xref: /linux/drivers/spi/spi-microchip-core-qspi.c (revision 0262163136de813894cb172aa8ccf762b92e5fd7)
1 // SPDX-License-Identifier: (GPL-2.0)
2 /*
3  * Microchip coreQSPI QSPI controller driver
4  *
5  * Copyright (C) 2018-2022 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
8  *
9  */
10 
11 #include <linux/clk.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 
24 /*
25  * QSPI Control register mask defines
26  */
27 #define CONTROL_ENABLE		BIT(0)
28 #define CONTROL_MASTER		BIT(1)
29 #define CONTROL_XIP		BIT(2)
30 #define CONTROL_XIPADDR		BIT(3)
31 #define CONTROL_CLKIDLE		BIT(10)
32 #define CONTROL_SAMPLE_MASK	GENMASK(12, 11)
33 #define CONTROL_MODE0		BIT(13)
34 #define CONTROL_MODE12_MASK	GENMASK(15, 14)
35 #define CONTROL_MODE12_EX_RO	BIT(14)
36 #define CONTROL_MODE12_EX_RW	BIT(15)
37 #define CONTROL_MODE12_FULL	GENMASK(15, 14)
38 #define CONTROL_FLAGSX4		BIT(16)
39 #define CONTROL_CLKRATE_MASK	GENMASK(27, 24)
40 #define CONTROL_CLKRATE_SHIFT	24
41 
42 /*
43  * QSPI Frames register mask defines
44  */
45 #define FRAMES_TOTALBYTES_MASK	GENMASK(15, 0)
46 #define FRAMES_CMDBYTES_MASK	GENMASK(24, 16)
47 #define FRAMES_CMDBYTES_SHIFT	16
48 #define FRAMES_SHIFT		25
49 #define FRAMES_IDLE_MASK	GENMASK(29, 26)
50 #define FRAMES_IDLE_SHIFT	26
51 #define FRAMES_FLAGBYTE		BIT(30)
52 #define FRAMES_FLAGWORD		BIT(31)
53 
54 /*
55  * QSPI Interrupt Enable register mask defines
56  */
57 #define IEN_TXDONE		BIT(0)
58 #define IEN_RXDONE		BIT(1)
59 #define IEN_RXAVAILABLE		BIT(2)
60 #define IEN_TXAVAILABLE		BIT(3)
61 #define IEN_RXFIFOEMPTY		BIT(4)
62 #define IEN_TXFIFOFULL		BIT(5)
63 
64 /*
65  * QSPI Status register mask defines
66  */
67 #define STATUS_TXDONE		BIT(0)
68 #define STATUS_RXDONE		BIT(1)
69 #define STATUS_RXAVAILABLE	BIT(2)
70 #define STATUS_TXAVAILABLE	BIT(3)
71 #define STATUS_RXFIFOEMPTY	BIT(4)
72 #define STATUS_TXFIFOFULL	BIT(5)
73 #define STATUS_READY		BIT(7)
74 #define STATUS_FLAGSX4		BIT(8)
75 #define STATUS_MASK		GENMASK(8, 0)
76 
77 #define BYTESUPPER_MASK		GENMASK(31, 16)
78 #define BYTESLOWER_MASK		GENMASK(15, 0)
79 
80 #define MAX_DIVIDER		16
81 #define MIN_DIVIDER		0
82 #define MAX_DATA_CMD_LEN	256
83 
84 /* QSPI ready time out value */
85 #define TIMEOUT_MS		500
86 
87 /*
88  * QSPI Register offsets.
