1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35
36 #define DM_MSG_PREFIX "core"
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 /*
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
49 */
50 #define REQ_DM_POLL_LIST REQ_DRV
51
52 static const char *_name = DM_NAME;
53
54 static unsigned int major;
55 static unsigned int _major;
56
57 static DEFINE_IDR(_minor_idr);
58
59 static DEFINE_SPINLOCK(_minor_lock);
60
61 static void do_deferred_remove(struct work_struct *w);
62
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64
65 static struct workqueue_struct *deferred_remove_workqueue;
66
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
74 }
75
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79
80 /*
81 * One of these is allocated (on-stack) per original bio.
82 */
83 struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
91 };
92
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 return container_of(clone, struct dm_target_io, clone);
96 }
97
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122
123 #define MINOR_ALLOCED ((void *)-1)
124
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 int latch = READ_ONCE(swap_bios);
133
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137 }
138
139 struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143 };
144
145 /*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170 }
171
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
176
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
181
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188 }
189
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202
local_init(void)203 static int __init local_init(void)
204 {
205 int r;
206
207 r = dm_uevent_init();
208 if (r)
209 return r;
210
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
215 }
216
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
221
222 if (!_major)
223 _major = r;
224
225 return 0;
226
227 out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 dm_uevent_exit();
231
232 return r;
233 }
234
local_exit(void)235 static void local_exit(void)
236 {
237 destroy_workqueue(deferred_remove_workqueue);
238
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
241
242 _major = 0;
243
244 DMINFO("cleaned up");
245 }
246
247 static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
256 };
257
258 static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
267 };
268
dm_init(void)269 static int __init dm_init(void)
270 {
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
273
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
283 }
284
285 return 0;
286 bad:
287 while (i--)
288 _exits[i]();
289
290 return r;
291 }
292
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 int i = ARRAY_SIZE(_exits);
296
297 while (i--)
298 _exits[i]();
299
300 /*
301 * Should be empty by this point.
302 */
303 idr_destroy(&_minor_idr);
304 }
305
306 /*
307 * Block device functions
308 */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 return test_bit(DMF_DELETING, &md->flags);
312 }
313
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 struct mapped_device *md;
317
318 spin_lock(&_minor_lock);
319
320 md = disk->private_data;
321 if (!md)
322 goto out;
323
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
328 }
329
330 dm_get(md);
331 atomic_inc(&md->open_count);
332 out:
333 spin_unlock(&_minor_lock);
334
335 return md ? 0 : -ENXIO;
336 }
337
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 struct mapped_device *md;
341
342 spin_lock(&_minor_lock);
343
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
347
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
351
352 dm_put(md);
353 out:
354 spin_unlock(&_minor_lock);
355 }
356
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 return atomic_read(&md->open_count);
360 }
361
362 /*
363 * Guarantees nothing is using the device before it's deleted.
364 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 int r = 0;
368
369 spin_lock(&_minor_lock);
370
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383 }
384
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 int r = 0;
388
389 spin_lock(&_minor_lock);
390
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395
396 spin_unlock(&_minor_lock);
397
398 return r;
399 }
400
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 dm_deferred_remove();
404 }
405
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev, unsigned int cmd,
415 unsigned long arg, bool *forward)
416 {
417 struct dm_target *ti;
418 struct dm_table *map;
419 int r;
420
421 retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 return r;
426
427 /* We only support devices that have a single target */
428 if (map->num_targets != 1)
429 return r;
430
431 ti = dm_table_get_target(map, 0);
432 if (!ti->type->prepare_ioctl)
433 return r;
434
435 if (dm_suspended_md(md))
436 return -EAGAIN;
437
438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 dm_put_live_table(md, *srcu_idx);
441 fsleep(10000);
442 goto retry;
443 }
444
445 return r;
446 }
447
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449 {
450 dm_put_live_table(md, srcu_idx);
451 }
452
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 unsigned int cmd, unsigned long arg)
455 {
456 struct mapped_device *md = bdev->bd_disk->private_data;
457 int r, srcu_idx;
458 bool forward = true;
459
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 if (!forward || r < 0)
462 goto out;
463
464 if (r > 0) {
465 /*
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
468 */
469 if (!capable(CAP_SYS_RAWIO)) {
470 DMDEBUG_LIMIT(
471 "%s: sending ioctl %x to DM device without required privilege.",
472 current->comm, cmd);
473 r = -ENOIOCTLCMD;
474 goto out;
475 }
476 }
477
478 if (!bdev->bd_disk->fops->ioctl)
479 r = -ENOTTY;
480 else
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 dm_unprepare_ioctl(md, srcu_idx);
484 return r;
485 }
486
dm_start_time_ns_from_clone(struct bio * bio)487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492
bio_is_flush_with_data(struct bio * bio)493 static inline bool bio_is_flush_with_data(struct bio *bio)
494 {
495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497
dm_io_sectors(struct dm_io * io,struct bio * bio)498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
499 {
500 /*
501 * If REQ_PREFLUSH set, don't account payload, it will be
502 * submitted (and accounted) after this flush completes.
503 */
504 if (bio_is_flush_with_data(bio))
505 return 0;
506 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
507 return io->sectors;
508 return bio_sectors(bio);
509 }
510
dm_io_acct(struct dm_io * io,bool end)511 static void dm_io_acct(struct dm_io *io, bool end)
512 {
513 struct bio *bio = io->orig_bio;
514
515 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
516 if (!end)
517 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
518 io->start_time);
519 else
520 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
521 dm_io_sectors(io, bio),
522 io->start_time);
523 }
524
525 if (static_branch_unlikely(&stats_enabled) &&
526 unlikely(dm_stats_used(&io->md->stats))) {
527 sector_t sector;
528
529 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
530 sector = bio_end_sector(bio) - io->sector_offset;
531 else
532 sector = bio->bi_iter.bi_sector;
533
534 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
535 sector, dm_io_sectors(io, bio),
536 end, io->start_time, &io->stats_aux);
537 }
538 }
539
__dm_start_io_acct(struct dm_io * io)540 static void __dm_start_io_acct(struct dm_io *io)
541 {
542 dm_io_acct(io, false);
543 }
544
dm_start_io_acct(struct dm_io * io,struct bio * clone)545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546 {
547 /*
548 * Ensure IO accounting is only ever started once.
549 */
550 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 return;
552
553 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
554 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
555 dm_io_set_flag(io, DM_IO_ACCOUNTED);
556 } else {
557 unsigned long flags;
558 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
559 spin_lock_irqsave(&io->lock, flags);
560 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
561 spin_unlock_irqrestore(&io->lock, flags);
562 return;
563 }
564 dm_io_set_flag(io, DM_IO_ACCOUNTED);
565 spin_unlock_irqrestore(&io->lock, flags);
566 }
567
568 __dm_start_io_acct(io);
569 }
570
dm_end_io_acct(struct dm_io * io)571 static void dm_end_io_acct(struct dm_io *io)
572 {
573 dm_io_acct(io, true);
574 }
575
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
577 {
578 struct dm_io *io;
579 struct dm_target_io *tio;
580 struct bio *clone;
581
582 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
583 if (unlikely(!clone))
584 return NULL;
585 tio = clone_to_tio(clone);
586 tio->flags = 0;
587 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
588 tio->io = NULL;
589
590 io = container_of(tio, struct dm_io, tio);
591 io->magic = DM_IO_MAGIC;
592 io->status = BLK_STS_OK;
593
594 /* one ref is for submission, the other is for completion */
595 atomic_set(&io->io_count, 2);
596 this_cpu_inc(*md->pending_io);
597 io->orig_bio = bio;
598 io->md = md;
599 spin_lock_init(&io->lock);
600 io->start_time = jiffies;
601 io->flags = 0;
602 if (blk_queue_io_stat(md->queue))
603 dm_io_set_flag(io, DM_IO_BLK_STAT);
604
605 if (static_branch_unlikely(&stats_enabled) &&
606 unlikely(dm_stats_used(&md->stats)))
607 dm_stats_record_start(&md->stats, &io->stats_aux);
608
609 return io;
610 }
611
free_io(struct dm_io * io)612 static void free_io(struct dm_io *io)
613 {
614 bio_put(&io->tio.clone);
615 }
616
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
619 {
620 struct mapped_device *md = ci->io->md;
621 struct dm_target_io *tio;
622 struct bio *clone;
623
624 if (!ci->io->tio.io) {
625 /* the dm_target_io embedded in ci->io is available */
626 tio = &ci->io->tio;
627 /* alloc_io() already initialized embedded clone */
628 clone = &tio->clone;
629 } else {
630 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
631 &md->mempools->bs);
632 if (!clone)
633 return NULL;
634
635 /* REQ_DM_POLL_LIST shouldn't be inherited */
636 clone->bi_opf &= ~REQ_DM_POLL_LIST;
637
638 tio = clone_to_tio(clone);
639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 }
641
642 tio->magic = DM_TIO_MAGIC;
643 tio->io = ci->io;
644 tio->ti = ti;
645 tio->target_bio_nr = target_bio_nr;
646 tio->len_ptr = len;
647 tio->old_sector = 0;
648
649 /* Set default bdev, but target must bio_set_dev() before issuing IO */
650 clone->bi_bdev = md->disk->part0;
651 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
652 bio_set_dev(clone, md->disk->part0);
653
654 if (len) {
655 clone->bi_iter.bi_size = to_bytes(*len);
656 if (bio_integrity(clone))
657 bio_integrity_trim(clone);
658 }
659
660 return clone;
661 }
662
free_tio(struct bio * clone)663 static void free_tio(struct bio *clone)
664 {
665 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
666 return;
667 bio_put(clone);
668 }
669
670 /*
671 * Add the bio to the list of deferred io.
672 */
queue_io(struct mapped_device * md,struct bio * bio)673 static void queue_io(struct mapped_device *md, struct bio *bio)
674 {
675 unsigned long flags;
676
677 spin_lock_irqsave(&md->deferred_lock, flags);
678 bio_list_add(&md->deferred, bio);
679 spin_unlock_irqrestore(&md->deferred_lock, flags);
680 queue_work(md->wq, &md->work);
681 }
682
683 /*
684 * Everyone (including functions in this file), should use this
685 * function to access the md->map field, and make sure they call
686 * dm_put_live_table() when finished.
687 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)688 struct dm_table *dm_get_live_table(struct mapped_device *md,
689 int *srcu_idx) __acquires(md->io_barrier)
690 {
691 *srcu_idx = srcu_read_lock(&md->io_barrier);
692
693 return srcu_dereference(md->map, &md->io_barrier);
694 }
695
dm_put_live_table(struct mapped_device * md,int srcu_idx)696 void dm_put_live_table(struct mapped_device *md,
697 int srcu_idx) __releases(md->io_barrier)
698 {
699 srcu_read_unlock(&md->io_barrier, srcu_idx);
700 }
701
dm_sync_table(struct mapped_device * md)702 void dm_sync_table(struct mapped_device *md)
703 {
704 synchronize_srcu(&md->io_barrier);
705 synchronize_rcu_expedited();
706 }
707
708 /*
709 * A fast alternative to dm_get_live_table/dm_put_live_table.
710 * The caller must not block between these two functions.
711 */
dm_get_live_table_fast(struct mapped_device * md)712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
713 {
714 rcu_read_lock();
715 return rcu_dereference(md->map);
716 }
717
dm_put_live_table_fast(struct mapped_device * md)718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
719 {
720 rcu_read_unlock();
721 }
722
723 static char *_dm_claim_ptr = "I belong to device-mapper";
724
725 /*
726 * Open a table device so we can use it as a map destination.
727 */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)728 static struct table_device *open_table_device(struct mapped_device *md,
729 dev_t dev, blk_mode_t mode)
730 {
731 struct table_device *td;
732 struct file *bdev_file;
733 struct block_device *bdev;
734 u64 part_off;
735 int r;
736
737 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
738 if (!td)
739 return ERR_PTR(-ENOMEM);
740 refcount_set(&td->count, 1);
741
742 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
743 if (IS_ERR(bdev_file)) {
744 r = PTR_ERR(bdev_file);
745 goto out_free_td;
746 }
747
748 bdev = file_bdev(bdev_file);
749
750 /*
751 * We can be called before the dm disk is added. In that case we can't
752 * register the holder relation here. It will be done once add_disk was
753 * called.
754 */
755 if (md->disk->slave_dir) {
756 r = bd_link_disk_holder(bdev, md->disk);
757 if (r)
758 goto out_blkdev_put;
759 }
760
761 td->dm_dev.mode = mode;
762 td->dm_dev.bdev = bdev;
763 td->dm_dev.bdev_file = bdev_file;
764 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
765 NULL, NULL);
766 format_dev_t(td->dm_dev.name, dev);
767 list_add(&td->list, &md->table_devices);
768 return td;
769
770 out_blkdev_put:
771 __fput_sync(bdev_file);
772 out_free_td:
773 kfree(td);
774 return ERR_PTR(r);
775 }
776
777 /*
778 * Close a table device that we've been using.
