623 {
624 	switch (type) {
625 	case maple_arange_64:
626 		return node->ma64.gap;
627 	case maple_range_64:
628 	case maple_leaf_64:
629 	case maple_dense:
630 		return NULL;
631 	}
632 	return NULL;
633 }
634 
635 /*
636  * mas_safe_pivot() - get the pivot at @piv or mas->max.
637  * @mas: The maple state
638  * @pivots: The pointer to the maple node pivots
639  * @piv: The pivot to fetch
640  * @type: The maple node type
641  *
642  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
643  * otherwise.
644  */
645 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)646 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
647 	       unsigned char piv, enum maple_type type)
648 {
649 	if (piv >= mt_pivots[type])
650 		return mas->max;
651 
652 	return pivots[piv];
653 }
654 
655 /*
656  * mas_safe_min() - Return the minimum for a given offset.
657  * @mas: The maple state
658  * @pivots: The pointer to the maple node pivots
659  * @offset: The offset into the pivot array
660  *
661  * Return: The minimum range value that is contained in @offset.
662  */
663 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)664 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
665 {
666 	if (likely(offset))
667 		return pivots[offset - 1] + 1;
668 
669 	return mas->min;
670 }
671 
672 /*
673  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
674  * @mn: The encoded maple node
675  * @piv: The pivot offset
676  * @val: The value of the pivot
677  */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)678 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
679 				unsigned long val)
680 {
681 	struct maple_node *node = mte_to_node(mn);
682 	enum maple_type type = mte_node_type(mn);
683 
684 	BUG_ON(piv >= mt_pivots[type]);
685 	switch (type) {
686 	case maple_range_64:
687 	case maple_leaf_64:
688 		node->mr64.pivot[piv] = val;
689 		break;
690 	case maple_arange_64:
691 		node->ma64.pivot[piv] = val;
692 		break;
693 	case maple_dense:
694 		break;
695 	}
696 
697 }
698 
699 /*
700  * ma_slots() - Get a pointer to the maple node slots.
701  * @mn: The maple node
702  * @mt: The maple node type
703  *
704  * Return: A pointer to the maple node slots
705  */
ma_slots(struct maple_node * mn,enum maple_type mt)706 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
707 {
708 	switch (mt) {
709 	case maple_arange_64:
710 		return mn->ma64.slot;
711 	case maple_range_64:
712 	case maple_leaf_64:
713 		return mn->mr64.slot;
714 	case maple_dense:
715 		return mn->slot;
716 	}
717 
718 	return NULL;
719 }
720 
mt_write_locked(const struct maple_tree * mt)721 static inline bool mt_write_locked(const struct maple_tree *mt)
722 {
723 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
724 		lockdep_is_held(&mt->ma_lock);
725 }
726 
mt_locked(const struct maple_tree * mt)727 static __always_inline bool mt_locked(const struct maple_tree *mt)
728 {
729 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
730 		lockdep_is_held(&mt->ma_lock);
731 }
732 
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)733 static __always_inline void *mt_slot(const struct maple_tree *mt,
734 		void __rcu **slots, unsigned char offset)
735 {
736 	return rcu_dereference_check(slots[offset], mt_locked(mt));
737 }
738 
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)739 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
740 		void __rcu **slots, unsigned char offset)
741 {
742 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
743 }
744 /*
745  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
746  * @mas: The maple state
747  * @slots: The pointer to the slots
748  * @offset: The offset into the slots array to fetch
749  *
750  * Return: The entry stored in @slots at the @offset.
751  */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)752 static __always_inline void *mas_slot_locked(struct ma_state *mas,
753 		void __rcu **slots, unsigned char offset)
754 {
755 	return mt_slot_locked(mas->tree, slots, offset);
756 }
757 
758 /*
759  * mas_slot() - Get the slot value when not holding the maple tree lock.
760  * @mas: The maple state
761  * @slots: The pointer to the slots
762  * @offset: The offset into the slots array to fetch
763  *
764  * Return: The entry stored in @slots at the @offset
765  */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)766 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
767 		unsigned char offset)
768 {
769 	return mt_slot(mas->tree, slots, offset);
770 }
771 
772 /*
773  * mas_root() - Get the maple tree root.
774  * @mas: The maple state.
775  *
776  * Return: The pointer to the root of the tree
777  */
mas_root(struct ma_state * mas)778 static __always_inline void *mas_root(struct ma_state *mas)
779 {
780 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
781 }
782 
mt_root_locked(struct maple_tree * mt)783 static inline void *mt_root_locked(struct maple_tree *mt)
784 {
785 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
786 }
787 
788 /*
789  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
790  * @mas: The maple state.
791  *
792  * Return: The pointer to the root of the tree
793  */
mas_root_locked(struct ma_state * mas)794 static inline void *mas_root_locked(struct ma_state *mas)
795 {
796 	return mt_root_locked(mas->tree);
797 }
798 
ma_meta(struct maple_node * mn,enum maple_type mt)799 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
800 					     enum maple_type mt)
801 {
802 	switch (mt) {
803 	case maple_arange_64:
804 		return &mn->ma64.meta;
805 	default:
806 		return &mn->mr64.meta;
807 	}
808 }
809 
810 /*
811  * ma_set_meta() - Set the metadata information of a node.
812  * @mn: The maple node
813  * @mt: The maple node type
814  * @offset: The offset of the highest sub-gap in this node.
815  * @end: The end of the data in this node.
816  */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)817 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
818 			       unsigned char offset, unsigned char end)
819 {
820 	struct maple_metadata *meta = ma_meta(mn, mt);
821 
822 	meta->gap = offset;
823 	meta->end = end;
824 }
825 
826 /*
827  * mt_clear_meta() - clear the metadata information of a node, if it exists
828  * @mt: The maple tree
829  * @mn: The maple node
830  * @type: The maple node type
831  */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)832 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
833 				  enum maple_type type)
834 {
835 	struct maple_metadata *meta;
836 	unsigned long *pivots;
837 	void __rcu **slots;
838 	void *next;
839 
840 	switch (type) {
841 	case maple_range_64:
842 		pivots = mn->mr64.pivot;
843 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
844 			slots = mn->mr64.slot;
845 			next = mt_slot_locked(mt, slots,
846 					      MAPLE_RANGE64_SLOTS - 1);
847 			if (unlikely((mte_to_node(next) &&
848 				      mte_node_type(next))))
849 				return; /* no metadata, could be node */
850 		}
851 		fallthrough;
852 	case maple_arange_64:
853 		meta = ma_meta(mn, type);
854 		break;
855 	default:
856 		return;
857 	}
858 
859 	meta->gap = 0;
860 	meta->end = 0;
861 }
862 
863 /*
864  * ma_meta_end() - Get the data end of a node from the metadata
865  * @mn: The maple node
866  * @mt: The maple node type
867  */
ma_meta_end(struct maple_node * mn,enum maple_type mt)868 static inline unsigned char ma_meta_end(struct maple_node *mn,
869 					enum maple_type mt)
870 {
871 	struct maple_metadata *meta = ma_meta(mn, mt);
872 
873 	return meta->end;
874 }
875 
876 /*
877  * ma_meta_gap() - Get the largest gap location of a node from the metadata
878  * @mn: The maple node
879  */
ma_meta_gap(struct maple_node * mn)880 static inline unsigned char ma_meta_gap(struct maple_node *mn)
881 {
882 	return mn->ma64.meta.gap;
883 }
884 
885 /*
886  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
887  * @mn: The maple node
888  * @mt: The maple node type
889  * @offset: The location of the largest gap.
890  */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)891 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
892 				   unsigned char offset)
893 {
894 
895 	struct maple_metadata *meta = ma_meta(mn, mt);
896 
897 	meta->gap = offset;
898 }
899 
900 /*
901  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
902  * @mat: the ma_topiary, a linked list of dead nodes.
903  * @dead_enode: the node to be marked as dead and added to the tail of the list
904  *
905  * Add the @dead_enode to the linked list in @mat.
906  */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)907 static inline void mat_add(struct ma_topiary *mat,
908 			   struct maple_enode *dead_enode)
909 {
910 	mte_set_node_dead(dead_enode);
911 	mte_to_mat(dead_enode)->next = NULL;
912 	if (!mat->tail) {
913 		mat->tail = mat->head = dead_enode;
914 		return;
915 	}
916 
917 	mte_to_mat(mat->tail)->next = dead_enode;
918 	mat->tail = dead_enode;
919 }
920 
921 static void mt_free_walk(struct rcu_head *head);
922 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
923 			    bool free);
924 /*
925  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
926  * @mas: the maple state
927  * @mat: the ma_topiary linked list of dead nodes to free.
928  *
929  * Destroy walk a dead list.
930  */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)931 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
932 {
933 	struct maple_enode *next;
934 	struct maple_node *node;
935 	bool in_rcu = mt_in_rcu(mas->tree);
936 
937 	while (mat->head) {
938 		next = mte_to_mat(mat->head)->next;
939 		node = mte_to_node(mat->head);
940 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
941 		if (in_rcu)
942 			call_rcu(&node->rcu, mt_free_walk);
943 		mat->head = next;
944 	}
945 }
946 /*
947  * mas_descend() - Descend into the slot stored in the ma_state.
948  * @mas: the maple state.
949  *
950  * Note: Not RCU safe, only use in write side or debug code.
951  */
mas_descend(struct ma_state * mas)952 static inline void mas_descend(struct ma_state *mas)
953 {
954 	enum maple_type type;
955 	unsigned long *pivots;
956 	struct maple_node *node;
957 	void __rcu **slots;
958 
959 	node = mas_mn(mas);
960 	type = mte_node_type(mas->node);
961 	pivots = ma_pivots(node, type);
962 	slots = ma_slots(node, type);
963 
964 	if (mas->offset)
965 		mas->min = pivots[mas->offset - 1] + 1;
966 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
967 	mas->node = mas_slot(mas, slots, mas->offset);
968 }
969 
970 /*
971  * mas_ascend() - Walk up a level of the tree.
972  * @mas: The maple state
973  *
974  * Sets the @mas->max and @mas->min for the parent node of mas->node.  This
975  * may cause several levels of walking up to find the correct min and max.
976  * May find a dead node which will cause a premature return.
977  * Return: 1 on dead node, 0 otherwise
978  */
mas_ascend(struct ma_state * mas)979 static int mas_ascend(struct ma_state *mas)
980 {
981 	struct maple_enode *p_enode; /* parent enode. */
982 	struct maple_enode *a_enode; /* ancestor enode. */
983 	struct maple_node *a_node; /* ancestor node. */
984 	struct maple_node *p_node; /* parent node. */
985 	unsigned char a_slot;
986 	enum maple_type a_type;
987 	unsigned long min, max;
988 	unsigned long *pivots;
989 	bool set_max = false, set_min = false;
990 
991 	a_node = mas_mn(mas);
992 	if (ma_is_root(a_node)) {
993 		mas->offset = 0;
994 		return 0;
995 	}
996 
997 	p_node = mte_parent(mas->node);
998 	if (unlikely(a_node == p_node))
999 		return 1;
1000 
1001 	a_type = mas_parent_type(mas, mas->node);
1002 	mas->offset = mte_parent_slot(mas->node);
1003 	a_enode = mt_mk_node(p_node, a_type);
1004 
1005 	/* Check to make sure all parent information is still accurate */
1006 	if (p_node != mte_parent(mas->node))
1007 		return 1;
1008 
1009 	mas->node = a_enode;
1010 
1011 	if (mte_is_root(a_enode)) {
1012 		mas->max = ULONG_MAX;
1013 		mas->min = 0;
1014 		return 0;
1015 	}
1016 
1017 	min = 0;
1018 	max = ULONG_MAX;
1019 
1020 	/*
1021 	 * !mas->offset implies that parent node min == mas->min.
1022 	 * mas->offset > 0 implies that we need to walk up to find the
1023 	 * implied pivot min.
1024 	 */
1025 	if (!mas->offset) {
1026 		min = mas->min;
1027 		set_min = true;
1028 	}
1029 
1030 	if (mas->max == ULONG_MAX)
1031 		set_max = true;
1032 
1033 	do {
1034 		p_enode = a_enode;
1035 		a_type = mas_parent_type(mas, p_enode);
1036 		a_node = mte_parent(p_enode);
1037 		a_slot = mte_parent_slot(p_enode);
1038 		a_enode = mt_mk_node(a_node, a_type);
1039 		pivots = ma_pivots(a_node, a_type);
1040 
1041 		if (unlikely(ma_dead_node(a_node)))
1042 			return 1;
1043 
1044 		if (!set_min && a_slot) {
1045 			set_min = true;
1046 			min = pivots[a_slot - 1] + 1;
1047 		}
1048 
1049 		if (!set_max && a_slot < mt_pivots[a_type]) {
1050 			set_max = true;
1051 			max = pivots[a_slot];
1052 		}
1053 
1054 		if (unlikely(ma_dead_node(a_node)))
1055 			return 1;
1056 
1057 		if (unlikely(ma_is_root(a_node)))
1058 			break;
1059 
1060 	} while (!set_min || !set_max);
1061 
1062 	mas->max = max;
1063 	mas->min = min;
1064 	return 0;
1065 }
1066 
1067 /*
1068  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1069  * @mas: The maple state
1070  *
1071  * Return: A pointer to a maple node.
1072  */
mas_pop_node(struct ma_state * mas)1073 static __always_inline struct maple_node *mas_pop_node(struct ma_state *mas)
1074 {
1075 	struct maple_node *ret;
1076 
1077 	if (mas->alloc) {
1078 		ret = mas->alloc;
1079 		mas->alloc = NULL;
1080 		goto out;
1081 	}
1082 
1083 	if (WARN_ON_ONCE(!mas->sheaf))
1084 		return NULL;
1085 
1086 	ret = kmem_cache_alloc_from_sheaf(maple_node_cache, GFP_NOWAIT, mas->sheaf);
1087 
1088 out:
1089 	memset(ret, 0, sizeof(*ret));
1090 	return ret;
1091 }
1092 
1093 /*
1094  * mas_alloc_nodes() - Allocate nodes into a maple state
1095  * @mas: The maple state
1096  * @gfp: The GFP Flags
1097  */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1098 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1099 {
1100 	if (!mas->node_request)
1101 		return;
1102 
1103 	if (mas->node_request == 1) {
1104 		if (mas->sheaf)
1105 			goto use_sheaf;
1106 
1107 		if (mas->alloc)
1108 			return;
1109 
1110 		mas->alloc = mt_alloc_one(gfp);
1111 		if (!mas->alloc)
1112 			goto error;
1113 
1114 		mas->node_request = 0;
1115 		return;
1116 	}
1117 
1118 use_sheaf:
1119 	if (unlikely(mas->alloc)) {
1120 		kfree(mas->alloc);
1121 		mas->alloc = NULL;
1122 	}
1123 
1124 	if (mas->sheaf) {
1125 		unsigned long refill;
1126 
1127 		refill = mas->node_request;
1128 		if (kmem_cache_sheaf_size(mas->sheaf) >= refill) {
1129 			mas->node_request = 0;
1130 			return;
1131 		}
1132 
1133 		if (mt_refill_sheaf(gfp, &mas->sheaf, refill))
1134 			goto error;
1135 
1136 		mas->node_request = 0;
1137 		return;
1138 	}
1139 
1140 	mas->sheaf = mt_get_sheaf(gfp, mas->node_request);
1141 	if (likely(mas->sheaf)) {
1142 		mas->node_request = 0;
1143 		return;
1144 	}
1145 
1146 error:
1147 	mas_set_err(mas, -ENOMEM);
1148 }
1149 
mas_empty_nodes(struct ma_state * mas)1150 static inline void mas_empty_nodes(struct ma_state *mas)
1151 {
1152 	mas->node_request = 0;
1153 	if (mas->sheaf) {
1154 		mt_return_sheaf(mas->sheaf);
1155 		mas->sheaf = NULL;
1156 	}
1157 
1158 	if (mas->alloc) {
1159 		kfree(mas->alloc);
1160 		mas->alloc = NULL;
1161 	}
1162 }
1163 
1164 /*
1165  * mas_free() - Free an encoded maple node
1166  * @mas: The maple state
1167  * @used: The encoded maple node to free.
1168  *
1169  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1170  * otherwise.
1171  */
mas_free(struct ma_state * mas,struct maple_enode * used)1172 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1173 {
1174 	ma_free_rcu(mte_to_node(used));
1175 }
1176 
1177 /*
1178  * mas_start() - Sets up maple state for operations.
1179  * @mas: The maple state.
1180  *
1181  * If mas->status == ma_start, then set the min, max and depth to
1182  * defaults.
1183  *
1184  * Return:
1185  * - If mas->node is an error or not mas_start, return NULL.
1186  * - If it's an empty tree:     NULL & mas->status == ma_none
1187  * - If it's a single entry:    The entry & mas->status == ma_root
1188  * - If it's a tree:            NULL & mas->status == ma_active
1189  */
mas_start(struct ma_state * mas)1190 static inline struct maple_enode *mas_start(struct ma_state *mas)
1191 {
1192 	if (likely(mas_is_start(mas))) {
1193 		struct maple_enode *root;
1194 
1195 		mas->min = 0;
1196 		mas->max = ULONG_MAX;
1197 
1198 retry:
1199 		mas->depth = 0;
1200 		root = mas_root(mas);
1201 		/* Tree with nodes */
1202 		if (likely(xa_is_node(root))) {
1203 			mas->depth = 0;
1204 			mas->status = ma_active;
1205 			mas->node = mte_safe_root(root);
1206 			mas->offset = 0;
1207 			if (mte_dead_node(mas->node))
1208 				goto retry;
1209 
1210 			return NULL;
1211 		}
1212 
1213 		mas->node = NULL;
1214 		/* empty tree */
1215 		if (unlikely(!root)) {
1216 			mas->status = ma_none;
1217 			mas->offset = MAPLE_NODE_SLOTS;
1218 			return NULL;
1219 		}
1220 
1221 		/* Single entry tree */
1222 		mas->status = ma_root;
1223 		mas->offset = MAPLE_NODE_SLOTS;
1224 
1225 		/* Single entry tree. */
1226 		if (mas->index > 0)
1227 			return NULL;
1228 
1229 		return root;
1230 	}
1231 
1232 	return NULL;
1233 }
1234 
1235 /*
1236  * ma_data_end() - Find the end of the data in a node.
1237  * @node: The maple node
1238  * @type: The maple node type
1239  * @pivots: The array of pivots in the node
1240  * @max: The maximum value in the node
1241  *
1242  * Uses metadata to find the end of the data when possible.
1243  * Return: The zero indexed last slot with data (may be null).
1244  */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1245 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1246 		enum maple_type type, unsigned long *pivots, unsigned long max)
1247 {
1248 	unsigned char offset;
1249 
1250 	if (!pivots)
1251 		return 0;
1252 
1253 	if (type == maple_arange_64)
1254 		return ma_meta_end(node, type);
1255 
1256 	offset = mt_pivots[type] - 1;
1257 	if (likely(!pivots[offset]))
1258 		return ma_meta_end(node, type);
1259 
1260 	if (likely(pivots[offset] == max))
1261 		return offset;
1262 
1263 	return mt_pivots[type];
1264 }
1265 
1266 /*
1267  * mas_data_end() - Find the end of the data (slot).
1268  * @mas: the maple state
1269  *
1270  * This method is optimized to check the metadata of a node if the node type
1271  * supports data end metadata.
1272  *
1273  * Return: The zero indexed last slot with data (may be null).
1274  */
mas_data_end(struct ma_state * mas)1275 static inline unsigned char mas_data_end(struct ma_state *mas)
1276 {
1277 	enum maple_type type;
1278 	struct maple_node *node;
1279 	unsigned char offset;
1280 	unsigned long *pivots;
1281 
1282 	type = mte_node_type(mas->node);
1283 	node = mas_mn(mas);
1284 	if (type == maple_arange_64)
1285 		return ma_meta_end(node, type);
1286 
1287 	pivots = ma_pivots(node, type);
1288 	if (unlikely(ma_dead_node(node)))
1289 		return 0;
1290 
1291 	offset = mt_pivots[type] - 1;
1292 	if (likely(!pivots[offset]))
1293 		return ma_meta_end(node, type);
1294 
1295 	if (likely(pivots[offset] == mas->max))
1296 		return offset;
1297 
1298 	return mt_pivots[type];
1299 }
1300 
1301 /*
1302  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1303  * @mas: the maple state
1304  *
1305  * Return: The maximum gap in the leaf.
1306  */
mas_leaf_max_gap(struct ma_state * mas)1307 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1308 {
1309 	enum maple_type mt;
1310 	unsigned long pstart, gap, max_gap;
1311 	struct maple_node *mn;
1312 	unsigned long *pivots;
1313 	void __rcu **slots;
1314 	unsigned char i;
1315 	unsigned char max_piv;
1316 
1317 	mt = mte_node_type(mas->node);
1318 	mn = mas_mn(mas);
1319 	slots = ma_slots(mn, mt);
1320 	max_gap = 0;
1321 	if (unlikely(ma_is_dense(mt))) {
1322 		gap = 0;
1323 		for (i = 0; i < mt_slots[mt]; i++) {
1324 			if (slots[i]) {
1325 				if (gap > max_gap)
1326 					max_gap = gap;
1327 				gap = 0;
1328 			} else {
1329 				gap++;
1330 			}
1331 		}
1332 		if (gap > max_gap)
1333 			max_gap = gap;
1334 		return max_gap;
1335 	}
1336 
1337 	/*
1338 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1339 	 * be skipped if there is a gap in slot 0.
1340 	 */
1341 	pivots = ma_pivots(mn, mt);
1342 	if (likely(!slots[0])) {
1343 		max_gap = pivots[0] - mas->min + 1;
1344 		i = 2;
1345 	} else {
1346 		i = 1;
1347 	}
1348 
1349 	/* reduce max_piv as the special case is checked before the loop */
1350 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1351 	/*
1352 	 * Check end implied pivot which can only be a gap on the right most
1353 	 * node.
1354 	 */
1355 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1356 		gap = ULONG_MAX - pivots[max_piv];
1357 		if (gap > max_gap)
1358 			max_gap = gap;
1359 
1360 		if (max_gap > pivots[max_piv] - mas->min)
1361 			return max_gap;
1362 	}
1363 
1364 	for (; i <= max_piv; i++) {
1365 		/* data == no gap. */
1366 		if (likely(slots[i]))
1367 			continue;
1368 
1369 		pstart = pivots[i - 1];
1370 		gap = pivots[i] - pstart;
1371 		if (gap > max_gap)
1372 			max_gap = gap;
1373 
1374 		/* There cannot be two gaps in a row. */
1375 		i++;
1376 	}
1377 	return max_gap;
1378 }
1379 
1380 /*
1381  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1382  * @node: The maple node
1383  * @gaps: The pointer to the gaps
1384  * @mt: The maple node type
1385  * @off: Pointer to store the offset location of the gap.
1386  *
1387  * Uses the metadata data end to scan backwards across set gaps.
1388  *
1389  * Return: The maximum gap value
1390  */
1391 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1392 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1393 	    unsigned char *off)
1394 {
1395 	unsigned char offset, i;
1396 	unsigned long max_gap = 0;
1397 
1398 	i = offset = ma_meta_end(node, mt);
1399 	do {
1400 		if (gaps[i] > max_gap) {
1401 			max_gap = gaps[i];
1402 			offset = i;
1403 		}
1404 	} while (i--);
1405 
1406 	*off = offset;
1407 	return max_gap;
1408 }
1409 
1410 /*
1411  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1412  * @mas: The maple state.
1413  *
1414  * Return: The gap value.
1415  */
mas_max_gap(struct ma_state * mas)1416 static inline unsigned long mas_max_gap(struct ma_state *mas)
1417 {
1418 	unsigned long *gaps;
1419 	unsigned char offset;
1420 	enum maple_type mt;
1421 	struct maple_node *node;
1422 
1423 	mt = mte_node_type(mas->node);
1424 	if (ma_is_leaf(mt))
1425 		return mas_leaf_max_gap(mas);
1426 
1427 	node = mas_mn(mas);
1428 	MAS_BUG_ON(mas, mt != maple_arange_64);
1429 	offset = ma_meta_gap(node);
1430 	gaps = ma_gaps(node, mt);
1431 	return gaps[offset];
1432 }
1433 
1434 /*
1435  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1436  * @mas: The maple state
1437  * @offset: The gap offset in the parent to set
1438  * @new: The new gap value.
1439  *
1440  * Set the parent gap then continue to set the gap upwards, using the metadata
1441  * of the parent to see if it is necessary to check the node above.
1442  */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1443 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1444 		unsigned long new)
1445 {
1446 	unsigned long meta_gap = 0;
1447 	struct maple_node *pnode;
1448 	struct maple_enode *penode;
1449 	unsigned long *pgaps;
1450 	unsigned char meta_offset;
1451 	enum maple_type pmt;
1452 
1453 	pnode = mte_parent(mas->node);
1454 	pmt = mas_parent_type(mas, mas->node);
1455 	penode = mt_mk_node(pnode, pmt);
1456 	pgaps = ma_gaps(pnode, pmt);
1457 
1458 ascend:
1459 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1460 	meta_offset = ma_meta_gap(pnode);
1461 	meta_gap = pgaps[meta_offset];
1462 
1463 	pgaps[offset] = new;
1464 
1465 	if (meta_gap == new)
1466 		return;
1467 
1468 	if (offset != meta_offset) {
1469 		if (meta_gap > new)
1470 			return;
1471 
1472 		ma_set_meta_gap(pnode, pmt, offset);
1473 	} else if (new < meta_gap) {
1474 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1475 		ma_set_meta_gap(pnode, pmt, meta_offset);
1476 	}
1477 
1478 	if (ma_is_root(pnode))
1479 		return;
1480 
1481 	/* Go to the parent node. */
1482 	pnode = mte_parent(penode);
1483 	pmt = mas_parent_type(mas, penode);
1484 	pgaps = ma_gaps(pnode, pmt);
1485 	offset = mte_parent_slot(penode);
1486 	penode = mt_mk_node(pnode, pmt);
1487 	goto ascend;
1488 }
1489 
1490 /*
1491  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1492  * @mas: the maple state.
1493  */
mas_update_gap(struct ma_state * mas)1494 static inline void mas_update_gap(struct ma_state *mas)
1495 {
1496 	unsigned char pslot;
1497 	unsigned long p_gap;
1498 	unsigned long max_gap;
1499 
1500 	if (!mt_is_alloc(mas->tree))
1501 		return;
1502 
1503 	if (mte_is_root(mas->node))
1504 		return;
1505 
1506 	max_gap = mas_max_gap(mas);
1507 
1508 	pslot = mte_parent_slot(mas->node);
1509 	p_gap = ma_gaps(mte_parent(mas->node),
1510 			mas_parent_type(mas, mas->node))[pslot];
1511 
1512 	if (p_gap != max_gap)
1513 		mas_parent_gap(mas, pslot, max_gap);
1514 }
1515 
1516 /*
1517  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1518  * @parent with the slot encoded.