89  */
90 #define REG_CONTROL		(0x00)
91 #define REG_FRAMES		(0x04)
92 #define REG_IEN			(0x0c)
93 #define REG_STATUS		(0x10)
94 #define REG_DIRECT_ACCESS	(0x14)
95 #define REG_UPPER_ACCESS	(0x18)
96 #define REG_RX_DATA		(0x40)
97 #define REG_TX_DATA		(0x44)
98 #define REG_X4_RX_DATA		(0x48)
99 #define REG_X4_TX_DATA		(0x4c)
100 #define REG_FRAMESUP		(0x50)
101 
102 /**
103  * struct mchp_coreqspi - Defines qspi driver instance
104  * @regs:              Virtual address of the QSPI controller registers
105  * @clk:               QSPI Operating clock
106  * @data_completion:   completion structure
107  * @op_lock:           lock access to the device
108  * @txbuf:             TX buffer
109  * @rxbuf:             RX buffer
110  * @irq:               IRQ number
111  * @tx_len:            Number of bytes left to transfer
112  * @rx_len:            Number of bytes left to receive
113  */
114 struct mchp_coreqspi {
115 	void __iomem *regs;
116 	struct clk *clk;
117 	struct completion data_completion;
118 	struct mutex op_lock; /* lock access to the device */
119 	u8 *txbuf;
120 	u8 *rxbuf;
121 	int irq;
122 	int tx_len;
123 	int rx_len;
124 };
125 
mchp_coreqspi_set_mode(struct mchp_coreqspi * qspi,const struct spi_mem_op * op)126 static int mchp_coreqspi_set_mode(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
127 {
128 	u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
129 
130 	/*
131 	 * The operating mode can be configured based on the command that needs to be send.
132 	 * bits[15:14]: Sets whether multiple bit SPI operates in normal, extended or full modes.
133 	 *		00: Normal (single DQ0 TX and single DQ1 RX lines)
134 	 *		01: Extended RO (command and address bytes on DQ0 only)
135 	 *		10: Extended RW (command byte on DQ0 only)
136 	 *		11: Full. (command and address are on all DQ lines)
137 	 * bit[13]:	Sets whether multiple bit SPI uses 2 or 4 bits of data
138 	 *		0: 2-bits (BSPI)
139 	 *		1: 4-bits (QSPI)
140 	 */
141 	if (op->data.buswidth == 4 || op->data.buswidth == 2) {
142 		control &= ~CONTROL_MODE12_MASK;
143 		if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))
144 			control |= CONTROL_MODE12_EX_RO;
145 		else if (op->cmd.buswidth == 1)
146 			control |= CONTROL_MODE12_EX_RW;
147 		else
148 			control |= CONTROL_MODE12_FULL;
149 
150 		control |= CONTROL_MODE0;
151 	} else {
152 		control &= ~(CONTROL_MODE12_MASK |
153 			     CONTROL_MODE0);
154 	}
155 
156 	writel_relaxed(control, qspi->regs + REG_CONTROL);
157 
158 	return 0;
159 }
160 
mchp_coreqspi_read_op(struct mchp_coreqspi * qspi)161 static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
162 {
163 	u32 control, data;
164 
165 	if (!qspi->rx_len)
166 		return;
167 
168 	control = readl_relaxed(qspi->regs + REG_CONTROL);
169 
170 	/*
171 	 * Read 4-bytes from the SPI FIFO in single transaction and then read
172 	 * the reamaining data byte wise.
