xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_redact.c (revision 8ac904ce090b1c2e355da8aa122ca2252183f4e1)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/txg.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/dmu_traverse.h>
30 #include <sys/dmu_redact.h>
31 #include <sys/bqueue.h>
32 #include <sys/objlist.h>
33 #include <sys/dmu_tx.h>
34 #ifdef _KERNEL
35 #include <sys/zfs_vfsops.h>
36 #include <sys/zap.h>
37 #include <sys/zfs_znode.h>
38 #endif
39 
40 /*
41  * This controls the number of entries in the buffer the redaction_list_update
42  * synctask uses to buffer writes to the redaction list.
43  */
44 static const int redact_sync_bufsize = 1024;
45 
46 /*
47  * Controls how often to update the redaction list when creating a redaction
48  * list.
49  */
50 static const uint64_t redaction_list_update_interval_ns =
51     1000 * 1000 * 1000ULL; /* 1s */
52 
53 /*
54  * This tunable controls the length of the queues that zfs redact worker threads
55  * use to communicate.  If the dmu_redact_snap thread is blocking on these
56  * queues, this variable may need to be increased.  If there is a significant
57  * slowdown at the start of a redact operation as these threads consume all the
58  * available IO resources, or the queues are consuming too much memory, this
59  * variable may need to be decreased.
60  */
61 static const int zfs_redact_queue_length = 1024 * 1024;
62 
63 /*
64  * These tunables control the fill fraction of the queues by zfs redact. The
65  * fill fraction controls the frequency with which threads have to be
66  * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
67  * should be tuned down.  If the queues empty before the signalled thread can
68  * catch up, then these should be tuned up.
69  */
70 static const uint64_t zfs_redact_queue_ff = 20;
71 
72 struct redact_record {
73 	bqueue_node_t		ln;
74 	boolean_t		eos_marker; /* Marks the end of the stream */
75 	uint64_t		start_object;
76 	uint64_t		start_blkid;
77 	uint64_t		end_object;
78 	uint64_t		end_blkid;
79 	uint8_t			indblkshift;
80 	uint32_t		datablksz;
81 };
82 
83 struct redact_thread_arg {
84 	bqueue_t	q;
85 	objset_t	*os;		/* Objset to traverse */
86 	dsl_dataset_t	*ds;		/* Dataset to traverse */
87 	struct redact_record *current_record;
88 	int		error_code;
89 	boolean_t	cancel;
90 	zbookmark_phys_t resume;
91 	objlist_t	*deleted_objs;
92 	uint64_t	*num_blocks_visited;
93 	uint64_t	ignore_object;	/* ignore further callbacks on this */
94 	uint64_t	txg; /* txg to traverse since */
95 };
96 
97 /*
98  * The redaction node is a wrapper around the redaction record that is used
99  * by the redaction merging thread to sort the records and determine overlaps.
100  *
101  * It contains two nodes; one sorts the records by their start_zb, and the other
102  * sorts the records by their end_zb.
103  */
104 struct redact_node {
105 	avl_node_t			avl_node_start;
106 	avl_node_t			avl_node_end;
107 	struct redact_record		*record;
108 	struct redact_thread_arg	*rt_arg;
109 	uint32_t			thread_num;
110 };
111 
112 struct merge_data {
113 	list_t				md_redact_block_pending;
114 	redact_block_phys_t		md_coalesce_block;
115 	uint64_t			md_last_time;
116 	redact_block_phys_t		md_furthest[TXG_SIZE];
117 	/* Lists of struct redact_block_list_node. */
118 	list_t				md_blocks[TXG_SIZE];
119 	boolean_t			md_synctask_txg[TXG_SIZE];
120 	uint64_t			md_latest_synctask_txg;
121 	redaction_list_t		*md_redaction_list;
122 };
123 
124 /*
125  * A wrapper around struct redact_block so it can be stored in a list_t.
126  */
127 struct redact_block_list_node {
128 	redact_block_phys_t	block;
129 	list_node_t		node;
130 };
131 
132 /*
133  * We've found a new redaction candidate.  In order to improve performance, we
134  * coalesce these blocks when they're adjacent to each other.  This function
135  * handles that.  If the new candidate block range is immediately after the
136  * range we're building, coalesce it into the range we're building.  Otherwise,
137  * put the record we're building on the queue, and update the build pointer to
138  * point to the new record.
139  */
140 static void
record_merge_enqueue(bqueue_t * q,struct redact_record ** build,struct redact_record * new)141 record_merge_enqueue(bqueue_t *q, struct redact_record **build,
142     struct redact_record *new)
143 {
144 	if (new->eos_marker) {
145 		if (*build != NULL)
146 			bqueue_enqueue(q, *build, sizeof (**build));
147 		bqueue_enqueue_flush(q, new, sizeof (*new));
148 		return;
149 	}
150 	if (*build == NULL) {
151 		*build = new;
152 		return;
153 	}
154 	struct redact_record *curbuild = *build;
155 	if ((curbuild->end_object == new->start_object &&
156 	    curbuild->end_blkid + 1 == new->start_blkid &&
157 	    curbuild->end_blkid != UINT64_MAX) ||
158 	    (curbuild->end_object + 1 == new->start_object &&
159 	    curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
160 		curbuild->end_object = new->end_object;
161 		curbuild->end_blkid = new->end_blkid;
162 		kmem_free(new, sizeof (*new));
163 	} else {
164 		bqueue_enqueue(q, curbuild, sizeof (*curbuild));
165 		*build = new;
166 	}
167 }
168 #ifdef _KERNEL
169 struct objnode {
170 	avl_node_t node;
171 	uint64_t obj;
172 };
173 
174 static int
objnode_compare(const void * o1,const void * o2)175 objnode_compare(const void *o1, const void *o2)
176 {
177 	const struct objnode *obj1 = o1;
178 	const struct objnode *obj2 = o2;
179 	if (obj1->obj < obj2->obj)
180 		return (-1);
181 	if (obj1->obj > obj2->obj)
182 		return (1);
183 	return (0);
184 }
185 
186 
187 static objlist_t *
zfs_get_deleteq(objset_t * os)188 zfs_get_deleteq(objset_t *os)
189 {
190 	objlist_t *deleteq_objlist = objlist_create();
191 	uint64_t deleteq_obj;
192 	zap_cursor_t zc;
193 	zap_attribute_t *za;
194 	dmu_object_info_t doi;
195 
196 	ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
197 	VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
198 	ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
199 
200 	VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
201 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
202 
203 	/*
204 	 * In order to insert objects into the objlist, they must be in sorted
205 	 * order. We don't know what order we'll get them out of the ZAP in, so
206 	 * we insert them into and remove them from an avl_tree_t to sort them.