779 */
close_table_device(struct table_device * td,struct mapped_device * md)780 static void close_table_device(struct table_device *td, struct mapped_device *md)
781 {
782 if (md->disk->slave_dir)
783 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
784
785 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
786 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
787 fput(td->dm_dev.bdev_file);
788 else
789 __fput_sync(td->dm_dev.bdev_file);
790
791 put_dax(td->dm_dev.dax_dev);
792 list_del(&td->list);
793 kfree(td);
794 }
795
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)796 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
797 blk_mode_t mode)
798 {
799 struct table_device *td;
800
801 list_for_each_entry(td, l, list)
802 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
803 return td;
804
805 return NULL;
806 }
807
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
809 struct dm_dev **result)
810 {
811 struct table_device *td;
812
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
815 if (!td) {
816 td = open_table_device(md, dev, mode);
817 if (IS_ERR(td)) {
818 mutex_unlock(&md->table_devices_lock);
819 return PTR_ERR(td);
820 }
821 } else {
822 refcount_inc(&td->count);
823 }
824 mutex_unlock(&md->table_devices_lock);
825
826 *result = &td->dm_dev;
827 return 0;
828 }
829
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
831 {
832 struct table_device *td = container_of(d, struct table_device, dm_dev);
833
834 mutex_lock(&md->table_devices_lock);
835 if (refcount_dec_and_test(&td->count))
836 close_table_device(td, md);
837 mutex_unlock(&md->table_devices_lock);
838 }
839
840 /*
841 * Get the geometry associated with a dm device
842 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
844 {
845 *geo = md->geometry;
846
847 return 0;
848 }
849
850 /*
851 * Set the geometry of a device.
852 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
856
857 if (geo->start > sz) {
858 DMERR("Start sector is beyond the geometry limits.");
859 return -EINVAL;
860 }
861
862 md->geometry = *geo;
863
864 return 0;
865 }
866
__noflush_suspending(struct mapped_device * md)867 static int __noflush_suspending(struct mapped_device *md)
868 {
869 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
870 }
871
dm_requeue_add_io(struct dm_io * io,bool first_stage)872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
873 {
874 struct mapped_device *md = io->md;
875
876 if (first_stage) {
877 struct dm_io *next = md->requeue_list;
878
879 md->requeue_list = io;
880 io->next = next;
881 } else {
882 bio_list_add_head(&md->deferred, io->orig_bio);
883 }
884 }
885
dm_kick_requeue(struct mapped_device * md,bool first_stage)886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
887 {
888 if (first_stage)
889 queue_work(md->wq, &md->requeue_work);
890 else
891 queue_work(md->wq, &md->work);
892 }
893
894 /*
895 * Return true if the dm_io's original bio is requeued.
896 * io->status is updated with error if requeue disallowed.
897 */
dm_handle_requeue(struct dm_io * io,bool first_stage)898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
899 {
900 struct bio *bio = io->orig_bio;
901 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
902 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
903 (bio->bi_opf & REQ_POLLED));
904 struct mapped_device *md = io->md;
905 bool requeued = false;
906
907 if (handle_requeue || handle_polled_eagain) {
908 unsigned long flags;
909
910 if (bio->bi_opf & REQ_POLLED) {
911 /*
912 * Upper layer won't help us poll split bio
913 * (io->orig_bio may only reflect a subset of the
914 * pre-split original) so clear REQ_POLLED.
915 */
916 bio_clear_polled(bio);
917 }
918
919 /*
920 * Target requested pushing back the I/O or
921 * polled IO hit BLK_STS_AGAIN.
922 */
923 spin_lock_irqsave(&md->deferred_lock, flags);
924 if ((__noflush_suspending(md) &&
925 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
926 handle_polled_eagain || first_stage) {
927 dm_requeue_add_io(io, first_stage);
928 requeued = true;
929 } else {
930 /*
931 * noflush suspend was interrupted or this is
932 * a write to a zoned target.
933 */
934 io->status = BLK_STS_IOERR;
935 }
936 spin_unlock_irqrestore(&md->deferred_lock, flags);
937 }
938
939 if (requeued)
940 dm_kick_requeue(md, first_stage);
941
942 return requeued;
943 }
944
__dm_io_complete(struct dm_io * io,bool first_stage)945 static void __dm_io_complete(struct dm_io *io, bool first_stage)
946 {
947 struct bio *bio = io->orig_bio;
948 struct mapped_device *md = io->md;
949 blk_status_t io_error;
950 bool requeued;
951
952 requeued = dm_handle_requeue(io, first_stage);
953 if (requeued && first_stage)
954 return;
955
956 io_error = io->status;
957 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
958 dm_end_io_acct(io);
959 else if (!io_error) {
960 /*
961 * Must handle target that DM_MAPIO_SUBMITTED only to
962 * then bio_endio() rather than dm_submit_bio_remap()
963 */
964 __dm_start_io_acct(io);
965 dm_end_io_acct(io);
966 }
967 free_io(io);
968 smp_wmb();
969 this_cpu_dec(*md->pending_io);
970
971 /* nudge anyone waiting on suspend queue */
972 if (unlikely(wq_has_sleeper(&md->wait)))
973 wake_up(&md->wait);
974
975 /* Return early if the original bio was requeued */
976 if (requeued)
977 return;
978
979 if (bio_is_flush_with_data(bio)) {
980 /*
981 * Preflush done for flush with data, reissue
982 * without REQ_PREFLUSH.
983 */
984 bio->bi_opf &= ~REQ_PREFLUSH;
985 queue_io(md, bio);
986 } else {
987 /* done with normal IO or empty flush */
988 if (io_error)
989 bio->bi_status = io_error;
990 bio_endio(bio);
991 }
992 }
993
dm_wq_requeue_work(struct work_struct * work)994 static void dm_wq_requeue_work(struct work_struct *work)
995 {
996 struct mapped_device *md = container_of(work, struct mapped_device,
997 requeue_work);
998 unsigned long flags;
999 struct dm_io *io;
1000
1001 /* reuse deferred lock to simplify dm_handle_requeue */
1002 spin_lock_irqsave(&md->deferred_lock, flags);
1003 io = md->requeue_list;
1004 md->requeue_list = NULL;
1005 spin_unlock_irqrestore(&md->deferred_lock, flags);
1006
1007 while (io) {
1008 struct dm_io *next = io->next;
1009
1010 dm_io_rewind(io, &md->disk->bio_split);
1011
1012 io->next = NULL;
1013 __dm_io_complete(io, false);
1014 io = next;
1015 cond_resched();
1016 }
1017 }
1018
1019 /*
1020 * Two staged requeue:
1021 *
1022 * 1) io->orig_bio points to the real original bio, and the part mapped to
1023 * this io must be requeued, instead of other parts of the original bio.
1024 *
1025 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1026 */
dm_io_complete(struct dm_io * io)1027 static void dm_io_complete(struct dm_io *io)
1028 {
1029 bool first_requeue;
1030
1031 /*
1032 * Only dm_io that has been split needs two stage requeue, otherwise
1033 * we may run into long bio clone chain during suspend and OOM could
1034 * be triggered.
1035 *
1036 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1037 * also aren't handled via the first stage requeue.
1038 */
1039 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1040 first_requeue = true;
1041 else
1042 first_requeue = false;
1043
1044 __dm_io_complete(io, first_requeue);
1045 }
1046
1047 /*
1048 * Decrements the number of outstanding ios that a bio has been
1049 * cloned into, completing the original io if necc.
1050 */
__dm_io_dec_pending(struct dm_io * io)1051 static inline void __dm_io_dec_pending(struct dm_io *io)
1052 {
1053 if (atomic_dec_and_test(&io->io_count))
1054 dm_io_complete(io);
1055 }
1056
dm_io_set_error(struct dm_io * io,blk_status_t error)1057 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1058 {
1059 unsigned long flags;
1060
1061 /* Push-back supersedes any I/O errors */
1062 spin_lock_irqsave(&io->lock, flags);
1063 if (!(io->status == BLK_STS_DM_REQUEUE &&
1064 __noflush_suspending(io->md))) {
1065 io->status = error;
1066 }
1067 spin_unlock_irqrestore(&io->lock, flags);
1068 }
1069
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1070 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1071 {
1072 if (unlikely(error))
1073 dm_io_set_error(io, error);
1074
1075 __dm_io_dec_pending(io);
1076 }
1077
1078 /*
1079 * The queue_limits are only valid as long as you have a reference
1080 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1081 */
dm_get_queue_limits(struct mapped_device * md)1082 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1083 {
1084 return &md->queue->limits;
1085 }
1086
swap_bios_limit(struct dm_target * ti,struct bio * bio)1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1088 {
1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1090 }
1091
clone_endio(struct bio * bio)1092 static void clone_endio(struct bio *bio)
1093 {
1094 blk_status_t error = bio->bi_status;
1095 struct dm_target_io *tio = clone_to_tio(bio);
1096 struct dm_target *ti = tio->ti;
1097 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1098 struct dm_io *io = tio->io;
1099 struct mapped_device *md = io->md;
1100
1101 if (unlikely(error == BLK_STS_TARGET)) {
1102 if (bio_op(bio) == REQ_OP_DISCARD &&
1103 !bdev_max_discard_sectors(bio->bi_bdev))
1104 blk_queue_disable_discard(md->queue);
1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1106 !bdev_write_zeroes_sectors(bio->bi_bdev))
1107 blk_queue_disable_write_zeroes(md->queue);
1108 }
1109
1110 if (static_branch_unlikely(&zoned_enabled) &&
1111 unlikely(bdev_is_zoned(bio->bi_bdev)))
1112 dm_zone_endio(io, bio);
1113
1114 if (endio) {
1115 int r = endio(ti, bio, &error);
1116
1117 switch (r) {
1118 case DM_ENDIO_REQUEUE:
1119 if (static_branch_unlikely(&zoned_enabled)) {
1120 /*
1121 * Requeuing writes to a sequential zone of a zoned
1122 * target will break the sequential write pattern:
1123 * fail such IO.
1124 */
1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1126 error = BLK_STS_IOERR;
1127 else
1128 error = BLK_STS_DM_REQUEUE;
1129 } else
1130 error = BLK_STS_DM_REQUEUE;
1131 fallthrough;
1132 case DM_ENDIO_DONE:
1133 break;
1134 case DM_ENDIO_INCOMPLETE:
1135 /* The target will handle the io */
1136 return;
1137 default:
1138 DMCRIT("unimplemented target endio return value: %d", r);
1139 BUG();
1140 }
1141 }
1142
1143 if (static_branch_unlikely(&swap_bios_enabled) &&
1144 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1145 up(&md->swap_bios_semaphore);
1146
1147 free_tio(bio);
1148 dm_io_dec_pending(io, error);
1149 }
1150
1151 /*
1152 * Return maximum size of I/O possible at the supplied sector up to the current
1153 * target boundary.
1154 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1156 sector_t target_offset)
1157 {
1158 return ti->len - target_offset;
1159 }
1160
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1162 unsigned int max_granularity,
1163 unsigned int max_sectors)
1164 {
1165 sector_t target_offset = dm_target_offset(ti, sector);
1166 sector_t len = max_io_len_target_boundary(ti, target_offset);
1167
1168 /*
1169 * Does the target need to split IO even further?
1170 * - varied (per target) IO splitting is a tenet of DM; this
1171 * explains why stacked chunk_sectors based splitting via
1172 * bio_split_to_limits() isn't possible here.
1173 */
1174 if (!max_granularity)
1175 return len;
1176 return min_t(sector_t, len,
1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1178 blk_boundary_sectors_left(target_offset, max_granularity)));
1179 }
1180
max_io_len(struct dm_target * ti,sector_t sector)1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1182 {
1183 return __max_io_len(ti, sector, ti->max_io_len, 0);
1184 }
1185
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1187 {
1188 if (len > UINT_MAX) {
1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1190 (unsigned long long)len, UINT_MAX);
1191 ti->error = "Maximum size of target IO is too large";
1192 return -EINVAL;
1193 }
1194
1195 ti->max_io_len = (uint32_t) len;
1196
1197 return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1200
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1202 sector_t sector, int *srcu_idx)
1203 __acquires(md->io_barrier)
1204 {
1205 struct dm_table *map;
1206 struct dm_target *ti;
1207
1208 map = dm_get_live_table(md, srcu_idx);
1209 if (!map)
1210 return NULL;
1211
1212 ti = dm_table_find_target(map, sector);
1213 if (!ti)
1214 return NULL;
1215
1216 return ti;
1217 }
1218
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1220 long nr_pages, enum dax_access_mode mode, void **kaddr,
1221 pfn_t *pfn)
1222 {
1223 struct mapped_device *md = dax_get_private(dax_dev);
1224 sector_t sector = pgoff * PAGE_SECTORS;
1225 struct dm_target *ti;
1226 long len, ret = -EIO;
1227 int srcu_idx;
1228
1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1230
1231 if (!ti)
1232 goto out;
1233 if (!ti->type->direct_access)
1234 goto out;
1235 len = max_io_len(ti, sector) / PAGE_SECTORS;
1236 if (len < 1)
1237 goto out;
1238 nr_pages = min(len, nr_pages);
1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1240
1241 out:
1242 dm_put_live_table(md, srcu_idx);
1243
1244 return ret;
1245 }
1246
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1248 size_t nr_pages)
1249 {
1250 struct mapped_device *md = dax_get_private(dax_dev);
1251 sector_t sector = pgoff * PAGE_SECTORS;
1252 struct dm_target *ti;
1253 int ret = -EIO;
1254 int srcu_idx;
1255
1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1257
1258 if (!ti)
1259 goto out;
1260 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1261 /*
1262 * ->zero_page_range() is mandatory dax operation. If we are
1263 * here, something is wrong.
