xref: /linux/arch/arm64/kvm/arm.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_nested.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_ptrauth.h>
43 #include <asm/sections.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 #include "sys_regs.h"
50 
51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52 
53 enum kvm_wfx_trap_policy {
54 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55 	KVM_WFX_NOTRAP,
56 	KVM_WFX_TRAP,
57 };
58 
59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61 
62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
63 
64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
66 
67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
68 
69 static bool vgic_present, kvm_arm_initialised;
70 
71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
72 
is_kvm_arm_initialised(void)73 bool is_kvm_arm_initialised(void)
74 {
75 	return kvm_arm_initialised;
76 }
77 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79 {
80 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
81 }
82 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r = -EINVAL;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
92 		return -EINVAL;
93 
94 	switch (cap->cap) {
95 	case KVM_CAP_ARM_NISV_TO_USER:
96 		r = 0;
97 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
98 			&kvm->arch.flags);
99 		break;
100 	case KVM_CAP_ARM_MTE:
101 		mutex_lock(&kvm->lock);
102 		if (system_supports_mte() && !kvm->created_vcpus) {
103 			r = 0;
104 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
105 		}
106 		mutex_unlock(&kvm->lock);
107 		break;
108 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
109 		r = 0;
110 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
111 		break;
112 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
113 		mutex_lock(&kvm->slots_lock);
114 		/*
115 		 * To keep things simple, allow changing the chunk
116 		 * size only when no memory slots have been created.
117 		 */
118 		if (kvm_are_all_memslots_empty(kvm)) {
119 			u64 new_cap = cap->args[0];
120 
121 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
122 				r = 0;
123 				kvm->arch.mmu.split_page_chunk_size = new_cap;
124 			}
125 		}
126 		mutex_unlock(&kvm->slots_lock);
127 		break;
128 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
129 		mutex_lock(&kvm->lock);
130 		if (!kvm->created_vcpus) {
131 			r = 0;
132 			set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
133 		}
134 		mutex_unlock(&kvm->lock);
135 		break;
136 	default:
137 		break;
138 	}
139 
140 	return r;
141 }
142 
kvm_arm_default_max_vcpus(void)143 static int kvm_arm_default_max_vcpus(void)
144 {
145 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146 }
147 
148 /**
149  * kvm_arch_init_vm - initializes a VM data structure
150  * @kvm:	pointer to the KVM struct
151  * @type:	kvm device type
152  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)153 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
154 {
155 	int ret;
156 
157 	mutex_init(&kvm->arch.config_lock);
158 
159 #ifdef CONFIG_LOCKDEP
160 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
161 	mutex_lock(&kvm->lock);
162 	mutex_lock(&kvm->arch.config_lock);
163 	mutex_unlock(&kvm->arch.config_lock);
164 	mutex_unlock(&kvm->lock);
165 #endif
166 
167 	kvm_init_nested(kvm);
168 
169 	ret = kvm_share_hyp(kvm, kvm + 1);
170 	if (ret)
171 		return ret;
172 
173 	ret = pkvm_init_host_vm(kvm);
174 	if (ret)
175 		goto err_unshare_kvm;
176 
177 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
178 		ret = -ENOMEM;
179 		goto err_unshare_kvm;
180 	}
181 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
182 
183 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
184 	if (ret)
185 		goto err_free_cpumask;
186 
187 	kvm_vgic_early_init(kvm);
188 
189 	kvm_timer_init_vm(kvm);
190 
191 	/* The maximum number of VCPUs is limited by the host's GIC model */
192 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
193 
194 	kvm_arm_init_hypercalls(kvm);
195 
196 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
197 
198 	return 0;
199 
200 err_free_cpumask:
201 	free_cpumask_var(kvm->arch.supported_cpus);
202 err_unshare_kvm:
203 	kvm_unshare_hyp(kvm, kvm + 1);
204 	return ret;
205 }
206 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
208 {
209 	return VM_FAULT_SIGBUS;
210 }
211 
kvm_arch_create_vm_debugfs(struct kvm * kvm)212 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
213 {
214 	kvm_sys_regs_create_debugfs(kvm);
215 	kvm_s2_ptdump_create_debugfs(kvm);
216 }
217 
kvm_destroy_mpidr_data(struct kvm * kvm)218 static void kvm_destroy_mpidr_data(struct kvm *kvm)
219 {
220 	struct kvm_mpidr_data *data;
221 
222 	mutex_lock(&kvm->arch.config_lock);
223 
224 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
225 					 lockdep_is_held(&kvm->arch.config_lock));
226 	if (data) {
227 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
228 		synchronize_rcu();
229 		kfree(data);
230 	}
231 
232 	mutex_unlock(&kvm->arch.config_lock);
233 }
234 
235 /**
236  * kvm_arch_destroy_vm - destroy the VM data structure
237  * @kvm:	pointer to the KVM struct
238  */
kvm_arch_destroy_vm(struct kvm * kvm)239 void kvm_arch_destroy_vm(struct kvm *kvm)
240 {
241 	bitmap_free(kvm->arch.pmu_filter);
242 	free_cpumask_var(kvm->arch.supported_cpus);
243 
244 	kvm_vgic_destroy(kvm);
245 
246 	if (is_protected_kvm_enabled())
247 		pkvm_destroy_hyp_vm(kvm);
248 
249 	kvm_destroy_mpidr_data(kvm);
250 
251 	kfree(kvm->arch.sysreg_masks);
252 	kvm_destroy_vcpus(kvm);
253 
254 	kvm_unshare_hyp(kvm, kvm + 1);
255 
256 	kvm_arm_teardown_hypercalls(kvm);
257 }
258 
kvm_has_full_ptr_auth(void)259 static bool kvm_has_full_ptr_auth(void)
260 {
261 	bool apa, gpa, api, gpi, apa3, gpa3;
262 	u64 isar1, isar2, val;
263 
264 	/*
265 	 * Check that:
266 	 *
267 	 * - both Address and Generic auth are implemented for a given
268          *   algorithm (Q5, IMPDEF or Q3)
269 	 * - only a single algorithm is implemented.
270 	 */
271 	if (!system_has_full_ptr_auth())
272 		return false;
273 
274 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
275 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
276 
277 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
278 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
279 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
280 
281 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
282 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
283 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
284 
285 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
286 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
287 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
288 
289 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
290 		(apa + api + apa3) == 1);
291 }
292 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)293 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
294 {
295 	int r;
296 
297 	if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
298 		return 0;
299 
300 	switch (ext) {
301 	case KVM_CAP_IRQCHIP:
302 		r = vgic_present;
303 		break;
304 	case KVM_CAP_IOEVENTFD:
305 	case KVM_CAP_USER_MEMORY:
306 	case KVM_CAP_SYNC_MMU:
307 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
308 	case KVM_CAP_ONE_REG:
309 	case KVM_CAP_ARM_PSCI:
310 	case KVM_CAP_ARM_PSCI_0_2:
311 	case KVM_CAP_READONLY_MEM:
312 	case KVM_CAP_MP_STATE:
313 	case KVM_CAP_IMMEDIATE_EXIT:
314 	case KVM_CAP_VCPU_EVENTS:
315 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
316 	case KVM_CAP_ARM_NISV_TO_USER:
317 	case KVM_CAP_ARM_INJECT_EXT_DABT:
318 	case KVM_CAP_SET_GUEST_DEBUG:
319 	case KVM_CAP_VCPU_ATTRIBUTES:
320 	case KVM_CAP_PTP_KVM:
321 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
322 	case KVM_CAP_IRQFD_RESAMPLE:
323 	case KVM_CAP_COUNTER_OFFSET:
324 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
325 		r = 1;
326 		break;
327 	case KVM_CAP_SET_GUEST_DEBUG2:
328 		return KVM_GUESTDBG_VALID_MASK;
329 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
330 		r = 1;
331 		break;
332 	case KVM_CAP_NR_VCPUS:
333 		/*
334 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
335 		 * architectures, as it does not always bound it to
336 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
337 		 * this is just an advisory value.
338 		 */
339 		r = min_t(unsigned int, num_online_cpus(),
340 			  kvm_arm_default_max_vcpus());
341 		break;
342 	case KVM_CAP_MAX_VCPUS:
343 	case KVM_CAP_MAX_VCPU_ID:
344 		if (kvm)
345 			r = kvm->max_vcpus;
346 		else
347 			r = kvm_arm_default_max_vcpus();
348 		break;
349 	case KVM_CAP_MSI_DEVID:
350 		if (!kvm)
351 			r = -EINVAL;
352 		else
353 			r = kvm->arch.vgic.msis_require_devid;
354 		break;
355 	case KVM_CAP_ARM_USER_IRQ:
356 		/*
357 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
358 		 * (bump this number if adding more devices)
359 		 */
360 		r = 1;
361 		break;
362 	case KVM_CAP_ARM_MTE:
363 		r = system_supports_mte();
364 		break;
365 	case KVM_CAP_STEAL_TIME:
366 		r = kvm_arm_pvtime_supported();
367 		break;
368 	case KVM_CAP_ARM_EL1_32BIT:
369 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
370 		break;
371 	case KVM_CAP_ARM_EL2:
372 		r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
373 		break;
374 	case KVM_CAP_ARM_EL2_E2H0:
375 		r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
376 		break;
377 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
378 		r = get_num_brps();
379 		break;
380 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
381 		r = get_num_wrps();
382 		break;
383 	case KVM_CAP_ARM_PMU_V3:
384 		r = kvm_supports_guest_pmuv3();
385 		break;
386 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
387 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
388 		break;
389 	case KVM_CAP_ARM_VM_IPA_SIZE:
390 		r = get_kvm_ipa_limit();
391 		break;
392 	case KVM_CAP_ARM_SVE:
393 		r = system_supports_sve();
394 		break;
395 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
396 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
397 		r = kvm_has_full_ptr_auth();
398 		break;
399 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
400 		if (kvm)
401 			r = kvm->arch.mmu.split_page_chunk_size;
402 		else
403 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
404 		break;
405 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
406 		r = kvm_supported_block_sizes();
407 		break;
408 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
409 		r = BIT(0);
410 		break;
411 	case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
412 		if (!kvm)
413 			r = -EINVAL;
414 		else
415 			r = kvm_supports_cacheable_pfnmap();
416 		break;
417 
418 	default:
419 		r = 0;
420 	}
421 
422 	return r;
423 }
424 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)425 long kvm_arch_dev_ioctl(struct file *filp,
426 			unsigned int ioctl, unsigned long arg)
427 {
428 	return -EINVAL;
429 }
430 
kvm_arch_alloc_vm(void)431 struct kvm *kvm_arch_alloc_vm(void)
432 {
433 	size_t sz = sizeof(struct kvm);
434 
435 	if (!has_vhe())
436 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
437 
438 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
439 }
440 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)441 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
442 {
443 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
444 		return -EBUSY;
445 
446 	if (id >= kvm->max_vcpus)
447 		return -EINVAL;
448 
449 	return 0;
450 }
451 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)452 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
453 {
454 	int err;
455 
456 	spin_lock_init(&vcpu->arch.mp_state_lock);
457 
458 #ifdef CONFIG_LOCKDEP
459 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
460 	mutex_lock(&vcpu->mutex);
461 	mutex_lock(&vcpu->kvm->arch.config_lock);
462 	mutex_unlock(&vcpu->kvm->arch.config_lock);
463 	mutex_unlock(&vcpu->mutex);
464 #endif
465 
466 	/* Force users to call KVM_ARM_VCPU_INIT */
467 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
468 
469 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
470 
471 	/* Set up the timer */
472 	kvm_timer_vcpu_init(vcpu);
473 
474 	kvm_pmu_vcpu_init(vcpu);
475 
476 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
477 
478 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
479 
480 	/*
481 	 * This vCPU may have been created after mpidr_data was initialized.
