1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
4 *
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6 *
7 * 7-bit I2C slave address 0x23
8 *
9 * TODO: IR LED characteristics
10 */
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/i2c.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
26
27 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
28 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
29 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
30 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
31 #define LTR501_PART_ID 0x86
32 #define LTR501_MANUFAC_ID 0x87
33 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
34 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
35 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
36 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
37 #define LTR501_ALS_PS_STATUS 0x8c
38 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
39 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
40 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
41 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
42 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
43 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
44 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
45 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
46 #define LTR501_MAX_REG 0x9f
47
48 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
49 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
50 #define LTR501_CONTR_PS_GAIN_SHIFT 2
51 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
52 #define LTR501_CONTR_ACTIVE BIT(1)
53
54 #define LTR501_STATUS_ALS_INTR BIT(3)
55 #define LTR501_STATUS_ALS_RDY BIT(2)
56 #define LTR501_STATUS_PS_INTR BIT(1)
57 #define LTR501_STATUS_PS_RDY BIT(0)
58
59 #define LTR501_PS_DATA_MASK 0x7ff
60 #define LTR501_PS_THRESH_MASK 0x7ff
61 #define LTR501_ALS_THRESH_MASK 0xffff
62
63 #define LTR501_ALS_DEF_PERIOD 500000
64 #define LTR501_PS_DEF_PERIOD 100000
65
66 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
67 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
68
69 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
70
71 static const struct reg_field reg_field_it =
72 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
73 static const struct reg_field reg_field_als_intr =
74 REG_FIELD(LTR501_INTR, 1, 1);
75 static const struct reg_field reg_field_ps_intr =
76 REG_FIELD(LTR501_INTR, 0, 0);
77 static const struct reg_field reg_field_als_rate =
78 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
79 static const struct reg_field reg_field_ps_rate =
80 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
81 static const struct reg_field reg_field_als_prst =
82 REG_FIELD(LTR501_INTR_PRST, 0, 3);
83 static const struct reg_field reg_field_ps_prst =
84 REG_FIELD(LTR501_INTR_PRST, 4, 7);
85
86 struct ltr501_samp_table {
87 int freq_val; /* repetition frequency in micro HZ*/
88 int time_val; /* repetition rate in micro seconds */
89 };
90
91 #define LTR501_RESERVED_GAIN -1
92
93 enum {
94 ltr501 = 0,
95 ltr559,
96 ltr301,
97 ltr303,
98 };
99
100 struct ltr501_gain {
101 int scale;
102 int uscale;
103 };
104
105 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
106 {1, 0},
107 {0, 5000},
108 };
109
110 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
111 {1, 0},
112 {0, 500000},
113 {0, 250000},
114 {0, 125000},
115 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
116 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
117 {0, 20000},
118 {0, 10000},
119 };
120
121 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
122 {1, 0},
123 {0, 250000},
124 {0, 125000},
125 {0, 62500},
126 };
127
128 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
129 {0, 62500}, /* x16 gain */
130 {0, 31250}, /* x32 gain */
131 {0, 15625}, /* bits X1 are for x64 gain */
132 {0, 15624},
133 };
134
135 struct ltr501_chip_info {
136 u8 partid;
137 const struct ltr501_gain *als_gain;
138 int als_gain_tbl_size;
139 const struct ltr501_gain *ps_gain;
140 int ps_gain_tbl_size;
141 u8 als_mode_active;
142 u8 als_gain_mask;
143 u8 als_gain_shift;
144 struct iio_chan_spec const *channels;
145 const int no_channels;
146 const struct iio_info *info;
147 const struct iio_info *info_no_irq;
148 };
149
150 struct ltr501_data {
151 struct i2c_client *client;
152 struct mutex lock_als, lock_ps;
153 const struct ltr501_chip_info *chip_info;
154 u8 als_contr, ps_contr;
155 int als_period, ps_period; /* period in micro seconds */
156 struct regmap *regmap;
157 struct regmap_field *reg_it;
158 struct regmap_field *reg_als_intr;
159 struct regmap_field *reg_ps_intr;
160 struct regmap_field *reg_als_rate;
161 struct regmap_field *reg_ps_rate;
162 struct regmap_field *reg_als_prst;
163 struct regmap_field *reg_ps_prst;
164 uint32_t near_level;
165 };
166
167 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
168 {20000000, 50000}, {10000000, 100000},
169 {5000000, 200000}, {2000000, 500000},
170 {1000000, 1000000}, {500000, 2000000},
171 {500000, 2000000}, {500000, 2000000}
172 };
173
174 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
175 {20000000, 50000}, {14285714, 70000},
176 {10000000, 100000}, {5000000, 200000},
177 {2000000, 500000}, {1000000, 1000000},
178 {500000, 2000000}, {500000, 2000000},
179 {500000, 2000000}
180 };
181
ltr501_match_samp_freq(const struct ltr501_samp_table * tab,int len,int val,int val2)182 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
183 int len, int val, int val2)
184 {
185 int i, freq;
186
187 freq = val * 1000000 + val2;
188
189 for (i = 0; i < len; i++) {
190 if (tab[i].freq_val == freq)
191 return i;
192 }
193
194 return -EINVAL;
195 }
196
ltr501_als_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)197 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