1264 */
1265 goto out;
1266 }
1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1268 out:
1269 dm_put_live_table(md, srcu_idx);
1270
1271 return ret;
1272 }
1273
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1275 void *addr, size_t bytes, struct iov_iter *i)
1276 {
1277 struct mapped_device *md = dax_get_private(dax_dev);
1278 sector_t sector = pgoff * PAGE_SECTORS;
1279 struct dm_target *ti;
1280 int srcu_idx;
1281 long ret = 0;
1282
1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1284 if (!ti || !ti->type->dax_recovery_write)
1285 goto out;
1286
1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1288 out:
1289 dm_put_live_table(md, srcu_idx);
1290 return ret;
1291 }
1292
1293 /*
1294 * A target may call dm_accept_partial_bio only from the map routine. It is
1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1296 * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated
1297 * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced
1298 * by __send_duplicate_bios().
1299 *
1300 * dm_accept_partial_bio informs the dm that the target only wants to process
1301 * additional n_sectors sectors of the bio and the rest of the data should be
1302 * sent in a next bio.
1303 *
1304 * A diagram that explains the arithmetics:
1305 * +--------------------+---------------+-------+
1306 * | 1 | 2 | 3 |
1307 * +--------------------+---------------+-------+
1308 *
1309 * <-------------- *tio->len_ptr --------------->
1310 * <----- bio_sectors ----->
1311 * <-- n_sectors -->
1312 *
1313 * Region 1 was already iterated over with bio_advance or similar function.
1314 * (it may be empty if the target doesn't use bio_advance)
1315 * Region 2 is the remaining bio size that the target wants to process.
1316 * (it may be empty if region 1 is non-empty, although there is no reason
1317 * to make it empty)
1318 * The target requires that region 3 is to be sent in the next bio.
1319 *
1320 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1321 * the partially processed part (the sum of regions 1+2) must be the same for all
1322 * copies of the bio.
1323 */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1324 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1325 {
1326 struct dm_target_io *tio = clone_to_tio(bio);
1327 struct dm_io *io = tio->io;
1328 unsigned int bio_sectors = bio_sectors(bio);
1329
1330 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1331 BUG_ON(bio_sectors > *tio->len_ptr);
1332 BUG_ON(n_sectors > bio_sectors);
1333
1334 if (static_branch_unlikely(&zoned_enabled) &&
1335 unlikely(bdev_is_zoned(bio->bi_bdev))) {
1336 enum req_op op = bio_op(bio);
1337
1338 BUG_ON(op_is_zone_mgmt(op));
1339 BUG_ON(op == REQ_OP_WRITE);
1340 BUG_ON(op == REQ_OP_WRITE_ZEROES);
1341 BUG_ON(op == REQ_OP_ZONE_APPEND);
1342 }
1343
1344 *tio->len_ptr -= bio_sectors - n_sectors;
1345 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1346
1347 /*
1348 * __split_and_process_bio() may have already saved mapped part
1349 * for accounting but it is being reduced so update accordingly.
1350 */
1351 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1352 io->sectors = n_sectors;
1353 io->sector_offset = bio_sectors(io->orig_bio);
1354 }
1355 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1356
1357 /*
1358 * @clone: clone bio that DM core passed to target's .map function
1359 * @tgt_clone: clone of @clone bio that target needs submitted
1360 *
1361 * Targets should use this interface to submit bios they take
1362 * ownership of when returning DM_MAPIO_SUBMITTED.
1363 *
1364 * Target should also enable ti->accounts_remapped_io
1365 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1366 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1367 {
1368 struct dm_target_io *tio = clone_to_tio(clone);
1369 struct dm_io *io = tio->io;
1370
1371 /* establish bio that will get submitted */
1372 if (!tgt_clone)
1373 tgt_clone = clone;
1374
1375 /*
1376 * Account io->origin_bio to DM dev on behalf of target
1377 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1378 */
1379 dm_start_io_acct(io, clone);
1380
1381 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1382 tio->old_sector);
1383 submit_bio_noacct(tgt_clone);
1384 }
1385 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1386
__set_swap_bios_limit(struct mapped_device * md,int latch)1387 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1388 {
1389 mutex_lock(&md->swap_bios_lock);
1390 while (latch < md->swap_bios) {
1391 cond_resched();
1392 down(&md->swap_bios_semaphore);
1393 md->swap_bios--;
1394 }
1395 while (latch > md->swap_bios) {
1396 cond_resched();
1397 up(&md->swap_bios_semaphore);
1398 md->swap_bios++;
1399 }
1400 mutex_unlock(&md->swap_bios_lock);
1401 }
1402
__map_bio(struct bio * clone)1403 static void __map_bio(struct bio *clone)
1404 {
1405 struct dm_target_io *tio = clone_to_tio(clone);
1406 struct dm_target *ti = tio->ti;
1407 struct dm_io *io = tio->io;
1408 struct mapped_device *md = io->md;
1409 int r;
1410
1411 clone->bi_end_io = clone_endio;
1412
1413 /*
1414 * Map the clone.
1415 */
1416 tio->old_sector = clone->bi_iter.bi_sector;
1417
1418 if (static_branch_unlikely(&swap_bios_enabled) &&
1419 unlikely(swap_bios_limit(ti, clone))) {
1420 int latch = get_swap_bios();
1421
1422 if (unlikely(latch != md->swap_bios))
1423 __set_swap_bios_limit(md, latch);
1424 down(&md->swap_bios_semaphore);
1425 }
1426
1427 if (likely(ti->type->map == linear_map))
1428 r = linear_map(ti, clone);
1429 else if (ti->type->map == stripe_map)
1430 r = stripe_map(ti, clone);
1431 else
1432 r = ti->type->map(ti, clone);
1433
1434 switch (r) {
1435 case DM_MAPIO_SUBMITTED:
1436 /* target has assumed ownership of this io */
1437 if (!ti->accounts_remapped_io)
1438 dm_start_io_acct(io, clone);
1439 break;
1440 case DM_MAPIO_REMAPPED:
1441 dm_submit_bio_remap(clone, NULL);
1442 break;
1443 case DM_MAPIO_KILL:
1444 case DM_MAPIO_REQUEUE:
1445 if (static_branch_unlikely(&swap_bios_enabled) &&
1446 unlikely(swap_bios_limit(ti, clone)))
1447 up(&md->swap_bios_semaphore);
1448 free_tio(clone);
1449 if (r == DM_MAPIO_KILL)
1450 dm_io_dec_pending(io, BLK_STS_IOERR);
1451 else
1452 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1453 break;
1454 default:
1455 DMCRIT("unimplemented target map return value: %d", r);
1456 BUG();
1457 }
1458 }
1459
setup_split_accounting(struct clone_info * ci,unsigned int len)1460 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1461 {
1462 struct dm_io *io = ci->io;
1463
1464 if (ci->sector_count > len) {
1465 /*
1466 * Split needed, save the mapped part for accounting.
1467 * NOTE: dm_accept_partial_bio() will update accordingly.
1468 */
1469 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1470 io->sectors = len;
1471 io->sector_offset = bio_sectors(ci->bio);
1472 }
1473 }
1474
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1475 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1476 struct dm_target *ti, unsigned int num_bios,
1477 unsigned *len)
1478 {
1479 struct bio *bio;
1480 int try;
1481
1482 for (try = 0; try < 2; try++) {
1483 int bio_nr;
1484
1485 if (try && num_bios > 1)
1486 mutex_lock(&ci->io->md->table_devices_lock);
1487 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1488 bio = alloc_tio(ci, ti, bio_nr, len,
1489 try ? GFP_NOIO : GFP_NOWAIT);
1490 if (!bio)
1491 break;
1492
1493 bio_list_add(blist, bio);
1494 }
1495 if (try && num_bios > 1)
1496 mutex_unlock(&ci->io->md->table_devices_lock);
1497 if (bio_nr == num_bios)
1498 return;
1499
1500 while ((bio = bio_list_pop(blist)))
1501 free_tio(bio);
1502 }
1503 }
1504
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1505 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1506 unsigned int num_bios, unsigned int *len)
1507 {
1508 struct bio_list blist = BIO_EMPTY_LIST;
1509 struct bio *clone;
1510 unsigned int ret = 0;
1511
1512 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1513 return 0;
1514
1515 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1516 if (len)
1517 setup_split_accounting(ci, *len);
1518
1519 /*
1520 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1521 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1522 */
1523 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1524 while ((clone = bio_list_pop(&blist))) {
1525 if (num_bios > 1)
1526 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1527 __map_bio(clone);
1528 ret += 1;
1529 }
1530
1531 return ret;
1532 }
1533
__send_empty_flush(struct clone_info * ci)1534 static void __send_empty_flush(struct clone_info *ci)
1535 {
1536 struct dm_table *t = ci->map;
1537 struct bio flush_bio;
1538 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1539
1540 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1541 (REQ_IDLE | REQ_SYNC))
1542 opf |= REQ_IDLE;
1543
1544 /*
1545 * Use an on-stack bio for this, it's safe since we don't
1546 * need to reference it after submit. It's just used as
1547 * the basis for the clone(s).
1548 */
1549 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1550
1551 ci->bio = &flush_bio;
1552 ci->sector_count = 0;
1553 ci->io->tio.clone.bi_iter.bi_size = 0;
1554
1555 if (!t->flush_bypasses_map) {
1556 for (unsigned int i = 0; i < t->num_targets; i++) {
1557 unsigned int bios;
1558 struct dm_target *ti = dm_table_get_target(t, i);
1559
1560 if (unlikely(ti->num_flush_bios == 0))
1561 continue;
1562
1563 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1564 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1565 NULL);
1566 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1567 }
1568 } else {
1569 /*
1570 * Note that there's no need to grab t->devices_lock here
1571 * because the targets that support flush optimization don't
1572 * modify the list of devices.
1573 */
1574 struct list_head *devices = dm_table_get_devices(t);
1575 unsigned int len = 0;
1576 struct dm_dev_internal *dd;
1577 list_for_each_entry(dd, devices, list) {
1578 struct bio *clone;
1579 /*
1580 * Note that the structure dm_target_io is not
1581 * associated with any target (because the device may be
1582 * used by multiple targets), so we set tio->ti = NULL.
1583 * We must check for NULL in the I/O processing path, to
1584 * avoid NULL pointer dereference.
1585 */
1586 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1587 atomic_add(1, &ci->io->io_count);
1588 bio_set_dev(clone, dd->dm_dev->bdev);
1589 clone->bi_end_io = clone_endio;
1590 dm_submit_bio_remap(clone, NULL);
1591 }
1592 }
1593
1594 /*
1595 * alloc_io() takes one extra reference for submission, so the
1596 * reference won't reach 0 without the following subtraction
1597 */
1598 atomic_sub(1, &ci->io->io_count);
1599
1600 bio_uninit(ci->bio);
1601 }
1602
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1603 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1604 unsigned int num_bios, unsigned int max_granularity,
1605 unsigned int max_sectors)
1606 {
1607 unsigned int len, bios;
1608
1609 len = min_t(sector_t, ci->sector_count,
1610 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1611
1612 atomic_add(num_bios, &ci->io->io_count);
1613 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1614 /*
1615 * alloc_io() takes one extra reference for submission, so the
1616 * reference won't reach 0 without the following (+1) subtraction
1617 */
1618 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1619
1620 ci->sector += len;
1621 ci->sector_count -= len;
1622 }
1623
is_abnormal_io(struct bio * bio)1624 static bool is_abnormal_io(struct bio *bio)
1625 {
1626 switch (bio_op(bio)) {
1627 case REQ_OP_READ:
1628 case REQ_OP_WRITE:
1629 case REQ_OP_FLUSH:
1630 return false;
1631 case REQ_OP_DISCARD:
1632 case REQ_OP_SECURE_ERASE:
1633 case REQ_OP_WRITE_ZEROES:
1634 case REQ_OP_ZONE_RESET_ALL:
1635 return true;
1636 default:
1637 return false;
1638 }
1639 }
1640
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1641 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1642 struct dm_target *ti)
1643 {
1644 unsigned int num_bios = 0;
1645 unsigned int max_granularity = 0;
1646 unsigned int max_sectors = 0;
1647 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1648
1649 switch (bio_op(ci->bio)) {
1650 case REQ_OP_DISCARD:
1651 num_bios = ti->num_discard_bios;
1652 max_sectors = limits->max_discard_sectors;
1653 if (ti->max_discard_granularity)
1654 max_granularity = max_sectors;
1655 break;
1656 case REQ_OP_SECURE_ERASE:
1657 num_bios = ti->num_secure_erase_bios;
1658 max_sectors = limits->max_secure_erase_sectors;
1659 break;
1660 case REQ_OP_WRITE_ZEROES:
1661 num_bios = ti->num_write_zeroes_bios;
1662 max_sectors = limits->max_write_zeroes_sectors;
1663 break;
1664 default:
1665 break;
1666 }
1667
1668 /*
1669 * Even though the device advertised support for this type of
1670 * request, that does not mean every target supports it, and
1671 * reconfiguration might also have changed that since the
1672 * check was performed.