482 	 * Throw out the pre-computed mappings if that is the case which forces
483 	 * KVM to fall back to iteratively searching the vCPUs.
484 	 */
485 	kvm_destroy_mpidr_data(vcpu->kvm);
486 
487 	err = kvm_vgic_vcpu_init(vcpu);
488 	if (err)
489 		return err;
490 
491 	err = kvm_share_hyp(vcpu, vcpu + 1);
492 	if (err)
493 		kvm_vgic_vcpu_destroy(vcpu);
494 
495 	return err;
496 }
497 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)498 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
499 {
500 }
501 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)502 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
503 {
504 	if (!is_protected_kvm_enabled())
505 		kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
506 	else
507 		free_hyp_memcache(&vcpu->arch.pkvm_memcache);
508 	kvm_timer_vcpu_terminate(vcpu);
509 	kvm_pmu_vcpu_destroy(vcpu);
510 	kvm_vgic_vcpu_destroy(vcpu);
511 	kvm_arm_vcpu_destroy(vcpu);
512 }
513 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)514 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
515 {
516 
517 }
518 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)519 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
520 {
521 
522 }
523 
vcpu_set_pauth_traps(struct kvm_vcpu * vcpu)524 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
525 {
526 	if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
527 		/*
528 		 * Either we're running an L2 guest, and the API/APK bits come
529 		 * from L1's HCR_EL2, or API/APK are both set.
530 		 */
531 		if (unlikely(is_nested_ctxt(vcpu))) {
532 			u64 val;
533 
534 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
535 			val &= (HCR_API | HCR_APK);
536 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
537 			vcpu->arch.hcr_el2 |= val;
538 		} else {
539 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
540 		}
541 
542 		/*
543 		 * Save the host keys if there is any chance for the guest
544 		 * to use pauth, as the entry code will reload the guest
545 		 * keys in that case.
546 		 */
547 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
548 			struct kvm_cpu_context *ctxt;
549 
550 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
551 			ptrauth_save_keys(ctxt);
552 		}
553 	}
554 }
555 
kvm_vcpu_should_clear_twi(struct kvm_vcpu * vcpu)556 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
557 {
558 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
559 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
560 
561 	return single_task_running() &&
562 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
563 		vcpu->kvm->arch.vgic.nassgireq);
564 }
565 
kvm_vcpu_should_clear_twe(struct kvm_vcpu * vcpu)566 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
567 {
568 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
569 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
570 
571 	return single_task_running();
572 }
573 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)574 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
575 {
576 	struct kvm_s2_mmu *mmu;
577 	int *last_ran;
578 
579 	if (is_protected_kvm_enabled())
580 		goto nommu;
581 
582 	if (vcpu_has_nv(vcpu))
583 		kvm_vcpu_load_hw_mmu(vcpu);
584 
585 	mmu = vcpu->arch.hw_mmu;
586 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
587 
588 	/*
589 	 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
590 	 * which happens eagerly in VHE.
591 	 *
592 	 * Also, the VMID allocator only preserves VMIDs that are active at the
593 	 * time of rollover, so KVM might need to grab a new VMID for the MMU if
594 	 * this is called from kvm_sched_in().
595 	 */
596 	kvm_arm_vmid_update(&mmu->vmid);
597 
598 	/*
599 	 * We guarantee that both TLBs and I-cache are private to each
600 	 * vcpu. If detecting that a vcpu from the same VM has
601 	 * previously run on the same physical CPU, call into the
602 	 * hypervisor code to nuke the relevant contexts.
603 	 *
604 	 * We might get preempted before the vCPU actually runs, but
605 	 * over-invalidation doesn't affect correctness.
606 	 */
607 	if (*last_ran != vcpu->vcpu_idx) {
608 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
609 		*last_ran = vcpu->vcpu_idx;
610 	}
611 
612 nommu:
613 	vcpu->cpu = cpu;
614 
615 	/*
616 	 * The timer must be loaded before the vgic to correctly set up physical
617 	 * interrupt deactivation in nested state (e.g. timer interrupt).
618 	 */
619 	kvm_timer_vcpu_load(vcpu);
620 	kvm_vgic_load(vcpu);
621 	kvm_vcpu_load_debug(vcpu);
622 	if (has_vhe())
623 		kvm_vcpu_load_vhe(vcpu);
624 	kvm_arch_vcpu_load_fp(vcpu);
625 	kvm_vcpu_pmu_restore_guest(vcpu);
626 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
627 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
628 
629 	if (kvm_vcpu_should_clear_twe(vcpu))
630 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
631 	else
632 		vcpu->arch.hcr_el2 |= HCR_TWE;
633 
634 	if (kvm_vcpu_should_clear_twi(vcpu))
635 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
636 	else
637 		vcpu->arch.hcr_el2 |= HCR_TWI;
638 
639 	vcpu_set_pauth_traps(vcpu);
640 
641 	if (is_protected_kvm_enabled()) {
642 		kvm_call_hyp_nvhe(__pkvm_vcpu_load,
643 				  vcpu->kvm->arch.pkvm.handle,
644 				  vcpu->vcpu_idx, vcpu->arch.hcr_el2);
645 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
646 			     &vcpu->arch.vgic_cpu.vgic_v3);
647 	}
648 
649 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
650 		vcpu_set_on_unsupported_cpu(vcpu);
651 }
652 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)653 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
654 {
655 	if (is_protected_kvm_enabled()) {
656 		kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
657 			     &vcpu->arch.vgic_cpu.vgic_v3);
658 		kvm_call_hyp_nvhe(__pkvm_vcpu_put);
659 	}
660 
661 	kvm_vcpu_put_debug(vcpu);
662 	kvm_arch_vcpu_put_fp(vcpu);
663 	if (has_vhe())
664 		kvm_vcpu_put_vhe(vcpu);
665 	kvm_timer_vcpu_put(vcpu);
666 	kvm_vgic_put(vcpu);
667 	kvm_vcpu_pmu_restore_host(vcpu);
668 	if (vcpu_has_nv(vcpu))
669 		kvm_vcpu_put_hw_mmu(vcpu);
670 	kvm_arm_vmid_clear_active();
671 
672 	vcpu_clear_on_unsupported_cpu(vcpu);
673 	vcpu->cpu = -1;
674 }
675 
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)676 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
677 {
678 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
679 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
680 	kvm_vcpu_kick(vcpu);
681 }
682 
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)683 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
684 {
685 	spin_lock(&vcpu->arch.mp_state_lock);
686 	__kvm_arm_vcpu_power_off(vcpu);
687 	spin_unlock(&vcpu->arch.mp_state_lock);
688 }
689 
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)690 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
691 {
692 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
693 }
694 
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)695 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
696 {
697 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
698 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
699 	kvm_vcpu_kick(vcpu);
700 }
701 
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)702 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
703 {
704 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
705 }
706 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)707 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
708 				    struct kvm_mp_state *mp_state)
709 {
710 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
711 
712 	return 0;
713 }
714 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)715 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
716 				    struct kvm_mp_state *mp_state)
717 {
718 	int ret = 0;
719 
720 	spin_lock(&vcpu->arch.mp_state_lock);
721 
722 	switch (mp_state->mp_state) {
723 	case KVM_MP_STATE_RUNNABLE:
724 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
725 		break;
726 	case KVM_MP_STATE_STOPPED:
727 		__kvm_arm_vcpu_power_off(vcpu);
728 		break;
729 	case KVM_MP_STATE_SUSPENDED:
730 		kvm_arm_vcpu_suspend(vcpu);
731 		break;
732 	default:
733 		ret = -EINVAL;
734 	}
735 
736 	spin_unlock(&vcpu->arch.mp_state_lock);
737 
738 	return ret;
739 }
740 
741 /**
742  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
743  * @v:		The VCPU pointer
744  *
745  * If the guest CPU is not waiting for interrupts or an interrupt line is
746  * asserted, the CPU is by definition runnable.
747  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)748 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
749 {
750 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
751 
752 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
753 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
754 }
755 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)756 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
757 {
758 	return vcpu_mode_priv(vcpu);
759 }
760 
761 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)762 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
763 {
764 	return *vcpu_pc(vcpu);
765 }
766 #endif
767 
kvm_init_mpidr_data(struct kvm * kvm)768 static void kvm_init_mpidr_data(struct kvm *kvm)
769 {
770 	struct kvm_mpidr_data *data = NULL;
771 	unsigned long c, mask, nr_entries;
772 	u64 aff_set = 0, aff_clr = ~0UL;
773 	struct kvm_vcpu *vcpu;
774 
775 	mutex_lock(&kvm->arch.config_lock);
776 
777 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
778 	    atomic_read(&kvm->online_vcpus) == 1)
779 		goto out;
780 
781 	kvm_for_each_vcpu(c, vcpu, kvm) {
782 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
783 		aff_set |= aff;
784 		aff_clr &= aff;
785 	}
786 
787 	/*
788 	 * A significant bit can be either 0 or 1, and will only appear in
789 	 * aff_set. Use aff_clr to weed out the useless stuff.