173 	 */
174 	control |= CONTROL_FLAGSX4;
175 	writel_relaxed(control, qspi->regs + REG_CONTROL);
176 
177 	while (qspi->rx_len >= 4) {
178 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
179 			;
180 		data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
181 		*(u32 *)qspi->rxbuf = data;
182 		qspi->rxbuf += 4;
183 		qspi->rx_len -= 4;
184 	}
185 
186 	control &= ~CONTROL_FLAGSX4;
187 	writel_relaxed(control, qspi->regs + REG_CONTROL);
188 
189 	while (qspi->rx_len--) {
190 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
191 			;
192 		data = readl_relaxed(qspi->regs + REG_RX_DATA);
193 		*qspi->rxbuf++ = (data & 0xFF);
194 	}
195 }
196 
mchp_coreqspi_write_op(struct mchp_coreqspi * qspi)197 static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi)
198 {
199 	u32 control, data;
200 
201 	control = readl_relaxed(qspi->regs + REG_CONTROL);
202 	control |= CONTROL_FLAGSX4;
203 	writel_relaxed(control, qspi->regs + REG_CONTROL);
204 
205 	while (qspi->tx_len >= 4) {
206 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
207 			;
208 		data = *(u32 *)qspi->txbuf;
209 		qspi->txbuf += 4;
210 		qspi->tx_len -= 4;
211 		writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
212 	}
213 
214 	control &= ~CONTROL_FLAGSX4;
215 	writel_relaxed(control, qspi->regs + REG_CONTROL);
216 
217 	while (qspi->tx_len--) {
218 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
219 			;
220 		data =  *qspi->txbuf++;
221 		writel_relaxed(data, qspi->regs + REG_TX_DATA);
222 	}
223 }
224 
mchp_coreqspi_write_read_op(struct mchp_coreqspi * qspi)225 static inline void mchp_coreqspi_write_read_op(struct mchp_coreqspi *qspi)
226 {
227 	u32 control, data;
228 
229 	qspi->rx_len = qspi->tx_len;
230 
231 	control = readl_relaxed(qspi->regs + REG_CONTROL);
232 	control |= CONTROL_FLAGSX4;
233 	writel_relaxed(control, qspi->regs + REG_CONTROL);
234 
235 	while (qspi->tx_len >= 4) {
236 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
237 			;
238 
239 		data = qspi->txbuf ? *((u32 *)qspi->txbuf) : 0xaa;
240 		if (qspi->txbuf)
241 			qspi->txbuf += 4;
242 		qspi->tx_len -= 4;
243 		writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
244 
245 		/*
246 		 * The rx FIFO is twice the size of the tx FIFO, so there is
247 		 * no requirement to block transmission if receive data is not
248 		 * ready, and it is fine to let the tx FIFO completely fill
249 		 * without reading anything from the rx FIFO. Once the tx FIFO
250 		 * has been filled and becomes non-full due to a transmission
251 		 * occurring there will always be something to receive.
252 		 * IOW, this is safe as TX_FIFO_SIZE + 4 < 2 * TX_FIFO_SIZE
253 		 */
254 		if (qspi->rx_len >= 4) {
255 			if (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXAVAILABLE) {
256 				data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
257 				*(u32 *)qspi->rxbuf = data;
258 				qspi->rxbuf += 4;
259 				qspi->rx_len -= 4;
260 			}
261 		}
262 	}
263 
264 	/*
265 	 * Since transmission is not being blocked by clearing the rx FIFO,
266 	 * loop here until all received data "leaked" by the loop above has
267 	 * been dealt with.
268 	 */
269 	while (qspi->rx_len >= 4) {
270 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
271 			;
272 		data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
273 		*(u32 *)qspi->rxbuf = data;
274 		qspi->rxbuf += 4;
275 		qspi->rx_len -= 4;
276 	}
277 
278 	/*
279 	 * Since rx_len and tx_len must be < 4 bytes at this point, there's no
280 	 * concern about overflowing the rx or tx FIFOs any longer. It's
281 	 * therefore safe to loop over the remainder of the transmit data before
282 	 * handling the remaining receive data.