1519  * @mas: the maple state (for the tree)
1520  * @parent: the maple encoded node containing the children.
1521  */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1522 static inline void mas_adopt_children(struct ma_state *mas,
1523 		struct maple_enode *parent)
1524 {
1525 	enum maple_type type = mte_node_type(parent);
1526 	struct maple_node *node = mte_to_node(parent);
1527 	void __rcu **slots = ma_slots(node, type);
1528 	unsigned long *pivots = ma_pivots(node, type);
1529 	struct maple_enode *child;
1530 	unsigned char offset;
1531 
1532 	offset = ma_data_end(node, type, pivots, mas->max);
1533 	do {
1534 		child = mas_slot_locked(mas, slots, offset);
1535 		mas_set_parent(mas, child, parent, offset);
1536 	} while (offset--);
1537 }
1538 
1539 /*
1540  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1541  * node as dead.
1542  * @mas: the maple state with the new node
1543  * @old_enode: The old maple encoded node to replace.
1544  * @new_height: if we are inserting a root node, update the height of the tree
1545  */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode,char new_height)1546 static inline void mas_put_in_tree(struct ma_state *mas,
1547 		struct maple_enode *old_enode, char new_height)
1548 	__must_hold(mas->tree->ma_lock)
1549 {
1550 	unsigned char offset;
1551 	void __rcu **slots;
1552 
1553 	if (mte_is_root(mas->node)) {
1554 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1555 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1556 		mt_set_height(mas->tree, new_height);
1557 	} else {
1558 
1559 		offset = mte_parent_slot(mas->node);
1560 		slots = ma_slots(mte_parent(mas->node),
1561 				 mas_parent_type(mas, mas->node));
1562 		rcu_assign_pointer(slots[offset], mas->node);
1563 	}
1564 
1565 	mte_set_node_dead(old_enode);
1566 }
1567 
1568 /*
1569  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1570  * dead, and freeing it.
1571  * the parent encoding to locate the maple node in the tree.
1572  * @mas: the ma_state with @mas->node pointing to the new node.
1573  * @old_enode: The old maple encoded node.
1574  * @new_height: The new height of the tree as a result of the operation
1575  */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)1576 static inline void mas_replace_node(struct ma_state *mas,
1577 		struct maple_enode *old_enode, unsigned char new_height)
1578 	__must_hold(mas->tree->ma_lock)
1579 {
1580 	mas_put_in_tree(mas, old_enode, new_height);
1581 	mas_free(mas, old_enode);
1582 }
1583 
1584 /*
1585  * mas_find_child() - Find a child who has the parent @mas->node.
1586  * @mas: the maple state with the parent.
1587  * @child: the maple state to store the child.
1588  */
mas_find_child(struct ma_state * mas,struct ma_state * child)1589 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1590 	__must_hold(mas->tree->ma_lock)
1591 {
1592 	enum maple_type mt;
1593 	unsigned char offset;
1594 	unsigned char end;
1595 	unsigned long *pivots;
1596 	struct maple_enode *entry;
1597 	struct maple_node *node;
1598 	void __rcu **slots;
1599 
1600 	mt = mte_node_type(mas->node);
1601 	node = mas_mn(mas);
1602 	slots = ma_slots(node, mt);
1603 	pivots = ma_pivots(node, mt);
1604 	end = ma_data_end(node, mt, pivots, mas->max);
1605 	for (offset = mas->offset; offset <= end; offset++) {
1606 		entry = mas_slot_locked(mas, slots, offset);
1607 		if (mte_parent(entry) == node) {
1608 			*child = *mas;
1609 			mas->offset = offset + 1;
1610 			child->offset = offset;
1611 			mas_descend(child);
1612 			child->offset = 0;
1613 			return true;
1614 		}
1615 	}
1616 	return false;
1617 }
1618 
1619 /*
1620  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1621  * old data or set b_node->b_end.
1622  * @b_node: the maple_big_node
1623  * @shift: the shift count
1624  */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1625 static inline void mab_shift_right(struct maple_big_node *b_node,
1626 				 unsigned char shift)
1627 {
1628 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1629 
1630 	memmove(b_node->pivot + shift, b_node->pivot, size);
1631 	memmove(b_node->slot + shift, b_node->slot, size);
1632 	if (b_node->type == maple_arange_64)
1633 		memmove(b_node->gap + shift, b_node->gap, size);
1634 }
1635 
1636 /*
1637  * mab_middle_node() - Check if a middle node is needed (unlikely)
1638  * @b_node: the maple_big_node that contains the data.
1639  * @split: the potential split location
1640  * @slot_count: the size that can be stored in a single node being considered.
1641  *
1642  * Return: true if a middle node is required.
1643  */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1644 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1645 				   unsigned char slot_count)
1646 {
1647 	unsigned char size = b_node->b_end;
1648 
1649 	if (size >= 2 * slot_count)
1650 		return true;
1651 
1652 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1653 		return true;
1654 
1655 	return false;
1656 }
1657 
1658 /*
1659  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1660  * @b_node: the maple_big_node with the data
1661  * @split: the suggested split location
1662  * @slot_count: the number of slots in the node being considered.
1663  *
1664  * Return: the split location.
1665  */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1666 static inline int mab_no_null_split(struct maple_big_node *b_node,
1667 				    unsigned char split, unsigned char slot_count)
1668 {
1669 	if (!b_node->slot[split]) {
1670 		/*
1671 		 * If the split is less than the max slot && the right side will
1672 		 * still be sufficient, then increment the split on NULL.
1673 		 */
1674 		if ((split < slot_count - 1) &&
1675 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1676 			split++;
1677 		else
1678 			split--;
1679 	}
1680 	return split;
1681 }
1682 
1683 /*
1684  * mab_calc_split() - Calculate the split location and if there needs to be two
1685  * splits.
1686  * @mas: The maple state
1687  * @bn: The maple_big_node with the data
1688  * @mid_split: The second split, if required.  0 otherwise.
1689  *
1690  * Return: The first split location.  The middle split is set in @mid_split.
1691  */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1692 static inline int mab_calc_split(struct ma_state *mas,
1693 	 struct maple_big_node *bn, unsigned char *mid_split)
1694 {
1695 	unsigned char b_end = bn->b_end;
1696 	int split = b_end / 2; /* Assume equal split. */
1697 	unsigned char slot_count = mt_slots[bn->type];
1698 
1699 	/*
1700 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1701 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1702 	 * limitation means that the split of a node must be checked for this condition
1703 	 * and be able to put more data in one direction or the other.
1704 	 *
1705 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1706 	 * split scenario.  The 3-way split comes about by means of a store of a range
1707 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1708 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1709 	 * also be located in different parent nodes which are also full.  This can
1710 	 * carry upwards all the way to the root in the worst case.
1711 	 */
1712 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1713 		split = b_end / 3;
1714 		*mid_split = split * 2;
1715 	} else {
1716 		*mid_split = 0;
1717 	}
1718 
1719 	/* Avoid ending a node on a NULL entry */
1720 	split = mab_no_null_split(bn, split, slot_count);
1721 
1722 	if (unlikely(*mid_split))
1723 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1724 
1725 	return split;
1726 }
1727 
1728 /*
1729  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1730  * and set @b_node->b_end to the next free slot.
1731  * @mas: The maple state
1732  * @mas_start: The starting slot to copy
1733  * @mas_end: The end slot to copy (inclusively)
1734  * @b_node: The maple_big_node to place the data
1735  * @mab_start: The starting location in maple_big_node to store the data.
1736  */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1737 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1738 			unsigned char mas_end, struct maple_big_node *b_node,
1739 			unsigned char mab_start)
1740 {
1741 	enum maple_type mt;
1742 	struct maple_node *node;
1743 	void __rcu **slots;
1744 	unsigned long *pivots, *gaps;
1745 	int i = mas_start, j = mab_start;
1746 	unsigned char piv_end;
1747 
1748 	node = mas_mn(mas);
1749 	mt = mte_node_type(mas->node);
1750 	pivots = ma_pivots(node, mt);
1751 	if (!i) {
1752 		b_node->pivot[j] = pivots[i++];
1753 		if (unlikely(i > mas_end))
1754 			goto complete;
1755 		j++;
1756 	}
1757 
1758 	piv_end = min(mas_end, mt_pivots[mt]);
1759 	for (; i < piv_end; i++, j++) {
1760 		b_node->pivot[j] = pivots[i];
1761 		if (unlikely(!b_node->pivot[j]))
1762 			goto complete;
1763 
1764 		if (unlikely(mas->max == b_node->pivot[j]))
1765 			goto complete;
1766 	}
1767 
1768 	b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1769 
1770 complete:
1771 	b_node->b_end = ++j;
1772 	j -= mab_start;
1773 	slots = ma_slots(node, mt);
1774 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1775 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1776 		gaps = ma_gaps(node, mt);
1777 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1778 		       sizeof(unsigned long) * j);
1779 	}
1780 }
1781 
1782 /*
1783  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1784  * @node: The maple node
1785  * @mt: The maple type
1786  * @end: The node end
1787  */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1788 static inline void mas_leaf_set_meta(struct maple_node *node,
1789 		enum maple_type mt, unsigned char end)
1790 {
1791 	if (end < mt_slots[mt] - 1)
1792 		ma_set_meta(node, mt, 0, end);
1793 }
1794 
1795 /*
1796  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1797  * @b_node: the maple_big_node that has the data
1798  * @mab_start: the start location in @b_node.
1799  * @mab_end: The end location in @b_node (inclusively)
1800  * @mas: The maple state with the maple encoded node.
1801  */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)1802 static inline void mab_mas_cp(struct maple_big_node *b_node,
1803 			      unsigned char mab_start, unsigned char mab_end,
1804 			      struct ma_state *mas, bool new_max)
1805 {
1806 	int i, j = 0;
1807 	enum maple_type mt = mte_node_type(mas->node);
1808 	struct maple_node *node = mte_to_node(mas->node);
1809 	void __rcu **slots = ma_slots(node, mt);
1810 	unsigned long *pivots = ma_pivots(node, mt);
1811 	unsigned long *gaps = NULL;
1812 	unsigned char end;
1813 
1814 	if (mab_end - mab_start > mt_pivots[mt])
1815 		mab_end--;
1816 
1817 	if (!pivots[mt_pivots[mt] - 1])
1818 		slots[mt_pivots[mt]] = NULL;
1819 
1820 	i = mab_start;
1821 	do {
1822 		pivots[j++] = b_node->pivot[i++];
1823 	} while (i <= mab_end && likely(b_node->pivot[i]));
1824 
1825 	memcpy(slots, b_node->slot + mab_start,
1826 	       sizeof(void *) * (i - mab_start));
1827 
1828 	if (new_max)
1829 		mas->max = b_node->pivot[i - 1];
1830 
1831 	end = j - 1;
1832 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
1833 		unsigned long max_gap = 0;
1834 		unsigned char offset = 0;
1835 
1836 		gaps = ma_gaps(node, mt);
1837 		do {
1838 			gaps[--j] = b_node->gap[--i];
1839 			if (gaps[j] > max_gap) {
1840 				offset = j;
1841 				max_gap = gaps[j];
1842 			}
1843 		} while (j);
1844 
1845 		ma_set_meta(node, mt, offset, end);
1846 	} else {
1847 		mas_leaf_set_meta(node, mt, end);
1848 	}
1849 }
1850 
1851 /*
1852  * mas_store_b_node() - Store an @entry into the b_node while also copying the
1853  * data from a maple encoded node.
1854  * @wr_mas: the maple write state
1855  * @b_node: the maple_big_node to fill with data
1856  * @offset_end: the offset to end copying
1857  *
1858  * Return: The actual end of the data stored in @b_node
1859  */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)1860 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
1861 		struct maple_big_node *b_node, unsigned char offset_end)
1862 {
1863 	unsigned char slot;
1864 	unsigned char b_end;
1865 	/* Possible underflow of piv will wrap back to 0 before use. */
1866 	unsigned long piv;
1867 	struct ma_state *mas = wr_mas->mas;
1868 
1869 	b_node->type = wr_mas->type;
1870 	b_end = 0;
1871 	slot = mas->offset;
1872 	if (slot) {
1873 		/* Copy start data up to insert. */
1874 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
1875 		b_end = b_node->b_end;
1876 		piv = b_node->pivot[b_end - 1];
1877 	} else
1878 		piv = mas->min - 1;
1879 
1880 	if (piv + 1 < mas->index) {
1881 		/* Handle range starting after old range */
1882 		b_node->slot[b_end] = wr_mas->content;
1883 		if (!wr_mas->content)
1884 			b_node->gap[b_end] = mas->index - 1 - piv;
1885 		b_node->pivot[b_end++] = mas->index - 1;
1886 	}
1887 
1888 	/* Store the new entry. */
1889 	mas->offset = b_end;
1890 	b_node->slot[b_end] = wr_mas->entry;
1891 	b_node->pivot[b_end] = mas->last;
1892 
1893 	/* Appended. */
1894 	if (mas->last >= mas->max)
1895 		goto b_end;
1896 
1897 	/* Handle new range ending before old range ends */
1898 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
1899 	if (piv > mas->last) {
1900 		if (offset_end != slot)
1901 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
1902 							  offset_end);
1903 
1904 		b_node->slot[++b_end] = wr_mas->content;
1905 		if (!wr_mas->content)
1906 			b_node->gap[b_end] = piv - mas->last + 1;
1907 		b_node->pivot[b_end] = piv;
1908 	}
1909 
1910 	slot = offset_end + 1;
1911 	if (slot > mas->end)
1912 		goto b_end;
1913 
1914 	/* Copy end data to the end of the node. */
1915 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
1916 	b_node->b_end--;
1917 	return;
1918 
1919 b_end:
1920 	b_node->b_end = b_end;
1921 }
1922 
1923 /*
1924  * mas_prev_sibling() - Find the previous node with the same parent.
1925  * @mas: the maple state
1926  *
1927  * Return: True if there is a previous sibling, false otherwise.
1928  */
mas_prev_sibling(struct ma_state * mas)1929 static inline bool mas_prev_sibling(struct ma_state *mas)
1930 {
1931 	unsigned int p_slot = mte_parent_slot(mas->node);
1932 
1933 	/* For root node, p_slot is set to 0 by mte_parent_slot(). */
1934 	if (!p_slot)
1935 		return false;
1936 
1937 	mas_ascend(mas);
1938 	mas->offset = p_slot - 1;
1939 	mas_descend(mas);
1940 	return true;
1941 }
1942 
1943 /*
1944  * mas_next_sibling() - Find the next node with the same parent.
1945  * @mas: the maple state
1946  *
1947  * Return: true if there is a next sibling, false otherwise.
1948  */
mas_next_sibling(struct ma_state * mas)1949 static inline bool mas_next_sibling(struct ma_state *mas)
1950 {
1951 	MA_STATE(parent, mas->tree, mas->index, mas->last);
1952 
1953 	if (mte_is_root(mas->node))
1954 		return false;
1955 
1956 	parent = *mas;
1957 	mas_ascend(&parent);
1958 	parent.offset = mte_parent_slot(mas->node) + 1;
1959 	if (parent.offset > mas_data_end(&parent))
1960 		return false;
1961 
1962 	*mas = parent;
1963 	mas_descend(mas);
1964 	return true;
1965 }
1966 
1967 /*
1968  * mas_node_or_none() - Set the enode and state.
1969  * @mas: the maple state
1970  * @enode: The encoded maple node.
1971  *
1972  * Set the node to the enode and the status.
1973  */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)1974 static inline void mas_node_or_none(struct ma_state *mas,
1975 		struct maple_enode *enode)
1976 {
1977 	if (enode) {
1978 		mas->node = enode;
1979 		mas->status = ma_active;
1980 	} else {
1981 		mas->node = NULL;
1982 		mas->status = ma_none;
1983 	}
1984 }
1985 
1986 /*
1987  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
1988  *                      If @mas->index cannot be found within the containing
1989  *                      node, we traverse to the last entry in the node.
1990  * @wr_mas: The maple write state
1991  *
1992  * Uses mas_slot_locked() and does not need to worry about dead nodes.
1993  */
mas_wr_node_walk(struct ma_wr_state * wr_mas)1994 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
1995 {
1996 	struct ma_state *mas = wr_mas->mas;
1997 	unsigned char count, offset;
1998 
1999 	if (unlikely(ma_is_dense(wr_mas->type))) {
2000 		wr_mas->r_max = wr_mas->r_min = mas->index;
2001 		mas->offset = mas->index = mas->min;
2002 		return;
2003 	}
2004 
2005 	wr_mas->node = mas_mn(wr_mas->mas);
2006 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2007 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2008 				       wr_mas->pivots, mas->max);
2009 	offset = mas->offset;
2010 
2011 	while (offset < count && mas->index > wr_mas->pivots[offset])
2012 		offset++;
2013 
2014 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2015 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2016 	wr_mas->offset_end = mas->offset = offset;
2017 }
2018 
2019 /*
2020  * mast_rebalance_next() - Rebalance against the next node
2021  * @mast: The maple subtree state
2022  */
mast_rebalance_next(struct maple_subtree_state * mast)2023 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2024 {
2025 	unsigned char b_end = mast->bn->b_end;
2026 
2027 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2028 		   mast->bn, b_end);
2029 	mast->orig_r->last = mast->orig_r->max;
2030 }
2031 
2032 /*
2033  * mast_rebalance_prev() - Rebalance against the previous node
2034  * @mast: The maple subtree state
2035  */
mast_rebalance_prev(struct maple_subtree_state * mast)2036 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2037 {
2038 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2039 	unsigned char b_end = mast->bn->b_end;
2040 
2041 	mab_shift_right(mast->bn, end);
2042 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2043 	mast->l->min = mast->orig_l->min;
2044 	mast->orig_l->index = mast->orig_l->min;
2045 	mast->bn->b_end = end + b_end;
2046 	mast->l->offset += end;
2047 }
2048 
2049 /*
2050  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2051  * the node to the right.  Checking the nodes to the right then the left at each
2052  * level upwards until root is reached.
2053  * Data is copied into the @mast->bn.
2054  * @mast: The maple_subtree_state.
2055  */
2056 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2057 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2058 {
2059 	struct ma_state r_tmp = *mast->orig_r;
2060 	struct ma_state l_tmp = *mast->orig_l;
2061 	unsigned char depth = 0;
2062 
2063 	do {
2064 		mas_ascend(mast->orig_r);
2065 		mas_ascend(mast->orig_l);
2066 		depth++;
2067 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2068 			mast->orig_r->offset++;
2069 			do {
2070 				mas_descend(mast->orig_r);
2071 				mast->orig_r->offset = 0;
2072 			} while (--depth);
2073 
2074 			mast_rebalance_next(mast);
2075 			*mast->orig_l = l_tmp;
2076 			return true;
2077 		} else if (mast->orig_l->offset != 0) {
2078 			mast->orig_l->offset--;
2079 			do {
2080 				mas_descend(mast->orig_l);
2081 				mast->orig_l->offset =
2082 					mas_data_end(mast->orig_l);
2083 			} while (--depth);
2084 
2085 			mast_rebalance_prev(mast);
2086 			*mast->orig_r = r_tmp;
2087 			return true;
2088 		}
2089 	} while (!mte_is_root(mast->orig_r->node));
2090 
2091 	*mast->orig_r = r_tmp;
2092 	*mast->orig_l = l_tmp;
2093 	return false;
2094 }
2095 
2096 /*
2097  * mast_ascend() - Ascend the original left and right maple states.
2098  * @mast: the maple subtree state.
2099  *
2100  * Ascend the original left and right sides.  Set the offsets to point to the
2101  * data already in the new tree (@mast->l and @mast->r).
2102  */
mast_ascend(struct maple_subtree_state * mast)2103 static inline void mast_ascend(struct maple_subtree_state *mast)
2104 {
2105 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2106 	mas_ascend(mast->orig_l);
2107 	mas_ascend(mast->orig_r);
2108 
2109 	mast->orig_r->offset = 0;
2110 	mast->orig_r->index = mast->r->max;
2111 	/* last should be larger than or equal to index */
2112 	if (mast->orig_r->last < mast->orig_r->index)
2113 		mast->orig_r->last = mast->orig_r->index;
2114 
2115 	wr_mas.type = mte_node_type(mast->orig_r->node);
2116 	mas_wr_node_walk(&wr_mas);
2117 	/* Set up the left side of things */
2118 	mast->orig_l->offset = 0;
2119 	mast->orig_l->index = mast->l->min;
2120 	wr_mas.mas = mast->orig_l;
2121 	wr_mas.type = mte_node_type(mast->orig_l->node);
2122 	mas_wr_node_walk(&wr_mas);
2123 
2124 	mast->bn->type = wr_mas.type;
2125 }
2126 
2127 /*
2128  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2129  * @mas: the maple state with the allocations.
2130  * @b_node: the maple_big_node with the type encoding.
2131  *
2132  * Use the node type from the maple_big_node to allocate a new node from the
2133  * ma_state.  This function exists mainly for code readability.
2134  *
2135  * Return: A new maple encoded node
2136  */
2137 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2138 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2139 {
2140 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2141 }
2142 
2143 /*
2144  * mas_mab_to_node() - Set up right and middle nodes
2145  *
2146  * @mas: the maple state that contains the allocations.
2147  * @b_node: the node which contains the data.
2148  * @left: The pointer which will have the left node
2149  * @right: The pointer which may have the right node
2150  * @middle: the pointer which may have the middle node (rare)
2151  * @mid_split: the split location for the middle node
2152  *
2153  * Return: the split of left.
2154  */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2155 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2156 	struct maple_big_node *b_node, struct maple_enode **left,
2157 	struct maple_enode **right, struct maple_enode **middle,
2158 	unsigned char *mid_split)
2159 {
2160 	unsigned char split = 0;
2161 	unsigned char slot_count = mt_slots[b_node->type];
2162 
2163 	*left = mas_new_ma_node(mas, b_node);
2164 	*right = NULL;
2165 	*middle = NULL;
2166 	*mid_split = 0;
2167 
2168 	if (b_node->b_end < slot_count) {
2169 		split = b_node->b_end;
2170 	} else {
2171 		split = mab_calc_split(mas, b_node, mid_split);
2172 		*right = mas_new_ma_node(mas, b_node);
2173 	}
2174 
2175 	if (*mid_split)
2176 		*middle = mas_new_ma_node(mas, b_node);
2177 
2178 	return split;
2179 
2180 }
2181 
2182 /*
2183  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2184  * pointer.
2185  * @b_node: the big node to add the entry
2186  * @mas: the maple state to get the pivot (mas->max)
2187  * @entry: the entry to add, if NULL nothing happens.
2188  */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2189 static inline void mab_set_b_end(struct maple_big_node *b_node,
2190 				 struct ma_state *mas,
2191 				 void *entry)
2192 {
2193 	if (!entry)
2194 		return;
2195 
2196 	b_node->slot[b_node->b_end] = entry;
2197 	if (mt_is_alloc(mas->tree))
2198 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2199 	b_node->pivot[b_node->b_end++] = mas->max;
2200 }
2201 
2202 /*
2203  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2204  * of @mas->node to either @left or @right, depending on @slot and @split
2205  *
2206  * @mas: the maple state with the node that needs a parent
2207  * @left: possible parent 1
2208  * @right: possible parent 2
2209  * @slot: the slot the mas->node was placed
2210  * @split: the split location between @left and @right
2211  */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2212 static inline void mas_set_split_parent(struct ma_state *mas,
2213 					struct maple_enode *left,
2214 					struct maple_enode *right,
2215 					unsigned char *slot, unsigned char split)
2216 {
2217 	if (mas_is_none(mas))
2218 		return;
2219 
2220 	if ((*slot) <= split)
2221 		mas_set_parent(mas, mas->node, left, *slot);
2222 	else if (right)
2223 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2224 
2225 	(*slot)++;
2226 }
2227 
2228 /*
2229  * mte_mid_split_check() - Check if the next node passes the mid-split
2230  * @l: Pointer to left encoded maple node.
2231  * @m: Pointer to middle encoded maple node.
2232  * @r: Pointer to right encoded maple node.
2233  * @slot: The offset
2234  * @split: The split location.
2235  * @mid_split: The middle split.
2236  */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2237 static inline void mte_mid_split_check(struct maple_enode **l,
2238 				       struct maple_enode **r,
2239 				       struct maple_enode *right,
2240 				       unsigned char slot,
2241 				       unsigned char *split,
2242 				       unsigned char mid_split)
2243 {
2244 	if (*r == right)
2245 		return;
2246 
2247 	if (slot < mid_split)
2248 		return;
2249 
2250 	*l = *r;
2251 	*r = right;
2252 	*split = mid_split;
2253 }
2254 
2255 /*
2256  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2257  * is taken from @mast->l.
2258  * @mast: the maple subtree state
2259  * @left: the left node
2260  * @right: the right node
2261  * @split: the split location.
2262  */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2263 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2264 					  struct maple_enode *left,
2265 					  struct maple_enode *middle,
2266 					  struct maple_enode *right,
2267 					  unsigned char split,
2268 					  unsigned char mid_split)
2269 {
2270 	unsigned char slot;
2271 	struct maple_enode *l = left;
2272 	struct maple_enode *r = right;
2273 
2274 	if (mas_is_none(mast->l))
2275 		return;
2276 
2277 	if (middle)
2278 		r = middle;
2279 
2280 	slot = mast->l->offset;
2281 
2282 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2283 	mas_set_split_parent(mast->l, l, r, &slot, split);
2284 
2285 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2286 	mas_set_split_parent(mast->m, l, r, &slot, split);
2287 
2288 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2289 	mas_set_split_parent(mast->r, l, r, &slot, split);
2290 }
2291 
2292 /*
2293  * mas_topiary_node() - Dispose of a single node
2294  * @mas: The maple state for pushing nodes
2295  * @in_rcu: If the tree is in rcu mode
2296  *
2297  * The node will either be RCU freed or pushed back on the maple state.
