1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11 /*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66
67 #define TP_FCT tracepoint_string(__func__)
68
69 /*
70 * Kernel pointer hashing renders much of the maple tree dump useless as tagged
71 * pointers get hashed to arbitrary values.
72 *
73 * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
74 * permissible to bypass this. Otherwise remain cautious and retain the hashing.
75 *
76 * Userland doesn't know about %px so also use %p there.
77 */
78 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
79 #define PTR_FMT "%px"
80 #else
81 #define PTR_FMT "%p"
82 #endif
83
84 #define MA_ROOT_PARENT 1
85
86 /*
87 * Maple state flags
88 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
89 */
90 #define MA_STATE_PREALLOC 1
91
92 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
93 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
94 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
95 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
96 static struct kmem_cache *maple_node_cache;
97
98 #ifdef CONFIG_DEBUG_MAPLE_TREE
99 static const unsigned long mt_max[] = {
100 [maple_dense] = MAPLE_NODE_SLOTS,
101 [maple_leaf_64] = ULONG_MAX,
102 [maple_range_64] = ULONG_MAX,
103 [maple_arange_64] = ULONG_MAX,
104 };
105 #define mt_node_max(x) mt_max[mte_node_type(x)]
106 #endif
107
108 static const unsigned char mt_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS,
110 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
111 [maple_range_64] = MAPLE_RANGE64_SLOTS,
112 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
113 };
114 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
115
116 static const unsigned char mt_pivots[] = {
117 [maple_dense] = 0,
118 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
119 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
120 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
121 };
122 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
123
124 static const unsigned char mt_min_slots[] = {
125 [maple_dense] = MAPLE_NODE_SLOTS / 2,
126 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
127 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
128 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
129 };
130 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
131
132 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
133 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
134
135 struct maple_big_node {
136 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
137 union {
138 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
139 struct {
140 unsigned long padding[MAPLE_BIG_NODE_GAPS];
141 unsigned long gap[MAPLE_BIG_NODE_GAPS];
142 };
143 };
144 unsigned char b_end;
145 enum maple_type type;
146 };
147
148 /*
149 * The maple_subtree_state is used to build a tree to replace a segment of an
150 * existing tree in a more atomic way. Any walkers of the older tree will hit a
151 * dead node and restart on updates.
152 */
153 struct maple_subtree_state {
154 struct ma_state *orig_l; /* Original left side of subtree */
155 struct ma_state *orig_r; /* Original right side of subtree */
156 struct ma_state *l; /* New left side of subtree */
157 struct ma_state *m; /* New middle of subtree (rare) */
158 struct ma_state *r; /* New right side of subtree */
159 struct ma_topiary *free; /* nodes to be freed */
160 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
161 struct maple_big_node *bn;
162 };
163
164 #ifdef CONFIG_KASAN_STACK
165 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
166 #define noinline_for_kasan noinline_for_stack
167 #else
168 #define noinline_for_kasan inline
169 #endif
170
171 /* Functions */
mt_alloc_one(gfp_t gfp)172 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
173 {
174 return kmem_cache_alloc(maple_node_cache, gfp);
175 }
176
mt_free_bulk(size_t size,void __rcu ** nodes)177 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
178 {
179 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
180 }
181
mt_return_sheaf(struct slab_sheaf * sheaf)182 static void mt_return_sheaf(struct slab_sheaf *sheaf)
183 {
184 kmem_cache_return_sheaf(maple_node_cache, GFP_NOWAIT, sheaf);
185 }
186
mt_get_sheaf(gfp_t gfp,int count)187 static struct slab_sheaf *mt_get_sheaf(gfp_t gfp, int count)
188 {
189 return kmem_cache_prefill_sheaf(maple_node_cache, gfp, count);
190 }
191
mt_refill_sheaf(gfp_t gfp,struct slab_sheaf ** sheaf,unsigned int size)192 static int mt_refill_sheaf(gfp_t gfp, struct slab_sheaf **sheaf,
193 unsigned int size)
194 {
195 return kmem_cache_refill_sheaf(maple_node_cache, gfp, sheaf, size);
196 }
197
198 /*
199 * ma_free_rcu() - Use rcu callback to free a maple node
200 * @node: The node to free
201 *
202 * The maple tree uses the parent pointer to indicate this node is no longer in
203 * use and will be freed.
204 */
ma_free_rcu(struct maple_node * node)205 static void ma_free_rcu(struct maple_node *node)
206 {
207 WARN_ON(node->parent != ma_parent_ptr(node));
208 kfree_rcu(node, rcu);
209 }
210
mt_set_height(struct maple_tree * mt,unsigned char height)211 static void mt_set_height(struct maple_tree *mt, unsigned char height)
212 {
213 unsigned int new_flags = mt->ma_flags;
214
215 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
216 MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX);
217 new_flags |= height << MT_FLAGS_HEIGHT_OFFSET;
218 mt->ma_flags = new_flags;
219 }
220
mas_mt_height(struct ma_state * mas)221 static unsigned int mas_mt_height(struct ma_state *mas)
222 {
223 return mt_height(mas->tree);
224 }
225
mt_attr(struct maple_tree * mt)226 static inline unsigned int mt_attr(struct maple_tree *mt)
227 {
228 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
229 }
230
mte_node_type(const struct maple_enode * entry)231 static __always_inline enum maple_type mte_node_type(
232 const struct maple_enode *entry)
233 {
234 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
235 MAPLE_NODE_TYPE_MASK;
236 }
237
ma_is_dense(const enum maple_type type)238 static __always_inline bool ma_is_dense(const enum maple_type type)
239 {
240 return type < maple_leaf_64;
241 }
242
ma_is_leaf(const enum maple_type type)243 static __always_inline bool ma_is_leaf(const enum maple_type type)
244 {
245 return type < maple_range_64;
246 }
247
mte_is_leaf(const struct maple_enode * entry)248 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
249 {
250 return ma_is_leaf(mte_node_type(entry));
251 }
252
253 /*
254 * We also reserve values with the bottom two bits set to '10' which are
255 * below 4096
256 */
mt_is_reserved(const void * entry)257 static __always_inline bool mt_is_reserved(const void *entry)
258 {
259 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
260 xa_is_internal(entry);
261 }
262
mas_set_err(struct ma_state * mas,long err)263 static __always_inline void mas_set_err(struct ma_state *mas, long err)
264 {
265 mas->node = MA_ERROR(err);
266 mas->status = ma_error;
267 }
268
mas_is_ptr(const struct ma_state * mas)269 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
270 {
271 return mas->status == ma_root;
272 }
273
mas_is_start(const struct ma_state * mas)274 static __always_inline bool mas_is_start(const struct ma_state *mas)
275 {
276 return mas->status == ma_start;
277 }
278
mas_is_none(const struct ma_state * mas)279 static __always_inline bool mas_is_none(const struct ma_state *mas)
280 {
281 return mas->status == ma_none;
282 }
283
mas_is_paused(const struct ma_state * mas)284 static __always_inline bool mas_is_paused(const struct ma_state *mas)
285 {
286 return mas->status == ma_pause;
287 }
288
mas_is_overflow(struct ma_state * mas)289 static __always_inline bool mas_is_overflow(struct ma_state *mas)
290 {
291 return mas->status == ma_overflow;
292 }
293
mas_is_underflow(struct ma_state * mas)294 static inline bool mas_is_underflow(struct ma_state *mas)
295 {
296 return mas->status == ma_underflow;
297 }
298
mte_to_node(const struct maple_enode * entry)299 static __always_inline struct maple_node *mte_to_node(
300 const struct maple_enode *entry)
301 {
302 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
303 }
304
305 /*
306 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
307 * @entry: The maple encoded node
308 *
309 * Return: a maple topiary pointer
310 */
mte_to_mat(const struct maple_enode * entry)311 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
312 {
313 return (struct maple_topiary *)
314 ((unsigned long)entry & ~MAPLE_NODE_MASK);
315 }
316
317 /*
318 * mas_mn() - Get the maple state node.
319 * @mas: The maple state
320 *
321 * Return: the maple node (not encoded - bare pointer).
322 */
mas_mn(const struct ma_state * mas)323 static inline struct maple_node *mas_mn(const struct ma_state *mas)
324 {
325 return mte_to_node(mas->node);
326 }
327
328 /*
329 * mte_set_node_dead() - Set a maple encoded node as dead.
330 * @mn: The maple encoded node.
331 */
mte_set_node_dead(struct maple_enode * mn)332 static inline void mte_set_node_dead(struct maple_enode *mn)
333 {
334 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
335 smp_wmb(); /* Needed for RCU */
336 }
337
338 /* Bit 1 indicates the root is a node */
339 #define MAPLE_ROOT_NODE 0x02
340 /* maple_type stored bit 3-6 */
341 #define MAPLE_ENODE_TYPE_SHIFT 0x03
342 /* Bit 2 means a NULL somewhere below */
343 #define MAPLE_ENODE_NULL 0x04
344
mt_mk_node(const struct maple_node * node,enum maple_type type)345 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
346 enum maple_type type)
347 {
348 return (void *)((unsigned long)node |
349 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
350 }
351
mte_mk_root(const struct maple_enode * node)352 static inline void *mte_mk_root(const struct maple_enode *node)
353 {
354 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
355 }
356
mte_safe_root(const struct maple_enode * node)357 static inline void *mte_safe_root(const struct maple_enode *node)
358 {
359 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
360 }
361
mte_set_full(const struct maple_enode * node)362 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
363 {
364 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
365 }
366
mte_clear_full(const struct maple_enode * node)367 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
368 {
369 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
370 }
371
mte_has_null(const struct maple_enode * node)372 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
373 {
374 return (unsigned long)node & MAPLE_ENODE_NULL;
375 }
376
ma_is_root(struct maple_node * node)377 static __always_inline bool ma_is_root(struct maple_node *node)
378 {
379 return ((unsigned long)node->parent & MA_ROOT_PARENT);
380 }
381
mte_is_root(const struct maple_enode * node)382 static __always_inline bool mte_is_root(const struct maple_enode *node)
383 {
384 return ma_is_root(mte_to_node(node));
385 }
386
mas_is_root_limits(const struct ma_state * mas)387 static inline bool mas_is_root_limits(const struct ma_state *mas)
388 {
389 return !mas->min && mas->max == ULONG_MAX;
390 }
391
mt_is_alloc(struct maple_tree * mt)392 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
393 {
394 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
395 }
396
397 /*
398 * The Parent Pointer
399 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
400 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
401 * bit values need an extra bit to store the offset. This extra bit comes from
402 * a reuse of the last bit in the node type. This is possible by using bit 1 to
403 * indicate if bit 2 is part of the type or the slot.
404 *
405 * Node types:
406 * 0b??1 = Root
407 * 0b?00 = 16 bit nodes
408 * 0b010 = 32 bit nodes
409 * 0b110 = 64 bit nodes
410 *
411 * Slot size and alignment
412 * 0b??1 : Root
413 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
414 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
415 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
416 */
417
418 #define MAPLE_PARENT_ROOT 0x01
419
420 #define MAPLE_PARENT_SLOT_SHIFT 0x03
421 #define MAPLE_PARENT_SLOT_MASK 0xF8
422
423 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
424 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
425
426 #define MAPLE_PARENT_RANGE64 0x06
427 #define MAPLE_PARENT_RANGE32 0x02
428 #define MAPLE_PARENT_NOT_RANGE16 0x02
429
430 /*
431 * mte_parent_shift() - Get the parent shift for the slot storage.
432 * @parent: The parent pointer cast as an unsigned long
433 * Return: The shift into that pointer to the star to of the slot
434 */
mte_parent_shift(unsigned long parent)435 static inline unsigned long mte_parent_shift(unsigned long parent)
436 {
437 /* Note bit 1 == 0 means 16B */
438 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
439 return MAPLE_PARENT_SLOT_SHIFT;
440
441 return MAPLE_PARENT_16B_SLOT_SHIFT;
442 }
443
444 /*
445 * mte_parent_slot_mask() - Get the slot mask for the parent.
446 * @parent: The parent pointer cast as an unsigned long.
447 * Return: The slot mask for that parent.
448 */
mte_parent_slot_mask(unsigned long parent)449 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
450 {
451 /* Note bit 1 == 0 means 16B */
452 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
453 return MAPLE_PARENT_SLOT_MASK;
454
455 return MAPLE_PARENT_16B_SLOT_MASK;
456 }
457
458 /*
459 * mas_parent_type() - Return the maple_type of the parent from the stored
460 * parent type.
461 * @mas: The maple state
462 * @enode: The maple_enode to extract the parent's enum
463 * Return: The node->parent maple_type
464 */
465 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)466 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
467 {
468 unsigned long p_type;
469
470 p_type = (unsigned long)mte_to_node(enode)->parent;
471 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
472 return 0;
473
474 p_type &= MAPLE_NODE_MASK;
475 p_type &= ~mte_parent_slot_mask(p_type);
476 switch (p_type) {
477 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
478 if (mt_is_alloc(mas->tree))
479 return maple_arange_64;
480 return maple_range_64;
481 }
482
483 return 0;
484 }
485
486 /*
487 * mas_set_parent() - Set the parent node and encode the slot
488 * @mas: The maple state
489 * @enode: The encoded maple node.
490 * @parent: The encoded maple node that is the parent of @enode.
491 * @slot: The slot that @enode resides in @parent.
492 *
493 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
494 * parent type.
495 */
496 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)497 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
498 const struct maple_enode *parent, unsigned char slot)
499 {
500 unsigned long val = (unsigned long)parent;
501 unsigned long shift;
502 unsigned long type;
503 enum maple_type p_type = mte_node_type(parent);
504
505 MAS_BUG_ON(mas, p_type == maple_dense);
506 MAS_BUG_ON(mas, p_type == maple_leaf_64);
507
508 switch (p_type) {
509 case maple_range_64:
510 case maple_arange_64:
511 shift = MAPLE_PARENT_SLOT_SHIFT;
512 type = MAPLE_PARENT_RANGE64;
513 break;
514 default:
515 case maple_dense:
516 case maple_leaf_64:
517 shift = type = 0;
518 break;
519 }
520
521 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
522 val |= (slot << shift) | type;
523 mte_to_node(enode)->parent = ma_parent_ptr(val);
524 }
525
526 /*
527 * mte_parent_slot() - get the parent slot of @enode.
528 * @enode: The encoded maple node.
529 *
530 * Return: The slot in the parent node where @enode resides.
531 */
532 static __always_inline
mte_parent_slot(const struct maple_enode * enode)533 unsigned int mte_parent_slot(const struct maple_enode *enode)
534 {
535 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
536
537 if (unlikely(val & MA_ROOT_PARENT))
538 return 0;
539
540 /*
541 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
542 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
543 */
544 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
545 }
546
547 /*
548 * mte_parent() - Get the parent of @node.
549 * @enode: The encoded maple node.
550 *
551 * Return: The parent maple node.
552 */
553 static __always_inline
mte_parent(const struct maple_enode * enode)554 struct maple_node *mte_parent(const struct maple_enode *enode)
555 {
556 return (void *)((unsigned long)
557 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
558 }
559
560 /*
561 * ma_dead_node() - check if the @enode is dead.
562 * @enode: The encoded maple node
563 *
564 * Return: true if dead, false otherwise.
565 */
ma_dead_node(const struct maple_node * node)566 static __always_inline bool ma_dead_node(const struct maple_node *node)
567 {
568 struct maple_node *parent;
569
570 /* Do not reorder reads from the node prior to the parent check */
571 smp_rmb();
572 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
573 return (parent == node);
574 }
575
576 /*
577 * mte_dead_node() - check if the @enode is dead.
578 * @enode: The encoded maple node
579 *
580 * Return: true if dead, false otherwise.
581 */
mte_dead_node(const struct maple_enode * enode)582 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
583 {
584 struct maple_node *node;
585
586 node = mte_to_node(enode);
587 return ma_dead_node(node);
588 }
589
590 /*
591 * ma_pivots() - Get a pointer to the maple node pivots.
592 * @node: the maple node
593 * @type: the node type
594 *
595 * In the event of a dead node, this array may be %NULL
596 *
597 * Return: A pointer to the maple node pivots
598 */
ma_pivots(struct maple_node * node,enum maple_type type)599 static inline unsigned long *ma_pivots(struct maple_node *node,
600 enum maple_type type)
601 {
602 switch (type) {
603 case maple_arange_64:
604 return node->ma64.pivot;
605 case maple_range_64:
606 case maple_leaf_64:
607 return node->mr64.pivot;
608 case maple_dense:
609 return NULL;
610 }
611 return NULL;
612 }
613
614 /*
615 * ma_gaps() - Get a pointer to the maple node gaps.
616 * @node: the maple node
617 * @type: the node type
618 *
619 * Return: A pointer to the maple node gaps
620 */
ma_gaps(struct maple_node * node,enum maple_type type)621 static inline unsigned long *ma_gaps(struct maple_node *node,
622 enum maple_type type)
623 {
624 switch (type) {
625 case maple_arange_64:
626 return node->ma64.gap;
627 case maple_range_64:
628 case maple_leaf_64:
629 case maple_dense:
630 return NULL;
631 }
632 return NULL;
633 }
634
635 /*
636 * mas_safe_pivot() - get the pivot at @piv or mas->max.
637 * @mas: The maple state
638 * @pivots: The pointer to the maple node pivots
639 * @piv: The pivot to fetch
640 * @type: The maple node type
641 *
642 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
643 * otherwise.
644 */
645 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)646 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
647 unsigned char piv, enum maple_type type)
648 {
649 if (piv >= mt_pivots[type])
650 return mas->max;
651
652 return pivots[piv];
653 }
654
655 /*
656 * mas_safe_min() - Return the minimum for a given offset.
657 * @mas: The maple state
658 * @pivots: The pointer to the maple node pivots
659 * @offset: The offset into the pivot array
660 *
661 * Return: The minimum range value that is contained in @offset.
662 */
663 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)664 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
665 {
666 if (likely(offset))
667 return pivots[offset - 1] + 1;
668
669 return mas->min;
670 }
671
672 /*
673 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
674 * @mn: The encoded maple node
675 * @piv: The pivot offset
676 * @val: The value of the pivot
677 */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)678 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
679 unsigned long val)
680 {
681 struct maple_node *node = mte_to_node(mn);
682 enum maple_type type = mte_node_type(mn);
683
684 BUG_ON(piv >= mt_pivots[type]);
685 switch (type) {
686 case maple_range_64:
687 case maple_leaf_64:
688 node->mr64.pivot[piv] = val;
689 break;
690 case maple_arange_64:
691 node->ma64.pivot[piv] = val;
692 break;
693 case maple_dense:
694 break;
695 }
696
697 }
698
699 /*
700 * ma_slots() - Get a pointer to the maple node slots.
701 * @mn: The maple node
702 * @mt: The maple node type
703 *
704 * Return: A pointer to the maple node slots
705 */
ma_slots(struct maple_node * mn,enum maple_type mt)706 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
707 {
708 switch (mt) {
709 case maple_arange_64:
710 return mn->ma64.slot;
711 case maple_range_64:
712 case maple_leaf_64:
713 return mn->mr64.slot;
714 case maple_dense:
715 return mn->slot;
716 }
717
718 return NULL;
719 }
720
mt_write_locked(const struct maple_tree * mt)721 static inline bool mt_write_locked(const struct maple_tree *mt)
722 {
723 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
724 lockdep_is_held(&mt->ma_lock);
725 }
726
mt_locked(const struct maple_tree * mt)727 static __always_inline bool mt_locked(const struct maple_tree *mt)
728 {
729 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
730 lockdep_is_held(&mt->ma_lock);
731 }
732
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)733 static __always_inline void *mt_slot(const struct maple_tree *mt,
734 void __rcu **slots, unsigned char offset)
735 {
736 return rcu_dereference_check(slots[offset], mt_locked(mt));
737 }
738
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)739 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
740 void __rcu **slots, unsigned char offset)
741 {
742 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
743 }
744 /*
745 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
746 * @mas: The maple state
747 * @slots: The pointer to the slots
748 * @offset: The offset into the slots array to fetch
749 *
750 * Return: The entry stored in @slots at the @offset.
751 */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)752 static __always_inline void *mas_slot_locked(struct ma_state *mas,
753 void __rcu **slots, unsigned char offset)
754 {
755 return mt_slot_locked(mas->tree, slots, offset);
756 }
757
758 /*
759 * mas_slot() - Get the slot value when not holding the maple tree lock.
760 * @mas: The maple state
761 * @slots: The pointer to the slots
762 * @offset: The offset into the slots array to fetch
763 *
764 * Return: The entry stored in @slots at the @offset
765 */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)766 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
767 unsigned char offset)
768 {
769 return mt_slot(mas->tree, slots, offset);
770 }
771
772 /*
773 * mas_root() - Get the maple tree root.
774 * @mas: The maple state.
775 *
776 * Return: The pointer to the root of the tree
777 */
mas_root(struct ma_state * mas)778 static __always_inline void *mas_root(struct ma_state *mas)
779 {
780 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
781 }
782
mt_root_locked(struct maple_tree * mt)783 static inline void *mt_root_locked(struct maple_tree *mt)
784 {
785 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
786 }
787
788 /*
789 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
790 * @mas: The maple state.
791 *
792 * Return: The pointer to the root of the tree
793 */
mas_root_locked(struct ma_state * mas)794 static inline void *mas_root_locked(struct ma_state *mas)
795 {
796 return mt_root_locked(mas->tree);
797 }
798
ma_meta(struct maple_node * mn,enum maple_type mt)799 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
800 enum maple_type mt)
801 {
802 switch (mt) {
803 case maple_arange_64:
804 return &mn->ma64.meta;
805 default:
806 return &mn->mr64.meta;
807 }
808 }
809
810 /*
811 * ma_set_meta() - Set the metadata information of a node.
812 * @mn: The maple node
813 * @mt: The maple node type
814 * @offset: The offset of the highest sub-gap in this node.
815 * @end: The end of the data in this node.
816 */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)817 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
818 unsigned char offset, unsigned char end)
819 {
820 struct maple_metadata *meta = ma_meta(mn, mt);
821
822 meta->gap = offset;
823 meta->end = end;
824 }
825
826 /*
827 * mt_clear_meta() - clear the metadata information of a node, if it exists
828 * @mt: The maple tree
829 * @mn: The maple node
830 * @type: The maple node type
831 */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)832 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
833 enum maple_type type)
834 {
835 struct maple_metadata *meta;
836 unsigned long *pivots;
837 void __rcu **slots;
838 void *next;
839
840 switch (type) {
841 case maple_range_64:
842 pivots = mn->mr64.pivot;
843 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
844 slots = mn->mr64.slot;
845 next = mt_slot_locked(mt, slots,
846 MAPLE_RANGE64_SLOTS - 1);
847 if (unlikely((mte_to_node(next) &&
848 mte_node_type(next))))
849 return; /* no metadata, could be node */
850 }
851 fallthrough;
852 case maple_arange_64:
853 meta = ma_meta(mn, type);
854 break;
855 default:
856 return;
857 }
858
859 meta->gap = 0;
860 meta->end = 0;
861 }
862
863 /*
864 * ma_meta_end() - Get the data end of a node from the metadata
865 * @mn: The maple node
866 * @mt: The maple node type
867 */
ma_meta_end(struct maple_node * mn,enum maple_type mt)868 static inline unsigned char ma_meta_end(struct maple_node *mn,
869 enum maple_type mt)
870 {
871 struct maple_metadata *meta = ma_meta(mn, mt);
872
873 return meta->end;
874 }
875
876 /*
877 * ma_meta_gap() - Get the largest gap location of a node from the metadata
878 * @mn: The maple node
879 */
ma_meta_gap(struct maple_node * mn)880 static inline unsigned char ma_meta_gap(struct maple_node *mn)
881 {
882 return mn->ma64.meta.gap;
883 }
884
885 /*
886 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
887 * @mn: The maple node
888 * @mt: The maple node type
889 * @offset: The location of the largest gap.
890 */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)891 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
892 unsigned char offset)
893 {
894
895 struct maple_metadata *meta = ma_meta(mn, mt);
896
897 meta->gap = offset;
898 }
899
900 /*
901 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
902 * @mat: the ma_topiary, a linked list of dead nodes.
903 * @dead_enode: the node to be marked as dead and added to the tail of the list
904 *
905 * Add the @dead_enode to the linked list in @mat.
906 */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)907 static inline void mat_add(struct ma_topiary *mat,
908 struct maple_enode *dead_enode)
909 {
910 mte_set_node_dead(dead_enode);
911 mte_to_mat(dead_enode)->next = NULL;
912 if (!mat->tail) {
913 mat->tail = mat->head = dead_enode;
914 return;
915 }
916
917 mte_to_mat(mat->tail)->next = dead_enode;
918 mat->tail = dead_enode;
919 }
920
921 static void mt_free_walk(struct rcu_head *head);
922 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
923 bool free);
924 /*
925 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
926 * @mas: the maple state
927 * @mat: the ma_topiary linked list of dead nodes to free.
928 *
929 * Destroy walk a dead list.
930 */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)931 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
932 {
933 struct maple_enode *next;
934 struct maple_node *node;
935 bool in_rcu = mt_in_rcu(mas->tree);
936
937 while (mat->head) {
938 next = mte_to_mat(mat->head)->next;
939 node = mte_to_node(mat->head);
940 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
941 if (in_rcu)
942 call_rcu(&node->rcu, mt_free_walk);
943 mat->head = next;
944 }
945 }
946 /*
947 * mas_descend() - Descend into the slot stored in the ma_state.
948 * @mas: the maple state.
949 *
950 * Note: Not RCU safe, only use in write side or debug code.
951 */
mas_descend(struct ma_state * mas)952 static inline void mas_descend(struct ma_state *mas)
953 {
954 enum maple_type type;
955 unsigned long *pivots;
956 struct maple_node *node;
957 void __rcu **slots;
958
959 node = mas_mn(mas);
960 type = mte_node_type(mas->node);
961 pivots = ma_pivots(node, type);
962 slots = ma_slots(node, type);
963
964 if (mas->offset)
965 mas->min = pivots[mas->offset - 1] + 1;
966 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
967 mas->node = mas_slot(mas, slots, mas->offset);
968 }
969
970 /*
971 * mas_ascend() - Walk up a level of the tree.
972 * @mas: The maple state
973 *
974 * Sets the @mas->max and @mas->min for the parent node of mas->node. This
975 * may cause several levels of walking up to find the correct min and max.
976 * May find a dead node which will cause a premature return.
977 * Return: 1 on dead node, 0 otherwise
978 */
mas_ascend(struct ma_state * mas)979 static int mas_ascend(struct ma_state *mas)
980 {
981 struct maple_enode *p_enode; /* parent enode. */
982 struct maple_enode *a_enode; /* ancestor enode. */
983 struct maple_node *a_node; /* ancestor node. */
984 struct maple_node *p_node; /* parent node. */
985 unsigned char a_slot;
986 enum maple_type a_type;
987 unsigned long min, max;
988 unsigned long *pivots;
989 bool set_max = false, set_min = false;
990
991 a_node = mas_mn(mas);
992 if (ma_is_root(a_node)) {
993 mas->offset = 0;
994 return 0;
995 }
996
997 p_node = mte_parent(mas->node);
998 if (unlikely(a_node == p_node))
999 return 1;
1000
1001 a_type = mas_parent_type(mas, mas->node);
1002 mas->offset = mte_parent_slot(mas->node);
1003 a_enode = mt_mk_node(p_node, a_type);
1004
1005 /* Check to make sure all parent information is still accurate */
1006 if (p_node != mte_parent(mas->node))
1007 return 1;
1008
1009 mas->node = a_enode;
1010
1011 if (mte_is_root(a_enode)) {
1012 mas->max = ULONG_MAX;
1013 mas->min = 0;
1014 return 0;
1015 }
1016
1017 min = 0;
1018 max = ULONG_MAX;
1019
1020 /*
1021 * !mas->offset implies that parent node min == mas->min.
