1 /*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/stdint.h>
35
36 #ifdef _KERNEL
37 #include "opt_scsi.h"
38
39 #include <sys/systm.h>
40 #include <sys/libkern.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 #include <sys/ctype.h>
47 #else
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <ctype.h>
53 #endif
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/scsi/scsi_all.h>
60 #include <sys/ata.h>
61 #include <sys/sbuf.h>
62
63 #ifdef _KERNEL
64 #include <cam/cam_periph.h>
65 #include <cam/cam_xpt_sim.h>
66 #include <cam/cam_xpt_periph.h>
67 #include <cam/cam_xpt_internal.h>
68 #else
69 #include <camlib.h>
70 #include <stddef.h>
71
72 #ifndef FALSE
73 #define FALSE 0
74 #endif /* FALSE */
75 #ifndef TRUE
76 #define TRUE 1
77 #endif /* TRUE */
78 #define ERESTART -1 /* restart syscall */
79 #define EJUSTRETURN -2 /* don't modify regs, just return */
80 #endif /* !_KERNEL */
81
82 /*
83 * This is the default number of milliseconds we wait for devices to settle
84 * after a SCSI bus reset.
85 */
86 #ifndef SCSI_DELAY
87 #define SCSI_DELAY 2000
88 #endif
89 /*
90 * All devices need _some_ sort of bus settle delay, so we'll set it to
91 * a minimum value of 100ms. Note that this is pertinent only for SPI-
92 * not transport like Fibre Channel or iSCSI where 'delay' is completely
93 * meaningless.
94 */
95 #ifndef SCSI_MIN_DELAY
96 #define SCSI_MIN_DELAY 100
97 #endif
98 /*
99 * Make sure the user isn't using seconds instead of milliseconds.
100 */
101 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
102 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value"
103 #endif
104
105 int scsi_delay;
106
107 static int ascentrycomp(const void *key, const void *member);
108 static int senseentrycomp(const void *key, const void *member);
109 static void fetchtableentries(int sense_key, int asc, int ascq,
110 struct scsi_inquiry_data *,
111 const struct sense_key_table_entry **,
112 const struct asc_table_entry **);
113
114 #ifdef _KERNEL
115 static void init_scsi_delay(void *);
116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117 static int set_scsi_delay(int delay);
118 #endif
119
120 #if !defined(SCSI_NO_OP_STRINGS)
121
122 #define D (1 << T_DIRECT)
123 #define T (1 << T_SEQUENTIAL)
124 #define L (1 << T_PRINTER)
125 #define P (1 << T_PROCESSOR)
126 #define W (1 << T_WORM)
127 #define R (1 << T_CDROM)
128 #define O (1 << T_OPTICAL)
129 #define M (1 << T_CHANGER)
130 #define A (1 << T_STORARRAY)
131 #define E (1 << T_ENCLOSURE)
132 #define B (1 << T_RBC)
133 #define K (1 << T_OCRW)
134 #define V (1 << T_ADC)
135 #define F (1 << T_OSD)
136 #define S (1 << T_SCANNER)
137 #define C (1 << T_COMM)
138
139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141 static struct op_table_entry plextor_cd_ops[] = {
142 { 0xD8, R, "CD-DA READ" }
143 };
144
145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146 {
147 /*
148 * I believe that 0xD8 is the Plextor proprietary command
149 * to read CD-DA data. I'm not sure which Plextor CDROM
150 * models support the command, though. I know for sure
151 * that the 4X, 8X, and 12X models do, and presumably the
152 * 12-20X does. I don't know about any earlier models,
153 * though. If anyone has any more complete information,
154 * feel free to change this quirk entry.
155 */
156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157 nitems(plextor_cd_ops),
158 plextor_cd_ops
159 }
160 };
161
162 static struct op_table_entry scsi_op_codes[] = {
163 /*
164 * From: http://www.t10.org/lists/op-num.txt
165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166 * and Jung-uk Kim (jkim@FreeBSD.org)
167 *
168 * Note: order is important in this table, scsi_op_desc() currently
169 * depends on the opcodes in the table being in order to save
170 * search time.
171 * Note: scanner and comm. devices are carried over from the previous
172 * version because they were removed in the latest spec.
173 */
174 /* File: OP-NUM.TXT
175 *
176 * SCSI Operation Codes
177 * Numeric Sorted Listing
178 * as of 5/26/15
179 *
180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) -----------------
182 * . L - PRINTER DEVICE (SSC) M = Mandatory
183 * . P - PROCESSOR DEVICE (SPC) O = Optional
184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete
186 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
187 * . . .M - MEDIA CHANGER DEVICE (SMC-2)
188 * . . . A - STORAGE ARRAY DEVICE (SCC-2)
189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES)
190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
193 * . . . . .F - OBJECT-BASED STORAGE (OSD)
194 * OP DTLPWROMAEBKVF Description
195 * -- -------------- ---------------------------------------------- */
196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */
197 { 0x00, ALL, "TEST UNIT READY" },
198 /* 01 M REWIND */
199 { 0x01, T, "REWIND" },
200 /* 01 Z V ZZZZ REZERO UNIT */
201 { 0x01, D | W | R | O | M, "REZERO UNIT" },
202 /* 02 VVVVVV V */
203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */
204 { 0x03, ALL, "REQUEST SENSE" },
205 /* 04 M OO FORMAT UNIT */
206 { 0x04, D | R | O, "FORMAT UNIT" },
207 /* 04 O FORMAT MEDIUM */
208 { 0x04, T, "FORMAT MEDIUM" },
209 /* 04 O FORMAT */
210 { 0x04, L, "FORMAT" },
211 /* 05 VMVVVV V READ BLOCK LIMITS */
212 { 0x05, T, "READ BLOCK LIMITS" },
213 /* 06 VVVVVV V */
214 /* 07 OVV O OV REASSIGN BLOCKS */
215 { 0x07, D | W | O, "REASSIGN BLOCKS" },
216 /* 07 O INITIALIZE ELEMENT STATUS */
217 { 0x07, M, "INITIALIZE ELEMENT STATUS" },
218 /* 08 MOV O OV READ(6) */
219 { 0x08, D | T | W | O, "READ(6)" },
220 /* 08 O RECEIVE */
221 { 0x08, P, "RECEIVE" },
222 /* 08 GET MESSAGE(6) */
223 { 0x08, C, "GET MESSAGE(6)" },
224 /* 09 VVVVVV V */
225 /* 0A OO O OV WRITE(6) */
226 { 0x0A, D | T | W | O, "WRITE(6)" },
227 /* 0A M SEND(6) */
228 { 0x0A, P, "SEND(6)" },
229 /* 0A SEND MESSAGE(6) */
230 { 0x0A, C, "SEND MESSAGE(6)" },
231 /* 0A M PRINT */
232 { 0x0A, L, "PRINT" },
233 /* 0B Z ZOZV SEEK(6) */
234 { 0x0B, D | W | R | O, "SEEK(6)" },
235 /* 0B O SET CAPACITY */
236 { 0x0B, T, "SET CAPACITY" },
237 /* 0B O SLEW AND PRINT */
238 { 0x0B, L, "SLEW AND PRINT" },
239 /* 0C VVVVVV V */
240 /* 0D VVVVVV V */
241 /* 0E VVVVVV V */
242 /* 0F VOVVVV V READ REVERSE(6) */
243 { 0x0F, T, "READ REVERSE(6)" },
244 /* 10 VM VVV WRITE FILEMARKS(6) */
245 { 0x10, T, "WRITE FILEMARKS(6)" },
246 /* 10 O SYNCHRONIZE BUFFER */
247 { 0x10, L, "SYNCHRONIZE BUFFER" },
248 /* 11 VMVVVV SPACE(6) */
249 { 0x11, T, "SPACE(6)" },
250 /* 12 MMMMMMMMMMMMMM INQUIRY */
251 { 0x12, ALL, "INQUIRY" },
252 /* 13 V VVVV */
253 /* 13 O VERIFY(6) */
254 { 0x13, T, "VERIFY(6)" },
255 /* 14 VOOVVV RECOVER BUFFERED DATA */
256 { 0x14, T | L, "RECOVER BUFFERED DATA" },
257 /* 15 OMO O OOOO OO MODE SELECT(6) */
258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259 /* 16 ZZMZO OOOZ O RESERVE(6) */
260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261 /* 16 Z RESERVE ELEMENT(6) */
262 { 0x16, M, "RESERVE ELEMENT(6)" },
263 /* 17 ZZMZO OOOZ O RELEASE(6) */
264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265 /* 17 Z RELEASE ELEMENT(6) */
266 { 0x17, M, "RELEASE ELEMENT(6)" },
267 /* 18 ZZZZOZO Z COPY */
268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" },
269 /* 19 VMVVVV ERASE(6) */
270 { 0x19, T, "ERASE(6)" },
271 /* 1A OMO O OOOO OO MODE SENSE(6) */
272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273 /* 1B O OOO O MO O START STOP UNIT */
274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" },
275 /* 1B O M LOAD UNLOAD */
276 { 0x1B, T | V, "LOAD UNLOAD" },
277 /* 1B SCAN */
278 { 0x1B, S, "SCAN" },
279 /* 1B O STOP PRINT */
280 { 0x1B, L, "STOP PRINT" },
281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */
284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */
286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" },
287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */
288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289 /* 1F */
290 /* 20 V VVV V */
291 /* 21 V VVV V */
292 /* 22 V VVV V */
293 /* 23 V V V V */
294 /* 23 O READ FORMAT CAPACITIES */
295 { 0x23, R, "READ FORMAT CAPACITIES" },
296 /* 24 V VV SET WINDOW */
297 { 0x24, S, "SET WINDOW" },
298 /* 25 M M M M READ CAPACITY(10) */
299 { 0x25, D | W | O | B, "READ CAPACITY(10)" },
300 /* 25 O READ CAPACITY */
301 { 0x25, R, "READ CAPACITY" },
302 /* 25 M READ CARD CAPACITY */
303 { 0x25, K, "READ CARD CAPACITY" },
304 /* 25 GET WINDOW */
305 { 0x25, S, "GET WINDOW" },
306 /* 26 V VV */
307 /* 27 V VV */
308 /* 28 M MOM MM READ(10) */
309 { 0x28, D | W | R | O | B | K | S, "READ(10)" },
310 /* 28 GET MESSAGE(10) */
311 { 0x28, C, "GET MESSAGE(10)" },
312 /* 29 V VVO READ GENERATION */
313 { 0x29, O, "READ GENERATION" },
314 /* 2A O MOM MO WRITE(10) */
315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" },
316 /* 2A SEND(10) */
317 { 0x2A, S, "SEND(10)" },
318 /* 2A SEND MESSAGE(10) */
319 { 0x2A, C, "SEND MESSAGE(10)" },
320 /* 2B Z OOO O SEEK(10) */
321 { 0x2B, D | W | R | O | K, "SEEK(10)" },
322 /* 2B O LOCATE(10) */
323 { 0x2B, T, "LOCATE(10)" },
324 /* 2B O POSITION TO ELEMENT */
325 { 0x2B, M, "POSITION TO ELEMENT" },
326 /* 2C V OO ERASE(10) */
327 { 0x2C, R | O, "ERASE(10)" },
328 /* 2D O READ UPDATED BLOCK */
329 { 0x2D, O, "READ UPDATED BLOCK" },
330 /* 2D V */
331 /* 2E O OOO MO WRITE AND VERIFY(10) */
332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333 /* 2F O OOO VERIFY(10) */
334 { 0x2F, D | W | R | O, "VERIFY(10)" },
335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */
336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" },
337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */
338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" },
339 /* 31 OBJECT POSITION */
340 { 0x31, S, "OBJECT POSITION" },
341 /* 32 Z ZZZ SEARCH DATA LOW(10) */
342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" },
343 /* 33 Z OZO SET LIMITS(10) */
344 { 0x33, D | W | R | O, "SET LIMITS(10)" },
345 /* 34 O O O O PRE-FETCH(10) */
346 { 0x34, D | W | O | K, "PRE-FETCH(10)" },
347 /* 34 M READ POSITION */
348 { 0x34, T, "READ POSITION" },
349 /* 34 GET DATA BUFFER STATUS */
350 { 0x34, S, "GET DATA BUFFER STATUS" },
351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */
352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */
354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355 /* 37 O O READ DEFECT DATA(10) */
356 { 0x37, D | O, "READ DEFECT DATA(10)" },
357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */
358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359 /* 38 O O O MEDIUM SCAN */
360 { 0x38, W | O | K, "MEDIUM SCAN" },
361 /* 39 ZZZZOZO Z COMPARE */
362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" },
363 /* 3A ZZZZOZO Z COPY AND VERIFY */
364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */
366 { 0x3B, ALL, "WRITE BUFFER" },
367 /* 3C OOOOOOOOOO OOO READ BUFFER */
368 { 0x3C, ALL & ~(B), "READ BUFFER" },
369 /* 3D O UPDATE BLOCK */
370 { 0x3D, O, "UPDATE BLOCK" },
371 /* 3E O O O READ LONG(10) */
372 { 0x3E, D | W | O, "READ LONG(10)" },
373 /* 3F O O O WRITE LONG(10) */
374 { 0x3F, D | W | O, "WRITE LONG(10)" },
375 /* 40 ZZZZOZOZ CHANGE DEFINITION */
376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377 /* 41 O WRITE SAME(10) */
378 { 0x41, D, "WRITE SAME(10)" },
379 /* 42 O UNMAP */
380 { 0x42, D, "UNMAP" },
381 /* 42 O READ SUB-CHANNEL */
382 { 0x42, R, "READ SUB-CHANNEL" },
383 /* 43 O READ TOC/PMA/ATIP */
384 { 0x43, R, "READ TOC/PMA/ATIP" },
385 /* 44 M M REPORT DENSITY SUPPORT */
386 { 0x44, T | V, "REPORT DENSITY SUPPORT" },
387 /* 44 READ HEADER */
388 /* 45 O PLAY AUDIO(10) */
389 { 0x45, R, "PLAY AUDIO(10)" },
390 /* 46 M GET CONFIGURATION */
391 { 0x46, R, "GET CONFIGURATION" },
392 /* 47 O PLAY AUDIO MSF */
393 { 0x47, R, "PLAY AUDIO MSF" },
394 /* 48 O SANITIZE */
395 { 0x48, D, "SANITIZE" },
396 /* 49 */
397 /* 4A M GET EVENT STATUS NOTIFICATION */
398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" },
399 /* 4B O PAUSE/RESUME */
400 { 0x4B, R, "PAUSE/RESUME" },
401 /* 4C OOOOO OOOO OOO LOG SELECT */
402 { 0x4C, ALL & ~(R | B), "LOG SELECT" },
403 /* 4D OOOOO OOOO OMO LOG SENSE */
404 { 0x4D, ALL & ~(R | B), "LOG SENSE" },
405 /* 4E O STOP PLAY/SCAN */
406 { 0x4E, R, "STOP PLAY/SCAN" },
407 /* 4F */
408 /* 50 O XDWRITE(10) */
409 { 0x50, D, "XDWRITE(10)" },
410 /* 51 O XPWRITE(10) */
411 { 0x51, D, "XPWRITE(10)" },
412 /* 51 O READ DISC INFORMATION */
413 { 0x51, R, "READ DISC INFORMATION" },
414 /* 52 O XDREAD(10) */
415 { 0x52, D, "XDREAD(10)" },
416 /* 52 O READ TRACK INFORMATION */
417 { 0x52, R, "READ TRACK INFORMATION" },
418 /* 53 O XDWRITEREAD(10) */
419 { 0x53, D, "XDWRITEREAD(10)" },
420 /* 53 O RESERVE TRACK */
421 { 0x53, R, "RESERVE TRACK" },
422 /* 54 O SEND OPC INFORMATION */
423 { 0x54, R, "SEND OPC INFORMATION" },
424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */
425 { 0x55, ALL & ~(P), "MODE SELECT(10)" },
426 /* 56 ZZMZO OOOZ RESERVE(10) */
427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
428 /* 56 Z RESERVE ELEMENT(10) */
429 { 0x56, M, "RESERVE ELEMENT(10)" },
430 /* 57 ZZMZO OOOZ RELEASE(10) */
431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
432 /* 57 Z RELEASE ELEMENT(10) */
433 { 0x57, M, "RELEASE ELEMENT(10)" },
434 /* 58 O REPAIR TRACK */
435 { 0x58, R, "REPAIR TRACK" },
436 /* 59 */
437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */
438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" },
439 /* 5B O CLOSE TRACK/SESSION */
440 { 0x5B, R, "CLOSE TRACK/SESSION" },
441 /* 5C O READ BUFFER CAPACITY */
442 { 0x5C, R, "READ BUFFER CAPACITY" },
443 /* 5D O SEND CUE SHEET */
444 { 0x5D, R, "SEND CUE SHEET" },
445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */
446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */
448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
449 /* 7E OO O OOOO O extended CDB */
450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" },
451 /* 7F O M variable length CDB (more than 16 bytes) */
452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" },
453 /* 80 Z XDWRITE EXTENDED(16) */
454 { 0x80, D, "XDWRITE EXTENDED(16)" },
455 /* 80 M WRITE FILEMARKS(16) */
456 { 0x80, T, "WRITE FILEMARKS(16)" },
457 /* 81 Z REBUILD(16) */
458 { 0x81, D, "REBUILD(16)" },
459 /* 81 O READ REVERSE(16) */
460 { 0x81, T, "READ REVERSE(16)" },
461 /* 82 Z REGENERATE(16) */
462 { 0x82, D, "REGENERATE(16)" },
463 /* 82 O ALLOW OVERWRITE */
464 { 0x82, T, "ALLOW OVERWRITE" },
465 /* 83 OOOOO O OO EXTENDED COPY */
466 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" },
467 /* 84 OOOOO O OO RECEIVE COPY RESULTS */
468 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
469 /* 85 O O O ATA COMMAND PASS THROUGH(16) */
470 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" },
471 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */
472 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" },
473 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */
474 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
475 /* 88 MM O O O READ(16) */
476 { 0x88, D | T | W | O | B, "READ(16)" },
477 /* 89 O COMPARE AND WRITE*/
478 { 0x89, D, "COMPARE AND WRITE" },
479 /* 8A OM O O O WRITE(16) */
480 { 0x8A, D | T | W | O | B, "WRITE(16)" },
481 /* 8B O ORWRITE */
482 { 0x8B, D, "ORWRITE" },
483 /* 8C OO O OO O M READ ATTRIBUTE */
484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485 /* 8D OO O OO O O WRITE ATTRIBUTE */
486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487 /* 8E O O O O WRITE AND VERIFY(16) */
488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" },
489 /* 8F OO O O O VERIFY(16) */
490 { 0x8F, D | T | W | O | B, "VERIFY(16)" },
491 /* 90 O O O O PRE-FETCH(16) */
492 { 0x90, D | W | O | B, "PRE-FETCH(16)" },
493 /* 91 O O O O SYNCHRONIZE CACHE(16) */
494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495 /* 91 O SPACE(16) */
496 { 0x91, T, "SPACE(16)" },
497 /* 92 Z O O LOCK UNLOCK CACHE(16) */
498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" },
499 /* 92 O LOCATE(16) */
500 { 0x92, T, "LOCATE(16)" },
501 /* 93 O WRITE SAME(16) */
502 { 0x93, D, "WRITE SAME(16)" },
503 /* 93 M ERASE(16) */
504 { 0x93, T, "ERASE(16)" },
505 /* 94 O ZBC OUT */
506 { 0x94, ALL, "ZBC OUT" },
507 /* 95 O ZBC IN */
508 { 0x95, ALL, "ZBC IN" },
509 /* 96 */
510 /* 97 */
511 /* 98 */
512 /* 99 */
513 /* 9A O WRITE STREAM(16) */
514 { 0x9A, D, "WRITE STREAM(16)" },
515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */
516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" },
517 /* 9C O WRITE ATOMIC(16) */
518 { 0x9C, D, "WRITE ATOMIC(16)" },
519 /* 9D SERVICE ACTION BIDIRECTIONAL */
520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */
522 /* 9E SERVICE ACTION IN(16) */
523 { 0x9E, ALL, "SERVICE ACTION IN(16)" },
524 /* 9F M SERVICE ACTION OUT(16) */
525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" },
526 /* A0 MMOOO OMMM OMO REPORT LUNS */
527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" },
528 /* A1 O BLANK */
529 { 0xA1, R, "BLANK" },
530 /* A1 O O ATA COMMAND PASS THROUGH(12) */
531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" },
532 /* A2 OO O O SECURITY PROTOCOL IN */
533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" },
534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */
535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 /* A3 O SEND KEY */
537 { 0xA3, R, "SEND KEY" },
538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */
539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 /* A4 O REPORT KEY */
541 { 0xA4, R, "REPORT KEY" },
542 /* A5 O O OM MOVE MEDIUM */
543 { 0xA5, T | W | O | M, "MOVE MEDIUM" },
544 /* A5 O PLAY AUDIO(12) */
545 { 0xA5, R, "PLAY AUDIO(12)" },
546 /* A6 O EXCHANGE MEDIUM */
547 { 0xA6, M, "EXCHANGE MEDIUM" },
548 /* A6 O LOAD/UNLOAD C/DVD */
549 { 0xA6, R, "LOAD/UNLOAD C/DVD" },
550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */
551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 /* A7 O SET READ AHEAD */
553 { 0xA7, R, "SET READ AHEAD" },
554 /* A8 O OOO READ(12) */
555 { 0xA8, D | W | R | O, "READ(12)" },
556 /* A8 GET MESSAGE(12) */
557 { 0xA8, C, "GET MESSAGE(12)" },
558 /* A9 O SERVICE ACTION OUT(12) */
559 { 0xA9, V, "SERVICE ACTION OUT(12)" },
560 /* AA O OOO WRITE(12) */
561 { 0xAA, D | W | R | O, "WRITE(12)" },
562 /* AA SEND MESSAGE(12) */
563 { 0xAA, C, "SEND MESSAGE(12)" },
564 /* AB O O SERVICE ACTION IN(12) */
565 { 0xAB, R | V, "SERVICE ACTION IN(12)" },
566 /* AC O ERASE(12) */
567 { 0xAC, O, "ERASE(12)" },
568 /* AC O GET PERFORMANCE */
569 { 0xAC, R, "GET PERFORMANCE" },
570 /* AD O READ DVD STRUCTURE */
571 { 0xAD, R, "READ DVD STRUCTURE" },
572 /* AE O O O WRITE AND VERIFY(12) */
573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" },
574 /* AF O OZO VERIFY(12) */
575 { 0xAF, D | W | R | O, "VERIFY(12)" },
576 /* B0 ZZZ SEARCH DATA HIGH(12) */
577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" },
578 /* B1 ZZZ SEARCH DATA EQUAL(12) */
579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" },
580 /* B2 ZZZ SEARCH DATA LOW(12) */
581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" },
582 /* B3 Z OZO SET LIMITS(12) */
583 { 0xB3, D | W | R | O, "SET LIMITS(12)" },
584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */
585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 /* B5 OO O O SECURITY PROTOCOL OUT */
587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" },
588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */
589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 /* B6 O SEND VOLUME TAG */
591 { 0xB6, M, "SEND VOLUME TAG" },
592 /* B6 O SET STREAMING */
593 { 0xB6, R, "SET STREAMING" },
594 /* B7 O O READ DEFECT DATA(12) */
595 { 0xB7, D | O, "READ DEFECT DATA(12)" },
596 /* B8 O OZOM READ ELEMENT STATUS */
597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" },
598 /* B9 O READ CD MSF */
599 { 0xB9, R, "READ CD MSF" },
600 /* BA O O OOMO REDUNDANCY GROUP (IN) */
601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 /* BA O SCAN */
603 { 0xBA, R, "SCAN" },
604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */
605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 /* BB O SET CD SPEED */
607 { 0xBB, R, "SET CD SPEED" },
608 /* BC O O OOMO SPARE (IN) */
609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" },
610 /* BD O O OOOO SPARE (OUT) */
611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" },
612 /* BD O MECHANISM STATUS */
613 { 0xBD, R, "MECHANISM STATUS" },
614 /* BE O O OOMO VOLUME SET (IN) */
615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" },
616 /* BE O READ CD */
617 { 0xBE, R, "READ CD" },
618 /* BF O O OOOO VOLUME SET (OUT) */
619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 /* BF O SEND DVD STRUCTURE */
621 { 0xBF, R, "SEND DVD STRUCTURE" }
622 };
623
624 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)625 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 caddr_t match;
628 int i, j;
629 uint32_t opmask;
630 uint16_t pd_type;
631 int num_ops[2];
632 struct op_table_entry *table[2];
633 int num_tables;
634
635 /*
636 * If we've got inquiry data, use it to determine what type of
637 * device we're dealing with here. Otherwise, assume direct
638 * access.
639 */
640 if (inq_data == NULL) {
641 pd_type = T_DIRECT;
642 match = NULL;
643 } else {
644 pd_type = SID_TYPE(inq_data);
645
646 match = cam_quirkmatch((caddr_t)inq_data,
647 (caddr_t)scsi_op_quirk_table,
648 nitems(scsi_op_quirk_table),
649 sizeof(*scsi_op_quirk_table),
650 scsi_inquiry_match);
651 }
652
653 if (match != NULL) {
654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656 table[1] = scsi_op_codes;
657 num_ops[1] = nitems(scsi_op_codes);
658 num_tables = 2;
659 } else {
660 /*
661 * If this is true, we have a vendor specific opcode that
662 * wasn't covered in the quirk table.
663 */
664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665 return("Vendor Specific Command");
666
667 table[0] = scsi_op_codes;
668 num_ops[0] = nitems(scsi_op_codes);
669 num_tables = 1;
670 }
671
672 /* RBC is 'Simplified' Direct Access Device */
673 if (pd_type == T_RBC)
674 pd_type = T_DIRECT;
675
676 /*
677 * Host managed drives are direct access for the most part.
678 */
679 if (pd_type == T_ZBC_HM)
680 pd_type = T_DIRECT;
681
682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683 if (pd_type == T_NODEVICE)
684 pd_type = T_DIRECT;
685
686 opmask = 1 << pd_type;
687
688 for (j = 0; j < num_tables; j++) {
689 for (i = 0; i < num_ops[j] && table[j][i].opcode <= opcode; i++) {
690 if ((table[j][i].opcode == opcode)
691 && ((table[j][i].opmask & opmask) != 0))
692 return(table[j][i].desc);
693 }
694 }
695
696 /*
697 * If we can't find a match for the command in the table, we just
698 * assume it's a vendor specifc command.
699 */
700 return("Vendor Specific Command");
701
702 }
703
704 #else /* SCSI_NO_OP_STRINGS */
705
706 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)707 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
708 {
709 return("");
710 }
711
712 #endif
713
714 #if !defined(SCSI_NO_SENSE_STRINGS)
715 #define SST(asc, ascq, action, desc) \
716 asc, ascq, action, desc
717 #else
718 const char empty_string[] = "";
719
720 #define SST(asc, ascq, action, desc) \
721 asc, ascq, action, empty_string
722 #endif
723
724 const struct sense_key_table_entry sense_key_table[] =
725 {
726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
742 };
743
744 static struct asc_table_entry quantum_fireball_entries[] = {
745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
746 "Logical unit not ready, initializing cmd. required") }
747 };
748
749 static struct asc_table_entry sony_mo_entries[] = {
750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
751 "Logical unit not ready, cause not reportable") }
752 };
753
754 static struct asc_table_entry hgst_entries[] = {
755 { SST(0x04, 0xF0, SS_RDEF,
756 "Vendor Unique - Logical Unit Not Ready") },
757 { SST(0x0A, 0x01, SS_RDEF,
758 "Unrecovered Super Certification Log Write Error") },
759 { SST(0x0A, 0x02, SS_RDEF,
760 "Unrecovered Super Certification Log Read Error") },
761 { SST(0x15, 0x03, SS_RDEF,
762 "Unrecovered Sector Error") },
763 { SST(0x3E, 0x04, SS_RDEF,
764 "Unrecovered Self-Test Hard-Cache Test Fail") },
765 { SST(0x3E, 0x05, SS_RDEF,
766 "Unrecovered Self-Test OTF-Cache Fail") },
767 { SST(0x40, 0x00, SS_RDEF,
768 "Unrecovered SAT No Buffer Overflow Error") },
769 { SST(0x40, 0x01, SS_RDEF,
770 "Unrecovered SAT Buffer Overflow Error") },
771 { SST(0x40, 0x02, SS_RDEF,
772 "Unrecovered SAT No Buffer Overflow With ECS Fault") },
773 { SST(0x40, 0x03, SS_RDEF,
774 "Unrecovered SAT Buffer Overflow With ECS Fault") },
775 { SST(0x40, 0x81, SS_RDEF,
776 "DRAM Failure") },
777 { SST(0x44, 0x0B, SS_RDEF,
778 "Vendor Unique - Internal Target Failure") },
779 { SST(0x44, 0xF2, SS_RDEF,
780 "Vendor Unique - Internal Target Failure") },
781 { SST(0x44, 0xF6, SS_RDEF,
782 "Vendor Unique - Internal Target Failure") },
783 { SST(0x44, 0xF9, SS_RDEF,
784 "Vendor Unique - Internal Target Failure") },
785 { SST(0x44, 0xFA, SS_RDEF,
786 "Vendor Unique - Internal Target Failure") },
787 { SST(0x5D, 0x22, SS_RDEF,
788 "Extreme Over-Temperature Warning") },
789 { SST(0x5D, 0x50, SS_RDEF,
790 "Load/Unload cycle Count Warning") },
791 { SST(0x81, 0x00, SS_RDEF,
792 "Vendor Unique - Internal Logic Error") },
793 { SST(0x85, 0x00, SS_RDEF,
794 "Vendor Unique - Internal Key Seed Error") },
795 };
796
797 static struct asc_table_entry seagate_entries[] = {
798 { SST(0x04, 0xF0, SS_RDEF,
799 "Logical Unit Not Ready, super certify in Progress") },
800 { SST(0x08, 0x86, SS_RDEF,
801 "Write Fault Data Corruption") },
802 { SST(0x09, 0x0D, SS_RDEF,
803 "Tracking Failure") },
804 { SST(0x09, 0x0E, SS_RDEF,
805 "ETF Failure") },
806 { SST(0x0B, 0x5D, SS_RDEF,
807 "Pre-SMART Warning") },
808 { SST(0x0B, 0x85, SS_RDEF,
809 "5V Voltage Warning") },
810 { SST(0x0B, 0x8C, SS_RDEF,
811 "12V Voltage Warning") },
812 { SST(0x0C, 0xFF, SS_RDEF,
813 "Write Error - Too many error recovery revs") },
814 { SST(0x11, 0xFF, SS_RDEF,
815 "Unrecovered Read Error - Too many error recovery revs") },
816 { SST(0x19, 0x0E, SS_RDEF,
817 "Fewer than 1/2 defect list copies") },
818 { SST(0x20, 0xF3, SS_RDEF,
819 "Illegal CDB linked to skip mask cmd") },
820 { SST(0x24, 0xF0, SS_RDEF,
821 "Illegal byte in CDB, LBA not matching") },
822 { SST(0x24, 0xF1, SS_RDEF,
823 "Illegal byte in CDB, LEN not matching") },
824 { SST(0x24, 0xF2, SS_RDEF,
825 "Mask not matching transfer length") },
826 { SST(0x24, 0xF3, SS_RDEF,
827 "Drive formatted without plist") },
828 { SST(0x26, 0x95, SS_RDEF,
829 "Invalid Field Parameter - CAP File") },
830 { SST(0x26, 0x96, SS_RDEF,
831 "Invalid Field Parameter - RAP File") },
832 { SST(0x26, 0x97, SS_RDEF,
833 "Invalid Field Parameter - TMS Firmware Tag") },
834 { SST(0x26, 0x98, SS_RDEF,
835 "Invalid Field Parameter - Check Sum") },
836 { SST(0x26, 0x99, SS_RDEF,
837 "Invalid Field Parameter - Firmware Tag") },
838 { SST(0x29, 0x08, SS_RDEF,
839 "Write Log Dump data") },
840 { SST(0x29, 0x09, SS_RDEF,
841 "Write Log Dump data") },
842 { SST(0x29, 0x0A, SS_RDEF,
843 "Reserved disk space") },
844 { SST(0x29, 0x0B, SS_RDEF,
845 "SDBP") },
846 { SST(0x29, 0x0C, SS_RDEF,
847 "SDBP") },
848 { SST(0x31, 0x91, SS_RDEF,
849 "Format Corrupted World Wide Name (WWN) is Invalid") },
850 { SST(0x32, 0x03, SS_RDEF,
851 "Defect List - Length exceeds Command Allocated Length") },
852 { SST(0x33, 0x00, SS_RDEF,
853 "Flash not ready for access") },
854 { SST(0x3F, 0x70, SS_RDEF,
855 "Invalid RAP block") },
856 { SST(0x3F, 0x71, SS_RDEF,
857 "RAP/ETF mismatch") },
858 { SST(0x3F, 0x90, SS_RDEF,
859 "Invalid CAP block") },
860 { SST(0x3F, 0x91, SS_RDEF,
861 "World Wide Name (WWN) Mismatch") },
862 { SST(0x40, 0x01, SS_RDEF,
863 "DRAM Parity Error") },
864 { SST(0x40, 0x02, SS_RDEF,
865 "DRAM Parity Error") },
866 { SST(0x42, 0x0A, SS_RDEF,
867 "Loopback Test") },
868 { SST(0x42, 0x0B, SS_RDEF,
869 "Loopback Test") },
870 { SST(0x44, 0xF2, SS_RDEF,
871 "Compare error during data integrity check") },
872 { SST(0x44, 0xF6, SS_RDEF,
873 "Unrecoverable error during data integrity check") },
874 { SST(0x47, 0x80, SS_RDEF,
875 "Fibre Channel Sequence Error") },
876 { SST(0x4E, 0x01, SS_RDEF,
877 "Information Unit Too Short") },
878 { SST(0x80, 0x00, SS_RDEF,
879 "General Firmware Error / Command Timeout") },
880 { SST(0x80, 0x01, SS_RDEF,
881 "Command Timeout") },
882 { SST(0x80, 0x02, SS_RDEF,
883 "Command Timeout") },
884 { SST(0x80, 0x80, SS_RDEF,
885 "FC FIFO Error During Read Transfer") },
886 { SST(0x80, 0x81, SS_RDEF,
887 "FC FIFO Error During Write Transfer") },
888 { SST(0x80, 0x82, SS_RDEF,
889 "DISC FIFO Error During Read Transfer") },
890 { SST(0x80, 0x83, SS_RDEF,
891 "DISC FIFO Error During Write Transfer") },
892 { SST(0x80, 0x84, SS_RDEF,
893 "LBA Seeded LRC Error on Read") },
894 { SST(0x80, 0x85, SS_RDEF,
895 "LBA Seeded LRC Error on Write") },
896 { SST(0x80, 0x86, SS_RDEF,
897 "IOEDC Error on Read") },
898 { SST(0x80, 0x87, SS_RDEF,
899 "IOEDC Error on Write") },
900 { SST(0x80, 0x88, SS_RDEF,
901 "Host Parity Check Failed") },
902 { SST(0x80, 0x89, SS_RDEF,
903 "IOEDC error on read detected by formatter") },
904 { SST(0x80, 0x8A, SS_RDEF,
905 "Host Parity Errors / Host FIFO Initialization Failed") },
906 { SST(0x80, 0x8B, SS_RDEF,
907 "Host Parity Errors") },
908 { SST(0x80, 0x8C, SS_RDEF,
909 "Host Parity Errors") },
910 { SST(0x80, 0x8D, SS_RDEF,
911 "Host Parity Errors") },
912 { SST(0x81, 0x00, SS_RDEF,
913 "LA Check Failed") },
914 { SST(0x82, 0x00, SS_RDEF,
915 "Internal client detected insufficient buffer") },
916 { SST(0x84, 0x00, SS_RDEF,
917 "Scheduled Diagnostic And Repair") },
918 };
919
920 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
921 {
922 /*
923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
924 * when they really should return 0x04 0x02.
925 */
926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
927 /*num_sense_keys*/0,
928 nitems(quantum_fireball_entries),
929 /*sense key entries*/NULL,
930 quantum_fireball_entries
931 },
932 {
933 /*
934 * This Sony MO drive likes to return 0x04, 0x00 when it
935 * isn't spun up.