2298  */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2299 static inline void mas_topiary_node(struct ma_state *mas,
2300 		struct ma_state *tmp_mas, bool in_rcu)
2301 {
2302 	struct maple_node *tmp;
2303 	struct maple_enode *enode;
2304 
2305 	if (mas_is_none(tmp_mas))
2306 		return;
2307 
2308 	enode = tmp_mas->node;
2309 	tmp = mte_to_node(enode);
2310 	mte_set_node_dead(enode);
2311 	ma_free_rcu(tmp);
2312 }
2313 
2314 /*
2315  * mas_topiary_replace() - Replace the data with new data, then repair the
2316  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2317  * the dead subtrees and topiary the nodes that are no longer of use.
2318  *
2319  * The new tree will have up to three children with the correct parent.  Keep
2320  * track of the new entries as they need to be followed to find the next level
2321  * of new entries.
2322  *
2323  * The old tree will have up to three children with the old parent.  Keep track
2324  * of the old entries as they may have more nodes below replaced.  Nodes within
2325  * [index, last] are dead subtrees, others need to be freed and followed.
2326  *
2327  * @mas: The maple state pointing at the new data
2328  * @old_enode: The maple encoded node being replaced
2329  * @new_height: The new height of the tree as a result of the operation
2330  *
2331  */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2332 static inline void mas_topiary_replace(struct ma_state *mas,
2333 		struct maple_enode *old_enode, unsigned char new_height)
2334 {
2335 	struct ma_state tmp[3], tmp_next[3];
2336 	MA_TOPIARY(subtrees, mas->tree);
2337 	bool in_rcu;
2338 	int i, n;
2339 
2340 	/* Place data in tree & then mark node as old */
2341 	mas_put_in_tree(mas, old_enode, new_height);
2342 
2343 	/* Update the parent pointers in the tree */
2344 	tmp[0] = *mas;
2345 	tmp[0].offset = 0;
2346 	tmp[1].status = ma_none;
2347 	tmp[2].status = ma_none;
2348 	while (!mte_is_leaf(tmp[0].node)) {
2349 		n = 0;
2350 		for (i = 0; i < 3; i++) {
2351 			if (mas_is_none(&tmp[i]))
2352 				continue;
2353 
2354 			while (n < 3) {
2355 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2356 					break;
2357 				n++;
2358 			}
2359 
2360 			mas_adopt_children(&tmp[i], tmp[i].node);
2361 		}
2362 
2363 		if (MAS_WARN_ON(mas, n == 0))
2364 			break;
2365 
2366 		while (n < 3)
2367 			tmp_next[n++].status = ma_none;
2368 
2369 		for (i = 0; i < 3; i++)
2370 			tmp[i] = tmp_next[i];
2371 	}
2372 
2373 	/* Collect the old nodes that need to be discarded */
2374 	if (mte_is_leaf(old_enode))
2375 		return mas_free(mas, old_enode);
2376 
2377 	tmp[0] = *mas;
2378 	tmp[0].offset = 0;
2379 	tmp[0].node = old_enode;
2380 	tmp[1].status = ma_none;
2381 	tmp[2].status = ma_none;
2382 	in_rcu = mt_in_rcu(mas->tree);
2383 	do {
2384 		n = 0;
2385 		for (i = 0; i < 3; i++) {
2386 			if (mas_is_none(&tmp[i]))
2387 				continue;
2388 
2389 			while (n < 3) {
2390 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2391 					break;
2392 
2393 				if ((tmp_next[n].min >= tmp_next->index) &&
2394 				    (tmp_next[n].max <= tmp_next->last)) {
2395 					mat_add(&subtrees, tmp_next[n].node);
2396 					tmp_next[n].status = ma_none;
2397 				} else {
2398 					n++;
2399 				}
2400 			}
2401 		}
2402 
2403 		if (MAS_WARN_ON(mas, n == 0))
2404 			break;
2405 
2406 		while (n < 3)
2407 			tmp_next[n++].status = ma_none;
2408 
2409 		for (i = 0; i < 3; i++) {
2410 			mas_topiary_node(mas, &tmp[i], in_rcu);
2411 			tmp[i] = tmp_next[i];
2412 		}
2413 	} while (!mte_is_leaf(tmp[0].node));
2414 
2415 	for (i = 0; i < 3; i++)
2416 		mas_topiary_node(mas, &tmp[i], in_rcu);
2417 
2418 	mas_mat_destroy(mas, &subtrees);
2419 }
2420 
2421 /*
2422  * mas_wmb_replace() - Write memory barrier and replace
2423  * @mas: The maple state
2424  * @old_enode: The old maple encoded node that is being replaced.
2425  * @new_height: The new height of the tree as a result of the operation
2426  *
2427  * Updates gap as necessary.
2428  */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2429 static inline void mas_wmb_replace(struct ma_state *mas,
2430 		struct maple_enode *old_enode, unsigned char new_height)
2431 {
2432 	/* Insert the new data in the tree */
2433 	mas_topiary_replace(mas, old_enode, new_height);
2434 
2435 	if (mte_is_leaf(mas->node))
2436 		return;
2437 
2438 	mas_update_gap(mas);
2439 }
2440 
2441 /*
2442  * mast_cp_to_nodes() - Copy data out to nodes.
2443  * @mast: The maple subtree state
2444  * @left: The left encoded maple node
2445  * @middle: The middle encoded maple node
2446  * @right: The right encoded maple node
2447  * @split: The location to split between left and (middle ? middle : right)
2448  * @mid_split: The location to split between middle and right.
2449  */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2450 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2451 	struct maple_enode *left, struct maple_enode *middle,
2452 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2453 {
2454 	bool new_lmax = true;
2455 
2456 	mas_node_or_none(mast->l, left);
2457 	mas_node_or_none(mast->m, middle);
2458 	mas_node_or_none(mast->r, right);
2459 
2460 	mast->l->min = mast->orig_l->min;
2461 	if (split == mast->bn->b_end) {
2462 		mast->l->max = mast->orig_r->max;
2463 		new_lmax = false;
2464 	}
2465 
2466 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2467 
2468 	if (middle) {
2469 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2470 		mast->m->min = mast->bn->pivot[split] + 1;
2471 		split = mid_split;
2472 	}
2473 
2474 	mast->r->max = mast->orig_r->max;
2475 	if (right) {
2476 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2477 		mast->r->min = mast->bn->pivot[split] + 1;
2478 	}
2479 }
2480 
2481 /*
2482  * mast_combine_cp_left - Copy in the original left side of the tree into the
2483  * combined data set in the maple subtree state big node.
2484  * @mast: The maple subtree state
2485  */
mast_combine_cp_left(struct maple_subtree_state * mast)2486 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2487 {
2488 	unsigned char l_slot = mast->orig_l->offset;
2489 
2490 	if (!l_slot)
2491 		return;
2492 
2493 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2494 }
2495 
2496 /*
2497  * mast_combine_cp_right: Copy in the original right side of the tree into the
2498  * combined data set in the maple subtree state big node.
2499  * @mast: The maple subtree state
2500  */
mast_combine_cp_right(struct maple_subtree_state * mast)2501 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2502 {
2503 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2504 		return;
2505 
2506 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2507 		   mt_slot_count(mast->orig_r->node), mast->bn,
2508 		   mast->bn->b_end);
2509 	mast->orig_r->last = mast->orig_r->max;
2510 }
2511 
2512 /*
2513  * mast_sufficient: Check if the maple subtree state has enough data in the big
2514  * node to create at least one sufficient node
2515  * @mast: the maple subtree state
2516  */
mast_sufficient(struct maple_subtree_state * mast)2517 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2518 {
2519 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2520 		return true;
2521 
2522 	return false;
2523 }
2524 
2525 /*
2526  * mast_overflow: Check if there is too much data in the subtree state for a
2527  * single node.
2528  * @mast: The maple subtree state
2529  */
mast_overflow(struct maple_subtree_state * mast)2530 static inline bool mast_overflow(struct maple_subtree_state *mast)
2531 {
2532 	if (mast->bn->b_end > mt_slot_count(mast->orig_l->node))
2533 		return true;
2534 
2535 	return false;
2536 }
2537 
mtree_range_walk(struct ma_state * mas)2538 static inline void *mtree_range_walk(struct ma_state *mas)
2539 {
2540 	unsigned long *pivots;
2541 	unsigned char offset;
2542 	struct maple_node *node;
2543 	struct maple_enode *next, *last;
2544 	enum maple_type type;
2545 	void __rcu **slots;
2546 	unsigned char end;
2547 	unsigned long max, min;
2548 	unsigned long prev_max, prev_min;
2549 
2550 	next = mas->node;
2551 	min = mas->min;
2552 	max = mas->max;
2553 	do {
2554 		last = next;
2555 		node = mte_to_node(next);
2556 		type = mte_node_type(next);
2557 		pivots = ma_pivots(node, type);
2558 		end = ma_data_end(node, type, pivots, max);
2559 		prev_min = min;
2560 		prev_max = max;
2561 		if (pivots[0] >= mas->index) {
2562 			offset = 0;
2563 			max = pivots[0];
2564 			goto next;
2565 		}
2566 
2567 		offset = 1;
2568 		while (offset < end) {
2569 			if (pivots[offset] >= mas->index) {
2570 				max = pivots[offset];
2571 				break;
2572 			}
2573 			offset++;
2574 		}
2575 
2576 		min = pivots[offset - 1] + 1;
2577 next:
2578 		slots = ma_slots(node, type);
2579 		next = mt_slot(mas->tree, slots, offset);
2580 		if (unlikely(ma_dead_node(node)))
2581 			goto dead_node;
2582 	} while (!ma_is_leaf(type));
2583 
2584 	mas->end = end;
2585 	mas->offset = offset;
2586 	mas->index = min;
2587 	mas->last = max;
2588 	mas->min = prev_min;
2589 	mas->max = prev_max;
2590 	mas->node = last;
2591 	return (void *)next;
2592 
2593 dead_node:
2594 	mas_reset(mas);
2595 	return NULL;
2596 }
2597 
2598 /*
2599  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2600  * @mas: The starting maple state
2601  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2602  * @count: The estimated count of iterations needed.
2603  *
2604  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2605  * is hit.  First @b_node is split into two entries which are inserted into the
2606  * next iteration of the loop.  @b_node is returned populated with the final
2607  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2608  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2609  * to account of what has been copied into the new sub-tree.  The update of
2610  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2611  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2612  * the new sub-tree in case the sub-tree becomes the full tree.
2613  */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2614 static void mas_spanning_rebalance(struct ma_state *mas,
2615 		struct maple_subtree_state *mast, unsigned char count)
2616 {
2617 	unsigned char split, mid_split;
2618 	unsigned char slot = 0;
2619 	unsigned char new_height = 0; /* used if node is a new root */
2620 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2621 	struct maple_enode *old_enode;
2622 
2623 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2624 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2625 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2626 
2627 	/*
2628 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2629 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2630 	 */
2631 	mast->l = &l_mas;
2632 	mast->m = &m_mas;
2633 	mast->r = &r_mas;
2634 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2635 
2636 	/* Check if this is not root and has sufficient data.  */
2637 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2638 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2639 		mast_spanning_rebalance(mast);
2640 
2641 	/*
2642 	 * Each level of the tree is examined and balanced, pushing data to the left or
2643 	 * right, or rebalancing against left or right nodes is employed to avoid
2644 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2645 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2646 	 * will have the incorrect parent pointers and currently be in two trees: the
2647 	 * original tree and the partially new tree.  To remedy the parent pointers in
2648 	 * the old tree, the new data is swapped into the active tree and a walk down
2649 	 * the tree is performed and the parent pointers are updated.
2650 	 * See mas_topiary_replace() for more information.
2651 	 */
2652 	while (count--) {
2653 		mast->bn->b_end--;
2654 		mast->bn->type = mte_node_type(mast->orig_l->node);
2655 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2656 					&mid_split);
2657 		mast_set_split_parents(mast, left, middle, right, split,
2658 				       mid_split);
2659 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2660 		new_height++;
2661 
2662 		/*
2663 		 * Copy data from next level in the tree to mast->bn from next
2664 		 * iteration
2665 		 */
2666 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2667 		mast->bn->type = mte_node_type(left);
2668 
2669 		/* Root already stored in l->node. */
2670 		if (mas_is_root_limits(mast->l))
2671 			goto new_root;
2672 
2673 		mast_ascend(mast);
2674 		mast_combine_cp_left(mast);
2675 		l_mas.offset = mast->bn->b_end;
2676 		mab_set_b_end(mast->bn, &l_mas, left);
2677 		mab_set_b_end(mast->bn, &m_mas, middle);
2678 		mab_set_b_end(mast->bn, &r_mas, right);
2679 
2680 		/* Copy anything necessary out of the right node. */
2681 		mast_combine_cp_right(mast);
2682 		mast->orig_l->last = mast->orig_l->max;
2683 
2684 		if (mast_sufficient(mast)) {
2685 			if (mast_overflow(mast))
2686 				continue;
2687 
2688 			if (mast->orig_l->node == mast->orig_r->node) {
2689 			       /*
2690 				* The data in b_node should be stored in one
2691 				* node and in the tree
2692 				*/
2693 				slot = mast->l->offset;
2694 				break;
2695 			}
2696 
2697 			continue;
2698 		}
2699 
2700 		/* May be a new root stored in mast->bn */
2701 		if (mas_is_root_limits(mast->orig_l))
2702 			break;
2703 
2704 		mast_spanning_rebalance(mast);
2705 
2706 		/* rebalancing from other nodes may require another loop. */
2707 		if (!count)
2708 			count++;
2709 	}
2710 
2711 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2712 				mte_node_type(mast->orig_l->node));
2713 
2714 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2715 	new_height++;
2716 	mas_set_parent(mas, left, l_mas.node, slot);
2717 	if (middle)
2718 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2719 
2720 	if (right)
2721 		mas_set_parent(mas, right, l_mas.node, ++slot);
2722 
2723 	if (mas_is_root_limits(mast->l)) {
2724 new_root:
2725 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2726 		while (!mte_is_root(mast->orig_l->node))
2727 			mast_ascend(mast);
2728 	} else {
2729 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2730 	}
2731 
2732 	old_enode = mast->orig_l->node;
2733 	mas->depth = l_mas.depth;
2734 	mas->node = l_mas.node;
2735 	mas->min = l_mas.min;
2736 	mas->max = l_mas.max;
2737 	mas->offset = l_mas.offset;
2738 	mas_wmb_replace(mas, old_enode, new_height);
2739 	mtree_range_walk(mas);
2740 	return;
2741 }
2742 
2743 /*
2744  * mas_rebalance() - Rebalance a given node.
2745  * @mas: The maple state
2746  * @b_node: The big maple node.
2747  *
2748  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2749  * Continue upwards until tree is sufficient.
2750  */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2751 static inline void mas_rebalance(struct ma_state *mas,
2752 				struct maple_big_node *b_node)
2753 {
2754 	char empty_count = mas_mt_height(mas);
2755 	struct maple_subtree_state mast;
2756 	unsigned char shift, b_end = ++b_node->b_end;
2757 
2758 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2759 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2760 
2761 	trace_ma_op(TP_FCT, mas);
2762 
2763 	/*
2764 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2765 	 * against the node to the right if it exists, otherwise the node to the
2766 	 * left of this node is rebalanced against this node.  If rebalancing
2767 	 * causes just one node to be produced instead of two, then the parent
2768 	 * is also examined and rebalanced if it is insufficient.  Every level
2769 	 * tries to combine the data in the same way.  If one node contains the
2770 	 * entire range of the tree, then that node is used as a new root node.
2771 	 */
2772 
2773 	mast.orig_l = &l_mas;
2774 	mast.orig_r = &r_mas;
2775 	mast.bn = b_node;
2776 	mast.bn->type = mte_node_type(mas->node);
2777 
2778 	l_mas = r_mas = *mas;
2779 
2780 	if (mas_next_sibling(&r_mas)) {
2781 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2782 		r_mas.last = r_mas.index = r_mas.max;
2783 	} else {
2784 		mas_prev_sibling(&l_mas);
2785 		shift = mas_data_end(&l_mas) + 1;
2786 		mab_shift_right(b_node, shift);
2787 		mas->offset += shift;
2788 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2789 		b_node->b_end = shift + b_end;
2790 		l_mas.index = l_mas.last = l_mas.min;
2791 	}
2792 
2793 	return mas_spanning_rebalance(mas, &mast, empty_count);
2794 }
2795 
2796 /*
2797  * mas_split_final_node() - Split the final node in a subtree operation.
2798  * @mast: the maple subtree state
2799  * @mas: The maple state
2800  */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas)2801 static inline void mas_split_final_node(struct maple_subtree_state *mast,
2802 					struct ma_state *mas)
2803 {
2804 	struct maple_enode *ancestor;
2805 
2806 	if (mte_is_root(mas->node)) {
2807 		if (mt_is_alloc(mas->tree))
2808 			mast->bn->type = maple_arange_64;
2809 		else
2810 			mast->bn->type = maple_range_64;
2811 	}
2812 	/*
2813 	 * Only a single node is used here, could be root.
2814 	 * The Big_node data should just fit in a single node.
2815 	 */
2816 	ancestor = mas_new_ma_node(mas, mast->bn);
2817 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
2818 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
2819 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
2820 
2821 	mast->l->node = ancestor;
2822 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
2823 	mas->offset = mast->bn->b_end - 1;
2824 }
2825 
2826 /*
2827  * mast_fill_bnode() - Copy data into the big node in the subtree state
2828  * @mast: The maple subtree state
2829  * @mas: the maple state
2830  * @skip: The number of entries to skip for new nodes insertion.
2831  */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)2832 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
2833 					 struct ma_state *mas,
2834 					 unsigned char skip)
2835 {
2836 	bool cp = true;
2837 	unsigned char split;
2838 
2839 	memset(mast->bn, 0, sizeof(struct maple_big_node));
2840 
2841 	if (mte_is_root(mas->node)) {
2842 		cp = false;
2843 	} else {
2844 		mas_ascend(mas);
2845 		mas->offset = mte_parent_slot(mas->node);
2846 	}
2847 
2848 	if (cp && mast->l->offset)
2849 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
2850 
2851 	split = mast->bn->b_end;
2852 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
2853 	mast->r->offset = mast->bn->b_end;
2854 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
2855 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
2856 		cp = false;
2857 
2858 	if (cp)
2859 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
2860 			   mast->bn, mast->bn->b_end);
2861 
2862 	mast->bn->b_end--;
2863 	mast->bn->type = mte_node_type(mas->node);
2864 }
2865 
2866 /*
2867  * mast_split_data() - Split the data in the subtree state big node into regular
2868  * nodes.
2869  * @mast: The maple subtree state
2870  * @mas: The maple state
2871  * @split: The location to split the big node
2872  */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)2873 static inline void mast_split_data(struct maple_subtree_state *mast,
2874 	   struct ma_state *mas, unsigned char split)
2875 {
2876 	unsigned char p_slot;
2877 
2878 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
2879 	mte_set_pivot(mast->r->node, 0, mast->r->max);
2880 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
2881 	mast->l->offset = mte_parent_slot(mas->node);
2882 	mast->l->max = mast->bn->pivot[split];
2883 	mast->r->min = mast->l->max + 1;
2884 	if (mte_is_leaf(mas->node))
2885 		return;
2886 
2887 	p_slot = mast->orig_l->offset;
2888 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
2889 			     &p_slot, split);
2890 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
2891 			     &p_slot, split);
2892 }
2893 
2894 /*
2895  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
2896  * data to the right or left node if there is room.
2897  * @mas: The maple state
2898  * @mast: The maple subtree state
2899  * @left: Push left or not.
2900  *
2901  * Keeping the height of the tree low means faster lookups.
2902  *
2903  * Return: True if pushed, false otherwise.
2904  */
mas_push_data(struct ma_state * mas,struct maple_subtree_state * mast,bool left)2905 static inline bool mas_push_data(struct ma_state *mas,
2906 				struct maple_subtree_state *mast, bool left)
2907 {
2908 	unsigned char slot_total = mast->bn->b_end;
2909 	unsigned char end, space, split;
2910 
2911 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
2912 	tmp_mas = *mas;
2913 	tmp_mas.depth = mast->l->depth;
2914 
2915 	if (left && !mas_prev_sibling(&tmp_mas))
2916 		return false;
2917 	else if (!left && !mas_next_sibling(&tmp_mas))
2918 		return false;
2919 
2920 	end = mas_data_end(&tmp_mas);
2921 	slot_total += end;
2922 	space = 2 * mt_slot_count(mas->node) - 2;
2923 	/* -2 instead of -1 to ensure there isn't a triple split */
2924 	if (ma_is_leaf(mast->bn->type))
2925 		space--;
2926 
2927 	if (mas->max == ULONG_MAX)
2928 		space--;
2929 
2930 	if (slot_total >= space)
2931 		return false;
2932 
2933 	/* Get the data; Fill mast->bn */
2934 	mast->bn->b_end++;
2935 	if (left) {
2936 		mab_shift_right(mast->bn, end + 1);
2937 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
2938 		mast->bn->b_end = slot_total + 1;
2939 	} else {
2940 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
2941 	}
2942 
2943 	/* Configure mast for splitting of mast->bn */
2944 	split = mt_slots[mast->bn->type] - 2;
2945 	if (left) {
2946 		/*  Switch mas to prev node  */
2947 		*mas = tmp_mas;
2948 		/* Start using mast->l for the left side. */
2949 		tmp_mas.node = mast->l->node;
2950 		*mast->l = tmp_mas;
2951 	} else {
2952 		tmp_mas.node = mast->r->node;
2953 		*mast->r = tmp_mas;
2954 		split = slot_total - split;
2955 	}
2956 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
2957 	/* Update parent slot for split calculation. */
2958 	if (left)
2959 		mast->orig_l->offset += end + 1;
2960 
2961 	mast_split_data(mast, mas, split);
2962 	mast_fill_bnode(mast, mas, 2);
2963 	mas_split_final_node(mast, mas);
2964 	return true;
2965 }
2966 
2967 /*
2968  * mas_split() - Split data that is too big for one node into two.
2969  * @mas: The maple state
2970  * @b_node: The maple big node
2971  */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)2972 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
2973 {
2974 	struct maple_subtree_state mast;
2975 	int height = 0;
2976 	unsigned int orig_height = mas_mt_height(mas);
2977 	unsigned char mid_split, split = 0;
2978 	struct maple_enode *old;
2979 
2980 	/*
2981 	 * Splitting is handled differently from any other B-tree; the Maple
2982 	 * Tree splits upwards.  Splitting up means that the split operation
2983 	 * occurs when the walk of the tree hits the leaves and not on the way
2984 	 * down.  The reason for splitting up is that it is impossible to know
2985 	 * how much space will be needed until the leaf is (or leaves are)
2986 	 * reached.  Since overwriting data is allowed and a range could
2987 	 * overwrite more than one range or result in changing one entry into 3
2988 	 * entries, it is impossible to know if a split is required until the
2989 	 * data is examined.
2990 	 *
2991 	 * Splitting is a balancing act between keeping allocations to a minimum
2992 	 * and avoiding a 'jitter' event where a tree is expanded to make room
2993 	 * for an entry followed by a contraction when the entry is removed.  To
2994 	 * accomplish the balance, there are empty slots remaining in both left
2995 	 * and right nodes after a split.
2996 	 */
2997 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2998 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2999 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3000 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3001 
3002 	trace_ma_op(TP_FCT, mas);
3003 
3004 	mast.l = &l_mas;
3005 	mast.r = &r_mas;
3006 	mast.orig_l = &prev_l_mas;
3007 	mast.orig_r = &prev_r_mas;
3008 	mast.bn = b_node;
3009 
3010 	while (height++ <= orig_height) {
3011 		if (mt_slots[b_node->type] > b_node->b_end) {
3012 			mas_split_final_node(&mast, mas);
3013 			break;
3014 		}
3015 
3016 		l_mas = r_mas = *mas;
3017 		l_mas.node = mas_new_ma_node(mas, b_node);
3018 		r_mas.node = mas_new_ma_node(mas, b_node);
3019 		/*
3020 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3021 		 * left or right node has space to spare.  This is referred to as "pushing left"
3022 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3023 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3024 		 * is a significant savings.
3025 		 */
3026 		/* Try to push left. */
3027 		if (mas_push_data(mas, &mast, true)) {
3028 			height++;
3029 			break;
3030 		}
3031 		/* Try to push right. */
3032 		if (mas_push_data(mas, &mast, false)) {
3033 			height++;
3034 			break;
3035 		}
3036 
3037 		split = mab_calc_split(mas, b_node, &mid_split);
3038 		mast_split_data(&mast, mas, split);
3039 		/*
3040 		 * Usually correct, mab_mas_cp in the above call overwrites
3041 		 * r->max.
3042 		 */
3043 		mast.r->max = mas->max;
3044 		mast_fill_bnode(&mast, mas, 1);
3045 		prev_l_mas = *mast.l;
3046 		prev_r_mas = *mast.r;
3047 	}
3048 
3049 	/* Set the original node as dead */
3050 	old = mas->node;
3051 	mas->node = l_mas.node;
3052 	mas_wmb_replace(mas, old, height);
3053 	mtree_range_walk(mas);
3054 	return;
3055 }
3056 
3057 /*
3058  * mas_commit_b_node() - Commit the big node into the tree.
3059  * @wr_mas: The maple write state
3060  * @b_node: The maple big node
3061  */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3062 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3063 			    struct maple_big_node *b_node)
3064 {
3065 	enum store_type type = wr_mas->mas->store_type;
3066 
3067 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3068 
3069 	if (type == wr_rebalance)
3070 		return mas_rebalance(wr_mas->mas, b_node);
3071 
3072 	return mas_split(wr_mas->mas, b_node);
3073 }
3074 
3075 /*
3076  * mas_root_expand() - Expand a root to a node
3077  * @mas: The maple state
3078  * @entry: The entry to store into the tree
3079  */
mas_root_expand(struct ma_state * mas,void * entry)3080 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3081 {
3082 	void *contents = mas_root_locked(mas);
3083 	enum maple_type type = maple_leaf_64;
3084 	struct maple_node *node;
3085 	void __rcu **slots;
3086 	unsigned long *pivots;
3087 	int slot = 0;
3088 
3089 	node = mas_pop_node(mas);
3090 	pivots = ma_pivots(node, type);
3091 	slots = ma_slots(node, type);
3092 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3093 	mas->node = mt_mk_node(node, type);
3094 	mas->status = ma_active;
3095 
3096 	if (mas->index) {
3097 		if (contents) {
3098 			rcu_assign_pointer(slots[slot], contents);
3099 			if (likely(mas->index > 1))
3100 				slot++;
3101 		}
3102 		pivots[slot++] = mas->index - 1;
3103 	}
3104 
3105 	rcu_assign_pointer(slots[slot], entry);
3106 	mas->offset = slot;
3107 	pivots[slot] = mas->last;
3108 	if (mas->last != ULONG_MAX)
3109 		pivots[++slot] = ULONG_MAX;
3110 
3111 	mt_set_height(mas->tree, 1);
3112 	ma_set_meta(node, maple_leaf_64, 0, slot);
3113 	/* swap the new root into the tree */
3114 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3115 	return;
3116 }
3117 
3118 /*
3119  * mas_store_root() - Storing value into root.