1022 * mas->offset > 0 implies that we need to walk up to find the
1023 * implied pivot min.
1024 */
1025 if (!mas->offset) {
1026 min = mas->min;
1027 set_min = true;
1028 }
1029
1030 if (mas->max == ULONG_MAX)
1031 set_max = true;
1032
1033 do {
1034 p_enode = a_enode;
1035 a_type = mas_parent_type(mas, p_enode);
1036 a_node = mte_parent(p_enode);
1037 a_slot = mte_parent_slot(p_enode);
1038 a_enode = mt_mk_node(a_node, a_type);
1039 pivots = ma_pivots(a_node, a_type);
1040
1041 if (unlikely(ma_dead_node(a_node)))
1042 return 1;
1043
1044 if (!set_min && a_slot) {
1045 set_min = true;
1046 min = pivots[a_slot - 1] + 1;
1047 }
1048
1049 if (!set_max && a_slot < mt_pivots[a_type]) {
1050 set_max = true;
1051 max = pivots[a_slot];
1052 }
1053
1054 if (unlikely(ma_dead_node(a_node)))
1055 return 1;
1056
1057 if (unlikely(ma_is_root(a_node)))
1058 break;
1059
1060 } while (!set_min || !set_max);
1061
1062 mas->max = max;
1063 mas->min = min;
1064 return 0;
1065 }
1066
1067 /*
1068 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1069 * @mas: The maple state
1070 *
1071 * Return: A pointer to a maple node.
1072 */
mas_pop_node(struct ma_state * mas)1073 static __always_inline struct maple_node *mas_pop_node(struct ma_state *mas)
1074 {
1075 struct maple_node *ret;
1076
1077 if (mas->alloc) {
1078 ret = mas->alloc;
1079 mas->alloc = NULL;
1080 goto out;
1081 }
1082
1083 if (WARN_ON_ONCE(!mas->sheaf))
1084 return NULL;
1085
1086 ret = kmem_cache_alloc_from_sheaf(maple_node_cache, GFP_NOWAIT, mas->sheaf);
1087
1088 out:
1089 memset(ret, 0, sizeof(*ret));
1090 return ret;
1091 }
1092
1093 /*
1094 * mas_alloc_nodes() - Allocate nodes into a maple state
1095 * @mas: The maple state
1096 * @gfp: The GFP Flags
1097 */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1098 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1099 {
1100 if (!mas->node_request)
1101 return;
1102
1103 if (mas->node_request == 1) {
1104 if (mas->sheaf)
1105 goto use_sheaf;
1106
1107 if (mas->alloc)
1108 return;
1109
1110 mas->alloc = mt_alloc_one(gfp);
1111 if (!mas->alloc)
1112 goto error;
1113
1114 mas->node_request = 0;
1115 return;
1116 }
1117
1118 use_sheaf:
1119 if (unlikely(mas->alloc)) {
1120 kfree(mas->alloc);
1121 mas->alloc = NULL;
1122 }
1123
1124 if (mas->sheaf) {
1125 unsigned long refill;
1126
1127 refill = mas->node_request;
1128 if (kmem_cache_sheaf_size(mas->sheaf) >= refill) {
1129 mas->node_request = 0;
1130 return;
1131 }
1132
1133 if (mt_refill_sheaf(gfp, &mas->sheaf, refill))
1134 goto error;
1135
1136 mas->node_request = 0;
1137 return;
1138 }
1139
1140 mas->sheaf = mt_get_sheaf(gfp, mas->node_request);
1141 if (likely(mas->sheaf)) {
1142 mas->node_request = 0;
1143 return;
1144 }
1145
1146 error:
1147 mas_set_err(mas, -ENOMEM);
1148 }
1149
mas_empty_nodes(struct ma_state * mas)1150 static inline void mas_empty_nodes(struct ma_state *mas)
1151 {
1152 mas->node_request = 0;
1153 if (mas->sheaf) {
1154 mt_return_sheaf(mas->sheaf);
1155 mas->sheaf = NULL;
1156 }
1157
1158 if (mas->alloc) {
1159 kfree(mas->alloc);
1160 mas->alloc = NULL;
1161 }
1162 }
1163
1164 /*
1165 * mas_free() - Free an encoded maple node
1166 * @mas: The maple state
1167 * @used: The encoded maple node to free.
1168 *
1169 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1170 * otherwise.
1171 */
mas_free(struct ma_state * mas,struct maple_enode * used)1172 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1173 {
1174 ma_free_rcu(mte_to_node(used));
1175 }
1176
1177 /*
1178 * mas_start() - Sets up maple state for operations.
1179 * @mas: The maple state.
1180 *
1181 * If mas->status == ma_start, then set the min, max and depth to
1182 * defaults.
1183 *
1184 * Return:
1185 * - If mas->node is an error or not mas_start, return NULL.
1186 * - If it's an empty tree: NULL & mas->status == ma_none
1187 * - If it's a single entry: The entry & mas->status == ma_root
1188 * - If it's a tree: NULL & mas->status == ma_active
1189 */
mas_start(struct ma_state * mas)1190 static inline struct maple_enode *mas_start(struct ma_state *mas)
1191 {
1192 if (likely(mas_is_start(mas))) {
1193 struct maple_enode *root;
1194
1195 mas->min = 0;
1196 mas->max = ULONG_MAX;
1197
1198 retry:
1199 mas->depth = 0;
1200 root = mas_root(mas);
1201 /* Tree with nodes */
1202 if (likely(xa_is_node(root))) {
1203 mas->depth = 0;
1204 mas->status = ma_active;
1205 mas->node = mte_safe_root(root);
1206 mas->offset = 0;
1207 if (mte_dead_node(mas->node))
1208 goto retry;
1209
1210 return NULL;
1211 }
1212
1213 mas->node = NULL;
1214 /* empty tree */
1215 if (unlikely(!root)) {
1216 mas->status = ma_none;
1217 mas->offset = MAPLE_NODE_SLOTS;
1218 return NULL;
1219 }
1220
1221 /* Single entry tree */
1222 mas->status = ma_root;
1223 mas->offset = MAPLE_NODE_SLOTS;
1224
1225 /* Single entry tree. */
1226 if (mas->index > 0)
1227 return NULL;
1228
1229 return root;
1230 }
1231
1232 return NULL;
1233 }
1234
1235 /*
1236 * ma_data_end() - Find the end of the data in a node.
1237 * @node: The maple node
1238 * @type: The maple node type
1239 * @pivots: The array of pivots in the node
1240 * @max: The maximum value in the node
1241 *
1242 * Uses metadata to find the end of the data when possible.
1243 * Return: The zero indexed last slot with data (may be null).
1244 */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1245 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1246 enum maple_type type, unsigned long *pivots, unsigned long max)
1247 {
1248 unsigned char offset;
1249
1250 if (!pivots)
1251 return 0;
1252
1253 if (type == maple_arange_64)
1254 return ma_meta_end(node, type);
1255
1256 offset = mt_pivots[type] - 1;
1257 if (likely(!pivots[offset]))
1258 return ma_meta_end(node, type);
1259
1260 if (likely(pivots[offset] == max))
1261 return offset;
1262
1263 return mt_pivots[type];
1264 }
1265
1266 /*
1267 * mas_data_end() - Find the end of the data (slot).
1268 * @mas: the maple state
1269 *
1270 * This method is optimized to check the metadata of a node if the node type
1271 * supports data end metadata.
1272 *
1273 * Return: The zero indexed last slot with data (may be null).
1274 */
mas_data_end(struct ma_state * mas)1275 static inline unsigned char mas_data_end(struct ma_state *mas)
1276 {
1277 enum maple_type type;
1278 struct maple_node *node;
1279 unsigned char offset;
1280 unsigned long *pivots;
1281
1282 type = mte_node_type(mas->node);
1283 node = mas_mn(mas);
1284 if (type == maple_arange_64)
1285 return ma_meta_end(node, type);
1286
1287 pivots = ma_pivots(node, type);
1288 if (unlikely(ma_dead_node(node)))
1289 return 0;
1290
1291 offset = mt_pivots[type] - 1;
1292 if (likely(!pivots[offset]))
1293 return ma_meta_end(node, type);
1294
1295 if (likely(pivots[offset] == mas->max))
1296 return offset;
1297
1298 return mt_pivots[type];
1299 }
1300
1301 /*
1302 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1303 * @mas: the maple state
1304 *
1305 * Return: The maximum gap in the leaf.
1306 */
mas_leaf_max_gap(struct ma_state * mas)1307 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1308 {
1309 enum maple_type mt;
1310 unsigned long pstart, gap, max_gap;
1311 struct maple_node *mn;
1312 unsigned long *pivots;
1313 void __rcu **slots;
1314 unsigned char i;
1315 unsigned char max_piv;
1316
1317 mt = mte_node_type(mas->node);
1318 mn = mas_mn(mas);
1319 slots = ma_slots(mn, mt);
1320 max_gap = 0;
1321 if (unlikely(ma_is_dense(mt))) {
1322 gap = 0;
1323 for (i = 0; i < mt_slots[mt]; i++) {
1324 if (slots[i]) {
1325 if (gap > max_gap)
1326 max_gap = gap;
1327 gap = 0;
1328 } else {
1329 gap++;
1330 }
1331 }
1332 if (gap > max_gap)
1333 max_gap = gap;
1334 return max_gap;
1335 }
1336
1337 /*
1338 * Check the first implied pivot optimizes the loop below and slot 1 may
1339 * be skipped if there is a gap in slot 0.
1340 */
1341 pivots = ma_pivots(mn, mt);
1342 if (likely(!slots[0])) {
1343 max_gap = pivots[0] - mas->min + 1;
1344 i = 2;
1345 } else {
1346 i = 1;
1347 }
1348
1349 /* reduce max_piv as the special case is checked before the loop */
1350 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1351 /*
1352 * Check end implied pivot which can only be a gap on the right most
1353 * node.
1354 */
1355 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1356 gap = ULONG_MAX - pivots[max_piv];
1357 if (gap > max_gap)
1358 max_gap = gap;
1359
1360 if (max_gap > pivots[max_piv] - mas->min)
1361 return max_gap;
1362 }
1363
1364 for (; i <= max_piv; i++) {
1365 /* data == no gap. */
1366 if (likely(slots[i]))
1367 continue;
1368
1369 pstart = pivots[i - 1];
1370 gap = pivots[i] - pstart;
1371 if (gap > max_gap)
1372 max_gap = gap;
1373
1374 /* There cannot be two gaps in a row. */
1375 i++;
1376 }
1377 return max_gap;
1378 }
1379
1380 /*
1381 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1382 * @node: The maple node
1383 * @gaps: The pointer to the gaps
1384 * @mt: The maple node type
1385 * @off: Pointer to store the offset location of the gap.
1386 *
1387 * Uses the metadata data end to scan backwards across set gaps.
1388 *
1389 * Return: The maximum gap value
1390 */
1391 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1392 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1393 unsigned char *off)
1394 {
1395 unsigned char offset, i;
1396 unsigned long max_gap = 0;
1397
1398 i = offset = ma_meta_end(node, mt);
1399 do {
1400 if (gaps[i] > max_gap) {
1401 max_gap = gaps[i];
1402 offset = i;
1403 }
1404 } while (i--);
1405
1406 *off = offset;
1407 return max_gap;
1408 }
1409
1410 /*
1411 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1412 * @mas: The maple state.
1413 *
1414 * Return: The gap value.
1415 */
mas_max_gap(struct ma_state * mas)1416 static inline unsigned long mas_max_gap(struct ma_state *mas)
1417 {
1418 unsigned long *gaps;
1419 unsigned char offset;
1420 enum maple_type mt;
1421 struct maple_node *node;
1422
1423 mt = mte_node_type(mas->node);
1424 if (ma_is_leaf(mt))
1425 return mas_leaf_max_gap(mas);
1426
1427 node = mas_mn(mas);
1428 MAS_BUG_ON(mas, mt != maple_arange_64);
1429 offset = ma_meta_gap(node);
1430 gaps = ma_gaps(node, mt);
1431 return gaps[offset];
1432 }
1433
1434 /*
1435 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1436 * @mas: The maple state
1437 * @offset: The gap offset in the parent to set
1438 * @new: The new gap value.
1439 *
1440 * Set the parent gap then continue to set the gap upwards, using the metadata
1441 * of the parent to see if it is necessary to check the node above.
1442 */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1443 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1444 unsigned long new)
1445 {
1446 unsigned long meta_gap = 0;
1447 struct maple_node *pnode;
1448 struct maple_enode *penode;
1449 unsigned long *pgaps;
1450 unsigned char meta_offset;
1451 enum maple_type pmt;
1452
1453 pnode = mte_parent(mas->node);
1454 pmt = mas_parent_type(mas, mas->node);
1455 penode = mt_mk_node(pnode, pmt);
1456 pgaps = ma_gaps(pnode, pmt);
1457
1458 ascend:
1459 MAS_BUG_ON(mas, pmt != maple_arange_64);
1460 meta_offset = ma_meta_gap(pnode);
1461 meta_gap = pgaps[meta_offset];
1462
1463 pgaps[offset] = new;
1464
1465 if (meta_gap == new)
1466 return;
1467
1468 if (offset != meta_offset) {
1469 if (meta_gap > new)
1470 return;
1471
1472 ma_set_meta_gap(pnode, pmt, offset);
1473 } else if (new < meta_gap) {
1474 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1475 ma_set_meta_gap(pnode, pmt, meta_offset);
1476 }
1477
1478 if (ma_is_root(pnode))
1479 return;
1480
1481 /* Go to the parent node. */
1482 pnode = mte_parent(penode);
1483 pmt = mas_parent_type(mas, penode);
1484 pgaps = ma_gaps(pnode, pmt);
1485 offset = mte_parent_slot(penode);
1486 penode = mt_mk_node(pnode, pmt);
1487 goto ascend;
1488 }
1489
1490 /*
1491 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1492 * @mas: the maple state.
1493 */
mas_update_gap(struct ma_state * mas)1494 static inline void mas_update_gap(struct ma_state *mas)
1495 {
1496 unsigned char pslot;
1497 unsigned long p_gap;
1498 unsigned long max_gap;
1499
1500 if (!mt_is_alloc(mas->tree))
1501 return;
1502
1503 if (mte_is_root(mas->node))
1504 return;
1505
1506 max_gap = mas_max_gap(mas);
1507
1508 pslot = mte_parent_slot(mas->node);
1509 p_gap = ma_gaps(mte_parent(mas->node),
1510 mas_parent_type(mas, mas->node))[pslot];
1511
1512 if (p_gap != max_gap)
1513 mas_parent_gap(mas, pslot, max_gap);
1514 }
1515
1516 /*
1517 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1518 * @parent with the slot encoded.
1519 * @mas: the maple state (for the tree)
1520 * @parent: the maple encoded node containing the children.
1521 */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1522 static inline void mas_adopt_children(struct ma_state *mas,
1523 struct maple_enode *parent)
1524 {
1525 enum maple_type type = mte_node_type(parent);
1526 struct maple_node *node = mte_to_node(parent);
1527 void __rcu **slots = ma_slots(node, type);
1528 unsigned long *pivots = ma_pivots(node, type);
1529 struct maple_enode *child;
1530 unsigned char offset;
1531
1532 offset = ma_data_end(node, type, pivots, mas->max);
1533 do {
1534 child = mas_slot_locked(mas, slots, offset);
1535 mas_set_parent(mas, child, parent, offset);
1536 } while (offset--);
1537 }
1538
1539 /*
1540 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1541 * node as dead.
1542 * @mas: the maple state with the new node
1543 * @old_enode: The old maple encoded node to replace.
1544 * @new_height: if we are inserting a root node, update the height of the tree
1545 */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode,char new_height)1546 static inline void mas_put_in_tree(struct ma_state *mas,
1547 struct maple_enode *old_enode, char new_height)
1548 __must_hold(mas->tree->ma_lock)
1549 {
1550 unsigned char offset;
1551 void __rcu **slots;
1552
1553 if (mte_is_root(mas->node)) {
1554 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1555 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1556 mt_set_height(mas->tree, new_height);
1557 } else {
1558
1559 offset = mte_parent_slot(mas->node);
1560 slots = ma_slots(mte_parent(mas->node),
1561 mas_parent_type(mas, mas->node));
1562 rcu_assign_pointer(slots[offset], mas->node);
1563 }
1564
1565 mte_set_node_dead(old_enode);
1566 }
1567
1568 /*
1569 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1570 * dead, and freeing it.
1571 * the parent encoding to locate the maple node in the tree.
1572 * @mas: the ma_state with @mas->node pointing to the new node.
1573 * @old_enode: The old maple encoded node.
1574 * @new_height: The new height of the tree as a result of the operation
1575 */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)1576 static inline void mas_replace_node(struct ma_state *mas,
1577 struct maple_enode *old_enode, unsigned char new_height)
1578 __must_hold(mas->tree->ma_lock)
1579 {
1580 mas_put_in_tree(mas, old_enode, new_height);
1581 mas_free(mas, old_enode);
1582 }
1583
1584 /*
1585 * mas_find_child() - Find a child who has the parent @mas->node.
1586 * @mas: the maple state with the parent.
1587 * @child: the maple state to store the child.
1588 */
mas_find_child(struct ma_state * mas,struct ma_state * child)1589 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1590 __must_hold(mas->tree->ma_lock)
1591 {
1592 enum maple_type mt;
1593 unsigned char offset;
1594 unsigned char end;
1595 unsigned long *pivots;
1596 struct maple_enode *entry;
1597 struct maple_node *node;
1598 void __rcu **slots;
1599
1600 mt = mte_node_type(mas->node);
1601 node = mas_mn(mas);
1602 slots = ma_slots(node, mt);
1603 pivots = ma_pivots(node, mt);
1604 end = ma_data_end(node, mt, pivots, mas->max);
1605 for (offset = mas->offset; offset <= end; offset++) {
1606 entry = mas_slot_locked(mas, slots, offset);
1607 if (mte_parent(entry) == node) {
1608 *child = *mas;
1609 mas->offset = offset + 1;
1610 child->offset = offset;
1611 mas_descend(child);
1612 child->offset = 0;
1613 return true;
1614 }
1615 }
1616 return false;
1617 }
1618
1619 /*
1620 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1621 * old data or set b_node->b_end.
1622 * @b_node: the maple_big_node
1623 * @shift: the shift count
1624 */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1625 static inline void mab_shift_right(struct maple_big_node *b_node,
1626 unsigned char shift)
1627 {
1628 unsigned long size = b_node->b_end * sizeof(unsigned long);
1629
1630 memmove(b_node->pivot + shift, b_node->pivot, size);
1631 memmove(b_node->slot + shift, b_node->slot, size);
1632 if (b_node->type == maple_arange_64)
1633 memmove(b_node->gap + shift, b_node->gap, size);
1634 }
1635
1636 /*
1637 * mab_middle_node() - Check if a middle node is needed (unlikely)
1638 * @b_node: the maple_big_node that contains the data.
1639 * @split: the potential split location
1640 * @slot_count: the size that can be stored in a single node being considered.
1641 *
1642 * Return: true if a middle node is required.
1643 */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1644 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1645 unsigned char slot_count)
1646 {
1647 unsigned char size = b_node->b_end;
1648
1649 if (size >= 2 * slot_count)
1650 return true;
1651
1652 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1653 return true;
1654
1655 return false;
1656 }
1657
1658 /*
1659 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1660 * @b_node: the maple_big_node with the data
1661 * @split: the suggested split location
1662 * @slot_count: the number of slots in the node being considered.
1663 *
1664 * Return: the split location.
1665 */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1666 static inline int mab_no_null_split(struct maple_big_node *b_node,
1667 unsigned char split, unsigned char slot_count)
1668 {
1669 if (!b_node->slot[split]) {
1670 /*
1671 * If the split is less than the max slot && the right side will
1672 * still be sufficient, then increment the split on NULL.
1673 */
1674 if ((split < slot_count - 1) &&
1675 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1676 split++;
1677 else
1678 split--;
1679 }
1680 return split;
1681 }
1682
1683 /*
1684 * mab_calc_split() - Calculate the split location and if there needs to be two
1685 * splits.
1686 * @mas: The maple state
1687 * @bn: The maple_big_node with the data
1688 * @mid_split: The second split, if required. 0 otherwise.
1689 *
1690 * Return: The first split location. The middle split is set in @mid_split.
1691 */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1692 static inline int mab_calc_split(struct ma_state *mas,
1693 struct maple_big_node *bn, unsigned char *mid_split)
1694 {
1695 unsigned char b_end = bn->b_end;
1696 int split = b_end / 2; /* Assume equal split. */
1697 unsigned char slot_count = mt_slots[bn->type];
1698
1699 /*
1700 * To support gap tracking, all NULL entries are kept together and a node cannot
1701 * end on a NULL entry, with the exception of the left-most leaf. The
1702 * limitation means that the split of a node must be checked for this condition
1703 * and be able to put more data in one direction or the other.
1704 *
1705 * Although extremely rare, it is possible to enter what is known as the 3-way
1706 * split scenario. The 3-way split comes about by means of a store of a range
1707 * that overwrites the end and beginning of two full nodes. The result is a set
1708 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1709 * also be located in different parent nodes which are also full. This can
1710 * carry upwards all the way to the root in the worst case.
1711 */
1712 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1713 split = b_end / 3;
1714 *mid_split = split * 2;
1715 } else {
1716 *mid_split = 0;
1717 }
1718
1719 /* Avoid ending a node on a NULL entry */
1720 split = mab_no_null_split(bn, split, slot_count);
1721
1722 if (unlikely(*mid_split))
1723 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1724
1725 return split;
1726 }
1727
1728 /*
1729 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1730 * and set @b_node->b_end to the next free slot.
1731 * @mas: The maple state
1732 * @mas_start: The starting slot to copy
1733 * @mas_end: The end slot to copy (inclusively)
1734 * @b_node: The maple_big_node to place the data
1735 * @mab_start: The starting location in maple_big_node to store the data.
1736 */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1737 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1738 unsigned char mas_end, struct maple_big_node *b_node,
1739 unsigned char mab_start)
1740 {
1741 enum maple_type mt;
1742 struct maple_node *node;
1743 void __rcu **slots;
1744 unsigned long *pivots, *gaps;
1745 int i = mas_start, j = mab_start;
1746 unsigned char piv_end;
1747
1748 node = mas_mn(mas);
1749 mt = mte_node_type(mas->node);
1750 pivots = ma_pivots(node, mt);
1751 if (!i) {
1752 b_node->pivot[j] = pivots[i++];
1753 if (unlikely(i > mas_end))
1754 goto complete;
1755 j++;
1756 }
1757
1758 piv_end = min(mas_end, mt_pivots[mt]);
1759 for (; i < piv_end; i++, j++) {
1760 b_node->pivot[j] = pivots[i];
1761 if (unlikely(!b_node->pivot[j]))
1762 goto complete;
1763
1764 if (unlikely(mas->max == b_node->pivot[j]))
1765 goto complete;
1766 }
1767
1768 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1769
1770 complete:
1771 b_node->b_end = ++j;
1772 j -= mab_start;
1773 slots = ma_slots(node, mt);
1774 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1775 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1776 gaps = ma_gaps(node, mt);
1777 memcpy(b_node->gap + mab_start, gaps + mas_start,
1778 sizeof(unsigned long) * j);
1779 }
1780 }
1781
1782 /*
1783 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1784 * @node: The maple node
1785 * @mt: The maple type
1786 * @end: The node end
1787 */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1788 static inline void mas_leaf_set_meta(struct maple_node *node,
1789 enum maple_type mt, unsigned char end)
1790 {
1791 if (end < mt_slots[mt] - 1)
1792 ma_set_meta(node, mt, 0, end);
1793 }
1794
1795 /*
1796 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1797 * @b_node: the maple_big_node that has the data
1798 * @mab_start: the start location in @b_node.
1799 * @mab_end: The end location in @b_node (inclusively)
1800 * @mas: The maple state with the maple encoded node.
1801 */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)1802 static inline void mab_mas_cp(struct maple_big_node *b_node,
1803 unsigned char mab_start, unsigned char mab_end,
1804 struct ma_state *mas, bool new_max)
1805 {
1806 int i, j = 0;
1807 enum maple_type mt = mte_node_type(mas->node);
1808 struct maple_node *node = mte_to_node(mas->node);
1809 void __rcu **slots = ma_slots(node, mt);
1810 unsigned long *pivots = ma_pivots(node, mt);
1811 unsigned long *gaps = NULL;
1812 unsigned char end;
1813
1814 if (mab_end - mab_start > mt_pivots[mt])
1815 mab_end--;
1816
1817 if (!pivots[mt_pivots[mt] - 1])
1818 slots[mt_pivots[mt]] = NULL;
1819
1820 i = mab_start;
1821 do {
1822 pivots[j++] = b_node->pivot[i++];
1823 } while (i <= mab_end && likely(b_node->pivot[i]));
1824
1825 memcpy(slots, b_node->slot + mab_start,
1826 sizeof(void *) * (i - mab_start));
1827
1828 if (new_max)
1829 mas->max = b_node->pivot[i - 1];
1830
1831 end = j - 1;
1832 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
1833 unsigned long max_gap = 0;
1834 unsigned char offset = 0;
1835
1836 gaps = ma_gaps(node, mt);
1837 do {
1838 gaps[--j] = b_node->gap[--i];
1839 if (gaps[j] > max_gap) {
1840 offset = j;
1841 max_gap = gaps[j];
1842 }
1843 } while (j);
1844
1845 ma_set_meta(node, mt, offset, end);
1846 } else {
1847 mas_leaf_set_meta(node, mt, end);
1848 }
1849 }
1850
1851 /*
1852 * mas_store_b_node() - Store an @entry into the b_node while also copying the
1853 * data from a maple encoded node.
1854 * @wr_mas: the maple write state
1855 * @b_node: the maple_big_node to fill with data
1856 * @offset_end: the offset to end copying
1857 *
1858 * Return: The actual end of the data stored in @b_node
1859 */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)1860 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
1861 struct maple_big_node *b_node, unsigned char offset_end)
1862 {
1863 unsigned char slot;
1864 unsigned char b_end;
1865 /* Possible underflow of piv will wrap back to 0 before use. */
1866 unsigned long piv;
1867 struct ma_state *mas = wr_mas->mas;
1868
1869 b_node->type = wr_mas->type;
1870 b_end = 0;
1871 slot = mas->offset;
1872 if (slot) {
1873 /* Copy start data up to insert. */
1874 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
1875 b_end = b_node->b_end;
1876 piv = b_node->pivot[b_end - 1];
1877 } else
1878 piv = mas->min - 1;
1879
1880 if (piv + 1 < mas->index) {
1881 /* Handle range starting after old range */
1882 b_node->slot[b_end] = wr_mas->content;
1883 if (!wr_mas->content)
1884 b_node->gap[b_end] = mas->index - 1 - piv;
1885 b_node->pivot[b_end++] = mas->index - 1;
1886 }
1887
1888 /* Store the new entry. */
1889 mas->offset = b_end;
1890 b_node->slot[b_end] = wr_mas->entry;
1891 b_node->pivot[b_end] = mas->last;
1892
1893 /* Appended. */
1894 if (mas->last >= mas->max)
1895 goto b_end;
1896
1897 /* Handle new range ending before old range ends */
1898 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
1899 if (piv > mas->last) {
1900 if (offset_end != slot)
1901 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
1902 offset_end);
1903
1904 b_node->slot[++b_end] = wr_mas->content;
1905 if (!wr_mas->content)
1906 b_node->gap[b_end] = piv - mas->last + 1;
1907 b_node->pivot[b_end] = piv;
1908 }
1909
1910 slot = offset_end + 1;
1911 if (slot > mas->end)
1912 goto b_end;
1913
1914 /* Copy end data to the end of the node. */
1915 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
1916 b_node->b_end--;
1917 return;
1918
1919 b_end:
1920 b_node->b_end = b_end;
1921 }
1922
1923 /*
1924 * mas_prev_sibling() - Find the previous node with the same parent.