207 	 */
208 	avl_tree_t at;
209 	avl_create(&at, objnode_compare, sizeof (struct objnode),
210 	    offsetof(struct objnode, node));
211 
212 	za = zap_attribute_alloc();
213 	for (zap_cursor_init(&zc, os, deleteq_obj);
214 	    zap_cursor_retrieve(&zc, za) == 0; zap_cursor_advance(&zc)) {
215 		struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
216 		obj->obj = za->za_first_integer;
217 		avl_add(&at, obj);
218 	}
219 	zap_cursor_fini(&zc);
220 	zap_attribute_free(za);
221 
222 	struct objnode *next, *found = avl_first(&at);
223 	while (found != NULL) {
224 		next = AVL_NEXT(&at, found);
225 		objlist_insert(deleteq_objlist, found->obj);
226 		found = next;
227 	}
228 
229 	void *cookie = NULL;
230 	while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
231 		kmem_free(found, sizeof (*found));
232 	avl_destroy(&at);
233 	return (deleteq_objlist);
234 }
235 #endif
236 
237 /*
238  * This is the callback function to traverse_dataset for the redaction threads
239  * for dmu_redact_snap.  This thread is responsible for creating redaction
240  * records for all the data that is modified by the snapshots we're redacting
241  * with respect to.  Redaction records represent ranges of data that have been
242  * modified by one of the redaction snapshots, and are stored in the
243  * redact_record struct. We need to create redaction records for three
244  * cases:
245  *
246  * First, if there's a normal write, we need to create a redaction record for
247  * that block.
248  *
249  * Second, if there's a hole, we need to create a redaction record that covers
250  * the whole range of the hole.  If the hole is in the meta-dnode, it must cover
251  * every block in all of the objects in the hole.
252  *
253  * Third, if there is a deleted object, we need to create a redaction record for
254  * all of the blocks in that object.
255  */
256 static int
redact_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const struct dnode_phys * dnp,void * arg)257 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
258     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
259 {
260 	(void) spa, (void) zilog;
261 	struct redact_thread_arg *rta = arg;
262 	struct redact_record *record;
263 
264 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
265 	    zb->zb_object >= rta->resume.zb_object);
266 
267 	if (rta->cancel)
268 		return (SET_ERROR(EINTR));
269 
270 	if (rta->ignore_object == zb->zb_object)
271 		return (0);
272 
273 	/*
274 	 * If we're visiting a dnode, we need to handle the case where the
275 	 * object has been deleted.
276 	 */
277 	if (zb->zb_level == ZB_DNODE_LEVEL) {
278 		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
279 
280 		if (zb->zb_object == 0)
281 			return (0);
282 
283 		/*
284 		 * If the object has been deleted, redact all of the blocks in
285 		 * it.
286 		 */
287 		if (dnp->dn_type == DMU_OT_NONE ||
288 		    objlist_exists(rta->deleted_objs, zb->zb_object)) {
289 			rta->ignore_object = zb->zb_object;
290 			record = kmem_zalloc(sizeof (struct redact_record),
291 			    KM_SLEEP);
292 
293 			record->eos_marker = B_FALSE;
294 			record->start_object = record->end_object =
295 			    zb->zb_object;
296 			record->start_blkid = 0;
297 			record->end_blkid = UINT64_MAX;
298 			record_merge_enqueue(&rta->q,
299 			    &rta->current_record, record);
300 		}
301 		return (0);
302 	} else if (zb->zb_level < 0) {
303 		return (0);
304 	} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
305 		/*
306 		 * If this is an indirect block, but not a hole, it doesn't
307 		 * provide any useful information for redaction, so ignore it.
308 		 */
309 		return (0);
310 	}
311 
312 	/*
313 	 * At this point, there are two options left for the type of block we're
314 	 * looking at.  Either this is a hole (which could be in the dnode or
315 	 * the meta-dnode), or it's a level 0 block of some sort.  If it's a
316 	 * hole, we create a redaction record that covers the whole range.  If
317 	 * the hole is in a dnode, we need to redact all the blocks in that
318 	 * hole.  If the hole is in the meta-dnode, we instead need to redact
319 	 * all blocks in every object covered by that hole.  If it's a level 0
320 	 * block, we only need to redact that single block.