3120  * @mas: The maple state
3121  * @entry: The entry to store.
3122  *
3123  * There is no root node now and we are storing a value into the root - this
3124  * function either assigns the pointer or expands into a node.
3125  */
mas_store_root(struct ma_state * mas,void * entry)3126 static inline void mas_store_root(struct ma_state *mas, void *entry)
3127 {
3128 	if (!entry) {
3129 		if (!mas->index)
3130 			rcu_assign_pointer(mas->tree->ma_root, NULL);
3131 	} else if (likely((mas->last != 0) || (mas->index != 0)))
3132 		mas_root_expand(mas, entry);
3133 	else if (((unsigned long) (entry) & 3) == 2)
3134 		mas_root_expand(mas, entry);
3135 	else {
3136 		rcu_assign_pointer(mas->tree->ma_root, entry);
3137 		mas->status = ma_start;
3138 	}
3139 }
3140 
3141 /*
3142  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3143  * spans the node.
3144  * @wr_mas: The maple write state
3145  *
3146  * Spanning writes are writes that start in one node and end in another OR if
3147  * the write of a %NULL will cause the node to end with a %NULL.
3148  *
3149  * Return: True if this is a spanning write, false otherwise.
3150  */
mas_is_span_wr(struct ma_wr_state * wr_mas)3151 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3152 {
3153 	unsigned long max = wr_mas->r_max;
3154 	unsigned long last = wr_mas->mas->last;
3155 	enum maple_type type = wr_mas->type;
3156 	void *entry = wr_mas->entry;
3157 
3158 	/* Contained in this pivot, fast path */
3159 	if (last < max)
3160 		return false;
3161 
3162 	if (ma_is_leaf(type)) {
3163 		max = wr_mas->mas->max;
3164 		if (last < max)
3165 			return false;
3166 	}
3167 
3168 	if (last == max) {
3169 		/*
3170 		 * The last entry of leaf node cannot be NULL unless it is the
3171 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3172 		 */
3173 		if (entry || last == ULONG_MAX)
3174 			return false;
3175 	}
3176 
3177 	trace_ma_write(TP_FCT, wr_mas->mas, wr_mas->r_max, entry);
3178 	return true;
3179 }
3180 
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3181 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3182 {
3183 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3184 	mas_wr_node_walk(wr_mas);
3185 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3186 }
3187 
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3188 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3189 {
3190 	wr_mas->mas->max = wr_mas->r_max;
3191 	wr_mas->mas->min = wr_mas->r_min;
3192 	wr_mas->mas->node = wr_mas->content;
3193 	wr_mas->mas->offset = 0;
3194 	wr_mas->mas->depth++;
3195 }
3196 /*
3197  * mas_wr_walk() - Walk the tree for a write.
3198  * @wr_mas: The maple write state
3199  *
3200  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3201  *
3202  * Return: True if it's contained in a node, false on spanning write.
3203  */
mas_wr_walk(struct ma_wr_state * wr_mas)3204 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3205 {
3206 	struct ma_state *mas = wr_mas->mas;
3207 
3208 	while (true) {
3209 		mas_wr_walk_descend(wr_mas);
3210 		if (unlikely(mas_is_span_wr(wr_mas)))
3211 			return false;
3212 
3213 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3214 						  mas->offset);
3215 		if (ma_is_leaf(wr_mas->type))
3216 			return true;
3217 
3218 		if (mas->end < mt_slots[wr_mas->type] - 1)
3219 			wr_mas->vacant_height = mas->depth + 1;
3220 
3221 		if (ma_is_root(mas_mn(mas))) {
3222 			/* root needs more than 2 entries to be sufficient + 1 */
3223 			if (mas->end > 2)
3224 				wr_mas->sufficient_height = 1;
3225 		} else if (mas->end > mt_min_slots[wr_mas->type] + 1)
3226 			wr_mas->sufficient_height = mas->depth + 1;
3227 
3228 		mas_wr_walk_traverse(wr_mas);
3229 	}
3230 
3231 	return true;
3232 }
3233 
mas_wr_walk_index(struct ma_wr_state * wr_mas)3234 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3235 {
3236 	struct ma_state *mas = wr_mas->mas;
3237 
3238 	while (true) {
3239 		mas_wr_walk_descend(wr_mas);
3240 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3241 						  mas->offset);
3242 		if (ma_is_leaf(wr_mas->type))
3243 			return;
3244 		mas_wr_walk_traverse(wr_mas);
3245 	}
3246 }
3247 /*
3248  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3249  * @l_wr_mas: The left maple write state
3250  * @r_wr_mas: The right maple write state
3251  */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3252 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3253 					    struct ma_wr_state *r_wr_mas)
3254 {
3255 	struct ma_state *r_mas = r_wr_mas->mas;
3256 	struct ma_state *l_mas = l_wr_mas->mas;
3257 	unsigned char l_slot;
3258 
3259 	l_slot = l_mas->offset;
3260 	if (!l_wr_mas->content)
3261 		l_mas->index = l_wr_mas->r_min;
3262 
3263 	if ((l_mas->index == l_wr_mas->r_min) &&
3264 		 (l_slot &&
3265 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3266 		if (l_slot > 1)
3267 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3268 		else
3269 			l_mas->index = l_mas->min;
3270 
3271 		l_mas->offset = l_slot - 1;
3272 	}
3273 
3274 	if (!r_wr_mas->content) {
3275 		if (r_mas->last < r_wr_mas->r_max)
3276 			r_mas->last = r_wr_mas->r_max;
3277 		r_mas->offset++;
3278 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3279 	    (r_mas->last < r_mas->max) &&
3280 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3281 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3282 					     r_wr_mas->type, r_mas->offset + 1);
3283 		r_mas->offset++;
3284 	}
3285 }
3286 
mas_state_walk(struct ma_state * mas)3287 static inline void *mas_state_walk(struct ma_state *mas)
3288 {
3289 	void *entry;
3290 
3291 	entry = mas_start(mas);
3292 	if (mas_is_none(mas))
3293 		return NULL;
3294 
3295 	if (mas_is_ptr(mas))
3296 		return entry;
3297 
3298 	return mtree_range_walk(mas);
3299 }
3300 
3301 /*
3302  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3303  * to date.
3304  *
3305  * @mas: The maple state.
3306  *
3307  * Note: Leaves mas in undesirable state.
3308  * Return: The entry for @mas->index or %NULL on dead node.
3309  */
mtree_lookup_walk(struct ma_state * mas)3310 static inline void *mtree_lookup_walk(struct ma_state *mas)
3311 {
3312 	unsigned long *pivots;
3313 	unsigned char offset;
3314 	struct maple_node *node;
3315 	struct maple_enode *next;
3316 	enum maple_type type;
3317 	void __rcu **slots;
3318 	unsigned char end;
3319 
3320 	next = mas->node;
3321 	do {
3322 		node = mte_to_node(next);
3323 		type = mte_node_type(next);
3324 		pivots = ma_pivots(node, type);
3325 		end = mt_pivots[type];
3326 		offset = 0;
3327 		do {
3328 			if (pivots[offset] >= mas->index)
3329 				break;
3330 		} while (++offset < end);
3331 
3332 		slots = ma_slots(node, type);
3333 		next = mt_slot(mas->tree, slots, offset);
3334 		if (unlikely(ma_dead_node(node)))
3335 			goto dead_node;
3336 	} while (!ma_is_leaf(type));
3337 
3338 	return (void *)next;
3339 
3340 dead_node:
3341 	mas_reset(mas);
3342 	return NULL;
3343 }
3344 
3345 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3346 /*
3347  * mas_new_root() - Create a new root node that only contains the entry passed
3348  * in.
3349  * @mas: The maple state
3350  * @entry: The entry to store.
3351  *
3352  * Only valid when the index == 0 and the last == ULONG_MAX
3353  */
mas_new_root(struct ma_state * mas,void * entry)3354 static inline void mas_new_root(struct ma_state *mas, void *entry)
3355 {
3356 	struct maple_enode *root = mas_root_locked(mas);
3357 	enum maple_type type = maple_leaf_64;
3358 	struct maple_node *node;
3359 	void __rcu **slots;
3360 	unsigned long *pivots;
3361 
3362 	WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3363 
3364 	if (!entry) {
3365 		mt_set_height(mas->tree, 0);
3366 		rcu_assign_pointer(mas->tree->ma_root, entry);
3367 		mas->status = ma_start;
3368 		goto done;
3369 	}
3370 
3371 	node = mas_pop_node(mas);
3372 	pivots = ma_pivots(node, type);
3373 	slots = ma_slots(node, type);
3374 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3375 	mas->node = mt_mk_node(node, type);
3376 	mas->status = ma_active;
3377 	rcu_assign_pointer(slots[0], entry);
3378 	pivots[0] = mas->last;
3379 	mt_set_height(mas->tree, 1);
3380 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3381 
3382 done:
3383 	if (xa_is_node(root))
3384 		mte_destroy_walk(root, mas->tree);
3385 
3386 	return;
3387 }
3388 /*
3389  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3390  * and new nodes where necessary, then place the sub-tree in the actual tree.
3391  * Note that mas is expected to point to the node which caused the store to
3392  * span.
3393  * @wr_mas: The maple write state
3394  */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3395 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3396 {
3397 	struct maple_subtree_state mast;
3398 	struct maple_big_node b_node;
3399 	struct ma_state *mas;
3400 	unsigned char height;
3401 
3402 	/* Left and Right side of spanning store */
3403 	MA_STATE(l_mas, NULL, 0, 0);
3404 	MA_STATE(r_mas, NULL, 0, 0);
3405 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3406 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3407 
3408 	/*
3409 	 * A store operation that spans multiple nodes is called a spanning
3410 	 * store and is handled early in the store call stack by the function
3411 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3412 	 * state is duplicated.  The first maple state walks the left tree path
3413 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3414 	 * The data in the two nodes are combined into a single node, two nodes,
3415 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3416 	 * written to the last entry of a node is considered a spanning store as
3417 	 * a rebalance is required for the operation to complete and an overflow
3418 	 * of data may happen.
3419 	 */
3420 	mas = wr_mas->mas;
3421 	trace_ma_op(TP_FCT, mas);
3422 
3423 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3424 		return mas_new_root(mas, wr_mas->entry);
3425 	/*
3426 	 * Node rebalancing may occur due to this store, so there may be three new
3427 	 * entries per level plus a new root.
3428 	 */
3429 	height = mas_mt_height(mas);
3430 
3431 	/*
3432 	 * Set up right side.  Need to get to the next offset after the spanning
3433 	 * store to ensure it's not NULL and to combine both the next node and
3434 	 * the node with the start together.
3435 	 */
3436 	r_mas = *mas;
3437 	/* Avoid overflow, walk to next slot in the tree. */
3438 	if (r_mas.last + 1)
3439 		r_mas.last++;
3440 
3441 	r_mas.index = r_mas.last;
3442 	mas_wr_walk_index(&r_wr_mas);
3443 	r_mas.last = r_mas.index = mas->last;
3444 
3445 	/* Set up left side. */
3446 	l_mas = *mas;
3447 	mas_wr_walk_index(&l_wr_mas);
3448 
3449 	if (!wr_mas->entry) {
3450 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3451 		mas->offset = l_mas.offset;
3452 		mas->index = l_mas.index;
3453 		mas->last = l_mas.last = r_mas.last;
3454 	}
3455 
3456 	/* expanding NULLs may make this cover the entire range */
3457 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3458 		mas_set_range(mas, 0, ULONG_MAX);
3459 		return mas_new_root(mas, wr_mas->entry);
3460 	}
3461 
3462 	memset(&b_node, 0, sizeof(struct maple_big_node));
3463 	/* Copy l_mas and store the value in b_node. */
3464 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3465 	/* Copy r_mas into b_node if there is anything to copy. */
3466 	if (r_mas.max > r_mas.last)
3467 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3468 			   &b_node, b_node.b_end + 1);
3469 	else
3470 		b_node.b_end++;
3471 
3472 	/* Stop spanning searches by searching for just index. */
3473 	l_mas.index = l_mas.last = mas->index;
3474 
3475 	mast.bn = &b_node;
3476 	mast.orig_l = &l_mas;
3477 	mast.orig_r = &r_mas;
3478 	/* Combine l_mas and r_mas and split them up evenly again. */
3479 	return mas_spanning_rebalance(mas, &mast, height + 1);
3480 }
3481 
3482 /*
3483  * mas_wr_node_store() - Attempt to store the value in a node
3484  * @wr_mas: The maple write state
3485  *
3486  * Attempts to reuse the node, but may allocate.
3487  */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3488 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3489 				     unsigned char new_end)
3490 {
3491 	struct ma_state *mas = wr_mas->mas;
3492 	void __rcu **dst_slots;
3493 	unsigned long *dst_pivots;
3494 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3495 	struct maple_node reuse, *newnode;
3496 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3497 	bool in_rcu = mt_in_rcu(mas->tree);
3498 	unsigned char height = mas_mt_height(mas);
3499 
3500 	if (mas->last == wr_mas->end_piv)
3501 		offset_end++; /* don't copy this offset */
3502 
3503 	/* set up node. */
3504 	if (in_rcu) {
3505 		newnode = mas_pop_node(mas);
3506 	} else {
3507 		memset(&reuse, 0, sizeof(struct maple_node));
3508 		newnode = &reuse;
3509 	}
3510 
3511 	newnode->parent = mas_mn(mas)->parent;
3512 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3513 	dst_slots = ma_slots(newnode, wr_mas->type);
3514 	/* Copy from start to insert point */
3515 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3516 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3517 
3518 	/* Handle insert of new range starting after old range */
3519 	if (wr_mas->r_min < mas->index) {
3520 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3521 		dst_pivots[mas->offset++] = mas->index - 1;
3522 	}
3523 
3524 	/* Store the new entry and range end. */
3525 	if (mas->offset < node_pivots)
3526 		dst_pivots[mas->offset] = mas->last;
3527 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3528 
3529 	/*
3530 	 * this range wrote to the end of the node or it overwrote the rest of
3531 	 * the data
3532 	 */
3533 	if (offset_end > mas->end)
3534 		goto done;
3535 
3536 	dst_offset = mas->offset + 1;
3537 	/* Copy to the end of node if necessary. */
3538 	copy_size = mas->end - offset_end + 1;
3539 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3540 	       sizeof(void *) * copy_size);
3541 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3542 	       sizeof(unsigned long) * (copy_size - 1));
3543 
3544 	if (new_end < node_pivots)
3545 		dst_pivots[new_end] = mas->max;
3546 
3547 done:
3548 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3549 	if (in_rcu) {
3550 		struct maple_enode *old_enode = mas->node;
3551 
3552 		mas->node = mt_mk_node(newnode, wr_mas->type);
3553 		mas_replace_node(mas, old_enode, height);
3554 	} else {
3555 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3556 	}
3557 	trace_ma_write(TP_FCT, mas, 0, wr_mas->entry);
3558 	mas_update_gap(mas);
3559 	mas->end = new_end;
3560 	return;
3561 }
3562 
3563 /*
3564  * mas_wr_slot_store: Attempt to store a value in a slot.
3565  * @wr_mas: the maple write state
3566  */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3567 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3568 {
3569 	struct ma_state *mas = wr_mas->mas;
3570 	unsigned char offset = mas->offset;
3571 	void __rcu **slots = wr_mas->slots;
3572 	bool gap = false;
3573 
3574 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3575 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3576 
3577 	if (wr_mas->offset_end - offset == 1) {
3578 		if (mas->index == wr_mas->r_min) {
3579 			/* Overwriting the range and a part of the next one */
3580 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3581 			wr_mas->pivots[offset] = mas->last;
3582 		} else {
3583 			/* Overwriting a part of the range and the next one */
3584 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3585 			wr_mas->pivots[offset] = mas->index - 1;
3586 			mas->offset++; /* Keep mas accurate. */
3587 		}
3588 	} else {
3589 		WARN_ON_ONCE(mt_in_rcu(mas->tree));
3590 		/*
3591 		 * Expand the range, only partially overwriting the previous and
3592 		 * next ranges
3593 		 */
3594 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3595 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3596 		wr_mas->pivots[offset] = mas->index - 1;
3597 		wr_mas->pivots[offset + 1] = mas->last;
3598 		mas->offset++; /* Keep mas accurate. */
3599 	}
3600 
3601 	trace_ma_write(TP_FCT, mas, 0, wr_mas->entry);
3602 	/*
3603 	 * Only update gap when the new entry is empty or there is an empty
3604 	 * entry in the original two ranges.
3605 	 */
3606 	if (!wr_mas->entry || gap)
3607 		mas_update_gap(mas);
3608 
3609 	return;
3610 }
3611 
mas_wr_extend_null(struct ma_wr_state * wr_mas)3612 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3613 {
3614 	struct ma_state *mas = wr_mas->mas;
3615 
3616 	if (!wr_mas->slots[wr_mas->offset_end]) {
3617 		/* If this one is null, the next and prev are not */
3618 		mas->last = wr_mas->end_piv;
3619 	} else {
3620 		/* Check next slot(s) if we are overwriting the end */
3621 		if ((mas->last == wr_mas->end_piv) &&
3622 		    (mas->end != wr_mas->offset_end) &&
3623 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3624 			wr_mas->offset_end++;
3625 			if (wr_mas->offset_end == mas->end)
3626 				mas->last = mas->max;
3627 			else
3628 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3629 			wr_mas->end_piv = mas->last;
3630 		}
3631 	}
3632 
3633 	if (!wr_mas->content) {
3634 		/* If this one is null, the next and prev are not */
3635 		mas->index = wr_mas->r_min;
3636 	} else {
3637 		/* Check prev slot if we are overwriting the start */
3638 		if (mas->index == wr_mas->r_min && mas->offset &&
3639 		    !wr_mas->slots[mas->offset - 1]) {
3640 			mas->offset--;
3641 			wr_mas->r_min = mas->index =
3642 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3643 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3644 		}
3645 	}
3646 }
3647 
mas_wr_end_piv(struct ma_wr_state * wr_mas)3648 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3649 {
3650 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3651 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3652 		wr_mas->offset_end++;
3653 
3654 	if (wr_mas->offset_end < wr_mas->mas->end)
3655 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3656 	else
3657 		wr_mas->end_piv = wr_mas->mas->max;
3658 }
3659 
mas_wr_new_end(struct ma_wr_state * wr_mas)3660 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3661 {
3662 	struct ma_state *mas = wr_mas->mas;
3663 	unsigned char new_end = mas->end + 2;
3664 
3665 	new_end -= wr_mas->offset_end - mas->offset;
3666 	if (wr_mas->r_min == mas->index)
3667 		new_end--;
3668 
3669 	if (wr_mas->end_piv == mas->last)
3670 		new_end--;
3671 
3672 	return new_end;
3673 }
3674 
3675 /*
3676  * mas_wr_append: Attempt to append
3677  * @wr_mas: the maple write state
3678  * @new_end: The end of the node after the modification
3679  *
3680  * This is currently unsafe in rcu mode since the end of the node may be cached
3681  * by readers while the node contents may be updated which could result in
3682  * inaccurate information.
3683  */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)3684 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3685 		unsigned char new_end)
3686 {
3687 	struct ma_state *mas = wr_mas->mas;
3688 	void __rcu **slots;
3689 	unsigned char end = mas->end;
3690 
3691 	if (new_end < mt_pivots[wr_mas->type]) {
3692 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
3693 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
3694 	}
3695 
3696 	slots = wr_mas->slots;
3697 	if (new_end == end + 1) {
3698 		if (mas->last == wr_mas->r_max) {
3699 			/* Append to end of range */
3700 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
3701 			wr_mas->pivots[end] = mas->index - 1;
3702 			mas->offset = new_end;
3703 		} else {
3704 			/* Append to start of range */
3705 			rcu_assign_pointer(slots[new_end], wr_mas->content);
3706 			wr_mas->pivots[end] = mas->last;
3707 			rcu_assign_pointer(slots[end], wr_mas->entry);
3708 		}
3709 	} else {
3710 		/* Append to the range without touching any boundaries. */
3711 		rcu_assign_pointer(slots[new_end], wr_mas->content);
3712 		wr_mas->pivots[end + 1] = mas->last;
3713 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
3714 		wr_mas->pivots[end] = mas->index - 1;
3715 		mas->offset = end + 1;
3716 	}
3717 
3718 	if (!wr_mas->content || !wr_mas->entry)
3719 		mas_update_gap(mas);
3720 
3721 	mas->end = new_end;
3722 	trace_ma_write(TP_FCT, mas, new_end, wr_mas->entry);
3723 	return;
3724 }
3725 
3726 /*
3727  * mas_wr_bnode() - Slow path for a modification.
3728  * @wr_mas: The write maple state
3729  *
3730  * This is where split, rebalance end up.
3731  */
mas_wr_bnode(struct ma_wr_state * wr_mas)3732 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
3733 {
3734 	struct maple_big_node b_node;
3735 
3736 	trace_ma_write(TP_FCT, wr_mas->mas, 0, wr_mas->entry);
3737 	memset(&b_node, 0, sizeof(struct maple_big_node));
3738 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
3739 	mas_commit_b_node(wr_mas, &b_node);
3740 }
3741 
3742 /*
3743  * mas_wr_store_entry() - Internal call to store a value
3744  * @wr_mas: The maple write state
3745  */
mas_wr_store_entry(struct ma_wr_state * wr_mas)3746 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
3747 {
3748 	struct ma_state *mas = wr_mas->mas;
3749 	unsigned char new_end = mas_wr_new_end(wr_mas);
3750 
3751 	switch (mas->store_type) {
3752 	case wr_exact_fit:
3753 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
3754 		if (!!wr_mas->entry ^ !!wr_mas->content)
3755 			mas_update_gap(mas);
3756 		break;
3757 	case wr_append:
3758 		mas_wr_append(wr_mas, new_end);
3759 		break;
3760 	case wr_slot_store:
3761 		mas_wr_slot_store(wr_mas);
3762 		break;
3763 	case wr_node_store:
3764 		mas_wr_node_store(wr_mas, new_end);
3765 		break;
3766 	case wr_spanning_store:
3767 		mas_wr_spanning_store(wr_mas);
3768 		break;
3769 	case wr_split_store:
3770 	case wr_rebalance:
3771 		mas_wr_bnode(wr_mas);
3772 		break;
3773 	case wr_new_root:
3774 		mas_new_root(mas, wr_mas->entry);
3775 		break;
3776 	case wr_store_root:
3777 		mas_store_root(mas, wr_mas->entry);
3778 		break;
3779 	case wr_invalid:
3780 		MT_BUG_ON(mas->tree, 1);
3781 	}
3782 
3783 	return;
3784 }
3785 
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)3786 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
3787 {
3788 	struct ma_state *mas = wr_mas->mas;
3789 
3790 	if (!mas_is_active(mas)) {
3791 		if (mas_is_start(mas))
3792 			goto set_content;
3793 
3794 		if (unlikely(mas_is_paused(mas)))
3795 			goto reset;
3796 
3797 		if (unlikely(mas_is_none(mas)))
3798 			goto reset;
3799 
3800 		if (unlikely(mas_is_overflow(mas)))
3801 			goto reset;
3802 
3803 		if (unlikely(mas_is_underflow(mas)))
3804 			goto reset;
3805 	}
3806 
3807 	/*
3808 	 * A less strict version of mas_is_span_wr() where we allow spanning
3809 	 * writes within this node.  This is to stop partial walks in
3810 	 * mas_prealloc() from being reset.
3811 	 */
3812 	if (mas->last > mas->max)
3813 		goto reset;
3814 
3815 	if (wr_mas->entry)
3816 		goto set_content;
3817 
3818 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
3819 		goto reset;
3820 
3821 	goto set_content;
3822 
3823 reset:
3824 	mas_reset(mas);
3825 set_content:
3826 	wr_mas->content = mas_start(mas);
3827 }
3828 
3829 /**
3830  * mas_prealloc_calc() - Calculate number of nodes needed for a
3831  * given store oepration
3832  * @wr_mas: The maple write state
3833  * @entry: The entry to store into the tree
3834  *
3835  * Return: Number of nodes required for preallocation.
3836  */
mas_prealloc_calc(struct ma_wr_state * wr_mas,void * entry)3837 static inline void mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
3838 {
3839 	struct ma_state *mas = wr_mas->mas;
3840 	unsigned char height = mas_mt_height(mas);
3841 	int ret = height * 3 + 1;
3842 	unsigned char delta = height - wr_mas->vacant_height;
3843 
3844 	switch (mas->store_type) {
3845 	case wr_exact_fit:
3846 	case wr_append:
3847 	case wr_slot_store:
3848 		ret = 0;
3849 		break;
3850 	case wr_spanning_store:
3851 		if (wr_mas->sufficient_height < wr_mas->vacant_height)
3852 			ret = (height - wr_mas->sufficient_height) * 3 + 1;
3853 		else
3854 			ret = delta * 3 + 1;
3855 		break;
3856 	case wr_split_store:
3857 		ret = delta * 2 + 1;
3858 		break;
3859 	case wr_rebalance:
3860 		if (wr_mas->sufficient_height < wr_mas->vacant_height)
3861 			ret = (height - wr_mas->sufficient_height) * 2 + 1;
3862 		else
3863 			ret = delta * 2 + 1;
3864 		break;
3865 	case wr_node_store:
3866 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
3867 		break;
3868 	case wr_new_root:
3869 		ret = 1;
3870 		break;
3871 	case wr_store_root:
3872 		if (likely((mas->last != 0) || (mas->index != 0)))
3873 			ret = 1;
3874 		else if (((unsigned long) (entry) & 3) == 2)
3875 			ret = 1;
3876 		else
3877 			ret = 0;
3878 		break;
3879 	case wr_invalid:
3880 		WARN_ON_ONCE(1);
3881 	}
3882 
3883 	mas->node_request = ret;
3884 }
3885 
3886 /*
3887  * mas_wr_store_type() - Determine the store type for a given
3888  * store operation.