1925 * @mas: the maple state
1926 *
1927 * Return: True if there is a previous sibling, false otherwise.
1928 */
mas_prev_sibling(struct ma_state * mas)1929 static inline bool mas_prev_sibling(struct ma_state *mas)
1930 {
1931 unsigned int p_slot = mte_parent_slot(mas->node);
1932
1933 /* For root node, p_slot is set to 0 by mte_parent_slot(). */
1934 if (!p_slot)
1935 return false;
1936
1937 mas_ascend(mas);
1938 mas->offset = p_slot - 1;
1939 mas_descend(mas);
1940 return true;
1941 }
1942
1943 /*
1944 * mas_next_sibling() - Find the next node with the same parent.
1945 * @mas: the maple state
1946 *
1947 * Return: true if there is a next sibling, false otherwise.
1948 */
mas_next_sibling(struct ma_state * mas)1949 static inline bool mas_next_sibling(struct ma_state *mas)
1950 {
1951 MA_STATE(parent, mas->tree, mas->index, mas->last);
1952
1953 if (mte_is_root(mas->node))
1954 return false;
1955
1956 parent = *mas;
1957 mas_ascend(&parent);
1958 parent.offset = mte_parent_slot(mas->node) + 1;
1959 if (parent.offset > mas_data_end(&parent))
1960 return false;
1961
1962 *mas = parent;
1963 mas_descend(mas);
1964 return true;
1965 }
1966
1967 /*
1968 * mas_node_or_none() - Set the enode and state.
1969 * @mas: the maple state
1970 * @enode: The encoded maple node.
1971 *
1972 * Set the node to the enode and the status.
1973 */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)1974 static inline void mas_node_or_none(struct ma_state *mas,
1975 struct maple_enode *enode)
1976 {
1977 if (enode) {
1978 mas->node = enode;
1979 mas->status = ma_active;
1980 } else {
1981 mas->node = NULL;
1982 mas->status = ma_none;
1983 }
1984 }
1985
1986 /*
1987 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
1988 * If @mas->index cannot be found within the containing
1989 * node, we traverse to the last entry in the node.
1990 * @wr_mas: The maple write state
1991 *
1992 * Uses mas_slot_locked() and does not need to worry about dead nodes.
1993 */
mas_wr_node_walk(struct ma_wr_state * wr_mas)1994 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
1995 {
1996 struct ma_state *mas = wr_mas->mas;
1997 unsigned char count, offset;
1998
1999 if (unlikely(ma_is_dense(wr_mas->type))) {
2000 wr_mas->r_max = wr_mas->r_min = mas->index;
2001 mas->offset = mas->index = mas->min;
2002 return;
2003 }
2004
2005 wr_mas->node = mas_mn(wr_mas->mas);
2006 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2007 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2008 wr_mas->pivots, mas->max);
2009 offset = mas->offset;
2010
2011 while (offset < count && mas->index > wr_mas->pivots[offset])
2012 offset++;
2013
2014 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2015 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2016 wr_mas->offset_end = mas->offset = offset;
2017 }
2018
2019 /*
2020 * mast_rebalance_next() - Rebalance against the next node
2021 * @mast: The maple subtree state
2022 */
mast_rebalance_next(struct maple_subtree_state * mast)2023 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2024 {
2025 unsigned char b_end = mast->bn->b_end;
2026
2027 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2028 mast->bn, b_end);
2029 mast->orig_r->last = mast->orig_r->max;
2030 }
2031
2032 /*
2033 * mast_rebalance_prev() - Rebalance against the previous node
2034 * @mast: The maple subtree state
2035 */
mast_rebalance_prev(struct maple_subtree_state * mast)2036 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2037 {
2038 unsigned char end = mas_data_end(mast->orig_l) + 1;
2039 unsigned char b_end = mast->bn->b_end;
2040
2041 mab_shift_right(mast->bn, end);
2042 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2043 mast->l->min = mast->orig_l->min;
2044 mast->orig_l->index = mast->orig_l->min;
2045 mast->bn->b_end = end + b_end;
2046 mast->l->offset += end;
2047 }
2048
2049 /*
2050 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2051 * the node to the right. Checking the nodes to the right then the left at each
2052 * level upwards until root is reached.
2053 * Data is copied into the @mast->bn.
2054 * @mast: The maple_subtree_state.
2055 */
2056 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2057 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2058 {
2059 struct ma_state r_tmp = *mast->orig_r;
2060 struct ma_state l_tmp = *mast->orig_l;
2061 unsigned char depth = 0;
2062
2063 do {
2064 mas_ascend(mast->orig_r);
2065 mas_ascend(mast->orig_l);
2066 depth++;
2067 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2068 mast->orig_r->offset++;
2069 do {
2070 mas_descend(mast->orig_r);
2071 mast->orig_r->offset = 0;
2072 } while (--depth);
2073
2074 mast_rebalance_next(mast);
2075 *mast->orig_l = l_tmp;
2076 return true;
2077 } else if (mast->orig_l->offset != 0) {
2078 mast->orig_l->offset--;
2079 do {
2080 mas_descend(mast->orig_l);
2081 mast->orig_l->offset =
2082 mas_data_end(mast->orig_l);
2083 } while (--depth);
2084
2085 mast_rebalance_prev(mast);
2086 *mast->orig_r = r_tmp;
2087 return true;
2088 }
2089 } while (!mte_is_root(mast->orig_r->node));
2090
2091 *mast->orig_r = r_tmp;
2092 *mast->orig_l = l_tmp;
2093 return false;
2094 }
2095
2096 /*
2097 * mast_ascend() - Ascend the original left and right maple states.
2098 * @mast: the maple subtree state.
2099 *
2100 * Ascend the original left and right sides. Set the offsets to point to the
2101 * data already in the new tree (@mast->l and @mast->r).
2102 */
mast_ascend(struct maple_subtree_state * mast)2103 static inline void mast_ascend(struct maple_subtree_state *mast)
2104 {
2105 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2106 mas_ascend(mast->orig_l);
2107 mas_ascend(mast->orig_r);
2108
2109 mast->orig_r->offset = 0;
2110 mast->orig_r->index = mast->r->max;
2111 /* last should be larger than or equal to index */
2112 if (mast->orig_r->last < mast->orig_r->index)
2113 mast->orig_r->last = mast->orig_r->index;
2114
2115 wr_mas.type = mte_node_type(mast->orig_r->node);
2116 mas_wr_node_walk(&wr_mas);
2117 /* Set up the left side of things */
2118 mast->orig_l->offset = 0;
2119 mast->orig_l->index = mast->l->min;
2120 wr_mas.mas = mast->orig_l;
2121 wr_mas.type = mte_node_type(mast->orig_l->node);
2122 mas_wr_node_walk(&wr_mas);
2123
2124 mast->bn->type = wr_mas.type;
2125 }
2126
2127 /*
2128 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2129 * @mas: the maple state with the allocations.
2130 * @b_node: the maple_big_node with the type encoding.
2131 *
2132 * Use the node type from the maple_big_node to allocate a new node from the
2133 * ma_state. This function exists mainly for code readability.
2134 *
2135 * Return: A new maple encoded node
2136 */
2137 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2138 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2139 {
2140 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2141 }
2142
2143 /*
2144 * mas_mab_to_node() - Set up right and middle nodes
2145 *
2146 * @mas: the maple state that contains the allocations.
2147 * @b_node: the node which contains the data.
2148 * @left: The pointer which will have the left node
2149 * @right: The pointer which may have the right node
2150 * @middle: the pointer which may have the middle node (rare)
2151 * @mid_split: the split location for the middle node
2152 *
2153 * Return: the split of left.
2154 */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2155 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2156 struct maple_big_node *b_node, struct maple_enode **left,
2157 struct maple_enode **right, struct maple_enode **middle,
2158 unsigned char *mid_split)
2159 {
2160 unsigned char split = 0;
2161 unsigned char slot_count = mt_slots[b_node->type];
2162
2163 *left = mas_new_ma_node(mas, b_node);
2164 *right = NULL;
2165 *middle = NULL;
2166 *mid_split = 0;
2167
2168 if (b_node->b_end < slot_count) {
2169 split = b_node->b_end;
2170 } else {
2171 split = mab_calc_split(mas, b_node, mid_split);
2172 *right = mas_new_ma_node(mas, b_node);
2173 }
2174
2175 if (*mid_split)
2176 *middle = mas_new_ma_node(mas, b_node);
2177
2178 return split;
2179
2180 }
2181
2182 /*
2183 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2184 * pointer.
2185 * @b_node: the big node to add the entry
2186 * @mas: the maple state to get the pivot (mas->max)
2187 * @entry: the entry to add, if NULL nothing happens.
2188 */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2189 static inline void mab_set_b_end(struct maple_big_node *b_node,
2190 struct ma_state *mas,
2191 void *entry)
2192 {
2193 if (!entry)
2194 return;
2195
2196 b_node->slot[b_node->b_end] = entry;
2197 if (mt_is_alloc(mas->tree))
2198 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2199 b_node->pivot[b_node->b_end++] = mas->max;
2200 }
2201
2202 /*
2203 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2204 * of @mas->node to either @left or @right, depending on @slot and @split
2205 *
2206 * @mas: the maple state with the node that needs a parent
2207 * @left: possible parent 1
2208 * @right: possible parent 2
2209 * @slot: the slot the mas->node was placed
2210 * @split: the split location between @left and @right
2211 */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2212 static inline void mas_set_split_parent(struct ma_state *mas,
2213 struct maple_enode *left,
2214 struct maple_enode *right,
2215 unsigned char *slot, unsigned char split)
2216 {
2217 if (mas_is_none(mas))
2218 return;
2219
2220 if ((*slot) <= split)
2221 mas_set_parent(mas, mas->node, left, *slot);
2222 else if (right)
2223 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2224
2225 (*slot)++;
2226 }
2227
2228 /*
2229 * mte_mid_split_check() - Check if the next node passes the mid-split
2230 * @l: Pointer to left encoded maple node.
2231 * @m: Pointer to middle encoded maple node.
2232 * @r: Pointer to right encoded maple node.
2233 * @slot: The offset
2234 * @split: The split location.
2235 * @mid_split: The middle split.
2236 */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2237 static inline void mte_mid_split_check(struct maple_enode **l,
2238 struct maple_enode **r,
2239 struct maple_enode *right,
2240 unsigned char slot,
2241 unsigned char *split,
2242 unsigned char mid_split)
2243 {
2244 if (*r == right)
2245 return;
2246
2247 if (slot < mid_split)
2248 return;
2249
2250 *l = *r;
2251 *r = right;
2252 *split = mid_split;
2253 }
2254
2255 /*
2256 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2257 * is taken from @mast->l.
2258 * @mast: the maple subtree state
2259 * @left: the left node
2260 * @right: the right node
2261 * @split: the split location.
2262 */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2263 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2264 struct maple_enode *left,
2265 struct maple_enode *middle,
2266 struct maple_enode *right,
2267 unsigned char split,
2268 unsigned char mid_split)
2269 {
2270 unsigned char slot;
2271 struct maple_enode *l = left;
2272 struct maple_enode *r = right;
2273
2274 if (mas_is_none(mast->l))
2275 return;
2276
2277 if (middle)
2278 r = middle;
2279
2280 slot = mast->l->offset;
2281
2282 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2283 mas_set_split_parent(mast->l, l, r, &slot, split);
2284
2285 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2286 mas_set_split_parent(mast->m, l, r, &slot, split);
2287
2288 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2289 mas_set_split_parent(mast->r, l, r, &slot, split);
2290 }
2291
2292 /*
2293 * mas_topiary_node() - Dispose of a single node
2294 * @mas: The maple state for pushing nodes
2295 * @in_rcu: If the tree is in rcu mode
2296 *
2297 * The node will either be RCU freed or pushed back on the maple state.
2298 */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2299 static inline void mas_topiary_node(struct ma_state *mas,
2300 struct ma_state *tmp_mas, bool in_rcu)
2301 {
2302 struct maple_node *tmp;
2303 struct maple_enode *enode;
2304
2305 if (mas_is_none(tmp_mas))
2306 return;
2307
2308 enode = tmp_mas->node;
2309 tmp = mte_to_node(enode);
2310 mte_set_node_dead(enode);
2311 ma_free_rcu(tmp);
2312 }
2313
2314 /*
2315 * mas_topiary_replace() - Replace the data with new data, then repair the
2316 * parent links within the new tree. Iterate over the dead sub-tree and collect
2317 * the dead subtrees and topiary the nodes that are no longer of use.
2318 *
2319 * The new tree will have up to three children with the correct parent. Keep
2320 * track of the new entries as they need to be followed to find the next level
2321 * of new entries.
2322 *
2323 * The old tree will have up to three children with the old parent. Keep track
2324 * of the old entries as they may have more nodes below replaced. Nodes within
2325 * [index, last] are dead subtrees, others need to be freed and followed.
2326 *
2327 * @mas: The maple state pointing at the new data
2328 * @old_enode: The maple encoded node being replaced
2329 * @new_height: The new height of the tree as a result of the operation
2330 *
2331 */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2332 static inline void mas_topiary_replace(struct ma_state *mas,
2333 struct maple_enode *old_enode, unsigned char new_height)
2334 {
2335 struct ma_state tmp[3], tmp_next[3];
2336 MA_TOPIARY(subtrees, mas->tree);
2337 bool in_rcu;
2338 int i, n;
2339
2340 /* Place data in tree & then mark node as old */
2341 mas_put_in_tree(mas, old_enode, new_height);
2342
2343 /* Update the parent pointers in the tree */
2344 tmp[0] = *mas;
2345 tmp[0].offset = 0;
2346 tmp[1].status = ma_none;
2347 tmp[2].status = ma_none;
2348 while (!mte_is_leaf(tmp[0].node)) {
2349 n = 0;
2350 for (i = 0; i < 3; i++) {
2351 if (mas_is_none(&tmp[i]))
2352 continue;
2353
2354 while (n < 3) {
2355 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2356 break;
2357 n++;
2358 }
2359
2360 mas_adopt_children(&tmp[i], tmp[i].node);
2361 }
2362
2363 if (MAS_WARN_ON(mas, n == 0))
2364 break;
2365
2366 while (n < 3)
2367 tmp_next[n++].status = ma_none;
2368
2369 for (i = 0; i < 3; i++)
2370 tmp[i] = tmp_next[i];
2371 }
2372
2373 /* Collect the old nodes that need to be discarded */
2374 if (mte_is_leaf(old_enode))
2375 return mas_free(mas, old_enode);
2376
2377 tmp[0] = *mas;
2378 tmp[0].offset = 0;
2379 tmp[0].node = old_enode;
2380 tmp[1].status = ma_none;
2381 tmp[2].status = ma_none;
2382 in_rcu = mt_in_rcu(mas->tree);
2383 do {
2384 n = 0;
2385 for (i = 0; i < 3; i++) {
2386 if (mas_is_none(&tmp[i]))
2387 continue;
2388
2389 while (n < 3) {
2390 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2391 break;
2392
2393 if ((tmp_next[n].min >= tmp_next->index) &&
2394 (tmp_next[n].max <= tmp_next->last)) {
2395 mat_add(&subtrees, tmp_next[n].node);
2396 tmp_next[n].status = ma_none;
2397 } else {
2398 n++;
2399 }
2400 }
2401 }
2402
2403 if (MAS_WARN_ON(mas, n == 0))
2404 break;
2405
2406 while (n < 3)
2407 tmp_next[n++].status = ma_none;
2408
2409 for (i = 0; i < 3; i++) {
2410 mas_topiary_node(mas, &tmp[i], in_rcu);
2411 tmp[i] = tmp_next[i];
2412 }
2413 } while (!mte_is_leaf(tmp[0].node));
2414
2415 for (i = 0; i < 3; i++)
2416 mas_topiary_node(mas, &tmp[i], in_rcu);
2417
2418 mas_mat_destroy(mas, &subtrees);
2419 }
2420
2421 /*
2422 * mas_wmb_replace() - Write memory barrier and replace
2423 * @mas: The maple state
2424 * @old_enode: The old maple encoded node that is being replaced.
2425 * @new_height: The new height of the tree as a result of the operation
2426 *
2427 * Updates gap as necessary.
2428 */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode,unsigned char new_height)2429 static inline void mas_wmb_replace(struct ma_state *mas,
2430 struct maple_enode *old_enode, unsigned char new_height)
2431 {
2432 /* Insert the new data in the tree */
2433 mas_topiary_replace(mas, old_enode, new_height);
2434
2435 if (mte_is_leaf(mas->node))
2436 return;
2437
2438 mas_update_gap(mas);
2439 }
2440
2441 /*
2442 * mast_cp_to_nodes() - Copy data out to nodes.
2443 * @mast: The maple subtree state
2444 * @left: The left encoded maple node
2445 * @middle: The middle encoded maple node
2446 * @right: The right encoded maple node
2447 * @split: The location to split between left and (middle ? middle : right)
2448 * @mid_split: The location to split between middle and right.
2449 */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2450 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2451 struct maple_enode *left, struct maple_enode *middle,
2452 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2453 {
2454 bool new_lmax = true;
2455
2456 mas_node_or_none(mast->l, left);
2457 mas_node_or_none(mast->m, middle);
2458 mas_node_or_none(mast->r, right);
2459
2460 mast->l->min = mast->orig_l->min;
2461 if (split == mast->bn->b_end) {
2462 mast->l->max = mast->orig_r->max;
2463 new_lmax = false;
2464 }
2465
2466 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2467
2468 if (middle) {
2469 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2470 mast->m->min = mast->bn->pivot[split] + 1;
2471 split = mid_split;
2472 }
2473
2474 mast->r->max = mast->orig_r->max;
2475 if (right) {
2476 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2477 mast->r->min = mast->bn->pivot[split] + 1;
2478 }
2479 }
2480
2481 /*
2482 * mast_combine_cp_left - Copy in the original left side of the tree into the
2483 * combined data set in the maple subtree state big node.
2484 * @mast: The maple subtree state
2485 */
mast_combine_cp_left(struct maple_subtree_state * mast)2486 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2487 {
2488 unsigned char l_slot = mast->orig_l->offset;
2489
2490 if (!l_slot)
2491 return;
2492
2493 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2494 }
2495
2496 /*
2497 * mast_combine_cp_right: Copy in the original right side of the tree into the
2498 * combined data set in the maple subtree state big node.
2499 * @mast: The maple subtree state
2500 */
mast_combine_cp_right(struct maple_subtree_state * mast)2501 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2502 {
2503 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2504 return;
2505
2506 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2507 mt_slot_count(mast->orig_r->node), mast->bn,
2508 mast->bn->b_end);
2509 mast->orig_r->last = mast->orig_r->max;
2510 }
2511
2512 /*
2513 * mast_sufficient: Check if the maple subtree state has enough data in the big
2514 * node to create at least one sufficient node
2515 * @mast: the maple subtree state
2516 */
mast_sufficient(struct maple_subtree_state * mast)2517 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2518 {
2519 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2520 return true;
2521
2522 return false;
2523 }
2524
2525 /*
2526 * mast_overflow: Check if there is too much data in the subtree state for a
2527 * single node.
2528 * @mast: The maple subtree state
2529 */
mast_overflow(struct maple_subtree_state * mast)2530 static inline bool mast_overflow(struct maple_subtree_state *mast)
2531 {
2532 if (mast->bn->b_end > mt_slot_count(mast->orig_l->node))
2533 return true;
2534
2535 return false;
2536 }
2537
mtree_range_walk(struct ma_state * mas)2538 static inline void *mtree_range_walk(struct ma_state *mas)
2539 {
2540 unsigned long *pivots;
2541 unsigned char offset;
2542 struct maple_node *node;
2543 struct maple_enode *next, *last;
2544 enum maple_type type;
2545 void __rcu **slots;
2546 unsigned char end;
2547 unsigned long max, min;
2548 unsigned long prev_max, prev_min;
2549
2550 next = mas->node;
2551 min = mas->min;
2552 max = mas->max;
2553 do {
2554 last = next;
2555 node = mte_to_node(next);
2556 type = mte_node_type(next);
2557 pivots = ma_pivots(node, type);
2558 end = ma_data_end(node, type, pivots, max);
2559 prev_min = min;
2560 prev_max = max;
2561 if (pivots[0] >= mas->index) {
2562 offset = 0;
2563 max = pivots[0];
2564 goto next;
2565 }
2566
2567 offset = 1;
2568 while (offset < end) {
2569 if (pivots[offset] >= mas->index) {
2570 max = pivots[offset];
2571 break;
2572 }
2573 offset++;
2574 }
2575
2576 min = pivots[offset - 1] + 1;
2577 next:
2578 slots = ma_slots(node, type);
2579 next = mt_slot(mas->tree, slots, offset);
2580 if (unlikely(ma_dead_node(node)))
2581 goto dead_node;
2582 } while (!ma_is_leaf(type));
2583
2584 mas->end = end;
2585 mas->offset = offset;
2586 mas->index = min;
2587 mas->last = max;
2588 mas->min = prev_min;
2589 mas->max = prev_max;
2590 mas->node = last;
2591 return (void *)next;
2592
2593 dead_node:
2594 mas_reset(mas);
2595 return NULL;
2596 }
2597
2598 /*
2599 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2600 * @mas: The starting maple state
2601 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2602 * @count: The estimated count of iterations needed.
2603 *
2604 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2605 * is hit. First @b_node is split into two entries which are inserted into the
2606 * next iteration of the loop. @b_node is returned populated with the final
2607 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2608 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2609 * to account of what has been copied into the new sub-tree. The update of
2610 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2611 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2612 * the new sub-tree in case the sub-tree becomes the full tree.
2613 */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2614 static void mas_spanning_rebalance(struct ma_state *mas,
2615 struct maple_subtree_state *mast, unsigned char count)
2616 {
2617 unsigned char split, mid_split;
2618 unsigned char slot = 0;
2619 unsigned char new_height = 0; /* used if node is a new root */
2620 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2621 struct maple_enode *old_enode;
2622
2623 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2624 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2625 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2626
2627 /*
2628 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2629 * Rebalancing is done by use of the ``struct maple_topiary``.
2630 */
2631 mast->l = &l_mas;
2632 mast->m = &m_mas;
2633 mast->r = &r_mas;
2634 l_mas.status = r_mas.status = m_mas.status = ma_none;
2635
2636 /* Check if this is not root and has sufficient data. */
2637 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2638 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2639 mast_spanning_rebalance(mast);
2640
2641 /*
2642 * Each level of the tree is examined and balanced, pushing data to the left or
2643 * right, or rebalancing against left or right nodes is employed to avoid
2644 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2645 * the tree is created, there may be a mix of new and old nodes. The old nodes
2646 * will have the incorrect parent pointers and currently be in two trees: the
2647 * original tree and the partially new tree. To remedy the parent pointers in
2648 * the old tree, the new data is swapped into the active tree and a walk down
2649 * the tree is performed and the parent pointers are updated.
2650 * See mas_topiary_replace() for more information.
2651 */
2652 while (count--) {
2653 mast->bn->b_end--;
2654 mast->bn->type = mte_node_type(mast->orig_l->node);
2655 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2656 &mid_split);
2657 mast_set_split_parents(mast, left, middle, right, split,
2658 mid_split);
2659 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2660 new_height++;
2661
2662 /*
2663 * Copy data from next level in the tree to mast->bn from next
2664 * iteration
2665 */
2666 memset(mast->bn, 0, sizeof(struct maple_big_node));
2667 mast->bn->type = mte_node_type(left);
2668
2669 /* Root already stored in l->node. */
2670 if (mas_is_root_limits(mast->l))
2671 goto new_root;
2672
2673 mast_ascend(mast);
2674 mast_combine_cp_left(mast);
2675 l_mas.offset = mast->bn->b_end;
2676 mab_set_b_end(mast->bn, &l_mas, left);
2677 mab_set_b_end(mast->bn, &m_mas, middle);
2678 mab_set_b_end(mast->bn, &r_mas, right);
2679
2680 /* Copy anything necessary out of the right node. */
2681 mast_combine_cp_right(mast);
2682 mast->orig_l->last = mast->orig_l->max;
2683
2684 if (mast_sufficient(mast)) {
2685 if (mast_overflow(mast))
2686 continue;
2687
2688 if (mast->orig_l->node == mast->orig_r->node) {
2689 /*
2690 * The data in b_node should be stored in one
2691 * node and in the tree
2692 */
2693 slot = mast->l->offset;
2694 break;
2695 }
2696
2697 continue;
2698 }
2699
2700 /* May be a new root stored in mast->bn */
2701 if (mas_is_root_limits(mast->orig_l))
2702 break;
2703
2704 mast_spanning_rebalance(mast);
2705
2706 /* rebalancing from other nodes may require another loop. */
2707 if (!count)
2708 count++;
2709 }
2710
2711 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2712 mte_node_type(mast->orig_l->node));
2713
2714 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2715 new_height++;
2716 mas_set_parent(mas, left, l_mas.node, slot);
2717 if (middle)
2718 mas_set_parent(mas, middle, l_mas.node, ++slot);
2719
2720 if (right)
2721 mas_set_parent(mas, right, l_mas.node, ++slot);
2722
2723 if (mas_is_root_limits(mast->l)) {
2724 new_root:
2725 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2726 while (!mte_is_root(mast->orig_l->node))
2727 mast_ascend(mast);
2728 } else {
2729 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2730 }
2731
2732 old_enode = mast->orig_l->node;
2733 mas->depth = l_mas.depth;
2734 mas->node = l_mas.node;
2735 mas->min = l_mas.min;
2736 mas->max = l_mas.max;
2737 mas->offset = l_mas.offset;
2738 mas_wmb_replace(mas, old_enode, new_height);
2739 mtree_range_walk(mas);
2740 return;
2741 }
2742
2743 /*
2744 * mas_rebalance() - Rebalance a given node.
2745 * @mas: The maple state
2746 * @b_node: The big maple node.
2747 *
2748 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2749 * Continue upwards until tree is sufficient.
2750 */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2751 static inline void mas_rebalance(struct ma_state *mas,
2752 struct maple_big_node *b_node)
2753 {
2754 char empty_count = mas_mt_height(mas);
2755 struct maple_subtree_state mast;
2756 unsigned char shift, b_end = ++b_node->b_end;
2757
2758 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2759 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2760
2761 trace_ma_op(TP_FCT, mas);
2762
2763 /*
2764 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2765 * against the node to the right if it exists, otherwise the node to the
2766 * left of this node is rebalanced against this node. If rebalancing
2767 * causes just one node to be produced instead of two, then the parent
2768 * is also examined and rebalanced if it is insufficient. Every level
2769 * tries to combine the data in the same way. If one node contains the
2770 * entire range of the tree, then that node is used as a new root node.
2771 */
2772
2773 mast.orig_l = &l_mas;
2774 mast.orig_r = &r_mas;
2775 mast.bn = b_node;
2776 mast.bn->type = mte_node_type(mas->node);
2777
2778 l_mas = r_mas = *mas;
2779
2780 if (mas_next_sibling(&r_mas)) {
2781 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2782 r_mas.last = r_mas.index = r_mas.max;
2783 } else {
2784 mas_prev_sibling(&l_mas);
2785 shift = mas_data_end(&l_mas) + 1;
2786 mab_shift_right(b_node, shift);
2787 mas->offset += shift;
2788 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2789 b_node->b_end = shift + b_end;
2790 l_mas.index = l_mas.last = l_mas.min;
2791 }
2792
2793 return mas_spanning_rebalance(mas, &mast, empty_count);
2794 }
2795
2796 /*
2797 * mas_split_final_node() - Split the final node in a subtree operation.