321 	 */
322 	record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
323 	record->eos_marker = B_FALSE;
324 
325 	record->start_object = record->end_object = zb->zb_object;
326 	if (BP_IS_HOLE(bp)) {
327 		record->start_blkid = zb->zb_blkid *
328 		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
329 
330 		record->end_blkid = ((zb->zb_blkid + 1) *
331 		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
332 
333 		if (zb->zb_object == DMU_META_DNODE_OBJECT) {
334 			record->start_object = record->start_blkid *
335 			    ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
336 			    sizeof (dnode_phys_t));
337 			record->start_blkid = 0;
338 			record->end_object = ((record->end_blkid +
339 			    1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
340 			    sizeof (dnode_phys_t))) - 1;
341 			record->end_blkid = UINT64_MAX;
342 		}
343 	} else if (zb->zb_level != 0 ||
344 	    zb->zb_object == DMU_META_DNODE_OBJECT) {
345 		kmem_free(record, sizeof (*record));
346 		return (0);
347 	} else {
348 		record->start_blkid = record->end_blkid = zb->zb_blkid;
349 	}
350 	record->indblkshift = dnp->dn_indblkshift;
351 	record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
352 	record_merge_enqueue(&rta->q, &rta->current_record, record);
353 
354 	return (0);
355 }
356 
357 static __attribute__((noreturn)) void
redact_traverse_thread(void * arg)358 redact_traverse_thread(void *arg)
359 {
360 	struct redact_thread_arg *rt_arg = arg;
361 	int err;
362 	struct redact_record *data;
363 #ifdef _KERNEL
364 	if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
365 		rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
366 	else
367 		rt_arg->deleted_objs = objlist_create();
368 #else
369 	rt_arg->deleted_objs = objlist_create();
370 #endif
371 
372 	err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
373 	    &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
374 	    TRAVERSE_LOGICAL, redact_cb, rt_arg);
375 
376 	if (err != EINTR)
377 		rt_arg->error_code = err;
378 	objlist_destroy(rt_arg->deleted_objs);
379 	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
380 	data->eos_marker = B_TRUE;
381 	record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
382 	thread_exit();
383 }
384 
385 static inline void
create_zbookmark_from_obj_off(zbookmark_phys_t * zb,uint64_t object,uint64_t blkid)386 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
387     uint64_t blkid)
388 {
389 	zb->zb_object = object;
390 	zb->zb_level = 0;
391 	zb->zb_blkid = blkid;
392 }
393 
394 /*
395  * This is a utility function that can do the comparison for the start or ends
396  * of the ranges in a redact_record.
397  */
398 static int
redact_range_compare(uint64_t obj1,uint64_t off1,uint32_t dbss1,uint64_t obj2,uint64_t off2,uint32_t dbss2)399 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
400     uint64_t obj2, uint64_t off2, uint32_t dbss2)
401 {
402 	zbookmark_phys_t z1, z2;
403 	create_zbookmark_from_obj_off(&z1, obj1, off1);
404 	create_zbookmark_from_obj_off(&z2, obj2, off2);
405 
406 	return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
407 	    dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
408 }
409 
410 /*
411  * Compare two redaction records by their range's start location.  Also makes
412  * eos records always compare last.  We use the thread number in the redact_node
413  * to ensure that records do not compare equal (which is not allowed in our avl
414  * trees).
415  */
416 static int
redact_node_compare_start(const void * arg1,const void * arg2)417 redact_node_compare_start(const void *arg1, const void *arg2)
418 {
419 	const struct redact_node *rn1 = arg1;
420 	const struct redact_node *rn2 = arg2;
421 	const struct redact_record *rr1 = rn1->record;
422 	const struct redact_record *rr2 = rn2->record;
423 	if (rr1->eos_marker)
424 		return (1);
425 	if (rr2->eos_marker)
426 		return (-1);
427 
428 	int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
429 	    rr1->datablksz, rr2->start_object, rr2->start_blkid,
430 	    rr2->datablksz);
431 	if (cmp == 0)
432 		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
433 	return (cmp);
434 }
435 
436 /*
437  * Compare two redaction records by their range's end location.  Also makes
438  * eos records always compare last.  We use the thread number in the redact_node
439  * to ensure that records do not compare equal (which is not allowed in our avl
440  * trees).
441  */
442 static int
redact_node_compare_end(const void * arg1,const void * arg2)443 redact_node_compare_end(const void *arg1, const void *arg2)
444 {
445 	const struct redact_node *rn1 = arg1;
446 	const struct redact_node *rn2 = arg2;
447 	const struct redact_record *srr1 = rn1->record;
448 	const struct redact_record *srr2 = rn2->record;
449 	if (srr1->eos_marker)
450 		return (1);
451 	if (srr2->eos_marker)
452 		return (-1);
453 
454 	int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
455 	    srr1->datablksz, srr2->end_object, srr2->end_blkid,
456 	    srr2->datablksz);
457 	if (cmp == 0)
458 		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
459 	return (cmp);
460 }
461 
462 /*
463  * Utility function that compares two redaction records to determine if any part
464  * of the "from" record is before any part of the "to" record. Also causes End
465  * of Stream redaction records to compare after all others, so that the
466  * redaction merging logic can stay simple.
467  */
468 static boolean_t
redact_record_before(const struct redact_record * from,const struct redact_record * to)469 redact_record_before(const struct redact_record *from,
470     const struct redact_record *to)
471 {
472 	if (from->eos_marker == B_TRUE)
473 		return (B_FALSE);
474 	else if (to->eos_marker == B_TRUE)
475 		return (B_TRUE);
476 	return (redact_range_compare(from->start_object, from->start_blkid,
477 	    from->datablksz, to->end_object, to->end_blkid,
478 	    to->datablksz) <= 0);
479 }
480 
481 /*
482  * Pop a new redaction record off the queue, check that the records are in the
483  * right order, and free the old data.