936 */
937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
938 /*num_sense_keys*/0,
939 nitems(sony_mo_entries),
940 /*sense key entries*/NULL,
941 sony_mo_entries
942 },
943 {
944 /*
945 * HGST vendor-specific error codes
946 */
947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
948 /*num_sense_keys*/0,
949 nitems(hgst_entries),
950 /*sense key entries*/NULL,
951 hgst_entries
952 },
953 {
954 /*
955 * SEAGATE vendor-specific error codes
956 */
957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
958 /*num_sense_keys*/0,
959 nitems(seagate_entries),
960 /*sense key entries*/NULL,
961 seagate_entries
962 }
963 };
964
965 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
966
967 static struct asc_table_entry asc_table[] = {
968 /*
969 * From: http://www.t10.org/lists/asc-num.txt
970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971 */
972 /*
973 * File: ASC-NUM.TXT
974 *
975 * SCSI ASC/ASCQ Assignments
976 * Numeric Sorted Listing
977 * as of Sat Mar 25 2023 at 04:30 (using old columns)
978 *
979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) -------------------
981 * . L - PRINTER DEVICE (SSC) blank = reserved
982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed
983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984 * . . R - CD DEVICE (MMC)
985 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
986 * . . .M - MEDIA CHANGER DEVICE (SMC)
987 * . . . A - STORAGE ARRAY DEVICE (SCC)
988 * . . . E - ENCLOSURE SERVICES DEVICE (SES)
989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
992 * . . . . .F - OBJECT-BASED STORAGE (OSD)
993 * DTLPWROMAEBKVF
994 * ASC ASCQ Action
995 * Description
996 */
997 /* DTLPWROMAEBKVF */
998 { SST(0x00, 0x00, SS_NOP,
999 "No additional sense information") },
1000 /* T */
1001 { SST(0x00, 0x01, SS_RDEF,
1002 "Filemark detected") },
1003 /* T */
1004 { SST(0x00, 0x02, SS_RDEF,
1005 "End-of-partition/medium detected") },
1006 /* T */
1007 { SST(0x00, 0x03, SS_RDEF,
1008 "Setmark detected") },
1009 /* T */
1010 { SST(0x00, 0x04, SS_RDEF,
1011 "Beginning-of-partition/medium detected") },
1012 /* TL */
1013 { SST(0x00, 0x05, SS_RDEF,
1014 "End-of-data detected") },
1015 /* DTLPWROMAEBKVF */
1016 { SST(0x00, 0x06, SS_RDEF,
1017 "I/O process terminated") },
1018 /* T */
1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */
1020 "Programmable early warning detected") },
1021 /* R */
1022 { SST(0x00, 0x11, SS_FATAL | EBUSY,
1023 "Audio play operation in progress") },
1024 /* R */
1025 { SST(0x00, 0x12, SS_NOP,
1026 "Audio play operation paused") },
1027 /* R */
1028 { SST(0x00, 0x13, SS_NOP,
1029 "Audio play operation successfully completed") },
1030 /* R */
1031 { SST(0x00, 0x14, SS_RDEF,
1032 "Audio play operation stopped due to error") },
1033 /* R */
1034 { SST(0x00, 0x15, SS_NOP,
1035 "No current audio status to return") },
1036 /* DTLPWROMAEBKVF */
1037 { SST(0x00, 0x16, SS_FATAL | EBUSY,
1038 "Operation in progress") },
1039 /* DTL WROMAEBKVF */
1040 { SST(0x00, 0x17, SS_RDEF,
1041 "Cleaning requested") },
1042 /* T */
1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */
1044 "Erase operation in progress") },
1045 /* T */
1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */
1047 "Locate operation in progress") },
1048 /* T */
1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */
1050 "Rewind operation in progress") },
1051 /* T */
1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */
1053 "Set capacity operation in progress") },
1054 /* T */
1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */
1056 "Verify operation in progress") },
1057 /* DT B */
1058 { SST(0x00, 0x1D, SS_NOP,
1059 "ATA pass through information available") },
1060 /* DT R MAEBKV */
1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */
1062 "Conflicting SA creation request") },
1063 /* DT B */
1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */
1065 "Logical unit transitioning to another power condition") },
1066 /* DT P B */
1067 { SST(0x00, 0x20, SS_NOP,
1068 "Extended copy information available") },
1069 /* D */
1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */
1071 "Atomic command aborted due to ACA") },
1072 /* D */
1073 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */
1074 "Deferred microcode is pending") },
1075 /* D */
1076 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */
1077 "Overlapping atomic command in progress") },
1078 /* D W O BK */
1079 { SST(0x01, 0x00, SS_RDEF,
1080 "No index/sector signal") },
1081 /* D WRO BK */
1082 { SST(0x02, 0x00, SS_FATAL | EIO,
1083 "No seek complete") },
1084 /* DTL W O BK */
1085 { SST(0x03, 0x00, SS_RDEF,
1086 "Peripheral device write fault") },
1087 /* T */
1088 { SST(0x03, 0x01, SS_RDEF,
1089 "No write current") },
1090 /* T */
1091 { SST(0x03, 0x02, SS_RDEF,
1092 "Excessive write errors") },
1093 /* DTLPWROMAEBKVF */
1094 { SST(0x04, 0x00, SS_RDEF,
1095 "Logical unit not ready, cause not reportable") },
1096 /* DTLPWROMAEBKVF */
1097 { SST(0x04, 0x01, SS_WAIT | EBUSY,
1098 "Logical unit is in process of becoming ready") },
1099 /* DTLPWROMAEBKVF */
1100 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1101 "Logical unit not ready, initializing command required") },
1102 /* DTLPWROMAEBKVF */
1103 { SST(0x04, 0x03, SS_FATAL | ENXIO,
1104 "Logical unit not ready, manual intervention required") },
1105 /* DTL RO B */
1106 { SST(0x04, 0x04, SS_FATAL | EBUSY,
1107 "Logical unit not ready, format in progress") },
1108 /* DT W O A BK F */
1109 { SST(0x04, 0x05, SS_FATAL | EBUSY,
1110 "Logical unit not ready, rebuild in progress") },
1111 /* DT W O A BK */
1112 { SST(0x04, 0x06, SS_FATAL | EBUSY,
1113 "Logical unit not ready, recalculation in progress") },
1114 /* DTLPWROMAEBKVF */
1115 { SST(0x04, 0x07, SS_FATAL | EBUSY,
1116 "Logical unit not ready, operation in progress") },
1117 /* R */
1118 { SST(0x04, 0x08, SS_FATAL | EBUSY,
1119 "Logical unit not ready, long write in progress") },
1120 /* DTLPWROMAEBKVF */
1121 { SST(0x04, 0x09, SS_FATAL | EBUSY,
1122 "Logical unit not ready, self-test in progress") },
1123 /* DTLPWROMAEBKVF */
1124 { SST(0x04, 0x0A, SS_WAIT | ENXIO,
1125 "Logical unit not accessible, asymmetric access state transition")},
1126 /* DTLPWROMAEBKVF */
1127 { SST(0x04, 0x0B, SS_FATAL | ENXIO,
1128 "Logical unit not accessible, target port in standby state") },
1129 /* DTLPWROMAEBKVF */
1130 { SST(0x04, 0x0C, SS_FATAL | ENXIO,
1131 "Logical unit not accessible, target port in unavailable state") },
1132 /* F */
1133 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */
1134 "Logical unit not ready, structure check required") },
1135 /* DTL WR MAEBKVF */
1136 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */
1137 "Logical unit not ready, security session in progress") },
1138 /* DT WROM B */
1139 { SST(0x04, 0x10, SS_FATAL | ENODEV,
1140 "Logical unit not ready, auxiliary memory not accessible") },
1141 /* DT WRO AEB VF */
1142 { SST(0x04, 0x11, SS_WAIT | ENXIO,
1143 "Logical unit not ready, notify (enable spinup) required") },
1144 /* M V */
1145 { SST(0x04, 0x12, SS_FATAL | ENXIO,
1146 "Logical unit not ready, offline") },
1147 /* DT R MAEBKV */
1148 { SST(0x04, 0x13, SS_WAIT | EBUSY,
1149 "Logical unit not ready, SA creation in progress") },
1150 /* D B */
1151 { SST(0x04, 0x14, SS_WAIT | ENOSPC,
1152 "Logical unit not ready, space allocation in progress") },
1153 /* M */
1154 { SST(0x04, 0x15, SS_FATAL | ENXIO,
1155 "Logical unit not ready, robotics disabled") },
1156 /* M */
1157 { SST(0x04, 0x16, SS_FATAL | ENXIO,
1158 "Logical unit not ready, configuration required") },
1159 /* M */
1160 { SST(0x04, 0x17, SS_FATAL | ENXIO,
1161 "Logical unit not ready, calibration required") },
1162 /* M */
1163 { SST(0x04, 0x18, SS_FATAL | ENXIO,
1164 "Logical unit not ready, a door is open") },
1165 /* M */
1166 { SST(0x04, 0x19, SS_FATAL | ENODEV,
1167 "Logical unit not ready, operating in sequential mode") },
1168 /* DT B */
1169 { SST(0x04, 0x1A, SS_WAIT | EBUSY,
1170 "Logical unit not ready, START/STOP UNIT command in progress") },
1171 /* D B */
1172 { SST(0x04, 0x1B, SS_WAIT | EBUSY,
1173 "Logical unit not ready, sanitize in progress") },
1174 /* DT MAEB */
1175 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1176 "Logical unit not ready, additional power use not yet granted") },
1177 /* D */
1178 { SST(0x04, 0x1D, SS_WAIT | EBUSY,
1179 "Logical unit not ready, configuration in progress") },
1180 /* D */
1181 { SST(0x04, 0x1E, SS_FATAL | ENXIO,
1182 "Logical unit not ready, microcode activation required") },
1183 /* DTLPWROMAEBKVF */
1184 { SST(0x04, 0x1F, SS_FATAL | ENXIO,
1185 "Logical unit not ready, microcode download required") },
1186 /* DTLPWROMAEBKVF */
1187 { SST(0x04, 0x20, SS_FATAL | ENXIO,
1188 "Logical unit not ready, logical unit reset required") },
1189 /* DTLPWROMAEBKVF */
1190 { SST(0x04, 0x21, SS_FATAL | ENXIO,
1191 "Logical unit not ready, hard reset required") },
1192 /* DTLPWROMAEBKVF */
1193 { SST(0x04, 0x22, SS_FATAL | ENXIO,
1194 "Logical unit not ready, power cycle required") },
1195 /* D */
1196 { SST(0x04, 0x23, SS_FATAL | ENXIO,
1197 "Logical unit not ready, affiliation required") },
1198 /* D */
1199 { SST(0x04, 0x24, SS_FATAL | EBUSY,
1200 "Depopulation in progress") },
1201 /* D */
1202 { SST(0x04, 0x25, SS_FATAL | EBUSY,
1203 "Depopulation restoration in progress") },
1204 /* DTL WROMAEBKVF */
1205 { SST(0x05, 0x00, SS_RDEF,
1206 "Logical unit does not respond to selection") },
1207 /* D WROM BK */
1208 { SST(0x06, 0x00, SS_RDEF,
1209 "No reference position found") },
1210 /* DTL WROM BK */
1211 { SST(0x07, 0x00, SS_RDEF,
1212 "Multiple peripheral devices selected") },
1213 /* DTL WROMAEBKVF */
1214 { SST(0x08, 0x00, SS_RDEF,
1215 "Logical unit communication failure") },
1216 /* DTL WROMAEBKVF */
1217 { SST(0x08, 0x01, SS_RDEF,
1218 "Logical unit communication time-out") },
1219 /* DTL WROMAEBKVF */
1220 { SST(0x08, 0x02, SS_RDEF,
1221 "Logical unit communication parity error") },
1222 /* DT ROM BK */
1223 { SST(0x08, 0x03, SS_RDEF,
1224 "Logical unit communication CRC error (Ultra-DMA/32)") },
1225 /* DTLPWRO K */
1226 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */
1227 "Unreachable copy target") },
1228 /* DT WRO B */
1229 { SST(0x09, 0x00, SS_RDEF,
1230 "Track following error") },
1231 /* WRO K */
1232 { SST(0x09, 0x01, SS_RDEF,
1233 "Tracking servo failure") },
1234 /* WRO K */
1235 { SST(0x09, 0x02, SS_RDEF,
1236 "Focus servo failure") },
1237 /* WRO */
1238 { SST(0x09, 0x03, SS_RDEF,
1239 "Spindle servo failure") },
1240 /* DT WRO B */
1241 { SST(0x09, 0x04, SS_RDEF,
1242 "Head select fault") },
1243 /* DT RO B */
1244 { SST(0x09, 0x05, SS_RDEF,
1245 "Vibration induced tracking error") },
1246 /* DTLPWROMAEBKVF */
1247 { SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1248 "Error log overflow") },
1249 /* DTLPWROMAEBKVF */
1250 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1251 "Warning") },
1252 /* DTLPWROMAEBKVF */
1253 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1254 "Warning - specified temperature exceeded") },
1255 /* DTLPWROMAEBKVF */
1256 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1257 "Warning - enclosure degraded") },
1258 /* DTLPWROMAEBKVF */
1259 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1260 "Warning - background self-test failed") },
1261 /* DTLPWRO AEBKVF */
1262 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1263 "Warning - background pre-scan detected medium error") },
1264 /* DTLPWRO AEBKVF */
1265 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1266 "Warning - background medium scan detected medium error") },
1267 /* DTLPWROMAEBKVF */
1268 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1269 "Warning - non-volatile cache now volatile") },
1270 /* DTLPWROMAEBKVF */
1271 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1272 "Warning - degraded power to non-volatile cache") },
1273 /* DTLPWROMAEBKVF */
1274 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1275 "Warning - power loss expected") },
1276 /* D */
1277 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1278 "Warning - device statistics notification available") },
1279 /* DTLPWROMAEBKV */
1280 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1281 "Warning - High critical temperature limit exceeded") },
1282 /* DTLPWROMAEBKV */
1283 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1284 "Warning - Low critical temperature limit exceeded") },
1285 /* DTLPWROMAEBKV */
1286 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1287 "Warning - High operating temperature limit exceeded") },
1288 /* DTLPWROMAEBKV */
1289 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1290 "Warning - Low operating temperature limit exceeded") },
1291 /* DTLPWROMAEBKV */
1292 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1293 "Warning - High citical humidity limit exceeded") },
1294 /* DTLPWROMAEBKV */
1295 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1296 "Warning - Low citical humidity limit exceeded") },
1297 /* DTLPWROMAEBKV */
1298 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1299 "Warning - High operating humidity limit exceeded") },
1300 /* DTLPWROMAEBKV */
1301 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1302 "Warning - Low operating humidity limit exceeded") },
1303 /* DTLPWROMAEBKVF */
1304 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE,
1305 "Warning - Microcode security at risk") },
1306 /* DTLPWROMAEBKVF */
1307 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE,
1308 "Warning - Microcode digital signature validation failure") },
1309 /* D */
1310 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE,
1311 "Warning - Physical element status change") },
1312 /* T R */
1313 { SST(0x0C, 0x00, SS_RDEF,
1314 "Write error") },
1315 /* K */
1316 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1317 "Write error - recovered with auto reallocation") },
1318 /* D W O BK */
1319 { SST(0x0C, 0x02, SS_RDEF,
1320 "Write error - auto reallocation failed") },
1321 /* D W O BK */
1322 { SST(0x0C, 0x03, SS_RDEF,
1323 "Write error - recommend reassignment") },
1324 /* DT W O B */
1325 { SST(0x0C, 0x04, SS_RDEF,
1326 "Compression check miscompare error") },
1327 /* DT W O B */
1328 { SST(0x0C, 0x05, SS_RDEF,
1329 "Data expansion occurred during compression") },
1330 /* DT W O B */
1331 { SST(0x0C, 0x06, SS_RDEF,
1332 "Block not compressible") },
1333 /* R */
1334 { SST(0x0C, 0x07, SS_RDEF,
1335 "Write error - recovery needed") },
1336 /* R */
1337 { SST(0x0C, 0x08, SS_RDEF,
1338 "Write error - recovery failed") },
1339 /* R */
1340 { SST(0x0C, 0x09, SS_RDEF,
1341 "Write error - loss of streaming") },
1342 /* R */
1343 { SST(0x0C, 0x0A, SS_RDEF,
1344 "Write error - padding blocks added") },
1345 /* DT WROM B */
1346 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */
1347 "Auxiliary memory write error") },
1348 /* DTLPWRO AEBKVF */
1349 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */
1350 "Write error - unexpected unsolicited data") },
1351 /* DTLPWRO AEBKVF */
1352 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */
1353 "Write error - not enough unsolicited data") },
1354 /* DT W O BK */
1355 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */
1356 "Multiple write errors") },
1357 /* R */
1358 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */
1359 "Defects in error window") },
1360 /* D */
1361 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */
1362 "Incomplete multiple atomic write operations") },
1363 /* D */
1364 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */
1365 "Write error - recovery scan needed") },
1366 /* D */
1367 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */
1368 "Write error - insufficient zone resources") },
1369 /* DTLPWRO A K */
1370 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */
1371 "Error detected by third party temporary initiator") },
1372 /* DTLPWRO A K */
1373 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */
1374 "Third party device failure") },
1375 /* DTLPWRO A K */
1376 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */
1377 "Copy target device not reachable") },
1378 /* DTLPWRO A K */
1379 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */
1380 "Incorrect copy target device type") },
1381 /* DTLPWRO A K */
1382 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */
1383 "Copy target device data underrun") },
1384 /* DTLPWRO A K */
1385 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */
1386 "Copy target device data overrun") },
1387 /* DT PWROMAEBK F */
1388 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */
1389 "Invalid information unit") },
1390 /* DT PWROMAEBK F */
1391 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */
1392 "Information unit too short") },
1393 /* DT PWROMAEBK F */
1394 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */
1395 "Information unit too long") },
1396 /* DT P R MAEBK F */
1397 { SST(0x0E, 0x03, SS_FATAL | EINVAL,
1398 "Invalid field in command information unit") },
1399 /* D W O BK */
1400 { SST(0x10, 0x00, SS_RDEF,
1401 "ID CRC or ECC error") },
1402 /* DT W O */
1403 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */
1404 "Logical block guard check failed") },
1405 /* DT W O */
1406 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */
1407 "Logical block application tag check failed") },
1408 /* DT W O */
1409 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */
1410 "Logical block reference tag check failed") },
1411 /* T */
1412 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */
1413 "Logical block protection error on recovered buffer data") },
1414 /* T */
1415 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */
1416 "Logical block protection method error") },
1417 /* DT WRO BK */
1418 { SST(0x11, 0x00, SS_FATAL|EIO,
1419 "Unrecovered read error") },
1420 /* DT WRO BK */
1421 { SST(0x11, 0x01, SS_FATAL|EIO,
1422 "Read retries exhausted") },
1423 /* DT WRO BK */
1424 { SST(0x11, 0x02, SS_FATAL|EIO,
1425 "Error too long to correct") },
1426 /* DT W O BK */
1427 { SST(0x11, 0x03, SS_FATAL|EIO,
1428 "Multiple read errors") },
1429 /* D W O BK */
1430 { SST(0x11, 0x04, SS_FATAL|EIO,
1431 "Unrecovered read error - auto reallocate failed") },
1432 /* WRO B */
1433 { SST(0x11, 0x05, SS_FATAL|EIO,
1434 "L-EC uncorrectable error") },
1435 /* WRO B */
1436 { SST(0x11, 0x06, SS_FATAL|EIO,
1437 "CIRC unrecovered error") },
1438 /* W O B */
1439 { SST(0x11, 0x07, SS_RDEF,
1440 "Data re-synchronization error") },
1441 /* T */
1442 { SST(0x11, 0x08, SS_RDEF,
1443 "Incomplete block read") },
1444 /* T */
1445 { SST(0x11, 0x09, SS_RDEF,
1446 "No gap found") },
1447 /* DT O BK */
1448 { SST(0x11, 0x0A, SS_RDEF,
1449 "Miscorrected error") },
1450 /* D W O BK */
1451 { SST(0x11, 0x0B, SS_FATAL|EIO,
1452 "Unrecovered read error - recommend reassignment") },
1453 /* D W O BK */
1454 { SST(0x11, 0x0C, SS_FATAL|EIO,
1455 "Unrecovered read error - recommend rewrite the data") },
1456 /* DT WRO B */
1457 { SST(0x11, 0x0D, SS_RDEF,
1458 "De-compression CRC error") },
1459 /* DT WRO B */
1460 { SST(0x11, 0x0E, SS_RDEF,
1461 "Cannot decompress using declared algorithm") },
1462 /* R */
1463 { SST(0x11, 0x0F, SS_RDEF,
1464 "Error reading UPC/EAN number") },
1465 /* R */
1466 { SST(0x11, 0x10, SS_RDEF,
1467 "Error reading ISRC number") },
1468 /* R */
1469 { SST(0x11, 0x11, SS_RDEF,
1470 "Read error - loss of streaming") },
1471 /* DT WROM B */
1472 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */
1473 "Auxiliary memory read error") },
1474 /* DTLPWRO AEBKVF */
1475 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */
1476 "Read error - failed retransmission request") },
1477 /* D */
1478 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */
1479 "Read error - LBA marked bad by application client") },
1480 /* D */
1481 { SST(0x11, 0x15, SS_FATAL | EIO,
1482 "Write after sanitize required") },
1483 /* D W O BK */
1484 { SST(0x12, 0x00, SS_RDEF,
1485 "Address mark not found for ID field") },
1486 /* D W O BK */
1487 { SST(0x13, 0x00, SS_RDEF,
1488 "Address mark not found for data field") },
1489 /* DTL WRO BK */
1490 { SST(0x14, 0x00, SS_RDEF,
1491 "Recorded entity not found") },
1492 /* DT WRO BK */
1493 { SST(0x14, 0x01, SS_RDEF,
1494 "Record not found") },
1495 /* T */
1496 { SST(0x14, 0x02, SS_RDEF,
1497 "Filemark or setmark not found") },
1498 /* T */
1499 { SST(0x14, 0x03, SS_RDEF,
1500 "End-of-data not found") },
1501 /* T */
1502 { SST(0x14, 0x04, SS_RDEF,
1503 "Block sequence error") },
1504 /* DT W O BK */
1505 { SST(0x14, 0x05, SS_RDEF,
1506 "Record not found - recommend reassignment") },
1507 /* DT W O BK */
1508 { SST(0x14, 0x06, SS_RDEF,
1509 "Record not found - data auto-reallocated") },
1510 /* T */
1511 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */
1512 "Locate operation failure") },
1513 /* DTL WROM BK */
1514 { SST(0x15, 0x00, SS_RDEF,
1515 "Random positioning error") },
1516 /* DTL WROM BK */
1517 { SST(0x15, 0x01, SS_RDEF,
1518 "Mechanical positioning error") },
1519 /* DT WRO BK */
1520 { SST(0x15, 0x02, SS_RDEF,
1521 "Positioning error detected by read of medium") },
1522 /* D W O BK */
1523 { SST(0x16, 0x00, SS_RDEF,
1524 "Data synchronization mark error") },
1525 /* D W O BK */
1526 { SST(0x16, 0x01, SS_RDEF,
1527 "Data sync error - data rewritten") },
1528 /* D W O BK */
1529 { SST(0x16, 0x02, SS_RDEF,
1530 "Data sync error - recommend rewrite") },
1531 /* D W O BK */
1532 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1533 "Data sync error - data auto-reallocated") },
1534 /* D W O BK */
1535 { SST(0x16, 0x04, SS_RDEF,
1536 "Data sync error - recommend reassignment") },
1537 /* DT WRO BK */
1538 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1539 "Recovered data with no error correction applied") },
1540 /* DT WRO BK */
1541 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1542 "Recovered data with retries") },
1543 /* DT WRO BK */
1544 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1545 "Recovered data with positive head offset") },
1546 /* DT WRO BK */
1547 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1548 "Recovered data with negative head offset") },
1549 /* WRO B */
1550 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1551 "Recovered data with retries and/or CIRC applied") },
1552 /* D WRO BK */
1553 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1554 "Recovered data using previous sector ID") },
1555 /* D W O BK */
1556 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1557 "Recovered data without ECC - data auto-reallocated") },
1558 /* D WRO BK */
1559 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1560 "Recovered data without ECC - recommend reassignment") },
1561 /* D WRO BK */
1562 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1563 "Recovered data without ECC - recommend rewrite") },
1564 /* D WRO BK */
1565 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1566 "Recovered data without ECC - data rewritten") },
1567 /* DT WRO BK */
1568 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1569 "Recovered data with error correction applied") },
1570 /* D WRO BK */
1571 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1572 "Recovered data with error corr. & retries applied") },
1573 /* D WRO BK */
1574 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1575 "Recovered data - data auto-reallocated") },
1576 /* R */
1577 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1578 "Recovered data with CIRC") },
1579 /* R */
1580 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1581 "Recovered data with L-EC") },
1582 /* D WRO BK */
1583 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1584 "Recovered data - recommend reassignment") },
1585 /* D WRO BK */
1586 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1587 "Recovered data - recommend rewrite") },
1588 /* D W O BK */
1589 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1590 "Recovered data with ECC - data rewritten") },
1591 /* R */
1592 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1593 "Recovered data with linking") },
1594 /* D O K */
1595 { SST(0x19, 0x00, SS_RDEF,
1596 "Defect list error") },
1597 /* D O K */
1598 { SST(0x19, 0x01, SS_RDEF,
1599 "Defect list not available") },
1600 /* D O K */
1601 { SST(0x19, 0x02, SS_RDEF,
1602 "Defect list error in primary list") },
1603 /* D O K */
1604 { SST(0x19, 0x03, SS_RDEF,
1605 "Defect list error in grown list") },
1606 /* DTLPWROMAEBKVF */
1607 { SST(0x1A, 0x00, SS_RDEF,
1608 "Parameter list length error") },
1609 /* DTLPWROMAEBKVF */
1610 { SST(0x1B, 0x00, SS_RDEF,
1611 "Synchronous data transfer error") },
1612 /* D O BK */
1613 { SST(0x1C, 0x00, SS_RDEF,
1614 "Defect list not found") },
1615 /* D O BK */
1616 { SST(0x1C, 0x01, SS_RDEF,
1617 "Primary defect list not found") },
1618 /* D O BK */
1619 { SST(0x1C, 0x02, SS_RDEF,
1620 "Grown defect list not found") },
1621 /* DT WRO BK */
1622 { SST(0x1D, 0x00, SS_FATAL,
1623 "Miscompare during verify operation") },
1624 /* D B */
1625 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */
1626 "Miscomparable verify of unmapped LBA") },
1627 /* D W O BK */
1628 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1629 "Recovered ID with ECC correction") },
1630 /* D O K */
1631 { SST(0x1F, 0x00, SS_RDEF,
1632 "Partial defect list transfer") },
1633 /* DTLPWROMAEBKVF */
1634 { SST(0x20, 0x00, SS_FATAL | EINVAL,
1635 "Invalid command operation code") },
1636 /* DT PWROMAEBK */
1637 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */
1638 "Access denied - initiator pending-enrolled") },
1639 /* DT PWROMAEBK */
1640 { SST(0x20, 0x02, SS_FATAL | EPERM,
1641 "Access denied - no access rights") },
1642 /* DT PWROMAEBK */
1643 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */
1644 "Access denied - invalid mgmt ID key") },
1645 /* T */
1646 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */
1647 "Illegal command while in write capable state") },
1648 /* T */
1649 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */
1650 "Obsolete") },
1651 /* T */
1652 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */
1653 "Illegal command while in explicit address mode") },
1654 /* T */
1655 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */
1656 "Illegal command while in implicit address mode") },
1657 /* DT PWROMAEBK */
1658 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */
1659 "Access denied - enrollment conflict") },
1660 /* DT PWROMAEBK */
1661 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */
1662 "Access denied - invalid LU identifier") },
1663 /* DT PWROMAEBK */
1664 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */
1665 "Access denied - invalid proxy token") },
1666 /* DT PWROMAEBK */
1667 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */
1668 "Access denied - ACL LUN conflict") },
1669 /* T */
1670 { SST(0x20, 0x0C, SS_FATAL | EINVAL,
1671 "Illegal command when not in append-only mode") },
1672 /* D */
1673 { SST(0x20, 0x0D, SS_FATAL | EINVAL,
1674 "Not an administrative logical unit") },
1675 /* D */
1676 { SST(0x20, 0x0E, SS_FATAL | EINVAL,
1677 "Not a subsidiary logical unit") },
1678 /* D */
1679 { SST(0x20, 0x0F, SS_FATAL | EINVAL,
1680 "Not a conglomerate logical unit") },
1681 /* DT WRO BK */
1682 { SST(0x21, 0x00, SS_FATAL | EINVAL,
1683 "Logical block address out of range") },
1684 /* DT WROM BK */
1685 { SST(0x21, 0x01, SS_FATAL | EINVAL,
1686 "Invalid element address") },
1687 /* R */
1688 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */
1689 "Invalid address for write") },
1690 /* R */
1691 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */
1692 "Invalid write crossing layer jump") },
1693 /* D */
1694 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */
1695 "Unaligned write command") },
1696 /* D */
1697 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */
1698 "Write boundary violation") },
1699 /* D */
1700 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */
1701 "Attempt to read invalid data") },
1702 /* D */
1703 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */
1704 "Read boundary violation") },
1705 /* D */
1706 { SST(0x21, 0x08, SS_FATAL | EINVAL,
1707 "Misaligned write command") },
1708 /* D */
1709 { SST(0x21, 0x09, SS_FATAL | EINVAL,
1710 "Attempt to access gap zone") },
1711 /* D */
1712 { SST(0x22, 0x00, SS_FATAL | EINVAL,
1713 "Illegal function (use 20 00, 24 00, or 26 00)") },
1714 /* DT P B */
1715 { SST(0x23, 0x00, SS_FATAL | EINVAL,
1716 "Invalid token operation, cause not reportable") },
1717 /* DT P B */
1718 { SST(0x23, 0x01, SS_FATAL | EINVAL,
1719 "Invalid token operation, unsupported token type") },
1720 /* DT P B */
1721 { SST(0x23, 0x02, SS_FATAL | EINVAL,
1722 "Invalid token operation, remote token usage not supported") },
1723 /* DT P B */
1724 { SST(0x23, 0x03, SS_FATAL | EINVAL,
1725 "Invalid token operation, remote ROD token creation not supported") },
1726 /* DT P B */
1727 { SST(0x23, 0x04, SS_FATAL | EINVAL,
1728 "Invalid token operation, token unknown") },
1729 /* DT P B */
1730 { SST(0x23, 0x05, SS_FATAL | EINVAL,
1731 "Invalid token operation, token corrupt") },
1732 /* DT P B */
1733 { SST(0x23, 0x06, SS_FATAL | EINVAL,
1734 "Invalid token operation, token revoked") },
1735 /* DT P B */
1736 { SST(0x23, 0x07, SS_FATAL | EINVAL,
1737 "Invalid token operation, token expired") },
1738 /* DT P B */
1739 { SST(0x23, 0x08, SS_FATAL | EINVAL,
1740 "Invalid token operation, token cancelled") },
1741 /* DT P B */
1742 { SST(0x23, 0x09, SS_FATAL | EINVAL,
1743 "Invalid token operation, token deleted") },
1744 /* DT P B */
1745 { SST(0x23, 0x0A, SS_FATAL | EINVAL,
1746 "Invalid token operation, invalid token length") },
1747 /* DTLPWROMAEBKVF */
1748 { SST(0x24, 0x00, SS_FATAL | EINVAL,
1749 "Invalid field in CDB") },
1750 /* DTLPWRO AEBKVF */
1751 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */
1752 "CDB decryption error") },
1753 /* T */
1754 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */
1755 "Obsolete") },
1756 /* T */
1757 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */
1758 "Obsolete") },
1759 /* F */
1760 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */
1761 "Security audit value frozen") },
1762 /* F */
1763 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */
1764 "Security working key frozen") },
1765 /* F */
1766 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */
1767 "NONCE not unique") },
1768 /* F */
1769 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */
1770 "NONCE timestamp out of range") },
1771 /* DT R MAEBKV */
1772 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */
1773 "Invalid XCDB") },
1774 /* D */
1775 { SST(0x24, 0x09, SS_FATAL | EINVAL,
1776 "Invalid fast format") },
1777 /* DTLPWROMAEBKVF */
1778 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1779 "Logical unit not supported") },
1780 /* DTLPWROMAEBKVF */
1781 { SST(0x26, 0x00, SS_FATAL | EINVAL,
1782 "Invalid field in parameter list") },
1783 /* DTLPWROMAEBKVF */
1784 { SST(0x26, 0x01, SS_FATAL | EINVAL,
1785 "Parameter not supported") },
1786 /* DTLPWROMAEBKVF */
1787 { SST(0x26, 0x02, SS_FATAL | EINVAL,
1788 "Parameter value invalid") },
1789 /* DTLPWROMAE K */
1790 { SST(0x26, 0x03, SS_FATAL | EINVAL,
1791 "Threshold parameters not supported") },
1792 /* DTLPWROMAEBKVF */
1793 { SST(0x26, 0x04, SS_FATAL | EINVAL,
1794 "Invalid release of persistent reservation") },
1795 /* DTLPWRO A BK */
1796 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */
1797 "Data decryption error") },
1798 /* DTLPWRO K */
1799 { SST(0x26, 0x06, SS_FATAL | EINVAL,
1800 "Too many target descriptors") },
1801 /* DTLPWRO K */
1802 { SST(0x26, 0x07, SS_FATAL | EINVAL,
1803 "Unsupported target descriptor type code") },
1804 /* DTLPWRO K */
1805 { SST(0x26, 0x08, SS_FATAL | EINVAL,
1806 "Too many segment descriptors") },
1807 /* DTLPWRO K */
1808 { SST(0x26, 0x09, SS_FATAL | EINVAL,
1809 "Unsupported segment descriptor type code") },
1810 /* DTLPWRO K */
1811 { SST(0x26, 0x0A, SS_FATAL | EINVAL,
1812 "Unexpected inexact segment") },
1813 /* DTLPWRO K */
1814 { SST(0x26, 0x0B, SS_FATAL | EINVAL,
1815 "Inline data length exceeded") },
1816 /* DTLPWRO K */
1817 { SST(0x26, 0x0C, SS_FATAL | EINVAL,
1818 "Invalid operation for copy source or destination") },
1819 /* DTLPWRO K */
1820 { SST(0x26, 0x0D, SS_FATAL | EINVAL,
1821 "Copy segment granularity violation") },
1822 /* DT PWROMAEBK */
1823 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */
1824 "Invalid parameter while port is enabled") },
1825 /* F */
1826 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */
1827 "Invalid data-out buffer integrity check value") },
1828 /* T */
1829 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */
1830 "Data decryption key fail limit reached") },
1831 /* T */
1832 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */
1833 "Incomplete key-associated data set") },
1834 /* T */
1835 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */
1836 "Vendor specific key reference not found") },
1837 /* D */
1838 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */
1839 "Application tag mode page is invalid") },
1840 /* T */
1841 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */
1842 "Tape stream mirroring prevented") },
1843 /* T */
1844 { SST(0x26, 0x15, SS_FATAL | EINVAL,
1845 "Copy source or copy destination not authorized") },
1846 /* D */
1847 { SST(0x26, 0x16, SS_FATAL | EINVAL,
1848 "Fast copy not possible") },
1849 /* DT WRO BK */
1850 { SST(0x27, 0x00, SS_FATAL | EACCES,
1851 "Write protected") },
1852 /* DT WRO BK */
1853 { SST(0x27, 0x01, SS_FATAL | EACCES,
1854 "Hardware write protected") },
1855 /* DT WRO BK */
1856 { SST(0x27, 0x02, SS_FATAL | EACCES,
1857 "Logical unit software write protected") },
1858 /* T R */
1859 { SST(0x27, 0x03, SS_FATAL | EACCES,
1860 "Associated write protect") },
1861 /* T R */
1862 { SST(0x27, 0x04, SS_FATAL | EACCES,
1863 "Persistent write protect") },
1864 /* T R */
1865 { SST(0x27, 0x05, SS_FATAL | EACCES,
1866 "Permanent write protect") },
1867 /* R F */
1868 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */
1869 "Conditional write protect") },
1870 /* D B */
1871 { SST(0x27, 0x07, SS_FATAL | ENOSPC,
1872 "Space allocation failed write protect") },
1873 /* D */
1874 { SST(0x27, 0x08, SS_FATAL | EACCES,
1875 "Zone is read only") },
1876 /* DTLPWROMAEBKVF */
1877 { SST(0x28, 0x00, SS_FATAL | ENXIO,
1878 "Not ready to ready change, medium may have changed") },
1879 /* DT WROM B */
1880 { SST(0x28, 0x01, SS_FATAL | ENXIO,
1881 "Import or export element accessed") },
1882 /* R */
1883 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */
1884 "Format-layer may have changed") },
1885 /* M */
1886 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */
1887 "Import/export element accessed, medium changed") },
1888 /*
1889 * XXX JGibbs - All of these should use the same errno, but I don't
1890 * think ENXIO is the correct choice. Should we borrow from
1891 * the networking errnos? ECONNRESET anyone?