198 int *val, int *val2)
199 {
200 int ret, i;
201
202 ret = regmap_field_read(data->reg_als_rate, &i);
203 if (ret < 0)
204 return ret;
205
206 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
207 return -EINVAL;
208
209 *val = ltr501_als_samp_table[i].freq_val / 1000000;
210 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
211
212 return IIO_VAL_INT_PLUS_MICRO;
213 }
214
ltr501_ps_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)215 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
216 int *val, int *val2)
217 {
218 int ret, i;
219
220 ret = regmap_field_read(data->reg_ps_rate, &i);
221 if (ret < 0)
222 return ret;
223
224 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
225 return -EINVAL;
226
227 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
228 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
229
230 return IIO_VAL_INT_PLUS_MICRO;
231 }
232
ltr501_als_write_samp_freq(struct ltr501_data * data,int val,int val2)233 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
234 int val, int val2)
235 {
236 int i, ret;
237
238 i = ltr501_match_samp_freq(ltr501_als_samp_table,
239 ARRAY_SIZE(ltr501_als_samp_table),
240 val, val2);
241
242 if (i < 0)
243 return i;
244
245 mutex_lock(&data->lock_als);
246 ret = regmap_field_write(data->reg_als_rate, i);
247 mutex_unlock(&data->lock_als);
248
249 return ret;
250 }
251
ltr501_ps_write_samp_freq(struct ltr501_data * data,int val,int val2)252 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
253 int val, int val2)
254 {
255 int i, ret;
256
257 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
258 ARRAY_SIZE(ltr501_ps_samp_table),
259 val, val2);
260
261 if (i < 0)
262 return i;
263
264 mutex_lock(&data->lock_ps);
265 ret = regmap_field_write(data->reg_ps_rate, i);
266 mutex_unlock(&data->lock_ps);
267
268 return ret;
269 }
270
ltr501_als_read_samp_period(const struct ltr501_data * data,int * val)271 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
272 {
273 int ret, i;
274
275 ret = regmap_field_read(data->reg_als_rate, &i);
276 if (ret < 0)
277 return ret;
278
279 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
280 return -EINVAL;
281
282 *val = ltr501_als_samp_table[i].time_val;
283
284 return IIO_VAL_INT;
285 }
286
ltr501_ps_read_samp_period(const struct ltr501_data * data,int * val)287 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
288 {
289 int ret, i;
290
291 ret = regmap_field_read(data->reg_ps_rate, &i);
292 if (ret < 0)
293 return ret;
294
295 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
296 return -EINVAL;
297
298 *val = ltr501_ps_samp_table[i].time_val;
299
300 return IIO_VAL_INT;
301 }
302
303 /* IR and visible spectrum coeff's are given in data sheet */
ltr501_calculate_lux(u16 vis_data,u16 ir_data)304 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
305 {
306 unsigned long ratio, lux;
307
308 if (vis_data == 0)
309 return 0;
310
311 /* multiply numerator by 100 to avoid handling ratio < 1 */
312 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
313
314 if (ratio < 45)
315 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
316 else if (ratio >= 45 && ratio < 64)
317 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
318 else if (ratio >= 64 && ratio < 85)
319 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
320 else
321 lux = 0;
322
323 return lux / 1000;
324 }
325
ltr501_drdy(const struct ltr501_data * data,u8 drdy_mask)326 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
327 {
328 int tries = 100;
329 int ret, status;
330
331 while (tries--) {
332 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
333 if (ret < 0)
334 return ret;
335 if ((status & drdy_mask) == drdy_mask)
336 return 0;
337 msleep(25);
338 }
339
340 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
341 return -EIO;
342 }
343
ltr501_set_it_time(struct ltr501_data * data,int it)344 static int ltr501_set_it_time(struct ltr501_data *data, int it)
345 {
346 int ret, i, index = -1, status;
347
348 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
349 if (int_time_mapping[i] == it) {
350 index = i;
351 break;
352 }
353 }
354 /* Make sure integ time index is valid */
355 if (index < 0)
356 return -EINVAL;
357
358 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
359 if (ret < 0)
360 return ret;
361
362 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
363 /*
364 * 200 ms and 400 ms integ time can only be
365 * used in dynamic range 1
366 */
367 if (index > 1)
368 return -EINVAL;
369 } else
370 /* 50 ms integ time can only be used in dynamic range 2 */
371 if (index == 1)
372 return -EINVAL;
373
374 return regmap_field_write(data->reg_it, index);
375 }
376
377 /* read int time in micro seconds */
ltr501_read_it_time(const struct ltr501_data * data,int * val,int * val2)378 static int ltr501_read_it_time(const struct ltr501_data *data,
379 int *val, int *val2)
380 {
381 int ret, index;
382
383 ret = regmap_field_read(data->reg_it, &index);
384 if (ret < 0)
385 return ret;
386
387 /* Make sure integ time index is valid */
388 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
389 return -EINVAL;
390
391 *val2 = int_time_mapping[index];
392 *val = 0;
393
394 return IIO_VAL_INT_PLUS_MICRO;
395 }
396
ltr501_read_als(const struct ltr501_data * data,__le16 buf[2])397 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
398 {
399 int ret;
400
401 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
402 if (ret < 0)
403 return ret;
404 /* always read both ALS channels in given order */
405 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
406 buf, 2 * sizeof(__le16));
407 }
408
ltr501_read_ps(const struct ltr501_data * data)409 static int ltr501_read_ps(const struct ltr501_data *data)
410 {
411 __le16 status;
412 int ret;
413
414 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