1673 */
1674 if (unlikely(!num_bios))
1675 return BLK_STS_NOTSUPP;
1676
1677 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1678
1679 return BLK_STS_OK;
1680 }
1681
1682 /*
1683 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1684 * associated with this bio, and this bio's bi_private needs to be
1685 * stored in dm_io->data before the reuse.
1686 *
1687 * bio->bi_private is owned by fs or upper layer, so block layer won't
1688 * touch it after splitting. Meantime it won't be changed by anyone after
1689 * bio is submitted. So this reuse is safe.
1690 */
dm_poll_list_head(struct bio * bio)1691 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1692 {
1693 return (struct dm_io **)&bio->bi_private;
1694 }
1695
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1696 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1697 {
1698 struct dm_io **head = dm_poll_list_head(bio);
1699
1700 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1701 bio->bi_opf |= REQ_DM_POLL_LIST;
1702 /*
1703 * Save .bi_private into dm_io, so that we can reuse
1704 * .bi_private as dm_io list head for storing dm_io list
1705 */
1706 io->data = bio->bi_private;
1707
1708 /* tell block layer to poll for completion */
1709 bio->bi_cookie = ~BLK_QC_T_NONE;
1710
1711 io->next = NULL;
1712 } else {
1713 /*
1714 * bio recursed due to split, reuse original poll list,
1715 * and save bio->bi_private too.
1716 */
1717 io->data = (*head)->data;
1718 io->next = *head;
1719 }
1720
1721 *head = io;
1722 }
1723
1724 /*
1725 * Select the correct strategy for processing a non-flush bio.
1726 */
__split_and_process_bio(struct clone_info * ci)1727 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1728 {
1729 struct bio *clone;
1730 struct dm_target *ti;
1731 unsigned int len;
1732
1733 ti = dm_table_find_target(ci->map, ci->sector);
1734 if (unlikely(!ti))
1735 return BLK_STS_IOERR;
1736
1737 if (unlikely(ci->is_abnormal_io))
1738 return __process_abnormal_io(ci, ti);
1739
1740 /*
1741 * Only support bio polling for normal IO, and the target io is
1742 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1743 */
1744 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1745
1746 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1747 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count)
1748 return BLK_STS_IOERR;
1749
1750 setup_split_accounting(ci, len);
1751
1752 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1753 if (unlikely(!dm_target_supports_nowait(ti->type)))
1754 return BLK_STS_NOTSUPP;
1755
1756 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1757 if (unlikely(!clone))
1758 return BLK_STS_AGAIN;
1759 } else {
1760 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1761 }
1762 __map_bio(clone);
1763
1764 ci->sector += len;
1765 ci->sector_count -= len;
1766
1767 return BLK_STS_OK;
1768 }
1769
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1770 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1771 struct dm_table *map, struct bio *bio, bool is_abnormal)
1772 {
1773 ci->map = map;
1774 ci->io = io;
1775 ci->bio = bio;
1776 ci->is_abnormal_io = is_abnormal;
1777 ci->submit_as_polled = false;
1778 ci->sector = bio->bi_iter.bi_sector;
1779 ci->sector_count = bio_sectors(bio);
1780
1781 /* Shouldn't happen but sector_count was being set to 0 so... */
1782 if (static_branch_unlikely(&zoned_enabled) &&
1783 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1784 ci->sector_count = 0;
1785 }
1786
1787 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct bio * bio)1788 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1789 {
1790 /*
1791 * Special case the zone operations that cannot or should not be split.
1792 */
1793 switch (bio_op(bio)) {
1794 case REQ_OP_ZONE_APPEND:
1795 case REQ_OP_ZONE_FINISH:
1796 case REQ_OP_ZONE_RESET:
1797 case REQ_OP_ZONE_RESET_ALL:
1798 return false;
1799 default:
1800 break;
1801 }
1802
1803 /*
1804 * When mapped devices use the block layer zone write plugging, we must
1805 * split any large BIO to the mapped device limits to not submit BIOs
1806 * that span zone boundaries and to avoid potential deadlocks with
1807 * queue freeze operations.
1808 */
1809 return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio);
1810 }
1811
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1812 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1813 {
1814 if (!bio_needs_zone_write_plugging(bio))
1815 return false;
1816 return blk_zone_plug_bio(bio, 0);
1817 }
1818
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1819 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1820 struct dm_target *ti)
1821 {
1822 struct bio_list blist = BIO_EMPTY_LIST;
1823 struct mapped_device *md = ci->io->md;
1824 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1825 unsigned long *need_reset;
1826 unsigned int i, nr_zones, nr_reset;
1827 unsigned int num_bios = 0;
1828 blk_status_t sts = BLK_STS_OK;
1829 sector_t sector = ti->begin;
1830 struct bio *clone;
1831 int ret;
1832
1833 nr_zones = ti->len >> ilog2(zone_sectors);
1834 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1835 if (!need_reset)
1836 return BLK_STS_RESOURCE;
1837
1838 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1839 nr_zones, need_reset);
1840 if (ret) {
1841 sts = BLK_STS_IOERR;
1842 goto free_bitmap;
1843 }
1844
1845 /* If we have no zone to reset, we are done. */
1846 nr_reset = bitmap_weight(need_reset, nr_zones);
1847 if (!nr_reset)
1848 goto free_bitmap;
1849
1850 atomic_add(nr_zones, &ci->io->io_count);
1851
1852 for (i = 0; i < nr_zones; i++) {
1853
1854 if (!test_bit(i, need_reset)) {
1855 sector += zone_sectors;
1856 continue;
1857 }
1858
1859 if (bio_list_empty(&blist)) {
1860 /* This may take a while, so be nice to others */
1861 if (num_bios)
1862 cond_resched();
1863
1864 /*
1865 * We may need to reset thousands of zones, so let's
1866 * not go crazy with the clone allocation.
1867 */
1868 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1869 NULL);
1870 }
1871
1872 /* Get a clone and change it to a regular reset operation. */
1873 clone = bio_list_pop(&blist);
1874 clone->bi_opf &= ~REQ_OP_MASK;
1875 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1876 clone->bi_iter.bi_sector = sector;
1877 clone->bi_iter.bi_size = 0;
1878 __map_bio(clone);
1879
1880 sector += zone_sectors;
1881 num_bios++;
1882 nr_reset--;
1883 }
1884
1885 WARN_ON_ONCE(!bio_list_empty(&blist));
1886 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1887 ci->sector_count = 0;
1888
1889 free_bitmap:
1890 bitmap_free(need_reset);
1891
1892 return sts;
1893 }
1894
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1895 static void __send_zone_reset_all_native(struct clone_info *ci,
1896 struct dm_target *ti)
1897 {
1898 unsigned int bios;
1899
1900 atomic_add(1, &ci->io->io_count);
1901 bios = __send_duplicate_bios(ci, ti, 1, NULL);
1902 atomic_sub(1 - bios, &ci->io->io_count);
1903
1904 ci->sector_count = 0;
1905 }
1906
__send_zone_reset_all(struct clone_info * ci)1907 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1908 {
1909 struct dm_table *t = ci->map;
1910 blk_status_t sts = BLK_STS_OK;
1911
1912 for (unsigned int i = 0; i < t->num_targets; i++) {
1913 struct dm_target *ti = dm_table_get_target(t, i);
1914
1915 if (ti->zone_reset_all_supported) {
1916 __send_zone_reset_all_native(ci, ti);
1917 continue;
1918 }
1919
1920 sts = __send_zone_reset_all_emulated(ci, ti);
1921 if (sts != BLK_STS_OK)
1922 break;
1923 }
1924
1925 /* Release the reference that alloc_io() took for submission. */
1926 atomic_sub(1, &ci->io->io_count);
1927
1928 return sts;
1929 }
1930
1931 #else
dm_zone_bio_needs_split(struct bio * bio)1932 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1933 {
1934 return false;
1935 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1936 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1937 {
1938 return false;
1939 }
__send_zone_reset_all(struct clone_info * ci)1940 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1941 {
1942 return BLK_STS_NOTSUPP;
1943 }
1944 #endif
1945
1946 /*
1947 * Entry point to split a bio into clones and submit them to the targets.
1948 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1949 static void dm_split_and_process_bio(struct mapped_device *md,
1950 struct dm_table *map, struct bio *bio)
1951 {
1952 struct clone_info ci;
1953 struct dm_io *io;
1954 blk_status_t error = BLK_STS_OK;
1955 bool is_abnormal, need_split;
1956
1957 is_abnormal = is_abnormal_io(bio);
1958 if (static_branch_unlikely(&zoned_enabled)) {
1959 need_split = is_abnormal || dm_zone_bio_needs_split(bio);
1960 } else {
1961 need_split = is_abnormal;
1962 }
1963
1964 if (unlikely(need_split)) {
1965 /*
1966 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1967 * otherwise associated queue_limits won't be imposed.
1968 * Also split the BIO for mapped devices needing zone append
1969 * emulation to ensure that the BIO does not cross zone
1970 * boundaries.
1971 */
1972 bio = bio_split_to_limits(bio);
1973 if (!bio)
1974 return;
1975 }
1976
1977 /*
1978 * Use the block layer zone write plugging for mapped devices that
1979 * need zone append emulation (e.g. dm-crypt).
1980 */
1981 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1982 return;
1983
1984 /* Only support nowait for normal IO */
1985 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1986 /*
1987 * Don't support NOWAIT for FLUSH because it may allocate
1988 * multiple bios and there's no easy way how to undo the
1989 * allocations.
1990 */
1991 if (bio->bi_opf & REQ_PREFLUSH) {
1992 bio_wouldblock_error(bio);
1993 return;
1994 }
1995 io = alloc_io(md, bio, GFP_NOWAIT);
1996 if (unlikely(!io)) {
1997 /* Unable to do anything without dm_io. */
1998 bio_wouldblock_error(bio);
1999 return;
2000 }
2001 } else {
2002 io = alloc_io(md, bio, GFP_NOIO);
2003 }
2004 init_clone_info(&ci, io, map, bio, is_abnormal);
2005
2006 if (bio->bi_opf & REQ_PREFLUSH) {
2007 __send_empty_flush(&ci);
2008 /* dm_io_complete submits any data associated with flush */
2009 goto out;
2010 }
2011
2012 if (static_branch_unlikely(&zoned_enabled) &&
2013 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2014 error = __send_zone_reset_all(&ci);
2015 goto out;
2016 }
2017
2018 error = __split_and_process_bio(&ci);
2019 if (error || !ci.sector_count)
2020 goto out;
2021 /*
2022 * Remainder must be passed to submit_bio_noacct() so it gets handled
2023 * *after* bios already submitted have been completely processed.
2024 */
2025 bio_trim(bio, io->sectors, ci.sector_count);
2026 trace_block_split(bio, bio->bi_iter.bi_sector);
2027 bio_inc_remaining(bio);
2028 submit_bio_noacct(bio);
2029 out:
2030 /*
2031 * Drop the extra reference count for non-POLLED bio, and hold one
2032 * reference for POLLED bio, which will be released in dm_poll_bio
2033 *
2034 * Add every dm_io instance into the dm_io list head which is stored
2035 * in bio->bi_private, so that dm_poll_bio can poll them all.