1892 */
1893 /* DTLPWROMAEBKVF */
1894 { SST(0x29, 0x00, SS_FATAL | ENXIO,
1895 "Power on, reset, or bus device reset occurred") },
1896 /* DTLPWROMAEBKVF */
1897 { SST(0x29, 0x01, SS_RDEF,
1898 "Power on occurred") },
1899 /* DTLPWROMAEBKVF */
1900 { SST(0x29, 0x02, SS_RDEF,
1901 "SCSI bus reset occurred") },
1902 /* DTLPWROMAEBKVF */
1903 { SST(0x29, 0x03, SS_RDEF,
1904 "Bus device reset function occurred") },
1905 /* DTLPWROMAEBKVF */
1906 { SST(0x29, 0x04, SS_RDEF,
1907 "Device internal reset") },
1908 /* DTLPWROMAEBKVF */
1909 { SST(0x29, 0x05, SS_RDEF,
1910 "Transceiver mode changed to single-ended") },
1911 /* DTLPWROMAEBKVF */
1912 { SST(0x29, 0x06, SS_RDEF,
1913 "Transceiver mode changed to LVD") },
1914 /* DTLPWROMAEBKVF */
1915 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */
1916 "I_T nexus loss occurred") },
1917 /* DTL WROMAEBKVF */
1918 { SST(0x2A, 0x00, SS_RDEF,
1919 "Parameters changed") },
1920 /* DTL WROMAEBKVF */
1921 { SST(0x2A, 0x01, SS_RDEF,
1922 "Mode parameters changed") },
1923 /* DTL WROMAE K */
1924 { SST(0x2A, 0x02, SS_RDEF,
1925 "Log parameters changed") },
1926 /* DTLPWROMAE K */
1927 { SST(0x2A, 0x03, SS_RDEF,
1928 "Reservations preempted") },
1929 /* DTLPWROMAE */
1930 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */
1931 "Reservations released") },
1932 /* DTLPWROMAE */
1933 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */
1934 "Registrations preempted") },
1935 /* DTLPWROMAEBKVF */
1936 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */
1937 "Asymmetric access state changed") },
1938 /* DTLPWROMAEBKVF */
1939 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */
1940 "Implicit asymmetric access state transition failed") },
1941 /* DT WROMAEBKVF */
1942 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */
1943 "Priority changed") },
1944 /* D */
1945 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */
1946 "Capacity data has changed") },
1947 /* DT */
1948 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */
1949 "Error history I_T nexus cleared") },
1950 /* DT */
1951 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */
1952 "Error history snapshot released") },
1953 /* F */
1954 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */
1955 "Error recovery attributes have changed") },
1956 /* T */
1957 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */
1958 "Data encryption capabilities changed") },
1959 /* DT M E V */
1960 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */
1961 "Timestamp changed") },
1962 /* T */
1963 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */
1964 "Data encryption parameters changed by another I_T nexus") },
1965 /* T */
1966 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */
1967 "Data encryption parameters changed by vendor specific event") },
1968 /* T */
1969 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */
1970 "Data encryption key instance counter has changed") },
1971 /* DT R MAEBKV */
1972 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */
1973 "SA creation capabilities data has changed") },
1974 /* T M V */
1975 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */
1976 "Medium removal prevention preempted") },
1977 /* D */
1978 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */
1979 "Zone reset write pointer recommended") },
1980 /* DTLPWRO K */
1981 { SST(0x2B, 0x00, SS_RDEF,
1982 "Copy cannot execute since host cannot disconnect") },
1983 /* DTLPWROMAEBKVF */
1984 { SST(0x2C, 0x00, SS_RDEF,
1985 "Command sequence error") },
1986 /* */
1987 { SST(0x2C, 0x01, SS_RDEF,
1988 "Too many windows specified") },
1989 /* */
1990 { SST(0x2C, 0x02, SS_RDEF,
1991 "Invalid combination of windows specified") },
1992 /* R */
1993 { SST(0x2C, 0x03, SS_RDEF,
1994 "Current program area is not empty") },
1995 /* R */
1996 { SST(0x2C, 0x04, SS_RDEF,
1997 "Current program area is empty") },
1998 /* B */
1999 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */
2000 "Illegal power condition request") },
2001 /* R */
2002 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */
2003 "Persistent prevent conflict") },
2004 /* DTLPWROMAEBKVF */
2005 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */
2006 "Previous busy status") },
2007 /* DTLPWROMAEBKVF */
2008 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */
2009 "Previous task set full status") },
2010 /* DTLPWROM EBKVF */
2011 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */
2012 "Previous reservation conflict status") },
2013 /* F */
2014 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */
2015 "Partition or collection contains user objects") },
2016 /* T */
2017 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */
2018 "Not reserved") },
2019 /* D */
2020 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */
2021 "ORWRITE generation does not match") },
2022 /* D */
2023 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */
2024 "Reset write pointer not allowed") },
2025 /* D */
2026 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */
2027 "Zone is offline") },
2028 /* D */
2029 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */
2030 "Stream not open") },
2031 /* D */
2032 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */
2033 "Unwritten data in zone") },
2034 /* D */
2035 { SST(0x2C, 0x11, SS_FATAL | EINVAL,
2036 "Descriptor format sense data required") },
2037 /* D */
2038 { SST(0x2C, 0x12, SS_FATAL | EINVAL,
2039 "Zone is inactive") },
2040 /* DTPEROMAEBKVF */
2041 { SST(0x2C, 0x13, SS_FATAL | EINVAL,
2042 "Well known logical unit access required") },
2043 /* T */
2044 { SST(0x2D, 0x00, SS_RDEF,
2045 "Overwrite error on update in place") },
2046 /* R */
2047 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */
2048 "Insufficient time for operation") },
2049 /* D */
2050 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */
2051 "Command timeout before processing") },
2052 /* D */
2053 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */
2054 "Command timeout during processing") },
2055 /* D */
2056 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */
2057 "Command timeout during processing due to error recovery") },
2058 /* DTLPWROMAEBKVF */
2059 { SST(0x2F, 0x00, SS_RDEF,
2060 "Commands cleared by another initiator") },
2061 /* D */
2062 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */
2063 "Commands cleared by power loss notification") },
2064 /* DTLPWROMAEBKVF */
2065 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */
2066 "Commands cleared by device server") },
2067 /* DTLPWROMAEBKVF */
2068 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */
2069 "Some commands cleared by queuing layer event") },
2070 /* DT WROM BK */
2071 { SST(0x30, 0x00, SS_RDEF,
2072 "Incompatible medium installed") },
2073 /* DT WRO BK */
2074 { SST(0x30, 0x01, SS_RDEF,
2075 "Cannot read medium - unknown format") },
2076 /* DT WRO BK */
2077 { SST(0x30, 0x02, SS_RDEF,
2078 "Cannot read medium - incompatible format") },
2079 /* DT R K */
2080 { SST(0x30, 0x03, SS_RDEF,
2081 "Cleaning cartridge installed") },
2082 /* DT WRO BK */
2083 { SST(0x30, 0x04, SS_RDEF,
2084 "Cannot write medium - unknown format") },
2085 /* DT WRO BK */
2086 { SST(0x30, 0x05, SS_RDEF,
2087 "Cannot write medium - incompatible format") },
2088 /* DT WRO B */
2089 { SST(0x30, 0x06, SS_RDEF,
2090 "Cannot format medium - incompatible medium") },
2091 /* DTL WROMAEBKVF */
2092 { SST(0x30, 0x07, SS_RDEF,
2093 "Cleaning failure") },
2094 /* R */
2095 { SST(0x30, 0x08, SS_RDEF,
2096 "Cannot write - application code mismatch") },
2097 /* R */
2098 { SST(0x30, 0x09, SS_RDEF,
2099 "Current session not fixated for append") },
2100 /* DT WRO AEBK */
2101 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */
2102 "Cleaning request rejected") },
2103 /* T */
2104 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */
2105 "WORM medium - overwrite attempted") },
2106 /* T */
2107 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */
2108 "WORM medium - integrity check") },
2109 /* R */
2110 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */
2111 "Medium not formatted") },
2112 /* M */
2113 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */
2114 "Incompatible volume type") },
2115 /* M */
2116 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */
2117 "Incompatible volume qualifier") },
2118 /* M */
2119 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */
2120 "Cleaning volume expired") },
2121 /* DT WRO BK */
2122 { SST(0x31, 0x00, SS_FATAL | ENXIO,
2123 "Medium format corrupted") },
2124 /* D L RO B */
2125 { SST(0x31, 0x01, SS_RDEF,
2126 "Format command failed") },
2127 /* R */
2128 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */
2129 "Zoned formatting failed due to spare linking") },
2130 /* D B */
2131 { SST(0x31, 0x03, SS_FATAL | EIO,
2132 "SANITIZE command failed") },
2133 /* D */
2134 { SST(0x31, 0x04, SS_FATAL | EIO,
2135 "Depopulation failed") },
2136 /* D */
2137 { SST(0x31, 0x05, SS_FATAL | EIO,
2138 "Depopulation restoration failed") },
2139 /* D W O BK */
2140 { SST(0x32, 0x00, SS_RDEF,
2141 "No defect spare location available") },
2142 /* D W O BK */
2143 { SST(0x32, 0x01, SS_RDEF,
2144 "Defect list update failure") },
2145 /* T */
2146 { SST(0x33, 0x00, SS_RDEF,
2147 "Tape length error") },
2148 /* DTLPWROMAEBKVF */
2149 { SST(0x34, 0x00, SS_RDEF,
2150 "Enclosure failure") },
2151 /* DTLPWROMAEBKVF */
2152 { SST(0x35, 0x00, SS_RDEF,
2153 "Enclosure services failure") },
2154 /* DTLPWROMAEBKVF */
2155 { SST(0x35, 0x01, SS_RDEF,
2156 "Unsupported enclosure function") },
2157 /* DTLPWROMAEBKVF */
2158 { SST(0x35, 0x02, SS_RDEF,
2159 "Enclosure services unavailable") },
2160 /* DTLPWROMAEBKVF */
2161 { SST(0x35, 0x03, SS_RDEF,
2162 "Enclosure services transfer failure") },
2163 /* DTLPWROMAEBKVF */
2164 { SST(0x35, 0x04, SS_RDEF,
2165 "Enclosure services transfer refused") },
2166 /* DTL WROMAEBKVF */
2167 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */
2168 "Enclosure services checksum error") },
2169 /* L */
2170 { SST(0x36, 0x00, SS_RDEF,
2171 "Ribbon, ink, or toner failure") },
2172 /* DTL WROMAEBKVF */
2173 { SST(0x37, 0x00, SS_RDEF,
2174 "Rounded parameter") },
2175 /* B */
2176 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */
2177 "Event status notification") },
2178 /* B */
2179 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */
2180 "ESN - power management class event") },
2181 /* B */
2182 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */
2183 "ESN - media class event") },
2184 /* B */
2185 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */
2186 "ESN - device busy class event") },
2187 /* D */
2188 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */
2189 "Thin provisioning soft threshold reached") },
2190 /* D */
2191 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE,
2192 "Depopulation interrupted") },
2193 /* DTL WROMAE K */
2194 { SST(0x39, 0x00, SS_RDEF,
2195 "Saving parameters not supported") },
2196 /* DTL WROM BK */
2197 { SST(0x3A, 0x00, SS_FATAL | ENXIO,
2198 "Medium not present") },
2199 /* DT WROM BK */
2200 { SST(0x3A, 0x01, SS_FATAL | ENXIO,
2201 "Medium not present - tray closed") },
2202 /* DT WROM BK */
2203 { SST(0x3A, 0x02, SS_FATAL | ENXIO,
2204 "Medium not present - tray open") },
2205 /* DT WROM B */
2206 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */
2207 "Medium not present - loadable") },
2208 /* DT WRO B */
2209 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */
2210 "Medium not present - medium auxiliary memory accessible") },
2211 /* TL */
2212 { SST(0x3B, 0x00, SS_RDEF,
2213 "Sequential positioning error") },
2214 /* T */
2215 { SST(0x3B, 0x01, SS_RDEF,
2216 "Tape position error at beginning-of-medium") },
2217 /* T */
2218 { SST(0x3B, 0x02, SS_RDEF,
2219 "Tape position error at end-of-medium") },
2220 /* L */
2221 { SST(0x3B, 0x03, SS_RDEF,
2222 "Tape or electronic vertical forms unit not ready") },
2223 /* L */
2224 { SST(0x3B, 0x04, SS_RDEF,
2225 "Slew failure") },
2226 /* L */
2227 { SST(0x3B, 0x05, SS_RDEF,
2228 "Paper jam") },
2229 /* L */
2230 { SST(0x3B, 0x06, SS_RDEF,
2231 "Failed to sense top-of-form") },
2232 /* L */
2233 { SST(0x3B, 0x07, SS_RDEF,
2234 "Failed to sense bottom-of-form") },
2235 /* T */
2236 { SST(0x3B, 0x08, SS_RDEF,
2237 "Reposition error") },
2238 /* */
2239 { SST(0x3B, 0x09, SS_RDEF,
2240 "Read past end of medium") },
2241 /* */
2242 { SST(0x3B, 0x0A, SS_RDEF,
2243 "Read past beginning of medium") },
2244 /* */
2245 { SST(0x3B, 0x0B, SS_RDEF,
2246 "Position past end of medium") },
2247 /* T */
2248 { SST(0x3B, 0x0C, SS_RDEF,
2249 "Position past beginning of medium") },
2250 /* DT WROM BK */
2251 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2252 "Medium destination element full") },
2253 /* DT WROM BK */
2254 { SST(0x3B, 0x0E, SS_RDEF,
2255 "Medium source element empty") },
2256 /* R */
2257 { SST(0x3B, 0x0F, SS_RDEF,
2258 "End of medium reached") },
2259 /* DT WROM BK */
2260 { SST(0x3B, 0x11, SS_RDEF,
2261 "Medium magazine not accessible") },
2262 /* DT WROM BK */
2263 { SST(0x3B, 0x12, SS_RDEF,
2264 "Medium magazine removed") },
2265 /* DT WROM BK */
2266 { SST(0x3B, 0x13, SS_RDEF,
2267 "Medium magazine inserted") },
2268 /* DT WROM BK */
2269 { SST(0x3B, 0x14, SS_RDEF,
2270 "Medium magazine locked") },
2271 /* DT WROM BK */
2272 { SST(0x3B, 0x15, SS_RDEF,
2273 "Medium magazine unlocked") },
2274 /* R */
2275 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */
2276 "Mechanical positioning or changer error") },
2277 /* F */
2278 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */
2279 "Read past end of user object") },
2280 /* M */
2281 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */
2282 "Element disabled") },
2283 /* M */
2284 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */
2285 "Element enabled") },
2286 /* M */
2287 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */
2288 "Data transfer device removed") },
2289 /* M */
2290 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */
2291 "Data transfer device inserted") },
2292 /* T */
2293 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */
2294 "Too many logical objects on partition to support operation") },
2295 /* M */
2296 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */
2297 "Element static information changed") },
2298 /* DTLPWROMAE K */
2299 { SST(0x3D, 0x00, SS_RDEF,
2300 "Invalid bits in IDENTIFY message") },
2301 /* DTLPWROMAEBKVF */
2302 { SST(0x3E, 0x00, SS_RDEF,
2303 "Logical unit has not self-configured yet") },
2304 /* DTLPWROMAEBKVF */
2305 { SST(0x3E, 0x01, SS_RDEF,
2306 "Logical unit failure") },
2307 /* DTLPWROMAEBKVF */
2308 { SST(0x3E, 0x02, SS_RDEF,
2309 "Timeout on logical unit") },
2310 /* DTLPWROMAEBKVF */
2311 { SST(0x3E, 0x03, SS_FATAL | ENXIO,
2312 "Logical unit failed self-test") },
2313 /* DTLPWROMAEBKVF */
2314 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */
2315 "Logical unit unable to update self-test log") },
2316 /* DTLPWROMAEBKVF */
2317 { SST(0x3F, 0x00, SS_RDEF,
2318 "Target operating conditions have changed") },
2319 /* DTLPWROMAEBKVF */
2320 { SST(0x3F, 0x01, SS_RDEF,
2321 "Microcode has been changed") },
2322 /* DTLPWROM BK */
2323 { SST(0x3F, 0x02, SS_RDEF,
2324 "Changed operating definition") },
2325 /* DTLPWROMAEBKVF */
2326 { SST(0x3F, 0x03, SS_RDEF,
2327 "INQUIRY data has changed") },
2328 /* DT WROMAEBK */
2329 { SST(0x3F, 0x04, SS_RDEF,
2330 "Component device attached") },
2331 /* DT WROMAEBK */
2332 { SST(0x3F, 0x05, SS_RDEF,
2333 "Device identifier changed") },
2334 /* DT WROMAEB */
2335 { SST(0x3F, 0x06, SS_RDEF,
2336 "Redundancy group created or modified") },
2337 /* DT WROMAEB */
2338 { SST(0x3F, 0x07, SS_RDEF,
2339 "Redundancy group deleted") },
2340 /* DT WROMAEB */
2341 { SST(0x3F, 0x08, SS_RDEF,
2342 "Spare created or modified") },
2343 /* DT WROMAEB */
2344 { SST(0x3F, 0x09, SS_RDEF,
2345 "Spare deleted") },
2346 /* DT WROMAEBK */
2347 { SST(0x3F, 0x0A, SS_RDEF,
2348 "Volume set created or modified") },
2349 /* DT WROMAEBK */
2350 { SST(0x3F, 0x0B, SS_RDEF,
2351 "Volume set deleted") },
2352 /* DT WROMAEBK */
2353 { SST(0x3F, 0x0C, SS_RDEF,
2354 "Volume set deassigned") },
2355 /* DT WROMAEBK */
2356 { SST(0x3F, 0x0D, SS_RDEF,
2357 "Volume set reassigned") },
2358 /* DTLPWROMAE */
2359 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2360 "Reported LUNs data has changed") },
2361 /* DTLPWROMAEBKVF */
2362 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */
2363 "Echo buffer overwritten") },
2364 /* DT WROM B */
2365 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */
2366 "Medium loadable") },
2367 /* DT WROM B */
2368 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */
2369 "Medium auxiliary memory accessible") },
2370 /* DTLPWR MAEBK F */
2371 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */
2372 "iSCSI IP address added") },
2373 /* DTLPWR MAEBK F */
2374 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */
2375 "iSCSI IP address removed") },
2376 /* DTLPWR MAEBK F */
2377 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */
2378 "iSCSI IP address changed") },
2379 /* DTLPWR MAEBK */
2380 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */
2381 "Inspect referrals sense descriptors") },
2382 /* DTLPWROMAEBKVF */
2383 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */
2384 "Microcode has been changed without reset") },
2385 /* D */
2386 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */
2387 "Zone transition to full") },
2388 /* D */
2389 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */
2390 "Bind completed") },
2391 /* D */
2392 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */
2393 "Bind redirected") },
2394 /* D */
2395 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */
2396 "Subsidiary binding changed") },
2397 { SST(0x40, 0x00, SS_FATAL | ENXIO,
2398 "RAM failure") }, /* deprecated - use 40 NN instead */
2399 /* DTLPWROMAEBKVF */
2400 { SST(0x40, 0x80, SS_FATAL | ENXIO,
2401 "Diagnostic failure: ASCQ = Component ID") },
2402 /* DTLPWROMAEBKVF */
2403 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2404 NULL) }, /* Range 0x80->0xFF */
2405 /* D */
2406 { SST(0x41, 0x00, SS_RDEF,
2407 "Data path failure") }, /* deprecated - use 40 NN instead */
2408 /* D */
2409 { SST(0x42, 0x00, SS_RDEF,
2410 "Power-on or self-test failure") },
2411 /* deprecated - use 40 NN instead */
2412 /* DTLPWROMAEBKVF */
2413 { SST(0x43, 0x00, SS_RDEF,
2414 "Message error") },
2415 /* DTLPWROMAEBKVF */
2416 { SST(0x44, 0x00, SS_FATAL | ENXIO,
2417 "Internal target failure") },
2418 /* DT P MAEBKVF */
2419 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */
2420 "Persistent reservation information lost") },
2421 /* DT B */
2422 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */
2423 "ATA device failed set features") },
2424 /* DTLPWROMAEBKVF */
2425 { SST(0x45, 0x00, SS_RDEF,
2426 "Select or reselect failure") },
2427 /* DTLPWROM BK */
2428 { SST(0x46, 0x00, SS_RDEF,
2429 "Unsuccessful soft reset") },
2430 /* DTLPWROMAEBKVF */
2431 { SST(0x47, 0x00, SS_RDEF,
2432 "SCSI parity error") },
2433 /* DTLPWROMAEBKVF */
2434 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */
2435 "Data phase CRC error detected") },
2436 /* DTLPWROMAEBKVF */
2437 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */
2438 "SCSI parity error detected during ST data phase") },
2439 /* DTLPWROMAEBKVF */
2440 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */
2441 "Information unit iuCRC error detected") },
2442 /* DTLPWROMAEBKVF */
2443 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */
2444 "Asynchronous information protection error detected") },
2445 /* DTLPWROMAEBKVF */
2446 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */
2447 "Protocol service CRC error") },
2448 /* DT MAEBKVF */
2449 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */
2450 "PHY test function in progress") },
2451 /* DT PWROMAEBK */
2452 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */
2453 "Some commands cleared by iSCSI protocol event") },
2454 /* DTLPWROMAEBKVF */
2455 { SST(0x48, 0x00, SS_RDEF,
2456 "Initiator detected error message received") },
2457 /* DTLPWROMAEBKVF */
2458 { SST(0x49, 0x00, SS_RDEF,
2459 "Invalid message error") },
2460 /* DTLPWROMAEBKVF */
2461 { SST(0x4A, 0x00, SS_RDEF,
2462 "Command phase error") },
2463 /* DTLPWROMAEBKVF */
2464 { SST(0x4B, 0x00, SS_RDEF,
2465 "Data phase error") },
2466 /* DT PWROMAEBK */
2467 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */
2468 "Invalid target port transfer tag received") },
2469 /* DT PWROMAEBK */
2470 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */
2471 "Too much write data") },
2472 /* DT PWROMAEBK */
2473 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */
2474 "ACK/NAK timeout") },
2475 /* DT PWROMAEBK */
2476 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */
2477 "NAK received") },
2478 /* DT PWROMAEBK */
2479 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */
2480 "Data offset error") },
2481 /* DT PWROMAEBK */
2482 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */
2483 "Initiator response timeout") },
2484 /* DT PWROMAEBK F */
2485 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */
2486 "Connection lost") },
2487 /* DT PWROMAEBK F */
2488 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */
2489 "Data-in buffer overflow - data buffer size") },
2490 /* DT PWROMAEBK F */
2491 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */
2492 "Data-in buffer overflow - data buffer descriptor area") },
2493 /* DT PWROMAEBK F */
2494 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */
2495 "Data-in buffer error") },
2496 /* DT PWROMAEBK F */
2497 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */
2498 "Data-out buffer overflow - data buffer size") },
2499 /* DT PWROMAEBK F */
2500 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */
2501 "Data-out buffer overflow - data buffer descriptor area") },
2502 /* DT PWROMAEBK F */
2503 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */
2504 "Data-out buffer error") },
2505 /* DT PWROMAEBK F */
2506 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */
2507 "PCIe fabric error") },
2508 /* DT PWROMAEBK F */
2509 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */
2510 "PCIe completion timeout") },
2511 /* DT PWROMAEBK F */
2512 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */
2513 "PCIe completer abort") },
2514 /* DT PWROMAEBK F */
2515 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */
2516 "PCIe poisoned TLP received") },
2517 /* DT PWROMAEBK F */
2518 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */
2519 "PCIe ECRC check failed") },
2520 /* DT PWROMAEBK F */
2521 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */
2522 "PCIe unsupported request") },
2523 /* DT PWROMAEBK F */
2524 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */
2525 "PCIe ACS violation") },
2526 /* DT PWROMAEBK F */
2527 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */
2528 "PCIe TLP prefix blocket") },
2529 /* DTLPWROMAEBKVF */
2530 { SST(0x4C, 0x00, SS_RDEF,
2531 "Logical unit failed self-configuration") },
2532 /* DTLPWROMAEBKVF */
2533 { SST(0x4D, 0x00, SS_RDEF,
2534 "Tagged overlapped commands: ASCQ = Queue tag ID") },
2535 /* DTLPWROMAEBKVF */
2536 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2537 NULL) }, /* Range 0x00->0xFF */
2538 /* DTLPWROMAEBKVF */
2539 { SST(0x4E, 0x00, SS_RDEF,
2540 "Overlapped commands attempted") },
2541 /* T */
2542 { SST(0x50, 0x00, SS_RDEF,
2543 "Write append error") },
2544 /* T */
2545 { SST(0x50, 0x01, SS_RDEF,
2546 "Write append position error") },
2547 /* T */
2548 { SST(0x50, 0x02, SS_RDEF,
2549 "Position error related to timing") },
2550 /* T RO */
2551 { SST(0x51, 0x00, SS_RDEF,
2552 "Erase failure") },
2553 /* R */
2554 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */
2555 "Erase failure - incomplete erase operation detected") },
2556 /* T */
2557 { SST(0x52, 0x00, SS_RDEF,
2558 "Cartridge fault") },
2559 /* DTL WROM BK */
2560 { SST(0x53, 0x00, SS_RDEF,
2561 "Media load or eject failed") },
2562 /* T */
2563 { SST(0x53, 0x01, SS_RDEF,
2564 "Unload tape failure") },
2565 /* DT WROM BK */
2566 { SST(0x53, 0x02, SS_RDEF,
2567 "Medium removal prevented") },
2568 /* M */
2569 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */
2570 "Medium removal prevented by data transfer element") },
2571 /* T */
2572 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */
2573 "Medium thread or unthread failure") },
2574 /* M */
2575 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */
2576 "Volume identifier invalid") },
2577 /* T */
2578 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */
2579 "Volume identifier missing") },
2580 /* M */
2581 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */
2582 "Duplicate volume identifier") },
2583 /* M */
2584 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */
2585 "Element status unknown") },
2586 /* M */
2587 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */
2588 "Data transfer device error - load failed") },
2589 /* M */
2590 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */
2591 "Data transfer device error - unload failed") },
2592 /* M */
2593 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */
2594 "Data transfer device error - unload missing") },
2595 /* M */
2596 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */
2597 "Data transfer device error - eject failed") },
2598 /* M */
2599 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */
2600 "Data transfer device error - library communication failed") },
2601 /* P */
2602 { SST(0x54, 0x00, SS_RDEF,
2603 "SCSI to host system interface failure") },
2604 /* P */
2605 { SST(0x55, 0x00, SS_RDEF,
2606 "System resource failure") },
2607 /* D O BK */
2608 { SST(0x55, 0x01, SS_FATAL | ENOSPC,
2609 "System buffer full") },
2610 /* DTLPWROMAE K */
2611 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */
2612 "Insufficient reservation resources") },
2613 /* DTLPWROMAE K */
2614 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */
2615 "Insufficient resources") },
2616 /* DTLPWROMAE K */
2617 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */
2618 "Insufficient registration resources") },
2619 /* DT PWROMAEBK */
2620 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */
2621 "Insufficient access control resources") },
2622 /* DT WROM B */
2623 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */
2624 "Auxiliary memory out of space") },
2625 /* F */
2626 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */
2627 "Quota error") },
2628 /* T */
2629 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */
2630 "Maximum number of supplemental decryption keys exceeded") },
2631 /* M */
2632 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */
2633 "Medium auxiliary memory not accessible") },
2634 /* M */
2635 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */
2636 "Data currently unavailable") },
2637 /* DTLPWROMAEBKVF */
2638 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */
2639 "Insufficient power for operation") },
2640 /* DT P B */
2641 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */
2642 "Insufficient resources to create ROD") },
2643 /* DT P B */
2644 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */
2645 "Insufficient resources to create ROD token") },
2646 /* D */
2647 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */
2648 "Insufficient zone resources") },
2649 /* D */
2650 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */
2651 "Insufficient zone resources to complete write") },
2652 /* D */
2653 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */
2654 "Maximum number of streams open") },
2655 /* D */
2656 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */
2657 "Insufficient resources to bind") },
2658 /* R */
2659 { SST(0x57, 0x00, SS_RDEF,
2660 "Unable to recover table-of-contents") },
2661 /* O */
2662 { SST(0x58, 0x00, SS_RDEF,
2663 "Generation does not exist") },
2664 /* O */
2665 { SST(0x59, 0x00, SS_RDEF,
2666 "Updated block read") },
2667 /* DTLPWRO BK */
2668 { SST(0x5A, 0x00, SS_RDEF,
2669 "Operator request or state change input") },
2670 /* DT WROM BK */
2671 { SST(0x5A, 0x01, SS_RDEF,
2672 "Operator medium removal request") },
2673 /* DT WRO A BK */
2674 { SST(0x5A, 0x02, SS_RDEF,
2675 "Operator selected write protect") },
2676 /* DT WRO A BK */
2677 { SST(0x5A, 0x03, SS_RDEF,
2678 "Operator selected write permit") },
2679 /* DTLPWROM K */
2680 { SST(0x5B, 0x00, SS_RDEF,
2681 "Log exception") },
2682 /* DTLPWROM K */
2683 { SST(0x5B, 0x01, SS_RDEF,
2684 "Threshold condition met") },
2685 /* DTLPWROM K */
2686 { SST(0x5B, 0x02, SS_RDEF,
2687 "Log counter at maximum") },
2688 /* DTLPWROM K */
2689 { SST(0x5B, 0x03, SS_RDEF,
2690 "Log list codes exhausted") },
2691 /* D O */
2692 { SST(0x5C, 0x00, SS_RDEF,
2693 "RPL status change") },
2694 /* D O */
2695 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2696 "Spindles synchronized") },
2697 /* D O */
2698 { SST(0x5C, 0x02, SS_RDEF,
2699 "Spindles not synchronized") },
2700 /* DTLPWROMAEBKVF */
2701 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2702 "Failure prediction threshold exceeded") },
2703 /* R B */
2704 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2705 "Media failure prediction threshold exceeded") },
2706 /* R */
2707 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2708 "Logical unit failure prediction threshold exceeded") },
2709 /* R */
2710 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2711 "Spare area exhaustion prediction threshold exceeded") },
2712 /* D B */
2713 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2714 "Hardware impending failure general hard drive failure") },
2715 /* D B */
2716 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2717 "Hardware impending failure drive error rate too high") },
2718 /* D B */
2719 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2720 "Hardware impending failure data error rate too high") },
2721 /* D B */
2722 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2723 "Hardware impending failure seek error rate too high") },
2724 /* D B */
2725 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2726 "Hardware impending failure too many block reassigns") },
2727 /* D B */
2728 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2729 "Hardware impending failure access times too high") },
2730 /* D B */
2731 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2732 "Hardware impending failure start unit times too high") },
2733 /* D B */
2734 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2735 "Hardware impending failure channel parametrics") },
2736 /* D B */
2737 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2738 "Hardware impending failure controller detected") },
2739 /* D B */
2740 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2741 "Hardware impending failure throughput performance") },
2742 /* D B */
2743 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2744 "Hardware impending failure seek time performance") },
2745 /* D B */
2746 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2747 "Hardware impending failure spin-up retry count") },
2748 /* D B */
2749 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2750 "Hardware impending failure drive calibration retry count") },
2751 /* D B */
2752 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2753 "Hardware impending failure power loss protection circuit") },
2754 /* D B */
2755 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2756 "Controller impending failure general hard drive failure") },
2757 /* D B */
2758 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2759 "Controller impending failure drive error rate too high") },
2760 /* D B */
2761 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2762 "Controller impending failure data error rate too high") },
2763 /* D B */
2764 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2765 "Controller impending failure seek error rate too high") },
2766 /* D B */
2767 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2768 "Controller impending failure too many block reassigns") },
2769 /* D B */
2770 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2771 "Controller impending failure access times too high") },
2772 /* D B */
2773 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2774 "Controller impending failure start unit times too high") },
2775 /* D B */
2776 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2777 "Controller impending failure channel parametrics") },
2778 /* D B */
2779 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2780 "Controller impending failure controller detected") },
2781 /* D B */
2782 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2783 "Controller impending failure throughput performance") },
2784 /* D B */
2785 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2786 "Controller impending failure seek time performance") },
2787 /* D B */
2788 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2789 "Controller impending failure spin-up retry count") },
2790 /* D B */
2791 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2792 "Controller impending failure drive calibration retry count") },
2793 /* D B */
2794 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2795 "Data channel impending failure general hard drive failure") },
2796 /* D B */
2797 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2798 "Data channel impending failure drive error rate too high") },
2799 /* D B */
2800 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2801 "Data channel impending failure data error rate too high") },
2802 /* D B */
2803 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2804 "Data channel impending failure seek error rate too high") },
2805 /* D B */
2806 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2807 "Data channel impending failure too many block reassigns") },
2808 /* D B */
2809 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2810 "Data channel impending failure access times too high") },
2811 /* D B */
2812 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2813 "Data channel impending failure start unit times too high") },
2814 /* D B */
2815 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2816 "Data channel impending failure channel parametrics") },
2817 /* D B */
2818 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2819 "Data channel impending failure controller detected") },
2820 /* D B */
2821 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2822 "Data channel impending failure throughput performance") },
2823 /* D B */
2824 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2825 "Data channel impending failure seek time performance") },
2826 /* D B */
2827 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2828 "Data channel impending failure spin-up retry count") },
2829 /* D B */
2830 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2831 "Data channel impending failure drive calibration retry count") },
2832 /* D B */
2833 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2834 "Servo impending failure general hard drive failure") },
2835 /* D B */
2836 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2837 "Servo impending failure drive error rate too high") },
2838 /* D B */
2839 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2840 "Servo impending failure data error rate too high") },
2841 /* D B */
2842 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2843 "Servo impending failure seek error rate too high") },
2844 /* D B */
2845 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2846 "Servo impending failure too many block reassigns") },
2847 /* D B */
2848 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2849 "Servo impending failure access times too high") },
2850 /* D B */
2851 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2852 "Servo impending failure start unit times too high") },
2853 /* D B */
2854 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2855 "Servo impending failure channel parametrics") },
2856 /* D B */
2857 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2858 "Servo impending failure controller detected") },
2859 /* D B */
2860 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2861 "Servo impending failure throughput performance") },
2862 /* D B */
2863 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2864 "Servo impending failure seek time performance") },
2865 /* D B */
2866 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2867 "Servo impending failure spin-up retry count") },
2868 /* D B */
2869 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2870 "Servo impending failure drive calibration retry count") },
2871 /* D B */
2872 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2873 "Spindle impending failure general hard drive failure") },
2874 /* D B */
2875 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2876 "Spindle impending failure drive error rate too high") },
2877 /* D B */
2878 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2879 "Spindle impending failure data error rate too high") },
2880 /* D B */
2881 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2882 "Spindle impending failure seek error rate too high") },
2883 /* D B */
2884 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2885 "Spindle impending failure too many block reassigns") },
2886 /* D B */
2887 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2888 "Spindle impending failure access times too high") },
2889 /* D B */
2890 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2891 "Spindle impending failure start unit times too high") },
2892 /* D B */
2893 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2894 "Spindle impending failure channel parametrics") },
2895 /* D B */
2896 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2897 "Spindle impending failure controller detected") },
2898 /* D B */
2899 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2900 "Spindle impending failure throughput performance") },
2901 /* D B */
2902 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2903 "Spindle impending failure seek time performance") },
2904 /* D B */
2905 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2906 "Spindle impending failure spin-up retry count") },
2907 /* D B */
2908 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2909 "Spindle impending failure drive calibration retry count") },
2910 /* D B */
2911 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2912 "Firmware impending failure general hard drive failure") },
2913 /* D B */
2914 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2915 "Firmware impending failure drive error rate too high") },
2916 /* D B */
2917 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2918 "Firmware impending failure data error rate too high") },
2919 /* D B */
2920 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2921 "Firmware impending failure seek error rate too high") },
2922 /* D B */
2923 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2924 "Firmware impending failure too many block reassigns") },
2925 /* D B */
2926 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2927 "Firmware impending failure access times too high") },
2928 /* D B */
2929 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2930 "Firmware impending failure start unit times too high") },
2931 /* D B */
2932 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2933 "Firmware impending failure channel parametrics") },
2934 /* D B */
2935 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2936 "Firmware impending failure controller detected") },
2937 /* D B */
2938 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2939 "Firmware impending failure throughput performance") },
2940 /* D B */
2941 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2942 "Firmware impending failure seek time performance") },
2943 /* D B */
2944 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2945 "Firmware impending failure spin-up retry count") },
2946 /* D B */
2947 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2948 "Firmware impending failure drive calibration retry count") },
2949 /* D B */
2950 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2951 "Media impending failure endurance limit met") },
2952 /* DTLPWROMAEBKVF */
2953 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2954 "Failure prediction threshold exceeded (false)") },
2955 /* DTLPWRO A K */
2956 { SST(0x5E, 0x00, SS_RDEF,
2957 "Low power condition on") },
2958 /* DTLPWRO A K */
2959 { SST(0x5E, 0x01, SS_RDEF,
2960 "Idle condition activated by timer") },
2961 /* DTLPWRO A K */
2962 { SST(0x5E, 0x02, SS_RDEF,
2963 "Standby condition activated by timer") },
2964 /* DTLPWRO A K */
2965 { SST(0x5E, 0x03, SS_RDEF,
2966 "Idle condition activated by command") },
2967 /* DTLPWRO A K */
2968 { SST(0x5E, 0x04, SS_RDEF,
2969 "Standby condition activated by command") },
2970 /* DTLPWRO A K */
2971 { SST(0x5E, 0x05, SS_RDEF,
2972 "Idle-B condition activated by timer") },
2973 /* DTLPWRO A K */
2974 { SST(0x5E, 0x06, SS_RDEF,
2975 "Idle-B condition activated by command") },
2976 /* DTLPWRO A K */
2977 { SST(0x5E, 0x07, SS_RDEF,
2978 "Idle-C condition activated by timer") },
2979 /* DTLPWRO A K */
2980 { SST(0x5E, 0x08, SS_RDEF,
2981 "Idle-C condition activated by command") },
2982 /* DTLPWRO A K */
2983 { SST(0x5E, 0x09, SS_RDEF,
2984 "Standby-Y condition activated by timer") },
2985 /* DTLPWRO A K */
2986 { SST(0x5E, 0x0A, SS_RDEF,
2987 "Standby-Y condition activated by command") },
2988 /* B */
2989 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */
2990 "Power state change to active") },
2991 /* B */
2992 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */
2993 "Power state change to idle") },
2994 /* B */
2995 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */
2996 "Power state change to standby") },
2997 /* B */
2998 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */
2999 "Power state change to sleep") },
3000 /* BK */
3001 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */
3002 "Power state change to device control") },
3003 /* */
3004 { SST(0x60, 0x00, SS_RDEF,
3005 "Lamp failure") },
3006 /* */
3007 { SST(0x61, 0x00, SS_RDEF,
3008 "Video acquisition error") },
3009 /* */
3010 { SST(0x61, 0x01, SS_RDEF,
3011 "Unable to acquire video") },
3012 /* */
3013 { SST(0x61, 0x02, SS_RDEF,
3014 "Out of focus") },
3015 /* */
3016 { SST(0x62, 0x00, SS_RDEF,
3017 "Scan head positioning error") },
3018 /* R */
3019 { SST(0x63, 0x00, SS_RDEF,
3020 "End of user area encountered on this track") },
3021 /* R */
3022 { SST(0x63, 0x01, SS_FATAL | ENOSPC,
3023 "Packet does not fit in available space") },
3024 /* R */
3025 { SST(0x64, 0x00, SS_FATAL | ENXIO,
3026 "Illegal mode for this track") },
3027 /* R */
3028 { SST(0x64, 0x01, SS_RDEF,
3029 "Invalid packet size") },
3030 /* DTLPWROMAEBKVF */
3031 { SST(0x65, 0x00, SS_RDEF,
3032 "Voltage fault") },
3033 /* */
3034 { SST(0x66, 0x00, SS_RDEF,
3035 "Automatic document feeder cover up") },
3036 /* */
3037 { SST(0x66, 0x01, SS_RDEF,
3038 "Automatic document feeder lift up") },
3039 /* */
3040 { SST(0x66, 0x02, SS_RDEF,
3041 "Document jam in automatic document feeder") },
3042 /* */
3043 { SST(0x66, 0x03, SS_RDEF,
3044 "Document miss feed automatic in document feeder") },
3045 /* A */
3046 { SST(0x67, 0x00, SS_RDEF,
3047 "Configuration failure") },
3048 /* A */
3049 { SST(0x67, 0x01, SS_RDEF,
3050 "Configuration of incapable logical units failed") },
3051 /* A */
3052 { SST(0x67, 0x02, SS_RDEF,
3053 "Add logical unit failed") },
3054 /* A */
3055 { SST(0x67, 0x03, SS_RDEF,
3056 "Modification of logical unit failed") },
3057 /* A */
3058 { SST(0x67, 0x04, SS_RDEF,
3059 "Exchange of logical unit failed") },
3060 /* A */
3061 { SST(0x67, 0x05, SS_RDEF,
3062 "Remove of logical unit failed") },
3063 /* A */
3064 { SST(0x67, 0x06, SS_RDEF,
3065 "Attachment of logical unit failed") },
3066 /* A */
3067 { SST(0x67, 0x07, SS_RDEF,
3068 "Creation of logical unit failed") },
3069 /* A */
3070 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */
3071 "Assign failure occurred") },
3072 /* A */
3073 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */
3074 "Multiply assigned logical unit") },
3075 /* DTLPWROMAEBKVF */
3076 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */
3077 "Set target port groups command failed") },
3078 /* DT B */
3079 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */
3080 "ATA device feature not enabled") },
3081 /* D */
3082 { SST(0x67, 0x0C, SS_FATAL | EIO,
3083 "Command rejected") },
3084 /* D */
3085 { SST(0x67, 0x0D, SS_FATAL | EINVAL,
3086 "Explicit bind not allowed") },
3087 /* A */
3088 { SST(0x68, 0x00, SS_RDEF,
3089 "Logical unit not configured") },
3090 /* D */
3091 { SST(0x68, 0x01, SS_RDEF,
3092 "Subsidiary logical unit not configured") },
3093 /* A */
3094 { SST(0x69, 0x00, SS_RDEF,
3095 "Data loss on logical unit") },
3096 /* A */
3097 { SST(0x69, 0x01, SS_RDEF,
3098 "Multiple logical unit failures") },
3099 /* A */
3100 { SST(0x69, 0x02, SS_RDEF,
3101 "Parity/data mismatch") },
3102 /* A */
3103 { SST(0x6A, 0x00, SS_RDEF,
3104 "Informational, refer to log") },
3105 /* A */
3106 { SST(0x6B, 0x00, SS_RDEF,
3107 "State change has occurred") },
3108 /* A */
3109 { SST(0x6B, 0x01, SS_RDEF,
3110 "Redundancy level got better") },
3111 /* A */
3112 { SST(0x6B, 0x02, SS_RDEF,
3113 "Redundancy level got worse") },
3114 /* A */
3115 { SST(0x6C, 0x00, SS_RDEF,
3116 "Rebuild failure occurred") },
3117 /* A */
3118 { SST(0x6D, 0x00, SS_RDEF,
3119 "Recalculate failure occurred") },
3120 /* A */
3121 { SST(0x6E, 0x00, SS_RDEF,
3122 "Command to logical unit failed") },
3123 /* R */
3124 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */
3125 "Copy protection key exchange failure - authentication failure") },
3126 /* R */
3127 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */
3128 "Copy protection key exchange failure - key not present") },
3129 /* R */
3130 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */
3131 "Copy protection key exchange failure - key not established") },
3132 /* R */
3133 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */
3134 "Read of scrambled sector without authentication") },
3135 /* R */
3136 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */
3137 "Media region code is mismatched to logical unit region") },
3138 /* R */
3139 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */
3140 "Drive region must be permanent/region reset count error") },
3141 /* R */
3142 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */
3143 "Insufficient block count for binding NONCE recording") },
3144 /* R */
3145 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */
3146 "Conflict in binding NONCE recording") },
3147 /* R */
3148 { SST(0x6F, 0x08, SS_FATAL | EPERM,
3149 "Insufficient permission") },
3150 /* R */
3151 { SST(0x6F, 0x09, SS_FATAL | EINVAL,
3152 "Invalid drive-host pairing server") },
3153 /* R */
3154 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */
3155 "Drive-host pairing suspended") },
3156 /* T */
3157 { SST(0x70, 0x00, SS_RDEF,
3158 "Decompression exception short: ASCQ = Algorithm ID") },
3159 /* T */
3160 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3161 NULL) }, /* Range 0x00 -> 0xFF */
3162 /* T */
3163 { SST(0x71, 0x00, SS_RDEF,
3164 "Decompression exception long: ASCQ = Algorithm ID") },
3165 /* T */
3166 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3167 NULL) }, /* Range 0x00 -> 0xFF */
3168 /* R */
3169 { SST(0x72, 0x00, SS_RDEF,
3170 "Session fixation error") },
3171 /* R */
3172 { SST(0x72, 0x01, SS_RDEF,
3173 "Session fixation error writing lead-in") },
3174 /* R */
3175 { SST(0x72, 0x02, SS_RDEF,
3176 "Session fixation error writing lead-out") },
3177 /* R */
3178 { SST(0x72, 0x03, SS_RDEF,
3179 "Session fixation error - incomplete track in session") },
3180 /* R */
3181 { SST(0x72, 0x04, SS_RDEF,
3182 "Empty or partially written reserved track") },
3183 /* R */
3184 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */
3185 "No more track reservations allowed") },
3186 /* R */
3187 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */
3188 "RMZ extension is not allowed") },
3189 /* R */
3190 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */
3191 "No more test zone extensions are allowed") },
3192 /* R */
3193 { SST(0x73, 0x00, SS_RDEF,
3194 "CD control error") },
3195 /* R */
3196 { SST(0x73, 0x01, SS_RDEF,
3197 "Power calibration area almost full") },
3198 /* R */
3199 { SST(0x73, 0x02, SS_FATAL | ENOSPC,
3200 "Power calibration area is full") },
3201 /* R */
3202 { SST(0x73, 0x03, SS_RDEF,
3203 "Power calibration area error") },
3204 /* R */
3205 { SST(0x73, 0x04, SS_RDEF,
3206 "Program memory area update failure") },
3207 /* R */
3208 { SST(0x73, 0x05, SS_RDEF,
3209 "Program memory area is full") },
3210 /* R */
3211 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */
3212 "RMA/PMA is almost full") },
3213 /* R */
3214 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */
3215 "Current power calibration area almost full") },
3216 /* R */
3217 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */
3218 "Current power calibration area is full") },
3219 /* R */
3220 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */
3221 "RDZ is full") },
3222 /* T */
3223 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */
3224 "Security error") },
3225 /* T */
3226 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */
3227 "Unable to decrypt data") },
3228 /* T */
3229 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */
3230 "Unencrypted data encountered while decrypting") },
3231 /* T */
3232 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */
3233 "Incorrect data encryption key") },
3234 /* T */
3235 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */
3236 "Cryptographic integrity validation failed") },
3237 /* T */
3238 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */
3239 "Error decrypting data") },
3240 /* T */
3241 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */
3242 "Unknown signature verification key") },
3243 /* T */
3244 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */
3245 "Encryption parameters not useable") },
3246 /* DT R M E VF */
3247 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */
3248 "Digital signature validation failure") },
3249 /* T */
3250 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */
3251 "Encryption mode mismatch on read") },
3252 /* T */
3253 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */
3254 "Encrypted block not raw read enabled") },
3255 /* T */
3256 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */
3257 "Incorrect encryption parameters") },
3258 /* DT R MAEBKV */
3259 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */
3260 "Unable to decrypt parameter list") },
3261 /* T */
3262 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */
3263 "Encryption algorithm disabled") },
3264 /* DT R MAEBKV */
3265 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */
3266 "SA creation parameter value invalid") },
3267 /* DT R MAEBKV */
3268 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */
3269 "SA creation parameter value rejected") },
3270 /* DT R MAEBKV */
3271 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */
3272 "Invalid SA usage") },
3273 /* T */
3274 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */
3275 "Data encryption configuration prevented") },
3276 /* DT R MAEBKV */
3277 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */
3278 "SA creation parameter not supported") },
3279 /* DT R MAEBKV */
3280 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */
3281 "Authentication failed") },
3282 /* V */
3283 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */
3284 "External data encryption key manager access error") },
3285 /* V */
3286 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */
3287 "External data encryption key manager error") },
3288 /* V */
3289 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */
3290 "External data encryption key not found") },
3291 /* V */
3292 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */
3293 "External data encryption request not authorized") },
3294 /* T */
3295 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */
3296 "External data encryption control timeout") },
3297 /* T */
3298 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */
3299 "External data encryption control error") },
3300 /* DT R M E V */
3301 { SST(0x74, 0x71, SS_FATAL | EACCES,
3302 "Logical unit access not authorized") },
3303 /* D */
3304 { SST(0x74, 0x79, SS_FATAL | EACCES,
3305 "Security conflict in translated device") }
3306 };
3307
3308 const u_int asc_table_size = nitems(asc_table);
3309
3310 struct asc_key
3311 {
3312 int asc;
3313 int ascq;
3314 };
3315
3316 static int
ascentrycomp(const void * key,const void * member)3317 ascentrycomp(const void *key, const void *member)
3318 {
3319 int asc;
3320 int ascq;
3321 const struct asc_table_entry *table_entry;
3322
3323 asc = ((const struct asc_key *)key)->asc;
3324 ascq = ((const struct asc_key *)key)->ascq;
3325 table_entry = (const struct asc_table_entry *)member;
3326
3327 if (asc >= table_entry->asc) {
3328 if (asc > table_entry->asc)
3329 return (1);
3330
3331 if (ascq <= table_entry->ascq) {
3332 /* Check for ranges */
3333 if (ascq == table_entry->ascq
3334 || ((table_entry->action & SSQ_RANGE) != 0
3335 && ascq >= (table_entry - 1)->ascq))
3336 return (0);
3337 return (-1);
3338 }
3339 return (1);
3340 }
3341 return (-1);
3342 }
3343
3344 static int
senseentrycomp(const void * key,const void * member)3345 senseentrycomp(const void *key, const void *member)
3346 {
3347 int sense_key;
3348 const struct sense_key_table_entry *table_entry;
3349
3350 sense_key = *((const int *)key);
3351 table_entry = (const struct sense_key_table_entry *)member;
3352
3353 if (sense_key >= table_entry->sense_key) {
3354 if (sense_key == table_entry->sense_key)
3355 return (0);
3356 return (1);
3357 }
3358 return (-1);
3359 }
3360
3361 static void
fetchtableentries(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const struct sense_key_table_entry ** sense_entry,const struct asc_table_entry ** asc_entry)3362 fetchtableentries(int sense_key, int asc, int ascq,
3363 struct scsi_inquiry_data *inq_data,
3364 const struct sense_key_table_entry **sense_entry,
3365 const struct asc_table_entry **asc_entry)
3366 {
3367 caddr_t match;
3368 const struct asc_table_entry *asc_tables[2];
3369 const struct sense_key_table_entry *sense_tables[2];
3370 struct asc_key asc_ascq;
3371 size_t asc_tables_size[2];
3372 size_t sense_tables_size[2];
3373 int num_asc_tables;
3374 int num_sense_tables;
3375 int i;
3376
3377 /* Default to failure */
3378 *sense_entry = NULL;
3379 *asc_entry = NULL;
3380 match = NULL;
3381 if (inq_data != NULL)
3382 match = cam_quirkmatch((caddr_t)inq_data,
3383 (caddr_t)sense_quirk_table,
3384 sense_quirk_table_size,
3385 sizeof(*sense_quirk_table),
3386 scsi_inquiry_match);
3387
3388 if (match != NULL) {
3389 struct scsi_sense_quirk_entry *quirk;
3390
3391 quirk = (struct scsi_sense_quirk_entry *)match;
3392 asc_tables[0] = quirk->asc_info;
3393 asc_tables_size[0] = quirk->num_ascs;
3394 asc_tables[1] = asc_table;
3395 asc_tables_size[1] = asc_table_size;
3396 num_asc_tables = 2;
3397 sense_tables[0] = quirk->sense_key_info;
3398 sense_tables_size[0] = quirk->num_sense_keys;
3399 sense_tables[1] = sense_key_table;
3400 sense_tables_size[1] = nitems(sense_key_table);
3401 num_sense_tables = 2;
3402 } else {
3403 asc_tables[0] = asc_table;
3404 asc_tables_size[0] = asc_table_size;
3405 num_asc_tables = 1;
3406 sense_tables[0] = sense_key_table;
3407 sense_tables_size[0] = nitems(sense_key_table);
3408 num_sense_tables = 1;
3409 }
3410
3411 asc_ascq.asc = asc;
3412 asc_ascq.ascq = ascq;
3413 for (i = 0; i < num_asc_tables; i++) {
3414 void *found_entry;
3415
3416 found_entry = bsearch(&asc_ascq, asc_tables[i],
3417 asc_tables_size[i],
3418 sizeof(**asc_tables),
3419 ascentrycomp);
3420
3421 if (found_entry) {
3422 /*
3423 * If we get to the SSQ_RANGE entry, we're one too
3424 * far. The prior entry is the interesting one, since it
3425 * contains the string to print, etc. Only the top end
3426 * range is interesting in this entry.