415 if (ret < 0)
416 return ret;
417
418 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
419 &status, sizeof(status));
420 if (ret < 0)
421 return ret;
422
423 return le16_to_cpu(status);
424 }
425
ltr501_read_intr_prst(const struct ltr501_data * data,enum iio_chan_type type,int * val2)426 static int ltr501_read_intr_prst(const struct ltr501_data *data,
427 enum iio_chan_type type,
428 int *val2)
429 {
430 int ret, samp_period, prst;
431
432 switch (type) {
433 case IIO_INTENSITY:
434 ret = regmap_field_read(data->reg_als_prst, &prst);
435 if (ret < 0)
436 return ret;
437
438 ret = ltr501_als_read_samp_period(data, &samp_period);
439
440 if (ret < 0)
441 return ret;
442 *val2 = samp_period * prst;
443 return IIO_VAL_INT_PLUS_MICRO;
444 case IIO_PROXIMITY:
445 ret = regmap_field_read(data->reg_ps_prst, &prst);
446 if (ret < 0)
447 return ret;
448
449 ret = ltr501_ps_read_samp_period(data, &samp_period);
450
451 if (ret < 0)
452 return ret;
453
454 *val2 = samp_period * prst;
455 return IIO_VAL_INT_PLUS_MICRO;
456 default:
457 return -EINVAL;
458 }
459
460 return -EINVAL;
461 }
462
ltr501_write_intr_prst(struct ltr501_data * data,enum iio_chan_type type,int val,int val2)463 static int ltr501_write_intr_prst(struct ltr501_data *data,
464 enum iio_chan_type type,
465 int val, int val2)
466 {
467 int ret, samp_period, new_val;
468 unsigned long period;
469
470 if (val < 0 || val2 < 0)
471 return -EINVAL;
472
473 /* period in microseconds */
474 period = ((val * 1000000) + val2);
475
476 switch (type) {
477 case IIO_INTENSITY:
478 ret = ltr501_als_read_samp_period(data, &samp_period);
479 if (ret < 0)
480 return ret;
481
482 /* period should be atleast equal to sampling period */
483 if (period < samp_period)
484 return -EINVAL;
485
486 new_val = DIV_ROUND_UP(period, samp_period);
487 if (new_val < 0 || new_val > 0x0f)
488 return -EINVAL;
489
490 mutex_lock(&data->lock_als);
491 ret = regmap_field_write(data->reg_als_prst, new_val);
492 mutex_unlock(&data->lock_als);
493 if (ret >= 0)
494 data->als_period = period;
495
496 return ret;
497 case IIO_PROXIMITY:
498 ret = ltr501_ps_read_samp_period(data, &samp_period);
499 if (ret < 0)
500 return ret;
501
502 /* period should be atleast equal to rate */
503 if (period < samp_period)
504 return -EINVAL;
505
506 new_val = DIV_ROUND_UP(period, samp_period);
507 if (new_val < 0 || new_val > 0x0f)
508 return -EINVAL;
509
510 mutex_lock(&data->lock_ps);
511 ret = regmap_field_write(data->reg_ps_prst, new_val);
512 mutex_unlock(&data->lock_ps);
513 if (ret >= 0)
514 data->ps_period = period;
515
516 return ret;
517 default:
518 return -EINVAL;
519 }
520
521 return -EINVAL;
522 }
523
ltr501_read_near_level(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)524 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev,
525 uintptr_t priv,
526 const struct iio_chan_spec *chan,
527 char *buf)
528 {
529 struct ltr501_data *data = iio_priv(indio_dev);
530
531 return sprintf(buf, "%u\n", data->near_level);
532 }
533
534 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = {
535 {
536 .name = "nearlevel",
537 .shared = IIO_SEPARATE,
538 .read = ltr501_read_near_level,
539 },
540 { }
541 };
542
543 static const struct iio_event_spec ltr501_als_event_spec[] = {
544 {
545 .type = IIO_EV_TYPE_THRESH,
546 .dir = IIO_EV_DIR_RISING,
547 .mask_separate = BIT(IIO_EV_INFO_VALUE),
548 }, {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_FALLING,
551 .mask_separate = BIT(IIO_EV_INFO_VALUE),
552 }, {
553 .type = IIO_EV_TYPE_THRESH,
554 .dir = IIO_EV_DIR_EITHER,
555 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
556 BIT(IIO_EV_INFO_PERIOD),
557 },
558
559 };
560
561 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
562 {
563 .type = IIO_EV_TYPE_THRESH,
564 .dir = IIO_EV_DIR_RISING,
565 .mask_separate = BIT(IIO_EV_INFO_VALUE),
566 }, {
567 .type = IIO_EV_TYPE_THRESH,
568 .dir = IIO_EV_DIR_FALLING,
569 .mask_separate = BIT(IIO_EV_INFO_VALUE),
570 }, {
571 .type = IIO_EV_TYPE_THRESH,
572 .dir = IIO_EV_DIR_EITHER,
573 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
574 BIT(IIO_EV_INFO_PERIOD),
575 },
576 };
577
578 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
579 _evspec, _evsize) { \
580 .type = IIO_INTENSITY, \
581 .modified = 1, \
582 .address = (_addr), \
583 .channel2 = (_mod), \
584 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
585 .info_mask_shared_by_type = (_shared), \
586 .scan_index = (_idx), \
587 .scan_type = { \
588 .sign = 'u', \
589 .realbits = 16, \
590 .storagebits = 16, \
591 .endianness = IIO_CPU, \
592 }, \
593 .event_spec = _evspec,\
594 .num_event_specs = _evsize,\
595 }
596
597 #define LTR501_LIGHT_CHANNEL() { \
598 .type = IIO_LIGHT, \
599 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
600 .scan_index = -1, \
601 }
602
603 static const struct iio_chan_spec ltr501_channels[] = {
604 LTR501_LIGHT_CHANNEL(),
605 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
606 ltr501_als_event_spec,
607 ARRAY_SIZE(ltr501_als_event_spec)),
608 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
609 BIT(IIO_CHAN_INFO_SCALE) |
610 BIT(IIO_CHAN_INFO_INT_TIME) |
611 BIT(IIO_CHAN_INFO_SAMP_FREQ),
612 NULL, 0),
613 {
614 .type = IIO_PROXIMITY,
615 .address = LTR501_PS_DATA,
616 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
617 BIT(IIO_CHAN_INFO_SCALE),
618 .scan_index = 2,
619 .scan_type = {
620 .sign = 'u',
621 .realbits = 11,
622 .storagebits = 16,
623 .endianness = IIO_CPU,
624 },
625 .event_spec = ltr501_pxs_event_spec,
626 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
627 .ext_info = ltr501_ext_info,
628 },
629 IIO_CHAN_SOFT_TIMESTAMP(3),
630 };
631
632 static const struct iio_chan_spec ltr301_channels[] = {
633 LTR501_LIGHT_CHANNEL(),
634 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