484  */
485 static struct redact_record *
get_next_redact_record(bqueue_t * bq,struct redact_record * prev)486 get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
487 {
488 	struct redact_record *next = bqueue_dequeue(bq);
489 	ASSERT(redact_record_before(prev, next));
490 	kmem_free(prev, sizeof (*prev));
491 	return (next);
492 }
493 
494 /*
495  * Remove the given redaction node from both trees, pull a new redaction record
496  * off the queue, free the old redaction record, update the redaction node, and
497  * reinsert the node into the trees.
498  */
499 static int
update_avl_trees(avl_tree_t * start_tree,avl_tree_t * end_tree,struct redact_node * redact_node)500 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
501     struct redact_node *redact_node)
502 {
503 	avl_remove(start_tree, redact_node);
504 	avl_remove(end_tree, redact_node);
505 	redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
506 	    redact_node->record);
507 	avl_add(end_tree, redact_node);
508 	avl_add(start_tree, redact_node);
509 	return (redact_node->rt_arg->error_code);
510 }
511 
512 /*
513  * Synctask for updating redaction lists.  We first take this txg's list of
514  * redacted blocks and append those to the redaction list.  We then update the
515  * redaction list's bonus buffer.  We store the furthest blocks we visited and
516  * the list of snapshots that we're redacting with respect to.  We need these so
517  * that redacted sends and receives can be correctly resumed.
518  */
519 static void
redaction_list_update_sync(void * arg,dmu_tx_t * tx)520 redaction_list_update_sync(void *arg, dmu_tx_t *tx)
521 {
522 	struct merge_data *md = arg;
523 	uint64_t txg = dmu_tx_get_txg(tx);
524 	list_t *list = &md->md_blocks[txg & TXG_MASK];
525 	redact_block_phys_t *furthest_visited =
526 	    &md->md_furthest[txg & TXG_MASK];
527 	objset_t *mos = tx->tx_pool->dp_meta_objset;
528 	redaction_list_t *rl = md->md_redaction_list;
529 	int bufsize = redact_sync_bufsize;
530 	redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
531 	    KM_SLEEP);
532 	int index = 0;
533 
534 	dmu_buf_will_dirty(rl->rl_dbuf, tx);
535 
536 	for (struct redact_block_list_node *rbln = list_remove_head(list);
537 	    rbln != NULL; rbln = list_remove_head(list)) {
538 		ASSERT3U(rbln->block.rbp_object, <=,
539 		    furthest_visited->rbp_object);
540 		ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
541 		    rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
542 		buf[index] = rbln->block;
543 		index++;
544 		if (index == bufsize) {
545 			dmu_write(mos, rl->rl_object,
546 			    rl->rl_phys->rlp_num_entries * sizeof (*buf),
547 			    bufsize * sizeof (*buf), buf, tx,
548 			    DMU_READ_NO_PREFETCH);
549 			rl->rl_phys->rlp_num_entries += bufsize;
550 			index = 0;
551 		}
552 		kmem_free(rbln, sizeof (*rbln));
553 	}
554 	if (index > 0) {
555 		dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
556 		    sizeof (*buf), index * sizeof (*buf), buf, tx,
557 		    DMU_READ_NO_PREFETCH);
558 		rl->rl_phys->rlp_num_entries += index;
559 	}
560 	kmem_free(buf, bufsize * sizeof (*buf));
561 
562 	md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
563 	rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
564 	rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
565 }
566 
567 static void
commit_rl_updates(objset_t * os,struct merge_data * md,uint64_t object,uint64_t blkid)568 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
569     uint64_t blkid)
570 {
571 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
572 	dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
573 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
574 	uint64_t txg = dmu_tx_get_txg(tx);
575 	if (!md->md_synctask_txg[txg & TXG_MASK]) {
576 		dsl_sync_task_nowait(dmu_tx_pool(tx),
577 		    redaction_list_update_sync, md, tx);
578 		md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
579 		md->md_latest_synctask_txg = txg;
580 	}
581 	md->md_furthest[txg & TXG_MASK].rbp_object = object;
582 	md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
583 	list_move_tail(&md->md_blocks[txg & TXG_MASK],
584 	    &md->md_redact_block_pending);
585 	dmu_tx_commit(tx);
586 	md->md_last_time = gethrtime();
587 }
588 
589 /*
590  * We want to store the list of blocks that we're redacting in the bookmark's
591  * redaction list.  However, this list is stored in the MOS, which means it can
592  * only be written to in syncing context.  To get around this, we create a
593  * synctask that will write to the mos for us.  We tell it what to write by
594  * a linked list for each current transaction group; every time we decide to
595  * redact a block, we append it to the transaction group that is currently in
596  * open context.  We also update some progress information that the synctask
597  * will store to enable resumable redacted sends.