283 	 */
284 	if (!qspi->tx_len)
285 		return;
286 
287 	control &= ~CONTROL_FLAGSX4;
288 	writel_relaxed(control, qspi->regs + REG_CONTROL);
289 
290 	while (qspi->tx_len--) {
291 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
292 			;
293 		data = qspi->txbuf ? *qspi->txbuf : 0xaa;
294 		qspi->txbuf++;
295 		writel_relaxed(data, qspi->regs + REG_TX_DATA);
296 	}
297 
298 	while (qspi->rx_len--) {
299 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
300 			;
301 		data = readl_relaxed(qspi->regs + REG_RX_DATA);
302 		*qspi->rxbuf++ = (data & 0xFF);
303 	}
304 }
305 
mchp_coreqspi_enable_ints(struct mchp_coreqspi * qspi)306 static void mchp_coreqspi_enable_ints(struct mchp_coreqspi *qspi)
307 {
308 	u32 mask = IEN_TXDONE |
309 		   IEN_RXDONE |
310 		   IEN_RXAVAILABLE;
311 
312 	writel_relaxed(mask, qspi->regs + REG_IEN);
313 }
314 
mchp_coreqspi_disable_ints(struct mchp_coreqspi * qspi)315 static void mchp_coreqspi_disable_ints(struct mchp_coreqspi *qspi)
316 {
317 	writel_relaxed(0, qspi->regs + REG_IEN);
318 }
319 
mchp_coreqspi_isr(int irq,void * dev_id)320 static irqreturn_t mchp_coreqspi_isr(int irq, void *dev_id)
321 {
322 	struct mchp_coreqspi *qspi = (struct mchp_coreqspi *)dev_id;
323 	irqreturn_t ret = IRQ_NONE;
324 	int intfield = readl_relaxed(qspi->regs + REG_STATUS) & STATUS_MASK;
325 
326 	if (intfield == 0)
327 		return ret;
328 
329 	if (intfield & IEN_TXDONE) {
330 		writel_relaxed(IEN_TXDONE, qspi->regs + REG_STATUS);
331 		ret = IRQ_HANDLED;
332 	}
333 
334 	if (intfield & IEN_RXAVAILABLE) {
335 		writel_relaxed(IEN_RXAVAILABLE, qspi->regs + REG_STATUS);
336 		mchp_coreqspi_read_op(qspi);
337 		ret = IRQ_HANDLED;
338 	}
339 
340 	if (intfield & IEN_RXDONE) {
341 		writel_relaxed(IEN_RXDONE, qspi->regs + REG_STATUS);
342 		complete(&qspi->data_completion);
343 		ret = IRQ_HANDLED;
344 	}
345 
346 	return ret;
347 }
348 
mchp_coreqspi_setup_clock(struct mchp_coreqspi * qspi,struct spi_device * spi,u32 max_freq)349 static int mchp_coreqspi_setup_clock(struct mchp_coreqspi *qspi, struct spi_device *spi,
350 				     u32 max_freq)
351 {
352 	unsigned long clk_hz;
353 	u32 control, baud_rate_val = 0;
354 
355 	clk_hz = clk_get_rate(qspi->clk);
356 	if (!clk_hz)
357 		return -EINVAL;
358 
359 	baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * max_freq);
360 	if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER) {
361 		dev_err(&spi->dev,
362 			"could not configure the clock for spi clock %d Hz & system clock %ld Hz\n",
363 			max_freq, clk_hz);
364 		return -EINVAL;
365 	}
366 
367 	control = readl_relaxed(qspi->regs + REG_CONTROL);
368 	control &= ~CONTROL_CLKRATE_MASK;
369 	control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
370 	writel_relaxed(control, qspi->regs + REG_CONTROL);
371 	control = readl_relaxed(qspi->regs + REG_CONTROL);
372 
373 	if ((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA))
374 		control |= CONTROL_CLKIDLE;
375 	else
376 		control &= ~CONTROL_CLKIDLE;
377 
378 	writel_relaxed(control, qspi->regs + REG_CONTROL);
379 
380 	return 0;
381 }
382 
mchp_coreqspi_setup_op(struct spi_device * spi_dev)383 static int mchp_coreqspi_setup_op(struct spi_device *spi_dev)
384 {
385 	struct spi_controller *ctlr = spi_dev->controller;
386 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
387 	u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
388 
389 	control |= (CONTROL_MASTER | CONTROL_ENABLE);
390 	control &= ~CONTROL_CLKIDLE;
391 	writel_relaxed(control, qspi->regs + REG_CONTROL);
392 
393 	return 0;
394 }
395 
mchp_coreqspi_config_op(struct mchp_coreqspi * qspi,const struct spi_mem_op * op)396 static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
397 {
398 	u32 idle_cycles = 0;
399 	int total_bytes, cmd_bytes, frames, ctrl;
400 
401 	cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
402 	total_bytes = cmd_bytes + op->data.nbytes;
403 
404 	/*
405 	 * As per the coreQSPI IP spec,the number of command and data bytes are
406 	 * controlled by the frames register for each SPI sequence. This supports
407 	 * the SPI flash memory read and writes sequences as below. so configure
408 	 * the cmd and total bytes accordingly.