2798 * @mast: the maple subtree state
2799 * @mas: The maple state
2800 */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas)2801 static inline void mas_split_final_node(struct maple_subtree_state *mast,
2802 struct ma_state *mas)
2803 {
2804 struct maple_enode *ancestor;
2805
2806 if (mte_is_root(mas->node)) {
2807 if (mt_is_alloc(mas->tree))
2808 mast->bn->type = maple_arange_64;
2809 else
2810 mast->bn->type = maple_range_64;
2811 }
2812 /*
2813 * Only a single node is used here, could be root.
2814 * The Big_node data should just fit in a single node.
2815 */
2816 ancestor = mas_new_ma_node(mas, mast->bn);
2817 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
2818 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
2819 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
2820
2821 mast->l->node = ancestor;
2822 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
2823 mas->offset = mast->bn->b_end - 1;
2824 }
2825
2826 /*
2827 * mast_fill_bnode() - Copy data into the big node in the subtree state
2828 * @mast: The maple subtree state
2829 * @mas: the maple state
2830 * @skip: The number of entries to skip for new nodes insertion.
2831 */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)2832 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
2833 struct ma_state *mas,
2834 unsigned char skip)
2835 {
2836 bool cp = true;
2837 unsigned char split;
2838
2839 memset(mast->bn, 0, sizeof(struct maple_big_node));
2840
2841 if (mte_is_root(mas->node)) {
2842 cp = false;
2843 } else {
2844 mas_ascend(mas);
2845 mas->offset = mte_parent_slot(mas->node);
2846 }
2847
2848 if (cp && mast->l->offset)
2849 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
2850
2851 split = mast->bn->b_end;
2852 mab_set_b_end(mast->bn, mast->l, mast->l->node);
2853 mast->r->offset = mast->bn->b_end;
2854 mab_set_b_end(mast->bn, mast->r, mast->r->node);
2855 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
2856 cp = false;
2857
2858 if (cp)
2859 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
2860 mast->bn, mast->bn->b_end);
2861
2862 mast->bn->b_end--;
2863 mast->bn->type = mte_node_type(mas->node);
2864 }
2865
2866 /*
2867 * mast_split_data() - Split the data in the subtree state big node into regular
2868 * nodes.
2869 * @mast: The maple subtree state
2870 * @mas: The maple state
2871 * @split: The location to split the big node
2872 */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)2873 static inline void mast_split_data(struct maple_subtree_state *mast,
2874 struct ma_state *mas, unsigned char split)
2875 {
2876 unsigned char p_slot;
2877
2878 mab_mas_cp(mast->bn, 0, split, mast->l, true);
2879 mte_set_pivot(mast->r->node, 0, mast->r->max);
2880 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
2881 mast->l->offset = mte_parent_slot(mas->node);
2882 mast->l->max = mast->bn->pivot[split];
2883 mast->r->min = mast->l->max + 1;
2884 if (mte_is_leaf(mas->node))
2885 return;
2886
2887 p_slot = mast->orig_l->offset;
2888 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
2889 &p_slot, split);
2890 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
2891 &p_slot, split);
2892 }
2893
2894 /*
2895 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
2896 * data to the right or left node if there is room.
2897 * @mas: The maple state
2898 * @mast: The maple subtree state
2899 * @left: Push left or not.
2900 *
2901 * Keeping the height of the tree low means faster lookups.
2902 *
2903 * Return: True if pushed, false otherwise.
2904 */
mas_push_data(struct ma_state * mas,struct maple_subtree_state * mast,bool left)2905 static inline bool mas_push_data(struct ma_state *mas,
2906 struct maple_subtree_state *mast, bool left)
2907 {
2908 unsigned char slot_total = mast->bn->b_end;
2909 unsigned char end, space, split;
2910
2911 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
2912 tmp_mas = *mas;
2913 tmp_mas.depth = mast->l->depth;
2914
2915 if (left && !mas_prev_sibling(&tmp_mas))
2916 return false;
2917 else if (!left && !mas_next_sibling(&tmp_mas))
2918 return false;
2919
2920 end = mas_data_end(&tmp_mas);
2921 slot_total += end;
2922 space = 2 * mt_slot_count(mas->node) - 2;
2923 /* -2 instead of -1 to ensure there isn't a triple split */
2924 if (ma_is_leaf(mast->bn->type))
2925 space--;
2926
2927 if (mas->max == ULONG_MAX)
2928 space--;
2929
2930 if (slot_total >= space)
2931 return false;
2932
2933 /* Get the data; Fill mast->bn */
2934 mast->bn->b_end++;
2935 if (left) {
2936 mab_shift_right(mast->bn, end + 1);
2937 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
2938 mast->bn->b_end = slot_total + 1;
2939 } else {
2940 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
2941 }
2942
2943 /* Configure mast for splitting of mast->bn */
2944 split = mt_slots[mast->bn->type] - 2;
2945 if (left) {
2946 /* Switch mas to prev node */
2947 *mas = tmp_mas;
2948 /* Start using mast->l for the left side. */
2949 tmp_mas.node = mast->l->node;
2950 *mast->l = tmp_mas;
2951 } else {
2952 tmp_mas.node = mast->r->node;
2953 *mast->r = tmp_mas;
2954 split = slot_total - split;
2955 }
2956 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
2957 /* Update parent slot for split calculation. */
2958 if (left)
2959 mast->orig_l->offset += end + 1;
2960
2961 mast_split_data(mast, mas, split);
2962 mast_fill_bnode(mast, mas, 2);
2963 mas_split_final_node(mast, mas);
2964 return true;
2965 }
2966
2967 /*
2968 * mas_split() - Split data that is too big for one node into two.
2969 * @mas: The maple state
2970 * @b_node: The maple big node
2971 */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)2972 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
2973 {
2974 struct maple_subtree_state mast;
2975 int height = 0;
2976 unsigned int orig_height = mas_mt_height(mas);
2977 unsigned char mid_split, split = 0;
2978 struct maple_enode *old;
2979
2980 /*
2981 * Splitting is handled differently from any other B-tree; the Maple
2982 * Tree splits upwards. Splitting up means that the split operation
2983 * occurs when the walk of the tree hits the leaves and not on the way
2984 * down. The reason for splitting up is that it is impossible to know
2985 * how much space will be needed until the leaf is (or leaves are)
2986 * reached. Since overwriting data is allowed and a range could
2987 * overwrite more than one range or result in changing one entry into 3
2988 * entries, it is impossible to know if a split is required until the
2989 * data is examined.
2990 *
2991 * Splitting is a balancing act between keeping allocations to a minimum
2992 * and avoiding a 'jitter' event where a tree is expanded to make room
2993 * for an entry followed by a contraction when the entry is removed. To
2994 * accomplish the balance, there are empty slots remaining in both left
2995 * and right nodes after a split.
2996 */
2997 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2998 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2999 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3000 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3001
3002 trace_ma_op(TP_FCT, mas);
3003
3004 mast.l = &l_mas;
3005 mast.r = &r_mas;
3006 mast.orig_l = &prev_l_mas;
3007 mast.orig_r = &prev_r_mas;
3008 mast.bn = b_node;
3009
3010 while (height++ <= orig_height) {
3011 if (mt_slots[b_node->type] > b_node->b_end) {
3012 mas_split_final_node(&mast, mas);
3013 break;
3014 }
3015
3016 l_mas = r_mas = *mas;
3017 l_mas.node = mas_new_ma_node(mas, b_node);
3018 r_mas.node = mas_new_ma_node(mas, b_node);
3019 /*
3020 * Another way that 'jitter' is avoided is to terminate a split up early if the
3021 * left or right node has space to spare. This is referred to as "pushing left"
3022 * or "pushing right" and is similar to the B* tree, except the nodes left or
3023 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3024 * is a significant savings.
3025 */
3026 /* Try to push left. */
3027 if (mas_push_data(mas, &mast, true)) {
3028 height++;
3029 break;
3030 }
3031 /* Try to push right. */
3032 if (mas_push_data(mas, &mast, false)) {
3033 height++;
3034 break;
3035 }
3036
3037 split = mab_calc_split(mas, b_node, &mid_split);
3038 mast_split_data(&mast, mas, split);
3039 /*
3040 * Usually correct, mab_mas_cp in the above call overwrites
3041 * r->max.
3042 */
3043 mast.r->max = mas->max;
3044 mast_fill_bnode(&mast, mas, 1);
3045 prev_l_mas = *mast.l;
3046 prev_r_mas = *mast.r;
3047 }
3048
3049 /* Set the original node as dead */
3050 old = mas->node;
3051 mas->node = l_mas.node;
3052 mas_wmb_replace(mas, old, height);
3053 mtree_range_walk(mas);
3054 return;
3055 }
3056
3057 /*
3058 * mas_commit_b_node() - Commit the big node into the tree.
3059 * @wr_mas: The maple write state
3060 * @b_node: The maple big node
3061 */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3062 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3063 struct maple_big_node *b_node)
3064 {
3065 enum store_type type = wr_mas->mas->store_type;
3066
3067 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3068
3069 if (type == wr_rebalance)
3070 return mas_rebalance(wr_mas->mas, b_node);
3071
3072 return mas_split(wr_mas->mas, b_node);
3073 }
3074
3075 /*
3076 * mas_root_expand() - Expand a root to a node
3077 * @mas: The maple state
3078 * @entry: The entry to store into the tree
3079 */
mas_root_expand(struct ma_state * mas,void * entry)3080 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3081 {
3082 void *contents = mas_root_locked(mas);
3083 enum maple_type type = maple_leaf_64;
3084 struct maple_node *node;
3085 void __rcu **slots;
3086 unsigned long *pivots;
3087 int slot = 0;
3088
3089 node = mas_pop_node(mas);
3090 pivots = ma_pivots(node, type);
3091 slots = ma_slots(node, type);
3092 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3093 mas->node = mt_mk_node(node, type);
3094 mas->status = ma_active;
3095
3096 if (mas->index) {
3097 if (contents) {
3098 rcu_assign_pointer(slots[slot], contents);
3099 if (likely(mas->index > 1))
3100 slot++;
3101 }
3102 pivots[slot++] = mas->index - 1;
3103 }
3104
3105 rcu_assign_pointer(slots[slot], entry);
3106 mas->offset = slot;
3107 pivots[slot] = mas->last;
3108 if (mas->last != ULONG_MAX)
3109 pivots[++slot] = ULONG_MAX;
3110
3111 mt_set_height(mas->tree, 1);
3112 ma_set_meta(node, maple_leaf_64, 0, slot);
3113 /* swap the new root into the tree */
3114 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3115 return;
3116 }
3117
3118 /*
3119 * mas_store_root() - Storing value into root.
3120 * @mas: The maple state
3121 * @entry: The entry to store.
3122 *
3123 * There is no root node now and we are storing a value into the root - this
3124 * function either assigns the pointer or expands into a node.
3125 */
mas_store_root(struct ma_state * mas,void * entry)3126 static inline void mas_store_root(struct ma_state *mas, void *entry)
3127 {
3128 if (!entry) {
3129 if (!mas->index)
3130 rcu_assign_pointer(mas->tree->ma_root, NULL);
3131 } else if (likely((mas->last != 0) || (mas->index != 0)))
3132 mas_root_expand(mas, entry);
3133 else if (((unsigned long) (entry) & 3) == 2)
3134 mas_root_expand(mas, entry);
3135 else {
3136 rcu_assign_pointer(mas->tree->ma_root, entry);
3137 mas->status = ma_start;
3138 }
3139 }
3140
3141 /*
3142 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3143 * spans the node.
3144 * @wr_mas: The maple write state
3145 *
3146 * Spanning writes are writes that start in one node and end in another OR if
3147 * the write of a %NULL will cause the node to end with a %NULL.
3148 *
3149 * Return: True if this is a spanning write, false otherwise.
3150 */
mas_is_span_wr(struct ma_wr_state * wr_mas)3151 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3152 {
3153 unsigned long max = wr_mas->r_max;
3154 unsigned long last = wr_mas->mas->last;
3155 enum maple_type type = wr_mas->type;
3156 void *entry = wr_mas->entry;
3157
3158 /* Contained in this pivot, fast path */
3159 if (last < max)
3160 return false;
3161
3162 if (ma_is_leaf(type)) {
3163 max = wr_mas->mas->max;
3164 if (last < max)
3165 return false;
3166 }
3167
3168 if (last == max) {
3169 /*
3170 * The last entry of leaf node cannot be NULL unless it is the
3171 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3172 */
3173 if (entry || last == ULONG_MAX)
3174 return false;
3175 }
3176
3177 trace_ma_write(TP_FCT, wr_mas->mas, wr_mas->r_max, entry);
3178 return true;
3179 }
3180
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3181 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3182 {
3183 wr_mas->type = mte_node_type(wr_mas->mas->node);
3184 mas_wr_node_walk(wr_mas);
3185 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3186 }
3187
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3188 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3189 {
3190 wr_mas->mas->max = wr_mas->r_max;
3191 wr_mas->mas->min = wr_mas->r_min;
3192 wr_mas->mas->node = wr_mas->content;
3193 wr_mas->mas->offset = 0;
3194 wr_mas->mas->depth++;
3195 }
3196 /*
3197 * mas_wr_walk() - Walk the tree for a write.
3198 * @wr_mas: The maple write state
3199 *
3200 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3201 *
3202 * Return: True if it's contained in a node, false on spanning write.
3203 */
mas_wr_walk(struct ma_wr_state * wr_mas)3204 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3205 {
3206 struct ma_state *mas = wr_mas->mas;
3207
3208 while (true) {
3209 mas_wr_walk_descend(wr_mas);
3210 if (unlikely(mas_is_span_wr(wr_mas)))
3211 return false;
3212
3213 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3214 mas->offset);
3215 if (ma_is_leaf(wr_mas->type))
3216 return true;
3217
3218 if (mas->end < mt_slots[wr_mas->type] - 1)
3219 wr_mas->vacant_height = mas->depth + 1;
3220
3221 if (ma_is_root(mas_mn(mas))) {
3222 /* root needs more than 2 entries to be sufficient + 1 */
3223 if (mas->end > 2)
3224 wr_mas->sufficient_height = 1;
3225 } else if (mas->end > mt_min_slots[wr_mas->type] + 1)
3226 wr_mas->sufficient_height = mas->depth + 1;
3227
3228 mas_wr_walk_traverse(wr_mas);
3229 }
3230
3231 return true;
3232 }
3233
mas_wr_walk_index(struct ma_wr_state * wr_mas)3234 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3235 {
3236 struct ma_state *mas = wr_mas->mas;
3237
3238 while (true) {
3239 mas_wr_walk_descend(wr_mas);
3240 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3241 mas->offset);
3242 if (ma_is_leaf(wr_mas->type))
3243 return;
3244 mas_wr_walk_traverse(wr_mas);
3245 }
3246 }
3247 /*
3248 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3249 * @l_wr_mas: The left maple write state
3250 * @r_wr_mas: The right maple write state
3251 */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3252 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3253 struct ma_wr_state *r_wr_mas)
3254 {
3255 struct ma_state *r_mas = r_wr_mas->mas;
3256 struct ma_state *l_mas = l_wr_mas->mas;
3257 unsigned char l_slot;
3258
3259 l_slot = l_mas->offset;
3260 if (!l_wr_mas->content)
3261 l_mas->index = l_wr_mas->r_min;
3262
3263 if ((l_mas->index == l_wr_mas->r_min) &&
3264 (l_slot &&
3265 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3266 if (l_slot > 1)
3267 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3268 else
3269 l_mas->index = l_mas->min;
3270
3271 l_mas->offset = l_slot - 1;
3272 }
3273
3274 if (!r_wr_mas->content) {
3275 if (r_mas->last < r_wr_mas->r_max)
3276 r_mas->last = r_wr_mas->r_max;
3277 r_mas->offset++;
3278 } else if ((r_mas->last == r_wr_mas->r_max) &&
3279 (r_mas->last < r_mas->max) &&
3280 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3281 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3282 r_wr_mas->type, r_mas->offset + 1);
3283 r_mas->offset++;
3284 }
3285 }
3286
mas_state_walk(struct ma_state * mas)3287 static inline void *mas_state_walk(struct ma_state *mas)
3288 {
3289 void *entry;
3290
3291 entry = mas_start(mas);
3292 if (mas_is_none(mas))
3293 return NULL;
3294
3295 if (mas_is_ptr(mas))
3296 return entry;
3297
3298 return mtree_range_walk(mas);
3299 }
3300
3301 /*
3302 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3303 * to date.
3304 *
3305 * @mas: The maple state.
3306 *
3307 * Note: Leaves mas in undesirable state.
3308 * Return: The entry for @mas->index or %NULL on dead node.
3309 */
mtree_lookup_walk(struct ma_state * mas)3310 static inline void *mtree_lookup_walk(struct ma_state *mas)
3311 {
3312 unsigned long *pivots;
3313 unsigned char offset;
3314 struct maple_node *node;
3315 struct maple_enode *next;
3316 enum maple_type type;
3317 void __rcu **slots;
3318 unsigned char end;
3319
3320 next = mas->node;
3321 do {
3322 node = mte_to_node(next);
3323 type = mte_node_type(next);
3324 pivots = ma_pivots(node, type);
3325 end = mt_pivots[type];
3326 offset = 0;
3327 do {
3328 if (pivots[offset] >= mas->index)
3329 break;
3330 } while (++offset < end);
3331
3332 slots = ma_slots(node, type);
3333 next = mt_slot(mas->tree, slots, offset);
3334 if (unlikely(ma_dead_node(node)))
3335 goto dead_node;
3336 } while (!ma_is_leaf(type));
3337
3338 return (void *)next;
3339
3340 dead_node:
3341 mas_reset(mas);
3342 return NULL;
3343 }
3344
3345 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3346 /*
3347 * mas_new_root() - Create a new root node that only contains the entry passed
3348 * in.
3349 * @mas: The maple state
3350 * @entry: The entry to store.
3351 *
3352 * Only valid when the index == 0 and the last == ULONG_MAX
3353 */
mas_new_root(struct ma_state * mas,void * entry)3354 static inline void mas_new_root(struct ma_state *mas, void *entry)
3355 {
3356 struct maple_enode *root = mas_root_locked(mas);
3357 enum maple_type type = maple_leaf_64;
3358 struct maple_node *node;
3359 void __rcu **slots;
3360 unsigned long *pivots;
3361
3362 WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3363
3364 if (!entry) {
3365 mt_set_height(mas->tree, 0);
3366 rcu_assign_pointer(mas->tree->ma_root, entry);
3367 mas->status = ma_start;
3368 goto done;
3369 }
3370
3371 node = mas_pop_node(mas);
3372 pivots = ma_pivots(node, type);
3373 slots = ma_slots(node, type);
3374 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3375 mas->node = mt_mk_node(node, type);
3376 mas->status = ma_active;
3377 rcu_assign_pointer(slots[0], entry);
3378 pivots[0] = mas->last;
3379 mt_set_height(mas->tree, 1);
3380 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3381
3382 done:
3383 if (xa_is_node(root))
3384 mte_destroy_walk(root, mas->tree);
3385
3386 return;
3387 }
3388 /*
3389 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3390 * and new nodes where necessary, then place the sub-tree in the actual tree.
3391 * Note that mas is expected to point to the node which caused the store to
3392 * span.
3393 * @wr_mas: The maple write state
3394 */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3395 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3396 {
3397 struct maple_subtree_state mast;
3398 struct maple_big_node b_node;
3399 struct ma_state *mas;
3400 unsigned char height;
3401
3402 /* Left and Right side of spanning store */
3403 MA_STATE(l_mas, NULL, 0, 0);
3404 MA_STATE(r_mas, NULL, 0, 0);
3405 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3406 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3407
3408 /*
3409 * A store operation that spans multiple nodes is called a spanning
3410 * store and is handled early in the store call stack by the function
3411 * mas_is_span_wr(). When a spanning store is identified, the maple
3412 * state is duplicated. The first maple state walks the left tree path
3413 * to ``index``, the duplicate walks the right tree path to ``last``.
3414 * The data in the two nodes are combined into a single node, two nodes,
3415 * or possibly three nodes (see the 3-way split above). A ``NULL``
3416 * written to the last entry of a node is considered a spanning store as
3417 * a rebalance is required for the operation to complete and an overflow
3418 * of data may happen.
3419 */
3420 mas = wr_mas->mas;
3421 trace_ma_op(TP_FCT, mas);
3422
3423 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3424 return mas_new_root(mas, wr_mas->entry);
3425 /*
3426 * Node rebalancing may occur due to this store, so there may be three new
3427 * entries per level plus a new root.
3428 */
3429 height = mas_mt_height(mas);
3430
3431 /*
3432 * Set up right side. Need to get to the next offset after the spanning
3433 * store to ensure it's not NULL and to combine both the next node and
3434 * the node with the start together.
3435 */
3436 r_mas = *mas;
3437 /* Avoid overflow, walk to next slot in the tree. */
3438 if (r_mas.last + 1)
3439 r_mas.last++;
3440
3441 r_mas.index = r_mas.last;
3442 mas_wr_walk_index(&r_wr_mas);
3443 r_mas.last = r_mas.index = mas->last;
3444
3445 /* Set up left side. */
3446 l_mas = *mas;
3447 mas_wr_walk_index(&l_wr_mas);
3448
3449 if (!wr_mas->entry) {
3450 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3451 mas->offset = l_mas.offset;
3452 mas->index = l_mas.index;
3453 mas->last = l_mas.last = r_mas.last;
3454 }
3455
3456 /* expanding NULLs may make this cover the entire range */
3457 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3458 mas_set_range(mas, 0, ULONG_MAX);
3459 return mas_new_root(mas, wr_mas->entry);
3460 }
3461
3462 memset(&b_node, 0, sizeof(struct maple_big_node));
3463 /* Copy l_mas and store the value in b_node. */
3464 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3465 /* Copy r_mas into b_node if there is anything to copy. */
3466 if (r_mas.max > r_mas.last)
3467 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3468 &b_node, b_node.b_end + 1);
3469 else
3470 b_node.b_end++;
3471
3472 /* Stop spanning searches by searching for just index. */
3473 l_mas.index = l_mas.last = mas->index;
3474
3475 mast.bn = &b_node;
3476 mast.orig_l = &l_mas;
3477 mast.orig_r = &r_mas;
3478 /* Combine l_mas and r_mas and split them up evenly again. */
3479 return mas_spanning_rebalance(mas, &mast, height + 1);
3480 }
3481
3482 /*
3483 * mas_wr_node_store() - Attempt to store the value in a node
3484 * @wr_mas: The maple write state
3485 *
3486 * Attempts to reuse the node, but may allocate.
3487 */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3488 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3489 unsigned char new_end)
3490 {
3491 struct ma_state *mas = wr_mas->mas;
3492 void __rcu **dst_slots;
3493 unsigned long *dst_pivots;
3494 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3495 struct maple_node reuse, *newnode;
3496 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3497 bool in_rcu = mt_in_rcu(mas->tree);
3498 unsigned char height = mas_mt_height(mas);
3499
3500 if (mas->last == wr_mas->end_piv)
3501 offset_end++; /* don't copy this offset */
3502
3503 /* set up node. */
3504 if (in_rcu) {
3505 newnode = mas_pop_node(mas);
3506 } else {
3507 memset(&reuse, 0, sizeof(struct maple_node));
3508 newnode = &reuse;
3509 }
3510
3511 newnode->parent = mas_mn(mas)->parent;
3512 dst_pivots = ma_pivots(newnode, wr_mas->type);
3513 dst_slots = ma_slots(newnode, wr_mas->type);
3514 /* Copy from start to insert point */
3515 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3516 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3517
3518 /* Handle insert of new range starting after old range */
3519 if (wr_mas->r_min < mas->index) {
3520 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3521 dst_pivots[mas->offset++] = mas->index - 1;
3522 }
3523
3524 /* Store the new entry and range end. */
3525 if (mas->offset < node_pivots)
3526 dst_pivots[mas->offset] = mas->last;
3527 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3528
3529 /*
3530 * this range wrote to the end of the node or it overwrote the rest of
3531 * the data
3532 */
3533 if (offset_end > mas->end)
3534 goto done;
3535
3536 dst_offset = mas->offset + 1;
3537 /* Copy to the end of node if necessary. */
3538 copy_size = mas->end - offset_end + 1;
3539 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3540 sizeof(void *) * copy_size);
3541 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3542 sizeof(unsigned long) * (copy_size - 1));
3543
3544 if (new_end < node_pivots)
3545 dst_pivots[new_end] = mas->max;
3546
3547 done:
3548 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3549 if (in_rcu) {
3550 struct maple_enode *old_enode = mas->node;
3551
3552 mas->node = mt_mk_node(newnode, wr_mas->type);
3553 mas_replace_node(mas, old_enode, height);
3554 } else {
3555 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3556 }
3557 trace_ma_write(TP_FCT, mas, 0, wr_mas->entry);
3558 mas_update_gap(mas);
3559 mas->end = new_end;
3560 return;
3561 }
3562
3563 /*
3564 * mas_wr_slot_store: Attempt to store a value in a slot.
3565 * @wr_mas: the maple write state
3566 */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3567 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3568 {
3569 struct ma_state *mas = wr_mas->mas;
3570 unsigned char offset = mas->offset;
3571 void __rcu **slots = wr_mas->slots;
3572 bool gap = false;
3573
3574 gap |= !mt_slot_locked(mas->tree, slots, offset);
3575 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3576
3577 if (wr_mas->offset_end - offset == 1) {
3578 if (mas->index == wr_mas->r_min) {
3579 /* Overwriting the range and a part of the next one */
3580 rcu_assign_pointer(slots[offset], wr_mas->entry);
3581 wr_mas->pivots[offset] = mas->last;
3582 } else {
3583 /* Overwriting a part of the range and the next one */
3584 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3585 wr_mas->pivots[offset] = mas->index - 1;
3586 mas->offset++; /* Keep mas accurate. */
3587 }
3588 } else {
3589 WARN_ON_ONCE(mt_in_rcu(mas->tree));
3590 /*
3591 * Expand the range, only partially overwriting the previous and
3592 * next ranges
3593 */
3594 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3595 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3596 wr_mas->pivots[offset] = mas->index - 1;
3597 wr_mas->pivots[offset + 1] = mas->last;
3598 mas->offset++; /* Keep mas accurate. */
3599 }
3600
3601 trace_ma_write(TP_FCT, mas, 0, wr_mas->entry);
3602 /*
3603 * Only update gap when the new entry is empty or there is an empty
3604 * entry in the original two ranges.