790 	 */
791 	mask = aff_set ^ aff_clr;
792 	nr_entries = BIT_ULL(hweight_long(mask));
793 
794 	/*
795 	 * Don't let userspace fool us. If we need more than a single page
796 	 * to describe the compressed MPIDR array, just fall back to the
797 	 * iterative method. Single vcpu VMs do not need this either.
798 	 */
799 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
800 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
801 			       GFP_KERNEL_ACCOUNT);
802 
803 	if (!data)
804 		goto out;
805 
806 	data->mpidr_mask = mask;
807 
808 	kvm_for_each_vcpu(c, vcpu, kvm) {
809 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
810 		u16 index = kvm_mpidr_index(data, aff);
811 
812 		data->cmpidr_to_idx[index] = c;
813 	}
814 
815 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
816 out:
817 	mutex_unlock(&kvm->arch.config_lock);
818 }
819 
820 /*
821  * Handle both the initialisation that is being done when the vcpu is
822  * run for the first time, as well as the updates that must be
823  * performed each time we get a new thread dealing with this vcpu.
824  */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)825 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
826 {
827 	struct kvm *kvm = vcpu->kvm;
828 	int ret;
829 
830 	if (!kvm_vcpu_initialized(vcpu))
831 		return -ENOEXEC;
832 
833 	if (!kvm_arm_vcpu_is_finalized(vcpu))
834 		return -EPERM;
835 
836 	if (likely(vcpu_has_run_once(vcpu)))
837 		return 0;
838 
839 	kvm_init_mpidr_data(kvm);
840 
841 	if (likely(irqchip_in_kernel(kvm))) {
842 		/*
843 		 * Map the VGIC hardware resources before running a vcpu the
844 		 * first time on this VM.
845 		 */
846 		ret = kvm_vgic_map_resources(kvm);
847 		if (ret)
848 			return ret;
849 	}
850 
851 	ret = kvm_finalize_sys_regs(vcpu);
852 	if (ret)
853 		return ret;
854 
855 	if (vcpu_has_nv(vcpu)) {
856 		ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
857 		if (ret)
858 			return ret;
859 
860 		ret = kvm_vgic_vcpu_nv_init(vcpu);
861 		if (ret)
862 			return ret;
863 	}
864 
865 	/*
866 	 * This needs to happen after any restriction has been applied
867 	 * to the feature set.
868 	 */
869 	kvm_calculate_traps(vcpu);
870 
871 	ret = kvm_timer_enable(vcpu);
872 	if (ret)
873 		return ret;
874 
875 	if (kvm_vcpu_has_pmu(vcpu)) {
876 		ret = kvm_arm_pmu_v3_enable(vcpu);
877 		if (ret)
878 			return ret;
879 	}
880 
881 	if (is_protected_kvm_enabled()) {
882 		ret = pkvm_create_hyp_vm(kvm);
883 		if (ret)
884 			return ret;
885 
886 		ret = pkvm_create_hyp_vcpu(vcpu);
887 		if (ret)
888 			return ret;
889 	}
890 
891 	mutex_lock(&kvm->arch.config_lock);
892 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
893 	mutex_unlock(&kvm->arch.config_lock);
894 
895 	return ret;
896 }
897 
kvm_arch_intc_initialized(struct kvm * kvm)898 bool kvm_arch_intc_initialized(struct kvm *kvm)
899 {
900 	return vgic_initialized(kvm);
901 }
902 
kvm_arm_halt_guest(struct kvm * kvm)903 void kvm_arm_halt_guest(struct kvm *kvm)
904 {
905 	unsigned long i;
906 	struct kvm_vcpu *vcpu;
907 
908 	kvm_for_each_vcpu(i, vcpu, kvm)
909 		vcpu->arch.pause = true;
910 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
911 }
912 
kvm_arm_resume_guest(struct kvm * kvm)913 void kvm_arm_resume_guest(struct kvm *kvm)
914 {
915 	unsigned long i;
916 	struct kvm_vcpu *vcpu;
917 
918 	kvm_for_each_vcpu(i, vcpu, kvm) {
919 		vcpu->arch.pause = false;
920 		__kvm_vcpu_wake_up(vcpu);
921 	}
922 }
923 
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)924 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
925 {
926 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
927 
928 	rcuwait_wait_event(wait,
929 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
930 			   TASK_INTERRUPTIBLE);
931 
932 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
933 		/* Awaken to handle a signal, request we sleep again later. */
934 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
935 	}
936 
937 	/*
938 	 * Make sure we will observe a potential reset request if we've
939 	 * observed a change to the power state. Pairs with the smp_wmb() in
940 	 * kvm_psci_vcpu_on().
941 	 */
942 	smp_rmb();
943 }
944 
945 /**
946  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
947  * @vcpu:	The VCPU pointer
948  *
949  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
950  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
951  * on when a wake event arrives, e.g. there may already be a pending wake event.
952  */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)953 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
954 {
955 	/*
956 	 * Sync back the state of the GIC CPU interface so that we have
957 	 * the latest PMR and group enables. This ensures that
958 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
959 	 * we have pending interrupts, e.g. when determining if the
960 	 * vCPU should block.
961 	 *
962 	 * For the same reason, we want to tell GICv4 that we need
963 	 * doorbells to be signalled, should an interrupt become pending.
964 	 */
965 	preempt_disable();
966 	vcpu_set_flag(vcpu, IN_WFI);
967 	kvm_vgic_put(vcpu);
968 	preempt_enable();
969 
970 	kvm_vcpu_halt(vcpu);
971 	vcpu_clear_flag(vcpu, IN_WFIT);
972 
973 	preempt_disable();
974 	vcpu_clear_flag(vcpu, IN_WFI);
975 	kvm_vgic_load(vcpu);
976 	preempt_enable();
977 }
978 
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)979 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
980 {
981 	if (!kvm_arm_vcpu_suspended(vcpu))
982 		return 1;
983 
984 	kvm_vcpu_wfi(vcpu);
985 
986 	/*
987 	 * The suspend state is sticky; we do not leave it until userspace
988 	 * explicitly marks the vCPU as runnable. Request that we suspend again
989 	 * later.
990 	 */
991 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
992 
993 	/*
994 	 * Check to make sure the vCPU is actually runnable. If so, exit to
995 	 * userspace informing it of the wakeup condition.
996 	 */
997 	if (kvm_arch_vcpu_runnable(vcpu)) {
998 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
999 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1000 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1001 		return 0;
1002 	}
1003 
1004 	/*
1005 	 * Otherwise, we were unblocked to process a different event, such as a
1006 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1007 	 * process the event.
1008 	 */
1009 	return 1;
1010 }
1011 
1012 /**
1013  * check_vcpu_requests - check and handle pending vCPU requests
1014  * @vcpu:	the VCPU pointer
1015  *
1016  * Return: 1 if we should enter the guest
1017  *	   0 if we should exit to userspace
1018  *	   < 0 if we should exit to userspace, where the return value indicates
1019  *	   an error
1020  */
check_vcpu_requests(struct kvm_vcpu * vcpu)1021 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1022 {
1023 	if (kvm_request_pending(vcpu)) {
1024 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1025 			return -EIO;
1026 
1027 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1028 			kvm_vcpu_sleep(vcpu);
1029 
1030 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1031 			kvm_reset_vcpu(vcpu);
1032 
1033 		/*
1034 		 * Clear IRQ_PENDING requests that were made to guarantee
1035 		 * that a VCPU sees new virtual interrupts.
1036 		 */
1037 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1038 
1039 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1040 			kvm_update_stolen_time(vcpu);
1041 
1042 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1043 			/* The distributor enable bits were changed */
1044 			preempt_disable();
1045 			vgic_v4_put(vcpu);
1046 			vgic_v4_load(vcpu);
1047 			preempt_enable();
1048 		}
1049 
1050 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1051 			kvm_vcpu_reload_pmu(vcpu);
1052 
1053 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1054 			kvm_vcpu_pmu_restore_guest(vcpu);
1055 
1056 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1057 			return kvm_vcpu_suspend(vcpu);
1058 
1059 		if (kvm_dirty_ring_check_request(vcpu))
1060 			return 0;
1061 
1062 		check_nested_vcpu_requests(vcpu);
1063 	}
1064 
1065 	return 1;
1066 }
1067 
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)1068 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1069 {
1070 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1071 		return false;
1072 
1073 	if (vcpu_has_nv(vcpu))
1074 		return true;
1075 
1076 	return !kvm_supports_32bit_el0();
1077 }
1078 
1079 /**
1080  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1081  * @vcpu:	The VCPU pointer
1082  * @ret:	Pointer to write optional return code
1083  *
1084  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1085  *	    and skip guest entry.
1086  *
1087  * This function disambiguates between two different types of exits: exits to a
1088  * preemptible + interruptible kernel context and exits to userspace. For an
1089  * exit to userspace, this function will write the return code to ret and return
1090  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1091  * for pending work and re-enter), return true without writing to ret.
1092  */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)1093 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1094 {
1095 	struct kvm_run *run = vcpu->run;
1096 
1097 	/*
1098 	 * If we're using a userspace irqchip, then check if we need
1099 	 * to tell a userspace irqchip about timer or PMU level
1100 	 * changes and if so, exit to userspace (the actual level
1101 	 * state gets updated in kvm_timer_update_run and
1102 	 * kvm_pmu_update_run below).
1103 	 */
1104 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1105 		if (kvm_timer_should_notify_user(vcpu) ||
1106 		    kvm_pmu_should_notify_user(vcpu)) {
1107 			*ret = -EINTR;
1108 			run->exit_reason = KVM_EXIT_INTR;
1109 			return true;
1110 		}
1111 	}
1112 
1113 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1114 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1115 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1116 		run->fail_entry.cpu = smp_processor_id();
1117 		*ret = 0;
1118 		return true;
1119 	}
1120 
1121 	return kvm_request_pending(vcpu) ||
1122 			xfer_to_guest_mode_work_pending();
1123 }
1124 
1125 /*
1126  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1127  * the vCPU is running.
1128  *
1129  * This must be noinstr as instrumentation may make use of RCU, and this is not
1130  * safe during the EQS.
1131  */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)1132 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1133 {
1134 	int ret;
1135 
1136 	guest_state_enter_irqoff();
1137 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1138 	guest_state_exit_irqoff();
1139 
1140 	return ret;
1141 }
1142 
1143 /**
1144  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1145  * @vcpu:	The VCPU pointer
1146  *
1147  * This function is called through the VCPU_RUN ioctl called from user space. It
1148  * will execute VM code in a loop until the time slice for the process is used
1149  * or some emulation is needed from user space in which case the function will
1150  * return with return value 0 and with the kvm_run structure filled in with the
1151  * required data for the requested emulation.