3889  * @wr_mas: The maple write state
3890  *
3891  * Return: the type of store needed for the operation
3892  */
mas_wr_store_type(struct ma_wr_state * wr_mas)3893 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
3894 {
3895 	struct ma_state *mas = wr_mas->mas;
3896 	unsigned char new_end;
3897 
3898 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
3899 		return wr_store_root;
3900 
3901 	if (unlikely(!mas_wr_walk(wr_mas)))
3902 		return wr_spanning_store;
3903 
3904 	/* At this point, we are at the leaf node that needs to be altered. */
3905 	mas_wr_end_piv(wr_mas);
3906 	if (!wr_mas->entry)
3907 		mas_wr_extend_null(wr_mas);
3908 
3909 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
3910 		return wr_exact_fit;
3911 
3912 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3913 		return wr_new_root;
3914 
3915 	new_end = mas_wr_new_end(wr_mas);
3916 	/* Potential spanning rebalance collapsing a node */
3917 	if (new_end < mt_min_slots[wr_mas->type]) {
3918 		if (!mte_is_root(mas->node))
3919 			return  wr_rebalance;
3920 		return wr_node_store;
3921 	}
3922 
3923 	if (new_end >= mt_slots[wr_mas->type])
3924 		return wr_split_store;
3925 
3926 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
3927 		return wr_append;
3928 
3929 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
3930 		(wr_mas->offset_end - mas->offset == 1)))
3931 		return wr_slot_store;
3932 
3933 	return wr_node_store;
3934 }
3935 
3936 /**
3937  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
3938  * @wr_mas: The maple write state
3939  * @entry: The entry that will be stored
3940  *
3941  */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)3942 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
3943 {
3944 	struct ma_state *mas = wr_mas->mas;
3945 
3946 	mas_wr_prealloc_setup(wr_mas);
3947 	mas->store_type = mas_wr_store_type(wr_mas);
3948 	mas_prealloc_calc(wr_mas, entry);
3949 	if (!mas->node_request)
3950 		return;
3951 
3952 	mas_alloc_nodes(mas, GFP_NOWAIT);
3953 }
3954 
3955 /**
3956  * mas_insert() - Internal call to insert a value
3957  * @mas: The maple state
3958  * @entry: The entry to store
3959  *
3960  * Return: %NULL or the contents that already exists at the requested index
3961  * otherwise.  The maple state needs to be checked for error conditions.
3962  */
mas_insert(struct ma_state * mas,void * entry)3963 static inline void *mas_insert(struct ma_state *mas, void *entry)
3964 {
3965 	MA_WR_STATE(wr_mas, mas, entry);
3966 
3967 	/*
3968 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
3969 	 * tree.  If the insert fits exactly into an existing gap with a value
3970 	 * of NULL, then the slot only needs to be written with the new value.
3971 	 * If the range being inserted is adjacent to another range, then only a
3972 	 * single pivot needs to be inserted (as well as writing the entry).  If
3973 	 * the new range is within a gap but does not touch any other ranges,
3974 	 * then two pivots need to be inserted: the start - 1, and the end.  As
3975 	 * usual, the entry must be written.  Most operations require a new node
3976 	 * to be allocated and replace an existing node to ensure RCU safety,
3977 	 * when in RCU mode.  The exception to requiring a newly allocated node
3978 	 * is when inserting at the end of a node (appending).  When done
3979 	 * carefully, appending can reuse the node in place.
3980 	 */
3981 	wr_mas.content = mas_start(mas);
3982 	if (wr_mas.content)
3983 		goto exists;
3984 
3985 	mas_wr_preallocate(&wr_mas, entry);
3986 	if (mas_is_err(mas))
3987 		return NULL;
3988 
3989 	/* spanning writes always overwrite something */
3990 	if (mas->store_type == wr_spanning_store)
3991 		goto exists;
3992 
3993 	/* At this point, we are at the leaf node that needs to be altered. */
3994 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
3995 		wr_mas.offset_end = mas->offset;
3996 		wr_mas.end_piv = wr_mas.r_max;
3997 
3998 		if (wr_mas.content || (mas->last > wr_mas.r_max))
3999 			goto exists;
4000 	}
4001 
4002 	mas_wr_store_entry(&wr_mas);
4003 	return wr_mas.content;
4004 
4005 exists:
4006 	mas_set_err(mas, -EEXIST);
4007 	return wr_mas.content;
4008 
4009 }
4010 
4011 /**
4012  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4013  * @mas: The maple state.
4014  * @startp: Pointer to ID.
4015  * @range_lo: Lower bound of range to search.
4016  * @range_hi: Upper bound of range to search.
4017  * @entry: The entry to store.
4018  * @next: Pointer to next ID to allocate.
4019  * @gfp: The GFP_FLAGS to use for allocations.
4020  *
4021  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4022  * allocation succeeded after wrapping, or -EBUSY if there are no
4023  * free entries.
4024  */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4025 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4026 		void *entry, unsigned long range_lo, unsigned long range_hi,
4027 		unsigned long *next, gfp_t gfp)
4028 {
4029 	unsigned long min = range_lo;
4030 	int ret = 0;
4031 
4032 	range_lo = max(min, *next);
4033 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4034 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4035 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4036 		ret = 1;
4037 	}
4038 	if (ret < 0 && range_lo > min) {
4039 		mas_reset(mas);
4040 		ret = mas_empty_area(mas, min, range_hi, 1);
4041 		if (ret == 0)
4042 			ret = 1;
4043 	}
4044 	if (ret < 0)
4045 		return ret;
4046 
4047 	do {
4048 		mas_insert(mas, entry);
4049 	} while (mas_nomem(mas, gfp));
4050 	if (mas_is_err(mas))
4051 		return xa_err(mas->node);
4052 
4053 	*startp = mas->index;
4054 	*next = *startp + 1;
4055 	if (*next == 0)
4056 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4057 
4058 	mas_destroy(mas);
4059 	return ret;
4060 }
4061 EXPORT_SYMBOL(mas_alloc_cyclic);
4062 
mas_rewalk(struct ma_state * mas,unsigned long index)4063 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4064 {
4065 retry:
4066 	mas_set(mas, index);
4067 	mas_state_walk(mas);
4068 	if (mas_is_start(mas))
4069 		goto retry;
4070 }
4071 
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4072 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4073 		struct maple_node *node, const unsigned long index)
4074 {
4075 	if (unlikely(ma_dead_node(node))) {
4076 		mas_rewalk(mas, index);
4077 		return true;
4078 	}
4079 	return false;
4080 }
4081 
4082 /*
4083  * mas_prev_node() - Find the prev non-null entry at the same level in the
4084  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4085  * ma_none.
4086  * @mas: The maple state
4087  * @min: The lower limit to search
4088  *
4089  * The prev node value will be mas->node[mas->offset] or the status will be
4090  * ma_none.
4091  * Return: 1 if the node is dead, 0 otherwise.
4092  */
mas_prev_node(struct ma_state * mas,unsigned long min)4093 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4094 {
4095 	enum maple_type mt;
4096 	int offset, level;
4097 	void __rcu **slots;
4098 	struct maple_node *node;
4099 	unsigned long *pivots;
4100 	unsigned long max;
4101 
4102 	node = mas_mn(mas);
4103 	if (!mas->min)
4104 		goto no_entry;
4105 
4106 	max = mas->min - 1;
4107 	if (max < min)
4108 		goto no_entry;
4109 
4110 	level = 0;
4111 	do {
4112 		if (ma_is_root(node))
4113 			goto no_entry;
4114 
4115 		/* Walk up. */
4116 		if (unlikely(mas_ascend(mas)))
4117 			return 1;
4118 		offset = mas->offset;
4119 		level++;
4120 		node = mas_mn(mas);
4121 	} while (!offset);
4122 
4123 	offset--;
4124 	mt = mte_node_type(mas->node);
4125 	while (level > 1) {
4126 		level--;
4127 		slots = ma_slots(node, mt);
4128 		mas->node = mas_slot(mas, slots, offset);
4129 		if (unlikely(ma_dead_node(node)))
4130 			return 1;
4131 
4132 		mt = mte_node_type(mas->node);
4133 		node = mas_mn(mas);
4134 		pivots = ma_pivots(node, mt);
4135 		offset = ma_data_end(node, mt, pivots, max);
4136 		if (unlikely(ma_dead_node(node)))
4137 			return 1;
4138 	}
4139 
4140 	slots = ma_slots(node, mt);
4141 	mas->node = mas_slot(mas, slots, offset);
4142 	pivots = ma_pivots(node, mt);
4143 	if (unlikely(ma_dead_node(node)))
4144 		return 1;
4145 
4146 	if (likely(offset))
4147 		mas->min = pivots[offset - 1] + 1;
4148 	mas->max = max;
4149 	mas->offset = mas_data_end(mas);
4150 	if (unlikely(mte_dead_node(mas->node)))
4151 		return 1;
4152 
4153 	mas->end = mas->offset;
4154 	return 0;
4155 
4156 no_entry:
4157 	if (unlikely(ma_dead_node(node)))
4158 		return 1;
4159 
4160 	mas->status = ma_underflow;
4161 	return 0;
4162 }
4163 
4164 /*
4165  * mas_prev_slot() - Get the entry in the previous slot
4166  *
4167  * @mas: The maple state
4168  * @min: The minimum starting range
4169  * @empty: Can be empty
4170  *
4171  * Return: The entry in the previous slot which is possibly NULL
4172  */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4173 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4174 {
4175 	void *entry;
4176 	void __rcu **slots;
4177 	unsigned long pivot;
4178 	enum maple_type type;
4179 	unsigned long *pivots;
4180 	struct maple_node *node;
4181 	unsigned long save_point = mas->index;
4182 
4183 retry:
4184 	node = mas_mn(mas);
4185 	type = mte_node_type(mas->node);
4186 	pivots = ma_pivots(node, type);
4187 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4188 		goto retry;
4189 
4190 	if (mas->min <= min) {
4191 		pivot = mas_safe_min(mas, pivots, mas->offset);
4192 
4193 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4194 			goto retry;
4195 
4196 		if (pivot <= min)
4197 			goto underflow;
4198 	}
4199 
4200 again:
4201 	if (likely(mas->offset)) {
4202 		mas->offset--;
4203 		mas->last = mas->index - 1;
4204 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4205 	} else  {
4206 		if (mas->index <= min)
4207 			goto underflow;
4208 
4209 		if (mas_prev_node(mas, min)) {
4210 			mas_rewalk(mas, save_point);
4211 			goto retry;
4212 		}
4213 
4214 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4215 			return NULL;
4216 
4217 		mas->last = mas->max;
4218 		node = mas_mn(mas);
4219 		type = mte_node_type(mas->node);
4220 		pivots = ma_pivots(node, type);
4221 		mas->index = pivots[mas->offset - 1] + 1;
4222 	}
4223 
4224 	slots = ma_slots(node, type);
4225 	entry = mas_slot(mas, slots, mas->offset);
4226 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4227 		goto retry;
4228 
4229 	if (likely(entry))
4230 		return entry;
4231 
4232 	if (!empty) {
4233 		if (mas->index <= min)
4234 			goto underflow;
4235 
4236 		goto again;
4237 	}
4238 
4239 	return entry;
4240 
4241 underflow:
4242 	mas->status = ma_underflow;
4243 	return NULL;
4244 }
4245 
4246 /*
4247  * mas_next_node() - Get the next node at the same level in the tree.
4248  * @mas: The maple state
4249  * @node: The maple node
4250  * @max: The maximum pivot value to check.
4251  *
4252  * The next value will be mas->node[mas->offset] or the status will have
4253  * overflowed.
4254  * Return: 1 on dead node, 0 otherwise.
4255  */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4256 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4257 		unsigned long max)
4258 {
4259 	unsigned long min;
4260 	unsigned long *pivots;
4261 	struct maple_enode *enode;
4262 	struct maple_node *tmp;
4263 	int level = 0;
4264 	unsigned char node_end;
4265 	enum maple_type mt;
4266 	void __rcu **slots;
4267 
4268 	if (mas->max >= max)
4269 		goto overflow;
4270 
4271 	min = mas->max + 1;
4272 	level = 0;
4273 	do {
4274 		if (ma_is_root(node))
4275 			goto overflow;
4276 
4277 		/* Walk up. */
4278 		if (unlikely(mas_ascend(mas)))
4279 			return 1;
4280 
4281 		level++;
4282 		node = mas_mn(mas);
4283 		mt = mte_node_type(mas->node);
4284 		pivots = ma_pivots(node, mt);
4285 		node_end = ma_data_end(node, mt, pivots, mas->max);
4286 		if (unlikely(ma_dead_node(node)))
4287 			return 1;
4288 
4289 	} while (unlikely(mas->offset == node_end));
4290 
4291 	slots = ma_slots(node, mt);
4292 	mas->offset++;
4293 	enode = mas_slot(mas, slots, mas->offset);
4294 	if (unlikely(ma_dead_node(node)))
4295 		return 1;
4296 
4297 	if (level > 1)
4298 		mas->offset = 0;
4299 
4300 	while (unlikely(level > 1)) {
4301 		level--;
4302 		mas->node = enode;
4303 		node = mas_mn(mas);
4304 		mt = mte_node_type(mas->node);
4305 		slots = ma_slots(node, mt);
4306 		enode = mas_slot(mas, slots, 0);
4307 		if (unlikely(ma_dead_node(node)))
4308 			return 1;
4309 	}
4310 
4311 	if (!mas->offset)
4312 		pivots = ma_pivots(node, mt);
4313 
4314 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4315 	tmp = mte_to_node(enode);
4316 	mt = mte_node_type(enode);
4317 	pivots = ma_pivots(tmp, mt);
4318 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4319 	if (unlikely(ma_dead_node(node)))
4320 		return 1;
4321 
4322 	mas->node = enode;
4323 	mas->min = min;
4324 	return 0;
4325 
4326 overflow:
4327 	if (unlikely(ma_dead_node(node)))
4328 		return 1;
4329 
4330 	mas->status = ma_overflow;
4331 	return 0;
4332 }
4333 
4334 /*
4335  * mas_next_slot() - Get the entry in the next slot
4336  *
4337  * @mas: The maple state
4338  * @max: The maximum starting range
4339  * @empty: Can be empty
4340  *
4341  * Return: The entry in the next slot which is possibly NULL
4342  */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4343 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4344 {
4345 	void __rcu **slots;
4346 	unsigned long *pivots;
4347 	unsigned long pivot;
4348 	enum maple_type type;
4349 	struct maple_node *node;
4350 	unsigned long save_point = mas->last;
4351 	void *entry;
4352 
4353 retry:
4354 	node = mas_mn(mas);
4355 	type = mte_node_type(mas->node);
4356 	pivots = ma_pivots(node, type);
4357 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4358 		goto retry;
4359 
4360 	if (mas->max >= max) {
4361 		if (likely(mas->offset < mas->end))
4362 			pivot = pivots[mas->offset];
4363 		else
4364 			pivot = mas->max;
4365 
4366 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4367 			goto retry;
4368 
4369 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4370 			mas->status = ma_overflow;
4371 			return NULL;
4372 		}
4373 	}
4374 
4375 	if (likely(mas->offset < mas->end)) {
4376 		mas->index = pivots[mas->offset] + 1;
4377 again:
4378 		mas->offset++;
4379 		if (likely(mas->offset < mas->end))
4380 			mas->last = pivots[mas->offset];
4381 		else
4382 			mas->last = mas->max;
4383 	} else  {
4384 		if (mas->last >= max) {
4385 			mas->status = ma_overflow;
4386 			return NULL;
4387 		}
4388 
4389 		if (mas_next_node(mas, node, max)) {
4390 			mas_rewalk(mas, save_point);
4391 			goto retry;
4392 		}
4393 
4394 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4395 			return NULL;
4396 
4397 		mas->offset = 0;
4398 		mas->index = mas->min;
4399 		node = mas_mn(mas);
4400 		type = mte_node_type(mas->node);
4401 		pivots = ma_pivots(node, type);
4402 		mas->last = pivots[0];
4403 	}
4404 
4405 	slots = ma_slots(node, type);
4406 	entry = mt_slot(mas->tree, slots, mas->offset);
4407 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4408 		goto retry;
4409 
4410 	if (entry)
4411 		return entry;
4412 
4413 
4414 	if (!empty) {
4415 		if (mas->last >= max) {
4416 			mas->status = ma_overflow;
4417 			return NULL;
4418 		}
4419 
4420 		mas->index = mas->last + 1;
4421 		goto again;
4422 	}
4423 
4424 	return entry;
4425 }
4426 
4427 /*
4428  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4429  * highest gap address of a given size in a given node and descend.
4430  * @mas: The maple state
4431  * @size: The needed size.
4432  *
4433  * Return: True if found in a leaf, false otherwise.
4434  *
4435  */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4436 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4437 		unsigned long *gap_min, unsigned long *gap_max)
4438 {
4439 	enum maple_type type = mte_node_type(mas->node);
4440 	struct maple_node *node = mas_mn(mas);
4441 	unsigned long *pivots, *gaps;
4442 	void __rcu **slots;
4443 	unsigned long gap = 0;
4444 	unsigned long max, min;
4445 	unsigned char offset;
4446 
4447 	if (unlikely(mas_is_err(mas)))
4448 		return true;
4449 
4450 	if (ma_is_dense(type)) {
4451 		/* dense nodes. */
4452 		mas->offset = (unsigned char)(mas->index - mas->min);
4453 		return true;
4454 	}
4455 
4456 	pivots = ma_pivots(node, type);
4457 	slots = ma_slots(node, type);
4458 	gaps = ma_gaps(node, type);
4459 	offset = mas->offset;
4460 	min = mas_safe_min(mas, pivots, offset);
4461 	/* Skip out of bounds. */
4462 	while (mas->last < min)
4463 		min = mas_safe_min(mas, pivots, --offset);
4464 
4465 	max = mas_safe_pivot(mas, pivots, offset, type);
4466 	while (mas->index <= max) {
4467 		gap = 0;
4468 		if (gaps)
4469 			gap = gaps[offset];
4470 		else if (!mas_slot(mas, slots, offset))
4471 			gap = max - min + 1;
4472 
4473 		if (gap) {
4474 			if ((size <= gap) && (size <= mas->last - min + 1))
4475 				break;
4476 
4477 			if (!gaps) {
4478 				/* Skip the next slot, it cannot be a gap. */
4479 				if (offset < 2)
4480 					goto ascend;
4481 
4482 				offset -= 2;
4483 				max = pivots[offset];
4484 				min = mas_safe_min(mas, pivots, offset);
4485 				continue;
4486 			}
4487 		}
4488 
4489 		if (!offset)
4490 			goto ascend;
4491 
4492 		offset--;
4493 		max = min - 1;
4494 		min = mas_safe_min(mas, pivots, offset);
4495 	}
4496 
4497 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4498 		goto no_space;
4499 
4500 	if (unlikely(ma_is_leaf(type))) {
4501 		mas->offset = offset;
4502 		*gap_min = min;
4503 		*gap_max = min + gap - 1;
4504 		return true;
4505 	}
4506 
4507 	/* descend, only happens under lock. */
4508 	mas->node = mas_slot(mas, slots, offset);
4509 	mas->min = min;
4510 	mas->max = max;
4511 	mas->offset = mas_data_end(mas);
4512 	return false;
4513 
4514 ascend:
4515 	if (!mte_is_root(mas->node))
4516 		return false;
4517 
4518 no_space:
4519 	mas_set_err(mas, -EBUSY);
4520 	return false;
4521 }
4522 
mas_anode_descend(struct ma_state * mas,unsigned long size)4523 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4524 {
4525 	enum maple_type type = mte_node_type(mas->node);
4526 	unsigned long pivot, min, gap = 0;
4527 	unsigned char offset, data_end;
4528 	unsigned long *gaps, *pivots;
4529 	void __rcu **slots;
4530 	struct maple_node *node;
4531 	bool found = false;
4532 
4533 	if (ma_is_dense(type)) {
4534 		mas->offset = (unsigned char)(mas->index - mas->min);
4535 		return true;
4536 	}
4537 
4538 	node = mas_mn(mas);
4539 	pivots = ma_pivots(node, type);
4540 	slots = ma_slots(node, type);
4541 	gaps = ma_gaps(node, type);
4542 	offset = mas->offset;
4543 	min = mas_safe_min(mas, pivots, offset);
4544 	data_end = ma_data_end(node, type, pivots, mas->max);
4545 	for (; offset <= data_end; offset++) {
4546 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4547 
4548 		/* Not within lower bounds */
4549 		if (mas->index > pivot)
4550 			goto next_slot;
4551 
4552 		if (gaps)
4553 			gap = gaps[offset];
4554 		else if (!mas_slot(mas, slots, offset))
4555 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4556 		else
4557 			goto next_slot;
4558 
4559 		if (gap >= size) {
4560 			if (ma_is_leaf(type)) {
4561 				found = true;
4562 				break;
4563 			}
4564 
4565 			mas->node = mas_slot(mas, slots, offset);
4566 			mas->min = min;
4567 			mas->max = pivot;
4568 			offset = 0;
4569 			break;
4570 		}
4571 next_slot:
4572 		min = pivot + 1;
4573 		if (mas->last <= pivot) {
4574 			mas_set_err(mas, -EBUSY);
4575 			return true;
4576 		}
4577 	}
4578 
4579 	mas->offset = offset;
4580 	return found;
4581 }
4582 
4583 /**
4584  * mas_walk() - Search for @mas->index in the tree.
4585  * @mas: The maple state.
4586  *
4587  * mas->index and mas->last will be set to the range if there is a value.  If
4588  * mas->status is ma_none, reset to ma_start
4589  *
4590  * Return: the entry at the location or %NULL.
4591  */
mas_walk(struct ma_state * mas)4592 void *mas_walk(struct ma_state *mas)
4593 {
4594 	void *entry;
4595 
4596 	if (!mas_is_active(mas) && !mas_is_start(mas))
4597 		mas->status = ma_start;
4598 retry:
4599 	entry = mas_state_walk(mas);
4600 	if (mas_is_start(mas)) {
4601 		goto retry;
4602 	} else if (mas_is_none(mas)) {
4603 		mas->index = 0;
4604 		mas->last = ULONG_MAX;
4605 	} else if (mas_is_ptr(mas)) {
4606 		if (!mas->index) {
4607 			mas->last = 0;
4608 			return entry;
4609 		}
4610 
4611 		mas->index = 1;
4612 		mas->last = ULONG_MAX;
4613 		mas->status = ma_none;
4614 		return NULL;
4615 	}
4616 
4617 	return entry;
4618 }
4619 EXPORT_SYMBOL_GPL(mas_walk);
4620 
mas_rewind_node(struct ma_state * mas)4621 static inline bool mas_rewind_node(struct ma_state *mas)
4622 {
4623 	unsigned char slot;
4624 
4625 	do {
4626 		if (mte_is_root(mas->node)) {
4627 			slot = mas->offset;
4628 			if (!slot)
4629 				return false;
4630 		} else {
4631 			mas_ascend(mas);
4632 			slot = mas->offset;
4633 		}
4634 	} while (!slot);
4635 
4636 	mas->offset = --slot;
4637 	return true;
4638 }
4639 
4640 /*
4641  * mas_skip_node() - Internal function.  Skip over a node.
4642  * @mas: The maple state.
4643  *
4644  * Return: true if there is another node, false otherwise.
4645  */
mas_skip_node(struct ma_state * mas)4646 static inline bool mas_skip_node(struct ma_state *mas)
4647 {
4648 	if (mas_is_err(mas))
4649 		return false;
4650 
4651 	do {
4652 		if (mte_is_root(mas->node)) {
4653 			if (mas->offset >= mas_data_end(mas)) {
4654 				mas_set_err(mas, -EBUSY);
4655 				return false;
4656 			}
4657 		} else {
4658 			mas_ascend(mas);
4659 		}
4660 	} while (mas->offset >= mas_data_end(mas));
4661 
4662 	mas->offset++;
4663 	return true;
4664 }
4665 
4666 /*
4667  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
4668  * @size
4669  * @mas: The maple state
4670  * @size: The size of the gap required
4671  *
4672  * Search between @mas->index and @mas->last for a gap of @size.
4673  */
mas_awalk(struct ma_state * mas,unsigned long size)4674 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4675 {
4676 	struct maple_enode *last = NULL;
4677 
4678 	/*
4679 	 * There are 4 options:
4680 	 * go to child (descend)
4681 	 * go back to parent (ascend)
4682 	 * no gap found. (return, error == -EBUSY)
4683 	 * found the gap. (return)
4684 	 */
4685 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4686 		if (last == mas->node)
4687 			mas_skip_node(mas);
4688 		else
4689 			last = mas->node;
4690 	}
4691 }
4692 
4693 /*
4694  * mas_sparse_area() - Internal function.  Return upper or lower limit when
4695  * searching for a gap in an empty tree.
4696  * @mas: The maple state
4697  * @min: the minimum range
4698  * @max: The maximum range
4699  * @size: The size of the gap
4700  * @fwd: Searching forward or back
4701  */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)4702 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
4703 				unsigned long max, unsigned long size, bool fwd)
4704 {
4705 	if (!unlikely(mas_is_none(mas)) && min == 0) {
4706 		min++;
4707 		/*
4708 		 * At this time, min is increased, we need to recheck whether
4709 		 * the size is satisfied.
4710 		 */
4711 		if (min > max || max - min + 1 < size)
4712 			return -EBUSY;
4713 	}
4714 	/* mas_is_ptr */
4715 
4716 	if (fwd) {
4717 		mas->index = min;
4718 		mas->last = min + size - 1;
4719 	} else {
4720 		mas->last = max;
4721 		mas->index = max - size + 1;
4722 	}
4723 	return 0;
4724 }
4725 
4726 /*
4727  * mas_empty_area() - Get the lowest address within the range that is
4728  * sufficient for the size requested.
4729  * @mas: The maple state
4730  * @min: The lowest value of the range
4731  * @max: The highest value of the range
4732  * @size: The size needed
4733  */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)4734 int mas_empty_area(struct ma_state *mas, unsigned long min,
4735 		unsigned long max, unsigned long size)
4736 {
4737 	unsigned char offset;
4738 	unsigned long *pivots;
4739 	enum maple_type mt;
4740 	struct maple_node *node;
4741 
4742 	if (min > max)
4743 		return -EINVAL;
4744 
4745 	if (size == 0 || max - min < size - 1)
4746 		return -EINVAL;
4747 
4748 	if (mas_is_start(mas))
4749 		mas_start(mas);
4750 	else if (mas->offset >= 2)
4751 		mas->offset -= 2;
4752 	else if (!mas_skip_node(mas))
4753 		return -EBUSY;
4754 
4755 	/* Empty set */
4756 	if (mas_is_none(mas) || mas_is_ptr(mas))
4757 		return mas_sparse_area(mas, min, max, size, true);
4758 
4759 	/* The start of the window can only be within these values */
4760 	mas->index = min;
4761 	mas->last = max;
4762 	mas_awalk(mas, size);
4763 
4764 	if (unlikely(mas_is_err(mas)))
4765 		return xa_err(mas->node);
4766 
4767 	offset = mas->offset;
4768 	node = mas_mn(mas);
4769 	mt = mte_node_type(mas->node);
4770 	pivots = ma_pivots(node, mt);
4771 	min = mas_safe_min(mas, pivots, offset);
4772 	if (mas->index < min)
4773 		mas->index = min;
4774 	mas->last = mas->index + size - 1;
4775 	mas->end = ma_data_end(node, mt, pivots, mas->max);
4776 	return 0;
4777 }
4778 EXPORT_SYMBOL_GPL(mas_empty_area);
4779 
4780 /*
4781  * mas_empty_area_rev() - Get the highest address within the range that is
4782  * sufficient for the size requested.