3427 */
3428 *asc_entry = (struct asc_table_entry *)found_entry;
3429 if (((*asc_entry)->action & SSQ_RANGE) != 0)
3430 (*asc_entry)--;
3431 break;
3432 }
3433 }
3434
3435 for (i = 0; i < num_sense_tables; i++) {
3436 void *found_entry;
3437
3438 found_entry = bsearch(&sense_key, sense_tables[i],
3439 sense_tables_size[i],
3440 sizeof(**sense_tables),
3441 senseentrycomp);
3442
3443 if (found_entry) {
3444 *sense_entry =
3445 (struct sense_key_table_entry *)found_entry;
3446 break;
3447 }
3448 }
3449 }
3450
3451 void
scsi_sense_desc(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const char ** sense_key_desc,const char ** asc_desc)3452 scsi_sense_desc(int sense_key, int asc, int ascq,
3453 struct scsi_inquiry_data *inq_data,
3454 const char **sense_key_desc, const char **asc_desc)
3455 {
3456 const struct asc_table_entry *asc_entry;
3457 const struct sense_key_table_entry *sense_entry;
3458
3459 fetchtableentries(sense_key, asc, ascq,
3460 inq_data,
3461 &sense_entry,
3462 &asc_entry);
3463
3464 if (sense_entry != NULL)
3465 *sense_key_desc = sense_entry->desc;
3466 else
3467 *sense_key_desc = "Invalid Sense Key";
3468
3469 if (asc_entry != NULL)
3470 *asc_desc = asc_entry->desc;
3471 else if (asc >= 0x80 && asc <= 0xff)
3472 *asc_desc = "Vendor Specific ASC";
3473 else if (ascq >= 0x80 && ascq <= 0xff)
3474 *asc_desc = "Vendor Specific ASCQ";
3475 else
3476 *asc_desc = "Reserved ASC/ASCQ pair";
3477 }
3478
3479 /*
3480 * Given sense and device type information, return the appropriate action.
3481 * If we do not understand the specific error as identified by the ASC/ASCQ
3482 * pair, fall back on the more generic actions derived from the sense key.
3483 */
3484 scsi_sense_action
scsi_error_action(struct ccb_scsiio * csio,struct scsi_inquiry_data * inq_data,uint32_t sense_flags)3485 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3486 uint32_t sense_flags)
3487 {
3488 const struct asc_table_entry *asc_entry;
3489 const struct sense_key_table_entry *sense_entry;
3490 int error_code, sense_key, asc, ascq;
3491 scsi_sense_action action;
3492
3493 if (!scsi_extract_sense_ccb((union ccb *)csio,
3494 &error_code, &sense_key, &asc, &ascq)) {
3495 action = SS_RDEF;
3496 } else if ((error_code == SSD_DEFERRED_ERROR)
3497 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3498 /*
3499 * XXX dufault@FreeBSD.org
3500 * This error doesn't relate to the command associated
3501 * with this request sense. A deferred error is an error
3502 * for a command that has already returned GOOD status
3503 * (see SCSI2 8.2.14.2).
3504 *
3505 * By my reading of that section, it looks like the current
3506 * command has been cancelled, we should now clean things up
3507 * (hopefully recovering any lost data) and then retry the
3508 * current command. There are two easy choices, both wrong:
3509 *
3510 * 1. Drop through (like we had been doing), thus treating
3511 * this as if the error were for the current command and
3512 * return and stop the current command.
3513 *
3514 * 2. Issue a retry (like I made it do) thus hopefully
3515 * recovering the current transfer, and ignoring the
3516 * fact that we've dropped a command.
3517 *
3518 * These should probably be handled in a device specific
3519 * sense handler or punted back up to a user mode daemon
3520 */
3521 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3522 } else {
3523 fetchtableentries(sense_key, asc, ascq,
3524 inq_data,
3525 &sense_entry,
3526 &asc_entry);
3527
3528 /*
3529 * Override the 'No additional Sense' entry (0,0)
3530 * with the error action of the sense key.
3531 */
3532 if (asc_entry != NULL
3533 && (asc != 0 || ascq != 0))
3534 action = asc_entry->action;
3535 else if (sense_entry != NULL)
3536 action = sense_entry->action;
3537 else
3538 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3539
3540 if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3541 /*
3542 * The action succeeded but the device wants
3543 * the user to know that some recovery action
3544 * was required.
3545 */
3546 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3547 action |= SS_NOP|SSQ_PRINT_SENSE;
3548 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3549 if ((sense_flags & SF_QUIET_IR) != 0)
3550 action &= ~SSQ_PRINT_SENSE;
3551 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3552 if ((sense_flags & SF_RETRY_UA) != 0
3553 && (action & SS_MASK) == SS_FAIL) {
3554 action &= ~(SS_MASK|SSQ_MASK);
3555 action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3556 SSQ_PRINT_SENSE;
3557 }
3558 action |= SSQ_UA;
3559 }
3560 }
3561 if ((action & SS_MASK) >= SS_START &&
3562 (sense_flags & SF_NO_RECOVERY)) {
3563 action &= ~SS_MASK;
3564 action |= SS_FAIL;
3565 } else if ((action & SS_MASK) == SS_RETRY &&
3566 (sense_flags & SF_NO_RETRY)) {
3567 action &= ~SS_MASK;
3568 action |= SS_FAIL;
3569 }
3570 if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3571 action |= SSQ_PRINT_SENSE;
3572 else if ((sense_flags & SF_NO_PRINT) != 0)
3573 action &= ~SSQ_PRINT_SENSE;
3574
3575 return (action);
3576 }
3577
3578 char *
scsi_cdb_string(uint8_t * cdb_ptr,char * cdb_string,size_t len)3579 scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len)
3580 {
3581 struct sbuf sb;
3582 int error;
3583
3584 if (len == 0)
3585 return ("");
3586
3587 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3588
3589 scsi_cdb_sbuf(cdb_ptr, &sb);
3590
3591 /* ENOMEM just means that the fixed buffer is full, OK to ignore */
3592 error = sbuf_finish(&sb);
3593 if (error != 0 &&
3594 #ifdef _KERNEL
3595 error != ENOMEM)
3596 #else
3597 errno != ENOMEM)
3598 #endif
3599 return ("");
3600
3601 return(sbuf_data(&sb));
3602 }
3603
3604 void
scsi_cdb_sbuf(uint8_t * cdb_ptr,struct sbuf * sb)3605 scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb)
3606 {
3607 uint8_t cdb_len;
3608 int i;
3609
3610 if (cdb_ptr == NULL)
3611 return;
3612
3613 /*
3614 * This is taken from the SCSI-3 draft spec.
3615 * (T10/1157D revision 0.3)
3616 * The top 3 bits of an opcode are the group code. The next 5 bits
3617 * are the command code.
3618 * Group 0: six byte commands
3619 * Group 1: ten byte commands
3620 * Group 2: ten byte commands
3621 * Group 3: reserved
3622 * Group 4: sixteen byte commands
3623 * Group 5: twelve byte commands
3624 * Group 6: vendor specific
3625 * Group 7: vendor specific
3626 */
3627 switch((*cdb_ptr >> 5) & 0x7) {
3628 case 0:
3629 cdb_len = 6;
3630 break;
3631 case 1:
3632 case 2:
3633 cdb_len = 10;
3634 break;
3635 case 3:
3636 case 6:
3637 case 7:
3638 /* in this case, just print out the opcode */
3639 cdb_len = 1;
3640 break;
3641 case 4:
3642 cdb_len = 16;
3643 break;
3644 case 5:
3645 cdb_len = 12;
3646 break;
3647 }
3648
3649 for (i = 0; i < cdb_len; i++)
3650 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3651
3652 return;
3653 }
3654
3655 const char *
scsi_status_string(struct ccb_scsiio * csio)3656 scsi_status_string(struct ccb_scsiio *csio)
3657 {
3658 switch(csio->scsi_status) {
3659 case SCSI_STATUS_OK:
3660 return("OK");
3661 case SCSI_STATUS_CHECK_COND:
3662 return("Check Condition");
3663 case SCSI_STATUS_BUSY:
3664 return("Busy");
3665 case SCSI_STATUS_INTERMED:
3666 return("Intermediate");
3667 case SCSI_STATUS_INTERMED_COND_MET:
3668 return("Intermediate-Condition Met");
3669 case SCSI_STATUS_RESERV_CONFLICT:
3670 return("Reservation Conflict");
3671 case SCSI_STATUS_CMD_TERMINATED:
3672 return("Command Terminated");
3673 case SCSI_STATUS_QUEUE_FULL:
3674 return("Queue Full");
3675 case SCSI_STATUS_ACA_ACTIVE:
3676 return("ACA Active");
3677 case SCSI_STATUS_TASK_ABORTED:
3678 return("Task Aborted");
3679 default: {
3680 static char unkstr[64];
3681 snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3682 csio->scsi_status);
3683 return(unkstr);
3684 }
3685 }
3686 }
3687
3688 /*
3689 * scsi_command_string() returns 0 for success and -1 for failure.
3690 */
3691 #ifdef _KERNEL
3692 int
scsi_command_string(struct ccb_scsiio * csio,struct sbuf * sb)3693 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3694 #else /* !_KERNEL */
3695 int
3696 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3697 struct sbuf *sb)
3698 #endif /* _KERNEL/!_KERNEL */
3699 {
3700 struct scsi_inquiry_data *inq_data;
3701 #ifdef _KERNEL
3702 struct ccb_getdev *cgd;
3703 #endif /* _KERNEL */
3704
3705 #ifdef _KERNEL
3706 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3707 return(-1);
3708 /*
3709 * Get the device information.
3710 */
3711 xpt_gdev_type(cgd, csio->ccb_h.path);
3712
3713 /*
3714 * If the device is unconfigured, the inq data is invalid.
3715 */
3716 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3717 inq_data = NULL;
3718 else
3719 inq_data = &cgd->inq_data;
3720
3721 #else /* !_KERNEL */
3722
3723 inq_data = &device->inq_data;
3724
3725 #endif /* _KERNEL/!_KERNEL */
3726
3727 sbuf_printf(sb, "%s. CDB: ",
3728 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3729 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3730
3731 #ifdef _KERNEL
3732 xpt_free_ccb((union ccb *)cgd);
3733 #endif
3734
3735 return(0);
3736 }
3737
3738 /*
3739 * Iterate over sense descriptors. Each descriptor is passed into iter_func().
3740 * If iter_func() returns 0, list traversal continues. If iter_func()
3741 * returns non-zero, list traversal is stopped.
3742 */
3743 void
scsi_desc_iterate(struct scsi_sense_data_desc * sense,u_int sense_len,int (* iter_func)(struct scsi_sense_data_desc * sense,u_int,struct scsi_sense_desc_header *,void *),void * arg)3744 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3745 int (*iter_func)(struct scsi_sense_data_desc *sense,
3746 u_int, struct scsi_sense_desc_header *,
3747 void *), void *arg)
3748 {
3749 int cur_pos;
3750 int desc_len;
3751
3752 /*
3753 * First make sure the extra length field is present.
3754 */
3755 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3756 return;
3757
3758 /*
3759 * The length of data actually returned may be different than the
3760 * extra_len recorded in the structure.
3761 */
3762 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3763
3764 /*
3765 * Limit this further by the extra length reported, and the maximum
3766 * allowed extra length.
3767 */
3768 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3769
3770 /*
3771 * Subtract the size of the header from the descriptor length.
3772 * This is to ensure that we have at least the header left, so we
3773 * don't have to check that inside the loop. This can wind up
3774 * being a negative value.
3775 */
3776 desc_len -= sizeof(struct scsi_sense_desc_header);
3777
3778 for (cur_pos = 0; cur_pos < desc_len;) {
3779 struct scsi_sense_desc_header *header;
3780
3781 header = (struct scsi_sense_desc_header *)
3782 &sense->sense_desc[cur_pos];
3783
3784 /*
3785 * Check to make sure we have the entire descriptor. We
3786 * don't call iter_func() unless we do.
3787 *
3788 * Note that although cur_pos is at the beginning of the
3789 * descriptor, desc_len already has the header length
3790 * subtracted. So the comparison of the length in the
3791 * header (which does not include the header itself) to
3792 * desc_len - cur_pos is correct.
3793 */
3794 if (header->length > (desc_len - cur_pos))
3795 break;
3796
3797 if (iter_func(sense, sense_len, header, arg) != 0)
3798 break;
3799
3800 cur_pos += sizeof(*header) + header->length;
3801 }
3802 }
3803
3804 struct scsi_find_desc_info {
3805 uint8_t desc_type;
3806 struct scsi_sense_desc_header *header;
3807 };
3808
3809 static int
scsi_find_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)3810 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3811 struct scsi_sense_desc_header *header, void *arg)
3812 {
3813 struct scsi_find_desc_info *desc_info;
3814
3815 desc_info = (struct scsi_find_desc_info *)arg;
3816
3817 if (header->desc_type == desc_info->desc_type) {
3818 desc_info->header = header;
3819
3820 /* We found the descriptor, tell the iterator to stop. */
3821 return (1);
3822 } else
3823 return (0);
3824 }
3825
3826 /*
3827 * Given a descriptor type, return a pointer to it if it is in the sense
3828 * data and not truncated. Avoiding truncating sense data will simplify
3829 * things significantly for the caller.
3830 */
3831 uint8_t *
scsi_find_desc(struct scsi_sense_data_desc * sense,u_int sense_len,uint8_t desc_type)3832 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3833 uint8_t desc_type)
3834 {
3835 struct scsi_find_desc_info desc_info;
3836
3837 desc_info.desc_type = desc_type;
3838 desc_info.header = NULL;
3839
3840 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3841
3842 return ((uint8_t *)desc_info.header);
3843 }
3844
3845 /*
3846 * Fill in SCSI descriptor sense data with the specified parameters.
3847 */
3848 static void
scsi_set_sense_data_desc_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3849 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3850 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3851 int sense_key, int asc, int ascq, va_list ap)
3852 {
3853 struct scsi_sense_data_desc *sense;
3854 scsi_sense_elem_type elem_type;
3855 int space, len;
3856 uint8_t *desc, *data;
3857
3858 memset(sense_data, 0, sizeof(*sense_data));
3859 sense = (struct scsi_sense_data_desc *)sense_data;
3860 if (current_error != 0)
3861 sense->error_code = SSD_DESC_CURRENT_ERROR;
3862 else
3863 sense->error_code = SSD_DESC_DEFERRED_ERROR;
3864 sense->sense_key = sense_key;
3865 sense->add_sense_code = asc;
3866 sense->add_sense_code_qual = ascq;
3867 sense->flags = 0;
3868
3869 desc = &sense->sense_desc[0];
3870 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3871 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3872 SSD_ELEM_NONE) {
3873 if (elem_type >= SSD_ELEM_MAX) {
3874 printf("%s: invalid sense type %d\n", __func__,
3875 elem_type);
3876 break;
3877 }
3878 len = va_arg(ap, int);
3879 data = va_arg(ap, uint8_t *);
3880
3881 switch (elem_type) {
3882 case SSD_ELEM_SKIP:
3883 break;
3884 case SSD_ELEM_DESC:
3885 if (space < len) {
3886 sense->flags |= SSDD_SDAT_OVFL;
3887 break;
3888 }
3889 bcopy(data, desc, len);
3890 desc += len;
3891 space -= len;
3892 break;
3893 case SSD_ELEM_SKS: {
3894 struct scsi_sense_sks *sks = (void *)desc;
3895
3896 if (len > sizeof(sks->sense_key_spec))
3897 break;
3898 if (space < sizeof(*sks)) {
3899 sense->flags |= SSDD_SDAT_OVFL;
3900 break;
3901 }
3902 sks->desc_type = SSD_DESC_SKS;
3903 sks->length = sizeof(*sks) -
3904 (offsetof(struct scsi_sense_sks, length) + 1);
3905 bcopy(data, &sks->sense_key_spec, len);
3906 desc += sizeof(*sks);
3907 space -= sizeof(*sks);
3908 break;
3909 }
3910 case SSD_ELEM_COMMAND: {
3911 struct scsi_sense_command *cmd = (void *)desc;
3912
3913 if (len > sizeof(cmd->command_info))
3914 break;
3915 if (space < sizeof(*cmd)) {
3916 sense->flags |= SSDD_SDAT_OVFL;
3917 break;
3918 }
3919 cmd->desc_type = SSD_DESC_COMMAND;
3920 cmd->length = sizeof(*cmd) -
3921 (offsetof(struct scsi_sense_command, length) + 1);
3922 bcopy(data, &cmd->command_info[
3923 sizeof(cmd->command_info) - len], len);
3924 desc += sizeof(*cmd);
3925 space -= sizeof(*cmd);
3926 break;
3927 }
3928 case SSD_ELEM_INFO: {
3929 struct scsi_sense_info *info = (void *)desc;
3930
3931 if (len > sizeof(info->info))
3932 break;
3933 if (space < sizeof(*info)) {
3934 sense->flags |= SSDD_SDAT_OVFL;
3935 break;
3936 }
3937 info->desc_type = SSD_DESC_INFO;
3938 info->length = sizeof(*info) -
3939 (offsetof(struct scsi_sense_info, length) + 1);
3940 info->byte2 = SSD_INFO_VALID;
3941 bcopy(data, &info->info[sizeof(info->info) - len], len);
3942 desc += sizeof(*info);
3943 space -= sizeof(*info);
3944 break;
3945 }
3946 case SSD_ELEM_FRU: {
3947 struct scsi_sense_fru *fru = (void *)desc;
3948
3949 if (len > sizeof(fru->fru))
3950 break;
3951 if (space < sizeof(*fru)) {
3952 sense->flags |= SSDD_SDAT_OVFL;
3953 break;
3954 }
3955 fru->desc_type = SSD_DESC_FRU;
3956 fru->length = sizeof(*fru) -
3957 (offsetof(struct scsi_sense_fru, length) + 1);
3958 fru->fru = *data;
3959 desc += sizeof(*fru);
3960 space -= sizeof(*fru);
3961 break;
3962 }
3963 case SSD_ELEM_STREAM: {
3964 struct scsi_sense_stream *stream = (void *)desc;
3965
3966 if (len > sizeof(stream->byte3))
3967 break;
3968 if (space < sizeof(*stream)) {
3969 sense->flags |= SSDD_SDAT_OVFL;
3970 break;
3971 }
3972 stream->desc_type = SSD_DESC_STREAM;
3973 stream->length = sizeof(*stream) -
3974 (offsetof(struct scsi_sense_stream, length) + 1);
3975 stream->byte3 = *data;
3976 desc += sizeof(*stream);
3977 space -= sizeof(*stream);
3978 break;
3979 }
3980 default:
3981 /*
3982 * We shouldn't get here, but if we do, do nothing.
3983 * We've already consumed the arguments above.
3984 */
3985 break;
3986 }
3987 }
3988 sense->extra_len = desc - &sense->sense_desc[0];
3989 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3990 sense->extra_len;
3991 }
3992
3993 /*
3994 * Fill in SCSI fixed sense data with the specified parameters.
3995 */
3996 static void
scsi_set_sense_data_fixed_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3997 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3998 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3999 int sense_key, int asc, int ascq, va_list ap)
4000 {
4001 struct scsi_sense_data_fixed *sense;
4002 scsi_sense_elem_type elem_type;
4003 uint8_t *data;
4004 int len;
4005
4006 memset(sense_data, 0, sizeof(*sense_data));
4007 sense = (struct scsi_sense_data_fixed *)sense_data;
4008 if (current_error != 0)
4009 sense->error_code = SSD_CURRENT_ERROR;
4010 else
4011 sense->error_code = SSD_DEFERRED_ERROR;
4012 sense->flags = sense_key & SSD_KEY;
4013 sense->extra_len = 0;
4014 if (*sense_len >= 13) {
4015 sense->add_sense_code = asc;
4016 sense->extra_len = MAX(sense->extra_len, 5);
4017 } else
4018 sense->flags |= SSD_SDAT_OVFL;
4019 if (*sense_len >= 14) {
4020 sense->add_sense_code_qual = ascq;
4021 sense->extra_len = MAX(sense->extra_len, 6);
4022 } else
4023 sense->flags |= SSD_SDAT_OVFL;
4024
4025 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
4026 SSD_ELEM_NONE) {
4027 if (elem_type >= SSD_ELEM_MAX) {
4028 printf("%s: invalid sense type %d\n", __func__,
4029 elem_type);
4030 break;
4031 }
4032 len = va_arg(ap, int);
4033 data = va_arg(ap, uint8_t *);
4034
4035 switch (elem_type) {
4036 case SSD_ELEM_SKIP:
4037 break;
4038 case SSD_ELEM_SKS:
4039 if (len > sizeof(sense->sense_key_spec))
4040 break;
4041 if (*sense_len < 18) {
4042 sense->flags |= SSD_SDAT_OVFL;
4043 break;
4044 }
4045 bcopy(data, &sense->sense_key_spec[0], len);
4046 sense->extra_len = MAX(sense->extra_len, 10);
4047 break;
4048 case SSD_ELEM_COMMAND:
4049 if (*sense_len < 12) {
4050 sense->flags |= SSD_SDAT_OVFL;
4051 break;
4052 }
4053 if (len > sizeof(sense->cmd_spec_info)) {
4054 data += len - sizeof(sense->cmd_spec_info);
4055 len = sizeof(sense->cmd_spec_info);
4056 }
4057 bcopy(data, &sense->cmd_spec_info[
4058 sizeof(sense->cmd_spec_info) - len], len);
4059 sense->extra_len = MAX(sense->extra_len, 4);
4060 break;
4061 case SSD_ELEM_INFO:
4062 /* Set VALID bit only if no overflow. */
4063 sense->error_code |= SSD_ERRCODE_VALID;
4064 while (len > sizeof(sense->info)) {
4065 if (data[0] != 0)
4066 sense->error_code &= ~SSD_ERRCODE_VALID;
4067 data ++;
4068 len --;
4069 }
4070 bcopy(data, &sense->info[sizeof(sense->info) - len], len);
4071 break;
4072 case SSD_ELEM_FRU:
4073 if (*sense_len < 15) {
4074 sense->flags |= SSD_SDAT_OVFL;
4075 break;
4076 }
4077 sense->fru = *data;
4078 sense->extra_len = MAX(sense->extra_len, 7);
4079 break;
4080 case SSD_ELEM_STREAM:
4081 sense->flags |= *data &
4082 (SSD_ILI | SSD_EOM | SSD_FILEMARK);
4083 break;
4084 default:
4085
4086 /*
4087 * We can't handle that in fixed format. Skip it.
4088 */
4089 break;
4090 }
4091 }
4092 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4093 sense->extra_len;
4094 }
4095
4096 /*
4097 * Fill in SCSI sense data with the specified parameters. This routine can
4098 * fill in either fixed or descriptor type sense data.
4099 */
4100 void
scsi_set_sense_data_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)4101 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4102 scsi_sense_data_type sense_format, int current_error,
4103 int sense_key, int asc, int ascq, va_list ap)
4104 {
4105
4106 if (*sense_len > SSD_FULL_SIZE)
4107 *sense_len = SSD_FULL_SIZE;
4108 if (sense_format == SSD_TYPE_DESC)
4109 scsi_set_sense_data_desc_va(sense_data, sense_len,
4110 sense_format, current_error, sense_key, asc, ascq, ap);
4111 else
4112 scsi_set_sense_data_fixed_va(sense_data, sense_len,
4113 sense_format, current_error, sense_key, asc, ascq, ap);
4114 }
4115
4116 void
scsi_set_sense_data(struct scsi_sense_data * sense_data,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4117 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4118 scsi_sense_data_type sense_format, int current_error,
4119 int sense_key, int asc, int ascq, ...)
4120 {
4121 va_list ap;
4122 u_int sense_len = SSD_FULL_SIZE;
4123
4124 va_start(ap, ascq);
4125 scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4126 current_error, sense_key, asc, ascq, ap);
4127 va_end(ap);
4128 }
4129
4130 void
scsi_set_sense_data_len(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4131 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4132 scsi_sense_data_type sense_format, int current_error,
4133 int sense_key, int asc, int ascq, ...)
4134 {
4135 va_list ap;
4136
4137 va_start(ap, ascq);
4138 scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4139 current_error, sense_key, asc, ascq, ap);
4140 va_end(ap);
4141 }
4142
4143 /*
4144 * Get sense information for three similar sense data types.
4145 */
4146 int
scsi_get_sense_info(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t info_type,uint64_t * info,int64_t * signed_info)4147 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4148 uint8_t info_type, uint64_t *info, int64_t *signed_info)
4149 {
4150 scsi_sense_data_type sense_type;
4151
4152 if (sense_len == 0)
4153 goto bailout;
4154
4155 sense_type = scsi_sense_type(sense_data);
4156
4157 switch (sense_type) {
4158 case SSD_TYPE_DESC: {
4159 struct scsi_sense_data_desc *sense;
4160 uint8_t *desc;
4161
4162 sense = (struct scsi_sense_data_desc *)sense_data;
4163
4164 desc = scsi_find_desc(sense, sense_len, info_type);
4165 if (desc == NULL)
4166 goto bailout;
4167
4168 switch (info_type) {
4169 case SSD_DESC_INFO: {
4170 struct scsi_sense_info *info_desc;
4171
4172 info_desc = (struct scsi_sense_info *)desc;
4173
4174 if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4175 goto bailout;
4176
4177 *info = scsi_8btou64(info_desc->info);
4178 if (signed_info != NULL)
4179 *signed_info = *info;
4180 break;
4181 }
4182 case SSD_DESC_COMMAND: {
4183 struct scsi_sense_command *cmd_desc;
4184
4185 cmd_desc = (struct scsi_sense_command *)desc;
4186
4187 *info = scsi_8btou64(cmd_desc->command_info);
4188 if (signed_info != NULL)
4189 *signed_info = *info;
4190 break;
4191 }
4192 case SSD_DESC_FRU: {
4193 struct scsi_sense_fru *fru_desc;
4194
4195 fru_desc = (struct scsi_sense_fru *)desc;
4196
4197 if (fru_desc->fru == 0)
4198 goto bailout;
4199
4200 *info = fru_desc->fru;
4201 if (signed_info != NULL)
4202 *signed_info = (int8_t)fru_desc->fru;
4203 break;
4204 }
4205 default:
4206 goto bailout;
4207 break;
4208 }
4209 break;
4210 }
4211 case SSD_TYPE_FIXED: {
4212 struct scsi_sense_data_fixed *sense;
4213
4214 sense = (struct scsi_sense_data_fixed *)sense_data;
4215
4216 switch (info_type) {
4217 case SSD_DESC_INFO: {
4218 uint32_t info_val;
4219
4220 if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4221 goto bailout;
4222
4223 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4224 goto bailout;
4225
4226 info_val = scsi_4btoul(sense->info);
4227
4228 *info = info_val;
4229 if (signed_info != NULL)
4230 *signed_info = (int32_t)info_val;
4231 break;
4232 }
4233 case SSD_DESC_COMMAND: {
4234 uint32_t cmd_val;
4235
4236 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4237 cmd_spec_info) == 0)
4238 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4239 goto bailout;
4240
4241 cmd_val = scsi_4btoul(sense->cmd_spec_info);
4242 if (cmd_val == 0)
4243 goto bailout;
4244
4245 *info = cmd_val;
4246 if (signed_info != NULL)
4247 *signed_info = (int32_t)cmd_val;
4248 break;
4249 }
4250 case SSD_DESC_FRU:
4251 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4252 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4253 goto bailout;
4254
4255 if (sense->fru == 0)
4256 goto bailout;
4257
4258 *info = sense->fru;
4259 if (signed_info != NULL)
4260 *signed_info = (int8_t)sense->fru;
4261 break;
4262 default:
4263 goto bailout;
4264 break;
4265 }
4266 break;
4267 }
4268 default:
4269 goto bailout;
4270 break;
4271 }
4272
4273 return (0);
4274 bailout:
4275 return (1);
4276 }
4277
4278 int
scsi_get_sks(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t * sks)4279 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4280 {
4281 scsi_sense_data_type sense_type;
4282
4283 if (sense_len == 0)
4284 goto bailout;
4285
4286 sense_type = scsi_sense_type(sense_data);
4287
4288 switch (sense_type) {
4289 case SSD_TYPE_DESC: {
4290 struct scsi_sense_data_desc *sense;
4291 struct scsi_sense_sks *desc;
4292
4293 sense = (struct scsi_sense_data_desc *)sense_data;
4294
4295 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4296 SSD_DESC_SKS);
4297 if (desc == NULL)
4298 goto bailout;
4299
4300 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4301 goto bailout;
4302
4303 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4304 break;
4305 }
4306 case SSD_TYPE_FIXED: {
4307 struct scsi_sense_data_fixed *sense;
4308
4309 sense = (struct scsi_sense_data_fixed *)sense_data;
4310
4311 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4312 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4313 goto bailout;
4314
4315 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4316 goto bailout;
4317
4318 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4319 break;
4320 }
4321 default:
4322 goto bailout;
4323 break;
4324 }
4325 return (0);
4326 bailout:
4327 return (1);
4328 }
4329
4330 /*
4331 * Provide a common interface for fixed and descriptor sense to detect
4332 * whether we have block-specific sense information. It is clear by the
4333 * presence of the block descriptor in descriptor mode, but we have to
4334 * infer from the inquiry data and ILI bit in fixed mode.
4335 */
4336 int
scsi_get_block_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * block_bits)4337 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4338 struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4339 {
4340 scsi_sense_data_type sense_type;
4341
4342 if (inq_data != NULL) {
4343 switch (SID_TYPE(inq_data)) {
4344 case T_DIRECT:
4345 case T_RBC:
4346 case T_ZBC_HM:
4347 break;
4348 default:
4349 goto bailout;
4350 break;
4351 }
4352 }
4353
4354 sense_type = scsi_sense_type(sense_data);
4355
4356 switch (sense_type) {
4357 case SSD_TYPE_DESC: {
4358 struct scsi_sense_data_desc *sense;
4359 struct scsi_sense_block *block;
4360
4361 sense = (struct scsi_sense_data_desc *)sense_data;
4362
4363 block = (struct scsi_sense_block *)scsi_find_desc(sense,
4364 sense_len, SSD_DESC_BLOCK);
4365 if (block == NULL)
4366 goto bailout;
4367
4368 *block_bits = block->byte3;
4369 break;
4370 }
4371 case SSD_TYPE_FIXED: {
4372 struct scsi_sense_data_fixed *sense;
4373
4374 sense = (struct scsi_sense_data_fixed *)sense_data;
4375
4376 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4377 goto bailout;
4378
4379 *block_bits = sense->flags & SSD_ILI;
4380 break;
4381 }
4382 default:
4383 goto bailout;
4384 break;
4385 }
4386 return (0);
4387 bailout:
4388 return (1);
4389 }
4390
4391 int
scsi_get_stream_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * stream_bits)4392 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4393 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4394 {
4395 scsi_sense_data_type sense_type;
4396
4397 if (inq_data != NULL) {
4398 switch (SID_TYPE(inq_data)) {
4399 case T_SEQUENTIAL:
4400 break;
4401 default:
4402 goto bailout;
4403 break;
4404 }
4405 }
4406
4407 sense_type = scsi_sense_type(sense_data);
4408
4409 switch (sense_type) {
4410 case SSD_TYPE_DESC: {
4411 struct scsi_sense_data_desc *sense;
4412 struct scsi_sense_stream *stream;
4413
4414 sense = (struct scsi_sense_data_desc *)sense_data;
4415
4416 stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4417 sense_len, SSD_DESC_STREAM);
4418 if (stream == NULL)
4419 goto bailout;
4420
4421 *stream_bits = stream->byte3;
4422 break;
4423 }
4424 case SSD_TYPE_FIXED: {
4425 struct scsi_sense_data_fixed *sense;
4426
4427 sense = (struct scsi_sense_data_fixed *)sense_data;
4428
4429 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4430 goto bailout;
4431
4432 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4433 break;
4434 }
4435 default:
4436 goto bailout;
4437 break;
4438 }
4439 return (0);
4440 bailout:
4441 return (1);
4442 }
4443
4444 void
scsi_info_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t info)4445 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4446 struct scsi_inquiry_data *inq_data, uint64_t info)
4447 {
4448 sbuf_printf(sb, "Info: %#jx", info);
4449 }
4450
4451 void
scsi_command_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t csi)4452 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4453 struct scsi_inquiry_data *inq_data, uint64_t csi)
4454 {
4455 sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4456 }
4457
4458 void
scsi_progress_sbuf(struct sbuf * sb,uint16_t progress)4459 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4460 {
4461 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4462 (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4463 progress, SSD_SKS_PROGRESS_DENOM);
4464 }
4465
4466 /*
4467 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4468 */
4469 int
scsi_sks_sbuf(struct sbuf * sb,int sense_key,uint8_t * sks)4470 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4471 {
4472
4473 switch (sense_key) {
4474 case SSD_KEY_ILLEGAL_REQUEST: {
4475 struct scsi_sense_sks_field *field;
4476 int bad_command;
4477 char tmpstr[40];
4478
4479 /*Field Pointer*/
4480 field = (struct scsi_sense_sks_field *)sks;
4481
4482 if (field->byte0 & SSD_SKS_FIELD_CMD)
4483 bad_command = 1;
4484 else
4485 bad_command = 0;
4486
4487 tmpstr[0] = '\0';
4488
4489 /* Bit pointer is valid */
4490 if (field->byte0 & SSD_SKS_BPV)
4491 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4492 field->byte0 & SSD_SKS_BIT_VALUE);
4493
4494 sbuf_printf(sb, "%s byte %d %sis invalid",
4495 bad_command ? "Command" : "Data",
4496 scsi_2btoul(field->field), tmpstr);
4497 break;
4498 }
4499 case SSD_KEY_UNIT_ATTENTION: {
4500 struct scsi_sense_sks_overflow *overflow;
4501
4502 overflow = (struct scsi_sense_sks_overflow *)sks;
4503
4504 /*UA Condition Queue Overflow*/
4505 sbuf_printf(sb, "Unit Attention Condition Queue %s",
4506 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4507 "Overflowed" : "Did Not Overflow??");
4508 break;
4509 }
4510 case SSD_KEY_RECOVERED_ERROR:
4511 case SSD_KEY_HARDWARE_ERROR:
4512 case SSD_KEY_MEDIUM_ERROR: {
4513 struct scsi_sense_sks_retry *retry;
4514
4515 /*Actual Retry Count*/
4516 retry = (struct scsi_sense_sks_retry *)sks;
4517
4518 sbuf_printf(sb, "Actual Retry Count: %d",
4519 scsi_2btoul(retry->actual_retry_count));
4520 break;
4521 }
4522 case SSD_KEY_NO_SENSE:
4523 case SSD_KEY_NOT_READY: {
4524 struct scsi_sense_sks_progress *progress;
4525 int progress_val;
4526
4527 /*Progress Indication*/
4528 progress = (struct scsi_sense_sks_progress *)sks;
4529 progress_val = scsi_2btoul(progress->progress);
4530
4531 scsi_progress_sbuf(sb, progress_val);
4532 break;
4533 }
4534 case SSD_KEY_COPY_ABORTED: {
4535 struct scsi_sense_sks_segment *segment;
4536 char tmpstr[40];
4537
4538 /*Segment Pointer*/
4539 segment = (struct scsi_sense_sks_segment *)sks;
4540
4541 tmpstr[0] = '\0';
4542
4543 if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4544 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4545 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4546
4547 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4548 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4549 scsi_2btoul(segment->field), tmpstr);
4550 break;
4551 }
4552 default:
4553 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4554 scsi_2btoul(&sks[1]));
4555 break;
4556 }
4557
4558 return (0);
4559 }
4560
4561 void
scsi_fru_sbuf(struct sbuf * sb,uint64_t fru)4562 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4563 {
4564 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4565 }
4566
4567 void
scsi_stream_sbuf(struct sbuf * sb,uint8_t stream_bits)4568 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4569 {
4570 int need_comma;
4571
4572 need_comma = 0;
4573 /*
4574 * XXX KDM this needs more descriptive decoding.
4575 */
4576 sbuf_cat(sb, "Stream Command Sense Data: ");
4577 if (stream_bits & SSD_DESC_STREAM_FM) {
4578 sbuf_cat(sb, "Filemark");
4579 need_comma = 1;
4580 }
4581
4582 if (stream_bits & SSD_DESC_STREAM_EOM) {
4583 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4584 need_comma = 1;
4585 }
4586
4587 if (stream_bits & SSD_DESC_STREAM_ILI)
4588 sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4589 }
4590
4591 void
scsi_block_sbuf(struct sbuf * sb,uint8_t block_bits)4592 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4593 {
4594
4595 sbuf_cat(sb, "Block Command Sense Data: ");
4596 if (block_bits & SSD_DESC_BLOCK_ILI)
4597 sbuf_cat(sb, "ILI");
4598 }
4599
4600 void
scsi_sense_info_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4601 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4602 u_int sense_len, uint8_t *cdb, int cdb_len,
4603 struct scsi_inquiry_data *inq_data,
4604 struct scsi_sense_desc_header *header)
4605 {
4606 struct scsi_sense_info *info;
4607
4608 info = (struct scsi_sense_info *)header;
4609
4610 if ((info->byte2 & SSD_INFO_VALID) == 0)
4611 return;
4612
4613 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4614 }
4615
4616 void
scsi_sense_command_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4617 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4618 u_int sense_len, uint8_t *cdb, int cdb_len,
4619 struct scsi_inquiry_data *inq_data,
4620 struct scsi_sense_desc_header *header)
4621 {
4622 struct scsi_sense_command *command;
4623
4624 command = (struct scsi_sense_command *)header;
4625
4626 scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4627 scsi_8btou64(command->command_info));
4628 }
4629
4630 void
scsi_sense_sks_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4631 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4632 u_int sense_len, uint8_t *cdb, int cdb_len,
4633 struct scsi_inquiry_data *inq_data,
4634 struct scsi_sense_desc_header *header)
4635 {
4636 struct scsi_sense_sks *sks;
4637 int error_code, sense_key, asc, ascq;
4638
4639 sks = (struct scsi_sense_sks *)header;
4640
4641 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4642 return;
4643
4644 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4645 &asc, &ascq, /*show_errors*/ 1);
4646
4647 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4648 }
4649
4650 void
scsi_sense_fru_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4651 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4652 u_int sense_len, uint8_t *cdb, int cdb_len,
4653 struct scsi_inquiry_data *inq_data,
4654 struct scsi_sense_desc_header *header)
4655 {
4656 struct scsi_sense_fru *fru;
4657
4658 fru = (struct scsi_sense_fru *)header;
4659
4660 if (fru->fru == 0)
4661 return;
4662
4663 scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4664 }
4665
4666 void
scsi_sense_stream_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4667 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4668 u_int sense_len, uint8_t *cdb, int cdb_len,
4669 struct scsi_inquiry_data *inq_data,
4670 struct scsi_sense_desc_header *header)
4671 {
4672 struct scsi_sense_stream *stream;
4673
4674 stream = (struct scsi_sense_stream *)header;
4675 scsi_stream_sbuf(sb, stream->byte3);
4676 }
4677
4678 void
scsi_sense_block_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4679 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4680 u_int sense_len, uint8_t *cdb, int cdb_len,
4681 struct scsi_inquiry_data *inq_data,
4682 struct scsi_sense_desc_header *header)
4683 {
4684 struct scsi_sense_block *block;
4685
4686 block = (struct scsi_sense_block *)header;
4687 scsi_block_sbuf(sb, block->byte3);
4688 }
4689
4690 void
scsi_sense_progress_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4691 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4692 u_int sense_len, uint8_t *cdb, int cdb_len,
4693 struct scsi_inquiry_data *inq_data,
4694 struct scsi_sense_desc_header *header)
4695 {
4696 struct scsi_sense_progress *progress;
4697 const char *sense_key_desc;
4698 const char *asc_desc;
4699 int progress_val;
4700
4701 progress = (struct scsi_sense_progress *)header;
4702
4703 /*
4704 * Get descriptions for the sense key, ASC, and ASCQ in the
4705 * progress descriptor. These could be different than the values
4706 * in the overall sense data.