598  */
599 static void
update_redaction_list(struct merge_data * md,objset_t * os,uint64_t object,uint64_t blkid,uint64_t endblkid,uint32_t blksz)600 update_redaction_list(struct merge_data *md, objset_t *os,
601     uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
602 {
603 	boolean_t enqueue = B_FALSE;
604 	redact_block_phys_t cur = {0};
605 	uint64_t count = endblkid - blkid + 1;
606 	while (count > REDACT_BLOCK_MAX_COUNT) {
607 		update_redaction_list(md, os, object, blkid,
608 		    blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
609 		blkid += REDACT_BLOCK_MAX_COUNT;
610 		count -= REDACT_BLOCK_MAX_COUNT;
611 	}
612 	redact_block_phys_t *coalesce = &md->md_coalesce_block;
613 	boolean_t new;
614 	if (coalesce->rbp_size_count == 0) {
615 		new = B_TRUE;
616 		enqueue = B_FALSE;
617 	} else  {
618 		uint64_t old_count = redact_block_get_count(coalesce);
619 		if (coalesce->rbp_object == object &&
620 		    coalesce->rbp_blkid + old_count == blkid &&
621 		    old_count + count <= REDACT_BLOCK_MAX_COUNT) {
622 			ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
623 			redact_block_set_count(coalesce, old_count + count);
624 			new = B_FALSE;
625 			enqueue = B_FALSE;
626 		} else {
627 			new = B_TRUE;
628 			enqueue = B_TRUE;
629 		}
630 	}
631 
632 	if (new) {
633 		cur = *coalesce;
634 		coalesce->rbp_blkid = blkid;
635 		coalesce->rbp_object = object;
636 
637 		redact_block_set_count(coalesce, count);
638 		redact_block_set_size(coalesce, blksz);
639 	}
640 
641 	if (enqueue && redact_block_get_size(&cur) != 0) {
642 		struct redact_block_list_node *rbln =
643 		    kmem_alloc(sizeof (struct redact_block_list_node),
644 		    KM_SLEEP);
645 		rbln->block = cur;
646 		list_insert_tail(&md->md_redact_block_pending, rbln);
647 	}
648 
649 	if (gethrtime() > md->md_last_time +
650 	    redaction_list_update_interval_ns) {
651 		commit_rl_updates(os, md, object, blkid);
652 	}
653 }
654 
655 /*
656  * This thread merges all the redaction records provided by the worker threads,
657  * and determines which blocks are redacted by all the snapshots.  The algorithm
658  * for doing so is similar to performing a merge in mergesort with n sub-lists
659  * instead of 2, with some added complexity due to the fact that the entries are
660  * ranges, not just single blocks.  This algorithm relies on the fact that the
661  * queues are sorted, which is ensured by the fact that traverse_dataset
662  * traverses the dataset in a consistent order.  We pull one entry off the front
663  * of the queues of each secure dataset traversal thread.  Then we repeat the
664  * following: each record represents a range of blocks modified by one of the
665  * redaction snapshots, and each block in that range may need to be redacted in
666  * the send stream.  Find the record with the latest start of its range, and the
667  * record with the earliest end of its range. If the last start is before the
668  * first end, then we know that the blocks in the range [last_start, first_end]
669  * are covered by all of the ranges at the front of the queues, which means
670  * every thread redacts that whole range.  For example, let's say the ranges on
671  * each queue look like this:
672  *
673  * Block Id   1  2  3  4  5  6  7  8  9 10 11
674  * Thread 1 |    [====================]
675  * Thread 2 |       [========]
676  * Thread 3 |             [=================]
677  *
678  * Thread 3 has the last start (5), and the thread 2 has the last end (6).  All
679  * three threads modified the range [5,6], so that data should not be sent over
680  * the wire.  After we've determined whether or not to redact anything, we take
681  * the record with the first end.  We discard that record, and pull a new one
682  * off the front of the queue it came from.  In the above example, we would
683  * discard Thread 2's record, and pull a new one.  Let's say the next record we
684  * pulled from Thread 2 covered range [10,11].  The new layout would look like
685  * this:
686  *
687  * Block Id   1  2  3  4  5  6  7  8  9 10 11
688  * Thread 1 |    [====================]
689  * Thread 2 |                            [==]
690  * Thread 3 |             [=================]
691  *
692  * When we compare the last start (10, from Thread 2) and the first end (9, from
693  * Thread 1), we see that the last start is greater than the first end.
694  * Therefore, we do not redact anything from these records.  We'll iterate by
695  * replacing the record from Thread 1.
696  *
697  * We iterate by replacing the record with the lowest end because we know
698  * that the record with the lowest end has helped us as much as it can.  All the
699  * ranges before it that we will ever redact have been redacted.  In addition,
700  * by replacing the one with the lowest end, we guarantee we catch all ranges
701  * that need to be redacted.  For example, if in the case above we had replaced
702  * the record from Thread 1 instead, we might have ended up with the following:
703  *
704  * Block Id   1  2  3  4  5  6  7  8  9 10 11 12
705  * Thread 1 |                               [==]
706  * Thread 2 |       [========]
707  * Thread 3 |             [=================]
708  *
709  * If the next record from Thread 2 had been [8,10], for example, we should have
710  * redacted part of that range, but because we updated Thread 1's record, we
711  * missed it.
712  *
713  * We implement this algorithm by using two trees.  The first sorts the
714  * redaction records by their start_zb, and the second sorts them by their
715  * end_zb.  We use these to find the record with the last start and the record
716  * with the first end.  We create a record with that start and end, and send it
717  * on.  The overall runtime of this implementation is O(n log m), where n is the
718  * total number of redaction records from all the different redaction snapshots,
719  * and m is the number of redaction snapshots.
720  *
721  * If we redact with respect to zero snapshots, we create a redaction
722  * record with the start object and blkid to 0, and the end object and blkid to
723  * UINT64_MAX.  This will result in us redacting every block.
724  */
725 static int
perform_thread_merge(bqueue_t * q,uint32_t num_threads,struct redact_thread_arg * thread_args,boolean_t * cancel)726 perform_thread_merge(bqueue_t *q, uint32_t num_threads,
727     struct redact_thread_arg *thread_args, boolean_t *cancel)
728 {
729 	struct redact_node *redact_nodes = NULL;
730 	avl_tree_t start_tree, end_tree;
731 	struct redact_record *record;
732 	struct redact_record *current_record = NULL;
733 	int err = 0;
734 	struct merge_data md = { {0} };
735 	list_create(&md.md_redact_block_pending,
736 	    sizeof (struct redact_block_list_node),
737 	    offsetof(struct redact_block_list_node, node));
738 
739 	/*
740 	 * If we're redacting with respect to zero snapshots, then no data is
741 	 * permitted to be sent.  We enqueue a record that redacts all blocks,
742 	 * and an eos marker.