635 ltr501_als_event_spec,
636 ARRAY_SIZE(ltr501_als_event_spec)),
637 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
638 BIT(IIO_CHAN_INFO_SCALE) |
639 BIT(IIO_CHAN_INFO_INT_TIME) |
640 BIT(IIO_CHAN_INFO_SAMP_FREQ),
641 NULL, 0),
642 IIO_CHAN_SOFT_TIMESTAMP(2),
643 };
644
ltr501_read_info_raw(struct ltr501_data * data,struct iio_chan_spec const * chan,int * val)645 static int ltr501_read_info_raw(struct ltr501_data *data,
646 struct iio_chan_spec const *chan,
647 int *val)
648 {
649 __le16 buf[2];
650 int ret;
651
652 switch (chan->type) {
653 case IIO_INTENSITY:
654 mutex_lock(&data->lock_als);
655 ret = ltr501_read_als(data, buf);
656 mutex_unlock(&data->lock_als);
657 if (ret < 0)
658 return ret;
659 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
660 buf[0] : buf[1]);
661 return IIO_VAL_INT;
662 case IIO_PROXIMITY:
663 mutex_lock(&data->lock_ps);
664 ret = ltr501_read_ps(data);
665 mutex_unlock(&data->lock_ps);
666 if (ret < 0)
667 return ret;
668 *val = ret & LTR501_PS_DATA_MASK;
669 return IIO_VAL_INT;
670 default:
671 return -EINVAL;
672 }
673 }
674
ltr501_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)675 static int ltr501_read_raw(struct iio_dev *indio_dev,
676 struct iio_chan_spec const *chan,
677 int *val, int *val2, long mask)
678 {
679 struct ltr501_data *data = iio_priv(indio_dev);
680 __le16 buf[2];
681 int ret, i;
682
683 switch (mask) {
684 case IIO_CHAN_INFO_PROCESSED:
685 switch (chan->type) {
686 case IIO_LIGHT:
687 if (!iio_device_claim_direct(indio_dev))
688 return -EBUSY;
689
690 mutex_lock(&data->lock_als);
691 ret = ltr501_read_als(data, buf);
692 mutex_unlock(&data->lock_als);
693 iio_device_release_direct(indio_dev);
694 if (ret < 0)
695 return ret;
696 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
697 le16_to_cpu(buf[0]));
698 return IIO_VAL_INT;
699 default:
700 return -EINVAL;
701 }
702 case IIO_CHAN_INFO_RAW:
703 if (!iio_device_claim_direct(indio_dev))
704 return -EBUSY;
705
706 ret = ltr501_read_info_raw(data, chan, val);
707
708 iio_device_release_direct(indio_dev);
709 return ret;
710
711 case IIO_CHAN_INFO_SCALE:
712 switch (chan->type) {
713 case IIO_INTENSITY:
714 i = (data->als_contr & data->chip_info->als_gain_mask)
715 >> data->chip_info->als_gain_shift;
716 *val = data->chip_info->als_gain[i].scale;
717 *val2 = data->chip_info->als_gain[i].uscale;
718 return IIO_VAL_INT_PLUS_MICRO;
719 case IIO_PROXIMITY:
720 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
721 LTR501_CONTR_PS_GAIN_SHIFT;
722 *val = data->chip_info->ps_gain[i].scale;
723 *val2 = data->chip_info->ps_gain[i].uscale;
724 return IIO_VAL_INT_PLUS_MICRO;
725 default:
726 return -EINVAL;
727 }
728 case IIO_CHAN_INFO_INT_TIME:
729 switch (chan->type) {
730 case IIO_INTENSITY:
731 return ltr501_read_it_time(data, val, val2);
732 default:
733 return -EINVAL;
734 }
735 case IIO_CHAN_INFO_SAMP_FREQ:
736 switch (chan->type) {
737 case IIO_INTENSITY:
738 return ltr501_als_read_samp_freq(data, val, val2);
739 case IIO_PROXIMITY:
740 return ltr501_ps_read_samp_freq(data, val, val2);
741 default:
742 return -EINVAL;
743 }
744 }
745 return -EINVAL;
746 }
747
ltr501_get_gain_index(const struct ltr501_gain * gain,int size,int val,int val2)748 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
749 int val, int val2)
750 {
751 int i;
752
753 for (i = 0; i < size; i++)
754 if (val == gain[i].scale && val2 == gain[i].uscale)
755 return i;
756
757 return -1;
758 }
759
__ltr501_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)760 static int __ltr501_write_raw(struct iio_dev *indio_dev,
761 struct iio_chan_spec const *chan,
762 int val, int val2, long mask)
763 {
764 struct ltr501_data *data = iio_priv(indio_dev);
765 int i, ret, freq_val, freq_val2;
766 const struct ltr501_chip_info *info = data->chip_info;
767
768 switch (mask) {
769 case IIO_CHAN_INFO_SCALE:
770 switch (chan->type) {
771 case IIO_INTENSITY:
772 i = ltr501_get_gain_index(info->als_gain,
773 info->als_gain_tbl_size,
774 val, val2);
775 if (i < 0)
776 return -EINVAL;
777
778 data->als_contr &= ~info->als_gain_mask;
779 data->als_contr |= i << info->als_gain_shift;
780
781 return regmap_write(data->regmap, LTR501_ALS_CONTR,
782 data->als_contr);
783 case IIO_PROXIMITY:
784 i = ltr501_get_gain_index(info->ps_gain,
785 info->ps_gain_tbl_size,
786 val, val2);
787 if (i < 0)
788 return -EINVAL;
789
790 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
791 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
792
793 return regmap_write(data->regmap, LTR501_PS_CONTR,
794 data->ps_contr);
795 default:
796 return -EINVAL;
797 }
798
799 case IIO_CHAN_INFO_INT_TIME:
800 switch (chan->type) {
801 case IIO_INTENSITY:
802 if (val != 0)
803 return -EINVAL;
804
805 mutex_lock(&data->lock_als);
806 ret = ltr501_set_it_time(data, val2);
807 mutex_unlock(&data->lock_als);
808 return ret;
809 default:
810 return -EINVAL;
811 }
812
813 case IIO_CHAN_INFO_SAMP_FREQ:
814 switch (chan->type) {
815 case IIO_INTENSITY:
816 ret = ltr501_als_read_samp_freq(data, &freq_val,
817 &freq_val2);
818 if (ret < 0)
819 return ret;
820
821 ret = ltr501_als_write_samp_freq(data, val, val2);
822 if (ret < 0)
823 return ret;
824
825 /* update persistence count when changing frequency */
826 ret = ltr501_write_intr_prst(data, chan->type,
827 0, data->als_period);
828
829 if (ret < 0)
830 /* Do not ovewrite error */
831 ltr501_als_write_samp_freq(data, freq_val,
832 freq_val2);
833 return ret;
834 case IIO_PROXIMITY:
835 ret = ltr501_ps_read_samp_freq(data, &freq_val,
836 &freq_val2);
837 if (ret < 0)
838 return ret;
839
840 ret = ltr501_ps_write_samp_freq(data, val, val2);
841 if (ret < 0)
842 return ret;
843
844 /* update persistence count when changing frequency */
845 ret = ltr501_write_intr_prst(data, chan->type,