409 	 * ---------------------------------------------------------------------
410 	 * TOTAL BYTES  |  CMD BYTES | What happens                             |
411 	 * ______________________________________________________________________
412 	 *              |            |                                          |
413 	 *     1        |   1        | The SPI core will transmit a single byte |
414 	 *              |            | and receive data is discarded            |
415 	 *              |            |                                          |
416 	 *     1        |   0        | The SPI core will transmit a single byte |
417 	 *              |            | and return a single byte                 |
418 	 *              |            |                                          |
419 	 *     10       |   4        | The SPI core will transmit 4 command     |
420 	 *              |            | bytes discarding the receive data and    |
421 	 *              |            | transmits 6 dummy bytes returning the 6  |
422 	 *              |            | received bytes and return a single byte  |
423 	 *              |            |                                          |
424 	 *     10       |   10       | The SPI core will transmit 10 command    |
425 	 *              |            |                                          |
426 	 *     10       |    0       | The SPI core will transmit 10 command    |
427 	 *              |            | bytes and returning 10 received bytes    |
428 	 * ______________________________________________________________________
429 	 */
430 	if (!(op->data.dir == SPI_MEM_DATA_IN))
431 		cmd_bytes = total_bytes;
432 
433 	frames = total_bytes & BYTESUPPER_MASK;
434 	writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
435 	frames = total_bytes & BYTESLOWER_MASK;
436 	frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
437 
438 	if (op->dummy.buswidth)
439 		idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
440 
441 	frames |= idle_cycles << FRAMES_IDLE_SHIFT;
442 	ctrl = readl_relaxed(qspi->regs + REG_CONTROL);
443 
444 	if (ctrl & CONTROL_MODE12_MASK)
445 		frames |= (1 << FRAMES_SHIFT);
446 
447 	frames |= FRAMES_FLAGWORD;
448 	writel_relaxed(frames, qspi->regs + REG_FRAMES);
449 }
450 
mchp_coreqspi_wait_for_ready(struct mchp_coreqspi * qspi)451 static int mchp_coreqspi_wait_for_ready(struct mchp_coreqspi *qspi)
452 {
453 	u32 status;
454 
455 	return readl_poll_timeout(qspi->regs + REG_STATUS, status,
456 				 (status & STATUS_READY), 0,
457 				 TIMEOUT_MS);
458 }
459 
mchp_coreqspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)460 static int mchp_coreqspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
461 {
462 	struct mchp_coreqspi *qspi = spi_controller_get_devdata
463 				    (mem->spi->controller);
464 	u32 address = op->addr.val;
465 	u8 opcode = op->cmd.opcode;
466 	u8 opaddr[5];
467 	int err, i;
468 
469 	mutex_lock(&qspi->op_lock);
470 	err = mchp_coreqspi_wait_for_ready(qspi);
471 	if (err) {
472 		dev_err(&mem->spi->dev, "Timeout waiting on QSPI ready.\n");
473 		goto error;
474 	}
475 
476 	err = mchp_coreqspi_setup_clock(qspi, mem->spi, op->max_freq);
477 	if (err)
478 		goto error;
479 
480 	err = mchp_coreqspi_set_mode(qspi, op);
481 	if (err)
482 		goto error;
483 
484 	reinit_completion(&qspi->data_completion);
485 	mchp_coreqspi_config_op(qspi, op);
486 	if (op->cmd.opcode) {
487 		qspi->txbuf = &opcode;
488 		qspi->rxbuf = NULL;
489 		qspi->tx_len = op->cmd.nbytes;
490 		qspi->rx_len = 0;
491 		mchp_coreqspi_write_op(qspi);
492 	}