2036 */
2037 if (error || !ci.submit_as_polled) {
2038 /*
2039 * In case of submission failure, the extra reference for
2040 * submitting io isn't consumed yet
2041 */
2042 if (error)
2043 atomic_dec(&io->io_count);
2044 dm_io_dec_pending(io, error);
2045 } else
2046 dm_queue_poll_io(bio, io);
2047 }
2048
dm_submit_bio(struct bio * bio)2049 static void dm_submit_bio(struct bio *bio)
2050 {
2051 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2052 int srcu_idx;
2053 struct dm_table *map;
2054
2055 map = dm_get_live_table(md, &srcu_idx);
2056 if (unlikely(!map)) {
2057 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2058 dm_device_name(md));
2059 bio_io_error(bio);
2060 goto out;
2061 }
2062
2063 /* If suspended, queue this IO for later */
2064 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2065 if (bio->bi_opf & REQ_NOWAIT)
2066 bio_wouldblock_error(bio);
2067 else if (bio->bi_opf & REQ_RAHEAD)
2068 bio_io_error(bio);
2069 else
2070 queue_io(md, bio);
2071 goto out;
2072 }
2073
2074 dm_split_and_process_bio(md, map, bio);
2075 out:
2076 dm_put_live_table(md, srcu_idx);
2077 }
2078
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2079 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2080 unsigned int flags)
2081 {
2082 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2083
2084 /* don't poll if the mapped io is done */
2085 if (atomic_read(&io->io_count) > 1)
2086 bio_poll(&io->tio.clone, iob, flags);
2087
2088 /* bio_poll holds the last reference */
2089 return atomic_read(&io->io_count) == 1;
2090 }
2091
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2092 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2093 unsigned int flags)
2094 {
2095 struct dm_io **head = dm_poll_list_head(bio);
2096 struct dm_io *list = *head;
2097 struct dm_io *tmp = NULL;
2098 struct dm_io *curr, *next;
2099
2100 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2101 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2102 return 0;
2103
2104 WARN_ON_ONCE(!list);
2105
2106 /*
2107 * Restore .bi_private before possibly completing dm_io.
2108 *
2109 * bio_poll() is only possible once @bio has been completely
2110 * submitted via submit_bio_noacct()'s depth-first submission.
2111 * So there is no dm_queue_poll_io() race associated with
2112 * clearing REQ_DM_POLL_LIST here.
2113 */
2114 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2115 bio->bi_private = list->data;
2116
2117 for (curr = list, next = curr->next; curr; curr = next, next =
2118 curr ? curr->next : NULL) {
2119 if (dm_poll_dm_io(curr, iob, flags)) {
2120 /*
2121 * clone_endio() has already occurred, so no
2122 * error handling is needed here.
2123 */
2124 __dm_io_dec_pending(curr);
2125 } else {
2126 curr->next = tmp;
2127 tmp = curr;
2128 }
2129 }
2130
2131 /* Not done? */
2132 if (tmp) {
2133 bio->bi_opf |= REQ_DM_POLL_LIST;
2134 /* Reset bio->bi_private to dm_io list head */
2135 *head = tmp;
2136 return 0;
2137 }
2138 return 1;
2139 }
2140
2141 /*
2142 *---------------------------------------------------------------
2143 * An IDR is used to keep track of allocated minor numbers.
2144 *---------------------------------------------------------------
2145 */
free_minor(int minor)2146 static void free_minor(int minor)
2147 {
2148 spin_lock(&_minor_lock);
2149 idr_remove(&_minor_idr, minor);
2150 spin_unlock(&_minor_lock);
2151 }
2152
2153 /*
2154 * See if the device with a specific minor # is free.
2155 */
specific_minor(int minor)2156 static int specific_minor(int minor)
2157 {
2158 int r;
2159
2160 if (minor >= (1 << MINORBITS))
2161 return -EINVAL;
2162
2163 idr_preload(GFP_KERNEL);
2164 spin_lock(&_minor_lock);
2165
2166 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2167
2168 spin_unlock(&_minor_lock);
2169 idr_preload_end();
2170 if (r < 0)
2171 return r == -ENOSPC ? -EBUSY : r;
2172 return 0;
2173 }
2174
next_free_minor(int * minor)2175 static int next_free_minor(int *minor)
2176 {
2177 int r;
2178
2179 idr_preload(GFP_KERNEL);
2180 spin_lock(&_minor_lock);
2181
2182 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2183
2184 spin_unlock(&_minor_lock);
2185 idr_preload_end();
2186 if (r < 0)
2187 return r;
2188 *minor = r;
2189 return 0;
2190 }
2191
2192 static const struct block_device_operations dm_blk_dops;
2193 static const struct block_device_operations dm_rq_blk_dops;
2194 static const struct dax_operations dm_dax_ops;
2195
2196 static void dm_wq_work(struct work_struct *work);
2197
2198 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2199 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2200 {
2201 dm_destroy_crypto_profile(q->crypto_profile);
2202 }
2203
2204 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2205
dm_queue_destroy_crypto_profile(struct request_queue * q)2206 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2207 {
2208 }
2209 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2210
cleanup_mapped_device(struct mapped_device * md)2211 static void cleanup_mapped_device(struct mapped_device *md)
2212 {
2213 if (md->wq)
2214 destroy_workqueue(md->wq);
2215 dm_free_md_mempools(md->mempools);
2216
2217 if (md->dax_dev) {
2218 dax_remove_host(md->disk);
2219 kill_dax(md->dax_dev);
2220 put_dax(md->dax_dev);
2221 md->dax_dev = NULL;
2222 }
2223
2224 if (md->disk) {
2225 spin_lock(&_minor_lock);
2226 md->disk->private_data = NULL;
2227 spin_unlock(&_minor_lock);
2228 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2229 struct table_device *td;
2230
2231 dm_sysfs_exit(md);
2232 list_for_each_entry(td, &md->table_devices, list) {
2233 bd_unlink_disk_holder(td->dm_dev.bdev,
2234 md->disk);
2235 }
2236
2237 /*
2238 * Hold lock to make sure del_gendisk() won't concurrent
2239 * with open/close_table_device().
2240 */
2241 mutex_lock(&md->table_devices_lock);
2242 del_gendisk(md->disk);
2243 mutex_unlock(&md->table_devices_lock);
2244 }
2245 dm_queue_destroy_crypto_profile(md->queue);
2246 put_disk(md->disk);
2247 }
2248
2249 if (md->pending_io) {
2250 free_percpu(md->pending_io);
2251 md->pending_io = NULL;
2252 }
2253
2254 cleanup_srcu_struct(&md->io_barrier);
2255
2256 mutex_destroy(&md->suspend_lock);
2257 mutex_destroy(&md->type_lock);
2258 mutex_destroy(&md->table_devices_lock);
2259 mutex_destroy(&md->swap_bios_lock);
2260
2261 dm_mq_cleanup_mapped_device(md);
2262 }
2263
2264 /*
2265 * Allocate and initialise a blank device with a given minor.
2266 */
alloc_dev(int minor)2267 static struct mapped_device *alloc_dev(int minor)
2268 {
2269 int r, numa_node_id = dm_get_numa_node();
2270 struct dax_device *dax_dev;
2271 struct mapped_device *md;
2272 void *old_md;
2273
2274 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2275 if (!md) {
2276 DMERR("unable to allocate device, out of memory.");
2277 return NULL;
2278 }
2279
2280 if (!try_module_get(THIS_MODULE))
2281 goto bad_module_get;
2282
2283 /* get a minor number for the dev */
2284 if (minor == DM_ANY_MINOR)
2285 r = next_free_minor(&minor);
2286 else
2287 r = specific_minor(minor);
2288 if (r < 0)
2289 goto bad_minor;
2290
2291 r = init_srcu_struct(&md->io_barrier);
2292 if (r < 0)
2293 goto bad_io_barrier;
2294
2295 md->numa_node_id = numa_node_id;
2296 md->init_tio_pdu = false;
2297 md->type = DM_TYPE_NONE;
2298 mutex_init(&md->suspend_lock);
2299 mutex_init(&md->type_lock);
2300 mutex_init(&md->table_devices_lock);
2301 spin_lock_init(&md->deferred_lock);
2302 atomic_set(&md->holders, 1);
2303 atomic_set(&md->open_count, 0);
2304 atomic_set(&md->event_nr, 0);
2305 atomic_set(&md->uevent_seq, 0);
2306 INIT_LIST_HEAD(&md->uevent_list);
2307 INIT_LIST_HEAD(&md->table_devices);
2308 spin_lock_init(&md->uevent_lock);
2309
2310 /*
2311 * default to bio-based until DM table is loaded and md->type
2312 * established. If request-based table is loaded: blk-mq will
2313 * override accordingly.
2314 */
2315 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2316 if (IS_ERR(md->disk)) {
2317 md->disk = NULL;
2318 goto bad;
2319 }
2320 md->queue = md->disk->queue;
2321
2322 init_waitqueue_head(&md->wait);
2323 INIT_WORK(&md->work, dm_wq_work);
2324 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2325 init_waitqueue_head(&md->eventq);
2326 init_completion(&md->kobj_holder.completion);
2327
2328 md->requeue_list = NULL;
2329 md->swap_bios = get_swap_bios();
2330 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2331 mutex_init(&md->swap_bios_lock);
2332
2333 md->disk->major = _major;
2334 md->disk->first_minor = minor;
2335 md->disk->minors = 1;
2336 md->disk->flags |= GENHD_FL_NO_PART;
2337 md->disk->fops = &dm_blk_dops;
2338 md->disk->private_data = md;
2339 sprintf(md->disk->disk_name, "dm-%d", minor);
2340
2341 dax_dev = alloc_dax(md, &dm_dax_ops);
2342 if (IS_ERR(dax_dev)) {
2343 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2344 goto bad;
2345 } else {
2346 set_dax_nocache(dax_dev);
2347 set_dax_nomc(dax_dev);
2348 md->dax_dev = dax_dev;
2349 if (dax_add_host(dax_dev, md->disk))
2350 goto bad;
2351 }
2352
2353 format_dev_t(md->name, MKDEV(_major, minor));
2354
2355 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2356 if (!md->wq)
2357 goto bad;
2358
2359 md->pending_io = alloc_percpu(unsigned long);
2360 if (!md->pending_io)
2361 goto bad;
2362
2363 r = dm_stats_init(&md->stats);
2364 if (r < 0)
2365 goto bad;
2366
2367 /* Populate the mapping, nobody knows we exist yet */
2368 spin_lock(&_minor_lock);
2369 old_md = idr_replace(&_minor_idr, md, minor);
2370 spin_unlock(&_minor_lock);
2371
2372 BUG_ON(old_md != MINOR_ALLOCED);
2373
2374 return md;
2375
2376 bad:
2377 cleanup_mapped_device(md);
2378 bad_io_barrier:
2379 free_minor(minor);
2380 bad_minor:
2381 module_put(THIS_MODULE);
2382 bad_module_get:
2383 kvfree(md);
2384 return NULL;
2385 }
2386
2387 static void unlock_fs(struct mapped_device *md);
2388
free_dev(struct mapped_device * md)2389 static void free_dev(struct mapped_device *md)
2390 {
2391 int minor = MINOR(disk_devt(md->disk));
2392
2393 unlock_fs(md);
2394
2395 cleanup_mapped_device(md);
2396
2397 WARN_ON_ONCE(!list_empty(&md->table_devices));
2398 dm_stats_cleanup(&md->stats);
2399 free_minor(minor);
2400
2401 module_put(THIS_MODULE);
2402 kvfree(md);
2403 }
2404
2405 /*
2406 * Bind a table to the device.
2407 */
event_callback(void * context)2408 static void event_callback(void *context)
2409 {
2410 unsigned long flags;
2411 LIST_HEAD(uevents);
2412 struct mapped_device *md = context;
2413
2414 spin_lock_irqsave(&md->uevent_lock, flags);
2415 list_splice_init(&md->uevent_list, &uevents);
2416 spin_unlock_irqrestore(&md->uevent_lock, flags);
2417
2418 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2419
2420 atomic_inc(&md->event_nr);
2421 wake_up(&md->eventq);
2422 dm_issue_global_event();
2423 }
2424
2425 /*
2426 * Returns old map, which caller must destroy.
2427 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2428 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2429 struct queue_limits *limits)
2430 {
2431 struct dm_table *old_map;
2432 sector_t size, old_size;
2433 int ret;
2434
2435 lockdep_assert_held(&md->suspend_lock);
2436
2437 size = dm_table_get_size(t);
2438
2439 old_size = dm_get_size(md);
2440
2441 if (!dm_table_supports_size_change(t, old_size, size)) {
2442 old_map = ERR_PTR(-EINVAL);
2443 goto out;
2444 }
2445
2446 set_capacity(md->disk, size);
2447
2448 ret = dm_table_set_restrictions(t, md->queue, limits);
2449 if (ret) {
2450 set_capacity(md->disk, old_size);
2451 old_map = ERR_PTR(ret);
2452 goto out;
2453 }
2454
2455 /*
2456 * Wipe any geometry if the size of the table changed.