846 0, data->ps_period);
847
848 if (ret < 0)
849 /* Do not overwrite error */
850 ltr501_ps_write_samp_freq(data, freq_val,
851 freq_val2);
852 return ret;
853 default:
854 return -EINVAL;
855 }
856 default:
857 return -EINVAL;
858 }
859 }
860
ltr501_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)861 static int ltr501_write_raw(struct iio_dev *indio_dev,
862 struct iio_chan_spec const *chan,
863 int val, int val2, long mask)
864 {
865 int ret;
866
867 if (!iio_device_claim_direct(indio_dev))
868 return -EBUSY;
869
870 ret = __ltr501_write_raw(indio_dev, chan, val, val2, mask);
871
872 iio_device_release_direct(indio_dev);
873
874 return ret;
875 }
876
ltr501_read_thresh(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)877 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
878 const struct iio_chan_spec *chan,
879 enum iio_event_type type,
880 enum iio_event_direction dir,
881 enum iio_event_info info,
882 int *val, int *val2)
883 {
884 const struct ltr501_data *data = iio_priv(indio_dev);
885 int ret, thresh_data;
886
887 switch (chan->type) {
888 case IIO_INTENSITY:
889 switch (dir) {
890 case IIO_EV_DIR_RISING:
891 ret = regmap_bulk_read(data->regmap,
892 LTR501_ALS_THRESH_UP,
893 &thresh_data, 2);
894 if (ret < 0)
895 return ret;
896 *val = thresh_data & LTR501_ALS_THRESH_MASK;
897 return IIO_VAL_INT;
898 case IIO_EV_DIR_FALLING:
899 ret = regmap_bulk_read(data->regmap,
900 LTR501_ALS_THRESH_LOW,
901 &thresh_data, 2);
902 if (ret < 0)
903 return ret;
904 *val = thresh_data & LTR501_ALS_THRESH_MASK;
905 return IIO_VAL_INT;
906 default:
907 return -EINVAL;
908 }
909 case IIO_PROXIMITY:
910 switch (dir) {
911 case IIO_EV_DIR_RISING:
912 ret = regmap_bulk_read(data->regmap,
913 LTR501_PS_THRESH_UP,
914 &thresh_data, 2);
915 if (ret < 0)
916 return ret;
917 *val = thresh_data & LTR501_PS_THRESH_MASK;
918 return IIO_VAL_INT;
919 case IIO_EV_DIR_FALLING:
920 ret = regmap_bulk_read(data->regmap,
921 LTR501_PS_THRESH_LOW,
922 &thresh_data, 2);
923 if (ret < 0)
924 return ret;
925 *val = thresh_data & LTR501_PS_THRESH_MASK;
926 return IIO_VAL_INT;
927 default:
928 return -EINVAL;
929 }
930 default:
931 return -EINVAL;
932 }
933
934 return -EINVAL;
935 }
936
ltr501_write_thresh(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)937 static int ltr501_write_thresh(struct iio_dev *indio_dev,
938 const struct iio_chan_spec *chan,
939 enum iio_event_type type,
940 enum iio_event_direction dir,
941 enum iio_event_info info,
942 int val, int val2)
943 {
944 struct ltr501_data *data = iio_priv(indio_dev);
945 int ret;
946
947 if (val < 0)
948 return -EINVAL;
949
950 switch (chan->type) {
951 case IIO_INTENSITY:
952 if (val > LTR501_ALS_THRESH_MASK)
953 return -EINVAL;
954 switch (dir) {
955 case IIO_EV_DIR_RISING:
956 mutex_lock(&data->lock_als);
957 ret = regmap_bulk_write(data->regmap,
958 LTR501_ALS_THRESH_UP,
959 &val, 2);
960 mutex_unlock(&data->lock_als);
961 return ret;
962 case IIO_EV_DIR_FALLING:
963 mutex_lock(&data->lock_als);
964 ret = regmap_bulk_write(data->regmap,
965 LTR501_ALS_THRESH_LOW,
966 &val, 2);
967 mutex_unlock(&data->lock_als);
968 return ret;
969 default:
970 return -EINVAL;
971 }
972 case IIO_PROXIMITY:
973 if (val > LTR501_PS_THRESH_MASK)
974 return -EINVAL;
975 switch (dir) {
976 case IIO_EV_DIR_RISING:
977 mutex_lock(&data->lock_ps);
978 ret = regmap_bulk_write(data->regmap,
979 LTR501_PS_THRESH_UP,
980 &val, 2);
981 mutex_unlock(&data->lock_ps);
982 return ret;
983 case IIO_EV_DIR_FALLING:
984 mutex_lock(&data->lock_ps);
985 ret = regmap_bulk_write(data->regmap,
986 LTR501_PS_THRESH_LOW,
987 &val, 2);
988 mutex_unlock(&data->lock_ps);
989 return ret;
990 default:
991 return -EINVAL;
992 }
993 default:
994 return -EINVAL;
995 }
996
997 return -EINVAL;
998 }
999
ltr501_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1000 static int ltr501_read_event(struct iio_dev *indio_dev,
1001 const struct iio_chan_spec *chan,
1002 enum iio_event_type type,
1003 enum iio_event_direction dir,
1004 enum iio_event_info info,
1005 int *val, int *val2)
1006 {
1007 int ret;
1008
1009 switch (info) {
1010 case IIO_EV_INFO_VALUE:
1011 return ltr501_read_thresh(indio_dev, chan, type, dir,
1012 info, val, val2);
1013 case IIO_EV_INFO_PERIOD:
1014 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
1015 chan->type, val2);
1016 *val = *val2 / 1000000;
1017 *val2 = *val2 % 1000000;
1018 return ret;
1019 default:
1020 return -EINVAL;
1021 }
1022
1023 return -EINVAL;
1024 }
1025
ltr501_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1026 static int ltr501_write_event(struct iio_dev *indio_dev,
1027 const struct iio_chan_spec *chan,
1028 enum iio_event_type type,
1029 enum iio_event_direction dir,
1030 enum iio_event_info info,
1031 int val, int val2)
1032 {
1033 switch (info) {
1034 case IIO_EV_INFO_VALUE:
1035 if (val2 != 0)
1036 return -EINVAL;
1037 return ltr501_write_thresh(indio_dev, chan, type, dir,
1038 info, val, val2);
1039 case IIO_EV_INFO_PERIOD:
1040 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1041 val, val2);
1042 default:
1043 return -EINVAL;
1044 }
1045
1046 return -EINVAL;
1047 }
1048
ltr501_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1049 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1050 const struct iio_chan_spec *chan,
1051 enum iio_event_type type,
1052 enum iio_event_direction dir)
1053 {
1054 struct ltr501_data *data = iio_priv(indio_dev);
1055 int ret, status;
1056
1057 switch (chan->type) {
1058 case IIO_INTENSITY:
1059 ret = regmap_field_read(data->reg_als_intr, &status);
1060 if (ret < 0)
1061 return ret;
1062 return status;
1063 case IIO_PROXIMITY:
1064 ret = regmap_field_read(data->reg_ps_intr, &status);
1065 if (ret < 0)
1066 return ret;
1067 return status;
1068 default:
1069 return -EINVAL;
1070 }