1152  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1153 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1154 {
1155 	struct kvm_run *run = vcpu->run;
1156 	int ret;
1157 
1158 	if (run->exit_reason == KVM_EXIT_MMIO) {
1159 		ret = kvm_handle_mmio_return(vcpu);
1160 		if (ret <= 0)
1161 			return ret;
1162 	}
1163 
1164 	vcpu_load(vcpu);
1165 
1166 	if (!vcpu->wants_to_run) {
1167 		ret = -EINTR;
1168 		goto out;
1169 	}
1170 
1171 	kvm_sigset_activate(vcpu);
1172 
1173 	ret = 1;
1174 	run->exit_reason = KVM_EXIT_UNKNOWN;
1175 	run->flags = 0;
1176 	while (ret > 0) {
1177 		/*
1178 		 * Check conditions before entering the guest
1179 		 */
1180 		ret = xfer_to_guest_mode_handle_work(vcpu);
1181 		if (!ret)
1182 			ret = 1;
1183 
1184 		if (ret > 0)
1185 			ret = check_vcpu_requests(vcpu);
1186 
1187 		/*
1188 		 * Preparing the interrupts to be injected also
1189 		 * involves poking the GIC, which must be done in a
1190 		 * non-preemptible context.
1191 		 */
1192 		preempt_disable();
1193 
1194 		kvm_nested_flush_hwstate(vcpu);
1195 
1196 		if (kvm_vcpu_has_pmu(vcpu))
1197 			kvm_pmu_flush_hwstate(vcpu);
1198 
1199 		local_irq_disable();
1200 
1201 		kvm_vgic_flush_hwstate(vcpu);
1202 
1203 		kvm_pmu_update_vcpu_events(vcpu);
1204 
1205 		/*
1206 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1207 		 * interrupts and before the final VCPU requests check.
1208 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1209 		 * Documentation/virt/kvm/vcpu-requests.rst
1210 		 */
1211 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1212 
1213 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1214 			vcpu->mode = OUTSIDE_GUEST_MODE;
1215 			isb(); /* Ensure work in x_flush_hwstate is committed */
1216 			if (kvm_vcpu_has_pmu(vcpu))
1217 				kvm_pmu_sync_hwstate(vcpu);
1218 			if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1219 				kvm_timer_sync_user(vcpu);
1220 			kvm_vgic_sync_hwstate(vcpu);
1221 			local_irq_enable();
1222 			preempt_enable();
1223 			continue;
1224 		}
1225 
1226 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1227 
1228 		/**************************************************************
1229 		 * Enter the guest
1230 		 */
1231 		trace_kvm_entry(*vcpu_pc(vcpu));
1232 		guest_timing_enter_irqoff();
1233 
1234 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1235 
1236 		vcpu->mode = OUTSIDE_GUEST_MODE;
1237 		vcpu->stat.exits++;
1238 		/*
1239 		 * Back from guest
1240 		 *************************************************************/
1241 
1242 		/*
1243 		 * We must sync the PMU state before the vgic state so
1244 		 * that the vgic can properly sample the updated state of the
1245 		 * interrupt line.
1246 		 */
1247 		if (kvm_vcpu_has_pmu(vcpu))
1248 			kvm_pmu_sync_hwstate(vcpu);
1249 
1250 		/*
1251 		 * Sync the vgic state before syncing the timer state because
1252 		 * the timer code needs to know if the virtual timer
1253 		 * interrupts are active.
1254 		 */
1255 		kvm_vgic_sync_hwstate(vcpu);
1256 
1257 		/*
1258 		 * Sync the timer hardware state before enabling interrupts as
1259 		 * we don't want vtimer interrupts to race with syncing the
1260 		 * timer virtual interrupt state.
1261 		 */
1262 		if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1263 			kvm_timer_sync_user(vcpu);
1264 
1265 		if (is_hyp_ctxt(vcpu))
1266 			kvm_timer_sync_nested(vcpu);
1267 
1268 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1269 
1270 		/*
1271 		 * We must ensure that any pending interrupts are taken before
1272 		 * we exit guest timing so that timer ticks are accounted as
1273 		 * guest time. Transiently unmask interrupts so that any
1274 		 * pending interrupts are taken.
1275 		 *
1276 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1277 		 * context synchronization event) is necessary to ensure that
1278 		 * pending interrupts are taken.
1279 		 */
1280 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1281 			local_irq_enable();
1282 			isb();
1283 			local_irq_disable();
1284 		}
1285 
1286 		guest_timing_exit_irqoff();
1287 
1288 		local_irq_enable();
1289 
1290 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1291 
1292 		/* Exit types that need handling before we can be preempted */
1293 		handle_exit_early(vcpu, ret);
1294 
1295 		kvm_nested_sync_hwstate(vcpu);
1296 
1297 		preempt_enable();
1298 
1299 		/*
1300 		 * The ARMv8 architecture doesn't give the hypervisor
1301 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1302 		 * if implemented by the CPU. If we spot the guest in such
1303 		 * state and that we decided it wasn't supposed to do so (like
1304 		 * with the asymmetric AArch32 case), return to userspace with
1305 		 * a fatal error.
1306 		 */
1307 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1308 			/*
1309 			 * As we have caught the guest red-handed, decide that
1310 			 * it isn't fit for purpose anymore by making the vcpu
1311 			 * invalid. The VMM can try and fix it by issuing  a
1312 			 * KVM_ARM_VCPU_INIT if it really wants to.
1313 			 */
1314 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1315 			ret = ARM_EXCEPTION_IL;
1316 		}
1317 
1318 		ret = handle_exit(vcpu, ret);
1319 	}
1320 
1321 	/* Tell userspace about in-kernel device output levels */
1322 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1323 		kvm_timer_update_run(vcpu);
1324 		kvm_pmu_update_run(vcpu);
1325 	}
1326 
1327 	kvm_sigset_deactivate(vcpu);
1328 
1329 out:
1330 	/*
1331 	 * In the unlikely event that we are returning to userspace
1332 	 * with pending exceptions or PC adjustment, commit these
1333 	 * adjustments in order to give userspace a consistent view of
1334 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1335 	 * being preempt-safe on VHE.
1336 	 */
1337 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1338 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1339 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1340 
1341 	vcpu_put(vcpu);
1342 	return ret;
1343 }
1344 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1345 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1346 {
1347 	int bit_index;
1348 	bool set;
1349 	unsigned long *hcr;
1350 
1351 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1352 		bit_index = __ffs(HCR_VI);
1353 	else /* KVM_ARM_IRQ_CPU_FIQ */
1354 		bit_index = __ffs(HCR_VF);
1355 
1356 	hcr = vcpu_hcr(vcpu);
1357 	if (level)
1358 		set = test_and_set_bit(bit_index, hcr);
1359 	else
1360 		set = test_and_clear_bit(bit_index, hcr);
1361 
1362 	/*
1363 	 * If we didn't change anything, no need to wake up or kick other CPUs
1364 	 */
1365 	if (set == level)
1366 		return 0;
1367 
1368 	/*
1369 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1370 	 * trigger a world-switch round on the running physical CPU to set the
1371 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1372 	 */
1373 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1374 	kvm_vcpu_kick(vcpu);
1375 
1376 	return 0;
1377 }
1378 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1379 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1380 			  bool line_status)
1381 {
1382 	u32 irq = irq_level->irq;
1383 	unsigned int irq_type, vcpu_id, irq_num;
1384 	struct kvm_vcpu *vcpu = NULL;
1385 	bool level = irq_level->level;
1386 
1387 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1388 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1389 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1390 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1391 
1392 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1393 
1394 	switch (irq_type) {
1395 	case KVM_ARM_IRQ_TYPE_CPU:
1396 		if (irqchip_in_kernel(kvm))
1397 			return -ENXIO;
1398 
1399 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1400 		if (!vcpu)
1401 			return -EINVAL;
1402 
1403 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1404 			return -EINVAL;
1405 
1406 		return vcpu_interrupt_line(vcpu, irq_num, level);
1407 	case KVM_ARM_IRQ_TYPE_PPI:
1408 		if (!irqchip_in_kernel(kvm))
1409 			return -ENXIO;
1410 
1411 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1412 		if (!vcpu)
1413 			return -EINVAL;
1414 
1415 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1416 			return -EINVAL;
1417 
1418 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1419 	case KVM_ARM_IRQ_TYPE_SPI:
1420 		if (!irqchip_in_kernel(kvm))
1421 			return -ENXIO;
1422 
1423 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1424 			return -EINVAL;
1425 
1426 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1427 	}
1428 
1429 	return -EINVAL;
1430 }
1431 
system_supported_vcpu_features(void)1432 static unsigned long system_supported_vcpu_features(void)
1433 {
1434 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1435 
1436 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1437 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1438 
1439 	if (!kvm_supports_guest_pmuv3())
1440 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1441 
1442 	if (!system_supports_sve())
1443 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1444 
1445 	if (!kvm_has_full_ptr_auth()) {
1446 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1447 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1448 	}
1449 
1450 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1451 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1452 
1453 	return features;
1454 }
1455 
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1456 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1457 					const struct kvm_vcpu_init *init)
1458 {
1459 	unsigned long features = init->features[0];
1460 	int i;
1461 
1462 	if (features & ~KVM_VCPU_VALID_FEATURES)
1463 		return -ENOENT;
1464 
1465 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1466 		if (init->features[i])
1467 			return -ENOENT;
1468 	}
1469 
1470 	if (features & ~system_supported_vcpu_features())
1471 		return -EINVAL;
1472 
1473 	/*
1474 	 * For now make sure that both address/generic pointer authentication
1475 	 * features are requested by the userspace together.
1476 	 */
1477 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1478 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1479 		return -EINVAL;
1480 
1481 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1482 		return 0;
1483 
1484 	/* MTE is incompatible with AArch32 */
1485 	if (kvm_has_mte(vcpu->kvm))
1486 		return -EINVAL;
1487 
1488 	/* NV is incompatible with AArch32 */
1489 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1490 		return -EINVAL;
1491 
1492 	return 0;
1493 }
1494 
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1495 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1496 				  const struct kvm_vcpu_init *init)
1497 {
1498 	unsigned long features = init->features[0];
1499 
1500 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1501 			     KVM_VCPU_MAX_FEATURES);
1502 }
1503 
kvm_setup_vcpu(struct kvm_vcpu * vcpu)1504 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1505 {
1506 	struct kvm *kvm = vcpu->kvm;
1507 	int ret = 0;
1508 
1509 	/*
1510 	 * When the vCPU has a PMU, but no PMU is set for the guest
1511 	 * yet, set the default one.