4707 */
4708 scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4709 progress->add_sense_code_qual, inq_data,
4710 &sense_key_desc, &asc_desc);
4711
4712 progress_val = scsi_2btoul(progress->progress);
4713
4714 /*
4715 * The progress indicator is for the operation described by the
4716 * sense key, ASC, and ASCQ in the descriptor.
4717 */
4718 sbuf_cat(sb, sense_key_desc);
4719 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4720 progress->add_sense_code_qual, asc_desc);
4721 scsi_progress_sbuf(sb, progress_val);
4722 }
4723
4724 void
scsi_sense_ata_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4725 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4726 u_int sense_len, uint8_t *cdb, int cdb_len,
4727 struct scsi_inquiry_data *inq_data,
4728 struct scsi_sense_desc_header *header)
4729 {
4730 struct scsi_sense_ata_ret_desc *res;
4731
4732 res = (struct scsi_sense_ata_ret_desc *)header;
4733
4734 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4735 res->status,
4736 (res->status & 0x80) ? "BSY " : "",
4737 (res->status & 0x40) ? "DRDY " : "",
4738 (res->status & 0x20) ? "DF " : "",
4739 (res->status & 0x10) ? "SERV " : "",
4740 (res->status & 0x08) ? "DRQ " : "",
4741 (res->status & 0x04) ? "CORR " : "",
4742 (res->status & 0x02) ? "IDX " : "",
4743 (res->status & 0x01) ? "ERR" : "");
4744 if (res->status & 1) {
4745 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4746 res->error,
4747 (res->error & 0x80) ? "ICRC " : "",
4748 (res->error & 0x40) ? "UNC " : "",
4749 (res->error & 0x20) ? "MC " : "",
4750 (res->error & 0x10) ? "IDNF " : "",
4751 (res->error & 0x08) ? "MCR " : "",
4752 (res->error & 0x04) ? "ABRT " : "",
4753 (res->error & 0x02) ? "NM " : "",
4754 (res->error & 0x01) ? "ILI" : "");
4755 }
4756
4757 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4758 sbuf_printf(sb, "count: %02x%02x, ",
4759 res->count_15_8, res->count_7_0);
4760 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4761 res->lba_47_40, res->lba_39_32, res->lba_31_24,
4762 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4763 } else {
4764 sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4765 sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4766 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4767 }
4768 sbuf_printf(sb, "device: %02x, ", res->device);
4769 }
4770
4771 void
scsi_sense_forwarded_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4772 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4773 u_int sense_len, uint8_t *cdb, int cdb_len,
4774 struct scsi_inquiry_data *inq_data,
4775 struct scsi_sense_desc_header *header)
4776 {
4777 struct scsi_sense_forwarded *forwarded;
4778 const char *sense_key_desc;
4779 const char *asc_desc;
4780 int error_code, sense_key, asc, ascq;
4781
4782 forwarded = (struct scsi_sense_forwarded *)header;
4783 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4784 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4785 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4786
4787 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4788 sense_key_desc, asc, ascq, asc_desc);
4789 }
4790
4791 void
scsi_sense_dabd_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4792 scsi_sense_dabd_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4793 u_int sense_len, uint8_t *cdb, int cdb_len,
4794 struct scsi_inquiry_data *inq_data,
4795 struct scsi_sense_desc_header *header)
4796 {
4797 struct scsi_sense_direct_access_block_device *dabd;
4798 int error_code, sense_key, asc, ascq;
4799
4800 dabd = (struct scsi_sense_direct_access_block_device *)header;
4801
4802 sbuf_printf(sb, "Direct Access Block Device: fru: %d ",
4803 dabd->fru);
4804 if (dabd->sks_byte & SSD_DESC_DABD_SKS_VALID) {
4805 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4806 &asc, &ascq, /*show_errors*/ 1);
4807 scsi_sks_sbuf(sb, sense_key, dabd->data);
4808 }
4809 if (dabd->byte2 & SSD_DESC_DABD_VALID) {
4810 scsi_info_sbuf(sb, cdb, cdb_len, inq_data,
4811 scsi_8btou64(dabd->info));
4812 scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4813 scsi_8btou64(dabd->command_info));
4814 }
4815 }
4816
4817 /*
4818 * Generic sense descriptor printing routine. This is used when we have
4819 * not yet implemented a specific printing routine for this descriptor.
4820 */
4821 void
scsi_sense_generic_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4822 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4823 u_int sense_len, uint8_t *cdb, int cdb_len,
4824 struct scsi_inquiry_data *inq_data,
4825 struct scsi_sense_desc_header *header)
4826 {
4827 int i;
4828 uint8_t *buf_ptr;
4829
4830 sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4831
4832 buf_ptr = (uint8_t *)&header[1];
4833
4834 for (i = 0; i < header->length; i++, buf_ptr++)
4835 sbuf_printf(sb, " %02x", *buf_ptr);
4836 }
4837
4838 /*
4839 * Keep this list in numeric order. This speeds the array traversal.
4840 */
4841 struct scsi_sense_desc_printer {
4842 uint8_t desc_type;
4843 /*
4844 * The function arguments here are the superset of what is needed
4845 * to print out various different descriptors. Command and
4846 * information descriptors need inquiry data and command type.
4847 * Sense key specific descriptors need the sense key.
4848 *
4849 * The sense, cdb, and inquiry data arguments may be NULL, but the
4850 * information printed may not be fully decoded as a result.
4851 */
4852 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4853 u_int sense_len, uint8_t *cdb, int cdb_len,
4854 struct scsi_inquiry_data *inq_data,
4855 struct scsi_sense_desc_header *header);
4856 } scsi_sense_printers[] = {
4857 {SSD_DESC_INFO, scsi_sense_info_sbuf},
4858 {SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4859 {SSD_DESC_SKS, scsi_sense_sks_sbuf},
4860 {SSD_DESC_FRU, scsi_sense_fru_sbuf},
4861 {SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4862 {SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4863 {SSD_DESC_ATA, scsi_sense_ata_sbuf},
4864 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4865 {SSD_DESC_DABD, scsi_sense_dabd_sbuf},
4866 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf},
4867 };
4868
4869 void
scsi_sense_desc_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4870 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4871 u_int sense_len, uint8_t *cdb, int cdb_len,
4872 struct scsi_inquiry_data *inq_data,
4873 struct scsi_sense_desc_header *header)
4874 {
4875 u_int i;
4876
4877 for (i = 0; i < nitems(scsi_sense_printers); i++) {
4878 struct scsi_sense_desc_printer *printer;
4879
4880 printer = &scsi_sense_printers[i];
4881
4882 /*
4883 * The list is sorted, so quit if we've passed our
4884 * descriptor number.
4885 */
4886 if (printer->desc_type > header->desc_type)
4887 break;
4888
4889 if (printer->desc_type != header->desc_type)
4890 continue;
4891
4892 printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4893 inq_data, header);
4894
4895 return;
4896 }
4897
4898 /*
4899 * No specific printing routine, so use the generic routine.
4900 */
4901 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4902 inq_data, header);
4903 }
4904
4905 scsi_sense_data_type
scsi_sense_type(struct scsi_sense_data * sense_data)4906 scsi_sense_type(struct scsi_sense_data *sense_data)
4907 {
4908 switch (sense_data->error_code & SSD_ERRCODE) {
4909 case SSD_DESC_CURRENT_ERROR:
4910 case SSD_DESC_DEFERRED_ERROR:
4911 return (SSD_TYPE_DESC);
4912 break;
4913 case SSD_CURRENT_ERROR:
4914 case SSD_DEFERRED_ERROR:
4915 return (SSD_TYPE_FIXED);
4916 break;
4917 default:
4918 break;
4919 }
4920
4921 return (SSD_TYPE_NONE);
4922 }
4923
4924 struct scsi_print_sense_info {
4925 struct sbuf *sb;
4926 char *path_str;
4927 uint8_t *cdb;
4928 int cdb_len;
4929 struct scsi_inquiry_data *inq_data;
4930 };
4931
4932 static int
scsi_print_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)4933 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4934 struct scsi_sense_desc_header *header, void *arg)
4935 {
4936 struct scsi_print_sense_info *print_info;
4937
4938 print_info = (struct scsi_print_sense_info *)arg;
4939
4940 switch (header->desc_type) {
4941 case SSD_DESC_INFO:
4942 case SSD_DESC_FRU:
4943 case SSD_DESC_COMMAND:
4944 case SSD_DESC_SKS:
4945 case SSD_DESC_BLOCK:
4946 case SSD_DESC_STREAM:
4947 /*
4948 * We have already printed these descriptors, if they are
4949 * present.
4950 */
4951 break;
4952 default: {
4953 sbuf_printf(print_info->sb, "%s", print_info->path_str);
4954 scsi_sense_desc_sbuf(print_info->sb,
4955 (struct scsi_sense_data *)sense, sense_len,
4956 print_info->cdb, print_info->cdb_len,
4957 print_info->inq_data, header);
4958 sbuf_putc(print_info->sb, '\n');
4959 break;
4960 }
4961 }
4962
4963 /*
4964 * Tell the iterator that we want to see more descriptors if they
4965 * are present.
4966 */
4967 return (0);
4968 }
4969
4970 void
scsi_sense_only_sbuf(struct scsi_sense_data * sense,u_int sense_len,struct sbuf * sb,char * path_str,struct scsi_inquiry_data * inq_data,uint8_t * cdb,int cdb_len)4971 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4972 struct sbuf *sb, char *path_str,
4973 struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4974 int cdb_len)
4975 {
4976 int error_code, sense_key, asc, ascq;
4977
4978 sbuf_cat(sb, path_str);
4979
4980 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4981 &asc, &ascq, /*show_errors*/ 1);
4982
4983 sbuf_cat(sb, "SCSI sense: ");
4984 switch (error_code) {
4985 case SSD_DEFERRED_ERROR:
4986 case SSD_DESC_DEFERRED_ERROR:
4987 sbuf_cat(sb, "Deferred error: ");
4988
4989 /* FALLTHROUGH */
4990 case SSD_CURRENT_ERROR:
4991 case SSD_DESC_CURRENT_ERROR:
4992 {
4993 struct scsi_sense_data_desc *desc_sense;
4994 struct scsi_print_sense_info print_info;
4995 const char *sense_key_desc;
4996 const char *asc_desc;
4997 uint8_t sks[3];
4998 uint64_t val;
4999 uint8_t bits;
5000
5001 /*
5002 * Get descriptions for the sense key, ASC, and ASCQ. If
5003 * these aren't present in the sense data (i.e. the sense
5004 * data isn't long enough), the -1 values that
5005 * scsi_extract_sense_len() returns will yield default
5006 * or error descriptions.
5007 */
5008 scsi_sense_desc(sense_key, asc, ascq, inq_data,
5009 &sense_key_desc, &asc_desc);
5010
5011 /*
5012 * We first print the sense key and ASC/ASCQ.
5013 */
5014 sbuf_cat(sb, sense_key_desc);
5015 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
5016
5017 /*
5018 * Print any block or stream device-specific information.
5019 */
5020 if (scsi_get_block_info(sense, sense_len, inq_data,
5021 &bits) == 0 && bits != 0) {
5022 sbuf_cat(sb, path_str);
5023 scsi_block_sbuf(sb, bits);
5024 sbuf_putc(sb, '\n');
5025 } else if (scsi_get_stream_info(sense, sense_len, inq_data,
5026 &bits) == 0 && bits != 0) {
5027 sbuf_cat(sb, path_str);
5028 scsi_stream_sbuf(sb, bits);
5029 sbuf_putc(sb, '\n');
5030 }
5031
5032 /*
5033 * Print the info field.
5034 */
5035 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
5036 &val, NULL) == 0) {
5037 sbuf_cat(sb, path_str);
5038 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
5039 sbuf_putc(sb, '\n');
5040 }
5041
5042 /*
5043 * Print the FRU.
5044 */
5045 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
5046 &val, NULL) == 0) {
5047 sbuf_cat(sb, path_str);
5048 scsi_fru_sbuf(sb, val);
5049 sbuf_putc(sb, '\n');
5050 }
5051
5052 /*
5053 * Print any command-specific information.
5054 */
5055 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
5056 &val, NULL) == 0) {
5057 sbuf_cat(sb, path_str);
5058 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
5059 sbuf_putc(sb, '\n');
5060 }
5061
5062 /*
5063 * Print out any sense-key-specific information.
5064 */
5065 if (scsi_get_sks(sense, sense_len, sks) == 0) {
5066 sbuf_cat(sb, path_str);
5067 scsi_sks_sbuf(sb, sense_key, sks);
5068 sbuf_putc(sb, '\n');
5069 }
5070
5071 /*
5072 * If this is fixed sense, we're done. If we have
5073 * descriptor sense, we might have more information
5074 * available.
5075 */
5076 if (scsi_sense_type(sense) != SSD_TYPE_DESC)
5077 break;
5078
5079 desc_sense = (struct scsi_sense_data_desc *)sense;
5080
5081 print_info.sb = sb;
5082 print_info.path_str = path_str;
5083 print_info.cdb = cdb;
5084 print_info.cdb_len = cdb_len;
5085 print_info.inq_data = inq_data;
5086
5087 /*
5088 * Print any sense descriptors that we have not already printed.
5089 */
5090 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
5091 &print_info);
5092 break;
5093 }
5094 case -1:
5095 /*
5096 * scsi_extract_sense_len() sets values to -1 if the
5097 * show_errors flag is set and they aren't present in the
5098 * sense data. This means that sense_len is 0.
5099 */
5100 sbuf_cat(sb, "No sense data present\n");
5101 break;
5102 default: {
5103 sbuf_printf(sb, "Error code 0x%x", error_code);
5104 if (sense->error_code & SSD_ERRCODE_VALID) {
5105 struct scsi_sense_data_fixed *fixed_sense;
5106
5107 fixed_sense = (struct scsi_sense_data_fixed *)sense;
5108
5109 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
5110 uint32_t info;
5111
5112 info = scsi_4btoul(fixed_sense->info);
5113
5114 sbuf_printf(sb, " at block no. %d (decimal)",
5115 info);
5116 }
5117 }
5118 sbuf_putc(sb, '\n');
5119 break;
5120 }
5121 }
5122 }
5123
5124 /*
5125 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5126 */
5127 #ifdef _KERNEL
5128 int
scsi_sense_sbuf(struct ccb_scsiio * csio,struct sbuf * sb,scsi_sense_string_flags flags)5129 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5130 scsi_sense_string_flags flags)
5131 #else /* !_KERNEL */
5132 int
5133 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5134 struct sbuf *sb, scsi_sense_string_flags flags)
5135 #endif /* _KERNEL/!_KERNEL */
5136 {
5137 struct scsi_sense_data *sense;
5138 struct scsi_inquiry_data *inq_data;
5139 #ifdef _KERNEL
5140 struct ccb_getdev *cgd;
5141 #endif /* _KERNEL */
5142 char path_str[64];
5143
5144 #ifndef _KERNEL
5145 if (device == NULL)
5146 return(-1);
5147 #endif /* !_KERNEL */
5148 if ((csio == NULL) || (sb == NULL))
5149 return(-1);
5150
5151 /*
5152 * If the CDB is a physical address, we can't deal with it..
5153 */
5154 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5155 flags &= ~SSS_FLAG_PRINT_COMMAND;
5156
5157 #ifdef _KERNEL
5158 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5159 #else /* !_KERNEL */
5160 cam_path_string(device, path_str, sizeof(path_str));
5161 #endif /* _KERNEL/!_KERNEL */
5162
5163 #ifdef _KERNEL
5164 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5165 return(-1);
5166 /*
5167 * Get the device information.
5168 */
5169 xpt_gdev_type(cgd, csio->ccb_h.path);
5170
5171 /*
5172 * If the device is unconfigured, the inq data is invalid.
5173 */
5174 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5175 inq_data = NULL;
5176 else
5177 inq_data = &cgd->inq_data;
5178
5179 #else /* !_KERNEL */
5180
5181 inq_data = &device->inq_data;
5182
5183 #endif /* _KERNEL/!_KERNEL */
5184
5185 sense = NULL;
5186
5187 if (flags & SSS_FLAG_PRINT_COMMAND) {
5188 sbuf_cat(sb, path_str);
5189
5190 #ifdef _KERNEL
5191 scsi_command_string(csio, sb);
5192 #else /* !_KERNEL */
5193 scsi_command_string(device, csio, sb);
5194 #endif /* _KERNEL/!_KERNEL */
5195 sbuf_putc(sb, '\n');
5196 }
5197
5198 /*
5199 * If the sense data is a physical pointer, forget it.
5200 */
5201 if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5202 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5203 #ifdef _KERNEL
5204 xpt_free_ccb((union ccb*)cgd);
5205 #endif /* _KERNEL/!_KERNEL */
5206 return(-1);
5207 } else {
5208 /*
5209 * bcopy the pointer to avoid unaligned access
5210 * errors on finicky architectures. We don't
5211 * ensure that the sense data is pointer aligned.
5212 */
5213 bcopy((struct scsi_sense_data **)&csio->sense_data,
5214 &sense, sizeof(struct scsi_sense_data *));
5215 }
5216 } else {
5217 /*
5218 * If the physical sense flag is set, but the sense pointer
5219 * is not also set, we assume that the user is an idiot and
5220 * return. (Well, okay, it could be that somehow, the
5221 * entire csio is physical, but we would have probably core
5222 * dumped on one of the bogus pointer deferences above
5223 * already.)
5224 */
5225 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5226 #ifdef _KERNEL
5227 xpt_free_ccb((union ccb*)cgd);
5228 #endif /* _KERNEL/!_KERNEL */
5229 return(-1);
5230 } else
5231 sense = &csio->sense_data;
5232 }
5233
5234 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5235 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5236
5237 #ifdef _KERNEL
5238 xpt_free_ccb((union ccb*)cgd);
5239 #endif /* _KERNEL/!_KERNEL */
5240 return(0);
5241 }
5242
5243 #ifdef _KERNEL
5244 char *
scsi_sense_string(struct ccb_scsiio * csio,char * str,int str_len)5245 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5246 #else /* !_KERNEL */
5247 char *
5248 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5249 char *str, int str_len)
5250 #endif /* _KERNEL/!_KERNEL */
5251 {
5252 struct sbuf sb;
5253
5254 sbuf_new(&sb, str, str_len, 0);
5255
5256 #ifdef _KERNEL
5257 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5258 #else /* !_KERNEL */
5259 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5260 #endif /* _KERNEL/!_KERNEL */
5261
5262 sbuf_finish(&sb);
5263
5264 return(sbuf_data(&sb));
5265 }
5266
5267 #ifdef _KERNEL
5268 void
scsi_sense_print(struct ccb_scsiio * csio)5269 scsi_sense_print(struct ccb_scsiio *csio)
5270 {
5271 struct sbuf sb;
5272 char str[512];
5273
5274 sbuf_new(&sb, str, sizeof(str), 0);
5275
5276 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5277
5278 sbuf_finish(&sb);
5279
5280 sbuf_putbuf(&sb);
5281 }
5282
5283 #else /* !_KERNEL */
5284 void
scsi_sense_print(struct cam_device * device,struct ccb_scsiio * csio,FILE * ofile)5285 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5286 FILE *ofile)
5287 {
5288 struct sbuf sb;
5289 char str[512];
5290
5291 if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5292 return;
5293
5294 sbuf_new(&sb, str, sizeof(str), 0);
5295
5296 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5297
5298 sbuf_finish(&sb);
5299
5300 fprintf(ofile, "%s", sbuf_data(&sb));
5301 }
5302
5303 #endif /* _KERNEL/!_KERNEL */
5304
5305 /*
5306 * Extract basic sense information. This is backward-compatible with the
5307 * previous implementation. For new implementations,
5308 * scsi_extract_sense_len() is recommended.
5309 */
5310 void
scsi_extract_sense(struct scsi_sense_data * sense_data,int * error_code,int * sense_key,int * asc,int * ascq)5311 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5312 int *sense_key, int *asc, int *ascq)
5313 {
5314 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5315 sense_key, asc, ascq, /*show_errors*/ 0);
5316 }
5317
5318 /*
5319 * Extract basic sense information from SCSI I/O CCB structure.
5320 */
5321 int
scsi_extract_sense_ccb(union ccb * ccb,int * error_code,int * sense_key,int * asc,int * ascq)5322 scsi_extract_sense_ccb(union ccb *ccb,
5323 int *error_code, int *sense_key, int *asc, int *ascq)
5324 {
5325 struct scsi_sense_data *sense_data;
5326
5327 /* Make sure there are some sense data we can access. */
5328 if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5329 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5330 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5331 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5332 (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5333 return (0);
5334
5335 if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5336 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5337 &sense_data, sizeof(struct scsi_sense_data *));
5338 else
5339 sense_data = &ccb->csio.sense_data;
5340 scsi_extract_sense_len(sense_data,
5341 ccb->csio.sense_len - ccb->csio.sense_resid,
5342 error_code, sense_key, asc, ascq, 1);
5343 if (*error_code == -1)
5344 return (0);
5345 return (1);
5346 }
5347
5348 /*
5349 * Extract basic sense information. If show_errors is set, sense values
5350 * will be set to -1 if they are not present.
5351 */
5352 void
scsi_extract_sense_len(struct scsi_sense_data * sense_data,u_int sense_len,int * error_code,int * sense_key,int * asc,int * ascq,int show_errors)5353 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5354 int *error_code, int *sense_key, int *asc, int *ascq,
5355 int show_errors)
5356 {
5357 /*
5358 * If we have no length, we have no sense.
5359 */
5360 if (sense_len == 0) {
5361 if (show_errors == 0) {
5362 *error_code = 0;
5363 *sense_key = 0;
5364 *asc = 0;
5365 *ascq = 0;
5366 } else {
5367 *error_code = -1;
5368 *sense_key = -1;
5369 *asc = -1;
5370 *ascq = -1;
5371 }
5372 return;
5373 }
5374
5375 *error_code = sense_data->error_code & SSD_ERRCODE;
5376
5377 switch (*error_code) {
5378 case SSD_DESC_CURRENT_ERROR:
5379 case SSD_DESC_DEFERRED_ERROR: {
5380 struct scsi_sense_data_desc *sense;
5381
5382 sense = (struct scsi_sense_data_desc *)sense_data;
5383
5384 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5385 *sense_key = sense->sense_key & SSD_KEY;
5386 else
5387 *sense_key = (show_errors) ? -1 : 0;
5388
5389 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5390 *asc = sense->add_sense_code;
5391 else
5392 *asc = (show_errors) ? -1 : 0;
5393
5394 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5395 *ascq = sense->add_sense_code_qual;
5396 else
5397 *ascq = (show_errors) ? -1 : 0;
5398 break;
5399 }
5400 case SSD_CURRENT_ERROR:
5401 case SSD_DEFERRED_ERROR:
5402 default: {
5403 struct scsi_sense_data_fixed *sense;
5404
5405 sense = (struct scsi_sense_data_fixed *)sense_data;
5406
5407 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5408 *sense_key = sense->flags & SSD_KEY;
5409 else
5410 *sense_key = (show_errors) ? -1 : 0;
5411
5412 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5413 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5414 *asc = sense->add_sense_code;
5415 else
5416 *asc = (show_errors) ? -1 : 0;
5417
5418 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5419 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5420 *ascq = sense->add_sense_code_qual;
5421 else
5422 *ascq = (show_errors) ? -1 : 0;
5423 break;
5424 }
5425 }
5426 }
5427
5428 int
scsi_get_sense_key(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5429 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5430 int show_errors)
5431 {
5432 int error_code, sense_key, asc, ascq;
5433
5434 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5435 &sense_key, &asc, &ascq, show_errors);
5436
5437 return (sense_key);
5438 }
5439
5440 int
scsi_get_asc(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5441 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5442 int show_errors)
5443 {
5444 int error_code, sense_key, asc, ascq;
5445
5446 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5447 &sense_key, &asc, &ascq, show_errors);
5448
5449 return (asc);
5450 }
5451
5452 int
scsi_get_ascq(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5453 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5454 int show_errors)
5455 {
5456 int error_code, sense_key, asc, ascq;
5457
5458 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5459 &sense_key, &asc, &ascq, show_errors);
5460
5461 return (ascq);
5462 }
5463
5464 /*
5465 * This function currently requires at least 36 bytes, or
5466 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this
5467 * function needs more or less data in the future, another length should be
5468 * defined in scsi_all.h to indicate the minimum amount of data necessary
5469 * for this routine to function properly.
5470 */
5471 void
scsi_print_inquiry_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5472 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5473 {
5474 uint8_t type;
5475 char *dtype, *qtype;
5476
5477 type = SID_TYPE(inq_data);
5478
5479 /*
5480 * Figure out basic device type and qualifier.
5481 */
5482 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5483 qtype = " (vendor-unique qualifier)";
5484 } else {
5485 switch (SID_QUAL(inq_data)) {
5486 case SID_QUAL_LU_CONNECTED:
5487 qtype = "";
5488 break;
5489
5490 case SID_QUAL_LU_OFFLINE:
5491 qtype = " (offline)";
5492 break;
5493
5494 case SID_QUAL_RSVD:
5495 qtype = " (reserved qualifier)";
5496 break;
5497 default:
5498 case SID_QUAL_BAD_LU:
5499 qtype = " (LUN not supported)";
5500 break;
5501 }
5502 }
5503
5504 switch (type) {
5505 case T_DIRECT:
5506 dtype = "Direct Access";
5507 break;
5508 case T_SEQUENTIAL:
5509 dtype = "Sequential Access";
5510 break;
5511 case T_PRINTER:
5512 dtype = "Printer";
5513 break;
5514 case T_PROCESSOR:
5515 dtype = "Processor";
5516 break;
5517 case T_WORM:
5518 dtype = "WORM";
5519 break;
5520 case T_CDROM:
5521 dtype = "CD-ROM";
5522 break;
5523 case T_SCANNER:
5524 dtype = "Scanner";
5525 break;
5526 case T_OPTICAL:
5527 dtype = "Optical";
5528 break;
5529 case T_CHANGER:
5530 dtype = "Changer";
5531 break;
5532 case T_COMM:
5533 dtype = "Communication";
5534 break;
5535 case T_STORARRAY:
5536 dtype = "Storage Array";
5537 break;
5538 case T_ENCLOSURE:
5539 dtype = "Enclosure Services";
5540 break;
5541 case T_RBC:
5542 dtype = "Simplified Direct Access";
5543 break;
5544 case T_OCRW:
5545 dtype = "Optical Card Read/Write";
5546 break;
5547 case T_OSD:
5548 dtype = "Object-Based Storage";
5549 break;
5550 case T_ADC:
5551 dtype = "Automation/Drive Interface";
5552 break;
5553 case T_ZBC_HM:
5554 dtype = "Host Managed Zoned Block";
5555 break;
5556 case T_NODEVICE:
5557 dtype = "Uninstalled";
5558 break;
5559 default:
5560 dtype = "unknown";
5561 break;
5562 }
5563
5564 scsi_print_inquiry_short_sbuf(sb, inq_data);
5565
5566 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5567
5568 if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5569 sbuf_cat(sb, "SCSI ");
5570 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5571 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5572 } else {
5573 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5574 }
5575 sbuf_printf(sb, "device%s\n", qtype);
5576 }
5577
5578 void
scsi_print_inquiry(struct scsi_inquiry_data * inq_data)5579 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5580 {
5581 struct sbuf sb;
5582 char buffer[120];
5583
5584 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5585 scsi_print_inquiry_sbuf(&sb, inq_data);
5586 sbuf_finish(&sb);
5587 sbuf_putbuf(&sb);
5588 }
5589
5590 void
scsi_print_inquiry_short_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5591 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5592 {
5593
5594 sbuf_putc(sb, '<');
5595 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5596 sbuf_putc(sb, ' ');
5597 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5598 sbuf_putc(sb, ' ');
5599 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5600 sbuf_cat(sb, "> ");
5601 }
5602
5603 void
scsi_print_inquiry_short(struct scsi_inquiry_data * inq_data)5604 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5605 {
5606 struct sbuf sb;
5607 char buffer[84];
5608
5609 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5610 scsi_print_inquiry_short_sbuf(&sb, inq_data);
5611 sbuf_finish(&sb);
5612 sbuf_putbuf(&sb);
5613 }
5614
5615 /*
5616 * Table of syncrates that don't follow the "divisible by 4"
5617 * rule. This table will be expanded in future SCSI specs.
5618 */
5619 static struct {
5620 u_int period_factor;
5621 u_int period; /* in 100ths of ns */
5622 } scsi_syncrates[] = {
5623 { 0x08, 625 }, /* FAST-160 */
5624 { 0x09, 1250 }, /* FAST-80 */
5625 { 0x0a, 2500 }, /* FAST-40 40MHz */
5626 { 0x0b, 3030 }, /* FAST-40 33MHz */
5627 { 0x0c, 5000 } /* FAST-20 */
5628 };
5629
5630 /*
5631 * Return the frequency in kHz corresponding to the given
5632 * sync period factor.
5633 */
5634 u_int
scsi_calc_syncsrate(u_int period_factor)5635 scsi_calc_syncsrate(u_int period_factor)
5636 {
5637 u_int i;
5638 u_int num_syncrates;
5639
5640 /*
5641 * It's a bug if period is zero, but if it is anyway, don't
5642 * die with a divide fault- instead return something which
5643 * 'approximates' async
5644 */
5645 if (period_factor == 0) {
5646 return (3300);
5647 }
5648
5649 num_syncrates = nitems(scsi_syncrates);
5650 /* See if the period is in the "exception" table */
5651 for (i = 0; i < num_syncrates; i++) {
5652 if (period_factor == scsi_syncrates[i].period_factor) {
5653 /* Period in kHz */
5654 return (100000000 / scsi_syncrates[i].period);
5655 }
5656 }
5657
5658 /*
5659 * Wasn't in the table, so use the standard
5660 * 4 times conversion.
5661 */
5662 return (10000000 / (period_factor * 4 * 10));
5663 }
5664
5665 /*
5666 * Return the SCSI sync parameter that corresponds to
5667 * the passed in period in 10ths of ns.
5668 */
5669 u_int
scsi_calc_syncparam(u_int period)5670 scsi_calc_syncparam(u_int period)
5671 {
5672 u_int i;
5673 u_int num_syncrates;
5674
5675 if (period == 0)
5676 return (~0); /* Async */
5677
5678 /* Adjust for exception table being in 100ths. */
5679 period *= 10;
5680 num_syncrates = nitems(scsi_syncrates);
5681 /* See if the period is in the "exception" table */
5682 for (i = 0; i < num_syncrates; i++) {
5683 if (period <= scsi_syncrates[i].period) {
5684 /* Period in 100ths of ns */
5685 return (scsi_syncrates[i].period_factor);
5686 }
5687 }
5688
5689 /*
5690 * Wasn't in the table, so use the standard
5691 * 1/4 period in ns conversion.
5692 */
5693 return (period/400);
5694 }
5695
5696 int
scsi_devid_is_naa_ieee_reg(uint8_t * bufp)5697 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5698 {
5699 struct scsi_vpd_id_descriptor *descr;
5700 struct scsi_vpd_id_naa_basic *naa;
5701 int n;
5702
5703 descr = (struct scsi_vpd_id_descriptor *)bufp;
5704 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5705 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5706 return 0;
5707 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5708 return 0;
5709 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5710 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5711 return 0;
5712 return 1;
5713 }
5714
5715 int
scsi_devid_is_sas_target(uint8_t * bufp)5716 scsi_devid_is_sas_target(uint8_t *bufp)
5717 {
5718 struct scsi_vpd_id_descriptor *descr;
5719
5720 descr = (struct scsi_vpd_id_descriptor *)bufp;
5721 if (!scsi_devid_is_naa_ieee_reg(bufp))
5722 return 0;
5723 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5724 return 0;
5725 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5726 return 0;
5727 return 1;
5728 }
5729
5730 int
scsi_devid_is_lun_eui64(uint8_t * bufp)5731 scsi_devid_is_lun_eui64(uint8_t *bufp)
5732 {
5733 struct scsi_vpd_id_descriptor *descr;
5734
5735 descr = (struct scsi_vpd_id_descriptor *)bufp;
5736 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5737 return 0;
5738 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5739 return 0;
5740 return 1;
5741 }
5742
5743 int
scsi_devid_is_lun_naa(uint8_t * bufp)5744 scsi_devid_is_lun_naa(uint8_t *bufp)
5745 {
5746 struct scsi_vpd_id_descriptor *descr;
5747
5748 descr = (struct scsi_vpd_id_descriptor *)bufp;
5749 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5750 return 0;
5751 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5752 return 0;
5753 return 1;
5754 }
5755
5756 int
scsi_devid_is_lun_t10(uint8_t * bufp)5757 scsi_devid_is_lun_t10(uint8_t *bufp)
5758 {
5759 struct scsi_vpd_id_descriptor *descr;
5760
5761 descr = (struct scsi_vpd_id_descriptor *)bufp;
5762 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5763 return 0;
5764 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5765 return 0;
5766 return 1;
5767 }
5768
5769 int
scsi_devid_is_lun_name(uint8_t * bufp)5770 scsi_devid_is_lun_name(uint8_t *bufp)
5771 {
5772 struct scsi_vpd_id_descriptor *descr;
5773
5774 descr = (struct scsi_vpd_id_descriptor *)bufp;
5775 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5776 return 0;
5777 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5778 return 0;
5779 return 1;
5780 }
5781
5782 int
scsi_devid_is_lun_md5(uint8_t * bufp)5783 scsi_devid_is_lun_md5(uint8_t *bufp)
5784 {
5785 struct scsi_vpd_id_descriptor *descr;
5786
5787 descr = (struct scsi_vpd_id_descriptor *)bufp;
5788 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5789 return 0;
5790 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5791 return 0;
5792 return 1;
5793 }
5794
5795 int
scsi_devid_is_lun_uuid(uint8_t * bufp)5796 scsi_devid_is_lun_uuid(uint8_t *bufp)
5797 {
5798 struct scsi_vpd_id_descriptor *descr;
5799
5800 descr = (struct scsi_vpd_id_descriptor *)bufp;
5801 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5802 return 0;
5803 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5804 return 0;
5805 return 1;
5806 }
5807
5808 int
scsi_devid_is_port_naa(uint8_t * bufp)5809 scsi_devid_is_port_naa(uint8_t *bufp)
5810 {
5811 struct scsi_vpd_id_descriptor *descr;
5812
5813 descr = (struct scsi_vpd_id_descriptor *)bufp;
5814 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5815 return 0;
5816 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5817 return 0;
5818 return 1;
5819 }
5820
5821 struct scsi_vpd_id_descriptor *
scsi_get_devid_desc(struct scsi_vpd_id_descriptor * desc,uint32_t len,scsi_devid_checkfn_t ck_fn)5822 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5823 scsi_devid_checkfn_t ck_fn)
5824 {
5825 uint8_t *desc_buf_end;
5826
5827 desc_buf_end = (uint8_t *)desc + len;
5828
5829 for (; desc->identifier <= desc_buf_end &&
5830 desc->identifier + desc->length <= desc_buf_end;
5831 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5832 + desc->length)) {
5833 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5834 return (desc);
5835 }
5836 return (NULL);
5837 }
5838
5839 struct scsi_vpd_id_descriptor *
scsi_get_devid(struct scsi_vpd_device_id * id,uint32_t page_len,scsi_devid_checkfn_t ck_fn)5840 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5841 scsi_devid_checkfn_t ck_fn)
5842 {
5843 uint32_t len;
5844
5845 if (page_len < sizeof(*id))
5846 return (NULL);
5847 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5848 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5849 id->desc_list, len, ck_fn));
5850 }
5851
5852 int
scsi_transportid_sbuf(struct sbuf * sb,struct scsi_transportid_header * hdr,uint32_t valid_len)5853 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5854 uint32_t valid_len)
5855 {
5856 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5857 case SCSI_PROTO_FC: {
5858 struct scsi_transportid_fcp *fcp;
5859 uint64_t n_port_name;
5860
5861 fcp = (struct scsi_transportid_fcp *)hdr;
5862
5863 n_port_name = scsi_8btou64(fcp->n_port_name);
5864
5865 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5866 break;
5867 }
5868 case SCSI_PROTO_SPI: {
5869 struct scsi_transportid_spi *spi;
5870
5871 spi = (struct scsi_transportid_spi *)hdr;
5872
5873 sbuf_printf(sb, "SPI address: %u,%u",
5874 scsi_2btoul(spi->scsi_addr),
5875 scsi_2btoul(spi->rel_trgt_port_id));
5876 break;
5877 }
5878 case SCSI_PROTO_SSA:
5879 /*
5880 * XXX KDM there is no transport ID defined in SPC-4 for
5881 * SSA.
5882 */
5883 break;
5884 case SCSI_PROTO_1394: {
5885 struct scsi_transportid_1394 *sbp;
5886 uint64_t eui64;
5887
5888 sbp = (struct scsi_transportid_1394 *)hdr;
5889
5890 eui64 = scsi_8btou64(sbp->eui64);
5891 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5892 break;
5893 }
5894 case SCSI_PROTO_RDMA: {
5895 struct scsi_transportid_rdma *rdma;
5896 unsigned int i;
5897
5898 rdma = (struct scsi_transportid_rdma *)hdr;
5899
5900 sbuf_cat(sb, "RDMA address: 0x");
5901 for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5902 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5903 break;
5904 }
5905 case SCSI_PROTO_ISCSI: {
5906 uint32_t add_len, i;
5907 uint8_t *iscsi_name = NULL;
5908 int nul_found = 0;
5909
5910 sbuf_cat(sb, "iSCSI address: ");
5911 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5912 SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5913 struct scsi_transportid_iscsi_device *dev;
5914
5915 dev = (struct scsi_transportid_iscsi_device *)hdr;
5916
5917 /*
5918 * Verify how much additional data we really have.
5919 */
5920 add_len = scsi_2btoul(dev->additional_length);
5921 add_len = MIN(add_len, valid_len -
5922 __offsetof(struct scsi_transportid_iscsi_device,
5923 iscsi_name));
5924 iscsi_name = &dev->iscsi_name[0];
5925
5926 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5927 SCSI_TRN_ISCSI_FORMAT_PORT) {
5928 struct scsi_transportid_iscsi_port *port;
5929
5930 port = (struct scsi_transportid_iscsi_port *)hdr;
5931
5932 add_len = scsi_2btoul(port->additional_length);
5933 add_len = MIN(add_len, valid_len -
5934 __offsetof(struct scsi_transportid_iscsi_port,
5935 iscsi_name));
5936 iscsi_name = &port->iscsi_name[0];
5937 } else {
5938 sbuf_printf(sb, "unknown format %x",
5939 (hdr->format_protocol &
5940 SCSI_TRN_FORMAT_MASK) >>
5941 SCSI_TRN_FORMAT_SHIFT);
5942 break;
5943 }
5944 if (add_len == 0) {
5945 sbuf_cat(sb, "not enough data");
5946 break;
5947 }
5948 /*
5949 * This is supposed to be a NUL-terminated ASCII
5950 * string, but you never know. So we're going to
5951 * check. We need to do this because there is no
5952 * sbuf equivalent of strncat().
5953 */
5954 for (i = 0; i < add_len; i++) {
5955 if (iscsi_name[i] == '\0') {
5956 nul_found = 1;
5957 break;
5958 }
5959 }
5960 /*
5961 * If there is a NUL in the name, we can just use
5962 * sbuf_cat(). Otherwise we need to use sbuf_bcat().
5963 */
5964 if (nul_found != 0)
5965 sbuf_cat(sb, iscsi_name);
5966 else
5967 sbuf_bcat(sb, iscsi_name, add_len);
5968 break;
5969 }
5970 case SCSI_PROTO_SAS: {
5971 struct scsi_transportid_sas *sas;
5972 uint64_t sas_addr;
5973
5974 sas = (struct scsi_transportid_sas *)hdr;
5975
5976 sas_addr = scsi_8btou64(sas->sas_address);
5977 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5978 break;
5979 }
5980 case SCSI_PROTO_ADITP:
5981 case SCSI_PROTO_ATA:
5982 case SCSI_PROTO_UAS:
5983 /*
5984 * No Transport ID format for ADI, ATA or USB is defined in
5985 * SPC-4.
5986 */
5987 sbuf_printf(sb, "No known Transport ID format for protocol "
5988 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5989 break;
5990 case SCSI_PROTO_SOP: {
5991 struct scsi_transportid_sop *sop;
5992 struct scsi_sop_routing_id_norm *rid;
5993
5994 sop = (struct scsi_transportid_sop *)hdr;
5995 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5996
5997 /*
5998 * Note that there is no alternate format specified in SPC-4
5999 * for the PCIe routing ID, so we don't really have a way
6000 * to know whether the second byte of the routing ID is
6001 * a device and function or just a function. So we just
6002 * assume bus,device,function.
6003 */
6004 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
6005 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
6006 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
6007 break;
6008 }
6009 case SCSI_PROTO_NONE:
6010 default:
6011 sbuf_printf(sb, "Unknown protocol %#x",
6012 hdr->format_protocol & SCSI_TRN_PROTO_MASK);
6013 break;
6014 }
6015
6016 return (0);
6017 }
6018
6019 struct scsi_nv scsi_proto_map[] = {
6020 { "fcp", SCSI_PROTO_FC },
6021 { "spi", SCSI_PROTO_SPI },
6022 { "ssa", SCSI_PROTO_SSA },
6023 { "sbp", SCSI_PROTO_1394 },
6024 { "1394", SCSI_PROTO_1394 },
6025 { "srp", SCSI_PROTO_RDMA },
6026 { "rdma", SCSI_PROTO_RDMA },
6027 { "iscsi", SCSI_PROTO_ISCSI },
6028 { "iqn", SCSI_PROTO_ISCSI },
6029 { "sas", SCSI_PROTO_SAS },
6030 { "aditp", SCSI_PROTO_ADITP },
6031 { "ata", SCSI_PROTO_ATA },
6032 { "uas", SCSI_PROTO_UAS },
6033 { "usb", SCSI_PROTO_UAS },
6034 { "sop", SCSI_PROTO_SOP }
6035 };
6036
6037 const char *
scsi_nv_to_str(struct scsi_nv * table,int num_table_entries,uint64_t value)6038 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
6039 {
6040 int i;
6041
6042 for (i = 0; i < num_table_entries; i++) {
6043 if (table[i].value == value)
6044 return (table[i].name);
6045 }
6046
6047 return (NULL);
6048 }
6049
6050 /*
6051 * Given a name/value table, find a value matching the given name.