493 
494 	qspi->txbuf = &opaddr[0];
495 	if (op->addr.nbytes) {
496 		for (i = 0; i < op->addr.nbytes; i++)
497 			qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
498 
499 		qspi->rxbuf = NULL;
500 		qspi->tx_len = op->addr.nbytes;
501 		qspi->rx_len = 0;
502 		mchp_coreqspi_write_op(qspi);
503 	}
504 
505 	if (op->data.nbytes) {
506 		if (op->data.dir == SPI_MEM_DATA_OUT) {
507 			qspi->txbuf = (u8 *)op->data.buf.out;
508 			qspi->rxbuf = NULL;
509 			qspi->rx_len = 0;
510 			qspi->tx_len = op->data.nbytes;
511 			mchp_coreqspi_write_op(qspi);
512 		} else {
513 			qspi->txbuf = NULL;
514 			qspi->rxbuf = (u8 *)op->data.buf.in;
515 			qspi->rx_len = op->data.nbytes;
516 			qspi->tx_len = 0;
517 		}
518 	}
519 
520 	mchp_coreqspi_enable_ints(qspi);
521 
522 	if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(1000)))
523 		err = -ETIMEDOUT;
524 
525 error:
526 	mutex_unlock(&qspi->op_lock);
527 	mchp_coreqspi_disable_ints(qspi);
528 
529 	return err;
530 }
531 
mchp_coreqspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)532 static bool mchp_coreqspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
533 {
534 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(mem->spi->controller);
535 	unsigned long clk_hz;
536 	u32 baud_rate_val;
537 
538 	if (!spi_mem_default_supports_op(mem, op))
539 		return false;
540 
541 	if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
542 	    (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))) {
543 		/*
544 		 * If the command and address are on DQ0 only, then this
545 		 * controller doesn't support sending data on dual and
546 		 * quad lines. but it supports reading data on dual and
547 		 * quad lines with same configuration as command and
548 		 * address on DQ0.
549 		 * i.e. The control register[15:13] :EX_RO(read only) is
550 		 * meant only for the command and address are on DQ0 but
551 		 * not to write data, it is just to read.
552 		 * Ex: 0x34h is Quad Load Program Data which is not
553 		 * supported. Then the spi-mem layer will iterate over
554 		 * each command and it will chose the supported one.
555 		 */
556 		if (op->data.dir == SPI_MEM_DATA_OUT)
557 			return false;
558 	}
559 
560 	clk_hz = clk_get_rate(qspi->clk);
561 	if (!clk_hz)
562 		return false;
563 
564 	baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * op->max_freq);
565 	if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER)
566 		return false;
567 
568 	return true;
569 }
570 
mchp_coreqspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)571 static int mchp_coreqspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
572 {
573 	if (op->data.dir == SPI_MEM_DATA_OUT || op->data.dir == SPI_MEM_DATA_IN) {
574 		if (op->data.nbytes > MAX_DATA_CMD_LEN)
575 			op->data.nbytes = MAX_DATA_CMD_LEN;
576 	}
577 
578 	return 0;
579 }
580 
581 static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
582 	.adjust_op_size = mchp_coreqspi_adjust_op_size,
583 	.supports_op = mchp_coreqspi_supports_op,
584 	.exec_op = mchp_coreqspi_exec_op,
585 };
586 
587 static const struct spi_controller_mem_caps mchp_coreqspi_mem_caps = {
588 	.per_op_freq = true,
589 };
590 
mchp_coreqspi_unprepare_message(struct spi_controller * ctlr,struct spi_message * m)591 static int mchp_coreqspi_unprepare_message(struct spi_controller *ctlr, struct spi_message *m)
592 {
593 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
594 
595 	/*
596 	 * This delay is required for the driver to function correctly,
597 	 * but no explanation has been determined for why it is required.