743 	 */
744 	if (num_threads == 0) {
745 		record = kmem_zalloc(sizeof (struct redact_record),
746 		    KM_SLEEP);
747 		// We can't redact object 0, so don't try.
748 		record->start_object = 1;
749 		record->start_blkid = 0;
750 		record->end_object = record->end_blkid = UINT64_MAX;
751 		bqueue_enqueue(q, record, sizeof (*record));
752 		return (0);
753 	}
754 	redact_nodes = vmem_zalloc(num_threads *
755 	    sizeof (*redact_nodes), KM_SLEEP);
756 
757 	avl_create(&start_tree, redact_node_compare_start,
758 	    sizeof (struct redact_node),
759 	    offsetof(struct redact_node, avl_node_start));
760 	avl_create(&end_tree, redact_node_compare_end,
761 	    sizeof (struct redact_node),
762 	    offsetof(struct redact_node, avl_node_end));
763 
764 	for (int i = 0; i < num_threads; i++) {
765 		struct redact_node *node = &redact_nodes[i];
766 		struct redact_thread_arg *targ = &thread_args[i];
767 		node->record = bqueue_dequeue(&targ->q);
768 		node->rt_arg = targ;
769 		node->thread_num = i;
770 		avl_add(&start_tree, node);
771 		avl_add(&end_tree, node);
772 	}
773 
774 	/*
775 	 * Once the first record in the end tree has returned EOS, every record
776 	 * must be an EOS record, so we should stop.
777 	 */
778 	while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
779 	    record->eos_marker) {
780 		if (*cancel) {
781 			err = EINTR;
782 			break;
783 		}
784 		struct redact_node *last_start = avl_last(&start_tree);
785 		struct redact_node *first_end = avl_first(&end_tree);
786 
787 		/*
788 		 * If the last start record is before the first end record,
789 		 * then we have blocks that are redacted by all threads.
790 		 * Therefore, we should redact them.  Copy the record, and send
791 		 * it to the main thread.
792 		 */
793 		if (redact_record_before(last_start->record,
794 		    first_end->record)) {
795 			record = kmem_zalloc(sizeof (struct redact_record),
796 			    KM_SLEEP);
797 			*record = *first_end->record;
798 			record->start_object = last_start->record->start_object;
799 			record->start_blkid = last_start->record->start_blkid;
800 			record_merge_enqueue(q, &current_record,
801 			    record);
802 		}
803 		err = update_avl_trees(&start_tree, &end_tree, first_end);
804 	}
805 
806 	/*
807 	 * We're done; if we were cancelled, we need to cancel our workers and
808 	 * clear out their queues.  Either way, we need to remove every thread's
809 	 * redact_node struct from the avl trees.
810 	 */
811 	for (int i = 0; i < num_threads; i++) {
812 		if (err != 0) {
813 			thread_args[i].cancel = B_TRUE;
814 			while (!redact_nodes[i].record->eos_marker) {
815 				(void) update_avl_trees(&start_tree, &end_tree,
816 				    &redact_nodes[i]);
817 			}
818 		}
819 		avl_remove(&start_tree, &redact_nodes[i]);
820 		avl_remove(&end_tree, &redact_nodes[i]);
821 		kmem_free(redact_nodes[i].record,
822 		    sizeof (struct redact_record));
823 		bqueue_destroy(&thread_args[i].q);
824 	}
825 
826 	avl_destroy(&start_tree);
827 	avl_destroy(&end_tree);
828 	vmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
829 	if (current_record != NULL)
830 		bqueue_enqueue(q, current_record, sizeof (*current_record));
831 	return (err);
832 }
833 
834 struct redact_merge_thread_arg {
835 	bqueue_t q;
836 	spa_t *spa;
837 	int numsnaps;
838 	struct redact_thread_arg *thr_args;
839 	boolean_t cancel;
840 	int error_code;
841 };
842 
843 static __attribute__((noreturn)) void
redact_merge_thread(void * arg)844 redact_merge_thread(void *arg)
845 {
846 	struct redact_merge_thread_arg *rmta = arg;
847 	rmta->error_code = perform_thread_merge(&rmta->q,
848 	    rmta->numsnaps, rmta->thr_args, &rmta->cancel);
849 	struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
850 	rec->eos_marker = B_TRUE;
851 	bqueue_enqueue_flush(&rmta->q, rec, 1);
852 	thread_exit();
853 }
854 
855 /*
856  * Find the next object in or after the redaction range passed in, and hold
857  * its dnode with the provided tag.  Also update *object to contain the new
858  * object number.