1512 	 */
1513 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1514 		ret = kvm_arm_set_default_pmu(kvm);
1515 
1516 	/* Prepare for nested if required */
1517 	if (!ret && vcpu_has_nv(vcpu))
1518 		ret = kvm_vcpu_init_nested(vcpu);
1519 
1520 	return ret;
1521 }
1522 
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1523 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1524 				 const struct kvm_vcpu_init *init)
1525 {
1526 	unsigned long features = init->features[0];
1527 	struct kvm *kvm = vcpu->kvm;
1528 	int ret = -EINVAL;
1529 
1530 	mutex_lock(&kvm->arch.config_lock);
1531 
1532 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1533 	    kvm_vcpu_init_changed(vcpu, init))
1534 		goto out_unlock;
1535 
1536 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1537 
1538 	ret = kvm_setup_vcpu(vcpu);
1539 	if (ret)
1540 		goto out_unlock;
1541 
1542 	/* Now we know what it is, we can reset it. */
1543 	kvm_reset_vcpu(vcpu);
1544 
1545 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1546 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1547 	ret = 0;
1548 out_unlock:
1549 	mutex_unlock(&kvm->arch.config_lock);
1550 	return ret;
1551 }
1552 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1553 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1554 			       const struct kvm_vcpu_init *init)
1555 {
1556 	int ret;
1557 
1558 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1559 	    init->target != kvm_target_cpu())
1560 		return -EINVAL;
1561 
1562 	ret = kvm_vcpu_init_check_features(vcpu, init);
1563 	if (ret)
1564 		return ret;
1565 
1566 	if (!kvm_vcpu_initialized(vcpu))
1567 		return __kvm_vcpu_set_target(vcpu, init);
1568 
1569 	if (kvm_vcpu_init_changed(vcpu, init))
1570 		return -EINVAL;
1571 
1572 	kvm_reset_vcpu(vcpu);
1573 	return 0;
1574 }
1575 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1576 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1577 					 struct kvm_vcpu_init *init)
1578 {
1579 	bool power_off = false;
1580 	int ret;
1581 
1582 	/*
1583 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1584 	 * reflecting it in the finalized feature set, thus limiting its scope
1585 	 * to a single KVM_ARM_VCPU_INIT call.
1586 	 */
1587 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1588 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1589 		power_off = true;
1590 	}
1591 
1592 	ret = kvm_vcpu_set_target(vcpu, init);
1593 	if (ret)
1594 		return ret;
1595 
1596 	/*
1597 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1598 	 * guest MMU is turned off and flush the caches as needed.
1599 	 *
1600 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1601 	 * ensuring that the data side is always coherent. We still
1602 	 * need to invalidate the I-cache though, as FWB does *not*
1603 	 * imply CTR_EL0.DIC.
1604 	 */
1605 	if (vcpu_has_run_once(vcpu)) {
1606 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1607 			stage2_unmap_vm(vcpu->kvm);
1608 		else
1609 			icache_inval_all_pou();
1610 	}
1611 
1612 	vcpu_reset_hcr(vcpu);
1613 
1614 	/*
1615 	 * Handle the "start in power-off" case.
1616 	 */
1617 	spin_lock(&vcpu->arch.mp_state_lock);
1618 
1619 	if (power_off)
1620 		__kvm_arm_vcpu_power_off(vcpu);
1621 	else
1622 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1623 
1624 	spin_unlock(&vcpu->arch.mp_state_lock);
1625 
1626 	return 0;
1627 }
1628 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1629 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1630 				 struct kvm_device_attr *attr)
1631 {
1632 	int ret = -ENXIO;
1633 
1634 	switch (attr->group) {
1635 	default:
1636 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1637 		break;
1638 	}
1639 
1640 	return ret;
1641 }
1642 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1643 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1644 				 struct kvm_device_attr *attr)
1645 {
1646 	int ret = -ENXIO;
1647 
1648 	switch (attr->group) {
1649 	default:
1650 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1651 		break;
1652 	}
1653 
1654 	return ret;
1655 }
1656 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1657 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1658 				 struct kvm_device_attr *attr)
1659 {
1660 	int ret = -ENXIO;
1661 
1662 	switch (attr->group) {
1663 	default:
1664 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1665 		break;
1666 	}
1667 
1668 	return ret;
1669 }
1670 
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1671 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1672 				   struct kvm_vcpu_events *events)
1673 {
1674 	memset(events, 0, sizeof(*events));
1675 
1676 	return __kvm_arm_vcpu_get_events(vcpu, events);
1677 }
1678 
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1679 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1680 				   struct kvm_vcpu_events *events)
1681 {
1682 	int i;
1683 
1684 	/* check whether the reserved field is zero */
1685 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1686 		if (events->reserved[i])
1687 			return -EINVAL;
1688 
1689 	/* check whether the pad field is zero */
1690 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1691 		if (events->exception.pad[i])
1692 			return -EINVAL;
1693 
1694 	return __kvm_arm_vcpu_set_events(vcpu, events);
1695 }
1696 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1697 long kvm_arch_vcpu_ioctl(struct file *filp,
1698 			 unsigned int ioctl, unsigned long arg)
1699 {
1700 	struct kvm_vcpu *vcpu = filp->private_data;
1701 	void __user *argp = (void __user *)arg;
1702 	struct kvm_device_attr attr;
1703 	long r;
1704 
1705 	switch (ioctl) {
1706 	case KVM_ARM_VCPU_INIT: {
1707 		struct kvm_vcpu_init init;
1708 
1709 		r = -EFAULT;
1710 		if (copy_from_user(&init, argp, sizeof(init)))
1711 			break;
1712 
1713 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1714 		break;
1715 	}
1716 	case KVM_SET_ONE_REG:
1717 	case KVM_GET_ONE_REG: {
1718 		struct kvm_one_reg reg;
1719 
1720 		r = -ENOEXEC;
1721 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1722 			break;
1723 
1724 		r = -EFAULT;
1725 		if (copy_from_user(&reg, argp, sizeof(reg)))
1726 			break;
1727 
1728 		/*
1729 		 * We could owe a reset due to PSCI. Handle the pending reset
1730 		 * here to ensure userspace register accesses are ordered after
1731 		 * the reset.
1732 		 */
1733 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1734 			kvm_reset_vcpu(vcpu);
1735 
1736 		if (ioctl == KVM_SET_ONE_REG)
1737 			r = kvm_arm_set_reg(vcpu, &reg);
1738 		else
1739 			r = kvm_arm_get_reg(vcpu, &reg);
1740 		break;
1741 	}
1742 	case KVM_GET_REG_LIST: {
1743 		struct kvm_reg_list __user *user_list = argp;
1744 		struct kvm_reg_list reg_list;
1745 		unsigned n;
1746 
1747 		r = -ENOEXEC;
1748 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1749 			break;
1750 
1751 		r = -EPERM;
1752 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1753 			break;
1754 
1755 		r = -EFAULT;
1756 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1757 			break;
1758 		n = reg_list.n;
1759 		reg_list.n = kvm_arm_num_regs(vcpu);
1760 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1761 			break;
1762 		r = -E2BIG;
1763 		if (n < reg_list.n)
1764 			break;
1765 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1766 		break;
1767 	}
1768 	case KVM_SET_DEVICE_ATTR: {
1769 		r = -EFAULT;
1770 		if (copy_from_user(&attr, argp, sizeof(attr)))
1771 			break;
1772 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1773 		break;
1774 	}
1775 	case KVM_GET_DEVICE_ATTR: {
1776 		r = -EFAULT;
1777 		if (copy_from_user(&attr, argp, sizeof(attr)))
1778 			break;
1779 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1780 		break;
1781 	}
1782 	case KVM_HAS_DEVICE_ATTR: {
1783 		r = -EFAULT;
1784 		if (copy_from_user(&attr, argp, sizeof(attr)))
1785 			break;
1786 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1787 		break;
1788 	}
1789 	case KVM_GET_VCPU_EVENTS: {
1790 		struct kvm_vcpu_events events;
1791 
1792 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1793 			return -EINVAL;
1794 
1795 		if (copy_to_user(argp, &events, sizeof(events)))
1796 			return -EFAULT;
1797 
1798 		return 0;
1799 	}
1800 	case KVM_SET_VCPU_EVENTS: {
1801 		struct kvm_vcpu_events events;
1802 
1803 		if (copy_from_user(&events, argp, sizeof(events)))
1804 			return -EFAULT;
1805 
1806 		return kvm_arm_vcpu_set_events(vcpu, &events);
1807 	}
1808 	case KVM_ARM_VCPU_FINALIZE: {
1809 		int what;
1810 
1811 		if (!kvm_vcpu_initialized(vcpu))
1812 			return -ENOEXEC;
1813 
1814 		if (get_user(what, (const int __user *)argp))
1815 			return -EFAULT;
1816 
1817 		return kvm_arm_vcpu_finalize(vcpu, what);
1818 	}
1819 	default:
1820 		r = -EINVAL;
1821 	}
1822 
1823 	return r;
1824 }
1825 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1826 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1827 {
1828 
1829 }
1830 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1831 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1832 					struct kvm_arm_device_addr *dev_addr)
1833 {
1834 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1835 	case KVM_ARM_DEVICE_VGIC_V2:
1836 		if (!vgic_present)
1837 			return -ENXIO;
1838 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1839 	default:
1840 		return -ENODEV;
1841 	}
1842 }
1843 
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1844 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1845 {
1846 	switch (attr->group) {
1847 	case KVM_ARM_VM_SMCCC_CTRL:
1848 		return kvm_vm_smccc_has_attr(kvm, attr);
1849 	default:
1850 		return -ENXIO;
1851 	}
1852 }
1853 
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1854 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1855 {
1856 	switch (attr->group) {
1857 	case KVM_ARM_VM_SMCCC_CTRL:
1858 		return kvm_vm_smccc_set_attr(kvm, attr);
1859 	default:
1860 		return -ENXIO;
1861 	}
1862 }
1863 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1864 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1865 {
1866 	struct kvm *kvm = filp->private_data;
1867 	void __user *argp = (void __user *)arg;
1868 	struct kvm_device_attr attr;
1869 
1870 	switch (ioctl) {
1871 	case KVM_CREATE_IRQCHIP: {
1872 		int ret;