3605 */
3606 if (!wr_mas->entry || gap)
3607 mas_update_gap(mas);
3608
3609 return;
3610 }
3611
mas_wr_extend_null(struct ma_wr_state * wr_mas)3612 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3613 {
3614 struct ma_state *mas = wr_mas->mas;
3615
3616 if (!wr_mas->slots[wr_mas->offset_end]) {
3617 /* If this one is null, the next and prev are not */
3618 mas->last = wr_mas->end_piv;
3619 } else {
3620 /* Check next slot(s) if we are overwriting the end */
3621 if ((mas->last == wr_mas->end_piv) &&
3622 (mas->end != wr_mas->offset_end) &&
3623 !wr_mas->slots[wr_mas->offset_end + 1]) {
3624 wr_mas->offset_end++;
3625 if (wr_mas->offset_end == mas->end)
3626 mas->last = mas->max;
3627 else
3628 mas->last = wr_mas->pivots[wr_mas->offset_end];
3629 wr_mas->end_piv = mas->last;
3630 }
3631 }
3632
3633 if (!wr_mas->content) {
3634 /* If this one is null, the next and prev are not */
3635 mas->index = wr_mas->r_min;
3636 } else {
3637 /* Check prev slot if we are overwriting the start */
3638 if (mas->index == wr_mas->r_min && mas->offset &&
3639 !wr_mas->slots[mas->offset - 1]) {
3640 mas->offset--;
3641 wr_mas->r_min = mas->index =
3642 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3643 wr_mas->r_max = wr_mas->pivots[mas->offset];
3644 }
3645 }
3646 }
3647
mas_wr_end_piv(struct ma_wr_state * wr_mas)3648 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3649 {
3650 while ((wr_mas->offset_end < wr_mas->mas->end) &&
3651 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3652 wr_mas->offset_end++;
3653
3654 if (wr_mas->offset_end < wr_mas->mas->end)
3655 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3656 else
3657 wr_mas->end_piv = wr_mas->mas->max;
3658 }
3659
mas_wr_new_end(struct ma_wr_state * wr_mas)3660 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3661 {
3662 struct ma_state *mas = wr_mas->mas;
3663 unsigned char new_end = mas->end + 2;
3664
3665 new_end -= wr_mas->offset_end - mas->offset;
3666 if (wr_mas->r_min == mas->index)
3667 new_end--;
3668
3669 if (wr_mas->end_piv == mas->last)
3670 new_end--;
3671
3672 return new_end;
3673 }
3674
3675 /*
3676 * mas_wr_append: Attempt to append
3677 * @wr_mas: the maple write state
3678 * @new_end: The end of the node after the modification
3679 *
3680 * This is currently unsafe in rcu mode since the end of the node may be cached
3681 * by readers while the node contents may be updated which could result in
3682 * inaccurate information.
3683 */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)3684 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3685 unsigned char new_end)
3686 {
3687 struct ma_state *mas = wr_mas->mas;
3688 void __rcu **slots;
3689 unsigned char end = mas->end;
3690
3691 if (new_end < mt_pivots[wr_mas->type]) {
3692 wr_mas->pivots[new_end] = wr_mas->pivots[end];
3693 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
3694 }
3695
3696 slots = wr_mas->slots;
3697 if (new_end == end + 1) {
3698 if (mas->last == wr_mas->r_max) {
3699 /* Append to end of range */
3700 rcu_assign_pointer(slots[new_end], wr_mas->entry);
3701 wr_mas->pivots[end] = mas->index - 1;
3702 mas->offset = new_end;
3703 } else {
3704 /* Append to start of range */
3705 rcu_assign_pointer(slots[new_end], wr_mas->content);
3706 wr_mas->pivots[end] = mas->last;
3707 rcu_assign_pointer(slots[end], wr_mas->entry);
3708 }
3709 } else {
3710 /* Append to the range without touching any boundaries. */
3711 rcu_assign_pointer(slots[new_end], wr_mas->content);
3712 wr_mas->pivots[end + 1] = mas->last;
3713 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
3714 wr_mas->pivots[end] = mas->index - 1;
3715 mas->offset = end + 1;
3716 }
3717
3718 if (!wr_mas->content || !wr_mas->entry)
3719 mas_update_gap(mas);
3720
3721 mas->end = new_end;
3722 trace_ma_write(TP_FCT, mas, new_end, wr_mas->entry);
3723 return;
3724 }
3725
3726 /*
3727 * mas_wr_bnode() - Slow path for a modification.
3728 * @wr_mas: The write maple state
3729 *
3730 * This is where split, rebalance end up.
3731 */
mas_wr_bnode(struct ma_wr_state * wr_mas)3732 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
3733 {
3734 struct maple_big_node b_node;
3735
3736 trace_ma_write(TP_FCT, wr_mas->mas, 0, wr_mas->entry);
3737 memset(&b_node, 0, sizeof(struct maple_big_node));
3738 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
3739 mas_commit_b_node(wr_mas, &b_node);
3740 }
3741
3742 /*
3743 * mas_wr_store_entry() - Internal call to store a value
3744 * @wr_mas: The maple write state
3745 */
mas_wr_store_entry(struct ma_wr_state * wr_mas)3746 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
3747 {
3748 struct ma_state *mas = wr_mas->mas;
3749 unsigned char new_end = mas_wr_new_end(wr_mas);
3750
3751 switch (mas->store_type) {
3752 case wr_exact_fit:
3753 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
3754 if (!!wr_mas->entry ^ !!wr_mas->content)
3755 mas_update_gap(mas);
3756 break;
3757 case wr_append:
3758 mas_wr_append(wr_mas, new_end);
3759 break;
3760 case wr_slot_store:
3761 mas_wr_slot_store(wr_mas);
3762 break;
3763 case wr_node_store:
3764 mas_wr_node_store(wr_mas, new_end);
3765 break;
3766 case wr_spanning_store:
3767 mas_wr_spanning_store(wr_mas);
3768 break;
3769 case wr_split_store:
3770 case wr_rebalance:
3771 mas_wr_bnode(wr_mas);
3772 break;
3773 case wr_new_root:
3774 mas_new_root(mas, wr_mas->entry);
3775 break;
3776 case wr_store_root:
3777 mas_store_root(mas, wr_mas->entry);
3778 break;
3779 case wr_invalid:
3780 MT_BUG_ON(mas->tree, 1);
3781 }
3782
3783 return;
3784 }
3785
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)3786 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
3787 {
3788 struct ma_state *mas = wr_mas->mas;
3789
3790 if (!mas_is_active(mas)) {
3791 if (mas_is_start(mas))
3792 goto set_content;
3793
3794 if (unlikely(mas_is_paused(mas)))
3795 goto reset;
3796
3797 if (unlikely(mas_is_none(mas)))
3798 goto reset;
3799
3800 if (unlikely(mas_is_overflow(mas)))
3801 goto reset;
3802
3803 if (unlikely(mas_is_underflow(mas)))
3804 goto reset;
3805 }
3806
3807 /*
3808 * A less strict version of mas_is_span_wr() where we allow spanning
3809 * writes within this node. This is to stop partial walks in
3810 * mas_prealloc() from being reset.
3811 */
3812 if (mas->last > mas->max)
3813 goto reset;
3814
3815 if (wr_mas->entry)
3816 goto set_content;
3817
3818 if (mte_is_leaf(mas->node) && mas->last == mas->max)
3819 goto reset;
3820
3821 goto set_content;
3822
3823 reset:
3824 mas_reset(mas);
3825 set_content:
3826 wr_mas->content = mas_start(mas);
3827 }
3828
3829 /**
3830 * mas_prealloc_calc() - Calculate number of nodes needed for a
3831 * given store oepration
3832 * @wr_mas: The maple write state
3833 * @entry: The entry to store into the tree
3834 *
3835 * Return: Number of nodes required for preallocation.
3836 */
mas_prealloc_calc(struct ma_wr_state * wr_mas,void * entry)3837 static inline void mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
3838 {
3839 struct ma_state *mas = wr_mas->mas;
3840 unsigned char height = mas_mt_height(mas);
3841 int ret = height * 3 + 1;
3842 unsigned char delta = height - wr_mas->vacant_height;
3843
3844 switch (mas->store_type) {
3845 case wr_exact_fit:
3846 case wr_append:
3847 case wr_slot_store:
3848 ret = 0;
3849 break;
3850 case wr_spanning_store:
3851 if (wr_mas->sufficient_height < wr_mas->vacant_height)
3852 ret = (height - wr_mas->sufficient_height) * 3 + 1;
3853 else
3854 ret = delta * 3 + 1;
3855 break;
3856 case wr_split_store:
3857 ret = delta * 2 + 1;
3858 break;
3859 case wr_rebalance:
3860 if (wr_mas->sufficient_height < wr_mas->vacant_height)
3861 ret = (height - wr_mas->sufficient_height) * 2 + 1;
3862 else
3863 ret = delta * 2 + 1;
3864 break;
3865 case wr_node_store:
3866 ret = mt_in_rcu(mas->tree) ? 1 : 0;
3867 break;
3868 case wr_new_root:
3869 ret = 1;
3870 break;
3871 case wr_store_root:
3872 if (likely((mas->last != 0) || (mas->index != 0)))
3873 ret = 1;
3874 else if (((unsigned long) (entry) & 3) == 2)
3875 ret = 1;
3876 else
3877 ret = 0;
3878 break;
3879 case wr_invalid:
3880 WARN_ON_ONCE(1);
3881 }
3882
3883 mas->node_request = ret;
3884 }
3885
3886 /*
3887 * mas_wr_store_type() - Determine the store type for a given
3888 * store operation.
3889 * @wr_mas: The maple write state
3890 *
3891 * Return: the type of store needed for the operation
3892 */
mas_wr_store_type(struct ma_wr_state * wr_mas)3893 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
3894 {
3895 struct ma_state *mas = wr_mas->mas;
3896 unsigned char new_end;
3897
3898 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
3899 return wr_store_root;
3900
3901 if (unlikely(!mas_wr_walk(wr_mas)))
3902 return wr_spanning_store;
3903
3904 /* At this point, we are at the leaf node that needs to be altered. */
3905 mas_wr_end_piv(wr_mas);
3906 if (!wr_mas->entry)
3907 mas_wr_extend_null(wr_mas);
3908
3909 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
3910 return wr_exact_fit;
3911
3912 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3913 return wr_new_root;
3914
3915 new_end = mas_wr_new_end(wr_mas);
3916 /* Potential spanning rebalance collapsing a node */
3917 if (new_end < mt_min_slots[wr_mas->type]) {
3918 if (!mte_is_root(mas->node))
3919 return wr_rebalance;
3920 return wr_node_store;
3921 }
3922
3923 if (new_end >= mt_slots[wr_mas->type])
3924 return wr_split_store;
3925
3926 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
3927 return wr_append;
3928
3929 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
3930 (wr_mas->offset_end - mas->offset == 1)))
3931 return wr_slot_store;
3932
3933 return wr_node_store;
3934 }
3935
3936 /**
3937 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
3938 * @wr_mas: The maple write state
3939 * @entry: The entry that will be stored
3940 *
3941 */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)3942 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
3943 {
3944 struct ma_state *mas = wr_mas->mas;
3945
3946 mas_wr_prealloc_setup(wr_mas);
3947 mas->store_type = mas_wr_store_type(wr_mas);
3948 mas_prealloc_calc(wr_mas, entry);
3949 if (!mas->node_request)
3950 return;
3951
3952 mas_alloc_nodes(mas, GFP_NOWAIT);
3953 }
3954
3955 /**
3956 * mas_insert() - Internal call to insert a value
3957 * @mas: The maple state
3958 * @entry: The entry to store
3959 *
3960 * Return: %NULL or the contents that already exists at the requested index
3961 * otherwise. The maple state needs to be checked for error conditions.
3962 */
mas_insert(struct ma_state * mas,void * entry)3963 static inline void *mas_insert(struct ma_state *mas, void *entry)
3964 {
3965 MA_WR_STATE(wr_mas, mas, entry);
3966
3967 /*
3968 * Inserting a new range inserts either 0, 1, or 2 pivots within the
3969 * tree. If the insert fits exactly into an existing gap with a value
3970 * of NULL, then the slot only needs to be written with the new value.
3971 * If the range being inserted is adjacent to another range, then only a
3972 * single pivot needs to be inserted (as well as writing the entry). If
3973 * the new range is within a gap but does not touch any other ranges,
3974 * then two pivots need to be inserted: the start - 1, and the end. As
3975 * usual, the entry must be written. Most operations require a new node
3976 * to be allocated and replace an existing node to ensure RCU safety,
3977 * when in RCU mode. The exception to requiring a newly allocated node
3978 * is when inserting at the end of a node (appending). When done
3979 * carefully, appending can reuse the node in place.
3980 */
3981 wr_mas.content = mas_start(mas);
3982 if (wr_mas.content)
3983 goto exists;
3984
3985 mas_wr_preallocate(&wr_mas, entry);
3986 if (mas_is_err(mas))
3987 return NULL;
3988
3989 /* spanning writes always overwrite something */
3990 if (mas->store_type == wr_spanning_store)
3991 goto exists;
3992
3993 /* At this point, we are at the leaf node that needs to be altered. */
3994 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
3995 wr_mas.offset_end = mas->offset;
3996 wr_mas.end_piv = wr_mas.r_max;
3997
3998 if (wr_mas.content || (mas->last > wr_mas.r_max))
3999 goto exists;
4000 }
4001
4002 mas_wr_store_entry(&wr_mas);
4003 return wr_mas.content;
4004
4005 exists:
4006 mas_set_err(mas, -EEXIST);
4007 return wr_mas.content;
4008
4009 }
4010
4011 /**
4012 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4013 * @mas: The maple state.
4014 * @startp: Pointer to ID.
4015 * @range_lo: Lower bound of range to search.
4016 * @range_hi: Upper bound of range to search.
4017 * @entry: The entry to store.
4018 * @next: Pointer to next ID to allocate.
4019 * @gfp: The GFP_FLAGS to use for allocations.
4020 *
4021 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4022 * allocation succeeded after wrapping, or -EBUSY if there are no
4023 * free entries.
4024 */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4025 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4026 void *entry, unsigned long range_lo, unsigned long range_hi,
4027 unsigned long *next, gfp_t gfp)
4028 {
4029 unsigned long min = range_lo;
4030 int ret = 0;
4031
4032 range_lo = max(min, *next);
4033 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4034 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4035 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4036 ret = 1;
4037 }
4038 if (ret < 0 && range_lo > min) {
4039 mas_reset(mas);
4040 ret = mas_empty_area(mas, min, range_hi, 1);
4041 if (ret == 0)
4042 ret = 1;
4043 }
4044 if (ret < 0)
4045 return ret;
4046
4047 do {
4048 mas_insert(mas, entry);
4049 } while (mas_nomem(mas, gfp));
4050 if (mas_is_err(mas))
4051 return xa_err(mas->node);
4052
4053 *startp = mas->index;
4054 *next = *startp + 1;
4055 if (*next == 0)
4056 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4057
4058 mas_destroy(mas);
4059 return ret;
4060 }
4061 EXPORT_SYMBOL(mas_alloc_cyclic);
4062
mas_rewalk(struct ma_state * mas,unsigned long index)4063 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4064 {
4065 retry:
4066 mas_set(mas, index);
4067 mas_state_walk(mas);
4068 if (mas_is_start(mas))
4069 goto retry;
4070 }
4071
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4072 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4073 struct maple_node *node, const unsigned long index)
4074 {
4075 if (unlikely(ma_dead_node(node))) {
4076 mas_rewalk(mas, index);
4077 return true;
4078 }
4079 return false;
4080 }
4081
4082 /*
4083 * mas_prev_node() - Find the prev non-null entry at the same level in the
4084 * tree. The prev value will be mas->node[mas->offset] or the status will be
4085 * ma_none.
4086 * @mas: The maple state
4087 * @min: The lower limit to search
4088 *
4089 * The prev node value will be mas->node[mas->offset] or the status will be
4090 * ma_none.
4091 * Return: 1 if the node is dead, 0 otherwise.
4092 */
mas_prev_node(struct ma_state * mas,unsigned long min)4093 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4094 {
4095 enum maple_type mt;
4096 int offset, level;
4097 void __rcu **slots;
4098 struct maple_node *node;
4099 unsigned long *pivots;
4100 unsigned long max;
4101
4102 node = mas_mn(mas);
4103 if (!mas->min)
4104 goto no_entry;
4105
4106 max = mas->min - 1;
4107 if (max < min)
4108 goto no_entry;
4109
4110 level = 0;
4111 do {
4112 if (ma_is_root(node))
4113 goto no_entry;
4114
4115 /* Walk up. */
4116 if (unlikely(mas_ascend(mas)))
4117 return 1;
4118 offset = mas->offset;
4119 level++;
4120 node = mas_mn(mas);
4121 } while (!offset);
4122
4123 offset--;
4124 mt = mte_node_type(mas->node);
4125 while (level > 1) {
4126 level--;
4127 slots = ma_slots(node, mt);
4128 mas->node = mas_slot(mas, slots, offset);
4129 if (unlikely(ma_dead_node(node)))
4130 return 1;
4131
4132 mt = mte_node_type(mas->node);
4133 node = mas_mn(mas);
4134 pivots = ma_pivots(node, mt);
4135 offset = ma_data_end(node, mt, pivots, max);
4136 if (unlikely(ma_dead_node(node)))
4137 return 1;
4138 }
4139
4140 slots = ma_slots(node, mt);
4141 mas->node = mas_slot(mas, slots, offset);
4142 pivots = ma_pivots(node, mt);
4143 if (unlikely(ma_dead_node(node)))
4144 return 1;
4145
4146 if (likely(offset))
4147 mas->min = pivots[offset - 1] + 1;
4148 mas->max = max;
4149 mas->offset = mas_data_end(mas);
4150 if (unlikely(mte_dead_node(mas->node)))
4151 return 1;
4152
4153 mas->end = mas->offset;
4154 return 0;
4155
4156 no_entry:
4157 if (unlikely(ma_dead_node(node)))
4158 return 1;
4159
4160 mas->status = ma_underflow;
4161 return 0;
4162 }
4163
4164 /*
4165 * mas_prev_slot() - Get the entry in the previous slot
4166 *
4167 * @mas: The maple state
4168 * @min: The minimum starting range
4169 * @empty: Can be empty
4170 *
4171 * Return: The entry in the previous slot which is possibly NULL
4172 */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4173 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4174 {
4175 void *entry;
4176 void __rcu **slots;
4177 unsigned long pivot;
4178 enum maple_type type;
4179 unsigned long *pivots;
4180 struct maple_node *node;
4181 unsigned long save_point = mas->index;
4182
4183 retry:
4184 node = mas_mn(mas);
4185 type = mte_node_type(mas->node);
4186 pivots = ma_pivots(node, type);
4187 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4188 goto retry;
4189
4190 if (mas->min <= min) {
4191 pivot = mas_safe_min(mas, pivots, mas->offset);
4192
4193 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4194 goto retry;
4195
4196 if (pivot <= min)
4197 goto underflow;
4198 }
4199
4200 again:
4201 if (likely(mas->offset)) {
4202 mas->offset--;
4203 mas->last = mas->index - 1;
4204 mas->index = mas_safe_min(mas, pivots, mas->offset);
4205 } else {
4206 if (mas->index <= min)
4207 goto underflow;
4208
4209 if (mas_prev_node(mas, min)) {
4210 mas_rewalk(mas, save_point);
4211 goto retry;
4212 }
4213
4214 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4215 return NULL;
4216
4217 mas->last = mas->max;
4218 node = mas_mn(mas);
4219 type = mte_node_type(mas->node);
4220 pivots = ma_pivots(node, type);
4221 mas->index = pivots[mas->offset - 1] + 1;
4222 }
4223
4224 slots = ma_slots(node, type);
4225 entry = mas_slot(mas, slots, mas->offset);
4226 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4227 goto retry;
4228
4229 if (likely(entry))
4230 return entry;
4231
4232 if (!empty) {
4233 if (mas->index <= min)
4234 goto underflow;
4235
4236 goto again;
4237 }
4238
4239 return entry;
4240
4241 underflow:
4242 mas->status = ma_underflow;
4243 return NULL;
4244 }
4245
4246 /*
4247 * mas_next_node() - Get the next node at the same level in the tree.
4248 * @mas: The maple state
4249 * @node: The maple node
4250 * @max: The maximum pivot value to check.
4251 *
4252 * The next value will be mas->node[mas->offset] or the status will have
4253 * overflowed.
4254 * Return: 1 on dead node, 0 otherwise.
4255 */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4256 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4257 unsigned long max)
4258 {
4259 unsigned long min;
4260 unsigned long *pivots;
4261 struct maple_enode *enode;
4262 struct maple_node *tmp;
4263 int level = 0;
4264 unsigned char node_end;
4265 enum maple_type mt;
4266 void __rcu **slots;
4267
4268 if (mas->max >= max)
4269 goto overflow;
4270
4271 min = mas->max + 1;
4272 level = 0;
4273 do {
4274 if (ma_is_root(node))
4275 goto overflow;
4276
4277 /* Walk up. */
4278 if (unlikely(mas_ascend(mas)))
4279 return 1;
4280
4281 level++;
4282 node = mas_mn(mas);
4283 mt = mte_node_type(mas->node);
4284 pivots = ma_pivots(node, mt);
4285 node_end = ma_data_end(node, mt, pivots, mas->max);
4286 if (unlikely(ma_dead_node(node)))
4287 return 1;
4288
4289 } while (unlikely(mas->offset == node_end));
4290
4291 slots = ma_slots(node, mt);
4292 mas->offset++;
4293 enode = mas_slot(mas, slots, mas->offset);
4294 if (unlikely(ma_dead_node(node)))
4295 return 1;
4296
4297 if (level > 1)
4298 mas->offset = 0;
4299
4300 while (unlikely(level > 1)) {
4301 level--;
4302 mas->node = enode;
4303 node = mas_mn(mas);
4304 mt = mte_node_type(mas->node);
4305 slots = ma_slots(node, mt);
4306 enode = mas_slot(mas, slots, 0);
4307 if (unlikely(ma_dead_node(node)))
4308 return 1;
4309 }
4310
4311 if (!mas->offset)
4312 pivots = ma_pivots(node, mt);
4313
4314 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4315 tmp = mte_to_node(enode);
4316 mt = mte_node_type(enode);
4317 pivots = ma_pivots(tmp, mt);
4318 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4319 if (unlikely(ma_dead_node(node)))
4320 return 1;
4321
4322 mas->node = enode;
4323 mas->min = min;
4324 return 0;
4325
4326 overflow:
4327 if (unlikely(ma_dead_node(node)))
4328 return 1;
4329
4330 mas->status = ma_overflow;
4331 return 0;
4332 }
4333
4334 /*
4335 * mas_next_slot() - Get the entry in the next slot
4336 *
4337 * @mas: The maple state
4338 * @max: The maximum starting range
4339 * @empty: Can be empty
4340 *
4341 * Return: The entry in the next slot which is possibly NULL
4342 */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4343 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4344 {
4345 void __rcu **slots;
4346 unsigned long *pivots;
4347 unsigned long pivot;
4348 enum maple_type type;
4349 struct maple_node *node;
4350 unsigned long save_point = mas->last;
4351 void *entry;
4352
4353 retry:
4354 node = mas_mn(mas);
4355 type = mte_node_type(mas->node);
4356 pivots = ma_pivots(node, type);
4357 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4358 goto retry;
4359
4360 if (mas->max >= max) {
4361 if (likely(mas->offset < mas->end))
4362 pivot = pivots[mas->offset];
4363 else
4364 pivot = mas->max;
4365
4366 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4367 goto retry;
4368
4369 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4370 mas->status = ma_overflow;
4371 return NULL;
4372 }
4373 }
4374
4375 if (likely(mas->offset < mas->end)) {
4376 mas->index = pivots[mas->offset] + 1;
4377 again:
4378 mas->offset++;
4379 if (likely(mas->offset < mas->end))
4380 mas->last = pivots[mas->offset];
4381 else
4382 mas->last = mas->max;
4383 } else {
4384 if (mas->last >= max) {
4385 mas->status = ma_overflow;
4386 return NULL;
4387 }
4388
4389 if (mas_next_node(mas, node, max)) {
4390 mas_rewalk(mas, save_point);
4391 goto retry;
4392 }
4393
4394 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4395 return NULL;
4396
4397 mas->offset = 0;
4398 mas->index = mas->min;
4399 node = mas_mn(mas);
4400 type = mte_node_type(mas->node);
4401 pivots = ma_pivots(node, type);
4402 mas->last = pivots[0];
4403 }
4404
4405 slots = ma_slots(node, type);
4406 entry = mt_slot(mas->tree, slots, mas->offset);
4407 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4408 goto retry;
4409
4410 if (entry)
4411 return entry;
4412
4413
4414 if (!empty) {
4415 if (mas->last >= max) {
4416 mas->status = ma_overflow;
4417 return NULL;
4418 }
4419
4420 mas->index = mas->last + 1;
4421 goto again;
4422 }
4423
4424 return entry;
4425 }
4426
4427 /*
4428 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4429 * highest gap address of a given size in a given node and descend.
4430 * @mas: The maple state
4431 * @size: The needed size.
4432 *
4433 * Return: True if found in a leaf, false otherwise.
4434 *
4435 */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4436 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4437 unsigned long *gap_min, unsigned long *gap_max)
4438 {
4439 enum maple_type type = mte_node_type(mas->node);
4440 struct maple_node *node = mas_mn(mas);
4441 unsigned long *pivots, *gaps;
4442 void __rcu **slots;
4443 unsigned long gap = 0;
4444 unsigned long max, min;
4445 unsigned char offset;
4446
4447 if (unlikely(mas_is_err(mas)))
4448 return true;
4449
4450 if (ma_is_dense(type)) {
4451 /* dense nodes. */
4452 mas->offset = (unsigned char)(mas->index - mas->min);
4453 return true;
4454 }
4455
4456 pivots = ma_pivots(node, type);
4457 slots = ma_slots(node, type);
4458 gaps = ma_gaps(node, type);
4459 offset = mas->offset;
4460 min = mas_safe_min(mas, pivots, offset);
4461 /* Skip out of bounds. */
4462 while (mas->last < min)
4463 min = mas_safe_min(mas, pivots, --offset);
4464
4465 max = mas_safe_pivot(mas, pivots, offset, type);
4466 while (mas->index <= max) {
4467 gap = 0;
4468 if (gaps)
4469 gap = gaps[offset];
4470 else if (!mas_slot(mas, slots, offset))
4471 gap = max - min + 1;
4472
4473 if (gap) {
4474 if ((size <= gap) && (size <= mas->last - min + 1))
4475 break;
4476
4477 if (!gaps) {
4478 /* Skip the next slot, it cannot be a gap. */
4479 if (offset < 2)
4480 goto ascend;
4481
4482 offset -= 2;
4483 max = pivots[offset];
4484 min = mas_safe_min(mas, pivots, offset);
4485 continue;
4486 }
4487 }
4488
4489 if (!offset)
4490 goto ascend;
4491
4492 offset--;
4493 max = min - 1;
4494 min = mas_safe_min(mas, pivots, offset);
4495 }
4496
4497 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4498 goto no_space;
4499
4500 if (unlikely(ma_is_leaf(type))) {
4501 mas->offset = offset;
4502 *gap_min = min;
4503 *gap_max = min + gap - 1;
4504 return true;
4505 }
4506
4507 /* descend, only happens under lock. */
4508 mas->node = mas_slot(mas, slots, offset);
4509 mas->min = min;
4510 mas->max = max;
4511 mas->offset = mas_data_end(mas);
4512 return false;
4513
4514 ascend:
4515 if (!mte_is_root(mas->node))
4516 return false;
4517
4518 no_space:
4519 mas_set_err(mas, -EBUSY);
4520 return false;
4521 }
4522
mas_anode_descend(struct ma_state * mas,unsigned long size)4523 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4524 {
4525 enum maple_type type = mte_node_type(mas->node);
4526 unsigned long pivot, min, gap = 0;
4527 unsigned char offset, data_end;
4528 unsigned long *gaps, *pivots;
4529 void __rcu **slots;
4530 struct maple_node *node;
4531 bool found = false;
4532
4533 if (ma_is_dense(type)) {
4534 mas->offset = (unsigned char)(mas->index - mas->min);
4535 return true;
4536 }
4537
4538 node = mas_mn(mas);
4539 pivots = ma_pivots(node, type);
4540 slots = ma_slots(node, type);
4541 gaps = ma_gaps(node, type);
4542 offset = mas->offset;
4543 min = mas_safe_min(mas, pivots, offset);
4544 data_end = ma_data_end(node, type, pivots, mas->max);
4545 for (; offset <= data_end; offset++) {
4546 pivot = mas_safe_pivot(mas, pivots, offset, type);
4547
4548 /* Not within lower bounds */
4549 if (mas->index > pivot)
4550 goto next_slot;
4551
4552 if (gaps)
4553 gap = gaps[offset];
4554 else if (!mas_slot(mas, slots, offset))
4555 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4556 else
4557 goto next_slot;
4558
4559 if (gap >= size) {
4560 if (ma_is_leaf(type)) {
4561 found = true;
4562 break;
4563 }
4564
4565 mas->node = mas_slot(mas, slots, offset);
4566 mas->min = min;
4567 mas->max = pivot;
4568 offset = 0;
4569 break;
4570 }
4571 next_slot:
4572 min = pivot + 1;
4573 if (mas->last <= pivot) {
4574 mas_set_err(mas, -EBUSY);
4575 return true;
4576 }
4577 }
4578
4579 mas->offset = offset;
4580 return found;
4581 }
4582
4583 /**
4584 * mas_walk() - Search for @mas->index in the tree.