6052 * Return values:
6053 * SCSI_NV_FOUND - match found
6054 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact
6055 * SCSI_NV_NOT_FOUND - no match found
6056 */
6057 scsi_nv_status
scsi_get_nv(struct scsi_nv * table,int num_table_entries,char * name,int * table_entry,scsi_nv_flags flags)6058 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
6059 char *name, int *table_entry, scsi_nv_flags flags)
6060 {
6061 int i, num_matches = 0;
6062
6063 for (i = 0; i < num_table_entries; i++) {
6064 size_t table_len, name_len;
6065
6066 table_len = strlen(table[i].name);
6067 name_len = strlen(name);
6068
6069 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
6070 && (strncasecmp(table[i].name, name, name_len) == 0))
6071 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
6072 && (strncmp(table[i].name, name, name_len) == 0))) {
6073 *table_entry = i;
6074
6075 /*
6076 * Check for an exact match. If we have the same
6077 * number of characters in the table as the argument,
6078 * and we already know they're the same, we have
6079 * an exact match.
6080 */
6081 if (table_len == name_len)
6082 return (SCSI_NV_FOUND);
6083
6084 /*
6085 * Otherwise, bump up the number of matches. We'll
6086 * see later how many we have.
6087 */
6088 num_matches++;
6089 }
6090 }
6091
6092 if (num_matches > 1)
6093 return (SCSI_NV_AMBIGUOUS);
6094 else if (num_matches == 1)
6095 return (SCSI_NV_FOUND);
6096 else
6097 return (SCSI_NV_NOT_FOUND);
6098 }
6099
6100 /*
6101 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are
6102 * all 64-bit numbers, the code is similar.
6103 */
6104 int
scsi_parse_transportid_64bit(int proto_id,char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6105 scsi_parse_transportid_64bit(int proto_id, char *id_str,
6106 struct scsi_transportid_header **hdr,
6107 unsigned int *alloc_len,
6108 #ifdef _KERNEL
6109 struct malloc_type *type, int flags,
6110 #endif
6111 char *error_str, int error_str_len)
6112 {
6113 uint64_t value;
6114 char *endptr;
6115 int retval;
6116 size_t alloc_size;
6117
6118 retval = 0;
6119
6120 value = strtouq(id_str, &endptr, 0);
6121 if (*endptr != '\0') {
6122 if (error_str != NULL) {
6123 snprintf(error_str, error_str_len, "%s: error "
6124 "parsing ID %s, 64-bit number required",
6125 __func__, id_str);
6126 }
6127 retval = 1;
6128 goto bailout;
6129 }
6130
6131 switch (proto_id) {
6132 case SCSI_PROTO_FC:
6133 alloc_size = sizeof(struct scsi_transportid_fcp);
6134 break;
6135 case SCSI_PROTO_1394:
6136 alloc_size = sizeof(struct scsi_transportid_1394);
6137 break;
6138 case SCSI_PROTO_SAS:
6139 alloc_size = sizeof(struct scsi_transportid_sas);
6140 break;
6141 default:
6142 if (error_str != NULL) {
6143 snprintf(error_str, error_str_len, "%s: unsupported "
6144 "protocol %d", __func__, proto_id);
6145 }
6146 retval = 1;
6147 goto bailout;
6148 break; /* NOTREACHED */
6149 }
6150 #ifdef _KERNEL
6151 *hdr = malloc(alloc_size, type, flags);
6152 #else /* _KERNEL */
6153 *hdr = malloc(alloc_size);
6154 #endif /*_KERNEL */
6155 if (*hdr == NULL) {
6156 if (error_str != NULL) {
6157 snprintf(error_str, error_str_len, "%s: unable to "
6158 "allocate %zu bytes", __func__, alloc_size);
6159 }
6160 retval = 1;
6161 goto bailout;
6162 }
6163
6164 *alloc_len = alloc_size;
6165
6166 bzero(*hdr, alloc_size);
6167
6168 switch (proto_id) {
6169 case SCSI_PROTO_FC: {
6170 struct scsi_transportid_fcp *fcp;
6171
6172 fcp = (struct scsi_transportid_fcp *)(*hdr);
6173 fcp->format_protocol = SCSI_PROTO_FC |
6174 SCSI_TRN_FCP_FORMAT_DEFAULT;
6175 scsi_u64to8b(value, fcp->n_port_name);
6176 break;
6177 }
6178 case SCSI_PROTO_1394: {
6179 struct scsi_transportid_1394 *sbp;
6180
6181 sbp = (struct scsi_transportid_1394 *)(*hdr);
6182 sbp->format_protocol = SCSI_PROTO_1394 |
6183 SCSI_TRN_1394_FORMAT_DEFAULT;
6184 scsi_u64to8b(value, sbp->eui64);
6185 break;
6186 }
6187 case SCSI_PROTO_SAS: {
6188 struct scsi_transportid_sas *sas;
6189
6190 sas = (struct scsi_transportid_sas *)(*hdr);
6191 sas->format_protocol = SCSI_PROTO_SAS |
6192 SCSI_TRN_SAS_FORMAT_DEFAULT;
6193 scsi_u64to8b(value, sas->sas_address);
6194 break;
6195 }
6196 default:
6197 break;
6198 }
6199 bailout:
6200 return (retval);
6201 }
6202
6203 /*
6204 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6205 */
6206 int
scsi_parse_transportid_spi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6207 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6208 unsigned int *alloc_len,
6209 #ifdef _KERNEL
6210 struct malloc_type *type, int flags,
6211 #endif
6212 char *error_str, int error_str_len)
6213 {
6214 unsigned long scsi_addr, target_port;
6215 struct scsi_transportid_spi *spi;
6216 char *tmpstr, *endptr;
6217 int retval;
6218
6219 retval = 0;
6220
6221 tmpstr = strsep(&id_str, ",");
6222 if (tmpstr == NULL) {
6223 if (error_str != NULL) {
6224 snprintf(error_str, error_str_len,
6225 "%s: no ID found", __func__);
6226 }
6227 retval = 1;
6228 goto bailout;
6229 }
6230 scsi_addr = strtoul(tmpstr, &endptr, 0);
6231 if (*endptr != '\0') {
6232 if (error_str != NULL) {
6233 snprintf(error_str, error_str_len, "%s: error "
6234 "parsing SCSI ID %s, number required",
6235 __func__, tmpstr);
6236 }
6237 retval = 1;
6238 goto bailout;
6239 }
6240
6241 if (id_str == NULL) {
6242 if (error_str != NULL) {
6243 snprintf(error_str, error_str_len, "%s: no relative "
6244 "target port found", __func__);
6245 }
6246 retval = 1;
6247 goto bailout;
6248 }
6249
6250 target_port = strtoul(id_str, &endptr, 0);
6251 if (*endptr != '\0') {
6252 if (error_str != NULL) {
6253 snprintf(error_str, error_str_len, "%s: error "
6254 "parsing relative target port %s, number "
6255 "required", __func__, id_str);
6256 }
6257 retval = 1;
6258 goto bailout;
6259 }
6260 #ifdef _KERNEL
6261 spi = malloc(sizeof(*spi), type, flags);
6262 #else
6263 spi = malloc(sizeof(*spi));
6264 #endif
6265 if (spi == NULL) {
6266 if (error_str != NULL) {
6267 snprintf(error_str, error_str_len, "%s: unable to "
6268 "allocate %zu bytes", __func__,
6269 sizeof(*spi));
6270 }
6271 retval = 1;
6272 goto bailout;
6273 }
6274 *alloc_len = sizeof(*spi);
6275 bzero(spi, sizeof(*spi));
6276
6277 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6278 scsi_ulto2b(scsi_addr, spi->scsi_addr);
6279 scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6280
6281 *hdr = (struct scsi_transportid_header *)spi;
6282 bailout:
6283 return (retval);
6284 }
6285
6286 /*
6287 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits,
6288 * optionally prefixed by "0x" or "0X".
6289 */
6290 int
scsi_parse_transportid_rdma(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6291 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6292 unsigned int *alloc_len,
6293 #ifdef _KERNEL
6294 struct malloc_type *type, int flags,
6295 #endif
6296 char *error_str, int error_str_len)
6297 {
6298 struct scsi_transportid_rdma *rdma;
6299 int retval;
6300 size_t id_len, rdma_id_size;
6301 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6302 char *tmpstr;
6303 unsigned int i, j;
6304
6305 retval = 0;
6306 id_len = strlen(id_str);
6307 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6308
6309 /*
6310 * Check the size. It needs to be either 32 or 34 characters long.
6311 */
6312 if ((id_len != (rdma_id_size * 2))
6313 && (id_len != ((rdma_id_size * 2) + 2))) {
6314 if (error_str != NULL) {
6315 snprintf(error_str, error_str_len, "%s: RDMA ID "
6316 "must be 32 hex digits (0x prefix "
6317 "optional), only %zu seen", __func__, id_len);
6318 }
6319 retval = 1;
6320 goto bailout;
6321 }
6322
6323 tmpstr = id_str;
6324 /*
6325 * If the user gave us 34 characters, the string needs to start
6326 * with '0x'.
6327 */
6328 if (id_len == ((rdma_id_size * 2) + 2)) {
6329 if ((tmpstr[0] == '0')
6330 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6331 tmpstr += 2;
6332 } else {
6333 if (error_str != NULL) {
6334 snprintf(error_str, error_str_len, "%s: RDMA "
6335 "ID prefix, if used, must be \"0x\", "
6336 "got %s", __func__, tmpstr);
6337 }
6338 retval = 1;
6339 goto bailout;
6340 }
6341 }
6342 bzero(rdma_id, sizeof(rdma_id));
6343
6344 /*
6345 * Convert ASCII hex into binary bytes. There is no standard
6346 * 128-bit integer type, and so no strtou128t() routine to convert
6347 * from hex into a large integer. In the end, we're not going to
6348 * an integer, but rather to a byte array, so that and the fact
6349 * that we require the user to give us 32 hex digits simplifies the
6350 * logic.
6351 */
6352 for (i = 0; i < (rdma_id_size * 2); i++) {
6353 int cur_shift;
6354 unsigned char c;
6355
6356 /* Increment the byte array one for every 2 hex digits */
6357 j = i >> 1;
6358
6359 /*
6360 * The first digit in every pair is the most significant
6361 * 4 bits. The second is the least significant 4 bits.
6362 */
6363 if ((i % 2) == 0)
6364 cur_shift = 4;
6365 else
6366 cur_shift = 0;
6367
6368 c = tmpstr[i];
6369 /* Convert the ASCII hex character into a number */
6370 if (isdigit(c))
6371 c -= '0';
6372 else if (isalpha(c))
6373 c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6374 else {
6375 if (error_str != NULL) {
6376 snprintf(error_str, error_str_len, "%s: "
6377 "RDMA ID must be hex digits, got "
6378 "invalid character %c", __func__,
6379 tmpstr[i]);
6380 }
6381 retval = 1;
6382 goto bailout;
6383 }
6384 /*
6385 * The converted number can't be less than 0; the type is
6386 * unsigned, and the subtraction logic will not give us
6387 * a negative number. So we only need to make sure that
6388 * the value is not greater than 0xf. (i.e. make sure the
6389 * user didn't give us a value like "0x12jklmno").
6390 */
6391 if (c > 0xf) {
6392 if (error_str != NULL) {
6393 snprintf(error_str, error_str_len, "%s: "
6394 "RDMA ID must be hex digits, got "
6395 "invalid character %c", __func__,
6396 tmpstr[i]);
6397 }
6398 retval = 1;
6399 goto bailout;
6400 }
6401
6402 rdma_id[j] |= c << cur_shift;
6403 }
6404
6405 #ifdef _KERNEL
6406 rdma = malloc(sizeof(*rdma), type, flags);
6407 #else
6408 rdma = malloc(sizeof(*rdma));
6409 #endif
6410 if (rdma == NULL) {
6411 if (error_str != NULL) {
6412 snprintf(error_str, error_str_len, "%s: unable to "
6413 "allocate %zu bytes", __func__,
6414 sizeof(*rdma));
6415 }
6416 retval = 1;
6417 goto bailout;
6418 }
6419 *alloc_len = sizeof(*rdma);
6420 bzero(rdma, *alloc_len);
6421
6422 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6423 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6424
6425 *hdr = (struct scsi_transportid_header *)rdma;
6426
6427 bailout:
6428 return (retval);
6429 }
6430
6431 /*
6432 * Parse an iSCSI name. The format is either just the name:
6433 *
6434 * iqn.2012-06.com.example:target0
6435 * or the name, separator and initiator session ID:
6436 *
6437 * iqn.2012-06.com.example:target0,i,0x123
6438 *
6439 * The separator format is exact.
6440 */
6441 int
scsi_parse_transportid_iscsi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6442 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6443 unsigned int *alloc_len,
6444 #ifdef _KERNEL
6445 struct malloc_type *type, int flags,
6446 #endif
6447 char *error_str, int error_str_len)
6448 {
6449 size_t id_len, sep_len, id_size, name_len;
6450 int retval;
6451 unsigned int i, sep_pos, sep_found;
6452 const char *sep_template = ",i,0x";
6453 const char *iqn_prefix = "iqn.";
6454 struct scsi_transportid_iscsi_device *iscsi;
6455
6456 retval = 0;
6457 sep_found = 0;
6458
6459 id_len = strlen(id_str);
6460 sep_len = strlen(sep_template);
6461
6462 /*
6463 * The separator is defined as exactly ',i,0x'. Any other commas,
6464 * or any other form, is an error. So look for a comma, and once
6465 * we find that, the next few characters must match the separator
6466 * exactly. Once we get through the separator, there should be at
6467 * least one character.
6468 */
6469 for (i = 0, sep_pos = 0; i < id_len; i++) {
6470 if (sep_pos == 0) {
6471 if (id_str[i] == sep_template[sep_pos])
6472 sep_pos++;
6473
6474 continue;
6475 }
6476 if (sep_pos < sep_len) {
6477 if (id_str[i] == sep_template[sep_pos]) {
6478 sep_pos++;
6479 continue;
6480 }
6481 if (error_str != NULL) {
6482 snprintf(error_str, error_str_len, "%s: "
6483 "invalid separator in iSCSI name "
6484 "\"%s\"",
6485 __func__, id_str);
6486 }
6487 retval = 1;
6488 goto bailout;
6489 } else {
6490 sep_found = 1;
6491 break;
6492 }
6493 }
6494
6495 /*
6496 * Check to see whether we have a separator but no digits after it.
6497 */
6498 if ((sep_pos != 0)
6499 && (sep_found == 0)) {
6500 if (error_str != NULL) {
6501 snprintf(error_str, error_str_len, "%s: no digits "
6502 "found after separator in iSCSI name \"%s\"",
6503 __func__, id_str);
6504 }
6505 retval = 1;
6506 goto bailout;
6507 }
6508
6509 /*
6510 * The incoming ID string has the "iqn." prefix stripped off. We
6511 * need enough space for the base structure (the structures are the
6512 * same for the two iSCSI forms), the prefix, the ID string and a
6513 * terminating NUL.
6514 */
6515 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6516
6517 #ifdef _KERNEL
6518 iscsi = malloc(id_size, type, flags);
6519 #else
6520 iscsi = malloc(id_size);
6521 #endif
6522 if (iscsi == NULL) {
6523 if (error_str != NULL) {
6524 snprintf(error_str, error_str_len, "%s: unable to "
6525 "allocate %zu bytes", __func__, id_size);
6526 }
6527 retval = 1;
6528 goto bailout;
6529 }
6530 *alloc_len = id_size;
6531 bzero(iscsi, id_size);
6532
6533 iscsi->format_protocol = SCSI_PROTO_ISCSI;
6534 if (sep_found == 0)
6535 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6536 else
6537 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6538 name_len = id_size - sizeof(*iscsi);
6539 scsi_ulto2b(name_len, iscsi->additional_length);
6540 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6541
6542 *hdr = (struct scsi_transportid_header *)iscsi;
6543
6544 bailout:
6545 return (retval);
6546 }
6547
6548 /*
6549 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be
6550 * of the form 'bus,device,function' or 'bus,function'.
6551 */
6552 int
scsi_parse_transportid_sop(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6553 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6554 unsigned int *alloc_len,
6555 #ifdef _KERNEL
6556 struct malloc_type *type, int flags,
6557 #endif
6558 char *error_str, int error_str_len)
6559 {
6560 struct scsi_transportid_sop *sop;
6561 unsigned long bus, device, function;
6562 char *tmpstr, *endptr;
6563 int retval, device_spec;
6564
6565 retval = 0;
6566 device_spec = 0;
6567 device = 0;
6568
6569 tmpstr = strsep(&id_str, ",");
6570 if ((tmpstr == NULL)
6571 || (*tmpstr == '\0')) {
6572 if (error_str != NULL) {
6573 snprintf(error_str, error_str_len, "%s: no ID found",
6574 __func__);
6575 }
6576 retval = 1;
6577 goto bailout;
6578 }
6579 bus = strtoul(tmpstr, &endptr, 0);
6580 if (*endptr != '\0') {
6581 if (error_str != NULL) {
6582 snprintf(error_str, error_str_len, "%s: error "
6583 "parsing PCIe bus %s, number required",
6584 __func__, tmpstr);
6585 }
6586 retval = 1;
6587 goto bailout;
6588 }
6589 if ((id_str == NULL)
6590 || (*id_str == '\0')) {
6591 if (error_str != NULL) {
6592 snprintf(error_str, error_str_len, "%s: no PCIe "
6593 "device or function found", __func__);
6594 }
6595 retval = 1;
6596 goto bailout;
6597 }
6598 tmpstr = strsep(&id_str, ",");
6599 function = strtoul(tmpstr, &endptr, 0);
6600 if (*endptr != '\0') {
6601 if (error_str != NULL) {
6602 snprintf(error_str, error_str_len, "%s: error "
6603 "parsing PCIe device/function %s, number "
6604 "required", __func__, tmpstr);
6605 }
6606 retval = 1;
6607 goto bailout;
6608 }
6609 /*
6610 * Check to see whether the user specified a third value. If so,
6611 * the second is the device.
6612 */
6613 if (id_str != NULL) {
6614 if (*id_str == '\0') {
6615 if (error_str != NULL) {
6616 snprintf(error_str, error_str_len, "%s: "
6617 "no PCIe function found", __func__);
6618 }
6619 retval = 1;
6620 goto bailout;
6621 }
6622 device = function;
6623 device_spec = 1;
6624 function = strtoul(id_str, &endptr, 0);
6625 if (*endptr != '\0') {
6626 if (error_str != NULL) {
6627 snprintf(error_str, error_str_len, "%s: "
6628 "error parsing PCIe function %s, "
6629 "number required", __func__, id_str);
6630 }
6631 retval = 1;
6632 goto bailout;
6633 }
6634 }
6635 if (bus > SCSI_TRN_SOP_BUS_MAX) {
6636 if (error_str != NULL) {
6637 snprintf(error_str, error_str_len, "%s: bus value "
6638 "%lu greater than maximum %u", __func__,
6639 bus, SCSI_TRN_SOP_BUS_MAX);
6640 }
6641 retval = 1;
6642 goto bailout;
6643 }
6644
6645 if ((device_spec != 0)
6646 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6647 if (error_str != NULL) {
6648 snprintf(error_str, error_str_len, "%s: device value "
6649 "%lu greater than maximum %u", __func__,
6650 device, SCSI_TRN_SOP_DEV_MAX);
6651 }
6652 retval = 1;
6653 goto bailout;
6654 }
6655
6656 if (((device_spec != 0)
6657 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6658 || ((device_spec == 0)
6659 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6660 if (error_str != NULL) {
6661 snprintf(error_str, error_str_len, "%s: function value "
6662 "%lu greater than maximum %u", __func__,
6663 function, (device_spec == 0) ?
6664 SCSI_TRN_SOP_FUNC_ALT_MAX :
6665 SCSI_TRN_SOP_FUNC_NORM_MAX);
6666 }
6667 retval = 1;
6668 goto bailout;
6669 }
6670
6671 #ifdef _KERNEL
6672 sop = malloc(sizeof(*sop), type, flags);
6673 #else
6674 sop = malloc(sizeof(*sop));
6675 #endif
6676 if (sop == NULL) {
6677 if (error_str != NULL) {
6678 snprintf(error_str, error_str_len, "%s: unable to "
6679 "allocate %zu bytes", __func__, sizeof(*sop));
6680 }
6681 retval = 1;
6682 goto bailout;
6683 }
6684 *alloc_len = sizeof(*sop);
6685 bzero(sop, sizeof(*sop));
6686 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6687 if (device_spec != 0) {
6688 struct scsi_sop_routing_id_norm rid;
6689
6690 rid.bus = bus;
6691 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6692 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6693 sizeof(sop->routing_id)));
6694 } else {
6695 struct scsi_sop_routing_id_alt rid;
6696
6697 rid.bus = bus;
6698 rid.function = function;
6699 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6700 sizeof(sop->routing_id)));
6701 }
6702
6703 *hdr = (struct scsi_transportid_header *)sop;
6704 bailout:
6705 return (retval);
6706 }
6707
6708 /*
6709 * transportid_str: NUL-terminated string with format: protcol,id
6710 * The ID is protocol specific.
6711 * hdr: Storage will be allocated for the transport ID.
6712 * alloc_len: The amount of memory allocated is returned here.
6713 * type: Malloc bucket (kernel only).
6714 * flags: Malloc flags (kernel only).
6715 * error_str: If non-NULL, it will contain error information (without
6716 * a terminating newline) if an error is returned.
6717 * error_str_len: Allocated length of the error string.
6718 *
6719 * Returns 0 for success, non-zero for failure.
6720 */
6721 int
scsi_parse_transportid(char * transportid_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6722 scsi_parse_transportid(char *transportid_str,
6723 struct scsi_transportid_header **hdr,
6724 unsigned int *alloc_len,
6725 #ifdef _KERNEL
6726 struct malloc_type *type, int flags,
6727 #endif
6728 char *error_str, int error_str_len)
6729 {
6730 char *tmpstr;
6731 scsi_nv_status status;
6732 u_int num_proto_entries;
6733 int retval, table_entry;
6734
6735 retval = 0;
6736 table_entry = 0;
6737
6738 /*
6739 * We do allow a period as well as a comma to separate the protocol
6740 * from the ID string. This is to accommodate iSCSI names, which
6741 * start with "iqn.".
6742 */
6743 tmpstr = strsep(&transportid_str, ",.");
6744 if (tmpstr == NULL) {
6745 if (error_str != NULL) {
6746 snprintf(error_str, error_str_len,
6747 "%s: transportid_str is NULL", __func__);
6748 }
6749 retval = 1;
6750 goto bailout;
6751 }
6752
6753 num_proto_entries = nitems(scsi_proto_map);
6754 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6755 &table_entry, SCSI_NV_FLAG_IG_CASE);
6756 if (status != SCSI_NV_FOUND) {
6757 if (error_str != NULL) {
6758 snprintf(error_str, error_str_len, "%s: %s protocol "
6759 "name %s", __func__,
6760 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6761 "invalid", tmpstr);
6762 }
6763 retval = 1;
6764 goto bailout;
6765 }
6766 switch (scsi_proto_map[table_entry].value) {
6767 case SCSI_PROTO_FC:
6768 case SCSI_PROTO_1394:
6769 case SCSI_PROTO_SAS:
6770 retval = scsi_parse_transportid_64bit(
6771 scsi_proto_map[table_entry].value, transportid_str, hdr,
6772 alloc_len,
6773 #ifdef _KERNEL
6774 type, flags,
6775 #endif
6776 error_str, error_str_len);
6777 break;
6778 case SCSI_PROTO_SPI:
6779 retval = scsi_parse_transportid_spi(transportid_str, hdr,
6780 alloc_len,
6781 #ifdef _KERNEL
6782 type, flags,
6783 #endif
6784 error_str, error_str_len);
6785 break;
6786 case SCSI_PROTO_RDMA:
6787 retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6788 alloc_len,
6789 #ifdef _KERNEL
6790 type, flags,
6791 #endif
6792 error_str, error_str_len);
6793 break;
6794 case SCSI_PROTO_ISCSI:
6795 retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6796 alloc_len,
6797 #ifdef _KERNEL
6798 type, flags,
6799 #endif
6800 error_str, error_str_len);
6801 break;
6802 case SCSI_PROTO_SOP:
6803 retval = scsi_parse_transportid_sop(transportid_str, hdr,
6804 alloc_len,
6805 #ifdef _KERNEL
6806 type, flags,
6807 #endif
6808 error_str, error_str_len);
6809 break;
6810 case SCSI_PROTO_SSA:
6811 case SCSI_PROTO_ADITP:
6812 case SCSI_PROTO_ATA:
6813 case SCSI_PROTO_UAS:
6814 case SCSI_PROTO_NONE:
6815 default:
6816 /*
6817 * There is no format defined for a Transport ID for these
6818 * protocols. So even if the user gives us something, we
6819 * have no way to turn it into a standard SCSI Transport ID.
6820 */
6821 retval = 1;
6822 if (error_str != NULL) {
6823 snprintf(error_str, error_str_len, "%s: no Transport "
6824 "ID format exists for protocol %s",
6825 __func__, tmpstr);
6826 }
6827 goto bailout;
6828 break; /* NOTREACHED */
6829 }
6830 bailout:
6831 return (retval);
6832 }
6833
6834 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6835 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6836 "Remaining Capacity in Partition",
6837 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6838 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6839 "Maximum Capacity in Partition",
6840 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6841 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6842 "TapeAlert Flags",
6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6844 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6845 "Load Count",
6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6847 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6848 "MAM Space Remaining",
6849 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6850 /*parse_str*/ NULL },
6851 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6852 "Assigning Organization",
6853 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6854 /*parse_str*/ NULL },
6855 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6856 "Format Density Code",
6857 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6858 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6859 "Initialization Count",
6860 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6861 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6862 "Volume Identifier",
6863 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6864 /*parse_str*/ NULL },
6865 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6866 "Volume Change Reference",
6867 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6868 /*parse_str*/ NULL },
6869 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6870 "Device Vendor/Serial at Last Load",
6871 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6872 /*parse_str*/ NULL },
6873 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6874 "Device Vendor/Serial at Last Load - 1",
6875 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6876 /*parse_str*/ NULL },
6877 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6878 "Device Vendor/Serial at Last Load - 2",
6879 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6880 /*parse_str*/ NULL },
6881 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6882 "Device Vendor/Serial at Last Load - 3",
6883 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6884 /*parse_str*/ NULL },
6885 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6886 "Total MB Written in Medium Life",
6887 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6888 /*parse_str*/ NULL },
6889 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6890 "Total MB Read in Medium Life",
6891 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6892 /*parse_str*/ NULL },
6893 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6894 "Total MB Written in Current/Last Load",
6895 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6896 /*parse_str*/ NULL },
6897 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6898 "Total MB Read in Current/Last Load",
6899 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6900 /*parse_str*/ NULL },
6901 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6902 "Logical Position of First Encrypted Block",
6903 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6904 /*parse_str*/ NULL },
6905 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6906 "Logical Position of First Unencrypted Block after First "
6907 "Encrypted Block",
6908 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6909 /*parse_str*/ NULL },
6910 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6911 "Medium Usage History",
6912 /*suffix*/ NULL, /*to_str*/ NULL,
6913 /*parse_str*/ NULL },
6914 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6915 "Partition Usage History",
6916 /*suffix*/ NULL, /*to_str*/ NULL,
6917 /*parse_str*/ NULL },
6918 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6919 "Medium Manufacturer",
6920 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6921 /*parse_str*/ NULL },
6922 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6923 "Medium Serial Number",
6924 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6925 /*parse_str*/ NULL },
6926 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6927 "Medium Length",
6928 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6929 /*parse_str*/ NULL },
6930 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6931 SCSI_ATTR_FLAG_FP_1DIGIT,
6932 "Medium Width",
6933 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6934 /*parse_str*/ NULL },
6935 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6936 "Assigning Organization",
6937 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6938 /*parse_str*/ NULL },
6939 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6940 "Medium Density Code",
6941 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6942 /*parse_str*/ NULL },
6943 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6944 "Medium Manufacture Date",
6945 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6946 /*parse_str*/ NULL },
6947 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6948 "MAM Capacity",
6949 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6950 /*parse_str*/ NULL },
6951 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6952 "Medium Type",
6953 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6954 /*parse_str*/ NULL },
6955 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6956 "Medium Type Information",
6957 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6958 /*parse_str*/ NULL },
6959 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6960 "Medium Serial Number",
6961 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6962 /*parse_str*/ NULL },
6963 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6964 "Application Vendor",
6965 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6966 /*parse_str*/ NULL },
6967 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6968 "Application Name",
6969 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6970 /*parse_str*/ NULL },
6971 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6972 "Application Version",
6973 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6974 /*parse_str*/ NULL },
6975 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6976 "User Medium Text Label",
6977 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6978 /*parse_str*/ NULL },
6979 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6980 "Date and Time Last Written",
6981 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6982 /*parse_str*/ NULL },
6983 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6984 "Text Localization Identifier",
6985 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6986 /*parse_str*/ NULL },
6987 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6988 "Barcode",
6989 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6990 /*parse_str*/ NULL },
6991 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6992 "Owning Host Textual Name",
6993 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6994 /*parse_str*/ NULL },
6995 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6996 "Media Pool",
6997 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6998 /*parse_str*/ NULL },
6999 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
7000 "Partition User Text Label",
7001 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
7002 /*parse_str*/ NULL },
7003 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
7004 "Load/Unload at Partition",
7005 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
7006 /*parse_str*/ NULL },
7007 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
7008 "Application Format Version",
7009 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
7010 /*parse_str*/ NULL },
7011 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
7012 "Volume Coherency Information",
7013 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
7014 /*parse_str*/ NULL },
7015 { 0x0ff1, SCSI_ATTR_FLAG_NONE,
7016 "Spectra MLM Creation",
7017 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7018 /*parse_str*/ NULL },
7019 { 0x0ff2, SCSI_ATTR_FLAG_NONE,
7020 "Spectra MLM C3",
7021 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7022 /*parse_str*/ NULL },
7023 { 0x0ff3, SCSI_ATTR_FLAG_NONE,
7024 "Spectra MLM RW",
7025 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7026 /*parse_str*/ NULL },
7027 { 0x0ff4, SCSI_ATTR_FLAG_NONE,
7028 "Spectra MLM SDC List",
7029 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7030 /*parse_str*/ NULL },
7031 { 0x0ff7, SCSI_ATTR_FLAG_NONE,
7032 "Spectra MLM Post Scan",
7033 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7034 /*parse_str*/ NULL },
7035 { 0x0ffe, SCSI_ATTR_FLAG_NONE,
7036 "Spectra MLM Checksum",
7037 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7038 /*parse_str*/ NULL },
7039 { 0x17f1, SCSI_ATTR_FLAG_NONE,
7040 "Spectra MLM Creation",
7041 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7042 /*parse_str*/ NULL },
7043 { 0x17f2, SCSI_ATTR_FLAG_NONE,
7044 "Spectra MLM C3",
7045 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7046 /*parse_str*/ NULL },
7047 { 0x17f3, SCSI_ATTR_FLAG_NONE,
7048 "Spectra MLM RW",
7049 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7050 /*parse_str*/ NULL },
7051 { 0x17f4, SCSI_ATTR_FLAG_NONE,
7052 "Spectra MLM SDC List",
7053 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7054 /*parse_str*/ NULL },
7055 { 0x17f7, SCSI_ATTR_FLAG_NONE,
7056 "Spectra MLM Post Scan",
7057 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7058 /*parse_str*/ NULL },
7059 { 0x17ff, SCSI_ATTR_FLAG_NONE,
7060 "Spectra MLM Checksum",
7061 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7062 /*parse_str*/ NULL },
7063 };
7064
7065 /*
7066 * Print out Volume Coherency Information (Attribute 0x080c).
7067 * This field has two variable length members, including one at the
7068 * beginning, so it isn't practical to have a fixed structure definition.
7069 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
7070 * 2013.
7071 */
7072 int
scsi_attrib_volcoh_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7073 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7074 uint32_t valid_len, uint32_t flags,
7075 uint32_t output_flags, char *error_str,
7076 int error_str_len)
7077 {
7078 size_t avail_len;
7079 uint32_t field_size;
7080 uint64_t tmp_val;
7081 uint8_t *cur_ptr;
7082 int retval;
7083 int vcr_len, as_len;
7084
7085 retval = 0;
7086 tmp_val = 0;
7087
7088 field_size = scsi_2btoul(hdr->length);
7089 avail_len = valid_len - sizeof(*hdr);
7090 if (field_size > avail_len) {
7091 if (error_str != NULL) {
7092 snprintf(error_str, error_str_len, "Available "
7093 "length of attribute ID 0x%.4x %zu < field "
7094 "length %u", scsi_2btoul(hdr->id), avail_len,
7095 field_size);
7096 }
7097 retval = 1;
7098 goto bailout;
7099 } else if (field_size == 0) {
7100 /*
7101 * It isn't clear from the spec whether a field length of
7102 * 0 is invalid here. It probably is, but be lenient here
7103 * to avoid inconveniencing the user.
7104 */
7105 goto bailout;
7106 }
7107 cur_ptr = hdr->attribute;
7108 vcr_len = *cur_ptr;
7109 cur_ptr++;
7110
7111 sbuf_cat(sb, "\n\tVolume Change Reference Value:");
7112
7113 switch (vcr_len) {
7114 case 0:
7115 if (error_str != NULL) {
7116 snprintf(error_str, error_str_len, "Volume Change "
7117 "Reference value has length of 0");
7118 }
7119 retval = 1;
7120 goto bailout;
7121 break; /*NOTREACHED*/
7122 case 1:
7123 tmp_val = *cur_ptr;
7124 break;
7125 case 2:
7126 tmp_val = scsi_2btoul(cur_ptr);
7127 break;
7128 case 3:
7129 tmp_val = scsi_3btoul(cur_ptr);
7130 break;
7131 case 4:
7132 tmp_val = scsi_4btoul(cur_ptr);
7133 break;
7134 case 8:
7135 tmp_val = scsi_8btou64(cur_ptr);
7136 break;
7137 default:
7138 sbuf_putc(sb, '\n');
7139 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7140 break;
7141 }
7142 if (vcr_len <= 8)
7143 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7144
7145 cur_ptr += vcr_len;
7146 tmp_val = scsi_8btou64(cur_ptr);
7147 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7148
7149 cur_ptr += sizeof(tmp_val);
7150 tmp_val = scsi_8btou64(cur_ptr);
7151 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7152 (uintmax_t)tmp_val);
7153
7154 /*
7155 * Figure out how long the Application Client Specific Information
7156 * is and produce a hexdump.
7157 */
7158 cur_ptr += sizeof(tmp_val);
7159 as_len = scsi_2btoul(cur_ptr);
7160 cur_ptr += sizeof(uint16_t);
7161 sbuf_cat(sb, "\tApplication Client Specific Information: ");
7162 if (((as_len == SCSI_LTFS_VER0_LEN)
7163 || (as_len == SCSI_LTFS_VER1_LEN))
7164 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7165 sbuf_cat(sb, "LTFS\n");
7166 cur_ptr += SCSI_LTFS_STR_LEN + 1;
7167 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7168 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7169 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7170 cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7171 /* XXX KDM check the length */
7172 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7173 } else {
7174 sbuf_cat(sb, "Unknown\n");
7175 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7176 }
7177
7178 bailout:
7179 return (retval);
7180 }
7181
7182 int
scsi_attrib_vendser_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7183 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7184 uint32_t valid_len, uint32_t flags,
7185 uint32_t output_flags, char *error_str,
7186 int error_str_len)
7187 {
7188 size_t avail_len;
7189 uint32_t field_size;
7190 struct scsi_attrib_vendser *vendser;
7191 cam_strvis_flags strvis_flags;
7192 int retval = 0;
7193
7194 field_size = scsi_2btoul(hdr->length);
7195 avail_len = valid_len - sizeof(*hdr);
7196 if (field_size > avail_len) {
7197 if (error_str != NULL) {
7198 snprintf(error_str, error_str_len, "Available "
7199 "length of attribute ID 0x%.4x %zu < field "
7200 "length %u", scsi_2btoul(hdr->id), avail_len,
7201 field_size);
7202 }
7203 retval = 1;
7204 goto bailout;
7205 } else if (field_size == 0) {
7206 /*
7207 * A field size of 0 doesn't make sense here. The device
7208 * can at least give you the vendor ID, even if it can't
7209 * give you the serial number.
7210 */
7211 if (error_str != NULL) {
7212 snprintf(error_str, error_str_len, "The length of "
7213 "attribute ID 0x%.4x is 0",
7214 scsi_2btoul(hdr->id));
7215 }
7216 retval = 1;
7217 goto bailout;
7218 }
7219 vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7220
7221 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7222 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7223 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7224 break;
7225 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7226 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7227 break;
7228 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7229 default:
7230 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7231 break;
7232 }
7233 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7234 strvis_flags);
7235 sbuf_putc(sb, ' ');
7236 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7237 strvis_flags);
7238 bailout:
7239 return (retval);
7240 }
7241
7242 int
scsi_attrib_hexdump_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7243 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7244 uint32_t valid_len, uint32_t flags,
7245 uint32_t output_flags, char *error_str,
7246 int error_str_len)
7247 {
7248 uint32_t field_size;
7249 ssize_t avail_len;
7250 uint32_t print_len;
7251 uint8_t *num_ptr;
7252 int retval = 0;
7253
7254 field_size = scsi_2btoul(hdr->length);
7255 avail_len = valid_len - sizeof(*hdr);
7256 print_len = MIN(avail_len, field_size);
7257 num_ptr = hdr->attribute;
7258
7259 if (print_len > 0) {
7260 sbuf_putc(sb, '\n');
7261 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7262 }
7263
7264 return (retval);
7265 }
7266
7267 int
scsi_attrib_int_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7268 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7269 uint32_t valid_len, uint32_t flags,
7270 uint32_t output_flags, char *error_str,
7271 int error_str_len)
7272 {
7273 uint64_t print_number;
7274 size_t avail_len;
7275 uint32_t number_size;
7276 int retval = 0;
7277
7278 number_size = scsi_2btoul(hdr->length);
7279
7280 avail_len = valid_len - sizeof(*hdr);
7281 if (avail_len < number_size) {
7282 if (error_str != NULL) {
7283 snprintf(error_str, error_str_len, "Available "
7284 "length of attribute ID 0x%.4x %zu < field "
7285 "length %u", scsi_2btoul(hdr->id), avail_len,
7286 number_size);
7287 }
7288 retval = 1;
7289 goto bailout;
7290 }
7291
7292 switch (number_size) {
7293 case 0:
7294 /*
7295 * We don't treat this as an error, since there may be
7296 * scenarios where a device reports a field but then gives
7297 * a length of 0. See the note in scsi_attrib_ascii_sbuf().
7298 */
7299 goto bailout;
7300 break; /*NOTREACHED*/
7301 case 1:
7302 print_number = hdr->attribute[0];
7303 break;
7304 case 2:
7305 print_number = scsi_2btoul(hdr->attribute);
7306 break;
7307 case 3:
7308 print_number = scsi_3btoul(hdr->attribute);
7309 break;
7310 case 4:
7311 print_number = scsi_4btoul(hdr->attribute);
7312 break;
7313 case 8:
7314 print_number = scsi_8btou64(hdr->attribute);
7315 break;
7316 default:
7317 /*
7318 * If we wind up here, the number is too big to print
7319 * normally, so just do a hexdump.
7320 */
7321 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7322 flags, output_flags,
7323 error_str, error_str_len);
7324 goto bailout;
7325 break;
7326 }
7327
7328 if (flags & SCSI_ATTR_FLAG_FP) {
7329 #ifndef _KERNEL
7330 long double num_float;
7331
7332 num_float = (long double)print_number;
7333
7334 if (flags & SCSI_ATTR_FLAG_DIV_10)
7335 num_float /= 10;
7336
7337 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7338 1 : 0, num_float);
7339 #else /* _KERNEL */
7340 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7341 (print_number / 10) : print_number);
7342 #endif /* _KERNEL */
7343 } else if (flags & SCSI_ATTR_FLAG_HEX) {
7344 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7345 } else
7346 sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7347
7348 bailout:
7349 return (retval);
7350 }
7351
7352 int
scsi_attrib_ascii_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7353 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7354 uint32_t valid_len, uint32_t flags,
7355 uint32_t output_flags, char *error_str,
7356 int error_str_len)
7357 {
7358 size_t avail_len;
7359 uint32_t field_size, print_size;
7360 int retval = 0;
7361
7362 avail_len = valid_len - sizeof(*hdr);
7363 field_size = scsi_2btoul(hdr->length);
7364 print_size = MIN(avail_len, field_size);
7365
7366 if (print_size > 0) {
7367 cam_strvis_flags strvis_flags;
7368
7369 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7370 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7371 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7372 break;
7373 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7374 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7375 break;
7376 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7377 default:
7378 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7379 break;
7380 }
7381 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7382 } else if (avail_len < field_size) {
7383 /*
7384 * We only report an error if the user didn't allocate
7385 * enough space to hold the full value of this field. If
7386 * the field length is 0, that is allowed by the spec.