4783  * @mas: The maple state
4784  * @min: The lowest value of the range
4785  * @max: The highest value of the range
4786  * @size: The size needed
4787  */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)4788 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
4789 		unsigned long max, unsigned long size)
4790 {
4791 	struct maple_enode *last = mas->node;
4792 
4793 	if (min > max)
4794 		return -EINVAL;
4795 
4796 	if (size == 0 || max - min < size - 1)
4797 		return -EINVAL;
4798 
4799 	if (mas_is_start(mas))
4800 		mas_start(mas);
4801 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
4802 		return -EBUSY;
4803 
4804 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4805 		return mas_sparse_area(mas, min, max, size, false);
4806 	else if (mas->offset >= 2)
4807 		mas->offset -= 2;
4808 	else
4809 		mas->offset = mas_data_end(mas);
4810 
4811 
4812 	/* The start of the window can only be within these values. */
4813 	mas->index = min;
4814 	mas->last = max;
4815 
4816 	while (!mas_rev_awalk(mas, size, &min, &max)) {
4817 		if (last == mas->node) {
4818 			if (!mas_rewind_node(mas))
4819 				return -EBUSY;
4820 		} else {
4821 			last = mas->node;
4822 		}
4823 	}
4824 
4825 	if (mas_is_err(mas))
4826 		return xa_err(mas->node);
4827 
4828 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
4829 		return -EBUSY;
4830 
4831 	/* Trim the upper limit to the max. */
4832 	if (max < mas->last)
4833 		mas->last = max;
4834 
4835 	mas->index = mas->last - size + 1;
4836 	mas->end = mas_data_end(mas);
4837 	return 0;
4838 }
4839 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
4840 
4841 /*
4842  * mte_dead_leaves() - Mark all leaves of a node as dead.
4843  * @enode: the encoded node
4844  * @mt: the maple tree
4845  * @slots: Pointer to the slot array
4846  *
4847  * Must hold the write lock.
4848  *
4849  * Return: The number of leaves marked as dead.
4850  */
4851 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)4852 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
4853 			      void __rcu **slots)
4854 {
4855 	struct maple_node *node;
4856 	enum maple_type type;
4857 	void *entry;
4858 	int offset;
4859 
4860 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
4861 		entry = mt_slot(mt, slots, offset);
4862 		type = mte_node_type(entry);
4863 		node = mte_to_node(entry);
4864 		/* Use both node and type to catch LE & BE metadata */
4865 		if (!node || !type)
4866 			break;
4867 
4868 		mte_set_node_dead(entry);
4869 		node->type = type;
4870 		rcu_assign_pointer(slots[offset], node);
4871 	}
4872 
4873 	return offset;
4874 }
4875 
4876 /**
4877  * mte_dead_walk() - Walk down a dead tree to just before the leaves
4878  * @enode: The maple encoded node
4879  * @offset: The starting offset
4880  *
4881  * Note: This can only be used from the RCU callback context.
4882  */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)4883 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
4884 {
4885 	struct maple_node *node, *next;
4886 	void __rcu **slots = NULL;
4887 
4888 	next = mte_to_node(*enode);
4889 	do {
4890 		*enode = ma_enode_ptr(next);
4891 		node = mte_to_node(*enode);
4892 		slots = ma_slots(node, node->type);
4893 		next = rcu_dereference_protected(slots[offset],
4894 					lock_is_held(&rcu_callback_map));
4895 		offset = 0;
4896 	} while (!ma_is_leaf(next->type));
4897 
4898 	return slots;
4899 }
4900 
4901 /**
4902  * mt_free_walk() - Walk & free a tree in the RCU callback context
4903  * @head: The RCU head that's within the node.
4904  *
4905  * Note: This can only be used from the RCU callback context.
4906  */
mt_free_walk(struct rcu_head * head)4907 static void mt_free_walk(struct rcu_head *head)
4908 {
4909 	void __rcu **slots;
4910 	struct maple_node *node, *start;
4911 	struct maple_enode *enode;
4912 	unsigned char offset;
4913 	enum maple_type type;
4914 
4915 	node = container_of(head, struct maple_node, rcu);
4916 
4917 	if (ma_is_leaf(node->type))
4918 		goto free_leaf;
4919 
4920 	start = node;
4921 	enode = mt_mk_node(node, node->type);
4922 	slots = mte_dead_walk(&enode, 0);
4923 	node = mte_to_node(enode);
4924 	do {
4925 		mt_free_bulk(node->slot_len, slots);
4926 		offset = node->parent_slot + 1;
4927 		enode = node->piv_parent;
4928 		if (mte_to_node(enode) == node)
4929 			goto free_leaf;
4930 
4931 		type = mte_node_type(enode);
4932 		slots = ma_slots(mte_to_node(enode), type);
4933 		if ((offset < mt_slots[type]) &&
4934 		    rcu_dereference_protected(slots[offset],
4935 					      lock_is_held(&rcu_callback_map)))
4936 			slots = mte_dead_walk(&enode, offset);
4937 		node = mte_to_node(enode);
4938 	} while ((node != start) || (node->slot_len < offset));
4939 
4940 	slots = ma_slots(node, node->type);
4941 	mt_free_bulk(node->slot_len, slots);
4942 
4943 free_leaf:
4944 	kfree(node);
4945 }
4946 
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)4947 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
4948 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
4949 {
4950 	struct maple_node *node;
4951 	struct maple_enode *next = *enode;
4952 	void __rcu **slots = NULL;
4953 	enum maple_type type;
4954 	unsigned char next_offset = 0;
4955 
4956 	do {
4957 		*enode = next;
4958 		node = mte_to_node(*enode);
4959 		type = mte_node_type(*enode);
4960 		slots = ma_slots(node, type);
4961 		next = mt_slot_locked(mt, slots, next_offset);
4962 		if ((mte_dead_node(next)))
4963 			next = mt_slot_locked(mt, slots, ++next_offset);
4964 
4965 		mte_set_node_dead(*enode);
4966 		node->type = type;
4967 		node->piv_parent = prev;
4968 		node->parent_slot = offset;
4969 		offset = next_offset;
4970 		next_offset = 0;
4971 		prev = *enode;
4972 	} while (!mte_is_leaf(next));
4973 
4974 	return slots;
4975 }
4976 
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)4977 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
4978 			    bool free)
4979 {
4980 	void __rcu **slots;
4981 	struct maple_node *node = mte_to_node(enode);
4982 	struct maple_enode *start;
4983 
4984 	if (mte_is_leaf(enode)) {
4985 		mte_set_node_dead(enode);
4986 		node->type = mte_node_type(enode);
4987 		goto free_leaf;
4988 	}
4989 
4990 	start = enode;
4991 	slots = mte_destroy_descend(&enode, mt, start, 0);
4992 	node = mte_to_node(enode); // Updated in the above call.
4993 	do {
4994 		enum maple_type type;
4995 		unsigned char offset;
4996 		struct maple_enode *parent, *tmp;
4997 
4998 		node->slot_len = mte_dead_leaves(enode, mt, slots);
4999 		if (free)
5000 			mt_free_bulk(node->slot_len, slots);
5001 		offset = node->parent_slot + 1;
5002 		enode = node->piv_parent;
5003 		if (mte_to_node(enode) == node)
5004 			goto free_leaf;
5005 
5006 		type = mte_node_type(enode);
5007 		slots = ma_slots(mte_to_node(enode), type);
5008 		if (offset >= mt_slots[type])
5009 			goto next;
5010 
5011 		tmp = mt_slot_locked(mt, slots, offset);
5012 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5013 			parent = enode;
5014 			enode = tmp;
5015 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5016 		}
5017 next:
5018 		node = mte_to_node(enode);
5019 	} while (start != enode);
5020 
5021 	node = mte_to_node(enode);
5022 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5023 	if (free)
5024 		mt_free_bulk(node->slot_len, slots);
5025 
5026 free_leaf:
5027 	if (free)
5028 		kfree(node);
5029 	else
5030 		mt_clear_meta(mt, node, node->type);
5031 }
5032 
5033 /*
5034  * mte_destroy_walk() - Free a tree or sub-tree.
5035  * @enode: the encoded maple node (maple_enode) to start
5036  * @mt: the tree to free - needed for node types.
5037  *
5038  * Must hold the write lock.
5039  */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5040 static inline void mte_destroy_walk(struct maple_enode *enode,
5041 				    struct maple_tree *mt)
5042 {
5043 	struct maple_node *node = mte_to_node(enode);
5044 
5045 	if (mt_in_rcu(mt)) {
5046 		mt_destroy_walk(enode, mt, false);
5047 		call_rcu(&node->rcu, mt_free_walk);
5048 	} else {
5049 		mt_destroy_walk(enode, mt, true);
5050 	}
5051 }
5052 /* Interface */
5053 
5054 /**
5055  * mas_store() - Store an @entry.
5056  * @mas: The maple state.
5057  * @entry: The entry to store.
5058  *
5059  * The @mas->index and @mas->last is used to set the range for the @entry.
5060  *
5061  * Return: the first entry between mas->index and mas->last or %NULL.
5062  */
mas_store(struct ma_state * mas,void * entry)5063 void *mas_store(struct ma_state *mas, void *entry)
5064 {
5065 	MA_WR_STATE(wr_mas, mas, entry);
5066 
5067 	trace_ma_write(TP_FCT, mas, 0, entry);
5068 #ifdef CONFIG_DEBUG_MAPLE_TREE
5069 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5070 		pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5071 		       entry);
5072 
5073 	if (mas->index > mas->last) {
5074 		mas_set_err(mas, -EINVAL);
5075 		return NULL;
5076 	}
5077 
5078 #endif
5079 
5080 	/*
5081 	 * Storing is the same operation as insert with the added caveat that it
5082 	 * can overwrite entries.  Although this seems simple enough, one may
5083 	 * want to examine what happens if a single store operation was to
5084 	 * overwrite multiple entries within a self-balancing B-Tree.
5085 	 */
5086 	mas_wr_prealloc_setup(&wr_mas);
5087 	mas->store_type = mas_wr_store_type(&wr_mas);
5088 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5089 		mas_wr_store_entry(&wr_mas);
5090 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5091 		return wr_mas.content;
5092 	}
5093 
5094 	mas_prealloc_calc(&wr_mas, entry);
5095 	if (!mas->node_request)
5096 		goto store;
5097 
5098 	mas_alloc_nodes(mas, GFP_NOWAIT);
5099 	if (mas_is_err(mas))
5100 		return NULL;
5101 
5102 store:
5103 	mas_wr_store_entry(&wr_mas);
5104 	mas_destroy(mas);
5105 	return wr_mas.content;
5106 }
5107 EXPORT_SYMBOL_GPL(mas_store);
5108 
5109 /**
5110  * mas_store_gfp() - Store a value into the tree.
5111  * @mas: The maple state
5112  * @entry: The entry to store
5113  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5114  *
5115  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5116  * be allocated.
5117  */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5118 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5119 {
5120 	unsigned long index = mas->index;
5121 	unsigned long last = mas->last;
5122 	MA_WR_STATE(wr_mas, mas, entry);
5123 	int ret = 0;
5124 
5125 retry:
5126 	mas_wr_preallocate(&wr_mas, entry);
5127 	if (unlikely(mas_nomem(mas, gfp))) {
5128 		if (!entry)
5129 			__mas_set_range(mas, index, last);
5130 		goto retry;
5131 	}
5132 
5133 	if (mas_is_err(mas)) {
5134 		ret = xa_err(mas->node);
5135 		goto out;
5136 	}
5137 
5138 	mas_wr_store_entry(&wr_mas);
5139 out:
5140 	mas_destroy(mas);
5141 	return ret;
5142 }
5143 EXPORT_SYMBOL_GPL(mas_store_gfp);
5144 
5145 /**
5146  * mas_store_prealloc() - Store a value into the tree using memory
5147  * preallocated in the maple state.
5148  * @mas: The maple state
5149  * @entry: The entry to store.
5150  */
mas_store_prealloc(struct ma_state * mas,void * entry)5151 void mas_store_prealloc(struct ma_state *mas, void *entry)
5152 {
5153 	MA_WR_STATE(wr_mas, mas, entry);
5154 
5155 	if (mas->store_type == wr_store_root) {
5156 		mas_wr_prealloc_setup(&wr_mas);
5157 		goto store;
5158 	}
5159 
5160 	mas_wr_walk_descend(&wr_mas);
5161 	if (mas->store_type != wr_spanning_store) {
5162 		/* set wr_mas->content to current slot */
5163 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5164 		mas_wr_end_piv(&wr_mas);
5165 	}
5166 
5167 store:
5168 	trace_ma_write(TP_FCT, mas, 0, entry);
5169 	mas_wr_store_entry(&wr_mas);
5170 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5171 	mas_destroy(mas);
5172 }
5173 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5174 
5175 /**
5176  * mas_preallocate() - Preallocate enough nodes for a store operation
5177  * @mas: The maple state
5178  * @entry: The entry that will be stored
5179  * @gfp: The GFP_FLAGS to use for allocations.
5180  *
5181  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5182  */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5183 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5184 {
5185 	MA_WR_STATE(wr_mas, mas, entry);
5186 
5187 	mas_wr_prealloc_setup(&wr_mas);
5188 	mas->store_type = mas_wr_store_type(&wr_mas);
5189 	mas_prealloc_calc(&wr_mas, entry);
5190 	if (!mas->node_request)
5191 		goto set_flag;
5192 
5193 	mas->mas_flags &= ~MA_STATE_PREALLOC;
5194 	mas_alloc_nodes(mas, gfp);
5195 	if (mas_is_err(mas)) {
5196 		int ret = xa_err(mas->node);
5197 
5198 		mas->node_request = 0;
5199 		mas_destroy(mas);
5200 		mas_reset(mas);
5201 		return ret;
5202 	}
5203 
5204 set_flag:
5205 	mas->mas_flags |= MA_STATE_PREALLOC;
5206 	return 0;
5207 }
5208 EXPORT_SYMBOL_GPL(mas_preallocate);
5209 
5210 /*
5211  * mas_destroy() - destroy a maple state.
5212  * @mas: The maple state
5213  *
5214  * Upon completion, check the left-most node and rebalance against the node to
5215  * the right if necessary.  Frees any allocated nodes associated with this maple
5216  * state.
5217  */
mas_destroy(struct ma_state * mas)5218 void mas_destroy(struct ma_state *mas)
5219 {
5220 	mas->mas_flags &= ~MA_STATE_PREALLOC;
5221 	mas_empty_nodes(mas);
5222 }
5223 EXPORT_SYMBOL_GPL(mas_destroy);
5224 
mas_may_activate(struct ma_state * mas)5225 static void mas_may_activate(struct ma_state *mas)
5226 {
5227 	if (!mas->node) {
5228 		mas->status = ma_start;
5229 	} else if (mas->index > mas->max || mas->index < mas->min) {
5230 		mas->status = ma_start;
5231 	} else {
5232 		mas->status = ma_active;
5233 	}
5234 }
5235 
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5236 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5237 		void **entry)
5238 {
5239 	bool was_none = mas_is_none(mas);
5240 
5241 	if (unlikely(mas->last >= max)) {
5242 		mas->status = ma_overflow;
5243 		return true;
5244 	}
5245 
5246 	switch (mas->status) {
5247 	case ma_active:
5248 		return false;
5249 	case ma_none:
5250 		fallthrough;
5251 	case ma_pause:
5252 		mas->status = ma_start;
5253 		fallthrough;
5254 	case ma_start:
5255 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5256 		break;
5257 	case ma_overflow:
5258 		/* Overflowed before, but the max changed */
5259 		mas_may_activate(mas);
5260 		break;
5261 	case ma_underflow:
5262 		/* The user expects the mas to be one before where it is */
5263 		mas_may_activate(mas);
5264 		*entry = mas_walk(mas);
5265 		if (*entry)
5266 			return true;
5267 		break;
5268 	case ma_root:
5269 		break;
5270 	case ma_error:
5271 		return true;
5272 	}
5273 
5274 	if (likely(mas_is_active(mas))) /* Fast path */
5275 		return false;
5276 
5277 	if (mas_is_ptr(mas)) {
5278 		*entry = NULL;
5279 		if (was_none && mas->index == 0) {
5280 			mas->index = mas->last = 0;
5281 			return true;
5282 		}
5283 		mas->index = 1;
5284 		mas->last = ULONG_MAX;
5285 		mas->status = ma_none;
5286 		return true;
5287 	}
5288 
5289 	if (mas_is_none(mas))
5290 		return true;
5291 
5292 	return false;
5293 }
5294 
5295 /**
5296  * mas_next() - Get the next entry.
5297  * @mas: The maple state
5298  * @max: The maximum index to check.
5299  *
5300  * Returns the next entry after @mas->index.
5301  * Must hold rcu_read_lock or the write lock.
5302  * Can return the zero entry.
5303  *
5304  * Return: The next entry or %NULL
5305  */
mas_next(struct ma_state * mas,unsigned long max)5306 void *mas_next(struct ma_state *mas, unsigned long max)
5307 {
5308 	void *entry = NULL;
5309 
5310 	if (mas_next_setup(mas, max, &entry))
5311 		return entry;
5312 
5313 	/* Retries on dead nodes handled by mas_next_slot */
5314 	return mas_next_slot(mas, max, false);
5315 }
5316 EXPORT_SYMBOL_GPL(mas_next);
5317 
5318 /**
5319  * mas_next_range() - Advance the maple state to the next range
5320  * @mas: The maple state
5321  * @max: The maximum index to check.
5322  *
5323  * Sets @mas->index and @mas->last to the range.
5324  * Must hold rcu_read_lock or the write lock.
5325  * Can return the zero entry.
5326  *
5327  * Return: The next entry or %NULL
5328  */
mas_next_range(struct ma_state * mas,unsigned long max)5329 void *mas_next_range(struct ma_state *mas, unsigned long max)
5330 {
5331 	void *entry = NULL;
5332 
5333 	if (mas_next_setup(mas, max, &entry))
5334 		return entry;
5335 
5336 	/* Retries on dead nodes handled by mas_next_slot */
5337 	return mas_next_slot(mas, max, true);
5338 }
5339 EXPORT_SYMBOL_GPL(mas_next_range);
5340 
5341 /**
5342  * mt_next() - get the next value in the maple tree
5343  * @mt: The maple tree
5344  * @index: The start index
5345  * @max: The maximum index to check
5346  *
5347  * Takes RCU read lock internally to protect the search, which does not
5348  * protect the returned pointer after dropping RCU read lock.
5349  * See also: Documentation/core-api/maple_tree.rst
5350  *
5351  * Return: The entry higher than @index or %NULL if nothing is found.
5352  */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5353 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5354 {
5355 	void *entry = NULL;
5356 	MA_STATE(mas, mt, index, index);
5357 
5358 	rcu_read_lock();
5359 	entry = mas_next(&mas, max);
5360 	rcu_read_unlock();
5361 	return entry;
5362 }
5363 EXPORT_SYMBOL_GPL(mt_next);
5364 
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5365 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5366 {
5367 	if (unlikely(mas->index <= min)) {
5368 		mas->status = ma_underflow;
5369 		return true;
5370 	}
5371 
5372 	switch (mas->status) {
5373 	case ma_active:
5374 		return false;
5375 	case ma_start:
5376 		break;
5377 	case ma_none:
5378 		fallthrough;
5379 	case ma_pause:
5380 		mas->status = ma_start;
5381 		break;
5382 	case ma_underflow:
5383 		/* underflowed before but the min changed */
5384 		mas_may_activate(mas);
5385 		break;
5386 	case ma_overflow:
5387 		/* User expects mas to be one after where it is */
5388 		mas_may_activate(mas);
5389 		*entry = mas_walk(mas);
5390 		if (*entry)
5391 			return true;
5392 		break;
5393 	case ma_root:
5394 		break;
5395 	case ma_error:
5396 		return true;
5397 	}
5398 
5399 	if (mas_is_start(mas))
5400 		mas_walk(mas);
5401 
5402 	if (unlikely(mas_is_ptr(mas))) {
5403 		if (!mas->index) {
5404 			mas->status = ma_none;
5405 			return true;
5406 		}
5407 		mas->index = mas->last = 0;
5408 		*entry = mas_root(mas);
5409 		return true;
5410 	}
5411 
5412 	if (mas_is_none(mas)) {
5413 		if (mas->index) {
5414 			/* Walked to out-of-range pointer? */
5415 			mas->index = mas->last = 0;
5416 			mas->status = ma_root;
5417 			*entry = mas_root(mas);
5418 			return true;
5419 		}
5420 		return true;
5421 	}
5422 
5423 	return false;
5424 }
5425 
5426 /**
5427  * mas_prev() - Get the previous entry
5428  * @mas: The maple state
5429  * @min: The minimum value to check.
5430  *
5431  * Must hold rcu_read_lock or the write lock.
5432  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5433  * searchable nodes.
5434  *
5435  * Return: the previous value or %NULL.
5436  */
mas_prev(struct ma_state * mas,unsigned long min)5437 void *mas_prev(struct ma_state *mas, unsigned long min)
5438 {
5439 	void *entry = NULL;
5440 
5441 	if (mas_prev_setup(mas, min, &entry))
5442 		return entry;
5443 
5444 	return mas_prev_slot(mas, min, false);
5445 }
5446 EXPORT_SYMBOL_GPL(mas_prev);
5447 
5448 /**
5449  * mas_prev_range() - Advance to the previous range
5450  * @mas: The maple state
5451  * @min: The minimum value to check.
5452  *
5453  * Sets @mas->index and @mas->last to the range.
5454  * Must hold rcu_read_lock or the write lock.
5455  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5456  * searchable nodes.
5457  *
5458  * Return: the previous value or %NULL.
5459  */
mas_prev_range(struct ma_state * mas,unsigned long min)5460 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5461 {
5462 	void *entry = NULL;
5463 
5464 	if (mas_prev_setup(mas, min, &entry))
5465 		return entry;
5466 
5467 	return mas_prev_slot(mas, min, true);
5468 }
5469 EXPORT_SYMBOL_GPL(mas_prev_range);
5470 
5471 /**
5472  * mt_prev() - get the previous value in the maple tree
5473  * @mt: The maple tree
5474  * @index: The start index
5475  * @min: The minimum index to check
5476  *
5477  * Takes RCU read lock internally to protect the search, which does not
5478  * protect the returned pointer after dropping RCU read lock.
5479  * See also: Documentation/core-api/maple_tree.rst
5480  *
5481  * Return: The entry before @index or %NULL if nothing is found.
5482  */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5483 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5484 {
5485 	void *entry = NULL;
5486 	MA_STATE(mas, mt, index, index);
5487 
5488 	rcu_read_lock();
5489 	entry = mas_prev(&mas, min);
5490 	rcu_read_unlock();
5491 	return entry;
5492 }
5493 EXPORT_SYMBOL_GPL(mt_prev);
5494 
5495 /**
5496  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5497  * @mas: The maple state to pause
5498  *
5499  * Some users need to pause a walk and drop the lock they're holding in
5500  * order to yield to a higher priority thread or carry out an operation
5501  * on an entry.  Those users should call this function before they drop
5502  * the lock.  It resets the @mas to be suitable for the next iteration
5503  * of the loop after the user has reacquired the lock.  If most entries
5504  * found during a walk require you to call mas_pause(), the mt_for_each()
5505  * iterator may be more appropriate.
5506  *
5507  */
mas_pause(struct ma_state * mas)5508 void mas_pause(struct ma_state *mas)
5509 {
5510 	mas->status = ma_pause;
5511 	mas->node = NULL;
5512 }
5513 EXPORT_SYMBOL_GPL(mas_pause);
5514 
5515 /**
5516  * mas_find_setup() - Internal function to set up mas_find*().
5517  * @mas: The maple state
5518  * @max: The maximum index
5519  * @entry: Pointer to the entry
5520  *
5521  * Returns: True if entry is the answer, false otherwise.
5522  */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5523 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5524 {
5525 	switch (mas->status) {
5526 	case ma_active:
5527 		if (mas->last < max)
5528 			return false;
5529 		return true;
5530 	case ma_start:
5531 		break;
5532 	case ma_pause:
5533 		if (unlikely(mas->last >= max))
5534 			return true;
5535 
5536 		mas->index = ++mas->last;
5537 		mas->status = ma_start;
5538 		break;
5539 	case ma_none:
5540 		if (unlikely(mas->last >= max))
5541 			return true;
5542 
5543 		mas->index = mas->last;
5544 		mas->status = ma_start;
5545 		break;
5546 	case ma_underflow:
5547 		/* mas is pointing at entry before unable to go lower */
5548 		if (unlikely(mas->index >= max)) {
5549 			mas->status = ma_overflow;
5550 			return true;
5551 		}
5552 
5553 		mas_may_activate(mas);
5554 		*entry = mas_walk(mas);
5555 		if (*entry)
5556 			return true;
5557 		break;
5558 	case ma_overflow:
5559 		if (unlikely(mas->last >= max))
5560 			return true;
5561 
5562 		mas_may_activate(mas);
5563 		*entry = mas_walk(mas);
5564 		if (*entry)
5565 			return true;
5566 		break;
5567 	case ma_root:
5568 		break;
5569 	case ma_error:
5570 		return true;
5571 	}
5572 
5573 	if (mas_is_start(mas)) {
5574 		/* First run or continue */
5575 		if (mas->index > max)
5576 			return true;
5577 
5578 		*entry = mas_walk(mas);
5579 		if (*entry)
5580 			return true;
5581 
5582 	}
5583 
5584 	if (unlikely(mas_is_ptr(mas)))
5585 		goto ptr_out_of_range;
5586 
5587 	if (unlikely(mas_is_none(mas)))
5588 		return true;
5589 
5590 	if (mas->index == max)
5591 		return true;
5592 
5593 	return false;
5594 
5595 ptr_out_of_range:
5596 	mas->status = ma_none;
5597 	mas->index = 1;
5598 	mas->last = ULONG_MAX;
5599 	return true;
5600 }
5601 
5602 /**
5603  * mas_find() - On the first call, find the entry at or after mas->index up to
5604  * %max.  Otherwise, find the entry after mas->index.