1873 		if (!vgic_present)
1874 			return -ENXIO;
1875 		mutex_lock(&kvm->lock);
1876 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1877 		mutex_unlock(&kvm->lock);
1878 		return ret;
1879 	}
1880 	case KVM_ARM_SET_DEVICE_ADDR: {
1881 		struct kvm_arm_device_addr dev_addr;
1882 
1883 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1884 			return -EFAULT;
1885 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1886 	}
1887 	case KVM_ARM_PREFERRED_TARGET: {
1888 		struct kvm_vcpu_init init = {
1889 			.target = KVM_ARM_TARGET_GENERIC_V8,
1890 		};
1891 
1892 		if (copy_to_user(argp, &init, sizeof(init)))
1893 			return -EFAULT;
1894 
1895 		return 0;
1896 	}
1897 	case KVM_ARM_MTE_COPY_TAGS: {
1898 		struct kvm_arm_copy_mte_tags copy_tags;
1899 
1900 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1901 			return -EFAULT;
1902 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1903 	}
1904 	case KVM_ARM_SET_COUNTER_OFFSET: {
1905 		struct kvm_arm_counter_offset offset;
1906 
1907 		if (copy_from_user(&offset, argp, sizeof(offset)))
1908 			return -EFAULT;
1909 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1910 	}
1911 	case KVM_HAS_DEVICE_ATTR: {
1912 		if (copy_from_user(&attr, argp, sizeof(attr)))
1913 			return -EFAULT;
1914 
1915 		return kvm_vm_has_attr(kvm, &attr);
1916 	}
1917 	case KVM_SET_DEVICE_ATTR: {
1918 		if (copy_from_user(&attr, argp, sizeof(attr)))
1919 			return -EFAULT;
1920 
1921 		return kvm_vm_set_attr(kvm, &attr);
1922 	}
1923 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1924 		struct reg_mask_range range;
1925 
1926 		if (copy_from_user(&range, argp, sizeof(range)))
1927 			return -EFAULT;
1928 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1929 	}
1930 	default:
1931 		return -EINVAL;
1932 	}
1933 }
1934 
nvhe_percpu_size(void)1935 static unsigned long nvhe_percpu_size(void)
1936 {
1937 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1938 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1939 }
1940 
nvhe_percpu_order(void)1941 static unsigned long nvhe_percpu_order(void)
1942 {
1943 	unsigned long size = nvhe_percpu_size();
1944 
1945 	return size ? get_order(size) : 0;
1946 }
1947 
pkvm_host_sve_state_order(void)1948 static size_t pkvm_host_sve_state_order(void)
1949 {
1950 	return get_order(pkvm_host_sve_state_size());
1951 }
1952 
1953 /* A lookup table holding the hypervisor VA for each vector slot */
1954 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1955 
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1956 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1957 {
1958 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1959 }
1960 
kvm_init_vector_slots(void)1961 static int kvm_init_vector_slots(void)
1962 {
1963 	int err;
1964 	void *base;
1965 
1966 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1967 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1968 
1969 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1970 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1971 
1972 	if (kvm_system_needs_idmapped_vectors() &&
1973 	    !is_protected_kvm_enabled()) {
1974 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1975 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1976 		if (err)
1977 			return err;
1978 	}
1979 
1980 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1981 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1982 	return 0;
1983 }
1984 
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1985 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1986 {
1987 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1988 	unsigned long tcr;
1989 
1990 	/*
1991 	 * Calculate the raw per-cpu offset without a translation from the
1992 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1993 	 * so that we can use adr_l to access per-cpu variables in EL2.
1994 	 * Also drop the KASAN tag which gets in the way...
1995 	 */
1996 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1997 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1998 
1999 	params->mair_el2 = read_sysreg(mair_el1);
2000 
2001 	tcr = read_sysreg(tcr_el1);
2002 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2003 		tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2004 		tcr |= TCR_EPD1_MASK;
2005 	} else {
2006 		unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2007 
2008 		tcr &= TCR_EL2_MASK;
2009 		tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2010 		if (lpa2_is_enabled())
2011 			tcr |= TCR_EL2_DS;
2012 	}
2013 	tcr |= TCR_T0SZ(hyp_va_bits);
2014 	params->tcr_el2 = tcr;
2015 
2016 	params->pgd_pa = kvm_mmu_get_httbr();
2017 	if (is_protected_kvm_enabled())
2018 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2019 	else
2020 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2021 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2022 		params->hcr_el2 |= HCR_E2H;
2023 	params->vttbr = params->vtcr = 0;
2024 
2025 	/*
2026 	 * Flush the init params from the data cache because the struct will
2027 	 * be read while the MMU is off.
2028 	 */
2029 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2030 }
2031 
hyp_install_host_vector(void)2032 static void hyp_install_host_vector(void)
2033 {
2034 	struct kvm_nvhe_init_params *params;
2035 	struct arm_smccc_res res;
2036 
2037 	/* Switch from the HYP stub to our own HYP init vector */
2038 	__hyp_set_vectors(kvm_get_idmap_vector());
2039 
2040 	/*
2041 	 * Call initialization code, and switch to the full blown HYP code.
2042 	 * If the cpucaps haven't been finalized yet, something has gone very
2043 	 * wrong, and hyp will crash and burn when it uses any
2044 	 * cpus_have_*_cap() wrapper.
2045 	 */
2046 	BUG_ON(!system_capabilities_finalized());
2047 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2048 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2049 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2050 }
2051 
cpu_init_hyp_mode(void)2052 static void cpu_init_hyp_mode(void)
2053 {
2054 	hyp_install_host_vector();
2055 
2056 	/*
2057 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2058 	 * at EL2.
2059 	 */
2060 	if (this_cpu_has_cap(ARM64_SSBS) &&
2061 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2062 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2063 	}
2064 }
2065 
cpu_hyp_reset(void)2066 static void cpu_hyp_reset(void)
2067 {
2068 	if (!is_kernel_in_hyp_mode())
2069 		__hyp_reset_vectors();
2070 }
2071 
2072 /*
2073  * EL2 vectors can be mapped and rerouted in a number of ways,
2074  * depending on the kernel configuration and CPU present:
2075  *
2076  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2077  *   placed in one of the vector slots, which is executed before jumping
2078  *   to the real vectors.
2079  *
2080  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2081  *   containing the hardening sequence is mapped next to the idmap page,
2082  *   and executed before jumping to the real vectors.
2083  *
2084  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2085  *   empty slot is selected, mapped next to the idmap page, and
2086  *   executed before jumping to the real vectors.
2087  *
2088  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2089  * VHE, as we don't have hypervisor-specific mappings. If the system
2090  * is VHE and yet selects this capability, it will be ignored.
2091  */
cpu_set_hyp_vector(void)2092 static void cpu_set_hyp_vector(void)
2093 {
2094 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2095 	void *vector = hyp_spectre_vector_selector[data->slot];
2096 
2097 	if (!is_protected_kvm_enabled())
2098 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2099 	else
2100 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2101 }
2102 
cpu_hyp_init_context(void)2103 static void cpu_hyp_init_context(void)
2104 {
2105 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2106 	kvm_init_host_debug_data();
2107 
2108 	if (!is_kernel_in_hyp_mode())
2109 		cpu_init_hyp_mode();
2110 }
2111 
cpu_hyp_init_features(void)2112 static void cpu_hyp_init_features(void)
2113 {
2114 	cpu_set_hyp_vector();
2115 
2116 	if (is_kernel_in_hyp_mode())
2117 		kvm_timer_init_vhe();
2118 
2119 	if (vgic_present)
2120 		kvm_vgic_init_cpu_hardware();
2121 }
2122 
cpu_hyp_reinit(void)2123 static void cpu_hyp_reinit(void)
2124 {
2125 	cpu_hyp_reset();
2126 	cpu_hyp_init_context();
2127 	cpu_hyp_init_features();
2128 }
2129 
cpu_hyp_init(void * discard)2130 static void cpu_hyp_init(void *discard)
2131 {
2132 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2133 		cpu_hyp_reinit();
2134 		__this_cpu_write(kvm_hyp_initialized, 1);
2135 	}
2136 }
2137 
cpu_hyp_uninit(void * discard)2138 static void cpu_hyp_uninit(void *discard)
2139 {
2140 	if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2141 		cpu_hyp_reset();
2142 		__this_cpu_write(kvm_hyp_initialized, 0);
2143 	}
2144 }
2145 
kvm_arch_enable_virtualization_cpu(void)2146 int kvm_arch_enable_virtualization_cpu(void)
2147 {
2148 	/*
2149 	 * Most calls to this function are made with migration
2150 	 * disabled, but not with preemption disabled. The former is
2151 	 * enough to ensure correctness, but most of the helpers
2152 	 * expect the later and will throw a tantrum otherwise.
2153 	 */
2154 	preempt_disable();
2155 
2156 	cpu_hyp_init(NULL);
2157 
2158 	kvm_vgic_cpu_up();
2159 	kvm_timer_cpu_up();
2160 
2161 	preempt_enable();
2162 
2163 	return 0;
2164 }
2165 
kvm_arch_disable_virtualization_cpu(void)2166 void kvm_arch_disable_virtualization_cpu(void)
2167 {
2168 	kvm_timer_cpu_down();
2169 	kvm_vgic_cpu_down();
2170 
2171 	if (!is_protected_kvm_enabled())
2172 		cpu_hyp_uninit(NULL);
2173 }
2174 
2175 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2176 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2177 				    unsigned long cmd,
2178 				    void *v)
2179 {
2180 	/*
2181 	 * kvm_hyp_initialized is left with its old value over
2182 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2183 	 * re-enable hyp.
2184 	 */
2185 	switch (cmd) {
2186 	case CPU_PM_ENTER:
2187 		if (__this_cpu_read(kvm_hyp_initialized))
2188 			/*
2189 			 * don't update kvm_hyp_initialized here
2190 			 * so that the hyp will be re-enabled
2191 			 * when we resume. See below.