4585 * @mas: The maple state.
4586 *
4587 * mas->index and mas->last will be set to the range if there is a value. If
4588 * mas->status is ma_none, reset to ma_start
4589 *
4590 * Return: the entry at the location or %NULL.
4591 */
mas_walk(struct ma_state * mas)4592 void *mas_walk(struct ma_state *mas)
4593 {
4594 void *entry;
4595
4596 if (!mas_is_active(mas) && !mas_is_start(mas))
4597 mas->status = ma_start;
4598 retry:
4599 entry = mas_state_walk(mas);
4600 if (mas_is_start(mas)) {
4601 goto retry;
4602 } else if (mas_is_none(mas)) {
4603 mas->index = 0;
4604 mas->last = ULONG_MAX;
4605 } else if (mas_is_ptr(mas)) {
4606 if (!mas->index) {
4607 mas->last = 0;
4608 return entry;
4609 }
4610
4611 mas->index = 1;
4612 mas->last = ULONG_MAX;
4613 mas->status = ma_none;
4614 return NULL;
4615 }
4616
4617 return entry;
4618 }
4619 EXPORT_SYMBOL_GPL(mas_walk);
4620
mas_rewind_node(struct ma_state * mas)4621 static inline bool mas_rewind_node(struct ma_state *mas)
4622 {
4623 unsigned char slot;
4624
4625 do {
4626 if (mte_is_root(mas->node)) {
4627 slot = mas->offset;
4628 if (!slot)
4629 return false;
4630 } else {
4631 mas_ascend(mas);
4632 slot = mas->offset;
4633 }
4634 } while (!slot);
4635
4636 mas->offset = --slot;
4637 return true;
4638 }
4639
4640 /*
4641 * mas_skip_node() - Internal function. Skip over a node.
4642 * @mas: The maple state.
4643 *
4644 * Return: true if there is another node, false otherwise.
4645 */
mas_skip_node(struct ma_state * mas)4646 static inline bool mas_skip_node(struct ma_state *mas)
4647 {
4648 if (mas_is_err(mas))
4649 return false;
4650
4651 do {
4652 if (mte_is_root(mas->node)) {
4653 if (mas->offset >= mas_data_end(mas)) {
4654 mas_set_err(mas, -EBUSY);
4655 return false;
4656 }
4657 } else {
4658 mas_ascend(mas);
4659 }
4660 } while (mas->offset >= mas_data_end(mas));
4661
4662 mas->offset++;
4663 return true;
4664 }
4665
4666 /*
4667 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
4668 * @size
4669 * @mas: The maple state
4670 * @size: The size of the gap required
4671 *
4672 * Search between @mas->index and @mas->last for a gap of @size.
4673 */
mas_awalk(struct ma_state * mas,unsigned long size)4674 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4675 {
4676 struct maple_enode *last = NULL;
4677
4678 /*
4679 * There are 4 options:
4680 * go to child (descend)
4681 * go back to parent (ascend)
4682 * no gap found. (return, error == -EBUSY)
4683 * found the gap. (return)
4684 */
4685 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4686 if (last == mas->node)
4687 mas_skip_node(mas);
4688 else
4689 last = mas->node;
4690 }
4691 }
4692
4693 /*
4694 * mas_sparse_area() - Internal function. Return upper or lower limit when
4695 * searching for a gap in an empty tree.
4696 * @mas: The maple state
4697 * @min: the minimum range
4698 * @max: The maximum range
4699 * @size: The size of the gap
4700 * @fwd: Searching forward or back
4701 */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)4702 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
4703 unsigned long max, unsigned long size, bool fwd)
4704 {
4705 if (!unlikely(mas_is_none(mas)) && min == 0) {
4706 min++;
4707 /*
4708 * At this time, min is increased, we need to recheck whether
4709 * the size is satisfied.
4710 */
4711 if (min > max || max - min + 1 < size)
4712 return -EBUSY;
4713 }
4714 /* mas_is_ptr */
4715
4716 if (fwd) {
4717 mas->index = min;
4718 mas->last = min + size - 1;
4719 } else {
4720 mas->last = max;
4721 mas->index = max - size + 1;
4722 }
4723 return 0;
4724 }
4725
4726 /*
4727 * mas_empty_area() - Get the lowest address within the range that is
4728 * sufficient for the size requested.
4729 * @mas: The maple state
4730 * @min: The lowest value of the range
4731 * @max: The highest value of the range
4732 * @size: The size needed
4733 */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)4734 int mas_empty_area(struct ma_state *mas, unsigned long min,
4735 unsigned long max, unsigned long size)
4736 {
4737 unsigned char offset;
4738 unsigned long *pivots;
4739 enum maple_type mt;
4740 struct maple_node *node;
4741
4742 if (min > max)
4743 return -EINVAL;
4744
4745 if (size == 0 || max - min < size - 1)
4746 return -EINVAL;
4747
4748 if (mas_is_start(mas))
4749 mas_start(mas);
4750 else if (mas->offset >= 2)
4751 mas->offset -= 2;
4752 else if (!mas_skip_node(mas))
4753 return -EBUSY;
4754
4755 /* Empty set */
4756 if (mas_is_none(mas) || mas_is_ptr(mas))
4757 return mas_sparse_area(mas, min, max, size, true);
4758
4759 /* The start of the window can only be within these values */
4760 mas->index = min;
4761 mas->last = max;
4762 mas_awalk(mas, size);
4763
4764 if (unlikely(mas_is_err(mas)))
4765 return xa_err(mas->node);
4766
4767 offset = mas->offset;
4768 node = mas_mn(mas);
4769 mt = mte_node_type(mas->node);
4770 pivots = ma_pivots(node, mt);
4771 min = mas_safe_min(mas, pivots, offset);
4772 if (mas->index < min)
4773 mas->index = min;
4774 mas->last = mas->index + size - 1;
4775 mas->end = ma_data_end(node, mt, pivots, mas->max);
4776 return 0;
4777 }
4778 EXPORT_SYMBOL_GPL(mas_empty_area);
4779
4780 /*
4781 * mas_empty_area_rev() - Get the highest address within the range that is
4782 * sufficient for the size requested.
4783 * @mas: The maple state
4784 * @min: The lowest value of the range
4785 * @max: The highest value of the range
4786 * @size: The size needed
4787 */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)4788 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
4789 unsigned long max, unsigned long size)
4790 {
4791 struct maple_enode *last = mas->node;
4792
4793 if (min > max)
4794 return -EINVAL;
4795
4796 if (size == 0 || max - min < size - 1)
4797 return -EINVAL;
4798
4799 if (mas_is_start(mas))
4800 mas_start(mas);
4801 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
4802 return -EBUSY;
4803
4804 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4805 return mas_sparse_area(mas, min, max, size, false);
4806 else if (mas->offset >= 2)
4807 mas->offset -= 2;
4808 else
4809 mas->offset = mas_data_end(mas);
4810
4811
4812 /* The start of the window can only be within these values. */
4813 mas->index = min;
4814 mas->last = max;
4815
4816 while (!mas_rev_awalk(mas, size, &min, &max)) {
4817 if (last == mas->node) {
4818 if (!mas_rewind_node(mas))
4819 return -EBUSY;
4820 } else {
4821 last = mas->node;
4822 }
4823 }
4824
4825 if (mas_is_err(mas))
4826 return xa_err(mas->node);
4827
4828 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
4829 return -EBUSY;
4830
4831 /* Trim the upper limit to the max. */
4832 if (max < mas->last)
4833 mas->last = max;
4834
4835 mas->index = mas->last - size + 1;
4836 mas->end = mas_data_end(mas);
4837 return 0;
4838 }
4839 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
4840
4841 /*
4842 * mte_dead_leaves() - Mark all leaves of a node as dead.
4843 * @enode: the encoded node
4844 * @mt: the maple tree
4845 * @slots: Pointer to the slot array
4846 *
4847 * Must hold the write lock.
4848 *
4849 * Return: The number of leaves marked as dead.
4850 */
4851 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)4852 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
4853 void __rcu **slots)
4854 {
4855 struct maple_node *node;
4856 enum maple_type type;
4857 void *entry;
4858 int offset;
4859
4860 for (offset = 0; offset < mt_slot_count(enode); offset++) {
4861 entry = mt_slot(mt, slots, offset);
4862 type = mte_node_type(entry);
4863 node = mte_to_node(entry);
4864 /* Use both node and type to catch LE & BE metadata */
4865 if (!node || !type)
4866 break;
4867
4868 mte_set_node_dead(entry);
4869 node->type = type;
4870 rcu_assign_pointer(slots[offset], node);
4871 }
4872
4873 return offset;
4874 }
4875
4876 /**
4877 * mte_dead_walk() - Walk down a dead tree to just before the leaves
4878 * @enode: The maple encoded node
4879 * @offset: The starting offset
4880 *
4881 * Note: This can only be used from the RCU callback context.
4882 */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)4883 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
4884 {
4885 struct maple_node *node, *next;
4886 void __rcu **slots = NULL;
4887
4888 next = mte_to_node(*enode);
4889 do {
4890 *enode = ma_enode_ptr(next);
4891 node = mte_to_node(*enode);
4892 slots = ma_slots(node, node->type);
4893 next = rcu_dereference_protected(slots[offset],
4894 lock_is_held(&rcu_callback_map));
4895 offset = 0;
4896 } while (!ma_is_leaf(next->type));
4897
4898 return slots;
4899 }
4900
4901 /**
4902 * mt_free_walk() - Walk & free a tree in the RCU callback context
4903 * @head: The RCU head that's within the node.
4904 *
4905 * Note: This can only be used from the RCU callback context.
4906 */
mt_free_walk(struct rcu_head * head)4907 static void mt_free_walk(struct rcu_head *head)
4908 {
4909 void __rcu **slots;
4910 struct maple_node *node, *start;
4911 struct maple_enode *enode;
4912 unsigned char offset;
4913 enum maple_type type;
4914
4915 node = container_of(head, struct maple_node, rcu);
4916
4917 if (ma_is_leaf(node->type))
4918 goto free_leaf;
4919
4920 start = node;
4921 enode = mt_mk_node(node, node->type);
4922 slots = mte_dead_walk(&enode, 0);
4923 node = mte_to_node(enode);
4924 do {
4925 mt_free_bulk(node->slot_len, slots);
4926 offset = node->parent_slot + 1;
4927 enode = node->piv_parent;
4928 if (mte_to_node(enode) == node)
4929 goto free_leaf;
4930
4931 type = mte_node_type(enode);
4932 slots = ma_slots(mte_to_node(enode), type);
4933 if ((offset < mt_slots[type]) &&
4934 rcu_dereference_protected(slots[offset],
4935 lock_is_held(&rcu_callback_map)))
4936 slots = mte_dead_walk(&enode, offset);
4937 node = mte_to_node(enode);
4938 } while ((node != start) || (node->slot_len < offset));
4939
4940 slots = ma_slots(node, node->type);
4941 mt_free_bulk(node->slot_len, slots);
4942
4943 free_leaf:
4944 kfree(node);
4945 }
4946
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)4947 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
4948 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
4949 {
4950 struct maple_node *node;
4951 struct maple_enode *next = *enode;
4952 void __rcu **slots = NULL;
4953 enum maple_type type;
4954 unsigned char next_offset = 0;
4955
4956 do {
4957 *enode = next;
4958 node = mte_to_node(*enode);
4959 type = mte_node_type(*enode);
4960 slots = ma_slots(node, type);
4961 next = mt_slot_locked(mt, slots, next_offset);
4962 if ((mte_dead_node(next)))
4963 next = mt_slot_locked(mt, slots, ++next_offset);
4964
4965 mte_set_node_dead(*enode);
4966 node->type = type;
4967 node->piv_parent = prev;
4968 node->parent_slot = offset;
4969 offset = next_offset;
4970 next_offset = 0;
4971 prev = *enode;
4972 } while (!mte_is_leaf(next));
4973
4974 return slots;
4975 }
4976
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)4977 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
4978 bool free)
4979 {
4980 void __rcu **slots;
4981 struct maple_node *node = mte_to_node(enode);
4982 struct maple_enode *start;
4983
4984 if (mte_is_leaf(enode)) {
4985 mte_set_node_dead(enode);
4986 node->type = mte_node_type(enode);
4987 goto free_leaf;
4988 }
4989
4990 start = enode;
4991 slots = mte_destroy_descend(&enode, mt, start, 0);
4992 node = mte_to_node(enode); // Updated in the above call.
4993 do {
4994 enum maple_type type;
4995 unsigned char offset;
4996 struct maple_enode *parent, *tmp;
4997
4998 node->slot_len = mte_dead_leaves(enode, mt, slots);
4999 if (free)
5000 mt_free_bulk(node->slot_len, slots);
5001 offset = node->parent_slot + 1;
5002 enode = node->piv_parent;
5003 if (mte_to_node(enode) == node)
5004 goto free_leaf;
5005
5006 type = mte_node_type(enode);
5007 slots = ma_slots(mte_to_node(enode), type);
5008 if (offset >= mt_slots[type])
5009 goto next;
5010
5011 tmp = mt_slot_locked(mt, slots, offset);
5012 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5013 parent = enode;
5014 enode = tmp;
5015 slots = mte_destroy_descend(&enode, mt, parent, offset);
5016 }
5017 next:
5018 node = mte_to_node(enode);
5019 } while (start != enode);
5020
5021 node = mte_to_node(enode);
5022 node->slot_len = mte_dead_leaves(enode, mt, slots);
5023 if (free)
5024 mt_free_bulk(node->slot_len, slots);
5025
5026 free_leaf:
5027 if (free)
5028 kfree(node);
5029 else
5030 mt_clear_meta(mt, node, node->type);
5031 }
5032
5033 /*
5034 * mte_destroy_walk() - Free a tree or sub-tree.
5035 * @enode: the encoded maple node (maple_enode) to start
5036 * @mt: the tree to free - needed for node types.
5037 *
5038 * Must hold the write lock.
5039 */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5040 static inline void mte_destroy_walk(struct maple_enode *enode,
5041 struct maple_tree *mt)
5042 {
5043 struct maple_node *node = mte_to_node(enode);
5044
5045 if (mt_in_rcu(mt)) {
5046 mt_destroy_walk(enode, mt, false);
5047 call_rcu(&node->rcu, mt_free_walk);
5048 } else {
5049 mt_destroy_walk(enode, mt, true);
5050 }
5051 }
5052 /* Interface */
5053
5054 /**
5055 * mas_store() - Store an @entry.
5056 * @mas: The maple state.
5057 * @entry: The entry to store.
5058 *
5059 * The @mas->index and @mas->last is used to set the range for the @entry.
5060 *
5061 * Return: the first entry between mas->index and mas->last or %NULL.
5062 */
mas_store(struct ma_state * mas,void * entry)5063 void *mas_store(struct ma_state *mas, void *entry)
5064 {
5065 MA_WR_STATE(wr_mas, mas, entry);
5066
5067 trace_ma_write(TP_FCT, mas, 0, entry);
5068 #ifdef CONFIG_DEBUG_MAPLE_TREE
5069 if (MAS_WARN_ON(mas, mas->index > mas->last))
5070 pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5071 entry);
5072
5073 if (mas->index > mas->last) {
5074 mas_set_err(mas, -EINVAL);
5075 return NULL;
5076 }
5077
5078 #endif
5079
5080 /*
5081 * Storing is the same operation as insert with the added caveat that it
5082 * can overwrite entries. Although this seems simple enough, one may
5083 * want to examine what happens if a single store operation was to
5084 * overwrite multiple entries within a self-balancing B-Tree.
5085 */
5086 mas_wr_prealloc_setup(&wr_mas);
5087 mas->store_type = mas_wr_store_type(&wr_mas);
5088 if (mas->mas_flags & MA_STATE_PREALLOC) {
5089 mas_wr_store_entry(&wr_mas);
5090 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5091 return wr_mas.content;
5092 }
5093
5094 mas_prealloc_calc(&wr_mas, entry);
5095 if (!mas->node_request)
5096 goto store;
5097
5098 mas_alloc_nodes(mas, GFP_NOWAIT);
5099 if (mas_is_err(mas))
5100 return NULL;
5101
5102 store:
5103 mas_wr_store_entry(&wr_mas);
5104 mas_destroy(mas);
5105 return wr_mas.content;
5106 }
5107 EXPORT_SYMBOL_GPL(mas_store);
5108
5109 /**
5110 * mas_store_gfp() - Store a value into the tree.
5111 * @mas: The maple state
5112 * @entry: The entry to store
5113 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5114 *
5115 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5116 * be allocated.
5117 */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5118 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5119 {
5120 unsigned long index = mas->index;
5121 unsigned long last = mas->last;
5122 MA_WR_STATE(wr_mas, mas, entry);
5123 int ret = 0;
5124
5125 retry:
5126 mas_wr_preallocate(&wr_mas, entry);
5127 if (unlikely(mas_nomem(mas, gfp))) {
5128 if (!entry)
5129 __mas_set_range(mas, index, last);
5130 goto retry;
5131 }
5132
5133 if (mas_is_err(mas)) {
5134 ret = xa_err(mas->node);
5135 goto out;
5136 }
5137
5138 mas_wr_store_entry(&wr_mas);
5139 out:
5140 mas_destroy(mas);
5141 return ret;
5142 }
5143 EXPORT_SYMBOL_GPL(mas_store_gfp);
5144
5145 /**
5146 * mas_store_prealloc() - Store a value into the tree using memory
5147 * preallocated in the maple state.
5148 * @mas: The maple state
5149 * @entry: The entry to store.
5150 */
mas_store_prealloc(struct ma_state * mas,void * entry)5151 void mas_store_prealloc(struct ma_state *mas, void *entry)
5152 {
5153 MA_WR_STATE(wr_mas, mas, entry);
5154
5155 if (mas->store_type == wr_store_root) {
5156 mas_wr_prealloc_setup(&wr_mas);
5157 goto store;
5158 }
5159
5160 mas_wr_walk_descend(&wr_mas);
5161 if (mas->store_type != wr_spanning_store) {
5162 /* set wr_mas->content to current slot */
5163 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5164 mas_wr_end_piv(&wr_mas);
5165 }
5166
5167 store:
5168 trace_ma_write(TP_FCT, mas, 0, entry);
5169 mas_wr_store_entry(&wr_mas);
5170 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5171 mas_destroy(mas);
5172 }
5173 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5174
5175 /**
5176 * mas_preallocate() - Preallocate enough nodes for a store operation
5177 * @mas: The maple state
5178 * @entry: The entry that will be stored
5179 * @gfp: The GFP_FLAGS to use for allocations.
5180 *
5181 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5182 */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5183 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5184 {
5185 MA_WR_STATE(wr_mas, mas, entry);
5186
5187 mas_wr_prealloc_setup(&wr_mas);
5188 mas->store_type = mas_wr_store_type(&wr_mas);
5189 mas_prealloc_calc(&wr_mas, entry);
5190 if (!mas->node_request)
5191 goto set_flag;
5192
5193 mas->mas_flags &= ~MA_STATE_PREALLOC;
5194 mas_alloc_nodes(mas, gfp);
5195 if (mas_is_err(mas)) {
5196 int ret = xa_err(mas->node);
5197
5198 mas->node_request = 0;
5199 mas_destroy(mas);
5200 mas_reset(mas);
5201 return ret;
5202 }
5203
5204 set_flag:
5205 mas->mas_flags |= MA_STATE_PREALLOC;
5206 return 0;
5207 }
5208 EXPORT_SYMBOL_GPL(mas_preallocate);
5209
5210 /*
5211 * mas_destroy() - destroy a maple state.
5212 * @mas: The maple state
5213 *
5214 * Upon completion, check the left-most node and rebalance against the node to
5215 * the right if necessary. Frees any allocated nodes associated with this maple
5216 * state.
5217 */
mas_destroy(struct ma_state * mas)5218 void mas_destroy(struct ma_state *mas)
5219 {
5220 mas->mas_flags &= ~MA_STATE_PREALLOC;
5221 mas_empty_nodes(mas);
5222 }
5223 EXPORT_SYMBOL_GPL(mas_destroy);
5224
mas_may_activate(struct ma_state * mas)5225 static void mas_may_activate(struct ma_state *mas)
5226 {
5227 if (!mas->node) {
5228 mas->status = ma_start;
5229 } else if (mas->index > mas->max || mas->index < mas->min) {
5230 mas->status = ma_start;
5231 } else {
5232 mas->status = ma_active;
5233 }
5234 }
5235
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5236 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5237 void **entry)
5238 {
5239 bool was_none = mas_is_none(mas);
5240
5241 if (unlikely(mas->last >= max)) {
5242 mas->status = ma_overflow;
5243 return true;
5244 }
5245
5246 switch (mas->status) {
5247 case ma_active:
5248 return false;
5249 case ma_none:
5250 fallthrough;
5251 case ma_pause:
5252 mas->status = ma_start;
5253 fallthrough;
5254 case ma_start:
5255 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5256 break;
5257 case ma_overflow:
5258 /* Overflowed before, but the max changed */
5259 mas_may_activate(mas);
5260 break;
5261 case ma_underflow:
5262 /* The user expects the mas to be one before where it is */
5263 mas_may_activate(mas);
5264 *entry = mas_walk(mas);
5265 if (*entry)
5266 return true;
5267 break;
5268 case ma_root:
5269 break;
5270 case ma_error:
5271 return true;
5272 }
5273
5274 if (likely(mas_is_active(mas))) /* Fast path */
5275 return false;
5276
5277 if (mas_is_ptr(mas)) {
5278 *entry = NULL;
5279 if (was_none && mas->index == 0) {
5280 mas->index = mas->last = 0;
5281 return true;
5282 }
5283 mas->index = 1;
5284 mas->last = ULONG_MAX;
5285 mas->status = ma_none;
5286 return true;
5287 }
5288
5289 if (mas_is_none(mas))
5290 return true;
5291
5292 return false;
5293 }
5294
5295 /**
5296 * mas_next() - Get the next entry.
5297 * @mas: The maple state
5298 * @max: The maximum index to check.
5299 *
5300 * Returns the next entry after @mas->index.
5301 * Must hold rcu_read_lock or the write lock.
5302 * Can return the zero entry.
5303 *
5304 * Return: The next entry or %NULL
5305 */
mas_next(struct ma_state * mas,unsigned long max)5306 void *mas_next(struct ma_state *mas, unsigned long max)
5307 {
5308 void *entry = NULL;
5309
5310 if (mas_next_setup(mas, max, &entry))
5311 return entry;
5312
5313 /* Retries on dead nodes handled by mas_next_slot */
5314 return mas_next_slot(mas, max, false);
5315 }
5316 EXPORT_SYMBOL_GPL(mas_next);
5317
5318 /**
5319 * mas_next_range() - Advance the maple state to the next range
5320 * @mas: The maple state
5321 * @max: The maximum index to check.
5322 *
5323 * Sets @mas->index and @mas->last to the range.
5324 * Must hold rcu_read_lock or the write lock.
5325 * Can return the zero entry.
5326 *
5327 * Return: The next entry or %NULL
5328 */
mas_next_range(struct ma_state * mas,unsigned long max)5329 void *mas_next_range(struct ma_state *mas, unsigned long max)
5330 {
5331 void *entry = NULL;
5332
5333 if (mas_next_setup(mas, max, &entry))
5334 return entry;
5335
5336 /* Retries on dead nodes handled by mas_next_slot */
5337 return mas_next_slot(mas, max, true);
5338 }
5339 EXPORT_SYMBOL_GPL(mas_next_range);
5340
5341 /**
5342 * mt_next() - get the next value in the maple tree
5343 * @mt: The maple tree
5344 * @index: The start index
5345 * @max: The maximum index to check
5346 *
5347 * Takes RCU read lock internally to protect the search, which does not
5348 * protect the returned pointer after dropping RCU read lock.
5349 * See also: Documentation/core-api/maple_tree.rst
5350 *
5351 * Return: The entry higher than @index or %NULL if nothing is found.
5352 */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5353 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5354 {
5355 void *entry = NULL;
5356 MA_STATE(mas, mt, index, index);
5357
5358 rcu_read_lock();
5359 entry = mas_next(&mas, max);
5360 rcu_read_unlock();
5361 return entry;
5362 }
5363 EXPORT_SYMBOL_GPL(mt_next);
5364
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5365 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5366 {
5367 if (unlikely(mas->index <= min)) {
5368 mas->status = ma_underflow;
5369 return true;
5370 }
5371
5372 switch (mas->status) {
5373 case ma_active:
5374 return false;
5375 case ma_start:
5376 break;
5377 case ma_none:
5378 fallthrough;
5379 case ma_pause:
5380 mas->status = ma_start;
5381 break;
5382 case ma_underflow:
5383 /* underflowed before but the min changed */
5384 mas_may_activate(mas);
5385 break;
5386 case ma_overflow:
5387 /* User expects mas to be one after where it is */
5388 mas_may_activate(mas);
5389 *entry = mas_walk(mas);
5390 if (*entry)
5391 return true;
5392 break;
5393 case ma_root:
5394 break;
5395 case ma_error:
5396 return true;
5397 }
5398
5399 if (mas_is_start(mas))
5400 mas_walk(mas);
5401
5402 if (unlikely(mas_is_ptr(mas))) {
5403 if (!mas->index) {
5404 mas->status = ma_none;
5405 return true;
5406 }
5407 mas->index = mas->last = 0;
5408 *entry = mas_root(mas);
5409 return true;
5410 }
5411
5412 if (mas_is_none(mas)) {
5413 if (mas->index) {
5414 /* Walked to out-of-range pointer? */
5415 mas->index = mas->last = 0;
5416 mas->status = ma_root;
5417 *entry = mas_root(mas);
5418 return true;
5419 }
5420 return true;
5421 }
5422
5423 return false;
5424 }
5425
5426 /**
5427 * mas_prev() - Get the previous entry
5428 * @mas: The maple state
5429 * @min: The minimum value to check.
5430 *
5431 * Must hold rcu_read_lock or the write lock.
5432 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5433 * searchable nodes.
5434 *
5435 * Return: the previous value or %NULL.
5436 */
mas_prev(struct ma_state * mas,unsigned long min)5437 void *mas_prev(struct ma_state *mas, unsigned long min)
5438 {
5439 void *entry = NULL;
5440
5441 if (mas_prev_setup(mas, min, &entry))
5442 return entry;
5443
5444 return mas_prev_slot(mas, min, false);
5445 }
5446 EXPORT_SYMBOL_GPL(mas_prev);
5447
5448 /**
5449 * mas_prev_range() - Advance to the previous range
5450 * @mas: The maple state
5451 * @min: The minimum value to check.