2457 */
2458 if (size != old_size)
2459 memset(&md->geometry, 0, sizeof(md->geometry));
2460
2461 dm_table_event_callback(t, event_callback, md);
2462
2463 if (dm_table_request_based(t)) {
2464 /*
2465 * Leverage the fact that request-based DM targets are
2466 * immutable singletons - used to optimize dm_mq_queue_rq.
2467 */
2468 md->immutable_target = dm_table_get_immutable_target(t);
2469
2470 /*
2471 * There is no need to reload with request-based dm because the
2472 * size of front_pad doesn't change.
2473 *
2474 * Note for future: If you are to reload bioset, prep-ed
2475 * requests in the queue may refer to bio from the old bioset,
2476 * so you must walk through the queue to unprep.
2477 */
2478 if (!md->mempools)
2479 md->mempools = t->mempools;
2480 else
2481 dm_free_md_mempools(t->mempools);
2482 } else {
2483 /*
2484 * The md may already have mempools that need changing.
2485 * If so, reload bioset because front_pad may have changed
2486 * because a different table was loaded.
2487 */
2488 dm_free_md_mempools(md->mempools);
2489 md->mempools = t->mempools;
2490 }
2491 t->mempools = NULL;
2492
2493 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2494 rcu_assign_pointer(md->map, (void *)t);
2495 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2496
2497 if (old_map)
2498 dm_sync_table(md);
2499 out:
2500 return old_map;
2501 }
2502
2503 /*
2504 * Returns unbound table for the caller to free.
2505 */
__unbind(struct mapped_device * md)2506 static struct dm_table *__unbind(struct mapped_device *md)
2507 {
2508 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2509
2510 if (!map)
2511 return NULL;
2512
2513 dm_table_event_callback(map, NULL, NULL);
2514 RCU_INIT_POINTER(md->map, NULL);
2515 dm_sync_table(md);
2516
2517 return map;
2518 }
2519
2520 /*
2521 * Constructor for a new device.
2522 */
dm_create(int minor,struct mapped_device ** result)2523 int dm_create(int minor, struct mapped_device **result)
2524 {
2525 struct mapped_device *md;
2526
2527 md = alloc_dev(minor);
2528 if (!md)
2529 return -ENXIO;
2530
2531 dm_ima_reset_data(md);
2532
2533 *result = md;
2534 return 0;
2535 }
2536
2537 /*
2538 * Functions to manage md->type.
2539 * All are required to hold md->type_lock.
2540 */
dm_lock_md_type(struct mapped_device * md)2541 void dm_lock_md_type(struct mapped_device *md)
2542 {
2543 mutex_lock(&md->type_lock);
2544 }
2545
dm_unlock_md_type(struct mapped_device * md)2546 void dm_unlock_md_type(struct mapped_device *md)
2547 {
2548 mutex_unlock(&md->type_lock);
2549 }
2550
dm_get_md_type(struct mapped_device * md)2551 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2552 {
2553 return md->type;
2554 }
2555
dm_get_immutable_target_type(struct mapped_device * md)2556 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2557 {
2558 return md->immutable_target_type;
2559 }
2560
2561 /*
2562 * Setup the DM device's queue based on md's type
2563 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2564 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2565 {
2566 enum dm_queue_mode type = dm_table_get_type(t);
2567 struct queue_limits limits;
2568 struct table_device *td;
2569 int r;
2570
2571 WARN_ON_ONCE(type == DM_TYPE_NONE);
2572
2573 if (type == DM_TYPE_REQUEST_BASED) {
2574 md->disk->fops = &dm_rq_blk_dops;
2575 r = dm_mq_init_request_queue(md, t);
2576 if (r) {
2577 DMERR("Cannot initialize queue for request-based dm mapped device");
2578 return r;
2579 }
2580 }
2581
2582 r = dm_calculate_queue_limits(t, &limits);
2583 if (r) {
2584 DMERR("Cannot calculate initial queue limits");
2585 return r;
2586 }
2587 r = dm_table_set_restrictions(t, md->queue, &limits);
2588 if (r)
2589 return r;
2590
2591 /*
2592 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2593 * with open_table_device() and close_table_device().
2594 */
2595 mutex_lock(&md->table_devices_lock);
2596 r = add_disk(md->disk);
2597 mutex_unlock(&md->table_devices_lock);
2598 if (r)
2599 return r;
2600
2601 /*
2602 * Register the holder relationship for devices added before the disk
2603 * was live.
2604 */
2605 list_for_each_entry(td, &md->table_devices, list) {
2606 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2607 if (r)
2608 goto out_undo_holders;
2609 }
2610
2611 r = dm_sysfs_init(md);
2612 if (r)
2613 goto out_undo_holders;
2614
2615 md->type = type;
2616 return 0;
2617
2618 out_undo_holders:
2619 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2620 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2621 mutex_lock(&md->table_devices_lock);
2622 del_gendisk(md->disk);
2623 mutex_unlock(&md->table_devices_lock);
2624 return r;
2625 }
2626
dm_get_md(dev_t dev)2627 struct mapped_device *dm_get_md(dev_t dev)
2628 {
2629 struct mapped_device *md;
2630 unsigned int minor = MINOR(dev);
2631
2632 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2633 return NULL;
2634
2635 spin_lock(&_minor_lock);
2636
2637 md = idr_find(&_minor_idr, minor);
2638 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2639 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2640 md = NULL;
2641 goto out;
2642 }
2643 dm_get(md);
2644 out:
2645 spin_unlock(&_minor_lock);
2646
2647 return md;
2648 }
2649 EXPORT_SYMBOL_GPL(dm_get_md);
2650
dm_get_mdptr(struct mapped_device * md)2651 void *dm_get_mdptr(struct mapped_device *md)
2652 {
2653 return md->interface_ptr;
2654 }
2655
dm_set_mdptr(struct mapped_device * md,void * ptr)2656 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2657 {
2658 md->interface_ptr = ptr;
2659 }
2660
dm_get(struct mapped_device * md)2661 void dm_get(struct mapped_device *md)
2662 {
2663 atomic_inc(&md->holders);
2664 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2665 }
2666
dm_hold(struct mapped_device * md)2667 int dm_hold(struct mapped_device *md)
2668 {
2669 spin_lock(&_minor_lock);
2670 if (test_bit(DMF_FREEING, &md->flags)) {
2671 spin_unlock(&_minor_lock);
2672 return -EBUSY;
2673 }
2674 dm_get(md);
2675 spin_unlock(&_minor_lock);
2676 return 0;
2677 }
2678 EXPORT_SYMBOL_GPL(dm_hold);
2679
dm_device_name(struct mapped_device * md)2680 const char *dm_device_name(struct mapped_device *md)
2681 {
2682 return md->name;
2683 }
2684 EXPORT_SYMBOL_GPL(dm_device_name);
2685
__dm_destroy(struct mapped_device * md,bool wait)2686 static void __dm_destroy(struct mapped_device *md, bool wait)
2687 {
2688 struct dm_table *map;
2689 int srcu_idx;
2690
2691 might_sleep();
2692
2693 spin_lock(&_minor_lock);
2694 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2695 set_bit(DMF_FREEING, &md->flags);
2696 spin_unlock(&_minor_lock);
2697
2698 blk_mark_disk_dead(md->disk);
2699
2700 /*
2701 * Take suspend_lock so that presuspend and postsuspend methods
2702 * do not race with internal suspend.
2703 */
2704 mutex_lock(&md->suspend_lock);
2705 map = dm_get_live_table(md, &srcu_idx);
2706 if (!dm_suspended_md(md)) {
2707 dm_table_presuspend_targets(map);
2708 set_bit(DMF_SUSPENDED, &md->flags);
2709 set_bit(DMF_POST_SUSPENDING, &md->flags);
2710 dm_table_postsuspend_targets(map);
2711 }
2712 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2713 dm_put_live_table(md, srcu_idx);
2714 mutex_unlock(&md->suspend_lock);
2715
2716 /*
2717 * Rare, but there may be I/O requests still going to complete,
2718 * for example. Wait for all references to disappear.
2719 * No one should increment the reference count of the mapped_device,
2720 * after the mapped_device state becomes DMF_FREEING.
2721 */
2722 if (wait)
2723 while (atomic_read(&md->holders))
2724 fsleep(1000);
2725 else if (atomic_read(&md->holders))
2726 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2727 dm_device_name(md), atomic_read(&md->holders));
2728
2729 dm_table_destroy(__unbind(md));
2730 free_dev(md);
2731 }
2732
dm_destroy(struct mapped_device * md)2733 void dm_destroy(struct mapped_device *md)
2734 {
2735 __dm_destroy(md, true);
2736 }
2737
dm_destroy_immediate(struct mapped_device * md)2738 void dm_destroy_immediate(struct mapped_device *md)
2739 {
2740 __dm_destroy(md, false);
2741 }
2742
dm_put(struct mapped_device * md)2743 void dm_put(struct mapped_device *md)
2744 {
2745 atomic_dec(&md->holders);
2746 }
2747 EXPORT_SYMBOL_GPL(dm_put);
2748
dm_in_flight_bios(struct mapped_device * md)2749 static bool dm_in_flight_bios(struct mapped_device *md)
2750 {
2751 int cpu;
2752 unsigned long sum = 0;
2753
2754 for_each_possible_cpu(cpu)
2755 sum += *per_cpu_ptr(md->pending_io, cpu);
2756
2757 return sum != 0;
2758 }
2759
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2760 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2761 {
2762 int r = 0;
2763 DEFINE_WAIT(wait);
2764
2765 while (true) {
2766 prepare_to_wait(&md->wait, &wait, task_state);
2767
2768 if (!dm_in_flight_bios(md))
2769 break;
2770
2771 if (signal_pending_state(task_state, current)) {
2772 r = -ERESTARTSYS;
2773 break;
2774 }
2775
2776 io_schedule();
2777 }
2778 finish_wait(&md->wait, &wait);
2779
2780 smp_rmb();
2781
2782 return r;
2783 }
2784
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2785 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2786 {
2787 int r = 0;
2788
2789 if (!queue_is_mq(md->queue))
2790 return dm_wait_for_bios_completion(md, task_state);
2791
2792 while (true) {
2793 if (!blk_mq_queue_inflight(md->queue))
2794 break;
2795
2796 if (signal_pending_state(task_state, current)) {
2797 r = -ERESTARTSYS;
2798 break;
2799 }
2800
2801 fsleep(5000);
2802 }
2803
2804 return r;
2805 }
2806
2807 /*
2808 * Process the deferred bios
2809 */
dm_wq_work(struct work_struct * work)2810 static void dm_wq_work(struct work_struct *work)
2811 {
2812 struct mapped_device *md = container_of(work, struct mapped_device, work);
2813 struct bio *bio;
2814
2815 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2816 spin_lock_irq(&md->deferred_lock);
2817 bio = bio_list_pop(&md->deferred);
2818 spin_unlock_irq(&md->deferred_lock);
2819
2820 if (!bio)
2821 break;
2822
2823 submit_bio_noacct(bio);
2824 cond_resched();
2825 }
2826 }
2827
dm_queue_flush(struct mapped_device * md)2828 static void dm_queue_flush(struct mapped_device *md)
2829 {
2830 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2831 smp_mb__after_atomic();
2832 queue_work(md->wq, &md->work);
2833 }
2834
2835 /*
2836 * Swap in a new table, returning the old one for the caller to destroy.
2837 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2838 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2839 {
2840 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2841 struct queue_limits limits;
2842 int r;
2843
2844 mutex_lock(&md->suspend_lock);
2845
2846 /* device must be suspended */
2847 if (!dm_suspended_md(md))
2848 goto out;
2849
2850 /*
2851 * If the new table has no data devices, retain the existing limits.
2852 * This helps multipath with queue_if_no_path if all paths disappear,
2853 * then new I/O is queued based on these limits, and then some paths
2854 * reappear.
2855 */
2856 if (dm_table_has_no_data_devices(table)) {
2857 live_map = dm_get_live_table_fast(md);
2858 if (live_map)
2859 limits = md->queue->limits;
2860 dm_put_live_table_fast(md);
2861 }
2862
2863 if (!live_map) {
2864 r = dm_calculate_queue_limits(table, &limits);
2865 if (r) {
2866 map = ERR_PTR(r);
2867 goto out;
2868 }
2869 }
2870
2871 map = __bind(md, table, &limits);
2872 dm_issue_global_event();
2873
2874 out:
2875 mutex_unlock(&md->suspend_lock);
2876 return map;
2877 }
2878
2879 /*
2880 * Functions to lock and unlock any filesystem running on the
2881 * device.