1071
1072 return -EINVAL;
1073 }
1074
ltr501_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)1075 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1076 const struct iio_chan_spec *chan,
1077 enum iio_event_type type,
1078 enum iio_event_direction dir, bool state)
1079 {
1080 struct ltr501_data *data = iio_priv(indio_dev);
1081 int ret;
1082
1083 switch (chan->type) {
1084 case IIO_INTENSITY:
1085 mutex_lock(&data->lock_als);
1086 ret = regmap_field_write(data->reg_als_intr, state);
1087 mutex_unlock(&data->lock_als);
1088 return ret;
1089 case IIO_PROXIMITY:
1090 mutex_lock(&data->lock_ps);
1091 ret = regmap_field_write(data->reg_ps_intr, state);
1092 mutex_unlock(&data->lock_ps);
1093 return ret;
1094 default:
1095 return -EINVAL;
1096 }
1097
1098 return -EINVAL;
1099 }
1100
ltr501_show_proximity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1101 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1102 struct device_attribute *attr,
1103 char *buf)
1104 {
1105 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1106 const struct ltr501_chip_info *info = data->chip_info;
1107 ssize_t len = 0;
1108 int i;
1109
1110 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1111 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1112 continue;
1113 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1114 info->ps_gain[i].scale,
1115 info->ps_gain[i].uscale);
1116 }
1117
1118 buf[len - 1] = '\n';
1119
1120 return len;
1121 }
1122
ltr501_show_intensity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1123 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1124 struct device_attribute *attr,
1125 char *buf)
1126 {
1127 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1128 const struct ltr501_chip_info *info = data->chip_info;
1129 ssize_t len = 0;
1130 int i;
1131
1132 for (i = 0; i < info->als_gain_tbl_size; i++) {
1133 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1134 continue;
1135 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1136 info->als_gain[i].scale,
1137 info->als_gain[i].uscale);
1138 }
1139
1140 buf[len - 1] = '\n';
1141
1142 return len;
1143 }
1144
1145 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1146 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1147
1148 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1149 ltr501_show_proximity_scale_avail, NULL, 0);
1150 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1151 ltr501_show_intensity_scale_avail, NULL, 0);
1152
1153 static struct attribute *ltr501_attributes[] = {
1154 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1155 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1156 &iio_const_attr_integration_time_available.dev_attr.attr,
1157 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1158 NULL
1159 };
1160
1161 static struct attribute *ltr301_attributes[] = {
1162 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1163 &iio_const_attr_integration_time_available.dev_attr.attr,
1164 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1165 NULL
1166 };
1167
1168 static const struct attribute_group ltr501_attribute_group = {
1169 .attrs = ltr501_attributes,
1170 };
1171
1172 static const struct attribute_group ltr301_attribute_group = {
1173 .attrs = ltr301_attributes,
1174 };
1175
1176 static const struct iio_info ltr501_info_no_irq = {
1177 .read_raw = ltr501_read_raw,
1178 .write_raw = ltr501_write_raw,
1179 .attrs = <r501_attribute_group,
1180 };
1181
1182 static const struct iio_info ltr501_info = {
1183 .read_raw = ltr501_read_raw,
1184 .write_raw = ltr501_write_raw,
1185 .attrs = <r501_attribute_group,
1186 .read_event_value = <r501_read_event,
1187 .write_event_value = <r501_write_event,
1188 .read_event_config = <r501_read_event_config,
1189 .write_event_config = <r501_write_event_config,
1190 };
1191
1192 static const struct iio_info ltr301_info_no_irq = {
1193 .read_raw = ltr501_read_raw,
1194 .write_raw = ltr501_write_raw,
1195 .attrs = <r301_attribute_group,
1196 };
1197
1198 static const struct iio_info ltr301_info = {
1199 .read_raw = ltr501_read_raw,
1200 .write_raw = ltr501_write_raw,
1201 .attrs = <r301_attribute_group,
1202 .read_event_value = <r501_read_event,
1203 .write_event_value = <r501_write_event,
1204 .read_event_config = <r501_read_event_config,
1205 .write_event_config = <r501_write_event_config,
1206 };
1207
1208 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1209 [ltr501] = {
1210 .partid = 0x08,
1211 .als_gain = ltr501_als_gain_tbl,
1212 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1213 .ps_gain = ltr501_ps_gain_tbl,
1214 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1215 .als_mode_active = BIT(0) | BIT(1),
1216 .als_gain_mask = BIT(3),
1217 .als_gain_shift = 3,
1218 .info = <r501_info,
1219 .info_no_irq = <r501_info_no_irq,
1220 .channels = ltr501_channels,
1221 .no_channels = ARRAY_SIZE(ltr501_channels),
1222 },
1223 [ltr559] = {
1224 .partid = 0x09,
1225 .als_gain = ltr559_als_gain_tbl,
1226 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1227 .ps_gain = ltr559_ps_gain_tbl,
1228 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1229 .als_mode_active = BIT(0),
1230 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1231 .als_gain_shift = 2,
1232 .info = <r501_info,
1233 .info_no_irq = <r501_info_no_irq,
1234 .channels = ltr501_channels,
1235 .no_channels = ARRAY_SIZE(ltr501_channels),
1236 },
1237 [ltr301] = {
1238 .partid = 0x08,
1239 .als_gain = ltr501_als_gain_tbl,
1240 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1241 .als_mode_active = BIT(0) | BIT(1),
1242 .als_gain_mask = BIT(3),
1243 .als_gain_shift = 3,
1244 .info = <r301_info,
1245 .info_no_irq = <r301_info_no_irq,
1246 .channels = ltr301_channels,
1247 .no_channels = ARRAY_SIZE(ltr301_channels),
1248 },
1249 [ltr303] = {