5605  * @mas: The maple state
5606  * @max: The maximum value to check.
5607  *
5608  * Must hold rcu_read_lock or the write lock.
5609  * If an entry exists, last and index are updated accordingly.
5610  * May set @mas->status to ma_overflow.
5611  *
5612  * Return: The entry or %NULL.
5613  */
mas_find(struct ma_state * mas,unsigned long max)5614 void *mas_find(struct ma_state *mas, unsigned long max)
5615 {
5616 	void *entry = NULL;
5617 
5618 	if (mas_find_setup(mas, max, &entry))
5619 		return entry;
5620 
5621 	/* Retries on dead nodes handled by mas_next_slot */
5622 	entry = mas_next_slot(mas, max, false);
5623 	/* Ignore overflow */
5624 	mas->status = ma_active;
5625 	return entry;
5626 }
5627 EXPORT_SYMBOL_GPL(mas_find);
5628 
5629 /**
5630  * mas_find_range() - On the first call, find the entry at or after
5631  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
5632  * @mas: The maple state
5633  * @max: The maximum value to check.
5634  *
5635  * Must hold rcu_read_lock or the write lock.
5636  * If an entry exists, last and index are updated accordingly.
5637  * May set @mas->status to ma_overflow.
5638  *
5639  * Return: The entry or %NULL.
5640  */
mas_find_range(struct ma_state * mas,unsigned long max)5641 void *mas_find_range(struct ma_state *mas, unsigned long max)
5642 {
5643 	void *entry = NULL;
5644 
5645 	if (mas_find_setup(mas, max, &entry))
5646 		return entry;
5647 
5648 	/* Retries on dead nodes handled by mas_next_slot */
5649 	return mas_next_slot(mas, max, true);
5650 }
5651 EXPORT_SYMBOL_GPL(mas_find_range);
5652 
5653 /**
5654  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
5655  * @mas: The maple state
5656  * @min: The minimum index
5657  * @entry: Pointer to the entry
5658  *
5659  * Returns: True if entry is the answer, false otherwise.
5660  */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)5661 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
5662 		void **entry)
5663 {
5664 
5665 	switch (mas->status) {
5666 	case ma_active:
5667 		goto active;
5668 	case ma_start:
5669 		break;
5670 	case ma_pause:
5671 		if (unlikely(mas->index <= min)) {
5672 			mas->status = ma_underflow;
5673 			return true;
5674 		}
5675 		mas->last = --mas->index;
5676 		mas->status = ma_start;
5677 		break;
5678 	case ma_none:
5679 		if (mas->index <= min)
5680 			goto none;
5681 
5682 		mas->last = mas->index;
5683 		mas->status = ma_start;
5684 		break;
5685 	case ma_overflow: /* user expects the mas to be one after where it is */
5686 		if (unlikely(mas->index <= min)) {
5687 			mas->status = ma_underflow;
5688 			return true;
5689 		}
5690 
5691 		mas->status = ma_active;
5692 		break;
5693 	case ma_underflow: /* user expects the mas to be one before where it is */
5694 		if (unlikely(mas->index <= min))
5695 			return true;
5696 
5697 		mas->status = ma_active;
5698 		break;
5699 	case ma_root:
5700 		break;
5701 	case ma_error:
5702 		return true;
5703 	}
5704 
5705 	if (mas_is_start(mas)) {
5706 		/* First run or continue */
5707 		if (mas->index < min)
5708 			return true;
5709 
5710 		*entry = mas_walk(mas);
5711 		if (*entry)
5712 			return true;
5713 	}
5714 
5715 	if (unlikely(mas_is_ptr(mas)))
5716 		goto none;
5717 
5718 	if (unlikely(mas_is_none(mas))) {
5719 		/*
5720 		 * Walked to the location, and there was nothing so the previous
5721 		 * location is 0.
5722 		 */
5723 		mas->last = mas->index = 0;
5724 		mas->status = ma_root;
5725 		*entry = mas_root(mas);
5726 		return true;
5727 	}
5728 
5729 active:
5730 	if (mas->index < min)
5731 		return true;
5732 
5733 	return false;
5734 
5735 none:
5736 	mas->status = ma_none;
5737 	return true;
5738 }
5739 
5740 /**
5741  * mas_find_rev: On the first call, find the first non-null entry at or below
5742  * mas->index down to %min.  Otherwise find the first non-null entry below
5743  * mas->index down to %min.
5744  * @mas: The maple state
5745  * @min: The minimum value to check.
5746  *
5747  * Must hold rcu_read_lock or the write lock.
5748  * If an entry exists, last and index are updated accordingly.
5749  * May set @mas->status to ma_underflow.
5750  *
5751  * Return: The entry or %NULL.
5752  */
mas_find_rev(struct ma_state * mas,unsigned long min)5753 void *mas_find_rev(struct ma_state *mas, unsigned long min)
5754 {
5755 	void *entry = NULL;
5756 
5757 	if (mas_find_rev_setup(mas, min, &entry))
5758 		return entry;
5759 
5760 	/* Retries on dead nodes handled by mas_prev_slot */
5761 	return mas_prev_slot(mas, min, false);
5762 
5763 }
5764 EXPORT_SYMBOL_GPL(mas_find_rev);
5765 
5766 /**
5767  * mas_find_range_rev: On the first call, find the first non-null entry at or
5768  * below mas->index down to %min.  Otherwise advance to the previous slot after
5769  * mas->index down to %min.
5770  * @mas: The maple state
5771  * @min: The minimum value to check.
5772  *
5773  * Must hold rcu_read_lock or the write lock.
5774  * If an entry exists, last and index are updated accordingly.
5775  * May set @mas->status to ma_underflow.
5776  *
5777  * Return: The entry or %NULL.
5778  */
mas_find_range_rev(struct ma_state * mas,unsigned long min)5779 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
5780 {
5781 	void *entry = NULL;
5782 
5783 	if (mas_find_rev_setup(mas, min, &entry))
5784 		return entry;
5785 
5786 	/* Retries on dead nodes handled by mas_prev_slot */
5787 	return mas_prev_slot(mas, min, true);
5788 }
5789 EXPORT_SYMBOL_GPL(mas_find_range_rev);
5790 
5791 /**
5792  * mas_erase() - Find the range in which index resides and erase the entire
5793  * range.
5794  * @mas: The maple state
5795  *
5796  * Must hold the write lock.
5797  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
5798  * erases that range.
5799  *
5800  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
5801  */
mas_erase(struct ma_state * mas)5802 void *mas_erase(struct ma_state *mas)
5803 {
5804 	void *entry;
5805 	unsigned long index = mas->index;
5806 	MA_WR_STATE(wr_mas, mas, NULL);
5807 
5808 	if (!mas_is_active(mas) || !mas_is_start(mas))
5809 		mas->status = ma_start;
5810 
5811 write_retry:
5812 	entry = mas_state_walk(mas);
5813 	if (!entry)
5814 		return NULL;
5815 
5816 	/* Must reset to ensure spanning writes of last slot are detected */
5817 	mas_reset(mas);
5818 	mas_wr_preallocate(&wr_mas, NULL);
5819 	if (mas_nomem(mas, GFP_KERNEL)) {
5820 		/* in case the range of entry changed when unlocked */
5821 		mas->index = mas->last = index;
5822 		goto write_retry;
5823 	}
5824 
5825 	if (mas_is_err(mas))
5826 		goto out;
5827 
5828 	mas_wr_store_entry(&wr_mas);
5829 out:
5830 	mas_destroy(mas);
5831 	return entry;
5832 }
5833 EXPORT_SYMBOL_GPL(mas_erase);
5834 
5835 /**
5836  * mas_nomem() - Check if there was an error allocating and do the allocation
5837  * if necessary If there are allocations, then free them.
5838  * @mas: The maple state
5839  * @gfp: The GFP_FLAGS to use for allocations
5840  * Return: true on allocation, false otherwise.
5841  */
mas_nomem(struct ma_state * mas,gfp_t gfp)5842 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
5843 	__must_hold(mas->tree->ma_lock)
5844 {
5845 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
5846 		return false;
5847 
5848 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
5849 		mtree_unlock(mas->tree);
5850 		mas_alloc_nodes(mas, gfp);
5851 		mtree_lock(mas->tree);
5852 	} else {
5853 		mas_alloc_nodes(mas, gfp);
5854 	}
5855 
5856 	if (!mas->sheaf && !mas->alloc)
5857 		return false;
5858 
5859 	mas->status = ma_start;
5860 	return true;
5861 }
5862 
maple_tree_init(void)5863 void __init maple_tree_init(void)
5864 {
5865 	struct kmem_cache_args args = {
5866 		.align  = sizeof(struct maple_node),
5867 		.sheaf_capacity = 32,
5868 	};
5869 
5870 	maple_node_cache = kmem_cache_create("maple_node",
5871 			sizeof(struct maple_node), &args,
5872 			SLAB_PANIC);
5873 }
5874 
5875 /**
5876  * mtree_load() - Load a value stored in a maple tree
5877  * @mt: The maple tree
5878  * @index: The index to load
5879  *
5880  * Return: the entry or %NULL
5881  */
mtree_load(struct maple_tree * mt,unsigned long index)5882 void *mtree_load(struct maple_tree *mt, unsigned long index)
5883 {
5884 	MA_STATE(mas, mt, index, index);
5885 	void *entry;
5886 
5887 	trace_ma_read(TP_FCT, &mas);
5888 	rcu_read_lock();
5889 retry:
5890 	entry = mas_start(&mas);
5891 	if (unlikely(mas_is_none(&mas)))
5892 		goto unlock;
5893 
5894 	if (unlikely(mas_is_ptr(&mas))) {
5895 		if (index)
5896 			entry = NULL;
5897 
5898 		goto unlock;
5899 	}
5900 
5901 	entry = mtree_lookup_walk(&mas);
5902 	if (!entry && unlikely(mas_is_start(&mas)))
5903 		goto retry;
5904 unlock:
5905 	rcu_read_unlock();
5906 	if (xa_is_zero(entry))
5907 		return NULL;
5908 
5909 	return entry;
5910 }
5911 EXPORT_SYMBOL(mtree_load);
5912 
5913 /**
5914  * mtree_store_range() - Store an entry at a given range.
5915  * @mt: The maple tree
5916  * @index: The start of the range
5917  * @last: The end of the range
5918  * @entry: The entry to store
5919  * @gfp: The GFP_FLAGS to use for allocations
5920  *
5921  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5922  * be allocated.
5923  */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)5924 int mtree_store_range(struct maple_tree *mt, unsigned long index,
5925 		unsigned long last, void *entry, gfp_t gfp)
5926 {
5927 	MA_STATE(mas, mt, index, last);
5928 	int ret = 0;
5929 
5930 	trace_ma_write(TP_FCT, &mas, 0, entry);
5931 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
5932 		return -EINVAL;
5933 
5934 	if (index > last)
5935 		return -EINVAL;
5936 
5937 	mtree_lock(mt);
5938 	ret = mas_store_gfp(&mas, entry, gfp);
5939 	mtree_unlock(mt);
5940 
5941 	return ret;
5942 }
5943 EXPORT_SYMBOL(mtree_store_range);
5944 
5945 /**
5946  * mtree_store() - Store an entry at a given index.
5947  * @mt: The maple tree
5948  * @index: The index to store the value
5949  * @entry: The entry to store
5950  * @gfp: The GFP_FLAGS to use for allocations
5951  *
5952  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5953  * be allocated.
5954  */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)5955 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
5956 		 gfp_t gfp)
5957 {
5958 	return mtree_store_range(mt, index, index, entry, gfp);
5959 }
5960 EXPORT_SYMBOL(mtree_store);
5961 
5962 /**
5963  * mtree_insert_range() - Insert an entry at a given range if there is no value.
5964  * @mt: The maple tree
5965  * @first: The start of the range
5966  * @last: The end of the range
5967  * @entry: The entry to store
5968  * @gfp: The GFP_FLAGS to use for allocations.
5969  *
5970  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
5971  * request, -ENOMEM if memory could not be allocated.
5972  */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)5973 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
5974 		unsigned long last, void *entry, gfp_t gfp)
5975 {
5976 	MA_STATE(ms, mt, first, last);
5977 	int ret = 0;
5978 
5979 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
5980 		return -EINVAL;
5981 
5982 	if (first > last)
5983 		return -EINVAL;
5984 
5985 	mtree_lock(mt);
5986 retry:
5987 	mas_insert(&ms, entry);
5988 	if (mas_nomem(&ms, gfp))
5989 		goto retry;
5990 
5991 	mtree_unlock(mt);
5992 	if (mas_is_err(&ms))
5993 		ret = xa_err(ms.node);
5994 
5995 	mas_destroy(&ms);
5996 	return ret;
5997 }
5998 EXPORT_SYMBOL(mtree_insert_range);
5999 
6000 /**
6001  * mtree_insert() - Insert an entry at a given index if there is no value.
6002  * @mt: The maple tree
6003  * @index : The index to store the value
6004  * @entry: The entry to store
6005  * @gfp: The GFP_FLAGS to use for allocations.
6006  *
6007  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6008  * request, -ENOMEM if memory could not be allocated.
6009  */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6010 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6011 		 gfp_t gfp)
6012 {
6013 	return mtree_insert_range(mt, index, index, entry, gfp);
6014 }
6015 EXPORT_SYMBOL(mtree_insert);
6016 
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6017 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6018 		void *entry, unsigned long size, unsigned long min,
6019 		unsigned long max, gfp_t gfp)
6020 {
6021 	int ret = 0;
6022 
6023 	MA_STATE(mas, mt, 0, 0);
6024 	if (!mt_is_alloc(mt))
6025 		return -EINVAL;
6026 
6027 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6028 		return -EINVAL;
6029 
6030 	mtree_lock(mt);
6031 retry:
6032 	ret = mas_empty_area(&mas, min, max, size);
6033 	if (ret)
6034 		goto unlock;
6035 
6036 	mas_insert(&mas, entry);
6037 	/*
6038 	 * mas_nomem() may release the lock, causing the allocated area
6039 	 * to be unavailable, so try to allocate a free area again.
6040 	 */
6041 	if (mas_nomem(&mas, gfp))
6042 		goto retry;
6043 
6044 	if (mas_is_err(&mas))
6045 		ret = xa_err(mas.node);
6046 	else
6047 		*startp = mas.index;
6048 
6049 unlock:
6050 	mtree_unlock(mt);
6051 	mas_destroy(&mas);
6052 	return ret;
6053 }
6054 EXPORT_SYMBOL(mtree_alloc_range);
6055 
6056 /**
6057  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6058  * @mt: The maple tree.
6059  * @startp: Pointer to ID.
6060  * @range_lo: Lower bound of range to search.
6061  * @range_hi: Upper bound of range to search.
6062  * @entry: The entry to store.
6063  * @next: Pointer to next ID to allocate.
6064  * @gfp: The GFP_FLAGS to use for allocations.
6065  *
6066  * Finds an empty entry in @mt after @next, stores the new index into
6067  * the @id pointer, stores the entry at that index, then updates @next.
6068  *
6069  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6070  *
6071  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6072  * the @gfp flags permit.
6073  *
6074  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6075  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6076  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6077  * free entries.
6078  */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6079 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6080 		void *entry, unsigned long range_lo, unsigned long range_hi,
6081 		unsigned long *next, gfp_t gfp)
6082 {
6083 	int ret;
6084 
6085 	MA_STATE(mas, mt, 0, 0);
6086 
6087 	if (!mt_is_alloc(mt))
6088 		return -EINVAL;
6089 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6090 		return -EINVAL;
6091 	mtree_lock(mt);
6092 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6093 			       next, gfp);
6094 	mtree_unlock(mt);
6095 	return ret;
6096 }
6097 EXPORT_SYMBOL(mtree_alloc_cyclic);
6098 
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6099 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6100 		void *entry, unsigned long size, unsigned long min,
6101 		unsigned long max, gfp_t gfp)
6102 {
6103 	int ret = 0;
6104 
6105 	MA_STATE(mas, mt, 0, 0);
6106 	if (!mt_is_alloc(mt))
6107 		return -EINVAL;
6108 
6109 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6110 		return -EINVAL;
6111 
6112 	mtree_lock(mt);
6113 retry:
6114 	ret = mas_empty_area_rev(&mas, min, max, size);
6115 	if (ret)
6116 		goto unlock;
6117 
6118 	mas_insert(&mas, entry);
6119 	/*
6120 	 * mas_nomem() may release the lock, causing the allocated area
6121 	 * to be unavailable, so try to allocate a free area again.
6122 	 */
6123 	if (mas_nomem(&mas, gfp))
6124 		goto retry;
6125 
6126 	if (mas_is_err(&mas))
6127 		ret = xa_err(mas.node);
6128 	else
6129 		*startp = mas.index;
6130 
6131 unlock:
6132 	mtree_unlock(mt);
6133 	mas_destroy(&mas);
6134 	return ret;
6135 }
6136 EXPORT_SYMBOL(mtree_alloc_rrange);
6137 
6138 /**
6139  * mtree_erase() - Find an index and erase the entire range.
6140  * @mt: The maple tree
6141  * @index: The index to erase
6142  *
6143  * Erasing is the same as a walk to an entry then a store of a NULL to that
6144  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6145  *
6146  * Return: The entry stored at the @index or %NULL
6147  */
mtree_erase(struct maple_tree * mt,unsigned long index)6148 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6149 {
6150 	void *entry = NULL;
6151 
6152 	MA_STATE(mas, mt, index, index);
6153 	trace_ma_op(TP_FCT, &mas);
6154 
6155 	mtree_lock(mt);
6156 	entry = mas_erase(&mas);
6157 	mtree_unlock(mt);
6158 
6159 	return entry;
6160 }
6161 EXPORT_SYMBOL(mtree_erase);
6162 
6163 /*
6164  * mas_dup_free() - Free an incomplete duplication of a tree.
6165  * @mas: The maple state of a incomplete tree.
6166  *
6167  * The parameter @mas->node passed in indicates that the allocation failed on
6168  * this node. This function frees all nodes starting from @mas->node in the
6169  * reverse order of mas_dup_build(). There is no need to hold the source tree
6170  * lock at this time.
6171  */
mas_dup_free(struct ma_state * mas)6172 static void mas_dup_free(struct ma_state *mas)
6173 {
6174 	struct maple_node *node;
6175 	enum maple_type type;
6176 	void __rcu **slots;
6177 	unsigned char count, i;
6178 
6179 	/* Maybe the first node allocation failed. */
6180 	if (mas_is_none(mas))
6181 		return;
6182 
6183 	while (!mte_is_root(mas->node)) {
6184 		mas_ascend(mas);
6185 		if (mas->offset) {
6186 			mas->offset--;
6187 			do {
6188 				mas_descend(mas);
6189 				mas->offset = mas_data_end(mas);
6190 			} while (!mte_is_leaf(mas->node));
6191 
6192 			mas_ascend(mas);
6193 		}
6194 
6195 		node = mte_to_node(mas->node);
6196 		type = mte_node_type(mas->node);
6197 		slots = ma_slots(node, type);
6198 		count = mas_data_end(mas) + 1;
6199 		for (i = 0; i < count; i++)
6200 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6201 		mt_free_bulk(count, slots);
6202 	}
6203 
6204 	node = mte_to_node(mas->node);
6205 	kfree(node);
6206 }
6207 
6208 /*
6209  * mas_copy_node() - Copy a maple node and replace the parent.
6210  * @mas: The maple state of source tree.
6211  * @new_mas: The maple state of new tree.
6212  * @parent: The parent of the new node.
6213  *
6214  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6215  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6216  */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6217 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6218 		struct maple_pnode *parent)
6219 {
6220 	struct maple_node *node = mte_to_node(mas->node);
6221 	struct maple_node *new_node = mte_to_node(new_mas->node);
6222 	unsigned long val;
6223 
6224 	/* Copy the node completely. */
6225 	memcpy(new_node, node, sizeof(struct maple_node));
6226 	/* Update the parent node pointer. */
6227 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6228 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6229 }
6230 
6231 /*
6232  * mas_dup_alloc() - Allocate child nodes for a maple node.
6233  * @mas: The maple state of source tree.
6234  * @new_mas: The maple state of new tree.
6235  * @gfp: The GFP_FLAGS to use for allocations.
6236  *
6237  * This function allocates child nodes for @new_mas->node during the duplication
6238  * process. If memory allocation fails, @mas is set to -ENOMEM.
6239  */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6240 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6241 		gfp_t gfp)
6242 {
6243 	struct maple_node *node = mte_to_node(mas->node);
6244 	struct maple_node *new_node = mte_to_node(new_mas->node);
6245 	enum maple_type type;
6246 	unsigned char count, i;
6247 	void __rcu **slots;
6248 	void __rcu **new_slots;
6249 	unsigned long val;
6250 
6251 	/* Allocate memory for child nodes. */
6252 	type = mte_node_type(mas->node);
6253 	new_slots = ma_slots(new_node, type);
6254 	count = mas->node_request = mas_data_end(mas) + 1;
6255 	mas_alloc_nodes(mas, gfp);
6256 	if (unlikely(mas_is_err(mas)))
6257 		return;
6258 
6259 	slots = ma_slots(node, type);
6260 	for (i = 0; i < count; i++) {
6261 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6262 		val &= MAPLE_NODE_MASK;
6263 		new_slots[i] = ma_mnode_ptr((unsigned long)mas_pop_node(mas) |
6264 					    val);
6265 	}
6266 }
6267 
6268 /*
6269  * mas_dup_build() - Build a new maple tree from a source tree
6270  * @mas: The maple state of source tree, need to be in MAS_START state.
6271  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6272  * @gfp: The GFP_FLAGS to use for allocations.
6273  *
6274  * This function builds a new tree in DFS preorder. If the memory allocation
6275  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6276  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6277  *
6278  * Note that the attributes of the two trees need to be exactly the same, and the
6279  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6280  */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6281 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6282 		gfp_t gfp)
6283 {
6284 	struct maple_node *node;
6285 	struct maple_pnode *parent = NULL;
6286 	struct maple_enode *root;
6287 	enum maple_type type;
6288 
6289 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6290 	    unlikely(!mtree_empty(new_mas->tree))) {
6291 		mas_set_err(mas, -EINVAL);
6292 		return;
6293 	}
6294 
6295 	root = mas_start(mas);
6296 	if (mas_is_ptr(mas) || mas_is_none(mas))
6297 		goto set_new_tree;
6298 
6299 	node = mt_alloc_one(gfp);
6300 	if (!node) {
6301 		new_mas->status = ma_none;
6302 		mas_set_err(mas, -ENOMEM);
6303 		return;
6304 	}
6305 
6306 	type = mte_node_type(mas->node);
6307 	root = mt_mk_node(node, type);
6308 	new_mas->node = root;
6309 	new_mas->min = 0;
6310 	new_mas->max = ULONG_MAX;
6311 	root = mte_mk_root(root);
6312 	while (1) {
6313 		mas_copy_node(mas, new_mas, parent);
6314 		if (!mte_is_leaf(mas->node)) {
6315 			/* Only allocate child nodes for non-leaf nodes. */
6316 			mas_dup_alloc(mas, new_mas, gfp);
6317 			if (unlikely(mas_is_err(mas)))
6318 				goto empty_mas;
6319 		} else {
6320 			/*
6321 			 * This is the last leaf node and duplication is
6322 			 * completed.
6323 			 */
6324 			if (mas->max == ULONG_MAX)
6325 				goto done;
6326 
6327 			/* This is not the last leaf node and needs to go up. */
6328 			do {
6329 				mas_ascend(mas);
6330 				mas_ascend(new_mas);
6331 			} while (mas->offset == mas_data_end(mas));
6332 
6333 			/* Move to the next subtree. */
6334 			mas->offset++;
6335 			new_mas->offset++;
6336 		}
6337 
6338 		mas_descend(mas);
6339 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6340 		mas_descend(new_mas);
6341 		mas->offset = 0;
6342 		new_mas->offset = 0;
6343 	}
6344 done:
6345 	/* Specially handle the parent of the root node. */
6346 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6347 set_new_tree:
6348 	/* Make them the same height */
6349 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6350 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6351 empty_mas:
6352 	mas_empty_nodes(mas);
6353 }
6354 
6355 /**
6356  * __mt_dup(): Duplicate an entire maple tree
6357  * @mt: The source maple tree
6358  * @new: The new maple tree
6359  * @gfp: The GFP_FLAGS to use for allocations
6360  *
6361  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6362  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6363  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6364  * source node except for all the addresses stored in it. It will be faster than
6365  * traversing all elements in the source tree and inserting them one by one into
6366  * the new tree.
6367  * The user needs to ensure that the attributes of the source tree and the new
6368  * tree are the same, and the new tree needs to be an empty tree, otherwise
6369  * -EINVAL will be returned.
6370  * Note that the user needs to manually lock the source tree and the new tree.
6371  *
6372  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6373  * the attributes of the two trees are different or the new tree is not an empty
6374  * tree.
6375  */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6376 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6377 {
6378 	int ret = 0;
6379 	MA_STATE(mas, mt, 0, 0);
6380 	MA_STATE(new_mas, new, 0, 0);
6381 
6382 	mas_dup_build(&mas, &new_mas, gfp);
6383 	if (unlikely(mas_is_err(&mas))) {
6384 		ret = xa_err(mas.node);
6385 		if (ret == -ENOMEM)
6386 			mas_dup_free(&new_mas);
6387 	}
6388 
6389 	return ret;
6390 }
6391 EXPORT_SYMBOL(__mt_dup);
6392 
6393 /**
6394  * mtree_dup(): Duplicate an entire maple tree
6395  * @mt: The source maple tree
6396  * @new: The new maple tree
6397  * @gfp: The GFP_FLAGS to use for allocations
6398  *
6399  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6400  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6401  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6402  * source node except for all the addresses stored in it. It will be faster than
6403  * traversing all elements in the source tree and inserting them one by one into
6404  * the new tree.
6405  * The user needs to ensure that the attributes of the source tree and the new
6406  * tree are the same, and the new tree needs to be an empty tree, otherwise
6407  * -EINVAL will be returned.
6408  *
6409  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6410  * the attributes of the two trees are different or the new tree is not an empty
6411  * tree.