598 	 */
599 	udelay(750);
600 
601 	mutex_unlock(&qspi->op_lock);
602 
603 	return 0;
604 }
605 
mchp_coreqspi_prepare_message(struct spi_controller * ctlr,struct spi_message * m)606 static int mchp_coreqspi_prepare_message(struct spi_controller *ctlr, struct spi_message *m)
607 {
608 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
609 	struct spi_transfer *t = NULL;
610 	u32 control, frames;
611 	u32 total_bytes = 0, cmd_bytes = 0, idle_cycles = 0;
612 	int ret;
613 	bool quad = false, dual = false;
614 
615 	mutex_lock(&qspi->op_lock);
616 	ret = mchp_coreqspi_wait_for_ready(qspi);
617 	if (ret) {
618 		mutex_unlock(&qspi->op_lock);
619 		dev_err(&ctlr->dev, "Timeout waiting on QSPI ready.\n");
620 		return ret;
621 	}
622 
623 	ret = mchp_coreqspi_setup_clock(qspi, m->spi, m->spi->max_speed_hz);
624 	if (ret) {
625 		mutex_unlock(&qspi->op_lock);
626 		return ret;
627 	}
628 
629 	control = readl_relaxed(qspi->regs + REG_CONTROL);
630 	control &= ~(CONTROL_MODE12_MASK | CONTROL_MODE0);
631 	writel_relaxed(control, qspi->regs + REG_CONTROL);
632 
633 	reinit_completion(&qspi->data_completion);
634 
635 	list_for_each_entry(t, &m->transfers, transfer_list) {
636 		total_bytes += t->len;
637 		if (!cmd_bytes && !(t->tx_buf && t->rx_buf))
638 			cmd_bytes = t->len;
639 		if (!t->rx_buf)
640 			cmd_bytes = total_bytes;
641 		if (t->tx_nbits == SPI_NBITS_QUAD || t->rx_nbits == SPI_NBITS_QUAD)
642 			quad = true;
643 		else if (t->tx_nbits == SPI_NBITS_DUAL || t->rx_nbits == SPI_NBITS_DUAL)
644 			dual = true;
645 	}
646 
647 	control = readl_relaxed(qspi->regs + REG_CONTROL);
648 	if (quad) {
649 		control |= (CONTROL_MODE0 | CONTROL_MODE12_EX_RW);
650 	} else if (dual) {
651 		control &= ~CONTROL_MODE0;
652 		control |= CONTROL_MODE12_FULL;
653 	} else {
654 		control &= ~(CONTROL_MODE12_MASK | CONTROL_MODE0);
655 	}
656 	writel_relaxed(control, qspi->regs + REG_CONTROL);
657 
658 	frames = total_bytes & BYTESUPPER_MASK;
659 	writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
660 	frames = total_bytes & BYTESLOWER_MASK;
661 	frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
662 	frames |= idle_cycles << FRAMES_IDLE_SHIFT;
663 	control = readl_relaxed(qspi->regs + REG_CONTROL);
664 	if (control & CONTROL_MODE12_MASK)
665 		frames |= (1 << FRAMES_SHIFT);
666 
667 	frames |= FRAMES_FLAGWORD;
668 	writel_relaxed(frames, qspi->regs + REG_FRAMES);
669 
670 	return 0;
671 };
672 
mchp_coreqspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * t)673 static int mchp_coreqspi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi,
674 				      struct spi_transfer *t)
675 {
676 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
677 
678 	qspi->tx_len = t->len;
679 
680 	if (t->tx_buf)
681 		qspi->txbuf = (u8 *)t->tx_buf;
682 
683 	if (!t->rx_buf) {
684 		mchp_coreqspi_write_op(qspi);
685 	} else {
686 		qspi->rxbuf = (u8 *)t->rx_buf;
687 		qspi->rx_len = t->len;
688 		mchp_coreqspi_write_read_op(qspi);
689 	}
690 
691 	return 0;
692 }
693 
mchp_coreqspi_probe(struct platform_device * pdev)694 static int mchp_coreqspi_probe(struct platform_device *pdev)
695 {