859  */
860 static int
hold_next_object(objset_t * os,struct redact_record * rec,const void * tag,uint64_t * object,dnode_t ** dn)861 hold_next_object(objset_t *os, struct redact_record *rec, const void *tag,
862     uint64_t *object, dnode_t **dn)
863 {
864 	int err = 0;
865 	if (*dn != NULL)
866 		dnode_rele(*dn, tag);
867 	*dn = NULL;
868 	if (*object < rec->start_object) {
869 		*object = rec->start_object - 1;
870 	}
871 	err = dmu_object_next(os, object, B_FALSE, 0);
872 	if (err != 0)
873 		return (err);
874 
875 	err = dnode_hold(os, *object, tag, dn);
876 	while (err == 0 && (*object < rec->start_object ||
877 	    DMU_OT_IS_METADATA((*dn)->dn_type))) {
878 		dnode_rele(*dn, tag);
879 		*dn = NULL;
880 		err = dmu_object_next(os, object, B_FALSE, 0);
881 		if (err != 0)
882 			break;
883 		err = dnode_hold(os, *object, tag, dn);
884 	}
885 	return (err);
886 }
887 
888 static int
perform_redaction(objset_t * os,redaction_list_t * rl,struct redact_merge_thread_arg * rmta)889 perform_redaction(objset_t *os, redaction_list_t *rl,
890     struct redact_merge_thread_arg *rmta)
891 {
892 	int err = 0;
893 	bqueue_t *q = &rmta->q;
894 	struct redact_record *rec = NULL;
895 	struct merge_data md = { {0} };
896 
897 	list_create(&md.md_redact_block_pending,
898 	    sizeof (struct redact_block_list_node),
899 	    offsetof(struct redact_block_list_node, node));
900 	md.md_redaction_list = rl;
901 
902 	for (int i = 0; i < TXG_SIZE; i++) {
903 		list_create(&md.md_blocks[i],
904 		    sizeof (struct redact_block_list_node),
905 		    offsetof(struct redact_block_list_node, node));
906 	}
907 	dnode_t *dn = NULL;
908 	uint64_t prev_obj = 0;
909 	for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
910 	    rec = get_next_redact_record(q, rec)) {
911 		ASSERT3U(rec->start_object, !=, 0);
912 		uint64_t object;
913 		if (prev_obj != rec->start_object) {
914 			object = rec->start_object - 1;
915 			err = hold_next_object(os, rec, FTAG, &object, &dn);
916 		} else {
917 			object = prev_obj;
918 		}
919 		while (err == 0 && object <= rec->end_object) {
920 			if (issig()) {
921 				err = EINTR;
922 				break;
923 			}
924 			/*
925 			 * Part of the current object is contained somewhere in
926 			 * the range covered by rec.
927 			 */
928 			uint64_t startblkid;
929 			uint64_t endblkid;
930 			uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
931 
932 			if (rec->start_object < object)
933 				startblkid = 0;
934 			else if (rec->start_blkid > maxblkid)
935 				break;
936 			else
937 				startblkid = rec->start_blkid;
938 
939 			if (rec->end_object > object || rec->end_blkid >
940 			    maxblkid) {
941 				endblkid = maxblkid;
942 			} else {
943 				endblkid = rec->end_blkid;
944 			}
945 			update_redaction_list(&md, os, object, startblkid,
946 			    endblkid, dn->dn_datablksz);
947 
948 			if (object == rec->end_object)
949 				break;
950 			err = hold_next_object(os, rec, FTAG, &object, &dn);
951 		}
952 		if (err == ESRCH)
953 			err = 0;
954 		if (dn != NULL)
955 			prev_obj = object;
956 	}
957 	if (err == 0 && dn != NULL)
958 		dnode_rele(dn, FTAG);
959 
960 	if (err == ESRCH)
961 		err = 0;
962 	rmta->cancel = B_TRUE;
963 	while (!rec->eos_marker)
964 		rec = get_next_redact_record(q, rec);
965 	kmem_free(rec, sizeof (*rec));
966 
967 	/*
968 	 * There may be a block that's being coalesced, sync that out before we
969 	 * return.
970 	 */
971 	if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
972 		struct redact_block_list_node *rbln =
973 		    kmem_alloc(sizeof (struct redact_block_list_node),
974 		    KM_SLEEP);
975 		rbln->block = md.md_coalesce_block;
976 		list_insert_tail(&md.md_redact_block_pending, rbln);
977 	}
978 	commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
979 
980 	/*
981 	 * Wait for all the redaction info to sync out before we return, so that
982 	 * anyone who attempts to resume this redaction will have all the data
983 	 * they need.
984 	 */
985 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
986 	if (md.md_latest_synctask_txg != 0)
987 		txg_wait_synced(dp, md.md_latest_synctask_txg);
988 	for (int i = 0; i < TXG_SIZE; i++)
989 		list_destroy(&md.md_blocks[i]);
990 	return (err);
991 }
992 
993 static boolean_t
redact_snaps_contains(uint64_t * snaps,uint64_t num_snaps,uint64_t guid)994 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
995 {
996 	for (int i = 0; i < num_snaps; i++) {
997 		if (snaps[i] == guid)
998 			return (B_TRUE);
999 	}
1000 	return (B_FALSE);
1001 }
1002 
1003 int
dmu_redact_snap(const char * snapname,nvlist_t * redactnvl,const char * redactbook)1004 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1005     const char *redactbook)
1006 {
1007 	int err = 0;
1008 	dsl_pool_t *dp = NULL;
1009 	dsl_dataset_t *ds = NULL;
1010 	int numsnaps = 0;
1011 	objset_t *os;
1012 	struct redact_thread_arg *args = NULL;
1013 	redaction_list_t *new_rl = NULL;
1014 	char *newredactbook;
1015 
1016 	if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1017 		return (err);
1018 
1019 	newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1020 	    KM_SLEEP);
1021 
1022 	if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1023 	    FTAG, &ds)) != 0) {
1024 		goto out;
1025 	}
1026 	dsl_dataset_long_hold(ds, FTAG);
1027 	if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1028 		err = EINVAL;
1029 		goto out;
1030 	}
1031 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1032 		err = EALREADY;
1033 		goto out;
1034 	}
1035 
1036 	numsnaps = fnvlist_num_pairs(redactnvl);
1037 	if (numsnaps > 0)
1038 		args = vmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1039 
1040 	nvpair_t *pair = NULL;
1041 	for (int i = 0; i < numsnaps; i++) {
1042 		pair = nvlist_next_nvpair(redactnvl, pair);
1043 		const char *name = nvpair_name(pair);
1044 		struct redact_thread_arg *rta = &args[i];
1045 		err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1046 		    FTAG, &rta->ds);
1047 		if (err != 0)
1048 			break;
1049 		/*
1050 		 * We want to do the long hold before we can get any other
1051 		 * errors, because the cleanup code will release the long
1052 		 * hold if rta->ds is filled in.