7387 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7388 * "This attribute indicates the current volume identifier
7389 * (see SMC-3) of the medium. If the device server supports
7390 * this attribute but does not have access to the volume
7391 * identifier, the device server shall report this attribute
7392 * with an attribute length value of zero."
7393 */
7394 if (error_str != NULL) {
7395 snprintf(error_str, error_str_len, "Available "
7396 "length of attribute ID 0x%.4x %zu < field "
7397 "length %u", scsi_2btoul(hdr->id), avail_len,
7398 field_size);
7399 }
7400 retval = 1;
7401 }
7402
7403 return (retval);
7404 }
7405
7406 int
scsi_attrib_text_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7407 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7408 uint32_t valid_len, uint32_t flags,
7409 uint32_t output_flags, char *error_str,
7410 int error_str_len)
7411 {
7412 size_t avail_len;
7413 uint32_t field_size, print_size;
7414 int retval = 0;
7415 int esc_text = 1;
7416
7417 avail_len = valid_len - sizeof(*hdr);
7418 field_size = scsi_2btoul(hdr->length);
7419 print_size = MIN(avail_len, field_size);
7420
7421 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7422 SCSI_ATTR_OUTPUT_TEXT_RAW)
7423 esc_text = 0;
7424
7425 if (print_size > 0) {
7426 uint32_t i;
7427
7428 for (i = 0; i < print_size; i++) {
7429 if (hdr->attribute[i] == '\0')
7430 continue;
7431 else if (((unsigned char)hdr->attribute[i] < 0x80)
7432 || (esc_text == 0))
7433 sbuf_putc(sb, hdr->attribute[i]);
7434 else
7435 sbuf_printf(sb, "%%%02x",
7436 (unsigned char)hdr->attribute[i]);
7437 }
7438 } else if (avail_len < field_size) {
7439 /*
7440 * We only report an error if the user didn't allocate
7441 * enough space to hold the full value of this field.
7442 */
7443 if (error_str != NULL) {
7444 snprintf(error_str, error_str_len, "Available "
7445 "length of attribute ID 0x%.4x %zu < field "
7446 "length %u", scsi_2btoul(hdr->id), avail_len,
7447 field_size);
7448 }
7449 retval = 1;
7450 }
7451
7452 return (retval);
7453 }
7454
7455 struct scsi_attrib_table_entry *
scsi_find_attrib_entry(struct scsi_attrib_table_entry * table,size_t num_table_entries,uint32_t id)7456 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7457 size_t num_table_entries, uint32_t id)
7458 {
7459 uint32_t i;
7460
7461 for (i = 0; i < num_table_entries; i++) {
7462 if (table[i].id == id)
7463 return (&table[i]);
7464 }
7465
7466 return (NULL);
7467 }
7468
7469 struct scsi_attrib_table_entry *
scsi_get_attrib_entry(uint32_t id)7470 scsi_get_attrib_entry(uint32_t id)
7471 {
7472 return (scsi_find_attrib_entry(scsi_mam_attr_table,
7473 nitems(scsi_mam_attr_table), id));
7474 }
7475
7476 int
scsi_attrib_value_sbuf(struct sbuf * sb,uint32_t valid_len,struct scsi_mam_attribute_header * hdr,uint32_t output_flags,char * error_str,size_t error_str_len)7477 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7478 struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7479 char *error_str, size_t error_str_len)
7480 {
7481 int retval;
7482
7483 switch (hdr->byte2 & SMA_FORMAT_MASK) {
7484 case SMA_FORMAT_ASCII:
7485 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7486 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7487 break;
7488 case SMA_FORMAT_BINARY:
7489 if (scsi_2btoul(hdr->length) <= 8)
7490 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7491 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7492 error_str_len);
7493 else
7494 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7495 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7496 error_str_len);
7497 break;
7498 case SMA_FORMAT_TEXT:
7499 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7500 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7501 error_str_len);
7502 break;
7503 default:
7504 if (error_str != NULL) {
7505 snprintf(error_str, error_str_len, "Unknown attribute "
7506 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7507 }
7508 retval = 1;
7509 goto bailout;
7510 break; /*NOTREACHED*/
7511 }
7512
7513 sbuf_trim(sb);
7514
7515 bailout:
7516
7517 return (retval);
7518 }
7519
7520 void
scsi_attrib_prefix_sbuf(struct sbuf * sb,uint32_t output_flags,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,const char * desc)7521 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7522 struct scsi_mam_attribute_header *hdr,
7523 uint32_t valid_len, const char *desc)
7524 {
7525 int need_space = 0;
7526 uint32_t len;
7527 uint32_t id;
7528
7529 /*
7530 * We can't do anything if we don't have enough valid data for the
7531 * header.
7532 */
7533 if (valid_len < sizeof(*hdr))
7534 return;
7535
7536 id = scsi_2btoul(hdr->id);
7537 /*
7538 * Note that we print out the value of the attribute listed in the
7539 * header, regardless of whether we actually got that many bytes
7540 * back from the device through the controller. A truncated result
7541 * could be the result of a failure to ask for enough data; the
7542 * header indicates how many bytes are allocated for this attribute
7543 * in the MAM.
7544 */
7545 len = scsi_2btoul(hdr->length);
7546
7547 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7548 SCSI_ATTR_OUTPUT_FIELD_NONE)
7549 return;
7550
7551 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7552 && (desc != NULL)) {
7553 sbuf_cat(sb, desc);
7554 need_space = 1;
7555 }
7556
7557 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7558 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7559 need_space = 0;
7560 }
7561
7562 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7563 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7564 need_space = 0;
7565 }
7566 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7567 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7568 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7569 }
7570 sbuf_cat(sb, ": ");
7571 }
7572
7573 int
scsi_attrib_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,struct scsi_attrib_table_entry * user_table,size_t num_user_entries,int prefer_user_table,uint32_t output_flags,char * error_str,int error_str_len)7574 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7575 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7576 size_t num_user_entries, int prefer_user_table,
7577 uint32_t output_flags, char *error_str, int error_str_len)
7578 {
7579 int retval;
7580 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7581 struct scsi_attrib_table_entry *entry = NULL;
7582 size_t table1_size = 0, table2_size = 0;
7583 uint32_t id;
7584
7585 retval = 0;
7586
7587 if (valid_len < sizeof(*hdr)) {
7588 retval = 1;
7589 goto bailout;
7590 }
7591
7592 id = scsi_2btoul(hdr->id);
7593
7594 if (user_table != NULL) {
7595 if (prefer_user_table != 0) {
7596 table1 = user_table;
7597 table1_size = num_user_entries;
7598 table2 = scsi_mam_attr_table;
7599 table2_size = nitems(scsi_mam_attr_table);
7600 } else {
7601 table1 = scsi_mam_attr_table;
7602 table1_size = nitems(scsi_mam_attr_table);
7603 table2 = user_table;
7604 table2_size = num_user_entries;
7605 }
7606 } else {
7607 table1 = scsi_mam_attr_table;
7608 table1_size = nitems(scsi_mam_attr_table);
7609 }
7610
7611 entry = scsi_find_attrib_entry(table1, table1_size, id);
7612 if (entry != NULL) {
7613 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7614 entry->desc);
7615 if (entry->to_str == NULL)
7616 goto print_default;
7617 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7618 output_flags, error_str, error_str_len);
7619 goto bailout;
7620 }
7621 if (table2 != NULL) {
7622 entry = scsi_find_attrib_entry(table2, table2_size, id);
7623 if (entry != NULL) {
7624 if (entry->to_str == NULL)
7625 goto print_default;
7626
7627 scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7628 valid_len, entry->desc);
7629 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7630 output_flags, error_str,
7631 error_str_len);
7632 goto bailout;
7633 }
7634 }
7635
7636 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7637
7638 print_default:
7639 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7640 error_str, error_str_len);
7641 bailout:
7642 if (retval == 0) {
7643 if ((entry != NULL)
7644 && (entry->suffix != NULL))
7645 sbuf_printf(sb, " %s", entry->suffix);
7646
7647 sbuf_trim(sb);
7648 sbuf_putc(sb, '\n');
7649 }
7650
7651 return (retval);
7652 }
7653
7654 void
scsi_test_unit_ready(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7655 scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries,
7656 void (*cbfcnp)(struct cam_periph *, union ccb *),
7657 uint8_t tag_action, uint8_t sense_len, uint32_t timeout)
7658 {
7659 struct scsi_test_unit_ready *scsi_cmd;
7660
7661 cam_fill_csio(csio,
7662 retries,
7663 cbfcnp,
7664 CAM_DIR_NONE,
7665 tag_action,
7666 /*data_ptr*/NULL,
7667 /*dxfer_len*/0,
7668 sense_len,
7669 sizeof(*scsi_cmd),
7670 timeout);
7671
7672 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7673 bzero(scsi_cmd, sizeof(*scsi_cmd));
7674 scsi_cmd->opcode = TEST_UNIT_READY;
7675 }
7676
7677 void
scsi_request_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),void * data_ptr,uint8_t dxfer_len,uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7678 scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries,
7679 void (*cbfcnp)(struct cam_periph *, union ccb *),
7680 void *data_ptr, uint8_t dxfer_len, uint8_t tag_action,
7681 uint8_t sense_len, uint32_t timeout)
7682 {
7683 struct scsi_request_sense *scsi_cmd;
7684
7685 cam_fill_csio(csio,
7686 retries,
7687 cbfcnp,
7688 CAM_DIR_IN,
7689 tag_action,
7690 data_ptr,
7691 dxfer_len,
7692 sense_len,
7693 sizeof(*scsi_cmd),
7694 timeout);
7695
7696 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7697 bzero(scsi_cmd, sizeof(*scsi_cmd));
7698 scsi_cmd->opcode = REQUEST_SENSE;
7699 scsi_cmd->length = dxfer_len;
7700 }
7701
7702 void
scsi_inquiry(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * inq_buf,uint32_t inq_len,int evpd,uint8_t page_code,uint8_t sense_len,uint32_t timeout)7703 scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries,
7704 void (*cbfcnp)(struct cam_periph *, union ccb *),
7705 uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len,
7706 int evpd, uint8_t page_code, uint8_t sense_len,
7707 uint32_t timeout)
7708 {
7709 struct scsi_inquiry *scsi_cmd;
7710
7711 cam_fill_csio(csio,
7712 retries,
7713 cbfcnp,
7714 /*flags*/CAM_DIR_IN,
7715 tag_action,
7716 /*data_ptr*/inq_buf,
7717 /*dxfer_len*/inq_len,
7718 sense_len,
7719 sizeof(*scsi_cmd),
7720 timeout);
7721
7722 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7723 bzero(scsi_cmd, sizeof(*scsi_cmd));
7724 scsi_cmd->opcode = INQUIRY;
7725 if (evpd) {
7726 scsi_cmd->byte2 |= SI_EVPD;
7727 scsi_cmd->page_code = page_code;
7728 }
7729 scsi_ulto2b(inq_len, scsi_cmd->length);
7730 }
7731
7732 void
scsi_mode_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7733 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7734 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7735 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7736 uint8_t sense_len, uint32_t timeout)
7737 {
7738
7739 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7740 pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7741 }
7742
7743 void
scsi_mode_sense_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7744 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7745 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7746 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7747 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7748 {
7749
7750 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7751 pc, page, 0, param_buf, param_len, minimum_cmd_size,
7752 sense_len, timeout);
7753 }
7754
7755 void
scsi_mode_sense_subpage(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t subpage,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7756 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7757 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7758 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7759 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7760 uint32_t timeout)
7761 {
7762 uint8_t cdb_len;
7763
7764 /*
7765 * Use the smallest possible command to perform the operation.
7766 */
7767 if ((param_len < 256)
7768 && (minimum_cmd_size < 10)) {
7769 /*
7770 * We can fit in a 6 byte cdb.
7771 */
7772 struct scsi_mode_sense_6 *scsi_cmd;
7773
7774 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7775 bzero(scsi_cmd, sizeof(*scsi_cmd));
7776 scsi_cmd->opcode = MODE_SENSE_6;
7777 if (dbd != 0)
7778 scsi_cmd->byte2 |= SMS_DBD;
7779 scsi_cmd->page = pc | page;
7780 scsi_cmd->subpage = subpage;
7781 scsi_cmd->length = param_len;
7782 cdb_len = sizeof(*scsi_cmd);
7783 } else {
7784 /*
7785 * Need a 10 byte cdb.
7786 */
7787 struct scsi_mode_sense_10 *scsi_cmd;
7788
7789 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7790 bzero(scsi_cmd, sizeof(*scsi_cmd));
7791 scsi_cmd->opcode = MODE_SENSE_10;
7792 if (dbd != 0)
7793 scsi_cmd->byte2 |= SMS_DBD;
7794 scsi_cmd->page = pc | page;
7795 scsi_cmd->subpage = subpage;
7796 scsi_ulto2b(param_len, scsi_cmd->length);
7797 cdb_len = sizeof(*scsi_cmd);
7798 }
7799 cam_fill_csio(csio,
7800 retries,
7801 cbfcnp,
7802 CAM_DIR_IN,
7803 tag_action,
7804 param_buf,
7805 param_len,
7806 sense_len,
7807 cdb_len,
7808 timeout);
7809 }
7810
7811 void
scsi_mode_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7812 scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries,
7813 void (*cbfcnp)(struct cam_periph *, union ccb *),
7814 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7815 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7816 uint32_t timeout)
7817 {
7818 scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7819 scsi_page_fmt, save_pages, param_buf,
7820 param_len, 0, sense_len, timeout);
7821 }
7822
7823 void
scsi_mode_select_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7824 scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries,
7825 void (*cbfcnp)(struct cam_periph *, union ccb *),
7826 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7827 uint8_t *param_buf, uint32_t param_len,
7828 int minimum_cmd_size, uint8_t sense_len,
7829 uint32_t timeout)
7830 {
7831 uint8_t cdb_len;
7832
7833 /*
7834 * Use the smallest possible command to perform the operation.
7835 */
7836 if ((param_len < 256)
7837 && (minimum_cmd_size < 10)) {
7838 /*
7839 * We can fit in a 6 byte cdb.
7840 */
7841 struct scsi_mode_select_6 *scsi_cmd;
7842
7843 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7844 bzero(scsi_cmd, sizeof(*scsi_cmd));
7845 scsi_cmd->opcode = MODE_SELECT_6;
7846 if (scsi_page_fmt != 0)
7847 scsi_cmd->byte2 |= SMS_PF;
7848 if (save_pages != 0)
7849 scsi_cmd->byte2 |= SMS_SP;
7850 scsi_cmd->length = param_len;
7851 cdb_len = sizeof(*scsi_cmd);
7852 } else {
7853 /*
7854 * Need a 10 byte cdb.
7855 */
7856 struct scsi_mode_select_10 *scsi_cmd;
7857
7858 scsi_cmd =
7859 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7860 bzero(scsi_cmd, sizeof(*scsi_cmd));
7861 scsi_cmd->opcode = MODE_SELECT_10;
7862 if (scsi_page_fmt != 0)
7863 scsi_cmd->byte2 |= SMS_PF;
7864 if (save_pages != 0)
7865 scsi_cmd->byte2 |= SMS_SP;
7866 scsi_ulto2b(param_len, scsi_cmd->length);
7867 cdb_len = sizeof(*scsi_cmd);
7868 }
7869 cam_fill_csio(csio,
7870 retries,
7871 cbfcnp,
7872 CAM_DIR_OUT,
7873 tag_action,
7874 param_buf,
7875 param_len,
7876 sense_len,
7877 cdb_len,
7878 timeout);
7879 }
7880
7881 void
scsi_log_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,uint8_t page,int save_pages,int ppc,uint32_t paramptr,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7882 scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries,
7883 void (*cbfcnp)(struct cam_periph *, union ccb *),
7884 uint8_t tag_action, uint8_t page_code, uint8_t page,
7885 int save_pages, int ppc, uint32_t paramptr,
7886 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7887 uint32_t timeout)
7888 {
7889 struct scsi_log_sense *scsi_cmd;
7890 uint8_t cdb_len;
7891
7892 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7893 bzero(scsi_cmd, sizeof(*scsi_cmd));
7894 scsi_cmd->opcode = LOG_SENSE;
7895 scsi_cmd->page = page_code | page;
7896 if (save_pages != 0)
7897 scsi_cmd->byte2 |= SLS_SP;
7898 if (ppc != 0)
7899 scsi_cmd->byte2 |= SLS_PPC;
7900 scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7901 scsi_ulto2b(param_len, scsi_cmd->length);
7902 cdb_len = sizeof(*scsi_cmd);
7903
7904 cam_fill_csio(csio,
7905 retries,
7906 cbfcnp,
7907 /*flags*/CAM_DIR_IN,
7908 tag_action,
7909 /*data_ptr*/param_buf,
7910 /*dxfer_len*/param_len,
7911 sense_len,
7912 cdb_len,
7913 timeout);
7914 }
7915
7916 void
scsi_log_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,int save_pages,int pc_reset,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7917 scsi_log_select(struct ccb_scsiio *csio, uint32_t retries,
7918 void (*cbfcnp)(struct cam_periph *, union ccb *),
7919 uint8_t tag_action, uint8_t page_code, int save_pages,
7920 int pc_reset, uint8_t *param_buf, uint32_t param_len,
7921 uint8_t sense_len, uint32_t timeout)
7922 {
7923 struct scsi_log_select *scsi_cmd;
7924 uint8_t cdb_len;
7925
7926 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7927 bzero(scsi_cmd, sizeof(*scsi_cmd));
7928 scsi_cmd->opcode = LOG_SELECT;
7929 scsi_cmd->page = page_code & SLS_PAGE_CODE;
7930 if (save_pages != 0)
7931 scsi_cmd->byte2 |= SLS_SP;
7932 if (pc_reset != 0)
7933 scsi_cmd->byte2 |= SLS_PCR;
7934 scsi_ulto2b(param_len, scsi_cmd->length);
7935 cdb_len = sizeof(*scsi_cmd);
7936
7937 cam_fill_csio(csio,
7938 retries,
7939 cbfcnp,
7940 /*flags*/CAM_DIR_OUT,
7941 tag_action,
7942 /*data_ptr*/param_buf,
7943 /*dxfer_len*/param_len,
7944 sense_len,
7945 cdb_len,
7946 timeout);
7947 }
7948
7949 /*
7950 * Prevent or allow the user to remove the media
7951 */
7952 void
scsi_prevent(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t action,uint8_t sense_len,uint32_t timeout)7953 scsi_prevent(struct ccb_scsiio *csio, uint32_t retries,
7954 void (*cbfcnp)(struct cam_periph *, union ccb *),
7955 uint8_t tag_action, uint8_t action,
7956 uint8_t sense_len, uint32_t timeout)
7957 {
7958 struct scsi_prevent *scsi_cmd;
7959
7960 cam_fill_csio(csio,
7961 retries,
7962 cbfcnp,
7963 /*flags*/CAM_DIR_NONE,
7964 tag_action,
7965 /*data_ptr*/NULL,
7966 /*dxfer_len*/0,
7967 sense_len,
7968 sizeof(*scsi_cmd),
7969 timeout);
7970
7971 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7972 bzero(scsi_cmd, sizeof(*scsi_cmd));
7973 scsi_cmd->opcode = PREVENT_ALLOW;
7974 scsi_cmd->how = action;
7975 }
7976
7977 /* XXX allow specification of address and PMI bit and LBA */
7978 void
scsi_read_capacity(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,struct scsi_read_capacity_data * rcap_buf,uint8_t sense_len,uint32_t timeout)7979 scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries,
7980 void (*cbfcnp)(struct cam_periph *, union ccb *),
7981 uint8_t tag_action,
7982 struct scsi_read_capacity_data *rcap_buf,
7983 uint8_t sense_len, uint32_t timeout)
7984 {
7985 struct scsi_read_capacity *scsi_cmd;
7986
7987 cam_fill_csio(csio,
7988 retries,
7989 cbfcnp,
7990 /*flags*/CAM_DIR_IN,
7991 tag_action,
7992 /*data_ptr*/(uint8_t *)rcap_buf,
7993 /*dxfer_len*/sizeof(*rcap_buf),
7994 sense_len,
7995 sizeof(*scsi_cmd),
7996 timeout);
7997
7998 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7999 bzero(scsi_cmd, sizeof(*scsi_cmd));
8000 scsi_cmd->opcode = READ_CAPACITY;
8001 }
8002
8003 void
scsi_read_capacity_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t lba,int reladr,int pmi,uint8_t * rcap_buf,int rcap_buf_len,uint8_t sense_len,uint32_t timeout)8004 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
8005 void (*cbfcnp)(struct cam_periph *, union ccb *),
8006 uint8_t tag_action, uint64_t lba, int reladr, int pmi,
8007 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
8008 uint32_t timeout)
8009 {
8010 struct scsi_read_capacity_16 *scsi_cmd;
8011
8012 cam_fill_csio(csio,
8013 retries,
8014 cbfcnp,
8015 /*flags*/CAM_DIR_IN,
8016 tag_action,
8017 /*data_ptr*/(uint8_t *)rcap_buf,
8018 /*dxfer_len*/rcap_buf_len,
8019 sense_len,
8020 sizeof(*scsi_cmd),
8021 timeout);
8022 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
8023 bzero(scsi_cmd, sizeof(*scsi_cmd));
8024 scsi_cmd->opcode = SERVICE_ACTION_IN;
8025 scsi_cmd->service_action = SRC16_SERVICE_ACTION;
8026 scsi_u64to8b(lba, scsi_cmd->addr);
8027 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
8028 if (pmi)
8029 scsi_cmd->reladr |= SRC16_PMI;
8030 if (reladr)
8031 scsi_cmd->reladr |= SRC16_RELADR;
8032 }
8033
8034 void
scsi_report_luns(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t select_report,struct scsi_report_luns_data * rpl_buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8035 scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries,
8036 void (*cbfcnp)(struct cam_periph *, union ccb *),
8037 uint8_t tag_action, uint8_t select_report,
8038 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len,
8039 uint8_t sense_len, uint32_t timeout)
8040 {
8041 struct scsi_report_luns *scsi_cmd;
8042
8043 cam_fill_csio(csio,
8044 retries,
8045 cbfcnp,
8046 /*flags*/CAM_DIR_IN,
8047 tag_action,
8048 /*data_ptr*/(uint8_t *)rpl_buf,
8049 /*dxfer_len*/alloc_len,
8050 sense_len,
8051 sizeof(*scsi_cmd),
8052 timeout);
8053 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
8054 bzero(scsi_cmd, sizeof(*scsi_cmd));
8055 scsi_cmd->opcode = REPORT_LUNS;
8056 scsi_cmd->select_report = select_report;
8057 scsi_ulto4b(alloc_len, scsi_cmd->length);
8058 }
8059
8060 void
scsi_report_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8061 scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries,
8062 void (*cbfcnp)(struct cam_periph *, union ccb *),
8063 uint8_t tag_action, uint8_t pdf,
8064 void *buf, uint32_t alloc_len,
8065 uint8_t sense_len, uint32_t timeout)
8066 {
8067 struct scsi_target_group *scsi_cmd;
8068
8069 cam_fill_csio(csio,
8070 retries,
8071 cbfcnp,
8072 /*flags*/CAM_DIR_IN,
8073 tag_action,
8074 /*data_ptr*/(uint8_t *)buf,
8075 /*dxfer_len*/alloc_len,
8076 sense_len,
8077 sizeof(*scsi_cmd),
8078 timeout);
8079 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8080 bzero(scsi_cmd, sizeof(*scsi_cmd));
8081 scsi_cmd->opcode = MAINTENANCE_IN;
8082 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
8083 scsi_ulto4b(alloc_len, scsi_cmd->length);
8084 }
8085
8086 void
scsi_report_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8087 scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8088 void (*cbfcnp)(struct cam_periph *, union ccb *),
8089 uint8_t tag_action, uint8_t pdf,
8090 void *buf, uint32_t alloc_len,
8091 uint8_t sense_len, uint32_t timeout)
8092 {
8093 struct scsi_timestamp *scsi_cmd;
8094
8095 cam_fill_csio(csio,
8096 retries,
8097 cbfcnp,
8098 /*flags*/CAM_DIR_IN,
8099 tag_action,
8100 /*data_ptr*/(uint8_t *)buf,
8101 /*dxfer_len*/alloc_len,
8102 sense_len,
8103 sizeof(*scsi_cmd),
8104 timeout);
8105 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8106 bzero(scsi_cmd, sizeof(*scsi_cmd));
8107 scsi_cmd->opcode = MAINTENANCE_IN;
8108 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
8109 scsi_ulto4b(alloc_len, scsi_cmd->length);
8110 }
8111
8112 void
scsi_set_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8113 scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries,
8114 void (*cbfcnp)(struct cam_periph *, union ccb *),
8115 uint8_t tag_action, void *buf, uint32_t alloc_len,
8116 uint8_t sense_len, uint32_t timeout)
8117 {
8118 struct scsi_target_group *scsi_cmd;
8119
8120 cam_fill_csio(csio,
8121 retries,
8122 cbfcnp,
8123 /*flags*/CAM_DIR_OUT,
8124 tag_action,
8125 /*data_ptr*/(uint8_t *)buf,
8126 /*dxfer_len*/alloc_len,
8127 sense_len,
8128 sizeof(*scsi_cmd),
8129 timeout);
8130 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8131 bzero(scsi_cmd, sizeof(*scsi_cmd));
8132 scsi_cmd->opcode = MAINTENANCE_OUT;
8133 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8134 scsi_ulto4b(alloc_len, scsi_cmd->length);
8135 }
8136
8137 void
scsi_create_timestamp(uint8_t * timestamp_6b_buf,uint64_t timestamp)8138 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8139 uint64_t timestamp)
8140 {
8141 uint8_t buf[8];
8142 scsi_u64to8b(timestamp, buf);
8143 /*
8144 * Using memcopy starting at buf[2] because the set timestamp parameters
8145 * only has six bytes for the timestamp to fit into, and we don't have a
8146 * scsi_u64to6b function.
8147 */
8148 memcpy(timestamp_6b_buf, &buf[2], 6);
8149 }
8150
8151 void
scsi_set_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8152 scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8153 void (*cbfcnp)(struct cam_periph *, union ccb *),
8154 uint8_t tag_action, void *buf, uint32_t alloc_len,
8155 uint8_t sense_len, uint32_t timeout)
8156 {
8157 struct scsi_timestamp *scsi_cmd;
8158
8159 cam_fill_csio(csio,
8160 retries,
8161 cbfcnp,
8162 /*flags*/CAM_DIR_OUT,
8163 tag_action,
8164 /*data_ptr*/(uint8_t *) buf,
8165 /*dxfer_len*/alloc_len,
8166 sense_len,
8167 sizeof(*scsi_cmd),
8168 timeout);
8169 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8170 bzero(scsi_cmd, sizeof(*scsi_cmd));
8171 scsi_cmd->opcode = MAINTENANCE_OUT;
8172 scsi_cmd->service_action = SET_TIMESTAMP;
8173 scsi_ulto4b(alloc_len, scsi_cmd->length);
8174 }
8175
8176 /*
8177 * Syncronize the media to the contents of the cache for
8178 * the given lba/count pair. Specifying 0/0 means sync
8179 * the whole cache.
8180 */
8181 void
scsi_synchronize_cache(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t begin_lba,uint16_t lb_count,uint8_t sense_len,uint32_t timeout)8182 scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries,
8183 void (*cbfcnp)(struct cam_periph *, union ccb *),
8184 uint8_t tag_action, uint32_t begin_lba,
8185 uint16_t lb_count, uint8_t sense_len,
8186 uint32_t timeout)
8187 {
8188 struct scsi_sync_cache *scsi_cmd;
8189
8190 cam_fill_csio(csio,
8191 retries,
8192 cbfcnp,
8193 /*flags*/CAM_DIR_NONE,
8194 tag_action,
8195 /*data_ptr*/NULL,
8196 /*dxfer_len*/0,
8197 sense_len,
8198 sizeof(*scsi_cmd),
8199 timeout);
8200
8201 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8202 bzero(scsi_cmd, sizeof(*scsi_cmd));
8203 scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8204 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8205 scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8206 }
8207
8208 void
scsi_read_write(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int readop,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8209 scsi_read_write(struct ccb_scsiio *csio, uint32_t retries,
8210 void (*cbfcnp)(struct cam_periph *, union ccb *),
8211 uint8_t tag_action, int readop, uint8_t byte2,
8212 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8213 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8214 uint32_t timeout)
8215 {
8216 int read;
8217 uint8_t cdb_len;
8218
8219 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8220
8221 /*
8222 * Use the smallest possible command to perform the operation
8223 * as some legacy hardware does not support the 10 byte commands.
8224 * If any of the bits in byte2 is set, we have to go with a larger
8225 * command.
8226 */
8227 if ((minimum_cmd_size < 10)
8228 && ((lba & 0x1fffff) == lba)
8229 && ((block_count & 0xff) == block_count)
8230 && (byte2 == 0)) {
8231 /*
8232 * We can fit in a 6 byte cdb.
8233 */
8234 struct scsi_rw_6 *scsi_cmd;
8235
8236 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8237 scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8238 scsi_ulto3b(lba, scsi_cmd->addr);
8239 scsi_cmd->length = block_count & 0xff;
8240 scsi_cmd->control = 0;
8241 cdb_len = sizeof(*scsi_cmd);
8242
8243 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8244 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8245 scsi_cmd->addr[1], scsi_cmd->addr[2],
8246 scsi_cmd->length, dxfer_len));
8247 } else if ((minimum_cmd_size < 12)
8248 && ((block_count & 0xffff) == block_count)
8249 && ((lba & 0xffffffff) == lba)) {
8250 /*
8251 * Need a 10 byte cdb.
8252 */
8253 struct scsi_rw_10 *scsi_cmd;
8254
8255 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8256 scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8257 scsi_cmd->byte2 = byte2;
8258 scsi_ulto4b(lba, scsi_cmd->addr);
8259 scsi_cmd->reserved = 0;
8260 scsi_ulto2b(block_count, scsi_cmd->length);
8261 scsi_cmd->control = 0;
8262 cdb_len = sizeof(*scsi_cmd);
8263
8264 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8265 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8266 scsi_cmd->addr[1], scsi_cmd->addr[2],
8267 scsi_cmd->addr[3], scsi_cmd->length[0],
8268 scsi_cmd->length[1], dxfer_len));
8269 } else if ((minimum_cmd_size < 16)
8270 && ((block_count & 0xffffffff) == block_count)
8271 && ((lba & 0xffffffff) == lba)) {
8272 /*
8273 * The block count is too big for a 10 byte CDB, use a 12
8274 * byte CDB.
8275 */
8276 struct scsi_rw_12 *scsi_cmd;
8277
8278 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8279 scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8280 scsi_cmd->byte2 = byte2;
8281 scsi_ulto4b(lba, scsi_cmd->addr);
8282 scsi_cmd->reserved = 0;
8283 scsi_ulto4b(block_count, scsi_cmd->length);
8284 scsi_cmd->control = 0;
8285 cdb_len = sizeof(*scsi_cmd);
8286
8287 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8288 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8289 scsi_cmd->addr[1], scsi_cmd->addr[2],
8290 scsi_cmd->addr[3], scsi_cmd->length[0],
8291 scsi_cmd->length[1], scsi_cmd->length[2],
8292 scsi_cmd->length[3], dxfer_len));
8293 } else {
8294 /*
8295 * 16 byte CDB. We'll only get here if the LBA is larger
8296 * than 2^32, or if the user asks for a 16 byte command.
8297 */
8298 struct scsi_rw_16 *scsi_cmd;
8299
8300 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8301 scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8302 scsi_cmd->byte2 = byte2;
8303 scsi_u64to8b(lba, scsi_cmd->addr);
8304 scsi_cmd->reserved = 0;
8305 scsi_ulto4b(block_count, scsi_cmd->length);
8306 scsi_cmd->control = 0;
8307 cdb_len = sizeof(*scsi_cmd);
8308 }
8309 cam_fill_csio(csio,
8310 retries,
8311 cbfcnp,
8312 (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8313 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8314 tag_action,
8315 data_ptr,
8316 dxfer_len,
8317 sense_len,
8318 cdb_len,
8319 timeout);
8320 }
8321
8322 void
scsi_write_same(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8323 scsi_write_same(struct ccb_scsiio *csio, uint32_t retries,
8324 void (*cbfcnp)(struct cam_periph *, union ccb *),
8325 uint8_t tag_action, uint8_t byte2,
8326 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8327 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8328 uint32_t timeout)
8329 {
8330 uint8_t cdb_len;
8331 if ((minimum_cmd_size < 16) &&
8332 ((block_count & 0xffff) == block_count) &&
8333 ((lba & 0xffffffff) == lba)) {
8334 /*
8335 * Need a 10 byte cdb.
8336 */
8337 struct scsi_write_same_10 *scsi_cmd;
8338
8339 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8340 scsi_cmd->opcode = WRITE_SAME_10;
8341 scsi_cmd->byte2 = byte2;
8342 scsi_ulto4b(lba, scsi_cmd->addr);
8343 scsi_cmd->group = 0;
8344 scsi_ulto2b(block_count, scsi_cmd->length);
8345 scsi_cmd->control = 0;
8346 cdb_len = sizeof(*scsi_cmd);
8347
8348 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8349 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8350 scsi_cmd->addr[1], scsi_cmd->addr[2],
8351 scsi_cmd->addr[3], scsi_cmd->length[0],
8352 scsi_cmd->length[1], dxfer_len));
8353 } else {
8354 /*
8355 * 16 byte CDB. We'll only get here if the LBA is larger
8356 * than 2^32, or if the user asks for a 16 byte command.
8357 */
8358 struct scsi_write_same_16 *scsi_cmd;
8359
8360 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8361 scsi_cmd->opcode = WRITE_SAME_16;
8362 scsi_cmd->byte2 = byte2;
8363 scsi_u64to8b(lba, scsi_cmd->addr);
8364 scsi_ulto4b(block_count, scsi_cmd->length);
8365 scsi_cmd->group = 0;
8366 scsi_cmd->control = 0;
8367 cdb_len = sizeof(*scsi_cmd);
8368
8369 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8370 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8371 scsi_cmd->addr[0], scsi_cmd->addr[1],
8372 scsi_cmd->addr[2], scsi_cmd->addr[3],
8373 scsi_cmd->addr[4], scsi_cmd->addr[5],
8374 scsi_cmd->addr[6], scsi_cmd->addr[7],
8375 scsi_cmd->length[0], scsi_cmd->length[1],
8376 scsi_cmd->length[2], scsi_cmd->length[3],
8377 dxfer_len));
8378 }
8379 cam_fill_csio(csio,
8380 retries,
8381 cbfcnp,
8382 /*flags*/CAM_DIR_OUT,
8383 tag_action,
8384 data_ptr,
8385 dxfer_len,
8386 sense_len,
8387 cdb_len,
8388 timeout);
8389 }
8390
8391 void
scsi_ata_identify(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8392 scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries,
8393 void (*cbfcnp)(struct cam_periph *, union ccb *),
8394 uint8_t tag_action, uint8_t *data_ptr,
8395 uint16_t dxfer_len, uint8_t sense_len,
8396 uint32_t timeout)
8397 {
8398 scsi_ata_pass(csio,
8399 retries,
8400 cbfcnp,
8401 /*flags*/CAM_DIR_IN,
8402 tag_action,
8403 /*protocol*/AP_PROTO_PIO_IN,
8404 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8405 AP_FLAG_BYT_BLOK_BLOCKS |
8406 AP_FLAG_TLEN_SECT_CNT,
8407 /*features*/0,
8408 /*sector_count*/dxfer_len / 512,
8409 /*lba*/0,
8410 /*command*/ATA_ATA_IDENTIFY,
8411 /*device*/ 0,
8412 /*icc*/ 0,
8413 /*auxiliary*/ 0,
8414 /*control*/0,
8415 data_ptr,
8416 dxfer_len,
8417 /*cdb_storage*/ NULL,
8418 /*cdb_storage_len*/ 0,
8419 /*minimum_cmd_size*/ 0,
8420 sense_len,
8421 timeout);
8422 }
8423
8424 void
scsi_ata_trim(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint16_t block_count,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8425 scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries,
8426 void (*cbfcnp)(struct cam_periph *, union ccb *),
8427 uint8_t tag_action, uint16_t block_count,
8428 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8429 uint32_t timeout)
8430 {
8431 scsi_ata_pass_16(csio,
8432 retries,
8433 cbfcnp,
8434 /*flags*/CAM_DIR_OUT,
8435 tag_action,
8436 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8437 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8438 /*features*/ATA_DSM_TRIM,
8439 /*sector_count*/block_count,
8440 /*lba*/0,
8441 /*command*/ATA_DATA_SET_MANAGEMENT,
8442 /*control*/0,
8443 data_ptr,
8444 dxfer_len,
8445 sense_len,
8446 timeout);
8447 }
8448
8449 int
scsi_ata_read_log(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t log_address,uint32_t page_number,uint16_t block_count,uint8_t protocol,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8450 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8451 void (*cbfcnp)(struct cam_periph *, union ccb *),
8452 uint8_t tag_action, uint32_t log_address,
8453 uint32_t page_number, uint16_t block_count,
8454 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8455 uint8_t sense_len, uint32_t timeout)
8456 {
8457 uint8_t command, protocol_out;
8458 uint16_t count_out;
8459 uint64_t lba;
8460 int retval;
8461
8462 retval = 0;
8463
8464 switch (protocol) {
8465 case AP_PROTO_DMA:
8466 count_out = block_count;
8467 command = ATA_READ_LOG_DMA_EXT;
8468 protocol_out = AP_PROTO_DMA;
8469 break;
8470 case AP_PROTO_PIO_IN:
8471 default:
8472 count_out = block_count;
8473 command = ATA_READ_LOG_EXT;
8474 protocol_out = AP_PROTO_PIO_IN;
8475 break;
8476 }
8477
8478 lba = (((uint64_t)page_number & 0xff00) << 32) |
8479 ((page_number & 0x00ff) << 8) |
8480 (log_address & 0xff);
8481
8482 protocol_out |= AP_EXTEND;
8483
8484 retval = scsi_ata_pass(csio,
8485 retries,
8486 cbfcnp,
8487 /*flags*/CAM_DIR_IN,
8488 tag_action,
8489 /*protocol*/ protocol_out,
8490 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8491 AP_FLAG_BYT_BLOK_BLOCKS |
8492 AP_FLAG_TDIR_FROM_DEV,
8493 /*feature*/ 0,
8494 /*sector_count*/ count_out,
8495 /*lba*/ lba,
8496 /*command*/ command,
8497 /*device*/ 0,
8498 /*icc*/ 0,
8499 /*auxiliary*/ 0,
8500 /*control*/0,
8501 data_ptr,
8502 dxfer_len,
8503 /*cdb_storage*/ NULL,
8504 /*cdb_storage_len*/ 0,
8505 /*minimum_cmd_size*/ 0,
8506 sense_len,
8507 timeout);
8508
8509 return (retval);
8510 }
8511
scsi_ata_setfeatures(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t feature,uint64_t lba,uint32_t count,uint8_t sense_len,uint32_t timeout)8512 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8513 void (*cbfcnp)(struct cam_periph *, union ccb *),
8514 uint8_t tag_action, uint8_t feature,
8515 uint64_t lba, uint32_t count,
8516 uint8_t sense_len, uint32_t timeout)
8517 {
8518 return (scsi_ata_pass(csio,
8519 retries,
8520 cbfcnp,
8521 /*flags*/CAM_DIR_NONE,
8522 tag_action,
8523 /*protocol*/AP_PROTO_PIO_IN,
8524 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8525 AP_FLAG_BYT_BLOK_BYTES |
8526 AP_FLAG_TLEN_SECT_CNT,
8527 /*features*/feature,
8528 /*sector_count*/count,
8529 /*lba*/lba,
8530 /*command*/ATA_SETFEATURES,
8531 /*device*/ 0,
8532 /*icc*/ 0,
8533 /*auxiliary*/0,
8534 /*control*/0,
8535 /*data_ptr*/NULL,
8536 /*dxfer_len*/0,
8537 /*cdb_storage*/NULL,
8538 /*cdb_storage_len*/0,
8539 /*minimum_cmd_size*/0,
8540 sense_len,
8541 timeout));
8542 }
8543
8544 /*
8545 * Note! This is an unusual CDB building function because it can return
8546 * an error in the event that the command in question requires a variable
8547 * length CDB, but the caller has not given storage space for one or has not
8548 * given enough storage space. If there is enough space available in the
8549 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8550 */
8551 int
scsi_ata_pass(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t device,uint8_t icc,uint32_t auxiliary,uint8_t control,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t * cdb_storage,size_t cdb_storage_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)8552 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8553 void (*cbfcnp)(struct cam_periph *, union ccb *),
8554 uint32_t flags, uint8_t tag_action,
8555 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8556 uint16_t sector_count, uint64_t lba, uint8_t command,
8557 uint8_t device, uint8_t icc, uint32_t auxiliary,
8558 uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len,
8559 uint8_t *cdb_storage, size_t cdb_storage_len,
8560 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
8561 {
8562 uint32_t cam_flags;
8563 uint8_t *cdb_ptr;
8564 int cmd_size;
8565 int retval;
8566 uint8_t cdb_len;
8567
8568 retval = 0;
8569 cam_flags = flags;
8570
8571 /*
8572 * Round the user's request to the nearest command size that is at
8573 * least as big as what he requested.
8574 */
8575 if (minimum_cmd_size <= 12)
8576 cmd_size = 12;
8577 else if (minimum_cmd_size > 16)
8578 cmd_size = 32;
8579 else
8580 cmd_size = 16;
8581
8582 /*
8583 * If we have parameters that require a 48-bit ATA command, we have to
8584 * use the 16 byte ATA PASS-THROUGH command at least.