5452 *
5453 * Sets @mas->index and @mas->last to the range.
5454 * Must hold rcu_read_lock or the write lock.
5455 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5456 * searchable nodes.
5457 *
5458 * Return: the previous value or %NULL.
5459 */
mas_prev_range(struct ma_state * mas,unsigned long min)5460 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5461 {
5462 void *entry = NULL;
5463
5464 if (mas_prev_setup(mas, min, &entry))
5465 return entry;
5466
5467 return mas_prev_slot(mas, min, true);
5468 }
5469 EXPORT_SYMBOL_GPL(mas_prev_range);
5470
5471 /**
5472 * mt_prev() - get the previous value in the maple tree
5473 * @mt: The maple tree
5474 * @index: The start index
5475 * @min: The minimum index to check
5476 *
5477 * Takes RCU read lock internally to protect the search, which does not
5478 * protect the returned pointer after dropping RCU read lock.
5479 * See also: Documentation/core-api/maple_tree.rst
5480 *
5481 * Return: The entry before @index or %NULL if nothing is found.
5482 */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5483 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5484 {
5485 void *entry = NULL;
5486 MA_STATE(mas, mt, index, index);
5487
5488 rcu_read_lock();
5489 entry = mas_prev(&mas, min);
5490 rcu_read_unlock();
5491 return entry;
5492 }
5493 EXPORT_SYMBOL_GPL(mt_prev);
5494
5495 /**
5496 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5497 * @mas: The maple state to pause
5498 *
5499 * Some users need to pause a walk and drop the lock they're holding in
5500 * order to yield to a higher priority thread or carry out an operation
5501 * on an entry. Those users should call this function before they drop
5502 * the lock. It resets the @mas to be suitable for the next iteration
5503 * of the loop after the user has reacquired the lock. If most entries
5504 * found during a walk require you to call mas_pause(), the mt_for_each()
5505 * iterator may be more appropriate.
5506 *
5507 */
mas_pause(struct ma_state * mas)5508 void mas_pause(struct ma_state *mas)
5509 {
5510 mas->status = ma_pause;
5511 mas->node = NULL;
5512 }
5513 EXPORT_SYMBOL_GPL(mas_pause);
5514
5515 /**
5516 * mas_find_setup() - Internal function to set up mas_find*().
5517 * @mas: The maple state
5518 * @max: The maximum index
5519 * @entry: Pointer to the entry
5520 *
5521 * Returns: True if entry is the answer, false otherwise.
5522 */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5523 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5524 {
5525 switch (mas->status) {
5526 case ma_active:
5527 if (mas->last < max)
5528 return false;
5529 return true;
5530 case ma_start:
5531 break;
5532 case ma_pause:
5533 if (unlikely(mas->last >= max))
5534 return true;
5535
5536 mas->index = ++mas->last;
5537 mas->status = ma_start;
5538 break;
5539 case ma_none:
5540 if (unlikely(mas->last >= max))
5541 return true;
5542
5543 mas->index = mas->last;
5544 mas->status = ma_start;
5545 break;
5546 case ma_underflow:
5547 /* mas is pointing at entry before unable to go lower */
5548 if (unlikely(mas->index >= max)) {
5549 mas->status = ma_overflow;
5550 return true;
5551 }
5552
5553 mas_may_activate(mas);
5554 *entry = mas_walk(mas);
5555 if (*entry)
5556 return true;
5557 break;
5558 case ma_overflow:
5559 if (unlikely(mas->last >= max))
5560 return true;
5561
5562 mas_may_activate(mas);
5563 *entry = mas_walk(mas);
5564 if (*entry)
5565 return true;
5566 break;
5567 case ma_root:
5568 break;
5569 case ma_error:
5570 return true;
5571 }
5572
5573 if (mas_is_start(mas)) {
5574 /* First run or continue */
5575 if (mas->index > max)
5576 return true;
5577
5578 *entry = mas_walk(mas);
5579 if (*entry)
5580 return true;
5581
5582 }
5583
5584 if (unlikely(mas_is_ptr(mas)))
5585 goto ptr_out_of_range;
5586
5587 if (unlikely(mas_is_none(mas)))
5588 return true;
5589
5590 if (mas->index == max)
5591 return true;
5592
5593 return false;
5594
5595 ptr_out_of_range:
5596 mas->status = ma_none;
5597 mas->index = 1;
5598 mas->last = ULONG_MAX;
5599 return true;
5600 }
5601
5602 /**
5603 * mas_find() - On the first call, find the entry at or after mas->index up to
5604 * %max. Otherwise, find the entry after mas->index.
5605 * @mas: The maple state
5606 * @max: The maximum value to check.
5607 *
5608 * Must hold rcu_read_lock or the write lock.
5609 * If an entry exists, last and index are updated accordingly.
5610 * May set @mas->status to ma_overflow.
5611 *
5612 * Return: The entry or %NULL.
5613 */
mas_find(struct ma_state * mas,unsigned long max)5614 void *mas_find(struct ma_state *mas, unsigned long max)
5615 {
5616 void *entry = NULL;
5617
5618 if (mas_find_setup(mas, max, &entry))
5619 return entry;
5620
5621 /* Retries on dead nodes handled by mas_next_slot */
5622 entry = mas_next_slot(mas, max, false);
5623 /* Ignore overflow */
5624 mas->status = ma_active;
5625 return entry;
5626 }
5627 EXPORT_SYMBOL_GPL(mas_find);
5628
5629 /**
5630 * mas_find_range() - On the first call, find the entry at or after
5631 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
5632 * @mas: The maple state
5633 * @max: The maximum value to check.
5634 *
5635 * Must hold rcu_read_lock or the write lock.
5636 * If an entry exists, last and index are updated accordingly.
5637 * May set @mas->status to ma_overflow.
5638 *
5639 * Return: The entry or %NULL.
5640 */
mas_find_range(struct ma_state * mas,unsigned long max)5641 void *mas_find_range(struct ma_state *mas, unsigned long max)
5642 {
5643 void *entry = NULL;
5644
5645 if (mas_find_setup(mas, max, &entry))
5646 return entry;
5647
5648 /* Retries on dead nodes handled by mas_next_slot */
5649 return mas_next_slot(mas, max, true);
5650 }
5651 EXPORT_SYMBOL_GPL(mas_find_range);
5652
5653 /**
5654 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
5655 * @mas: The maple state
5656 * @min: The minimum index
5657 * @entry: Pointer to the entry
5658 *
5659 * Returns: True if entry is the answer, false otherwise.
5660 */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)5661 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
5662 void **entry)
5663 {
5664
5665 switch (mas->status) {
5666 case ma_active:
5667 goto active;
5668 case ma_start:
5669 break;
5670 case ma_pause:
5671 if (unlikely(mas->index <= min)) {
5672 mas->status = ma_underflow;
5673 return true;
5674 }
5675 mas->last = --mas->index;
5676 mas->status = ma_start;
5677 break;
5678 case ma_none:
5679 if (mas->index <= min)
5680 goto none;
5681
5682 mas->last = mas->index;
5683 mas->status = ma_start;
5684 break;
5685 case ma_overflow: /* user expects the mas to be one after where it is */
5686 if (unlikely(mas->index <= min)) {
5687 mas->status = ma_underflow;
5688 return true;
5689 }
5690
5691 mas->status = ma_active;
5692 break;
5693 case ma_underflow: /* user expects the mas to be one before where it is */
5694 if (unlikely(mas->index <= min))
5695 return true;
5696
5697 mas->status = ma_active;
5698 break;
5699 case ma_root:
5700 break;
5701 case ma_error:
5702 return true;
5703 }
5704
5705 if (mas_is_start(mas)) {
5706 /* First run or continue */
5707 if (mas->index < min)
5708 return true;
5709
5710 *entry = mas_walk(mas);
5711 if (*entry)
5712 return true;
5713 }
5714
5715 if (unlikely(mas_is_ptr(mas)))
5716 goto none;
5717
5718 if (unlikely(mas_is_none(mas))) {
5719 /*
5720 * Walked to the location, and there was nothing so the previous
5721 * location is 0.
5722 */
5723 mas->last = mas->index = 0;
5724 mas->status = ma_root;
5725 *entry = mas_root(mas);
5726 return true;
5727 }
5728
5729 active:
5730 if (mas->index < min)
5731 return true;
5732
5733 return false;
5734
5735 none:
5736 mas->status = ma_none;
5737 return true;
5738 }
5739
5740 /**
5741 * mas_find_rev: On the first call, find the first non-null entry at or below
5742 * mas->index down to %min. Otherwise find the first non-null entry below
5743 * mas->index down to %min.
5744 * @mas: The maple state
5745 * @min: The minimum value to check.
5746 *
5747 * Must hold rcu_read_lock or the write lock.
5748 * If an entry exists, last and index are updated accordingly.
5749 * May set @mas->status to ma_underflow.
5750 *
5751 * Return: The entry or %NULL.
5752 */
mas_find_rev(struct ma_state * mas,unsigned long min)5753 void *mas_find_rev(struct ma_state *mas, unsigned long min)
5754 {
5755 void *entry = NULL;
5756
5757 if (mas_find_rev_setup(mas, min, &entry))
5758 return entry;
5759
5760 /* Retries on dead nodes handled by mas_prev_slot */
5761 return mas_prev_slot(mas, min, false);
5762
5763 }
5764 EXPORT_SYMBOL_GPL(mas_find_rev);
5765
5766 /**
5767 * mas_find_range_rev: On the first call, find the first non-null entry at or
5768 * below mas->index down to %min. Otherwise advance to the previous slot after
5769 * mas->index down to %min.
5770 * @mas: The maple state
5771 * @min: The minimum value to check.
5772 *
5773 * Must hold rcu_read_lock or the write lock.
5774 * If an entry exists, last and index are updated accordingly.
5775 * May set @mas->status to ma_underflow.
5776 *
5777 * Return: The entry or %NULL.
5778 */
mas_find_range_rev(struct ma_state * mas,unsigned long min)5779 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
5780 {
5781 void *entry = NULL;
5782
5783 if (mas_find_rev_setup(mas, min, &entry))
5784 return entry;
5785
5786 /* Retries on dead nodes handled by mas_prev_slot */
5787 return mas_prev_slot(mas, min, true);
5788 }
5789 EXPORT_SYMBOL_GPL(mas_find_range_rev);
5790
5791 /**
5792 * mas_erase() - Find the range in which index resides and erase the entire
5793 * range.
5794 * @mas: The maple state
5795 *
5796 * Must hold the write lock.
5797 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
5798 * erases that range.
5799 *
5800 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
5801 */
mas_erase(struct ma_state * mas)5802 void *mas_erase(struct ma_state *mas)
5803 {
5804 void *entry;
5805 unsigned long index = mas->index;
5806 MA_WR_STATE(wr_mas, mas, NULL);
5807
5808 if (!mas_is_active(mas) || !mas_is_start(mas))
5809 mas->status = ma_start;
5810
5811 write_retry:
5812 entry = mas_state_walk(mas);
5813 if (!entry)
5814 return NULL;
5815
5816 /* Must reset to ensure spanning writes of last slot are detected */
5817 mas_reset(mas);
5818 mas_wr_preallocate(&wr_mas, NULL);
5819 if (mas_nomem(mas, GFP_KERNEL)) {
5820 /* in case the range of entry changed when unlocked */
5821 mas->index = mas->last = index;
5822 goto write_retry;
5823 }
5824
5825 if (mas_is_err(mas))
5826 goto out;
5827
5828 mas_wr_store_entry(&wr_mas);
5829 out:
5830 mas_destroy(mas);
5831 return entry;
5832 }
5833 EXPORT_SYMBOL_GPL(mas_erase);
5834
5835 /**
5836 * mas_nomem() - Check if there was an error allocating and do the allocation
5837 * if necessary If there are allocations, then free them.
5838 * @mas: The maple state
5839 * @gfp: The GFP_FLAGS to use for allocations
5840 * Return: true on allocation, false otherwise.
5841 */
mas_nomem(struct ma_state * mas,gfp_t gfp)5842 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
5843 __must_hold(mas->tree->ma_lock)
5844 {
5845 if (likely(mas->node != MA_ERROR(-ENOMEM)))
5846 return false;
5847
5848 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
5849 mtree_unlock(mas->tree);
5850 mas_alloc_nodes(mas, gfp);
5851 mtree_lock(mas->tree);
5852 } else {
5853 mas_alloc_nodes(mas, gfp);
5854 }
5855
5856 if (!mas->sheaf && !mas->alloc)
5857 return false;
5858
5859 mas->status = ma_start;
5860 return true;
5861 }
5862
maple_tree_init(void)5863 void __init maple_tree_init(void)
5864 {
5865 struct kmem_cache_args args = {
5866 .align = sizeof(struct maple_node),
5867 .sheaf_capacity = 32,
5868 };
5869
5870 maple_node_cache = kmem_cache_create("maple_node",
5871 sizeof(struct maple_node), &args,
5872 SLAB_PANIC);
5873 }
5874
5875 /**
5876 * mtree_load() - Load a value stored in a maple tree
5877 * @mt: The maple tree
5878 * @index: The index to load
5879 *
5880 * Return: the entry or %NULL
5881 */
mtree_load(struct maple_tree * mt,unsigned long index)5882 void *mtree_load(struct maple_tree *mt, unsigned long index)
5883 {
5884 MA_STATE(mas, mt, index, index);
5885 void *entry;
5886
5887 trace_ma_read(TP_FCT, &mas);
5888 rcu_read_lock();
5889 retry:
5890 entry = mas_start(&mas);
5891 if (unlikely(mas_is_none(&mas)))
5892 goto unlock;
5893
5894 if (unlikely(mas_is_ptr(&mas))) {
5895 if (index)
5896 entry = NULL;
5897
5898 goto unlock;
5899 }
5900
5901 entry = mtree_lookup_walk(&mas);
5902 if (!entry && unlikely(mas_is_start(&mas)))
5903 goto retry;
5904 unlock:
5905 rcu_read_unlock();
5906 if (xa_is_zero(entry))
5907 return NULL;
5908
5909 return entry;
5910 }
5911 EXPORT_SYMBOL(mtree_load);
5912
5913 /**
5914 * mtree_store_range() - Store an entry at a given range.
5915 * @mt: The maple tree
5916 * @index: The start of the range
5917 * @last: The end of the range
5918 * @entry: The entry to store
5919 * @gfp: The GFP_FLAGS to use for allocations
5920 *
5921 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5922 * be allocated.
5923 */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)5924 int mtree_store_range(struct maple_tree *mt, unsigned long index,
5925 unsigned long last, void *entry, gfp_t gfp)
5926 {
5927 MA_STATE(mas, mt, index, last);
5928 int ret = 0;
5929
5930 trace_ma_write(TP_FCT, &mas, 0, entry);
5931 if (WARN_ON_ONCE(xa_is_advanced(entry)))
5932 return -EINVAL;
5933
5934 if (index > last)
5935 return -EINVAL;
5936
5937 mtree_lock(mt);
5938 ret = mas_store_gfp(&mas, entry, gfp);
5939 mtree_unlock(mt);
5940
5941 return ret;
5942 }
5943 EXPORT_SYMBOL(mtree_store_range);
5944
5945 /**
5946 * mtree_store() - Store an entry at a given index.
5947 * @mt: The maple tree
5948 * @index: The index to store the value
5949 * @entry: The entry to store
5950 * @gfp: The GFP_FLAGS to use for allocations
5951 *
5952 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5953 * be allocated.
5954 */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)5955 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
5956 gfp_t gfp)
5957 {
5958 return mtree_store_range(mt, index, index, entry, gfp);
5959 }
5960 EXPORT_SYMBOL(mtree_store);
5961
5962 /**
5963 * mtree_insert_range() - Insert an entry at a given range if there is no value.
5964 * @mt: The maple tree
5965 * @first: The start of the range
5966 * @last: The end of the range
5967 * @entry: The entry to store
5968 * @gfp: The GFP_FLAGS to use for allocations.
5969 *
5970 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
5971 * request, -ENOMEM if memory could not be allocated.
5972 */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)5973 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
5974 unsigned long last, void *entry, gfp_t gfp)
5975 {
5976 MA_STATE(ms, mt, first, last);
5977 int ret = 0;
5978
5979 if (WARN_ON_ONCE(xa_is_advanced(entry)))
5980 return -EINVAL;
5981
5982 if (first > last)
5983 return -EINVAL;
5984
5985 mtree_lock(mt);
5986 retry:
5987 mas_insert(&ms, entry);
5988 if (mas_nomem(&ms, gfp))
5989 goto retry;
5990
5991 mtree_unlock(mt);
5992 if (mas_is_err(&ms))
5993 ret = xa_err(ms.node);
5994
5995 mas_destroy(&ms);
5996 return ret;
5997 }
5998 EXPORT_SYMBOL(mtree_insert_range);
5999
6000 /**
6001 * mtree_insert() - Insert an entry at a given index if there is no value.
6002 * @mt: The maple tree
6003 * @index : The index to store the value
6004 * @entry: The entry to store
6005 * @gfp: The GFP_FLAGS to use for allocations.
6006 *
6007 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6008 * request, -ENOMEM if memory could not be allocated.
6009 */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6010 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6011 gfp_t gfp)
6012 {
6013 return mtree_insert_range(mt, index, index, entry, gfp);
6014 }
6015 EXPORT_SYMBOL(mtree_insert);
6016
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6017 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6018 void *entry, unsigned long size, unsigned long min,
6019 unsigned long max, gfp_t gfp)
6020 {
6021 int ret = 0;
6022
6023 MA_STATE(mas, mt, 0, 0);
6024 if (!mt_is_alloc(mt))
6025 return -EINVAL;
6026
6027 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6028 return -EINVAL;
6029
6030 mtree_lock(mt);
6031 retry:
6032 ret = mas_empty_area(&mas, min, max, size);
6033 if (ret)
6034 goto unlock;
6035
6036 mas_insert(&mas, entry);
6037 /*
6038 * mas_nomem() may release the lock, causing the allocated area
6039 * to be unavailable, so try to allocate a free area again.
6040 */
6041 if (mas_nomem(&mas, gfp))
6042 goto retry;
6043
6044 if (mas_is_err(&mas))
6045 ret = xa_err(mas.node);
6046 else
6047 *startp = mas.index;
6048
6049 unlock:
6050 mtree_unlock(mt);
6051 mas_destroy(&mas);
6052 return ret;
6053 }
6054 EXPORT_SYMBOL(mtree_alloc_range);
6055
6056 /**
6057 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6058 * @mt: The maple tree.
6059 * @startp: Pointer to ID.
6060 * @range_lo: Lower bound of range to search.
6061 * @range_hi: Upper bound of range to search.
6062 * @entry: The entry to store.
6063 * @next: Pointer to next ID to allocate.
6064 * @gfp: The GFP_FLAGS to use for allocations.
6065 *
6066 * Finds an empty entry in @mt after @next, stores the new index into
6067 * the @id pointer, stores the entry at that index, then updates @next.
6068 *
6069 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6070 *
6071 * Context: Any context. Takes and releases the mt.lock. May sleep if
6072 * the @gfp flags permit.
6073 *
6074 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6075 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6076 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6077 * free entries.
6078 */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6079 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6080 void *entry, unsigned long range_lo, unsigned long range_hi,
6081 unsigned long *next, gfp_t gfp)
6082 {
6083 int ret;
6084
6085 MA_STATE(mas, mt, 0, 0);
6086
6087 if (!mt_is_alloc(mt))
6088 return -EINVAL;
6089 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6090 return -EINVAL;
6091 mtree_lock(mt);
6092 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6093 next, gfp);
6094 mtree_unlock(mt);
6095 return ret;
6096 }
6097 EXPORT_SYMBOL(mtree_alloc_cyclic);
6098
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6099 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6100 void *entry, unsigned long size, unsigned long min,
6101 unsigned long max, gfp_t gfp)
6102 {
6103 int ret = 0;
6104
6105 MA_STATE(mas, mt, 0, 0);
6106 if (!mt_is_alloc(mt))
6107 return -EINVAL;
6108
6109 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6110 return -EINVAL;
6111
6112 mtree_lock(mt);
6113 retry:
6114 ret = mas_empty_area_rev(&mas, min, max, size);
6115 if (ret)
6116 goto unlock;
6117
6118 mas_insert(&mas, entry);
6119 /*
6120 * mas_nomem() may release the lock, causing the allocated area
6121 * to be unavailable, so try to allocate a free area again.
6122 */
6123 if (mas_nomem(&mas, gfp))
6124 goto retry;
6125
6126 if (mas_is_err(&mas))
6127 ret = xa_err(mas.node);
6128 else
6129 *startp = mas.index;
6130
6131 unlock:
6132 mtree_unlock(mt);
6133 mas_destroy(&mas);
6134 return ret;
6135 }
6136 EXPORT_SYMBOL(mtree_alloc_rrange);
6137
6138 /**
6139 * mtree_erase() - Find an index and erase the entire range.
6140 * @mt: The maple tree
6141 * @index: The index to erase
6142 *
6143 * Erasing is the same as a walk to an entry then a store of a NULL to that
6144 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6145 *
6146 * Return: The entry stored at the @index or %NULL
6147 */
mtree_erase(struct maple_tree * mt,unsigned long index)6148 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6149 {
6150 void *entry = NULL;
6151
6152 MA_STATE(mas, mt, index, index);
6153 trace_ma_op(TP_FCT, &mas);
6154
6155 mtree_lock(mt);
6156 entry = mas_erase(&mas);
6157 mtree_unlock(mt);
6158
6159 return entry;
6160 }
6161 EXPORT_SYMBOL(mtree_erase);
6162
6163 /*
6164 * mas_dup_free() - Free an incomplete duplication of a tree.
6165 * @mas: The maple state of a incomplete tree.
6166 *
6167 * The parameter @mas->node passed in indicates that the allocation failed on
6168 * this node. This function frees all nodes starting from @mas->node in the
6169 * reverse order of mas_dup_build(). There is no need to hold the source tree
6170 * lock at this time.
6171 */
mas_dup_free(struct ma_state * mas)6172 static void mas_dup_free(struct ma_state *mas)
6173 {
6174 struct maple_node *node;
6175 enum maple_type type;
6176 void __rcu **slots;
6177 unsigned char count, i;
6178
6179 /* Maybe the first node allocation failed. */
6180 if (mas_is_none(mas))
6181 return;
6182
6183 while (!mte_is_root(mas->node)) {
6184 mas_ascend(mas);
6185 if (mas->offset) {
6186 mas->offset--;
6187 do {
6188 mas_descend(mas);
6189 mas->offset = mas_data_end(mas);
6190 } while (!mte_is_leaf(mas->node));
6191
6192 mas_ascend(mas);
6193 }
6194
6195 node = mte_to_node(mas->node);
6196 type = mte_node_type(mas->node);
6197 slots = ma_slots(node, type);
6198 count = mas_data_end(mas) + 1;
6199 for (i = 0; i < count; i++)
6200 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6201 mt_free_bulk(count, slots);
6202 }
6203
6204 node = mte_to_node(mas->node);
6205 kfree(node);
6206 }
6207
6208 /*
6209 * mas_copy_node() - Copy a maple node and replace the parent.
6210 * @mas: The maple state of source tree.
6211 * @new_mas: The maple state of new tree.
6212 * @parent: The parent of the new node.
6213 *
6214 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6215 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6216 */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6217 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6218 struct maple_pnode *parent)
6219 {
6220 struct maple_node *node = mte_to_node(mas->node);
6221 struct maple_node *new_node = mte_to_node(new_mas->node);
6222 unsigned long val;
6223
6224 /* Copy the node completely. */
6225 memcpy(new_node, node, sizeof(struct maple_node));
6226 /* Update the parent node pointer. */
6227 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6228 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6229 }
6230
6231 /*
6232 * mas_dup_alloc() - Allocate child nodes for a maple node.
6233 * @mas: The maple state of source tree.
6234 * @new_mas: The maple state of new tree.
6235 * @gfp: The GFP_FLAGS to use for allocations.
6236 *
6237 * This function allocates child nodes for @new_mas->node during the duplication
6238 * process. If memory allocation fails, @mas is set to -ENOMEM.
6239 */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6240 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6241 gfp_t gfp)
6242 {
6243 struct maple_node *node = mte_to_node(mas->node);
6244 struct maple_node *new_node = mte_to_node(new_mas->node);
6245 enum maple_type type;
6246 unsigned char count, i;
6247 void __rcu **slots;
6248 void __rcu **new_slots;
6249 unsigned long val;
6250
6251 /* Allocate memory for child nodes. */
6252 type = mte_node_type(mas->node);
6253 new_slots = ma_slots(new_node, type);
6254 count = mas->node_request = mas_data_end(mas) + 1;
6255 mas_alloc_nodes(mas, gfp);
6256 if (unlikely(mas_is_err(mas)))
6257 return;
6258
6259 slots = ma_slots(node, type);
6260 for (i = 0; i < count; i++) {
6261 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6262 val &= MAPLE_NODE_MASK;
6263 new_slots[i] = ma_mnode_ptr((unsigned long)mas_pop_node(mas) |
6264 val);
6265 }
6266 }
6267
6268 /*
6269 * mas_dup_build() - Build a new maple tree from a source tree
6270 * @mas: The maple state of source tree, need to be in MAS_START state.
6271 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6272 * @gfp: The GFP_FLAGS to use for allocations.
6273 *
6274 * This function builds a new tree in DFS preorder. If the memory allocation
6275 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6276 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6277 *
6278 * Note that the attributes of the two trees need to be exactly the same, and the
6279 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6280 */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6281 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6282 gfp_t gfp)
6283 {
6284 struct maple_node *node;
6285 struct maple_pnode *parent = NULL;
6286 struct maple_enode *root;
6287 enum maple_type type;
6288
6289 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6290 unlikely(!mtree_empty(new_mas->tree))) {
6291 mas_set_err(mas, -EINVAL);
6292 return;
6293 }
6294
6295 root = mas_start(mas);
6296 if (mas_is_ptr(mas) || mas_is_none(mas))
6297 goto set_new_tree;
6298
6299 node = mt_alloc_one(gfp);
6300 if (!node) {
6301 new_mas->status = ma_none;
6302 mas_set_err(mas, -ENOMEM);
6303 return;
6304 }
6305
6306 type = mte_node_type(mas->node);
6307 root = mt_mk_node(node, type);
6308 new_mas->node = root;
6309 new_mas->min = 0;
6310 new_mas->max = ULONG_MAX;
6311 root = mte_mk_root(root);
6312 while (1) {
6313 mas_copy_node(mas, new_mas, parent);
6314 if (!mte_is_leaf(mas->node)) {
6315 /* Only allocate child nodes for non-leaf nodes. */
6316 mas_dup_alloc(mas, new_mas, gfp);
6317 if (unlikely(mas_is_err(mas)))
6318 goto empty_mas;
6319 } else {
6320 /*
6321 * This is the last leaf node and duplication is
6322 * completed.