1053 		 */
1054 		dsl_dataset_long_hold(rta->ds, FTAG);
1055 
1056 		err = dmu_objset_from_ds(rta->ds, &rta->os);
1057 		if (err != 0)
1058 			break;
1059 		if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1060 			err = EINVAL;
1061 			break;
1062 		}
1063 		if (dsl_dataset_feature_is_active(rta->ds,
1064 		    SPA_FEATURE_REDACTED_DATASETS)) {
1065 			err = EALREADY;
1066 			break;
1067 
1068 		}
1069 	}
1070 	if (err != 0)
1071 		goto out;
1072 	VERIFY0P(nvlist_next_nvpair(redactnvl, pair));
1073 
1074 	boolean_t resuming = B_FALSE;
1075 	zfs_bookmark_phys_t bookmark;
1076 
1077 	(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1078 	char *c = strchr(newredactbook, '@');
1079 	ASSERT3P(c, !=, NULL);
1080 	int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1081 	    "#%s", redactbook);
1082 	if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1083 		dsl_pool_rele(dp, FTAG);
1084 		kmem_free(newredactbook,
1085 		    sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1086 		if (args != NULL)
1087 			vmem_free(args, numsnaps * sizeof (*args));
1088 		return (SET_ERROR(ENAMETOOLONG));
1089 	}
1090 	err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1091 	if (err == 0) {
1092 		resuming = B_TRUE;
1093 		if (bookmark.zbm_redaction_obj == 0) {
1094 			err = EEXIST;
1095 			goto out;
1096 		}
1097 		err = dsl_redaction_list_hold_obj(dp,
1098 		    bookmark.zbm_redaction_obj, FTAG, &new_rl);
1099 		if (err != 0) {
1100 			err = EIO;
1101 			goto out;
1102 		}
1103 		dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1104 		if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1105 			err = ESRCH;
1106 			goto out;
1107 		}
1108 		for (int i = 0; i < numsnaps; i++) {
1109 			struct redact_thread_arg *rta = &args[i];
1110 			if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1111 			    new_rl->rl_phys->rlp_num_snaps,
1112 			    dsl_dataset_phys(rta->ds)->ds_guid)) {
1113 				err = ESRCH;
1114 				goto out;
1115 			}
1116 		}
1117 		if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1118 		    new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1119 			err = EEXIST;
1120 			goto out;
1121 		}
1122 		dsl_pool_rele(dp, FTAG);
1123 		dp = NULL;
1124 	} else {
1125 		uint64_t *guids = NULL;
1126 		if (numsnaps > 0) {
1127 			guids = vmem_zalloc(numsnaps * sizeof (uint64_t),
1128 			    KM_SLEEP);
1129 		}
1130 		for (int i = 0; i < numsnaps; i++) {
1131 			struct redact_thread_arg *rta = &args[i];
1132 			guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1133 		}
1134 
1135 		dsl_pool_rele(dp, FTAG);
1136 		dp = NULL;
1137 		err = dsl_bookmark_create_redacted(newredactbook, snapname,
1138 		    numsnaps, guids, FTAG, &new_rl);
1139 		vmem_free(guids, numsnaps * sizeof (uint64_t));
1140 		if (err != 0)
1141 			goto out;
1142 	}
1143 
1144 	for (int i = 0; i < numsnaps; i++) {
1145 		struct redact_thread_arg *rta = &args[i];
1146 		(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1147 		    zfs_redact_queue_length,
1148 		    offsetof(struct redact_record, ln));
1149 		if (resuming) {
1150 			rta->resume.zb_blkid =
1151 			    new_rl->rl_phys->rlp_last_blkid;
1152 			rta->resume.zb_object =
1153 			    new_rl->rl_phys->rlp_last_object;
1154 		}
1155 		rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1156 		(void) thread_create(NULL, 0, redact_traverse_thread, rta,
1157 		    0, curproc, TS_RUN, minclsyspri);
1158 	}
1159 
1160 	struct redact_merge_thread_arg *rmta;
1161 	rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1162 
1163 	(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1164 	    zfs_redact_queue_length, offsetof(struct redact_record, ln));
1165 	rmta->numsnaps = numsnaps;
1166 	rmta->spa = os->os_spa;
1167 	rmta->thr_args = args;
1168 	(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1169 	    TS_RUN, minclsyspri);
1170 	err = perform_redaction(os, new_rl, rmta);
1171 	bqueue_destroy(&rmta->q);
1172 	kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1173 
1174 out:
1175 	kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1176 
1177 	if (new_rl != NULL) {
1178 		dsl_redaction_list_long_rele(new_rl, FTAG);
1179 		dsl_redaction_list_rele(new_rl, FTAG);
1180 	}
1181 	for (int i = 0; i < numsnaps; i++) {
1182 		struct redact_thread_arg *rta = &args[i];
1183 		/*
1184 		 * rta->ds may be NULL if we got an error while filling
1185 		 * it in.
1186 		 */
1187 		if (rta->ds != NULL) {
1188 			dsl_dataset_long_rele(rta->ds, FTAG);
1189 			dsl_dataset_rele_flags(rta->ds,
1190 			    DS_HOLD_FLAG_DECRYPT, FTAG);
1191 		}
1192 	}
1193 
1194 	if (args != NULL)
1195 		vmem_free(args, numsnaps * sizeof (*args));
1196 	if (dp != NULL)
1197 		dsl_pool_rele(dp, FTAG);
1198 	if (ds != NULL) {
1199 		dsl_dataset_long_rele(ds, FTAG);
1200 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1201 	}
1202 	return (SET_ERROR(err));
1203 
1204 }
1205