1250 .partid = 0x0A,
1251 .als_gain = ltr559_als_gain_tbl,
1252 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1253 .als_mode_active = BIT(0),
1254 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1255 .als_gain_shift = 2,
1256 .info = <r301_info,
1257 .info_no_irq = <r301_info_no_irq,
1258 .channels = ltr301_channels,
1259 .no_channels = ARRAY_SIZE(ltr301_channels),
1260 },
1261 };
1262
ltr501_write_contr(struct ltr501_data * data,u8 als_val,u8 ps_val)1263 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1264 {
1265 int ret;
1266
1267 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1268 if (ret < 0)
1269 return ret;
1270
1271 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1272 }
1273
ltr501_trigger_handler(int irq,void * p)1274 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1275 {
1276 struct iio_poll_func *pf = p;
1277 struct iio_dev *indio_dev = pf->indio_dev;
1278 struct ltr501_data *data = iio_priv(indio_dev);
1279 struct {
1280 u16 channels[3];
1281 aligned_s64 ts;
1282 } scan = { };
1283 __le16 als_buf[2];
1284 u8 mask = 0;
1285 int j = 0;
1286 int ret, psdata;
1287
1288 /* figure out which data needs to be ready */
1289 if (test_bit(0, indio_dev->active_scan_mask) ||
1290 test_bit(1, indio_dev->active_scan_mask))
1291 mask |= LTR501_STATUS_ALS_RDY;
1292 if (test_bit(2, indio_dev->active_scan_mask))
1293 mask |= LTR501_STATUS_PS_RDY;
1294
1295 ret = ltr501_drdy(data, mask);
1296 if (ret < 0)
1297 goto done;
1298
1299 if (mask & LTR501_STATUS_ALS_RDY) {
1300 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1301 als_buf, sizeof(als_buf));
1302 if (ret < 0)
1303 goto done;
1304 if (test_bit(0, indio_dev->active_scan_mask))
1305 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1306 if (test_bit(1, indio_dev->active_scan_mask))
1307 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1308 }
1309
1310 if (mask & LTR501_STATUS_PS_RDY) {
1311 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1312 &psdata, 2);
1313 if (ret < 0)
1314 goto done;
1315 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1316 }
1317
1318 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1319 iio_get_time_ns(indio_dev));
1320
1321 done:
1322 iio_trigger_notify_done(indio_dev->trig);
1323
1324 return IRQ_HANDLED;
1325 }
1326
ltr501_interrupt_handler(int irq,void * private)1327 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1328 {
1329 struct iio_dev *indio_dev = private;
1330 struct ltr501_data *data = iio_priv(indio_dev);
1331 int ret, status;
1332
1333 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1334 if (ret < 0) {
1335 dev_err(&data->client->dev,
1336 "irq read int reg failed\n");
1337 return IRQ_HANDLED;
1338 }
1339
1340 if (status & LTR501_STATUS_ALS_INTR)
1341 iio_push_event(indio_dev,
1342 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1343 IIO_EV_TYPE_THRESH,
1344 IIO_EV_DIR_EITHER),
1345 iio_get_time_ns(indio_dev));
1346
1347 if (status & LTR501_STATUS_PS_INTR)
1348 iio_push_event(indio_dev,
1349 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1350 IIO_EV_TYPE_THRESH,
1351 IIO_EV_DIR_EITHER),
1352 iio_get_time_ns(indio_dev));
1353
1354 return IRQ_HANDLED;
1355 }
1356
ltr501_init(struct ltr501_data * data)1357 static int ltr501_init(struct ltr501_data *data)
1358 {
1359 int ret, status;
1360
1361 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1362 if (ret < 0)
1363 return ret;
1364
1365 data->als_contr = status | data->chip_info->als_mode_active;
1366
1367 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1368 if (ret < 0)
1369 return ret;
1370
1371 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1372
1373 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1374 if (ret < 0)
1375 return ret;
1376
1377 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1378 if (ret < 0)
1379 return ret;
1380
1381 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1382 }
1383
ltr501_is_volatile_reg(struct device * dev,unsigned int reg)1384 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1385 {
1386 switch (reg) {
1387 case LTR501_ALS_DATA1:
1388 case LTR501_ALS_DATA1_UPPER:
1389 case LTR501_ALS_DATA0:
1390 case LTR501_ALS_DATA0_UPPER:
1391 case LTR501_ALS_PS_STATUS:
1392 case LTR501_PS_DATA:
1393 case LTR501_PS_DATA_UPPER:
1394 return true;
1395 default:
1396 return false;
1397 }
1398 }
1399
1400 static const struct regmap_config ltr501_regmap_config = {
1401 .name = "ltr501_regmap",
1402 .reg_bits = 8,
1403 .val_bits = 8,
1404 .max_register = LTR501_MAX_REG,
1405 .cache_type = REGCACHE_MAPLE,
1406 .volatile_reg = ltr501_is_volatile_reg,
1407 };
1408
ltr501_powerdown(struct ltr501_data * data)1409 static int ltr501_powerdown(struct ltr501_data *data)
1410 {
1411 return ltr501_write_contr(data, data->als_contr &
1412 ~data->chip_info->als_mode_active,
1413 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1414 }
1415
ltr501_probe(struct i2c_client * client)1416 static int ltr501_probe(struct i2c_client *client)
1417 {
1418 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1419 static const char * const regulator_names[] = { "vdd", "vddio" };
1420 struct ltr501_data *data;
1421 struct iio_dev *indio_dev;
1422 struct regmap *regmap;
1423 const void *ddata = NULL;
1424 int partid, chip_idx;
1425 const char *name;
1426 int ret;
1427
1428 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1429 if (!indio_dev)
1430 return -ENOMEM;
1431
1432 regmap = devm_regmap_init_i2c(client, <r501_regmap_config);
1433 if (IS_ERR(regmap)) {
1434 dev_err(&client->dev, "Regmap initialization failed.\n");
1435 return PTR_ERR(regmap);
1436 }
1437
1438 data = iio_priv(indio_dev);
1439 i2c_set_clientdata(client, indio_dev);
1440 data->client = client;
1441 data->regmap = regmap;
1442 mutex_init(&data->lock_als);
1443 mutex_init(&data->lock_ps);