6323 */
6324 if (mas->max == ULONG_MAX)
6325 goto done;
6326
6327 /* This is not the last leaf node and needs to go up. */
6328 do {
6329 mas_ascend(mas);
6330 mas_ascend(new_mas);
6331 } while (mas->offset == mas_data_end(mas));
6332
6333 /* Move to the next subtree. */
6334 mas->offset++;
6335 new_mas->offset++;
6336 }
6337
6338 mas_descend(mas);
6339 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6340 mas_descend(new_mas);
6341 mas->offset = 0;
6342 new_mas->offset = 0;
6343 }
6344 done:
6345 /* Specially handle the parent of the root node. */
6346 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6347 set_new_tree:
6348 /* Make them the same height */
6349 new_mas->tree->ma_flags = mas->tree->ma_flags;
6350 rcu_assign_pointer(new_mas->tree->ma_root, root);
6351 empty_mas:
6352 mas_empty_nodes(mas);
6353 }
6354
6355 /**
6356 * __mt_dup(): Duplicate an entire maple tree
6357 * @mt: The source maple tree
6358 * @new: The new maple tree
6359 * @gfp: The GFP_FLAGS to use for allocations
6360 *
6361 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6362 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6363 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6364 * source node except for all the addresses stored in it. It will be faster than
6365 * traversing all elements in the source tree and inserting them one by one into
6366 * the new tree.
6367 * The user needs to ensure that the attributes of the source tree and the new
6368 * tree are the same, and the new tree needs to be an empty tree, otherwise
6369 * -EINVAL will be returned.
6370 * Note that the user needs to manually lock the source tree and the new tree.
6371 *
6372 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6373 * the attributes of the two trees are different or the new tree is not an empty
6374 * tree.
6375 */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6376 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6377 {
6378 int ret = 0;
6379 MA_STATE(mas, mt, 0, 0);
6380 MA_STATE(new_mas, new, 0, 0);
6381
6382 mas_dup_build(&mas, &new_mas, gfp);
6383 if (unlikely(mas_is_err(&mas))) {
6384 ret = xa_err(mas.node);
6385 if (ret == -ENOMEM)
6386 mas_dup_free(&new_mas);
6387 }
6388
6389 return ret;
6390 }
6391 EXPORT_SYMBOL(__mt_dup);
6392
6393 /**
6394 * mtree_dup(): Duplicate an entire maple tree
6395 * @mt: The source maple tree
6396 * @new: The new maple tree
6397 * @gfp: The GFP_FLAGS to use for allocations
6398 *
6399 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6400 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6401 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6402 * source node except for all the addresses stored in it. It will be faster than
6403 * traversing all elements in the source tree and inserting them one by one into
6404 * the new tree.
6405 * The user needs to ensure that the attributes of the source tree and the new
6406 * tree are the same, and the new tree needs to be an empty tree, otherwise
6407 * -EINVAL will be returned.
6408 *
6409 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6410 * the attributes of the two trees are different or the new tree is not an empty
6411 * tree.
6412 */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6413 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6414 {
6415 int ret = 0;
6416 MA_STATE(mas, mt, 0, 0);
6417 MA_STATE(new_mas, new, 0, 0);
6418
6419 mas_lock(&new_mas);
6420 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6421 mas_dup_build(&mas, &new_mas, gfp);
6422 mas_unlock(&mas);
6423 if (unlikely(mas_is_err(&mas))) {
6424 ret = xa_err(mas.node);
6425 if (ret == -ENOMEM)
6426 mas_dup_free(&new_mas);
6427 }
6428
6429 mas_unlock(&new_mas);
6430 return ret;
6431 }
6432 EXPORT_SYMBOL(mtree_dup);
6433
6434 /**
6435 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6436 * @mt: The maple tree
6437 *
6438 * Note: Does not handle locking.
6439 */
__mt_destroy(struct maple_tree * mt)6440 void __mt_destroy(struct maple_tree *mt)
6441 {
6442 void *root = mt_root_locked(mt);
6443
6444 rcu_assign_pointer(mt->ma_root, NULL);
6445 if (xa_is_node(root))
6446 mte_destroy_walk(root, mt);
6447
6448 mt->ma_flags = mt_attr(mt);
6449 }
6450 EXPORT_SYMBOL_GPL(__mt_destroy);
6451
6452 /**
6453 * mtree_destroy() - Destroy a maple tree
6454 * @mt: The maple tree
6455 *
6456 * Frees all resources used by the tree. Handles locking.
6457 */
mtree_destroy(struct maple_tree * mt)6458 void mtree_destroy(struct maple_tree *mt)
6459 {
6460 mtree_lock(mt);
6461 __mt_destroy(mt);
6462 mtree_unlock(mt);
6463 }
6464 EXPORT_SYMBOL(mtree_destroy);
6465
6466 /**
6467 * mt_find() - Search from the start up until an entry is found.
6468 * @mt: The maple tree
6469 * @index: Pointer which contains the start location of the search
6470 * @max: The maximum value of the search range
6471 *
6472 * Takes RCU read lock internally to protect the search, which does not
6473 * protect the returned pointer after dropping RCU read lock.
6474 * See also: Documentation/core-api/maple_tree.rst
6475 *
6476 * In case that an entry is found @index is updated to point to the next
6477 * possible entry independent whether the found entry is occupying a
6478 * single index or a range if indices.
6479 *
6480 * Return: The entry at or after the @index or %NULL
6481 */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6482 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6483 {
6484 MA_STATE(mas, mt, *index, *index);
6485 void *entry;
6486 #ifdef CONFIG_DEBUG_MAPLE_TREE
6487 unsigned long copy = *index;
6488 #endif
6489
6490 trace_ma_read(TP_FCT, &mas);
6491
6492 if ((*index) > max)
6493 return NULL;
6494
6495 rcu_read_lock();
6496 retry:
6497 entry = mas_state_walk(&mas);
6498 if (mas_is_start(&mas))
6499 goto retry;
6500
6501 if (unlikely(xa_is_zero(entry)))
6502 entry = NULL;
6503
6504 if (entry)
6505 goto unlock;
6506
6507 while (mas_is_active(&mas) && (mas.last < max)) {
6508 entry = mas_next_slot(&mas, max, false);
6509 if (likely(entry && !xa_is_zero(entry)))
6510 break;
6511 }
6512
6513 if (unlikely(xa_is_zero(entry)))
6514 entry = NULL;
6515 unlock:
6516 rcu_read_unlock();
6517 if (likely(entry)) {
6518 *index = mas.last + 1;
6519 #ifdef CONFIG_DEBUG_MAPLE_TREE
6520 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6521 pr_err("index not increased! %lx <= %lx\n",
6522 *index, copy);
6523 #endif
6524 }
6525
6526 return entry;
6527 }
6528 EXPORT_SYMBOL(mt_find);
6529
6530 /**
6531 * mt_find_after() - Search from the start up until an entry is found.
6532 * @mt: The maple tree
6533 * @index: Pointer which contains the start location of the search
6534 * @max: The maximum value to check
6535 *
6536 * Same as mt_find() except that it checks @index for 0 before
6537 * searching. If @index == 0, the search is aborted. This covers a wrap
6538 * around of @index to 0 in an iterator loop.
6539 *
6540 * Return: The entry at or after the @index or %NULL
6541 */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6542 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6543 unsigned long max)
6544 {
6545 if (!(*index))
6546 return NULL;
6547
6548 return mt_find(mt, index, max);
6549 }
6550 EXPORT_SYMBOL(mt_find_after);
6551
6552 #ifdef CONFIG_DEBUG_MAPLE_TREE
6553 atomic_t maple_tree_tests_run;
6554 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6555 atomic_t maple_tree_tests_passed;
6556 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6557
6558 #ifndef __KERNEL__
6559 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6560 void mt_set_non_kernel(unsigned int val)
6561 {
6562 kmem_cache_set_non_kernel(maple_node_cache, val);
6563 }
6564
6565 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6566 void (*callback)(void *));
mt_set_callback(void (* callback)(void *))6567 void mt_set_callback(void (*callback)(void *))
6568 {
6569 kmem_cache_set_callback(maple_node_cache, callback);
6570 }
6571
6572 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)6573 void mt_set_private(void *private)
6574 {
6575 kmem_cache_set_private(maple_node_cache, private);
6576 }
6577
6578 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)6579 unsigned long mt_get_alloc_size(void)
6580 {
6581 return kmem_cache_get_alloc(maple_node_cache);
6582 }
6583
6584 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)6585 void mt_zero_nr_tallocated(void)
6586 {
6587 kmem_cache_zero_nr_tallocated(maple_node_cache);
6588 }
6589
6590 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)6591 unsigned int mt_nr_tallocated(void)
6592 {
6593 return kmem_cache_nr_tallocated(maple_node_cache);
6594 }
6595
6596 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)6597 unsigned int mt_nr_allocated(void)
6598 {
6599 return kmem_cache_nr_allocated(maple_node_cache);
6600 }
6601
mt_cache_shrink(void)6602 void mt_cache_shrink(void)
6603 {
6604 }
6605 #else
6606 /*
6607 * mt_cache_shrink() - For testing, don't use this.
6608 *
6609 * Certain testcases can trigger an OOM when combined with other memory
6610 * debugging configuration options. This function is used to reduce the
6611 * possibility of an out of memory even due to kmem_cache objects remaining
6612 * around for longer than usual.
6613 */
mt_cache_shrink(void)6614 void mt_cache_shrink(void)
6615 {
6616 kmem_cache_shrink(maple_node_cache);
6617
6618 }
6619 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6620
6621 #endif /* not defined __KERNEL__ */
6622 /*
6623 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6624 * @mas: The maple state
6625 * @offset: The offset into the slot array to fetch.
6626 *
6627 * Return: The entry stored at @offset.
6628 */
mas_get_slot(struct ma_state * mas,unsigned char offset)6629 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6630 unsigned char offset)
6631 {
6632 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6633 offset);
6634 }
6635
6636 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)6637 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6638 {
6639
6640 struct maple_enode *p, *mn = mas->node;
6641 unsigned long p_min, p_max;
6642
6643 mas_next_node(mas, mas_mn(mas), max);
6644 if (!mas_is_overflow(mas))
6645 return;
6646
6647 if (mte_is_root(mn))
6648 return;
6649
6650 mas->node = mn;
6651 mas_ascend(mas);
6652 do {
6653 p = mas->node;
6654 p_min = mas->min;
6655 p_max = mas->max;
6656 mas_prev_node(mas, 0);
6657 } while (!mas_is_underflow(mas));
6658
6659 mas->node = p;
6660 mas->max = p_max;
6661 mas->min = p_min;
6662 }
6663
6664 /* Tree validations */
6665 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6666 unsigned long min, unsigned long max, unsigned int depth,
6667 enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6668 static void mt_dump_range(unsigned long min, unsigned long max,
6669 unsigned int depth, enum mt_dump_format format)
6670 {
6671 static const char spaces[] = " ";
6672
6673 switch(format) {
6674 case mt_dump_hex:
6675 if (min == max)
6676 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6677 else
6678 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6679 break;
6680 case mt_dump_dec:
6681 if (min == max)
6682 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6683 else
6684 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6685 }
6686 }
6687
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6688 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6689 unsigned int depth, enum mt_dump_format format)
6690 {
6691 mt_dump_range(min, max, depth, format);
6692
6693 if (xa_is_value(entry))
6694 pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
6695 xa_to_value(entry), entry);
6696 else if (xa_is_zero(entry))
6697 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6698 else if (mt_is_reserved(entry))
6699 pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
6700 else
6701 pr_cont(PTR_FMT "\n", entry);
6702 }
6703
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6704 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6705 unsigned long min, unsigned long max, unsigned int depth,
6706 enum mt_dump_format format)
6707 {
6708 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6709 bool leaf = mte_is_leaf(entry);
6710 unsigned long first = min;
6711 int i;
6712
6713 pr_cont(" contents: ");
6714 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6715 switch(format) {
6716 case mt_dump_hex:
6717 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
6718 break;
6719 case mt_dump_dec:
6720 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
6721 }
6722 }
6723 pr_cont(PTR_FMT "\n", node->slot[i]);
6724 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6725 unsigned long last = max;
6726
6727 if (i < (MAPLE_RANGE64_SLOTS - 1))
6728 last = node->pivot[i];
6729 else if (!node->slot[i] && max != mt_node_max(entry))
6730 break;
6731 if (last == 0 && i > 0)
6732 break;
6733 if (leaf)
6734 mt_dump_entry(mt_slot(mt, node->slot, i),
6735 first, last, depth + 1, format);
6736 else if (node->slot[i])
6737 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6738 first, last, depth + 1, format);
6739
6740 if (last == max)
6741 break;
6742 if (last > max) {
6743 switch(format) {
6744 case mt_dump_hex:
6745 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
6746 node, last, max, i);
6747 break;
6748 case mt_dump_dec:
6749 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
6750 node, last, max, i);
6751 }
6752 }
6753 first = last + 1;
6754 }
6755 }
6756
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6757 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6758 unsigned long min, unsigned long max, unsigned int depth,
6759 enum mt_dump_format format)
6760 {
6761 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6762 unsigned long first = min;
6763 int i;
6764
6765 pr_cont(" contents: ");
6766 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6767 switch (format) {
6768 case mt_dump_hex:
6769 pr_cont("%lx ", node->gap[i]);
6770 break;
6771 case mt_dump_dec:
6772 pr_cont("%lu ", node->gap[i]);
6773 }
6774 }
6775 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6776 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
6777 switch (format) {
6778 case mt_dump_hex:
6779 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
6780 break;
6781 case mt_dump_dec:
6782 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
6783 }
6784 }
6785 pr_cont(PTR_FMT "\n", node->slot[i]);
6786 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6787 unsigned long last = max;
6788
6789 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6790 last = node->pivot[i];
6791 else if (!node->slot[i])
6792 break;
6793 if (last == 0 && i > 0)
6794 break;
6795 if (node->slot[i])
6796 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6797 first, last, depth + 1, format);
6798
6799 if (last == max)
6800 break;
6801 if (last > max) {
6802 switch(format) {
6803 case mt_dump_hex:
6804 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
6805 node, last, max, i);
6806 break;
6807 case mt_dump_dec:
6808 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
6809 node, last, max, i);
6810 }
6811 }
6812 first = last + 1;
6813 }
6814 }
6815
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)6816 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6817 unsigned long min, unsigned long max, unsigned int depth,
6818 enum mt_dump_format format)
6819 {
6820 struct maple_node *node = mte_to_node(entry);
6821 unsigned int type = mte_node_type(entry);
6822 unsigned int i;
6823
6824 mt_dump_range(min, max, depth, format);
6825
6826 pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
6827 depth, type, node ? node->parent : NULL);
6828 switch (type) {
6829 case maple_dense:
6830 pr_cont("\n");
6831 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6832 if (min + i > max)
6833 pr_cont("OUT OF RANGE: ");
6834 mt_dump_entry(mt_slot(mt, node->slot, i),
6835 min + i, min + i, depth, format);
6836 }
6837 break;
6838 case maple_leaf_64:
6839 case maple_range_64:
6840 mt_dump_range64(mt, entry, min, max, depth, format);
6841 break;
6842 case maple_arange_64:
6843 mt_dump_arange64(mt, entry, min, max, depth, format);
6844 break;
6845
6846 default:
6847 pr_cont(" UNKNOWN TYPE\n");
6848 }
6849 }
6850
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)6851 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6852 {
6853 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6854
6855 pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
6856 mt, mt->ma_flags, mt_height(mt), entry);
6857 if (xa_is_node(entry))
6858 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
6859 else if (entry)
6860 mt_dump_entry(entry, 0, 0, 0, format);
6861 else
6862 pr_info("(empty)\n");
6863 }
6864 EXPORT_SYMBOL_GPL(mt_dump);
6865
6866 /*
6867 * Calculate the maximum gap in a node and check if that's what is reported in
6868 * the parent (unless root).
6869 */
mas_validate_gaps(struct ma_state * mas)6870 static void mas_validate_gaps(struct ma_state *mas)
6871 {
6872 struct maple_enode *mte = mas->node;
6873 struct maple_node *p_mn, *node = mte_to_node(mte);
6874 enum maple_type mt = mte_node_type(mas->node);
6875 unsigned long gap = 0, max_gap = 0;
6876 unsigned long p_end, p_start = mas->min;
6877 unsigned char p_slot, offset;
6878 unsigned long *gaps = NULL;
6879 unsigned long *pivots = ma_pivots(node, mt);
6880 unsigned int i;
6881
6882 if (ma_is_dense(mt)) {
6883 for (i = 0; i < mt_slot_count(mte); i++) {
6884 if (mas_get_slot(mas, i)) {
6885 if (gap > max_gap)
6886 max_gap = gap;
6887 gap = 0;
6888 continue;
6889 }
6890 gap++;
6891 }
6892 goto counted;
6893 }
6894
6895 gaps = ma_gaps(node, mt);
6896 for (i = 0; i < mt_slot_count(mte); i++) {
6897 p_end = mas_safe_pivot(mas, pivots, i, mt);
6898
6899 if (!gaps) {
6900 if (!mas_get_slot(mas, i))
6901 gap = p_end - p_start + 1;
6902 } else {
6903 void *entry = mas_get_slot(mas, i);
6904
6905 gap = gaps[i];
6906 MT_BUG_ON(mas->tree, !entry);
6907
6908 if (gap > p_end - p_start + 1) {
6909 pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6910 mas_mn(mas), i, gap, p_end, p_start,
6911 p_end - p_start + 1);
6912 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
6913 }
6914 }
6915
6916 if (gap > max_gap)
6917 max_gap = gap;
6918
6919 p_start = p_end + 1;
6920 if (p_end >= mas->max)
6921 break;
6922 }
6923
6924 counted:
6925 if (mt == maple_arange_64) {
6926 MT_BUG_ON(mas->tree, !gaps);
6927 offset = ma_meta_gap(node);
6928 if (offset > i) {
6929 pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
6930 MT_BUG_ON(mas->tree, 1);
6931 }
6932
6933 if (gaps[offset] != max_gap) {
6934 pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
6935 node, offset, max_gap);
6936 MT_BUG_ON(mas->tree, 1);
6937 }
6938
6939 for (i++ ; i < mt_slot_count(mte); i++) {
6940 if (gaps[i] != 0) {
6941 pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
6942 node, i);
6943 MT_BUG_ON(mas->tree, 1);
6944 }
6945 }
6946 }
6947
6948 if (mte_is_root(mte))
6949 return;
6950
6951 p_slot = mte_parent_slot(mas->node);
6952 p_mn = mte_parent(mte);
6953 MT_BUG_ON(mas->tree, max_gap > mas->max);
6954 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
6955 pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
6956 mt_dump(mas->tree, mt_dump_hex);
6957 MT_BUG_ON(mas->tree, 1);
6958 }
6959 }
6960
mas_validate_parent_slot(struct ma_state * mas)6961 static void mas_validate_parent_slot(struct ma_state *mas)
6962 {
6963 struct maple_node *parent;
6964 struct maple_enode *node;
6965 enum maple_type p_type;
6966 unsigned char p_slot;
6967 void __rcu **slots;
6968 int i;
6969
6970 if (mte_is_root(mas->node))
6971 return;
6972
6973 p_slot = mte_parent_slot(mas->node);
6974 p_type = mas_parent_type(mas, mas->node);
6975 parent = mte_parent(mas->node);
6976 slots = ma_slots(parent, p_type);
6977 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6978
6979 /* Check prev/next parent slot for duplicate node entry */
6980
6981 for (i = 0; i < mt_slots[p_type]; i++) {
6982 node = mas_slot(mas, slots, i);
6983 if (i == p_slot) {
6984 if (node != mas->node)
6985 pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
6986 parent, i, mas_mn(mas));
6987 MT_BUG_ON(mas->tree, node != mas->node);
6988 } else if (node == mas->node) {
6989 pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
6990 mas_mn(mas), parent, i, p_slot);
6991 MT_BUG_ON(mas->tree, node == mas->node);
6992 }
6993 }
6994 }
6995
mas_validate_child_slot(struct ma_state * mas)6996 static void mas_validate_child_slot(struct ma_state *mas)
6997 {
6998 enum maple_type type = mte_node_type(mas->node);
6999 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7000 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7001 struct maple_enode *child;
7002 unsigned char i;
7003
7004 if (mte_is_leaf(mas->node))
7005 return;
7006
7007 for (i = 0; i < mt_slots[type]; i++) {
7008 child = mas_slot(mas, slots, i);
7009
7010 if (!child) {
7011 pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7012 mas_mn(mas), i);
7013 MT_BUG_ON(mas->tree, 1);
7014 }
7015
7016 if (mte_parent_slot(child) != i) {
7017 pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7018 mas_mn(mas), i, mte_to_node(child),
7019 mte_parent_slot(child));
7020 MT_BUG_ON(mas->tree, 1);
7021 }
7022
7023 if (mte_parent(child) != mte_to_node(mas->node)) {
7024 pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7025 mte_to_node(child), mte_parent(child),
7026 mte_to_node(mas->node));
7027 MT_BUG_ON(mas->tree, 1);
7028 }
7029
7030 if (i < mt_pivots[type] && pivots[i] == mas->max)
7031 break;
7032 }
7033 }
7034
7035 /*
7036 * Validate all pivots are within mas->min and mas->max, check metadata ends
7037 * where the maximum ends and ensure there is no slots or pivots set outside of
7038 * the end of the data.
7039 */
mas_validate_limits(struct ma_state * mas)7040 static void mas_validate_limits(struct ma_state *mas)
7041 {
7042 int i;
7043 unsigned long prev_piv = 0;
7044 enum maple_type type = mte_node_type(mas->node);
7045 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7046 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7047
7048 for (i = 0; i < mt_slots[type]; i++) {
7049 unsigned long piv;
7050
7051 piv = mas_safe_pivot(mas, pivots, i, type);
7052
7053 if (!piv && (i != 0)) {
7054 pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7055 mas_mn(mas), i);
7056 MAS_WARN_ON(mas, 1);
7057 }
7058
7059 if (prev_piv > piv) {
7060 pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7061 mas_mn(mas), i, piv, prev_piv);
7062 MAS_WARN_ON(mas, piv < prev_piv);
7063 }
7064
7065 if (piv < mas->min) {
7066 pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7067 piv, mas->min);
7068 MAS_WARN_ON(mas, piv < mas->min);
7069 }
7070 if (piv > mas->max) {
7071 pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7072 piv, mas->max);
7073 MAS_WARN_ON(mas, piv > mas->max);
7074 }
7075 prev_piv = piv;
7076 if (piv == mas->max)
7077 break;
7078 }
7079
7080 if (mas_data_end(mas) != i) {
7081 pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7082 mas_mn(mas), mas_data_end(mas), i);
7083 MT_BUG_ON(mas->tree, 1);
7084 }
7085
7086 for (i += 1; i < mt_slots[type]; i++) {
7087 void *entry = mas_slot(mas, slots, i);
7088
7089 if (entry && (i != mt_slots[type] - 1)) {
7090 pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7091 mas_mn(mas), i, entry);
7092 MT_BUG_ON(mas->tree, entry != NULL);
7093 }
7094
7095 if (i < mt_pivots[type]) {
7096 unsigned long piv = pivots[i];
7097
7098 if (!piv)
7099 continue;
7100
7101 pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7102 mas_mn(mas), i, piv);
7103 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7104 }
7105 }
7106 }
7107
mt_validate_nulls(struct maple_tree * mt)7108 static void mt_validate_nulls(struct maple_tree *mt)
7109 {
7110 void *entry, *last = (void *)1;
7111 unsigned char offset = 0;
7112 void __rcu **slots;
7113 MA_STATE(mas, mt, 0, 0);
7114
7115 mas_start(&mas);
7116 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7117 return;
7118
7119 while (!mte_is_leaf(mas.node))
7120 mas_descend(&mas);
7121
7122 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7123 do {
7124 entry = mas_slot(&mas, slots, offset);
7125 if (!last && !entry) {
7126 pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7127 mas_mn(&mas), offset);
7128 }
7129 MT_BUG_ON(mt, !last && !entry);
7130 last = entry;
7131 if (offset == mas_data_end(&mas)) {
7132 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7133 if (mas_is_overflow(&mas))
7134 return;
7135 offset = 0;
7136 slots = ma_slots(mte_to_node(mas.node),
7137 mte_node_type(mas.node));
7138 } else {
7139 offset++;
7140 }
7141
7142 } while (!mas_is_overflow(&mas));
7143 }
7144
7145 /*
7146 * validate a maple tree by checking:
7147 * 1. The limits (pivots are within mas->min to mas->max)
7148 * 2. The gap is correctly set in the parents
7149 */
mt_validate(struct maple_tree * mt)7150 void mt_validate(struct maple_tree *mt)
7151 __must_hold(mas->tree->ma_lock)
7152 {
7153 unsigned char end;
7154
7155 MA_STATE(mas, mt, 0, 0);
7156 mas_start(&mas);
7157 if (!mas_is_active(&mas))
7158 return;
7159
7160 while (!mte_is_leaf(mas.node))
7161 mas_descend(&mas);
7162
7163 while (!mas_is_overflow(&mas)) {
7164 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7165 end = mas_data_end(&mas);
7166 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7167 (!mte_is_root(mas.node)))) {
7168 pr_err("Invalid size %u of " PTR_FMT "\n",
7169 end, mas_mn(&mas));
7170 }
7171
7172 mas_validate_parent_slot(&mas);
7173 mas_validate_limits(&mas);
7174 mas_validate_child_slot(&mas);
7175 if (mt_is_alloc(mt))
7176 mas_validate_gaps(&mas);
7177 mas_dfs_postorder(&mas, ULONG_MAX);
7178 }
7179 mt_validate_nulls(mt);
7180 }
7181 EXPORT_SYMBOL_GPL(mt_validate);
7182
mas_dump(const struct ma_state * mas)7183 void mas_dump(const struct ma_state *mas)
7184 {
7185 pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7186 mas->tree, mas->node);
7187 switch (mas->status) {
7188 case ma_active:
7189 pr_err("(ma_active)");
7190 break;
7191 case ma_none:
7192 pr_err("(ma_none)");
7193 break;
7194 case ma_root:
7195 pr_err("(ma_root)");
7196 break;
7197 case ma_start:
7198 pr_err("(ma_start) ");
7199 break;
7200 case ma_pause:
7201 pr_err("(ma_pause) ");
7202 break;
7203 case ma_overflow:
7204 pr_err("(ma_overflow) ");
7205 break;
7206 case ma_underflow:
7207 pr_err("(ma_underflow) ");
7208 break;
7209 case ma_error:
7210 pr_err("(ma_error) ");
7211 break;
7212 }
7213
7214 pr_err("Store Type: ");
7215 switch (mas->store_type) {
7216 case wr_invalid:
7217 pr_err("invalid store type\n");
7218 break;
7219 case wr_new_root:
7220 pr_err("new_root\n");
7221 break;
7222 case wr_store_root:
7223 pr_err("store_root\n");
7224 break;
7225 case wr_exact_fit:
7226 pr_err("exact_fit\n");
7227 break;
7228 case wr_split_store:
7229 pr_err("split_store\n");
7230 break;
7231 case wr_slot_store:
7232 pr_err("slot_store\n");
7233 break;
7234 case wr_append:
7235 pr_err("append\n");
7236 break;
7237 case wr_node_store:
7238 pr_err("node_store\n");
7239 break;
7240 case wr_spanning_store:
7241 pr_err("spanning_store\n");
7242 break;
7243 case wr_rebalance:
7244 pr_err("rebalance\n");
7245 break;
7246 }
7247
7248 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7249 mas->index, mas->last);
7250 pr_err(" min=%lx max=%lx sheaf=" PTR_FMT ", request %lu depth=%u, flags=%x\n",
7251 mas->min, mas->max, mas->sheaf, mas->node_request, mas->depth,
7252 mas->mas_flags);
7253 if (mas->index > mas->last)
7254 pr_err("Check index & last\n");
7255 }
7256 EXPORT_SYMBOL_GPL(mas_dump);
7257
mas_wr_dump(const struct ma_wr_state * wr_mas)7258 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7259 {
7260 pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7261 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7262 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7263 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7264 wr_mas->end_piv);
7265 }
7266 EXPORT_SYMBOL_GPL(mas_wr_dump);
7267
7268 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7269