2882 */
lock_fs(struct mapped_device * md)2883 static int lock_fs(struct mapped_device *md)
2884 {
2885 int r;
2886
2887 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2888
2889 r = bdev_freeze(md->disk->part0);
2890 if (!r)
2891 set_bit(DMF_FROZEN, &md->flags);
2892 return r;
2893 }
2894
unlock_fs(struct mapped_device * md)2895 static void unlock_fs(struct mapped_device *md)
2896 {
2897 if (!test_bit(DMF_FROZEN, &md->flags))
2898 return;
2899 bdev_thaw(md->disk->part0);
2900 clear_bit(DMF_FROZEN, &md->flags);
2901 }
2902
2903 /*
2904 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2905 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2906 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2907 *
2908 * If __dm_suspend returns 0, the device is completely quiescent
2909 * now. There is no request-processing activity. All new requests
2910 * are being added to md->deferred list.
2911 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2912 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2913 unsigned int suspend_flags, unsigned int task_state,
2914 int dmf_suspended_flag)
2915 {
2916 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2917 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2918 int r;
2919
2920 lockdep_assert_held(&md->suspend_lock);
2921
2922 /*
2923 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2924 * This flag is cleared before dm_suspend returns.
2925 */
2926 if (noflush)
2927 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2928 else
2929 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2930
2931 /*
2932 * This gets reverted if there's an error later and the targets
2933 * provide the .presuspend_undo hook.
2934 */
2935 dm_table_presuspend_targets(map);
2936
2937 /*
2938 * Flush I/O to the device.
2939 * Any I/O submitted after lock_fs() may not be flushed.
2940 * noflush takes precedence over do_lockfs.
2941 * (lock_fs() flushes I/Os and waits for them to complete.)
2942 */
2943 if (!noflush && do_lockfs) {
2944 r = lock_fs(md);
2945 if (r) {
2946 dm_table_presuspend_undo_targets(map);
2947 return r;
2948 }
2949 }
2950
2951 /*
2952 * Here we must make sure that no processes are submitting requests
2953 * to target drivers i.e. no one may be executing
2954 * dm_split_and_process_bio from dm_submit_bio.
2955 *
2956 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2957 * we take the write lock. To prevent any process from reentering
2958 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2959 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2960 * flush_workqueue(md->wq).
2961 */
2962 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2963 if (map)
2964 synchronize_srcu(&md->io_barrier);
2965
2966 /*
2967 * Stop md->queue before flushing md->wq in case request-based
2968 * dm defers requests to md->wq from md->queue.
2969 */
2970 if (dm_request_based(md))
2971 dm_stop_queue(md->queue);
2972
2973 flush_workqueue(md->wq);
2974
2975 /*
2976 * At this point no more requests are entering target request routines.
2977 * We call dm_wait_for_completion to wait for all existing requests
2978 * to finish.
2979 */
2980 r = dm_wait_for_completion(md, task_state);
2981 if (!r)
2982 set_bit(dmf_suspended_flag, &md->flags);
2983
2984 if (noflush)
2985 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2986 if (map)
2987 synchronize_srcu(&md->io_barrier);
2988
2989 /* were we interrupted ? */
2990 if (r < 0) {
2991 dm_queue_flush(md);
2992
2993 if (dm_request_based(md))
2994 dm_start_queue(md->queue);
2995
2996 unlock_fs(md);
2997 dm_table_presuspend_undo_targets(map);
2998 /* pushback list is already flushed, so skip flush */
2999 }
3000
3001 return r;
3002 }
3003
3004 /*
3005 * We need to be able to change a mapping table under a mounted
3006 * filesystem. For example we might want to move some data in
3007 * the background. Before the table can be swapped with
3008 * dm_bind_table, dm_suspend must be called to flush any in
3009 * flight bios and ensure that any further io gets deferred.
3010 */
3011 /*
3012 * Suspend mechanism in request-based dm.
3013 *
3014 * 1. Flush all I/Os by lock_fs() if needed.
3015 * 2. Stop dispatching any I/O by stopping the request_queue.
3016 * 3. Wait for all in-flight I/Os to be completed or requeued.
3017 *
3018 * To abort suspend, start the request_queue.
3019 */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3020 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3021 {
3022 struct dm_table *map = NULL;
3023 int r = 0;
3024
3025 retry:
3026 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3027
3028 if (dm_suspended_md(md)) {
3029 r = -EINVAL;
3030 goto out_unlock;
3031 }
3032
3033 if (dm_suspended_internally_md(md)) {
3034 /* already internally suspended, wait for internal resume */
3035 mutex_unlock(&md->suspend_lock);
3036 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3037 if (r)
3038 return r;
3039 goto retry;
3040 }
3041
3042 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3043 if (!map) {
3044 /* avoid deadlock with fs/namespace.c:do_mount() */
3045 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3046 }
3047
3048 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3049 if (r)
3050 goto out_unlock;
3051
3052 set_bit(DMF_POST_SUSPENDING, &md->flags);
3053 dm_table_postsuspend_targets(map);
3054 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3055
3056 out_unlock:
3057 mutex_unlock(&md->suspend_lock);
3058 return r;
3059 }
3060
__dm_resume(struct mapped_device * md,struct dm_table * map)3061 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3062 {
3063 if (map) {
3064 int r = dm_table_resume_targets(map);
3065
3066 if (r)
3067 return r;
3068 }
3069
3070 dm_queue_flush(md);
3071
3072 /*
3073 * Flushing deferred I/Os must be done after targets are resumed
3074 * so that mapping of targets can work correctly.
3075 * Request-based dm is queueing the deferred I/Os in its request_queue.
3076 */
3077 if (dm_request_based(md))
3078 dm_start_queue(md->queue);
3079
3080 unlock_fs(md);
3081
3082 return 0;
3083 }
3084
dm_resume(struct mapped_device * md)3085 int dm_resume(struct mapped_device *md)
3086 {
3087 int r;
3088 struct dm_table *map = NULL;
3089
3090 retry:
3091 r = -EINVAL;
3092 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3093
3094 if (!dm_suspended_md(md))
3095 goto out;
3096
3097 if (dm_suspended_internally_md(md)) {
3098 /* already internally suspended, wait for internal resume */
3099 mutex_unlock(&md->suspend_lock);
3100 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3101 if (r)
3102 return r;
3103 goto retry;
3104 }
3105
3106 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3107 if (!map || !dm_table_get_size(map))
3108 goto out;
3109
3110 r = __dm_resume(md, map);
3111 if (r)
3112 goto out;
3113
3114 clear_bit(DMF_SUSPENDED, &md->flags);
3115 out:
3116 mutex_unlock(&md->suspend_lock);
3117
3118 return r;
3119 }
3120
3121 /*
3122 * Internal suspend/resume works like userspace-driven suspend. It waits
3123 * until all bios finish and prevents issuing new bios to the target drivers.
3124 * It may be used only from the kernel.
3125 */
3126
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3127 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3128 {
3129 struct dm_table *map = NULL;
3130
3131 lockdep_assert_held(&md->suspend_lock);
3132
3133 if (md->internal_suspend_count++)
3134 return; /* nested internal suspend */
3135
3136 if (dm_suspended_md(md)) {
3137 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3138 return; /* nest suspend */
3139 }
3140
3141 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3142
3143 /*
3144 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3145 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3146 * would require changing .presuspend to return an error -- avoid this
3147 * until there is a need for more elaborate variants of internal suspend.
3148 */
3149 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3150 DMF_SUSPENDED_INTERNALLY);
3151
3152 set_bit(DMF_POST_SUSPENDING, &md->flags);
3153 dm_table_postsuspend_targets(map);
3154 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3155 }
3156
__dm_internal_resume(struct mapped_device * md)3157 static void __dm_internal_resume(struct mapped_device *md)
3158 {
3159 int r;
3160 struct dm_table *map;
3161
3162 BUG_ON(!md->internal_suspend_count);
3163
3164 if (--md->internal_suspend_count)
3165 return; /* resume from nested internal suspend */
3166
3167 if (dm_suspended_md(md))
3168 goto done; /* resume from nested suspend */
3169
3170 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3171 r = __dm_resume(md, map);
3172 if (r) {
3173 /*
3174 * If a preresume method of some target failed, we are in a
3175 * tricky situation. We can't return an error to the caller. We
3176 * can't fake success because then the "resume" and
3177 * "postsuspend" methods would not be paired correctly, and it
3178 * would break various targets, for example it would cause list
3179 * corruption in the "origin" target.
3180 *
3181 * So, we fake normal suspend here, to make sure that the
3182 * "resume" and "postsuspend" methods will be paired correctly.
3183 */
3184 DMERR("Preresume method failed: %d", r);
3185 set_bit(DMF_SUSPENDED, &md->flags);
3186 }
3187 done:
3188 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3189 smp_mb__after_atomic();
3190 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3191 }
3192
dm_internal_suspend_noflush(struct mapped_device * md)3193 void dm_internal_suspend_noflush(struct mapped_device *md)
3194 {
3195 mutex_lock(&md->suspend_lock);
3196 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3197 mutex_unlock(&md->suspend_lock);
3198 }
3199 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3200
dm_internal_resume(struct mapped_device * md)3201 void dm_internal_resume(struct mapped_device *md)
3202 {
3203 mutex_lock(&md->suspend_lock);
3204 __dm_internal_resume(md);
3205 mutex_unlock(&md->suspend_lock);
3206 }
3207 EXPORT_SYMBOL_GPL(dm_internal_resume);
3208
3209 /*
3210 * Fast variants of internal suspend/resume hold md->suspend_lock,
3211 * which prevents interaction with userspace-driven suspend.
3212 */
3213
dm_internal_suspend_fast(struct mapped_device * md)3214 void dm_internal_suspend_fast(struct mapped_device *md)
3215 {
3216 mutex_lock(&md->suspend_lock);
3217 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3218 return;
3219
3220 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3221 synchronize_srcu(&md->io_barrier);
3222 flush_workqueue(md->wq);
3223 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3224 }
3225 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3226
dm_internal_resume_fast(struct mapped_device * md)3227 void dm_internal_resume_fast(struct mapped_device *md)
3228 {
3229 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3230 goto done;
3231
3232 dm_queue_flush(md);
3233
3234 done:
3235 mutex_unlock(&md->suspend_lock);
3236 }
3237 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3238
3239 /*
3240 *---------------------------------------------------------------
3241 * Event notification.
3242 *---------------------------------------------------------------
3243 */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3244 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3245 unsigned int cookie, bool need_resize_uevent)
3246 {
3247 int r;
3248 unsigned int noio_flag;
3249 char udev_cookie[DM_COOKIE_LENGTH];
3250 char *envp[3] = { NULL, NULL, NULL };
3251 char **envpp = envp;
3252 if (cookie) {
3253 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3254 DM_COOKIE_ENV_VAR_NAME, cookie);
3255 *envpp++ = udev_cookie;
3256 }
3257 if (need_resize_uevent) {
3258 *envpp++ = "RESIZE=1";
3259 }
3260
3261 noio_flag = memalloc_noio_save();
3262
3263 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3264
3265 memalloc_noio_restore(noio_flag);
3266
3267 return r;
3268 }
3269
dm_next_uevent_seq(struct mapped_device * md)3270 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3271 {
3272 return atomic_add_return(1, &md->uevent_seq);
3273 }
3274
dm_get_event_nr(struct mapped_device * md)3275 uint32_t dm_get_event_nr(struct mapped_device *md)
3276 {
3277 return atomic_read(&md->event_nr);
3278 }
3279
dm_wait_event(struct mapped_device * md,int event_nr)3280 int dm_wait_event(struct mapped_device *md, int event_nr)
3281 {
3282 return wait_event_interruptible(md->eventq,
3283 (event_nr != atomic_read(&md->event_nr)));
3284 }
3285
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3286 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3287 {
3288 unsigned long flags;
3289
3290 spin_lock_irqsave(&md->uevent_lock, flags);
3291 list_add(elist, &md->uevent_list);
3292 spin_unlock_irqrestore(&md->uevent_lock, flags);
3293 }
3294
3295 /*
3296 * The gendisk is only valid as long as you have a reference
3297 * count on 'md'.