696 	struct spi_controller *ctlr;
697 	struct mchp_coreqspi *qspi;
698 	struct device *dev = &pdev->dev;
699 	struct device_node *np = dev->of_node;
700 	int ret;
701 
702 	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*qspi));
703 	if (!ctlr)
704 		return dev_err_probe(&pdev->dev, -ENOMEM,
705 				     "unable to allocate host for QSPI controller\n");
706 
707 	qspi = spi_controller_get_devdata(ctlr);
708 	platform_set_drvdata(pdev, qspi);
709 
710 	qspi->regs = devm_platform_ioremap_resource(pdev, 0);
711 	if (IS_ERR(qspi->regs))
712 		return dev_err_probe(&pdev->dev, PTR_ERR(qspi->regs),
713 				     "failed to map registers\n");
714 
715 	qspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
716 	if (IS_ERR(qspi->clk))
717 		return dev_err_probe(&pdev->dev, PTR_ERR(qspi->clk),
718 				     "could not get clock\n");
719 
720 	init_completion(&qspi->data_completion);
721 	mutex_init(&qspi->op_lock);
722 
723 	qspi->irq = platform_get_irq(pdev, 0);
724 	if (qspi->irq < 0)
725 		return qspi->irq;
726 
727 	ret = devm_request_irq(&pdev->dev, qspi->irq, mchp_coreqspi_isr,
728 			       IRQF_SHARED, pdev->name, qspi);
729 	if (ret) {
730 		dev_err(&pdev->dev, "request_irq failed %d\n", ret);
731 		return ret;
732 	}
733 
734 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
735 	ctlr->mem_ops = &mchp_coreqspi_mem_ops;
736 	ctlr->mem_caps = &mchp_coreqspi_mem_caps;
737 	ctlr->setup = mchp_coreqspi_setup_op;
738 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
739 			  SPI_TX_DUAL | SPI_TX_QUAD;
740 	ctlr->dev.of_node = np;
741 	ctlr->min_speed_hz = clk_get_rate(qspi->clk) / 30;
742 	ctlr->prepare_message = mchp_coreqspi_prepare_message;
743 	ctlr->unprepare_message = mchp_coreqspi_unprepare_message;
744 	ctlr->transfer_one = mchp_coreqspi_transfer_one;
745 	ctlr->num_chipselect = 2;
746 	ctlr->use_gpio_descriptors = true;
747 
748 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
749 	if (ret)
750 		return dev_err_probe(&pdev->dev, ret,
751 				     "spi_register_controller failed\n");
752 
753 	return 0;
754 }
755 
mchp_coreqspi_remove(struct platform_device * pdev)756 static void mchp_coreqspi_remove(struct platform_device *pdev)
757 {
758 	struct mchp_coreqspi *qspi = platform_get_drvdata(pdev);
759 	u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
760 
761 	mchp_coreqspi_disable_ints(qspi);
762 	control &= ~CONTROL_ENABLE;
763 	writel_relaxed(control, qspi->regs + REG_CONTROL);
764 }
765 
766 static const struct of_device_id mchp_coreqspi_of_match[] = {
767 	{ .compatible = "microchip,coreqspi-rtl-v2" },
768 	{ /* sentinel */ }
769 };
770 MODULE_DEVICE_TABLE(of, mchp_coreqspi_of_match);
771 
772 static struct platform_driver mchp_coreqspi_driver = {
773 	.probe = mchp_coreqspi_probe,
774 	.driver = {
775 		.name = "microchip,coreqspi",
776 		.of_match_table = mchp_coreqspi_of_match,
777 	},
778 	.remove = mchp_coreqspi_remove,
779 };
780 module_platform_driver(mchp_coreqspi_driver);
781 
782 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasuresh.relli@microchip.com");
783 MODULE_DESCRIPTION("Microchip coreQSPI QSPI controller driver");
784 MODULE_LICENSE("GPL");
785