6412  */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6413 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6414 {
6415 	int ret = 0;
6416 	MA_STATE(mas, mt, 0, 0);
6417 	MA_STATE(new_mas, new, 0, 0);
6418 
6419 	mas_lock(&new_mas);
6420 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6421 	mas_dup_build(&mas, &new_mas, gfp);
6422 	mas_unlock(&mas);
6423 	if (unlikely(mas_is_err(&mas))) {
6424 		ret = xa_err(mas.node);
6425 		if (ret == -ENOMEM)
6426 			mas_dup_free(&new_mas);
6427 	}
6428 
6429 	mas_unlock(&new_mas);
6430 	return ret;
6431 }
6432 EXPORT_SYMBOL(mtree_dup);
6433 
6434 /**
6435  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6436  * @mt: The maple tree
6437  *
6438  * Note: Does not handle locking.
6439  */
__mt_destroy(struct maple_tree * mt)6440 void __mt_destroy(struct maple_tree *mt)
6441 {
6442 	void *root = mt_root_locked(mt);
6443 
6444 	rcu_assign_pointer(mt->ma_root, NULL);
6445 	if (xa_is_node(root))
6446 		mte_destroy_walk(root, mt);
6447 
6448 	mt->ma_flags = mt_attr(mt);
6449 }
6450 EXPORT_SYMBOL_GPL(__mt_destroy);
6451 
6452 /**
6453  * mtree_destroy() - Destroy a maple tree
6454  * @mt: The maple tree
6455  *
6456  * Frees all resources used by the tree.  Handles locking.
6457  */
mtree_destroy(struct maple_tree * mt)6458 void mtree_destroy(struct maple_tree *mt)
6459 {
6460 	mtree_lock(mt);
6461 	__mt_destroy(mt);
6462 	mtree_unlock(mt);
6463 }
6464 EXPORT_SYMBOL(mtree_destroy);
6465 
6466 /**
6467  * mt_find() - Search from the start up until an entry is found.
6468  * @mt: The maple tree
6469  * @index: Pointer which contains the start location of the search
6470  * @max: The maximum value of the search range
6471  *
6472  * Takes RCU read lock internally to protect the search, which does not
6473  * protect the returned pointer after dropping RCU read lock.
6474  * See also: Documentation/core-api/maple_tree.rst
6475  *
6476  * In case that an entry is found @index is updated to point to the next
6477  * possible entry independent whether the found entry is occupying a
6478  * single index or a range if indices.
6479  *
6480  * Return: The entry at or after the @index or %NULL
6481  */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6482 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6483 {
6484 	MA_STATE(mas, mt, *index, *index);
6485 	void *entry;
6486 #ifdef CONFIG_DEBUG_MAPLE_TREE
6487 	unsigned long copy = *index;
6488 #endif
6489 
6490 	trace_ma_read(TP_FCT, &mas);
6491 
6492 	if ((*index) > max)
6493 		return NULL;
6494 
6495 	rcu_read_lock();
6496 retry:
6497 	entry = mas_state_walk(&mas);
6498 	if (mas_is_start(&mas))
6499 		goto retry;
6500 
6501 	if (unlikely(xa_is_zero(entry)))
6502 		entry = NULL;
6503 
6504 	if (entry)
6505 		goto unlock;
6506 
6507 	while (mas_is_active(&mas) && (mas.last < max)) {
6508 		entry = mas_next_slot(&mas, max, false);
6509 		if (likely(entry && !xa_is_zero(entry)))
6510 			break;
6511 	}
6512 
6513 	if (unlikely(xa_is_zero(entry)))
6514 		entry = NULL;
6515 unlock:
6516 	rcu_read_unlock();
6517 	if (likely(entry)) {
6518 		*index = mas.last + 1;
6519 #ifdef CONFIG_DEBUG_MAPLE_TREE
6520 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6521 			pr_err("index not increased! %lx <= %lx\n",
6522 			       *index, copy);
6523 #endif
6524 	}
6525 
6526 	return entry;
6527 }
6528 EXPORT_SYMBOL(mt_find);
6529 
6530 /**
6531  * mt_find_after() - Search from the start up until an entry is found.
6532  * @mt: The maple tree
6533  * @index: Pointer which contains the start location of the search
6534  * @max: The maximum value to check
6535  *
6536  * Same as mt_find() except that it checks @index for 0 before
6537  * searching. If @index == 0, the search is aborted. This covers a wrap
6538  * around of @index to 0 in an iterator loop.
6539  *
6540  * Return: The entry at or after the @index or %NULL
6541  */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6542 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6543 		    unsigned long max)
6544 {
6545 	if (!(*index))
6546 		return NULL;
6547 
6548 	return mt_find(mt, index, max);
6549 }
6550 EXPORT_SYMBOL(mt_find_after);
6551 
6552 #ifdef CONFIG_DEBUG_MAPLE_TREE
6553 atomic_t maple_tree_tests_run;
6554 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6555 atomic_t maple_tree_tests_passed;
6556 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6557 
6558 #ifndef __KERNEL__
6559 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6560 void mt_set_non_kernel(unsigned int val)
6561 {
6562 	kmem_cache_set_non_kernel(maple_node_cache, val);
6563 }
6564 
6565 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6566 		void (*callback)(void *));
mt_set_callback(void (* callback)(void *))6567 void mt_set_callback(void (*callback)(void *))
6568 {
6569 	kmem_cache_set_callback(maple_node_cache, callback);
6570 }
6571 
6572 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)6573 void mt_set_private(void *private)
6574 {
6575 	kmem_cache_set_private(maple_node_cache, private);
6576 }
6577 
6578 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)6579 unsigned long mt_get_alloc_size(void)
6580 {
6581 	return kmem_cache_get_alloc(maple_node_cache);
6582 }
6583 
6584 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)6585 void mt_zero_nr_tallocated(void)
6586 {
6587 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6588 }
6589 
6590 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)6591 unsigned int mt_nr_tallocated(void)
6592 {
6593 	return kmem_cache_nr_tallocated(maple_node_cache);
6594 }
6595 
6596 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)6597 unsigned int mt_nr_allocated(void)
6598 {
6599 	return kmem_cache_nr_allocated(maple_node_cache);
6600 }
6601 
mt_cache_shrink(void)6602 void mt_cache_shrink(void)
6603 {
6604 }
6605 #else
6606 /*
6607  * mt_cache_shrink() - For testing, don't use this.
6608  *
6609  * Certain testcases can trigger an OOM when combined with other memory
6610  * debugging configuration options.  This function is used to reduce the
6611  * possibility of an out of memory even due to kmem_cache objects remaining
6612  * around for longer than usual.
6613  */
mt_cache_shrink(void)6614 void mt_cache_shrink(void)
6615 {
6616 	kmem_cache_shrink(maple_node_cache);
6617 
6618 }
6619 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6620 
6621 #endif /* not defined __KERNEL__ */
6622 /*
6623  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6624  * @mas: The maple state
6625  * @offset: The offset into the slot array to fetch.
6626  *
6627  * Return: The entry stored at @offset.
6628  */
mas_get_slot(struct ma_state * mas,unsigned char offset)6629 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6630 		unsigned char offset)
6631 {
6632 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6633 			offset);
6634 }
6635 
6636 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)6637 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6638 {
6639 
6640 	struct maple_enode *p, *mn = mas->node;
6641 	unsigned long p_min, p_max;
6642 
6643 	mas_next_node(mas, mas_mn(mas), max);
6644 	if (!mas_is_overflow(mas))
6645 		return;
6646 
6647 	if (mte_is_root(mn))
6648 		return;
6649 
6650 	mas->node = mn;
6651 	mas_ascend(mas);
6652 	do {
6653 		p = mas->node;
6654 		p_min = mas->min;
6655 		p_max = mas->max;
6656 		mas_prev_node(mas, 0);
6657 	} while (!mas_is_underflow(mas));
6658 
6659 	mas->node = p;
6660 	mas->max = p_max;
6661 	mas->min = p_min;
6662 }
6663 
6664 /* Tree validations */
6665 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6666 		unsigned long min, unsigned long max, unsigned int depth,
6667 		enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6668 static void mt_dump_range(unsigned long min, unsigned long max,
6669 			  unsigned int depth, enum mt_dump_format format)
6670 {
6671 	static const char spaces[] = "                                ";
6672 
6673 	switch(format) {
6674 	case mt_dump_hex:
6675 		if (min == max)
6676 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
6677 		else
6678 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6679 		break;
6680 	case mt_dump_dec:
6681 		if (min == max)
6682 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
6683 		else
6684 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6685 	}
6686 }
6687 
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6688 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6689 			  unsigned int depth, enum mt_dump_format format)
6690 {
6691 	mt_dump_range(min, max, depth, format);
6692 
6693 	if (xa_is_value(entry))
6694 		pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
6695 			xa_to_value(entry), entry);
6696 	else if (xa_is_zero(entry))
6697 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6698 	else if (mt_is_reserved(entry))
6699 		pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
6700 	else
6701 		pr_cont(PTR_FMT "\n", entry);
6702 }
6703 
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6704 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6705 		unsigned long min, unsigned long max, unsigned int depth,
6706 		enum mt_dump_format format)
6707 {
6708 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6709 	bool leaf = mte_is_leaf(entry);
6710 	unsigned long first = min;
6711 	int i;
6712 
6713 	pr_cont(" contents: ");
6714 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6715 		switch(format) {
6716 		case mt_dump_hex:
6717 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
6718 			break;
6719 		case mt_dump_dec:
6720 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
6721 		}
6722 	}
6723 	pr_cont(PTR_FMT "\n", node->slot[i]);
6724 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6725 		unsigned long last = max;
6726 
6727 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6728 			last = node->pivot[i];
6729 		else if (!node->slot[i] && max != mt_node_max(entry))
6730 			break;
6731 		if (last == 0 && i > 0)
6732 			break;
6733 		if (leaf)
6734 			mt_dump_entry(mt_slot(mt, node->slot, i),
6735 					first, last, depth + 1, format);
6736 		else if (node->slot[i])
6737 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6738 					first, last, depth + 1, format);
6739 
6740 		if (last == max)
6741 			break;
6742 		if (last > max) {
6743 			switch(format) {
6744 			case mt_dump_hex:
6745 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
6746 					node, last, max, i);
6747 				break;
6748 			case mt_dump_dec:
6749 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
6750 					node, last, max, i);
6751 			}
6752 		}
6753 		first = last + 1;
6754 	}
6755 }
6756 
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6757 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6758 	unsigned long min, unsigned long max, unsigned int depth,
6759 	enum mt_dump_format format)
6760 {
6761 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6762 	unsigned long first = min;
6763 	int i;
6764 
6765 	pr_cont(" contents: ");
6766 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6767 		switch (format) {
6768 		case mt_dump_hex:
6769 			pr_cont("%lx ", node->gap[i]);
6770 			break;
6771 		case mt_dump_dec:
6772 			pr_cont("%lu ", node->gap[i]);
6773 		}
6774 	}
6775 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6776 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
6777 		switch (format) {
6778 		case mt_dump_hex:
6779 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
6780 			break;
6781 		case mt_dump_dec:
6782 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
6783 		}
6784 	}
6785 	pr_cont(PTR_FMT "\n", node->slot[i]);
6786 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6787 		unsigned long last = max;
6788 
6789 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6790 			last = node->pivot[i];
6791 		else if (!node->slot[i])
6792 			break;
6793 		if (last == 0 && i > 0)
6794 			break;
6795 		if (node->slot[i])
6796 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6797 					first, last, depth + 1, format);
6798 
6799 		if (last == max)
6800 			break;
6801 		if (last > max) {
6802 			switch(format) {
6803 			case mt_dump_hex:
6804 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
6805 					node, last, max, i);
6806 				break;
6807 			case mt_dump_dec:
6808 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
6809 					node, last, max, i);
6810 			}
6811 		}
6812 		first = last + 1;
6813 	}
6814 }
6815 
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6816 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6817 		unsigned long min, unsigned long max, unsigned int depth,
6818 		enum mt_dump_format format)
6819 {
6820 	struct maple_node *node = mte_to_node(entry);
6821 	unsigned int type = mte_node_type(entry);
6822 	unsigned int i;
6823 
6824 	mt_dump_range(min, max, depth, format);
6825 
6826 	pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
6827 		depth, type, node ? node->parent : NULL);
6828 	switch (type) {
6829 	case maple_dense:
6830 		pr_cont("\n");
6831 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6832 			if (min + i > max)
6833 				pr_cont("OUT OF RANGE: ");
6834 			mt_dump_entry(mt_slot(mt, node->slot, i),
6835 					min + i, min + i, depth, format);
6836 		}
6837 		break;
6838 	case maple_leaf_64:
6839 	case maple_range_64:
6840 		mt_dump_range64(mt, entry, min, max, depth, format);
6841 		break;
6842 	case maple_arange_64:
6843 		mt_dump_arange64(mt, entry, min, max, depth, format);
6844 		break;
6845 
6846 	default:
6847 		pr_cont(" UNKNOWN TYPE\n");
6848 	}
6849 }
6850 
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)6851 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6852 {
6853 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6854 
6855 	pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
6856 		 mt, mt->ma_flags, mt_height(mt), entry);
6857 	if (xa_is_node(entry))
6858 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
6859 	else if (entry)
6860 		mt_dump_entry(entry, 0, 0, 0, format);
6861 	else
6862 		pr_info("(empty)\n");
6863 }
6864 EXPORT_SYMBOL_GPL(mt_dump);
6865 
6866 /*
6867  * Calculate the maximum gap in a node and check if that's what is reported in
6868  * the parent (unless root).
6869  */
mas_validate_gaps(struct ma_state * mas)6870 static void mas_validate_gaps(struct ma_state *mas)
6871 {
6872 	struct maple_enode *mte = mas->node;
6873 	struct maple_node *p_mn, *node = mte_to_node(mte);
6874 	enum maple_type mt = mte_node_type(mas->node);
6875 	unsigned long gap = 0, max_gap = 0;
6876 	unsigned long p_end, p_start = mas->min;
6877 	unsigned char p_slot, offset;
6878 	unsigned long *gaps = NULL;
6879 	unsigned long *pivots = ma_pivots(node, mt);
6880 	unsigned int i;
6881 
6882 	if (ma_is_dense(mt)) {
6883 		for (i = 0; i < mt_slot_count(mte); i++) {
6884 			if (mas_get_slot(mas, i)) {
6885 				if (gap > max_gap)
6886 					max_gap = gap;
6887 				gap = 0;
6888 				continue;
6889 			}
6890 			gap++;
6891 		}
6892 		goto counted;
6893 	}
6894 
6895 	gaps = ma_gaps(node, mt);
6896 	for (i = 0; i < mt_slot_count(mte); i++) {
6897 		p_end = mas_safe_pivot(mas, pivots, i, mt);
6898 
6899 		if (!gaps) {
6900 			if (!mas_get_slot(mas, i))
6901 				gap = p_end - p_start + 1;
6902 		} else {
6903 			void *entry = mas_get_slot(mas, i);
6904 
6905 			gap = gaps[i];
6906 			MT_BUG_ON(mas->tree, !entry);
6907 
6908 			if (gap > p_end - p_start + 1) {
6909 				pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6910 				       mas_mn(mas), i, gap, p_end, p_start,
6911 				       p_end - p_start + 1);
6912 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
6913 			}
6914 		}
6915 
6916 		if (gap > max_gap)
6917 			max_gap = gap;
6918 
6919 		p_start = p_end + 1;
6920 		if (p_end >= mas->max)
6921 			break;
6922 	}
6923 
6924 counted:
6925 	if (mt == maple_arange_64) {
6926 		MT_BUG_ON(mas->tree, !gaps);
6927 		offset = ma_meta_gap(node);
6928 		if (offset > i) {
6929 			pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
6930 			MT_BUG_ON(mas->tree, 1);
6931 		}
6932 
6933 		if (gaps[offset] != max_gap) {
6934 			pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
6935 			       node, offset, max_gap);
6936 			MT_BUG_ON(mas->tree, 1);
6937 		}
6938 
6939 		for (i++ ; i < mt_slot_count(mte); i++) {
6940 			if (gaps[i] != 0) {
6941 				pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
6942 				       node, i);
6943 				MT_BUG_ON(mas->tree, 1);
6944 			}
6945 		}
6946 	}
6947 
6948 	if (mte_is_root(mte))
6949 		return;
6950 
6951 	p_slot = mte_parent_slot(mas->node);
6952 	p_mn = mte_parent(mte);
6953 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6954 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
6955 		pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
6956 		mt_dump(mas->tree, mt_dump_hex);
6957 		MT_BUG_ON(mas->tree, 1);
6958 	}
6959 }
6960 
mas_validate_parent_slot(struct ma_state * mas)6961 static void mas_validate_parent_slot(struct ma_state *mas)
6962 {
6963 	struct maple_node *parent;
6964 	struct maple_enode *node;
6965 	enum maple_type p_type;
6966 	unsigned char p_slot;
6967 	void __rcu **slots;
6968 	int i;
6969 
6970 	if (mte_is_root(mas->node))
6971 		return;
6972 
6973 	p_slot = mte_parent_slot(mas->node);
6974 	p_type = mas_parent_type(mas, mas->node);
6975 	parent = mte_parent(mas->node);
6976 	slots = ma_slots(parent, p_type);
6977 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6978 
6979 	/* Check prev/next parent slot for duplicate node entry */
6980 
6981 	for (i = 0; i < mt_slots[p_type]; i++) {
6982 		node = mas_slot(mas, slots, i);
6983 		if (i == p_slot) {
6984 			if (node != mas->node)
6985 				pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
6986 					parent, i, mas_mn(mas));
6987 			MT_BUG_ON(mas->tree, node != mas->node);
6988 		} else if (node == mas->node) {
6989 			pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
6990 			       mas_mn(mas), parent, i, p_slot);
6991 			MT_BUG_ON(mas->tree, node == mas->node);
6992 		}
6993 	}
6994 }
6995 
mas_validate_child_slot(struct ma_state * mas)6996 static void mas_validate_child_slot(struct ma_state *mas)
6997 {
6998 	enum maple_type type = mte_node_type(mas->node);
6999 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7000 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7001 	struct maple_enode *child;
7002 	unsigned char i;
7003 
7004 	if (mte_is_leaf(mas->node))
7005 		return;
7006 
7007 	for (i = 0; i < mt_slots[type]; i++) {
7008 		child = mas_slot(mas, slots, i);
7009 
7010 		if (!child) {
7011 			pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7012 			       mas_mn(mas), i);
7013 			MT_BUG_ON(mas->tree, 1);
7014 		}
7015 
7016 		if (mte_parent_slot(child) != i) {
7017 			pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7018 			       mas_mn(mas), i, mte_to_node(child),
7019 			       mte_parent_slot(child));
7020 			MT_BUG_ON(mas->tree, 1);
7021 		}
7022 
7023 		if (mte_parent(child) != mte_to_node(mas->node)) {
7024 			pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7025 			       mte_to_node(child), mte_parent(child),
7026 			       mte_to_node(mas->node));
7027 			MT_BUG_ON(mas->tree, 1);
7028 		}
7029 
7030 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7031 			break;
7032 	}
7033 }
7034 
7035 /*
7036  * Validate all pivots are within mas->min and mas->max, check metadata ends
7037  * where the maximum ends and ensure there is no slots or pivots set outside of
7038  * the end of the data.
7039  */
mas_validate_limits(struct ma_state * mas)7040 static void mas_validate_limits(struct ma_state *mas)
7041 {
7042 	int i;
7043 	unsigned long prev_piv = 0;
7044 	enum maple_type type = mte_node_type(mas->node);
7045 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7046 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7047 
7048 	for (i = 0; i < mt_slots[type]; i++) {
7049 		unsigned long piv;
7050 
7051 		piv = mas_safe_pivot(mas, pivots, i, type);
7052 
7053 		if (!piv && (i != 0)) {
7054 			pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7055 			       mas_mn(mas), i);
7056 			MAS_WARN_ON(mas, 1);
7057 		}
7058 
7059 		if (prev_piv > piv) {
7060 			pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7061 				mas_mn(mas), i, piv, prev_piv);
7062 			MAS_WARN_ON(mas, piv < prev_piv);
7063 		}
7064 
7065 		if (piv < mas->min) {
7066 			pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7067 				piv, mas->min);
7068 			MAS_WARN_ON(mas, piv < mas->min);
7069 		}
7070 		if (piv > mas->max) {
7071 			pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7072 				piv, mas->max);
7073 			MAS_WARN_ON(mas, piv > mas->max);
7074 		}
7075 		prev_piv = piv;
7076 		if (piv == mas->max)
7077 			break;
7078 	}
7079 
7080 	if (mas_data_end(mas) != i) {
7081 		pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7082 		       mas_mn(mas), mas_data_end(mas), i);
7083 		MT_BUG_ON(mas->tree, 1);
7084 	}
7085 
7086 	for (i += 1; i < mt_slots[type]; i++) {
7087 		void *entry = mas_slot(mas, slots, i);
7088 
7089 		if (entry && (i != mt_slots[type] - 1)) {
7090 			pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7091 			       mas_mn(mas), i, entry);
7092 			MT_BUG_ON(mas->tree, entry != NULL);
7093 		}
7094 
7095 		if (i < mt_pivots[type]) {
7096 			unsigned long piv = pivots[i];
7097 
7098 			if (!piv)
7099 				continue;
7100 
7101 			pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7102 			       mas_mn(mas), i, piv);
7103 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7104 		}
7105 	}
7106 }
7107 
mt_validate_nulls(struct maple_tree * mt)7108 static void mt_validate_nulls(struct maple_tree *mt)
7109 {
7110 	void *entry, *last = (void *)1;
7111 	unsigned char offset = 0;
7112 	void __rcu **slots;
7113 	MA_STATE(mas, mt, 0, 0);
7114 
7115 	mas_start(&mas);
7116 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7117 		return;
7118 
7119 	while (!mte_is_leaf(mas.node))
7120 		mas_descend(&mas);
7121 
7122 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7123 	do {
7124 		entry = mas_slot(&mas, slots, offset);
7125 		if (!last && !entry) {
7126 			pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7127 				mas_mn(&mas), offset);
7128 		}
7129 		MT_BUG_ON(mt, !last && !entry);
7130 		last = entry;
7131 		if (offset == mas_data_end(&mas)) {
7132 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7133 			if (mas_is_overflow(&mas))
7134 				return;
7135 			offset = 0;
7136 			slots = ma_slots(mte_to_node(mas.node),
7137 					 mte_node_type(mas.node));
7138 		} else {
7139 			offset++;
7140 		}
7141 
7142 	} while (!mas_is_overflow(&mas));
7143 }
7144 
7145 /*
7146  * validate a maple tree by checking:
7147  * 1. The limits (pivots are within mas->min to mas->max)
7148  * 2. The gap is correctly set in the parents
7149  */
mt_validate(struct maple_tree * mt)7150 void mt_validate(struct maple_tree *mt)
7151 	__must_hold(mas->tree->ma_lock)
7152 {
7153 	unsigned char end;
7154 
7155 	MA_STATE(mas, mt, 0, 0);
7156 	mas_start(&mas);
7157 	if (!mas_is_active(&mas))
7158 		return;
7159 
7160 	while (!mte_is_leaf(mas.node))
7161 		mas_descend(&mas);
7162 
7163 	while (!mas_is_overflow(&mas)) {
7164 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7165 		end = mas_data_end(&mas);
7166 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7167 				(!mte_is_root(mas.node)))) {
7168 			pr_err("Invalid size %u of " PTR_FMT "\n",
7169 			       end, mas_mn(&mas));
7170 		}
7171 
7172 		mas_validate_parent_slot(&mas);
7173 		mas_validate_limits(&mas);
7174 		mas_validate_child_slot(&mas);
7175 		if (mt_is_alloc(mt))
7176 			mas_validate_gaps(&mas);
7177 		mas_dfs_postorder(&mas, ULONG_MAX);
7178 	}
7179 	mt_validate_nulls(mt);
7180 }
7181 EXPORT_SYMBOL_GPL(mt_validate);
7182 
mas_dump(const struct ma_state * mas)7183 void mas_dump(const struct ma_state *mas)
7184 {
7185 	pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7186 	       mas->tree, mas->node);
7187 	switch (mas->status) {
7188 	case ma_active:
7189 		pr_err("(ma_active)");
7190 		break;
7191 	case ma_none:
7192 		pr_err("(ma_none)");
7193 		break;
7194 	case ma_root:
7195 		pr_err("(ma_root)");
7196 		break;
7197 	case ma_start:
7198 		pr_err("(ma_start) ");
7199 		break;
7200 	case ma_pause:
7201 		pr_err("(ma_pause) ");
7202 		break;
7203 	case ma_overflow:
7204 		pr_err("(ma_overflow) ");
7205 		break;
7206 	case ma_underflow:
7207 		pr_err("(ma_underflow) ");
7208 		break;
7209 	case ma_error:
7210 		pr_err("(ma_error) ");
7211 		break;
7212 	}
7213 
7214 	pr_err("Store Type: ");
7215 	switch (mas->store_type) {
7216 	case wr_invalid:
7217 		pr_err("invalid store type\n");
7218 		break;
7219 	case wr_new_root:
7220 		pr_err("new_root\n");
7221 		break;
7222 	case wr_store_root:
7223 		pr_err("store_root\n");
7224 		break;
7225 	case wr_exact_fit:
7226 		pr_err("exact_fit\n");
7227 		break;
7228 	case wr_split_store:
7229 		pr_err("split_store\n");
7230 		break;
7231 	case wr_slot_store:
7232 		pr_err("slot_store\n");
7233 		break;
7234 	case wr_append:
7235 		pr_err("append\n");
7236 		break;
7237 	case wr_node_store:
7238 		pr_err("node_store\n");
7239 		break;
7240 	case wr_spanning_store:
7241 		pr_err("spanning_store\n");
7242 		break;
7243 	case wr_rebalance:
7244 		pr_err("rebalance\n");
7245 		break;
7246 	}
7247 
7248 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7249 	       mas->index, mas->last);
7250 	pr_err("     min=%lx max=%lx sheaf=" PTR_FMT ", request %lu depth=%u, flags=%x\n",
7251 	       mas->min, mas->max, mas->sheaf, mas->node_request, mas->depth,
7252 	       mas->mas_flags);
7253 	if (mas->index > mas->last)
7254 		pr_err("Check index & last\n");
7255 }
7256 EXPORT_SYMBOL_GPL(mas_dump);
7257 
mas_wr_dump(const struct ma_wr_state * wr_mas)7258 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7259 {
7260 	pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7261 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7262 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7263 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7264 	       wr_mas->end_piv);
7265 }
7266 EXPORT_SYMBOL_GPL(mas_wr_dump);
7267 
7268 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7269