3298 */
dm_disk(struct mapped_device * md)3299 struct gendisk *dm_disk(struct mapped_device *md)
3300 {
3301 return md->disk;
3302 }
3303 EXPORT_SYMBOL_GPL(dm_disk);
3304
dm_kobject(struct mapped_device * md)3305 struct kobject *dm_kobject(struct mapped_device *md)
3306 {
3307 return &md->kobj_holder.kobj;
3308 }
3309
dm_get_from_kobject(struct kobject * kobj)3310 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3311 {
3312 struct mapped_device *md;
3313
3314 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3315
3316 spin_lock(&_minor_lock);
3317 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3318 md = NULL;
3319 goto out;
3320 }
3321 dm_get(md);
3322 out:
3323 spin_unlock(&_minor_lock);
3324
3325 return md;
3326 }
3327
dm_suspended_md(struct mapped_device * md)3328 int dm_suspended_md(struct mapped_device *md)
3329 {
3330 return test_bit(DMF_SUSPENDED, &md->flags);
3331 }
3332
dm_post_suspending_md(struct mapped_device * md)3333 static int dm_post_suspending_md(struct mapped_device *md)
3334 {
3335 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3336 }
3337
dm_suspended_internally_md(struct mapped_device * md)3338 int dm_suspended_internally_md(struct mapped_device *md)
3339 {
3340 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3341 }
3342
dm_test_deferred_remove_flag(struct mapped_device * md)3343 int dm_test_deferred_remove_flag(struct mapped_device *md)
3344 {
3345 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3346 }
3347
dm_suspended(struct dm_target * ti)3348 int dm_suspended(struct dm_target *ti)
3349 {
3350 return dm_suspended_md(ti->table->md);
3351 }
3352 EXPORT_SYMBOL_GPL(dm_suspended);
3353
dm_post_suspending(struct dm_target * ti)3354 int dm_post_suspending(struct dm_target *ti)
3355 {
3356 return dm_post_suspending_md(ti->table->md);
3357 }
3358 EXPORT_SYMBOL_GPL(dm_post_suspending);
3359
dm_noflush_suspending(struct dm_target * ti)3360 int dm_noflush_suspending(struct dm_target *ti)
3361 {
3362 return __noflush_suspending(ti->table->md);
3363 }
3364 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3365
dm_free_md_mempools(struct dm_md_mempools * pools)3366 void dm_free_md_mempools(struct dm_md_mempools *pools)
3367 {
3368 if (!pools)
3369 return;
3370
3371 bioset_exit(&pools->bs);
3372 bioset_exit(&pools->io_bs);
3373
3374 kfree(pools);
3375 }
3376
3377 struct dm_blkdev_id {
3378 u8 *id;
3379 enum blk_unique_id type;
3380 };
3381
__dm_get_unique_id(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3382 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3383 sector_t start, sector_t len, void *data)
3384 {
3385 struct dm_blkdev_id *dm_id = data;
3386 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3387
3388 if (!fops->get_unique_id)
3389 return 0;
3390
3391 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3392 }
3393
3394 /*
3395 * Allow access to get_unique_id() for the first device returning a
3396 * non-zero result. Reasonable use expects all devices to have the
3397 * same unique id.
3398 */
dm_blk_get_unique_id(struct gendisk * disk,u8 * id,enum blk_unique_id type)3399 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3400 enum blk_unique_id type)
3401 {
3402 struct mapped_device *md = disk->private_data;
3403 struct dm_table *table;
3404 struct dm_target *ti;
3405 int ret = 0, srcu_idx;
3406
3407 struct dm_blkdev_id dm_id = {
3408 .id = id,
3409 .type = type,
3410 };
3411
3412 table = dm_get_live_table(md, &srcu_idx);
3413 if (!table || !dm_table_get_size(table))
3414 goto out;
3415
3416 /* We only support devices that have a single target */
3417 if (table->num_targets != 1)
3418 goto out;
3419 ti = dm_table_get_target(table, 0);
3420
3421 if (!ti->type->iterate_devices)
3422 goto out;
3423
3424 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3425 out:
3426 dm_put_live_table(md, srcu_idx);
3427 return ret;
3428 }
3429
3430 struct dm_pr {
3431 u64 old_key;
3432 u64 new_key;
3433 u32 flags;
3434 bool abort;
3435 bool fail_early;
3436 int ret;
3437 enum pr_type type;
3438 struct pr_keys *read_keys;
3439 struct pr_held_reservation *rsv;
3440 };
3441
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3442 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3443 struct dm_pr *pr)
3444 {
3445 struct mapped_device *md = bdev->bd_disk->private_data;
3446 struct dm_table *table;
3447 struct dm_target *ti;
3448 int ret = -ENOTTY, srcu_idx;
3449
3450 table = dm_get_live_table(md, &srcu_idx);
3451 if (!table || !dm_table_get_size(table))
3452 goto out;
3453
3454 /* We only support devices that have a single target */
3455 if (table->num_targets != 1)
3456 goto out;
3457 ti = dm_table_get_target(table, 0);
3458
3459 if (dm_suspended_md(md)) {
3460 ret = -EAGAIN;
3461 goto out;
3462 }
3463
3464 ret = -EINVAL;
3465 if (!ti->type->iterate_devices)
3466 goto out;
3467
3468 ti->type->iterate_devices(ti, fn, pr);
3469 ret = 0;
3470 out:
3471 dm_put_live_table(md, srcu_idx);
3472 return ret;
3473 }
3474
3475 /*
3476 * For register / unregister we need to manually call out to every path.
3477 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3478 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3479 sector_t start, sector_t len, void *data)
3480 {
3481 struct dm_pr *pr = data;
3482 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3483 int ret;
3484
3485 if (!ops || !ops->pr_register) {
3486 pr->ret = -EOPNOTSUPP;
3487 return -1;
3488 }
3489
3490 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3491 if (!ret)
3492 return 0;
3493
3494 if (!pr->ret)
3495 pr->ret = ret;
3496
3497 if (pr->fail_early)
3498 return -1;
3499
3500 return 0;
3501 }
3502
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3503 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3504 u32 flags)
3505 {
3506 struct dm_pr pr = {
3507 .old_key = old_key,
3508 .new_key = new_key,
3509 .flags = flags,
3510 .fail_early = true,
3511 .ret = 0,
3512 };
3513 int ret;
3514
3515 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3516 if (ret) {
3517 /* Didn't even get to register a path */
3518 return ret;
3519 }
3520
3521 if (!pr.ret)
3522 return 0;
3523 ret = pr.ret;
3524
3525 if (!new_key)
3526 return ret;
3527
3528 /* unregister all paths if we failed to register any path */
3529 pr.old_key = new_key;
3530 pr.new_key = 0;
3531 pr.flags = 0;
3532 pr.fail_early = false;
3533 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3534 return ret;
3535 }
3536
3537
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3538 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3539 sector_t start, sector_t len, void *data)
3540 {
3541 struct dm_pr *pr = data;
3542 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3543
3544 if (!ops || !ops->pr_reserve) {
3545 pr->ret = -EOPNOTSUPP;
3546 return -1;
3547 }
3548
3549 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3550 if (!pr->ret)
3551 return -1;
3552
3553 return 0;
3554 }
3555
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3556 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3557 u32 flags)
3558 {
3559 struct dm_pr pr = {
3560 .old_key = key,
3561 .flags = flags,
3562 .type = type,
3563 .fail_early = false,
3564 .ret = 0,
3565 };
3566 int ret;
3567
3568 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3569 if (ret)
3570 return ret;
3571
3572 return pr.ret;
3573 }
3574
3575 /*
3576 * If there is a non-All Registrants type of reservation, the release must be
3577 * sent down the holding path. For the cases where there is no reservation or
3578 * the path is not the holder the device will also return success, so we must
3579 * try each path to make sure we got the correct path.
3580 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3581 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3582 sector_t start, sector_t len, void *data)
3583 {
3584 struct dm_pr *pr = data;
3585 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3586
3587 if (!ops || !ops->pr_release) {
3588 pr->ret = -EOPNOTSUPP;
3589 return -1;
3590 }
3591
3592 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3593 if (pr->ret)
3594 return -1;
3595
3596 return 0;
3597 }
3598
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3599 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3600 {
3601 struct dm_pr pr = {
3602 .old_key = key,
3603 .type = type,
3604 .fail_early = false,
3605 };
3606 int ret;
3607
3608 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3609 if (ret)
3610 return ret;
3611
3612 return pr.ret;
3613 }
3614
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3615 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3616 sector_t start, sector_t len, void *data)
3617 {
3618 struct dm_pr *pr = data;
3619 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3620
3621 if (!ops || !ops->pr_preempt) {
3622 pr->ret = -EOPNOTSUPP;
3623 return -1;
3624 }
3625
3626 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3627 pr->abort);
3628 if (!pr->ret)
3629 return -1;
3630
3631 return 0;
3632 }
3633
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3634 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3635 enum pr_type type, bool abort)
3636 {
3637 struct dm_pr pr = {
3638 .new_key = new_key,
3639 .old_key = old_key,
3640 .type = type,
3641 .fail_early = false,
3642 };
3643 int ret;
3644
3645 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3646 if (ret)
3647 return ret;
3648
3649 return pr.ret;
3650 }
3651
dm_pr_clear(struct block_device * bdev,u64 key)3652 static int dm_pr_clear(struct block_device *bdev, u64 key)
3653 {
3654 struct mapped_device *md = bdev->bd_disk->private_data;
3655 const struct pr_ops *ops;
3656 int r, srcu_idx;
3657 bool forward = true;
3658
3659 /* Not a real ioctl, but targets must not interpret non-DM ioctls */
3660 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3661 if (r < 0)
3662 goto out;
3663 WARN_ON_ONCE(!forward);
3664
3665 ops = bdev->bd_disk->fops->pr_ops;
3666 if (ops && ops->pr_clear)
3667 r = ops->pr_clear(bdev, key);
3668 else
3669 r = -EOPNOTSUPP;
3670 out:
3671 dm_unprepare_ioctl(md, srcu_idx);
3672 return r;
3673 }
3674
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3675 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3676 sector_t start, sector_t len, void *data)
3677 {
3678 struct dm_pr *pr = data;
3679 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3680
3681 if (!ops || !ops->pr_read_keys) {
3682 pr->ret = -EOPNOTSUPP;
3683 return -1;
3684 }
3685
3686 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3687 if (!pr->ret)
3688 return -1;
3689
3690 return 0;
3691 }
3692
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3693 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3694 {
3695 struct dm_pr pr = {
3696 .read_keys = keys,
3697 };
3698 int ret;
3699
3700 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3701 if (ret)
3702 return ret;
3703
3704 return pr.ret;
3705 }
3706
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3707 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3708 sector_t start, sector_t len, void *data)
3709 {
3710 struct dm_pr *pr = data;
3711 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3712
3713 if (!ops || !ops->pr_read_reservation) {
3714 pr->ret = -EOPNOTSUPP;
3715 return -1;
3716 }
3717
3718 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3719 if (!pr->ret)
3720 return -1;
3721
3722 return 0;
3723 }
3724
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3725 static int dm_pr_read_reservation(struct block_device *bdev,
3726 struct pr_held_reservation *rsv)
3727 {
3728 struct dm_pr pr = {
3729 .rsv = rsv,
3730 };
3731 int ret;
3732
3733 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3734 if (ret)
3735 return ret;
3736
3737 return pr.ret;
3738 }
3739
3740 static const struct pr_ops dm_pr_ops = {
3741 .pr_register = dm_pr_register,
3742 .pr_reserve = dm_pr_reserve,
3743 .pr_release = dm_pr_release,
3744 .pr_preempt = dm_pr_preempt,
3745 .pr_clear = dm_pr_clear,
3746 .pr_read_keys = dm_pr_read_keys,
3747 .pr_read_reservation = dm_pr_read_reservation,
3748 };
3749
3750 static const struct block_device_operations dm_blk_dops = {
3751 .submit_bio = dm_submit_bio,
3752 .poll_bio = dm_poll_bio,
3753 .open = dm_blk_open,
3754 .release = dm_blk_close,
3755 .ioctl = dm_blk_ioctl,
3756 .getgeo = dm_blk_getgeo,
3757 .report_zones = dm_blk_report_zones,
3758 .get_unique_id = dm_blk_get_unique_id,
3759 .pr_ops = &dm_pr_ops,
3760 .owner = THIS_MODULE
3761 };
3762
3763 static const struct block_device_operations dm_rq_blk_dops = {
3764 .open = dm_blk_open,
3765 .release = dm_blk_close,
3766 .ioctl = dm_blk_ioctl,
3767 .getgeo = dm_blk_getgeo,
3768 .get_unique_id = dm_blk_get_unique_id,
3769 .pr_ops = &dm_pr_ops,
3770 .owner = THIS_MODULE
3771 };
3772
3773 static const struct dax_operations dm_dax_ops = {
3774 .direct_access = dm_dax_direct_access,
3775 .zero_page_range = dm_dax_zero_page_range,
3776 .recovery_write = dm_dax_recovery_write,
3777 };
3778
3779 /*
3780 * module hooks
3781 */
3782 module_init(dm_init);
3783 module_exit(dm_exit);
3784
3785 module_param(major, uint, 0);
3786 MODULE_PARM_DESC(major, "The major number of the device mapper");
3787
3788 module_param(reserved_bio_based_ios, uint, 0644);
3789 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3790
3791 module_param(dm_numa_node, int, 0644);
3792 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3793
3794 module_param(swap_bios, int, 0644);
3795 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3796
3797 MODULE_DESCRIPTION(DM_NAME " driver");
3798 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3799 MODULE_LICENSE("GPL");
3800