2192 			 */
2193 			cpu_hyp_reset();
2194 
2195 		return NOTIFY_OK;
2196 	case CPU_PM_ENTER_FAILED:
2197 	case CPU_PM_EXIT:
2198 		if (__this_cpu_read(kvm_hyp_initialized))
2199 			/* The hyp was enabled before suspend. */
2200 			cpu_hyp_reinit();
2201 
2202 		return NOTIFY_OK;
2203 
2204 	default:
2205 		return NOTIFY_DONE;
2206 	}
2207 }
2208 
2209 static struct notifier_block hyp_init_cpu_pm_nb = {
2210 	.notifier_call = hyp_init_cpu_pm_notifier,
2211 };
2212 
hyp_cpu_pm_init(void)2213 static void __init hyp_cpu_pm_init(void)
2214 {
2215 	if (!is_protected_kvm_enabled())
2216 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2217 }
hyp_cpu_pm_exit(void)2218 static void __init hyp_cpu_pm_exit(void)
2219 {
2220 	if (!is_protected_kvm_enabled())
2221 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2222 }
2223 #else
hyp_cpu_pm_init(void)2224 static inline void __init hyp_cpu_pm_init(void)
2225 {
2226 }
hyp_cpu_pm_exit(void)2227 static inline void __init hyp_cpu_pm_exit(void)
2228 {
2229 }
2230 #endif
2231 
init_cpu_logical_map(void)2232 static void __init init_cpu_logical_map(void)
2233 {
2234 	unsigned int cpu;
2235 
2236 	/*
2237 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2238 	 * Only copy the set of online CPUs whose features have been checked
2239 	 * against the finalized system capabilities. The hypervisor will not
2240 	 * allow any other CPUs from the `possible` set to boot.
2241 	 */
2242 	for_each_online_cpu(cpu)
2243 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2244 }
2245 
2246 #define init_psci_0_1_impl_state(config, what)	\
2247 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2248 
init_psci_relay(void)2249 static bool __init init_psci_relay(void)
2250 {
2251 	/*
2252 	 * If PSCI has not been initialized, protected KVM cannot install
2253 	 * itself on newly booted CPUs.
2254 	 */
2255 	if (!psci_ops.get_version) {
2256 		kvm_err("Cannot initialize protected mode without PSCI\n");
2257 		return false;
2258 	}
2259 
2260 	kvm_host_psci_config.version = psci_ops.get_version();
2261 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2262 
2263 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2264 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2265 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2266 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2267 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2268 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2269 	}
2270 	return true;
2271 }
2272 
init_subsystems(void)2273 static int __init init_subsystems(void)
2274 {
2275 	int err = 0;
2276 
2277 	/*
2278 	 * Enable hardware so that subsystem initialisation can access EL2.
2279 	 */
2280 	on_each_cpu(cpu_hyp_init, NULL, 1);
2281 
2282 	/*
2283 	 * Register CPU lower-power notifier
2284 	 */
2285 	hyp_cpu_pm_init();
2286 
2287 	/*
2288 	 * Init HYP view of VGIC
2289 	 */
2290 	err = kvm_vgic_hyp_init();
2291 	switch (err) {
2292 	case 0:
2293 		vgic_present = true;
2294 		break;
2295 	case -ENODEV:
2296 	case -ENXIO:
2297 		/*
2298 		 * No VGIC? No pKVM for you.
2299 		 *
2300 		 * Protected mode assumes that VGICv3 is present, so no point
2301 		 * in trying to hobble along if vgic initialization fails.
2302 		 */
2303 		if (is_protected_kvm_enabled())
2304 			goto out;
2305 
2306 		/*
2307 		 * Otherwise, userspace could choose to implement a GIC for its
2308 		 * guest on non-cooperative hardware.
2309 		 */
2310 		vgic_present = false;
2311 		err = 0;
2312 		break;
2313 	default:
2314 		goto out;
2315 	}
2316 
2317 	if (kvm_mode == KVM_MODE_NV &&
2318 	   !(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) {
2319 		kvm_err("NV support requires GICv3, giving up\n");
2320 		err = -EINVAL;
2321 		goto out;
2322 	}
2323 
2324 	/*
2325 	 * Init HYP architected timer support
2326 	 */
2327 	err = kvm_timer_hyp_init(vgic_present);
2328 	if (err)
2329 		goto out;
2330 
2331 	kvm_register_perf_callbacks(NULL);
2332 
2333 out:
2334 	if (err)
2335 		hyp_cpu_pm_exit();
2336 
2337 	if (err || !is_protected_kvm_enabled())
2338 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2339 
2340 	return err;
2341 }
2342 
teardown_subsystems(void)2343 static void __init teardown_subsystems(void)
2344 {
2345 	kvm_unregister_perf_callbacks();
2346 	hyp_cpu_pm_exit();
2347 }
2348 
teardown_hyp_mode(void)2349 static void __init teardown_hyp_mode(void)
2350 {
2351 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2352 	int cpu;
2353 
2354 	free_hyp_pgds();
2355 	for_each_possible_cpu(cpu) {
2356 		if (per_cpu(kvm_hyp_initialized, cpu))
2357 			continue;
2358 
2359 		free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2360 
2361 		if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2362 			continue;
2363 
2364 		if (free_sve) {
2365 			struct cpu_sve_state *sve_state;
2366 
2367 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2368 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2369 		}
2370 
2371 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2372 
2373 	}
2374 }
2375 
do_pkvm_init(u32 hyp_va_bits)2376 static int __init do_pkvm_init(u32 hyp_va_bits)
2377 {
2378 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2379 	int ret;
2380 
2381 	preempt_disable();
2382 	cpu_hyp_init_context();
2383 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2384 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2385 				hyp_va_bits);
2386 	cpu_hyp_init_features();
2387 
2388 	/*
2389 	 * The stub hypercalls are now disabled, so set our local flag to
2390 	 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2391 	 */
2392 	__this_cpu_write(kvm_hyp_initialized, 1);
2393 	preempt_enable();
2394 
2395 	return ret;
2396 }
2397 
get_hyp_id_aa64pfr0_el1(void)2398 static u64 get_hyp_id_aa64pfr0_el1(void)
2399 {
2400 	/*
2401 	 * Track whether the system isn't affected by spectre/meltdown in the
2402 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2403 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2404 	 * to have to worry about vcpu migration.
2405 	 *
2406 	 * Unlike for non-protected VMs, userspace cannot override this for
2407 	 * protected VMs.
2408 	 */
2409 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2410 
2411 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2412 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2413 
2414 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2415 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2416 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2417 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2418 
2419 	return val;
2420 }
2421 
kvm_hyp_init_symbols(void)2422 static void kvm_hyp_init_symbols(void)
2423 {
2424 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2425 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2426 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2427 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2428 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2429 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2430 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2431 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2432 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2433 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2434 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2435 
2436 	/* Propagate the FGT state to the the nVHE side */
2437 	kvm_nvhe_sym(hfgrtr_masks)  = hfgrtr_masks;
2438 	kvm_nvhe_sym(hfgwtr_masks)  = hfgwtr_masks;
2439 	kvm_nvhe_sym(hfgitr_masks)  = hfgitr_masks;
2440 	kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2441 	kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2442 	kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2443 	kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2444 	kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2445 	kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2446 	kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2447 	kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2448 
2449 	/*
2450 	 * Flush entire BSS since part of its data containing init symbols is read
2451 	 * while the MMU is off.
2452 	 */
2453 	kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2454 				kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2455 }
2456 
kvm_hyp_init_protection(u32 hyp_va_bits)2457 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2458 {
2459 	void *addr = phys_to_virt(hyp_mem_base);
2460 	int ret;
2461 
2462 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2463 	if (ret)
2464 		return ret;
2465 
2466 	ret = do_pkvm_init(hyp_va_bits);
2467 	if (ret)
2468 		return ret;
2469 
2470 	free_hyp_pgds();
2471 
2472 	return 0;
2473 }
2474 
init_pkvm_host_sve_state(void)2475 static int init_pkvm_host_sve_state(void)
2476 {
2477 	int cpu;
2478 
2479 	if (!system_supports_sve())
2480 		return 0;
2481 
2482 	/* Allocate pages for host sve state in protected mode. */
2483 	for_each_possible_cpu(cpu) {
2484 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2485 
2486 		if (!page)
2487 			return -ENOMEM;
2488 
2489 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2490 	}
2491 
2492 	/*
2493 	 * Don't map the pages in hyp since these are only used in protected
2494 	 * mode, which will (re)create its own mapping when initialized.
2495 	 */
2496 
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Finalizes the initialization of hyp mode, once everything else is initialized
2502  * and the initialziation process cannot fail.
2503  */
finalize_init_hyp_mode(void)2504 static void finalize_init_hyp_mode(void)
2505 {
2506 	int cpu;
2507 
2508 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2509 		for_each_possible_cpu(cpu) {
2510 			struct cpu_sve_state *sve_state;
2511 
2512 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2513 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2514 				kern_hyp_va(sve_state);
2515 		}
2516 	}
2517 }
2518 
pkvm_hyp_init_ptrauth(void)2519 static void pkvm_hyp_init_ptrauth(void)
2520 {
2521 	struct kvm_cpu_context *hyp_ctxt;
2522 	int cpu;
2523 
2524 	for_each_possible_cpu(cpu) {
2525 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2526 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2527 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2528 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2529 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2530 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2531 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2532 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2533 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2534 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2535 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2536 	}
2537 }
2538 
2539 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2540 static int __init init_hyp_mode(void)
2541 {
2542 	u32 hyp_va_bits;
2543 	int cpu;
2544 	int err = -ENOMEM;
2545 
2546 	/*
2547 	 * The protected Hyp-mode cannot be initialized if the memory pool
2548 	 * allocation has failed.
2549 	 */
2550 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2551 		goto out_err;
2552 
2553 	/*
2554 	 * Allocate Hyp PGD and setup Hyp identity mapping
2555 	 */
2556 	err = kvm_mmu_init(&hyp_va_bits);
2557 	if (err)
2558 		goto out_err;
2559 
2560 	/*
2561 	 * Allocate stack pages for Hypervisor-mode
2562 	 */
2563 	for_each_possible_cpu(cpu) {
2564 		unsigned long stack_base;
2565 
2566 		stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2567 		if (!stack_base) {
2568 			err = -ENOMEM;
2569 			goto out_err;
2570 		}
2571 
2572 		per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2573 	}
2574 
2575 	/*
2576 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2577 	 */
2578 	for_each_possible_cpu(cpu) {
2579 		struct page *page;
2580 		void *page_addr;
2581 
2582 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2583 		if (!page) {
2584 			err = -ENOMEM;
2585 			goto out_err;
2586 		}
2587 
2588 		page_addr = page_address(page);
2589 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2590 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2591 	}
2592 
2593 	/*
2594 	 * Map the Hyp-code called directly from the host
2595 	 */
2596 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2597 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2598 	if (err) {
2599 		kvm_err("Cannot map world-switch code\n");
2600 		goto out_err;
2601 	}
2602 
2603 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2604 				  kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2605 	if (err) {
2606 		kvm_err("Cannot map .hyp.data section\n");
2607 		goto out_err;
2608 	}
2609 
2610 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2611 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2612 	if (err) {
2613 		kvm_err("Cannot map .hyp.rodata section\n");
2614 		goto out_err;
2615 	}
2616 
2617 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2618 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2619 	if (err) {
2620 		kvm_err("Cannot map rodata section\n");
2621 		goto out_err;
2622 	}
2623 
2624 	/*
2625 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2626 	 * section thanks to an assertion in the linker script. Map it RW and
2627 	 * the rest of .bss RO.