8585 */
8586 if (((lba > ATA_MAX_28BIT_LBA)
8587 || (sector_count > 255)
8588 || (features > 255)
8589 || (protocol & AP_EXTEND))
8590 && ((cmd_size < 16)
8591 || ((protocol & AP_EXTEND) == 0))) {
8592 if (cmd_size < 16)
8593 cmd_size = 16;
8594 protocol |= AP_EXTEND;
8595 }
8596
8597 /*
8598 * The icc and auxiliary ATA registers are only supported in the
8599 * 32-byte version of the ATA PASS-THROUGH command.
8600 */
8601 if ((icc != 0)
8602 || (auxiliary != 0)) {
8603 cmd_size = 32;
8604 protocol |= AP_EXTEND;
8605 }
8606
8607 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8608 && ((cdb_storage == NULL)
8609 || (cdb_storage_len < cmd_size))) {
8610 retval = 1;
8611 goto bailout;
8612 }
8613
8614 /*
8615 * At this point we know we have enough space to store the command
8616 * in one place or another. We prefer the built-in array, but used
8617 * the passed in storage if necessary.
8618 */
8619 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8620 cdb_ptr = csio->cdb_io.cdb_bytes;
8621 else {
8622 cdb_ptr = cdb_storage;
8623 cam_flags |= CAM_CDB_POINTER;
8624 }
8625
8626 if (cmd_size <= 12) {
8627 struct ata_pass_12 *cdb;
8628
8629 cdb = (struct ata_pass_12 *)cdb_ptr;
8630 cdb_len = sizeof(*cdb);
8631 bzero(cdb, cdb_len);
8632
8633 cdb->opcode = ATA_PASS_12;
8634 cdb->protocol = protocol;
8635 cdb->flags = ata_flags;
8636 cdb->features = features;
8637 cdb->sector_count = sector_count;
8638 cdb->lba_low = lba & 0xff;
8639 cdb->lba_mid = (lba >> 8) & 0xff;
8640 cdb->lba_high = (lba >> 16) & 0xff;
8641 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8642 cdb->command = command;
8643 cdb->control = control;
8644 } else if (cmd_size <= 16) {
8645 struct ata_pass_16 *cdb;
8646
8647 cdb = (struct ata_pass_16 *)cdb_ptr;
8648 cdb_len = sizeof(*cdb);
8649 bzero(cdb, cdb_len);
8650
8651 cdb->opcode = ATA_PASS_16;
8652 cdb->protocol = protocol;
8653 cdb->flags = ata_flags;
8654 cdb->features = features & 0xff;
8655 cdb->sector_count = sector_count & 0xff;
8656 cdb->lba_low = lba & 0xff;
8657 cdb->lba_mid = (lba >> 8) & 0xff;
8658 cdb->lba_high = (lba >> 16) & 0xff;
8659 /*
8660 * If AP_EXTEND is set, we're sending a 48-bit command.
8661 * Otherwise it's a 28-bit command.
8662 */
8663 if (protocol & AP_EXTEND) {
8664 cdb->lba_low_ext = (lba >> 24) & 0xff;
8665 cdb->lba_mid_ext = (lba >> 32) & 0xff;
8666 cdb->lba_high_ext = (lba >> 40) & 0xff;
8667 cdb->features_ext = (features >> 8) & 0xff;
8668 cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8669 cdb->device = device | ATA_DEV_LBA;
8670 } else {
8671 cdb->lba_low_ext = (lba >> 24) & 0xf;
8672 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8673 }
8674 cdb->command = command;
8675 cdb->control = control;
8676 } else {
8677 struct ata_pass_32 *cdb;
8678 uint8_t tmp_lba[8];
8679
8680 cdb = (struct ata_pass_32 *)cdb_ptr;
8681 cdb_len = sizeof(*cdb);
8682 bzero(cdb, cdb_len);
8683 cdb->opcode = VARIABLE_LEN_CDB;
8684 cdb->control = control;
8685 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8686 service_action);
8687 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8688 cdb->protocol = protocol;
8689 cdb->flags = ata_flags;
8690
8691 if ((protocol & AP_EXTEND) == 0) {
8692 lba &= 0x0fffffff;
8693 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8694 features &= 0xff;
8695 sector_count &= 0xff;
8696 } else {
8697 cdb->device = device | ATA_DEV_LBA;
8698 }
8699 scsi_u64to8b(lba, tmp_lba);
8700 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8701 scsi_ulto2b(features, cdb->features);
8702 scsi_ulto2b(sector_count, cdb->count);
8703 cdb->command = command;
8704 cdb->icc = icc;
8705 scsi_ulto4b(auxiliary, cdb->auxiliary);
8706 }
8707
8708 cam_fill_csio(csio,
8709 retries,
8710 cbfcnp,
8711 cam_flags,
8712 tag_action,
8713 data_ptr,
8714 dxfer_len,
8715 sense_len,
8716 cmd_size,
8717 timeout);
8718 bailout:
8719 return (retval);
8720 }
8721
8722 void
scsi_ata_pass_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t control,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8723 scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries,
8724 void (*cbfcnp)(struct cam_periph *, union ccb *),
8725 uint32_t flags, uint8_t tag_action,
8726 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8727 uint16_t sector_count, uint64_t lba, uint8_t command,
8728 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len,
8729 uint8_t sense_len, uint32_t timeout)
8730 {
8731 struct ata_pass_16 *ata_cmd;
8732
8733 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8734 ata_cmd->opcode = ATA_PASS_16;
8735 ata_cmd->protocol = protocol;
8736 ata_cmd->flags = ata_flags;
8737 ata_cmd->features_ext = features >> 8;
8738 ata_cmd->features = features;
8739 ata_cmd->sector_count_ext = sector_count >> 8;
8740 ata_cmd->sector_count = sector_count;
8741 ata_cmd->lba_low = lba;
8742 ata_cmd->lba_mid = lba >> 8;
8743 ata_cmd->lba_high = lba >> 16;
8744 ata_cmd->device = ATA_DEV_LBA;
8745 if (protocol & AP_EXTEND) {
8746 ata_cmd->lba_low_ext = lba >> 24;
8747 ata_cmd->lba_mid_ext = lba >> 32;
8748 ata_cmd->lba_high_ext = lba >> 40;
8749 } else
8750 ata_cmd->device |= (lba >> 24) & 0x0f;
8751 ata_cmd->command = command;
8752 ata_cmd->control = control;
8753
8754 cam_fill_csio(csio,
8755 retries,
8756 cbfcnp,
8757 flags,
8758 tag_action,
8759 data_ptr,
8760 dxfer_len,
8761 sense_len,
8762 sizeof(*ata_cmd),
8763 timeout);
8764 }
8765
8766 void
scsi_unmap(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8767 scsi_unmap(struct ccb_scsiio *csio, uint32_t retries,
8768 void (*cbfcnp)(struct cam_periph *, union ccb *),
8769 uint8_t tag_action, uint8_t byte2,
8770 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8771 uint32_t timeout)
8772 {
8773 struct scsi_unmap *scsi_cmd;
8774
8775 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8776 scsi_cmd->opcode = UNMAP;
8777 scsi_cmd->byte2 = byte2;
8778 scsi_ulto4b(0, scsi_cmd->reserved);
8779 scsi_cmd->group = 0;
8780 scsi_ulto2b(dxfer_len, scsi_cmd->length);
8781 scsi_cmd->control = 0;
8782
8783 cam_fill_csio(csio,
8784 retries,
8785 cbfcnp,
8786 /*flags*/CAM_DIR_OUT,
8787 tag_action,
8788 data_ptr,
8789 dxfer_len,
8790 sense_len,
8791 sizeof(*scsi_cmd),
8792 timeout);
8793 }
8794
8795 void
scsi_receive_diagnostic_results(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int pcv,uint8_t page_code,uint8_t * data_ptr,uint16_t allocation_length,uint8_t sense_len,uint32_t timeout)8796 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries,
8797 void (*cbfcnp)(struct cam_periph *, union ccb*),
8798 uint8_t tag_action, int pcv, uint8_t page_code,
8799 uint8_t *data_ptr, uint16_t allocation_length,
8800 uint8_t sense_len, uint32_t timeout)
8801 {
8802 struct scsi_receive_diag *scsi_cmd;
8803
8804 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8805 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8806 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8807 if (pcv) {
8808 scsi_cmd->byte2 |= SRD_PCV;
8809 scsi_cmd->page_code = page_code;
8810 }
8811 scsi_ulto2b(allocation_length, scsi_cmd->length);
8812
8813 cam_fill_csio(csio,
8814 retries,
8815 cbfcnp,
8816 /*flags*/CAM_DIR_IN,
8817 tag_action,
8818 data_ptr,
8819 allocation_length,
8820 sense_len,
8821 sizeof(*scsi_cmd),
8822 timeout);
8823 }
8824
8825 void
scsi_send_diagnostic(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int unit_offline,int device_offline,int self_test,int page_format,int self_test_code,uint8_t * data_ptr,uint16_t param_list_length,uint8_t sense_len,uint32_t timeout)8826 scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries,
8827 void (*cbfcnp)(struct cam_periph *, union ccb *),
8828 uint8_t tag_action, int unit_offline, int device_offline,
8829 int self_test, int page_format, int self_test_code,
8830 uint8_t *data_ptr, uint16_t param_list_length,
8831 uint8_t sense_len, uint32_t timeout)
8832 {
8833 struct scsi_send_diag *scsi_cmd;
8834
8835 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8836 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8837 scsi_cmd->opcode = SEND_DIAGNOSTIC;
8838
8839 /*
8840 * The default self-test mode control and specific test
8841 * control are mutually exclusive.
8842 */
8843 if (self_test)
8844 self_test_code = SSD_SELF_TEST_CODE_NONE;
8845
8846 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8847 & SSD_SELF_TEST_CODE_MASK)
8848 | (unit_offline ? SSD_UNITOFFL : 0)
8849 | (device_offline ? SSD_DEVOFFL : 0)
8850 | (self_test ? SSD_SELFTEST : 0)
8851 | (page_format ? SSD_PF : 0);
8852 scsi_ulto2b(param_list_length, scsi_cmd->length);
8853
8854 cam_fill_csio(csio,
8855 retries,
8856 cbfcnp,
8857 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8858 tag_action,
8859 data_ptr,
8860 param_list_length,
8861 sense_len,
8862 sizeof(*scsi_cmd),
8863 timeout);
8864 }
8865
8866 void
scsi_get_physical_element_status(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t allocation_length,uint8_t report_type,uint32_t starting_element,uint8_t sense_len,uint32_t timeout)8867 scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries,
8868 void (*cbfcnp)(struct cam_periph *, union ccb *),
8869 uint8_t tag_action, uint8_t *data_ptr,
8870 uint16_t allocation_length, uint8_t report_type,
8871 uint32_t starting_element,
8872 uint8_t sense_len, uint32_t timeout)
8873 {
8874 struct scsi_get_physical_element_status *scsi_cmd;
8875
8876 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
8877 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8878 scsi_cmd->opcode = SERVICE_ACTION_IN;
8879 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
8880 scsi_ulto4b(starting_element, scsi_cmd->starting_element);
8881 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
8882
8883 cam_fill_csio(csio,
8884 retries,
8885 cbfcnp,
8886 /*flags*/ CAM_DIR_IN,
8887 tag_action,
8888 data_ptr,
8889 allocation_length,
8890 sense_len,
8891 sizeof(*scsi_cmd),
8892 timeout);
8893 }
8894
8895 void
scsi_remove_element_and_truncate(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t requested_capacity,uint32_t element_id,uint8_t sense_len,uint32_t timeout)8896 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries,
8897 void (*cbfcnp)(struct cam_periph *, union ccb *),
8898 uint8_t tag_action,
8899 uint64_t requested_capacity, uint32_t element_id,
8900 uint8_t sense_len, uint32_t timeout)
8901 {
8902 struct scsi_remove_element_and_truncate *scsi_cmd;
8903
8904 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
8905 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8906 scsi_cmd->opcode = SERVICE_ACTION_IN;
8907 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
8908 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
8909 scsi_ulto4b(element_id, scsi_cmd->element_identifier);
8910
8911 cam_fill_csio(csio,
8912 retries,
8913 cbfcnp,
8914 /*flags*/ CAM_DIR_OUT,
8915 tag_action,
8916 NULL,
8917 0,
8918 sense_len,
8919 sizeof(*scsi_cmd),
8920 timeout);
8921 }
8922
8923 void
scsi_restore_elements_and_rebuild(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)8924 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries,
8925 void (*cbfcnp)(struct cam_periph *, union ccb *),
8926 uint8_t tag_action,
8927 uint8_t sense_len, uint32_t timeout)
8928 {
8929 struct scsi_service_action_in *scsi_cmd;
8930
8931 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
8932 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8933 scsi_cmd->opcode = SERVICE_ACTION_IN;
8934 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
8935
8936 cam_fill_csio(csio,
8937 retries,
8938 cbfcnp,
8939 /*flags*/ CAM_DIR_OUT,
8940 tag_action,
8941 NULL,
8942 0,
8943 sense_len,
8944 sizeof(*scsi_cmd),
8945 timeout);
8946 }
8947
8948 void
scsi_read_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t allocation_length,uint8_t sense_len,uint32_t timeout)8949 scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries,
8950 void (*cbfcnp)(struct cam_periph *, union ccb*),
8951 uint8_t tag_action, int mode,
8952 uint8_t buffer_id, uint32_t offset,
8953 uint8_t *data_ptr, uint32_t allocation_length,
8954 uint8_t sense_len, uint32_t timeout)
8955 {
8956 struct scsi_read_buffer *scsi_cmd;
8957
8958 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8959 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8960 scsi_cmd->opcode = READ_BUFFER;
8961 scsi_cmd->byte2 = mode;
8962 scsi_cmd->buffer_id = buffer_id;
8963 scsi_ulto3b(offset, scsi_cmd->offset);
8964 scsi_ulto3b(allocation_length, scsi_cmd->length);
8965
8966 cam_fill_csio(csio,
8967 retries,
8968 cbfcnp,
8969 /*flags*/CAM_DIR_IN,
8970 tag_action,
8971 data_ptr,
8972 allocation_length,
8973 sense_len,
8974 sizeof(*scsi_cmd),
8975 timeout);
8976 }
8977
8978 void
scsi_write_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t param_list_length,uint8_t sense_len,uint32_t timeout)8979 scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries,
8980 void (*cbfcnp)(struct cam_periph *, union ccb *),
8981 uint8_t tag_action, int mode,
8982 uint8_t buffer_id, uint32_t offset,
8983 uint8_t *data_ptr, uint32_t param_list_length,
8984 uint8_t sense_len, uint32_t timeout)
8985 {
8986 struct scsi_write_buffer *scsi_cmd;
8987
8988 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8989 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8990 scsi_cmd->opcode = WRITE_BUFFER;
8991 scsi_cmd->byte2 = mode;
8992 scsi_cmd->buffer_id = buffer_id;
8993 scsi_ulto3b(offset, scsi_cmd->offset);
8994 scsi_ulto3b(param_list_length, scsi_cmd->length);
8995
8996 cam_fill_csio(csio,
8997 retries,
8998 cbfcnp,
8999 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
9000 tag_action,
9001 data_ptr,
9002 param_list_length,
9003 sense_len,
9004 sizeof(*scsi_cmd),
9005 timeout);
9006 }
9007
9008 void
scsi_start_stop(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int start,int load_eject,int immediate,uint8_t sense_len,uint32_t timeout)9009 scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries,
9010 void (*cbfcnp)(struct cam_periph *, union ccb *),
9011 uint8_t tag_action, int start, int load_eject,
9012 int immediate, uint8_t sense_len, uint32_t timeout)
9013 {
9014 struct scsi_start_stop_unit *scsi_cmd;
9015 int extra_flags = 0;
9016
9017 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
9018 bzero(scsi_cmd, sizeof(*scsi_cmd));
9019 scsi_cmd->opcode = START_STOP_UNIT;
9020 if (start != 0) {
9021 scsi_cmd->how |= SSS_START;
9022 /* it takes a lot of power to start a drive */
9023 extra_flags |= CAM_HIGH_POWER;
9024 }
9025 if (load_eject != 0)
9026 scsi_cmd->how |= SSS_LOEJ;
9027 if (immediate != 0)
9028 scsi_cmd->byte2 |= SSS_IMMED;
9029
9030 cam_fill_csio(csio,
9031 retries,
9032 cbfcnp,
9033 /*flags*/CAM_DIR_NONE | extra_flags,
9034 tag_action,
9035 /*data_ptr*/NULL,
9036 /*dxfer_len*/0,
9037 sense_len,
9038 sizeof(*scsi_cmd),
9039 timeout);
9040 }
9041
9042 void
scsi_start_stop_pc(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int start,int load_eject,int immediate,uint8_t power_condition,uint8_t sense_len,uint32_t timeout)9043 scsi_start_stop_pc(struct ccb_scsiio *csio, uint32_t retries,
9044 void (*cbfcnp)(struct cam_periph *, union ccb *),
9045 uint8_t tag_action, int start, int load_eject,
9046 int immediate, uint8_t power_condition, uint8_t sense_len,
9047 uint32_t timeout)
9048 {
9049 struct scsi_start_stop_unit *scsi_cmd;
9050 int extra_flags = 0;
9051
9052 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
9053 bzero(scsi_cmd, sizeof(*scsi_cmd));
9054 scsi_cmd->opcode = START_STOP_UNIT;
9055 if (start != 0) {
9056 scsi_cmd->how |= SSS_START;
9057 /* it takes a lot of power to start a drive */
9058 extra_flags |= CAM_HIGH_POWER;
9059 }
9060 if (load_eject != 0)
9061 scsi_cmd->how |= SSS_LOEJ;
9062 scsi_cmd->how |= power_condition;
9063 if (immediate != 0)
9064 scsi_cmd->byte2 |= SSS_IMMED;
9065
9066 cam_fill_csio(csio,
9067 retries,
9068 cbfcnp,
9069 /*flags*/CAM_DIR_NONE | extra_flags,
9070 tag_action,
9071 /*data_ptr*/NULL,
9072 /*dxfer_len*/0,
9073 sense_len,
9074 sizeof(*scsi_cmd),
9075 timeout);
9076 }
9077
9078 void
scsi_read_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t service_action,uint32_t element,uint8_t elem_type,int logical_volume,int partition,uint32_t first_attribute,int cache,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9079 scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries,
9080 void (*cbfcnp)(struct cam_periph *, union ccb *),
9081 uint8_t tag_action, uint8_t service_action,
9082 uint32_t element, uint8_t elem_type, int logical_volume,
9083 int partition, uint32_t first_attribute, int cache,
9084 uint8_t *data_ptr, uint32_t length, int sense_len,
9085 uint32_t timeout)
9086 {
9087 struct scsi_read_attribute *scsi_cmd;
9088
9089 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
9090 bzero(scsi_cmd, sizeof(*scsi_cmd));
9091
9092 scsi_cmd->opcode = READ_ATTRIBUTE;
9093 scsi_cmd->service_action = service_action;
9094 scsi_ulto2b(element, scsi_cmd->element);
9095 scsi_cmd->elem_type = elem_type;
9096 scsi_cmd->logical_volume = logical_volume;
9097 scsi_cmd->partition = partition;
9098 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
9099 scsi_ulto4b(length, scsi_cmd->length);
9100 if (cache != 0)
9101 scsi_cmd->cache |= SRA_CACHE;
9102
9103 cam_fill_csio(csio,
9104 retries,
9105 cbfcnp,
9106 /*flags*/CAM_DIR_IN,
9107 tag_action,
9108 /*data_ptr*/data_ptr,
9109 /*dxfer_len*/length,
9110 sense_len,
9111 sizeof(*scsi_cmd),
9112 timeout);
9113 }
9114
9115 void
scsi_write_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t element,int logical_volume,int partition,int wtc,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9116 scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries,
9117 void (*cbfcnp)(struct cam_periph *, union ccb *),
9118 uint8_t tag_action, uint32_t element, int logical_volume,
9119 int partition, int wtc, uint8_t *data_ptr,
9120 uint32_t length, int sense_len, uint32_t timeout)
9121 {
9122 struct scsi_write_attribute *scsi_cmd;
9123
9124 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
9125 bzero(scsi_cmd, sizeof(*scsi_cmd));
9126
9127 scsi_cmd->opcode = WRITE_ATTRIBUTE;
9128 if (wtc != 0)
9129 scsi_cmd->byte2 = SWA_WTC;
9130 scsi_ulto3b(element, scsi_cmd->element);
9131 scsi_cmd->logical_volume = logical_volume;
9132 scsi_cmd->partition = partition;
9133 scsi_ulto4b(length, scsi_cmd->length);
9134
9135 cam_fill_csio(csio,
9136 retries,
9137 cbfcnp,
9138 /*flags*/CAM_DIR_OUT,
9139 tag_action,
9140 /*data_ptr*/data_ptr,
9141 /*dxfer_len*/length,
9142 sense_len,
9143 sizeof(*scsi_cmd),
9144 timeout);
9145 }
9146
9147 void
scsi_persistent_reserve_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9148 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
9149 void (*cbfcnp)(struct cam_periph *, union ccb *),
9150 uint8_t tag_action, int service_action,
9151 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9152 int timeout)
9153 {
9154 struct scsi_per_res_in *scsi_cmd;
9155
9156 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
9157 bzero(scsi_cmd, sizeof(*scsi_cmd));
9158
9159 scsi_cmd->opcode = PERSISTENT_RES_IN;
9160 scsi_cmd->action = service_action;
9161 scsi_ulto2b(dxfer_len, scsi_cmd->length);
9162
9163 cam_fill_csio(csio,
9164 retries,
9165 cbfcnp,
9166 /*flags*/CAM_DIR_IN,
9167 tag_action,
9168 data_ptr,
9169 dxfer_len,
9170 sense_len,
9171 sizeof(*scsi_cmd),
9172 timeout);
9173 }
9174
9175 void
scsi_persistent_reserve_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,int scope,int res_type,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9176 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
9177 void (*cbfcnp)(struct cam_periph *, union ccb *),
9178 uint8_t tag_action, int service_action,
9179 int scope, int res_type, uint8_t *data_ptr,
9180 uint32_t dxfer_len, int sense_len, int timeout)
9181 {
9182 struct scsi_per_res_out *scsi_cmd;
9183
9184 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
9185 bzero(scsi_cmd, sizeof(*scsi_cmd));
9186
9187 scsi_cmd->opcode = PERSISTENT_RES_OUT;
9188 scsi_cmd->action = service_action;
9189 scsi_cmd->scope_type = scope | res_type;
9190 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9191
9192 cam_fill_csio(csio,
9193 retries,
9194 cbfcnp,
9195 /*flags*/CAM_DIR_OUT,
9196 tag_action,
9197 /*data_ptr*/data_ptr,
9198 /*dxfer_len*/dxfer_len,
9199 sense_len,
9200 sizeof(*scsi_cmd),
9201 timeout);
9202 }
9203
9204 void
scsi_security_protocol_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9205 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
9206 void (*cbfcnp)(struct cam_periph *, union ccb *),
9207 uint8_t tag_action, uint32_t security_protocol,
9208 uint32_t security_protocol_specific, int byte4,
9209 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9210 int timeout)
9211 {
9212 struct scsi_security_protocol_in *scsi_cmd;
9213
9214 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
9215 bzero(scsi_cmd, sizeof(*scsi_cmd));
9216
9217 scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
9218
9219 scsi_cmd->security_protocol = security_protocol;
9220 scsi_ulto2b(security_protocol_specific,
9221 scsi_cmd->security_protocol_specific);
9222 scsi_cmd->byte4 = byte4;
9223 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9224
9225 cam_fill_csio(csio,
9226 retries,
9227 cbfcnp,
9228 /*flags*/CAM_DIR_IN,
9229 tag_action,
9230 data_ptr,
9231 dxfer_len,
9232 sense_len,
9233 sizeof(*scsi_cmd),
9234 timeout);
9235 }
9236
9237 void
scsi_security_protocol_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9238 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9239 void (*cbfcnp)(struct cam_periph *, union ccb *),
9240 uint8_t tag_action, uint32_t security_protocol,
9241 uint32_t security_protocol_specific, int byte4,
9242 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9243 int timeout)
9244 {
9245 struct scsi_security_protocol_out *scsi_cmd;
9246
9247 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9248 bzero(scsi_cmd, sizeof(*scsi_cmd));
9249
9250 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9251
9252 scsi_cmd->security_protocol = security_protocol;
9253 scsi_ulto2b(security_protocol_specific,
9254 scsi_cmd->security_protocol_specific);
9255 scsi_cmd->byte4 = byte4;
9256 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9257
9258 cam_fill_csio(csio,
9259 retries,
9260 cbfcnp,
9261 /*flags*/CAM_DIR_OUT,
9262 tag_action,
9263 data_ptr,
9264 dxfer_len,
9265 sense_len,
9266 sizeof(*scsi_cmd),
9267 timeout);
9268 }
9269
9270 void
scsi_report_supported_opcodes(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int options,int req_opcode,int req_service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9271 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9272 void (*cbfcnp)(struct cam_periph *, union ccb *),
9273 uint8_t tag_action, int options, int req_opcode,
9274 int req_service_action, uint8_t *data_ptr,
9275 uint32_t dxfer_len, int sense_len, int timeout)
9276 {
9277 struct scsi_report_supported_opcodes *scsi_cmd;
9278
9279 scsi_cmd = (struct scsi_report_supported_opcodes *)
9280 &csio->cdb_io.cdb_bytes;
9281 bzero(scsi_cmd, sizeof(*scsi_cmd));
9282
9283 scsi_cmd->opcode = MAINTENANCE_IN;
9284 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9285 scsi_cmd->options = options;
9286 scsi_cmd->requested_opcode = req_opcode;
9287 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9288 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9289
9290 cam_fill_csio(csio,
9291 retries,
9292 cbfcnp,
9293 /*flags*/CAM_DIR_IN,
9294 tag_action,
9295 data_ptr,
9296 dxfer_len,
9297 sense_len,
9298 sizeof(*scsi_cmd),
9299 timeout);
9300 }
9301
9302 /*
9303 * Try make as good a match as possible with
9304 * available sub drivers
9305 */
9306 int
scsi_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9307 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9308 {
9309 struct scsi_inquiry_pattern *entry;
9310 struct scsi_inquiry_data *inq;
9311
9312 entry = (struct scsi_inquiry_pattern *)table_entry;
9313 inq = (struct scsi_inquiry_data *)inqbuffer;
9314
9315 if (((SID_TYPE(inq) == entry->type)
9316 || (entry->type == T_ANY))
9317 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9318 : entry->media_type & SIP_MEDIA_FIXED)
9319 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9320 && (cam_strmatch(inq->product, entry->product,
9321 sizeof(inq->product)) == 0)
9322 && (cam_strmatch(inq->revision, entry->revision,
9323 sizeof(inq->revision)) == 0)) {
9324 return (0);
9325 }
9326 return (-1);
9327 }
9328
9329 /*
9330 * Try make as good a match as possible with
9331 * available sub drivers
9332 */
9333 int
scsi_static_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9334 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9335 {
9336 struct scsi_static_inquiry_pattern *entry;
9337 struct scsi_inquiry_data *inq;
9338
9339 entry = (struct scsi_static_inquiry_pattern *)table_entry;
9340 inq = (struct scsi_inquiry_data *)inqbuffer;
9341
9342 if (((SID_TYPE(inq) == entry->type)
9343 || (entry->type == T_ANY))
9344 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9345 : entry->media_type & SIP_MEDIA_FIXED)
9346 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9347 && (cam_strmatch(inq->product, entry->product,
9348 sizeof(inq->product)) == 0)
9349 && (cam_strmatch(inq->revision, entry->revision,
9350 sizeof(inq->revision)) == 0)) {
9351 return (0);
9352 }
9353 return (-1);
9354 }
9355
9356 /**
9357 * Compare two buffers of vpd device descriptors for a match.
9358 *
9359 * \param lhs Pointer to first buffer of descriptors to compare.
9360 * \param lhs_len The length of the first buffer.
9361 * \param rhs Pointer to second buffer of descriptors to compare.
9362 * \param rhs_len The length of the second buffer.
9363 *
9364 * \return 0 on a match, -1 otherwise.
9365 *
9366 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching
9367 * against each element in rhs until all data are exhausted or we have found
9368 * a match.
9369 */
9370 int
scsi_devid_match(uint8_t * lhs,size_t lhs_len,uint8_t * rhs,size_t rhs_len)9371 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9372 {
9373 struct scsi_vpd_id_descriptor *lhs_id;
9374 struct scsi_vpd_id_descriptor *lhs_last;
9375 struct scsi_vpd_id_descriptor *rhs_last;
9376 uint8_t *lhs_end;
9377 uint8_t *rhs_end;
9378
9379 lhs_end = lhs + lhs_len;
9380 rhs_end = rhs + rhs_len;
9381
9382 /*
9383 * rhs_last and lhs_last are the last possible position of a valid
9384 * descriptor assuming it had a zero length identifier. We use
9385 * these variables to insure we can safely dereference the length
9386 * field in our loop termination tests.
9387 */
9388 lhs_last = (struct scsi_vpd_id_descriptor *)
9389 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9390 rhs_last = (struct scsi_vpd_id_descriptor *)
9391 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9392
9393 lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9394 while (lhs_id <= lhs_last
9395 && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9396 struct scsi_vpd_id_descriptor *rhs_id;
9397
9398 rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9399 while (rhs_id <= rhs_last
9400 && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9401 if ((rhs_id->id_type &
9402 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9403 (lhs_id->id_type &
9404 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9405 && rhs_id->length == lhs_id->length
9406 && memcmp(rhs_id->identifier, lhs_id->identifier,
9407 rhs_id->length) == 0)
9408 return (0);
9409
9410 rhs_id = (struct scsi_vpd_id_descriptor *)
9411 (rhs_id->identifier + rhs_id->length);
9412 }
9413 lhs_id = (struct scsi_vpd_id_descriptor *)
9414 (lhs_id->identifier + lhs_id->length);
9415 }
9416 return (-1);
9417 }
9418
9419 #ifdef _KERNEL
9420 int
scsi_vpd_supported_page(struct cam_periph * periph,uint8_t page_id)9421 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9422 {
9423 struct cam_ed *device;
9424 struct scsi_vpd_supported_pages *vpds;
9425 int i, num_pages;
9426
9427 device = periph->path->device;
9428 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9429
9430 if (vpds != NULL) {
9431 num_pages = device->supported_vpds_len -
9432 SVPD_SUPPORTED_PAGES_HDR_LEN;
9433 for (i = 0; i < num_pages; i++) {
9434 if (vpds->page_list[i] == page_id)
9435 return (1);
9436 }
9437 }
9438
9439 return (0);
9440 }
9441
9442 static void
decode_sks(struct sbuf * sb,int sk,uint8_t * sks)9443 decode_sks(struct sbuf *sb, int sk, uint8_t *sks)
9444 {
9445 /*
9446 * The format of the sense key specific info varies based on key types.
9447 * The valid bit should be checked by the caller for fixed formats and
9448 * is always one for variable formats since it's mere presence signals
9449 * validity. SPC7 4.4.2.4.1 and 4.4.3.
9450 */
9451 switch (sk) {
9452 case SSD_KEY_ILLEGAL_REQUEST:
9453 {
9454 const char *type;
9455
9456 type = sks[0] & SSD_FIELDPTR_CMD ? "CDB" : "buffer";
9457 sbuf_printf(sb, "error_in=\"%s\" ", type);
9458 if (sks[0] & SSD_BITPTR_VALID) {
9459 sbuf_printf(sb, "bit_ptr=%d ", sks[0] & SSD_BITPTR_VALUE);
9460 }
9461 sbuf_printf(sb, "byte=%d ", scsi_2btoul(sks + 1));
9462 break;
9463 }
9464 case SSD_KEY_HARDWARE_ERROR:
9465 case SSD_KEY_MEDIUM_ERROR:
9466 case SSD_KEY_RECOVERED_ERROR:
9467 sbuf_printf(sb, "retry_count=%d ", scsi_2btoul(sks + 1));
9468 break;
9469 case SSD_KEY_NO_SENSE:
9470 case SSD_KEY_NOT_READY:
9471 sbuf_printf(sb, "progress=%d ", scsi_2btoul(sks + 1));
9472 break;
9473 case SSD_KEY_COPY_ABORTED:
9474 {
9475 const char *type;
9476
9477 /* Note: segment number in cmd_info if SD=1 */
9478 type = sks[0] & SSD_SD_VALID ? "rel" : "abs";
9479 sbuf_printf(sb, "segment=\"%s\" ", type);
9480 if (sks[0] & SSD_BITPTR_VALID) {
9481 sbuf_printf(sb, "bit_ptr=%d ", sks[0] & SSD_BITPTR_VALUE);
9482 }
9483 sbuf_printf(sb, "byte=%d ", scsi_2btoul(sks + 1));
9484 break;
9485 }
9486 case SSD_KEY_UNIT_ATTENTION:
9487 sbuf_printf(sb, "overflow=%d ", sks[0] & 0x1);
9488 break;
9489 default:
9490 /*
9491 * NO DATA - SKSV should be zero, but no
9492 * reported data on 1 either.
9493 */
9494 break;
9495 }
9496 }
9497
9498 /*
9499 * Decode the sense buffer we get back from the drive. See SPC7 4.4
9500 * for details.
9501 */
9502 void
scsi_format_sense_devd(struct ccb_scsiio * csio,struct sbuf * sb)9503 scsi_format_sense_devd(struct ccb_scsiio *csio, struct sbuf *sb)
9504 {
9505 int serr, sk, asc, ascq, slen;
9506 struct scsi_sense_data *sense_data;
9507 uint8_t *walker, *ep;
9508 union ccb *ccb = (union ccb *)csio;
9509
9510 sbuf_printf(sb, "scsi_status=%d ", csio->scsi_status);
9511 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
9512 sbuf_printf(sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
9513 serr, sk, asc, ascq);
9514 if (csio->ccb_h.flags & CAM_SENSE_PTR)
9515 bcopy((struct scsi_sense_data **)&csio->sense_data,
9516 &sense_data, sizeof(struct scsi_sense_data *));
9517 else
9518 sense_data = &csio->sense_data;
9519 /*
9520 * Decode the rest of the sense buffer
9521 */
9522 slen = csio->sense_len - csio->sense_resid;
9523 walker = (uint8_t *)sense_data;
9524 ep = walker + slen;
9525 switch (*walker) {
9526 case SSD_DESC_CURRENT_ERROR:
9527 case SSD_DESC_DEFERRED_ERROR:
9528 {
9529 struct scsi_sense_data_desc *sdesc = (struct scsi_sense_data_desc *)walker;
9530
9531 walker = sdesc->sense_desc;
9532 if (walker + sdesc->extra_len > ep)
9533 return; /* more data than buffer, just punt */
9534 ep = walker + sdesc->extra_len;
9535 while (walker < ep) {
9536 struct scsi_sense_desc_header *hdr =
9537 (struct scsi_sense_desc_header *)walker;
9538
9539 switch (hdr->desc_type) {
9540 case SSD_DESC_INFO:
9541 {
9542 struct scsi_sense_info *info;
9543
9544 info = (struct scsi_sense_info *)hdr;
9545 if ((info->byte2 & SSD_INFO_VALID) == 0)
9546 break;
9547 sbuf_printf(sb, "info=0x%jx ",
9548 scsi_8btou64(info->info));
9549 break;
9550 }
9551 case SSD_DESC_COMMAND:
9552 {
9553 struct scsi_sense_command *command;
9554
9555 command = (struct scsi_sense_command *)hdr;
9556 sbuf_printf(sb, "cmd_info=0x%jx ",
9557 scsi_8btou64(command->command_info));
9558 break;
9559 }
9560 case SSD_DESC_SKS:
9561 /* len sanity */
9562 decode_sks(sb, sk, walker + 2);
9563 break;
9564 case SSD_DESC_FRU:
9565 {
9566 struct scsi_sense_fru *fru;
9567
9568 fru = (struct scsi_sense_fru *)hdr;
9569 sbuf_printf(sb, "fru=%u ", fru->fru);
9570 break;
9571 }
9572 case SSD_DESC_ATA:
9573 {
9574 struct scsi_sense_ata_ret_desc *res;
9575 uint16_t count;
9576 uint64_t lba;
9577
9578 res = (struct scsi_sense_ata_ret_desc *)hdr;
9579 sbuf_printf(sb, "ata_status=0x%02x ata_error=0x%02x ",
9580 res->status, res->error);
9581 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
9582 count = ((uint16_t)res->count_15_8 << 8) | res->count_7_0;
9583 lba = ((uint64_t)res->lba_47_40 << 40) |
9584 ((uint64_t)res->lba_39_32 << 32) |
9585 ((uint64_t)res->lba_31_24 << 24) |
9586 ((uint64_t)res->lba_23_16 << 16) |
9587 ((uint64_t)res->lba_15_8 << 8) |
9588 res->lba_7_0;
9589 } else {
9590 count = res->count_7_0;
9591 lba = ((uint64_t)res->lba_23_16 << 16) |
9592 ((uint64_t)res->lba_15_8 << 8) |
9593 res->lba_7_0;
9594 }
9595 sbuf_printf(sb, "count=%d lba=0x%jx ", count, (uintmax_t)lba);
9596 break;
9597 }
9598 case SSD_DESC_DABD:
9599 {
9600 struct scsi_sense_direct_access_block_device *dabd;
9601
9602 dabd = (struct scsi_sense_direct_access_block_device *)hdr;
9603
9604 if (dabd->sks_byte & SSD_DESC_DABD_SKS_VALID)
9605 decode_sks(sb, sk, dabd->data);
9606 sbuf_printf(sb, "fru=%u ", dabd->fru);
9607 if (dabd->byte2 & SSD_DESC_DABD_VALID) {
9608 sbuf_printf(sb, "info=0x%jx ",
9609 scsi_8btou64(dabd->info));
9610 sbuf_printf(sb, "cmd_info=0x%jx ",
9611 scsi_8btou64(dabd->command_info));
9612 }
9613 }
9614 default:
9615 {
9616 uint8_t *cp;
9617
9618 if (hdr->desc_type >= SSD_DESC_VENDOR_MIN && hdr->desc_type <= SSD_DESC_VENDOR_MAX)
9619 sbuf_printf(sb, "ven%02x=\"", hdr->desc_type);
9620 else
9621 sbuf_printf(sb, "desc%02x=\"", hdr->desc_type);
9622 cp = (uint8_t *)&hdr[1];
9623 for (int i = 0; i < hdr->length; i++, cp++)
9624 sbuf_printf(sb, "%02x ", *cp);
9625 sbuf_printf(sb, "\" ");
9626 break;
9627 }
9628 } /* switch */
9629
9630 walker += sizeof(*hdr) + hdr->length;
9631 }
9632 }
9633 case SSD_CURRENT_ERROR:
9634 case SSD_DEFERRED_ERROR:
9635 {
9636 struct scsi_sense_data_fixed *sfixed = (struct scsi_sense_data_fixed *)walker;
9637
9638 if (sfixed->error_code & SSD_ERRCODE_VALID) {
9639 uint32_t val = scsi_4btoul(sfixed->info);
9640
9641 sbuf_printf(sb, "info=0x%x ", val);
9642 }
9643 if (SSD_FIXED_IS_PRESENT(sfixed, slen, cmd_spec_info) &&
9644 SSD_FIXED_IS_FILLED(sfixed, cmd_spec_info)) {
9645 uint32_t val = scsi_4btoul(sfixed->cmd_spec_info);
9646
9647 sbuf_printf(sb, "cmd_info=0x%x ", val);
9648 }
9649 if (SSD_FIXED_IS_PRESENT(sfixed, slen, fru) &&
9650 SSD_FIXED_IS_FILLED(sfixed, fru)) {
9651
9652 sbuf_printf(sb, "fru=0x%x ", sfixed->fru);
9653 }
9654 if (SSD_FIXED_IS_PRESENT(sfixed, slen, sense_key_spec) &&
9655 SSD_FIXED_IS_FILLED(sfixed, sense_key_spec) &&
9656 (sfixed->sense_key_spec[0] & SSD_SCS_VALID) != 0) {
9657 decode_sks(sb, sk, sfixed->sense_key_spec);
9658 }
9659 /* Additional bytes not reported -- vendor specific */
9660 /* Report the bytes present ? but can't use macros since it's at most 14 bytes */
9661 }
9662 } /* switch */
9663 }
9664
9665 static void
init_scsi_delay(void * dummy __unused)9666 init_scsi_delay(void *dummy __unused)
9667 {
9668 int delay;
9669
9670 delay = SCSI_DELAY;
9671 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9672
9673 if (set_scsi_delay(delay) != 0) {
9674 printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9675 set_scsi_delay(SCSI_DELAY);
9676 }
9677 }
9678 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9679
9680 static int
sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)9681 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9682 {
9683 int error, delay;
9684
9685 delay = scsi_delay;
9686 error = sysctl_handle_int(oidp, &delay, 0, req);
9687 if (error != 0 || req->newptr == NULL)
9688 return (error);
9689 return (set_scsi_delay(delay));
9690 }
9691 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9692 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
9693 0, 0, sysctl_scsi_delay, "I",
9694 "Delay to allow devices to settle after a SCSI bus reset (ms)");
9695
9696 static int
set_scsi_delay(int delay)9697 set_scsi_delay(int delay)
9698 {
9699 /*
9700 * If someone sets this to 0, we assume that they want the
9701 * minimum allowable bus settle delay.
9702 */
9703 if (delay == 0) {
9704 printf("cam: using minimum scsi_delay (%dms)\n",
9705 SCSI_MIN_DELAY);
9706 delay = SCSI_MIN_DELAY;
9707 }
9708 if (delay < SCSI_MIN_DELAY)
9709 return (EINVAL);
9710 scsi_delay = delay;
9711 return (0);
9712 }
9713 #endif /* _KERNEL */
9714