1444
1445 ret = devm_regulator_bulk_get_enable(&client->dev,
1446 ARRAY_SIZE(regulator_names),
1447 regulator_names);
1448 if (ret)
1449 return dev_err_probe(&client->dev, ret,
1450 "Failed to get regulators\n");
1451
1452 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1453 reg_field_it);
1454 if (IS_ERR(data->reg_it)) {
1455 dev_err(&client->dev, "Integ time reg field init failed.\n");
1456 return PTR_ERR(data->reg_it);
1457 }
1458
1459 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1460 reg_field_als_intr);
1461 if (IS_ERR(data->reg_als_intr)) {
1462 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1463 return PTR_ERR(data->reg_als_intr);
1464 }
1465
1466 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1467 reg_field_ps_intr);
1468 if (IS_ERR(data->reg_ps_intr)) {
1469 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1470 return PTR_ERR(data->reg_ps_intr);
1471 }
1472
1473 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1474 reg_field_als_rate);
1475 if (IS_ERR(data->reg_als_rate)) {
1476 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1477 return PTR_ERR(data->reg_als_rate);
1478 }
1479
1480 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1481 reg_field_ps_rate);
1482 if (IS_ERR(data->reg_ps_rate)) {
1483 dev_err(&client->dev, "PS samp rate field init failed.\n");
1484 return PTR_ERR(data->reg_ps_rate);
1485 }
1486
1487 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1488 reg_field_als_prst);
1489 if (IS_ERR(data->reg_als_prst)) {
1490 dev_err(&client->dev, "ALS prst reg field init failed\n");
1491 return PTR_ERR(data->reg_als_prst);
1492 }
1493
1494 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1495 reg_field_ps_prst);
1496 if (IS_ERR(data->reg_ps_prst)) {
1497 dev_err(&client->dev, "PS prst reg field init failed.\n");
1498 return PTR_ERR(data->reg_ps_prst);
1499 }
1500
1501 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1502 if (ret < 0)
1503 return ret;
1504
1505 if (id) {
1506 name = id->name;
1507 chip_idx = id->driver_data;
1508 } else {
1509 name = iio_get_acpi_device_name_and_data(&client->dev, &ddata);
1510 chip_idx = (intptr_t)ddata;
1511 }
1512 if (!name)
1513 return -ENODEV;
1514
1515 data->chip_info = <r501_chip_info_tbl[chip_idx];
1516
1517 if ((partid >> 4) != data->chip_info->partid)
1518 return -ENODEV;
1519
1520 if (device_property_read_u32(&client->dev, "proximity-near-level",
1521 &data->near_level))
1522 data->near_level = 0;
1523
1524 indio_dev->info = data->chip_info->info;
1525 indio_dev->channels = data->chip_info->channels;
1526 indio_dev->num_channels = data->chip_info->no_channels;
1527 indio_dev->name = name;
1528 indio_dev->modes = INDIO_DIRECT_MODE;
1529
1530 ret = ltr501_init(data);
1531 if (ret < 0)
1532 return ret;
1533
1534 if (client->irq > 0) {
1535 ret = devm_request_threaded_irq(&client->dev, client->irq,
1536 NULL, ltr501_interrupt_handler,
1537 IRQF_TRIGGER_FALLING |
1538 IRQF_ONESHOT,
1539 "ltr501_thresh_event",
1540 indio_dev);
1541 if (ret) {
1542 dev_err(&client->dev, "request irq (%d) failed\n",
1543 client->irq);
1544 return ret;
1545 }
1546 } else {
1547 indio_dev->info = data->chip_info->info_no_irq;
1548 }
1549
1550 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1551 ltr501_trigger_handler, NULL);
1552 if (ret)
1553 goto powerdown_on_error;
1554
1555 ret = iio_device_register(indio_dev);
1556 if (ret)
1557 goto error_unreg_buffer;
1558
1559 return 0;
1560
1561 error_unreg_buffer:
1562 iio_triggered_buffer_cleanup(indio_dev);
1563 powerdown_on_error:
1564 ltr501_powerdown(data);
1565 return ret;
1566 }
1567
ltr501_remove(struct i2c_client * client)1568 static void ltr501_remove(struct i2c_client *client)
1569 {
1570 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1571
1572 iio_device_unregister(indio_dev);
1573 iio_triggered_buffer_cleanup(indio_dev);
1574 ltr501_powerdown(iio_priv(indio_dev));
1575 }
1576
ltr501_suspend(struct device * dev)1577 static int ltr501_suspend(struct device *dev)
1578 {
1579 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1580 to_i2c_client(dev)));
1581 return ltr501_powerdown(data);
1582 }
1583
ltr501_resume(struct device * dev)1584 static int ltr501_resume(struct device *dev)
1585 {
1586 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1587 to_i2c_client(dev)));
1588
1589 return ltr501_write_contr(data, data->als_contr,
1590 data->ps_contr);
1591 }
1592
1593 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1594
1595 static const struct acpi_device_id ltr_acpi_match[] = {
1596 { "LTER0301", ltr301 },
1597 /* https://www.catalog.update.microsoft.com/Search.aspx?q=lter0303 */
1598 { "LTER0303", ltr303 },
1599 { }
1600 };
1601 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1602
1603 static const struct i2c_device_id ltr501_id[] = {
1604 { "ltr501", ltr501 },
1605 { "ltr559", ltr559 },
1606 { "ltr301", ltr301 },
1607 { "ltr303", ltr303 },
1608 { }
1609 };
1610 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1611
1612 static const struct of_device_id ltr501_of_match[] = {
1613 { .compatible = "liteon,ltr501", },
1614 { .compatible = "liteon,ltr559", },
1615 { .compatible = "liteon,ltr301", },
1616 { .compatible = "liteon,ltr303", },
1617 { }
1618 };
1619 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1620
1621 static struct i2c_driver ltr501_driver = {
1622 .driver = {
1623 .name = "ltr501",
1624 .of_match_table = ltr501_of_match,
1625 .pm = pm_sleep_ptr(<r501_pm_ops),
1626 .acpi_match_table = ltr_acpi_match,
1627 },
1628 .probe = ltr501_probe,
1629 .remove = ltr501_remove,
1630 .id_table = ltr501_id,
1631 };
1632
1633 module_i2c_driver(ltr501_driver);
1634
1635 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1636 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1637 MODULE_LICENSE("GPL");
1638