2628 	 */
2629 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2630 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2631 	if (err) {
2632 		kvm_err("Cannot map hyp bss section: %d\n", err);
2633 		goto out_err;
2634 	}
2635 
2636 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2637 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2638 	if (err) {
2639 		kvm_err("Cannot map bss section\n");
2640 		goto out_err;
2641 	}
2642 
2643 	/*
2644 	 * Map the Hyp stack pages
2645 	 */
2646 	for_each_possible_cpu(cpu) {
2647 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2648 		char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2649 
2650 		err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2651 		if (err) {
2652 			kvm_err("Cannot map hyp stack\n");
2653 			goto out_err;
2654 		}
2655 
2656 		/*
2657 		 * Save the stack PA in nvhe_init_params. This will be needed
2658 		 * to recreate the stack mapping in protected nVHE mode.
2659 		 * __hyp_pa() won't do the right thing there, since the stack
2660 		 * has been mapped in the flexible private VA space.
2661 		 */
2662 		params->stack_pa = __pa(stack_base);
2663 	}
2664 
2665 	for_each_possible_cpu(cpu) {
2666 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2667 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2668 
2669 		/* Map Hyp percpu pages */
2670 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2671 		if (err) {
2672 			kvm_err("Cannot map hyp percpu region\n");
2673 			goto out_err;
2674 		}
2675 
2676 		/* Prepare the CPU initialization parameters */
2677 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2678 	}
2679 
2680 	kvm_hyp_init_symbols();
2681 
2682 	if (is_protected_kvm_enabled()) {
2683 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2684 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2685 			pkvm_hyp_init_ptrauth();
2686 
2687 		init_cpu_logical_map();
2688 
2689 		if (!init_psci_relay()) {
2690 			err = -ENODEV;
2691 			goto out_err;
2692 		}
2693 
2694 		err = init_pkvm_host_sve_state();
2695 		if (err)
2696 			goto out_err;
2697 
2698 		err = kvm_hyp_init_protection(hyp_va_bits);
2699 		if (err) {
2700 			kvm_err("Failed to init hyp memory protection\n");
2701 			goto out_err;
2702 		}
2703 	}
2704 
2705 	return 0;
2706 
2707 out_err:
2708 	teardown_hyp_mode();
2709 	kvm_err("error initializing Hyp mode: %d\n", err);
2710 	return err;
2711 }
2712 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2713 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2714 {
2715 	struct kvm_vcpu *vcpu = NULL;
2716 	struct kvm_mpidr_data *data;
2717 	unsigned long i;
2718 
2719 	mpidr &= MPIDR_HWID_BITMASK;
2720 
2721 	rcu_read_lock();
2722 	data = rcu_dereference(kvm->arch.mpidr_data);
2723 
2724 	if (data) {
2725 		u16 idx = kvm_mpidr_index(data, mpidr);
2726 
2727 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2728 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2729 			vcpu = NULL;
2730 	}
2731 
2732 	rcu_read_unlock();
2733 
2734 	if (vcpu)
2735 		return vcpu;
2736 
2737 	kvm_for_each_vcpu(i, vcpu, kvm) {
2738 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2739 			return vcpu;
2740 	}
2741 	return NULL;
2742 }
2743 
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2744 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2745 {
2746 	return irqchip_in_kernel(kvm);
2747 }
2748 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2749 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2750 				      struct irq_bypass_producer *prod)
2751 {
2752 	struct kvm_kernel_irqfd *irqfd =
2753 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2754 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2755 
2756 	/*
2757 	 * The only thing we have a chance of directly-injecting is LPIs. Maybe
2758 	 * one day...
2759 	 */
2760 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2761 		return 0;
2762 
2763 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2764 					  &irqfd->irq_entry);
2765 }
2766 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2767 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2768 				      struct irq_bypass_producer *prod)
2769 {
2770 	struct kvm_kernel_irqfd *irqfd =
2771 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2772 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2773 
2774 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2775 		return;
2776 
2777 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2778 }
2779 
kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd * irqfd,struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)2780 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2781 				   struct kvm_kernel_irq_routing_entry *old,
2782 				   struct kvm_kernel_irq_routing_entry *new)
2783 {
2784 	if (old->type == KVM_IRQ_ROUTING_MSI &&
2785 	    new->type == KVM_IRQ_ROUTING_MSI &&
2786 	    !memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2787 		return;
2788 
2789 	/*
2790 	 * Remapping the vLPI requires taking the its_lock mutex to resolve
2791 	 * the new translation. We're in spinlock land at this point, so no
2792 	 * chance of resolving the translation.
2793 	 *
2794 	 * Unmap the vLPI and fall back to software LPI injection.
2795 	 */
2796 	return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2797 }
2798 
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2799 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2800 {
2801 	struct kvm_kernel_irqfd *irqfd =
2802 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2803 
2804 	kvm_arm_halt_guest(irqfd->kvm);
2805 }
2806 
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2807 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2808 {
2809 	struct kvm_kernel_irqfd *irqfd =
2810 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2811 
2812 	kvm_arm_resume_guest(irqfd->kvm);
2813 }
2814 
2815 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2816 static __init int kvm_arm_init(void)
2817 {
2818 	int err;
2819 	bool in_hyp_mode;
2820 
2821 	if (!is_hyp_mode_available()) {
2822 		kvm_info("HYP mode not available\n");
2823 		return -ENODEV;
2824 	}
2825 
2826 	if (kvm_get_mode() == KVM_MODE_NONE) {
2827 		kvm_info("KVM disabled from command line\n");
2828 		return -ENODEV;
2829 	}
2830 
2831 	err = kvm_sys_reg_table_init();
2832 	if (err) {
2833 		kvm_info("Error initializing system register tables");
2834 		return err;
2835 	}
2836 
2837 	in_hyp_mode = is_kernel_in_hyp_mode();
2838 
2839 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2840 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2841 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2842 			 "Only trusted guests should be used on this system.\n");
2843 
2844 	err = kvm_set_ipa_limit();
2845 	if (err)
2846 		return err;
2847 
2848 	err = kvm_arm_init_sve();
2849 	if (err)
2850 		return err;
2851 
2852 	err = kvm_arm_vmid_alloc_init();
2853 	if (err) {
2854 		kvm_err("Failed to initialize VMID allocator.\n");
2855 		return err;
2856 	}
2857 
2858 	if (!in_hyp_mode) {
2859 		err = init_hyp_mode();
2860 		if (err)
2861 			goto out_err;
2862 	}
2863 
2864 	err = kvm_init_vector_slots();
2865 	if (err) {
2866 		kvm_err("Cannot initialise vector slots\n");
2867 		goto out_hyp;
2868 	}
2869 
2870 	err = init_subsystems();
2871 	if (err)
2872 		goto out_hyp;
2873 
2874 	kvm_info("%s%sVHE%s mode initialized successfully\n",
2875 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2876 				     "Protected " : "Hyp "),
2877 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2878 				     "h" : "n"),
2879 		 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2880 
2881 	/*
2882 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2883 	 * hypervisor protection is finalized.
2884 	 */
2885 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2886 	if (err)
2887 		goto out_subs;
2888 
2889 	/*
2890 	 * This should be called after initialization is done and failure isn't
2891 	 * possible anymore.
2892 	 */
2893 	if (!in_hyp_mode)
2894 		finalize_init_hyp_mode();
2895 
2896 	kvm_arm_initialised = true;
2897 
2898 	return 0;
2899 
2900 out_subs:
2901 	teardown_subsystems();
2902 out_hyp:
2903 	if (!in_hyp_mode)
2904 		teardown_hyp_mode();
2905 out_err:
2906 	kvm_arm_vmid_alloc_free();
2907 	return err;
2908 }
2909 
early_kvm_mode_cfg(char * arg)2910 static int __init early_kvm_mode_cfg(char *arg)
2911 {
2912 	if (!arg)
2913 		return -EINVAL;
2914 
2915 	if (strcmp(arg, "none") == 0) {
2916 		kvm_mode = KVM_MODE_NONE;
2917 		return 0;
2918 	}
2919 
2920 	if (!is_hyp_mode_available()) {
2921 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2922 		return 0;
2923 	}
2924 
2925 	if (strcmp(arg, "protected") == 0) {
2926 		if (!is_kernel_in_hyp_mode())
2927 			kvm_mode = KVM_MODE_PROTECTED;
2928 		else
2929 			pr_warn_once("Protected KVM not available with VHE\n");
2930 
2931 		return 0;
2932 	}
2933 
2934 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2935 		kvm_mode = KVM_MODE_DEFAULT;
2936 		return 0;
2937 	}
2938 
2939 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2940 		kvm_mode = KVM_MODE_NV;
2941 		return 0;
2942 	}
2943 
2944 	return -EINVAL;
2945 }
2946 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2947 
early_kvm_wfx_trap_policy_cfg(char * arg,enum kvm_wfx_trap_policy * p)2948 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2949 {
2950 	if (!arg)
2951 		return -EINVAL;
2952 
2953 	if (strcmp(arg, "trap") == 0) {
2954 		*p = KVM_WFX_TRAP;
2955 		return 0;
2956 	}
2957 
2958 	if (strcmp(arg, "notrap") == 0) {
2959 		*p = KVM_WFX_NOTRAP;
2960 		return 0;
2961 	}
2962 
2963 	return -EINVAL;
2964 }
2965 
early_kvm_wfi_trap_policy_cfg(char * arg)2966 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2967 {
2968 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2969 }
2970 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2971 
early_kvm_wfe_trap_policy_cfg(char * arg)2972 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2973 {
2974 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2975 }
2976 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2977 
kvm_get_mode(void)2978 enum kvm_mode kvm_get_mode(void)
2979 {
2980 	return kvm_mode;
2981 }
2982 
2983 module_init(kvm_arm_init);
2984